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Abstract of the Dissertation

Translational Symmetry Breaking in
Materials: First-principles Wannier Function

Study

by

Chia-Hui Lin

Doctor of Philosophy

in

Physics

Stony Brook University

2013

The spatial periodicity of the crystal structure dictates the elec-

tronic band structure theory as the fundamental paradigm in solid

state physics. The original translation in materials is commonly

broken with an enlarged unit cell required by spontaneously de-

veloped long-range order or multiple competing periodicities. The

former happens in the systems undergoing the phase transition

to antiferromagnetism, charge/spin density waves or lattice dis-

tortion. The latter originates from the intrinsic arrangement of

the multiple atom system or the externally introduced impurities.

The emergence of the broken symmetry can significantly modify

the electronic structure, shift the chemical potential, and change

the electric, magnetic or optical response in the experimental mea-

surement.

In this thesis, the impact of the translational symmetry breaking

on various materials is investigated by utilizing the first-principles
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Wannier functions. We represent the electronic structure by calcu-

lating the one-particle spectral function in the reference momentum

basis corresponding to a shorter periodicity. In the first case, the

lattice distortion in Li metal at high pressures is found to cause

the Fermi surface topological change, termed Lifshitz transition.

This transition triggers an anomalous enhancement of supercon-

ductivity. In the second case, we formulate a theoretical approach

to create massless Dirac particles in one-band two-dimensional lat-

tice from the inspiration of understanding Dirac cone formation in

graphene. In the last case, we discuss that staggered tetrahedral

structures in Fe-based superconductors can imply the orbital-parity

selective physics in the quasi-particles and superconducting pairing

structures.
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Chapter 1

Introduction: Materials Science,

Energy Band and Symmetry

Breaking

This chapter is aimed to give a general review about the basic concepts in

materials science from the practical aspect of condensed matter physics. In

addition, I will briefly discuss the two main ideas covered in my studies, energy

band theory and symmetry breaking associated with ordering in solids. In the

end, the overview of this thesis will be given.

1.1 Materials Science

In human history, studies of materials have been a fast-growing topic and are

tightly related to the evolution of our civilization. Along with the usage of

stone, bronze, and iron, human beings empirically realized the importance

of macroscopic physical quantities, like hardness, tensile strength, and den-

sity. By naked eye and the traditional optical magnifying glass, people also

started to categorize the materials and minerals by their external color, sur-

face reflectivity, and any information from the appearance. In addition, after

numerous trials and errors in metallurgy, the ancient professional blacksmiths

already learnt to improve the metal properties by techniques like casting, forg-

ing, thermal treatment and so on. Before the birth of modern science, human

beings had naturally developed the skills to perform materials characterization
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and engineering for improving their lives.

In the 19th century, as different subjects of classical physics emerged, mate-

rials research became an active branch of science. Physicists and chemists were

eager to know what is inside the black box. The direct way is to systematically

quantify the interesting responses of the external probes, like heating/cooling,

electric current, magnetic field, and so on. Numerous efforts had led to a long

list of empirical laws in physics. However, the real breakthrough in materials

science was brought about by the birth of quantum mechanics in the twentieth

century. After that, scientists became able to understand the materials from

the bottom-up philosophy. The mysteries beneath the black box became much

clearer than ever. With fast accumulated knowledge, a new era of fabricat-

ing and designing new materials began and has been bringing unprecedented

success in our history.

One of the most exciting pages in materials science is the triumph of semi-

conductors. It has been translated to the most influential manufacturing in-

dustry and dramatically changed our lives in the past five decades. Scientists

magically turned worthless sand (silicon) into chips that are full of integrated

circuits and worth thousands of dollars. All these efforts have boosted the so-

called second industrial revolution. Various high-performance devices, which

used to occupy an entire space of a room, are now minimized to fit your pock-

ets. Its wide and far-reaching applications are everywhere from your computer

or cell phone in your daily work, automobile electronic system or the naviga-

tor in you regular commuting, the liquid crystal display or game consoles in

your recreation, etc. The impact from materials science is already beyond our

imagination.

In addition to the information technology development, the discoveries of

various novel materials are also revolutionizing our world silently. One exam-

ple is from our ancient wisdom: the magnet used in the compass. It plays

an essential role in transformer devices for power transmission, which brings

the electricity from the distant power plant to every appliance in your home.

Its quality and working efficiency would decisively determine the energy loss

in the large-scale facilities. As the energy crisis becomes the most important

global issue, the search for quality magnets is still very active. Another exam-

ple is the superconductor [3], in which the electric current can flow without
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loss of energy below certain transition temperature. One practical application

is to generate high current flow in the magnetic resonance imaging for medi-

cal purpose. There, the generated magnetic field is strong enough to provide

high-resolution scans across different human body tissues and detect internal

injuries. Hence, quality superconductors are highly demanded to help the cor-

rectness and precision of medical diagnoses. Indeed, the innovation in various

novel materials is changing our world progressively.

To gain more insight and reveal the mechanisms behind different function-

alities, it is also important to test material behavior under various extreme

conditions. With the fast development of experimental techniques, people can

now put samples in contact of a diamond tip (diamond anvil cell) with applied

pressures up to 350 GPa, which is roughly the pressure at the center of the

earth [4]. This magnitude is enough to turn charcoal into diamond. Besides,

in low-temperature physics, one can cool down samples to temperatures close

to absolute zero. In this case, one piece of material can undergo a transition to

another phase and exhibit dramatically different characteristics. For example,

titanium nitride is a piece of ceramic that is usually applied as a coating on

metallic machine tools to prevent corrosion. It does not posses the electric con-

ductivity as good as the regular metal. However, if we cool it down to ∼ -267
◦C, it becomes a zero-resistivity superconductor, which is superior to most

metals in electric conduction. Therefore, exploring the materials properties

under different external conditions facilitate the design in new functionalities.

The development of materials science has always been a close combination

of practical purpose and pure scientific curiosity. Although there are only few

basic building blocks consisting of electronic charges, electronic spins, and the

lattice, the interplay between them leads to a tremendous amount of intriguing

phenomena. It has become the largest discipline in science and also brought the

inter-disciplinary innovation to chemistry, medicine, bio-engineering, electric

engineering to name a few. To resolve the emergent energy problem and

innovate the architectures in the next-generation technology, comprehensive

studies and novel design of the materials are still an unfinished quest.
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(a) (b) 

Figure 1.1: Crystal structures of (a) graphite and (b) diamond.

1.2 Crystallinity and Energy Band

Crystallinity is the most fundamental and essential property of solid state ma-

terials. In contrast to the freedom of moving around in gaseous and liquid

states, atoms are periodically arranged in the solid. Moreover, the types of

arrangement in materials have a direct influence on hardness, density, trans-

parency, and so on. For example, the graphite from the tip of your pencil is

composed of carbon atoms with hexagonal structure as shown in Fig. 1.1(a).

It is known for its opacity, brittleness, and moderate electric conductivity.

On the other hand, the precious diamond is also purely composed of carbon

atoms (except for a small amount of impurities), but its atoms are arranged

differently in a cubic lattice as shown in Fig. 1.1(b). Very different from the

graphite, diamond features superior hardness and high refractive index leading

to its sparkle scintillation. Also, its transparency and electrically insulating

properties are totally opposite to graphite. Even with the same chemical com-

position, the crystalline structure can still play the defining role for physical

and chemical characteristics.

Band structure theory of electrons, a central feature in solid state physics,

is dictated by the periodicity of the crystal combined with the quantum nature

of the electrons. Different from the classical particles in our daily experience,

the electrons in materials are only allowed to occupy the levels in certain

energy ranges, which are called energy bands and consists of many electronic

states [5, 6]. Also owing to the Paul exclusion principle, one electronic state

4



cannot accommodate more than one electron. Then, the energy bands can only

be fully occupied, partially occupied, and empty. One important implication is

that the materials can be categorized into a conductor with partially occupied

bands or an insulator with only fully occupied and empty bands. In the

conductor, any infinitesimal voltage can produce electric current because only

negligible energy is needed to promote the electrons to the mobile states. In

the insulator, no available mobile states exist in the the fully occupied energy

bands so that the infinitesimal voltage can not generate electronic flow. This is

why its electric resistance is enormously large. Only when the applied voltage

is high enough to overcome a threshold energy called band gap, the energy

difference between the highest occupied band and the lowest empty band,

the insulator can become conducting under high voltage. In some cases, if

the energy gap roughly is 2 ∼ 3 eV or below, we usually call the material

as semiconductor. This is because thermal energy of the room temperature is

already enough to overcome the band gap. Then its electric resistivity becomes

controllable between conducting and insulating behavior by design.

The band structure is like a detailed user manual about how to utilize this

material. Under certain reasonable assumptions, it is possible to know any

useful and measurable material properties accurately. For example, optical

properties are basically determined by the band structure in the materials

used in the light emitting diode (LED). By applying the electric voltage, the

GaAsP and InGaN semiconductor devices can emit red and blue light re-

spectively. The colors of the emitted light of different semiconductors are

mainly determined by the band gap size. In addition, how fast the electron

can move in the materials is also guided by the effective mass and velocity in

the band structure. The wide range of applications and success of the band

structure picture makes it the most important concept in materials science.

It subsequently lays the foundation of the whole semiconductor industry and

stimulates numerous studies in sub-disciplines, including mesoscopic physics

and nano-technology.
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SOLID LIQUID GAS 

Figure 1.2: Gas, liquid and solid phases of matter.

1.3 Symmetry Breaking and Ordering

Symmetry is of prime importance for any discipline of physics. From construct-

ing the fundamental model, various conservation laws and the selection rules

in physical processes, symmetry always dictates the most robust consequences

independent of the details of the system. In reality, it is very often that the

symmetries in the Hamiltonian are broken in the ground or the stable state

at a given temperature. This is the famous symmetry breaking phenomenon

shared by all disciplines in physics. In condensed matter, one example con-

cerns the three typical phases in matter: gas, liquid, and solid as illustrated in

Fig. 1.2. At extremely high temperature, it is intuitive to think that all atoms

in materials would be vaporized and becomes gaseous state. Thus, upon aver-

aging over all the random motions of atoms, the continuous translational and

rotational symmetries are preserved in the gaseous status. When temperature

is cooled down sufficiently to pass the liquid phase, the atoms in the solid

start to be arranged according to certain crystal structure with most stable

energy. Then, only discrete lattice translational and discrete rotational sym-

metries can remain. This exemplifies the process of symmetry breaking from

the continuous translation (rotation) to discrete translation (rotation). We

usually call this process as ordering.

The other example is the magnet in your compass, and all magnetic ma-

terials. If you heat up a piece of magnet on the stove, you will find that the

magnetism disappears and it will not be aligned to the poles of the earth.

6



N S 

Room temperature 
N S 

N S 

N S 

N S 

N S 

N S 

N S 

N S 

N S 

N S 

N S 

N S 

N S 

N S 

N S 

N S 

N S 

N S 

N S 

N S 

N S N S 

N S 

N S 

N S 

N 

N 

N 

N 

N 

High  temperature 

N S 

N S 

N S 

Figure 1.3: Macro- and micro-structures of the magnets at room and high
temperatures.

However, if you keep it cooled down for a while, we can find the ferromag-

netism is resumed. The microscopic origin is that each atom acts like a tiny

magnet inside that piece of magnet as in Fig. 1.3. The high temperature envi-

ronment would randomize the orientation of each tiny magnet and fulfill the

rotational symmetry as in the upper panel of Fig. 1.3. Once the temperature

is lowered, the interaction between tiny magnets would prefer the alignment in

parallel to reduce the total energy at room temperature as in the lower panel

of Fig. 1.3. Therefore, macroscopic magnetism is spontaneously formed at low

temperature and breaks rotational symmetry that the magnet used to have

at high temperature. In addition, the space inversion symmetry is commonly

broken in ferroelectric and antiferroelectric materials. Similarly, global gauge

symmetry is broken in superconductivity and superfluidity. From a practical

perspective, an ordered phase usually corresponds to the appearance of an in-

triguing material property. For example, magnetism, superconductivity, and

ferroelectricity have been widely used in various applications beyond purely

scientific interest. [7] Thus, in order to control and improve functionality, it is

desired to understand how the ordering is induced and how it is coupled to

the underlying electronic structure.

The main goal of this thesis is to investigate the specific symmetry break-
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Figure 1.4: Schematic diagrams of charge density wave formation. The one-
dimensional metal in (a) reduces its electronic total energy by forming a CDW
in (b).

ing in the lattice translational invariance. In general, most of the emergent

orderings in materials are associated with this broken translational symmetry,

such as antiferromagnetism, charge/spin density waves, and lattice distortion.

Based on the two cornerstones, band theory and symmetry breaking, of solid

state physics, I will address the physical consequences in several several real-

istic materials.

1.4 Charge Density Wave

One symbolic long range order is the charge density wave (CDW) phase, which

is a periodic modulation of the electronic charge density in general [8]. Peierls

initiated the pioneering work to predict an instability in a one-dimensional

metal [8]. Because one-dimensional normal metal has a conduction band filled

with electrons up to a Fermi wave vector kF as in Fig. 1.4(a), the gap opening

at Fermi energy leads to an energy gain in electronic structure and a new

insulating phase as in Fig. 1.4(b). This also introduces the new Brillouin zone

boundaries at ±kF and a new potential in real space with an periodicity of 2π
2kF

.

This spontaneous transition results in atomic distortions and is usually called

Peierls transition. In a simple case of a half filled band, kF = π/2a, where a

is the lattice constant. The developed new period is 2a. This is a typical case

of a commensurate CDW, in which the new periodicity is a rational fraction

or multiple of the lattice constant. Otherwise, the charge modulation is called

incommensurate.

Another way to reveal the vulnerability of a system is to discuss its charge
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response function, namely the bare charge susceptibility:

χ0(q) ∝
∑
k

fk+q − fk
εk+q − εk

, (1.1)

where εk is the eigenenergy at k. Then, fk is the Fermi-Dirac function at

energy εk. It is clear that the divergence of χ0(q) is mainly contributed by the

case that k = −kF and q = 2kF because kF and −kF are degenerate states.

In the case of one dimension, the Fermi surface is composed of two k points.

Therefore, the divergence plays a defining role in CDW instability. In two

dimensions, the importance of Fermi wave vectors is diluted. Only when a

dispersion has specific nesting vectors, a two-dimensional system can possibly

have tendency toward CDW instability. In three dimensions, the divergence

is much less important so a spontaneous development of charge density waves

is less likely to happen.

Since CDW is more prominent in low-dimensional physics, early research

was mostly about the quasi-one-dimensional organic materials, such as TTF-

TCNQ [9]. Due to gap opening on the Fermi energy, this class of materials was

experimentally confirmed to undergo a metal-insulator Peierls transitions at

low temperature. This was recognized as the first realization of Peierls’ predic-

tion. There are more researches about transition metal dichalcogenides [10],

which are layered materials and usually contain several nesting vectors on

Fermi surfaces. These materials also undergo Peierls transitions and form a

qausi-two-dimensional CDW.

In this thesis, we borrow the concept of charge modulation from CDW to

investigate electronic structure. For example, when a material contains two

kinds atoms with different periodicities, the presence of one kind of atoms

can be regarded as an external charge modulation of a different periodicity to

another. In another case, a material can have intrinsic atomic displacements

in its crystal structure. Although this does not directly involve spontaneous

symmetry breaking, the CDW concept is perfect to be applicable.

9



1.5 Overview of Thesis

In addition to the general introduction presented in Chapter 1, the techni-

cal background will be reviewed in Chapter 2. We start with density func-

tional theory and the Kohn-Sham equation. The wavefunctions in the mate-

rials can be represented as either the Kohn-Sham orbitals in the form of the

Bloch wave or its real-space counterpart Wannier functions with richer local

physics information. Then, I will recap the electronic structure represented

by the Green’s function formalism and extend it to the first-principles unfold-

ing method, which is applicable to study the physical effects from the broken

translational symmetry.

In the second part, I will present the four main studies on the influence

of the translational symmetry breaking in the novel materials. For the first

case in Chapter 3, one Fermi surface topological change, termed Lifshitz tran-

sition, is identified in the high-pressure phase of Lithium metal and so is its

impact on superconductivity enhancement. In this study, we also build the

first visualization of the three-dimensional unfolded Fermi surface. In Chap-

ter 4, we provide an alternative viewpoint to understand Dirac cone formation

in graphene. This understanding is extended to a simple scenario to theoret-

ically build Dirac cones in a general one-band 2D lattice. In Chapter 5, we

calculate the unfolded band structure in Fe-based superconductors, reveal its

implications to the magnetic and superconducting correlations, and provide a

direct comparison to results from photoemission spectroscopy. In Chapter 6,

we show the glide translation (remaining symmetry after the translation is bro-

ken) in Fe-based superconductors leads to an exotic orbital-parity selectivity

in the quasiparticles and superconducting pairing structures.
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Chapter 2

Density Functional Theory and

Electronic Structure in Matter

In this chapter, I will start with reviewing the background knowledge of the

density functional theory (DFT) [11], which is one of the most successful meth-

ods to deal with a quantum mechanical system. Since the many-body problem

can be mapped into a non-interacting electron problem by the Kohn-Sham

equation, its solution, Kohn-Sham orbitals, can be solved as the Bloch wave

of the solids under an effective periodic potential. I would also introduce two

useful bases for the electronic wavefunction: the linear augmented plane wave

(LAPW) and the Wannier function. The former is numerically reliable and

provides excellent computational performance in first-principles packages, for

example the implementation in WIEN2k [12]. The latter is the real space coun-

terpart to the Bloch wave and useful in characterizing the chemical bonding

with the local physics picture. Moreover, Wannier functions can help compress

the numerical information in DFT (involving ∼ 103 LAPW basis) into the low

energy Hilbert space composed of ∼ 10 local orbitals. Thus, it is made easy to

represent the electron structure by one-particle Green’s function and readily

extended to the first-principles band structure unfolding method.

2.1 Density Functional Theory

We know that the quantum mechanical system is governed by the Schrödinger

equation and particle statistics. The standard model of solid state physics is

11



composed of electrons, nuclei, and the Coulomb interaction between them. It

is also common to use the Born-Oppenheimer approximation, which puts the

attention on the electronic dynamics rather than the heavier nuclei. Thus, the

non-relativistic Schrödinger equation [11] is

(
− ~2

2m

∑
i

∇2
i −

∑
i,n

Zne
2

|ri −Rn|
+

1

2

∑
i 6=j

e2

|ri − rj|
)
Ψ = EΨ, (2.1)

where ri and Rn specify the positions of the electron and the nuclei respec-

tively. Zn, m (e), and ~ are the atomic number, electron mass (charge), and

the Planck’s constant. We usually assume the total electron number is N so

the many-body wavefunction is represented as Ψ = Ψ(r1, r2, . . . rN) subject to

a minus sign when two fermionic electrons are permuted on both the space

coordinate and spin. In principle, if the details of the inter-particle interac-

tion is known, like the Coulomb interaction in Eq. 2.1, to solve its solution

is seemingly a straightforward route to understand everything in solid state

physics. However, a solvable wavefunction in many-body problems is very

rare. The mind set to simply solve the many-body problem, which usually

involves a particle number of ∼ 1023, is not practical. This difficulty of solving

Eq. 2.1 had puzzled physicists for decades since only few accurate solutions

are available in small systems, like H2 molecule and He atom. Even with the

most advanced computing resource to date, the exponentially growing Hilbert

space still makes the quest to estimate Ψ a untractable task.

To seek an alternative route avoiding solving the full many-body Schrödinger

equation, physicists started to be curious about whether there exists a basic

quantity of prime importance to represent the whole quantum mechanical sys-

tem. The answer had not been clear until the ground-breaking work by Ho-

henberg and Kohn in 1964 [13]. Now, the answer, ground state density n(r),

has been known and widely studied. The idea to utilize n(r) was initiated by

the Thomas-Fermi theory in 1920’s [14, 15]. In the non-interacting and homo-

geneous Fermi gas, the relation between the uniform ground state density n0

and the Fermi momentum pF is n0 = 8π
3h3
p3
F . As a very crude approximation,

the formula is generalized to an inhomogeneous ground state density in the

presence of slowly-varying potential as n(r) = 8π
3h3
p3
F (r). In Thomas-Fermi

12



theory, the kinetic energy functional can be approximated as

T [n(r)] =
3h2

10m

( 3

8π

) 2
3

ˆ
drn5/3(r), (2.2)

and the potential term is the static Coulomb interaction between electronic

densities

V [n(r)] =
e2

2

ˆ ˆ
n(r)n(r′)

|r − r′|
drdr′ + V ext, (2.3)

where V ext denotes the external potential from the periodic potential from of

the ions. Thus, the total energy, T [n(r)] +V [n(r)], can be obtained merely by

knowing the behavior of n(r) instead of the full knowledge of the many-body

wavefunction.

Despite the correct and qualitative trend in total energy estimation, Thomas-

Fermi theory still lacks the consideration of chemical bonding and a rigorous

connection to the many-body solution. The true electronic correlation is also

poorly addressed. Later in 1964, the drawbacks were overcome by Hohenberg

and Kohn’s pioneering work, which formally established the uniqueness and

usefulness of the ground state density [13]. Therefore, a new door to conquer

the many-body system was opened then.

2.1.1 Hohenberg-Kohn Theorems

To review the density functional theory, I will start with the two basic Hohenberg-

Kohn (HK) theorems, which lay the foundation for modern electronic structure

calculations.

Theorem 1 The ground state density n(r) of a non-degenerate bound-state

interacting electronic system uniquely determines the external potential vext(r)

apart from a trivial constant.

Proof: We start with an n(r), which is the ground state density of a non-

degenerate ground state wavefunction Ψ1 with energy E1 under the external

potential vext1 (r). We denote the corresponding Hamiltonian H1 consisting of

the kinetic energy operator T and electron-electron interaction U . Thus, the

energy can be evaluated as

E1 = 〈Ψ1|H1|Ψ1〉 = 〈Ψ1|T + U |Ψ1〉+

ˆ
vext1 (r)n(r)dr (2.4)
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Then, we suppose that there exists the second external potential vext2 (r) 6=
vext1 (r) + constant, which gives a distinct ground state wavefunction Ψ2 6= Ψ1

but still shares the same density n(r) with vext1 (r). The new ground state energy

can also be evaluated as

E2 = 〈Ψ2|H2|Ψ2〉 = 〈Ψ2|T + U |Ψ2〉+

ˆ
vext2 (r)n(r)dr. (2.5)

Because of the Rayleigh-Ritz variational principle, we have two inequalities:

E1 < 〈Ψ2|H1|Ψ2〉 = 〈Ψ2|T + U |Ψ2〉+

ˆ
vext1 (r)n(r)dr

= E2 +

ˆ
[vext1 (r)− vext2 (r)]n(r)dr, (2.6)

E2 < E1 +

ˆ
[vext2 (r)− vext1 (r)]n(r)dr. (2.7)

Since the ground state is non-degenerate, the addition of the above two inequal-

ities would lead to

E1 + E2 < E1 + E2, (2.8)

which is obviously contradictory. Therefore, by reductio ad absurdum, the

assumption that vext2 (r) 6= vext1 (r) + constant can still produce the same ground

state density is false. The ground state density n(r) must uniquely determine

vext(r), and Theorem 1 is proven.

Because the ground state density uniquely determines both vext(r) and

N , the full Hamiltonian is also determined. In principle, all quantities are

implicitly determined by n(r), including the ground, excited wavefunction, and

any Green’s functions. Since n(r) plays such a critical role in the quantum

system, the next theorem will elaborate on the general principle to evaluate

n(r). [11, 16]

Theorem 2 The total energy of the ground state can be obtained by variation

with respect to the trivial density ñ(r) instead of the trail wavefunction Ψ̃.

Proof: The original Rayleigh-Ritz variational principle is E = minΨ̃〈Ψ̃|H|Ψ̃〉.
Since vext(r) and N are uniquely determined by n(r), so are H and the ground

state wavefunction ΨGS. Thus, ΨGS = ΨGS[n(r)] so the minimization of the
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ground state energy can be achieved by the variation of n(r). Therefore, The-

orem 2 is also proven.

The other informative perspective to discuss the ground state energy search

was proposed by Levy [16]. We can finalize the search for the ground state

energy by the following two steps. First, fixing ñ(r), we assume that there

is a set of trial wavefunctions Ψ̃α corresponding to the same ñ(r). With the

constraint of fixed ñ(r), the energy can be minimized by varying the Ψ̃α:

Ev[ñ(r)] = min
α
〈Ψ̃α|H|Ψ̃α〉 =

ˆ
vext(r)ñ(r)dr + F [ñ(r)], (2.9)

where F [ñ(r)] ≡ minα〈Ψ̃α|T + U |Ψ̃α〉 is a universal functional of ñ(r) and

has no explicit dependence on vext(r). It means that F [ñ(r)] characterizes the

interaction between electrons only and does not depend on the details of the

system. The second step is to utilize the fact that the ground state has the

lowest possible total energy so E can be obtained by varying ñ(r).

E = min
ñ(r)

ˆ
vext(r)ñ(r)dr + F [ñ(r)]. (2.10)

Therefore, the minimizing ñ(r) would be the ground state density n(r).

Assuming F [ñ(r)] is known, the goal to obtain the total energy by varying

Ψ is simplified to controlling a three-dimensional quantity ñ(r) only. However,

the a priori accurate knowledge of F [ñ(r)] is not available and its needs further

approximation to implement the formalism into practice. In order to show the

rough idea about F [ñ(r)], we recall the Thomas-Fermi theory and borrow their

crude approximation on the global functional:

F TF [n(r)] = T +U =
3h2

10m

( 3

8π

) 2
3

ˆ
drn5/3(r).+

e2

2

ˆ
n(r)n(r′)

|r − r′|
drdr′. (2.11)

The format of the kinetic functional indicates that the concept is still related

to the uniform electron gas. Also, the electron-electron interaction is in the

mean-field level without the consideration of rigorous exchange and correla-

tion effects. Unfortunately, the full knowledge of rigorous F [n(r)] requires

the solution of the many-body system and is only approximated with various

assumption schemes.
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𝑒2

|𝑟 − 𝑟′|
 

Realistic system w/ e-e interaction Auxiliary system of non-interacting e’s 

E[n(r)]  
r[n(r)]  

True many-body Y(r1,r2…..rN ) Kohn Sham orbitals: ei, fi   

Figure 2.1: Interacting electronic and non-interacting Kohn-Sham systems.

2.1.2 Kohn-Sham Equation

Although the Hohenberg-Kohn theorems are extremely powerful and general,

the practical computation of the ground state energy is not explicitly provided.

One year after the Kohn and Sham’s publication, Kohn and Sham designed a

practical approach to implement the density functional theory. [17]

Since a modification of vext(r) would only change the ground state density,

there is freedom to map the interacting F [n(r)] as in the left panel Fig. 2.1

to an auxiliary non-interacting system as in the right panel Fig. 2.1, which

still share the same n(r) with the original interacting system. This treatment

simplifies the wavefunction of the auxiliary system as a single determinant

consisting of various occupied orbitals.

ΨKS =
1√
N

det[φ1(r1)φ2(r2) · · ·φN(rN)] (2.12)

Keeping the trivial density-density Hartree interaction terms, Kohn and Sham

separated the F [n(r)] into three parts:

F [n(r)] = Ts[n(r)] +
e2

2

ˆ
n(r)n(r′)

|r − r′|
drdr′ + Exc[n(r)], (2.13)

where Ts[n(r)] and Exc[n(r)] are the kinetic energy functional for the non-

interacting system and the exchange-correlation energy functional respectively.

It is noted that Eq. 2.13 attempts to capture the spirit of the one-particle

Hartree equations [6] with wavefunction in the form of ΨKS and is also the
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definition of Exc[n(r)]. If we apply the second HK theorem,

E = min
n(r)

( ˆ
vext(r)n(r)dr + Ts[n(r)] +

e2

2

ˆ
n(r)n(r′)

|r − r′|
drdr′ + Exc[n(r)]

)
.

(2.14)

With the fixed total electron number (N =
´
n(r)dr) as the constraint (

´
δn(r) =

0), the Euler-Lagrange equation is

ˆ
δn(r)

(δTs[n(r)]

δn(r)
+vext(r)+e2

ˆ
n(r′)

|r − r′|
dr′+

δExc[δn(r)]

δn(r)
−µ
)
dr = 0, (2.15)

where µ is the Lagrange multiplier. It becomes clearer if we refine the following

quantities:

veff (r) ≡ vext(r) + e2

ˆ
n(r′)

|r − r′|
dr′ + vxc(r).

vxc(r) ≡
δ

δn(r)
Exc[n(r)]. (2.16)

Thus, the variational equation is simplified to

δTs + veffδn(r) = µδn(r) (2.17)

We consider the auxiliary non-interacting system with a set of N one-

particle orbitals φi(r) to reproduce the same electron density as the true in-

teracting electron system. Thus,

n(r) =
N∑
i

|φi(r)|2. (2.18)

δn(r) =
N∑
i

[δφ∗i (r)]φi(r) + φ∗i (r)δφi(r)]. (2.19)
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The non-interacting kinetic energy functional is

Ts[n(r)] = − ~2

2m

N∑
i

ˆ
φ∗i (r)∇2φi(r)dr (2.20)

δTs[n(r)] = − ~2

2m

N∑
i

ˆ [
δφ∗i (r)∇2φi(r) +∇2φ∗i (r)δφi(r)

]
dr (2.21)

Another Lagrangian multiplier εi is needed to satisfy the normalization con-

straint
´
φ∗i (r)φi(r)dr = 1.

Collect all terms with δφ∗(r) in Eq. 2.17, the Lagrange equation becomes

[
− ~2

2m
∇2 + veff (r)

]
φi(r) = εiφi(r). (2.22)

The original many-body problem is transformed into a one-particle equation

solved by the self-consistent loop. Eq. 2.22 is usually called the Kohn-Sham

(KS) equation. Once the eigenfunction φi(r) and eigenvalue εi are found, we

can reconstruct the ground state density by Eq. 2.18. While the eigenenergy

does not have a direct physical meaning, it can be used to reconstruct the

total energy. From the Kohn-Sham functional in Eq. 2.13,

N∑
i

εi = Ts+

ˆ
vext(r)n(r)dr+e2

ˆ
n(r)n(r′)

|r − r′|
drdr′+

ˆ
vxc(r)n(r)dr. (2.23)

Then, the total energy can be represented as

E =
N∑
i

εi −
e2

2

ˆ
n(r)n(r′)

|r − r′|
drdr′ + Exc[n(r)]−

ˆ
vxc(r)n(r)dr. (2.24)

It is noted that if Exc[n(r)] and vxc[n(r)] are made zero, the Eq. 2.22 is re-

duced to the Hartree equation. It means that the many-body correlation is

encapsulated in the Exc[n(r)] functional, so the question of how to approxi-

mate it within a reasonable computational time scale determines the practical

applicability of the Kohn-Sham equation.

One should be cautious that εi and φi(r) only serve an auxiliary purpose

and do not possess a true physical meaning. [11] Only the n(r) is a physical

observable. In practice, εi and φi(r) in weakly correlated systems are not very
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different from the solution calculated by the Hartree equation. Therefore, they

are often interpreted as the eigenstate and dispersion in the band structure

theory.

2.1.3 Local Density Approximation

Density functional theory with Kohn-Sham equation has a built-in rigorous

mathematical formalism for solving electronic structure. Still required is a

good scheme to approximate the functional Exc[n(r)] and complete the equa-

tion. In the viewpoint of the Kohn-Sham framework, Exc[n] = (T [n]−Ts[n])+

(Ve−e − VH), but the exact functional dependence on n(r) is unknown. De-

pending on the purpose or accuracy, many kinds of approximation have been

proposed in either molecular or solid state systems, but the full discussion is

beyond the scope of this thesis. I will focus on the local density approximation

(LDA), which is the most basic one and is widely used in solid state materials.

As the simplest approximation, LDA takes a slowly-varying density into

consideration. One can imagine that the most straightforward way is to rep-

resent the functional form in the following local format [18]

ELDA
xc [n(r)] =

ˆ
exc(n(r))n(r)dr, (2.25)

where exc is the exchange-correlation energy per electron. Because exc only

senses the local value of n at position r, the dependence is reduced to a simpli-

fied function relation instead of the original functional one. Further approx-

imation can be taken from the well-known relation between exc and n in the

uniform Fermi gas, where exc(n) = ex(n)+ec(n). From Ref. [18], one can know

the exchange part as

ex(n) = − 3

4π
(3π2n)1/3. (2.26)

However, the correlation energy has no general closed forms. In the high

electron density limit, it can be approximated as [18]

ec(n) = c0 ln rs − c1 + c2rs ln rs − c3rs + . . . (rs → 0), (2.27)

where rs is the Wigner-Seitz radius rs ≡ (3/4πn)1/3. The constants ci can

be determined by many-body perturbation theory. To obtain a more accurate

19



value for ec(n) of arbitrary electron density, one usually consults the numerical

result from the quantum Monte Carlo simulation. [19] Thus, exc(n) can be

readily plugged into Eq. 2.22 and completes the KS equation. The solution of

KS equation with LDA (and its variants) has proved an astonishing accuracy

with experimental values in ionization energy of atoms, the bond length for

molecules and the cohesive energy in realistic materials. [20]

2.2 Wavefunction in Matter

In this section, I will start with the Bloch theorem to discuss the general

formalism of the wavefunction in a periodic potential, to which the effective KS

potential belongs. To obtain the first-principles band structure by combining

the Bloch theorem and density functional theory, a linearized augmented plane

wave basis can significantly reduce the computational expense. In the end, I

will proceed to introduce the concept of Wannier orbitals, which is the real-

space counterpart of the Bloch wave.

2.2.1 Bloch wavefunction

The Bloch wave is the wavefunction for a single particle moving in the periodic

potential and has the eigen-energies corresponding to the band structure of

the electron in the crystal. In a fictitious case of periodic potential magnitude

turned to zero, it is reduced to the free particle problem with the straightfor-

ward plane wave solution eikr to the Schrödinger’s equation. The k represents

the physical momentum of the electron. Once the periodic potential is present,

Felix Bloch showed the wavefunction becomes.

ψkj(r) = eikrukj(r), (2.28)

where ukj(r) is a periodic wavefunction with ukj(r) = ukj(r + R) and R is a

lattice vector of crystal [6]. The quantum number j is the band index and

distinguishes different eigenenergy εkj for the same momentum k. Because the

continuous translational symmetry has been broken by the periodic poten-

tial term, k labels the so-called crystal momentum instead of the true linear

momentum in the free electrons. Its meaning will be clear in the following
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discussion.

Theorem 3 If the potential V (r) is periodic with the periodicity of the lattice,

namely V (r) = V (r+R), then the eigenfunctions of the Schrödinger’s equation

Hψk(r) =
[
− ∇

2

2m
+ V (r)

]
ψk(r) = Eψk(r) (2.29)

have the form ψk(r) = eikru(r +R), where u(r) = u(r +R).

The rigorous proof can be found in most solid state textbooks [5, 6]. Now,

we consider a more elegant perspective based on a group theory treatment [5].

Let us start with a one-dimensional case, the lattice translation operator in

its defining representation is

Tr = r + a, (2.30)

where a the primitive vector of the one-dimensional lattice. Since
[
T, H

]
= 0,

we want to construct the wavefunction ψ(x) to be the simultaneous eigenstate

of Hamiltonian and translational operator. Namely,

Hψ(r) = Eψ(r). (2.31)

Tψ(r) = tψ(r). (2.32)

Also, we assume the periodic boundary condition with N unit cells, namely

ψ(x+Na) = ψ(x). By exploring the boundary condition,

TNψ(x) = tT(N−1)ψ(x+ a) = . . . = tNψ(x+Na) = tNψ(x). (2.33)

Due to the normalization of the wavefunction, we know that the eigenvalue t

must satisfy |t| = 1 and tN = 1. Thus, we can choose t = ei2πm/N , where m =

1, 2, ... N . One conventional choice is to define −π
a
≤ k < π

a
so that

t = eika, (2.34)

where k = −π
a
,−π

a
+ 2π

Na
,−π

a
+ 4π

Na
, · · · , π

a
− 2π

Na
. Because of the 2π periodicity of

the phase, k+ 2π
a
×(any integer) is physically equivalent to k. Hence, k, named

crystal momentum, does not only denote a single momentum but represents
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all equivalent ones. Therefore, it is natural to label the wavefunction by k and

require ψk(x) = eikxuk(x) with uk(x) = uk(x+ la)|l=integer to satisfy Eq. 2.32.

This is the Bloch theorem in the one-dimensional case.

To generalize the statement to three-dimensional space with a1, a2 and a3

the primitive vectors of the lattice, we define a reciprocal space lattice by the

following reciprocal primitive vectors:

b1 ≡ 2π
[ a2 × a3

a1 · (a2 × a3)

]
. (2.35)

b2 ≡ 2π
[ a3 × a1

a1 · (a2 × a3)

]
. (2.36)

b3 ≡ 2π
[ a1 × a2

a1 · (a2 × a3)

]
. (2.37)

It is easy to check

ai · bj = 2πδij, (2.38)

Since Eqs. 2.32 and 2.33 can be generalized to the case with three primitive

vectors, the complete Bloch theorem becomes ψk(r) as eikruk(r) with uk(r) =

uk(r +R).

By applying the Bloch theorem, the self-consistent Kohn-Sham equation

can be iteratively solved by looking for the Bloch wave of individual k under the

Kohn-Sham effective potential. The electronic density can be reconstructed

as n(r) =
∑

kj,εkj<EF
|ψkj(r)|2.

2.2.2 Linearized Augmented Plane Wave Basis

In this subsection, I will briefly introduce the linearized augmented plane wave

(LAPW) basis, in which solving the Kohn-Sham equation with the full-electron

calculation will be reasonably efficient. Among all possible basis sets, the most

natural choice will be either plane waves or local atomic orbitals. Both are

complete and orthogonal sets of basis. They are also easy implemented in

programming and numerical computation. However, the former is incapable of

describing the core and semi-core electrons. It is because when describing the

nodal structure of the radial wavefunction very close to the nuclei, one should

include very large wave vectors and this makes the numerical Hamiltonian size

unmanageably high. The latter is also inadequate to capture the itinerancy
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of the valence electrons very well. This reason is that very high orders of

spherical harmonics are needed to simulate the wavefunction behavior close to

a plane wave.

To complement the disadvantages of the two bases mentioned above, one

feasible way is a new set of basis utilizing their advantages in the suitable

places. This basis is called augmented plane wave [21]. For each individual

atom α, we assign a muffin-tin region Sα enclosed by a specified radius Rα, and

represent the wavefunction in Sα by the local atomic orbitals. The interstitial,

the space not covered by any muffin tins, has the wavefunction expanded by

the plane wave basis. Thus, the general wavefunction can be represented as

[21]

φkK(r, E) =

 1√
V
ei(k+K)r, if r ∈ Interstitial∑
lmA

α,k+K
lm uαl (r, E)Y l

m(r̂), if r ∈ Sα
(2.39)

where r and r̂ denote r − rα and its solid angle respectively. For each inde-

pendent quantum number k, the wavefunction ψkj(r) consists the component

φkK(r, E) weighted by ck+K,j of all possible reciprocal lattice vectors K. V

is the unit cell volume as the normalization constant. Inside each muffin

tin, uαl (r, E)Y l
m(r̂) is the solution of the free-atom Schrödinger equation with

boundary condition of having a vanishing value on the muffin tin radius. Thus,

the energy E is not quantized as the Hydrogen atom problem but becomes a

continuous spectrum calculated numerically. It is part of the basis function

and does not carry a physical meaning.

If we expand the plane wave into the superposition of Bessel functions and

spherical harmonics, we can match the wavefunction to obtain the coefficients

in closed form:

Aα,k+K
lm =

4πile(k+K)Rα

√
V uαl (Rα, E)

jl(|k +K|Rα)Y l
m(k̂ +K). (2.40)

This augmented plane wave basis is seemingly efficient in describing the char-

acteristics of the Bloch wave in different regions. We only need to make

a reasonable truncation on the maximum values of the angular momentum

quantum number lmax and the maximum reciprocal lattice vector Kmax. The

remaining ambiguity is the undetermined variable E. In principle, E should
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be matched with the energy eigenvalues εkj, for which we need to solve the

Kohn-Sham equation. Unfortunately, it turns out that we need to start with

a set of guessed E’s and introduce an extra self-consistent loop to reach the

convergence in E.

To prevent the extra numerical work in searching for E, we have to imple-

ment a smarter way to estimate uαl (r, εkj) without extra computational cost.

One way is to use LAPW [21]. We assume that an assigned E0 is not too far

from εkj so uαl (r, εkj) can be evaluated as

uαl (r, εkj) = uαl (r, E0) + (E0 − εkj)
∂uαl (r, E)

∂E
|E=E0 +O

[
(E0 − εkj)2

]
. (2.41)

A suitable E0 should be chosen as close to εkj as possible for all k’s. In practice,

one band complex is dominated by a few orbitals l’s of the atom α. The better

strategy is to assign E0 to be located at the band center. This minimizes the

error term O((E0−εkj)2) and saves the numerical efforts. Usually, the relevant

density is the valence electron density, which is dominated by low l, such as s,

p, d, or at most f . Therefore, we specifically estimate those relevant l’s and

leave the other large l orbitals to share a single E0. The formalism of LAPW

would be as follows:

φkK(r, E) =

 1√
V
ei(k+K)r, if r ∈ Interstitial.∑
lm

(
Aα,k+K
lm uαl (r, Eα

l ) +Bα,k+K
lm u̇αl (r, Eα

l )
)
Y l
m(r̂), if r ∈ Sα,

(2.42)

where u̇αl denotes the energy derivative of uαl . The coefficients Aα,k+K
lm and

Bα,k+K
lm can be evaluated by simultaneously matching the wavefunction value

and its radial derivative on the muffin tin radius. The usage of LAPW and

its variants are well implemented in WIEN2k, which I heavily used to study

the first-principles electron structure. Combining the DFT, Bloch theorem,

and LAPW, the Kohn-Sham equation can be readily solved by the simplified

flow chart in Fig. 2.2. The three key ingredients, Kohn-Sham potential, Kohn-

Sham orbitals, and ground state density would be updated in each iteration

until their values are convergent.
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Guess initial density n0(r)  

𝑉𝑒𝑓𝑓 𝑟 = 𝑉𝑒𝑓𝑓[𝑛 𝑟 ]  

Kohn-Sham orbitals 𝜓𝑘𝑗 =  𝑐𝑘+𝐾
𝐾𝑚𝑎𝑥
𝐾 𝐾

𝑘 (𝑟) 

Generalized eigenvalue eq. in LAPW basis 𝐻𝐶 = 𝐸𝑆𝐶 

n(𝑟) =  |𝜓𝑘𝑗 𝑟 |
2

𝑘,𝑗  (𝜀𝑘𝑗<𝐸𝐹)
 

Set the crystal information 
Assign the numerical parameters Kmax , lmax and 𝐸𝑙

𝛼 

Mix new density with the density from previous iteration 

Convergent? STOP 
YES NO 

Figure 2.2: Flow chart of solving Kohn-Sham orbitals in the LAPW basis.

25



2.2.3 Wannier Functions in Solid State Physics

Wannier functions, introduced by Gregory Wannier [22], are a complete set

of orthogonal wavefunctions, which are localized in real space. In principle,

the Wannier basis is constructed from the Fourier transform of the Bloch

wave and no longer corresponds to a specific eigenenergy. Complementary to

the energy band and spatially extended features of the Bloch waves, Wannier

functions provide the real-space perspective to the electronic structure. First,

the hybridization between two Wannier orbitals reveals the nature of chemical

bonding. Second, the on-site energy of a single Wannier orbital indicates how

its energy scale is impacted by the surrounding chemical environment. Third,

Wannier orbitals provide a compact format of the real-space Hamiltonian,

which can facilitate the applications modeling true many-body effects.

In the early development, the Wannier functions were only used to help

derivations in fundamental theorems but were rarely calculated for their own

application. After the framework of solving Kohn-Sham equation for the band

structure became the standard procedure in first-principles method, its actual

demonstration drew physicists’ attention again in the late 90s and was quickly

applied to research in various disciplines.

We can start with considering a simplified single-band model [5] with a

known Bloch state ψk(r) = eikruk(r). Thus, the Wannier functions centered

at each lattice point R are

wR(r) = w(r −R) =
1√
N

∑
k∈BZ

e−ikRψk(r), (2.43)

where the R is the lattice vector and N is the number of unit cells. It is noted

that wR(r) only depends on r −R and its orthogonality is shown as

ˆ
w(r −R)w(r −R′)dr =

1

N

∑
k,k′

ˆ
eikRψ∗k(r)e

−ik′R′ψk′(r)dr

=
1

N

∑
k,k′

eikRe−ik
′R′δk,k′ = δR,R′ , (2.44)

Although multi-orbital systems can be described in the same spirit, the
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Bloch wave, as we know, is subject to a non-physical arbitrary phase

|ψ̃k〉 = eiϕ(k)|ψk〉, (2.45)

where ϕ(k) will not change any physical observables. For sure, different phase

choices will lead to different cancellation in the Fourier transform so that the

resulting Wannier functions will change the shape and the extent of spreading

accordingly. On the other hand, the absence of a well-defined connection

between the Bloch band index j and the Wannier orbital n brings another

ambiguity to such a transformation. Generally speaking, these two effects are

included in the k-dependent gauge denoted by a unitary matrix Uk
ij, and all

gauge-equivalent states |ψ̃ki〉 can be represented as

|ψ̃ki〉 =
∑
j

Uk
ij|ψkj〉. (2.46)

Only when Uk
ij is well-chosen, the corresponding Wannier functions are

wRn(r) =
1√
N

∑
k∈BZ

e−ikR
∑
j

Uk
njψkj(r), (2.47)

where n represents the Wannier orbital indices, including both atomic and

orbital types.

From the first-principles aspect, there exist two conventional ways to fix the

Uk
ij gauge to define either maximally-projected or maximally-localized Wannier

functions [23]. Starting from a trial local orbital gn(r) roughly in the shape

of the atomic basis, the gn(r) should carry the conventional symmetries, like

s, px, py, pz and so on. For example, the atomic wavefunction in the muffin

tin of the LAPW basis is a suitable choice. We would try to the construct a

sub-space by projecting Kohn-Sham orbitals into gn(r) as

|φkn〉 =
∑
j

|ψkj〉〈ψkj|gn〉, (2.48)

When |φkn〉 is chosen as the initial guess, it does not guarantee to form a

orthonormal basis. By using the Lowdin orthogonalization [23], we can mini-

mally adjust the basis to achieve orthonormality. The resulting complete basis
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at each k is

|wkn〉 =
∑
j

|φkm〉(Sk)−1/2
mn , (2.49)

where (Sk)mn ≡ 〈φkm|φkn〉 and S−1/2 can be computed by using an eigenvalue

decomposition. The gauge has been fixed by the time gn(r) is chosen. The

Wannier functions from this construction are called the maximally-projected

Wannier functions, which will strictly follow the orbital symmetry of gn(r).

Maximally localized Wannier functions, formulated by Marzari and Van-

derbilt [23], are constructed by the criteria to maximize the localization of the

orbitals. Through the process to minimize the Wannier orbital spreading in

space, the gauge will be also fixed. In practice, a localization functional is

defined as

Ω =
∑
n

[〈0n|r2|0n〉 − |〈0n|r|0n〉|2] (2.50)

to measure the spreading sum of all Wannier functions within the unit cell.

The task can be done by re-writing Ω in terms of the Kohn-Sham orbitals and

Uk
ij so one can reduce Ω iteratively and achieve the minimum spreading.

One most important advantage to use a first-principles Wannier function

basis is the so-called band structure down-folding, which extracts the effective

low-energy Hamiltonian containing the minimal orbitals of interest. The com-

plex DFT information will be compressed into a tight-binding Hamiltonian in

the form of 〈Rn|H|R′n′〉, where R′ can be taken as zero due to translational

invariance.

Here, we show two examples from the practical implementation of the

maximally-projected Wannier functions constructed from the DFT results of

the WIEN2k package. As in the GaAs case in Fig. 2.3, we present the s

and p’s Wannier orbitals of Ga and As within energy window [-14:12] eV and

plot its dispersion the red as the curves. They match the DFT dispersion

in the black dots very well. The reduction of the basis number from LAPW

to the Wannier orbitals has a factor of twenty (∼ 168/8). This means that

the computational efficiency for either band structure or other observables is

dramatically improved. This is why we can easily plot the dispersion in the

continuous fashion by Wannier interpolation. This computational difference

is more prominent in the system with the large unit cell. For example, to

simulate the electronic structure in the carbon nanotube of (5,5) chirality
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Figure 2.3: (Left) GaAs Band structures from DFT and maximally-projected
Wannier functions. The Wannier functions include Ga orbitals (s, px, py, and
pz) and As orbitals (s, px, py, and pz). (Right,upper) Crystal structure and
(Right, lower) Brillouin zone.

(see right panel of Fig. 2.4), ∼7284 LAPW’s in DFT are needed to represent

the 20 carbon atoms and the large inserted vacuum. The ratio bursts into

7284/80 ≈ 100. The resulting DFT band structure in the black dots in Fig. 2.4

becomes the atomic/molecular-like spectrum with discrete energies. After it

is converted to maximally-projected Wannier functions of carbon s and p’s

orbitals, the Hilbert space is largely reduced to the size of 80 orbitals and

enables us to draw the continuous/meaningful dispersion in a short time as in

the left panel of Fig. 2.4.

2.3 One-particle Spectral Function, Photoe-

mission Spectral Weight and Band Struc-

ture Unfolding

In this section, I will review the representation of the electronic structure by

the one-particle spectral function and the spectroscopic experiments to probe

it. Then, in the presence of translational symmetry breaking, the band struc-

ture unfolding method provides a more meaningful representation in terms of
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Figure 2.4: (Left) Carbon nanotube with chirality (5,5) band structures from
DFT and maximally-projected Wannier functions. The Wannier functions
include s, px, py, and pz from the 20 carbon atoms in the minimal unit cell.
(Right) Crystal structure.

physical implications.

2.3.1 Many-body Green’s Function and Spectral Rep-

resentation

To discuss the one-particle spectral function in the many-electron system, we

need to introduce the fermionic field operators [24], ψ̂(x, t) and ψ̂†(x, t), to

describe the electrons’ behavior. They satisfy the anticommutation relation

ψ̂(x)ψ̂†(x′) + ψ̂†(x′)ψ̂(x) = δ(x − x′) due to the Pauli exclusion principle.

In the Heisenberg picture, the time evolution is represented as ψ̂(x, t) =

eiHtψ̂(x)e−iHt, where ~ is taken as one here and the following. The time-

ordered one-particle Green’s function is defined as

iG(x, t, x′, t′) = θ(t− t′)〈0|ψ̂(x, t)ψ̂†(x′, t′)|0〉 − θ(t′ − t)〈0|ψ̂†(x′, t′)ψ̂(x, t)|0〉,
(2.51)

where θ(t) and |0〉 are the step function and many-body ground state with

fixed particle number N . We consider that H has no explicit time dependence

so we can take t′ as zero for simplicity. If we insert the completeness relation

30



∑
m |m〉〈m|, where |m〉 refers to all possible eigenstates of H,

iG(x, t, x′, 0) =
∑
m

[
θ(t)e−i(E

N+1
m −EN0 )t〈0|ψ̂(x)|n〉〈n|ψ̂†(x′)|0〉

− θ(−t)e+i(EN−1
m −EN0 )t〈0|ψ̂†(x′)|n〉〈n|ψ̂(x)|0〉

]
, (2.52)

where EN±1
m is the eigenenergy of |m〉 in N ± 1 particle number sector. With

the identity

θ(±t) = ∓
ˆ

dω

2πi

e−iωt

ω ± iη
, (2.53)

where η means an infinitesimal positive number. Then, we can transform G

to the frequency domain as

G(x, x′, ω) =
∑
m

[〈0|ψ̂(x)|m〉〈m|ψ̂†(x′)|0〉
ω − (EN+1

m − EN
0 ) + iη

+
〈0|ψ̂†(x′)|m〉〈m|ψ̂(x)|0〉
ω + (EN−1

m − EN
0 )− iη

]
. (2.54)

From this representation, the poles of G clearly correspond to the quasiparti-

cle and quasihole excitation energies in the first and second terms respectively.

If H is translational invariant in space, its eigenstates have the specific mo-

mentum p as the quantum number. With the spatial Fourier transform and

ψ̂(r) = e−iprψ̂(0)e+ipr, the spectral representation of G is

G(p, ω) =

ˆ ∞
0

dE
A(p, E)

ω − E + iη
+

B(p, E)

ω + E − iη
, (2.55)

where A(p, E) =
∑

m δ
(
E − (EN+1

m − EN
0 )
)
|〈m, p|ψ̂†(p)|0〉|2 and B(p, E) =∑

m δ
(
E− (EN−1

m −EN
0 )
)
|〈m,−p|ψ̂(p)|0〉|2. The Fourier transform of the field

operator is ψ̂(p) ≡
´
e−iprψ̂(r)dr. Besides, |m,±p〉 denotes the excited state

with total momentum ±p in the (N ± 1) particle number sector. Also, A and

B are called the spectral weight to denote the available weight on the specific

quasiparticle and quasihole frequencies.

The above consideration is for the continuous system. In the solid with

the periodic potential, a convenient formalism starts with expanding the field

operator in the local Wannier function basis ψ̂(x) =
∑

rin
cinwrin(x), where

cin is the annihilation operator on the Wannier orbital n in the unit cell at ri.
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Then we can work on the discrete system and obtain

iGin,i′n′(t) = θ(t)〈0|cin(t)c†i′n′(0)|0〉 − θ(−t)〈0|c†i′n′(0)cin(t)|0〉. (2.56)

If H has translational invariance in space, its eigenstate has a crystal mo-

mentum k. With the spatial Fourier transform with respect to (ri − ri′) and

ci = e−ikrc0e
+ikr, the corresponding spectral representation in the crystal mo-

mentum basis is

Gnn′(k, ω) =

ˆ ∞
0

dE
Ann′(k,E)

ω − E + iη
+
Bnn′(k,E)

ω + E − iη
, (2.57)

where Ann′(k,E) =
∑

m δ
(
E − (EN+1

m − EN
0 )
)
〈0|ckn|m, k〉〈m, k|c†kn′|0〉 and

Bnn′(k,E) =
∑

m δ
(
E−(EN−1

m −EN
0 )
)
〈0|c†kn′ |m,−k〉〈m,−k|ckn′ |0〉 Also, ckn ≡∑

ri
e−ikricin. Besides, |m,±k〉 denotes the excited state with total momentum

±k in the (N ± 1) particle number sector.

It is noted that the above formalism is correct for the general interacting

system and also leads to a useful insight in the non-interacting system, such

as the band structure based on the KS orbitals. In the eigenstate basis of the

non-interacting system, we have

Gjj′(k, ω) =
δjj′

ω − εkj + iηsign(εkj)
, (2.58)

where the Fermi energy is chosen at zero energy, and sign(x) ≡ x/|x|. Then εkj

refers to the eigenenergy with respect to the Fermi energy. For convenience

and avoiding the extra sign changing, we replace the time-ordered Green’s

function Gjj′(k, ω) by the retarded Green’s function

GR
jj′(k, ω) =

δjj′

ω − εkj + iη
. (2.59)

Thus, we can trace the momentum and energy dependent band dispersion

by plotting − 1
π
ImGR

j,j(k, ω) with a series of Lorentzian peaks of infinitesimal

width. Thus, we define the one-particle spectral function in the band basis as

Aj(k, ω) ≡ − 1

π
ImGR

j,j(k, ω). (2.60)

32



In the orbital basis, − 1
π
ImGR

n,n(k, ω) still follows the dispersion and carries the

weight as |〈kj|kn〉|2, which describes the orbital weight on each eigenstate.

Instead of keeping track of the dispersion like the black dots in Fig. 2.3, the

better way to represent the band structure is plotting the − 1
π
ImGR

n,n(k, ω).

Thus, we define the (orbital-resolved) one-particle spectral function as

An(k, ω) ≡ − 1

π
ImGR

n,n(k, ω). (2.61)

This can be readily calculated from the effective Hamiltonian of the Wannier

basis as

An(k, ω) =
∑
j

|〈kj|kn〉|2Aj(k, ω). (2.62)

This not only facilitates plotting the electronic structure but also generalizes

the band dispersion concept to a generic Green’s function formalism.

2.3.2 Angle Resolved Photoemission Spectroscopy

One of the powerful techniques to measure the electronic structure is angle

resolved photoemission spectroscopy (ARPES) [25]. The standard ARPES

experimental setup is shown in Fig. 2.5. By changing the incident photon,

experimentalists can use the measured kinetic energy (Ekin) and escape angle

(θ, φ) of the emitted electron to infer the energy and in-plane momentum

of the underlying electronic state. By tracking the angular distribution of

the measured intensity, the momentum dependent density of states can be

reconstructed, too.

We will briefly review the simplest model in ARPES and discuss its connec-

tion to theoretical spectral functions. From the 3-step model [25], the whole

emission process is assumed to take place in three steps: (1) The bulk electron

is excited from an initial state to a higher-energy final state. (2) The excited

electron travels from the bulk interior to its surface. (3) The electron tunnels

through the surface barrier and escapes toward the detector. Step (2) basi-

cally induces the inelastic scattering and certain surface sensitivity leading to

a continuous background signal. Step (3) describes the energy barrier to tun-

nel and can be empirically approximated by the material work function φwork.

In this simplified 3-step model, the electron dynamics and many-body effect

33



Photon hv 

x 

detector 

f 

q 

electron 

y 

z 

sample 

Figure 2.5: Standard ARPES setup

are mostly included in the Step (1), which we would focus on in the following

discussion.

From the kinematic consideration, the detected electron has the binding

energy |Ek
B| for its original electronic state in the materials, which can be

inferred from

|Ek
B| = Ekin − (hν − φwork), (2.63)

where ν and Ekin are the controllable incident photon frequency and the ki-

netic energy measured at the detector respectively. Also, φwork is the material-

dependent work function and is determined before the ARPES measurement.

In addition, the momentum component parallel to the sample surface is con-

served and the photon momentum hν/c � 1 (c is the speed of light) can be

ignored in a usual ARPES setup (hν < 100 eV). Then the in-plane electron

momentum can be represented as

(kx, ky) = (
1

~
√

2mEkin sin θ cosφ,
1

~
√

2mEkin sin θ sinφ). (2.64)

Hence, the ARPES data would be collected as I(kx, ky, |Ek
B|) to represent the

momentum- and energy-dependence of the electronic states in the solids.

From the dynamic consideration, the scattering between photon and emit-

ted electron can be approximated by the Fermi Golden rule by perturbation.
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The probability of the events is

wfi =
2π

~
|〈ΨN

f |Hint|ΨN
i 〉|2δ(EN

f − EN
i − hν), (2.65)

where EN
i (EN

f ) and ΨN
i (ΨN

f ) are the initial (final) many-body energy and

wavefunction of theN -electron system respectively. Thus, the measured ARPES

intensity will be proportional to the summation of wfi over all possible initial

and final states with the thermodynamic weight e−(ENi −µN)/kBT at temperature

T .

I(kx, ky) ∝
∑
if

e−(ENi −µN)/kBT |〈ΨN
f |Hint|ΨN

i 〉|2δ(EN
f − EN

i − hν). (2.66)

Next, we consider the Hint from the interaction between the vector poten-

tial A and the electron:

Hint =
e

2mc
(A · p+ p · A), (2.67)

where the much smaller A2 term has been neglected. If we further assume that

the vector potential is slowly varying within the atomic scale so ∇ · A = 0,

which is so-called dipole approximation in the classical electrodynamics, then,

Hint ≈
e

mc
(A · p). (2.68)

To evaluate 〈ΨN
f |Hint|ΨN

i 〉, we need to make the sudden approximation,

which has been extensively used in the computing various photoemission spec-

tra. We assume that the photon impacts on the electron in very short time.

The influenced electron is quickly excited to final state and then moves to-

ward the detector. The ejected electron does not have chance to scatter with

the remaining (N − 1)-electron many-body complex. This is justified by the

fact that the energy transfer from the incident photon is usually very high

(hν ∼ 10 eV). Hence the final state can be treated as |ΨN
f 〉 = |φkf〉 ⊗ |ΨN−1

m 〉,
where |ΨN−1

m 〉 denotes any eigenfunctions in the (N − 1) sector with energy

EN−1
m . For the initial state, we also approximate |ΨN

i 〉 = |φki 〉⊗ |ΨN−1
m′ 〉, where
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|ΨN−1
m′ 〉 also refers to the excited states.

〈ΨN
f |Hint|ΨN

i 〉 ' 〈φkf |Hint|φki 〉〈ΨN−1
m |ΨN−1

m′ 〉. (2.69)

The two states |φki 〉 and |ΨN−1
m′ 〉 should be interpreted as c†kj|vacuum〉 and

ckj|ΨN
i 〉, where ckj represents the |kj〉 state in the electronic band. The pho-

toemission intensity along specific momentum direction k is proportional to∑
j

|Mf,j(k)|2
[∑
im

e−(ENi −µN)/kBT )|〈ΨN−1
m |ckj|ΨN

i 〉|2δ(EN
f − EN

i − hν)
]
,(2.70)

where Mf,j(k) ≡ e
mc
〈φkf |A · p|kj〉 = −i~e

mc

´
drφ∗f (x)A · ∇rψkj(r). It is noted

that EN
f = EN−1

m + Ekin. The summation over i and m of Eq. 2.70 can

be proportional to the f(Ekin − hν)Aj(k,Ekin − hν) describing the occupied

states below the Fermi energy, where f(ω) = 1
e(~ω−µ)/kBT+1

is the Fermi Dirac

distribution. Hence, the ARPES intensity can be written as

I(k, ω) ∝
∑
j

|Mf,j(k)|2f(ω)Aj(k, ω), (2.71)

By the probed intensity associated with Aj(k, ω), ARPES is capable of detect-

ing the momentum-resolved density of states and the many-body self-energy of

the renormalized Green’s function. In single-orbital systems, such as cuprates,

the dipole matrix Mf,j(k) depends on the photon energy, sample orientation,

and photon polarization setup. In the multi-atomic and multi-orbital system,

the information in the dipole matrix becomes richer and includes the structure

factor depending on the specific the atomic arrangement.

2.3.3 Band Structure Unfolding with One-particle Spec-

tral Functions

We have seen the power of the Bloch theorem to help formulate the eigenstates

of electrons in periodic system. However, the strategy to represent the elec-

tronic structure in terms of energy eigenvalues may lead to some ambiguity

and problems. The first issue is that the choice of unit is seemingly arbitrary.

Besides the minimal periodicity, one can always enlarge the unit cell to obtain

the dispersion in the reduced BZ. An one-dimensional simple tight-binding toy
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Figure 2.6: One-dimensional toy model with nearest neighbor hopping t. The
band structures with (a1) one-atom unit cell and (a2) two-atom unit cell. (b1)
Unknown representation of the electronic structure in one-atom per unit cell
basis with CDW. (b2) Band structure in two-atom unit cell basis with CDW.

model is provided in Fig. 2.6(a1) with its regular dispersion below. There is

freedom to deliberately double the unit cell to be (a2). Then, the resulting

dispersion is influenced by non-physical band folding and may give the impres-

sion of the existence of some artificial states. For example, the higher state at

the Γ point in (a2) is definitely absent in (a1). This arbitrary band folding can

become more problematic if we keep increasing the unit cell size. Eventually,

only one Γ point is left in a extremely tiny BZ and has atomic-like energy

levels without any meaningful dispersion. In this artificial case, we learn that

the dispersion becomes less and less informative with an increasing unit cell

size because the essential information has been hidden in the eigenfunction of

the enlarged unit cell.

One may think that the above example is totaly arbitrary but the situation

of physically enlarged unit cell is very common in materials. When the system

is subject to some emergent ordering and forced to accept the enlarged unit

cell. For example, this frequently happens when an antiferromagnetic Neel

state or a charge/spin density wave is present. We give an example when the
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normal cell supercell
primitive vector a1, a2, a3 A1, A2, A3

lattice vector r R
reciprocal primitive vectors b1, b2, b3 B1, B2, B3

number of unit cells l L
crystal momentum k K
Wannier orbital index n N
Wannier orbital |rn〉 |RN〉
Fourier transform of Wannier orbital |kn〉 |KN〉
band index j J
Hamiltonian eigenenergy εkj εKJ
Bloch state |kj〉 |KJ〉

Table 2.1: Notation for normal and super cells.

charge is spontaneously re-distributed as in lower two panels in Fig. 2.6 because

the black atoms have lowered on-site energy and more charges than the grey

ones. The on-site energy difference is assumed to be ∆E. Thus, we can no

longer pursue the band dispersion in the one-atom per unit cell basis as in

Fig. 2.6(b1). The conventional wisdom is to double the unit cell and calculate

the band structure in the small Brillouin zones as in Fig. 2.6(b2). Nonetheless,

the comparison between CDW-free Fig. 2.6(a1) and CDW Fig. 2.6(b2) is not

very intuitive. On the other hand, as the on-site energy difference ∆E −→ 0,

the dispersion should smoothly recover Fig. 2.6(a1). However, the linkage

seems to be missing in the current framework due to the choice of unit cell.

Therefore, the representation of the electronic structure in the original BZ as

in Fig. 2.6(b1) is highly desired to clarify issues.

Instead of using eigen momentums and energies to represent a band struc-

ture, it is more general to describe an electronic structure by one-particle

spectral functions. 1 In an eigenbasis, a retarded Green’s function, which is

equivalent to Eq. 2.59, can be written as

GR
JJ ′(K,K

′, ω) = 〈KJ | 1

ω −H + iη
|K ′J ′〉 =

〈KJ |K ′J ′〉
ω − εKJ + iη

=
δK,K′δJ,J ′

ω − εKJ + iη
.

(2.72)

Thus, the one-particle spectral function is defined as the imaginary part of the

1For the notation in the unfolding method, we reserve all capital and little letters for
the normal (original) cell and super (enlarged) cell respectively. They are summarized in
Table 2.1.
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diagonal matrix element of the Green’s function with − 1
π

as the conventional

factor:

AJ(K,ω) ≡ − 1

π
ImGR

JJ(K,K, ω) =
1

π

η

(ω − εKJ)2 + η2
(2.73)

It is also customarily to represent the spectral function in the orbital-resolved

manner of the Wannier basis as

AN(K,ω) = − 1

π
ImGR

NN ′(K,K, ω) =
∑
J

|〈KJ |KN〉|2η
(ω − εKJ)2 + η2

. (2.74)

By using the Wannier basis, it is made easy to represent the spectral function

in the unfolded BZ basis [26]. We can define the Fourier transform of the

momentum in the original BZ as |kn〉 = 1√
l

∑
r e

ikr|rn〉. To look for the elec-

tronic structure in Fig. 2.6(b1), we only keep the diagonal term of the Green’s

function:

GR
nn(k, k, ω) = 〈kn| 1

ω −H + iη
|k′n′〉

=
∑

KK′JJ ′

〈kn|KJ〉〈KJ | 1

ω −H + iη
|K ′J ′〉〈K ′J ′|k′n′〉

=
∑
KJ

|〈kn|KJ〉|2 1

ω − εKJ + iη
(2.75)

Therefore, the spectral function becomes

An(k, ω) = − 1

π
ImGR

nn(k, k, ω) =
∑
KJ

|〈kn|KJ〉|2AJ(K,ω). (2.76)

It means that we can obtain the unfolded band structure An(k, ω) by com-

bining the KS orbital information in AJ(K,ω) and the extra matrix element

〈kn|KJ〉.
The evaluation of 〈kn|KJ〉 requires the expansion to the real space Wannier

function and the orthogonality between |KN〉 and |kn〉. First,

|KJ〉 =
∑
RN

|RN〉〈RN |KN〉〈KN |KJ〉

=
1√
L

∑
RN

e−iKR|RN〉〈KN |KJ〉 (2.77)
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Figure 2.7: (a1) Unfolded and (a2) Folded spectral function with ∆E = 0.5.
(b1) Unfolded and (b2) Folded spectral function with ∆E = 1.0

Then, we insert
∑

rn |rn〉〈rn| = 1 and replace |KJ〉 by Eq. 2.77 to obtain

〈kn|KJ〉 =
1√
L

∑
RNr

e−iKR〈kn|rn〉〈rn|RN〉〈KN |KJ〉

=
1√
Ll

∑
RNr

e−iKR+ikr〈rn|RN〉〈KN |KJ〉 (2.78)

The matrix element 〈rn|RN〉 is non-zero only when N and n label the same

orbital. It also requires that r = R+τ , where τ refers to the location of orbital

N inside the larger super cell. Then,

〈kn|KJ〉 =

√
l

L

∑
τ

eikτδk,K+GδnN〈KN |KJ〉 (2.79)

It is noted that k and K are related to each other by a reciprocal lattice vector

G of the super cell. Besides, the phase eikτ gives rise to certain cancelation

in An(k, ω) so the total weight on the quasiparticle poles is not strictly unity.

This is the greatest contrast to the representation of AJ(K,ω).

Follow the formulae 2.76 and 2.79, it is easy to convert the band structure
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in the super cell BZ to its normal cell representation. Let us apply this unfold-

ing method to the one-dimensional CDW toy model in Fig. 2.7 with different

∆E. As ∆E increases from 0.5 in the upper row to 1.0 in the lower row, two

features of translational symmetry breaking become prominent. The CDW

gap size increases, and the shadow bands becomes more evident. Both are

characteristic of the coupling between the CDW order parameter and the elec-

tronic structure. In addition, it is now natural to think that from Fig. 2.7(a1)

one can smoothly recover Fig. 2.6(a1) as ∆E approaches zero. Therefore,

the band structure unfolding method largely facilitates the investigation of

electronic structure under translational symmetry breaking.

This unfolding method can also be applied to decode the ARPES mea-

surement. In the standard procedure, the ARPES intensity is compared with

the first-principles band structure, which is always performed with the crystal

unit cell of the materials. In the presence of broken translation induced by

ordering, AJ(K,ω) becomes less informative and subject to a rather complex

dipole matrix element 〈φkf |p|KJ〉 where the structure form factor is hidden.

Following the thinking of the band structure unfolding, we can re-write the

ARPES intensity as

I(k = K,ω) ∝
∑
J

|A · 〈φkf |p|KJ〉|2f(ω)AJ(K,ω)

≈
∑
Jkn

|A · 〈φkf |p|kn〉|2|〈kn|KJ〉|2f(ω)AJ(K,ω)

=
∑
n

|A · 〈φkf |p|kn〉|2f(ω)An(k, ω), (2.80)

The second line is approximated by ignoring those non-square terms, which

we assume their complex values would lead to destructive cancelation in the

summation. In the unfolded one-particle spectral function, the corresponding

dipole matrix 〈φkf |p|kn〉 becomes smooth in the reciprocal space because the

|kn〉 contains no inter-atomic interference. Therefore, An(k, ω) provides a bet-

ter and more physical interpretation for the physical observable measurements

than the AJ(K,ω) from standard DFT calculation.

From both theoretical and experimental considerations, we find that the

first-principles band structure formalism can provide a suitable tool to study

the influence on the electronic structure from the translational symmetry
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breaking. In the following parts of this thesis, I will apply it extensively

to different realistic materials and reveal the unusual phenomena induced by

such a broken symmetry.
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Chapter 3

Case 1: Lifshitz Transition and

Superconductivity Enhancement

in High Pressure cI16 Li

The work presented in this chapter has been submitted for publication and is

available as a preprint [27].

The Lifshitz transition refers to a change on Fermi surface topology. Its

occurrence usually results from pressure variation or doping charge to mate-

rials. Both effects not only shift chemical potential but also alter electron

structure to some extent. By changing external parameters, Fermi surfaces

may smoothly change from a open shape to closed surfaces, for example the

neck disruption in Fig. 3.1(a). This means that a critical energy Ec with a

singular energy isosurface of a conical shape (see middle panel of Fig. 3.1(a))

is close to the Fermi energy. Shifting chemical potential may change Fermi

surface from the left to the right in Fig. 3.1(a) or vice versa. The other type

of the Lifshitz transition corresponds to the disappearance or appearance of

a pockets as shown in Fig. 3.1(b). Thus, Ec is defined by an energy value at

which a Fermi pocket shrinks into a single point as shown in the middle panel

in Fig. 3.1(a). In Ref. [28], it was shown that an anomalous part of density of

states δg(E) results from the occurrence of the Lifshitz transition. We sum-

marize the four situations related to the Lifshitz transition and the square root

behavior, which δg(E) is proportional to, in Fig. 3.2. Because of this δg(E),

all thermodynamic properties will be also affected in a peculiar manner [28].
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(a) 

(b) 

Figure 3.1: Schematic diagrams of the Lifshitz transition. (a) Occurrence of
neck disruption and (b) disappearance of the pocket. Lifshitz transition also
includes the transition happening in the reverse way, namely neck reconstruc-
tion and appearance of the pocket.

In this study, we will discuss its implications to superconductivity in Li at high

pressures from the first-principles method.

3.1 Introduction

In 2007, almost one century after Onnes’ first discovery of superconductiv-

ity [29], Li eventually joined ambient-pressure superconductors with a critical

temperature (Tc) down to 0.4 mK [30]. Its high-pressure Tc up to 16 K surpris-

ingly tops all elements at similar pressures. Being an elemental conventional

superconductor with a rich phase diagram (c.f. Ref. [31] and Fig. 1), Li is

a natural touchstone for first-principles methods of determining Tc. Certain

breakthroughs have been established in the frameworks of Eliashberg theory

[32–39] and superconducting density functional theory [40, 41] to satisfactory

agreement with the experimental trend in the correct order of magnitude.

Such phonon-mediated superconductivity can be strongly tied with lattice in-

stabilities. For both ends of the collected data in Fig. 3.3, the disappearance

of superconductivity at 20 and 62 GPa can undoubtedly be attributed to the

occurrence of structural transitions. At the unusual Tc maximum around 30

GPa a substantial phonon softening maximizes the electron-phonon coupling

[38] and causes a transition to the cI 16 structure. Nonetheless, it remains
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Figure 3.2: Schematic diagrams of the anomalous part in density of states
from the Lifshitz transition. The term δg(E) has a square root dependence
on energy. The value of Ec refers to the energy the singular energy isosurface
appears as the middle panel of (a) or (b).

puzzling that the Tc subsequently plunges into a minimum between 44 and 47

GPa in the absence of structural and electronic transitions or singular phonon

behavior [37].

A peculiar change in the electronic structure is believed to account for

this anomalous pressure, below which the superconductivity is dominantly

controlled by the fermiology 1. Between 20 and 30 GPa the superconductivity

is enhanced by accumulating FS nesting in the fcc side [35, 38], reaching a 16 K

maximum. In the subsequent cI 16 phase, Tc decreases due to a monotonic FS

depletion [37]. The depletion mainly comes form the nature of the cI 16 charge

density wave (CDW), which consists of a distortion along the cube diagonal

within its unit cell composed of 2 × 2 × 2 regular body-centered cubic cells

(see right panels in Fig. 3.3). Above the anomalous pressure the FS depletion

persists [37] opposite to the Tc growth in the experiment. Consequently the

major influence on superconductivity is taken over by another effect that is

insensitive to the fermiology. Its impact on the Tc (tentatively assumed to

be smooth) is depicted by the red curve in Fig. 3.3. The anomaly can be

regarded as an onset pressure, below which the fermiology resumes dominance

and promptly increases Tc. Therefore, the elaboration on the FS evolution

around the pressure anomaly is highly demanded for resolving the missing

puzzle piece in the phase diagram.

1Fermiology in this context refers to the configuration, such as the shape and the size,
of a Fermi surface.
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Figure 3.3: (Left) Experimental phase diagram of Li with the vertical struc-
tural transition lines from Refs. [31, 42–45]. The superconducting Tc values
are from Shimzu [42], Struhkin run 1&2 [43], and Deemyad run 1&2 [44]. The
assumed smooth variation (solid red curve) is simulated by the basis spline
method on the lowest two and highest five pressure data points. (Right) Con-
ventional cI 16 (top) and bcc (bottom) unit cells.

In this study, we identify the occurrence of a Lifshitz transition (LT) in

high-pressure cI 16 Li from first-principles. Our unfolded Fermi surface shows

that when the pressure is lowered across the anomalous point at ∼43 GPa,

there appears new FS pockets. This gives rise to a non-analytic superconduc-

tivity enhancement, which we verify numerically and find to be in quantitative

agreement with experimental observations. Our results also visually decode

the effects of three-dimensional charge density waves on the Fermi surface.

We find the cI 16 nesting vectors [200] 2π
acI16

and [110] 2π
acI16

to be as relevant as

the previously reported [211] 2π
acI16

[46]. These intriguing and direct observa-

tions demonstrate the general value of Fermi surface unfolding in the study of

topological features associated with symmetry breaking phase transitions in

materials.

3.2 Method

A commonly encountered difficulty in the study of Fermiology of large unit cell

systems is the hindrance from severe band folding. For example we illustrate

with a two-dimensional toy model the complexity of FS folding that arises from
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Figure 3.4: Illustration of Fermi surface folding issue. (a) Fermi surface of half-
filling two-dimensional one-band tight-binding model with hopping integrals
t′/t = −0.25 and t′′/t = 0.125. (b) the same model solved with a

√
2 ×
√

2
supercells. (c) the same model solved with a 2× 2 supercells. Recovery from
(b)&(c) to (a) can be achieved by FS unfolding.

the arbitrary choice of lattice periodicity even in the absence of any physical

broken symmetry. This reflects the fact that Bloch wavefunctions take more

information out of the folded FS as the supercell size grows. This difficulty can

be overcome by the recently developed unfolding method [47], which is aimed

to restore the informative Green’s function in a normal cell basis. Thus the one-

particle spectral function in the eigenstates basis, AKJ,KJ(ω), can be converted

into a reference basis A(k, ω) =
∑

KJn |〈kn|KJ〉|2AKJ,KJ(ω). Here, K/k is

the crystal momentum of the original/reference system, J the eigenstate band

index, and n the Wannier orbital index. With the use of Wannier functions

the spectral weight magnitude |〈kn|KJ〉|2 reduces to a simple structure factor

that is readily evaluated. [47]

Specifically in cI 16 Li, the unfolding method allows to reveal detailed infor-

mation of the Fermi surface topology. Density functional theory calculations

are performed with the WIEN2K [12] implementation of the full potential

linearized augmented plane wave method in the local density approximation.

Then, the symmetry-respecting Wannier functions [48] of Li s and p orbitals

are constructed within Hilbert space between -5 to 30 eV. The lattice constant

acI16 and atomic displacement x (≈ 0.05 and increasing with pressure) away

from the bcc structure are obtained from the experimental values [45]. Then,

to obtain the unfolded electronic structure in cI 16 Li, the natural choice for

the reference basis is the bcc lattice as shown in the right of Fig. 3.3. In this

study, we use opacity in the three-dimensional reciprocal space to depict the
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Figure 3.5: Fermi surfaces of (a) cI 16 Li at 42.40 GPa and (b) its reference
CDW-free bcc Li. (c) Unfolded cI 16 Fermi surface and (d) energy isosurface
at -0.175 eV. The opacity at each k point represents the spectral weight with
the most/least transparent spots corresponding to 0.02/0.88. For the purpose
of clarity, the grey balls in (c-d) are utilized to block image from the back side.
(e) Fermi surface intersections with the nesting planes spanned by [020] 2π

acI16

(left) and [11̄0] 2π
acI16

(right). (f) Enlargements showing pocket appearance (i.e.
Lifshitz transition).
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spectral weight magnitude on the unfolded FS and energy isosurfaces.

3.3 Unfolded Fermi Surfaces

The cI 16 FS in Fig. 3.5(a, left) gives a good example of an overwhelmingly

folded FS in the cI 16 Brillouin zone (BZ) which is eight times smaller than

that of the bcc lattice. An additional complication of folding in three dimen-

sions (compared to lower dimensions) is that when FS sheets are intertwined,

they block each other. The cross sectional view on the kz = 0 plane in the

right of Fig. 3.5(a) shows that the outer FS sheet is blocking two inner FS

sheets. In contrast, the unfolded FS in Fig. 3.5(c) recovers the resemblance to

Fig. 3.5(b), the FS of the fictitious CDW-free bcc system with abcc = acI16/2.

For example the necks at the high symmetry points N resembling the FS of

copper [35, 46] are still clearly recognizable in the unfolded FS. The grey balls

in Fig. 3.5(c)(d)(f) are used to block the image from the back side for the

better visualization and do not containing any visible weight inside.

The effect of the CDW is clearly demonstrated in Fig. 3.5(c). The compar-

ison between Fig. 3.5(b) and (c) shows that the CDW-induced gaps substan-

tially deplete the DOS around the Fermi energy for energy gain. Moreover

these gaps offer the opportunity to change the FS topology. In the bcc refer-

ence basis, the CDW couples each k point to eight k+G points by the potential

V G
CDW, where G represents the eight reciprocal lattice vectors of cI 16 unit cell

that lie in the bcc BZ. In the presence of substantial hybridization, spectral

weight is re-distributed between the eight coupled k points and appears as

transparent sheets of Fermi surface. The opacity of these sheets reflects the

strength of V G
CDW. Therefore, the unfolded FS provides a systematic way to

detail its coupling with the order parameter of the broken translational sym-

metry.

Due to the serious FS depletion, the identification of the relevant CDW

wave vector G’s is made easier if we focus on the unfolded energy isosurface

of 0.175 eV below the Fermi energy in Fig. 3(d). The effects of V G
CDW can

be understood from considering the intersections of the nesting planes ±1
2
G

with the FS of the fictitious CDW-free bcc system as shown in Fig. 3.5(e).

The Bloch states at these intersections are degenerate and therefore will be
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gapped out most strongly. For example, the left of Fig. 3.5(e) shows the

degenerate Bloch states that are nested by [020] 2π
acI16

(representing the G′s

symmetry-related to [200] 2π
acI16

) and explains the cut traces connecting any two

neighboringN points in Fig. 3.5(d). Another CDW component is illustrated by

the pair of solid/dashed orange planes spanned by G = [11̄0] 2π
acI16

(representing

the G′s symmetry-related to [110] 2π
acI16

) in the right of Fig. 3.5(e). If we collect

multiple symmetry-related cut marks, V
[110]

CDW is concluded to be responsible for

the cross-like mark on every H point in Fig. 3(d).

The most prominent FS depletion takes place on the 24 large holes along

the [211] direction had been previously been assigned to the G = [211] 2π
acI16

nesting vector [46]. Indeed V 211
CDW partially contributes to those substantial

gaps. However, both V 200
CDW and V 110

CDW also conspire to cause DOS depletion

because their cut marks pass those holes too, as exemplified with the arrows in

the [121] direction in Fig. 3.5(e). Contrary to low-dimensional physics, the FS

nesting importance is diluted by the consideration of the phase space, which

takes into account all relevant V G
CDW’s. Fig. 3(d) indicates that the phase

space affected by V 200
CDW and V 110

CDW is at least comparable with the previously

emphasized V 211
CDW, and so is the energy gain.

3.4 Lifshitz Transition and Superconductivity

Next we investigate the FS evolution of cI 16 Li near the anomalous pressure

in the phase diagram shown in Fig. 3.3. Interestingly, we find the emergence

of new FS pockets around the N and P at the pressure between 42.40 and

43.96 GPa in Fig. 3.5(f). This topological change of FS is termed Lifshitz

transition [28]. Although they are seemingly small pockets, the LT is known

to cause a dramatic change in physical observables within a small pressure

window [49]. It also has been proven to induce non-analytic behavior on the

Fermi surface density of states (DOS) [28] and conventional superconductivity

[49, 50]. Recently, LTs have been applied to engineer the topological order

in topological insulators Bi1−xSbx [51]. Also, doping-induced LTs have been

proposed to explain the diverging cyclotron mass in high Tc cuprates [52] and

the vanishing transport anisotropy in the novel Fe-based superconductors [53].

The LT in cI 16 Li gives rise to an anomalous contribution in the DOS,
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Figure 3.6: (a) DOS at 42.40 and 43.96 GPa. (b) Experimental [44] and
simulated ∆Tc/T

ref
c versus pressure for cI 16 Li.

δg(ω) ∝
√
Ec − ω as ω → Ec [28], originating from the extra pockets. Here

the pressure-dependent Ec is the critical energy at which the pockets disappear.

The result in Fig. 3.6(a) not only confirms the correct square root behavior

but also is consistent with the observation in Fig. 3.5(f) that the Fermi energy

EF is located above (below) Ec at 43.96 (42.40) GPa. It is important to stress

that the occurrence of the LT is confined to an infinitesimally small part of the

k space. Therefore to capture the singular behavior of the DOS numerically a

400× 400× 400 k mesh has been employed. Such an extremely fine k-mesh is

only possible by the use of Wannier interpolation and is otherwise inaccessible

in standard first-principles calculations.

In absence of any symmetry breaking, this LT is the natural explanation

of the anomalous onset (between 44 and 47 GPa) toward lower pressures.

Below this pressure the Tc displays a sharp upturn followed by a continuous

enhancement (c.f. Fig. 3.3) due to the extra available DOS at the Fermi en-

ergy. Makarov and Baryakhtar have shown that in the weak coupling Bardeen-

Cooper-Schrieffer (BCS) theory the anomalous part of the DOS, δg(ω), leads
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to an asymmetric variation of the Tc. [50] This physical picture can be applied

to cI 16 Li. At pressures as high as 60 GPa, Ec is far below EF and has abso-

lutely no effect on superconductivity. But at a critical pressure above the LT,

EF will fall right below Ec+ωD with ωD the Debye frequency. At this pressure

Tc will suddenly start to surge because the extra DOS δg(ω) impacts the Tc

exponentially. As the pressure is further lowered, the small pockets grow and

contribute to the Tc enhancement in a continuous manner.

The physical picture described above can be formulated into a quantitative

agreement in the superconductivity enhancement between the experimental

data and our simulation. For the purpose of demonstration, we tentatively

separate the δg(ω) correction on the superconductivity as ∆Tc from the other

smooth pressure-dependent part T refc . For the experimental part the smoothly

varying T refc is attributed to the solid red curve in Fig. 3.3, and ∆Tc is defined

as its difference from the total Tc. For the theoretical part we can simulate

Tc and T refc by numerically solving the BCS gap equation with and without

the non-analytic contribution δg(ω) respectively and obtain ∆Tc as their dif-

ference. In order to simulate the DOS in more pressure conditions, the lattice

constant and atomic displacement are refined by linear fitting with respect to

the experimental pressures in Ref. [45]. The effective pairing potential Vee in

the gap equation ( 1 = Vee
∑EF+ωD

ω=EF−ωD
g(ω)
2ω

tanh ω
2Tc

) is fixed to be 345 meV

to obtain Tc ∼ 9 K at the LT. The Debye frequency ωD = 21.5 meV is cho-

sen to match the characteristic phonon frequency in Ref. [37]. The resulting

∆Tc/T
ref
c ratio demonstrates excellent agreement in Fig. 3.6(b) as the sud-

den rise right below the LT pressure is well matched. Therefore, the puzzling

strong enhancement of superconductivity below the anomalous pressure can

now be understood as a consequence of the LT.

3.5 Conclusion

In summary, we identify a Lifshitz transition at ∼43 GPa in cI 16 Li to be re-

sponsible for the experimentally observed onset pressure, below which the su-

perconductivity is highly enhanced. This is achieved via the unfolding method,

which significantly facilitates the Fermi surface visualization. The implemen-

tation of three-dimensional Fermi surface unfolding shows the capability to
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decode the Fermi surface topology of cI 16 Li. Furthermore it allows to identify

V 200
CDW and V 110

CDW in addition to the previously reported V 211
CDW as the important

CDW components that stabilize cI 16 Li. The three-dimensional unfolding of

Fermi surfaces is expected to expedite a wide range of studies about topolog-

ical evolution and structural stability of materials with broken translational

symmetry in general.
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Chapter 4

Case 2: Dirac Cones in

Two-Dimensional Dispersion via

Periodic Modulation of On-site

Energy

The work presented in this chapter is part of the study in the preprint [54].

4.1 Introduction

Realization of a conically linear dispersion (termed Dirac cone as in Fig. 4.1(a))

has recently opened up exciting opportunities for high-performance devices

that make use of the peculiar transport properties [55–60] of the massless car-

riers. A good example of current fashion is heavily studied graphene, a single

atomic layered graphite. It not only offers a prototype of Dirac physics in the

field of condensed matter [61], but also provides a playground of various exotic

phenomena [62–66]. In the meantime, numerous routes have been attempted

to search for the next ”graphene” [51, 67–72]. Despite these efforts, to date

there is still no simple guideline to predict and engineer such massless particles

in materials.

In this study, we explain a generic feature of photoemission measurements

in graphene by the first-principles unfolding method introduced in Chapter 2.

Based on that, we formulate an alternative understanding of the formation of
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Dirac cones. In this new perspective, the conical dispersion in graphene is a

consequence of a translational symmetry breaking from a triangular lattice to

a honeycomb lattice via ordered vacancies. The key to preserve the accidental

degeneracy at Dirac points is a special potential derived from a on-site energy

modulation. Under certain conditions, we show that this on-site energy mod-

ulation can lead to the existence of Dirac cones in a general two-dimensional

dispersion. Two examples are given in a square lattice to exemplify the validity

of this scenario and demonstrate additional flexibility to control the quantity

as well as anisotropy of the resulting Dirac cones.

4.2 Dirac Cone in Graphene

Let us start from an interesting feature of graphene Dirac cones [73] in angle-

resolved photoemission spectroscopy (ARPES) [74–76]. Figure 4.1(b) shows

an representative ARPES observation. Intriguingly, the observed cone ap-

pears incomplete even though a standard theory would indicate a complete

Dirac cone, for example given by the intense red bands in Fig. 4.1(d)1. This

vanishing intensity is typically considered as the “matrix element effect” of

the measurement, and indicates perfect destructive quantum mechanical in-

terference [77] between the two carbon atoms in the unit cell of the honeycomb

lattice shown in Fig. 4.1(c).

An alternative and more straightforward perspective is to consider the

honeycomb lattice as a triangular lattice with periodic vacancies, as shown in

Fig. 4.1(e). If we follow the unfolding method in Chapter 2, we can project

one-particle spectral functions of graphene onto the eigenspace of a reference

triangular lattice. Since there is only one (or sometimes zero) atom in this

unit cell in Fig. 4.1(e), the remaining matrix element is just a simple atomic

form factor. Because one-particle spectral function in this reference basis ab-

sorbs the interference between the two carbon atoms, the feature of vanishing

intensity is thus explicitly incorporated in it. We use thickness and colors in

1To simulate quasi-two-dimensional properties of graphene of honeycomb lattice, a unit
cell, containing two atoms, is chosen with 1.42 Å inter-carbon distance and 10 Å inter-
layer distance vertically. This forms a crystal structure of P6/mmm space group. All input
settings follow the default values as RmtKmax = 7 and lmax = 10. The k point mesh of
21× 21× 4 to reach convergent ground state density.
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Fig. 4.1(f-h) to represent the magnitude and orbital characters of the spectral

function. The resulting “unfolded” spectral function [47] with an “incomplete”

Dirac cone of red pz orbitals have vanishing spectral weight in the lower part

of the cone along the KsMn path and in the upper part along the ΓKs path.

This is in agreement with the experimental ARPES observation.

On the other hand, the high-energy part (∼5 eV lower or higher than the

Fermi energy) in Fig. 4.1(e-f) is dominated by px and py orbitals in green. A

significant amount of shadow bands indicate that ordered vacancies provide a

strong translational symmetry breaking potential. For example, the shadow

weight in the lowest band on the MnKnKs path appears as a clear weaker

replica of the original band on the MsΓKs. It is also noted that px are py

orbitals are fully decoupled from pz due to the mirror symmetry with respect

to the graphene plane. Because we are more interested in low-energy physics

and Dirac cones, we will only consider pz orbitals in the following discussion.

This alternative “one-carbon” picture offers an interesting new way to un-

derstand the electronic structure of graphene, particularly the formation of

the Dirac cones. Fig. 4.2 illustrates this with a reduced Hamiltonian, for clar-

ity, that covers only carbon pz orbitals that defines the relevant red band in

Fig. 4.1. Starting with a triangular lattice with the same nearest inter-atomic

hopping t as in graphene, the corresponding band structure consists of a sim-

ple dispersion [Fig. 4.2(a)] and an almost circular Fermi surface [Fig. 4.2(d)]

when the orbital is half-filled. The resulting dispersion is

Etri(kx, ky) = 2t
[

cos kxa+ cos
(
kxa/2 +

√
3kya/2

)
+ cos

(
kxa/2−

√
3kya/2

)]
,

(4.1)

where a is the inter-carbon distance.

Upon raising the on-site energy of ordered vacancy sites by ε, the system

is driven into a charge density wave (CDW) state, with most part of the Fermi

surfaces (b)&(c) gapped out. Only six Dirac points, the tips of the Dirac cones,

are left in the original one-carbon Brillouin zone (BZ) [denoted by solid black

boundary lines in (d)(e)&(f)]. As ε grows, the effects are further enhanced

and the cone becomes more and more symmetric as from (j) to (k). Finally,

the perfectly symmetric cone of graphene is reproduced as the vacancy sites

become forbidden, ε→∞.

Deeper physical and mathematical insights can be obtained by investigat-
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Figure 4.1: (a) Schematic diagram of Dirac cone dispersion. On the base, the
red circle represents the energy contour to be compared with (b) ARPES data
from Ref. [76] at 0.4 eV above Dirac point. (c) The graphene honeycomb
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ing the analytic structure of the full Hamiltonian including the hoppings in

triangular lattice H0 and the CDW potential Vk,k+q. All of them can be rep-

resented in the momentum space of a reference triangular lattice. Then H0 is

simply diagonal as Etri(k); the potential part becomes

Vk,k+q ∝
∑
rr′

Vrr′e
ik(r′−r)eiqr

′
, (4.2)

where r and r′ denotes the atomic sites, k the crystal momentum and q the

CDW wave vector. For example in our current case, q’s correspond to the two

blue arrows in Fig. 4.2(d) and q = 0 so Vk,k+q forms a 3× 3 matrix. With only

a local energy increase at the vacancy sites Vr,r′ = εδr,r′ , Vk,k+q displays a very

specific form within the subspace of the coupled three states:

Vk,k+q =
ε

3

 1 1 1

1 1 1

1 1 1

 . (4.3)

Applying such a coupling to the three states in Fig. 4.2(d) that happen to be

degenerate, one can find the Etri is just a constant. The resulting eigenenergies

are found by diagonalizing Vk,k+q to be 0 0 0

0 0 0

0 0 ε

 . (4.4)

A two-fold degeneracy remains in the resulting eigenvalues, which form the

Dirac points. Furthermore, with a slight deviation δk from these k points,

Etri of the three coupled states in (a) differs by small amounts δE1 and δE2,

both proportional to δk. The total Hamiltonian becomes

ε

3

 1 + 3 δE1

ε
1 1

1 1 + 3 δE2

ε
1

1 1 1

+ constant. (4.5)

Taking |δE1| < |δE2| � ε for convenience, one finds that linear disper-

sion develops around the Dirac point as two eigenenergies are found to be
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ε
3
{ δE1

2ε
+2 δE2

ε
, 3 δE1

ε
− 3

8

δE2
1

δE2ε
}. Within such a one-carbon picture, we have demon-

strated the formation of Dirac cones through an induced CDW of specifically

structured CDW potential. The above analysis also locates the Dirac cones

in momentum space from the reference CDW-free system, once the CDW q

vectors to be applied are given.

The vanishing spectral intensity in Fig. 4.1 is also easily understood with

a similar analysis. Along the k path on which two of the three coupled states

remain degenerate (δE1 = 0), for example two k-points on the KnKsMs path

[gray dotted lines in Fig. 4.2(b)(e)] coupled to the third on the ΓKsMn path

[gray dashed line in Fig. 4.2(b)(e)], one of the resulting eigenvalues remains

unchanged (zero): {3 + δE2

ε
, 2 δE2

ε
, 0}, and the corresponding eigenvector con-

sists of anti-bonding superposition of only the two originally degenerate states.

Against naive expectation, this band will not be folded to the third k point

on the gray dashed line, where the corresponding spectral intensity must then

vanish in Fig.4.1(g)&(h). The absence of folding intensity may be more clearly

visualized in Fig. 4.2(b), where the band of missing weight is sketched in red

dashed curve. In essence, within this one-carbon picture, the vanishing spec-

tral intensity is intimately tied to the formation of the Dirac cones.

4.3 Dirac Cones in Two-dimensional Lattice

with Enlarged Unit Cells

If we can periodically and locally increase the on-site energy by ε in a two-

dimensional lattice, a new periodicity shows up to accommodate an enlarged

unit cell. If the new unit cell is at least three times larger than its original one,

we can keep the special format of Vk,k+q like Eq. 4.3 and build Dirac cones in

the new dispersion. With such a broken translational symmetry, Vk,k+q has a

size of M ×M (M ≥ 3) and is

ε

M


1 1 · · · 1

1 1 · · · 1
...

...
. . .

...

1 1 · · · 1


M×M

. (4.6)
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Out of the M k points coupled by CDW wave vectors, geometrically it is

always possible to couple at least three degenerate states within a regular two-

dimensional dispersion.2 Then Vk,k+q leads to the appearance of Dirac cones

around the M k-points of these degenerate states.3 In principles there can be

multiple sets of such coupled k-points, in which case the number of Dirac cones

would multiply. Although the locations and energies of Dirac points depend

on the details of the original dispersion, their existence is guaranteed.

To demonstrate the validity of this scenario, let us consider a two-dimensional

one-band system with a square lattice and periodically introduce ε on 1/3 of

the atoms as in Fig. 4.3(a). Fig. 4.3 demonstrates the creation of six anisotropic

Dirac cones in the original BZ (two in the new reduced BZ). In the case with

weaker potential ε (Fig. 4.3(c)&(f)), three regular ”electron pockets” remain

at the chemical potential. In general, the contribution to transport properties

from the normal massive carriers on these pockets should be overwhelmed by

those of the massless Dirac carriers, and thus does not cause any serious con-

cern. These normal carriers can often be removed by gapping out the pockets

with a stronger potential ( ε −→∞ as vacancies), as shown in Fig. 4.3(d)&(g).

Obviously, the closer the reduced BZ is to the original Fermi surface, the more

effectively the potential can gap out these Fermi pockets.

Fig 4.4 shows that introducing ε on 1/4 of the atoms in Fig. 4.4(a) can

indeed create six Dirac cones in the original BZ that resemble those in graphene

very much. Out of four coupled k points, only three of them are degenerate,

as indicated in Fig. 4.4(b). The state at the fourth k-point has a much higher

energy and thus does not affect the other three in any significant manner.

4.4 Conclusion

In conclusion, we study the effect of raising on-site energy periodically in two-

dimensional lattice in general. If the resulting super cell unit cell is at least

2If we consider three coupled k points, they can form a triangle with edges equal to
three CDW wave vectors. Each vertex represents one k point. In a regular two-dimensional
dispersion, we can arbitrarily fix two vertices at the same energy first, the last vertex is
located at either higher or low energy. In a dispersion contour, we can smoothly fine-tune
the orientation of this triangle and eventually find a set of three k points with the same
energy.

3Please see Appendix A for mathematical derivations.
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three times larger than the original unit cell, the linear dispersion of Dirac

cones can be built in the new dispersion. Graphene can be regarded as a

special case in a triangular lattice. In the two examples in a square lattice, we

successfully test the validity of our scenario. The resulting Dirac cones show

specific anisotropy of the effective velocity and the orientation. It may provide

a possible route to incorporate Dirac cones in future material design.
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Chapter 5

Case 3: One-Fe versus Two-Fe

Brillouin Zone of Fe-Based

Superconductors

The work presented in this chapter has been published [78]. Based this work,

the subsequent collaborative projects with other ARPES experimental groups

are provided in Appendix B.

5.1 Introduction

One confusing/puzzling aspect of the new iron-based high-temperature su-

perconductors is the dilemma of one-Fe vs. two-Fe description, concerning

the translational symmetry of the system. The generic crystal structure of

these materials consists of two inequivalent Fe atoms, distinguished by the al-

ternating tetrahedral coordination of the pnictogen or chalcogen anions (c.f.:

Fig. 5.1a). Since this coordination is known to impose dramatic impacts on

the hopping integrals of Fe d orbitals [79], the associated broken translational

symmetry (from the 1-Fe perspective) is expected to be physically significant

and should be fully incorporated via the use of the unit cell that contains

explicitly two Fe atoms. Yet, the observed neutron scattering intensity [80–

83] shows little (if any) indication of such broken symmetry; it appears to

follow simply the 1-Fe Brillouin zone (BZ) of a simple square lattice of Fe

atoms (Fig. 5.1b). Furthermore, out of convenience, most theoretical studies
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Figure 5.1: Illustration of (a) one-Fe and two-Fe unit cells with +(−) anions
located above (below) the Fe plane, and (b) the corresponding first Brillouin
zones.

of superconductivity to date do not account fully for this broken translational

symmetry, disregarding the rigorous symmetry constraint. It is thus impor-

tant and timely to clarify quantitatively various aspects of the effects from

this broken symmetry (its relevance/irrelevance), and to settle, once for all,

the confusing status of the field on the 1-Fe vs. 2-Fe perspective.

In this study, three striking effects of the translational symmetry breaking

potential (TSBP) are revealed by unfolding the ab initio electronic band struc-

tures (EBSs) and Fermi surfaces (FSs) of representative parent compounds

back to the 1-Fe BZ: i) The folded Fe bands (“shadow” bands) possess over-

all weak spectral weight, explaining the 1-Fe perspective advocated by the

neutron measurements, and indicating the necessity of the larger 1-Fe BZ in

angle resolved photoemission spectroscopy (ARPES) as well. ii) The folding

of the bands induces an unusual parity switching in their orbital characters,

suggesting a change of photon polarization in ARPES. iii) Most strikingly, the

widely discussed electron Fermi pockets around (π, 0) and (0, π) for supporting

superconductivity would not have existed without the TSBP. This advocates

strongly the full inclusion of TSBP (the two-Fe perspective) in theoretical un-

derstanding of superconductivity in these materials, and suggests a critical

re-examination of the debated nodal structure of the superconducting order

parameter [84–92] on the electron pockets.
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Table 5.1: Lattice information of first-principles calculation in Fe-based super-
conductors.

LaFeAsO BaFe2As2 LiFeAs FeTe K0.8Fe1.6Se2

a=b (Bohr) 7.615732 7.488039 7.127100 7.221591 16.47577
c (Bohr) 16.51017 24.59819 12.01380 11.84764 26.61737
anion height 0.1326061 0.354500 0.265000 0.249600 0.282740
k mesh 16x16x7 13x13x13 14x14x8 17x17x10 11x11x11

5.2 Method

Our theoretical analysis is based on unfolded first-principles EBSs and FSs

of the normal state in 1-Fe perspective, which reveals explicitly various as-

pects of the TSBP effects. Standard density functional theory (DFT) calcu-

lations were conducted with local density approximation as implemented in

the WIEN2k package [12] in the multiple-Fe unit cell (8 Fe for K0.8Fe1.6Se2

and 2 Fe for the rest).1 The essential lattice and computational parameters

used in the calculation are summarized in Table 5.1. Based on the DFT

results, symmetry-respecting Wannier functions [48] with Fe d and anion p

characters were constructed to capture the low energy Hilbert space within [-

6, 3] eV, from which the low energy effective tight-binding Hamiltonians were

calculated. Finally, unfolded EBSs and FSs were obtained via the recently

developed first-principles unfolding method [26].

The basic idea of our unfolding method [26] is to simply change the rep-

resentation of the energy-, ω-, dependent one-particle spectral functions of

the real system (two-Fe zone), AKJ,KJ(ω), from the basis of original crystal

momentum K and band index J to the basis of crystal momentum k and or-

bital index n of a more symmetric reference system (1-Fe zone): Akn,kn(ω) =∑
KJ |〈kn|KJ〉|2AKJ,KJ(ω). This change of basis is made simple with the use

of first-principles Wannier functions. As demonstrated below, the unfolded

EBSs and FSs provide explicit and detailed information on each band’s cou-

pling to the TSBP in an orbital specific manner. Additionally, it has been

shown [26] that the unfolded spectral function corresponds directly to the

1For each parent compound, the lattice constants and atomic positions were obtained
from the experimental data of the high temperature nonmagnetic state of LaFeAsO [93],
BaFe2As2 [94], LiFeAs [95], FeTe [96], and K0.8Fe1.6Se2 [97]. We followed the default settings
of version 10.1 with RmtKmax = 7 and lmax = 10 to reach convergence of the ground state
density.
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intensity of ARPES, as it includes the main matrix element effects of the

measurement (expect the remaining atomic dipole matrix element to be de-

termined based on the chosen photon polarization). This use of “regular”

momentum distinguishes our method from the glide symmetry-based unfold-

ing employed by, for example, Anderson and Boeri [98], in which the twisted

geometry does not have direct correspondence to the ARPES. Similarly, the

use of regular momentum is essential in the widely applied spin fluctuation

studies [84, 85, 87] of superconductivity via magnetic susceptibility, χ(q, ω),

since the momentum transfer q concerns the difference of two k points.

5.3 Unfolded Band Structure and Fermi Sur-

faces

Our resulting unfolded EBSs and FSs of the representative families in the

nonmagnetic state are shown in Fig. 5.2, colored to emphasize the essential

Fe d orbitals. A few generic features of unfolding can be clearly observed, for

example, in Fig. 5.2c. The most obvious one is the appearance of the shadow

bands, generated from band “folding” via the TSBP. Since here the TSBP is

of momentum qTSBP = (π, π, 0) in the 1-Fe BZ unit (except for BaFe2As2 and

K0.8Fe1.6Se2, whose double layer structure gives qTSBP = (π, π, π) instead) each

band is folded from k to k + qTSBP , as illustrated by the arrows in the lower

panel. Note that the conservation of spectral weight dictates a weaker spectral

weight for those “main” bands that develop stronger shadow bands. Also

associated with the shadow band formation are the additional gap openings

occurring at the 2-Fe BZ boundaries, indicated by an ellipse in Fig. 5.2c as

an example. Obviously, the intensity of the shadow bands and gap opening

size reflect (although not necessarily represent fully) the bands’ coupling to

the broken symmetry.

Fig. 5.2 shows clearly that the anion bands within [-6, -2] eV develop

very strong shadows bands, of comparable intensity to the main bands. This

reflects their strong coupling to the TSBP, as it is the alternating positioning

of the anion that breaks the translational symmetry. Given that one can

hardly distinguish the main bands from the shadow bands, it is obviously

more convenient to consider these anion bands in the 2-Fe BZ.
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In great contrast, the Fe bands near the Fermi level have rather weak

shadow bands. In fact, if it weren’t for the gap openings (some of which are

quite large), the Fe bands would have looked just like those from a simple

5-band system. The overall weak intensity of shadow bands explains why

neutron spectra appear to respect the 1-Fe BZ: Even though the real symmetry

of the system dictates the 2-Fe BZ, the folding of the spectrum is just not strong

enough for a clear experimental identification. In fact, the lack of folded bands

was also reported in a recent ARPES experiment. [1] Consequently, a larger

1-Fe BZ is necessary in future ARPES measurements, since only about half

of the EBSs are clearly observable in the 2-Fe BZ, where most ARPES to date

were conducted.

5.4 Discussion

Fig. 5.2 also reveals an interesting orbital-parity switching of the band fold-

ing, obvious from the change of color of the Fe-bands. Consider the FSs, for

example. The blue (dxz) and red (dyz) bands of odd parity w.r.t. the Fe plane

always have green (d3z2−r2 , dx2−y2 , and dxy) shadow bands of even parity, and

vice versa. This can be understood from the structure of TSBP in these sys-

tems. Table 5.2 gives the nearest neighbor hopping integrals for the low-energy

Fe d bands in BaFe2As2 by integrating out As p orbitals. One sees that the

alternating positioning of the anion (c.f. Fig. 5.1a) leads to an alternating

sign of all teven,odd, and thus breaks the translational symmetry. Consequently,

these terms form the main body of the TSBP, and dictate a switching of par-

ity in the band character upon band folding. This novel behavior is quite

distinct from the common cases of ARPES, in which the replica of bands be-

yond the first BZ retain the orbital character. Here, the weak replica always

possess a different character across the BZ boundaries and thus require a dif-

ferent photon polarization to clearly observe, similar to the recent reports on

Bi2Sr2CaCu2O8+δ [99].

The most significant feature revealed in Fig. 5.2 is the incompleteness of the

unfolded electron pockets around the X (and R) points. Taking BaFe2As2 in

Fig. 5.2b as an example, near the X=(π, 0, 0) point, the intensity of the strong

red pocket vanishes dramatically near the Γ-X path. Consequently, only the
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Figure 5.3: (a) Folding of complete electron pockets (from Ref. [84]) and il-
lustration of currently proposed nodal structure of the superconducting order
parameter. (b) First-principles results showing incomplete electron pockets
instead (BaFe2As2 as the example). (c)(d) Demonstration of loss of electron
pockets by dropping TSBP in both 5- and 8-band VCA descriptions.
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Table 5.2: Nearest-neighbor hopping integrals (in eV) along the x-direction
〈r′+(100), n|H|r′, n′〉 among Fe d Wannier orbitals for nonmagnetic BaFe2As2.
The option in sign corresponds to two inequivalent Fe sites. Bold font high-
lights orbitals with odd parity.

3z2 − r2 x2 − y2 xy xz yz
3z2 − r2 0.03 0.31 0 0 ∓0.12
x2 − y2 0.31 −0.34 0 0 ±0.34
xy 0 0 −0.12 ∓0.22 0
xz 0 0 ∓0.22 −0.06 0
yz ∓0.12 ±0.34 0 0 −0.32

green shadow pocket of dxy character, folded from the blue pocket around

R=(0, π, π) (c.f. bottom panel of Fig. 5.2b), is visible here, in agreement with

recent ARPES measurement [100]. In fact, none of the unfolded pockets near

X and R points are complete in Fig. 5.2, contrary to the common assumption

that each X/R point has one strong complete pocket and obtains a weaker

shadow pocket via band folding (c.f. Fig. 5.3a). All the electron pockets here

are instead formed by combining main bands near X and R points via the

TSBP. In other words, without breaking the 1-Fe translational symmetry, the

essential electron pockets would have never existed in these systems.

To better illustrate this important finding, let us construct a translational

symmetric Hamiltonian (in 1-Fe unit) via the virtual crystal approximation

(VCA) to the above effective Fe d-band Hamiltonian2:

HV CA
r,n;0,n′ =

∑
r′

Hr′+r,n;r′,n′/
∑
r′

1.

This zeros out all TSBP (including the above teven,odd terms), and keeps all

translational symmetric terms intact. The resulting EBS and FSs at kz = 0

are given in Fig. 5.3c. Even though the overall EBS still follows the original

structure in Fig. 5.3b (minus the shadow bands and gap opening obviously),

the topology of the FSs is drastically modified. In particular, there are no

electron pockets around the X point anymore. The same is found in the VCA

of our original Hamiltonian containing Fe d and As p orbitals (Fig. 5.3d).

Evidently, the TSBP is instrumental in creating the electron pockets, and

thus should be fully included in future theoretical modeling of magnetism and

2See Appendix C for more details.
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superconductivity.

Our findings have direct and significant implications on the heatedly de-

bated issue of nodal structures of the superconducting order parameter on

the electron pockets. Current spin fluctuation theories [84–86] suggest acci-

dental nodes in the s+− order parameter [101, 102] on the electron pockets

(see Fig. 5.3(a), due to strong inter-electron-pocket scattering. While the

existence of nodes appears to be supported by the interpretations of the pen-

etration length and several other measurements [88–90], it contradicts with

the nodeless and almost isotropic gaps observed in ARPES [91, 92]. We find

that precisely near the region of the nodes, ARPES would have negligible in-

tensity, and thus can easily miss the nodal structure. On the other hand,

the above mentioned theories did not incorporated appropriately the essential

TSBP, and consequently are based on FSs of qualitatively different spectral

intensity and orbital structures. Specifically, one would expect that the above

incompleteness of the electron pockets, the mismatch in the orbital characters,

and the addition of non-diagonal coupling between the pockets, can all affect

quite strongly the inter-pocket scattering and alter the position or even the

existence of the calculated accidental nodes on the electron pockets. Thus, a

careful re-examination of the theoretical prediction would be of great interest

and importance.

5.5 Vacancies Ordered K0.8Fe1.6Se2

Finally, let’s consider the second TSBP introduced by ordered 20% Fe va-

cancies in K0.8Fe1.6Se2 [103]. The long period of the vacancy ordering, cor-

responding to a small qTSBP = ±(3π
5
, π

5
, π) and ±(−π

5
, 3π

5
, π), leads to a tiny

BZ, making it difficult to compare standard DFT results [104] with the ex-

periments. Our unfolded EBS and FSs thus offer a direct comparison with

experimental spectra, and provide a few theoretical insights. Contrary to the

above discussions, the Fe-vacancy induced TSBP causes a strong coherent

scattering of the Fe bands, producing a larger number of shadow bands and

strong gap openings all over the 1-Fe BZ. Consequently, the overall band width

of the Fe bands reduces by about 1/4, much more than the anion bands. Not

surprisingly, the resulting FSs are seriously reconstructed, showing little re-
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semblance to the generic FSs of other cases, particularly lacking the nesting of

the Fermi pockets. This disagrees drastically with recent ARPES experiment,

which reported well-defined Fermi pockets [105]. Thus, the Fe-vacancy must

order only weakly (or locally) in the measured samples, as observed recently

by electron microscopy [106]. Similarly, now it seems more obvious that the

recent experimental finding of enhanced superconductivity by promoting dis-

order of Fe-vacancies [107] is mostly through the recovery of approximately

nested Fermi pockets.

5.6 Conclusion

In conclusion, our first-principles unfolded EBSs and FSs reveals three key

features of the translational symmetry breaking due to alternating anion po-

sitioning, in all families of the Fe-based superconductors. First, the folded

shadow bands have rather weak spectral weight. This explains the apparent

respect to the 1-Fe BZ in neutron measurements, and highlights the neces-

sity of covering the larger 1-Fe BZ in future ARPES experiments. Second,

TSBP induced band folding changes the orbital character to those with oppo-

site parity w.r.t. the Fe plane. This unusual phenomenon suggests a change

of photon polarization in ARPES experiment. Finally and most significantly,

the electron pockets, critical to most theories of magnetism and supercon-

ductivity of these materials, only form via the TSBP. Thus, full inclusion of

the broken translational symmetry (e.g. using 2-Fe unit cell) is essential in

future theories, particularly on the debated issue of nodal structure of the

superconducting order parameter on the electron pockets.

74



Chapter 6

Case 4: Orbital-Parity Selective

Superconducting Pairing

Structures of Fe-based

Superconductors under Glide

Symmetry

The work presented in this chapter is the extended study from Chapter 5

and unpublished. More discussions will be focused on the superconducting

structures.

6.1 Introduction

One of the highly debated questions in high-temperature Fe-based supercon-

ductors (FeSC) [108] is the superconducting pairing symmetry. After the first

proposal of a global s-wave symmetry with the opposite signs on the electron

and hole pockets by Mazin et al. [101], numerous follow-up microscopic model-

ings have shown the existence of the BCS instability mediated by fluctuations

in both spin [84, 86, 87, 109] and orbital [110] degrees of freedom. However,

different competing pairing symmetries are close in energy [86] so the leading

term can vary from so-called nodal/nodeless s± [111, 112], s++ [113] to dx2−y2

symmetry [114] depending on the compound types, dopings, and interaction
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conditions. From the experimental side, although mounting evidence in angle

resolved photoemission spectroscopy (ARPES) measurements have revealed

full superconducting gaps of either negligible or weak anisotropy [92, 115–

119], there is a strong contradiction with the nodal gap signatures revealed in

bulk measurements, such as London penetration depth [88, 90, 120], specific

heat [121], and nuclear magnetic resonance [89]. Despite the lack of decisive

experiments with both phase sensitivity and the momentum resolution, all of

these discrepancies remain to be conclusively answered.

One unique property hindering the theoretical development in FeSC is the

in-plane broken translational symmetry. The staggered positions of the an-

ions generate a non-perturbable band folding potential [78, 122, 123] and turn

the in-plane translation into a glide translation. Because the glide symmetry

involves a mirror reflection followed by the translation on the Fe layer, the

parity of Fe d orbitals (with respect to the Fe plane) not only characterizes a

orbital-parity switching in kinetic energy [78] but also helps formulate pairing

symmetries in quantum Monte Carlo studies [124]. One of the indirect evi-

dences is recent laser ARPES data in BaxK1−xFe2As2 [125, 126], indicating

that the angular modulation of the superconducting gap significantly differs

across the Γ hole pockets. Therefore, it is relevant to examine the impact on

the electronic structure imposed by the glide symmetry in the orbital-parity

selective manner.

In this study, we identify the orbital-parity selectivity by studying the

Hamiltonian with glide symmetry in the generic Fe-based superconductors.

We show that every quasiparticle, defined in the one-particle spectral func-

tion, is only allowed to carry one orbital parity and always has its degenerate

counterpart with opposite parity upon a momentum Q = (π, π, 0) shift. The

intra-orbital-parity Cooper pairs must have the total zero-momentum and dis-

tinct gap structures across orbital parities. The Cooper pairs formed by one

odd and one even quasiparticles possess the characteristic of the finite momen-

tum Q, the spatial odd parity and the time-reversal symmetry breaking.
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6.2 Hamiltonian with Glide Symmetry

In FeSC of P4/nmm space group, the generic non-interacting Hamiltonian of

Fe 3d orbitals can be formulated as in-plane H
‖
0 and out-of-plane H⊥0 :

H
‖
0 =

∑
ii′(iz=i′z)nn′

(pnpn′)
θi+θi′ tnn

′

ii′ a
†
inai′n′ . (6.1)

H⊥0 =
∑

II′(iz 6=i′z)nn′

(pnpn′)
θi+θi′ tnn

′

II′ a
†
InaI′n′ . (6.2)

The five Fe d orbitals n’s are categorized into even orbital parity (dz2 , dx2−y2 , dxy)

with pe = +1 and odd (dxz, dyz) with po = −1. The Fe lattice site is labeled

by either i = (ix, iy, iz) or I = (ix, iy, (−1)θiiz), where θi = ix+ iy distinguishes

two sub-lattices. In this notation, the hopping integrals tnn
′

ii′ as well as tnn
′

II′ only

depend on the relative distance (i − i′). The presence of sign change factors

(pnpn′)
θi+θi′ and (−1)θi+θi′ are required by the glide symmetry.

The dominant term of translational symmetry breaking in FeSC originates

from the sign (pnpn′)
θi+θi′ in H

‖
0 . This sign distinguishes two sublattices by

constantly changing the sign on the inter-orbital-parity hoppings from one

sublattice to another. Instead of being a small correction, the band folding

from the one-Fe Brillouin zone (BZ) to two-Fe BZ involves a non-perturbative

potential with the same order of magnitude as the regular hopping terms. As

depicted by the orbital-dependent one-particle spectral function represented

in the one-Fe BZ basis in Fig 6.1(a), akn are strongly hybridized with ak+Qn′

only when pnpn′ = −1. For example, the three hole pockets surrounding

Γ are folded to the replica at zone corner M , and the orbital changes from

dyz/dxz (red/blue) to dxy (green) and vice versa. This is so-called orbital-parity

switching folding [78] we have discuss in Chapter 5 and indicates a strong

umklapp process in a orbital-parity selective manner within the one-Fe BZ.

Therefore, the traditional picture based on the unbroken in-plane translational

symmetry will be no longer applicable here.
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   d3z2-r2, dx2-y2 and dxy 

dxz dyz 
(a) 

(b) (c) 

𝑘𝑧 = 0  

𝑘𝑧 = 0.5𝜋  𝑘𝑧 = 0.5𝜋  

Figure 6.1: (a) The unfolded one-particle spectral function An(k, ω = 0)
at Fermi energy calculated from first-principles FeTe Wannier orbitals (see
Ref. [78] for details). The spectral function in local gauge space Ãn(k̃, ω = 0)
(b) with and (c) without H⊥0 terms. The enlargements show the folded spectral
weights from Hout

0 are hardly visible in (b) and vanished in (c).

6.3 Local Gauge and Physical Momentum Spaces

Thanks to glide symmetry, we are able to avoid the complex umklapp process

by defining a local gauge transformation as cin ≡ (−pn)θiain [98, 122, 123] so

that

H
‖
0 =

∑
ii′(iz=i′z)nn′

tnn
′

ii′ c
†
inci′n′ , (6.3)

H⊥0 =
∑

II′(iz 6=i′z)nn′

tnn
′

II′ c
†
IncI′n′ . (6.4)

The Fourier space of cin now is labeled by (k̃x, k̃y, kz), where the tilde refers

to pseudo-momentum and quantities in local gauge space. Although the one-

Fe periodicity in H
‖
0 is recovered through the local gauge transformation, the

translational symmetry still remains broken by H⊥0 . In fact, the glide transla-

tion in a realistic three-dimensional system never commutes with the out-of-

plane translation so no eigenstates in a one-Fe BZ can simultaneously have the
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well-defined momenta along three directions in Cartesian coordinates. How-

ever, the importance of the remaining coupling is diluted by factor in-plane

and out-of-plane hopping ratio |t⊥/t‖| � 1. In Fig 6.1(b) and its inset, the

first-principle results of FeTe compounds verify that the folded spectral weights

are negligibly weak. If H⊥0 is assumed to be zero, Fig 6.1(c) and its inset show

no obvious change in either dispersion nor wavefunction except for the dis-

appearance of the weak spectral weights. The local gauge space is capable

of providing the exact and approximate eigenstates of recovering one-Fe peri-

odicity in two and three dimensions, respectively. Thus, the previous studies

built in local gauge space that we shall mainly consider hereafter should be

qualitatively correct in capturing essential physics.

6.4 Orbital-Parity Selective Quasiparticles

The existence of such a local gauge space makes it easy to decode the obscure

spectral function in Fig. 1(a) and reveal the orbital-parity selective quasi-

particles. With the transformation between the physical momentum and the

pseudo-momentum bases, ak,o = ck̃,o and ak,e = ck̃+Q,e, the spectral function

can be transformed accordingly [123]:

Ao(k, ω) = Ão(k̃, ω), (6.5)

Ae(k +Q,ω) = Ãe(k̃, ω). (6.6)

In other words, every quasi-particle can only carry one orbital parity at the

physical momentum k and its degenerate counterpart of opposite parity at k+

Q. This is because they originate from one single eigenstate in Ãn(k̃, ω). This

unique selectivity has been observed in recent ARPES data from BaFe1−xCoxAs2

[1] as well as FeTe1−xSex [2] and expected to facilitate the orbital characteri-

zation of the ARPES experiments.
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6.5 Orbital-Parity Selective Superconducting

Pairings

The orbital-parity selectivity implies an unusual superconducting state con-

sisting of three kinds of coexisting Cooper pairs: two intra- and one inter-

orbital-parity pairing structures. Since the Fermi surface plays a dominant

role in stabilizing superconductivity, one leading pairing symmetry survives

in local gauge space that has been heavily investigated by various theoreti-

cal works [84, 86, 87, 101, 109, 110]. For the sake of simplicity, we assume

that a zero-frequency anomalous Green’s function is pre-determined in the

local gauge space and projected to orbital basis as F̃mn(k̃) = 〈c−k̃mck̃n〉 ∝
∆̃(k̃)φ̃m(−k̃)φ̃n(k̃), where ∆̃(k̃) and φ̃n(k̃) are the gap function and the wave-

function projected to orbital n at the Fermi surface, respectively. After the

same transformation to physical momentum basis, a Cooper pair of two odd

quasiparticles at ±k implies the existence of the counterpart even pair at

±(k + Q). In addition, a −k odd quasiparticle is also allowed to be paired

with another k+Q even one, and this interestingly forms a Cooper pair carry-

ing total momentum Q. Instead of one pairing symmetry, glide symmetry in

FeSC naturally leads to a condensate consisting of the three distinct pairing

structures.

One significant implication from our finings is that the orbital-parity se-

lectivity influences the gap nodes on the electron pocket, a finding that still

requires conclusive confirmation by experiments. We start with the anomalous

Green’s function and focus on the leading intra-orbital pairing,

Fo(k) ∝ ∆̃(k̃)|φ̃o(k̃)|2, (6.7)

Fe(k) ∝ ∆̃(k̃ +Q)|φ̃e(k̃ +Q)|2. (6.8)

The odd orbitals inherit gap symmetry from ∆̃(k̃), but the even orbitals

have a Q-shifted gap function ∆̃(k̃ + Q). Among the four commonly dis-

cussed symmetries in FeSC: ∆̃s, ∆̃s± cos k̃x cos k̃y, ∆̃s++(cos k̃x + cos k̃y) and

∆̃dx2−y2
(cos k̃x − cos k̃y)

1, the Q shift only affects the last two by adding an

1We adopt the convention for pairing in real space, so ∆̃s and ∆̃s++
represent the on-

site and the nearest neighbor pairing, respectively. Both ∆̃s++
and ∆̃dx2−y2 involve the

next-nearest neighbors.
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Figure 6.2: Schematic diagrams of orbital-parity selective pairing structures in
the intra-orbital Cooper channel as shown in Eq.(6.9). The black curves and
the shaded/unshaded regions represent the nodal line and the sign structure,
respectively.
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extra minus sign across the orbital parities. To show the relevance of the mi-

nus sign, we consider the mixture of the three s-wave superconducting order

parameters,

∆o/e(k) = ∆̃s + ∆̃s± cos kx cos ky ± ∆̃s++(cos kx + cos ky). (6.9)

In Fig. 6.2(a), we present the case ∆̃s++ � ∆̃s± and ∆̃s = 0. The structures

of the order parameters are plotted for odd (a, left) and even (a, right) with

the one-particle spectral function as the background. Note that at Γ point

the red-and-blue hole pockets in (a, left) carry the opposite sign of the gap

with respect to the green hole pocket in (a, right). Moreover, the intersection

of the electron pockets and the nodal lines depicts the widely discussed gap

nodes due to interaction between the electron pockets. The locations of gap

nodes on dxz/dyz and dxy quasiparticles can not coincide, but are related by

a Q shift. Since the diminished spectral weight around the node in (a, left)

makes the ARPES detection harder, we suggest that probing the node on dxy

shown in (a, right) could be much easier.

As an alternative to directly detect the phase of the order parameter, our

finding reveals the nature of the orbital-party selectivity in gap anisotropy

may help to determine the gap symmetry. In the case of ∆̃s++ ∼ 2∆̃s±, the

nodal line of ∆o(k) becomes circular as shown in Fig. 6.2(b, left) and induces

negligible gap anisotropy at the circular hole pockets (red/blue). In contrast,

∆e(k) forms the four pieces of nodal arcs, and then creates the potentially

strong gap anisotropy for the green hole pocket at Γ point as shown in (b,

right). This anisotropy is further enhanced either by the presence of a positive

∆̃s or the growth of hole pockets with hole doping. Both ways would push

the nodal arcs and the green hole pockets in (b, right) closer and possibly

in touch. Therefore, it is expected that the gap directly observed by ARPES

measurements would show strong angular modulation in one parity and nearly

absent in the other.

The scenario of the strong orbital-parity-selective gap anisotropy is sup-

ported in the recent laser ARPES experiments in BaxK1−xFe2As2 with only

large hole pockets at Γ point [125, 126]. As shown in Fig. 6.3(a) (the dig-

italized data obtained from the two largest pockets in Fig 3 of Ref. [126]),

the outer pocket (black dots and mostly dxy) has stronger angular modulation

82



0

0.5

1

1.5

2

2.5

-90 -45 0 45 90
G

a
p

 (
m

eV
) 

0

1

2

3

4

5

6

0 45 90 135 180 225 270 315 360

G
a

p
 (

m
eV

) 

(a) 

(b) 

Gap from ARPES 

Gap from STS 

Exp. for outer pocket 

Sim. for outer pocket 

Exp. for inner pocket 

Sim. for inner pocket 

Angle (degree) 

Figure 6.3: The digitalized gap structure of the compounds (a)
Ba0.12K0.88Fe2As2 using ARPES [126] and (b) LiFeAs using STS [128]. The
orbital-parity-selective gap modulation shown in purple and green curves is
provided by our simulations according to Eq.(6.9). 3

accompanied by nodes, but the anisotropy in the inner pockets (black triangle

and mostly dxz/dyz) is rather weak. To our limited knowledge, the current

explanation relies on the strong competition between various intra-pocket in-

teractions [127]. However, the orbital-parity-selective gap anisotropy provides

a more natural explanation. To explicitly demonstrate this scenario, we can

also approximate the gap near the hole pockets:

∆o/e(k) ≈ k4
F

48
(−∆̃s± ±

∆̃s++

2
) cos 4φ+ (∆̃s± ± 2∆̃s++ + ∆̃s), (6.10)

where kF is the Fermi wave vector. The plus (minus) in the amplitude of 4φ

3For ARPES, (∆s± ,∆s++
,∆s) = (−1.8,−0.5, 2.5) and (−8, 6,−4.9) for inner and outer

pockets. For STS, (∆s± ,∆s++
,∆s) = (−5, 4, 1.8) and (−5,−4,−3.1) for inner and outer

pockets. The unit is in meV. We present a physically meaningful set of numbers but are
unable to fix the parameters in this over-determined problem.
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modulation indeed shows the weaker (stronger) anisotropy in odd (eve) orbital

parity. The large oscillation and small constant term for the even orbitals

in Eq.(6.10) can easily induce the nodes of the outer pocket in Fig.6.3(a).

If ∆̃s++ = 2∆̃s±, the 4φ angular modulation on odd parity will be totally

quenched. Our results based on the simulations using Eq.(6.9) are tentatively

provided in the green and purple curves in Fig. 6.3(a) and in reasonable agree-

ment the experimental data.

The orbital-parity selective gap structure is also supported by the recent

experiment using scanning tunneling spectroscopy (STS) in LiFeAs [128]. In

Fig. 6.3(b), the experimental results show that the outer (black dots and

mostly dxy) and inner (black triangle and mostly dxz/dyz) hole pockets dis-

play out-of-phase angular modulation. Since these two pockets are close in

momentum space, the scenario of only one pairing symmetry is definitely not

consistent. However, if ∆̃s++ becomes dominant in Eq.(6.10), the minus sign

across two orbital parities can explain the out-of-phase 4φ oscillation. Again,

our simulations shown in Fig. 6.3(b) result in fair agreement with the experi-

mental data.

6.6 Finite-Momentum Pairing

In the inter-orbital parity channel, the glide symmetry in FeSC also dic-

tates the existence of η−pairing with finite momentum Q [129]. Namely,

〈a−k−Qeako〉 = 〈c−k̃,eck̃,o〉 ∝ ∆̃(k̃)Φ̃(k̃), where Φ̃(k̃) ≡ φ̃e(−k̃)φ̃o(k̃) = −Φ̃(−k̃)

and purely imaginary [122]. Hence, this pairing possesses spin singlet and

breaks time reversal symmetry [130], and also has an odd parity form factor in

both reciprocal and real spaces [130, 131]. A decisive difference between our

finding and the previous proposals [131] is that the η-pairing in FeSC is fully

forbidden in intra-orbital pairing and naturally coexists with all normal pair-

ing channels without competition. Also, the stabilization of the η-pairing can

choose neither to rely on the extremely strong antiferromagnetic correlation

[130] nor the strong coupling picture [131]. The weights of η-pairing |Φ̃(k̃)|
are mostly relevant on the electron pockets because the strong dxz(dyz)-dxy

hybridization. In Fig. 6.4, we show the weight of anomalous Green’s function

on electron pockets at X points in Fig. 6.1(c). In comparison with dyz or dxy
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Figure 6.4: The weight of anomalous Green’s function on the electron pockets
in Fig. 6.1(c).

intra-orbital normal pairing, there exists a reasonable amount of dyz − dxy η-

pairing, and particularly maximal along XM direction. Further experiments

in FeSC are needed to verify the Cooper pair breaking time-reversal symmetry

as we predict.

6.7 Conclusion

In conclusion, the glide symmetry dictates that the orbital-parity physics is of

prime importance for FeSC. The orbitals with different parities do not share the

same quasi-particles nor superconducting pairing structures. Opposite pari-

ties have different sign structures of the superconducting order parameters

involving two sublattices, such as s++ and dx2−y2 . The consequence uniquely

leads to the orbital-parity-selective nodal structure and angular gap modu-

lation. The latter is supported by the recent experiments using ARPES in

BaxK1−xFe2As2 and STS in LiFeAs. There also exists an η−pairing involving

two opposite orbital-parity quasiparticles. The η−pairing has its own pecu-

liarity in spatial oddness as well as time reversal symmetry breaking, and thus

needs the confirmation from future experiments.
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Chapter 7

Conclusion

In this thesis, I study various physical consequences from the translational

symmetry breaking on the electronic structure. We used the first-principles

band structure and Wannier orbitals to obtain the one-particle spectral func-

tion in the normal cell BZ basis. This method is applied to various realistic

materials.

In the first study, the Fermi surface topology of cI 16 Li at high pressures is

studied by unfolding method. We find the occurrence of a Lifshitz transition

at ∼43 GPa, which explains the experimentally observed anomalous onset

of the superconductivity enhancement toward lowered pressure. Furthermore

we identify, in comparison with previous reports, additional nesting vectors

that contribute to the cI 16 structural stability. Our study highlights the

importance of three-dimensional unfolding analyses for first-principles studies

of Fermi surface topologies and instabilities in general.

In the second study, we provide an alternative understanding of the Dirac

cone formation in graphene. This understanding is extended to a simple sce-

nario to theoretically build Dirac cones in a general one-band 2D lattice.

In the third case, we investigate the physical effects of translational sym-

metry breaking in Fe-based high-temperature superconductors due to alter-

nating anion positions. In the representative parent compounds, including

the newly discovered Fe-vacancy-ordered K0.8Fe1.6Se2, an unusual change of

orbital character is found across the one-Fe Brillouin zone upon unfolding the

first-principles band structure and Fermi surfaces, suggesting that covering a

larger one-Fe Brillouin zone is necessary in experiments. Most significantly,
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the electron pockets (critical to the magnetism and superconductivity) are

found only created with the broken symmetry, advocating strongly its full in-

clusion in future studies, particularly on the debated nodal structures of the

superconducting order parameter.

In the last study, we focus on the glide translation, which is the remain-

ing symmetry after the translation is broken, in Fe-based superconductors.

This glide symmetry leads to the orbital-parity selective quasiparticles. We

show that the superconductivity consists of zero and finite momentum (π, π, 0)

Cooper pairs in intra- and inter-orbital-parity channels, respectively. The for-

mer develops the distinct gap structures for each orbital parity, and the latter

is characteristic of spin singlet, spatial oddness and time reversal symmetry

breaking. Such novel pairing structures explain the unusual gap angular mod-

ulation on the hole pockets in recent ARPES and STS experiments.
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[8] G. Grüner, Rev. Mod. Phys. 60, 1129 (1988).

[9] P. Anderson, P. Lee, and M. Saitoh, Solid State Communications 13,

595 (1973).

[10] W. L. McMillan, Phys. Rev. B 12, 1187 (1975).

[11] W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).

[12] K. Schwarz, P. Blaha, and G. K. H. Madsen, Computer Physics Com-

munications 147, 71 (2002).

88



[13] P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964).

[14] E. Fermi, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat. Rend. 6, 602

(1927).

[15] L. H. Thomas, Proc. Cambridge Philos. Soc. 23, 542 (1927).

[16] M. Levy, J. P. Perdew, and V. Sahni, Phys. Rev. A 30, 2745 (1984).

[17] W. Kohn and L. J. Sham, Phys. Rev. 140, 1133 (1965).

[18] C. Fiolhais, F. Nogueira, and M. M. (Eds.), A Primer in Density Func-

tional Theory (Springer, Berlin, 2003).

[19] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

[20] R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).

[21] D. Singh and L. Nordström, Planewaves, Pseudopotentials and the

LAPW method (Springer, New York, 2006), 2nd ed.

[22] G. H. Wannier, Phys. Rev. 52, 191 (1937).

[23] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Rev.

Mod. Phys. 84, 1419 (2012).

[24] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Sys-

tems (Dover Publications, 2003).

[25] D. Andrea, Physica Scripta 2004, 61 (2004).

[26] W. Ku, T. Berlijn, and C.-C. Lee, Phys. Rev. Lett. 104, 216401 (2010).

[27] T. B. Chia-Hui Lin and W. Ku, arXiv:1311.4005 (2013).

[28] I. M. Lifshitz, Sov. Phys. JETP 11, 1130 (1960).

[29] H. K. Onnes, Phys. Lab. Univ. Leiden 120, 122 (1911).

[30] J. Tuoriniemi, K. Juntunen-Nurmilaukas, J. Uusvuori, E. Pentti,

A. Salmela, and A. Sebedash, Nature 447, 187 (2007).

89



[31] C. L. Guillaume, E. Gregoryanz, O. Degtyareva, M. I. McMahon,

M. Hanfland, S. Evans, M. Guthrie, S. V. Sinogeikin, and H. K. Mao,

Nat. Phys. 7, 211 (2011).

[32] N. E. Christensen and D. L. Novikov, Phys. Rev. Lett. 86, 1861 (2001).

[33] K. Iyakutti and C. N. Louis, Phys. Rev. B 70, 132504 (2004).

[34] S. U. Maheswari, H. Nagara, K. Kusakabe, and N. Suzuki, Journal of

the Physical Society of Japan 74, 3227 (2005).

[35] D. Kasinathan, J. Kune, A. Lazicki, H. Rosner, C. S. Yoo, R. T. Scalet-

tar, and W. E. Pickett, Phys. Rev. Lett. 96, 047004 (2006).

[36] L. Shi and D. A. Papaconstantopoulos, Phys. Rev. B 73, 184516 (2006).

[37] Y. Yao, J. S. Tse, K. Tanaka, F. Marsiglio, and Y. Ma, Phys. Rev. B

79, 054524 (2009).

[38] T. Bazhirov, J. Noffsinger, and M. L. Cohen, Phys. Rev. B 82, 184509

(2010).

[39] T. Bazhirov, J. Noffsinger, and M. L. Cohen, Phys. Rev. B 84, 125122

(2011).

[40] G. Profeta, C. Franchini, N. N. Lathiotakis, A. Floris, A. Sanna, M. A. L.

Marques, M. Lders, S. Massidda, E. K. U. Gross, and A. Continenza,

Phys. Rev. Lett. 96, 047003 (2006).

[41] R. Akashi and R. Arita, Phys. Rev. Lett. 111, 057006 (2013).

[42] K. Shimizu, H. Ishikawa, D. Takao, T. Yagi, and K. Amaya, Nature 419,

597 (2002).

[43] V. V. Struzhkin, M. I. Eremets, W. Gan, H.-k. Mao, and R. J. Hemley,

Science 298, 1213 (2002).

[44] S. Deemyad and J. S. Schilling, Phys. Rev. Lett. 91, 167001 (2003).

[45] M. Hanfland, K. Syassen, N. E. Christensen, and D. L. Novikov, Nature

408, 174 (2000).

90



[46] A. Rodriguez-Prieto, V. M. Silkin, and A. Bergara, Journal of the Phys-

ical Society of Japan 76SA, 21 (2007).

[47] W. Ku, T. Berlijn, and C.-C. Lee, Phys. Rev. Lett. 104, 216401 (2010).

[48] W. Ku, H. Rosner, W. E. Pickett, and R. T. Scalettar, Phys. Rev. Lett.

89, 167204 (2002).

[49] C. W. Chu, T. F. Smith, and W. E. Gardner, Phys. Rev. B 1, 214 (1970).

[50] V. I. Makarov and V. G. Baryakhtar, Sov. Phys. JETP 21, 1151 (1965).

[51] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

[52] M. R. Norman, J. Lin, and A. J. Millis, Phys. Rev. B 81, 180513 (2010).

[53] M. Yi, D. H. Lu, J. G. Analytis, J. H. Chu, S. K. Mo, R. H. He,

M. Hashimoto, R. G. Moore, I. I. Mazin, D. J. Singh, et al., Phys.

Rev. B 80, 174510 (2009).

[54] C.-H. Lin and W. Ku, arXiv:1303.4822 (2013).

[55] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.

Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

[56] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys. 2, 620

(2006).

[57] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer,

U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim,

Science 315, 1379 (2007).

[58] X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nat. Nano 3, 491 (2008).

[59] A. F. Young and P. Kim, Nat. Phys. 5, 222 (2009).

[60] N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat,

K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, Science

334, 648 (2011).

91



[61] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson,

I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197

(2005).

[62] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201

(2005).

[63] K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer, and P. Kim,

Nature 462, 196 (2009).

[64] X. Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei, Nature 462,

192 (2009).

[65] F. Guinea, M. I. Katsnelson, and A. K. Geim, Nat. Phys. 6, 30 (2010).

[66] N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea,

A. H. C. Neto, and M. F. Crommie, Science 329, 544 (2010).

[67] C.-H. Park and S. G. Louie, Nano Letters 9, 1793 (2009).

[68] K. Asano and C. Hotta, Phys. Rev. B 83, 245125 (2011).

[69] A. Kobayashi, S. Katayama, Y. Suzumura, and H. Fukuyama, Journal

of the Physical Society of Japan 76, 034711 (2007).

[70] T. Mori, Journal of the Physical Society of Japan 79, 014703 (2010).

[71] Y. Ran, F. Wang, H. Zhai, A. Vishwanath, and D.-H. Lee, Phys. Rev.

B 79, 014505 (2009).

[72] P. Richard, K. Nakayama, T. Sato, M. Neupane, Y. M. Xu, J. H. Bowen,

G. F. Chen, J. L. Luo, N. L. Wang, X. Dai, et al., Phys. Rev. Lett. 104,

137001 (2010).

[73] P. R. Wallace, Phys. Rev. 71, 622 (1947).

[74] S. Y. Zhou, G. H. Gweon, J. Graf, A. V. Fedorov, C. D. Spataru, R. D.

Diehl, Y. Kopelevich, D. H. Lee, S. G. Louie, and A. Lanzara, Nat. Phys.

2, 595 (2006).

92



[75] A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Nat. Phys.

3, 36 (2007).

[76] C. Hwang, C.-H. Park, D. A. Siegel, A. V. Fedorov, S. G. Louie, and

A. Lanzara, Phys. Rev. B 84, 125422 (2011).

[77] E. L. Shirley, L. J. Terminello, A. Santoni, and F. J. Himpsel, Phys.

Rev. B 51, 13614 (1995).

[78] C.-H. Lin, T. Berlijn, L. Wang, C.-C. Lee, W.-G. Yin, and W. Ku, Phys.

Rev. Lett. 107, 257001 (2011).

[79] C.-C. Lee, W.-G. Yin, and W. Ku, Phys. Rev. Lett. 103, 267001 (2009).

[80] M. D. Lumsden, A. D. Christianson, E. A. Goremychkin, S. E. Nagler,

H. A. Mook, M. B. Stone, D. L. Abernathy, T. Guidi, G. J. MacDougall,

C. de la Cruz, et al., Nat. Phys. 6, 182 (2010).

[81] Z. Xu, J. Wen, G. Xu, Q. Jie, Z. Lin, Q. Li, S. Chi, D. K. Singh, G. Gu,

and J. M. Tranquada, Phys. Rev. B 82, 104525 (2010).

[82] J. T. Park, D. S. Inosov, A. Yaresko, S. Graser, D. L. Sun, P. Bourges,

Y. Sidis, Y. Li, J.-H. Kim, D. Haug, et al., Phys. Rev. B 82, 134503

(2010).

[83] H.-F. Li, C. Broholm, D. Vaknin, R. M. Fernandes, D. L. Abernathy,

M. B. Stone, D. K. Pratt, W. Tian, Y. Qiu, N. Ni, et al., Phys. Rev. B

82, 140503 (2010).

[84] S. Graser, T. A. Maier, P. J. Hirschfeld, and D. J. Scalapino, New Journal

of Physics 11, 025016 (2009).

[85] K. Kuroki, H. Usui, S. Onari, R. Arita, and H. Aoki, Phys. Rev. B 79,

224511 (2009).

[86] R. Thomale, C. Platt, W. Hanke, and B. A. Bernevig, Phys. Rev. Lett.

106, 187003 (2011).

[87] A. V. Chubukov, D. V. Efremov, and I. Eremin, Phys. Rev. B 78, 134512

(2008).

93



[88] R. T. Gordon, C. Martin, H. Kim, N. Ni, M. A. Tanatar, J. Schmalian,

I. I. Mazin, S. L. Bud’ko, P. C. Canfield, and R. Prozorov, Phys. Rev. B

79, 100506 (2009).

[89] Y. Nakai, T. Iye, S. Kitagawa, K. Ishida, S. Kasahara, T. Shibauchi,

Y. Matsuda, and T. Terashima, Phys. Rev. B 81, 020503 (2010).

[90] K. Hashimoto, M. Yamashita, S. Kasahara, Y. Senshu, N. Nakata,

S. Tonegawa, K. Ikada, A. Serafin, A. Carrington, T. Terashima, et al.,

Phys. Rev. B 81, 220501 (2010).

[91] H. Ding, P. Richard, K. Nakayama, K. Sugawara, T. Arakane, Y. Sekiba,

A. Takayama, S. Souma, T. Sato, T. Takahashi, et al., Europhysics

Letters 83, 47001 (2008).

[92] K. Nakayama, T. Sato, P. Richard, T. Kawahara, Y. Sekiba, T. Qian,

G. F. Chen, J. L. Luo, N. L. Wang, H. Ding, et al., Phys. Rev. Lett.

105, 197001 (2010).

[93] C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. R. Ii, J. L. Zarestky,

H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, et al., Nature 453, 899

(2008).

[94] M. Rotter, M. Tegel, D. Johrendt, I. Schellenberg, W. Hermes, and

R. Pttgen, Phys. Rev. B 78, 020503 (2008).

[95] X. C. Wang, Q. Q. Liu, Y. X. Lv, W. B. Gao, L. X. Yang, R. C. Yu,

F. Y. Li, and C. Q. Jin, Solid State Communications 148, 538 (2008).

[96] A. Subedi, L. Zhang, D. J. Singh, and M. H. Du, Phys. Rev. B 78,

134514 (2008).

[97] P. Zavalij, W. Bao, X. F. Wang, J. J. Ying, X. H. Chen, D. M. Wang,

J. B. He, X. Q. Wang, G. F. Chen, P. Y. Hsieh, et al., Phys. Rev. B 83,

132509 (2011).

[98] O. Andersen and L. Boeri, Annalen der Physik 523, 8 (2011).

94



[99] A. Mans, I. Santoso, Y. Huang, W. K. Siu, S. Tavaddod, V. Arpiainen,

M. Lindroos, H. Berger, V. N. Strocov, M. Shi, et al., Phys. Rev. Lett.

96, 107007 (2006).

[100] H. Ding (private communication).

[101] I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev.

Lett. 101, 057003 (2008).

[102] V. Cvetkovic and Z. Tesanovic, Europhysics Letters 85, 37002 (2009).

[103] P. Zavalij, W. Bao, X. F. Wang, J. J. Ying, X. H. Chen, D. M. Wang,

J. B. He, X. Q. Wang, G. F. Chen, P.-Y. Hsieh, et al., Phys. Rev. B 83,

132509 (2011).

[104] C. Cao and J. Dai, Phys. Rev. Lett. 107, 056401 (2011).

[105] Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He, H. C. Xu,

J. Jiang, B. P. Xie, J. J. Ying, et al., Nat. Mater. 10, 273 (2011).

[106] Z. Wang, Y. J. Song, H. L. Shi, Z. W. Wang, Z. Chen, H. F. Tian, G. F.

Chen, J. G. Guo, H. X. Yang, and J. Q. Li, Phys. Rev. B 83, 140505

(2011).

[107] F. Han, H. Yang, B. Shen, Z.-Y. Wang, C.-H. Li, and H.-H. Wen, Philo-

sophical Magazine 92, 2553 (2012).

[108] G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).

[109] K. Kuroki, H. Usui, S. Onari, R. Arita, and H. Aoki, Phys. Rev. B 79,

224511 (2009).

[110] S. Onari and H. Kontani, Phys. Rev. Lett. 109, 137001 (2012).

[111] P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Reports on Progress

in Physics 74, 124508 (2011).

[112] C. Fang, Y.-L. Wu, R. Thomale, B. A. Bernevig, and J. Hu, Phys. Rev.

X 1, 011009 (2011).

[113] S. Onari and H. Kontani, Phys. Rev. Lett. 103, 177001 (2009).

95



[114] T. A. Maier, S. Graser, P. J. Hirschfeld, and D. J. Scalapino, Phys. Rev.

B 83, 100515 (2011).

[115] H. Ding, P. Richard, K. Nakayama, K. Sugawara, T. Arakane, Y. Sekiba,

A. Takayama, S. Souma, T. Sato, T. Takahashi, et al., Europhysics

Letters 83, 47001 (2008).

[116] L. Zhao, H.-Y. Liu, W.-T. Zhang, J.-Q. Meng, X.-W. Jia, G.-D. Liu,

X.-L. Dong, G.-F. Chen, J.-L. Luo, N.-L. Wang, et al., Chinese Physics

Letters 25, 4402 (2008).

[117] Z. H. Liu, P. Richard, K. Nakayama, G. F. Chen, S. Dong, J. B. He,

D. M. Wang, T. L. Xia, K. Umezawa, T. Kawahara, et al., Phys. Rev.

B 84, 064519 (2011).

[118] S. V. Borisenko, V. B. Zabolotnyy, D. V. Evtushinsky, T. K. Kim, I. V.

Morozov, A. N. Yaresko, A. A. Kordyuk, G. Behr, A. Vasiliev, R. Follath,

et al., Phys. Rev. Lett. 105, 067002 (2010).

[119] T. Kondo, A. F. Santander-Syro, O. Copie, C. Liu, M. E. Tillman, E. D.

Mun, J. Schmalian, S. L. Budko, M. A. Tanatar, P. C. Canfield, et al.,

Phys. Rev. Lett. 101, 147003 (2008).

[120] J. D. Fletcher, A. Serafin, L. Malone, J. G. Analytis, J. H. Chu, A. S.

Erickson, I. R. Fisher, and A. Carrington, Phys. Rev. Lett. 102, 147001

(2009).

[121] J. Dong-Jin, A. B. Vorontsov, I. Vekhter, K. Gofryk, Z. Yang, S. Ju,

J. B. Hong, J. H. Han, Y. S. Kwon, F. Ronning, et al., New Journal of

Physics 13, 023036 (2011).

[122] P. A. Lee and X.-G. Wen, Phys. Rev. B 78, 144517 (2008).

[123] W. Lv and P. Phillips, Phys. Rev. B 84, 174512 (2011).

[124] M. Casula and S. Sorella, Phys. Rev. B 88, 155125 (2013).

[125] T. Shimojima, F. Sakaguchi, K. Ishizaka, Y. Ishida, T. Kiss, M. Okawa,

T. Togashi, C.-T. Chen, S. Watanabe, M. Arita, et al., Science 332, 564

(2011).

96



[126] Y. Ota, K. Okazaki, Y. Kotani, T. Shimojima, W. Malaeb, S. Watanabe,

C.-T. Chen, K. Kihou, C. H. Lee, A. Iyo, et al. (2013).

[127] S. Maiti, M. M. Korshunov, and A. V. Chubukov, Phys. Rev. B 85,

014511 (2012).

[128] M. P. Allan, A. W. Rost, A. P. Mackenzie, Y. Xie, J. C. Davis, K. Kihou,

C. H. Lee, A. Iyo, H. Eisaki, and T.-M. Chuang, Science 336, 563 (2012).

[129] C. N. Yang, Phys. Rev. Lett. 63, 2144 (1989).

[130] R. T. Scalettar, R. R. P. Singh, and S. Zhang, Phys. Rev. Lett. 67, 370

(1991).

[131] J. Hu and N. Hao, Phys. Rev. X 2, 021009 (2012).

97



Appendix A

Mathematical Formalism of

Dirac Cone Generation

In this appendix, I provide more detailed derivation about the Dirac cone

formation in Chapter 4. First we need to design a supercell with size M (M ≥
3) times larger than the original unit cell. In momentum space of the reference

system with smaller unit cells, M k points connected by supercell reciprocal

lattice vectors are coupled. Second, the on-site energy variation leads to a

uniform potential in this momentum space. In this subspace, Hamiltonian to

describe the M coupled k points is

Hsub =


E1 0 · · · 0

0 E2 · · · 0
...

...
. . .

...

0 0 · · · EM


M×M

+
ε

M


1 1 · · · 1

1 1 · · · 1
...

...
. . .

...

1 1 · · · 1


M×M

, (A.1)

where Ei refers to the eigenenergy in the original dispersion. Third, geometri-

cally, in a CDW-free two-dimensional dispersion, it is always true that at least

three coupled k points can be found degenerate in somewhere of the disper-

sion. Thus, we assume there is N−fold degeneracy (M ≥ N ≥ 3) out of the
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M coupled k’s. The Hamiltonian can be reduced to

Hsub =



e1 0 · · · 0 |
0 e2 · · · 0 | 0
...

...
. . .

... |
0 0 · · · eL |

|
0 | 0

|


M×M

+
ε

M
ΩM×M (A.2)

subject to a trivial overall constant. We denote the matrix of ones by Ω.

L = M −N and ei denotes the energy deviation from the N−fold degenerate

energy for the non-degenerate ki.

I will introduce two basic theorems and proceed to claim the resulting

linear dispersion of Eq. A.2.

Theorem 4 The eigenvalues of an M-by-M matrix of ones ΩM×M ,
1 1 · · · 1

1 1 · · · 1
...

...
. . .

...

1 1 · · · 1


M×M

,

contain one M and (M − 1) zeroes.

Simple case example: Consider a 4-by-4 matrix of ones, the eigenvalue

equation requires eigenvalues λ to satisfy∣∣∣∣∣∣∣∣∣∣
1− λ 1 1 1

1 1− λ 1 1

1 1 1− λ 1

1 1 1 1− λ

∣∣∣∣∣∣∣∣∣∣
= 0.

We can perform the row operations to subtract the first row from any other
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rows to obtain ∣∣∣∣∣∣∣∣∣∣
1− λ 1 1 1

λ −λ 0 0

λ 0 −λ 0

λ 0 0 −λ

∣∣∣∣∣∣∣∣∣∣
= 0.

Then, we follow the column operations to add the second, third and fourth

columns to the first. ∣∣∣∣∣∣∣∣∣∣
4− λ 1 1 1

0 −λ 0 0

0 0 −λ 0

0 0 0 −λ

∣∣∣∣∣∣∣∣∣∣
= 0.

In the cofactor expansion along the first row, only the first term is non-zero

so the resulting equation is

(4− λ)(−λ)3 = 0.

Therefore, the eigenvalues are {4, 0, 0, 0}.
Proof: We need to solve eigenvalue λ from this equation.∣∣∣∣∣∣∣∣∣∣

1− λ 1 · · · 1

1 1− λ · · · 1
...

...
. . .

...

1 1 · · · 1− λ

∣∣∣∣∣∣∣∣∣∣
M×M

= 0.

Perform the row operations to subtract the first row from any other rows.∣∣∣∣∣∣∣∣∣∣
1− λ 1 · · · 0

λ −λ · · · 0
...

...
. . .

...

λ 0 · · · −λ

∣∣∣∣∣∣∣∣∣∣
M×M

= 0.

Perform the column operations to add any columns except the first to the first
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column. ∣∣∣∣∣∣∣∣∣∣
N − λ 1 · · · 1

0 −λ · · · 0
...

...
. . .

...

0 0 · · · −λ

∣∣∣∣∣∣∣∣∣∣
M×M

= 0.

After the cofactor expansion along the first row, we have

(N − λ)(−λ)N−1 = 0.

The eigenvalues are solved as one N and (N − 1) zeroes.

Theorem 5 Consider an M by M matrix as follows

1 + e1 1 · · · 1 |
1 1 + e2 · · · 1 | ΩL×N
...

...
. . .

... |
1 1 · · · 1 + eL |

|
ΩN×L | ΩN×N

|


M×M

,

where L = M −N . Its eigenvalues contain (N − 1) zeroes.

Proof: The secular equation becomes∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + e1 − λ 1 · · · 1 |
1 1 + e2 − λ · · · 1 | ΩL×N
...

...
. . .

... |
1 1 · · · 1 + eL − λ |

|
ΩN×L | ΩN×N − λ

|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
M×M

= 0.

We follow a similar procedure with the proof in the previous theorem. First, we

can perform the row operations to subtract the (L + 1)-th row from any rows

101



below it. Then, we add (L+ 2)-th to M-th columns to (L+ 1)-th column.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + e1 − λ 1 · · · 1 | N |
1 1 + e2 − λ · · · 1 | N | ΩL×(N−1)

...
...

. . .
... | ... |

1 1 · · · 1 + eL − λ | N |
1 1 · · · 1 | N − λ | 1 · · · 1

| 0 |

0 | ... | −λ
| 0 |

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
M×M

= 0

By cofactor expansions from the lower right corner, we can extract an equation

λN−1 = 0. Therefore, eigenvalues must contain (N − 1) zeroes.

Applying Theorem 5 to Eq. A.2, there are (N − 1)-fold remaining degen-

erate without any energy renormalization. They form an (N − 1)-dimensional

subspace on their own. This remains correct regardless of the strength of sym-

metry breaking potential so they become the candidates for Dirac points in a

new dispersion. Any k points surrounding them are subject to CDW effects

and have modified eigenenergy. If we consider an infinitesimal momentum

deviation (δkx, δky), the degeneracy is slightly broken. We can estimate the

energy deviation as δEi = ∇kE · δk. There exists new terms of δEi added

to the diagonal elements of the Hamiltonian in Eq. A.2. If we perform first-

order energy perturbation, the resulting energy correction must be proportion

to ∇kE · δk. Thus, in a infinitesimal momentum deviation region, electronic

structure linearly disperses from those Dirac points and finalizes a conical

shape.
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Appendix B

Comparison between

Theoretical and Experimental

ARPES Spectral Functions

In this appendix, I will present two collaborative projects that I participated

in between 2012 to 2013, and that demonstrate good comparison with the

spectral function features we present in Chapter 5. Since this part involves

some explanation of the ARPES experimental details, I decide to collect them

together in this appendix as the experimental support to our simulation.

In Chapter 5, we present the unfolded one-particle spectral function car-

rying the momentum-resolved density of states of the electrons. In principle,

the measured intensity

I(k = K,ω) ∝
∑
n

|A · 〈φkf |p|kn〉|2f(ω)An(k, ω), (B.1)

there is the dipole matrix element 〈φkf |p|kn〉 involved. Usually, |φkf〉, the final

state of the photoelectron, is approximated as a plane wave. As the experi-

mentalists select the particular linear photon polarization, A is aligned in the

certain direction. Hence, one specific |kn〉, which gives rises to the largest

dipole moment, would lead to the dominant signal. In other words, ARPES

can have orbital selectivity by tuning the polarizing to favor particular Wan-

nier function |kn〉, which can develop a large value of 〈φkf |p|kn〉.
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Figure B.1: Ba(Fe0.92Co0.02)2As2 ARPES versus first-principles BaFe2As2 spec-
tral function. (a) Fermi surface measured in ARPES with polarization along
ky in the left panel and the corresponding first-principles spectral function in
the right. The comparison on the dispersion along the two marked cuts in (a,
left) are given in (b) and (c)

B.1 Ba(Fe0.92Co0.02)2As2

In the collaborative study of Ba(Fe0.92Co0.02)2As2 in Ref. [1], the setup uses

the photon with polarization along ky. Thus, the dominant dipole matrix

element would naturally come from dyz orbital. As shown in Fig. B.1, we

keep the experimental intensity on the left and put our simulated spectral

function with the orbital characters on the right for direct comparison. First

in (a), ARPES Fermi surface has the stronger intensity around (π, 0, π) but

the diminished one around (0, π, π). This is perfectly reproduced in its right

panel. In (b) of cut 1, the weight is weakened toward the band bottom and

also matched well in the simulation of the right panel. In (c) of cut 2, we again

reproduce the dispersion with correct shape and relative strength in the red

dyz. Thus, except a band width renormalization factor, our simulation reaches

s good agreement with his experiment.
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B.2 Fe1.03Te0.74Se0.26

In the other study of Fe1.03Te0.74As0.26 in Ref. [2], this is the first measurement,

which can probe the wide range of momentum space beyond the first Brillouin

zone with persistent quality resolution. There are two main features in Fig. B.2

(indicated by the red arrows) we will focus on: the elongated ellipse around Γ

and the four-fold petal shape around M (π, π, 0). From the comparison with

Fig. B.2(a,right) of our simulation, we know the polarization setup seems to

promote dxz around Γ and d3z2−r2 around M points. Around Γ, the selected s

polarization has electric field oscillation lying in the x-z scattering plane so this

favors dxz by its large dipole moment. About the four-fold petal shape around

M, its d3z2−r2 character is confirmed by the identical signal after rotating the

sample by 45◦. This unchanged intensity rules out dxz and dyz first. Also, the

dx2−y2 and dxy is usually suppressed due to the small tilting angle in ARPES

experiment. Besides, in Fig. B.2(b) and (c), the d3z2−r2 spectral weight along

ΓMΓ and XMX is well matched by our simulation.

In Fig. B.3, we explore the different energy slice on the M pockets. The

evolution of the four-fold petal on the Fermi energy to the spoke shape at the

-50 meV is well reproduced by our simulation in the low panel. Thus, except

the band width renormalization, our unfolded spectral functions readily serve

an unbiased tool to explain the orbital dependent ARPES weight. Most im-

portantly, this agreement leads to the confirmation that the M d3z2−r2 weight

is folded from Γ dxz pocket. Therefore, it experimentally verifies the our state-

ment of orbital-parity switching band folding discussed in Chapter 5.
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Figure B.2: Fe1.03Te0.74As0.26 ARPES versus first-principles FeTe spectral func-
tion. (a) Fermi surface measured in ARPES with p polarization in the left
panel and the corresponding first-principles spectral function in the right. The
comparison on the dispersion along the two marked cuts in (a, left) are given
in (b) and (c)

0 meV 

-50 meV 0 meV 

-125 meV -250 meV -375 meV -500 meV 

Figure B.3: Fe1.03Te0.74As0.26 ARPES (upper row) versus first-principles FeTe
(lower row) spectral function on the M pockets at different energies.
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Appendix C

Virtual Crystal Approximation

In this appendix, we will discussion the virtual crystal approximation used

in Chapter 5 in more details. In the presence symmetry breaking potential,

a translationally symmetric Hamiltonian can be constructed via the virtual

crystal approximation (VCA):

HV CA
r,n;0,n′ =

∑
r′

Hr′+r,n;r′,n′/
∑
r′

1, (C.1)

where Hr′+r,n;r′,n′ and HV CA
r,n;0,n′ are Hamiltonians with broken translational sym-

metry in the basis of Wannier orbitals n located at normal cell index r. The

summation of r′ is over inequivalent normal cell lattice vectors in a single su-

percell (namely the positions of two or more inequivalent Fe sites). Thus, the

symmetry breaking terms of the original Hamiltonian would be averaged out,

but the symmetry respecting terms would be kept.

In the Fe-based superconductors, one can choose whether to integrate the

As p orbitals into Fe d Wannier orbitals or not, during the construction of

the Wannier orbitals. If As p orbitals are integrated out, we will effectively

obtain the five-band VCA Hamiltonian from Eq. C.1. If not, the eight-band

VCA Hamiltonian (5 Fe d and 3 As p) will be obtained. Fig. 3 in the latter

shows clearly that VCA has a larger impacts in the 8-band case. This is easily

understood from the following consideration. In the 8-band case, the symme-

try breaking terms are mostly those hopping terms involving Fe d and As p

orbitals, since As p orbitals are located in different locations. Upon integrat-

ing out these terms, they effectively renormalize the remaining hopping terms
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between Fe d orbitals, both the symmetry breaking and symmetry respecting

ones. By throwing out the symmetry breaking terms at the eight-band level

via VCA, one also removes the renormalization to the symmetry respecting

hopping between Fe d orbitals as well. In either case, however, the qualitative

effect of losing the electron pockets persists, since it is mostly dictated by the

symmetry property of the system and is thus more robust against detailed

changes of the Hamiltonian.
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Appendix D

List of Acronyms

ARPES Angle resolved photoemission spectroscopy

BCS Bardeen-Cooper-Schrieffer

BZ Brillouin zone

CDW Charge density wave

DC Dirac cone

DFT Density functional theory

DOS Density of states

EBS Electronic band structure

FeSC Fe-based superconductor

FS Fermi surface

KS Kohn-Sham

LAPW Linearized augmented plane wave

LDA Local density approximation

LT Lifshitz transition

TSBP Translational symmetry breaking potential

VCA Virtual crystal approximation
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