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Abstract of the Dissertation

Real-time dynamics
of the confining string

by

Frashër Loshaj

Doctor of Philosophy

in

Physics

Stony Brook University

2014

Quantum chromodynamics (QCD) describes the interaction of quarks

and gluons, which are charged under the color group. Due to con-

finement of color charge, only colorless hadrons are observed in ex-

periment. At very short distances (hard processes), perturbation

theory is a valid tool for calculations and predictions can be made

which agree well with experiment. Confinement, which is not yet

understood from first principles, is important even for hard pro-

cesses, because after the perturbative evolution is finished, the final

colored particles combine to create the final state hadrons. There

are many effective theories of confinement developed over the years.

We will consider the Abelian projection; the gauge theory becomes

Abelian-like and the theory contains magnetic monopoles. Con-

finement happens due to the dual Meissner effect, where dual in
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this case means the roles of the electric and magnetic fields are re-

versed. The field between charges resembles that of an Abrikosov-

Nielsen-Olesen vortex or string. Based on the Abelian nature of

the confining string, because fermion zero modes are localized along

the vortex and by considering very energetic jets, we assume that

the dynamics along this string is described by massless quantum

electrodynamics in 1+1 dimensions. This theory shares with QCD

many important properties: confinement, chiral symmetry break-

ing, theta-vacuum, and is exactly soluble. We use the model to

compute the fragmentation functions of jets in electron-positron

annihilation and after fixing two adjustable parameters, we study

the modification of fragmentation functions of jets in the QCD

medium. We address an important puzzle in hadron scattering:

the soft photon yield in processes with hadrons in the final state

is much larger than what is expected from the Low theorem. We

find that soft photons produced from currents induced during the

real-time dynamics of jet fragmentation can contribute in the en-

hancement of photons. We compare the result with the recent

DELPHI measurements and a reasonable agreement is found. Fi-

nally, assuming the QCD string to be thin, we address the observed

phenomenon in recent lattice studies of partial chiral symmetry

restoration along the string. Our result agrees well with the data.
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Chapter 1

Introduction

At very short distances (high energies), due to asymptotic freedom [1, 2], QCD

can be viewed as a theory of weakly coupled quarks and gluons. On the other

hand, at distances of the order of the proton size, namely ∼ 1 fm, the theory

becomes strongly coupled and degrees of freedom are hadrons instead of quarks

and gluons. The latter do not exist as asymptotic states due to the formation

of chromoelectric flux tube or string between color sources - confinement.

QCD is not solved yet at these low energies and confinement is not fully

understood from first principles. There are, however, indirect indications for

its existence. For example, an order parameter that is useful in describing the

phases of QCD is the Wilson loop operator [3], defined as

W (C) = Tr

{
P exp

[
i

∮
C

Aµ(x)dxµ
]}

. (1.1)

P stands for path ordering, C is a closed contour of integration and Aµ is

the gauge field. We can imagine the contour as the trajectory of a quark in

space-time. For example, in the case of a very heavy quark-antiquark pair,

separated by distance R, existing for time T , the contour will be a rectangle

as shown in Fig. 1.1. For a very large value of time T , the vacuum expectation

value of the Wilson loop operator becomes

〈W (C)〉 ' exp[−V (R)T ], (1.2)
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T

R

Figure 1.1: Rectangular Wilson loop.

where V (R) is the static potential between the quarks. If the potential is

linearly confining, namely V (R) = σR, where σ is the string tension, the

Wilson loop operator takes the value

〈W (C)〉 ' e−σRT . (1.3)

This is known as the area law and is an indicator of confinement. The exis-

tence of light quarks in the theory, causes the potential between quarks to be

screened, in other words, the string stretched between them breaks and the

Wilson loop operator obeys the perimeter law instead. These properties can

be checked for example in lattice QCD.

Another feature of QCD is its complicated and rich vacuum structure. The

masses of the light quarks in QCD are very small compared to the character-

istic mass scale M ∼ 1 GeV (the scale below which the perturbative QCD

is invalid). Since the interaction between quarks is mediated via a vector ex-

change, in the limit of zero mass for the quarks, the theory is chirally symmetric

- quarks with different chirality do not transform between each other. This

symmetry is absent in the spectrum of hadrons, therefore it must be sponta-

neously broken. From the Goldstone theorem [4], the spontaneous symmetry

breaking is accompanied with the appearance of massless bosons (Goldstone

bosons) in the spectrum. If mu,md → 0 (SU(2) symmetry), then we have the

breaking SU(2)L×SU(2)R → SU(2). In this case, there should be three Gold-

sone bosons, which can be identified with the triplet of the π mesons. The

spontaneous breaking of the chiral symmetry is accompanied with nonzero

value of certain condensates. For example, from the Gell-Mann-Oakes-Renner

2



relation [5]

〈0|q̄q|0〉 = −1

2

m2
πf

2
π

mu +md

, (1.4)

where mπ and fπ are the mass and the decay constant of the pion respectively.

Using the numerical values of these parameters (see for example [6]), we get

〈0|q̄q|0〉 ' −(257 MeV)3. (1.5)

The interpretation of this result is that a nearly massless quark propagating in

the QCD vacuum dynamically obtains a finite mass. Another property is, for

example, the large scale fluctuations of the gauge field. This can be illustrated

by the so-called gluon condenstate, given by [6]

1

32π2
〈0|FµνF µν |0〉 ' (200 MeV)4. (1.6)

In quenched QCD, the limit of infinitely heavy quarks, one can use the

string tension as an order parameter of confinement-deconfinement transition.

On the other hand, in the chiral limit (zero fermion mass), the chiral conden-

sate can be an appropriate order parameter of the chiral phase transition. It is

well known however that both string tension and chiral condensate are present

in both phases, which suggests that we are dealing with a crossover instead

of a phase transition.

Some nonperturbative aspects can be addressed analytically, as is the case

in the so called Shifman-Vainshtein-Zakharov (SVZ) sum rules [7], which is

a method for extracting the long distance current correlation functions using

the values of certain condensates.

For the most part of this thesis we will be interested in nonperturbative

aspects of high energy processes. We should mention that perturbative QCD

(pQCD) calculations, over the years, have shown remarkable agreement with

experimental results. This success can be attributed to properties like factor-

ization (see [8]) - where one can treat independently the hard part of high

energy hadron scattering from the soft part, and local parton hadron duality

(LPHD) [9] - where distributions of final quarks and gluons (partons) in QCD

cascades, seem very similar to the final hadron distribution in experiment.
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Let us consider a simplified picture of a high energy event. The hard part

of the process can be treated perturbatively, where the dynamical degrees of

freedom are quarks and gluons. As we go to large distances, or small momenta,

the transition between quark and gluon to hadron degrees of freedom takes

place. This process is known as hadronization. There are many models that

are used to describe the transition of quarks and gluons to hadrons. We will

review very briefly below the so-called Lund model, which is based on the

semiclassical treatment of the QCD string.

A pedagogical review of the subject is given in [10]. We will mostly follow

[10–12]. The starting point of the string model is the fact that the potential

between qq̄ grows linearly with distance, V (r) = κr, where from experiment

(for example hadron mass spectroscopy) it is known that κ ' 1 GeV/fm ' 0.2

GeV2 (at small distance between quarks, a Coulomb potential is also present,

but it is neglected, because it does not affect the fragmentation, only the

properties of the final hadrons).

In order for the description to be Lorentz covariant and causal, the most

straightforward way is to require that the endpoints of the strings be massless

and to neglect transverse degrees of freedom. The string formed this way is

referred to as the massless relativistic string. Consider for example a quark

q and antiquark q̄ moving back to back, with a linear potential stretching

between them. As the quarks move, the energy of the string increases and

when it equals the initial kinetic energy of the system, the quark-antiquark

abruptly change direction and start moving back (see Fig. 1.2). The mass of

the system is proportional to the area spanned by the endpoints of the string.

After including dynamical fermions, the string should break, splitting into

two color singlet states. This is illustrated in Fig. 1.3. The thick horizontal

lines indicate the electric field stretched between the pairs. The two systems

move apart and the electric field between the two vanishes as indicated in Fig.

1.3. If the invariant masses of the new strings are large, they continue to break,

until the masses reach values comparable to masses of hadrons. Thus, in the

process of pair creation, the original string breaks into n strings, which form

the primary hadrons (in Fig. 1.3 we illustrate a formation of a hadron in the
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x

Figure 1.2: Space-time diagram of the motion of the massless relativistic string.

Figure 1.3: Breaking of the QCD string.
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far left). The time ordering of the breaking is irrelevant because the points

where the string breaks are space-like separated. This can be seen as follows.

Since the string has a constant tension κ,∣∣∣∣dEdz
∣∣∣∣ =

∣∣∣∣dpzdt
∣∣∣∣ = κ. (1.7)

Now assume that the string breaks at points 1 and 2, as shown in Fig. 1.4,

with coordinates (t1, z1) and (t2, z2) respectively. The energy and momentum

1
2

Figure 1.4: String breaking in two points.

of the system between points 1 and 2 are given by

E = κ∆z = κ(z1 − z2), pz = κ∆t = κ(t1 − t2). (1.8)

The total mass is

E2 − p2
z = m2 = (z1 − z2)2 − (t1 − t2)2, (1.9)

and is positive only for space-like separation of the points. The breaking then

occurs independently. This enables one to define an iterative procedure, which

guaranties that the produced hadrons are on mass shell.

It should be pointed out that heavy quarks like charm and bottom are not

produced as the string breaks, but they can only be at the endpoints of the

initial string. This can be argued by using the Heisenberg and Euler theory

of pair creation in a strong field [13] (for a review see [14]). The probability

for creating a pair of particles with mass m and transverse momentum p⊥ is

6



given by

exp

(
−πm

2
⊥

κ

)
= exp

(
−πm

2

κ

)
exp

(
−πp

2
⊥
κ

)
, (1.10)

where m⊥ =
√
p2
⊥ +m2. We see that this expression implies suppression of

production of heavy pairs, namely u : d : s : c ' 1 : 1 : 0.3 : 10−11.

The Lund model has proven to be very successful in describing many ex-

perimental results. Its usage however, is quite limited when the quantum

dynamics of the string breaking is required. The quark gluon plasma formed

in heavy ion collisions is strongly coupled and its effect on jets involves nonper-

turbative physics. One needs a dynamical theory of confinement in this case

(see chapter 4). Another example would be in the case of photon production

from the real-time dynamics of jet fragmentation (see chpater 5).

Despite all the successes of perturbative QCD, there is a need to understand

better the nonperturbative aspects of it. A lot of data from the soft-physics

part from LHC, for example, may challenge the standard fragmentation pic-

ture. It should also be questioned if this picture applies in heavy ion physics

as well. Another reason to understand the fragmentation of quarks and gluons

comes when studying ultra high energy cosmic rays. The extrapolation of the

known models from collider energies to these processes seems to be challenged

(see for example [15]).

In this thesis, using a very well known exactly soluble theory, which shares

with QCD many key properties, we will develop a simple model of dynamical

string breaking. More details will be given in chapter 2. We will give the

basic idea here, but first we have to say something about another model of

confinement, the dual superconductor theory.

The mechanism of confinement in terms of the dual Meissner effect is due to

Nambu, Mandelstam, ’t Hooft and many others (see for example [16–18]). The

basic idea is as follows. Since quarks contain chromoelectric charge, if a quark

q and an antiquark q̄ are put at a distance R from each other, there will be a

chromoelectric field stretching between them. If these particles are embedded

in a non-superconducting medium, then a Coulomb like field is stretched in

between. On the other hand, if the medium is a superconductor, then the field

between quark and antiquark will resemble a flux tube, which is the result of

7



Meissner effect (for type II superconductors). The field cannot be expelled

completely, because the flux should be conserved. As the distance between

particles increases, the flux tube becomes longer, but it maintains the same

minimal thickness and the transverse profile is unchanged. These flux tubes

are similar to the Abrikosov-Nielsen-Olesen vortices, which we will review in

the next chapter. The effect we described so far is referred to as the dual

superconductivity, because as we can see the roles of the electric and magnetic

fields are interchanged, compared to the usual superconductor. For the usual

type II superconductor, the electric charges condense, into the so called Cooper

pairs, and magnetic flux tubes are formed between magnetic monopoles. In

our case, the flux tubes are electric and in turn magnetic monopoles should

condense. Furthermore, it is assumed that the field between the quark and

antiquark is Abelian. In this case the dual superconductor is described via the

Landau-Ginzburg model. This “Abelianization” can be achieved, for example,

through the method of Abelian projection, which we will also briefly review in

the next chapter.

Based on the dual superconductor theory of confinement, we assume that

the dynamics along the QCD string is Abelian. The electric field between

charged particles is similar to that of the vortex in the Landau-Ginzburg the-

ory. Moreover, as we will see in the next chapter, if one introduces fermions

to this theory, the zero modes can be seen to be localized along the core of the

vortex. For the most part of this work, we consider very energetic jets, there-

fore the longitudinal scale, along the jet axis, is much larger than transverse.

We then assume a 1 + 1 dimensional dynamics. Our assumption therefore will

be that the dynamics of fermions on the string is described by massless QED

in 1+1 dimensions, also known as the Schwinger model. The theory is exactly

soluble. String breaking due to massless fermions is similar to the Lund model

as shown above.

We will give many details in subsequent chapters, but let us mention an

important difference between the semiclassical treatment of the Lund model

and our case. Let us consider again a quark-antiquark pair moving back to

back as in Fig. 1.5. In the Lund model model, as we saw above, the string

breaks due to the creation of massless pairs and the electric field between them

8



Electric

flux tube

Figure 1.5: Electric flux tube formed between a quark-antiquark pair moving
back to back.

vanishes. In the Schwinger model the situation is different. As the new pair

is created, the field between them is not completely canceled (see Fig. 1.6).

Instead, as new pairs are created, they create a dynamical fluctuation of the

field. In 1 + 1 dimensions, the chirality of fermions is determined by their

Figure 1.6: String breaking by formation of a massless pair of quark-antiquark.
The electric field between the created pair does not vanish.

direction of motion and charge. The right moving fermion and a left moving

antifermion have the same chirality. This means that the system in Fig. 1.5

has two units of chirality, which is “encoded” in the electric field due to the

index theorem in 1 + 1 dimensions

NR −NL =
g

2π

∫
d2x εµνFµν . (1.11)

NR and NL are the number of right and left handed particles respectively

(in our conventions, the system has two units of right chirality). The axial

anomaly is precisely given by the integrand of (1.11), therefore it determines

the particle creation. We will discuss more about the role of the anomaly in

particle creation in Chapter 5.

The following is the outline of this thesis.

In chapter 2 we review the so-called Abelian projection of gauge theories.

The diagonal part of the gauge field remains massless and the theory can be

thought of as having a U(1)N−1 gauge invariance. In the simplest case of SU(2)

it is shown that singular points of the transformed field can be interpreted as

containing magnetic monopoles. From these considerations, we assume that

9



the QCD string resembles a dual Abrokosov-Nelsen-Olesen vortex. If one

introduces fermions into the theory, it is well known that zero modes will

be confined along the core of the string. We therefore conjecture that the

dynamics of massless fermions along the QCD string is described by QED in

1 + 1 dimensions, also known as the Schwinger model. The theory is exactly

soluble. We illustrate this in a simple way using bosonization. We review this

theory and notice that it shares with QCD many important features, including

confinement, screening of charge, chiral symmetry breaking, anomalies and θ-

vacuum.

In chapter 3 we use the Schwinger model to study the real-time dynamics

of jet fragmentation. Our aim is to calculate analytically the fragmentation

function of the quark. The coupling of the theory has dimension of mass. In the

bosonized version of the theory the coupling is interpreted as the mass of the

produced hadron in the fragmentation of QCD string. We introduce another

parameter Q0, whose physical interpretation is that of the scale at which the

perturbative cascade stops. We fit these parameters by comparing with data

from e+e− annihilation to hadrons. Our result, by choosing the hadron mass

to correspond the σ meson mass and Q0 ' 2 GeV, agrees reasonably well with

the data. The most significant discrepancy is seen for soft hadrons and this

is due to the fact that we neglect the produced gluons in the perturbative

cascade.

In chapter 4, we adopt the model to include the effect of QCD medium,

produced in heavy-ion collisions, in jets. We consider a very simple case of

a static medium. As the jet propagates, it scatters off the static sources,

which are placed at equal distance from each other. After each scattering, the

quark rotates in color space, creating many independent antennae giving off

radiation, by which the jet loses energy. This scenario seems to explain well

the experimental observation of soft hadron enhancement for in-medium jet

fragmentation. We then consider the case where the jet exchanges momentum

with the medium and gives off a final gluon outside the medium. As a result of

partial screening of the color charge of the jet from the final gluon, we obtain

the observed suppression for intermediate momentum hadrons.

A long lasting puzzle in high energy hadron scattering is the phenomenon

10



of anomalous soft photon production. It corresponds to the observed fact that

in many experiments the soft photon yield cannot be explained from the Low

theorem - the observed yield is up to five times higher than expected. The

phenomenon is only observed in processes with hadronic final states. It is

reasonable to assume that part of the enhancement of photons can come from

the real-time dynamics of QCD string breaking in the process of jet fragmen-

tation. We use the model introduced in the previous chapters. By assuming

a non-zero width of the hadron propagator and taking into account the fluc-

tuations of the string, we can describe the recent DELPHI measurements in

photon enhancement. This will be the focus of chapter 5.

Recently, a lattice measurement of the chiral condensate was performed in

the presence of static quarks (QCD string stretched between them). It was

shown that the chiral condensate decreases at the core of the string, which

signals partial chiral symmetry restoration. In chapter 6 we assume a thin

string between the quarks, with a probabilistic fluctuation in the transverse

plane. Assuming the same energy density per unit length in the full 3 + 1

dimensional string and the 1 + 1 dimensional case, we derive the probability

distribution. In order to compare with the data, we have to fix the effective

width of the string, which is shown to be of the order of the lattice spacing.

We give a summary of all the results of the thesis and mention some of the

future prospects in chapter 7.
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Chapter 2

Abelian model of the QCD

string

In this chapter we will argue that the dynamics along the string formed be-

tween color charges, if we consider light fermions in the theory, is described

by a 1 + 1 dimensional, Abelian model. In order to do that, we first review

some facts about the Abelian projection of SU(N) gauge theory (we only con-

sider SU(2) for simplicity). The Abelian projected theory contains magnetic

monopoles. These monopoles can condense, giving rise to a dual supercon-

ductor, described by the Landau-Ginzburg theory. Duality here means that

the roles of the magnetic and electric fields are interchanged. Between col-

ored sources, a (chromo-) electric field flux tube is formed and confinement

ensues. This scenario is similar to the case of the usual superconductor where

the magnetic monopoles are confined. In later chapters we use this model to

study the real-time dynamics of jet fragmentation. The jets under considera-

tion are very energetic; the longitudinal (along jet axis) scale is much larger

than transverse, therefore we neglect the transverse degrees of freedom in our

treatment. We propose that the dynamics of jet fragmentation at late stages,

where the perturbative QCD emission ends, is described effectively by mass-

less QED2, also known as the Schwinger model. We review below some basic

facts about this model and show that it shares with QCD many important as-

pects, needed to describe jet fragmentation. These include confinement, chiral

12



symmetry breaking, anomalies and θ-vacuum.

2.1 Abelian Projection

In this section we review the so-called Abelian projection (also known as

Abelian gauge fixing). The basic ideas shown here have been introduced in the

seminal papers by Polyakov [19] and ’t Hooft [20, 21]. For a review see [22, 23].

The aim of the Abelian projection is to find a gauge where the SU(N) gauge

field AaµT
a is diagonal (T a are the generators of SU(N)). This would reduce

the non-Abelian theory to an Abelian one. This however cannot be achieved -

not all components of the gauge field can be diagonalized simultaneously. We

can instead proceed in the following way. Let’s consider a scalar in the adjoint

representation of the gauge group

φ(x) = φa(x)T a. (2.1)

The scalar can be constructed out of the fields of the gauge theory, for example

φ = G12, whereGµν is the field strength. The goal of this procedure is to choose

a gauge where the field φ(x) is diagonal, in other words

Ω(x)φ(x)Ω†(x) = diag(λ1(x), λ2(x), . . . , λN(x)). (2.2)

This gauge is called the Abelian gauge and in general it depends on the choice

of φ(x). We will discuss below how the monopoles appear in this gauge for

the case of SU(2). The gauge fixing (2.2) now becomes

φ(x)→ Ω(x)φ(x)Ω†(x) =

(
λ 0

0 λ

)
, λ =

√
(φ1)2 + (φ2)2 + (φ3)2. (2.3)

We notice that the eigenvalues are degenerate when λ = 0, which means that

all components of φ(x) vanish. Let’s consider the points where this happens,

namely

φ1(r0) = φ2(r0) = φ3(r0) = 0 (2.4)
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We have three equations and three unknowns, which are the components of

the vector r0. At the point r0, it is not possible to define the gauge, and we

will see that the gluon field develops a singularity at that point. Let us Taylor

expand the field φ(r), where r = (x1, x2, x3), at the vicinity of the point r0

φ(r) = φa(r)T a = T aCab(xa − x0b) (2.5)

where

Cab =
∂φa(r)

∂xb

∣∣∣
xa=x0a

, (2.6)

and x0a are the components of r0. We see that in this new coordinate system,

defined by the transformation Cab, the field takes the form

φ(r) = x′
a
T a, x′

a
= Cab(xb − x0b). (2.7)

The scalar has now the form of the hedgehog field. From now on, we assume

to be in the new frame and we drop the primes. Let (r, θ, φ) be the spherical

coordinates of the vector r. The hedgehog field φ(x) = xaT a takes the form

φ(r) = xaT a = T 1r sin θ cosφ+ T 2r sin θ sinφ+ T 3r cos θ (2.8)

In the case of SU(2), the generators are given by T a = 1
2
σa, where σa are the

Pauli matrices (see (A.4)). We then have

φ(r) =
r

2

(
cos θ e−iφ sin θ

eiφ sin θ − cos θ

)
. (2.9)

It is easy to see that the gauge transformation

Ω(θ, φ) =

(
eiφ cos θ

2
sin θ

2

− sin θ
2

e−iφ cos θ
2

)
, (2.10)

diagonalizes the field φ(x). In other words,

Ω(x)φ(x)Ω†(x) =
r

2

(
1 0

0 −1

)
= rT 3. (2.11)
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We next check how the gluon field looks like in this gauge

Aµ ≡ AaµT
a → Ω

(
Aµ +

1

ie
∂µ

)
Ω†, (2.12)

where e is the coupling constant. To check how the spatial components of the

gauge field transform, we first have to compute

Ω∇Ω† = r̂

(
Ω
∂

∂r
Ω†
)

+ θ̂

(
Ω

1

r

∂

∂θ
Ω†
)

+ φ̂

(
Ω

1

r sin θ

∂

∂φ
Ω†
)
. (2.13)

From the explicit expression of the transformation matrix (2.10), we get

Ω
∂

∂r
Ω† = 0, (2.14)

Ω
∂

∂θ
Ω† = −ieiφT 2, (2.15)

Ω
∂

∂φ
Ω† = −i(1 + cos θ)T 3 + i sin θ cosφT 1 − i sin θ sinφT 2. (2.16)

Finally,

1

ie
Ω∇Ω† =

1

e

(
−θ̂1

r
eiφT 2 − φ̂1 + cos θ

r sin θ
T 3 + φ̂

1

r
(cosφT 1 − sinφT 2)

)
.

(2.17)

We can write the result in the following form

A = AaT a = Aa
RT

a − 1

e
φ̂

1 + cos θ

r sin θ
T 3, (2.18)

where AR is the regular part of the gauge field, whereas the second term is

singular as θ → 0 and has the form of the potential of a magnetic monopole

(see Appendix B). Comparing this result to the expression for the potential of

a magnetic monopole, we get the magnetic charge

g = −1

e
. (2.19)
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The Dirac quantization condition 2eg = n, where n is an integer, is fulfilled.

We have thus shown that at the points where the Abelian gauge is ill defined

(or singular), the diagonal (Abelian) part of the gauge field behaves as if at

those points there are magnetic monopoles with magnetic charge g = −1
e
. It

can be shown that the theory contains an Abelian gauge field and massive

scalars. In the case of SU(N), this procedure leads to a theory with U(1)N−1

symmetry and charged massive scalars that contain two types of charges (from

two different U(1) sectors) [22, 23]. Magnetic monopoles also appear at points

where the gauge field is singular. It is shown that indeed in this gauge, mag-

netic monopoles exist and if they condense, confinement can be viewed as

appearing due to the dual Meissner effect.

2.2 Abrikosov-Nielsen-Olesen (ANO) Vortex

Let us now see how the vortex is formed by considering an Abelian-Higgs

model. The vacuum expectation value of the Higgs boson plays the role of

the order parameter, which in the case of the ordinary superconductor is the

condensate of Cooper pairs and in the dual superconductor picture is the con-

densate of magentic monopoles. It is well known that this theory contains

vortex solutions, which were first found by Abrikosov [24] for the case of su-

perconductivity and later were generalized to the relativistic case by Nielsen

and Olesen [25]. We consider the Lagrangian in 2 + 1 dimensions

L = −1

4
FµνF

µν +
1

2
(Dµφ)† (Dµφ)− λ

4

(
|φ|2 − µ2

λ

)2

, (2.20)

where φ is a complex scalar field, Dµ = ∂µφ+ ieAµφ and e is the U(1) coupling

constant. It is clear that the scalar field acquires a vacuum expectation value

〈φ〉 =

√
µ2

λ
= v, (2.21)

and the U(1) symmetry is spontaneously broken. The Higgs field φ(x) and

the gauge field acquire masses mφ =
√

2λv and mA = ev respectively. The
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Lagrangian is invariant under the gauge transformations

φ(x) → eieΛ(x)φ(x)

Aµ(x) → Aµ(x)− ∂µΛ(x). (2.22)

We can define, for any smooth configuration of φ, the winding number

N [C] =
1

2π

∮
C

dx ·∇(arg φ), (2.23)

where C is the circle at |x| = ∞. If φ is nonzero everywhere on the circle C,

then this quantity is well defined and measures the total rotation of the phase

of φ. It follows from the definition (2.23) that this quantity is an integer. It

is easy to see that for Λ(x) single-valued everywhere, the winding number is

gauge invariant. If we take the gauge field at large distances to be pure gauge

(this means that the field strength vanishes)

A(x) =
1

e
∇α(x), (2.24)

the winding number is given by

N [C] = n =
1

2π

∮
C

dx ·∇α =
e

2π

∮
C

dx ·A =
e

2π

∫
d2xB =

e

2π
Φ, (2.25)

where B = −F12 is the magnetic field in the z direction and we have used

Stokes’ theorem to get the fourth equality. The last surface integral, is over

the area bounded by the curve C. This tells us that the flux is quantized

Φ =
2πn

e
. (2.26)

We will look for static solutions and set A0 = 0. Assuming the most general

rotationally symmetric solution and requiring that the solution is invariant

under reflection about the x-axis (the scalar field gets complex conjugated),

17



we adopt the following ansatz

φ(x) = veiθf(evr)

Aj(x) = εjkx̂
k a(evr)

er
, (2.27)

with functions f and a real. This solution has winding n = 1. It can be

checked that the solution (2.27) has finite energy and it scales like

E = v2F

(
λ

e2

)
=
m2
φ

2λ
F

(
λ

e2

)
, (2.28)

where the function F is of the order of unity. The equations of motion, in

terms of f and a are

a′′ − 1

u
a′ + (1− a)f 2 = 0,

f ′′ +
1

u
f ′ − (1− a)2

u2
f +

λ

e2
(1− f 2)f = 0, (2.29)

where u = evr and the primes denote derivatives with respect to u. The

requirement that the solution is regular at the origin gives the condition

f(0) = a(0) = 0, (2.30)

whereas requiring finite energy solution gives us

f(∞) = a(∞) = 1. (2.31)

Having set the boundary conditions, the equations can be solved numerically.

We show the solutions for λ/e2 = 1/2 in Fig. 2.1, which was taken from

[26]. We see that the magnetic field is localized around the core and falls

exponentially away from it. In the dual picture, the magnetic field is replaced

by the electric field and between electric charges an electric flux tube is formed.

Let us mention some facts about the multi vortex solution, or n > 1. In this

case, we cannot argue that the minimal energy configuration necessarily gives a
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Figure 2.1: Numerical solutions of equations (2.29). Solid line is f , dashed
line is a and e times the magnetic field B is the dotted line.

static solution. In other words, this means that not all zeros of φ are located at

the origin. Qualitatively, in order to see if the n vortex solution dissociates into

n unit vortices, we should consider the interaction between two well separated

vortices. There are two types of interactions, the electromagnetic and the

scalar. The sign of the force depends on which of these interactions dominates.

The electromagnetic force is repulsive, whereas the scalar force is attractive.

Both forces fall off exponentially at large distance, therefore the dominating

force is the one falling off more slowly. We have an attractive force for mφ <

mA, and repulsive if mφ > mA [26]. In the superconductor phenomenology,

the first case corresponds to Type I superconductor, whereas the second to

Type II.

We now add fermions to a 3 + 1 dimensional Abelian-Higgs model and see

what are the consequences. We assume that the vortex is situated along the

z-axis. The fermions are given by four component spinors ψ, satisfying

γ5ψR = ψR, (2.32)

γ5ψL = −ψL, (2.33)

where γ5 = iγ0γ1γ2γ3 and ψL,R = 1
2
(1 ∓ γ5)ψ. We introduce the fermions to
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the theory by adding

Lf = iψ̄Rγ
µDµψR + iψ̄Rγ

µDµψR − gφψ̄LψR − gφ∗ψ̄RψL, (2.34)

to Lagrangian (2.20). g is real and is the fermion-scalar coupling constant and

Dµψ = (∂µ + iqAµ)ψ. The gauge symmetry requires that e = 2q, where e is

the charge of φ. The Lagrangian has the symmetry

ψ → eiβγ
5

ψ, φ→ e−2iβφ, (2.35)

and doesn’t have a bare (independent of φ) mass term. The Dirac equation

can be written as

iγµDµψL − gφψR = 0,

iγµDµψR − gφ∗ψL = 0. (2.36)

We look for solutions ψ
(0)
L,R, which depend only on the transverse radial direc-

tion r =
√

(x1)2 + (x2)2. We also assume that

iγ1γ2ψ
(0)
L = ψ

(0)
L ,

iγ1γ2ψ
(0)
R = −ψ(0)

R (2.37)

Let us consider the first of equations (2.36). We can write it as

i
(
γ1D1 + γ2D2

)
ψ

(0)
L − gφψ

(0)
R = 0. (2.38)

We multiply both sides by γ1 and recall that (γ1)2 = −1. We get

(
D1 − γ1γ2D2

)
ψ

(0)
L − igφγ

1ψ
(0)
R = 0. (2.39)

We use the property (2.37), relations (2.27) and

D1 ± iD2 = e±iθ
[
∂r ±

i

r
∂θ ±

a(r)

2r

]
, (2.40)
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to get [
∂r +

a(r)

2r

]
ψ

(0)
L − igvf(r)γ1ψ

(0)
R = 0. (2.41)

Similarly, for the second of equations (2.36), we have[
∂r +

a(r)

2r

]
ψ

(0)
R − igvf(r)γ1ψ

(0)
L = 0. (2.42)

Note that the sign before a(r) is the same in both equations, despite the fact

that there is a sign difference in relations (2.27). This is due to the fact that

ψL and ψR have opposite charges. The solution of equations (2.41) and (2.42)

is given by

ψ
(0)
L = C exp

{
−
∫ r

0

dr′
[
gvf(r′) +

a(r′)

2r′

]}
χ (2.43)

and

ψ
(0)
R = −iγ1ψ

(0)
L . (2.44)

χ is a constant, left-handed spinor, which satisfies

iγ1γ2χ = χ. (2.45)

We assume that the general solution has the form

ψL = b(t, z)ψ
(0)
L (r),

ψR = b(t, z)ψ
(0)
R (r), (2.46)

where b(t, z) is an arbitrary function of coordinates t and z. The Dirac equation

above gives

(γ0∂0 + γ3∂3)b(t, z)χ = 0. (2.47)

From the definition of γ5 in 3 + 1 dimensions, and multiplying the equation

above by γ0γ3, we notice that the spinor χ satisfies

γ0χ = −γ3χ. (2.48)

The solution of equation (2.47) is given by an arbitrary function of t− z. The
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modes with definite energy have b = e−iω(t−z). The case ω > 0 corresponds

to a “right-moving” particle with energy E = ω that moves with the speed

of light along the vortex core (in the z-direction), whereas ω < 0 corresponds

to an antiparticle with energy E = |ω|. Since the particles move with the

speed of light, they must be massless. As we move away from the core, into

the transverse plane, the fermionic field falls off exponentially. We see that

along the vortex core we have an effective theory in 1 + 1 dimensions, where

massless fermions are coupled to a gauge field. In the case of an Abelian gauge

theory, as the one considered here, the effective theory will be QED in 1 + 1

dimensions (QED2). Below, we review some facts about this theory.

2.3 The Schwinger model

We saw above that confinement can be understood in terms of the “dual

Meissner” effect. This means that due to condensation of magnetic monopoles,

the vacuum can be considered as a superconductor, where compared to the

usual superconductor, the roles of the electric and magnetic fields are reversed.

Confinement happens as a result of monopole currents which expel the electric

field from the superconductor, and due to the conservation of flux, the field

between electric charges is stretched along a thin tube. In the following, we

assume that the dynamics of fermions along these tubes is described in terms

of massless QED2.

QED2 (the Schwinger model) has been used a long time ago [27–29] as an

effective theory capable to model the transformation of partons into hadrons at

high energies [30] (see also [31, 32]). The high energy justifies the dimensional

reduction to (1 + 1) dimensions even further, and the Schwinger model with

massless fermions shares many key properties with QCD, including: i) the

Higgs phenomenon (local electric charge conservation is spontaneously bro-

ken); ii) the spontaneous breaking of global chiral symmetry; iii) the screening

of color charge (similar to the scenario of confinement for QCD with light

quarks proposed by Gribov [33], see [34] for a review); iv) axial anomaly and

the θ-vacuum. The main advantage of the Schwinger model with massless

fermions (quarks) is that it is exactly soluble and can be used to investigate
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e.g. the role of LPM effect at strong coupling. Of course, for our purposes

we have to generalize it to allow for the rotation of quarks in color space (see

Chapter 4) as they traverse the quark-gluon plasma (recently the effects of the

color flow were addressed in [35]).

The dynamics of QED2 is described by the action

S =

∫
d2xL (2.49)

where the Lagrangian is given by

L = −1

4
FµνF

µν + ψ̄i /Dψ (2.50)

where, /D ≡ γµDµ, Fµν = ∂µAν−∂νAµ and Dµ = ∂µ+ igAµ
1. This Lagrangian

is invariant under gauge transformations

ψ → eiα(x)ψ, Aµ → Aµ −
1

g
∂µα(x). (2.51)

The fields have the following mass dimensions

[A] = 0, [ψ] =
1

2
, (2.52)

which means that the coupling constant

[g] = 1. (2.53)

There are two classically conserved currents, the vector current

jµ(x) = ψ̄(x)γµψ(x), (2.54)

and the axial current

jµ5 = ψ̄(x)γµγ5ψ(x). (2.55)

1The index µ = 0, 1; Aµ is the gauge field and g is the coupling constant. Other
conventions are given in Appendix A
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Their conserved charges are

Q =

∫
dxj0(x), Q5 =

∫
dxj0

5(x). (2.56)

After including the quantum corrections, if we want to preserve gauge invari-

ance, then the axial current becomes anomalous. We will derive the axial

anomaly in an intuitive way in the next section.

2.3.1 The anomaly and Dirac sea - spectral flow

In 1 + 1 dimensions it is very easy to see that the anomaly can be understood

in terms of the Dirac sea (see for example [36–39]). Let’s assume a compact

spatial extension, namely x ∈ [−L/2, L/2]. We impose the following boundary

conditions

Aµ

(
t, x = −L

2

)
= Aµ

(
t, x =

L

2

)
ψ

(
t, x = −L

2

)
= −ψ

(
t, x =

L

2

)
. (2.57)

By choosing an appropriate gauge, it is always possible to to remove x depen-

dence for A1, so A1 = A1(t). We will assume that A1(t) is an external field,

which changes adiabatically with time. We also assume that the Coulomb

potential A0 = 0, which is a reasonable approximation in the limit gL << 1

[38]. We still have some gauge freedom left. It is easy to see, by looking at

the gauge transformation of fermions, that we are still left with

A1 → A1 +
2πn

gL
, (2.58)

where n = 0,±1, . . .. This means that the configuration space for the gauge

field is a circle with length 2π
gL

. From the Lagrangian (2.50), we get the equation

of motion

(i/∂ − g /A)ψ = 0. (2.59)
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Figure 2.2: Level crossing in background electric field.

Using the conventions in Appendix A, we can write[
i
∂

∂t
+ σ3

(
i
∂

∂x
− gA1

)]
ψ = 0. (2.60)

The general solution to the equation (2.60), taking into account boundary

conditions (2.57), can be written as (we omit an overall constant)

ψ(t, x) ∼ 1√
L

∑
k

u(k) exp(−iEkt) exp

(
i
2π

L

(
k +

1

2

))
x. (2.61)

where Ek is the energy of the kth mode. By plugging in the solution (2.61) to

(2.60), we get the following energy spectra for left and right handed fermions

EL
k =

2π

L

(
k +

1

2

)
+ gA1

ER
k = −2π

L

(
k +

1

2

)
− gA1 (2.62)

We illustrate this in Fig 2.2. In this figure, the dashed and solid lines show the
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levels for left and right components respectively. In the usual way, we fill up

all negative energy levels and leave empty all positive ones, so at A1 = 0 we

have the vacuum state. As we change gA1 = 0 to gA1 = 2π
L

(see for example

the case when k = 0), the levels L-levels move up, whereas the R-levels move

down, in such a way that we arrive at the same ground state. This illustrates

the above mentioned fact that the gauge field is compact. In process though,

since the levels have shifted, we have created an L-particle (white circle) and

an R-hole (black circle). The total electric charge is conserved, because the

particle and the hole have opposite charge. On the other hand, the axial charge

is just the difference between left and right handed fermions, namely

Q5 = NL −NR. (2.63)

In our conventions, a left-handed fermion has axial charge +1, whereas a right-

handed antifermion has also axial charge +1. The total change in the axial

charge is then

∆Q5 = 2. (2.64)

If we write

∆Q5 =
L

π
g∆A1 (2.65)

and divide both sides by ∆t, we get

Q̇5 =
L

π
gȦ1. (2.66)

Using (2.56)

∂0

∫ L

0

dxj0
5 =

g

π
∂0

∫ L

0

dxA1. (2.67)

This gives

∂0j
0
5 =

g

π
∂0A1. (2.68)

If we write the last equation in a Lorentz covariant way, we get

∂µj
µ
5 =

g

2π
εµνFµν , (2.69)
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which is the well known anomaly in 1 + 1 dimensions. The anomaly can also

be derived by considering the behavior at some ultra violet (UV) cutoff, as

is the case in the perturbative treatment. When working with the Dirac sea,

since the total energy and charge of the vacuum (we have infinitely many

filled states) are ill-defined, one has to regularize the currents. The most often

used procedure is the point splitting method of Schwinger, which preserves the

gauge invariance. This method leads to the same result for the anomaly (see

references given in the beginning of the section).

To summarize, we have considered the Dirac sea and we have switched

on, adiabatically, an external gauge field. As a result, the energy levels in

the infinite sea shift; L-levels move up in energy and R-levels move down -

spectral flow. This difference in energy levels gives the index of the Dirac

operator. The total electric charge is conserved, but the axial charge changes

by ±2 (depending on the sign of the gauge potential). By considering the

UV behavior of the theory, we arrive at the same result. We haven’t used

any perturbative calculation and we see that that the anomaly is a purely

topological effect.

2.3.2 Bosonization

In one spatial dimension, the fermionic degrees of freedom can be expressed

in terms of bosonic ones in an exact way. This correspondence is usually

expressed as a duality between fermionic bilinears and a real scalar field. This

procedure is known as bosonization. In the U(1) case the correspondence is

given by the following relations [40, 41]

ψ̄(x)iγµ∂µψ(x) → 1

2
∂µφ(x)∂µφ(x)

ψ̄(x)γµψ(x) → − 1√
π
εµν∂νφ(x)

ψ̄(x)ψ(x) → −c g√
π

cos(2
√
πφ(x)) (2.70)

where c = eγ

2π
and γ is the Euler constant. This is known as the Abelian

bosonization. Note that the scalar field has mass dimension [φ] = 0. We
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now show, using bosonization, that the Schwinger model is dual to a free

scalar theory. Let us start from the Lagrangian (2.50) and substitute the

bosonization relations

L = −1

4
FµνF

µν +
1

2
∂µφ∂

µφ+
g√
π
εµν∂νφAµ − jµextAµ, (2.71)

where we have introduced an external current jµext. Let’s assume that we can

parametrize this current as

jµext(x) = − 1√
π
εµν∂νφext(x). (2.72)

We substitute this into the previous Lagrangian. We also note that the gauge

field has only one component F01 and εµν∂µAν = F01. Using these facts and

after integration by parts, we get

L =
1

2
F 2

01 +
1

2
∂µφ∂

µφ+
g√
π

(φ+ φext)F01. (2.73)

The field F01 is non-propagating, therefore we can eliminate it by substituting

its equation of motion into the Lagrangian above. This gives

L =
1

2
∂µφ∂

µφ− 1

2

(
g√
π

)2

(φ+ φext)
2. (2.74)

The result (2.74) is quite surprising. We have started with an interacting

theory and we ended up with a free theory instead (for φext = 0). The effective

theory we got is just Klein-Gordon coupled to a classical source. We should

emphasize that this Lagrangian, even though classical, captures all quantum

effects of the fermionic theory from which we started with. As an illustration,

let’s assume that φext = 0. The equation of motion for the scalar then is just

the Klein-Gordon equation

(�+m2)φ = 0. (2.75)
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where m = g√
π
. On the other hand, from Maxwell’s equations and using

bosonization relations, we get

∂1F
10 = gj0 = − g√

π
∂1φ. (2.76)

Assuming that fields vanish at spatial infinity, we have

F01 = − g√
π
φ. (2.77)

In 1 + 1 dimensions, the following relation between the gamma matrices holds

γµγ5 = −εµνγν . (2.78)

Using this and bosonization relations, we can write for the axial current

jµ5 =
1√
π
∂µφ. (2.79)

Combining (2.79) with (2.77) and using the equation of motion for φ, we derive

again the anomaly

∂µj
µ
5 =

g

2π
εµνFµν . (2.80)

The duality between the Schwinger model and the free Klein-Gordon theory, il-

lustrates that the former is exactly soluble. We show below that the Schwinger

model shares with QCD many important properties, which are crucial for the

treatment of the dynamics of fermions along the QCD string which will be the

topic of the later chapters.

2.3.3 The θ-vacuum

We consider the case of a constant background electric field F [42]. The

solution to Maxwell’s equations, in the gauge A1 = 0, is

F01 = g∂−1j0 + F. (2.81)
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In three spatial dimensions we usually do not assume such a field, because it is

always energetically favorable to produce pairs of charged particles which will

screen it. In one spatial dimension the situation is different. Let’s now put a

pair of oppositely charged particles a distance L from each other, as shown in

Fig. 2.3, and look at the energy difference

+ -

L

F + gF F

- +F - gF F

Figure 2.3: Field configuration after a pair production.

∆E =
1

2

∫
dx [F 2

01 − F 2] =
1

2
L [(F ± g)2 − F 2]. (2.82)

It is clear that it is energetically favorable to produce pairs if |F | > 1
2
g, until

the field is reduced to |F | < 1
2
g. The physics is periodic, with period g. This

can be illustrated if we plot the energy as a function of F , as shown in Fig.

2.4.

As F increases, at the point where |F | = 1
2
g, a pair is created and therefore

instead of the energy increasing further, it continues into another branch and

so on. This is similar to tunneling into another vacuum, with a different

topological number. We introduce the parameter

θ =
2πF

g
, (2.83)

to parametrize the vacuum structure, and it plays a similar role to the θ-

vacuum in QCD. Let us use the bosonized version of the theory to make

this more clear. In A.4, it is shown that the axial charge is a generator of
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F

E�L

Figure 2.4: Ground state energy in units of length L.

translations in the bosonic field φ, introduced above

eiα
√
πQ5φe−iα

√
πQ5 = φ+ α (2.84)

and due to the compactness of the the gauge group, the field φ was shown to

be compact. We should make the identification

φ→ φ+ n
√
π, (2.85)

where n is an integer. Let us write the field φ as a sum of a massive scalar φ̂,

where φ̂ ∈ [0,
√
π], and a constant electric field θ. The axial charge operator

acts on these fields in the following way

eiα
√
πQ5φ̂e−iα

√
πQ5 = φ̂

eiα
√
πQ5θe−iα

√
πQ5 = θ + α. (2.86)

The states of the system can now be considered to be a direct product of the

states of the field φ̂, which we denote by |Φ), and states |n}, which are the

eigenstates of operator 1
2
Q5. We can define raising and lowering operators of

states |n} as a± = exp (±2i
√
πθ). They change the chirality of the system by
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two units

a± |n} = |n± 1} . (2.87)

The eigenstates of the raising and lowering operators can be written in a similar

way as for the harmonic oscillator, namely

|θ0} =
1

π1/4

∑
n

e−2i
√
πnθ0 |n} . (2.88)

The state (2.88) can be thought of as corresponding to the case of a constant

electric field gθ0√
π
. We should now look at the vacuum state of the theory.

We could choose |0〉 = |0) |0}, but there could be processes which change

the chirality of the system (as we will see later), therefore this is not a good

candidate. This means that we cannot choose any particular |n} state. As

we saw above, the θ-vacuua are eigenstates of chirality changing processes,

therefore the correct choice of the vacuum state would be |0〉 = |0) |θ0}, with

θ0 defined in (2.88).

2.3.4 String tension and chiral symmetry breaking

Another feature of QCD is the chiral symmetry breaking introduced in the

previous chapter. As the massless quarks move in the QCD vacuum, they

dynamically obtain mass. This leads to the vacuum having a nonzero conden-

sate 〈q̄q〉. In order to compute this condensate, we first consider the massive

Schwinger model and then we put the mass to zero at the end [43]. Similarly

as in the previous section we consider a constant background electric field F .

We can imagine that the field is created between a charge and an anticharge

separated by a distance 2L. We define θ = 2πF
g

. The Hamiltonian of the

massive Schwinger model, using bosonization relations, can now be written as

[42]

H =

∫
dx

[
1

2
(φ̇)2 +

1

2
(∂1φ)2 +

1

2
m2φ2 − cmM cos

(
2
√
πφ− θ

)]
. (2.89)

The string tension is defined as the increase in vacuum energy per unit length

due to external sources (or external field). If we denote the vacuum energy in
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the presence of sources and without the sources as E0(θ) and E0(0) respectively,

the string tension, to lowest order in M, is given by

σ =
E0(θ)− E0(0)

2L
= cMm(1− cos θ). (2.90)

The tension is nonzero for external fields being non-integer multiples of g. This

leads to permanent confinement of charges. We will discuss confinement and

screening in the next section. The chiral condensate can be computed by using

the Feynman-Hellman theorem and Hamiltonian (2.89)

〈
ψ̄ψ
〉

0
=

∂

∂M
E0(θ)

∣∣∣
m=0

= −c cos θ. (2.91)

where the constant c depends on the Euler number γ and was defined in

(2.70). We see that the vacuum of the Schwinger model breaks chiral symmetry

in analogy with QCD. We will use (2.91) in Chapter 6 to investigate the

modification of the chiral condensate in the presence of the QCD string.

2.3.5 Confinement and screening

We already saw in the previous section that if we give mass to fermions the

theory becomes confining. On the other hand, if the theory possesses light

fermions, they lead to the screening of the charge. In the following we will

derive the potential between two static quarks to illustrate these phenomena.

Let us start from the bosonized Lagrangian (2.73) with a mass term and an

external current jext, which in this case will be the current of static charges

separated by a distance L. In the gauge A1 = 0, the Lagrangian is given by

L =
1

2
(∂1A0)2 +

1

2
∂µφ∂

µφ+
g√
π

(φ+ φext)(−∂1A0)

+ cmM cos
(
2
√
πφ
)
. (2.92)

Let us consider a general case where the charges constituting the external

current have a different charge from the dynamical fermions (external charges

have charge qextg, where qext is a constant). The equations of motion from
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(2.92) are

− 1

2
∂2

1A0 +
g√
π

(∂1φ+ ∂1φext) = 0

−∂2
1φ+ cmM2

√
π sin(2

√
πφ) +

g√
π
∂1A0 = 0. (2.93)

It was argued in [44] that in the case when qext << 1,

sin(2
√
πφ) ' 2

√
πφ. (2.94)

Using the fact that φ is compact (see A.4), the approximation above is valid

also for qext ' n, where n is an integer. From now on we take n = 1. Using

the definition of φext, after eliminating the bosonic field φ, we can compute

the potential in momentum space

Ã0(k) =
g (k2 + 4πcmM)

k2
(
k2 + g2

π
+ 4πcmM

) j̃0
ext(k). (2.95)

where

Ã0(k) =

∫
dx e−ikxA0(x),

j̃0
ext(k) =

∫
dx e−ikxj0

ext(x). (2.96)

Note that the problem is time independent, therefore the integrals are over

the spatial direction only. To compute the inverse Fourier transform we first

define

m2
1 = 4πcmM,

m2
2 = 4πcmM +

g2

π
. (2.97)

The potential (2.95) can now be cast in the following form

Ã0(k) = g

[
m2

1

m2
2

1

k2
+

(
1− m2

1

m2
2

)
1

k2 +m2
2

]
j̃0
ext(k). (2.98)
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Recall that the charge density is that of a charge-anticharge separated by a

distance L,

j0
ext(x) = δ

(
x− L

2

)
− δ

(
x+

L

2

)
. (2.99)

To compute the inverse Fourier transform of (2.98) we use another approxi-

mation, namely cmM << g2. We now get

A0(x) =
2π2cmM

g

(∣∣∣∣x− L

2

∣∣∣∣− ∣∣∣∣x+
L

2

∣∣∣∣)
−
√
π

2

(
e
− g√

π |x−L2 | − e−
g√
π |x+L

2 |
)
. (2.100)

Finally, the potential can be computed from

V = −g1

2

∫
dx A0(x)j0

ext(x). (2.101)

Using (2.100), we get [28]

V (L) = 2π2cmML+
g
√
π

2

(
1− e−

g√
π
L
)
. (2.102)

The first term is the linear confining term, which vanishes in the chiral limit

M → 0. The second term is the charge screening, which appears as a result of

having light fermions in the theory. We have shown that indeed the Schwinger

model, as QCD in 3+1 dimensions, manifests the phenomenon of confinement

and screening of charge. The result (2.102) will be useful later when we speak

about soft photon production in real-time dynamics of jet fragmentation (see

Chapter 5).

2.4 Discussion

In this section we have reviewed some facts about the Abelian projection of

non-Abelian gauge theories and the mechanism by which magnetic monopoles

appear in the theory. If these monopoles condense, then confinement can be

understood to arise from the dual Meissner effect - (chromo-) electric charges
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are connected by (chromo-) electric flux tubes. The effective theory describing

these flux tubes (or vortices) is the Abelian-Higgs model. By introducing

fermions to this theory, we see that zero modes are localized along the core

of the string and move with the speed of light. From this argument and later

by considering high energy jets, we assume that the dynamics of fermions

along the string core (the flux tube stretched between charges) is governed

by massless QED2 or the Schwinger model. We have emphasized by concrete

examples that this model shares with QCD many important features, such as

confinement, charge screening, chiral symmetry breaking and θ-vacuum.
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Chapter 3

Fragmentation functions of jets

in vacuum

Jets are a collimated stream of hadrons produced after collisions of hadrons

or leptons at high energies. We illustrate this in Fig. 3.1. The incoming

particles move along the horizontal axis and after the collision two narrow

cones of particles are produced back-to-back. The processes creating the jet

Figure 3.1: Di-jet event in high energy scattering.

involve high momentum transfers. Initially, a quark or a gluon with large

virtuality is formed, which in turn radiates more quarks and gluons. These
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in turn hadronize and become hadrons. The process of hadronization of jets

is a nonperturbative phenomenon and cannot be studied within perturbation

theory. In the previous chapter we introduced the Schwinger model and we

saw that it shares with QCD many important properties. The theory is exactly

soluble and we will use it to model the real-time dynamics of jet hadronization.

Dimensional reduction is justified further by assuming very high energy jets.

The model is assumed to describe the evolution of the jet at late stages, where

perturbative emission has stopped. Before introducing the detais of the model

we will review some basic facts about perturbative treatment of jets, which

has proven to be very successful over the years. We will mostly follow [45].

3.1 Space-time picture of jet evolution

Let’s consider the case of electron-positron annihilation to hadrons. In the

perturbative QCD language, this corresponds to the process e+e− → q̄q. The

question arises how is it possible to arrive to final color neutral state from the

initial colored one. It is well established and we mentioned several times before

that between color charges there stretches a chromoelectric flux tube, with a

potential rising linearly with distance (this means that charges are confined).

Now we have to answer the question of how this mechanism works in the case

of fast moving quarks (nonadiabatic process). The main argument about the

validity of perturbation theory is based on the fact that nonperturbative effects

for very fast moving quarks happen in macroscopic time scales, therefore there

is enough time for perturbative treatment. We will review the main arguments

leading to this reasoning. Let’s consider a classical charge moving along the

z axis with velocity v ≈ 1 after being accelerated for example from v = 0 at

t = 0. At times t >> 0, the charge will be surrounded with a disc of contracted

electromagnetic field. In the reference frame where the charge is at rest, the

field at distance r′ can only be observed at time t′ ≥ r′. In the laboratory

frame, the field at distance r away from the z axis is observed much later due

to time dilation

t = γt′ =
E

m
r. (3.1)
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where E is the energy of the particle in the lab frame and m is its mass.

The distance r can be thought of as the distance between constituent quarks,

which is a typical hardonic size we denote by R. If we consider the charge in

question to be a quark, then we arrive at the conclusion that the quark will

hadronize only after the time (3.1). For light quarks the mass and the distance

are related

m ∼ R−1. (3.2)

For heavy (Q) and light (q) quarks we then can estimate the hadronization

times

thadrq ≈ E

m
R = ER2

thadrQ ≈ E

mQ

R. (3.3)

Another important scale is the so-called formation time which we will define

shortly. Let us consider gluon Bremsstrahlung radiation. The differential

spectrum of gluons radiated off a quark is given by

dw =
αs(k

2
⊥)

4π
2CF

[
1 +

(
1− k

E

)2
]
dk

k

dk2
⊥

k2
⊥
, (3.4)

where E is the energy of the quark and kµ is the 4-momentum of the gluon

(see Fig. 3.2). The strong coupling constant αs in this case runs with the

transverse momentum k⊥. From expression (3.4), we see that the probability

p+k

k

p

Figure 3.2: Gluon emission from a quark.

of having a multi-jet event, namely

k⊥ ∼ k ∼ E, (3.5)
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is very small, w ∼ αs
π
<< 1. This means that the bulk of radiation doesn’t

lead to any additional visible jets, but instead will accompany the original

quark (quasicollinear, soft)

k⊥ << k << E, w ∼ αs
π

log2E ∼ 1. (3.6)

The formation time is important in determining how offspring partons influ-

ence the final hadronic yield. From Fig. 3.2, using the uncertainty relation

between energy and time, we can write the formation time of the gluon

tformg ∼ E

(p+ k)2
≈ E

kEθ2
≈ k

k2
⊥
, (3.7)

where θ is the angle between the incoming quark and the gluon. In order for

the gluon to be emitted perturbatively, we need tformg < thadrg ≈ kR2. This

puts the following restriction

k⊥ > R−1. (3.8)

This restriction puts limits on what range of k⊥ perturbation theory can be

used. This bound can also be seen from the running of the coupling αs(k⊥),

where for small transverse momenta, the coupling becomes too large for the

perturbative approach to be valid. For very energetic processes, with a mo-

mentum transfer scale
√
Q2, there is a large range where perturbation theory

is valid, namely

R−1 << k⊥ . k .
√
Q2. (3.9)

The parameter that regulates the “lifetime” of the secondary parton is (k⊥R).

Gluons satisfying k⊥R >> 1 are within the perturbative regime and live for a

long time, giving off more offspring partons.

As an offspring parton is radiated, one might expect that it is suppressed

by a factor of αs. As we saw above, the probability to emit a new soft par-

ton is w ∼ αs
π

log2E ∼ 1. This means that all these emissions should be

resumed. A way to do this is to use the Dokshitzer-Gribov-Lipatov-Altarelli-

Parisi (DGLAP) equations. We will shortly review the basic idea: let’s con-

sider as a target a “dressed” parton of species A (A = q, q̄, g), with transverse
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size 1/k0, or virtuality k2 = k2
0 (in the case of jets the virtuality is time-like).

We denote with DB
A(x,Q2, k2

0) the probability to find the parton of species B

inside the cloud of the parton A, with momentum fraction x and transverse

virtuality up to Q2. In this expression it is assumed that we sum over color

and polarizations of the field B and average those for the field A. Introducing

the variable

ξ(Q2) =

∫ Q2

µ2

dk2

k2

αs(k
2)

4π
, (3.10)

where µ2 is an infrared cutoff, the evolution of DB
A with respect to Q2 can be

written as

DB
A(x, ξ) =

∑
C

∫ ξ

0

dξ′
∫ 1

0

dz

z
ΦC
A

[
DB
C (x/z, ξ′)− z2DB

A(x, ξ′)
]
. (3.11)

where ΦB
A are the splitting functions of parton A to parton B, defined by

dwA→B+C =
dk2
⊥

k2
⊥

αs(k
2
⊥)

4π
dz ΦBC

A (z) (3.12)

After the perturbative emission of partons stops, the color sources are

connected to each other via the chromoelecric string. The string should break

due to the presence of light fermions in the theory and the fragments turn

into the observed hadrons. The energetic quarks pull from vacuum pairs of

fermion-antifermion, which hadronize to give the final state hadrons. This will

be the topic of the next section.

3.2 QCD string breaking and particle creation

We now consider particle creation when two color sources are connected by

a flux tube or string and move in opposite direction. The dynamics along

the string is described by the Schwinger model. The color sources will be

introduced as external charges and the situation is illustrated in Fig. 3.3.

Pairs of charge-anticharge are produced dynamically as the sources recede.

These pairs in turn form charge neutral bound states, which we interpret
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- +

QCD string

Figure 3.3: Quark and antiquark moving in opposite direction.

to be the final state hadrons. The bosonized form of the Schwinger model,

introduced in the previous chapter, is assumed to describe the dynamics of

these hadrons. From Lagrangian (2.74) we get the following equation of motion

(�+m2)φ(x) = −m2φext(x), (3.13)

which is just the equation of motion of a scalar field φ coupled to a classical

source −m2φext. As is well known, this situation leads to coherent particle

creation and describes the real-time dynamics of the process. To illustrate the

breaking of the string we first consider the external sources to move with the

speed of light. The external charge density is given by

j0
ext(x) = −δ(z + t)θ(−z) + δ(z − t)θ(z). (3.14)

Assuming Lorentz invariance, the field φ can only depend on
√
t2 − x2. We

can solve it either by using the Green’s function (A.17) or by noting that

the equation becomes an inhomogenous Bessel equation and we can solve it

directly (see section A.3). We only quote the final answer

φ(x) =
√
πθ(t2 − z2)[1− J0(m

√
t2 − z2)]. (3.15)

The normalized result is plotted in Fig. 3.4 for fixed values of m and t. The

interpretation of Fig. 3.4 is as follows. Since in 1 + 1 dimensions the potential

between charge and anti-charge at short distances is linear, initially we form

a string. We can see that the string formed between receding particles breaks

into the quark-antiquark pairs – indeed, as it follows from (2.70), the kinks and

anti-kinks of the scalar field represent the charged fermions and anti-fermions

respectively (see Fig. 3.5).

Recalling bosonization relations, we notice that the axial and vector cur-
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Figure 3.4: Scalar field φ as a function of the spatial coordinate z for m =
0.6 GeV and t = 10 fm.
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Figure 3.5: String breaking by creation of pairs of charge-anticharge.

rents both depend on the scalar φ and are related. As the the string breaks,

there’s a dynamical generation of vector and axial currents, a fact we will use

later when studying the production of soft photons from the dynamics of jet

fragmentation. An interesting fact to notice is that particle production in this

model is driven by the anomaly and it would be interesting to investigate if

this phenomenon shows up in 3 + 1 dimensions as well.

We would like to point out a crucial difference between string breaking in

the Schwinger model, after including quantum effects, and the semi-classical

picture of the Lund model. In the case of the Lund model, after the string

breaks, the field between the produced particles vanishes. In the Schwinger

model on the other hand, the induced electric field, in the process of string

breaking, is given by (see (2.77))

Eind(x) = − g√
π
φ(x). (3.16)

We interpreted the produced particles to correspond to kinks and antikinks.

It is clear that in this model the field doesn’t vanish completely between the
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produced pair. This changes the dynamics of the process and can lead to

observable consequences.

In our treatment of the string breaking we have neglected the back-reaction

to the source. This leads to energy non-conservation and the question should

be asked of how large this effect is. A recent study of the massive Schwinger

model on a lattice [46] addresses this question. In Fig. 3.6, taken from [46], the

electric field between two receding charges is shown. In the case of the solid

line, two receding, nearly massless fermions with g/M = 100, peak momentum

p/M ' 700 and width ∆x ' 2/(5g) are created by a pulse of the electric field.

These fermions are referred to as self-consistent. The resulting electric field is

then calculated taking into account the full back-reaction to the source. The

dashed line is the result with external sources. The snapshot of the field is

taken at t ' 38/g.

Figure 3.6: Electric field E(t ' 38/g, x) for self-consistent fermions (solid line)
and external charges (dashed line) for g/M = 100, with E(t,−x) = E(t, x).

From the figure we notice two important facts. First, we see that the mass-

less Schwinger model calculation gives reasonable result when the mass is much

smaller than coupling and second, not conserving energy by putting external

sources does not affect the final result much in the case of very energetic initial

sources.

We now move on to describe jets with a given finite energy. The partons
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residing in the string ends in general do not move with the speed of light. We

consider a general source −m2φext(x) = j(x)

(�+m2)φ = j(x) (3.17)

The solution to the equation of motion can be written as

φ(x) = φ0(x) + i

∫
d2yDR(x− y)j(y) (3.18)

where φ0 is the solution to the Klein-Gordon equation. DR(x) is the retarded

Green’s function which was defined in A.2. The free field can be decomposed

in the usual way

φ0(x) =

∫
dp

2π

1

(2Ep)1/2

(
ape
−ip·x + a†pe

ip·x) (3.19)

The retarded propagator is

DR(x− y) =

∫
dp

2π2Ep
(eip·(x−y) − e−ip·(x−y))θ(x0 − y0)

Combining the expressions above, we get

φ(x) =

∫
dp

2π(2Ep)1/2

[(
ap −

i

(2Ep)1/2
j̃∗(p)

)
e−ipx

+

(
a†p +

i

(2Ep)1/2
j̃(p)

)
eipx

]
(3.20)

where we have taken the Fourier transform of the source

j̃(p) =

∫
d2x eip·xj(x). (3.21)

The Hamiltonian for the free particle is

H =

∫
dp

2π
Ep

[
a†pap +

1

2
[ap, a

†
p]

]
. (3.22)
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If we compute the vacuum expectation value with respect to the free particle

vacuum (of the normal ordered part), we get

〈0|H|0〉 =

∫
dp

2π
Ep
|j̃(p)|2

2Ep
. (3.23)

This leads to the distribution in momentum of the produced particles.

dN

dp
≡
〈
0|a†pap|0

〉
=
|j̃(p)|2

2Ep
. (3.24)

3.3 Fragmentation functions in e+e− → hadrons

We will use (3.24) to compute the quark fragmentation function [47]. To do

this, we have to construct the proper current j(x) = −m2φext. In order to do

that, let us return again to the perturbative evolution of the jet.

Similarly as in [30], to describe e+e− annihilation into hadrons, we add

an external current jµext to the theory, but the quarks now move with velocity

v < 1, which is determined from the center of mass energy
√
s and a parameter

Q0, which is comparable to the nonperturbative scale R−1 introduced above,

in the following way1

v =

√
s/2√

(
√
s/2)2 +Q2

0

. (3.25)

The current is then given by

j0(x) = δ(z − vt)θ(z)− δ(z + vt)θ(−z) (3.26)

We will compute the momentum distribution of produced mesons from this

current, therefore we use (3.24). In momentum space pµ = (Ep, p), where

Ep =
√
p2 +m2 (the produced mesons are on-shell), using (2.72), we get

φ̃ext(p) = i

√
π

p
j̃0
ext(p). (3.27)

1One jet takes up half of the center of mass energy.
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We have to compute the Fourier transform of the charge density

j̃0
ext(p) =

∫
d2x eip·xj0

ext(x). (3.28)

The resulting integral is not well defined, so to regularize it we give a small

negative imaginary part −ε to Ep and set it to zero at the end. In other words,

j̃0
ext(p) =

∫
d2xeip·x [δ(z − vt)θ(z)− δ(z + vt)θ(−z)]

= lim
ε→0

∫ ∞
0

dt
[
ei(Ep−pv)t−εt − ei(Ep+pv)t−εt]

= i

(
1

Ep − pv
− 1

Ep + pv

)
= i

2pv

E2
p − p2v2

. (3.29)

Substituting in (3.27)

j̃(p) = −m2φ̃ext(p) =
√
π

2vm2

E2
p − v2p2

(3.30)

from where we compute

dN

dp
= 2π

v2m4

Ep(E2
p − v2p2)2

. (3.31)

One might expect a factor of Nc, but it is missing because we consider hadron

yield per produced jet (with a fixed color orientation). For v = 1, we get

dN/dp ∝ 1/Ep familiar from the usual bremsstrahlung spectrum in (3 + 1)

dimensions. Let us define the usual fragmentation variable z = ph/pjet ≡ p/pjet

as the fraction of jet’s momentum pjet carried by the hadron of momentum

ph = p. As an application of the model, we use (3.31) to evaluate dN/dz and fit

it to the data on e+e− → hadrons at
√
s = 201.7 GeV [48]. The result is shown

in Fig. 3.7; the fit parameters are the scalar meson mass m and the matching

scale Q0 at which the DGLAP evolution has to be matched onto our model.

From the fit we find m = 0.6 GeV that is consistent with the PDG value for

the σ meson, and Q0 = 2 GeV (the velocity v = Pjet/
√
P 2
jet +Q2

0). At small

z ≤ 0.1, our result is below the data points signaling the need for perturbative
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QCD evolution; however the spectrum at z ≥ 0.15 is reproduced reasonably

well. For lower center of mass energies, the fit seems to be better, because

0.0 0.2 0.4 0.6 0.8 1.0
z

0.1

1

10

100

dN�dz

Figure 3.7: The spectrum of charged hadrons in e+e− annihilation at
√
s = 201

GeV; solid line is obtained from (3.31).

there is less contribution from the perturbative cascade. We have shown in

Fig. 3.8 the rapidity distribution of produced hadrons in e+e− annihilation

for center of mass energy
√
s = 29 GeV, measured by TPC/Two Gamma

collaboration and reported in [49].

In order to compute dN/dy, we have made the change of variables (p→ y),

where

y =
1

2
ln
Ep + p

Ep − p
. (3.32)

In turn

Ep = m cosh y, p = m sinh y. (3.33)

3.4 Discussion

In this chapter we investigated the particle production by external sources,

where the latter model the color sources in high energy scattering processes.

We observed that particle creation is driven by the anomaly. We then com-

puted the fragmentation function for e+e− to hadrons using an exactly soluble
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Figure 3.8: Rapidity distribution of charged pions in e+e− annihilation experi-
ment, with center of mass energy

√
s = 29 GeV. Solid curve is calculated from

(3.31).

model, which was motivated in the previous chapter. The model has two pa-

rameters, the mass of the hadrons, m, and the nonperturbative scale Q0. By

setting m ' 0.6 GeV and Q0 ' 2 GeV, we observed that the data are described

reasonably well. The values we get for the parameters could be interpreted as

follows: m correponds to the mass of σ meson and Q0 is a QCD nonperturba-

tive scale at which the QCD cascade is assumed to stop. We see a reasonable

agreement with experimental data.
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Chapter 4

Jets in medium - Energy Loss

The focus of this chapter will be the role of the QCD medium (formed in heavy

ion collisions) in the modification of jet fragmentation functions.

Let us recall shortly the space-time evolution of jet evolution. The per-

turbatively produced high transverse momentum partons are in general far

off mass shell and evolve emitting gluons and quark-antiquark pairs; this evo-

lution towards smaller parton virtualities is governed by the QCD renormal-

ization group and described by DGLAP equations as we outlined above. At

Q2
0 ∼ 1− 3 GeV2 the non-perturbative effects of confinement set in and trans-

form the radiated partons into the observed hadrons. The longitudinal distance

a parton moves before hadronizing is then given by Lh ' zPjet/Q
2
0, where z is

the fraction of the jet transverse momentum Pjet carried by the parton with

virtuality Q0. Using for the sake of an estimate the values z = 0.2, Pjet = 100

GeV and Q0 = 2 GeV2 (this is the value we found above), we get Lh ' 2

fm. In Pb-Pb collisions, this estimate suggests that the jet evolves down to

the scales at which the dynamics becomes non-perturbative well within the

produced medium.

It is widely believed that the quark-gluon plasma at temperatures T ≤
(2−3)Tc produced at RHIC and LHC is non-perturbative and strongly coupled

at scales of the order of 1 GeV. Combined with our estimate of the jet formation

time, this suggests one has to develop an approach to the jet interactions in the

medium and its subsequent hadronization that is i) valid at strong coupling; ii)
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describes properly the transformation of partons into the measured hadrons.

Within the perturbation theory, the approach to the propagation of the jet

in the medium has been developed in [50, 51]; see [52, 53] for reviews. It

has been established that the Landau-Pomeranchuk-Migdal (LPM) effect [54–

56] – the quantum interference of the radiation processes in the interactions

with multiple scattering centers in the medium – is as important in QCD

as it was originally found in QED, although the non-Abelian effects modify

the radiation pattern. While the LPM effect has been traditionally treated

within the perturbation theory, it can be expected to affect the radiation

amplitudes also at strong coupling. Indeed, the LPM effect may be viewed

as a consequence of quantum mechanics and the low-energy Low theorem

that is based only on the symmetries of the theory (gauge invariance and the

conservation of vector current) and is valid even when the perturbation theory

does not apply.

Recently, the CMS Collaboration presented the data on the modification of

the shape of the jets produced in Pb-Pb collisions at the LHC [57]. This data

is interesting because it opens a window into the mechanism by which jets lose

energy in the quark-gluon plasma (QGP). It is expected that the dominant

mechanism of jet energy loss is the induced QCD bremsstrahlung [50–52, 58–

60]. This induced gluon radiation would then transform into hadrons and pro-

duce an enhancement in the in-medium jet fragmentation function at small

values of z, the fraction of the jet’s energy carried by the produced hadron, or

equivalently, at large values of ξ = ln(1/z) – see [61] for a recent overview and

comparison of various models of energy loss. The data indeed clearly show

this enhancement [57]. However, the data also indicate the suppression of the

fragmentation function at intermediate values of ξ ' 3. This suppression is

surprising because it seems to imply, through the Local Parton Hadron Dual-

ity (LPHD) [45], that the radiation of gluons at these intermediate values of

ξ is suppressed relative to the in-vacuum fragmentation. This apparent sup-

pression of gluon radiation is hard to reconcile with the expected enhancement

due to the induced QCD bremsstrahlung. In this chapter we argue that there

is no contradiction between CMS results and the presence of induced QCD

radiation.
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Describing the fragmentation of a jet into hadrons from first principles re-

quires a theory of confinement, and it is still lacking. Instead, the conventional

pQCD approach [8] is based on introducing universal phenomenological frag-

mentation functions extracted from the experimental data. This practical and

useful approach however does not allow to predict how these fragmentation

functions would change in the presence of the QCD medium – making such a

prediction requires a dynamical theory of fragmentation. While the complete

theory of confinement still does not exist, many properties of confining inter-

actions in QCD are known from phenomenology, lattice QCD, and effective

theories. One of the properties of QCD with light quarks is the so-called “soft

confinement” [33] (for review, see e.g. [34]). For the case of jet fragmentation,

“soft confinement” implies that the fragmenting quark polarizes the QCD vac-

uum and slows down by producing along its trajectory quark-antiquark pairs

that later form hadrons – this picture in fact can be considered as the foun-

dation of the phenomenologically successful LPHD hypothesis.

We argued in previous chapters that the massless QED in 1+1 dimensions

(QED2, also known as the Schwinger model [27–29]) can be used as an effective

theory of QCD string breaking and jet hadronization. Indeed, this exactly

soluble model captures many properties of quark interactions in QCD – the

screening of color charge by light quark-antiquark pairs, the presence of θ-

vacuum, and the axial anomaly. QED2 has previously been applied to the

description of hadronic interactions at high energies in Refs. [31, 32].

In 3 + 1 dimensions, the typical transverse momentum of mesons is of the

order of their mass (in our case m ' 600 MeV), therefore their longitudinal

momentum p is much larger for p/Ejet = z > 0.01 or ξ < 5 for Ejet ∼ 120 GeV.

A natural extension [47] of the model presented in the previous chapter is thus

to consider Nc copies of the Abelian U(1) gauge group. For the propagation

of the quark jet through the medium, this extension allows to consider the

rotation of the color orientation of the quark. By using the (1+1) dimensional

field theory we neglect the transverse momentum broadening of the jet in the

medium; this is a reasonable approximation for the high momentum jets that

we consider. Every time the quark exchanges a gluon with the medium, its

52



color changes; for a medium of length L and the quark mean free path λ, we

thus get L/λ sectors bounded by the propagating quark and the exchanged

gluons, see Fig. 4.3 and Fig. 4.6. At large Nc, these sectors produce particles

independently from each other.

4.1 Landau-Pomeranchuk-Migdal Effect (LPM)

in perturbation theory

Later in this chapter we will consider the energy loss of a quark moving in the

QCD medium. It is believed that radiative energy loss due to scattering with

medium constituents is the dominant energy loss mechanism. We will review

some basic facts about radiative energy loss in QCD. We mostly follow [52].

Let’s assume that a quark with energy E moves in QCD medium of length

L. As the quark moves in this medium it experiences multiple scattering,

which induces gluon radiation and in turn the quark loses energy. We assume

for now that the scattering centers are static and uncorrelated. The main

features of the radiative energy loss can be derived from a heuristic point

of view neglecting numerical factors of order O(1), which we will do in the

following. Let us recall the formation time of the gluon

tform '
ω

k2
⊥
, (4.1)

where ω and k⊥ are the gluon’s energy and transverse momentum (with respect

to the quark) respectively. It is assumed that ω >> k⊥ and that k⊥ ' µ, where

µ is a typical scale characterizing the medium (can be thought of as the Debye

screening mass in the case of a hot medium). We denote the typical distance

between the scattering centers or the mean free path of the quark by λ. When

the formation time is much larger than the mean free path, radiation takes

place in a coherent way, where many scattering centers act as one. One can

define the coherence length

lcoh '
ω

〈k2
⊥〉coh

, (4.2)
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where 〈
k2
⊥
〉
coh
' lcoh

λ
µ2 = Ncohµ

2, (4.3)

and Ncoh is the number of coherent scattering centers. We have assumed a

random walk expression for the accumulation of the transverse momentum.

Substituting (4.3) in (4.2), we can write

lcoh '

√
ωλ

µ2
. (4.4)

Using this, we have

Ncoh =
lcoh
λ
'
√

ω

λµ2
=

√
ω

ELPM
, (4.5)

where ELPM = λµ2, and LPM stands for Landau-Pomeranchuk-Migdal.

Let us first consider ω ≤ ELPM . In this case, incoherent radiation takes

place in L/λ scattering centers. The soft single scattering spectrum is given

by [62]

ω
dI

dω
' αs

π
Nc, (4.6)

where Nc is the number of colors. We can now get the Bethe-Heitler regime

for incoherent scattering

ω
dI

dωdz

∣∣∣
BH
' αs

π
Nc

1

λ
, (4.7)

where also lcoh ≤ λ. In this case the quark scatters independently with L/λ

scattering centers as shown in Fig. 4.1.

The regime of coherent scattering is the case when λ < lcoh < L, keeping

in mind that Nc > 1, in other words

ELPM < ω < min{ωfact, E}, (4.8)

where ωfact ∼ µ2

λ
L2. We can calculate the spectrum of radiation, but now
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L

Λ

Figure 4.1: Incoherent scattering of the energetic quark with the medium
constituents.

keeping in mind that Ncoh centers act coherently, we get

ω
dI

dωdz

∣∣∣
LPM

' αs
π
Nc

1

lcoh
' αs

π
Nc

√
µ2

λ

1

ω
=
αs
π
Nc

1

λ

√
ELPM
ω

. (4.9)

We see that in this regime, the radiation is suppressed by a factor of
√
ELPM/ω

compared to the Bethe-Heitler regime. In this regime, many scattering centers

act as one, as shown in Fig. 4.2.

Figure 4.2: Coherent scattering of the quark with medium constituents (LPM
regime).

To summarize, we have observed that in the case when lcoh ≤ λ, ω <

ELPM , the scattering takes place incoherently and the Bethe-Heitler approxi-

mation is valid. On the other hand, when λ ≤ lcoh, ELPM < ω, the radiation

is suppressed by a factor
√
ELPM/ω compared to the Bethe-Heitler result. By

using our model, we will see below that a similar suppression occurs even in
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the nonperturbative regime.

4.2 In-medium jet fragmentation without gluon

emission

Let us now extend the formalism developed in the previous chapter to the case

of a jet propagating through the quark-gluon matter [47, 63]. The quark will

exchange color with the matter, rotating in color space and creating in the

medium the static color sources located at coordinates z = zi, as in Fig. 4.3.

The different sectors in Fig. 4.3 are bounded by the sources with different

orientations in color space; each of them is considered as quasi-Abelian, and

at large Nc the production of mesons in each sector is independent.

a1 a1 a2 a2 aN aN

f1

f2

fN

Figure 4.3: The color flow in the jet interactions inside the quark-gluon
medium.

We see that there are only three different types of sectors in Fig. 4.3 – the

one bounded by the quark escaping from the medium with no interactions (on

the left, f1), the one bounded by the quark that underwent color rotation(s) in

the medium (on the right, f3), and the one bounded on the sides by color static

sources in the medium and a propagating quark from below (in the middle,
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f2). We can write the corresponding charge densities

j0
1(x) = −δ(x+ vt)θ(t) + δ(x− vt) (θ(t)− θ(t− t1))

+ δ(z − vt1)θ(t− t1),

j0
2(x) = −δ(z − vt1)θ(t− t1) + δ(x− vt) (θ(t− t1)− θ(t− t2))

+ δ(z − vt2)θ(t− t2),

j0
3(x) = −δ(z − vt2)θ(t− t2) + δ(x− vt)θ(t− t2). (4.10)

As in the previous chapter v =
pjet√
p2jet+Q0

. pjet is the jet momentum, which

we will fix later and Q0 ' 2 GeV. By using the methods described above, we

get for the corresponding sources (we denote with t1 and t2 the time when the

first and second scatterings in medium occur respectively)

f̃1(p) =
−m2v

√
π

Ep − vp

[
2

Ep + vp
− ei(Ep−vp)t1

Ep

]
f̃2(p) =

m2v
√
π

Ep(Ep − vp)
[
ei(Ep−vp)t2 − ei(Ep−vp)t1

]
f̃3(p) =

−m2v
√
π

Ep(Ep − vp)
ei(Ep−vp)t2 (4.11)

We have denoted by fi(x) = −m2φext,i(x), where φext,i(x) is calculated from

the corresponding charge density j0
i (x) as in the previous chapter. Summing

over the color orientations of different sectors (note that this does not bring

in extra powers of Nc in the ’t Hooft limit of Nc →∞, g2Nc fixed), we get the

hadron spectrum

dNmed

dp
=

1

2Ep
|f̃(p)|2 =

1

2Ep
(|f̃1(p)|2 +

∑
|f̃2(p)|2 + |f̃3(p)|2) (4.12)

where we have omitted the interference between different sectors that is sup-

pressed at large Nc. Also, we have to sum over all contours with current f2

(the times t1 and t2 will be different). As an illustration, for the case when we
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have only two scatterings, we can write

dNmed

dp
= 4πv2 m

4

2Ep

{
1

(E2
p − v2p2)2

+
1

E2
p(Ep − vp)2

− 1

2

1

Ep(Ep − vp)2

[
2 cos(Ep − vp)t1

Ep + vp

+
cos[(Ep − vp)(t2 − t1)]

Ep

]}
(4.13)

We want to compare our result to the CMS data [64], so we use the variable

ξ = ln (1/z). Recall that in our case z = p/pjet. Since we are interested in eval-

uating the ratio of the in-medium to in-vacuum fragmentation functions, we

also need dNvac/dξ which has been evaluated already in the previous chapter

using as external source

j0(x) = −δ(z − vt)θ(−z) + δ(z + vt)θ(z), (4.14)

where v = pjet/
√
p2

jet +Q2
0 (same v as in the expressions above) and Q0 is in

the range 1− 3 GeV. Our result for the ratio of in-medium and vacuum frag-

mentation functions is shown in Fig. 4.4. We put N equally spaced scatterings

between t1 and t2 (the distance between them corresponds to the mean free

path). For large p (small ξ), the measured fragmentation functions of vacuum

and in-medium are similar. We call this Jet Fragmentation Scaling (JFS). One

can see that the observed JFS is well reproduced if the mean free path λmfp

of the quark in the medium is short, λmfp ≤ m−1 ' 0.3 fm. It is important

to check whether the JFS in our computation stems from the absence of the

energy loss – this would contradict the experimental observations [64–67]. The

energy loss of the jet in medium is given by

δE =

∫ Ejet

mh

dEhEh

(
dNmed

dEh
− dN vac

dEh

)
(4.15)

We can use (4.15) to calculate the energy loss δE as a function of jet energy

Ejet. We plot this in Fig. 4.5; note that our treatment is valid only when
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Figure 4.4: Ratio of in-medium to vacuum fragmentation functions. The
length of the medium is fixed at 4 fm, the jet energy is Ejet = 100 GeV.
Solid line: the first scattering occurs at t1 = 1 fm (assumed thermalization
time), and subsequent scatterings occur with time spacing of ∆t = 1/m = 0.3
fm. Dashed line: double scattering with t1 = 2 fm and t2 = 4 fm (∆t = 2 fm).
Dot-dashed line: four scatterings with ∆t = 1 fm, t1 = 1 fm. Data points
are from the CMS Collaboration (see text). Open (filled) circles are for the
leading (subleading) jet.
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δE � Ejet; for short mean free path λmfp ≤ 0.3 fm this means Ejet ≥ 100

GeV. The energy loss at λmfp ≤ 1 fm is consistent with the values extracted

from the data [64], see [59].

50 60 70 80 90 100 110 120
Ejet

10

20

30

40
∆E

Figure 4.5: Energy loss as a function of jet energy. The lines correspond to
the parameters in the caption of Fig. 4.4.

4.3 In-medium fragmentation with non-static

sources and gluon emission

In this section we improve on the approach of the previous section (and [47])

by considering the medium-induced perturbative gluon radiation [63]. Com-

pared to the conventional pQCD approaches, we consider also the dynamical

modification of the in-medium jet fragmentation due to both the multiple scat-

tering of the jet in the medium and the induced gluon radiation. We also allow

for a non-zero momentum transfer from the jet to the medium. Due to this

momentum transfer, the scattered particles in the medium are given a kick

along the jet momentum and move with some finite velocity after scattering.

The typical momentum transfer in medium is of the order of Debye mass mD,

which is also a typical mass of the scattered particles. We can therefore esti-

mate the velocity to be vi ∼ 1/
√

2 (i = 1, · · · , n). Let us assume first that the
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induced radiation is emitted outside of the medium – this process is illustrated

in Fig. 4.6; the quark jet scatters n times within the medium prior to emitting

a gluon, while the corresponding antiquark jet is assumed to escape without

interactions, as would be the case for the surface emission. On the right in

Fig. 4.6 we show the corresponding color flow; each color contour at large

Nc radiates independently, as explained above. The trajectory of the Abelian

charge is given by the boundary of the contour. As in the previous section,

there are only three different types of currents we have to consider and they

are labeled by j1, j2 and j3. We can write down the charge densities:

Figure 4.6: In-medium scattering of the jet accompanied by an induced gluon
radiation outside of the medium. Left: the Feynman diagram. Right: the
corresponding color flow.

j0
1(x) = −δ(z + vt)θ(−z) +

{
δ(z − vt)[θ(t)− θ(t− t1)]

+ δ[z − vt1 − v1(t− t1)]θ(t− t1)
}
θ(z)

j0
2(x) = −δ[z − vt1 − v1(t− t1)]θ(t− t1) + δ(z − vt)[θ(t− t1)− θ(t− t2)]

+ δ[z − vt2 − v2(t− t2)]θ(t− t2)

j0
3(x) =

[
− δ[z − vtn+1 − vn+1(t− tn+1)]θ(t− tn+1)

+ δ(z − vt)
]
θ(t− tn+1). (4.16)

The Fourier transform of these charge densities is given by

j̃0
1(p) =

ip

EP − vp

[ 2v

EP + vp
− v − v1

EP − v1p
ei(EP−vp)t1

]
(4.17)
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j̃0
2(p) =

−ip
EP − vp

[ v − v2

EP − v2p
ei(EP−vp)t2 − v − v1

EP − v1p
ei(EP−vp)t1

]
(4.18)

j̃0
3(p) =

ip

EP − vp
v − vn+1

EP − vn+1p
ei(EP−vp)tn+1 (4.19)

Similarly as above, we can calculate the corresponding φ̃ext(p) to compute the

distribution of hadrons. We again assume no interference between contours,

therefore the hadron distribution is given by

dNmed

dp
=

m4

2EP
(|φ̃1,ext(p)|2 +

∑
|φ̃2,ext(p)|2 + |φ̃3,ext(p)|2), (4.20)

where φ̃2,ext(p) is calculated from j0
2(x) and we have to sum over all of contours

of this type. We define in the same way as above z = p/pjet, where p is the

momentum of the final-state hadron and pjet is the jet momentum. In order

to compare with the data, we again use ξ = ln(1/z).

We are now in a position to compute dNmed/dξ. The ratio of fragmentation

functions of in-medium and vacuum, as a function of ξ = ln 1
z
, is shown in Fig.

4.7. The result is plotted for different mean free paths, i.e. the different

distances between scattering centers in Fig. 4.6 and is compared to data

taken from [57]. As mentioned above and as it was shown already in [47], the

enhancement for large ξ results from the radiation coming from the medium-

induced color contours of type j2. On the other hand, it can be seen that

the suppression for intermediate ξ comes from the contour of (4.19). The

underlying physics is the partial screening of the color charge of the jet by

a comoving medium-induced gluon. A similar effect due to coherent parton

branching has recently been considered in [68]. When vn+1 approaches v,

where vn+1 is the velocity of the final state gluon, we get a suppression in

the fragmentation function. The final state gluon is typically emitted at the

rapidity interval ∆η ∼ 1/αs ' 2 away from the leading parton in the jet; this

is the value that was assumed in the plot in Fig. 4.7. We have also considered
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Figure 4.7: The ratio of in-medium and vacuum fragmentation functions for
pjet = 120 GeV. The first scattering occurs at t1 ' 1 fm, which is the assumed
thermalization time. The length of the medium is L = 5 fm. The curves
correspond to mean free paths of λ = 0.57, 0.4 and 0.2 fm from top to bottom
respectively. The data points are from the CMS Collaboration.

the case when a gluon is radiated from the original jet and then interacts

within the medium as shown in Fig. 4.8 – this is the dominant diagram in

the BDMPS [50, 51] approach. We have found that for the same values of

parameters this case leads to the ratio of fragmentation functions that is very

similar to the one presented in Fig. 4.7.

Figure 4.8: In-medium scattering of a gluon radiated from the original jet.
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4.4 Transverse-momentum difference between

Au+Au and p+p

Let us note that even though the energy cannot be transferred outside the

jet cone in our 1 + 1 model, it is transferred from the high energy jet to low

energy hadrons. Below a certain experimental cutoff, these soft hadrons are

not counted as a part of the jet, and therefore this leads to an effective energy

loss. To illustrate this, we compute within our model the quantity defined

in the STAR Collaboration publication [69] that measures the difference in

momentum distributions of the hadrons produced in jet fragmentation in AA

and pp collisions1:

DAA(p) = YAu−Au(p) 〈p〉Au−Au − Yp−p(p) 〈p〉p−p , (4.21)

where Y (p) is the yield in a given bin with average 〈p〉,

Y (p) =

∫
bin with average 〈p〉

dp′
dN

dp′
, (4.22)

leading to

DAA(p) = 〈p〉
∫

bin with average 〈p〉
dp′

dNmed

dp′
− 〈p〉

∫
bin with average 〈p〉

dp′
dNvac

dp′
.

(4.23)

We have plotted the results in Fig. 4.9, where we compare our calculation

with the measurements presented in [69]; we have used the mean free path of

λ = 0.4 fm. The fluctuations around p = 1 GeV and p = 5 GeV seem to be

due to the sensitivity of DAA to the boundaries of the bin. The agreement with

the data suggests that our simple model adequately captures the dynamics of

the jet energy redistribution in the longitudinal direction.

1in 1 + 1 dimensions there is only one spatial direction, so pT = p.
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Figure 4.9: DAA defined in (4.21) and (4.23) for jet energy of 20 < pjet < 40
GeV. Black dots and shaded areas show experimenal data, jet energy scale,
v2/v3 and detector uncertainties respectively, taken from the STAR Collab-
oration paper (see text); solid line interpolates between calculated values of
DAA from (4.23).

4.5 Discussion

To summarize, we have used the effective 1 + 1 dimensional Abelian model,

introduced in the previous chapter, to describe the dynamical modification

of jet fragmentation in the QCD medium. We have found that this approach

describes well the suppression of the in-medium fragmentation at intermediate

values of ξ = ln(1/z) observed by the CMS Collaboration, and there is thus

no contradiction between the LHC results and the picture of QCD radiation

induced by the scattering of the jet. The physics that underlies the suppres-

sion of the in-medium fragmentation function is the partial screening of the

color charge of the jet by the comoving medium-induced gluon. It would be

interesting to develop a hybrid approach to jet fragmentation combining the

full DGLAP perturbative evolution down to the scale of Q0 ∼ 1 − 2 GeV,

induced gluon radiation, and the non-perturbative dynamical fragmentation

as modeled above.
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Chapter 5

Anomalous soft photon

production

The production of soft photons in hadron collisions is governed by the Low

theorem [70] that is based on very general properties of QED as a vector gauge

theory. In hadron collisions, the Low theorem states that soft photons are pro-

duced by the bremsstrahlung off the charged hadrons [71], and relates the soft

photon yield to the measured hadron spectrum. This allows to make predic-

tions that can be tested experimentally. Surprisingly, nearly every experiment

that studied the production of soft photons in high energy hadron collisions

found a dramatic (by factor of 2 ÷ 5) enhancement above the Low theorem’s

predictions, see e.g. [72–77] – this is the long-standing puzzle of the “anoma-

lous photon production.” Many theoretical models have been proposed to

explain the anomalous photon production (for a review, see e.g. [78]); some

of them are based on collective effects in produced hadronic matter [79–81],

including the effects of anomalies [82–86]; other invoke the synchrotoron radi-

ation in the QCD vacuum [87], new light bound states [88] or strong coupling

phenomena treated within holography [89] – however none of them explains

all features of the observed phenomenon.

A particularly striking recent result is the measurement of the direct soft

photon yield in hadronic decays of the Z0 boson by the DELPHI Collabo-

ration [90, 91]. The data recorded during the operation of the LEP e+e−
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collider at CERN show the photon spectrum similar to the one expected from

bremsstrahlung, but with a magnitude about four times higher than the pre-

diction of the Low theorem based on the measured charged hadron yields. Con-

trary to processes with hadronic final states, the DELPHI measurement [92]

of photons produced in the e+e− → Z0 → µ+µ−+nγ channel is in good agree-

ment with the theoretical expectation based on muon inner bremsstrahlung –

so the puzzle of the anomalous soft photons seems to be specific to the produc-

tion of hadronic final states. Remarkably, the soft photon yield was found [90]

to be more sensitive to the neutral hadron multiplicity than to the charged

one that is expected to govern the photon bremsstrahlung.

The anomalous soft photons present a challenge to the foundations of the-

ory. Moreover, this puzzle is an obstacle to using soft photons for diagnosing

quark-gluon plasma, as we need to understand the “background” - the mech-

anism of photon production in elementary collisions. To be specific, in this

chapter we concentrate on the direct soft photon production in hadronic de-

cays of Z0 that are dominated by the fragmentation of the quark jets produced

in the Z0 → qq̄ process. The direct (i.e. not originating from hadron decays)

soft photon emission by the fragmenting quark and antiquark within the per-

turbative framework was found [90] insufficient to explain the data. Since the

bremsstrahlung of final state charged hadrons also does not describe the yield,

one is naturally led to a possible nonperturbative mechanism of photon emis-

sion in the quark fragmentation process. Because of this, it is important to

re-examine the problem by putting emphasis on the possible non-perturbative

QCD effects on soft photon production.

The quark propagating through the confining QCD vacuum pulls from

the Dirac sea the quark-antiquark pairs that later form hadrons; even if these

hadrons are neutral, all quarks possess electric charge and can radiate photons.

It is clear that such a mechanism involves QCD dynamics at large distances,

where the coupling is strong and we have to rely on an effective theory. We will

use the model of jet fragmentation we saw in previous chapters (see also [47,

63]) to describe the real-time dynamics of jet fragmentation and soft photon

production [93]. An important property of this theory is that the particle
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production is determined by the axial anomaly as we saw before and will make

use of it below. But, first, we review very shortly the Low theorem and its

consequences in soft photon production in high energy scattering experiments.

5.1 Review of Low theorem

At very low photon momentum (k → 0), the amplitude for photon produc-

tion is dominated by the Bremsstrahlung off incoming and outgoing charged

particles [70]. In order to illustrate this fact, let us consider diagrams in Fig.

5.1 which show the scattering between a charged particle (solid line) with a

neutral one (dashed line). The radiated photon can be emitted either from the

incoming, outgoing or the intermediate charged particle propagator. When the

photon is attached in the incoming line, then we get an intermediate charged

propagator with denominator (p− k)2 −m2. Both the incoming charged par-

ticle and the photon are on mass shell, therefore p2 − m2 = 0 and k2 = 0.

This means that the propagator is proportional to 1/p · k, which is singular

for k → 0. The same singularity is found if the photon is attached to the

outgoing charged particle line. In the case when the photon is attached in the

intermediate (virtual) line the situation is different. The virtual line is not on

mass shell, therefore there is no singularity. This means that the amplitude

is dominated by the Bremsstrahlung off incoming and outgoing charged parti-

cles. Using this argument, the soft photon can be computed from the charged

hadronic spectrum as follows

ω
dNγ

d3k
=

α

(2π)2

∑
n

∫
d3p1 · · · d3pn

∑
i,j

−QiQj(pi · pj)
(pi · k)(pj · k)

dNhadr

d3p1 · · · d3pn
. (5.1)

DELPHI data mentioned above cannot be described by this expression as we

will see below.
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Figure 5.1: Scattering of a charged (solid line) and a neutral (dashed line)
particle.

5.2 Oscillations of electric and axial charge in

quark fragmentation

The production of quark-antiquark pairs in the fragmentation of the quark

allows interpretation in terms of topology of the gauge field and chirality of

the quarks. In this section, we will illustrate this using the example of the

1 + 1 dimensionally reduced theory. We will assume that the dynamics of pair

production along the jet axis can be modeled by massless Quantum Electro-

dynamics in 1 + 1 dimensions or QED2:

L = −1

4
GµνG

µν + ψ̄iγµ∂µψ − gψ̄γµψBµ − gjµextBµ (5.2)

where µ = 0, 1, Bµ is the gauge field, Gµν = ∂µBν − ∂νBµ is the field strength

and jµext is an external current. We have denoted the 1 + 1 dimensional gauge

field by Bµ, because we reserve the notation Aµ for the electromagnetic gauge

potential, which we will couple to the 1 + 1 dimensional theory. As in the

previous chapters, the leading quarks of the jets are introduced through an

external current composed by the fermion and the anti-fermion moving back-
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to-back with equal velocities v (see Fig.5.2):

j0
ext(x) = δ(z − vt)θ(z)− δ(z + vt)θ(−z) (5.3)

where xµ = (t, z) and

v =
pjet√

p2
jet +Q2

0

(5.4)

where pjet is the jet momentum and Q0 ∼ 2 GeV is the time-like virtuality scale

at which the pQCD DGLAP cascade stops, and the effects of confinement de-

scribed by our effective theory begin to operate. We have not considered here

the emissions of the additional partons in the DGLAP cascade. These emis-

sions would modify the external current, but because of the color coherence

in the perturbative cascade their effect should be diminished by destructive

interference.

Antiquark

Right chirality

Quark

Right chirality

E

Figure 5.2: Fermion and antifermion moving back-to-back.

Recall the bosonization relation for the vector current

jµ(x) = ψ̄(x)γµψ(x) = − 1√
π
εµν∂νφ(x) (5.5)

where φ is a real scalar field; note that with (5.5) the conservation of vector

current is automatic. The axial current, we saw above, can be written as

jµ5 (x) = ψ̄(x)γµγ5ψ(x) =
1√
π
∂µφ(x). (5.6)

The equation of motion for the scalar field is

(�+m2)φ(x) = −m2φext(x) (5.7)
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where � ≡ ∂2
t − ∂2

z and m2 = g2/π and φext can be computed using (2.72).

The coupling to a classical source results in particle creation. The pro-

duced particles (that after bosonization become the quanta of the φ field) can

be interpreted as neutral mesons produced in the fragmentation of the string

stretched between the original quark and antiquark. Let us for a moment con-

sider the ultra-relativistic limit v → 1 in which the problem becomes somewhat

simpler. Due to the Lorentz invariance, we can write the equation of motion

in terms of the proper time τ and rapidity y:

τ =
√
t2 − z2

y =
1

2
ln
t+ z

t− z
. (5.8)

The equation of motion (5.7) in the v → 1 limit is independent of rapidity and

can be written as

(�+m2)φ(mτ) = −m2φext(mτ), (5.9)

which is an ordinary differential equation in the proper time:

(�+m2)φ(mτ) = m
1

τ
φ′(mτ)+m2φ′′(mτ)+m2φ(mτ) = −m2φext(mτ), (5.10)

where the prime denotes differentiation with respect to mτ . On the other

hand,

φext(mτ) = −
√
π

∫ z

dz′[−δ(z + t)θ(−z) + δ(z − t)θ(z)]

=
√
πθ(t2 − z2) =

√
πθ(τ 2); (5.11)

we therefore have to solve

φ′′(mτ) +
1

mτ
φ′(mτ) + φ(mτ) = −

√
πθ(m2τ 2). (5.12)

We encountered this equation before the solution can be written as

φ(mτ) = −
√
πθ(m2τ 2)(1− J0(mτ)), (5.13)

71



where J0 is the Bessel function. The equations (5.13) and (5.5) show that the

evolution in proper time gives rise to oscillation in the vector (electric) charge

density

j0(τ, y) =
1√
π
∂z(
√
πθ(m2τ 2)(1− J0(mτ))) = −∂zJ0(mτ)

= −(−m sinh y(−J1(mτ))) = −m sinh yJ1(mτ). (5.14)

It is this oscillation of electric charge that will be responsible for the enhance-

ment of the soft photon yield once we introduce the coupling to the dynamical

(3 + 1) dimensional electromagnetic field.

Since the oscillation of electric charge is crucial for our interpretation of the

anomalous soft photon production, it is worthwhile to discuss this phenomenon

in more detail. We will now show that the oscillation of electric charge is

induced by the axial anomaly in the presence of chirality imbalance 1. In

(1 + 1) dimensions, the helicity of a fermion is determined simply by the

direction of its motion – the fermion moving to the right is right-handed,

and the fermion moving to the left is left-handed. For an antifermion, just

like in (3 + 1) dimensions, chirality and helicity have the opposite signs - so

the antifermion moving to the left has right-handed chirality. Our original

configuration of a fermion-antifermion pair moving back-to-back therefore has

two units of chirality, see Fig. 5.2.

The index theorem in two dimensions is given by

∆Q5 = NR −NL =
g

π

∫
d2xF01 (5.15)

where NR,L is the number of left/right movers. We can see that a nonzero axial

charge gives rise to an electric field. This has a simple physical interpretation

– the presence of electric field due to the Lorentz force creates an asymmetry

between the left- and right-moving charged fermions. Using bosonization re-

lations and requiring that the fields vanish at infinity, we can find the electric

1In (3 + 1) dimensions, these are the crucial ingredients of the Chiral Magnetic Effect
[94–97].
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field induced by the pairs created by the original external source:

F ind
01 = − g√

π
φ. (5.16)

Let us now show that the axial charge ∆Q5 oscillates as a function of time.

To do this, we will use (5.15), where F tot
01 = F ind

01 +F ext
01 will be the sum of the

electric field (5.16) induced by the pair creation and the field created by the

external source:

F ext
01 = −g[θ(z + t)− θ(z − t)] = −gθ(t2 − z2). (5.17)

The total axial charge as a function of time is thus given by

∆Q5 =
g

π

∫
d2xF tot

01 =
g

π

∫
d2x

(
−gθ(m2τ 2) + gθ(m2τ 2)(1− J0(mτ))

)
= −g

2

π

∫ t

0

dt′
∫ t′

−t′
dzJ0(m

√
t′2 − z2)

= −2m2

∫ t

0

dt′
∫ t′

0

dzJ0(m
√
t′2 − z2)

= 2m

∫ t

0

dt′ sin(mt′) = 2[cos(mt)− 1] (5.18)

The axial charge thus indeed oscillates with the period T = 2π/m – the ap-

pearance of m of course is not surprising since it is the only scale in the theory.

However, the oscillation of the axial charge is a non-trivial consequence of i) the

periodicity of the θ-vacuum of the Schwinger model, and ii) non-equilibrium

nature of our process. The chiral charge of the original quark-antiquark pair

with time is screened by the electric field, which then consequently decays pro-

ducing additional chiral quark-antiquark pairs – because the set-up describing

the separating quark and antiquark jets is far from equlibrium, the axial charge

keeps oscillating around its equilibrium value of ∆Q5 = 0. Because the axial

anomaly in (1 + 1) dimensions couples the axial and vector currents, as in-

dicated by (5.5) and (5.6), the oscillations of axial charge translate into the
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oscillations of electric current2. We will now couple our theory to the (3 + 1)

dimensional electromagnetic field, and show that the fluctuations of electric

current induced by the anomaly indeed source the soft photon production.

5.3 The soft photon production due to the ax-

ial anomaly

In the previous section we have considered the sources moving along the light-

cone, and have demonstrated that the axial anomaly leads to the undamped

axial charge oscillations with frequency m (the mass of the scalar meson). Let

us now consider a more realistic case when the sources move with velocity

v < 1 given by (5.4). We will solve equation (5.7) and using the bosoniza-

tion relation (5.5) get the total electric current induced by the quark-antiquark

pairs. We then couple this current to (3+1) electromagnetic field and compute

the rate of the soft photon bremsstrahlung.

The general solution to the equation of motion (5.7) is given by

φ(x) = φ0(x) + i

∫
d2x′DR(x− x′)(−m2φext(x

′)), (5.19)

where DR(x) is the retarded scalar field propagator and φ0(x) satisfies the

Klein-Gordon equation (see A.2). Taking the Fourier transform of (2.72)

j̃µext(p) = − 1√
π
εµν(−ipν)φ̃ext(p), (5.20)

we can solve for φ̃ext(p)

j̃0
ext(p) = − 1√

π
(−ip1)φ̃ext(p)⇒ φ̃ext(p) = −i

√
π

p1

j̃0
ext(p). (5.21)

Let us recall that the direction of p1 is along the jet axis, which we choose to

be the z direction, therefore p1 = −p1 ≡ pz. We are only interested in the

2This is the (1 + 1) analog of the Chiral Magnetic Wave [98] – a gapless collective mode
induced by the axial anomaly in (3 + 1) dimensional hydrodynamics.
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contribution to (5.19) which is induced by the interaction with the external

source; therefore we can write the solution in momentum space as

φ̃(p) =
−m2φ̃ext(p)

−pµpµ +m2
= −m2

(
i

√
π

pz
j̃0
ext(p)

)
1

−pµpµ +m2
; (5.22)

this is the scalar field induced by the external source. We will need the Fourier

transform of (5.3) and it is given by

j̃0
ext(p) = i

2vpz
p2

0 − v2p2
z

. (5.23)

We also need j1
ext, which can be computed using the conservation equation

∂0j
0
ext = −∂1j

1
ext :

j̃1
ext(p) = −p

0

p1

j̃0
ext(p) = i

2vp0

p2
0 − v2p2

z

. (5.24)

The induced meson field in momentum space can now be writen down as

φ̃(p) =
−1

pµpµ −m2

2
√
πm2v

p2
0 − v2p2

z

. (5.25)

By taking the inverse Fourier transform of (5.25) and using the bosonization

relation (5.5), we can compute the induced vector current jµ(x).

So far we have been considering only the strong interaction dynamics that

within a jet was modeled by a (1 + 1) dimensionally reduced effective theory.

Since we know that all quarks possess in addition to color also the electric

charge, they couple to electromagnetic fields, with a different coupling constant

∼ e. The electromagnetic field of course is not confined within a string (unlike

the gauge field Bµ that we considered so far) and so can propagate in (3 + 1)

dimensions. Therefore we have to couple the total current jtot of the (1 + 1)

quarks to the (3 + 1) dimensional electromagnetic gauge field Aµ. Our system

thus resembles a quantum wire where the charges propagate only along the

wire but can radiate photons in (3 + 1) dimensions. We illustrate this in Fig.

5.3
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Figure 5.3: Electrically charged 1 + 1 current, resembling a quantum wire,
coupled to a 3 + 1 dimensional electromagnetic field.

The resulting theory has a familiar form

L = −1

4
FµνF

µν + jµtotAµ. (5.26)

The photon bremsstrahlung spectrum can now be evaluated using the standard

formula
dNγ

d3p
=

1

(2π)3

1

2p0
|j̃µtot(p)j̃∗tot,µ(p)|, (5.27)

where j̃tot is the Fourier transform of the current. In 3 + 1 dimensions, the

photon distribution will depend on the (3+1) Fourier transform of the current,

therefore we make the identification pµp
µ = p2

0 − p2
z = p2

⊥. The contribution

from the sea quarks (i.e. the quarks produced from the vacuum by the external

source) is given by

j̃µsea(p) = −eQf
1√
π
εµν(−ipν)φ̃(p) = −ieQf

εµνpν
p2
⊥ −m2

2m2v

p2
0 − v2p2

z

(5.28)

where Qf is the fraction of the electric charge for a given quark flavor. Note

that the spatial component is now in the z direction, so in (5.28) we should

take ε03 = −ε30=1. We should also add to (5.28) the contribution from valence

quarks – the original quark and antiquark moving back-to-back along the z
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direction with velocities v. Their current is given by

j0
val(x) = eQfδ(x)δ(y)[δ(z − vt)θ(z)− δ(z + vt)θ(−z)]

j3
val(x) = eQfδ(x)δ(y)[vδ(z − vt)θ(z) + vδ(z + vt)θ(−z)] (5.29)

We now take the Fourier transform

j̃0
val(p) = e

∫
d4xeip·xj0

val(x) =ε→0 e

∫ ∞
0

dteip
0t−εt (e−ipzvt − eipzvt)

= ieQf
2vpz

p2
0 − v2p2

z

. (5.30)

Similarly,

j̃3
val(p) = ie

2vp0

p2
0 − v2p2

z

. (5.31)

The total current that contributes to the photon production is given by the

sum of the sea and valence contributions:

j̃µtot(p) = j̃µsea(p) + j̃µval(p). (5.32)

From (5.27) and (5.32), we can now compute the photon spectrum. Let us

consider the case of Z0 decay to quarks; to do so we have to introduce the

probability for Z0 to decay to a certain flavor of quark. The final formula for

the photon spectrum is given by

dNγ

d3p
=

(
Γuu + Γcc

Γhadron

(
2

3

)2

+
Γdd + Γss + Γbb

Γhadron

(
1

3

)2
)

· 1

(2π)3

1

2p0
e2 4v2

(p2
0 − v2p2

z)
2
p2
⊥

(
1 +

m2

p2
⊥ −m2

)2

=

(
B2/3

(
2

3

)2

+B1/3

(
1

3

)2
)

1

(2π)3

1

2p0
e2 4v2

(p2
0 − v2p2

z)
2
p2
⊥

·
(

1 +
m2

p2
⊥ −m2

)2

(5.33)

where Γff is the decay width of Z0 to quark-antiquark of flavor f and Γhadron
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is the total decay width of Z0 to hadrons; the Particle Data Group [99] gives

the values B2/3 = 0.331 and B1/3 = 0.669.

The formula (5.33) is the main result of this chapter. Without the second

term in the parenthesis, it is just the usual formula for the bremsstrahlung

radiation off the original quark and antiquark produced by the Z0 decay. The

second term in the parenthesis is the contribution of the quantum back-reaction

of the vacuum – in other words, this term represents the photons produced

by the transient quark-antiquarks pairs created in the fragmentation of the

string. This term originates from the scalar propagator of the field φ which

in our model is stable, so we get a spectral density of an infinitely narrow

resonance – so there is a sharp resonance in photon production at p⊥ = m,

the frequency of the vacuum current oscillation. It is important to note that

in the soft photon limit of p⊥ → 0, the two terms in the parenthesis cancel

each other – this is in accord with the Low theorem stating that the very soft

photons can be produced only by the asymptotic states – the charged mesons.

In our case, the transient quarks and antiquarks are ultimately bound into

neutral mesons and so are not allowed to contribute to the photon spectrum

in the p⊥ → 0 limit.

5.4 Phenomenology of soft photon production

It is clear that our model is unrealistic in assuming the zero width of the

meson φ – all mesons that exist in the hadron spectrum possess non-zero

width. Moreover, the mass m in reality cannot be a fixed number, as the

scalar meson of our effective theory represents the entire hadron spectrum. To

make our model more realistic we thus have to i) consider a distribution in

m and ii) to account for a finite width of the mesons. To reach the objective

i), let us first consider the potential acting between the static fermions in the

Schwinger model that we use. For a fermion-antifermion pair separated by the

distance r, the potential is given by (see (2.102))

V (r) =
g
√
π

2

(
1− e−

g√
π
r
)
. (5.34)
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At large distances, the potential is screened by the produced pairs, but at

short distances r � m−1 the potential is linear,

V (r) ' g
√
π

2

g√
π
r =

g2

2
r =

π

2
m2r, r � m−1, (5.35)

with the string tension κ2 = π
2
m2. To introduce a distribution in m, let us

assume that the string tension fluctuates with a Gaussian probability distri-

bution [100]

P (κ2) =

√
2

π < κ2 >
e−

κ2

2<κ2> , (5.36)

where

< κ2 >=

∫ ∞
0

dκP (κ2)κ2. (5.37)

We use the mean value of the string tension < κ2 >= 0.9 GeV/fm suggested

by the lattice studies and Regge phenomenology.

To account for a finite decay width of the meson, we write the propagator

as
1

p2
⊥ −m2

→ 1

p2
⊥ −m2 + iγ2

(5.38)

where γ is an effective width. From (5.33) it is clear that the soft photon

production will be dominated by the longest living resonances. Using the

PDG [99] values for the masses and widths of the neutral isoscalar resonances,

we find the values of γ =
√
mΓ in the range of γ ' 8 × 10−4 GeV for the η

meson, and γ ' 8× 10−2 GeV for the ω meson. We will see that the value of

γ extracted from the fit to the DELPHI data on soft photon production falls

in this range.

The DELPHI Collaboration [90] measured the photons with transverse

momenta p⊥ < 80 MeV and total energies within 0.2 < Eγ < 1 GeV. We thus

substitute (5.38) in (5.33) and compute the total number of photons in this

kinematic domain

Nγ =

∫
dm

√
π

2
P (
π

2
m2)

(∫
d3p

dN

d3p

)
(5.39)
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Figure 5.4: The soft photon yield as a function of the jet momentum. The
circles are the DELPHI Collaboration data (see text), and the squares repre-
sent the calculations of soft photon production based on the Low theorem (see
(5.1)). The solid line is our result.

by integrating over the appropriate range of transverse momentum and energy.

Since γ is small, we can use

δ(x) = lim
ε→0

1

π

ε

x2 + ε2
(5.40)

and write∣∣∣∣1 +
m2

p2
⊥ −m2 + iγ2

∣∣∣∣2 =
p4
⊥ + γ4

(p2
⊥ −m2)2 + γ4

→
(

1 +
p4
⊥
γ4

)(
γ2 π

2m

)
δ(p⊥ −m)

(5.41)

We use the delta function to eliminate the integral over p⊥ in (5.39). We use

the standard value of the string tension < κ2 >= 0.9 GeV/fm and extract the

value of the parameter γ = 0.003 GeV by fitting to the measured experimental

photon yield. In Fig. 5.4 we show the result as compared to the DELPHI data

on the total number of photons as a function of the jet momentum [90]. One

can see that our mechanism describes the observed enhancement reasonably

well, with the fitted value of the parameter γ = 0.003 GeV within a reasonable

range expected for neutral isoscalar resonances.
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5.5 Discussion

We have modeled the propagation of a high energy quark through the confining

QCD vacuum by using an exactly soluble 1 + 1 dimensional massless Abelian

gauge model motivated and used in previous chapters. In this theory, we have

established the phenomenon of coherent oscillations of the axial and vector

(electric) charges coupled by the axial anomaly and induced by the propagating

high energy quark. These oscillations originate from the continuous production

of quark-antiquark pairs pulled from the vacuum to screen the axial and electric

charges of the external source. We have found that soft photons provide an

important signature of this mechanism, as it leads to a strong enhancement of

the soft photon yield. At the cost of introducing an adjustable parameter, our

model can then describe the DELPHI data on the soft photon production.

We readily admit that the use of a 1 + 1 model, and the procedure we use

to compare our results to the experimental data can be questioned. More-

over, our numerical result depends on an adjustable parameter that cannot

be determined within our model (even though its value appears reasonable).

Nevertheless, we hope that the described mechanism of string fragmentation

may be close to the one in real (3 + 1) QCD. It would be interesting to gen-

eralize our study to a (3 + 1) model as it would allow, for example, to address

the effects of spin and chirality on the fragmentation of a polarized quark (see

[101] for an attempt in this direction).
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Chapter 6

Further applications

One of the most important indications that an electric flux tube exists between

color charges comes from lattice studies. This presents a clear indication of

confinement. On the other hand, it has been observed that the transverse

profile of the electric field resembles that of the ANO vortex [102, 103]. This

supports further the assumption we presented above and which is known for a

long time, that the QCD string is Abelian. In previous chapters we assumed

that the Schwinger model describes the dynamics of fermions along the QCD

string when the endpoints move with relativistic speeds. We will argue how-

ever, based on the arguments given above in 2.2 that the dynamics of massless

fermions along the string is described in a similar way even for static endpoints.

Recently a measurement of the chiral condensate in the presence of static

color charges was performed [104]. The chiral condensate was found to be

suppressed around the string, which indicates a partial restoration of chiral

symmetry in the confining background. Using a probabilistic model of the

fluctuating “thin” string [105] (the “thin” string is 1+1 dimensional, described

by the Schwinger model) we can describe reasonably well the result in [104].

6.1 Probabilistic fluctuation of the thin string

We will argue that the partial restoration of chiral symmetry observed in the

lattice study mentioned above, can be described if one assumes the presence
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of a “thin” (1 + 1) dimensional string with its position fluctuating in the

transverse plane as shown in Fig. 6.1. Let us denote the physical (3 + 1)

Figure 6.1: Thin string fluctuating in the transverse plane.

dimensional electric field measured on the lattice by E3+1
phys(xt), where xt is the

transverse coordinate, and the electric field along the thin string in the (1 + 1)

description by E1+1. We assume that both descriptions of the string should

yield the same string tension, so the energy per unit length of the string should

be equal:

1

2

∫
d2xt(E

3+1
phys(xt))

2 =
1

2
(E1+1)2 (6.1)

Let us now assume that P (xt) is the probability for finding the thin string

in the transverse plane at a position xt. From the condition (6.1), we can

constrain this probability distribution:

(E3+1
phys(xt))

2 = (E1+1)2P (xt). (6.2)

Since ∫
d2xtP (xt) = 1, (6.3)

the requirement (6.1) is fulfilled.
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6.2 Chiral symmetry restoration

Now we can use the lattice data on the distribution of electric field to extract

the probability distribution (6.2). The knowledge of the dependence of the

chiral condensate in the 1 + 1 dimensional theory on the electric field together

with the probability distribution will then allow us to predict the distribution

of the chiral condensate around the confining flux tube. Recall the bosoniza-

tion relation

ψ̄ψ = − geγ

2π3/2
cos(2

√
πφ), (6.4)

where γ ≈ 0.5772 is the Euler number.

The chiral condensate can be evaluated through the Feynman-Hellmann

theorem by differentiating the energy of the ground state in the presence of

an electric field E1+1 with respect to the fermion mass m, in the chiral limit

m = 0 [43] (see (2.91)):

〈
ψ̄ψ(x)

〉
E1+1 = − geγ

2π3/2
cos

(
2πE1+1

g

)
. (6.5)

where x is the longitudinal coordinate. We see that the value of the condensate

is constant along the string and depends only on the value of the background

electric field.

Let us now assume that the thin string fluctuates in the transverse plane

(see Fig. 1), and the corresponding probability distribution is P (xt) normal-

ized by (6.3). If the effective radius of the string is a, then the probability to

find a string at a given transverse position is given by the integral of P (xt)

over the string area, i.e. πa2P (xt). If the string with its electric field is present

at a given xt, it will modify the value of the chiral condensate according to

(6.5). If not, then there will be no electric field and the chiral condensate will

not be modified, so within the Schwinger model it would be given by

〈
ψ̄ψ
〉

(E1+1 = 0) ≡
〈
ψ̄ψ
〉

0
.

Therefore in this picture the chiral condensate in the transverse plane can be
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computed as

〈
ψ̄ψ(xt)

〉
=

(
1− πa2P (xt)

) 〈
ψ̄ψ
〉

0

+ πa2P (xt)
〈
ψ̄ψ
〉
E1+1 . (6.6)

We will see below that from the fit to the lattice data the value of the effective

radius of the string a appears comparable to the lattice spacing, i.e. the string

is indeed “thin.”

In [104], the authors compute on the lattice the following observable that

quantifies the effect of confining flux tube on the chiral condensate:

r(xt) =
〈q̄q(xt)W 〉
〈q̄q〉 〈W 〉

, (6.7)

where W is the Wilson loop operator of the static quarks. In our model, this

quantity is given by

r(xt) =

〈
ψ̄ψ(xt)

〉〈
ψ̄ψ
〉

0

. (6.8)

The suppression of the chiral condensate has been described recently in terms

of the σ meson cloud surrounding the string [106]. To evaluate this quan-

tity from (6.6), we now need an independent information on the probability

distribution P (xt). Since P (xt) is the probability to find a longitudinal chro-

moelectric field at a given point xt, the most direct source of information about

it is the profile of chromoelectric field in the confining flux tube. There have

been many lattice studies of the profile of the chromoelectric field between

two static color charges. Here we use the recent lattice results of [103] (see

also [107]). The measured chromoelectric field, as a function of the transverse

coordinate, was shown to be described well by the following parameterization:

E(xt) =
φ

2π

µ2

α

K0[(µ2x2
t + α2)1/2]

K1(α)
, (6.9)

where the values of the parameters above depend on the lattice coupling con-

stant β = 2N/g2 and the number of “cooling steps” used to remove the short

wavelength fluctuations. In [103], the parameters µ, φ and α were computed
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for four values of the coupling. In Fig. 6.2, we plot the profile of the electric

field as a function of the transverse coordinate, computed at β = 6.01 with 10

cooling steps in [103]. We still have to fix the value of a in order to compare

0.2 0.4 0.6 0.8 1.0 1.2
xt HfmL

0.1

0.2

0.3

0.4

0.5

0.6

EphysHxtL HGeVL

Figure 6.2: The longitudinal chromoelectric field between two static charges
as given by (6.9).

with data. By choosing the same values of parameters as above and by fitting

to the lattice data [104], as shown in Fig. 6.3, we get a = 1.12alatt. alatt is the

lattice spacing which also depends on the coupling. We have chosen the value

of β which gives the best fit and smallest a.

6.3 Anomaly inflow

Anomaly inflow was introduced by Callan and Harvey [108]. Let’s consider a

complex scalar field

φ(x) = φ1(x) + iφ2(x) = f(x)eiθ(x), (6.10)

with vacuum expectation value 〈φ〉 = µ 6= 0. This is similar to the Abrikosov-

Nielsen-Olesen string considered above, in 2.2. We assume that the string axis

is along the z direction. We work in cylindrical coordinates (ρ, φ, z). Due to

the symmetry of the problem, we assume that f = f(ρ). In four dimensions,
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Figure 6.3: The chiral condensate around a confining flux tube as a function
of the transverse distance. The solid line is the result of our model based on
(6.8). The squares are the lattice data (see text).

the boundary conditions are still the same as above, namely

f(ρ) →
ρ→0

0, f(ρ) →
ρ→∞

µ, θ →
ρ→∞

nφ. (6.11)

We in turn assume the following coupling between the scalar and fermions

Lf = ψ̄i/∂ψ − ψ̄f(ρ)eiγ
5θψ. (6.12)

From an index theorem [109], the Dirac equation has |n| chiral zero modes,

which move along the string (along −z direction for n > 0 and +z direction

for n < 0). In [108] an explicit solution of these zero modes was given and it

was shown that their wavefunction falls off exponentially away from the string

in the transverse direction. The solution is similar to (2.43). This can be

understood heuristically to be a result of fermions acquiring mass outside the

string, but they remain massless inside. We can write the effective action for

these zero modes

S =

∫
d2x ψ̄γµ(i∂µ − gAµ)

1− γ̄
2

ψ, (6.13)
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where γ̄ = γ0γ3 and g is the coupling constant. The theory in (6.13) is

anomalous with consistent anomaly given by1

∂µJ
µ =

g

4π
εµν∂µAν . (6.14)

The indices µ, ν take values 0, 3. We will only consider the Abelian case in

the following. By consistent here we denote currents which are obtained by

varying the action with respect to the gauge field.

The anomaly we mentioned above breaks conservation of charge along the

string. The theory in the bulk has to be gauge invariant and this is achieved

by the so called anomaly inflow. In order for the charge to be conserved, there

should be an inflow of charge from the bulk to the string. The diagram in Fig.

6.4 contributes to such a process and it can be shown to give the following

inflow current [108, 110, 111]

X
J Μ

¶ΝΘ

AΛ

Figure 6.4: Feynman diagram contributing to the vacuum current.

〈Jµ〉 =
g

8π2
εµνκλ∂νθFκλ. (6.15)

(In the case of a non-Abelian gauge group, we have to consider diagrams with

two gauge field external lines. See [111] for an explicit calculation.) The

1the theory also has gravitational anomalies, but we don’t consider them here
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anomaly equation (6.14) is derived by requiring

[∂x, ∂y]θ = 2πδ(x)δ(y), (6.16)

(in our conventions ε0123 = ε03 = 1) and the solution is θ = φ.

6.4 Electric charge distribution of the jet

If the QCD string has the form of an axionic string, as proposed for example in

[112, 113], there could be interesting consequences. The existence of the inflow

current (6.15), could result in transverse modification of charge distribution

of jets for example. Let us consider again the case of quark di-jet, where fast

moving quark-antiquark in the z-direction, have charge g and velocity v (see

Fig. 6.5). We work in cylindrical coordinates (ρ, φ, z). The fields as a function

B
J Μ

Figure 6.5: Inflow current in the di-jet event.

of time, distance ρ from the string, are given by [114] (for one charge)

E1(t) = g
γρ

(ρ2 + γ2v2t2)3/2
,

B2(t) = vE2(t),

E3(t) = −g γvt

(ρ2 + γ2v2t2)3/2
, (6.17)

where γ = (1− v2)
−1

. We choose t = 0, the time when the charge density in

the transverse plane of the string is observed. We see that the only component

of the field strength that contributes is Fρz = −B2 cosφ. Using (6.15), one
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might expect

j0 = − g

8π2

1

ρ
(− cosφB2(t = 0)) =

vγg2

8π2

1

ρ3
cosφ. (6.18)

It should be noted that the way we have defined the coupling constant g, it

will be proportional to the electromagnetic coupling e (this is not the two

dimensional coupling we showed in the previous chapters). Therefore, the

effect in (6.18) will be suppressed as ∼ e2.

6.5 Discussion

From Fig. 6.3, one can see that our simple model of fluctuating thin string

describes the lattice results quite well. This lends additional support to the

dual Meissner mechanism of confinement, and suggests that the longitudinal

dynamics along the core of the string can be adequately described by the

dimensionally reduced (1 + 1) dimensional model. In the future, it would be

interesting to extend this approach to nonabelian strings.

Another promising direction is to apply our findings to the phenomenology

of nonperturbative jet fragmentation. We have already observed that the

longitudinal momentum distributions within a jet are adequately described by

the (1 + 1) string model (see chapters 3, 4 and 5). The Fourier transform of

the transverse coordinate distribution of the “thin string” extracted from the

lattice may allow to describe also the nonperturbative transverse momentum

distribution inside the jet; this introduces the “intrinsic” transverse momentum

kt ∼ 1 GeV as required by the data.

It would also be interesting for experimentalists and lattice QCD experts

to study the current inflow in the presence of the QCD string. This could lend

more support on the claim that the string is axionic.
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Chapter 7

Conclusion

In this thesis we have revisited a very well known model, the Schwinger model,

in order to study the real-time dynamics of the QCD string, multi-particle

production, parton to hadron transition (hadronization) and the connection

between confinement and chiral symmetry breaking. Our motivation for us-

ing this model is not only the fact that it shares with QCD many important

features such as confinement, θ-vacuum, etc. We motivate it further by ac-

cepting a specific model of the QCD vacuum, the dual superconductor theory.

Using the procedure of Abelian projection the QCD string can be shown to be

Abelian. Dimensional reduction is justified from the localization of fermionic

zero modes along the string and also from the consideration of very energetic

jets.

In chapter 3 we saw, in coordinate space, that the scenario of quark-

antiquark moving back to back, results in the string stretching between them

to break. From the index theorem in 1+1 dimensions, we observed that parti-

cle creation, or the form of the string, is determined by the anomaly. In order

to make contact to the experimental data, we introduced two parameters to

the theory, an infrared scale Q0 assumed to be the scale where the pQCD cas-

cade stops and the mass of the final hadrons m. The result agrees reasonably

well with experiment for physically justified values of these parameters.

One of the main motivations for developing a dynamical model of string

fragmentation is its applicability in heavy ion physics. An important tool for
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studying the properties of the quark-gluon plasma is the effect the medium

has in hard probes. In the simplest example of the medium consisting of static

color sources (see chapter 4), we were able to explain some aspects of the mod-

ification of fragmentation functions of jets, measured by CMS collaboration.

It was shown that the Landau-Pomeranchuk-Migdal effect can also be derived

nonperturbatively. Also, the nonperturbative aspect of final gluon radiation

could be important in explaining the suppression of intermediate transverse

momentum hadrons.

Using this model, in chapter 5, we were able to address a long lasting puzzle

in hardon physics - the soft photon yield in high energy processes, with hadrons

in the final state, is much higher than expected from Low theorem. As the

quark fragments, an electromagnetic current is created from the vacuum, which

serves as a source of soft photons. We showed that this source, by considering

the fluctuations of the string tension, can be one of the mechanisms giving the

excess of observed photons.

We also studied the recently observed phenomenon in lattice QCD of the

fact that the chiral symmetry is partially restored along the QCD string. The

transverse spread of the chromoelectric field between static quarks is viewed

as defining the probability distribution for the string’s transverse location.

We get the probability distribution from measurements on the lattice of the

electric field profile between static quark-antiquark pair and we calculate the

chiral condensate. The result agrees well with data if we assume the effective

width of the string to be of the order of lattice spacing. We also speculated on

the possibility that the QCD string may resemble an axionic string and this

could lead to observable effects on electric charge distribution of jets.

It would be interesting in the future to have a hybrid approach, where

the DGLAP evolution, together with induced radiation and the dynamical

string fragmentation are included. It would also be interesting to systemat-

ically derive the dimensionally reduced theory. One could then describe the

nonpertrubative contribution to the transverse momentum of the jet. An-

other application would be for example the effects of spin and chirality on the

fragmentation of a polarized quark.
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Appendix A

Conventions and solution of

equation of motion

A.1 Conventions

We denote the coordinate 2-vector as

xµ = (x0, x1) = (t, x). (A.1)

The metric in Minkowski space has the following signature

gµν = diag(−1, 1). (A.2)

We make the following choice of the gamma matrices

γ0 = σ2, γ1 = iσ1, γ5 = γ0γ1 = σ3, (A.3)

where σi are the Pauli matrices, defined in the usual way

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
(A.4)
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Dirac spinors are denoted as

ψL =

(
ψ1

0

)
, ψR =

(
0

ψ2

)
(A.5)

Where L,R means left and right chirality, which follows from

γ5ψL,R = ±ψL,R. (A.6)

A.2 Green’s function

We consider the Klein-Gordon equation with a source

(�+m2)φ(x) = j(x) (A.7)

The solution of (A.7) can be constructed by first computing the Green’s func-

tion (retarded propagator) DR, which satisfies

(�+m2)DR(x) = −iδ(2)(x). (A.8)

The general solution of (A.7) is then given by

φ(x) = φ0(x) + i

∫
d2x′DR(x− x′)j(x′), (A.9)

where (� + m2)φ0(x) = 0. In momentum space, the retarded propagator is

given by

D̃R(p) =
i

p2 −m2
. (A.10)

In coordinate space

DR(x) =

∫
d2p

(2π)2
e−ip·x

i

p2 −m2

=

∫ ∞
−∞

dp

2π
eipx

∫ ∞
−∞

dp0

2πi

−1

(p0 − Ep)(p0 + Ep)
e−ip

0x0 , (A.11)
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where we denote the spatial component of the momentum p1 = p and Ep ≡√
p2 +m2. We perform the contour integral over p0, using the usual prescrip-

tion

DR(x) =

∫ ∞
−∞

dp

2π
eipx

1

2Ep

(
−eiEpx0 + e−iEpx

0
)
. (A.12)

We make the change of variables p = m cosh y,

DR(x) = −
∫ ∞
−∞

dy

4π

[
eim(x sinh y+x0 cosh y) − eim(x sinh y−x0 cosh y)

]
. (A.13)

For (x0)2 − x2 > 0 we can write

x sinh y ± x0 cosh y = ±
√

(x0)2 − x2 cosh
(
y ± tanh−1 x

x0

)
, (A.14)

therefore,

DR(x) = −
∫ ∞
−∞

dy

4π

[
eim
√

(x0)2−x2 cosh y

−e−im
√

(x0)2−x2 cosh y

]
θ((x0)2 − x2). (A.15)

We have made the change of variables y ± tanh−1 x
x0
→ y. The result (A.15)

can be written as

DR(x) = −i
∫ ∞

0

dy

π
sin[m

√
(x0)2 − x2 cosh y]θ((x0)2 − x2). (A.16)

Using identity 8.411, number 11 in [115], we get

DR(x) = − i
2
J0(m

√
(x0)2 − x2)θ((x0)2 − x2)θ(x0). (A.17)

Outside the lightcone, (x0)2 − x2 < 0, the Green’s function is proportional to

K0(m
√
x2 − (x0)2).
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A.3 Solution of inhomogeneous Bessel equa-

tion

We will solve (3.13) assuming Lorentz invariance. Let’s define

τ =
√
t2 − x2 (A.18)

We then have φ = φ(τ). The equation (3.13) becomes

φ′′ +
1

mτ
φ′ + φ = −φext, (A.19)

where the primes indicate derivatives with respect to mτ . This equation is

just an inhomogeneous Bessel equation of order zero. The particular solution

of this equation is

φp(x) =
π

2

∫ mτ

0

dξ ξ [J0(ξ)Y0(mτ)− J0(mτ)Y0(ξ)] (−φext(ξ)). (A.20)

In the case of quark-antiquark moving back to back in the lightcone, in the

region t2 − z2 > 0, φext = −
√
π, therefore

φp(x) =
√
π
π

2

{
mτJ1(mτ)Y0(mτ)− J0(mτ)

[
2

π
+mτY1(mτ)

]}
(A.21)

using

Jn(x)
dYn
dx
− dJn

dx
Yn(x) =

2

π

1

x
, (A.22)

we can write

φp(x) =
√
π
π

2

{
− 2

π
J0(mτ) +mτ

1

mτ

2

π

}
=
√
π[1− J0(mτ)]. (A.23)

A.4 Compactness of the scalar field

In this section, following [116], we will see that the scalar field φ is compact.

Using the expression for the axial charge and bosonization relations, we can

96



write

Q5 =

∫
dx j0

5 =

∫
dx ψ†γ5ψ =

1√
π

∫
dx ∂0φ. (A.24)

The conjugate momentum of the field φ is

Πφ = ∂0φ, (A.25)

and from the usual equal time commutation relation between the field and its

momentum

[φ(x0, x),Πφ(x0, y)] = iδ(x− y), (A.26)

we get

[φ(x), Q5] =
i√
π
. (A.27)

This means that the axial charge is a generator of translations of the field φ,

namely

eiα
√
πQ5φe−iα

√
πQ5 = φ+ α, (A.28)

for some given α. The action of exp(inπQ5), for n integer, on a fermion leaves it

unchanged (up to an unphysical sign). This means that the physically distinct

states for the bosonic fields are only those in the interval φ ∈ [0,
√
π], what we

had to show.
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Appendix B

U(1) magnetic monopoles

In this appendix we briefly review the concept of the Abelian magnetic monopoles,

mostly following [26, 117].

Let’s first consider the source free Maxwell equations. They can be com-

bined into two complex equations

∇× (E + iB)− i ∂
∂t

(E + iB) = 0,

∇ · (E + iB) = 0. (B.1)

These equations are invariant under the following transformations

E + iB → E′ + iB′ = eiα(E + iB). (B.2)

If we introduce electric sources to Maxwell’s equations, the above symmetry

is broken. This symmetry is restored however if we assume that there are

magnetic sources as well. The charged object giving rise to these sources, in

analogy with its electric counterpart, is called a magnetic monopole and gives

rise to a Coulomb like magnetic field

B =
QM

4πr2
r̂ =

g

r2
r̂. (B.3)

We have denoted the magnetic charge by g and r̂ ≡ r/|r| is the unit vector

along the radial direction. We write the electric field of the electric monopole
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as

E =
QE

4πr2
r̂ =

e

r2
r̂, (B.4)

where e is the electric charge.

Let’s assume that there is a point-like magnetic monopole at the origin of

the coordinate system

ρM = 4πgδ(3)(x). (B.5)

The magnetic field, away from the sources can still be written as curl of the

vector potential, B = ∇×A. Let’s consider the following gauge potential in

spherical coordinates1,

A = g
1− cos θ

r sin θ
φ̂. (B.7)

It gives rise to the magnetic field

B = ∇×A =
1

r sin θ

[
∂

∂θ
(sin θAφ)− ∂Aθ

∂φ

]
r̂ +

1

r

[
1

sin θ

∂Ar
∂φ
− ∂

∂r
(rAφ)

]
θ̂

+
1

r

[
∂

∂r
(rAθ)−

∂Ar
∂θ

]
φ̂

=
1

r sin θ

[
∂

∂θ
(sin θAφ)

]
r̂ = g

r̂

r2
, (B.8)

which is the field of the monopole. We notice that the gauge potential (B.7)

is singular at the negative z axis (or θ = π), therefore it is not defined there.

By choosing different coordinates, the singularity can be shifted at different

positions, but we cannot construct a singularity free field everywhere in R3 \
{0}. This can be easily shown in the following way. If we integrate the

magnetic field over a closed sphere S2 with the monopole at the center, using

Gauss’ law, we get∫
S2

dS ·B =

∫
B2

d3x ∇ ·B =

∫
B2

d3x ρM(x) = 4πg, (B.9)

1The spherical coordinates (r, φ, θ) are given in terms of Cartesian coordinates

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ. (B.6)
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where ∂B2 = S2. On the other hand, using Stokes’ theorem∫
S2

dS ·B =

∫
S2

dS · (∇×A) =

∫
∂S2

dx ·A = 0, (B.10)

because ∂S2 = ∅. This is in contradiction with the above result, which means

that A must be singular. Since the potential we chose above is not defined

everywhere, we need at least two expressions of the gauge potential at different

patches of space. We consider

A+ = g
1− cos θ

r sin θ
φ̂, θ < π − ε : U+

A− = g
−1− cos θ

r sin θ
φ̂, θ > ε : U−. (B.11)

The patches U± are shown in Fig. B.1. Potentials A± are well defined in U±.

z

Ε

U-

U+

Figure B.1: The choice of the gauge potential in different patches of space.

In the overlap region U+ ∩ U− both potentials are valid. Since they give the

same magnetic field, they should be related by a gauge transformation

A− = A+ + ∇Λ. (B.12)
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By using the explicit expressions (B.11), we get

A− −A+ = ∇Λ. (B.13)

In other words,
−2g

r sin θ
=

1

r sin θ

∂Λ

∂φ
, (B.14)

which gives,

Λ = −2gφ. (B.15)

Let’s consider a particle with charge e, coupled to the gauge field. Quantum

mechanically, the particle is described by wavefunctions ψ± in regions U±

respectively. Similarly as for the gauge field, the wavefunctions in two different

patches are related by the gauge transformation

ψ− = eieΛψ+. (B.16)

Since the patches intersect along the equator, both wavefuctions apply. Going

around the equator

φ = 0 : ψ− = ψ+,

φ = 2π : ψ− = e−i2eg2πψ+, (B.17)

and requiring that the wavefunction be singlevalued, we get the condition

2eg = n, n = 0,±1,±2, . . . . (B.18)

This is the well known Dirac quantization condition.
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