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Abstract of the Dissertation

Measurement of the azimuthal anisotropy for
charged particle production in Pb+Pb

collisions at
√
sNN=2.76 TeV and in p+Pb

collisions at
√
sNN=5.02 TeV with the ATLAS

detector at the LHC

by

Soumya Mohapatra

Doctor of Philosophy

in

Physics

Stony Brook University

2013

In this work, detailed measurements of the pT, η and centrality de-
pendence of the flow harmonics vn in Pb+Pb collisions at

√
sNN =

2.76 TeV with the ATLAS detector at the LHC are presented. Con-
sistent values of harmonics v2-v6 are measured the via event-plane
and two-particle correlation methods. Dipolar flow v1 associated
with initial dipole asymmetry is measured via two-particle correla-
tions. The long-range correlations in the two-particle correlations
such as ridge and the cone are shown to be accounted for by col-
lective flow. Sizable values of the odd harmonics especially v3 are
measured that indicate significant event-by-event (EbyE) fluctua-
tions in the initial geometry.

The nature of the initial collision geometry and the hydrodynamic
response to it are investigated by measuring the EbyE distributions
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for harmonics v2-v4 , as well as correlations between two and three
event-planes Φn of different orders. These measurements show the
presense of considerable EbyE fluctuations in the initial geome-
try as well as the importance of non-linear hydrodynamic response
of the medium to these fluctuations. By measuring the EbyE vn
distributions separately for particles with pT > 1 GeV and with
pT ∈ (0.5, 1.0) GeV, the hydrodynamic response is shown to fac-
torize into a function of pT and a function of the initial geometry.
The EbyE vn distributions are shown to contain additional infor-
mation than the multi-particle cumulants.

Two-particle correlations in p+Pb collisions at
√
sNN = 5.02 TeV

are measured. Long range correlations are observed along ∆η at
∆φ ∼ 0 that increase with increasing event-activity. A symmetric
long range correlation is also shown to exist at ∆φ ∼ π which is
obtained by subtracting out the expected contribution from recoil-
ing dijets. These correlations are shown to be similar to those seen
in Pb+Pb collisions suggesting similar physics in both systems.
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Chapter 1

Introduction

The goal of the thesis work presented here is to study the properties of strongly
interacting matter (QCD1 matter) under conditions of extreme temperature
and pressure that is produced in ultra-relativistic heavy-ion collisions. Fig-
ure 1.1 shows a schematic diagram of the expected phases of QCD matter as a
function of temperature (T ) and baryochemical potential2 (µB). On this plot,
the vacuum is at the origin T = 0, µB = 0 and ordinary nuclear matter at3

T ≈ 0 MeV and µB ≈ 900 MeV (the mass of a nucleon). The lower left region
corresponds to matter at low temperatures and µB. In this phase the quarks
and gluons are confined within color neutral hadrons. Since the hadrons are
color neutral, the interactions are relatively weak and this phase behaves like
a gas, and is thus called the “hadron-gas phase”. On the other hand if the
temperature is increased keeping µB constant then a different phase of mat-
ter commonly called the Quark Gluon Plasma (QGP) [1–3] is expected to be
reached. In this phase the quarks and gluons are not confined within colorless
hadrons, but instead form the degrees of freedom. The temperature at which
this de-localization takes place can currently be estimated via numerical lattice
QCD calculations [4–6]. Such computations show that there is a large increase
in the energy density ǫ(T ) over a temperature range of T ∼160–190 MeV as
shown in Fig. 1.2. This large change in energy density indicates a change in
the number of degrees of freedom from the three light pions which dominate
the thermodynamics at low temperature to quarks and gluons (having much
more degrees of freedom) at high temperature [5].

The lattice calculations shown here are done at µb = 0, and show that while
the transition is sharp, it is not discontinuous, and thus is a cross-over rather
than a phase transition. However at some finite value of µb, the crossover

1QCD stands for Quantum Chromodynamics, the theory of strong interactions.
2Baryochemical potential is the amount of energy needed to add a baryon to the system.
3A temperature of 273K is equivalent to 23.5 meV.
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is conjectured to change into a first order phase transition, with the energy
density exhibiting discontinuity at the phase boundary, implying the presence
of a critical point in the QCD phase diagram [7].

Figure 1.1: Schematic phase-diagram of QCD matter. Solid lines indicate
phase boundaries between the different phases. The solid circle indicates the
critical point for the hadron-gas to QGP phase transition. Note that the exis-
tence of a critical point is conjectured, its existence has not been established.
Figure taken from [8].

1.1 Recreating QGP in the laboratory via rel-

ativistic heavy-ion collisions

The QGP phase is believed to be the state of the universe a few micro-seconds
after the Big-Bang, when the energy density and temperatures were high
enough for this phase to exist, after which the universe cooled down suffi-
ciently for nuclei to form. However, it is possible to recreate QGP in the
laboratory by colliding heavy nuclei at relativistic energies. The heavy-ion col-
lisions are thus often nicknamed “little-bangs”. Such collisions have been done
with ever increasing energies at various accelerator facilities such at the Al-
ternating Gradient Synchrotron (AGS), the Super Proton Synchrotron (SPS)
and the Relativistic Heavy Ion Collider (RHIC).

At RHIC several different types of colliding systems such as Au+Au, Cu+Cu,
U+U as well as asymmetric large-small systems such as d+Au and p+Au,

2



Figure 1.2: Energy density and pressure scaled by the fourth power of temper-
ature as a function of temperature from Lattice-QCD calculations (at bary-
ochemical potential µb = 0). The arrow on the right indicates the value in
the ideal gas limit. The large increase in the energy dencity in the T ∼160–
190 MeV range is indicative of a crossover from a hadron-gas phase to QGP
phase. Figure taken from [6].

which serve as baseline measurements for the heavy-ion collisions, were stud-
ied at varying collision energies per nucleon pair4 (

√
sNN=7–200 GeV). These

measurements gave compelling evidence of the existence of the QGP phase
and greatly pushed forward our understanding of its properties.

Finally with the recent arrival of the Large Hadron Collider (LHC) into
the picture, TeV scale collision energies have been reached. This coupled with
the next generation detectors at the LHC have made possible several precise
measurements that can further improve the understanding of the properties
of the QGP. At the LHC the colliding systems include Pb+Pb at

√
sNN =

2.76 TeV and p+Pb at
√
sNN = 5.02 TeV, the analysis of which is presented

in this work.

1.1.1 A simple picture of heavy-ion collisions

In this section and the next, a simplistic view of heavy-ion collisions is pre-
sented. This was the picture at the beginning of RHIC experiments and has
evolved considerably since then. However a chronological approach that shows
how the understanding of heavy-ion collisions developed in the last decade sets
the stage more appropriately for the measurements presented here.

4√sNN is the sum of energy per nucleon of the first nucleus and energy per nucleon of
the second nucleus, in the center of mass frame of the colliding nuclei.

3



Figure 1.3: Simplified description of the geometry for a heavy-ion collision.

Figure 1.3 shows a schematic description of the geometry in a heavy-ion
collision. The beam-axis i.e. the initial direction of motion of the nuclei is
taken to be the z-direction. The plane formed by the beam axis and the
vector connecting the centers of the two nuclei is called the reaction plane.
The impact parameter bimp is defined as the distance between the centres
of the two colliding nuclei in the transverse (i.e. x-y) plane. Not all the
nucleons participate in a collision, the number of “participating nucleons” is
called as Npart while the number of non-participating “spectator nucleons” is
called as Nspec. The total number of binary nucleon-nucleon collisions is called
Ncoll. Events with smaller bimp i.e. more overlap between colliding nuclei, and
thus having larger Npart are called central collisions and with larger bimp (and
correspondingly smaller Npart) are called peripheral collisions. Experimentally
centrality is measured by the multiplicity or transverse energy in a particular
sub-detector and then defined in percentile classes. For example events in
“(0-5)% centrality class” consists of the 5% of all events having the highest
multiplicity (or ET) while “(90-100)% centrality class” consists of 10% of all
events with the lowest multiplicity. The experimentally measured centrality
values are then related to theoretical quantities such as the Npart and bimp

by some model dependent parameterizations. Typically the sub-detector used
to determine the centrality classes is different than those used in the physics
analysis, this minimizes artificial auto-correlations.

The initial overlap geometry between the colliding nuclei has an elliptical
shape (Fig. 1.3) and can be characterized by its eccentricity given by [9, 10]:

ǫ =
〈y2〉 − 〈x2〉
〈y2〉+ 〈x2〉 (1.1)

where, x and y are the transverse positions of the participating nucleons about

4



the center of mass, with the x-axis along the reaction plane, and the averaging
is done over all participating nucleons.

1.1.2 Time evolution of ultra-relativistic heavy-ion col-
lisions

z

t

Incoming Nuclei

Collision

Thermalization

QGP

Hadronic rescattering
Tc

Free streaming

Figure 1.4: Schematic diagram representing the different stages of a heavy-
ion collision. The horizontal axis represents the beam-axis (z-axis), while the
vertical axis represents time. Figure adapted from [11].

The ultra-relativistic heavy-ion collisions (henceforth called heavy-ion col-
lisions) go through several successive stages before the final produced particles
are measured. The various expected stages are shown schematically in Fig. 1.4
and can be roughly categorized as the following:

1. Incoming nuclei: these are Lorentz contracted by large factors in the lab
frame. For example, in the Pb+Pb collisions at

√
sNN=2.76 TeV at the

LHC, the energy per nucleon is
√
sNN/2 = 1.38 TeV which corresponds

to a Lorentz factor γ ∼ 1400. In other words, the nuclei are contracted
by a factor of ∼ 1400 along the beam direction. Thus they look like
pancakes rather than spheres.

2. Collision : the time-scales of collisions are related to the momentum
transfer Q as5 t ∼ 1/Q. Thus all the hard scatterings that produce
high pT jets, heavy quarks and vector bosons takes place at the initial

5This follows from the uncertainty principle.
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stages of the collision (t . 0.2 fm). This is followed by the production of
softer particles with pT ∼ O(1) GeV. This is when most of the entropy
(multiplicity) is produced in the collision.

3. Thermalization : The produced matter is initially not in thermal equi-
librium. However the produced partons interact among themselves and
reach local thermal equilibrium fairly quickly. The data suggests that
the thermalization is reached by t ∼ 1 fm [12, 13].

4. QGP: The thermalized QGP is produced which expands outward due to
the large pressure difference inside the matter and the vacuum outside.
These pressure gradients are anisotropic, due to the elliptic nature of
the average overlap geometry between the colliding nuclei as well as
because of fluctuations in the initial energy distribution, resulting in
the expansion being asymmetric. This stage of the collision has been
shown to be very well described by relativistic hydrodynamics with a very
small shear-viscosity to entropy-density ratio6 η/s [14–16]. While the
bulk medium expands, the hard scattered partons produced in the very
initial stages of the collision traverse through it, exhibiting strong energy
loss and getting “quenched”. This phenomena discovered at RHIC is
commonly termed as “jet-quenching” [17–22].

5. Hadronic rescattering: As the QGP expands and cools down, the transi-
tion (or crossover) to a hadron-gas phase takes place. In this stage, the
temperatures are low enough to fix the relative chemical abundances of
the various species, however the densities are still large enough for the
produced particles to continue scattering among themselves, i.e. chemi-
cal equilibrium is not maintained but kinetic equilibrium is. Throughout
this stage the matter continues to expand and cool down.

6. Free streaming: Finally the particles are sufficiently separated to be
treated as free particles. They stream freely to the detector.

1.1.3 Properties of QGP measured at RHIC

As explained in the last section, the asymmetry in the initial geometry gets
mapped into anisotropies in the final distributions of the particles. The av-
erage initial geometry is elliptic with the strongest pressure gradients along
the reaction-plane (minor axis in Fig 1.3). Thus the expansion is strongest
along this direction and the final azimuthal distributions of the particles have

6The symbol η is used to describe both shear-viscosity as well as pseudorapidity.
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the largest density along this “in-plane” direction and lowest density perpen-
dicular to it. Starting from this elliptic overlap geometry, it is reasonable to
parameterize the final distributions of particles as:

dN

dφ
∝ 1 + 2v2 cos 2(φ− Φ) + 2v4 cos 4(φ− Φ) + ... (1.2)

where, vn = 〈cosn(φ−Φ)〉 and Φ is the azimuthal direction with the maximum
particle yield. The vn are commonly called flow harmonics to signify that they
develop due to hydrodynamic expansion, in particular v2 is called elliptic flow
harmonic. Since the overlap region is elliptical and the final distribution of
particles must have the symmetries of the initial geometry, only even harmonics
of the form v2n are present in the final distribution. Furthermore in this
situation, Φ coincides with the minor axis of the elliptic overlap region (i.e.
the reaction-plane). However, as will be shown later, this simple picture is not
the actual case. The parameter v2 is called the “elliptic flow” parameter and
is expected to be largest among the v2n due to the elliptic shape of the overlap
geometry.

RHIC Energies
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2v
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(b) (PHENIX)-π++π

 (PHENIX)-+K+K
 (STAR)S

0K

 (PHENIX)pp+
 (STAR)Λ+Λ

 (STAR)
+

Ξ+-Ξ

Figure 1.5: Elliptic flow as a function of pT and KET measured at RHIC for
three meson and three baryon species. Figure taken from [23].

The presence of large elliptic flow in Au+Au and Cu+Cu collisions was
one of the major discoveries at RHIC [24–27]. Figure 1.5 shows the v2 as
a function of transverse momentum pT =

√

p2x + p2y and transverse kinetic

energy KET =
√

m2 + p2T for several particle species measured at RHIC [23].
The v2 values values become as large as 0.2 at intermediate pT of ∼ 3 GeV.
Note that a v2 of 0.2 implies the particle yield in the in-plane direction is larger
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than in the out of plane direction by a factor of (1+2×0.2)/(1−2×0.2) ∼ 2.3,
and indicates a large modulation in the particle yields.

The large v2 values measured at RHIC were supportive of using hydrody-
namics in describing the expansion, as the pT and KET dependence of the
v2 and its ordering for the various species was well reproduced by hydro-
dynamic calculations [28]. Further the hydrodynamic calculations indicated
a very low η/s values of the QGP. The larger the shear-viscosity, the more
the initial anisotropy get dissipated as the system expands and consequently
smaller the v2. Theoretical calculations that relate the eccentricities in the
initial state to the anisotropies in the final state [15, 16, 29] indicate that the
η/s in the QGP produced at RHIC could be as small as the quantum lower
bound of ~/4πkB [30, 31]7. Figure 1.6 shows such comparisons [29] of viscous
hydrodynamics calculations to minimum-bias STAR data for v2(pT) of charged
hadrons [32]. The left plot shows the hydrodynamic calculations done starting
from a Glauber model initial conditions [33], which best describe the data for
η/s=0.08, while the right plot shows similar calculations starting from a CGC
initial conditions [34] which best describe the data for η/s=0.16. While there
is a factor of two difference from the two initial geometry models on the “best”
value of η/s, however both of them indicate that η/s is very small. Thus while
the precise value of η/s cannot be determined from the v2 measurements, but
it is fairly certain that it cannot be more than an order of magnitude larger
than the conjectured lower bound of 1/4π. The applicability of hydrodynam-
ics in describing the v2 data was also indicative of early thermalization times
of the medium [12, 13].

Large v2 values for a variety of hadron species, having large and small
cross-sections, indicated that flow developed at a partonic stage. For example,
the φ meson is expected to have a small hadronic cross-section, as compared
to other hadrons [35]. Thus if flow originated in a hadronic phase, the φ meson
would have a much smaller v2 than the other hadrons (p, π). Large v2 for the
φ meson measured at RHIC [36] thus provided compelling evidence of flow
developing in a partonic phase.

The second important property of the QGP discovered at RHIC was its
opaqueness to high pT particles passing thought it. Figure 1.7 shows the
ratio of spectra of several particle species observed in Au+Au collisions at
RHIC to those expected from elementary superimposition of proton-proton
collisions at the same

√
sNN. This quantity is called the nuclear modification-

factor or RAA
8. It is seen that the high-pT spectra for baryons and mesons is

strongly suppressed in heavy-ion collisions w.r.t. to the p-p reference, however

7In natural units where ~=1 and kB=1 this becomes 1/4π ≈ 0.08.
8The subscript ‘AA’ in RAA signifies that this is the modification in Au+Au collisions.
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Figure 1.6: Comparison of hydrodynamic models to experimental data on
charged hadron minimum bias elliptic flow by STAR [32]. Figure taken
from [29].

no such suppression is seen for direct photons which do not interact with the
QGP (being color neutral). These measurements gave further support for the
production of QGP at RHIC.

Figure 1.7: Left Plot: RAA for several identified particle species in (0-10)%
central 200 GeV Au+Au collisions [37–41].
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1.2 Role of fluctuations in the initial geometry

If the nuclear overlap region were smooth as shown in the left plot of Fig. 1.9, it
would imply that only even order flow harmonics would be present in the final
particle distributions. However, the initial geometry is made up from a finite
number of participating nucleons whose positions can fluctuate considerably
event-by-event [42] leading to fluctuations in the collision geometry.

Figure 1.8: Schematic diagram showing fluctuations in the initial geometry
lead to a “participant eccentricity” that is not necessarily oriented along the
reaction plane. Figure taken from [43].

The idea of the presence of such fluctuations came after elliptic flow mea-
surements in Cu+Cu collisions at RHIC in 2005 showed the presence of a
fairly large v2 even in most central collisions [9]. Prior to these measurements
it was expected that the v2 in Cu+Cu collisions would be much smaller due
to a smaller system size. These measurements could only be explained after
accounting for the presence of sizable fluctuations in the configuration of par-
ticipating nucleons. This resulted in the concept of “participant eccentricity”
where the eccentricity ǫpart was defined using the configuration of the partici-
pating nucleons as shown in Fig. 1.8 rather than along the impact parameter
as [44]:

ǫpart =

√

(〈y2〉 − 〈x2〉)2 + 〈2xy〉2
〈y2〉+ 〈x2〉 =

√

〈r2 cos 2φ〉2 + 〈r2 sin 2φ〉2
〈r2〉

tan(2Φ∗
part) =

〈2xy〉
〈y2〉 − 〈x2〉 =

〈r2 sin 2φ〉
〈r2 cos 2φ〉 (1.3)
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where r and φ refer to the transverse positions of the participating nucleons
in radial coordinates (about the center of mass) and x and y have the same
meaning as in Eq. 1.1. Φ∗

part gives the orientation of the participant-eccentricity
plane (xpp in Fig. 1.8) which could in general be different than the reaction
plane. The idea behind the participant eccentricity was that while the mean
eccentricity, given by Eq. 1.1 can be relatively small, but the participant ec-
centricity Eq. 1.3 which drives the flow can be large due to fluctuations in the
positions of the participating nucleons.

Figure 1.9: Schematic diagram showing fluctuations in the initial geometry
due to finite number of participating nucleons. The fluctuations lead to Φ′

2

being different than the impact parameter and also a triangular asymmetry.
Figure taken from [11].

Another breakthrough idea came in 2010, when it was realized that these
fluctuations could result in the production of odd order eccentricities in the
initial geometry [42, 45] each with its own orientation as shown schematically
in Fig. 1.9. The moments of nth order are a generalization of Eq. 1.3, their
magnitude and orientation are given by [46, 47]:

ǫn =

√

〈rn cosnφ〉2 + 〈rn sinnφ〉2
〈rn〉

tan(nΦ∗
n) =

〈rn sinnφ〉
〈rn cosnφ〉 (1.4)

Φ′
n = Φ∗

n + π/n

The Φ∗
n (Φ

′
n) point along the major (minor) axes of the nth order eccentricity

and have a n-fold degeneracy9. The presence of multiple orders of eccentricities
ǫn in the initial geometry, as well as that each moment can have an independent
orientation implies that Eq. 1.2 must be generalized to [45]:

9Denoting the major and minor axes by Φ∗

n
and Φ′

n
is not universally used notation.
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dN

dφ
∝ 1 + 2

∞
∑

n=1

vn cosn(φ− Φn) (1.5)

where the possibility of all harmonics vn each with a different phase Φn, com-
monly called the nth-order event-planes, is allowed.

This realization of the presence of fluctuations and their influence on the
vn caused a paradigm shift in the theoretical and experimental flow analy-
ses. Firstly they implied that v3 and higher order flow harmonics should be
present in the final particle yields and thus measurable, providing additional
constraints on η/s.

The fluctuations also imply that no two heavy-ion collisions, even if they
have the same Npart or bimp, are identical, as the fluctuations produce event-
by event variations in the initial density. Since then a variety of experimental
methods that are sensitive to fluctuations, such as multi-particle cumulants [48]
and Lee-Yang Zeroes [49], have come to the forefront of flow measurements10.
Similarly on the theoretical side event-by-event hydrodynamical simulations
have replaced the older method of using single-shot hydrodynamics over av-
eraged initial conditions. These event-by-event hydro simulations have been
shown to have different spectra and vn values as compared to the single-shot
calculations [50–52], and thus point out the importance of measuring the flow
fluctuations.

1.3 Motivation and outline of this work

It was against in the backdrop of these developments, i.e. the realization of the
important role of fluctuations, that the first Pb+Pb run at the LHC took place
and consequently the work presented in this thesis began. This work involves
investigation of the properties of the initial geometry produced in heavy-ion
collisions – with an emphasis on the fluctuations – and equally importantly,
the study of nature of the hydrodynamic response to the initial geometry. This
is achieved by detailed measurements of the anisotropies vn as well as their
fluctuations using a variety of experimental techniques.

In Chapters 3 and 4 measurements of the pT, η and centrality dependence
of the harmonics v2− v6 using two different methods: the event-plane method
and the two-particle correlation method are presented. The vn values can

10These methods were initially developed to study effects of non-flow correlations on the
vn measurements, but they are also sensitive to flow fluctuations, and consequently are being
used for these studies.
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constrain η/s. As shown in Fig. 1.6, the main reason why η/s could not
be constrained precisely from v2 measurements alone was due to the large
uncertainty in the initial geometry. However the measurements of multiple
orders of flow harmonics, which have to be reproduced for the same η/s can not
only constrain η/s, but also the initial geometry. In fact it has been shown that
the higher the order of a harmonic, the easier it is for it to be damped out by
viscous effects during the hydrodynamic expansion [53]. This is demonstrated
in Fig. 1.10, where the final energy density distributions starting from the same
initial state but evolved with ideal and viscous hydrodynamics are compared.
It is seen that the viscous evolution leads to a smoother distribution with the
finer structures (i.e. higher order moments) getting washed out. Thus the
higher order harmonics are more sensitive to η/s and can strongly constrain
it. The measurements of vn for n ≥ 3 presented here are among the first
measurements of odd order harmonics in heavy-ion collisions.
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Figure 1.10: Effect of finite shear-viscosity in smoothing out initial
anisotropies. The left panel shows the initial energy density in the transverse
plane for an event with bimp = 2.4 fm. The middle panel and right panels show
this initial condition evolved via ideal and viscous hydrodynamics (η/s=0.16)
respectively. Figure taken from [50].

The event-by-event fluctuations in the initial geometry, apart from gener-
ating odd harmonics, also lead to event-by-event fluctuations in the vn values
themselves. In Chapter 5, these fluctuations are studied by measuring the
event-by-event distributions of the harmonics v2–v4. For the lower order har-
monics (n=2,3) hydrodynamic calculations have shown that the vn are strongly
correlated to the ǫn in the initial geometry [47, 52]. Thus measurements of
the event-by-event distributions of the vn give a clear insight into the nature
of the fluctuations. The measurements will be shown to not only be able to
test models used to describe initial geometry, but at the same time get an
understanding of the hydrodynamic response of the medium.

In Chapter 6, the correlations between event-planes Φn of different or-
ders are studied. These correlations can arise from correlations between the
eccentricities in the initial geometry. For example, in the limit of linear hy-
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drodynamic response (i.e. vn ∝ ǫn) correlations between the magnitude and
orientation of ǫ2 and ǫ4 in the initial geometry can produce correlations be-
tween Φ2 and Φ4 in the final state. An alternative mechanism that can pro-
duce correlations between the Φn is non-linear hydrodynamic response to the
eccentricities in the initial geometry [47]. For example v4 can be generated
from non-linear hydrodynamic response to ǫ2. To leading order the non-linear
response is [47]:

v4 ∝ ǫ22 (1.6)

Such non-linear response can also lead to correlations between Φ4 and Φ2. It
will be shown that from the correlations themselves it is possible to determine
the mechanism–i.e. initial-state correlations between ǫn or non-linear response
to the ǫn–that leads to the correlations. The linear and non-linear responses
are affected differently by viscous effects, and thus these measurements can
provide additional constraints on η/s. The event-by-event vn measurements
and the event-plane correlation measurements are the first of their kind in
heavy-ion physics.

Typically global anisotropies in the particle distributions are expected in
heavy-ion collisions where collective behavior is expected due to the production
of a bulk medium. The CMS collaboration recently showed that long range
correlations exist in between particle-pairs in p-p collisions with sufficiently
large multiplicities [54], suggesting the possibility of bulk dynamics or initial
state nuclear effects similar to those seen in heavy-ion collisions in much smaller
systems. In Chapter 7 such long range correlations in p+Pb collisions are
investigated. Comparing the strength of these long-range correlations to the
ones in Pb+Pb can shed light on how they switch on with increasing system-
size and multiplicity.

In each chapter the experimental results are compared to theoretical cal-
culations, demonstrating how these measurements can constrain the initial
geometry and the properties of the hydrodynamic response.
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Chapter 2

The ATLAS detector and
trigger

2.0.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [55] is the world’s largest and highest energy
particle accelerator. It is situated on the French-Swiss border and operated by
the European Organization for Nuclear Research (CERN). It can accelerate
and collide protons at a center of mass energy of up to 14 TeV and Pb ions
at up to 5.5 TeV per nucleon pair. As of August 2013, the LHC has achieved
collision energies of 8 TeV in p-p, 2.76 TeV per nucleon pair in Pb+Pb and
5.02 TeV per nucleon pair in p+Pb collisions.

The LHC beam-pipe is 27 km long and located approximately 100 m un-
derground. It contains two counter-propagating beams containing bunches of
protons or ions that cross each other at four points, called Interaction Points
(IP), where the collisions take place. At these crossing points the four LHC
detectors: ATLAS, CMS, ALICE and LHCb are located. The bending power
for the beams is provided by 1232 superconducting dipole magnets, each 15m
long and capable of generating 8.3 T magnetic fields. Furthermore, quadrupole
magnets focus the beam, and accelerating cavities compensate for energy losses
and keep the bunches at a constant energy.

Figure 2.1 shows the sequence that Pb ions go through before being injected
into the LHC. Starting from the LINAC3, the Pb ions go through the following
sequence LINAC3 → LEIR → PS → SPS → LHC, with the energy being
ramped up at each stage as shown in Fig. 2.1.
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Figure 2.1: The CERN Accelerator complex. The energy/nucleon of the Pb
ions at the end of each stage are shown.

2.1 The ATLAS detector and trigger

ATLAS (A Toroidal LHC ApparatuS) is a multi purpose detector located at
Point-1 of the LHC cavern. While mainly designed to study p-p collisions, its
fine granularity and large acceptance makes it an ideal detector for studying
Pb+Pb and p+Pb collisions as well. Figure 2.2 shows the main subsystems of
the ATLAS detector along with the solenoid and toroid magnets. The detector
is nominally forward-backward symmetric, and covers 2π in azimuth. The AT-
LAS sub-systems and their design performance are comprehensively described
in [56], here only the sub-systems that are use in this work are described.
They include the Inner Detector (ID), the Electromagnetic Calorimeters and
the Forward Calorimeter (FCal), as well as the following two detectors that are
used for triggering on the events: Minimum-Bias Trigger Scintillators (MBTS)
and the Zero-Degree Calorimeter (ZDC).
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Figure 2.2: Main subsystems of the ATLAS detector.

2.1.1 Inner Detector

The ID occupies a cylindrical volume around the detector center spanning1

±3512mm in the z direction and 1150mm in radius. It is immersed in a 2T
magnetic field generated by the solenoid magnet and is used for reconstruct-
ing charged tracks and consequently for their momentum and vertex measure-
ments. The ID consists of three independent sub-detectors, they are the pixel,
silicon-microstrip (SCT) and the transition radiation tracker (TRT) which pro-
vide space-point measurements for charged-track reconstruction. Each of the
three sub-detectors is divided into barrel (detector layers parallel to the beam
pipe) and an end-cap modules (detector layers perpendicular to beam-pipe).
The Pixel and SCT detectors are high-resolution, precision tracking detectors
and cover the region |η| < 2.5, while the TRT covers |η| < 2. Figure 2.3 shows
a cut-away view of the ID showing the three sub-detectors. Figure 2.4 shows
the dimensions of the various sub-detectors and the typical detector layers that
10 tracks at various η traverse.

1ATLAS uses a right-handed coordinate system with its origin at the nominal IP in the
center of the detector and the z-axis along the beam-pipe. The x-axis points from the IP
to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r,φ)
are used in the transverse plane, φ being the azimuthal angle around the beam-pipe. The
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Figure 2.3: Cut-away view of the ATLAS inner detector.
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Figure 2.4: Quarter-section of the ATLAS inner detector showing the major
detector elements along with their dimensions. Also shown are the typical
number of detector elements that tracks at different η have to cross.

pseudorapidity is defined in terms of the polar angle θ as η = ln(tan(θ/2)).
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Pixel

The pixel detector has three layers in the barrel and three on either side in the
end-cap region. It consists of 1744 identical modules, each having 47232 pixels
of nominal2 size 50×400µm2 for a total of approximately 80.4 million readout
channels. This extremely fine granularity is needed in the pixel detector due
to its proximity to the interaction point. The first layer of pixels (called called
B-layer) is only at a distance of 5 cm from the center of the beam pipe. The
intrinsic accuracies for the pixel detector in the barrel are 10µm in R-φ and
115µm in z and in the end-cap are 10µm in R-φ and 115µm in R. A typical
track crosses at least three pixel layers.

SCT

The SCT comprises of four cylindrical layers in the barrel region and nine discs
on either side in the end-cap region. In the barrel region, this detector uses
small-angle (40mrad) stereo strips to measure both coordinates, with one set
of strips in each layer parallel to the beam direction, measuring R-φ. They
consist of two 6.4 cm long daisy-chained sensors with a strip pitch of 80µm.
In the end-cap region, the detectors have a set of strips running radially and a
set of stereo strips at an angle of 40 mrad. The mean pitch of the strips is also
approximately 80µm. The total number of readout channels in the SCT is
approximately 6.3 million. The intrinsic accuracy per module in the barrel is
17µm in R-φ and 580µm in z and in the end-cap is 17µm in R-φ and 580µm
in R.

TRT

The TRT comprises of many layers of straw tube elements filled with a mix-
ture of Xe/CO2/O2 gases, interleaved with transition radiation material. It is
chiefly used for electron identification and provides only R-φ information for
which it has an accuracy of 130µm per straw. The TRT was not used in the
heavy-ion running due to high occupancy in most central events which limited
its use for tracking and electron identification. However it can be used for
mid-central and peripheral events. The analyses presented here do not make
use of the TRT hits information.

2About 10% of the pixels are 50× 600µm2 in size
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2.1.2 Calorimeters

Figure 2.5 shows a schematic of the ATLAS calorimeters. The calorimeters
have full azimuthal coverage over the range |η| < 4.9. They are sampling
calorimeters with alternating layers of a dense absorber material to help initiate
an electromagnetic or hadronic shower, and layers of an active material for
detecting the shower. In the analyses done here, only the EM calorimeter and
FCal are used.

Figure 2.5: A schematic of the ATLAS calorimeters.

LAr electromagnetic calorimeter

The EM calorimeter in the innermost calorimeter. It is divided into a barrel
(EMBr) for η < 1.475 and two end-cap components (EMEC) for 1.375 <
|η| < 3.2. It is a lead-LAr detector with accordion-shaped kapton electrodes
immersed in LAr (which serves as the active material) and lead absorber plates.
The accordion geometry provides complete φ symmetry without azimuthal
cracks. In the barrel, the accordion waves are axial and run in φ, and the
folding angles of the waves vary with radius to keep the liquid-argon gap
constant. In the end-caps, the waves are parallel to the radial direction and
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run axially. Since the liquid-argon gap increases with radius in the end-caps,
the wave amplitude and the folding angle of the absorbers and electrodes vary
with radius. The calorimeter has two to three-longitudinal layers depending
on the η, with varying degree of segmentations in ∆η × ∆φ in the different
layers. The EM calorimeters have finer granularity as compared to the other
calorimeters especially over the region matched with the ID (|η| <2.5) for
precision measurements of electrons and photons. A pre-sampler is also present
over the range |η| < 1.8 and is used to correct for the energy that electrons and
photons lose upstream of the calorimeters. The EM calorimeters have finer
granularity for precision measurements of electrons and photons, as compared
to the other calorimeters. Figure 2.6 shows the ∆η × ∆φ segmentation for
the three layers of the EMBr at η = 0, as well as the accordion geometry of
the calorimeter. The segmentations are projective in ∆η×∆φ throughout the
EMBr and EMEC and is always smaller than or equal to 0.1× 0.1.

∆ϕ = 0.0245

∆η = 0.025
37.5mm/8 = 4.69 mm∆η = 0.0031
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Figure 2.6: The ∆η×∆φ segmentation of the three layers of the EMBr at η = 0
(the presamler is not shown). The accordion structure of the EM calorimeters
is also shown.

Forward calorimeters

The ATLAS FCal consists of three longitudinal modules (FCal1, fCal2 and
FCal3) covering 3.2 < |η| < 4.9 (Fig. 2.7). The first module is an electromagnetic-
calorimeter while the last two are hadronic calorimeters. Copper is used as the
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Figure 2.7: Left Plot: The positioning of the three layers of the FCal. Right
Plot: A cross-section of the FCal1 (perpendiculat to beam-direction) showing
the arrangement of the electrodes.

absorber for FCal1, while tungsten is used in FCal2 and FCal3. The FCal1
layer is made of copper plates stacked one behind the other with holes drilled
in them through which the electrode structures are inserted. An electrode
consists of a co-axial copper rod and copper tube separated by a precision,
radiation-hard plastic fibre wound around the rod. The arrangement of elec-
trodes and the effective Moliere radius for the modules can be seen in Fig. 2.7.
The hadronic modules FCal2 and FCal3 consist of two copper end-plates, each
2.35 cm thick, which are spanned by electrode structures, similar to the ones
used in FCal1, except for the use of tungsten rods instead of copper rods.
The space between the end-plates and the tubes is filled with small tungsten
slugs, maximizing the amount of tungsten in the modules and increasing the
absorption length. Note that the FCal electrodes are placed parallel to the
beam-pipe in a x-y grid as compared to the EMCal where the segmentations
were projective in ∆η −∆φ.

In this work the fine ∆η−∆φ segmentations of the calorimeters is not used.
Instead, the smaller segmentations (cells) are combined to form towers having
segmentation in ∆η × ∆φ of 0.1 × 0.1. In regions were the segmentation of
the calorimeter cells is larger than 0.1× 0.1 (for example last layer of the tile
barrel), the cell contributes to multiple towers with its energy divided between
the towers. Similarly for the FCal where the segmentations are in x-y rather
than in ∆η − ∆φ, the x-y cells are combined to make towers of 0.1 × 0.1 in
∆η ×∆φ with the energy of cells that span multiple towers divided between
them. These calorimeter towers are used in the final analyses.
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2.1.3 Trigger

The LHC can provide bunch-crossing rates of up to 40 MHz while ATLAS can
record events at only a few 100 Hz. The ATLAS trigger system is designed
to select interesting events worth recording while rejecting the rest to reduce
the recording rate. The trigger system has three distinct levels: Level-1 (L1),
Level-2 (L2), and the Event Filter (EF). L1 is purely hardware based, built
using custom made electronics. L2 and EF are software based running on CPU
farms and are together called the High Lever Triggers (HLT).

The L1 trigger typically searches for signatures such as high-pT muons,
electrons, photons, jets etc. It also selects more general events : so-called
minimum-bias or zero-bias events, typically at very low rates. The L1 accept
decision is made by the Central Trigger Processor (CTP). The L1 trigger also
identifies Regions-of-Interest (ROI’s) in η−φ that are then passed as seeds to
the L2 algorithms if the event is accepted at L1. If accepted at L2, the event
is then passed to the EF stage. The EF uses offline analysis procedures on
fully-built events (i.e. it is not restricted to the L1 ROI’s) to further reduce
the event rates down to a few 100 Hz, which can be recorded for subsequent
offline analysis. The latency times3 for the L1, L2 and EF are 2.5µs, 40ms
and 4 s respectively.

The event-rates for a particular trigger (at L1, L2 or EF) can be further
reduced by applying prescales, which throw out a fraction of events that would
otherwise be selected by that trigger. For example a prescale of 10 applied
to a L2 trigger means at random 9 out of 10 events that pass this trigger are
masked out at the L2 stage (and thus not passed to the EF).

In the Pb+Pb and p+Pb runs analyzed in this work, the luminosities were
not high enough to require the HLT triggers to be run. Events were recorded
based on a set of minimun-bias L1 triggers which were simply passed through
the L2 and EF without prescales. The following two detectors were used in
the Pb+Pb and p+Pb runs analyzed here:

2.1.4 Minimum bias trigger scintillators

The MBTS detector is one of the primary trigger detectors used in this anal-
ysis. It is positioned on the inner face of the end-cap calorimeter cryostat at
z = ±3560mm. Each side consists of 16 scintillator counters of 2 cm thick-
ness each, organized into a disk perpendicular to the beam direction as shown
in Fig. 2.8. Each disk is divided into an outer and an inner ring covering
2.09 < |η| < 2.82 and 2.82 < |η| < 3.84 respectively. Light emitted by each
scintillator counter is collected by wavelength-shifting optical fibers and guided

3This is the time that it takes to make a decision on whether to keep the event or not.
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to a photomultiplier tube (PMT). The PMT signals are read out by the Tile
Calorimeter (TileCal) electronics. The MBTS signals, after being shaped and
amplified by the TileCal electronics, are fed into leading edge discriminators
and sent as 25 ns NIM pulses to the CTP. An MBTS hit is defined as a signal
above a discriminator threshold. L1 trigger items are built from these hits
of the form L1 MBTS N , that indicate N hits in both sides combined, and
L1 MBTS N N that indicate N hits on each side.

The MBTS detectors are also used for offline timing. For each of the 32
scintillators, the time difference between when the pulse is recorded in the
detector and the time at which the bunches crosses the detector (obtained via
the LHC clock) are measured. The mean time for each side of the MBTS
is calculated as the average of the hit times of the scintillators on that side.
For events occurring close to the center of the detector, the produced par-
ticles would reach the two sides of the MBTS almost simultaneously, and
thus the MBTS timing on both sides should be roughly the same, whereas
for non-collision backgrounds, collisions among satellite bunches, or beam-gas
backgrounds, the timings are expected to be different. A cut on the time dif-
ference between the A and C sides : |∆tMBTS| can thus be used to remove such
events.

η=3.84

η=2.82

η=2.09

WLS fibres

Plastic

Scintillators

Figure 2.8: The ATLAS MBTS detector (one side only). The sixteen plastic
scintillators are the trapezoidal regions (red boundary). The wave length shift-
ing (WLS) fibres are also shown: green curves for inner disc and teal curves
for outer disc.
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Figure 2.9: Left top: The location of the ZDC. Left Bottom: the four ZDC
modules on the A-side. Right Plot: The details of a ZDC module.

2.1.5 Zero degree calorimeter

The zero degree calorimeter (ZDC) is located 140 m from the center of ATLAS
on either side, after the beam-pipe splits into two, covering the region |η| > 8.3.
It gets its name as it is located along the beam (i.e. at zero degrees). Only
the neutral particles from the event manage to reach the ZDC as the charged
particles are deflected away by the magnetic fields in the beam-pipe. Thus
in Pb+Pb collisions the ZDC measures spectator neutrons. Each side of the
ZDC consists of four modules as shown in the left bottom plot of Fig. 2.9.
The detailed design of the modules is shown in the right panel of Fig. 2.9.
Each module consists of 11 tungsten plates 10mm thick in the beam direc-
tion and steel plates at the front and back (also 10mm thick). Sandwiched
between the plates are 1.5mm diameter quartz rods that run vertically and
are viewed by photomultiplier tubes (PMT) from above, via light-pipes. The
quartz rods collect Cherenkov radiation from shower particles and guide them
to the PMTs. Each PMT is read out by several channels of a Pre Processor
Module (PPM). The PPMs are 64 channel, 40 MHz, 10 bit ADCs. The first
two ZDC modules on the C side and the second module on the A side also
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have quartz rods arranged in an x-y grid along the beam-pipe. These can be
used for position measurements of the showers. They were however not used
in any of the analyses presented here.

The ZDC is primarily used in the Pb+Pb and in the p+Pb running as a
minimum-bias trigger. The trigger decision for a side (A or C) is made based
on whether or not the sum of the signals measured on all four modules on that
side is above a certain threshold. These are defined as the L1 ZDC A and
L1 ZDC C triggers, while the coincidence trigger L1 ZDC AND requires both
sides to be above a threshold. A software version of the coincidence trigger is
also implemented by the CPT, called L1 ZDC A C, which is obtained by the
logical AND of the L1 ZDC A and L1 ZDC C triggers.

2.2 Heavy-ion physics with the ATLAS detec-

tor

In this section the trigger requirements and the track selection cuts applied to
the Pb+Pb and p+Pb data are described. Also the procedure for evaluating
centrality and other event-parameters are diccussed.

2.2.1 Pb+Pb data taking

Event selections

The Pb+Pb analysis done in this work uses data taken during the 2010
Pb+Pb LHC run over the period Nov.6-Dec.6 and corresponds to an inte-
grated luminosity of 7µb−1. The ion beams were configured at an energy
of 1.38 TeV per-nucleon, corresponding to a nucleonnucleon center-of-mass
energy of

√
sNN=2.76 TeV for the Pb+Pb collisions. In order to select good

events and reject non-collision backgrounds, the following trigger requirements
and offline cuts are imposed on the events (these are the minimum bias cuts):

1. It must be from a running period with stable beams and detector con-
ditions.

2. It must have a reconstructed vertex.

3. The event must pass at least one of the following triggers after prescale
and veto:

• L1 MBTS N N where N=1,2,3 or 4

• L1 ZDC AND
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• L1 ZDC A C

4. The event must pass L1 ZDC AND or L1 ZDC A C triggers (before
prescale). This was found to reject photo-nuclear events.

5. It must have good MBTS timing : |∆tMBTS| < 3 ns.

With the above selection criteria, approximately 50 Million events are ob-
tained for the 2010 Pb+Pb run. An additional cut on the z position of the
primary-vertex: zvtx <150 mm is also applied. Events containing multiple col-
lisions (pileup) are expected to be present at the 10−4 level and are negligible.

To determine the fraction of the total non-Coulomb inelastic cross section
selected by the triggers, i.e. the trigger efficiency, a convolution of the FCal
∑

ET distributions4 measured in proton-proton data at
√
s = 2.76 TeV is

done with a Monte Carlo Glauber calculation [53] to reproduce the FCal
∑

ET

distributions seen in the Pb+Pb events. The calculation assumes the number
of effective proton-proton collisions per lead-lead event, N , scales according
to the “two-component model” [57] with the number of participating nucleons
(Npart) and the number of binary collisions (Ncoll) as :

N = (1− x)Npart/2 + xNcoll. (2.1)

where, the free parameter x controls the relative contribution of Npart and
Ncoll. The best description of the data is found to be for x = 0.088 (Fig. 2.10).
The value of the trigger efficiency and its uncertainty is estimated by system-
atically varying the effect of trigger and event selection inefficiencies as well
as backgrounds in the most peripheral FCal

∑

ET interval5 to achieve the
best agreement between the measured and simulated distributions. Using this
analysis of the FCal ET distribution, the trigger efficiency has been estimated
to be 98± 2%.

Centrality

The centrality classes6 are then defined using the Fcal
∑

ET to categorize
the event into percentiles. Figure 2.10 also shows the FCal

∑

ET thresholds
corresponding to 10% wide centrality classes. The mean Npart values, are
evaluated for the experimental centrality intervals by dividing the Glauber

4FCal
∑

ET is the sum of ET measured in all cells of the FCal. The FCal ET is stated at
the electro-magnetic energy scale, which does not correct for the response of the calorimeter
to hadrons.

5This was done by artificially injecting and removing counts in that interval.
6The trigger-efficiency and centrality determination are not part of this thesis work. The

values are simply used in this analysis.
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model
∑

ET distribution into the same percentile centralities, and evaluating
the average number of participants in the Glauber MC events contributing
to a given interval. These are listed in Table 2.1. The systematic errors on
Npart are evaluated from the quoted uncertainty of the trigger efficiency and
the known uncertainties in the Glauber model parameters.

Figure 2.10: FCal
∑

ET distribution (black histogram) and the distribution
obtained by convoluting the p-p data with Glauber MC (grey). The

∑

ET

values corresponding to 10% wide centrality classes are also shown. This plot
is made using a sub-set of the 2010 Pb+Pb data.

Centrality 0–1% 1–2% 2–3% 3–4% 4–5%
〈Npart〉 400.6± 1.3 392.6± 1.8 383.2± 2.1 372.6± 2.3 361.8± 2.5
Centrality 0–5% 5–10% 10–15% 15–20% 20–25%
〈Npart〉 382.2± 2.0 330.3± 3.0 281.9± 3.5 239.5± 3.8 202.6± 3.9
Centrality 25–30% 30–35% 35–40% 40–45% 45–50%
〈Npart〉 170.2± 4.0 141.7± 3.9 116.8± 3.8 95.0± 3.7 76.1± 3.5
Centrality 50–55% 55–60% 60–65% 65–70% 70–75%
〈Npart〉 59.9± 3.3 46.1± 3.0 34.7± 2.7 25.4± 2.3 18± 2

Table 2.1: 〈Npart〉 for different centrality intervals, estimated from the Glauber
model [58].
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Track selections

To improve the reliability of the ID track reconstruction in the tracking en-
vironment in heavy ion collisions, the track quality requirements are more
stringent than those used for proton-proton collisions [59]. Only tracks with
pT > 0.5 GeV are used. The charged particle tracks are required to pass the
following topological cuts :

1. It must have a hit in the B-layer if a hit is expected.

2. It must have at least one pixel hit and no pixel holes.

3. It must have at least 8 SCT hits and at most 1 SCT hole.

Apart from the above topological cuts, the following geometrical cuts are also
applied on the reconstructed tracks:

1. |d0| w.r.t primary-vertex < 1mm.

2. |z0 × sin(θ)| w.r.t. primary-vertex < 1mm.

where d0 w.r.t. primary-vertex and z0 sin(θ) w.r.t. to primary-vertex are
the distance of the reconstructed track from the primary-vertex projected to
the transverse plane (transverse to the beam axis) and along the beam axis
respectively. The minimum bias p-p analysis applies 1.5mm cuts on these
variables. Due to the more stringent cuts, the tracking efficiency is lower
than in p-p events. A detailed study of the tacking efficiency and fake rates
for the heavy-ion data has been done in [60], although with slightly different
cuts. Figure 2.11 shows the pT η and centrality dependence of the tracking
efficiency from that study. The efficiency drops with increasing |η|, largely due
to loss from hadronic interactions with the detector material, which increases
with |η| [59]. The efficiency also decreases for more central events, due to the
difficulty in track reconstruction in a high-multiplicity environment.

2.2.2 p+Pb data taking

In this work, analysis of proton-lead (p+Pb) data at
√
sNN = 5.02 TeV is also

done. The data was recorded during a small 4 hour run on 13 September 2012
corresponding to an integrated luminosity of 1µb−1. The LHC was configured
with protons beams at 4 TeV and Pb ions at 1.57 TeV per-nucleon, corre-
sponding to a nucleonnucleon center-of-mass energy of

√
sNN=5.02 TeV, and

a rapidity shift of 0.47 relative to the ATLAS rest frame.
The following trigger and quality requirements are imposed on the events:
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Figure 2.11: Tracking efficiency vs pT for different centralities and η bins.
These plots are taken from [60] and use slightly different cuts than the ones
used here.

1. It must be from a running period with stable beams and detector con-
ditions.

2. It must have a reconstructed vertex, containing at least two associated
tracks, with its z position satisfying |zvtx| <150 mm.

3. The event must pass the L1 MBTS 2 trigger

4. It must have good MBTS timing : |∆tMBTS| < 10 ns.

The pileup events are suppressed by rejecting events with more than one
reconstructed vertex that are seperated in z by more than 15 mm. The residual
plieup fraction is estimated to be ≤ 10−4.

The asymmetric nature of the p+Pb makes the estimation centrality per-
centiles tricky. Instead the events were categorized into event-activity classes,
based on either the number of reconstructed charged-particle tracks with pT >
0.4 GeV and |η| < 2.5 (N rec

ch ), or the FCal
∑

ET on the Pb going side (ΣE
Pb

T ).
Only the Pb going side FCal

∑

ET was used, as it was found to be correlated
with the number of reconstructed tracks, while the p going side FCal

∑

ET

showed such correlations only at low N rec
ch . Tables 2.2-2.3 list the percentage

of events in each event-activity class.
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N rec
ch range ≥ 150 130-150 110-130 95-110 80-95 65-80

Percentage [%] 0.25 0.58 1.64 2.68 4.85 8.03
〈N rec

ch 〉 165.6 137.8 118.0 101.3 86.3 71.4
N rec

ch range 50-65 40-50 30-40 20-30 10-20 < 10
Percentage [%] 12.08 10.45 12.33 14.07 16.10 16.93

〈N rec
ch 〉 56.6 44.4 34.4 24.4 14.4 5.3

N rec
ch range ≥ 110 80-110 40-80 20-40 0-20

Percentage [%] 2.478 7.53 30.56 26.40 33.03
〈N rec

ch 〉 128.2 91.7 56.4 29.1 9.7

Table 2.2: A list of the N rec
ch based event activity classes, with the percentage

of events, the average charged particle multiplicity 〈N rec
ch 〉 in each class.

ΣE
Pb

T range [GeV] > 110 95-110 80-95 65-80 55-65 45-55
Percentage [%] 0.21 0.45 1.24 3.11 3.99 6.37

〈ΣEPb

T 〉 [GeV] 122.4 101.2 86.4 71.4 59.6 49.7

ΣE
Pb

T range [GeV] 35-45 25-35 20-25 15-20 10-15 < 10
Percentage [%] 9.71 13.80 8.67 10.11 11.98 30.36

〈ΣEPb

T 〉 [GeV] 39.7 29.7 22.4 17.4 12.4 4.9

ΣE
Pb

T range [GeV] > 80 55-80 25-55 < 20 < 25
Percentage [%] 1.90 7.12 29.88 52.45 61.12

〈ΣEPb

T 〉 [GeV] 94.4 64.8 37.3 9.0 11.0

Table 2.3: A list of the ΣE
Pb

T based event activity classes, with the percentage
of events and the mean transverse energy, 〈ΣEPb

T 〉 in each class.
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Figure 2.12: The distributions of Nrec
ch (left) and FCalPb

∑

ET (right), together
with the 12 bins for event activity (Tables 2.2–2.3).

Track selections

Because the track multiplicity is much smaller than the heavy-ion runs, the
tracking cuts are much weaker. In fact they are comparable to those used for
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proton-proton collisions [59]. The charged particle tracks are required to pass
the following requirements:

1. It must have a hit in the B-layer if a hit is expected.

2. It must have at least one pixel hit.

3. It must have at least n SCT hits, where

• n = 2 for pT ∈ (100, 200) MeV

• n = 4 for pT ∈ (200, 300) MeV

• n = 6 for pT > 300 MeV

4. |d0| w.r.t primary-vertex < 1 mm.

5. |z0 × sin(θ)| w.r.t. primary-vertex < 1mm.

6. The tracks are also required to pass the following significance cuts

• |d0/σd0 | < 3

• |z0 × sin(θ)/σz0×sin(θ)| < 3

where, σd0 and σz0×sin(θ) are the significances of the d0 w.r.t. primary-
vertex and z0 × sin(θ) w.r.t. primary-vertex measurements.
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Chapter 3

Measurement of flow harmonics
in Pb+Pb collisions via
event-plane method

In this chapter, the measurements of flow harmonics v2-v6 using the event-plane
(EP) method are presented. This method involves determining the orientation
of the nth order event-plane in an event using one detector and then measuring
the distribution of particles (or ET) about that plane using another detector
to obtain the vn. The measured event-planes denoted by Ψn, are in general
different than the true event-planes Φn due to finite statistical precision. The
distributions of particles about the Ψn, after being averaged over many events
to increase statistical precision, are used to obtain the raw vn values, which are
then corrected by a factor termed event-plane resolution – which accounts
for the difference between the Ψn and Φn [61, 62] – to obtain the true vn values.

In section 3.1, the methodology of the EP method and how it is imple-
mented in ATLAS is explained. In Sections 3.2 and 3.3 the two key steps
in the EP method: the event-plane resolution and raw vn measurements are
described. In Section 3.4 the various sources of systematic errors and several
cross-checks that were done in this analysis are discussed. Finally in Sec-
tion 3.5 the results, which include the pT, η and centrality dependence of the
vn are presented. The results are also compared to theoretical calculations
that were published following these measurements. The theory comparisons
demonstrate how these results can be used to constrain both η/s and to vali-
date (or invalidate) initial geometry models. The measurements presented in
this chapter have been published in [63].
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3.1 Methodology

The nth order event-plane of a event defines the global azimuthal anisotropy of
particles in that event, thus, it can be estimated independently using detectors
situated at different η. The large acceptance and fine segmentation of the
ATLAS calorimeters allows for many independent ways to measure the EP.
This analysis uses the FCal detector as the event-plane detector. As will be
shown later, the FCal has good precision for determining harmonics planes for
n=2-6, while minimizing any short-range correlations with the tracks from the
ID, by virtue of the two being well separated in η.

Figure 3.1 illustrates the idea behind the EP method. The elongated blob
represents the fireball, which is extended in the η direction. While the FCal and
the ID are situated at different η, the azimuthal anisotropies that they observe,
arise from the same collision geometry. Thus, the FCal dET/dφ distribution
in an event can be used to measure the orientation of the Ψn. Due to flow
correlations the dET/dφ distribution can be expressed as a Fourier series :

dET/dφ = Q0 + 2
inf
∑

n=1

|−→Qn| cosn(φ−Ψn) (3.1)

where, the flow vector
−→
Qn can be calculated by vectorially summing the ET of

the individual colorimeter towers.

−→
Qn = (Qx,n, Qy,n) = (

∑

i

ET,i cosnφi,
∑

i

ET,i sinnφi) (3.2)

The orientation of the Q vector gives the EP angle Ψn :

Ψn =
1

n
tan−1

(

Qy,n

Qx,n

)

=
1

n
tan−1

(

Σ ET sin(nφ)

Σ ET cos(nφ)

)

(3.3)

Once the nth order event-plane Ψn is determined, the raw harmonic coef-
ficient vobsn is calculated by correlating with it the tracks from the ID:

vobsn = 〈cosn(φi −Ψn)〉. (3.4)

where, 〈...〉 implies averaging over tracks and events1. The vobsn is then cor-
rected to account for the event-plane resolution Res{nΨn}, given by [61](also
see Appendix A.1.2):

1Thus by construction the EP method measures the vn averaged over many events
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Figure 3.1: Schematic description of the event-plane method.

Res{nΨn} = 〈cos (n(Ψn − Φn))〉. (3.5)

which is determined using several independent methods (discussed later). The
corrected vn is obtained as:

vn =
vobsn

Res{nΨn}
=

〈cos (n(φ−Ψn))〉
〈cos (n(Ψn − Φn))〉

. (3.6)

3.2 Event-plane resolution

3.2.1 Event-plane detector

The FCal detector was described in Section 2.1.2. For this analysis, only
the first two layers are used, as the third layer contains little energy and is
more susceptible to noise. Also the calorimeter towers are restricted to |η| ∈
(3.3, 4.8), as the first η segment overlaps with the EM end-cap detector and
thus has a considerably smaller signal, while the last η segment has significant
non-uniformities.

Either of the two FCal sub-detectors, A-side and C-side (denoted as FCalP
and FCalN), as well as the full-FCal (A+C) can be used to determine the
event-planes, albeit with different resolutions. In this analysis, two different,
but complementary methods of measuring the vn are employed. The first
method calculates the raw harmonic flow vobsn by correlating tracks in −2.5 <
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η < 2.5 with the EP measured by the combined FCal detector (full-FCal
EP); followed by applying the correction for the full-FCal resolution. In the
second method, tracks are correlated with the EP measured with the FCal in
the opposite η side, i.e. tracks with η > 0 (η < 0) are correlated with the EP
obtained from FCalN (FCalP), followed by applying the correction for the sub-
FCal resolution. This method is denoted as sub-FCal EP and is illustrated in
Fig. 3.2. In comparison with the full-FCal, the sub-FCal method considerably
increases the η separation between the tracks and the EP detector (FCalP(N)).
The average gap is increased roughly from 3 units to 5 units in η. Thus the
sub-FCal method is much less susceptible to non-flow correlations: correlations
from jets, decays etc. that correlate a few particles but are typically localized in
η. The sub-FCal method is especially useful for measuring the η dependence
of the vn. However, the disadvantage of the sub-FCal method is that the
FCalP(N) have smaller EP resolutions as compared to the full-FCal, and can
not measure the higher order harmonics with similar accuracy.

Figure 3.2: Illustration of the sub-FCal method. The tracks at positive η are
correlated with FCalN and those at negative η with FCalP.

3.2.2 Detector calibration

The methodology discussed in Section 3.1 assumes an ideal event-plane detec-
tor, i.e. the azimuthal anisotropy in the FCal dET/dφ distribution is caused by
the physical flow. In reality, detector effects such as dead areas, inefficiencies,
mis-calibration etc., lead to false modulations of the ET(φ) which affect the
determination of the Ψn. Note that this is a detector effect and is different
than the resolution Res{nΨn} which by definition, was statistical in origin. In
order to account for detector effects a recentering-flattening technique [64, 65]
is used, which is described in detail in Appendix A.1.4.

Figure 3.3 shows the normalized distributions for the orientation of the Ψn

for n=2-4, both before and after the corrections are implemented. Since the
orientation of the Φn (in the lab frame) changes randomly from one event to
the next, the distributions for the Ψn are expected to be flat. However, it can
be seen that the uncorrected Ψn distributions have modulations, signifying the
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presence detector effects. The recentering step corrects for most of the accep-
tance effects and the flattening step produces further minor improvements.

Figure 3.3: The effects of the calibration for Full-FCal detector from n = 2
to n = 6. A central bin (top) and mid-central bin (bottom) are used. It can
be seen that most of the calibration arises from the re-centering step.

3.2.3 Methods for determining the event-plane resolu-
tion

In this section the methods used for determining the EP resolution are dis-
cussed. All the formulae used here are derived in Appendix A.1.3.

The resolution for a detector is related to the quality parameter χ [61] as2

(Eq. A.14):

Res{nΨn} =
χ
√
π

2
e−

χ2

2

[

I0(
χ2

2
) + I1(

χ2

2
)

]

. (3.7)

The parameter χ is related to the multiplicity measured in the detector and
the true vn as

χ ∝ vn
√
N (3.8)

2This formula makes the assumption that the fluctuations that result in Ψn to be dif-
ferent than Φn are Gaussian fluctuations. See [62] (but with very different notation).
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The χ can be obtained using the two-subevent method [61], where a
detector is divided into two sub-detectors, such that the two sub-detectors
have the same resolution. The FCalP and FCalN are such a division for the
FCal. Since each sub-detector has half the acceptance as the full detector, the
χ parameter of each detector is

√
2 times smaller than the χ of the full-detector

(Eq. 3.8):

χsub = χfull/
√
2. (3.9)

Denoting the nth order EP measured by the positive-side sub-detector as ΨP
n

and by the negative-side sub-detector as ΨN
n , the distribution ∆Ψn = ΨP

n−ΨN
n ,

is given in terms of χsub as [61] (Eq. A.16):

dN

d(n∆Ψn)
=

e−χ2
sub

2

[

2

π
(1 + χ2

sub) + z(I0(z) + L0(z)) + χ2
sub(I1(z) + L1(z))

]

.

(3.10)
Where, z = χ2

sub cos(n∆Ψn), In is the modified Bessel function of the first kind
and Ln is the modified Struve function. The χsub value can be obtained by fit-
ting the measured dN/d(n∆Ψn) distribution with Eq. 3.10. The sub-detector
and full-detector resolutions can then be obtained by evaluating Eq. 3.7 at
χ = χsub and χ = χfull respectively.

The EP resolution for the sub-detector can also be directly calculated from
the dN/d(n∆Ψn) distribution as (Eq. A.20):

Res{nΨP(N)
n } =

√

〈cos(n[ΨP
n −ΨN

n ])〉, (3.11)

This formula does not assume Eq. 3.7 (i.e. Gaussian fluctuations) to hold
and can be directly used in the sub-FCal vn analysis. However, for calculating
the full-FCal resolution, starting from the resolution obtained via Eq. 3.11, the
χsub value for the subevent is first calculated using Eq. 3.7. Then the full-FCal
resolution is calculated evaluating into Eq. 3.7 at χfull =

√
2χsub.

The two-subevent method has the disadvantage that it relies on the as-
sumption that the two sub-detectors have the same resolution and also the
validity of Eq. 3.7 (i.e. Gaussian fluctuations). A second method, known as
three-subevent method [61] can be used to directly calculate Res{nΨn} of
a given detector A using the correlation of its estimated event-plane with those
of two other reference detectors (B and C) sitting at different η windows,

Res{nΨA
n} =

√

〈cos (n (ΨA
n −ΨB

n ))〉 〈cos (n (ΨA
n −ΨC

n ))〉
〈cos (n (ΨB

n −ΨC
n ))〉

(3.12)
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The three-subevent method does not require the prior knowledge of χ,
instead Res{nΨA

n} is obtained directly, which can then be used to calculate
the χ (Eq. 3.7). A second advantage of the three-subevent method is that,
for a given detector A, several different detectors B and C can be chosen,
to get independent estimates of Res{nΨA

n}. A drawback however, is that the
precision with which Res{nΨA

n} can be determined depends on the reference
detectors B and C. If the reference detectors have poor resolution, then the
Res{nΨn} obtained will have large systematic errors.

The resolutions for the full-FCal and sub-FCal are measured using both
the two-subevent and three-subevent methods. The two subevent method is
used as the primary method for obtaining the FCal resolution, and a detailed
study using the three-subevent method is done to estimate the systematic
uncertainties.

3.2.4 Resolution from two-subevent method

Figure 3.4 shows the n(ΨP
n − ΨN

n ) distributions for the FCal for n=2-6 for
two different centralities. Also shown are the fits to the functional form in
Eq. 3.10. The sub-FCal resolution can be calculated by using the χsub obtained
from these fits in Eq. 3.7. It can also be calculated using Eq. 3.11, which can
then be used to obtain χsub via Eq. 3.7. For the Full-FCal, starting with the
χsub from either of the two methods, χfull is calculated, and the resolution is
obtained from Eq. 3.11.

Figure 3.5 and 3.6 show the ratio of the resolutions for n=2-4 obtained
using these two slightly different approaches for the sub-FCal and full-FCal
respectively. For n=2, a 0.5% (1%) systematic deviation is observed in mid-
central collisions for the sub-FCal (full-FCal), with the fitting method giving
a higher value, this can be attributed to the small deviations of the fit from
the 2(ΨP

2 − ΨN
2 ) distributions that can be seen in Fig. 3.4. This difference is

included in the final systematic errors for the resolution. For n ≥3 the two
methods give identical results.

3.2.5 Resolution from three-subevent methods

The large coverage of the ATLAS EMCal (|η| <3.2) along with its fine segmen-
tation, allows for a very flexible choice for the reference detectors for three-
subevent measurements of the FCal EP resolution. Besides the EMCal, the
tracking detectors can also be used as reference detectors. A large set of three-
subevent measurements for measuring the FCal resolution are performed in
this analysis. They are detailed in Appendix A.1.5. The resolutions are de-
termined both for the full-FCal, as well as for the FCalP/FCalN detectors.
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Figure 3.4: (ΨP
n−ΨN

n ) distributions for FCal for the (0-10)% centrality interval
(top rows) and the (20-30)% centrality interval (bottom rows) intervals. Also
shown are the fits to the functional form in Eq. 3.10 used to obtain the value
of χsub.

The variation in the resolutions from the two-subevent method are used as
systematic errors on the resolutions and are listed in Table 3.1 as a fraction of
the nominal resolution. The errors are chosen, such that they cover the sys-
tematics for both the full-FCal and sub-FCal. In general, the spread of these
different estimates is less than 5% for n=2-4, 10% for n=5 and up to 30% for
n=6. To account for the sizable systematic difference between the three and
two-subevent methods for n=5 and 6, a 5% upward correction for n=5 and a
15% downward correction for n=6 are applied on the two-subevent resolutions.
The size of the spread between the two and three-subevent methods is used to
determine the centrality range over which the final results are presented. It is
(0-80)% for v2, (0-70)% for v3 and v4, and (0-50)% for v5 and v6, beyond which
the systematic errors for the resolutions become too large to make reliable vn
measurements.

Figure 3.7 summarizes the Res{nΨn} and χ values together with the sys-
tematic errors for the full-FCal detector. Similar plots for the sub-FCal detec-
tor are shown in Fig. 3.8.
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Figure 3.5: The ratio between the sub-FCal resolution obtained using two
different methods: fitting the two subevent distribution, or calculating directly
via Eq 3.11.

Figure 3.6: The ratio of the full-FCal resolution between the two methods used
to obtain the full-FCal χ: fitting the two subevent distribution, or calculating
via Eq 3.11.

One caveat of the EP method is that the same resolution correction is
applied for all events in a centrality interval. In reality, the resolution is a
function of χ (Eq. 3.7), which depends on both the true vn and the multiplic-
ity (i.e. the total ET in the FCal). The multiplicity may or may not vary
appreciably within a centrality interval, depending on the size of the interval.
However, the vn have large event-by-event fluctuations, as will be shown in
Chapter 5. The EP results for the vn are thus dependent of the value of the
resolution. It has been shown that in the limit of large and small resolution
the vEPn is [66, 67]:

vEP
n =

{

〈vn〉 Res{nΨn} → 1

〈
√

v2n〉 Res{nΨn} → 0
(3.13)
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centrality 0-20% 20-40% 40-50% 50-70% 70-80%
n=2 0.05-0.02 0.015-0.01 0.015-0.02 0.03-0.04 0.04-0.06
n=3 0.03 0.03 0.03 0.03-0.05
n=4 0.04 0.04 0.04 0.04-0.05
n=5 0.1 0.1 0.1
n=6 0.3 0.3 0.3

Table 3.1: Summary of the systematic errors for the event-plane resolutions for
both full-FCal and sub-FCal method. The values are expressed as a fraction
of the nominal resolution.
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Figure 3.7: The final resolution (left) and χ (right) values for the full-FCal
detector together with the systematic error band.

where, 〈vn〉 and 〈
√

v2n〉 are the mean and r.m.s. of the vn over all events in
the centrality interval. Typically for n ≥ 3 the low resolution limit is reached
and the vEPn are close to the 〈

√

v2n〉 values. For v2, this is true in central and
peripheral events where the resolution is poor, while in mid-central events, an
intermediate value between 〈v2〉 and 〈

√

v22〉 is measured.

3.3 Determination of the raw vn (vobsn )

In this section, the measurements of the raw vn (vobsn ) are described. For each
event, the estimated EP angle Ψn is determined using either FCalP(N) or the
full-FCal. Then the tracks are binned in azimuthal angle relative to the Ψn:
∆φ = φ−Ψn to obtain the distribution dN/d (n∆φ). These distributions are
then summed over all events in the desired centrality interval, but in intervals
of track pT and η. Note that the distribution is made in n∆φ, rather than
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Figure 3.8: The final resolution (left) and χ (right) values for the sub-FCal
detector together with the systematic error band.

in ∆φ so that they are 2π periodic (rather than 2π/n periodic). Examples of
such distributions for n=2-4 are shown in Fig. 3.9. The raw flow signals are
the Fourier coefficients of these distributions:

dN/d(n∆φ) = A(1 + 2vobsn cosn∆φ+ 2vobs2n cos 2n∆φ+ ..) (3.14)

Note that higher order harmonic flow coefficients can appear at lower order
event-planes due to physical correlations between planes of different orders.
In general (kn)th order flow can be measured in the nth order plane, where
k = 1, 2, 3.... The higher moments in a lower order plane are called mixed har-
monics, and are not a topic of current study. They are directly related to the
correlations between event-planes Φn and Φkn that are studied in Chapter 6,
and their existence is worth pointing out.

The vkn can be calculated directly from these distributions via a Discrete
Fourier Transformation (DFT) as:

vobskn =

∑N
i=1Ci cos kn∆φi
∑N

i=1 Ci

, k = 1, 2, 3.. (3.15)

where, N is the number of ∆φ bins, ∆φi is the center of the ith bin and Ci

is the number of counts in the ith bin. In this analysis k = 1 as only the nth

order harmonic in the nth order plane is studied. The statistical error of vobsn

can be calculated via a simple error propagation of Eq. 3.15 with k=1.
To see the contribution of the mixed harmonics to the n∆φ distributions,

the expected distributions using the vkn values obtained from the DFT are
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Figure 3.9: The azimuthal distribution of charged particles in 2-3 GeV relative
to the Ψn determined by the full-FCal for events in the (20-30)% centrality
interval.

calculated, but truncated to include only the first three harmonics. This is
shown by the red line in Fig. 3.9, while the black line shows contribution of
only the lowest order (k=1) term, i.e. only the vn term in nth harmonic plane.
The presence of mixed harmonics in the 2nd order EP is clearly seen. However,
for the other planes, the mixed harmonics are not visible at the raw level.

3.3.1 Residual 〈sin
(

n(φ−Ψn)
)

〉 values in Ψn plane

The magnitude of residual detector effects that survive the recentering-flattening
calibration procedure, and can lead to artificial correlations between the tracks
and the measured EP, are estimated by calculating the sine component of the
track distributions with respect to the EP:

sobsn = 〈sinn(φ−Ψn)〉. (3.16)

In an ideal case, the track distributions about the event planes should be sym-
metric, and thus these sobsn terms should be zero. This residual sine term is
quantified by taking its ratio to the observed cosine term (i.e. vobsn ). The
results of this check for the full-FCal are shown in Figs. 3.10 and 3.11 for
(0-5)% and (20-30)% centrality intervals respectively. For the sub-FCal these
ratios are almost identical. A small but significant sine signal for is seen whose
strength relative to the vobsn is roughly independent of pT, indicating that this
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is a residual effect of the EP determination that affects all particles identically.
No obvious centrality dependence is seen for these terms. Conservatively es-
timating, the magnitudes of these terms are within 0.5%, 1%, 2% and 4% for
n=2, 3, 4, and 5 respectively, and are always negative. For n=6, the shift is
significantly larger and positive with an average value of about 10% of vobsn .
These sine terms are considered as systematic errors for the vobsn .

Fractional sin term relative to cos
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Figure 3.10: The ratio of raw observed sine term (sobsn ) to the cosine term
(vobsn ) as function of pT for the (0-5)% centrality interval.
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Figure 3.11: The ratio of raw observed sine term (sobsn ) to the cosine term
(vobsn ) as function of pT for (20-30)% centrality interval.
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3.4 Systematic errors

3.4.1 Resolution correction and vobsn

Since the vn is calculated as the ratio of the vobsn to the EP resolution Res{nΨn},
all the systematic uncertainties come from these two factors. The system-
atic error on the resolution correction are evaluated using the three subevent
method, while those for the vobsn are evaluated by measuring the sine terms in
the distribution of tracks relative to the EP. Both of these two sources of error
have been discussed.

In addition to these studies, the stability of the results against the track
and event selection used in this analysis are also studied. This includes the
tracking cuts, centrality selection, and run by run variation of the vn. Only
the full-FCal measurements are used for these checks, since the results are
essentially the same for the sub-FCal.

3.4.2 Effect of tracking cuts on vn

In this analysis, a standard set of cuts on tracks have been applied to select
high quality tracks. The set of cuts are listed in Section 2.2.1. Despite the high
multiplicity environment in heavy-ion collisions, the number of fake tracks due
to random combinations of hits in Pixel and SCT detectors are expected to
be small. The effect of the contamination on the vn if any, can be estimated
by applying various degrees of cuts on the geometric parameters d0 w.r.t.
primary-vertex and z0 sin(θ) w.r.t. to primary-vertex, of the reconstructed
tracks. The following sets of cuts are imposed on the d0 and z0 sin(θ) track
parameters3:

1. The standard “tight cuts” : |d0| and |z0 sin(θ)| less than 1mm. These
are the default cuts used in the analysis.

2. 3.5σ cuts : |d0| < 3.5σd0 and |z0 sin(θ)| < 3.5σz0 sin(θ), used on top of the
tight cuts.

3. 1.0σ cuts : |d0| < σd0 and |z0 sin(θ)| < σz0 sin(θ), used on top of the tight
cuts.

where, σd0 and σz0 sin(θ) are given by:

3The “w.r.t. primary-vertex” suffix on these parameters is dropped for clarity
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σd0 =

√

(0.0211)2 +

(

0.182GeV

pT

)2

mm

σz0 sin(θ) =

√

(0.0542)2 +

(

0.252GeV

pT

)2

mm (3.17)

The σd0 and σz0 sin(θ) are momentum dependent one standard deviation
values of the d0 and z0 sin(θ) distributions. They are obtained by fitting the
d0 and z0 sin(θ) distributions in narrow pT slices with Gaussian functions. The
fit results for obtaining σd0 and σz0 sin(θ) are shown in Fig. 3.12.
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Figure 3.12: d0 and z0 sin(θ) distributions for tracks as a function of pT. The
curves indicate the pT dependent 3.5σ cuts.

The whole analysis is repeated with these three sets of cuts (keeping other
cuts fixed) and the vn values are re-evaluated. Figure 3.13 and 3.14 summarize
the variation of the vn as a function of pT for the (0-5)% and (20-30)% centrality
intervals upon applying the additional cuts. The fraction of the default tight-
cut tracks removed by the 3.5σ and 1.0σ cuts is approximately 2% and 40%
for pT ∈ (1, 2) GeV, 4% and 50% for pT ∈ (2, 3) GeV. These cuts thus cover a
considerable variation in the number of tracks.

The variation is quantified in terms of the ratios between the vn with and
without the additional matching cuts. In general the variations are small
for all pT and centrality selections for n=2,3 and 4, but are somewhat larger
for n = 5 and 6. However, the statistical errors associated with v5 and v6
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Figure 3.13: Ratios of the Full-FCal vn for tracks with matching cuts to those
without matching cut to d0 and z0 sin θ. This is for (0-5)% most central events.
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Figure 3.14: Same as previous plot but for (20-30)% centrality.

make the three values compatible with each other. A small but significant pT
dependence is seen for pT < 2 GeV in most central collisions. The variation is
up to 2% at pT ∼ 0.5 GeV, indicating that the vn are slightly smaller when a
tighter vertex-matching cut is used. This can be understood from the changing
of the particle mixture when a tight matching is used. Namely, the protons
and kaons tend to have larger multiple scattering than charged pions, so they
have broader matching distribution and wold be preferentially removed when
a tighter cut is used. In addition, the feed-down contribution from particle
decays also tends to have larger matching distribution as well. If these particles
have a larger vn, then the tighter matching cuts which tends to throw them
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away, lead to a smaller vn. However this pT dependence is only significant for
the (0-5)% most central collisions.

In other centrality bins the variations are always less than 0.5% for v2 and
v3, 2% for v4, 3% for v5 and 10% for v6. Table 3.2 lists the final systematic er-
rors quoted based on the tracking cuts. While the differences in many cases are
covered by statistical errors, they are conservatively quoted as the systematic
errors.

The systematic errors associated with tracking cuts
Centrality pT < 1 GeV 1 < pT < 2 GeV 2 < pT GeV

v2 0-10% 2% 0.5% 0.2%
>10% 0.5% 0.5% 0.2%

v3 0-10% 2% 0.5% 0.2%
>10% 0.5% 0.5% 1%

v4 0-40% 2% 1% 1%
>40% 2% 2% 2%

v5 0-50% 3% 3% 3%
v6 0-50% 10% 10% 10%

Table 3.2: Summary of systematic errors for the vn associated with tracking
cuts.

3.4.3 Dependence of vn on running periods

The ATLAS detector performance may vary from run to run. For example
certain calorimeter towers might be disabled for some runs while enabled for
others. These variations are typically small and are not expected to affect the
results. Furthermore, the calibration of the FCal and other detectors used
in determining the Ψn is done run-by-run, which reduces the effect of such
variations in the detector. Nevertheless, a check of the stability of detector
over the heavy-ion data taking period, and its effects on the measured vn is
done. Since such checks severely lower the statistics, it is not possible to do
it on a run-by-run basis. Instead the runs are grouped into four different run-
groups with approximately the same statistics and the analysis is repeated for
each group. The variation is studied by taking the ratio of the vn obtained in
each run group with that for the full statistics.

Figure 3.15 shows the variation in the pT dependence of the vn for the
(20-30)% centrality interval for the four run-groups. Additional centralities
are shown in Appendix A.2.1). Overall no clear variations are seen for the
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pT or centrality dependence of vn, although the ratios show larger spreads
due to increasing statistical errors. The level of pT and centrality dependent
deviations beyond statistical fluctuations are about 0.5%, 1%, 2%, 3% and
10% for v2-v6, respectively and are quoted as additional systematic errors for
the vn.
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Figure 3.15: variation in the pT dependence of vn for four different run groups
for (20-30)% centrality.

3.4.4 Sensitivity on trigger efficiency

The centrality binning was done using a trigger efficiency of 98 ± 2% (Sec-
tion 2.2.1). A trigger efficiency of 98% means that 2% of the events fail to
pass the triggers and were not recorded. These 2% are assumed to be the
most peripheral 2% events. Thus while determining the centrality percentile,
the recorded minimum-bias events are chopped into 98 bins according to FCal
∑

ET i.e. the events have a centrality between 0 and 98.
Since the trigger efficiency has a ±2% uncertainty, this automatically trans-

lates into an uncertainty in the centrality definition. For example if the trigger
efficiency is taken to be 100% then the events are divided into into 100 bins
based on the FCal

∑

ET and if it is taken to be 96% then they are divided
into 96 bins. Thus the categorization of the events into different centrality
intervals has errors associated with the uncertainty in the trigger efficiency
(though only by a small amount).

To account for this uncertainty, the analysis is repeated assuming the trig-
ger efficiency to be 96% and 100% and the change in the vn is considered as a
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systematic error due to trigger condition and centrality selection.

3.4.5 Summary of the systematic uncertainties

Tables 3.3-3.7 summarize the systematic errors for v2-v6 measurements for full-
FCal and sub-FCal methods for various centrality ranges. They are quoted
nominally for 5% centrality bins. For example (0-20)% refers to (0-5)%, (5-
10)%, (10-15)%, and (15-20)% bins, the corresponding errors refer to the range
of errors for those four bins. For example an 5-2% error means that the error
for (0-5)% centrality bin is 5% and that for (15-20)% centrality bin is 2%.
The error for a special (0-1)% centrality interval is also quoted in some cases.
For the others, this bin has same uncertainty as the (0-5)% centrality interval.
These errors are quoted independent of pT, by taking the larger error when
there is any variation of the error with pT.

Centrality 0–20% 20–50% 50–70% 70–80%

Resolution[%] 5.0–2.0 1.0–2.0 3.0–4.0 4.0–6.0
Track selection[%] 2.0 0.5 0.5 1.0
Residual sine term[%] 0.8 0.6 0.5 0.2
Running periods[%] 0.2 0.2 0.5 1.0
Trigger & event sel.[%] 1.0 1.0–0.5 1.0 1.5
Total[%] 5.6–3.2 1.4–2.3 3.4–4.2 4.6–6.4

Table 3.3: Summary of relative systematic uncertainties, in percentage, for v2
for both full-FCal and FCalP(N). See text for explanation of the arrangement
of the uncertainties.

Centrality[%] 0–20% 20–50% 50–70%

Resolution[%] 3.0 3.0 3.0–5.6

Track selection[%] 2.0 0.5 0.5–2.0

Residual sine term[%] 1.0 1.0 1.5

Running periods[%] 0.5 0.5–1.5 2.0

Trigger & event sel.[%] 0.4 0.5–1.0 1.5–3.5

Total[%] 3.8 3.5–3.9 4.6–7.4

Table 3.4: Summary of relative systematic uncertainties, in percentage, for
v3 for both full-FCal and FCalP(N).
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Centrality 0–20% 20–50% 50–70%

Resolution[%] 4.0 4.0 4.4–16.0

Track selection[%] 1.0 1.0–2.0 4.0

Residual sine term[%] 2.0 2.0 3.0–5.0

Running periods[%] 1.0 1.5–2.0 4.0

Trigger & event sel.[%] 0.6 0.7 1.0–2.0

Total[%] 4.9 4.9–5.4 7.9–17.5

Table 3.5: Summary of relative systematic uncertainties, in percentage, for
v4 for both full-FCal and FCalP(N).

Centrality 0–1% 0–20% 20–40% 40–50%

Resolution[%] 10.8 10.2 10.2–10.4 11.2–22.4

Track selection[%] 1.0 1.0 1.0 2.0

Residual sine term[%] 5.0

Running periods[%] 2.0 2.0 2.0 4.0

Trigger & event sel.[%] 1.0

Total[%] 12.1 11.6 11.6–12.1 13.0–23.0

Table 3.6: Summary of relative systematic uncertainties, in percentage, for
v5 for both full-FCal and FCalP(N).

Centrality (0–1)% (0–20)% (20–40)% (40–50)%

Resolution[%] 58 34–31 31 32–38

Track selection[%] 10

Residual sine term[%] 10

Running periods[%] 10

Trigger & event sel.[%] 1

Total[%] 61 38–35 36 37–42

Table 3.7: Summary of relative systematic uncertainties, in percentage, for
v6 for both full-FCal and FCalP(N).

3.5 Results

3.5.1 η dependence

The η dependence of vn is more sensitive to short-range correlations, especially
at large η, where the track is close to the FCal. Hence a reasonable η gap is
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Figure 3.16: η dependence of vn for pT ∈ (2, 3) GeV. Each panel corresponds
to a different centrality interval. The values are obtained using sub-FCal EP
measurements.

necessary between the tracks and the detector used to determine the event-
plane. The full-FCal has a minimum η separation from the tracks of 0.8 units,
while the minimum separation for the sub-FCal is 3.3 units. Based on this,
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the sub-FCal measurements are used to study the η dependence, while the
full-FCal results are used to study the pT and centrality dependence. The
reason for this is that the full-FCal has a better resolution than the sub-FCal.
This is especially important for v5 and v6 measurements where the resolution is
very low (in which case the full-FCal has ∼

√
2 times higher resolution). The

difference between full-FCal and sub-FCal for η integrated vn results differ by
about 2.5% on average. A detailed set of comparisons of the vn from full-FCal
and sub-FCal are presented in Appendix A.4.

Figure 3.16 shows the vn(η) obtained using the FCalP(N) for pT ∈ (2, 3) GeV
and for several centrality selections. In general a weak η dependence is seen
across all centralities and pT. For central and mid-central collisions the de-
crease in v2 is less than 5% from η=0 to η =2.5. The decrease is larger for the
higher order harmonics and also increases for the peripheral events. Results
for additional pT bins are given in Appendix A.3.1.

3.5.2 pT dependence

Figure 3.17 shows the pT dependence of v2-v6 for several centrality selections.
All harmonics show a similar pT dependence trend, namely, they first increase
with pT to about 3-4 GeV, then decrease, but remain positive at the highest
measured pT values (within statistical fluctuations). A similar trend was also
observed at RHIC [68, 69]. This characteristic pT dependence is interpreted as
the mechanism driving the vn changing from hydrodynamic expansion at low
pT to path-length dependent energy-loss [70, 71] at high pT. The magnitude
of the vn decrease for larger n, except in most central bins where the v3 and
v4 become larger than v2 at sufficiently high pT.

Previous RHIC measurements have shown that v
1/4
4 /v

1/2
2 is approximately

independent of pT [72, 73]. Figure 3.18 shows a generalized version of this

scaling : v
1/n
n /v

1/2
2 vs. pT for several centrality intervals. The ratios vary

weakly with pT except in the 5% most central events, indicating that such a
scaling relation largely describes the pT dependence (within 10%).

3.5.3 Centrality dependence

Figure 3.19 shows the centrality dependence of the vn for several pT bins. The
centrality bins are 5% in width, with a special bin for the top 1% most cen-
tral events. This bin is important, as it mainly consists of events with full
head-on collision between the nuclei. Going from central to peripheral colli-
sions, v2 first increases, reaches maximum at around the (30-40)% centrality
interval, and then decreases; v3 shows a similar but much weaker centrality
dependence; while v4-v6 almost show no clear centrality dependence trend. For
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Figure 3.17: pT dependence of vn. Each panel corresponds to a different
centrality interval.

55



2 4 6

1

2

3
n=3 ATLAS

=2.76 TeVNNsPb-Pb 

|<2.5η   |-1bµ= 8 intL

full FCal EP

2 4 6

1

2

3
n=4

2 4 6

1

2

3
n=5

2 4 6

1

2

3
n=6 0-1%

0-5%

5-10%

10-20%

20-30%

40-50%

 [GeV]
T

p

1/
2

2
/v

1/
n

nv

Figure 3.18: vn scaling with pT. The plotted quantity is v
1/n
n /v

1/2
2 . Each panel

is a different harmonic.

56



nature), but does not have v3, v4 etc.
In general v2 is much larger than the other harmonics. This is because

the fireball produced in the collision has a natural ǫ2 which translates into
large v2. For the same reason v2 has a strong centrality dependence as the
average geometry changes dramatically over the different centrality ranges. In
the most central events (in the top 5% and more so in the top 1%) which
correspond to (almost) complete overlap between the colliding nuclei, there is
no natural ǫ2 present in the fireball. In these events, all eccentricities come
from fluctuations in the initial geometry of the fireball. In such central events,
the v3 values are larger than the v2, and in some pT bins, even v4 and v5 are
larger than v2.
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Figure 3.19: vn as a function of centrality for different pT bins in 5% centrality
steps plus a 0-1% most central bin. The right end of the X-axis corresponds
to most central events.

3.5.4 Comparison to theory

The vn measurements presented here are among the first measurements of the
vn that were made at the LHC. They are an exhaustive set of four-dimensional
measurements in: n, pT, η and centrality, and can strongly constrain η/s of
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the medium as well as theoretical initial geometry models. Any model must
reproduce the pT, η and centrality dependence of all harmonics for the same
η/s value.

Figure 3.20 shows comparison of the centrality dependence of the vEPn mea-
sured in this work to theoretical calculations starting with the IP-Glasma ini-
tial conditions [74, 75] followed by viscous hydrodynamic evolution. These
comparisons have been taken from [76]. The comparisons show that the data
are consistent with value of η/s close to 0.2 for the QGP, very close to the
quantum lower bound of 0.08 (1/4π). They also indicate that the IP-Glasma
model describes the initial state reasonably well as all the vn are well repro-
duced with the same η/s value.

 0

 0.05

 0.1

 0.15

 0.2

 0  0.5  1  1.5  2

〈v
n2 〉1/

2

pT [GeV]

ATLAS 10-20%, EP

η/s =0.2 

 v2 
 v3 
 v4 
 v5 

 0

 0.05

 0.1

 0.15

 0.2

 0  0.5  1  1.5  2

〈v
n2 〉1/

2

pT [GeV]

ATLAS 20-30%, EP
narrow: η/s(T)
wide: η/s=0.2

 v2 
 v3 
 v4 
 v5 

Figure 3.20: pT and centrality of ATLAS vEP
n compared to theory. The theory

points are rms vn and calculated using viscous hydrodynamics starting from
an initial state determined using IP-Glasma model. Figure taken from [76].

3.5.5 Summary

In this chapter, measurements of flow harmonics v2− v6 using the EP method
over pT ∈ (0.5, 20) GeV, η ∈ (−2.5, 2.5) and broad centrality ranges were pre-
sented. The FCal was used as the event-plane detector, while the ID was used
to measure charged-particle tracks. The η dependence of the vn was shown
to be weak indicating that these anisotropies are indeed global anisotropies
that characterize the whole event. The presence of odd harmonics, especially
large v3, demonstrated the presence of considerable fluctuations in the initial
geometry. It was demonstrated how the vn measurements can be used to con-
strain the bulk properties (namely η/s) and initial conditions of the heavy-ion
collisions via comparisons to model calculations. Scaling relations were shown
in the pT dependence of the vn which can help in understanding the expansion
mechanism.
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Chapter 4

Two-particle correlation
measurements in Pb+Pb
collisions

In this chapter correlations between charged particle pairs, commonly termed
two-particle correlations or 2PC are studied. Particle pairs can be correlated
due to the global correlations that the individual particles have w.r.t. the
event-planes Φn. Correlations can also occur due to other phenomena, such as
jet fragmentation, back-to-back dijets, decays etc. and more interestingly (at
least from a from a heavy-ion perspective) from jet-medium interactions. The
features of the 2PCs are investigated and the single-particle vn including the v1,
which was not measure by the EP method are extracted from the correlations.
These measurements are complementary to the EP measurements done in the
previous chapter.

The structure of this chapter is as follows: in Section 4.1 the general
methodology behind two-particle correlation measurements, applicable to any
scenario where particle production takes place is discussed. Following which,
the 2PCs in the context of heavy-ion collisions, i.e. the influence of global
anisotropies vn and non-flow on the 2PCs, are discussed. In Section 4.2, the
features of the correlations are studied and the phase space region (in pT,
centrality etc.) where effects of global anisotropy dominate are identified, to
extract the vn from the correlations. In Section 4.3 the various sources of
systematic errors associated with these measurements are discussed. In Sec-
tion 4.4, the results for v2-v6 measurements via the 2PC method and also their
comparison to the EP results are presented. Finally in Section 4.5, measure-
ments of the dipolar flow v1 are presented. The measurements presented in
this chapter have been published in [63].
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4.1 Methodology

4.1.1 Two-particle correlation method

The correlations between particles produced in any high-energy collision can
be studied via two-particle correlations where the yield of associated (or part-
ner) particles (labelled ‘b’) w.r.t. trigger particles (labelled ‘a’) in relative az-
imuthal angle ∆φ (= φa − φb) and pseudo-rapidity separation ∆η (= ηa − ηb)
are measured. The two particles involved in the correlations can be selected
using different criteria, for example different pT ranges (hard-soft correlations),
different rapidity (forward -backward correlation), different charge sign (same
sign or opposite sign correlation) or even different species. In this analysis, the
two particles are charged hadrons measured by the ATLAS tracking system,
they cover the full azimuth and ±2.5 in η. Thus, the pair acceptance coverage
is ±5 units in ∆η.

In order to account for detector acceptance effects, the correlation is con-
structed from the ratio of distributions where the trigger and partner particles
are taken from the same event (same-event distributions or foreground distri-
butions) and distributions where the trigger and partner particles are taken
from two different events (mixed-event distributions or background distribu-
tions):

C(∆φ,∆η) =
〈Ns(∆φ,∆η)〉
〈Nm(∆φ,∆η)〉 (4.1)

where, the 〈...〉 indicates averaging over many events (or mixed-events). The
mixed-event distribution is constructed from particles from two different events
that have similar centrality and z vertex, so that the detector acceptance ef-
fects are similar for the two events. The mixed-event distribution includes the
effects of detector inefficiencies and non-uniformity, but contains no physical
correlations, while the same-event distribution includes both detector accep-
tance effects as well as physical correlations. Upon dividing by the mixed-event
distribution, the acceptance effects cancel out and only the physical correla-
tions remain (see Appendix B.1 for the derivation of this procedure).

Fig. 4.1 shows example same-event distribution, mixed-event distribution
and correlation function for central Pb+Pb collisions. The mixed-event dis-
tribution has an almost triangular shape along the ∆η axis since it reflects
a convolution of two single particle distributions that are approximately flat
in η (for −2.5 < η < 2.5 [58]). Apart from this triangular shape, there are
small modulations in both the ∆η and ∆φ directions due to non-uniform ac-
ceptance of the detector (arising from holes, dead modules etc.), which are not
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visible because of the large triangular modulation. A similar triangular shape
is also observed for the foreground distribution as it is also largely dominated
by combinatorial pairs. Upon dividing the same-event pair distribution by the
mixed-event pair distribution, all the acceptance effects (including detector
non-uniformity) cancel out leaving behind the physical correlations.
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Figure 4.1: The distribution for same event pairs (left), mixed event pairs
(middle) and correlation function (right) for paT, p

b
T ∈(2,3) GeV for the (0-5)%

centrality interval.

To investigate the ∆φ dependence in more detail, one-dimensional (1D)
∆φ correlation functions can be constructed from the ratio of the same-event
and mixed-event pair-distributions both projected to ∆φ, corresponding to a
range in ∆η.

C(∆φ) =
〈
∫

Ns(∆φ,∆η)d∆η〉
〈
∫

Nm(∆φ,∆η)d∆η〉 (4.2)

Figure 4.2 shows such 1D correlations for several |∆η| slices along with the
corresponding same-event and mixed-event pair distributions. These plots also
demonstrate how the mixed-event distribution corrects for detector effects.

In section 4.1.2 it will be demonstrated that only the knowledge of the
shape, and not the overall normalization of the correlation function is necessary
for studying the vn. For convenience, the normalization is fixed by rescaling the
mixed-event distribution to have the same number of pairs as the same-event
distribution in the range 2 < |∆η| < 5, so that at large ∆η, the correlation
has a mean value ∼ 1.
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4.1.2 Influence of flow and non-flow on two-particle cor-
relations

The 1D correlation function can be expanded in a Fourier series as:

C(∆φ) = A(1 + 2
∑

n

vn,n(p
a
T, p

b
T) cosn(∆φ)). (4.3)

Where, paT and pbT are the trigger and partner pT and vn,n(p
a
T, p

b
T) are the

Fourier harmonics of the correlation function. In heavy-ion collisions, the
physical correlations in 2PCs get contributions from both collective flow, as
well as other correlations that involve only a few particles (dijets, decays etc.).
As mentioned before, the collective flow leads to an anisotropic distribution of
the particles in azimuth:

dN/dφ ∝ 1 + 2
∞
∑

n=1

vn cosn(φ− Φn). (4.4)

The influence of flow on two-particle correlation, in the absence of other effects
(jets/decays etc.), can be obtained by a simple convolution of two distributions
described by Eq. 4.4 as (see Appendix B.2)

C(∆φ) ∝ dN/dφa ⊗ dN/dφb ∝ (1 + 2
∑

n

vanv
b
n cosn(∆φ)), (4.5)
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Comparing with Eq. 4.3 the vn,n(p
a
T, p

b
T) is related to vn(p

a
T) and vn(p

b
T) as:

vn,n(p
a
T, p

b
T) = vn(p

a
T)vn(p

b
T). (4.6)

Thus the Fourier components of the 2PC are simply the products of the vn of
the individual particles. The presence of jets, dijets and other short range cor-
relations such as resonances can modify the correlation function significantly,
and hence violate the scaling in Eq. 4.6. For example, pairs from the same
jet gives rise to a narrow peak around (∆φ,∆η) ∼ (0, 0) (Fig. 4.1), while the
pairs from back-to-back jets are centered around ∆φ ∼ π, but elongated along
the ∆η direction. These correlations contribute to the vn,n. The near-side jet
tends to increases the vn,n, but its influence is only limited to small ∆η. The
away-side correlation can potentially influence the vn,n at large ∆η. However,
it will be shown in Section 4.2 that its influence is negligible in central and
mid-central collisions and at low and intermediate pT.

4.1.3 Determining the single particle harmonics from
two-particle correlations

If the correlation function is dominated by the contribution from flow, i.e.
Eq. 4.6 holds true, then the single particle vn can be calculated by from the
2PCs. For example by choosing trigger and partner particles from the same
pT bin, the vn(p

a
T) can be calculated as the square root of vn,n(p

a
T, p

a
T).

vn,n(p
a
T, p

a
T) = vn(p

a
T)vn(p

a
T) = vn(p

a
T)

2 → vn(p
a
T) =

√

vn,n(paT, p
a
T) (4.7)

Such correlations where the trigger and partner are from the same pT bin are
termed fixed-pT correlations. In some cases, the vn,n become negative, either
due to statistical fluctuations, or when Eq. 4.6 is not valid due to non-flow
effects. In such case, for continuity the vn extracted from the 2PC are defined
as

vn(p
a
T) = −

√

|vn,n(paT, paT)|, (4.8)

This is done only for continuity, clearly the v2PCn obtained in such cases cannot
be interpreted as the single-particle anisotropies.

Figure 4.3 illustrates the steps in the Fourier analysis of the ∆φ correlation
function for 2 < |∆η| < 5 and paT, p

b
T ∈ (2, 3) GeV. The second panel shows

the 1D correlation function together with the first six Fourier terms and their
sum. The first six terms in the Fourier expansion almost completely account
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for the modulation of the correlation function. The lower panels show the vn,n
and vn =

√
vn,n.
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Once the single particle vn for a given pT bin is determined from the fixed-
pT correlation function, particles from this “reference-pT” bin are correlated
with particles from another pT bin to obtain the vn of the second particle as

vn(p
b
T) =

vn,n(p
a
T, p

b
T)

vn(paT)
. (4.9)

Such correlations, where the two particles are from different pT ranges are
termed mixed-pT correlations.
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It must be emphasized that the factorization relation Eq.4.6 (or Eq. 4.9)
is true only when the correlation function is dominated by collective flow. In
this case, the vn extracted using the 2PCs should be consistent with the vn
measured using the EP method, independent of which reference pT is used.
On the other hand, if other correlations such as jets, are significant, then
the factorization breaks down. In which case, if Eq. 4.9 is used, the vn(p

b
T)

extracted using different reference paT will be different. However, it is possible
that the collective dynamics dominate one term (say v3), but not the other (say
v1). In this case the vn, for those n where the collective dynamics dominates
can still be reliably extracted.

4.2 Features of two-particle collisions in heavy-

ion collisions

The central aim of the 2PC analysis is to identify the phase space, in terms of
pT, ∆η and centrality, over which the correlation functions are dominated by
collective flow and then extract the flow harmonics. One check is to systemat-
ically study the variation of the vn,n and vn with ∆η. As the ∆η gap between
the pair is increased, short-range correlations are reduced. Flow correlations
being global, are expected to be less sensitive to the ∆η gap. Another check
is to test the validity of the factorization (Eq. 4.9) by measuring the vn(p

b
T)

using several different reference paT bins. These two check are performed in
this section.

4.2.1 The correlation landscape

Figure 4.4 shows the centrality evolution of the correlation functions for trigger
and partner pT ∈ (2, 3) GeV. The following qualitative features are seen: In
all cases, a near-side jet peak centered around (∆η,∆φ) = (0, 0) is observed.
The magnitude of the near-side jet peak increases dramatically from the most
central events to the peripheral events, indicating the larger contribution from
short-range correlations with decreasing centrality. In central and mid-central
events, a long range correlation along ∆η at ∆φ = 0 is observed. This long
range correlation was also observed at RHIC [77, 78] and is called the ridge.
The ridge amplitude increases from central to mid-central collisions, reach-
ing a peak at around the (30-40)% centrality interval, and then decreases for
peripheral events. The ridge has only a weak ∆η dependence in central end
mid-central events, but beyond the (50-60)% centrality bin its magnitude de-
creases visibly with increasing ∆η. By the (80-90)% centrality bin the near
side ridge completely vanishes.
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Figure 4.4: Two Particle ∆η−∆φ Correlations 2 < paT , p
b
T < 3 GeV for various

centrality selections. The correlation function is truncated from top to better
reveal the fine long range structures.

Long-range correlation structures are also seen the away-side (∆φ ∼ π).
The away-side correlation structures are also flat in ∆η for central and mid-
central events, but their shape in ∆φ is centrality dependent. In most central
events, namely the (0-1)% and (0-5)% centrality intervals, the away-side is
relatively broad and has a double-hump structure (also seen at RHIC [79]).
The double peak structure disappears for the (0-10)% centrality bin, where a
single away-side peak is seen similar to the near-side ridge. The magnitude of
this away-side ridge also increases from central to mid-central events, and its
width in ∆φ narrows. Its magnitude is always smaller than the near side ridge
till the (50-60)% centrality interval. The away-side correlation appears to fall
off gradually at large ∆η starting in the (50-60)% centrality interval. In more
peripheral collisions, the fall off is very evident.

The last panel shows the peripheral centrality of (80-90)%, where the fea-
tures seen on the away-side are mainly from back-to-back dijets, as collective
dynamics or jet-medium interactions are not expected to play an important
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role here. The away-side correlation is extended in ∆η but its magnitude falls
considerably for |∆η| > 2. This shows that the long-range away-side struc-
tures seen in central Pb+Pb collisions have much larger extension in ∆η than
the swing of the away-side jet.

The long range structures at the near- and away-side could indicate a strong
medium modification of jet fragmentation or medium response to the energy
lost by quenched jets. In fact, the double-hump structure the away-side in most
central events was initially interpreted as the result of shock-waves produced
in the medium by the away-side jet [80]. It will be shown in Section 4.4.4 that
these structures are accounted for by collective flow. That the ridge and away-
side double-hump structure can arise from collective flow was first pointed out
in [42]. The measurements presented here were among the first that confirmed
this.

4.2.2 Centrality and pT dependence of the long-range
correlations

In order to study the long-range correlations in detail, 1D correlations with
2 < |∆η| < 5 are analyzed. The |∆η| cut removes the near-side jet peak
and most of the effects of the away-side jet. Figure 4.5 shows such correla-
tions for various centralities and for paT, p

b
T ∈ (3, 4) GeV together with the

individual contributions from the first six vn,n components. If the correlation
is dominated by anisotropic flow, its value at ∆φ ∼ 0 should be larger than
its value at ∆φ ∼ π. This is because in the flow dominated scenario, the
vn,n(p

a
T, p

b
T) = vn(p

a
T)vn(p

b
T) are positive definite, with their contribution to

C(∆φ) adding up on the near-side while on the away-side they alternatively
add and subtract1. This is the case up to the (40-50)% centrality bin, but be-
yond that the away-side is larger indicating a significant contribution from the
away-side jet. This reversing of the asymmetry between the near- and away-
side amplitudes correlates with a continuous decrease of v1,1, which eventually
becomes negative at around 50% centrality. The correlation function in the
(80-90)% centrality interval shows that a broad peak from the away-side jet
predominantly generates a negative v1,1 and a consequently a positive v2,2 that
cancel each other at the near-side but add up at the away-side. This behavior
shows that, the appearance of a large negative v1,1 is a good indicator for a
significant contribution of from dijets to v2,2.

Next a similar study is done for the pT dependence of the long-range cor-
relation structures. The left panels of Fig. 4.6 show the pT evolution of fixed-

1As cos(n∆φ) has a maxima at ∆φ = 0, and a maxima or minima at ∆φ = π depending
on whether n is odd or even.
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Figure 4.5: Two-particle ∆φ correlations for 2 < |∆η| < 5 for several centrality
intervals. paT, p

b
T ∈ (2, 3) GeV.

pT correlations in the (0-10)% centrality interval. For the upper two panels
(pT < 6 GeV) the near-side is larger than the away-side. While for the lower
two panels (pT > 6 GeV), the near-side peak completely vanishes while the
away-side peak continues to grow. This results in the harmonics vn,n to have
alternatively positive and negative signs for even and odd orders, showing the
breakdown of the factorization of vn,n (Eq. 4.6) which requires that the vn,n
be positive. The right panels of Fig. 4.6 show the centrality evolution of the
vn,n for an intermediate pT range pT ∈ (3, 4) GeV (top panel), and a high pT
range pT ∈ (5, 6) GeV (bottom panel). It is seen that for the 3-4 GeV bin, the
sign-flipping of vn,n between even and odd n happens only for peripheral events
while for the 5-6 GeV bin the sign-flipping happens over the entire centrality
range.

From the analysis done here it can be concluded that the long-range corre-
lation structures seen beyond 50% centrality and for pT > 4 GeV have observ-
able influences from the away-side jet. Next the complementary phase-space
i.e. pT < 4 GeV and events more central than 50% are analyzed to explicitly
check the factorization of the vn,n (Eq. 4.6).

4.2.3 ∆η dependence of vn,n

Fixed pT correlations

A ∆η cut of 2 units was used isolate the long-range correlations in the pre-
vious section. Here the ∆η dependence of the vn,n is investigated in detail.
Figure 4.7 shows the |∆η| dependence of the vn,n for several centrality inter-
vals for paT, p

b
T ∈ (2, 3) GeV. The distributions show a narrow peak around
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Figure 4.6: Left panels: Two-particle ∆φ correlations for 2 < |∆η| < 5 for the
(0-10)% centrality interval. From top to bottom the panels show correlations
with increasing pT. Right panels: the Fourier spectra as a function of centrality
for 3 < paT, p

b
T < 4 GeV (top panels) and 4 < paT, p

b
T < 5 GeV (bottom panels).

∆η ∼ 0 and then drop sharply till |∆η| ∼1.5-2.0. However beyond |∆η| >2
the variations in the v2,2-v6,6 are relatively small. The sharp peak at small
|∆η| reflects the influence of the near-side jet peak, while the gradual fall off
at large ∆η might be due to the slow drop of the vn towards large η (Sec-
tion 3.5.1), as a larger ∆η gap requires one or both of the particles to be from
large η. Figure 4.7 demonstrates that a cut of |∆η| > 2 picks up the long-range
correlations while cutting out the near-side jet peak.
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selections.

4.2.4 Mixed-pT correlations: the factorization of of vn,n

The factorization Eq 4.9 is checked using mixed-pT correlations with several
different paT values. Figure 4.8 shows one such study for the (0-10)% centrality
interval. The upper panels show the vn(p

a
T) extracted for four different paT bins

of (0.5-1.0), (1-2),(2-3) and (3-4) GeV using fixed-pT correlations. The middle
panels show the vn,n(p

a
T, p

b
T) obtained by correlating these four trigger bins

with associated particles having pbT ∈ (1.4, 1.6) GeV. And the lower panels
show the vn(p

b
T) obtained by dividing the plots in the middle panels by the

corresponding ones in the top panels (Eq. 4.9). For ∆η > 1 we see that while
the reference vn(p

a
T) differ by a factor of 3-10 depending on n, the recovered

vn(p
b
T)) are almost identical. There is a small deviation for v2 when the (3-

4) GeV paT bin is used as reference, this is because in the most central events
the v2 signal is small and can have some non-flow bias. For ∆η ∼ 0 it is seen
that the factorization breaks down for all harmonics due to the effect of the
near-side jet peak.

Figure 4.9 shows the results of a similar check but for the (20-30)% central-
ity interval. Similar trends are observed, however the agreement between the
different reference pT bins for v2 is much better. This is because the elliptic
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Figure 4.8: Top panels: vn vs ∆η for four fixed-pT correlations. Middle panels:
The vn,n obtained by correlating the four paT bins shown in the top row with
pbT ∈ (1.4, 1.6) GeV. Bottom panels: vn vs ∆η from mixed-pT correlations with
target pT of 1.4-1.6 GeV. All plots are for (0-10)% centrality selections.

flow signal in mid-central collisions is much larger than in the (0-10)% bin and
thus the influence of the jet bias is smaller (a similar but smaller increase can
also be seen for higher order vn).

In principle, the v1 can be calculated from v1,1. However v1,1 is affected
by global momentum conservation effects and which break the factorization
Eq. 4.9 [81, 82], resulting in v1,1 often becoming negative, even for fixed-pT
correlations. The v1,1 are studied separately Section 4.5. However, the break-
down of the factorization is demonstrated here. The negative v1,1 values are
handled using Eq. 4.8 for fixed-pT correlations. Figure 4.10 shows the refer-
ence and target v1(∆η) for the same set of pT bins as shown in Figure 4.8-4.9
but for several centrality bins. The factorization clearly does not work for any
|∆η|.
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Figure 4.9: Same as previous plot but for (20-30)% centrality interval.

4.2.5 Flow dominated phase space

From the study of the long-range correlation structures presented in this sec-
tion, it is seen that the factorization relation works well for pT < 5 GeV and
for centralities up to 50%. The influence of the away-side jet and other non-
flow correlations typically make a difference for pT >5 GeV and for centralities
(50-60)% and more peripheral. For clarity, it must be pointed out that the ef-
fects of the away-side jet are present for all centralities and at all pT, however
for lower pT and in central and mid-central events, the effects of the single
particle anisotropies dominate the 2PC. Similarly, the effects of the single par-
ticle anisotropies affect the 2PCs for peripheral centralities, however the jet
correlations dominate. There is no hard cutoff in terms of centrality and pT
when one switches off and the other takes over. The values of pT and centrality
mentioned here are the typical values when we can clearly identify the influ-
ence of one or the other. A more detailed evaluation of the non-flow influence
is done by comparing the 2PC vn to the EP vn in Section 4.4.2. It is also clear
that the v1,1 values do not factorize for any pT or centrality. This is expected
because of the momentum conservation effects that affect v1. In Section 4.5 a
detailed study of the v1,1 is done to obtain v1 by explicitly accounting for the
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Figure 4.10: Top panels: v1 vs |∆η| for four fixed-pT correlations. Middle
panels: The v1,1 obtained by correlating the four paT bins shown in the top row
with pbT in (1.4-1.6) GeV. Bottom panels: v1 vs |∆η| from mixed-pT correlations
with target pT of 1.4-1.6 GeV. Each column is a different centrality interval.

momentum conservation effects.

4.3 Systematic errors

In this section possible sources that can introduce systematic errors in the
correlation analysis are examined. Some of them are identical to the ones that
discussed in the Chapter 3 for the EP method. They include

1. Dependence on tracking cuts: The sensitivity of the results to the track-
ing cuts is studied by varying the d0 and z0 sin(θ) cuts as discussed in
Section 3.4.2.

2. Dependence on running period: The total statistics are divided into four
running periods and the analysis repeated for each period (Section 3.4.3).

3. Uncertainty in trigger efficiency: This was discussed in Section 3.4.4 and
comes from the ±2% uncertainty in the trigger efficiency.
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For each of the above checks, the analysis is repeated and the variation
in the vn,n and the corresponding variation in vn are considered as systematic
errors. Additional checks using a full ATLAS MC simulation are also per-
formed to evaluate additional errors that can be introduced due to detector
inefficiency (see Appendix B.3.1). The errors estimated from these checks are
listed in Table 4.1. In some cases the estimated errors have weak centrality
and pT dependence. In such cases, the errors are quoted conservatively so as
to cover these variations. The total error is taken to be the quadrature sum
of the individual errors.

v1 v2 v3 v4 v5 vn|n≥6

Track selection[%] 3.0 0.3 0.3 1.0 2.0 4

Running periods[%] 5.0 0.3-1.0 0.7-2.1 1.2-3.1 2.3 7-11

Trigger & event sel.[%] 1.0 0.5-1.0 0.5-1.5 0.5-1 1.0 5

MC consistency[%] 2.0 1.0 1.5 2.0 3.5 5

Total[%] 6.3 1.2-1.8 1.8-3.0 2.6-3.9 4.8 11-14

Table 4.1: Relative systematic uncertainties for vn, as percentages, from track-
ing cuts, variation between different running periods, centrality variation, con-
sistency between truth and reconstructed vn in HIJING simulation, and the
quadrature sum of individual terms.

Another source of systematic errors is based on how well the event mixing
reproduces the pair acceptance. These are detailed in Appendix B.3.2 and
arise because the pair acceptance is not exactly reproduced by the event-
mixing procedure because of the finite z-vertex binning (1 mm) and centrality
binning (5%) used for the mixed-events. Unlike the errors listed in Table 4.1
which were relative errors, these errors are absolute errors. These errors are
summarized in Table 4.2 for the vn,n. The errors for the vn are obtained by
propagation of these errors when calculating the vn via fixed-pT (Eq. 4.7) or
mixed-pT (Eq. 4.9) correlations.

residual vn,n (×10−6)
pT selections 2 < |∆η| < 5 0.1 |∆η| slice 0.5 |∆η| slice

paT, p
b
T < 2 GeV 2.5 5.0 3.2

paT, p
b
T > 2 GeV 6 8.7 6

paT > 2 GeV, pbT <2 GeV 3.7 8.6 6.6

Table 4.2: The systematic errors for v1,1–v6,6 estimated for effects not cancelled
out by event mixing.
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4.4 Results for v2-v6

4.4.1 vn spectra from 2PC

Figures 4.11 shows the vn as a function of n evaluated from several fixed-
pT correlations with 2 < |∆η| < 5 for the (0-5)% and (20-30)% centrality
intervals. The systematic errors include those from Tables 4.1 and 4.2. The
lower sub-panels in these plots also show the harmonics for orders 6 and above
on a linear scale, which are typically consistent with zero.

Plotting the power spectrum as a function of n allows us to directly see the
relative strength of the different flow harmonics. In the central (0-5)% events
(top panels) it is seen that v3 is comparable and in some cases larger than
v2. The v4 is fairly comparable to v2 as well. However, for the mid-central
events (bottom panels), an almost exponential decrease with increasing n is
seen. This spectra can be compared to results from model calculations of
initial geometry and equation of state [83, 84].
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Figure 4.11: vn vs. n for n ≥2 in the (0-5)% centrality interval (top panels)
and in the (20-30)% interval (bottom panels) for four fixed-pT correlations
(0.5-1, 1-2, 2-3 and 3-4 GeV from left to right). The error bars and shaded
bands indicate the statistical and total systematic uncertainties, respectively.
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4.4.2 Comparison with event-plane results: pT depen-
dence

The left panels of Fig. 4.12 compare the pT dependence of the 2PC v2-v5 values
to the EP values for the (0-10)% centrality interval. For v2 the results from the
two methods are in good agreement within 5-10% till pT ∼ 4 GeV, but beyond
that the results begin to diverge with the 2PC values being considerably larger,
due to contributions from the away-side jet. For v3 − v4 the agreements are
better and also extend out to slightly higher pT values than for the v2 case.
This is because the away-side jet, which produces an excess on the away-
side, typically affects v1,1 and v2,2 while the higher order harmonics are less
influenced. For v5 the statistical errors are too large beyond 4 GeV to make
definitive comparisons.

The right panels of Fig. 4.12 show similar comparisons but the 2PC results
are obtained using mixed-pT correlations for four different reference-pT bins
from relatively low pT ranges. Choosing lower pT reference bins results in the
EP and 2PC values agreeing out to much higher values of the associated pT.
This is expected as the jet bias is reduced when one of the particles used in
the 2PC is from a softer pT range.

Even for the mixed-pT correlations we see that the agreement for v3 and
higher order harmonics is better than that for v2. However this is only true for
most central events where the v2 values are small. Figure 4.13 shows similar
plots for three centrality ranges for v2 and v3. It is seen that that for mid-
central events the agreement for v2 is nearly as good as that for v3.

4.4.3 Comparison with event-plane results: Centrality
dependence

Figure 4.14 compares the centrality dependence of vn obtained from the 2PC
method and the EP method for three different pT bins. The 2PC results are
obtained using the fixed-pT method. The vn values agree within 5% for v2-
v4, 10% for v5 and 15% for v6 over a broad centrality range, well within the
quoted systematic uncertainties for the two methods. The disagreement be-
comes larger for peripheral events where the influence of non-flow correlations
start to become important.

4.4.4 Reconstructing the 2PC from EP vn

The agreement between the EP and 2PC vn measurements in central and mid-
central events and at low and intermediate pT implies that the features seen
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Figure 4.13: Left panels: Comparison of the v2(pT) (upper panels) and v3(pT)
(lower panels) from mixed-pT 2PCs with several different reference-pT bins to
the EP method. The lower sub-panels show the ratios of the 2PC values to the
EP values, the dashed lines indicate ±10% lines to guide the eye. From left
to right the plots are for (0-5)%, (20-30)% and (40-50)% centrality intervals
respectively.

in the correlation functions, such as the ridge and the double-hump are ac-
counted for by collective flow. In order to demonstrate this more effectively,
the 2PCs are reconstructed starting from the EP vn values. Since there are
no v1 measurements from the EP method, the reconstructed 2PC is assigned
a first order component equal to that of the measured 2PC. The overall nor-
malization of the reconstructed 2PC is adjusted to match the measured 2PC.
The reconstructed correlation function is constructed as:

Creco(∆φ) = N
(

1 + 2v2PC,Measured
1,1 cos(∆φ) + 2

6
∑

i=2

vEP,an vEP,an cos(n∆φ)
)

.(4.10)

Where, the vEPn are the values measured by the FCalP(N) EP method. Fig-
ure 4.15 compares such reconstructed correlation functions for the (0-1)% cen-
trality interval to the measured 2PCs. The measured 2PCs are well reproduced
and the ridge and double hump structures recovered. It is clearly seen from
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Figure 4.14: Comparison to the Event Plane results where the EP is deter-
mined with the full-FCal. The lower sub-panels show the ratio of the 2PC
values to the EP values. The dashed lines indicate a ±10% band to guide the
eye.

these plots that the double hump structure on the away-side arises from the
interplay of even and odd harmonics. Note that in the paT, p

b
T ∈ (3, 4) GeV

plot (lower right panel) the v1,1 plays a considerable role in producing the
cone. However, it will be shown in Section 4.5 that at this pT and centrality,
the v1,1 is dominated by collective flow. This comparison establishes that the
ridge and cone are the product of collective flow and not due to jet-medium
interactions as had been previously speculated.

4.5 v1,1 and implications for the collective di-

rected flow

Some general features of v1,1 data

As shown in Section 4.2.4, the first Fourier coefficient of the correlation func-
tion v1,1, does not factorize for any pT and centrality. The reason that factor-
ization breaks for v1,1 but not for the other Fourier components, is that it is the
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Figure 4.15: The solid black line shows the predicted two-particle correlation
function using v2 − v6 measured by EP method and v1,1 from measured two-
particle correlation for the (0-1)% centrality interval. The data points are the
measured 2PC. The contribution of the v1,1 component and of the even and
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only term influenced by the effects global momentum conservation [81, 82] −
all higher-order coefficients conserve momentum by construction due to their
multi-fold symmetry. One example of momentum conservation effect comes
from dijets, which tend to give a negative v1,1 at large ∆η. Several studies on
the influence of global momentum conservation on the two-particle correlations
have been done [81, 82, 85–88] which show the breakdown of the factorization
relation. The modified relation between v1,1 and v1 taking into consideration
the effects of momentum conservation, is given by [81, 82]:

v1,1(pT
a, pT

b) ≈ v1(pT
a)v1(pT

b)− pT
apT

b

M〈pT2〉 (4.11)
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where M and 〈p2T〉 are the multiplicity and average squared transverse mo-
mentum for the whole event respectively. The negative correction term in
Eq. 4.11, is the leading order approximation for momentum conservation and
is expected to be valid when the correction is small (≪1). As can be seen
from its form, the magnitude of the momentum conservation term increases
linearly with the pT of the two particles, but decreases with event multiplicity.
A natural expectation from Eq. 4.11 is that the global momentum conserva-
tion effect is important in peripheral events and high pT, but less so in central
events due to the large event multiplicity (large M).

The first term of Eq. 4.11 represents contribution from genuine collective
directed flow, whose dependence on η can be generally separated into a η-odd
and η-even components2. The η-odd v1 is believed to arise from the “sidewards
deflection” of the colliding ions [43], and changes sign going from negative η
to positive η [89, 90]. However this η-odd v1 is measured to be less than 0.5%
for |η| < 2 at the LHC [91]. The resulting contribution to v1,1 is expected
to be < 2.5 × 10−5, much smaller than the typical v1,1 values seen in the
data (see below). The η-even v1 signal is believed to arise from the “dipole
asymmetry” of the nuclear overlap region due to initial spatial fluctuations of
the nucleons [46, 87]. This spatial asymmetry results in a left-right asymmetry
of the pressure gradient, which drives the collective v1. If the rapidity-even v1
depends weakly on η similar to the higher-order flow, then its contribution to
v1,1 is expected to vary weakly with ∆η.

Figure 4.16 shows the ∆η dependence of the v1,1 extracted from the two-
particle correlations for several centrality intervals and pT combinations. The
v1,1 is always positive at small ∆η, due to the contribution from the near-side
jet peak and other short range correlations. The large ∆η behavior however
changes depending on the pT and centrality. For peripheral events, the v1,1
at large ∆η is negative and its magnitude increases with increasing pT. In
central events the v1,1 at large ∆η is negative at low pT, but becomes positive
with increasing pT. Furthermore, the magnitude of v1,1 at large ∆η remains
relatively flat with ∆η in central collisions, while in peripheral collisions it
peaks around ∆η ∼ 2 and then decreases weakly with ∆η. The behavior in
central collisions is consistent with a rapidity-even v1 that is relatively flat in
η at high pT, while the behavior in peripheral collisions is consistent with an
away-side jet contribution that decreases with ∆η.

Since the ∆η dependence of v1,1, as seen from Fig. 4.16 is weak at large
∆η, especially in central and mid-central events, the v1,1 is extracted from the
correlation function integrated over 2 < |∆η| < 5 to study its dependence on

2Any function f(x) can be written as the sum of an even and an odd function of x given
by: even(x) = (f(x) + f(−x))/2 and odd(x) = (f(x)− f(−x))/2
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Each panel corresponds to one centrality bin. In some panels the data are
rescaled to fit to the same range, the scale factors are indicated on the panels.

paT and pbT. The results are shown in Fig. 4.17 as a function of pbT for several
centralities and paT bins. The v1,1 values are always negative in peripheral
events and their magnitude increases almost linearly with paT and pbT, reflect-
ing the influence of the away-side jet. In more central events, however, the
magnitude of this negative v1,1 decreases, reflecting a weakening of the global
momentum conservation term by the large event multiplicity. Furthermore,
Fig. 4.17 clearly shows that in central and mid-central events, a positive v1,1
is seen for 2 . paT, p

b
T . 6 GeV, with maximum at around 4 GeV, similar to

the n ≥2 coefficients. The overall pT and centrality dependence of v1,1 is thus
qualitatively consistent with the behavior expected from the onset of collective
directed flow.

Extracting v1 from v1,1 data via a two component fit

To check is the v1,1 data is well described by the two component model of
Eq 4.11, a least-square fit of the following form is performed for each centrality
interval:

χ2 =
∑

a,b

(

v1,1(p
a
T, p

b
T)− [vFit1 (paT)v

Fit
1 (pbT)− cpaTp

b
T]
)2

(

σstat
a,b

)2
+
(

σsys,p2p
a,b

)2 (4.12)

where σstat
a,b and σsys,p2p

a,b denote the statistical and point to point systematic

error respectively for v1,1(p
a
T, p

b
T). The v

Fit
1 (pT) function is defined via a smooth

interpolation of the v1 values at m discrete pT points, vFit1 (pT,i)|mi=1, and these
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Figure 4.17: v1,1(p
a
T, p

b
T) vs p

b
T for several different paT intervals. The error bars

and bands represent statistical and systematic uncertainties respectively. The
data points for the three highest paT intervals have coarser binning in pbT, and
hence are connected by dashed lines to guide the eye. Each panel represents
one centrality interval. The data in the bottom three panels are scaled down
by factor of 10 to fit within the same vertical range.

together with parameter c result in a set of m+ 1 fit parameters. The reason
behind using an interpolation procedure is that the functional form of v1(pT)
is a priori unknown, but is expected to vary smoothly with pT. The parameter
c is introduced as the value of M〈p2T〉 is not known.

In the default setup, the v1,1 data for the fit are restricted to paT <6 GeV
and pbT <10 GeV and a cubic spline interpolation procedure is used with the
number of interpolation points m=15 (listed in Table 4.3). To account for the
pT correlated uncertainty (σsys,corr

a,b ), the chi-square minimization is repeated
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after varying all the v1,1 data points up or down by σsys,corr
a,b . Since v1,1(p

a
T, p

b
T)

is symmetric in paT and pbT, this results in the data points for paT < pbT to
be correlated with those for paT > pbT. This influence of this correlation is
evaluated by repeating the fit using only v1,1 data for paT < pbT or v1,1 data for
paT > pbT. Note that the binning in paT and pbT are not identical, so the v1,1 data
for paT < pbT and paT > pbT are not identical. The variations from the default fit
results are included in the systematic errors.
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Figure 4.18: Global fit (via Eq. 4.12) of the v1,1 data for the (0-5)% centrality
interval (top panel) and (40-50)% centrality interval (bottom panel). The data
are shown as a function of pbT for various paT ranges, with shaded bars indicating
the correlated systematic errors. The fit function and the associated system-
atic uncertainties are indicated by the thick solid lines and surrounding dashed
and dotted lines, respectively. The dot-dashed lines (blue, with negative slope)
indicate the estimated contribution from the momentum conservation compo-
nent. The lower part of each panel shows the difference between the data and
fit, as well as the systematic uncertainty of the fit (dashed and dotted lines).
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Figure 4.18 shows the fit results for two centrality intervals: (0-5)% in the
top panel and (40-50)% in the bottom panel. The v1,1 data are plotted as a
function of pbT for six intervals of paT. The data are well described by the two
component fit (solid black lines) across broad ranges of paT and pbT. The typical
χ2/DOF of the fits are between 1–2 depending on the centrality, and are listed
in Table 4.3. The deviations between the data and the fit, as shown in the
bottom sub-panels, are . 10−4 for pT <5 GeV, but increase systematically
for higher pT and more peripheral events, possibly indicating the limitations
of the two component assumption or the leading order approximation of the
momentum conservation term in Eq. 4.11. The final results are restricted
to (0-50)% most central events, for which the direct flow term in Eq. 4.11
as extracted from the data, exceeds or at least is comparable in magnitude
to the momentum conservation term, and the statistical uncertainties in the
fits are not too large. Fit results for other centrality selections are shown in
Appendix B.4.

From Fig. 4.18, the contributions of the dipolar flow and the momentum
conservation term to v1,1 can be directly compared. The dot-dashed lines (blue,
with negative slope) indicate the estimated contribution from the momentum
conservation term. The difference between the fits to the v1,1 data and the
momentum conservation component, i.e. the difference between the solid-black
line and the dot-dashed line gives the contribution of the dipolar flow.

The estimation of systematic uncertainties associated with the fitting and
interpolation procedure is done by the following variations:

1. The interpolation function is changed from cubic spline interpolation
(default) to linear interpolation and polynomial interpolation.

2. The number of interpolation points are varied from 15 (default) to 9 and
21 points.

3. The pT range of the fit is varied from paT ∈ (0.5, 6) GeV, pbT ∈ (0.5, 10) GeV
(default) to paT, p

b
T ∈ (0.5, 5) GeV and paT, p

b
T ∈ (0.5, 10) GeV.

The total systematic uncertainties of the minimization procedure are calcu-
lated as the RMS sum of the above variations. They are small in central
events but become substantial in peripheral events, and are important sources
of uncertainties at intermediate pT. The total absolute uncertainty is about
δv1 = 0.001− 0.004 for pT <3 GeV and increases rapidly for higher pT due to
increasingly larger statistical uncertainties.

A final check is done to see if the fit parameter c in Eq. 4.12 which was
introduced as a substitute for the unknown 1/M〈p2T〉 has the expected behav-
ior with changing centrality or not. The fit parameter c should be inversely
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proportional to multiplicity M and 〈pT2〉 of the whole event. This is checked
by calculating the product of c and the charged hadron multiplicity at mid-
rapidity dN

dη |η=0
from [58], with the assumption that dN

dη |η=0
is proportional to

M . The results are summarized in Table 4.3 for each centrality interval. Since
〈p2T〉 for the whole event is expected to vary weakly with centrality (the 〈pT〉
for charged pions at mid-rapidity only varies by ∼ 5% within 0-50% centrality
interval at LHC [92]), then the product should also vary weakly with central-
ity. Table 4.3 show that this is indeed the case, qualitatively supporting the
assumptions underlying Eq. 4.11.

Centrality χ2/DOF c(0.001GeV−2) cdN
dη |η=0

(GeV−2)

0-5% 159/113 0.24± 0.02 0.387± 0.035
5-10% 132/113 0.28± 0.02 0.374± 0.032
10-20% 134/113 0.35± 0.03 0.355± 0.031
20-30% 165/113 0.50± 0.04 0.337± 0.028
30-40% 186/113 0.75± 0.05 0.326± 0.027
40-50% 181/113 1.16± 0.09 0.320± 0.029

15 interpolation points used in the default fit
0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 2.0, 2.5
3.0, 3.5, 4.5, 5.5, 6.5, 7.5, 9.0 GeV

Table 4.3: Quality of the fit χ2/DOF, fit parameter c, and corresponding
multiplicity scaled values cdN

dη |η=0
for various centrality intervals. The uncer-

tainty of the latter is calculated as quadrature sum of those from c and dN
dη |η=0

of Ref. [58]. The bottom row lists the 15 pT interpolation points used in the
default fit.

Figure 4.19 shows the final extracted v1(pT) from the fits for various central-
ity intervals. The shaded bands indicate combined statistical and systematic
errors. The statistical uncertainty of the fit is important at high pT, while
the fit uncertainty from pT correlated error (σsys,corr

a,b ) is important at low and
intermediate pT. A significant v1 signal is observed for all centrality intervals.
It reaches a maximum between 4 GeV and 5 GeV and then falls slightly at
higher pT. The magnitude of v1 is large and its maximum in each central-
ity is comparable to that for the v3. The centrality dependence of the v1 is
relatively weak similar to the n > 2 harmonics, its maximum shows a ∼20%
variation with centrality. At pT . 1 GeV, v1(pT) becomes negative, confirm-
ing a feature expected for collective v1 as suggested by hydrodynamic model
calculations [46, 87]. All these features together with the fact that the v1,1

86



data show little ∆η dependence for |∆η| > 2 (Fig. 4.16), is consistent with the
expected behavior of a η-even v1 contribution, driven primarily by a dipolar
deformation in the initial geometry.

In Fig. 4.15 it was seen that the v1,1 played a role in producing the double-
hump in the paT, p

b
T ∈ (3, 4) GeV range. From The top panel of Fig. 4.18 it can

be seen that at this combination of trigger and partner pT, the contribution
from dipolar flow to v1,1 is almost thrice as large as the momentum conservation
component. This shows that even at this pT, it is the effects of collective
dynamics that produce the double-hump.
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Figure 4.19: v1 obtained from the global fit vs pT for various centrality inter-
vals. The shaded bands indicate the total uncertainty and are reproduced in
the lower sub-panels for clarity.

4.6 Summary

In this chapter the pT, ∆η and centrality dependence of the two-particle cor-
relation functions were studied. It was shown that up to pT . 4 GeV and
for centrality . 50% almost all of the long-range features seen in the 2PC
including the ridge and cone are accounted by collective flow. No additional
jet-medium interaction models are needed to describe these structures. In this
pT and centrality range the 2PC v2-v6 values were shown to be consistent with
the EP results and the factorization relation of the 2PC Fourier coefficients
into single particle anisotropies: vn,n(p

a
T, p

b
T) = vn(p

a
T)vn(p

b
T) was shown to

hold for |∆η| > 2. At higher pT the factorization was shown to break down,
due to the effect of the away-side jet coupled with decreasing flow. However,
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if the vn for associated particles were extracted by correlating them with trig-
ger particles having relatively softer pT, the values were consistent with the
EP results. This shows that not only soft-soft correlations but also hard-soft
correlations are primarily driven by the global event shape.

For v1,1 the factorization was shown to not hold for any pT or centrality,
because of the effects of global momentum conservation. However using a two-
component fit to the v1,1 data, the parity-even v1 associated with the dipole
asymmetry of the initial geometry was extracted. Its pT and centrality depen-
dence were studied and its magnitude was shown to be fairly large, comparable
to v3 indicating a significant dipole asymmetry in the initial geometry.
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Chapter 5

Measurement of event-by-event
distributions of flow harmonics
in Pb+Pb collisions

The previous two chapters detailed extensive measurements of the flow har-
monics v1-v6. The large values of odd harmonics especially v1 and v3 indicate
the presence of considerable event-by-event (EbyE) fluctuations in the shape
of the initial geometry. Such fluctuations have been a topic of considerable
theoretical study [44, 93]. Calculations based on the Glauber model have
shown that fluctuations in the eccentricity vectors ǫn are well described by
2D-Gaussian distributions about a mean eccentricity vector ǫRP

n which lies
along the reaction-plane as [44]:

p(ǫn) =
1

2πδ2
ǫn

e−(ǫn−ǫ
RP
n )

2
/

(2δ2ǫn ) (5.1)

where, δǫn quantifies the EbyE fluctuations and ǫRP
n the role of the mean

geometry. For the lower order harmonics (n=2,3) hydrodynamic calculations
have shown that the vn are correlated to the ǫn in the initial geometry [47, 52].
In such cases the EbyE distributions of the vn are expected to have a similar
form as the EbyE distributions of the ǫn:

p(vn) =
1

2πδ2
vn

e−(vn−v
RP
n )

2
/

(2δ2vn ) (5.2)

where, as in Eq. 5.1, vRP
n is aligned along the reaction-plane and characterizes

the effects of the mean overlap geometry and δvn characterizes the fluctuations
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in the vn. The EbyE distribution of vn = |vn| can be obtained by projecting
Eq. 5.2 along the radial direction and is given by:

p(vn) =
vn
δ2
vn

e
−

(vn)2+(vRP
n )2

2δ2
vn I0

(

vRP
n vn
δ2
vn

)

, (5.3)

where, I0 is the modified Bessel function of the first kind. The above functional
form is commonly called a Bessel-Gaussian function [43]. The parameters
vRP
n and δ

vn
in Eq. (5.3) are related to 〈vn〉 and σvn . For small fluctuations

(δ
vn

≪ vRP
n ) [44]:

δ
vn

≈ σvn ,
(

vRP
n

)2 ≈ 〈vn〉2 − δ2
vn

. (5.4)

For large fluctuations i.e. δ
vn

≫ vRP
n (e.g. in central collisions), Eq. 5.3

can be approximated by:

p(vn) =
vn
δ2
vn

e−v 2
n /(2δ2vn ), (5.5)

where, the fact that I0(0) = 1 has been used. This is the “fluctuation-only”
scenario, i.e. vRP

n = 0. In this case, both the mean and the width are deter-
mined by δ

vn
[94]:

〈vn〉 =
√

π

2
δ
vn
, σvn =

√

2− π

2
δ
vn
, (5.6)

which gives:

σvn

〈vn〉
=

√

4

π
− 1 = 0.523,

√

〈v2n〉 =
2√
π
〈vn〉 = 1.13〈vn〉 . (5.7)

The quantities 〈vn〉, σvn ,
√

〈v2n〉, σvn/〈vn〉, vRP
n and δ

vn
, have been ex-

tensively studied both experimentally [66, 95, 96] and in theoretical mod-
els [44, 67, 93]. Typically the fluctuation measurements are done using two-
and four-particle multi-particle cumulants, which assume that the distributions
are Bessel-Gaussian and proceed to evaluate the above quantities [97, 98].
Measurements of higher order multi-particle cumulants suggest that the v2
distributions are consistent with the Bessel-Gaussian distributions [99, 100].
However, this consistency is inferred indirectly from agreement among four-,
six- and eight-particle cumulants.

Direct measurements of the EbyE vn distributions, presented in this chapter
can check whether the Bessel-Gaussian functions correctly describe the data
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or not. Note that Eq. 5.3 only holds in the limit of linear response (vn ∝ ǫn).
Thus effects of non-linear response can be quantified by the deviations of the
measured vn distributions from this functional form.

The organization of this chapter is as follows: In Section 5.1 the method-
ology used to measure the EbyE distributions is described. In Sections 5.2
and 5.3 the implementation of the method as well as estimation of systematic
uncertainties are done. The final results as well as comparison to theoreti-
cal models are presented in Section 5.4. The measurements presented in this
chapter have been submitted for publication [101].

5.1 Methodology

5.1.1 Observed single particle EbyE distributions

The top panels of Figure 5.1 show the azimuthal distribution of reconstructed
charged tracks with pT above 0.5 GeV and |η| < 2.5 in three individual events
in the (0-5)% centrality interval. The bottom panels show the corresponding
two-particle correlations. The modulations are clearly much larger than the
detector acceptance effects (solid red points). The 2PC distributions for the
three events show clear two-peak, three-peak and four-peak structure in the
first second and third event respectively. This indicates that the dominant
harmonic in the three events is n=2, 3 and 4 respectively, even though the
three events are from the same centrality interval, indicating the important
role of fluctuations.

In the absence of detector effects, the single particle azimuthal distributions
as the ones shown in Fig. 5.1 can be expanded into a Fourier series:

dN

dφ
∝ 1 + 2

∞
∑

n=1

vobsn cosn(φ−Ψn)

= 1 + 2
∞
∑

n=1

(

vx,obsn cosnφ+ vy,obsn sinnφ)
)

, (5.8)

where,

vx,obsn = 〈cosnφ〉, vy,obsn = 〈sinnφ〉

vobsn =

√

(

vx,obsn

)2

+
(

vy,obsn

)2

, tannΨn =
vy,obsn

vx,obsn

. (5.9)

The averaging 〈...〉 is over all particles in a given η range. The vobsn is simply
the magnitude of the observed “flow vector” normalized by the number of
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Figure 5.1: Single particle φ (top) and pair ∆φ (bottom) distributions for
three events (from left to right) in the (0-5)% centrality interval. The bars
indicate the foreground distributions, the curves indicate a simple Fourier
parameterization including first six harmonics, and the red solid points indicate
the acceptance functions. Tracks above 0.5 GeV are used.

particles. It is called the observed per-particle flow vector. In the limit
of infinite multiplicity, it should approach the true flow signal vobsn → vn (and
Ψn → Φn). However, the finite observed multiplicity of the event leads to
smearing of the observed vn about the true1 vn. In order to measure the EbyE
vn distribution, the response function p(vobsn |vn), which gives the probability
for measuring a particular vobsn for a given true vn has to be determined. This
is then used to unfold the measured vobsn distribution to remove the smearing
effects due to the finite multiplicity, to obtain the true EbyE vn distribution.

The measured distributions need to be corrected to account for the non-
uniform detector acceptance. This is achieved by dividing the foreground

1This smearing effect can make vobs
n

both larger and smaller than the true vn, although
on average it will be larger. This is in contrast to the EP method, where the vobs

n
was

smaller than the true vn as the phase Ψn and the flow harmonic vn were determined using
a different set of particles (or different detectors). Also note that the vobs

n
in the EP method

is obtained by averaging over many events, while here the vobs
n

refers to the anisotropy in a
single event.
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track distribution (S(φ)) of a given event by the acceptance function (B(φ))
obtained by averaging the track distributions over all events within the same
centrality interval (solid red points in Fig. 5.1). In order to account for the
tracking efficiency2 ǫ, which changes as a function of pT and η, each track is
weighted by 1/ǫ(pT, η). Weighting by 1/ǫ(pT, η) corrects for the fact that only
a fraction ǫ(pT, η) of tracks are reconstructed. The corrected distribution is
thus obtained as:

dN

dφ
∝ C(φ) =

S(φ)

B(φ)
=

1 + 2
∑∞

n=1(v
x,raw
n cosnφ+ vy,rawn sinnφ)

1 + 2
∑∞

n=1(v
x,det
n cosnφ+ vy,detn sinnφ)

. (5.10)

where, vx,rawn and vy,rawn are the mean cosine and sine values of the track-phi
distributions with each track weighted by 1/ǫ(pT, η):

vx,rawn =

∑

i(cosnφi)/ǫ(ηi, pT,i)
∑

i 1/ǫ(ηi, pT,i)
=

〈

cosnφ

ǫ

〉

vy,rawn =

∑

i(sinnφi)/ǫ(ηi, pT,i)
∑

i 1/ǫ(ηi, pT,i)
=

〈

sinnφ

ǫ

〉

(5.11)

and vx,detn and vy,detn are calculated by averaging over all tracks in all events,
and hence represent the Fourier coefficients of the detector acceptance function
in azimuth:

vx,detn =

∑

events

∑

i (cosnφi) /ǫ(ηi, pT,i)
∑

events

∑

i 1/ǫ(ηi, pT,i)
≈ 〈vx,rawn 〉events ,

vy,detn =

∑

events

∑

i (cosnφi) /ǫ(ηi, pT,i)
∑

events

∑

i 1/ǫ(ηi, pT,i)
≈ 〈vy,rawn 〉events

(5.12)

From Eq. 5.10 and Eq. 5.8 it follows that for small vx,detn and vy,detn the
acceptance effects can be approximated as:

vx,obsn ≈ vx,rawn − vx,detn , vy,obsn ≈ vy,rawn − vy,detn (5.13)

2The ǫ(pT, η) is the tracking efficiency which gives the probability that a track with a
particular pT and η (but averaged over φ) will be reconstructed and is determined from AT-
LAS MC simulations. The acceptance function B(φ) is the modulation in the φ acceptance
and can be obtained by a data driven procedure i.e. averaging the track distribution over
several events.
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This is similar to the recentering correction that was done in the EP analysis
(Chapter 3) for the FCal. From Fig 5.1 it is clear that indeed the vx,detn and
vy,detn are small and this approximation is valid. A more direct way of taking
into account the acceptance effect in φ, without any approximation is to weight
the tracks by 1/B(φ) (besides the 1/ǫ(pT, η) weight). This already corrects for

the azimuthal detector anisotropy at the v
x/y,raw
n calculation.

vx,obsn =

∑

i
cosnφi

B(φi)ǫ(ηi,pT,i)
∑

i
1

B(φi)ǫ(ηi,pT,i)

=

〈

cosnφ

B(φ)ǫ

〉

,

vy,obsn =

∑

i
sinnφi

B(φi)ǫ(ηi,pT,i)
∑

i
1

B(φi)ǫ(ηi,pT,i)

=

〈

sinnφ

B(φ)ǫ

〉

(5.14)

The differences between using Eq. 5.14 and Eq. 5.13 have been explicitly
checked and found to be negligible.

Figure 5.2 shows the EbyE distribution of the observed per-particle flow
vector vobs

2 = (vx,obs2 , vy,obs2 ) = (vobs2 cos 2Ψobs
n , vobs2 sin 2Ψobs

n ), and its magnitude
vobs2 , in the (20-25)% centrality interval.
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Figure 5.2: The distribution of vobs

2
flow vector (left panel) and the magnitude

(right panel) for events in (20-25)% centrality interval.

5.1.2 Determining the response function

Due to finite multiplicity, the measured flow vector is smeared randomly
around the true flow vector by a 2D smearing function p(vobs

n |vn). This smear-
ing function will be a 2D Gaussian if the smearing is purely statistical. This
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is shown schematically in Fig. 5.3. The arrow represents the true flow vector
vn in an event. The smaller circle (red) represents the size of the fluctuation
of the observed flow vector about the true vector when determined using all
tracks within the ATLAS acceptance of −2.5 < η < 2.5. If only half of the
ATLAS tracking acceptance is used in determining the observed flow vector,
i.e. 0 < η < 2.5 or −2.5 < η < 0, the size of the fluctuations will be larger by
a factor of

√
2, while the true vn remains the same. This larger fluctuation

for the subevent vobs

n
is indicated by the larger circle (blue) in Fig. 5.3.

Figure 5.3: Schematic of procedure used to obtain response function. The
black line represents the true flow vector in an event. The red circle repre-
sents the fluctuation of the observed flow vector about the true vector when
determined using all tracks within the ATLAS acceptance of −2.5 < η < 2.5.
The blue circle fluctuation of the observed flow vector about the true vector
when using tracks in only half of the ATLAS acceptance i.e. 0 < η < 2.5 or
−2.5 < η < 0. The red circle is

√
2 times larger than the blue circle.

If the observed flow vector measured in the η > 0 subevent is subtracted
from the one measured in the η < 0 subevent, the physical flow signal cancels,
giving a 2D Gaussian distribution that is centered around the origin but is

√
2

larger than the fluctuations in the individual subevents3. The response func-
tion for the subevents is obtained by scaling down this difference distribution
by a factor of

√
2 along the x and y-axes. And scaling it down by another

factor of
√
2 gives the response function for the full-event.

The first panel of Fig 5.4 shows the distribution of flow vector differences
between the two subevents, p

(

(vobs
2 )a − (vobs

2 )b
)

for the (20-25)% centrality

3The difference between two Gaussian random variables with identical widths is again
a Gaussian distribution but with a width that is

√
2 times larger.
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Figure 5.4: (left panel) The distribution of the difference between the flow
vectors of the two half ID for events in the (20-25)% centrality interval. (middle
panel) The projection on to the x-axis overlaid with a fit to Gaussian function.
(right panel) The projection on to the y-axis overlaid with a fit to Gaussian
function.

interval. As explained before, the physical flow signal cancels in this distri-
bution and it contains only the effect of statistical smearing. The next two
panels of Fig. 5.4 show the x and y projections of this distribution together
with fits to a Gaussian function. The fits describe the data across five orders
of magnitude with the same widths along both directions, implying that the
smearing effect is indeed statistical. The smearing widths are also found to be
the same for the x and y-axis directions within 0.1%. Denoting the width of
this distribution as δ

2SE
, then the width of the response function of the half

ID and the full ID should be δ
2SE

/
√
2 and δ

2SE
/2, respectively; they can be

obtained by rescaling left panel of Figure 5.4 in both dimensions by a constant
factor c: p(vobs

n |vn) = p
(

c
[

(vobs
n )a − (vobs

n )b
])

, with c = 2 and
√
2 for the

full-ID and half-ID, respectively. The 2D response function for a given true
vn = (vxn, v

y
n) is :

p(vobs
n |vn) ∝ e−

|vobsn −vn|2

2δ2 , δ =







δ
2SE

/
√
2 for half ID

δ
2SE

/2 for full ID
(5.15)

The 1D response function that relates the vobsn to the vn, is obtained by
expressing Eq. 5.15 in polar coordinates and integrating out the azimuthal
angle, which gives:
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p(vobsn |vn) ∝ (vobsn )e−
(vobsn )2+v2n

2δ2 I0

(

(vobsn )vn
δ2

)

= (vn + s)e−
(vn+s)2+v2n

2δ2 I0

(

(vn + s)vn
δ2

)

(5.16)

where I0 is the modified Bessel function of the first kind, and s = vobsn − vn
represents the smearing of the observed vn about the true vn. This analytical
function, which is a Bessel-Gaussian function, can be used to directly unfold
the vobsn distribution, i.e. the right panel of Figure 5.2.

Figure 5.5 shows the shape of response function given by Eq. 5.16 for
δ = 0.01 and vn = 0.01 × i, with i=0,1,2,.... The response functions are
represented by the curves, while the corresponding vn values are indicated by
the vertical lines. Clearly the Bessel-Gaussian function approaches Gaussian
function when vn >> δ.
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Figure 5.5: The response function Eq. 5.16 for δ = 0.01 and vn = 0.01 × i,
with i=0,1,2,... The response functions are represented by the curves, while
the corresponding input vn values are indicated by the vertical lines.

A detailed investigation of the shape of the response function has been
carried out for n=2-6 and for various centrality selections. The details are
given in Appendix C.1. In summary, the Gaussian description works very well
for centrality interval up to (50-55)%. Beyond that, the distributions become
noticeably non-Gaussian, in particular, the tail of the response function is
broader than the Gaussian function. Instead, these distributions are described
well with the t-distribution, which is the general probability distribution for the
difference between two independent estimate of the average. The t-distribution
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approaches Gaussian-distribution when the degrees of freedom, represented by
the number of tracks, becomes large. In this analysis the 1D response functions
are obtained numerically from the 2D (vobs

2 )a − (vobs
2 )b distributions, instead

of using the analytic form in Eq. 5.16 (which assumes that the 2D response
functions are Gaussian). For systematic studies however the analysis is also
done with the analytic response function Eq. 5.16.

The two-subevent method discussed here to obtain the response function
has been studied extensively in [102], where it was shown that unfolding us-
ing this response function not only removes statistical fluctuations, but also
removes non-flow effects that are uncorrelated between the two subevents.

5.1.3 Unfolding of the EbyE pair distribution

The unfolding procedure can also be used on EbyE two-particle correlations.
Two subevents in opposite hemispheres but with the same η acceptance are
chosen, so they have the same response function in the case of the single
particle unfolding. The pair distribution is obtained by correlating the tracks
in the first subevent with those from the second subevent4:

dNpairs

d∆φ
∝

[

1 + 2
∑

n

(

vx,obs1n cosnφ1 + vy,obs1n sinnφ1

)

]

⊗
[

1 + 2
∑

n

(

vx,obs2n cosnφ2 + vy,obs2n sinnφ2

)

]

= 1 + 2
∑

n

(

(

vx,obs1n vx,obs2n + vy,obs1n vy,obs2n

)

cosn∆φ

+
(

vx,obs1n vy,obs2n − vy,obs1n vx,obs2n

)

sinn∆φ

)

≡ 1 + 2
∑

n

(A cosn∆φ+ B sinn∆φ) (5.17)

where the tracking efficiency weighting has been applied for vxn and vyn on a
track-by-track basis as defined in Eq. 5.10. An EbyE pair variable vobsn,n is
subsequently calculated as :

4This pair correlation is slightly different than the ones described in chapter 4, where
there was no restriction on the η of the particles. Here particle-pairs are made with one
particle from η < 0 and another with η > 0, i.e. no pairs with both particles from the same
η range. For the 2PC’s in chapter 4 an EbyE analysis is difficult to do as it is not clear how
obtain a response function.
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vobsn,n =
√
A2 + B2 =

√

[

(

vx,obs1n

)2

+
(

vy,obs1n

)2
] [

(

vx,obs2n

)2

+
(

vy,obs2n

)2
]

= vobs1n vobs2n (5.18)

Note that the term B sinn∆φ in Eq. 5.17 is essential and captures some ad-
ditional statistical fluctuations.

The observed flow signal from correlation analysis is defined as

vobs,2PCn =
√

vobsn,n =
√

vobs1n vobs2n =
√

(vn + s1)(vn + s2) (5.19)

where s1 and s2 are independent smearing functions described by the proba-
bility distribution Eq. 5.16 with δ = δ

2SE
/
√
2. Clearly the smearing for vobs,2PCn

is very different in nature from that for the single particle vobsn = vn+s defined
in the previous section. For example, in the limit of small signal vn, the s1s2
term dominates the smearing, which makes the distribution broader than vobsn .
For large vn, however, s1 and s2 are approximately Gaussian (see Figure 5.5),

vobs,2PCn ≈
√

v2n + vn(s1 + s2) ≈ vn +
s1 + s2

2
= vn + s1/

√
2 = vn + s. (5.20)

The last two steps in Eq. 5.20 follow from the fact that the mean of two
Gaussian random variables is equivalent to a Gaussian with a

√
2 times nar-

rower width, and that the smearing of half ID (s1 and s2) is
√
2 broader than

that for the full ID (s). Hence, for sufficiently large vn, the distribution of
vobs,2PCn from correlation of the two half ID is expected to approach the vobsn

distributions from the full ID. The 2PC response function can be generated
analytically from the measured response function for the single particle vn (e.g.
Figure 5.2). Figure 5.6 shows the shape of 2PC response function generated
from Eq. 5.16 and Eq. 5.20 for δ = 0.01 and vn = 0.01 × i, with i=0,1,2,...
(dashed curves). They are compared with the response functions for single
particle unfolding (solid curves). The corresponding input true vn values are
indicated by the vertical lines. Clearly the 2PC response function is always
broader than the corresponding the single particle response function, and they
approach each other when vn >> δ.

Figure 5.7 shows a comparison between the vobsn from the full ID and vobs,2PCn

calculated by correlating the two half IDs, for three centrality intervals. It is
seen that the vobsn and vobs,2PCn distributions agree with each other for n=2 and
n=3 for vn > 0.03 in central and mid-central collisions. This is where where
the condition vn > s1, s2 is expected to hold. In all other cases the agreement
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Figure 5.6: The response function for Eq. 5.16 (solid curves) and for Eq. 5.20
(dashed curves) with δ = 0.01 and vn = 0.01×i, with i=0,1,2,.... The response
functions are represented by the curves, while the corresponding input vn
values are indicated by the vertical lines.

is poor, implying that the s1s2 term dominates the 2PC response function.
The aim of performing the analysis on the pair distribution is that it has

different susceptibility to non-flow effects than the single particle method.
The pair distribution method correlates tracks between two subevents in non-
overlapping eta regions and naturally suppresses short-range correlations, since
on average there is a large rapidity gap between the particles in each pair.
Thus, the results from the 2PC unfolding can be used to estimate systematic
effects from short-range correlations.

5.1.4 Bayes unfolding

In this analysis, the standard Bayesian unfolding procedure [103] as imple-
mented in the RooUnfold framework [104] is used. The true distribution
(“cause” or c) and the measured distribution (“effect” or e) are related via the
response function A, which relates the probability that a cause ci is mapped
on to a measured value ej

Ac = e, Aji = p(ej|ci) (5.21)

c is obtained via an iterative pseudo-inversion procedure: A unfolding matrix
M is determined from the response function and some initial guess of the true
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Figure 5.7: Comparison of the EbyE distributions of vobsn from the full ID and
vobs,2PCn by correlating the two half IDs for various centrality intervals (left to
right) and different harmonic number (top to bottom).

distribution ĉ0 (called the prior) as :

ĉiter+1 = M̂ itere, M̂ iter
ij =

Ajiĉ
iter
i

∑

m,k AmiAjkĉiterk

(5.22)

More explicitly, M̂0 is calculated from the initial guess ĉ0 . The elements of
M̂0 are then used to estimate ĉ1 and so on. The statistical uncertainties in ĉi

increase rapidly with the number of iterations5. Thus the unfolding has to be
stopped after a certain number of iterations Niter, which is tuned according to
the sample statistics. Due to the large statistics of the Run-10 dataset, which
has ∼ 2.4 million events for each 5% centrality interval, the Niter can be chosen
to be a large enough such that the ĉi converge, yet the statistical uncertainties
are still fairly small.

5This is a general feature of the Bayesian unfolding.
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The response function is determined from the subevent correlation as de-
scribed in Sections 5.1.2 and 5.1.3. The vobsn distribution from the full ID (or
vobs,2PCn distribution from correlations between the two half IDs) can be used
as the prior ĉ0 i.e. ĉ0 = e in Eq. 5.22. The convergence improves when using
a prior that is closer to the true distribution, while using a prior that is very
different than the true distribution converges slower. The priors used in this
analysis are obtained by rescaling the vobsn distributions by a factor R as:

vobsn → Rvobsn , R =
vEPn

〈vobsn 〉+
(

〈(vobsn )2〉 − 〈vobsn 〉
)

f

, (5.23)

with f=0, 0.5, 1, 1.5, 2 and 2.5. The 〈vobsn 〉 and 〈(vobsn )2〉 are the mean and
the RMS of the vobsn distribution respectively and vEPn is the integral vn for
pT >0.5 GeV measured using the event-plane method (Chapter 3). The vEPn is
typically close to the RMS of the true vn distribution (see Section 3.2.5). Thus,
choosing f=1 in Eq. 5.23 gives a prior close to the true distribution (as its RMS
is equal to the vEPn ). While f<1 (f>1) gives priors that are typically broader
(narrower) than the final answer, and can be used to check the stability of the
unfolding. The f=0 prior is used as the default prior.

The unfolding problem in this analysis has several nice features that greatly
improves its convergence behavior:

1. The response function is obtained from a data-driven method, without
any need for Monte Carlo.

2. Each event provides one entry to the input distribution and the response
function, they can be determined with great precision given the large
event statistics of the Pb+Pb dataset: roughly 2.4 million events for
each 5% centrality interval.

3. There is no efficiency loss, as each event provides one value of vobsn , and
the effect of the tracking inefficiency is simply to smear the observed
distribution. In other words an event is never lost i.e. the integral of the
unfolded distribution and of the true distribution are the same, and the
unfolding does not have to correct for efficiency loss.

4. There is no leakage problem: the corrected vn distribution is always nar-
rower than the observed distribution and contained within the available
range.

In this analysis, the unfolding of the single-particle EbyE vobsn is used as
the primary method. The unfolding of vobs,2PCn , with its very different response
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function and sensitivity to non-flow effects, is used to assess systematic uncer-
tainties. Additional checks on the non-flow effects are provided by varying the
gap between the two half IDs, or by measuring vobsn for tracks with different
pT threshold.

5.2 Data analysis

In this section the performance of the unfolding as well as several cross-checks
to check its convergence and stability are discussed. The analysis done here
form the basis of the systematic uncertainties estimated for the EbyE distri-
butions.

5.2.1 Basic performance of the unfolding

The top row of Fig. 5.8 shows the performance of the Bayesian unfolding for
the v2 distribution in the (20-25)% centrality interval. The first panel shows
the unfolded distributions for different number of iterations Niter. The second
panel shows the ratio of the different iterations to the 128th iteration. The
unfolding converges within a few percent around the peak region by Niter=8.
Additional iterations bring about improvements in the tails. The third panel
shows the ratio of the refolded distribution – obtained by convoluting the
unfolding distribution with the response function – to the vobsn distribution.
This sanity check shows that that the measured distribution is recovered by
smearing the unfolded distribution by the response function. Similar plots for
v3 and v4 are shown in the second and third rows Figs. 5.8. The performance
is similar but the convergence is slower as the physical signals are smaller for
v3 and v4 as compared to v2. The statistical uncertainties in the unfolded
distributions increase with increasing Niter and are close to

√
N error, where

the N is the number of events in each bin in the unfolded distribution for 64 <
Niter < 128. Thus iteration 128 is used as the final iteration and the results are
presented only over the centrality range where the difference between the 32nd

and 128th iterations is less than 10% when statistics allow for a meaningful
comparison. The centrality ranges for harmonics 2, 3 and 4 are (0-70)%, (0-
60)% and (0-45)% respectively.

5.2.2 Unfolding subevent vn distributions

To show that the method yields a consistent answer, the unfolding proce-
dure is performed independently for the half ID and the full ID, assuming
the width of the smearing function for half ID is

√
2 times that for the full
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Figure 5.8: The unfolding performance for the vn distribution for the (20-
25)% centrality interval for various Niter (left panels), the ratios of the unfolded
distributions to the results after 128 iterations (middle panels), and the ratios
of the refolded distributions to the measured vobsn (right panels). From top to
bottom the rows correspond to v2, v3 and v4.

ID (Eq. 5.15). The results for this study are shown in Fig. 5.9 for Niter=128
for the (20-25)% centrality interval. Despite the substantial difference in the
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initial distributions, the final unfolded results converge within a few percent.
Some systematic deviations are seen in the tail of the v4 distribution, which
mainly reflects the remaining non-convergence of the half ID unfolding, since
the response function is

√
2 broader than that for than the full ID.
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Figure 5.9: Comparison of the input distributions (solid symbols) and un-
folded distributions for Niter=128 (open symbols) between the half-ID and the
full-ID in the (20-25)% centrality interval. The ratios of half-ID to full-ID
unfolded results are shown in the bottom panels. The results are shown for v2
(left panels), v3 (middle panels) and v4 (right panels).

5.2.3 Dependence on the prior

The convergence of the results starting with different priors is used to check
the stability of the unfolding. Figure 5.10 shows the convergence behavior
for different choices of priors for v2 to v4 in the (20-25)% centrality interval.
Five difference priors are used: Eq. 5.23 with f=0, 0.5, 1.5, 2.5 as well as
the observed vobsn distribution. Clearly a better choice of prior improves the
convergence, however all priors eventually converge to the same distribution.
Even when choosing a prior that is narrower than the true distribution (f ¿1),
the results still converge showing the robustness of the unfolding. A caveat
though is that a narrow prior can result in some information loss in the tail,
and typically has larger fluctuations (in the tail).

5.2.4 Dependence on the response function

In the default analysis an explicit dependence of the widths δ2SE, of the 2D re-
sponse function on vobsn are not considered. However, as shown in Fig. 5.11, the
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Figure 5.10: Convergence behavior in the (20-25)% centrality interval for
five choices of priors for several values of Niter, increasing from left to right.
The lower sub-panels show the ratios to the result for Niter=128. A common
reference, shown by the solid lines in the upper sub-panels, is calculated by
averaging the result for f = 0 and f = 0.5 with Niter=128.

106



nv
0 0.05 0.1 0.15 0.2

nvδ

0.014

0.016

0.018

0-5%

n=2
n=3
n=4
n=5
n=6

nv
0 0.1 0.2

nvδ
0.02

0.025

0.03 20-25%

nv
0 0.1 0.2 0.3

nvδ

0.032

0.034

0.036

0.038

0.04

40-45%

nv
0 0.1 0.2 0.3 0.4

nvδ

0.07

0.08

0.09

0.1 65-70%

Figure 5.11: The width of the 2D response functions obtained by fitting
distribution of the flow vector difference

(

(vobs
2 )a − (vobs

2 )b
)

/2 between the
two half ID for n = 2−6 for several centrality selections. Note that the y-axes
are zero suppressed. The variation in the width with vobsn is a few %, except
in the last panel where the variation is much larger for n >2.

107



width of the response function does have a weak dependence on the vobsn . The
variation is typically a few percent, but can be larger in peripheral collisions.
To quantify the uncertainty associated with the shape and the width of the
response function, the unfolding is performed using four different variations of
the response function:

1. The measured response function obtained numerically from the two subevent
(

(vobs
2 )a − (vobs

2 )b
)

distribution but integrated over the full vobsn i.e. ig-
noring any dependence on vobsn . This is the default case.

2. The analytical response function obtained using Eq. 5.16. δ2SE is ob-
tained by fitting the

(

(vobs
2 )a − (vobs

2 )b
)

distribution integrated over the
full vobsn .

The other two cases are when the dependence of the response function on vobsn

is taken into consideration by measuring the
(

(vobs
2 )a − (vobs

2 )b
)

distributions
in bins of vobsn . The differences between the default and the other three cases
are used to assess the systematic uncertainties.
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Figure 5.12: The unfolded results for four different implementations of the
response functions mentioned in the text for v2 in (20-25)% centrality interval.
The difference are quantified by the ratios relative to the default response
function in the bottom panels.

Figure 5.12 shows the unfolded results in (20-25)% centrality interval ob-
tained using these four response functions for v2. Good agreement is observed
in most cases. In general, there are no differences between using the analytical
response function and using the measured response function. But there are
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Figure 5.13: The sensitivity of the unfolded results on the width of the re-
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some small systematic differences of the order of a few percent depending on
whether or not the width is parameterized as a function of vobsn .

The sensitivity of the unfolding on the width of the response function is
also checked explicitly by rescaling the measured integrated response function
to be slightly narrower or broader by 1%-2%. The rescaled response functions
are then used in the unfolding and the variations are shown in Figure 5.13 for
the (20-25)% centrality interval. In general, the changes are small for n=2 but
can be large for n=4, especially in the tail.

5.2.5 Comparison to unfolding of EbyE pair distribu-
tions

Comparing the unfolded distributions from the single-particle unfolding and
the pair-unfolding is an important systematic check, as the bias of non-flow
effects on the two methods is expected to be different. In Fig. 5.14 the observed
and unfolded distributions for the single-particle and pair distributions are
compared. Despite substantial differences in the observed distributions, the
unfolded distributions are very consistent with each other except in the tail
for the v3 and v4 distributions. This is expected as the response functions for
the 2PC are wider and the convergence is slower.
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Figure 5.14: Comparison of the input distributions (solid symbols) and un-
folded distributions for Niter= 128 (open symbols) between the single-particle
unfolding and 2PC unfolding in the (20-25)% centrality interval for v2 (left
panels), v3 (middle panels) and v4 (right panels). The ratios of 2PC to single-
particle unfolded results are shown in the bottom panels.

5.2.6 Dependence on the η gaps

In the default setup, the response functions are determined from the two half
IDs without any gap in between. Another way of systematically studying the
effect of short-range correlation on the vn distributions is to repeat both the
single particle and two-particle EbyE vn measurements with varying amounts
of η gap between the two subevents. Six additional cases are studied with
successively increasing the minimum η gap between the two subevents: > 0.2,
> 0.4, > 0.6, > 0.8, > 1.0 and > 2.0. For each case, the full analysis chain is
repeated and the results are compared with the default case.

The upper two panels of Fig. 5.15 show the final unfolded distributions
(128 iteration) with these rapidity gaps from both the single particle method
and correlation method for v2 in the (0-5)% centrality interval. Fig. 5.16 shows
similar plots for the v3 distribution. The bottom left panel shows the ratio
of the single particle distributions to the default case. Systematic deviations
are seen when the gap is increased (see bottom left panel), with the unfolded
distributions being narrower for larger η gap. However, this narrowing is not
necessarily from changing non-flow effects, and in fact is expected from the
slight decrease of vn with increasing η (Section 3.5.1), since a larger η gap on
average selects particles at forward η. The bottom right panel shows the ratios
between the correlation method and single particle method for the different η
gaps. The ratio is independent of the η gap indicating that the effect of the
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Figure 5.15: The unfolded distributions of EbyE v2 with various ∆η gaps be-
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Figure 5.16: Same as previous plot but for v3.

η gap is identical on the 2PC and single-particle distributions, indicating that
the non-flow influence is not being affected by varying the η gap.
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Based on this observation, the η gap dependence is not used to quote
additional systematic errors. However, the difference between the 2PC and
the single-particle results for the default case is included as a systematic error.

5.2.7 Dependence on the pT cuts

In this analysis, the EbyE vn is calculated using tracks with pT > 0.5 GeV.
Studying how the EbyE distributions change with the pT binning can a give
better understanding of the fluctuations. It can also help in understanding the
non-flow biases, as they are expected to be more dominant at higher pT. For
this, the tracks are divided into two categories: those with 0.5 < pT < 1.0 GeV
and those with pT > 1.0 GeV. It is not possible to make finer bins in pT as the
number of tracks/event has to be kept at a substantial level for the unfolding
to work. About 60% of all tracks are within the 0.5 < pT < 1.0 GeV bin,
although this fraction varies slightly with centrality. The full analysis chain is
repeated independently for the two classes of tracks.

The top panels of Figure 5.17 show the unfolded EbyE vn distributions for
the two pT bins as well as the combined pT bin in the (0-5)% centrality interval.
The unfolded distributions for the pT > 1.0 GeV bin are much wider and thus
the associated 〈vn〉 values are larger than that for the 0.5 < pT < 1.0 GeV
bin. This simply indicates that the vn increase with increasing pT. However,
the overall shape of the distributions are quite similar. In fact once these
distributions are rescaled to have the same mean value, they fall on top of
each other as indicated by the bottom panels of Figure 5.17. Only a small
deviation is observed in the tails of the distributions.

The similarity of shape between the EbyE vn in different pT ranges implies
that the hydrodynamic response of the medium to the initial geometry is inde-
pendent of the pT up to an overall scaling, i.e. the change of the distribution
is largely captured by an increase of the average vn with pT. It also indicates
that the change in non-flow effects are minimal between the two bins, further
establishing the robustness of the unfolding to non-flow influence.

5.3 Systematic errors

In Section 5.2 the basic steps and important cross-checks of the analysis were
laid out. The default results are obtained from single particle unfolding with
full-ID using a prior distribution that is rescaled to have the same mean value
as the event-plane measurement (f = 0), and the response function is obtained
from correlations between two half IDs without rapidity gap in between (fol-
lowed by scaling by 1/2). The systematic uncertainties are studied by varying
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Figure 5.17: Top panels: The vn unfolded distributions in (0-5)% centrality
interval for all tracks with pT > 0.5 GeV, 1.0 > pT > 0.5 GeV and pT > 1 GeV.
Bottom panels: The distributions scaled to have the same 〈vn〉 as the pT > 0.5
distribution.

the ingredients associated with analysis. Results in Section 5.2.7 showed that
the overall shape of the unfolded distributions, when rescaled to the same 〈vn〉,
are very stable against the change of the pT selection cut. Motivated by this
observation, all the sources of systematic uncertainties are decomposed into
two components: the uncertainty associated with the 〈vn〉 or the vn-scale, and
the uncertainty of the shape after adjusting to the same 〈vn〉. This approach
simplifies the presentation of the systematic uncertainties, as most uncertain-
ties can be attributed to a change of 〈vn〉 while keeping the overall shape
almost unchanged.

The sources of systematic errors already discussed in Section 5.2 are:

1. Residual non-convergence: This is taken as the difference between the
results of iteration 32 and 128, or between the results from full-ID un-
folding and half-ID unfolding. These two are strongly correlated and
the error is taken to be the larger of the two bin by bin in the unfolded
distribution.

2. Dependence on prior: This is taken as the difference in results obtained
between the f = 0 and f = 2.5 priors.

3. Uncertainty in response function: This is taken as the change using the
four variants of the response function described in section 5.2.4 as well
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as the change when varying the width of the response function by ±1%.
The variation from these two sources are added in quadrature.

4. Two-particle EbyE distributions: The difference between the results of
the default (without any η gap) 2PC unfolding and the single particle
unfolding is included as a source of systematic error.

Additional sources of systematic uncertainties are discussed below:

5.3.1 Tracking efficiency

As discussed in Section 5.1.1 while calculating the EbyE vobsn , the tracks are
weighted by the inverse of the tracking efficiency 1/ǫ. Thus any uncertainty
on the efficiency ǫ translates into an error in the EbyE vn measurement. The
tracking efficiency used in this analysis is based on the tracking performance
study done in [60] and shown in Fig. 2.11. The uncertainty in the tracking
efficiency is roughly ±3% independent of pT and η. An overall scaling of the
tracking efficiency does not alter the vobsn measured in an event, as it affects
all tracks equally. This can be seen from Eq. 5.11, where it is clear that
a scale change of ǫ(η, pT) cancels in the numerator and denominator. Thus
scaling the efficiency up or down by its ±3% uncertainty does not affect the
EbyE distributions. Instead, the effect of the tracking efficiency uncertainty
is determined by assuming that the errors in it are completely anti-correlated
at the low-pT and high-pT end. The tracking efficiency is varied as a function
of pT as:

ǫ±(pT) = ǫ(pT)± 0.03
ǫ(pT)− ǫ(plowT )

ǫ(pupT )− ǫ(plowT )
∓ 0.03 (5.24)

This variation lowers(raises) the efficiency by 3% at plowT = 0.5 GeV and
raises(lowers) it by 3% at pupT = 10 GeV with a smooth interpolation in be-
tween. Such a variation covers the maximum effect that the uncertainty in the
efficiency can have.

5.3.2 Other uncertainties

There are other potential uncertainties that haven’t been considered so far,
such as track selection, trigger-efficiency and event selection, and run by run
dependence. The track selection accounts for influence of fakes, the trigger-
efficiency and event selection is associated with the definition of centrality
intervals, while the run by run dependence is associated with the instability
of the detector acceptance and efficiency. These three sources of systematics
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are expected to only change the vn scale, and have been studied in detail the
EP vn analysis (Chapter 3). As this analysis uses the same dataset and track
selection cuts, the errors on the scale are quoted as the corresponding errors
from the EP analysis (Tables 3.3–3.5).

5.3.3 Summary of systematic uncertainties

As discussed before, each source is decomposed into two components: the
uncertainty on the mean 〈vn〉 or vn scale, and the uncertainty on the shape of
the vn distribution with respect to the same 〈vn〉.

Uncertainty of the vn scale

Figure 5.18 summarizes the various sources of systematic uncertainties for
〈vn〉, σvn and σvn/〈vn〉. Here the results are plotted as a function of the mean
number of participating nucleons 〈Npart〉 by mapping the centrality intervals to
〈Npart〉 (see Table 2.1)6. The first five points with highest 〈Npart〉 correspond
to the (0-5)% centrality in 1% centrality bins, the subsequent points are bins
of 5% centrality.

The uncertainty for 〈vn〉 and σvn are strongly correlated, indicating that
many of the sources of errors affect the overall scale but not the shape. These
uncertainties are summarized in Table 5.1. They are listed for four groups
of centrality intervals 0-10%, 10-30%, 30-50% and 50-70%, the numbers are
given as percentage. Most uncertainties are asymmetric, the quoted numbers
correspond to the range spanned by the largest uncertainty for all centrality
intervals in each group. The net uncertainty in the scale is obtained by adding
the uncertainties in quadrature.

Uncertainty of the vn shape

Once the 〈vn〉 is determined for each systematic check, the full unfolded dis-
tribution is rescaled horizontally to match the 〈vn〉 value from the default
unfolding. The rescaled distribution is then divided by the distribution from
the default unfolding. The ratio thus obtained quantifies the level of residual
shape variation. Figure 5.19 summarizes these ratios for all the major system-
atic checks for each of the 19 centrality intervals for v2. The uncertainty asso-
ciated with the residual non-convergence is taken as the larger of the following
two numbers: the difference between Niter = 32 and 128 and the difference
between the half-ID and full-ID results. The upper and lower bounds of this

6From here on, all centrality dependence results are presented as a function of Npart for
easier comparison to theory.
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Figure 5.18: Fractional change of 〈vn〉 (left column), σvn (middle column) and
σvn/〈vn〉 (right column) for various sources of systematic uncertainties. Each
row corresponds to a different harmonic number: n=2 (top row), n=3 (middle
row) and n=4 (bottom row). Note that, changes for some sources are indicated
by a upper and lower bounds (for example efficiency), while only one bound
is shown for other sources (i.e. comparison to 2PC).
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Uncertainty in 〈v2〉 or σv2
Uncertainty in σv2

/〈v2〉
Centrality 0–10% 10–30% 30–50% 50–70% 0–10% 10–30% 30–50% 50–70%

Non-convergence [%] <0.1 <0.1 <0.2 3–12 0.9 0.3 0.5–1.4 3–11
Prior [%] <0.1 <0.1 <0.1 0.1–0.2 0.6 <0.3 <0.2 0.2–0.7

Response function [%] 0.3–1 0.1 0.1 0.2–1 1.0 0.5 0.6 0.6–3
Compare to 2PC [%] <0.1 <0.1 <0.1 0.2–7 0.5–1.5 <0.4 0.4–0.8 1–7

Efficiency [%] 1 0.6-0.8 0.7 0.6 0.4 0.4 0.4 0.4–0.8
Track selection,

trigger, stability [%]
2.2 1.7 1.5 1.5

Total [%] 2.5 1.9 1.7 3.5–14 1.6–2.2 1 1–1.8 3.4–14

Uncertainty in 〈v3〉 or σv3
Uncertainty in σv3

/〈v3〉
Centrality 0–10% 10–30% 30–50% 50–60% 0–10% 10–30% 30–50% 50–60%

Non-convergence [%] 0.2 0.3 0.3 1.2–5 0.2–0.8 0.3–0.8 0.4–2 0.5–4
Prior [%] <0.1 <0.1 <0.1 0.5–1.4 0.6 0.2–0.4 0.2–1.0 3.0

Response function [%] 0.6 0.8 0.8–2.4 2.9–4.6 0.3–0.7 0.2–0.5 0.9–2.5 3–5
Compare to 2PC [%] 0.5 0.2–0.7 0.1 0.2 0.3–1.6 0.4–0.6 0.7–2.5 1–3

Efficiency [%] 1.5 1.2 1 0.9 <0.2 <0.2 <0.3 <0.3
Track selection,

trigger, stability [%]
2.1 1.4 1.5–2 2.5–4.5

Total [%] 2.7 2.2 2–3.3 4.2–8.3 0.8–2 0.6–1.2 1.3–4.2 4.2–7.0

Uncertainty in 〈v4〉 or σv4
Uncertainty in σv4

/〈v4〉
Centrality 0–10% 10–30% 30–45% 0–10% 10–30% 30–45%

Non-convergence [%] 1–2.0 1–1.5 3.0–5.5 1–2 0.5–1 2.0–4.0
Prior [%] 3.0 3.0 5.0–7.0 2.0 3.0 5.0

Response function [%] 2.5–4.0 3.0 3.0–5.0 0.5–2 0.6–1.2 2.0–2.3
Compare to 2PC[%] 0.2-1 0.3 1–4.7 1–2.5 1.2 0.5–1.2

Efficiency [%] 2.0 1.5 1.2 1 0.4 <0.3
Track selection,

trigger, stability [%]
3.0 2.7 3–6

Total [%] 5.4 5.4 8–11 3.0 4.0 5-7

Table 5.1: Summary of systematic uncertainties for 〈vn〉, σvn and σvn/〈vn〉
(n = 2–4) obtained using charged particles with pT > 0.5 GeV. The uncer-
tainties for 〈vn〉 and σvn are similar so the larger of the two is quoted. Most
uncertainties are asymmetric; the quoted numbers refer to the maximum un-
certainty range spanned by various centrality intervals in each group.
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uncertainty are represented by red symbols. The uncertainty associated with
the response function is also represented by upper and lower bounds (brown
symbols). However the uncertainty associated with the remaining sources are
each represented by one single ratio. Every ratio usually crosses 1.0 in at least
two locations, because of the fact that the distributions in the numerator and
denominator have the same mean. The deviations are larger in the tails of the
v2 distributions. Figure 5.20 and Figure 5.21 summarize similar results for v3
and v4. The deviations from unity are smaller than that for the v2, which is
mainly due to the fact that the unfolded v3 and v4 distributions themselves are
almost Gaussian, while the response functions themselves are also Gaussian,
hence the unfolding procedure does not lead to much shape distortions.

These different sources of systematic uncertainties are then added in quadra-
ture. The combined uncertainties have quite large point to point fluctuations
and are smoothed out to enclose the global trend of the systematic uncertain-
ties.

The ranges of the unfolded distributions shown for Figure 5.19-5.21 are
chosen such that the statistical error in each bin is less than 15%, and the
upper limit of distributions has to be less than 〈vn〉 + 4σvn . This is to ensure
that the fluctuations in the unfolded distributions are not too large, usually
much less than the quoted systematic uncertainties. The fraction of events
outside this limit ranges from 0.1% to 0.5%, depending on the centrality and
harmonic number. These fractions are summarized in Figure 5.22.
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Figure 5.22: Fraction of events outside the range of the unfolded distributions
as function of 〈Npart〉 for v2 − v4.
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5.4 Results

EbyE vn distributions

Figure 5.23 shows the main result of the EbyE vn measurements. These are
the probability distribution of the EbyE vn in several centrality intervals for
charged particles with pT > 0.5 GeV and |η| < 2.5. The shaded bands indi-
cate the systematic uncertainties associated with the reduced shape and are
fully correlated: the data points are allowed to change the shape of the dis-
tribution within the band while keeping the 〈vn〉 unchanged. The ranges of
these distributions are chosen such that the statistical uncertainties in all bins
are less than 15%. This choice ensures that the statistical uncertainties are
always smaller than the systematic uncertainties, and that the total integral
outside these ranges is < 0.1% for 5% centrality intervals and < 0.5% for the
1% centrality intervals.

The v2 distribution changes considerably between the different centralities,
indicating the important role of the changing average geometry. For the v3
and v4 distributions the change is more gradual. This was already seen in the
EP and 2PC analyses where it was shown the v

EP/2PC
2 changes quite strongly

with centrality but the v
EP/2PC
3 and v

EP/2PC
4 change much slowly. These dis-

tributions are compared with the fluctuations-only scenario (Eq. 5.5 and 5.6)
given by:

P (vn) =
vn
δ2n

e
−

v2n
2δ2n , δn =

√

2

π
〈vn〉 (5.25)

These functions, as indicated by the solid curves, are calculated directly from
the measured 〈vn〉 values for each distributions. The fluctuations-only descrip-
tion works well for v3 and v4 over the measured centrality range. However,
a small systematic difference in the tails of the v3 distributions is noticed in
mid-central collisions where the v3 values exceed 0.1. For v2 the fluctuations-
only description works only for the (0-2)% centrality intervals ( only (0-1)%
is shown on the plot), and is not shown for the other centralities. It will be
shown later that they are better described by Bessel-Gaussian distributions
with vRP

n > 0, indicating the effects of the average geometry on the v2.

pT scaling of vn distributions

The top panels of Figs. 5.24-5.25 compare the unfolded EbyE vn distribution
in three pT ranges: pT ∈ (0.5, 1.0) GeV, pT > 1.0 GeV and pT > 0.5 GeV, for
the (20-25)% and (40-45)% centrality intervals respectively (also see Fig. 5.17).
The distributions are much broader for the higher pT range, however, once they
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Figure 5.23: The vn distributions normalized to unity in several centrality
intervals for n = 2 (left panel), n = 3 (middle panel) and n = 4 (right
panel). The errors bars are statistical uncertainties, and the shaded bands
are uncertainties on the vn-shape. The solid curves are functions calculated
from the measured 〈vn〉 according to Eq. 5.25 (shown for the (0-1)% centrality
interval for v2, and all centrality intervals for v3 and v4).

are rescaled7 to the same 〈vn〉 values (bottom panels), all three distributions
almost completely match with each other8. This suggests that the hydrody-
namic response of the medium factorizes into a pT dependent function and an
initial-geometry dependent function.

Starting from the EbyE distributions, quantities such as the mean vn (〈vn〉)
and the rms width σvn can be obtained. These are shown in Fig. 5.26 as a func-
tion of 〈Npart〉 for the pT ∈ (0.5, 1.0) GeV, pT > 1.0 GeV and the pT > 0.5 GeV
bins. The shaded bands represent the systematic uncertainties listed in Ta-
ble 5.1, which in general are asymmetric. It is seen that while the 〈vn〉 and σvn

have considerable pT dependence, the ratio σvn/vn is nearly identical for the
three bins. This shows that the scaling feature shown in Figs. 5.24–5.25 is in
fact true for all centralities. For v2, the value of σvn/〈vn〉 varies strongly with
〈Npart〉 and reaches a minimum of about 0.34 at 〈Npart〉 ∼ 200 or (20-30)%
centrality range. For v3 and v4, the value of σvn/〈vn〉 is almost independent
of 〈Npart〉, and is consistent with the value expected from pure Gaussian fluc-

tuations scenario:
√

4
π
− 1 = 0.523 (Eq. 5.7) as indicated by the dashed lines.

This was already expected from the EbyE distributions (Fig. 5.23) where it

7Note that these are probability distributions and are constrained to have an integral
equal to 1.0, thus after scaling along the x-axis they are renormalized again.

8Note that only two of these bins are independent, as the pT > 0.5 GeV bin is simply
the sum of the other two.
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and pT > 1 GeV ranges. Bottom panels: same distributions but rescaled
horizontally so the 〈vn〉 values match that for the pT > 0.5 GeV range. The
shaded bands represent the systematic uncertainties on the vn-shape.
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Figure 5.25: Same as previous plot but for (40-45)% centrality interval.

was shown that the v3 and v4 distributions were consistent with the pure-
fluctuations scenario. Note that for v2, the pure-fluctuations limit is also
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reached in most central collisions, indicating the lack of mean geometry effects
on the EbyE v2 distributions in very central events. The values of σvn/〈vn〉 are
also compared to those obtained from the Glauber model [53] and MC-KLN
model [105]. The comparisons to these two models are discussed in more detail
in Section 5.4.2.
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Figure 5.26: The 〈Npart〉 dependence of 〈vn〉 (left column), σvn (middle col-
umn) and σvn/〈vn〉 (right column) for n = 2 (top row), n = 3 (middle row)
and n = 4 (bottom row). Each panel shows the results for three pT ranges
together with the total systematic uncertainties. The dashed lines in the right

column indicate the
√

4
π
− 1 = 0.523 expected for pure Gaussian distributions.

The values of σvn/〈vn〉 are compared with the σǫn/〈ǫn〉 given by the Glauber
model [53] and MC-KLN model [105].

Figure 5.27 compares the 〈vn〉 and
√

〈v2n〉 ≡
√

〈vn〉2 + σ2
vn from the EbyE

distributions with the vn measured using the event-plane method for tracks
with pT > 0.5 GeV. Since the fractional systematic uncertainties for 〈vn〉 and
σvn are almost the same and fully correlated, hence the fractional uncertainties
for
√

〈v2n〉 is taken to be the same as those for 〈vn〉. The values of the vEP3 are

almost identical to
√

〈v23〉. For v4 a slight systematic shift of the EP values
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from the
√

〈v24〉 can be seen, but this difference is comfortably covered by the
systematic errors. For v2 however, the EP values are in general in between
〈v2〉 and

√

〈v22〉, and only approach the
√

〈v22〉 values in peripheral collisions.
This is qualitatively consistent with the behavior expected for vn measured by
event-plane method i.e. vEPn →

√

〈v2n〉 when the event-plane resolution is poor
as it is for v3 and v4 (and for v2 for peripheral events).
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Figure 5.27: The 〈vn〉 and
√

〈v2n〉 ≡
√

〈vn〉2 + σ2
vn derived from the EbyE vn

distribution, compared with the EP vn for tracks with pT > 0.5 GeV. The
shaded bands represent the total systematic uncertainties. The dotted lines in
bottom panels indicate

√

〈v2n〉/〈vn〉 = 1.13, the value expected for the radial
projection of a 2D Gaussian distribution.

5.4.1 Derived quantities from the v2 distributions

The measured vn distributions can be fitted with the Bessel-Gaussian function
to extract the mean-geometry component ( vRP

n ) and the fluctuation compo-
nent (δ

vn
). However, as demonstrated by Figs 5.23 and 5.26, the distributions

for v2 in most central (0-2)% events and for v3 and v4 for all centralities are
well described by the pure Gaussian fluctuations scenario. Thus the Bessel-
Gaussian fits are only done for v2 and in the (2-70)% centrality range. The
results of the fits are shown in Fig. 5.28. The fits work reasonably well up to the
(25-30)% centrality interval. However, systematic deviations are observed in
the tails of the distributions already in the (15–20)% centrality interval which
increase for more peripheral collisions. These deviations may indicate that
the fluctuations of ǫ2 are not Gaussian in peripheral collisions where Npart is
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small [66]. They may also indicate that the linear response assumption breaks
down for peripheral events.
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Figure 5.28: The probability distribution of v2 in several centrality intervals
for pT > 0.5 GeV, together with fits to the Bessel-Gaussian function Eq. 5.3.
The fit for (0-2)% are not shown but they can be well described by Bessel-
Gaussian function with vRP

2 = 0 (see discussion of Fig. 5.26).

The vRP
2 extracted from the fits is shown in the left panel of Fig. 5.29 as a

function of Npart. Also shown for comparison is the 〈v2〉 obtained directly from
the v2 distributions. The vRP

2 is always smaller than the 〈v2〉. In the (0-2)%
central collisions (top two Npart bins) it is consistent with zero, as expected
from the results shown in Figure 5.26. The second panel shows the comparison
of δv2 from the fits to the σv2 of the distributions. The δv2 is comparable to
σv2 except in the most central collisions. The third panel shows the ratio
δv2/v

RP
2 which is a measure of the relative influence of the fluctuations and the

mean geometry on the v2. Also shown for comparison is the σv2/〈v2〉. The
value of δv2/v

RP
2 decreases with Npart and reaches a minimum of 0.38 ± 0.02

at Npart ≈ 200 ( or (20–25)% centrality), and then increases and is greater
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than one in central collisions. Note that the two points corresponding to (0–
1)% and (1–2)% most central collisions are omitted as their vRP

2 values are
consistent with zero. This result shows that the impact of the fluctuations on
the v2 distributions is largest in central events, lowest in mid-central events
and again increases for peripheral events.
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Figure 5.29: The dependence of vRP
2 and 〈v2〉 (left), δv2 and σv2 (middle) and

δ
v2
/vRP

2 and σ
v2
/〈v2〉 (right) on Npart. The error bars and shaded bands indi-

cate the statistical and systematic uncertainties, respectively. The dashed and

dotted lines in the left panel indicate the calculated values for
√

(vRP
2 )

2
+ δ2

v2

and
√

〈v2〉2 − σ2
v2
, respectively.

According to Eq. 5.4, when the relative fluctuation is small the value of
〈vn〉 can be approximated by:

〈vn〉 ≈
√

(vRP
n )2 + δ2

vn
. (5.26)

Similarly the value of vRP
n can be estimated from σ

vn
and 〈vn〉 without relying

on the fit as:

vRP
n ≈

√

〈vn〉2 − σ2
vn . (5.27)

Both relations are calculated and indicated by the dashed and dotted lines
in the left panel of Fig. 5.29 for v2. Good agreement is observed for 100 <
Npart < 350, corresponding to the (5–45)% centrality range. However, system-
atic deviations are observed both in central collisions where the fluctuation
are dominating, and in peripheral collisions where the Bessel-Gaussian func-
tion fails to describe the shape of the v2 distributions.

The elliptic flow fluctuations have also been studied using multi-particle
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Figure 5.30: Comparison of the vRP
2 obtained from the Bessel-Gaussian fit of

the vn distribution with the four-particle (vcalc2 {4}), six-particle (vcalc2 {6}) and
eight-particle (vcalc2 {8}) cumulant results calculated directly from the vn dis-
tribution via Eq. 5.28. The lower sub-panel shows the ratios of the cumulants
to the fit result, with the error bars representing the total uncertainties.

cumulants [97, 100, 106]. The first few cumulants are defined as [44]:

v2{2}2 ≡ 〈v22〉 ≈
(

vRP
2

)2
+ 2δ2

v2
,

v2{4}4 ≡ −〈v42〉+ 2〈v22〉2 ≈
(

vRP
2

)4
,

v2{6}6 ≡
(

〈v62〉2 − 9〈v42〉〈v22〉+ 12〈v22〉3
)

/4 ≈
(

vRP
2

)6
,

v2{8}8 ≡ −
(

〈v82〉2 − 16〈v62〉〈v22〉 − 18〈v42〉2 + 144〈v42〉〈v22〉2 − 144〈v22〉4
)

/33

≈
(

vRP
2

)8
. (5.28)

where, the second part of the equations are exact in the Bessel-Gaussian limit.
In this limit all the vn{2k} for k ≥2 are identical to vRP

n . Thus consistency
between the higher order cumulants is considered to be indicative of Bessel-
Gaussian flow fluctuations. In a recent measurement, the ALICE collaboration
has shown such consistency between the v2{4}, v2{6} and v2{8} [100]. This is
in apparent contradiction with the deviations seen in the tails of the v2 distri-
butions from the Bessel-Gaussian fits. In order to resolve this, the cumulants
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Figure 5.31: Comparison for 0.5 < pT < 1 GeV (left panel) and pT > 1 GeV
(right panel) of the vRP

2 obtained from the Bessel-Gaussian fit of the v2 distri-
butions with the values for four-particle (vcalc2 {4}), six-particle (vcalc2 {6}) and
eight-particle (vcalc2 {8}) cumulants calculated directly from the v2 distributions
via Eq. (5.28). The lower sub-panels show the ratios of the cumulants to the
fit results, with the error bars representing the total uncertainties.

are directly calculated starting from the EbyE v2 distributions. They are de-
noted by vcalc2 {2k} (k=2–4) and are shown in Figure 5.30 as a function of Npart

along with the vRP
n parameter from the Bessel-Gaussian fits (from Fig. 5.28).

It is seen that the cumulants agree with vRP
n within ∼1% till Npart ∼100 (or

(40-45)% centrality), while the deviations from the Bessial-Gaussian fits al-
ready showed up in the (15-20)% centrality bin (or Npart ≈240). Even for
Npart <100, while the cumulants show deviation from vRP

n they are still con-
sistent with each other. This indicates that the 4–8 particle cumulants are not
sensitive enough to measure the deviations from Bessel-Gaussian distributions
that are seen in the v2 distributions. Figure 5.31 shows similar comparisons
separately for the for the 0.5 < pT < 1 GeV and pT > 1 GeV ranges. The
trends are similar to those seen in figure 5.30. However a slightly bigger de-
viation between vRP

2 and vcalc2 {2k} is observed in peripheral collisions for the
pT > 1 GeV range.

5.4.2 Comparison to initial geometry models

The EbyE vn distributions can be compared with the distributions of eccen-
tricities ǫn calculated from commonly used models of initial geometry. Two
geometry models, a Glauber model [53] and CGC model [105] are used for
this comparison. The CGC model is based on Glauber model but takes into
account the corrections to the initial geometry due to gluon saturation effects.
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Figure 5.32: The EbyE v2 distributions compared with the eccentricity dis-
tributions from two initial geometry models: Glauber model (red lines) and
CGC model (blue lines).
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Figure 5.33: The EbyE v3 distributions compared with the eccentricity dis-
tributions from two initial geometry models: Glauber model (red lines) and
CGC model (blue lines).

Three million events are generated for either model and grouped into central-
ity intervals by selecting on their impact parameter. Figure 5.32 compares
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Figure 5.34: The EbyE v4 distributions compared with the eccentricity dis-
tributions from two initial geometry models: Glauber model (red lines) and
CGC model (blue lines).

the EbyE v2 distributions with the distribution of the eccentricities ǫ2 of the
initial geometry calculated in these two models. The ǫ2 distribution for each
centrality interval is rescaled to match the 〈v2〉 of the data, the scale factors
are indicated on the plots. The rescaled ǫ2 distributions match the data in the
most central (0-1)%collisions, but start to fail in more peripheral collisions.
Similar comparisons between vn and ǫn for n=3 and 4 are shown in Fig. 5.33
and Fig. 5.34, respectively. The agreement with the models are better than
the n=2 case, but even here deviations are seen in the tails for the less central
events, beginning with (40-45)% for v3 and (20-25)% for v4. It has been shown
that in hydrodynamic models the shape of the EbyE vn distributions are very
well correlated with the EbyE ǫn distributions [107]. Thus, such large devi-
ations seen in the Glauber and MC-KLN ǫn distributions from the measured
vn distributions, are strong indicators of the inadequacy of these models in
describing the initial geometry.

Figure 5.35 shows similar comparisons of the vn distributions measured in
this work to the ǫn distributions from the IP-Glasma Model, and the vn dis-
tributions obtained after evolving the IP-Glasma initial conditions via viscous
hydro. These comparisons have been taken from from [76, 108]. The model ǫn
values are in fairly good agreement with the measured EbyE vn distributions,
although some disagreements in the tails are visible in the (20-25)% centrality
interval. However, no such deviations are seen when comparing the model vn
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Figure 5.35: The EbyE vn distributions compared with the ǫn distributions
from the IP-Glasma Model [76] and the vn distributions obtained after viscous
hydro (MUSIC) evolution. Figure taken from [108].

distributions, obtained after hydro-evolution, to the measured distributions.
This indicates that the tails of the EbyE vn distributions are sensitive to the
effects of non-linear hydro response.

These comparisons show the power of these measurements in constraining
models of initial geometry.

5.5 Summary

In this chapter, measurements of the EbyE vn distributions for n=2, 3 and 4
for several centrality intervals were presented. The v3 and v4 distributions were
shown to be consistent with a pure Gaussian fluctuation scenario (i.e. vRP

n = 0)
over the entire measured centrality range. However, for the v2 distribution, this
was true only in the (0-2)% most central collisions, and it showed significant
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deviations from this scenario for other centralities, indicating a considerable
influence from the average collision geometry. The shape of the distributions,
when rescaled to the same 〈vn〉, were shown to be nearly identical for pT ∈
(0.5, 1) GeV and pT > 1 GeV, suggesting that the hydrodynamic response to
the initial geometry depends on pT only up to an overall scaling. The ratio of
the width to the mean, σvn/〈vn〉, was calculated from these distributions and
studied as a function of 〈Npart〉 and pT. The values of σv2/〈v2〉 are observed
to reach a minimum of 0.34 for 〈Npart〉 ∼ 200, while the values of σv3/〈v3〉
and σv4/〈v4〉 are consistent with the value expected from a pure Gaussian
fluctuation scenario independent of 〈Npart〉.

To further understand the role of average geometry and fluctuations on the
v2 distributions, they were fitted with Bessel-Gaussian functions to estimate
the value of vRP

2 and the width of the fluctuation δv2 . The value of δv2/v
RP
2 was

found to decrease with increasing Npart and reach a minimum of 0.38 ± 0.02
at Npart ≈ 200, and then increase again and eventually become greater than
one in central collisions, showing that the influence of the fluctuations on the
v2 is largest in central events, lowest in mid-central events and again increases
for peripheral events.

A systematic deviation of the v2 data from Bessel-Gaussian distributions
was observed for the (15-20)% centrality interval, with the deviations increas-
ing for more peripheral collisions. This suggests significant non-Gaussian be-
haviour in the flow fluctuations for collisions with small Npart. The Multi-
particle cumulants were shown to be not sensitive enough to identify such de-
viations. The ability of the EbyE vn distributions to rule out models of initial
geometry was demonstrated by comparing them to ǫn distributions obtained
from various models.
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Chapter 6

Measurement of event-plane
correlations in Pb+Pb collisions

In this chapter correlations between sets of two or three event-planes Φn are
measured. Correlations between the Φn can be generated due to correlations
in the initial geometry between the eccentricities ǫn, which drive the hydrody-
namic response. If the medium response were purely linear i.e. vn ∝ ǫn, then
the Φn would be oriented along the minor axes of the ǫn, and any correlations
between the ǫn in the initial geometry would result in correlations between the
Φn in the final state. Hydrodynamic calculations exist that show that the Ψ2

and Ψ3 are strongly correlated with the ǫ2 and ǫ3 in the initial state [47, 52].
However such linearity in the response has been shown to break for higher

order harmonics [47]. In such cases the vn also receive non-linear contributions
from the lower order ǫm with m<n [109]. For example, including non-linear
response, the magnitude and phases of v4 and v5 are related to the ǫn as [47]:

v4e
i4Φ4 = k4,4ǫ4e

i4Φ′
4 + k4,2,2ǫ

2
2e

i4Φ′
2

v5e
i5Φ5 = k5,5ǫ5e

i5Φ′
5 + k5,2,3ǫ2e

i2Φ′
2ǫ3e

i3Φ′
3 . (6.1)

where, the k’s characterize the strength of the linear or non-linear response,
and the Φ′

n are the orientations of the minor axes of the ǫn. Eq. 6.1 suggests
that the non-linear response can lead to Φ2-Φ4 correlations and Φ2-Φ3-Φ5 cor-
relations. The response can be influenced by viscous effects, which damp out
the higher order ǫn and thus enhance the relative contribution of the non-linear
response to the lower order ǫm (m<n). Thus measurements of event-plane cor-
relations can be used to simultaneously study the non-linear response as well
as to constrain η/s.

Previous measurements at RHIC and the LHC support a strong correlation
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between Φ2 and Φ4 [73], and a weak correlation between Φ2 and Φ3 [110, 111].
Although the methodology used in those measurements and the observables
were different than those presented here. The correlations among three event
planes of different order have been investigated in model calculations [46, 112–
114], but no experimental measurements exist to date.

The outline of this chapter is as follows: In Section 6.1 the observables
are defined and the analysis framework is discussed. In Sections 6.2 and
6.3, the two-plane and three-plane measurements as well as all the system-
atic cross-checks are described. Finally in Section 6.5 the final results as well
as comparisons to theory are presented. The measurements presented here are
summarized in an ATLAS CONF-NOTE [115].

6.1 Methodology

6.1.1 Observables

Correlations between two event-planes (Φn,Φm) can be studied by measuring
the generalized relative distribution of one w.r.t. the other, i.e. distributions
of the form

anΦn + amΦm, (6.2)

where an and am are integers. As illustrated in Fig. 6.1, the nth-order harmonic
plane Φn has a n-fold symmetry in azimuth. Thus any physical correlation
between two event-planes of the form Eq 6.2 has to be invariant under a phase
shift:

Φn → Φn + p
2π

n
and Φm → Φm + q

2π

m
(6.3)

for arbitrary integers p and q. Also the combination must be invariant under
a global rotation (along the beam axis) by an arbitrary angle θ:

Φn → Φn + θ and Φm → Φm + θ (6.4)

The above condition simply means that the correlation should not depend on
the choice of transverse coordinates used to measure it.

The first condition requires that an (am) has to be a multiple of n (m),
while the second condition requires that the sum of the coefficients has to
be zero i.e. an=−am. The relative angle Φn,m = k(Φn − Φm), with k being
the least common multiple of n and m, satisfies these constraints. Any other
relative angle that satisfies these constraints can only be an integral multiple of
Φn,m. Thus the correlation between the event-planes Φn and Φm is completely
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described by the differential distribution dNevents/(d (k(Φn − Φm)) of the EbyE
values of k(Φn −Φm). This distribution is an even function due to symmetry,
hence it can be expanded into the following Fourier series 1:

dNevents

d (k(Φn − Φm))
∝ 1 + 2

∞
∑

j=1

V j
n,m cos jk(Φn − Φm) (6.5)

where the correlators V j
n,m are given by:

V j
n,m = 〈cos jk(Φn − Φm)〉. (6.6)

The measurement of the two-plane correlation is thus equivalent to measuring
the event average of a set of cosine functions 〈cos jk(Φn − Φm)〉. The reason
why the Fourier coefficients are measured, rather than directly measuring the
distribution, is that the coefficients can be corrected to account for detector
resolution effects while the raw distribution cannot.

Figure 6.1: Illustration of the azimuthal shape of the harmonic component
n=2-6. The angle of nth-order harmonic shape Φn has n-fold ambiguity, i.e.
dNevts/dΦn has to be invariant under transformation: Φn → Φn +

2π
n
.

This discussion can be generalized for correlations involving three or more
EPs. The multi-plane correlator can be written as 〈cos(c1Φ1+2c2Φ2...+lclΦl)〉,
where the nth-order EP angle Φn always has a coefficient that is a multiple of
n. The coefficients must also satisfy the constraint [112]:

c1 + 2c2...+ lcl = 0, (6.7)

which ensures that measured angle is invariant under an arbitrary global ro-
tation along the beam axis.

1There cannot be sine terms in this expansion as the colliding system Pb+Pb is sym-
metric w.r.t. to a parity transformation (when averaged over many events) while sine terms
have odd parity.
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The idea behind three-plane correlations can be understood from Eq. 6.1.
Another way of understanding them at them is to express them as a linear
combination of two-plane relative angles. For example:

2Φ2 + 4Φ4 − 6Φ6 = 4(Φ4 − Φ2)− 6(Φ6 − Φ2)

−10Φ2 + 4Φ4 + 6Φ6 = 4(Φ4 − Φ2) + 6(Φ6 − Φ2) (6.8)

and

2Φ2 + 3Φ3 − 5Φ5 = 3(Φ3 − Φ2)− 5(Φ5 − Φ2)

−8Φ2 + 3Φ3 + 5Φ5 = 3(Φ3 − Φ2) + 5(Φ5 − Φ2) (6.9)

Therefore the combination of two three-plane correlators reflects the correla-
tion of two EPs relative to the third.

Event-plane resolution

As discussed in Chapter 3, the measured event-plane angles Ψn fluctuate about
the true event-plane angles Φn. The measured correlators thus need to be
corrected to account for the event plane resolution as (see Appendix D.1:

〈cos(c1Φ1 + ...+ lclΦl)〉 =
〈cos(c1Ψ1 + ...+ lclΨl)〉
Res{c1Ψ1}...Res{cllΨl}

(6.10)

Res{cnnΨn} = 〈cos cnn(Ψn − Φn)〉 (6.11)

For convenience, the combined resolution for the correlator is referred to by
the notation:

Res{c1Ψ1 + ...+ lclΨl} ≡ Res{c1Ψ1}...Res{cllΨl}. (6.12)

Note that the combined resolution is simply a product of the individual event-
plane resolutions involved in the correlator and can become very small espe-
cially when higher order harmonics are involved.

In principle a large number of correlators can be studied. However, the
measurability of these correlators is limited by the event-plane resolutions, as
the correlators can not be measurable reliably if the associated resolutions for
the event-planes are poor. Table 6.1 lists the set of two-plane correlations
and required resolution terms in this analysis. The corresponding information
for the three-plane correlations is listed in Table 6.2. The list of correlations
includes all two and three-plane combinations for n = 2−6, that satisfy Eq. 6.7,
and where the combined resolution is good enough for the correlations to be
measurable. The two-plane and three-plane correlations are listed separately,
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because different detectors are used in their measurements, which requires the
separate evaluation of the resolution corrections.

Correlator Associated EP resolutions
〈cos 4(Φ2 − Φ4)〉 Res{4Ψ2}, Res{4Ψ4}
〈cos 8(Φ2 − Φ4)〉 Res{8Ψ2}, Res{8Ψ4}
〈cos 12(Φ2 − Φ4)〉 Res{12Ψ2}, Res{12Ψ4}
〈cos 6(Φ2 − Φ3)〉 Res{6Ψ2}, Res{6Ψ3}
〈cos 6(Φ2 − Φ6)〉 Res{6Ψ2}, Res{6Ψ6}
〈cos 6(Φ3 − Φ6)〉 Res{6Ψ3}, Res{6Ψ6}
〈cos 12(Φ3 − Φ4)〉 Res{12Ψ3}, Res{12Ψ4}
〈cos 10(Φ2 − Φ5)〉 Res{10Ψ2}, Res{10Ψ5}

Table 6.1: The list of two-plane correlators and associated event-plane reso-
lution factors that need to be measured.

Correlator Associated EP resolutions
〈cos(2Φ2 + 3Φ3 − 5Φ5)〉 Res{2Ψ2}, Res{3Ψ3}, Res{5Ψ5}
〈cos(2Φ2 + 4Φ4 − 6Φ6)〉 Res{2Ψ2}, Res{4Ψ4}, Res{6Ψ6}
〈cos(−8Φ2 + 3Φ3 + 5Φ5)〉 Res{8Ψ2}, Res{3Ψ3}, Res{5Ψ5}
〈cos(−10Φ2 + 4Φ4 + 6Φ6)〉 Res{10Ψ2}, Res{4Ψ4}, Res{6Ψ6}
〈cos(2Φ2 − 6Φ3 + 4Φ4)〉 Res{2Ψ2}, Res{6Ψ3}, Res{4Ψ4}

〈cos(−10Φ2 + 6Φ3 + 4Φ4)〉 Res{10Ψ2}, Res{6Ψ3}, Res{4Ψ4}

Table 6.2: The list of three plane correlators and associated event-plane res-
olution factors that need to be measured.

Figure 6.2 shows the two and three-plane correlators as a function of Npart

calculated in a Glauber model initial geometry, by correlating the minor axes
of the ǫn [113, 116]. The measured correlators would have similar Npart de-
pendence as these only in the linear response limit. Nevertheless, it is inter-
esting that the Glauber model predicts strong signals for the 〈cos 4(Φ′

2−Φ′
4)〉,

〈cos 6(Φ′
3 − Φ′

6)〉, and 〈cos 6(Φ′
2 − Φ′

6)〉 two-plane correlators. For the three-
plane correlators, strong signals are predicted for 〈cos(2Φ′

2 + 3Φ′
3 − 5Φ′

5)〉,
〈cos(2Φ′

2 + 4Φ′
4 − 6Φ′

6)〉, and 〈cos(10Φ′
2 − 4Φ′

4 − 6Φ′
6)〉.

6.1.2 Procedure for obtaining correlation function and
applying the resolution correction

In the event-plane analysis (Chapter 3), the FCal was used as the event-plane
detector, primarily to maintain a clear separation in rapidity from the ID,
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Figure 6.2: The correlation between the minor axes of the eccentricities,
calculated in Glauber initial geometry [113, 116].

where the charged tracks were measured. Since this analysis is concerned only
with the event-planes, the full ATLAS EM calorimetry (-4.8< η <4.8) is used.

Each detector provides its own measurement of event-plane Ψn for n=2-6.
However, to avoid auto-correlations, no two planes involved in the correlation
are measured in the same detector. For example, in calculating the relative
angle 4(Ψ2 − Ψ4), the Ψ2 and Ψ4 are measured in non-overlapping detectors
A and B, and the correlation calculated as:

〈cos 4(Φ2 − Φ4)〉 =
〈cos 4(ΨA

2 −ΨB
4 )〉

Res{4ΨA
2 }Res{4ΨB

4 }
. (6.13)

Figure 6.3: Schematic illustration of sub-detectors used to obtain the raw
signal for two-plane correlations (top) and three-plane correlations (bottom).

Figure 6.3 illustrates the idea behind choosing the detectors (or subevents)
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for the two-plane and three-plane correlations. In the two-plane correlation,
the two subevents are chosen to be symmetric around the center of ATLAS, so
they have identical resolutions. Each subevent provides its own measurement
of the two event-planes: ΨP

n and ΨP
m for positive η, and ΨN

n and ΨN
m for negative

η, resulting in two independent measurements of the correlations:

〈cos k(Φn − Φm)〉 =
〈

cos k(ΨP
n −ΨN

m)
〉

Res{kΨP
n}Res{kΨN

m}
=

〈

cos k(ΨN
n −ΨP

m)
〉

Res{kΨN
n}Res{kΨP

m}
(6.14)

Since Res{kΨP
n}Res{kΨN

m} = Res{kΨN
n}Res{kΨP

m} for symmetric detectors,
two measurements are combined for increased precision:

〈cos k(Φn − Φm)〉 =
〈

cos k(ΨP
n −ΨN

m)
〉

+
〈

cos k(ΨN
n −ΨP

m)
〉

Res{kΨP
n}Res{kΨN

m}+ Res{kΨN
n}Res{kΨP

m}
(6.15)

To measure three-plane correlations, three non-overlapping subevents, la-
beled as A, B and C, are chosen such that they have approximately the same
η coverage. The guiding principle for choosing the subevents is that they
should have as large η acceptance as possible, but still have a sufficient η gap
from each other. Here, subevents A and C are chosen to be symmetric and
have identical η acceptance (hence same resolution), while the resolution of
B in general could be different. There are 3! = 6 independent ways of ob-
taining the three-plane correlators from these three detectors, based on which
detector is used to determine which plane. Since A and C have same resolu-
tions, the cases where the planes are swapped between A and C are combined
into a single measurement, resulting in three independent estimates for the
three-plane correlation. For example, the three estimations for the correlation
2Φ2 + 3Φ3 − 5Φ5, denoted by subscripts Type1-Type3, are

〈cos(2Φ2 + 3Φ3 − 5Φ5)〉Type1 =
〈

cos(2ΨB
2 + 3ΨA

3 − 5ΨC
5 )
〉

+
〈

cos(2ΨB
2 + 3ΨC

3 − 5ΨA
5 )
〉

Res{2ΨB
2 }Res{3ΨA

3 }Res{5ΨC
5 }+ Res{2ΨB

2 }Res{3ΨC
3 }Res{5ΨA

5 }
,(6.16)

〈cos(2Φ2 + 3Φ3 − 5Φ5)〉Type2 =
〈

cos(2ΨA
2 + 3ΨB

3 − 5ΨC
5 )
〉

+
〈

cos(2ΨC
2 + 3ΨB

3 − 5ΨA
5 )
〉

Res{2ΨA
2 }Res{3ΨB

3 }Res{5ΨC
5 }+ Res{2ΨC

2 }Res{3ΨB
3 }Res{5ΨA

5 }
,(6.17)
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〈cos(2Φ2 + 3Φ3 − 5Φ5)〉Type3 =
〈

cos(2ΨA
2 + 3ΨC

3 − 5ΨB
5 )
〉

+
〈

cos(2ΨC
2 + 3ΨA

3 − 5ΨB
5 )
〉

Res{2ΨA
2 }Res{3ΨC

3 }Res{5ΨB
5 }+ Res{2ΨC

2 }Res{3ΨA
3 }Res{5ΨB

5 }
,(6.18)

These three measurements are statistically combined, and the spreads be-
tween them are used as estimation for the systematic uncertainty.

The resolutions for the detectors used in the two and three-plane corre-
lation analysis are determined via two-subevent or three-subevent methods2

(Appendix A.1.3). The two-subevent method can be used only for detectors
that form a symmetric pair about η = 0 i.e. have same resolutions. The
three-subevent method can however be used to determine the resolution for
any detector. All the detectors used in the measurements as well as for the
cross-checks, are calibrated by the recentering-flattening procedure that was
used for the FCal in the EP analysis (Appendix A.1.4).

6.1.3 Sources of systematic uncertainties

There are two primary sources of systematic uncertainties.

1. Detector effects can bias the determination of the event-plane angle Ψn,
and hence can influence both the correlation signal as well as the reso-
lution correction. Most of these detector effects should be removed by
the event-plane calibration. The residual detector systematics can be
estimated as:

• Non-vanishing sine terms in the correlation function 〈sin jk (Ψn −Ψm)〉,
〈sin (cnnΨn + cmmΨm + chhΨh)〉.

• The detector effects can also result in sine terms the 2SE and 3SE
resolution calculations:

〈

sin jn
(

ΨA
n −ΨB

n

)〉

that are used to deter-
mine the resolution.

2. Correlations other than flow (non-flow) such as resonance decays and jet
fragmentations. These correlations typically have limited range in rapid-
ity, and can be suppressed by requiring an η gap between the subevents
used in measuring the correlation or resolution determination.

• The remaining non-flow effects can influence the resolution deter-
mination. For a given detector, several independent measurements
of the resolution from 2SE and 3SE methods should be done.

2Note that the two-subevent/three-subevent method for determining resolutions have
nothing to do with the two-plane/three-plane correlations. They are simply methods of
obtaining the resolution.
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• Due to the large η coverage of the ATLAS detector, a given two-
plane or three-plane correlation can be measured independently us-
ing detectors at different η. It is useful to compare the results
obtained using different detectors. However, one caveat is that the
differences could also be due to η dependence of the flow physics
itself.

6.2 Two-plane correlation analysis

The default detector used for the two-plane analysis includes the FCal, EM
end-cap and EM Barrel. The towers from all three sub-detectors are combined
to make two symmetric subevents covering η ∈ (0.5, 4.8) and η ∈ (−4.8,−0.5).
The one unit η gap between the two detectors is sufficient to suppress short-
range correlations (will be shown in Section 6.2.3). This combined detector
is denoted as ECalFCal, with subscripts P and N to denote its positive and
negative η sides.

6.2.1 Measurements of raw signals and resolutions

Figures 6.4 shows the raw two-plane relative angle distributions for the (20-
30)% centrality interval. The red and blue histograms are foreground and
background distributions, respectively. The background distributions are cal-
culated from mixed events, i.e. by combining the Ψn from one event with Ψm

from another event with similar centrality (matched within 5%) and z-vertex
(matched within 3 cm). Both the foreground and mixed-event distributions
are normalized to have a mean value of 1.0. The mixed-event distribution pro-
vides an estimate of detector effects, while the foreground distribution contains
both detector effects and physics. The background distributions are almost
flat, but do indicate some small variations on the order of about 1/1000. To
cancel these non-physical structures, the correlation functions are obtained by
dividing the foreground (S) by the mixed-event distributions(B):

C(k(Ψn −Ψm)) =
S(k(Ψn −Ψm))

B(k(Ψn −Ψm))
(6.19)

The correlation functions show significant positive signal for 4(Ψ2−Ψ4), 6(Ψ2−
Ψ6) and 6(Ψ3−Ψ6), a very weak signal for 6(Ψ2−Ψ3), while 12(Ψ3−Ψ4) and
10(Ψ2 −Ψ5) are consistent with zero.

Starting from these correlation functions, the various raw correlators 〈cos jk(Ψn −Ψm)〉
listed in Table 6.1 are calculated. The associated sine terms 〈sin jk(Ψn −Ψm)〉
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Figure 6.4: Two-plane relative angle distributions for the (20-30)% centrality
interval measured by the ECalFCal.

as well as the sine and cosine components of the background distributions are
also evaluated, and their quadrature sum is used as the systematic error for
the 〈cos jk(Ψn −Ψm)〉. Figure 6.5 summarizes the centrality dependence of
the raw signal together with the estimated systematic uncertainties.

Resolution results

The nominal resolution factors for the ECalFCal are obtained via the two-
subevent method as

√

〈cos jn (ΨN
n −ΨP

n )〉, with the sine terms
〈

sin jn
(

ΨN
n −ΨP

n

)〉

are used as estimates of the systematic errors. Additional measurements are
done the three-subevent method and the differences from the two-subevent
results are included as systematic errors. The systematic uncertainties from
the two sources are quoted as centrality independent (conservatively) and then
added in quadrature. Figure 6.6 shows the event-plane resolutions for n=2-6
used in this analysis together with their systematic uncertainties. The details
of the resolution calculation are given in Appendix D.2.1.

Figure 6.7 shows the combined resolution terms for the eight two-plane cor-
relators in Table 6.1, evaluated from the single-plane resolutions using Eq. 6.12.
These combined resolution values lie in the range of a few percent up to about
40%. They also show quite different centrality dependence trends. The sys-
tematic uncertainties for combined resolutions are propagated from individual
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Figure 6.5: The centrality dependence of raw correlation signals for the eight
two-plane correlators studied in this note. They are presented for 5% centrality
intervals, together with a 0-1% centrality bin. Bars and bands are statistical
and systematic errors respectively.

resolution terms, and they are summarized in Table 6.3.

6.2.2 Corrected results

The final event-plane correlations are obtained by dividing the raw signals
(Fig. 6.5) by the combined resolution factors (Fig. 6.7). The results are pre-
sented as a function of Npart, shown in Fig. 6.8. The highest Npart bin corre-
sponds to the (0-1)% centrality interval, subsequent points are 5% centrality
bins starting with (0-5)% centrality. Some of the peripheral bins where the
uncertainties were too large are removed from the final results.

The various sources of the systematic uncertainties are summarized in Ta-
ble 6.3 and include the uncertainty for the raw cosine signal of the correlation
function and the combined event-plane resolution. The former is evaluated
as the absolute values of the sine terms and the sine and cosine terms of the
mixed-events distribution and is quoted as the absolute error on the raw signal.
This error is important when either the raw signal is small or the resolution is
poor. The latter is calculated via Eq. 6.12 using standard error propagation.
Also included are two additional sources which account for the uncertainly in
the trigger efficiency and dependence on running periods. These are discussed
later in Section 6.4.

For the two-plane correlators, the “2-4”, “2-6” and “3-6” correlations are
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Figure 6.6: Summary of the event-plane resolution Res{jnΨn} for n=2-6 and
different values of j. Bars and bands are statistical and systematic errors
respectively.

particularly strong while the ‘3-4” and “2-5” correlators are consistent with
zero for all centralities. The “2-3” correlation though weak, is non-zero and
has some centrality dependence. The physical implications of these results will
be discussed in Section 6.5.
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Figure 6.7: Combined resolution for the eight two-plane correlators
Res{k(Ψn − Ψm)}. Bars and bands are statistical and systematic errors re-
spectively.

Error for 〈cos jk(Φn − Φm)〉 correlators
(j,n,m) (1,2,4) (2,2,4) (3,2,4) (1,2,3) (1,2,6) (1,3,6) (1,3,4) (1,2,5)
Res{jk(Ψn −Ψm)} 5.14% 10.3% 15.4% 9.84% 19.4% 20.5% 20.4% 14.8%
sine and mixed-events
for raw distribution 5-15 5-10 5-10 5-8 5-10 5-10 5-10 5-10
(absolute error ×10−4)
Trigger&event selection 0.5-2% 1-4% 3% 3% 1-2% 0.5-2% < 1% < 1%
Run periods < 0.5% 1% 5% 0.004 3% 3% 0.02 0.02

Table 6.3: Summary of systematic uncertainties for various two-plane correla-
tors. Some of the uncertainties are as a percentage (of the signal) while others
are absolute.

6.2.3 Cross checks

One potential source of the systematic uncertainty arises from non-flow effects.
These effects can lead to correlations between the subevents, and hence influ-
ence the correlation function and the determination of the event-plane resolu-
tions. Therefore, it is important to check the sensitivity of the final correlation
on the rapidity gap between the subevents, and/or compare the correlations
obtained independently from different subevents. This is the main goal of this
section.
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Figure 6.8: Npart dependence of the two-plane correlators. Bars and bands
are statistical and systematic errors respectively.

Dependence on the η gap

An η gap between the P-side and the N-side subevents is necessary to re-
duce short-range correlations. By increasing the η gap, the influence of short-
range can be decreased, however this also decreases the acceptance of the
sub-detectors and hence reduces the resolution and raw correlation signal.
Therefore a compromise must be made between maximizing the signal and
suppressing the auto-correlations. For this purpose, the two-plane correlation
measurements are repeated using symmetric sub-detectors but with varying
rapidity separation between them. This is done by choosing the two sub-
detectors to have an acceptance of (ηmin,4.8) and (-4.8,-ηmin) in η. The seg-
mentation of the calorimeter towers in 0.1 units in η allows for a flexible choice
of ηmin . A total of 17 cases of ηmin are studied.

Figures 6.9-6.12 show the raw signal, combined resolution, as well as the
corrected correlations for some of the two-plane correlators, as a function of
the minimum η of the sub-detector. The η gap between the two sub-detectors
is 2ηmin, while the acceptance of the sub-detectors is 4.8−ηmin. The ηmin = 0.5
case corresponds to the default detector (ECalFCal). The correlation function
and the resolution decrease considerably with increasing ηmin, often by more
than a factor of 4, but the corrected correlations are remarkably stable.

In most cases, the raw correlation signal changes smoothly with ηmin, even
at small ηmin values. In contrast, the estimated event-plane resolution factors
have a sharp jump at small ηmin in some cases (Figs. 6.10 and 6.11). Such en-
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Figure 6.9: ηmin dependence of 〈cos 4(Φ2−Φ4)〉 for several 5% centrality inter-
vals. Top-left panel: Correlation before resolution corrections. Second panel:
The resolution factor. Third Panel: Correlation after resolution correction.
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Figure 6.10: Same as previous plot but for 〈cos 6(Φ2 − Φ6)〉

hancement of the resolution leads to a suppression of the corrected correlation
signal at small ηmin. This indicates that while the short-range correlations
influence individual harmonics, they only weakly correlate EPs of different or-
der. Since the EP resolution is estimated from the subevent correlation of the
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Figure 6.11: Same as previous plot but for 〈cos 6(Φ3 − Φ6)〉.
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Figure 6.12: Same as previous plot but for 〈cos 6(Φ2 − Φ3)〉.

same order planes, they are more affected by the short-range correlations. The
short-range correlations do not seem to have an influence on the resolutions
for 4(Φ2 − Φ4) and 6(Φ2 − Φ3) (Figs. 6.9 and 6.12). This is because the flow
signal is strong for harmonics 2, 3 and 4, and so the corresponding planes are
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less sensitive to the non-flow effects.
In all cases, the influence of these short-range correlations, if any, is only

limited to a small η gap between the two sub-detectors, and becomes negligible
for ηmin > 0.2 (or equivalently ∆η > 0.4). The default detectors have a gap
of 1 unit in η between them, which is thus sufficient to suppress these short-
range correlations. In some cases, there is a slight variation of the corrected
correlation even at large values of ηmin, however it is not clear if this is due
to systematics introduced by the procedure or is a physical effect. Thus, this
variation is not quoted as a systematic error.

Comparison to results obtained from tracking detectors

As a cross-check, the full analysis chain is repeated using the ID including
estimation of systematic errors. The two subevents used in the ID based
analysis are made using all good-quality3 charged tracks with η ∈ (0.5, 2.5) and
η ∈ (−2.5,−0.5). The subevents thus have a gap of 1.0 in η which is sufficient
to suppress non-flow correlations. Note that the acceptance of the ID based
subevents is much smaller than the calorimeter based ones, consequently the
ID analysis has larger systematic and statistical errors.

Figure 6.13 compares the ID results to the ECalFCal results. For all the
correlators, the results are in good agreement between the measurements. Any
differences between the two are easily covered by the systematic errors. The
comparison with the ID is only used as a cross-check, it is not used to quote
additional systematic errors.

6.3 Three-plane correlation analysis

6.3.1 Analysis with default detector

For three-plane correlation, the three subevents are built from calorimeter
towers as:

1. Subevent A: Towers with η ∈ (0.5, 2.7), this consists of parts of the EM
barrel and parts of the EM end-cap. This is labelled as ECalP (or DetA).

2. Subevent B: The full-FCal with 3.3 < |η| < 4.8. This is labelled as FCal
(or DetB).

3. Subevent C: Towers with η ∈ (−2.7,−0.5), this consists of parts of the
EM barrel and parts of the EM end-cap. This is symmetric with A. This
is labelled as ECalN (or DetC).

3Same quality cuts as used in the EP and 2PC analysis. Also pT > 0.5 GeV is required.
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Figure 6.13: Comparison of two-plane correlations measured with Calorimeters
and ID. Bars and bands are statistical and systematic errors respectively.

Utilising the symmetry between the A and C subevents, the measurements
are combined into three independent measurements (cf Eq. 6.16-6.18), labelled
as Type 1, 2 and 3.

Figure 6.14 shows the Type-1 correlation functions for the six three-plane
correlators studied in this analysis. The red and blue histograms are fore-
ground and background distributions, respectively. The background distribu-
tions are calculated from mixed events, i.e. the three individual plane angles
are obtained from three different events with similar centrality and z-vertex.
Both the foreground and mixed-event distributions are normalized to have a
mean value of 1. Strong correlations are already observed at the raw level for
(2Ψ2 +3Ψ3 − 5Ψ5) and (2Ψ2 +4Ψ4 − 6Ψ6). A clear anti-correlation is seen for
(2Ψ2−6Ψ4+4Ψ4) with a dip at zero rather than a peak. A weak signal is seen
for (−10Ψ2 + 4Ψ4 + 6Ψ6). The mixed event distributions are consistent with
zero signal in all cases, showing minimal influence of detector effects. The raw
signals are extracted from these correlation functions. The sine terms in the
correlations as well as the sine and cosine terms in the mixed-event background
are used as estimates of systematic errors for the raw signals. The raw signals
are plotted for the three Types for each of the six three plane correlators in
Fig. 6.15.

Figure 6.16 shows the resolution terms for individual event-planes for dif-
ferent values of n and j (as in Res{jnΨn}), for subevents A, B and C. They
are obtained via 2SE and 3SE methods. The systematic uncertainties are es-
timated from the sine term in the 2SE correlation, as well as the deviations
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Figure 6.14: Three-plane relative angle distributions for the (20-30)% central-
ity interval. These plots correspond to Type-1 distributions.
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Figure 6.15: Centrality dependence of the raw cosine signal for the six three-
plane correlators. Bars and bands are statistical and systematic errors respec-
tively.
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between the 3SE and/or 2SE results.They are summarized in Table 6.4. Note
that the uncertainty of Res{jnΨn} are found to be proportional to values of j.
The resolution and systematic uncertainties associated with DetA and DetC
are almost the same as they are completely symmetric.
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Figure 6.16: Centrality dependence of the resolution for individual event-
planes associated with the three detectors used in the three-plane correlations.
From top to bottom the three rows correspond to DetA, DetC and DetB
respectively. Bars and bands are statistical and systematic errors respectively.

The individual event-plane resolutions are combined to give the total res-
olution for the three-plane correlators (Eq. 6.12). The combined resolutions
are plotted as a function of centrality in Fig. 6.17. The resolution corrected
correlators are evaluated by dividing the raw signal in Fig 6.15 with the com-
bined resolutions in Fig. 6.17 (separately for the Type1-3 combinations). The
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Error for Res{jnΨn}
n 2 3 4 5 6
Detector A&C 2.7j% 7.2j% 7.3j% 10.3j% 20.6j%
Detector B 1.7j% 6.8j% 6.9j% 12.4j% 34j%

Table 6.4: Summary of systematic uncertainties for individual Res{jnΨn} for
detectors used in three-plane correlations.
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Figure 6.17: Centrality dependence of the combined three-plane resolutions.
Bars and bands are statistical and systematic errors respectively.

results are shown in Fig. 6.18. The systematic uncertainty comes from both
the raw signal and resolution correction and are summarized in Table 6.5. The
uncertainties for the raw cosine signals are evaluated as the quadrature sum
of the sine terms in the raw-correlations and the sine and cosine terms of the
mixed-events distribution, and are quoted as absolute errors. The uncertain-
ties for the combined resolutions are obtained by a simple error propagation of
the individual single-plane resolutions given in Table 6.4. As one can see from
Table 6.5, most of the uncertainty arises from the resolution correction. For
each three-plane correlator, the three independent estimates agree with each
other within their uncertainties.

The final corrected results are obtained as a weighted average between the
three independent measurements. The results are shown in Fig. 6.19 as a func-
tion of Npart. The systematic uncertainties are calculated as the quadrature
sum of two sources:
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Figure 6.18: Centrality dependence of the three-plane correlators. The three
set of data points correspond to the three types of correlations in Eq. 6.16-6.18.
Bars and bands are statistical and systematic errors respectively.

Systematic errors for the three-plane correlators: 〈cos(∑Φ)〉
∑

Φ Combined Resolution [%] Raw distribution ×10−4

Type-1 Type-2 Type-3 Type-1 Type-2 Type-3
2Φ2 + 3Φ3 − 5Φ3 12.7 12.7 14.6 7–15

−8Φ2 + 3Φ3 + 5Φ5 14.3 16.4 18.0 5–10
2Φ2 + 4Φ4 − 6Φ6 21.9 21.9 34.9 6–13

−10Φ2 + 4Φ4 + 6Φ6 23.5 25.6 37.3 5–10
2Φ2 − 6Φ3 + 4Φ4 16.3 15.7 16.2 6–13

−10Φ2 + 6Φ3 + 4Φ4 18.3 20.6 21.0 5–10

Table 6.5: Summary of systematic uncertainties for the three-plane correla-
tors. The errors from resolution correction are in percentage while the errors
from the raw correlation are in absolute values.

1. The weighted-average of the systematic uncertainties for the three indi-
vidual measurements.

2. The point-to-point differences between the three measurements.

Additional systematic uncertainties listed in Table 6.6 are also added in quadra-
ture to the above errors. These errors are explained in Section 6.4. As with the
two-plane results, the peripheral bins where the systematic uncertainties were
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too large have been removed from the final results. The physical implications
of these results along with the two-plane ones will be discussed in Section 6.5.

〉
part

N〈
0 100 200 300 400

〉) 5
Φ

-5 3
Φ

+
3

2
Φ

co
s(

2
〈

0

0.5

1

ATLAS Preliminary
=2.76 TeVNNsPb-Pb 

-1bµ= 8 intL

〉
part

N〈
0 100 200 300 400

〉) 6
Φ

-6 4
Φ

+
4

2
Φ

co
s(

2
〈

0

0.5

1

ATLAS Preliminary
=2.76 TeVNNsPb-Pb 

-1bµ= 8 intL

〉
part

N〈
0 100 200 300 400

〉) 4
Φ

+
4

3
Φ

-6 2
Φ

co
s(

2
〈

-0.2

-0.1

0

0.1

0.2 ATLAS Preliminary
=2.76 TeVNNsPb-Pb 

-1bµ= 8 intL

〉
part

N〈
0 100 200 300 400

〉) 5
Φ

+
5

3
Φ

+
3

2
Φ

co
s(

-8
〈

0

0.5

1

ATLAS Preliminary
=2.76 TeVNNsPb-Pb 

-1bµ= 8 intL

〉
part

N〈
0 100 200 300 400

〉) 6
Φ

+
6

4
Φ

+
4

2
Φ

co
s(

-1
0

〈 0

0.5

1

ATLAS Preliminary
=2.76 TeVNNsPb-Pb 

-1bµ= 8 intL

〉
part

N〈
0 100 200 300 400

〉) 4
Φ

+
4

3
Φ

+
6

2
Φ

co
s(

-1
0

〈

-0.2

-0.1

0

0.1

0.2 ATLAS Preliminary
=2.76 TeVNNsPb-Pb 

-1bµ= 8 intL

Figure 6.19: Npart dependence of the three-plane correlators. Bars and bands
are statistical and systematic errors respectively.

Additional systematic errors for the three-plane correlators 〈cos(∑Φ)〉
∑

Φ 2Φ2 + 3Φ3 − 5Φ5 2Φ2 + 4Φ4 − 6Φ6 2Φ2 − 6Φ3 + 4Φ4

Trigger&event sel. 1-2% 1% 3-4%
Run periods 1.5% 5% 5%
∑

Φ −8Φ2 + 3Φ3 + 5Φ5 −10Φ2 + 4Φ4 + 6Φ6 −10Φ2 + 6Φ3 + 4Φ4

Trigger&event sel. 1-3% 1-3% 1-3%
Run periods 0.01 0.07 0.03

Table 6.6: Additional systematic uncertainties for the three-plane correlators.

6.3.2 Cross-checks using tracking detectors

As with the two-plane case, the three-plane correlations are cross-checked with
using the ID, including its own estimation of systematic errors. The three
subevents used in the ID based analysis are made using tracks over the follow-
ing ranges: η ∈ (−2.5, 1.5), η ∈ (−1.0, 1.0) and η ∈ (1.5, 2.5) for subevents A,
B and C respectively. Unfortunately it is not possible to maintain a 1 unit η
gap between all three detectors and at the same time have good acceptance.
Thus the minimum gap is relaxed to 0.5 unit η gap. Figure 6.20 compares
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the ID results to the Calorimeter results. For all the correlators, the results
are in good agreement between the measurements with only small systematic
differences, which are covered by the systematic errors. As with the two-plane
case, the comparison with the ID is only used as a cross-check, and not used
for additional systematic errors.
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Figure 6.20: Comparison of three-plane correlations measured with Calorime-
ters and ID.

6.4 Other systematics

Some additional sources of errors are discussed here. They were already in-
cluded in the final results and tabulated in Tables 6.3 and 6.6 for the two and
three-plane correlators respectively.

Trigger and event selections

As described in Section 3.4.4, the ±2% uncertainty in the trigger efficiency
(which has a nominal value of 98%) leads to an uncertainty in the definition of
the centrality classes. The change of the centrality definition mainly leads to a
rescaling of the centrality-axis (x-axis) by ±2% while keeping the origin fixed.
This scaling mostly affects the most peripheral events, but has very little in-
fluence for the central events (as the centrality=0 end of the centrality-axis is
fixed). The changes in centrality range can be approximated as δx = ±0.02xi

for ith data point. The influence for each data point is estimated based on a in-
terpolation procedure between the neighboring bins: δi = (yi+1−yi)× ±0.02xi

xi+1−xi
.
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For the two-plane correlators, the estimated changes when converted into per-
centage values, are typically less than 1-3% most cases (and centrality depen-
dent); In some cases, the changes are slightly bigger, but they are typically
associated with the large point-to-point statistical fluctuations and/or because
the values themselves are very small. Similarly for the three-plane correlators,
relative variation is on the order of 1-4% depending on centrality and the type
of the correlator.

Run-by-run dependence

As with the EP and 2PC analyses, the dependence of the results on different
running periods is checked. This is done by grouping all the runs into into
three groups with approximately the same statistics. The variation is checked
by comparing the results in each group with the those for the full statistics.
Overall no clear systematic variations are seen between the three groups. The
level of deviations beyond statistical fluctuation are conservatively estimated
in terms of either percentage (when the signals are large) or as absolute values
(when signals are small).

6.5 Results and summary

The final results for the two and three-plane correlations were shown in Fig. 6.8
and Fig. 6.19 respectively. In this they are compared to theoretical calcula-
tions.

Figure 6.21 compares the correlations the initial geometry between the
minor axes of the ǫn ( Φ′

n), calculated in two different initial geometry models:
MC-Glauber and MC-KLN, as well as the corresponding correlations in the
final state after viscous hydrodynamic evolution to the measured two-plane
correlators. The MC calculations are taken from [116]. It is clear that for some
of the correlators, the correlations in the initial state are both quantitatively
and qualitatively different than the measured correlations. For example the
〈cos 4(Φ2 −Φ4)〉 and 〈cos 12(Φ2 −Φ4)〉 correlations in the initial geometry are
close to zero in most central events (highest Npart) and then become more and
more negative with decreasing Npart, while the measured correlations increase
with decreasing Npart become more and more positive. Qualitative differences
are also seen for the 〈cos 6(Φ3 − Φ6)〉 correlation. However hydro-evolution
qualitatively recovers all the two-plane correlations as shown in the bottom
panels of Fig. 6.21. In fact, the hydro evolution starting with the MC-KLN
initial conditions and η/s = 0.2 describes the data quite well.

Similar comparisons are shown for the three-plane correlations in Fig 6.22.
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Figure 6.21: Left sub-panels: Two-plane correlations between the Φ′
n in two

initial geometry models. Right sub-panels: corresponding correlations between
final particles after hydro evolution. Each composite panel corresponds to one
correlator. The measured correlators are also plotted. MC calculations taken
from [116].

It is seen that for the four non-zero correlators, the correlations in the initial
geometry are much different than the measured correlations. However as with
the two-plane correlations hydro-evolution reproduces the qualitative nature
of the measured correlators.

These results clearly show that the non-linear response to the ǫn play an im-
portant role in generating the measured correlations. They also indicate that
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viscous effects might be playing a role in the correlations by dissipating out
the higher order ǫn and thus enhancing the relative influence of non-linear re-
sponse to the lower ǫn. In fact the MC-KLN based hydro calculations that have
larger η/s show better agreement with the measured correlators. A cleaner
comparison of the viscous effects can be seen by calculations starting from the
same initial geometry, but using different η/s values during the hydro evolu-
tion. Figure 6.23 shows such a comparison for the 〈cos 4(Φ2 − Φ4)〉 (left) and
〈cos(2Φ2 + 3Φ3 − 5Φ5)〉 (right) where the correlators are calculated starting
from a Glauber initial geometry but after ideal (η/s=0, red points) and viscous
(η/s=0.16, green points) hydro evolution. This figure is taken from [116]. It
is clearly seen that the correlators are larger for the viscous hydro case and in
better agreement with the data. These comparisons show the ability of these
measurements to constrain the η/s of the medium.
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Figure 6.22: Left sub-panels: Three-plane correlations between the Φ′
n in two

initial geometry models. Right sub-panels: corresponding correlations between
final particles after hydro evolution. Each composite panel corresponds to one
correlator. The measured correlators are also plotted. MC calculations taken
from [116].
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Figure 6.23: Comparison of the 〈cos 4(Φ2 − Φ4)〉 (left) and 〈cos(2Φ2 + 3Φ3 −
5Φ5)〉 (right) correlations in viscous and ideal hydro calculations to the ATLAS
data measured here. Figure taken from [117]. Note that the Ψn in this plot
refer to the Φn in the notation used here.
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Chapter 7

Two-particle correlation
measurements in p+Pb
collisions

In Chapter 4, the long-range correlations seen in Pb+Pb two-particle corre-
lations (i.e. the ridge and cone), were shown to be a manifestation of the
single-particle anisotropies vn, which originate due to the hydrodynamic ex-
pansion of the medium. Thus, such long-range correlations are not expected
to be seen in smaller colliding systems, hydrodynamic or collective phenomena
are not expected to develop. Recently, the CMS Collaboration analyzed the
two-particle correlations in high-multiplicity proton-proton collisions [54] and
showed the presence of a ridge like correlation on the near-side (∆φ ∼ 0) for
events that produce & 100 charged particles. Many models argue that this
ridge is due to initial state effects [118–124], e.g. multi-parton processes which
color connect partons across a large η range. These processes can be enhanced
due to gluon saturation effects in central proton-proton collisions where the
gluon density is high [118, 120]. However, a second class of calculations argue
that the ridge in proton-proton collisions arises from the mechanism similar
to heavy ion collisions: i.e. elliptic flow, with the initial eccentricities pro-
duced by fluctuations of the sub-nucleonic structures [125–129]. It suffices to
say that current theoretical understanding of the long range ridge in proton-
proton collisions is far from clear, and hence measuring similar structures in
proton-nucleus collision might shed light on the underlying physics picture.

In this chapter two-particle correlations in p+Pb events at
√
sNN = 5.02 TeV

are measured. The presence of such long-range correlations both on the near-
side (∆φ ∼ 0) as well as on the away-side (∆φ ∼ π) is shown. The dependence
of the long-range correlations on pT and event-activity is studied in detail and
the final results are compared to theoretical calculations. The measurements
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presented in this chapter have been published in [130].

7.1 Methodology

The 2PC procedure is similar to the one used for the Pb+Pb analysis in
Chapter 4. The 2D and 1D correlation functions are built by dividing fore-
ground pairs by mixed-event pairs. However here track-by-track efficiency
re-weighting 1/ǫ(η, pT) is also applied for both trigger and partner tracks, i.e.
the pair has a weight 1/ǫ(ηa, pT

a)× 1/ǫ(ηb, pT
b). The reason for applying this

explicit weighting will be clarified later.
Figure 7.1 shows the 2D correlation functions for paT, p

b
T ∈ (0.5, 4) GeV for

several event-activity classes based on N rec
ch (as defined is Section 2.2.2) . In

the low-multiplicity events only the jet peak is seen on the near-side, however
as the multiplicity increases a clear ridge structure develops on the near-side.
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Figure 7.1: The 2D correlation function C(∆φ,∆η) for tracks in 0.5 < pT <
4 GeV in various event activity classes, defined by the number of reconstructed
tracks with pT > 0.4 GeV.

This can be seen more clearly in the 1D correlation functions shown in
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Fig. 7.2. The top panels show the long range correlations (|∆η| > 2) where
one can clearly see the ridge evolving with increasing N rec

ch with identical shape
for like-charge and unlike-charge correlations. The lower panels show similar
figures but for |∆η| < 2 where the near-side jet peak is seen at ∆φ ∼ 0.
The two like-charge and unlike-charge correlations show a clear separation
which is expected for jet fragmentation. That the long-range correlations do
not show this separation, clearly indicates that they are not coming from jet-
fragmentation.
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Figure 7.2: The correlation function in ∆φ distributions integrated over 2 <
|∆η| < 5 (upper panels) and over |∆η| < 2 (lower panels) for like-sign, unlike-
sign and all pairs. Each panel shows the distributions for one multiplicity
interval.

7.1.1 Per-trigger yield

The ridge magnitude can be quantified by the per-trigger yield [79] (PTY
or Y for short), which is defined as the number of associated particles per
trigger particle, over a flat pedestal. It can be obtained for the same-event
and mixed-event pairs as:

Y (∆φ) =
1

Na

∫

B(∆φ)d∆φ
∫

d∆φ

[

S(∆φ)

B(∆φ)

]

− bZYAM (7.1)
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where, Na in the number of triggers, corrected to account for tracking effi-
ciency, contributing to the same-event pair distribution, i.e.:

Na =
∑

Triggers

1/ǫ(ηa, paT) (7.2)

and bZYAM is a flat pedestal which is subtracted such that Y (∆φ) has Zero
Yield At Minimum (ZYAM [79]). Eq. 7.2 can be understood as the fol-
lowing: The same-event pairs S(∆φ) is the distribution of associated par-
ticles in ∆φ for Na trigger particles. The division by B(∆φ) corrects for
the ∆φ acceptance but changes the normalization. The overall multiplication
by (

∫

B(∆φ)d∆φ)/(
∫

d∆φ)1, which is the mean value of B(∆φ), restores the
correct normalization. The division by Na converts this into a per-trigger

quantity. Finally a flat pedestal bZYAM is removed so that only truly corre-
lated pairs are considered2. The end goal of measuring the PTY was the main
reason why the efficiency re-weighting 1/ǫ(ηa, pT

a) × 1/ǫ(ηb, pT
b) was applied

while measuring the S(∆φ)3.
Figure 7.3 shows the procedure for obtaining the PTY. The first panel

shows the correlation function for |∆η| ∈ (2, 5). The correlation function is
normalized such that the S(∆φ) and B(∆φ) have the same integral. The sec-
ond panel shows the PTY before the pedestal subtraction. This is identical
to the correlation function up to an overall normalization. The final panel
shows the PTY. For locating the minimum for ZYAM subtraction, the fol-
lowing procedure is followed: first a scan with a fixed width of π/12 is used,
corresponding to twice the bin width of the histograms in Figure 7.3, this
gives an approximate estimation of the minimum, however may suffer from
large statistical uncertainties as well as the tendency to pick the point with
largest downward fluctuation. This is followed by, a second order polynomial
fit to redetermine the minimum and the pedestal. The default fit range used is
∆φZYAM ± 0.5 radian, and is varied over ±0.4 and ±0.6 for systematic checks.

The reason why the PTY is measured is that it can be directly compared
across different event-activity classes, since its normalization is well defined
and physical. The left panels of Fig. 7.4 show the PTY for several activity
classes defined via ΣE

Pb

T (left) and N rec
ch (right) for pairs in 2 < |∆η| < 5

constructed from charged tracks with 0.5 < pT < 4 GeV. From these plots

1
∫

d∆φ = π or 2π depending on whether the PTY is folded into (0, π) or not.
2The ZYAM procedure assumes that at its minimum, the correlation function gets con-

tributions only from combinatorial pairs
3The efficiency re-weighting must consequently also be applied for B(∆φ) for the mixing

procedure to work.
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Figure 7.3: Left panel: The correlation function. Middle panel: The per-
trigger yield before pedestal subtraction together with second order polyno-
mial fits to determine the minimum. Right panel: The per-trigger yield after
pedestal subtraction.

the development of the ridge with increasing event-activity can be easily seen.
Interestingly the yield of associated particles also increases on the away side
with the magnitude of the increase almost identical. This clearly indicates that
an away side ridge is also present but masked by the away-side jet correlations.
In order to better reveal the development of the away-side ridge, the PTY in
the lowest event-activity class is used as a measure of the jet correlations and
subtracted from the PTY of the other classes. The quantity thus obtained is
called the recoil subtracted PTY (or peripheral subtracted PTY) ∆Y (∆φ):

∆Y (∆φ) =

{

Y (∆φ)|
ΣEFCalPb

T

− Y (∆φ)|
ΣEFCalPb

T <20 GeV
ΣE

Pb

T based

Y (∆φ)|N rec
ch

− Y (∆φ)|20<N rec
ch <40 N rec

ch based

(7.3)

Note that the low activity bin chosen for the subtraction have almost no long-
range correlations on the near-side, as can be seen from the left panels of
Fig. 7.4. This subtraction assumes that the jet-like correlations are identical,
at the per-trigger level, between low-activity and high-activity events. The
right panels of Fig. 7.4 show the recoil subtracted PTY. The development of
the away-side ridge is clearly seen and parallels that of the near-side. This can
be seen more clearly by fitting these distributions by fitting the distributions
with functions of the form:

∆Y (∆φ) = a0 + 2a2 cos(2∆φ) (7.4)

These fits are also shown on the ∆Y (∆φ) plots.
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Figure 7.4: Left Panels: Y (∆φ) in several event activity classes. Right panels:
∆Y (∆φ) obtained by subtracting Y (∆φ) in the low event activity class (see
Eq. 7.3), for pairs in 2 < |∆η| < 5 constructed from charged tracks with
0.5 < pT < 4 GeV. The event classes are defined by ΣE

Pb

T (left panel) and
N rec

ch (right panel) respectively. The lines indicate a fit to a a0 + 2a2 cos 2∆φ
function.

7.2 Systematic errors

The main results for the p+Pb analysis are the per-trigger yields Y (∆φ) and
∆Y (∆φ). All other observables (to be presented in Section 7.3) are directly
derived from them. In this section, the list of checks that were done to de-
termine the systematic uncertainties associated with the PTY are discussed.
The errors on the other derived observables are obtained by a propagation of
these errors. The following sources of systematic uncertainties are identified
for the PTY:

1. Uncertainty of tracking efficiency: In this analysis the same-pair and
mixed-pair distributions are corrected by the tracking efficiency ǫ(pT, η).
The uncertainties in the tracking efficiencies thus affect our results. The
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influence of the tracking efficiency are evaluated by varying the track-
ing selection criteria in both the data and simulation, re-calculating the
efficiency map ǫ(pT, η), and evaluating the change in the PTY and cor-
relation functions.

2. Material uncertainty: The tracking efficiency is determined using MC
which requires a description of the ATLAS geometry. The material bud-
get in ATLAS has some uncertainty which introduces additional η and
pT dependent uncertainty to the tracking efficiency.

3. ZYAM uncertainty: This is related to the errors introduced when iden-
tifying the minimum of the PTY for ZYAM subtraction.

4. Acceptance & event-mixing procedure: The acceptance changes slightly
with event multiplicity and collision vertex. Thus it is important to check
whether the shape of background distribution depends on the multiplic-
ity and z-vertex matching in constructing the mixed event distributions.

5. Monte Carlo closure: This is an independent check of the robustness of
the analysis procedure. This is done by repeating the whole analysis
in a full ATLAS simulation using the HIJING event generator. The
correlation functions and the PTY at the generator (truth) level and the
reconstructed level are compared to check for differences.

Table 7.1 summarizes the errors from each source. In general, ZYAM
uncertainty is mostly systematic when the PTY has very small statistical un-
certainty, but when the ∆φ distribution has poor statistics, the ZYAM uncer-
tainty becomes correlated with the statistical uncertainty. This is usually the
case at high pT or for event classes with low multiplicity. The event mixing
procedure introduces an uncertainty that is only related to the detector and
does not depend on the event multiplicity, and it has been estimated to be a
fixed fraction of the pedestal level (about 0.0003). The uncertainty from all
other sources can be expressed as a percentage of the true PTY.

7.3 Results

2D correlation functions

Figure 7.5 shows the 2D correlation function for paT, p
b
T ∈ (0.5, 4) GeV for

several FCal∑EPb
T

event-activity classes. Similar plots were shown in Fig 7.1 for
the Nrec

ch based centrality classes. The development of the near-side ridge with
increasing event-activity is clearly seen. A more careful look shows that the
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ZYAM procedure 0.0003− 0.001 of background level when
stat error is small. Comparable

to stat error when stat error is large.

Acceptance& event mixing 0.0003 of background level

Tracking efficiency due to cuts 2.5%

Tracking efficiency due to material 3%

Monte Carlo Closure 3%

Table 7.1: Sources of systematic uncertainties for PTY.
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Figure 7.5: The 2D correlation functions for tracks with paT, p
b
T ∈ (0.5, 4) GeV

in various event activity classes, defined by the
∑

EPb
T . The evolution of the

near-side ridge is clearly seen.

away side, which has considerable ∆η dependence in the lowest event-activity
case (lower right plot), also becomes flatter with increasing event-activity,
indicating the development of the away-side ridge.
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PTY and PTY Difference

As mentioned before the development of the ridge can be studied in more detail
by the Y (∆φ) and ∆Y (∆φ) integrated over |∆η| ∈ (2, 5). The centrality evo-
lution of these quantities was shown in Fig 7.4. In order to further investigate
the development of the ridge, the Y (∆φ) is integrated in 2π/3 windows around
the near side (|∆φ| < π/3) and away-side (|∆φ − π| < π/3). This quantity
is termed as the integrated per-trigger-yield or Yint. Figure 7.6 shows the
variation of the near-side and away-side Yint with

∑

EPb
T (left plot) and Nrec

ch

(right plot) as well as the difference between the two. For the ΣE
Pb

T based re-
sults, the near-side yield is close to zero for ΣE

Pb

T < 20 GeV, and increases with
increasing ΣE

Pb

T . The away-side yield shows a similar variation as a function
of ΣE

Pb

T , except that it starts at a non-zero value, due to the contribution of
the away-side jet. The yield difference between these two regions is found to
be approximately independent of ΣE

Pb

T , indicating the symmetry of the ridge.
For the Nch based results qualitatively see similar trends are seen. However,

the away-side Yint shows a sharp drop at low Nch. This is because requiring
small Nrec

ch in the event reduces the number of pairs in the events, hence it sup-
presses the per-trigger yield as well. This auto-correlation effect can introduce
further bias when the recoil subtraction (Eq. 7.3) is done. The ΣE

Pb

T based
results do not have this problem. Thus they are used for presenting the final
results.
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Figure 7.6: Yint for pT
a, pbT ∈ (0.5, 4) GeV measured vs

∑

EPb
T (left) and Nrec

ch

(right). The data points are plotted at the mean values of
∑

EPb
T or Nch for

each interval.

pT dependence of Y and ∆Y

It is also interesting to study the pT dependence of the yields. Figure 7.7
shows the Y (∆φ) for a high activity (ΣE

Pb

T > 80 GeV) and the lowest activity
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Figure 7.7: Y (∆φ) in ΣE
Pb

T < 20 GeV (blue points) and ΣE
Pb

T > 80 GeV (red
points) classes and their difference (black points) for pbT ∈ (0.5, 4) GeV. Each
panel is for a different range of pT

a. The lines indicate a fit to ∆Y (∆φ) with
functions a0 + 2a2 cos(2∆φ) (solid line) and a0 + 2a2 cos(2∆φ) + a3 cos(3∆φ).

(ΣE
Pb

T < 20 GeV) class for pbT ∈ (0.5, 4) GeV. Each panel is a different paT
going from lower pT (top left) to higher pT (bottom right). The black points
indicate the yield difference ∆Y (∆φ). Across all the paT ranges, the ∆Y (∆φ)
largely described by a functional form a0 + 2a2 cos(2∆φ) (solid lines) showing
the symmetric nature of the ridge. Including a third order modulation term
a3 cos(3∆φ) only improves the fits a little (dashed lines).

The pT dependence can be studied more quantitatively by the integrated
yield Yint. This is shown in the top panels of Figure 7.8 for the near-side
(left plot) and the away-side (right plot), for three different activity classes.
The near-side plot has a dependence that is remarkably similar to the pT
dependence of the vn that was seen in the Pb+Pb analysis (Section 3.5.2).
The behavior of the away side is qualitatively different due to the away-side
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jet. However for the yields obtained after recoil subtraction, shown in the
lower panels, the behavior of both the near and away-side is nearly identical.
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Figure 7.8: Top panels: The near-side (left) and away-side (right) Yint vs p
a
T

for pbT ∈ (0.5, 4) GeV for several
∑

EPb
T classes. Lower Panels : similar plots

but for ∆Yint.

Fourier analysis of correlation functions

The qualitative similarity between the paT dependence of the ∆Yint and the vn,
suggests that these correlations could have similar hydrodynamic origin. In
such a scenario the single-particle azimuthal distributions can be parameter-
ized, similar to the ones in heavy-ion collisions, as:

dN/dφ ∝ (1 + 2
∑

nsn cos(n(φ− Φn)) (7.5)

where, the sn are the magnitudes of the single-particle anisotropies (analogous
the vn in the Pb+Pb analysis). One way to check if this is true is to expand
the two-particle correlations in a Fourier series:

C(∆φ) ∝ (1 + 2
∑

ncn cos(n∆φ)) (7.6)
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and check if the Fourier coefficients cn(p
a
T, p

b
T) factorize into sn(p

a
T) and sn(p

b
T),

i.e. one should get the same sn(p
a
T) independent of the pbT which was used in

the 2PC. Similar to the vn,n factorization in the Pb+Pb analysis. However, the
significant contribution of the away-side jet will already break this factorization
(as in peripheral Pb+Pb events). Thus before the factorization of the cn can
be tested, the jet influence must be removed from the correlation function.

This is done by subtracting out the jet contribution at the PTY level and
then converting it into a correlation function as follows:

C∆(∆φ) ∝ Y (∆φ)∑EPb
T

+ bZYAM,
∑

EPb
T

− Y (∆φ)∑EPb
T <20GeV

= ∆Y (∆φ)∑EPb
T

+ bZYAM,
∑

EPb
T

(7.7)

The way to understand the above is as follows: The correlation function C(∆φ)
is proportional to the Y (∆φ)+bZYAM (see Eq. 7.1). The contribution from the
jet-like correlations can be removed at the per-trigger level by subtracting out
the Y (∆φ)∑EPb

T <20GeV . The remaining quantity which is ∆Y (∆φ) + bZYAM,
would only contain the genuine long-range correlations. The recoil subtracted
correlation function is C∆(∆φ) thus proportional to this quantity.

Once the peripheral subtracted correlations are obtained, the Fourier coeffi-
cients cn(p

a
T, p

b
T) can be extracted. The sn(p

a
T) for different p

b
T can be calculated

as (c.f. Eq. 4.9):

sn(p
a
T) = cn(p

a
T, p

b
T)/sn(p

b
T) = cn(p

a
T, p

b
T)/
√

cn(pbT, p
b
T) (7.8)

The left panels of Fig 7.9 show the c2 and c3 as a function of paT with
pbT ∈ (0.5, 4) GeV for three different event-activity classes. The right panels
show the s2 and s3. As expected, the c2 and s2 behave very similar to the
v2 in Pb+Pb collisions: they increase linearly with pT at low pT to reach a
maximum at ∼ 3 GeV then decrease. Unfortunately for c3 and s3 there is not
enough statistical precision to measure them out till 6 GeV as for the s2. They
do show a linear increase at low pT but it is difficult to ascertain if they turn
around at 3 GeV like the s2.

The left panel of Fig. 7.9 shows the s2(p
a
T) obtained using three different

pbT bins. Overall the three estimates of s2 agree with each other within 20%,
with agreement being better at lower paT. The right plot shows a similar check
for s3. Unfortunately there is not enough statistical precision in the data to
check the factorization at the same level as for s2.
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Figure 7.9: The cn (left) and sn (right) vs pT
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b ∈ (0.5, 4) GeV in three
different ΣE

Pb

T event-classes.
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80 GeV event-class.

7.4 Summary

In this chapter two-particle correlations in p+Pb events were studied. Long-
range correlations along ∆η were seen on the near-side whose strength in-
creased with event activity (ΣE

Pb

T or Nrec
ch ). A more detailed analysis via the

study of per-trigger-yields showed that such long-range correlation structures
are also present on the away-side but contaminated by the away-side jet. The
strength of the jet-like contribution was estimated using low event-activity
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collisions and subtracted. The peripheral subtracted ∆Y (∆φ) thus obtained
showed that the away-side ridge had nearly identical strength as the near-side
ridge.

The pT dependence of the ridges was found to be qualitatively similar in
shape to the vn in Pb+Pb events. Peripheral subtracted correlation functions
were constructed, similar to the ∆Y , and their Fourier coefficients cn were
extracted. The factorization of the cn(p

a
T, p

b
T) into products of sn(p

a
T) and

sn(p
b
T), much like the factorization of vn,n into vn in the Pb+Pb case, was

tested and showed to hold at the 20% level for s2.
The measurements qualitatively suggest the presence of global correlations

in p+Pb events with sufficiently large event-activity, similar to those in Pb+Pb
events. However recent theoretical calculations based on the CGC framework
show that such correlations are possible from gluon saturation effects [131].
Figure 7.11 shows a comparison to the Y (∆φ) and ∆Y (∆φ) data to CGC
calculations [131], which show good agreement with the data. Further analysis
of the Pb+Pb data including the measurement of higher order cn can possibly
enable us to understand the origin of these long-range correlations. Also with
the much larger dataset recorded in the 2013 run, EbyE vn analysis could be
possible for the highest multiplicity events.
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Figure 7.11: Left Panels: Comparison of Y (∆φ) for ΣE
Pb

T > 80 GeV (red
squares) and ΣE

Pb

T < 20 GeV (blue circles) to CGC calculations (blue line and
shaded band). Right Panels: Similar comparison for the ∆Y (∆φ). From top
to bottom the panels are for different paT with pbT ∈ (0.5, 4) GeV. Figure taken
from [131].
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Chapter 8

Conclusions

8.1 Summary of results

In this work details measurements of azimuthal the anisotropies of charged
particle distributions in Pb+Pb as well as in p+Pb collisions were presented.
The ultimate goal of these measurements was to understand the nature of
the initial geometry and the hydrodynamic response to that initial geometry
in heavy-ion collisions. To acheieve this end comprehensive measurements
of the pT, η and centrality dependence of the flow harmonics vn were done
(Fig 8.1). These four dimentional measurements –in n, pT, η and centrality–
can precisely constrain the η/s of the medium and at the same time constrain
initial geometry models.
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Figure 8.1: The EP vn measurements.

The cone and ridge structures seen in the 2PC were shown to be a manifes-
tation of collective flow (Fig 8.2), dismissing the previous notions that these
structures were the result from jet-medium interactions. Similar ridge like
correlations were also seen in two-particle correlations for p+Pb events with
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large multiplicities. By subtracting out the contribution of the away-side jet,
it was shown that such correlations were also present on the away-side. The
pT dependence of the p+Pb double-ridge was shown to be similar to that in
Pb+Pb, indicating the possible presence of collective phenomena in smaller
systems.
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Figure 8.2: Left Panel: 2PC in Pb+Pb. Right: The long-range correlations
(open symbols) along with the expected correlations from single particle vn
(black line).
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Figure 8.3: The EbyE distributions for v2 (left), v3 (center) and v4 (right).

The fluctuations in the initial geometry were investigated by measuring
EbyE distributions of flow harmonics v2-v4 (Fig 8.3). The EbyE distributions
for pT > 1 GeV and pT ∈ (0.5, 1) GeV were shown to have identical shapes,
implying that the hydrodynamic response to the initial geometry factorizes
into a pT dependent, and a geometry dependent function. The v3 and v4
distributions were shown to be consistent with the pure Gaussian fluctuation
scenario, uncorrelated with the mean geometry. For v2 this was true only
for most central-events (0-2%) beyond which a the role of the mean geome-
try effects became important and the v2 distributions were better described
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by Bessel-Gaussian functions. However, in the (15-20)% and more peripheral
centralities, a systematic deviation of the Bessel-Gaussian fit from the v2 data
was observed, suggesting either non-Gaussian behavior in the flow fluctuations,
and/or the presence of non-linear hydrodynamic response to the ǫn. The mea-
sured v2 distributions were shown to be qualitatively different than the ǫn dis-
tributions in the Glauber and MC-KLN models. However, the ǫn distributions
from the IP-Glasma model were in good agreement with the vn distributions
with the agreement further improving after viscous-hydro evolution, showing
the importance of non-linear hydrodynamic response to the ǫn. The non-linear
response was further investigated by measurement of event-plane correlations
(Fig 8.4). Comparisons with hydro calculations showed that these correlations
are the result of non-linear response and also sensitive to viscous effests.
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Figure 8.4: The measured 〈cos 4(Φ2-Φ4)〉 correlatior compated to initial ge-
ometry models(left) and EbyE hydro simulations (right).

While all the five analyses presented here are independent measurements
relying on different experimental techniques, they complement and supplement
each other in terms of the physical conclusions that are drawn from them.
Together they give a fairly complete picture of the collective phenomena in
heavy-ion collisions.

8.2 Possible future flow analyses

At the end it is worthwhile to point out the analyses that are possible in the
future starting from the foundation laid out in this work. Both the EbyE ane
EP correlation measurements are the first of their kind in heavy-ion physics,
and have considerable potential for future work, whereas the EP and 2PC
measurements in have been around for quite some time and explored in detail.
However they can be stil be extended to measure new quantities. For example
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the EP analysis can be extended to study mixed harmonics, such as v4 in the
Φ2 plane:

v4,Φ2 = 〈cos 4(φ− Φ2)〉 (8.1)

where the subscript Φ2 indicates that this is the v4 measured in the Φ2 plane
(as opposed to the Φ4 plane). The ratio of v4,Φ2 and v4 gives the correlation
between Φ2 and Φ4:

v4,Φ2

v4
= 〈cos 4(Φ2 − Φ4)〉 (8.2)

and is an alternative way of measuring the two-plane correlations. However
this method has the advantage that the correlations can be studied differ-
entially as a function of pT. This can be used as a check of the implicit
assumption in all flow measurements of the constancy of the harmonic planes
Ψn over the whole event, i.e. that the Φn are independent of the pT of the
measured particles. This assumption is largely valid as is seen by the good
agreement between the 2PC vn using mixed harmonics, where one does not
explicitly determine the event-planes, and the vn from the EP method. How-
ever as the flow measurements become more and more precise, this assumption
needs to be explicitly checked and can be done by the above method. Hydro
calculations that suggest such variations in Φn as a function of pT already
exist [132, 133]. Measurements of the mixed harmonics have been done previ-
ously at RHIC [73] for v4,Φ2 , but they were not interpreted along the lines of
event-plane correlations.

The EP and 2PCmethods can also be extended to do event-shape-engineering
(ESE) measurements proposed in [134] (also see [135]) where one cuts on the
Qobs

n in one detector and measures the vEPk or v2PCk in another detector for
both k = n and k 6= n. These observables would give information about the
correlations between the magnitude of the vn for different n. However there
are two drawbacks: the first is that the evnts are divided into classes based on
Qobs

n in a detector rather than the true Qn and the second is that the EP and
2PC methods loose some information on the fluctuations due to averaging over
many events. However this method still improves our current understanding
of flow correlations.

The future of most flow analyses seems to be going in the direction of iden-
tifying new observables that are sensitive to the detailed nature of fluctuations
in the vn, as in the EbyE analysis. It is difficult to extend the EbyE vn mea-
surements to be more differential in pT and η that what has been presented
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here, as we are statistics limited by the number of particles in an event rather
than by number of events. However they can be extended for ESE studies
by measuring correlations between the magnitudes of different vn, for exam-
ple v2-v4 or v2-v3, on an EbyE basis. For the v2-v4 correlations, we expect
events with larger v2 to have larger v4 based on the study of the event-plane
correlations. Nominally the analysis would involve making a 2D distribution
of vobs2 vs vobs4 (or vobs3 ) and then unfolding that with a data driven response
function. The EbyE ESE measurements would not suffer from the drawbacks
that were mentioned earlier for the EP and 2PC based ESE analyses1. How-
ever, the analysis would be complicated as it would require a 2D unfolding
and be more susceptible to systematic as well as statistical errors than the 1D
method used here. Another possibility would be to measure the EbyE v4 and
v3 distributions in rather broad bins of vobs2 . This would limit the unfolding
to be one-dimensional but would have the disadvantage that the binning is in
vobs2 rather than the true v2.

As described at the end of Section 3.2, a draw-back of the EP method is
that it assumes that the event-plane resolution is the same for all events in
a centrality class. which is not true when there are large EbyE fluctuations
in the vn. This also affects the event-plane correlation measurements. An
improvement to the event-plane correlations measurement was described in
[136], where it was suggested to define the observables as:

〈cos(c1Φ1 + ...+ lclΦl)〉 →
〈vc11 vc22 ... cos(c1Φ1 + ...+ lclΦl)〉

〈vc11 vc22 ...〉 (8.3)

〈cos 4(Φ2 − Φ4) =
4(Ψ2 −Ψ4)
√

(ΨA
2 −ΨB

2 )
〉 (8.4)

where, the assertion was that the observable on the r.h.s. of the above equa-
tion can be measured in a detector independent manner (i.e. it would not
depend on the resolution of the detector). This modified method is called
the scalar-product method. This also requires making corresponding changes
in the formulae for the raw measured signal and resolution correction as de-
scribed in [136]. Figure 8.5 shows comparisons of the two-plane correlations
measured in this work to the ones calculated by both methods in the AMPT
([137]) transport model. In general, only a small difference is seen between

1as the unfolding would give the correlations between the true vn rather that the vobs
n

and by construction the EbyE measurements give the full distribution rather than the mean
value as was the case for the 2PC and EP methods.
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the two methods. However in the future, measurements via the scalar prod-
uct method would be more beneficial for comparison with theory. Another
possible improvement would be to study the correlations not only in bins to
centrality but also in bins of vn. This would further clarify the nature of the
correlations by explicitly showing how the correlations change for fixed mul-
tiplicity (centrality) but changing vn. This is similar in nature to the ESE
measurements.
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Figure 8.5: Two-plane correlations calculated in the in AMPT simulations
of Pb+Pb collisions at

√
sNN = 2.76 TeV. The red points corresponds to

the ATLAS measurements (Chapter 6) the green and blue points are AMPT
results via EP method and scalar-product method respectively. Figure taken
from [136].

For the p+Pb data a wealth of new analyses are possible. The analysis
done here was based only on ∼2 million min-bias events. In January of this
year (2013) ATLAS recorded a much larger p+Pb dataset. The new data can
be used to push the ridge analysis to higher multiplicities, and to measure
higher order harmonics (an and cn). The highest multiplicity p+Pb events
have multiplicities comparable to the 65% central Pb+Pb events, allowing for
the possibility to study EbyE v2 distributions in p+Pb. The EbyE vn and
higher order harmonic measurements can determine the origin of the ridge, as
to whether it comes from final state interactions (hydro) or from initial state
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effects (CGC).
All these possible measurements can extend the analyses done in this work

to improve our understanding of both the initial geometry, and how the col-
lective phenomena develop in heavy-ion collisions.

184



Bibliography

[1] E. V. Shuryak, “Theory of Hadronic Plasma,” Sov.Phys.JETP 47
(1978) 212–219.

[2] E. V. Shuryak, “Quark-Gluon Plasma and Hadronic Production of
Leptons, Photons and Psions,” Phys.Lett. B78 (1978) 150.

[3] E. Shuryak, “Quantum chromodynamics and the theory of superdense
matter,” Physics Reports 61 no. 2, (1980) 71–158.

[4] F. Karsch, E. Laermann, and A. Peikert, “The Pressure in two flavor,
(2+1)-flavor and three flavor QCD,” Phys.Lett. B478 (2000) 447–455,
arXiv:hep-lat/0002003 [hep-lat].

[5] F. Karsch, “Lattice QCD at high temperature and density,” Lect.Notes

Phys. 583 (2002) 209–249, arXiv:hep-lat/0106019 [hep-lat].

[6] A. Bazavov, T. Bhattacharya, M. Cheng, N. Christ, C. DeTar, et al.,
“Equation of state and QCD transition at finite temperature,”
Phys.Rev. D80 (2009) 014504, arXiv:0903.4379 [hep-lat].

[7] Z. Fodor and S. Katz, “Critical point of QCD at finite T and mu,
lattice results for physical quark masses,” JHEP 0404 (2004) 050,
arXiv:hep-lat/0402006 [hep-lat].

[8] R. T. et al., “2007 Long Range Plan: The Frontiers of Nuclear Science,
Report to the Nuclear Science Advisory Committee.,”.

[9] PHOBOS Collaboration, B. Alver et al., “System size, energy,
pseudorapidity, and centrality dependence of elliptic flow,”
Phys.Rev.Lett. 98 (2007) 242302, arXiv:nucl-ex/0610037 [nucl-ex].

[10] H. Heiselberg and A.-M. Levy, “Elliptic flow and hanbury-brown˘twiss
correlations in noncentral nuclear collisions,” Phys. Rev. C 59 (May,
1999) 2716–2727.
http://link.aps.org/doi/10.1103/PhysRevC.59.2716.

185



[11] E. Iancu, “QCD in heavy ion collisions,” arXiv:1205.0579 [hep-ph].

[12] U. W. Heinz and P. F. Kolb, “Early thermalization at RHIC,”
Nucl.Phys. A702 (2002) 269–280, arXiv:hep-ph/0111075 [hep-ph].

[13] PHENIX Collaboration, A. Adare et al., “Detailed measurement of
the e+e− pair continuum in p+ p and Au+Au collisions at

√
sNN = 200

GeV and implications for direct photon production,” Phys.Rev. C81
(2010) 034911, arXiv:0912.0244 [nucl-ex].

[14] D. Teaney, “The Effects of viscosity on spectra, elliptic flow, and HBT
radii,” Phys.Rev. C68 (2003) 034913, arXiv:nucl-th/0301099
[nucl-th].

[15] P. Romatschke and U. Romatschke, “Viscosity Information from
Relativistic Nuclear Collisions: How Perfect is the Fluid Observed at
RHIC?,” Phys.Rev.Lett. 99 (2007) 172301, arXiv:0706.1522
[nucl-th].

[16] H. Song, S. A. Bass, U. Heinz, T. Hirano, and C. Shen, “Hadron
spectra and elliptic flow for 200 A GeV Au+Au collisions from viscous
hydrodynamics coupled to a Boltzmann cascade,” Phys.Rev. C83
(2011) 054910, arXiv:1101.4638 [nucl-th].

[17] PHENIX Collaboration, K. Adcox et al., “Flow measurements via
two particle azimuthal correlations in Au+Au collisions at

√
sNN =

130 GeV,” Phys.Rev.Lett. 89 (2002) 212301, arXiv:nucl-ex/0204005
[nucl-ex].

[18] STAR Collaboration, J. Adams et al., “Evidence from d + Au
measurements for final state suppression of high p(T) hadrons in
Au+Au collisions at RHIC,” Phys.Rev.Lett. 91 (2003) 072304,
arXiv:nucl-ex/0306024 [nucl-ex].

[19] PHENIX Collaboration, S. Adler et al., “Dense-Medium
Modifications to Jet-Induced Hadron Pair Distributions in Au+Au
Collisions at

√
sNN= 200 GeV,” Phys.Rev.Lett. 97 (2006) 052301,

arXiv:nucl-ex/0507004 [nucl-ex].

[20] ATLAS Collaboration, G. Aad et al., “Observation of a
Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at√
sNN = 2.77 TeV with the ATLAS Detector at the LHC,”

Phys.Rev.Lett. 105 (2010) 252303, arXiv:1011.6182 [hep-ex].

186



[21] CMS Collaboration, S. Chatrchyan et al., “Observation and studies of
jet quenching in PbPb collisions at nucleon-nucleon center-of-mass
energy = 2.76 TeV,” Phys.Rev. C84 (2011) 024906, arXiv:1102.1957
[nucl-ex].

[22] ATLAS Collaboration, G. Aad et al., “Measurement of the jet radius
and transverse momentum dependence of inclusive jet suppression in
lead-lead collisions at

√
sNN= 2.76 TeV with the ATLAS detector,”

Phys.Lett. B719 (2013) 220–241, arXiv:1208.1967 [hep-ex].

[23] PHENIX Collaboration, A. Adare et al., “Scaling properties of
azimuthal anisotropy in Au+Au and Cu+Cu collisions at s(NN) =
200-GeV,” Phys.Rev.Lett. 98 (2007) 162301, arXiv:nucl-ex/0608033
[nucl-ex].

[24] STAR Collaboration Collaboration, K. Ackermann et al., “Elliptic
flow in Au + Au collisions at (S(NN))**(1/2) = 130 GeV,”
Phys.Rev.Lett. 86 (2001) 402–407, arXiv:nucl-ex/0009011
[nucl-ex].

[25] PHENIX Collaboration, K. Adcox et al., “Formation of dense
partonic matter in relativistic nucleus-nucleus collisions at RHIC:
Experimental evaluation by the PHENIX collaboration,” Nucl.Phys.

A757 (2005) 184–283, arXiv:nucl-ex/0410003 [nucl-ex].

[26] B. Back, M. Baker, M. Ballintijn, D. Barton, B. Becker, et al., “The
PHOBOS perspective on discoveries at RHIC,” Nucl.Phys. A757
(2005) 28–101, arXiv:nucl-ex/0410022 [nucl-ex].

[27] BRAHMS Collaboration, I. Arsene et al., “Quark gluon plasma and
color glass condensate at RHIC? The Perspective from the BRAHMS
experiment,” Nucl.Phys. A757 (2005) 1–27, arXiv:nucl-ex/0410020
[nucl-ex].

[28] P. Huovinen, P. Kolb, U. W. Heinz, P. Ruuskanen, and S. Voloshin,
“Radial and elliptic flow at RHIC: Further predictions,” Phys.Lett.

B503 (2001) 58–64, arXiv:hep-ph/0101136 [hep-ph].

[29] M. Luzum and P. Romatschke, “Conformal Relativistic Viscous
Hydrodynamics: Applications to RHIC results at s(NN)**(1/2) =
200-GeV,” Phys.Rev. C78 (2008) 034915, arXiv:0804.4015
[nucl-th].

187



[30] G. Policastro, D. Son, and A. Starinets, “The Shear viscosity of
strongly coupled N=4 supersymmetric Yang-Mills plasma,”
Phys.Rev.Lett. 87 (2001) 081601, arXiv:hep-th/0104066 [hep-th].

[31] P. Kovtun, D. Son, and A. Starinets, “Viscosity in strongly interacting
quantum field theories from black hole physics,” Phys.Rev.Lett. 94
(2005) 111601, arXiv:hep-th/0405231 [hep-th].

[32] STAR Collaboration, B. Abelev et al., “Centrality dependence of
charged hadron and strange hadron elliptic flow from

√
sNN=200 GeV

Au+Au collisions,” Phys.Rev. C77 (2008) 054901, arXiv:0801.3466
[nucl-ex].

[33] R. J. Glauber, “Cross sections in deuterium at high energies,” Phys.

Rev. 100 (Oct, 1955) 242–248.
http://link.aps.org/doi/10.1103/PhysRev.100.242.

[34] E. Iancu and R. Venugopalan, “The Color glass condensate and
high-energy scattering in QCD,” arXiv:hep-ph/0303204 [hep-ph].

[35] A. Shor, “φ-Meson Production as a Probe of the Quark-Gluon
Plasma,” Phys. Rev. Lett. 54 (Mar, 1985) 1122–1125.
http://link.aps.org/doi/10.1103/PhysRevLett.54.1122.

[36] PHENIX Collaboration, S. Afanasiev et al., “Elliptic flow for phi
mesons and (anti)deuterons in Au + Au collisions at

√
sNN=200 GeV,”

Phys.Rev.Lett. 99 (2007) 052301, arXiv:nucl-ex/0703024 [NUCL-EX].

[37] PHENIX Collaboration Collaboration, A. Adare et al.,
“Suppression pattern of neutral pions at high transverse momentum in
Au + Au collisions at s(NN)**(1/2) = 200-GeV and constraints on
medium transport coefficients,” Phys.Rev.Lett. 101 (2008) 232301,
arXiv:0801.4020 [nucl-ex].

[38] PHENIX Collaboration, A. Adare et al., “Transverse momentum
dependence of meson suppression η suppression in Au+Au collisions at√
sNN =200 GeV,” Phys.Rev. C82 (2010) 011902, arXiv:1005.4916

[nucl-ex].

[39] PHENIX Collaboration, A. Adare et al., “Identified charged hadron
production in p+ p collisions at

√
s=200 and 62.4 GeV,” Phys.Rev.

C83 (2011) 064903, arXiv:1102.0753 [nucl-ex].

188



[40] A. Adare, S. Afanasiev, C. Aidala, N. Ajitanand, Y. Akiba, et al.,
“Production of ω mesons in p+ p, d+Au, Cu+Cu, and Au+Au
collisions at

√
sNN=200 GeV,” Phys.Rev. C84 (2011) 044902,

arXiv:1105.3467 [nucl-ex].

[41] PHENIX Collaboration Collaboration, S. Afanasiev et al.,
“Measurement of Direct Photons in Au+Au Collisions at

√
sNN = 200

GeV,” Phys.Rev.Lett. 109 (2012) 152302, arXiv:1205.5759
[nucl-ex].

[42] B. Alver and G. Roland, “Collision geometry fluctuations and
triangular flow in heavy-ion collisions,” Phys.Rev. C81 (2010) 054905,
arXiv:1003.0194 [nucl-th].

[43] S. A. Voloshin, A. M. Poskanzer, and R. Snellings, “Collective
phenomena in non-central nuclear collisions,” arXiv:0809.2949

[nucl-ex].

[44] S. A. Voloshin, A. M. Poskanzer, A. Tang, and G. Wang, “Elliptic flow
in the Gaussian model of eccentricity fluctuations,” Phys.Lett. B659
(2008) 537–541, arXiv:0708.0800 [nucl-th].

[45] B. H. Alver, C. Gombeaud, M. Luzum, and J.-Y. Ollitrault,
“Triangular flow in hydrodynamics and transport theory,” Phys.Rev.

C82 (2010) 034913, arXiv:1007.5469 [nucl-th].

[46] D. Teaney and L. Yan, “Triangularity and Dipole Asymmetry in Heavy
Ion Collisions,” Phys.Rev. C83 (2011) 064904, arXiv:1010.1876
[nucl-th].

[47] F. G. Gardim, F. Grassi, M. Luzum, and J.-Y. Ollitrault, “Mapping the
hydrodynamic response to the initial geometry in heavy-ion collisions,”
Phys.Rev. C85 (2012) 024908, arXiv:1111.6538 [nucl-th].

[48] N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, “A New method for
measuring azimuthal distributions in nucleus-nucleus collisions,”
Phys.Rev. C63 (2001) 054906, arXiv:nucl-th/0007063 [nucl-th].

[49] N. Borghini, R. Bhalerao, and J. Ollitrault, “Anisotropic flow from
Lee-Yang zeroes: A Practical guide,” J.Phys. G30 (2004)
S1213–S1216, arXiv:nucl-th/0402053 [nucl-th].

[50] B. Schenke, S. Jeon, and C. Gale, “Elliptic and triangular flow in
event-by-event (3+1)D viscous hydrodynamics,” Phys.Rev.Lett. 106
(2011) 042301, arXiv:1009.3244 [hep-ph].

189



[51] B. Schenke, S. Jeon, and C. Gale, “Anisotropic flow in
√
s = 2.76 TeV

Pb+Pb collisions at the LHC,” Phys.Lett. B702 (2011) 59–63,
arXiv:1102.0575 [hep-ph].

[52] Z. Qiu and U. W. Heinz, “Event-by-event shape and flow fluctuations
of relativistic heavy-ion collision fireballs,” Phys.Rev. C84 (2011)
024911, arXiv:1104.0650 [nucl-th].

[53] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, “Glauber
modeling in high energy nuclear collisions,” Ann.Rev.Nucl.Part.Sci. 57
(2007) 205–243, arXiv:nucl-ex/0701025 [nucl-ex].

[54] CMS Collaboration, V. Khachatryan et al., “Observation of
Long-Range Near-Side Angular Correlations in Proton-Proton
Collisions at the LHC,” JHEP 1009 (2010) 091, arXiv:1009.4122
[hep-ex].

[55] L. Evans and P. Bryant, “LHC Machine,” JINST 3 (2008) S08001.

[56] ATLAS Collaboration, G. Aad et al., “The ATLAS Experiment at the
CERN Large Hadron Collider,” JINST 3 (2008) S08003.

[57] D. Kharzeev and M. Nardi, “Hadron production in nuclear collisions at
RHIC and high density QCD,” Phys.Lett. B507 (2001) 121–128,
arXiv:nucl-th/0012025 [nucl-th].

[58] ATLAS Collaboration, G. Aad et al., “Measurement of the centrality
dependence of the charged particle pseudorapidity distribution in
lead-lead collisions at

√
sNN = 2.76 TeV with the ATLAS detector,”

Phys.Lett. B710 (2012) 363–382, arXiv:1108.6027 [hep-ex].

[59] ATLAS Collaboration, G. Aad et al., “Charged-particle multiplicities
in pp interactions at

√
s = 900 GeV measured with the ATLAS

detector at the LHC,” Phys.Lett. B688 (2010) 21–42,
arXiv:1003.3124 [hep-ex].

[60] ATLAS Collaboration, “Measurement of the centrality dependence of
charged particle spectra and RCP in lead-lead collisions at

√
sNN =

2.76 TeV with the ATLAS detector at the LHC,” Tech. Rep.
ATLAS-CONF-2011-079, CERN, Geneva, Jun, 2011.

[61] A. M. Poskanzer and S. Voloshin, “Methods for analyzing anisotropic
flow in relativistic nuclear collisions,” Phys.Rev. C58 (1998)
1671–1678, arXiv:nucl-ex/9805001 [nucl-ex].

190



[62] J.-Y. Ollitrault, “On the measurement of azimuthal anisotropies in
nucleus-nucleus collisions,” arXiv:nucl-ex/9711003 [nucl-ex].

[63] ATLAS Collaboration, G. Aad et al., “Measurement of the azimuthal
anisotropy for charged particle production in

√
sNN = 2.76 TeV

lead-lead collisions with the ATLAS detector,” Phys.Rev. C86 (2012)
014907, arXiv:1203.3087 [hep-ex].

[64] PHENIX Collaboration, S. Afanasiev et al., “Systematic Studies of
Elliptic Flow Measurements in Au+Au Collisions at

√
sNN =

200-GeV,” Phys.Rev. C80 (2009) 024909, arXiv:0905.1070
[nucl-ex].

[65] E877 Collaboration, J. Barrette et al., “Proton and pion production
relative to the reaction plane in Au + Au collisions at AGS energies,”
Phys.Rev. C56 (1997) 3254–3264, arXiv:nucl-ex/9707002
[nucl-ex].

[66] B. Alver, B. Back, M. Baker, M. Ballintijn, D. Barton, et al.,
“Importance of correlations and fluctuations on the initial source
eccentricity in high-energy nucleus-nucleus collisions,” Phys.Rev. C77
(2008) 014906, arXiv:0711.3724 [nucl-ex].

[67] J.-Y. Ollitrault, A. M. Poskanzer, and S. A. Voloshin, “Effect of flow
fluctuations and nonflow on elliptic flow methods,” Phys.Rev. C80
(2009) 014904, arXiv:0904.2315 [nucl-ex].

[68] PHENIX Collaboration, A. Adare et al., “Azimuthal anisotropy of
neutral pion production in Au+Au collisions at

√

(sNN) = 200 GeV:
Path-length dependence of jet quenching and the role of initial
geometry,” Phys.Rev.Lett. 105 (2010) 142301, arXiv:1006.3740
[nucl-ex].

[69] STAR Collaboration, J. Adams et al., “Azimuthal anisotropy and
correlations at large transverse momenta in p+p and Au+Au collisions
at

√
sNN=200 GeV,” Phys.Rev.Lett. 93 (2004) 252301,

arXiv:nucl-ex/0407007 [nucl-ex].

[70] M. Gyulassy, I. Vitev, and X. Wang, “High p(T) azimuthal asymmetry
in noncentral A+A at RHIC,” Phys.Rev.Lett. 86 (2001) 2537–2540,
arXiv:nucl-th/0012092 [nucl-th].

[71] B. Betz, M. Gyulassy, and G. Torrieri, “Fourier Harmonics of High-pT
Particles Probing the Fluctuating Intitial Condition Geometries in

191



Heavy-Ion Collisions,” Phys.Rev. C84 (2011) 024913,
arXiv:1102.5416 [nucl-th].

[72] STAR Collaboration, J. Adams et al., “Azimuthal anisotropy at
RHIC: The First and fourth harmonics,” Phys.Rev.Lett. 92 (2004)
062301, arXiv:nucl-ex/0310029 [nucl-ex].

[73] PHENIX Collaboration, A. Adare et al., “Elliptic and hexadecapole
flow of charged hadrons in Au+Au collisions at

√
sNN = 200 GeV,”

Phys.Rev.Lett. 105 (2010) 062301, arXiv:1003.5586 [nucl-ex].

[74] B. Schenke, P. Tribedy, and R. Venugopalan, “Fluctuating Glasma
initial conditions and flow in heavy ion collisions,” Phys.Rev.Lett. 108
(2012) 252301, arXiv:1202.6646 [nucl-th].

[75] B. Schenke, P. Tribedy, and R. Venugopalan, “Event-by-event gluon
multiplicity, energy density, and eccentricities in ultrarelativistic
heavy-ion collisions,” Phys.Rev. C86 (2012) 034908, arXiv:1206.6805
[hep-ph].

[76] C. Gale, S. Jeon, B. Schenke, P. Tribedy, and R. Venugopalan,
“Event-by-event anisotropic flow in heavy-ion collisions from combined
Yang-Mills and viscous fluid dynamics,” Phys.Rev.Lett. 110 (2013)
012302, arXiv:1209.6330 [nucl-th].

[77] STAR Collaboration, B. Abelev et al., “Long range rapidity
correlations and jet production in high energy nuclear collisions,”
Phys.Rev. C80 (2009) 064912, arXiv:0909.0191 [nucl-ex].

[78] PHOBOS Collaboration, B. Alver et al., “High transverse momentum
triggered correlations over a large pseudorapidity acceptance in
Au+Au collisions at

√
sNN = 200 GeV,” Phys.Rev.Lett. 104 (2010)

062301, arXiv:0903.2811 [nucl-ex].

[79] PHENIX Collaboration, A. Adare et al., “Dihadron azimuthal
correlations in Au+Au collisions at

√
sNN = 200 GeV,” Phys.Rev. C78

(2008) 014901, arXiv:0801.4545 [nucl-ex].

[80] J. Casalderrey-Solana, E. Shuryak, and D. Teaney, “Conical flow
induced by quenched QCD jets,” J.Phys.Conf.Ser. 27 (2005) 22–31,
arXiv:hep-ph/0411315 [hep-ph].

[81] N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, “Are flow measurements
at SPS reliable?,” Phys.Rev. C62 (2000) 034902,
arXiv:nucl-th/0004026 [nucl-th].

192



[82] N. Borghini, P. Dinh, J.-Y. Ollitrault, A. M. Poskanzer, and
S. Voloshin, “Effects of momentum conservation on the analysis of
anisotropic flow,” Phys.Rev. C66 (2002) 014901,
arXiv:nucl-th/0202013 [nucl-th].

[83] P. Staig and E. Shuryak, “The Fate of the Initial State Fluctuations in
Heavy Ion Collisions. III The Second Act of Hydrodynamics,”
Phys.Rev. C84 (2011) 044912, arXiv:1105.0676 [nucl-th].

[84] U. W. Heinz and R. Snellings, “Collective flow and viscosity in
relativistic heavy-ion collisions,” arXiv:1301.2826 [nucl-th].

[85] M. Luzum and J.-Y. Ollitrault, “Directed flow at midrapidity in
heavy-ion collisions,” Phys.Rev.Lett. 106 (2011) 102301,
arXiv:1011.6361 [nucl-ex].

[86] N. Borghini, “Momentum conservation and correlation analyses in
heavy-ion collisions at ultrarelativistic energies,” Phys.Rev. C75 (2007)
021904, arXiv:nucl-th/0612093 [nucl-th].

[87] F. G. Gardim, F. Grassi, Y. Hama, M. Luzum, and J.-Y. Ollitrault,
“Directed flow at mid-rapidity in event-by-event hydrodynamics,”
Phys.Rev. C83 (2011) 064901, arXiv:1103.4605 [nucl-th].

[88] J. Jia, S. K. Radhakrishnan, and S. Mohapatra, “A study of the
anisotropy associated with dipole asymmetry in heavy ion collisions,”
arXiv:1203.3410 [nucl-th].

[89] PHOBOS Collaboration, B. Back et al., “Energy dependence of
directed flow over a wide range of pseudorapidity in Au + Au collisions
at RHIC,” Phys.Rev.Lett. 97 (2006) 012301, arXiv:nucl-ex/0511045
[nucl-ex].

[90] STAR Collaboration, B. Abelev et al., “System-size independence of
directed flow at the Relativistic Heavy-Ion Collider,” Phys.Rev.Lett.

101 (2008) 252301, arXiv:0807.1518 [nucl-ex].

[91] I. Selyuzhenkov, “Charged particle directed flow in Pb-Pb collisions at√
sNN = 2.76 TeV measured with ALICE at the LHC,” J.Phys. G38

(2011) 124167, arXiv:1106.5425 [nucl-ex].

[92] ALICE Collaboration, R. Preghenella, “Transverse momentum
spectra of identified charged hadrons with the ALICE detector in
Pb-Pb collisions at

√
sNN = 2.76 TeV,” PoS EPS-HEP2011 (2011)

118, arXiv:1111.0763 [nucl-ex].

193



[93] R. S. Bhalerao and J.-Y. Ollitrault, “Eccentricity fluctuations and
elliptic flow at RHIC,” Phys.Lett. B641 (2006) 260–264,
arXiv:nucl-th/0607009 [nucl-th].

[94] W. Broniowski, P. Bozek, and M. Rybczynski, “Fluctuating initial
conditions in heavy-ion collisions from the Glauber approach,”
Phys.Rev. C76 (2007) 054905, arXiv:0706.4266 [nucl-th].

[95] PHOBOS Collaboration, B. Alver et al., “Event-by-Event
Fluctuations of Azimuthal Particle Anisotropy in Au + Au Collisions
at

√
sNN = 200 GeV,” Phys.Rev.Lett. 104 (2010) 142301,

arXiv:nucl-ex/0702036 [nucl-ex].

[96] ALICE Collaboration, B. Abelev et al., “Anisotropic flow of charged
hadrons, pions and (anti-)protons measured at high transverse
momentum in Pb-Pb collisions at

√
sNN=2.76 TeV,” Phys.Lett.B 719

(2013) 18–28, arXiv:1205.5761 [nucl-ex].

[97] ATLAS Collaboration, “Measurement of the elliptic flow with
multi-particle cumulants in lead-lead collisions at

√
sNN = 2.76 TeV

with the ATLAS detector at the LHC,” Tech. Rep.
ATLAS-CONF-2012-118, CERN, Geneva, Aug, 2012.

[98] R. Snellings, “Anisotropic flow at the LHC measured with the ALICE
detector,” J.Phys. G38 (2011) 124013, arXiv:1106.6284 [nucl-ex].

[99] STAR Collaboration, J. Adams et al., “Azimuthal anisotropy in
Au+Au collisions at

√
sNN =200 GeV,” Phys.Rev. C72 (2005) 014904,

arXiv:nucl-ex/0409033 [nucl-ex].

[100] ALICE Collaboration, A. Bilandzic, “Anisotropic flow of charged
particles at

√
sNN=2.76 TeV measured with the ALICE detector,”

J.Phys. G38 (2011) 124052, arXiv:1106.6209 [nucl-ex].

[101] ATLAS Collaboration, G. Aad et al., “Measurement of the
distributions of event-by-event flow harmonics in lead–lead collisions at√
sNN=2.76 TeV with the ATLAS detector at the LHC,”

arXiv:1305.2942 [hep-ex].

[102] J. Jia and S. Mohapatra, “Disentangling flow and nonflow correlations
via Bayesian unfolding of the event-by-event distributions of harmonic
coefficients in ultrarelativistic heavy-ion collisions,” Phys Rev C. 75.

031901 (2013) , arXiv:1304.1471 [nucl-ex].

194



[103] G. D’Agostini, “A Multidimensional unfolding method based on Bayes’
theorem,” Nucl.Instrum.Meth. A362 (1995) 487–498.

[104] T. Adye, K. Tackmann, and F. Wilson,
“http://hepunx.rl.ac.uk/adye/software/unfold/RooUnfold.html,”.

[105] H.-J. Drescher, A. Dumitru, A. Hayashigaki, and Y. Nara, “The
Eccentricity in heavy-ion collisions from color glass condensate initial
conditions,” Phys.Rev. C74 (2006) 044905, arXiv:nucl-th/0605012
[nucl-th].

[106] CMS Collaboration Collaboration, S. Chatrchyan et al.,
“Measurement of the elliptic anisotropy of charged particles produced
in PbPb collisions at nucleon-nucleon center-of-mass energy = 2.76
TeV,” Phys.Rev. C87 (2013) 014902, arXiv:1204.1409 [nucl-ex].

[107] H. Niemi, G. Denicol, H. Holopainen, and P. Huovinen,
“Event-by-event distributions of azimuthal asymmetries in
ultrarelativistic heavy-ion collisions,” arXiv:1212.1008 [nucl-th].

[108] C. Gale, S. Jeon, and B. Schenke, “Hydrodynamic Modeling of
Heavy-Ion Collisions,” Int.J.Mod.Phys. A28 (2013) 1340011,
arXiv:1301.5893 [nucl-th].

[109] D. Teaney and L. Yan, “Non linearities in the harmonic spectrum of
heavy ion collisions with ideal and viscous hydrodynamics,” Phys.Rev.

C86 (2012) 044908, arXiv:1206.1905 [nucl-th].

[110] ALICE Collaboration, K. Aamodt et al., “Higher harmonic
anisotropic flow measurements of charged particles in Pb-Pb collisions
at

√
sNN=2.76 TeV,” Phys.Rev.Lett. 107 (2011) 032301,

arXiv:1105.3865 [nucl-ex].

[111] R. Bhalerao, M. Luzum, and J. Ollitrault, “New flow observables,”
J.Phys. G38 (2011) 124055, arXiv:1106.4940 [nucl-ex].

[112] R. S. Bhalerao, M. Luzum, and J.-Y. Ollitrault, “Determining
initial-state fluctuations from flow measurements in heavy-ion
collisions,” Phys.Rev. C84 (2011) 034910, arXiv:1104.4740
[nucl-th].

[113] J. Jia and S. Mohapatra, “A Method for studying initial geometry
fluctuations via event plane correlations in heavy ion collisions,” Eur.

Phys. J. C73, 2510 (2013) , arXiv:1203.5095 [nucl-th].

195



[114] J. Jia and D. Teaney, “Study on initial geometry fluctuations via
participant plane correlations in heavy ion collisions: part II,”
arXiv:1205.3585 [nucl-ex].

[115] ATLAS Collaboration, “Measurement of reaction plane correlations in
pb-pb collisions at

√
sNN=2.76 tev,” Tech. Rep.

ATLAS-CONF-2012-049, CERN, Geneva, May, 2012.

[116] Z. Qiu and U. Heinz, “Hydrodynamic event-plane correlations in
Pb+Pb collisions at

√
s = 2.76ATeV,” Phys.Lett. B717 (2012)

261–265, arXiv:1208.1200 [nucl-th].

[117] D. Teaney and L. Yan, “Non-linear flow response and reaction plane
correlations,” Nucl.Phys.A904-905 2013 (2013) 365c–368c,
arXiv:1210.5026 [nucl-th].

[118] A. Dumitru, K. Dusling, F. Gelis, J. Jalilian-Marian, T. Lappi, et al.,
“The Ridge in proton-proton collisions at the LHC,” Phys.Lett. B697
(2011) 21–25, arXiv:1009.5295 [hep-ph].

[119] M. Diehl and A. Schafer, “Theoretical considerations on multiparton
interactions in QCD,” Phys.Lett. B698 (2011) 389–402,
arXiv:1102.3081 [hep-ph].

[120] A. Kovner and M. Lublinsky, “Angular Correlations in Gluon
Production at High Energy,” Phys.Rev. D83 (2011) 034017,
arXiv:1012.3398 [hep-ph].

[121] T. Altinoluk and A. Kovner, “Particle Production at High Energy and
Large Transverse Momentum - ’The Hybrid Formalism’ Revisited,”
Phys.Rev. D83 (2011) 105004, arXiv:1102.5327 [hep-ph].

[122] K. Dusling and R. Venugopalan, “Azimuthal collimation of long range
rapidity correlations by strong color fields in high multiplicity
hadron-hadron collisions,” Phys.Rev.Lett. 108 (2012) 262001,
arXiv:1201.2658 [hep-ph].

[123] E. Levin and A. H. Rezaeian, “The Ridge from the BFKL evolution
and beyond,” Phys.Rev. D84 (2011) 034031, arXiv:1105.3275
[hep-ph].

[124] M. Strikman, “Transverse Nucleon Structure and Multiparton
Interactions,” Acta Phys.Polon. B42 (2011) 2607–2630,
arXiv:1112.3834 [hep-ph].

196



[125] J. Casalderrey-Solana and U. A. Wiedemann, “Eccentricity
fluctuations make flow measurable in high multiplicity p-p collisions,”
Phys.Rev.Lett. 104 (2010) 102301, arXiv:0911.4400 [hep-ph].

[126] E. Shuryak, “Comments on the CMS discovery of the ’Ridge’ in High
Multiplicity pp collisions at LHC,” arXiv:1009.4635 [hep-ph].

[127] K. Werner, I. Karpenko, and T. Pierog, “The ’Ridge’ in Proton-Proton
Scattering at 7 TeV,” Phys.Rev.Lett. 106 (2011) 122004,
arXiv:1011.0375 [hep-ph].

[128] P. Bozek, “Elliptic flow in proton-proton collisions at
√
s = 7 TeV,”

Eur.Phys.J. C71 (2011) 1530, arXiv:1010.0405 [hep-ph].

[129] P. Bozek, “Collective flow in p-Pb and d-Pd collisions at TeV
energies,” Phys.Rev. C85 (2012) 014911, arXiv:1112.0915 [hep-ph].

[130] ATLAS Collaboration, G. Aad et al., “Observation of Associated
Near-side and Away-side Long-range Correlations in

√
sNN=5.02 TeV

Proton-lead Collisions with the ATLAS Detector,” Phys.Rev.Lett. 110
(2013) 182302, arXiv:1212.5198 [hep-ex].

[131] K. Dusling and R. Venugopalan, “Comparison of the Color Glass
Condensate to di-hadron correlations in proton-proton and
proton-nucleus collisions,” arXiv:1302.7018 [hep-ph].

[132] F. G. Gardim, F. Grassi, M. Luzum, and J.-Y. Ollitrault, “Breaking of
factorization of two-particle correlations in hydrodynamics,” Phys.Rev.

C87 (2012) 031901, arXiv:1211.0989 [nucl-th].

[133] U. W. Heinz, Z. Qiu, and C. Shen, “Fluctuating flow angles and
anisotropic flow measurements,” Phys.Rev. C87 (2013) 034913,
arXiv:1302.3535 [nucl-th].

[134] J. Schukraft, A. Timmins, and S. A. Voloshin, “Ultra-relativistic
nuclear collisions: event shape engineering,” Phys.Lett. B719 (2013)
394–398, arXiv:1208.4563 [nucl-ex].

[135] ALICE Collaboration, A. Dobrin, “Event shape engineering with
ALICE,” Nucl.Phys.A904-905 2013 (2013) 455c–458c,
arXiv:1211.5348 [nucl-ex].

[136] R. S. Bhalerao, J.-Y. Ollitrault, and S. Pal, “Event-plane correlators,”
arXiv:1307.0980 [nucl-th].

197



[137] Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang, and S. Pal, “A Multi-phase
transport model for relativistic heavy ion collisions,” Phys.Rev. C72
(2005) 064901, arXiv:nucl-th/0411110 [nucl-th].

[138] M. Gyulassy and X.-N. Wang, “HIJING 1.0: A Monte Carlo program
for parton and particle production in high-energy hadronic and nuclear
collisions,” Comput.Phys.Commun. 83 (1994) 307,
arXiv:nucl-th/9502021 [nucl-th].

198



Appendix A

Event plane analysis

A.1 Methodology

A.1.1 Determining the event-plane angles

Here the method used for determining the event-plane angles is described. The
measured anisotropy in a given detector, where the EP angle is estimated, can
be expressed as a Fourier series:

2πdN/dφ = Q0 +
∑

n

(2Qx,n cosnφ+ 2Qy,n sinnφ)

= Q0 +
∑

n

2Qn cosn(φ−Ψn), (A.1)

= Q0(1 +
∑

n

2vobsn cosn(φ−Ψn)),

with

Qx,n =
∑

i

wi cosnφi, Qy,n =
∑

i

wi sinnφi,

Q2
n = Q2

x,n +Q2
y,n, Ψn =

1

n
tan−1

(

Qy,n

Qx,n

)

, (A.2)

where, wi is the appropriate weight for each detector channel, (number of
charged particles, or total transverse energy) and Ψn is the measured nth order
event-plane defined by the nth order flow vector
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A.1.2 Event-plane resolution

Due to finite statistics in the determination of the event-plane (or Q-vector),
the measured event-plane is different than the true event-plane. The following
derivation shows how the difference between the true event-plane and the ob-
served event-plane affects the measured flow harmonics and how the measured
harmonics can be corrected. The true nth order event-plane is denoted by Φn

and the observed event-plane by Ψn. The distribution of particles about the
true event-plane is given as:

2πdN/dφ = N0

(

1 + 2
∞
∑

n′=1

vn′ cos(n′(φ− Φn′))

)

(A.3)

However as the measured nth order event-plane is Ψn, the observed vn is cal-
culated by the distribution of particles about the Ψn as:

vobsn = 〈cos(n(φ−Ψn))dN/dφ〉 = vn cos(n(Ψn − Φn)) (A.4)

where, 〈...〉 implies averaging over all tracks and Eq. A.3 is substituted for
dN/dφ. The Last equality in Eq. A.4 follows from the conditions:

∫ 2π

0

cos(n(φ−Ψn)) cos(n
′(φ− Φn′))dφ = πδn,n′ cos(n(Ψn − Φn′)),

∫ 2π

0

cos(n(φ−Ψn))dφ = 0 (A.5)

where, δn,n′ is the Kronecker delta function. Averaging Eq. A.4 over many
events gives1:

〈vobsn 〉events = 〈vn cos(n(Ψn − Φn))〉events (A.6)

If it is assumed that the fluctuation of Ψn about Φn is independent2 of vn then
the above equation becomes:

〈vobsn 〉events = 〈vn〉events〈cos(n(Ψn − Φn))〉events (A.7)

1The averaging is actually a weighted average, with each event being weighted by its
multiplicity N0.

2This is one of the assumptions of the EP method. This is true if the multiplicity and
the vn do not change appreciably from one event to another within a centrality class.
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Thus averaged over many events, the difference between the measured event-
plane and the true event-plane effectively reduces the measured value of vn
by a factor of 〈cos (n(Ψn − Φn))〉. This factor is defined as the event-plane
resolution (for the nth-order harmonic) of the detector:

Resolution = 〈cos (n(Ψn − Φn))〉 (A.8)

Once the resolution is determined, the true value of vn can me obtained by
dividing the observed value by the resolution. That is:

vn =
vobsn

〈cos (n(Ψn − Φn))〉
=

vobsn

Res{nΨn}
(A.9)

Note that in the above derivation Ψn indicates the measured event-plane
after accounting for all detector effects. Thus any difference between Ψn and
Φn is purely because of the finite statistics used in the determination of Ψn.
The procedure used for correcting for detector effects is discussed later in
Appendix A.1.4.

A.1.3 Determining the detector resolution

As mentioned before, due to the finite number of particles of the system,

the measured flow vector
−→
Qn fluctuates around its true value

−→
Qn

T . Assum-
ing Gaussian-like fluctuations, which is true when the multiplicity is large,
(central-limit theorem) such dispersion distribution can be expressed as :

dN

dQx,ndQy,n

=
1

πσ2
n

exp






−

∣

∣

∣

−→
Qn −

−→
Qn

T
∣

∣

∣

2

σ2
n






, (A.10)

with equal variance in x and y direction,

σ2
y = σ2

x ≡ σ2
n

2
(A.11)

σn scales with the measured multiplicity as
√
N .

In radial co-ordinates
−→
Qn is given by (Qn, nΨn) and

−→
Qn

T is given by (QT
n , nΦn).

The dispersion equation A.10 written in terms ofQn and relative angle n∆Ψn (=
nΨn − nΦn) between measured and true flow vectors becomes:
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dN

QndQnd (n∆Ψn)
=

1

πσ2
n

× exp

(

−Q2
n +QT

n
2 − 2QnQ

T
n cosn∆Ψn

σ2
n

)

(A.12)

Integrating out the Qn in Eq. A.12, gives the expression for the dispersion
distribution for the event-plane angle,

dN

d∆nΨn

=
exp(−χ2

n)

π

{

1 + z
√
π [1 + rf(z)] exp(z2)

}

(A.13)

with χn = QT
n/σn and z = χ2

n cosn∆Ψn.
As QT

n is proportional to the flow signal vn and multiplicity N , while σn ∝√
N , this implies χn ∝

√
Nvn. This implies that if the measured multiplicity

is larger by factor of 2, χn would increase by a factor of
√
2. This is the basis

for the two-subevent method for calculating the event-plane resolution.
Event-plane resolution: The general expression for event-plane resolution

can be derived directly from Eq. A.13,

〈cos∆nΨn〉 =
χn

√
π

2
e−

χ2
n
2

[

I0(
χ2
n

2
) + I1(

χ2
n

2
)

]

. (A.14)

Where, the In are the modified Bessel functions of the first kind. In order
to calculate the resolution, χn needs to be determined. This is done by the
two-subevent or three-subevent methods.

Two-subevent method

This method involves dividing the detector into two sub-detectors (or subevents)
having nearly equal acceptance and to determine the event-plane for each of
them. The two event-planes obtained from the two subevents are labelled as
ΨA

n and ΨC
n . Both of these will fluctuate independently about the true event-

plane according to Eq. A.13 but with a χ value
√
2 smaller that that of the full

detector. This is because χ scales with number of particles as
√
N and each

of the two subevents have half the number of particles than the full detector.
The subevent χ is denoted as χsub :

χsub = χA = χC =
χ√
2

(A.15)

Since the fluctuations n(ΨA
n −Φn) and n(ΨC

n −Φn) are independent fluctu-
ations, the distribution of the relative angle ∆nΨ′

n = n(ΨA
n − ΨC

n ) = n(ΨA
n −
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Φn)− n(ΨC
n − Φn) is given by a convolution of Eq .A.13 as:

dN

d∆nΨ′
n

=
e−χ2

sub

2

[

2

π
(1 + χ2

sub) + z(I0(z) + L0(z)) + χ2
sub(I1(z) + L1(z))

]

(A.16)
where z = χ2

sub cos(∆nΨ′
n) and L0 and L1 are modified Sturve functions. This

distribution is normalized between 0 and π. The distribution n(ΨA
n − ΨC

n )
can be experimentally measured and then fitted with Eq. A.16 to obtain χsub.
From which the full detector’s χ can be obtained (by multiplying by

√
2) and

used in Eq. A.14 to obtain the full detector’s resolution.
There is another method of obtaining the sub-detector resolution. Consider

the cosine of n(ΨA
n −ΨC

n ):

cos
(

n(ΨA
n −ΨC

n )
)

= cos
(

n(ΨA
n − Φn)− n(ΨC

n − Φn)
)

= cos
(

n(ΨA
n − Φn)

)

cos
(

n(ΨC
n − Φn)

)

+sin
(

n(ΨA
n − Φn)

)

sin
(

n(ΨC
n − Φn)

)

(A.17)

Since the individual fluctuations in (ΨA
n −Φn) and (ΨC

n −Φn) are indepen-
dent of each other, averaging over many events gives:

〈

cos
(

n(ΨA
n − Φn)

)

cos
(

n(ΨC
n − Φn)

)〉

=
〈

cos
(

n(ΨA
n − Φn)

)〉

×
〈

cos
(

n(ΨC
n − Φn)

)〉

〈

sin
(

n(ΨA
n − Φn)

)

sin
(

n(ΨC
n − Φn)

)〉

=
〈

sin
(

n(ΨA
n − Φn)

)〉

×
〈

sin
(

n(ΨC
n − Φn)

)〉

(A.18)

Since the fluctuations of the observed event-plane about the true event-
plane must be symmetric (that is, the probability of Ψ

A/C
n − Φn to be +∆Ψn

and −∆Ψn are the same), when averaged over many events:

〈

sin
(

n(ΨA/C
n − Φn)

)〉

= 0 (A.19)

Thus Eq. A.17 averaged over many events becomes:

〈

cos
(

n(ΨA
n −ΨC

n )
)〉

=
〈

cos
(

n(ΨA
n − Φn)

)〉 〈

cos
(

n(ΨC
n − Φn)

)〉

=
〈

cos
(

n(ΨA/C
n − Φn)

)〉2
(A.20)
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The last equality in Eq. A.20 follows from the fact that
〈

cos
(

n(Ψ
A/C
n −Φn)

)〉

which are the resolutions of sub-detectors A and C repectively, are equal to
each other. Thus the sub detector resolution is obtained as:

〈

cos
(

n(ΨA/C
n − Φn)

)〉

=
√

〈cos (n(ΨA
n −ΨC

n ))〉 (A.21)

The RHS of the above equation is experimentally evaluated and used to
obtain the sub-detector resolution. This resolution can be used in Eq. A.14 to
obtain the sub-detector χsub. From which the full detector χ can be obtained
as

√
2χsub. In principle, both the fit method (Eq. A.16) and the 〈cos〉 method

(Eq. A.21 followed by Eq. A.14) should give the same value of χsub (and hence
same value of χ). Any difference in between the two values can be used as a
systematic error on the event-plane resolution.

Three-subevent method

The three-subevent method does not require knowledge of χn. Instead, it
directly calculates the resolution of a given detector A by using its correlation
with the event planes from two other detectors B and C sitting at different η
windows.

Res{nΨA
n} = 〈cos(n(ΨA

n − Φn))〉

=

√

〈cos (n (ΨA
n −ΨB

n ))〉 〈cos (n (ΨA
n −ΨC

n ))〉
〈cos (n (ΨB

n −ΨC
n ))〉

(A.22)

This can be proven by expanding the three cosines as (see Eq. A.17–A.20):

〈cos(n(ΨA
n −ΨB

n ))〉 = 〈cos(n(ΨA
n − Φn))〉〈cos(n(ΨB

n − Φn))〉
〈cos(n(ΨA

n −ΨC
n ))〉 = 〈cos(n(ΨA

n − Φn))〉〈cos(n(ΨC
n − Φn))〉

〈cos(n(ΨB
n −ΨC

n ))〉 = 〈cos(n(ΨB
n − Φn))〉〈cos(n(ΨC

n − Φn))〉. (A.23)

Plugging the above into the RHS of Eq. A.22 completes the proof. Once
Res{nΨA

n} is known, it can be used to calculate the χn using Eq. A.14.

A.1.4 Event plane flattening

Detector effects such as inefficiencies or dead/hot-regions can affect the deter-
mination of the event-planes (beyond statistical fluctuations). For example,
if the Forward calorimeter has a few towers with higher gains than the rest,
then the Q-vectors will get more contribution from these towers, and will have
a tendency to align along them. Similarly regions with dead towers will re-
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sult in the Q-vector getting less contribution from those regions and will be
aligned opposite to them. The presence of detector effects can be checked by
measuring the ETφ) averaged over many events. Since the orientation of the
collision is completely random from event to event (in the lab frame), ET(φ)
averaged over many events should be independent of φ.

Figure A.1 shows the 2-D ET map for the two Fcal sub-detectors in φ and η,
summed over all events in the (0-70)% centrality interval. Clear modulations
are seen along the φ direction due to detector non-uniformity. This distribution
is then projected onto the φ axis and expanded as a Fourier series. The left
panel of Figure A.2 shows the 1D “acceptance function”, and the first six
Fourier moments plotted individually around the mean values of the histogram,
together with the sum of all terms up to n=6 (dashed line). The phases for
each n, are drawn as vertical bars on the same figure. The Fcal acceptance
function shows a significant modulation for n=1, 2 and 4.
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Figure A.1: FCal (layers 1+2) ET distribution, intergated over (0-70)% cen-
trality for positive η (left) and negative η (right). The first and last η slices
centered at |η|=3.25 and |η|=4.85 are not used in this analysis and have been
excluded from the figures.

These detector modulations affect the determination of the Ψn, and need
to be accounted for. As the orientation of the collision is completely random in
the lab frame, the distribution of the Q-vector and thus the nΨn

3 angles should
be completely flat in φ. In order to demonstrate the non-flatness of the raw
measured, i.e. uncorrected Ψn (denoted as ΨRaw

n ), the distributions of 2ΨRaw
2

and 3ΨRaw
3 obtained from the FCal are plotted for a few centralities in Fig.A.3.

3The orientation of the nth-order Q-vector is given by nΨn
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Figure A.2: FCal ET(φ) (layers 1+2) distribution integrated over the (0-70)%
centrality interval and over η.

Clearly significant non-flatness is seen in these distributions indicating the need
to correct the ΨRaw

n .

Recentering and rescaling of the Q-vector

As mentioned before, the Q-vector distribution does not have any prefered
direction. Thus, we must have :

〈Qn,x〉 = 〈Qn,y〉 = 0 (A.24)

Due to the acceptance effects mentioned above, the raw Q-vectors averaged
over many events, have non-zero x and y components. The Q-vector is recen-
tered at (0,0) by subtracting these out. This recentering procedure is done
order by order for all Q-vectors. Since the mean values of the raw Q-vectors
depend on the centrality, this recentering in done is narrow bins of centrality
(1% bins in our case).

Qrecentered
n,x = QRaw

n,x − 〈QRaw
n,x 〉

Qrecentered
n,x = QRaw

n,x − 〈QRaw
n,x 〉 (A.25)
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Figure A.3: The event plane distribution for ΨRaw
2 and ΨRaw

3 obatined from
the FCal for four different centralities. The error bars should be

√
NEvents and

are suppressed for clarity.

Flattening of the event plane

The event-planes obtained from the recentered Q-vectors are designated as
Ψmeas

n . The distributions for nΨmeas
n are almost flat. Any remaining modula-

tions in these distributions are “flattened” by calculating the Fourier coeffi-
cients of the nΨmeas

n distributions, given by 〈cos(knΨmeas
n )〉 and 〈sin(knΨmeas

n )〉
for order k, and then rotating the Ψmeas

n values by small angles ∆Ψn to remove
these modulations. The ∆Ψn are given by:

∆Ψn =
kmax
∑

k=1

2

kn
(−〈sin(knΨmeas

n )〉 cos(knΨmeas
n ) + 〈cos(knΨmeas

n )〉 sin(knΨmeas
n ))

(A.26)
Where kmax=12 in this analysis. Finally the fully corrected event-plane is
obtained as :

Ψn = Ψmeas +∆Ψn (A.27)

Figure.A.4 shows the Raw, recentered and flattened event-planes for two
different centralities for n=2-6. From the plots it is clear that the recentering
take care of most of the detector anisotropies and the flattening only makes
minor corrections.
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Figure A.4: The Raw, recentered and flattened distributions for Ψ2–Ψ6 ob-
tained for full-FCal (layers 1+2).

Meaning of the shifts 〈QRaw
n,x/y〉

We now take a detailed look at the shifts 〈QRaw
n,x/y〉. First we explain what these

〈QRaw
n,x/y〉 mean physically.
The Q-vector in an event for an ideal detector can be written as a function

of phi as:

QIdeal(φ) = Q0

(

1 +
∞
∑

n=1

2vn cos(nφ− nΨn)

)

(A.28)

However, the measured raw energy distribution will be affected by the detector
efficiency ǫ, as:

QRaw(φ) = QIdeal(φ)× ǫ(QIdeal(φ), φ) (A.29)

Where the efficiency is taken to be both a function of the true deposited
energy QIdeal(φ) and the angle φ. If this assumption is relaxed to make the
efficiency only a function of φ 4, we get:

QRaw(φ) = QIdeal(φ)× ǫ(φ) (A.30)

4Or if the correction is done in narrow centrality bins so that the ET does not change
too much from one event to another.
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The efficiency function can be expanded in a Fourier series as:

ǫ(φ) = ǫ0

(

1 +
∞
∑

n=1

2ǫn cos(nφ− nΨDet
n )

)

(A.31)

Substituting this into the expansion of the Raw Q-vector, gives:

QRaw = Q0

(

1 +
∞
∑

n′=1

2vn′ cos(n′φ− n′Ψn′)

)

× ǫ(φ)

= Q0

(

1 +
∞
∑

n′=1

2vn′ cos(n′φ− n′Ψn′)

)

×ǫ0

(

1 +
∞
∑

n′′=1

2ǫn′′ cos(n′′φ− n′′ΨDet
n′′ )

)

= ǫ0Q0

(

1 +
∞
∑

n′=1

2vn′ cos(n′φ− n′Ψn′)

+
∞
∑

n′′=1

2ǫn′′ cos(n′′φ− n′′ΨDet
n′′ ) +O(ǫn′vn′′)

)

(A.32)

where, terms of Order O(ǫn′vn′′) have been ignored in the above formula. This
gives for QRaw

n,x and QRaw
n,y :

QRaw
n,x =

∫

Q(φ) cos(φ)dφ = ǫ0Q0

(

vn cos(nΨn) + ǫn cos(nΨ
Det
n )

)

QRaw
n,y =

∫

Q(φ) sin(φ)dφ = ǫ0Q0

(

vn sin(nΨn) + ǫn sin(nΨ
Det
n )

)

(A.33)

If the event-plane angles Ψn were calculated from the raw Qn values, we would
get :

ΨRaw
n = tan−1

(

ǫ0Q0

(

2vn sin(nΨn) + 2ǫn sin(nΨ
Det
n )

)

ǫ0Q0 (2vn cos(nΨn) + 2ǫn cos(nΨDet
n ))

)

= tan−1

(

vn sin(nΨn) + ǫn sin(nΨ
Det
n )

vn cos(nΨn) + ǫn cos(nΨDet
n )

)

6= Ψn (A.34)

Now we explain how the recentering corrects this. When averaged over
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many events, as the event-plane angles (Ψn) are completely random, Eq. A.32
becomes:

〈

QRaw
〉

= ǫ0Q0

(

1 +
∞
∑

n′′=1

2ǫn′′ cos(n′′φ− n′′ΨDet
n′′ )

)

(A.35)

This gives:

〈

QRaw
n,x

〉

=

∫

〈

QRaw(φ)
〉

× cos(nφ)dφ = ǫ0Q0

(

ǫn cos(nΨ
Det
n )

)

〈

QRaw
n,y

〉

=

∫

〈

QRaw(φ)
〉

× sin(nφ)dφ = ǫ0Q0

(

ǫn sin(nΨ
Det
n )

)

(A.36)

Equations.A.35 and A.36 also give the physical meaning of
〈

QRaw
n

〉

. Up
to a normalization constant Q0(independent of n),

〈

QRaw
n

〉

measures the nth

harmonic coefficient in the Fourier expansion of the detector efficiency ǫ(φ).
From one centrality to another, Q0 will change, but ǫ0, ǫn and ΨDet

n will remain
same. In other words, while the magnitude of

〈

QRaw
n

〉

will from one centrality
to another, the direction will remain fixed. Further as Q0 is independent of
n, the magnitudes of the different

〈

QRaw
n

〉

will scale by the same amount from
one centrality to another.

The effects of the recentering on the Q-vectors are given by:

Qrecentered
n,x = QRaw

n,x −
〈

QRaw
n,x

〉

= ǫ0Q0 (vn cos(nΨn))

Qrecentered
n,y = QRaw

n,y −
〈

QRaw
n,y

〉

= ǫ0Q0 (vnsin(nΨn)) (A.37)

Calculating the Ψn from the recentered Q-vectors, gives:

Ψrecentered
n = tan−1(

Qrecentered
n,y

Qrecentered
n,x

) = tan−1(
ǫ0Q0 (vn sin(nΨn))

ǫ0Q0 (vn cos(nΨn))
) = Ψn (A.38)

Thus the recentered Q-vectors give the correct event-planes.
In Eq. A.32 terms of O(ǫn′vn′′) had been ignored. These terms make the

Ψrecentered
n to be slightly different than the Ψn. These terms are accounted for

by the flattening procedure (Eq. A.26-A.27).

Shifts 〈QRaw
n,x/y〉 for the FCal

In this section a study of the shifts 〈QRaw
n,x/y〉 for the FCal are presented. Only

one run is analyzed so that run-by-run changes in the detector acceptance (if
any) do not affect the observations. Also the results presented here are only
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for layer-1 of the FCal. The left panel of Fig. A.5, shows the 〈QRaw
n,y 〉 vs 〈QRaw

n,x 〉
correlation for n=1-6. Each harmonic is represented by a different color and
the different points for a particular harmonic are for different centralities: 20
bins of 5% centrality width with the most central (0-5)% events corresponding
to the highest magnitude of 〈QRaw

n 〉). The right plot shows similar correlations,
but with the Q-vectors rescaled such that the point corresponding to the (0-
5)% centrality interval has a magnitude of 1.0.

From these figures, the two scaling relations that were mentioned in the
last section can be clearly seen. As the centrality bin changes, the magnitude
of the shifts change (as they should), but the direction is extremely stable.
The expected scaling in the magnitudes of the QRaw

n is also seen, which is
evident from the right plot. When the most central class has been scaled to
have |QRaw

n | = 1.0, the other centralities have roughly the same magnitude
independent of n.
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Figure A.5:
〈

QRaw
n,y

〉

vs
〈

QRaw
n,x

〉

for n=2-6. Left Plot is unscaled, right plot is

scaled such that the most central(0-5%) bin has |
〈

QRaw
n

〉

| = 1.0.

A.1.5 Resolution from three-subevent method

The three-subevent method method (Eq. 3.12 or Eq. A.22) is also used to
calculate the FCal resolution. The main advantages of three-subevent method
are :

• It makes no assumptions about the functional form of the dispersion
distribution of Ψn relative to Φn.

• It can be used to directly calculate the resolution of the full-FCal, as
opposed to the two-subevent method, which gives the resolution of the
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sub-detector (FCalP(N)), which is then used to obtain the full-FCal res-
olution.

The three detectors have to be well separated in η in order to minimize the
short-range correlations. Also the reference detector (B and C) themselves
must have good resolutions, otherwise the resolution for detector A obtained
from this method would have large statistical and systematic error.

Detectors used for three-subevent study

The large coverage of the ATLAS Electro-Magnetic Calorimeter (EMCal) sys-
tem, which includes the Electro-Magnetic Barrel (|η| < 1.5) and the Electro-
Magnetic end-cap (1.5 < |η| < 3.2) with fine segmentation in η and φ, allows
for a very flexible choice for the detectors B and C (detector A is either the
full-FCal or sub-FCal). The tracking detectors are also used as reference detec-
tors where the Ψn are obtained using tracks with pT >0.5 GeV. The naming
convention for the reference detectors used in the three-subevent method is
listed in Table A.1. All the detectors are symmetric about η=0. The names
in Table A.1 refer to the detectors with the positive and negative η segments
combined. When only one half of the detector is used, a subscript ‘P’ or ‘N’
is added to indicate whether the positive or negative η side is being used,
for example EMB0N refers to the negative η side of the EMB0 detector. All
the detectors listed Table A.1 are calibrated using the recentering-flattening
procedure described in Appendix A.1.4.

Three types of three-subevent studies

To suppress the short-range correlations (non-flow correlations), a minimum
one unit η separation is required in between any pair of the three detectors. A
large set of three-subevent measurements are done. They are categorized into
three types. In Type-I analysis, A is chosen to be the full-FCal. Detectors B
and C are chosen such that the combination A + B + C is symmetric about
η = 0, one example is EMB0 for B and EME0 for C. The list of Type-I
combinations used are given in Table A.2.

These combinations directly give the resolution for the full-FCal (i.e. with-
out calculating the sub-FCal resolution). Fig. A.6 shows the full-FCal reso-
lution for n=2-6 obtained for the different Type-I combinations as a function
of centrality. The resolution obtained from the two-subevent method is also
shown for comparison. The different combinations have been given small off-
sets along the x-axis so that they can be clearly seen. Fig. A.7 shows the
ratios of the three-subevent resolutions to the two-subevent method results.
For n=2, the ratios are systematically below 1.0 in central collisions by up to

212



Detector Name Description |η| coverage
1 EMB0 EM Barrel 0-0.5
2 EMB1 EM Barrel 0.5-1.5
3 EMB2 EM Barrel 0-1.5
4 EME0 EM End Cap 1.5-2.1
5 EME1 EM End Cap 1.5-2.7
6 EME2 EM End Cap 1.5-3.2
7 EMB1EME0 EM Barrel + End Cap 0.5-2.1
8 ID0 Inner Detector 0.5-2.0
9 ID1 Inner Detector 0-2.5

Table A.1: Detectors used in the three-subevent method to determine full-
FCal and sub-FCal resolutions. If only one side of the detector is used, a
subscript ‘N’ or ‘P’ is added to indicate whether the negative or the positive
η side is being used. For the Inner Detector, only tracks with pT >0.5 GeV
are used.

Type-I checks
Check 1 FCal− EMB0− EME0
Check 2 FCal− EMB1P − EMB1N
Check 3 FCal− EMB1EME0P − EMB1EME0N
Check 4 FCal− EME0P − EME0N

Table A.2: List of Type-I combinations for obtaining full-FCal resolution via
three-subevent method. See Table.A.1 for description of the detectors.

5% and in mid-central collisions by 1%, then spread out for peripheral colli-
sions by about ±5%. For n=3 and 4, a small systematically increasing trend
of the ratios towards peripheral collisions is seen, but the change is within
±3% across most of the centrality range. For n=5, the ratio is systematically
above one and increases toward more peripheral collisions to about (5-10)%.
For n=6, there is a large spread between the ratios with about ±30% varia-
tion, and in most cases the ratio is systematically lower than 1, although the
statistical uncertainties are also large.

In Type-II analysis, A and B are FCalN and FCalP, and C is chosen from
the list of reference detectors. Detector C is required to have a one unit η
separation form both FCalP/N and is placed symmetrically in between them.
This combination gives the resolution for FCalP from Eq. 3.12 (Eq. A.22).
The detectors A and B are thew swapped (i.e. A = FCalN and B = FCalP)
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Figure A.6: The resolutions for n=2–6 obtained for the full-FCal from Type-
I three-subevent combinations. The full-FCal resolution obtained from the
two-subevent method is also shown for comparison. Error bars are statistical
errors only. The x-axis covers the centrality range over which the final results
are presented and is different for the different n.
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Figure A.7: The ratio of full-FCal resolutions for n=2–6 obtained from Type-
I three-subevent combinations to the ones obtained from the two-subevent
method. Error bars are statistical errors only. The x-axis covers the centrality
range over which the final results are presented and is different for the different
n.

while keeping the same C to calculate the resolution for FCalN. From the
resolutions, the χ values for the FCalN and FCalP are obtained using Eq 3.7

(Eq. A.14), then combined to get the full-FCal χ as χfull =
√

χ2
FCalN

+ χ2
FCalP

.

Which is again plugged back into Eq 3.7 (Eq. A.14) to obtain the resolution
for full-FCal. In total five Type-II checks are performed as listed in Table A.3.

214



Note that this method also gives the FCalP or FCalN resolutions as they are
calculated at the intermediate step.

Type-II checks
Check 1 FCalN − EMB0− FCalP and FCalP − EMB0− FCalN
Check 2 FCalN − EMB1− FCalP and FCalP − EMB1− FCalN
Check 3 FCalN − EME1− FCalP and FCalP − EME1− FCalN
Check 4 FCalN − EMB2− FCalP and FCalP − EMB2− FCalN
Check 5 FCalN − EMB1EME0− FCalP and FCalP − EMB1EME0− FCalN

Table A.3: List of Type-II combinations for obtaining sub-FCal resolution via
three-subevent method. See Table A.1 for description of the detectors.

Figure A.8 shows the ratio of full-FCal resolutions for n=2-6 obtained from
Type-II combinations, to the ones obtained from the two-subevent method as a
function of centrality. The same ratios are also shown for sub-FCal resolutions
in Fig. A.9. The agreement for full-FCal is quite good for all harmonics and no
systematic variations of the ratios with centrality are seen. The only noticeable
difference is a ∼ 1% downward shift of the ratios for n=3 and 5, and a ∼
2% downward shift of the ratios for n=4. The agreements for the sub-FCal
resolutions are even better for all harmonics.
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Figure A.8: The ratio of full-FCal resolutions for n=2-6 obtained from Type-II
combinations to the ones obtained from the two-subevent method. Error bars
are statistical errors.

In Type III analysis, the resolution is calculated for the two sides of FCal
in two separate three-subevent studies, and then combined according to the
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Figure A.9: The ratio of FCalP resolutions for n=2-6 obtained from Type-II
combinations to the ones obtained from the two-subevent method. Error bars
are statistical errors.

standard formulae Eq. 3.7 and Eq. 3.9 that relates the two sub-detector reso-
lutions to the full detector resolution. Detectors B and C are chosen such that
one of them is at positive η while the other is at negative η and they have an η
separation greater than 1.0 from the first detector (FCalP or FCalN) and from
each other. As listed in Table A.4, a total of six Type-III checks are performed
for both FCalP and FCalN. Since FCalP or FCalN resolutions are calculated
at the intermediate step, this type also gives the sub-FCal resolutions.

Type-III checks
Check 1 FCalP − EMB2P − EME2N
Check 2 FCalP − EMB1P − EME2N
Check 3 FCalP − EMB1EME0P − EMB1EME1N
Check 4 FCalP − EMB1EME0P − ID0N
Check 5 FCalP − ID1P − EMB1EME0N
Check 6 FCalP − ID0P − EMEN

Table A.4: A list of Type-III combinations where FCalP is chosen as the first
detector. Similar combinations are used for FCalN by swapping P and N for
all three detectors. Note that FCalP and FCalN are not used simultaneously
as in Type-II case. See Table A.1 for description of the detectors.

Figure A.10 shows the ratio of Full-FCal resolutions for n=2-6 obtained for
FCal from Type-III combinations to the ones obtained from the two-subevent
method as a function of centrality. A good agreement is seen with the two-
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subevent values for n=2 except in peripheral events. For n=3 and 4, the
three-subevent values are systematically higher than the two-subevent values
but are within ∼ 4%. For n=5, the ratio is systematically larger than one by
about 10% in mid-central collisions. For n=6, the three-subevent results are
systematically lower than those obtained from two-subevent methods by as
much as 30% in mid-central collisions. Same ratios for sub-FCal resolutions
are shown in Fig. A.11, the systematic trends as function of centrality are
quite similar as the full-FCal case. However the deviation for n=2, 3 and 4
are somewhat larger (but remain independent of centrality), reaching about
5% for both n=3 and 4. The level of deviation for n=5 and 6, are however
quite similar to that for the full-FCal case.
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Figure A.10: The ratio of full-FCal resolutions for n=2–6 obtained from Type-
III combinations to the ones obtained from the two-subevent method. Error
bars are statistical errors.

The resolutions measured from the three-subevent study are used to esti-
mate the systematic errors in the resolutions. They are also used to correct
the resolutions for n=5 and 6 obtained from the two-subevent method (see
Section 3.2.5).

A.2 Systematic error calculation and cross-checks

A.2.1 Dependence of vn on running periods
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Figure A.12: pT dependence of vn for four different run groups for (0-10)%
centrality.
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Figure A.13: pT dependence of vn for four different run groups for (40-50)%
centrality.
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Figure A.14: pT dependence of vn for four different run groups for (60-70)%
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A.3 Additional results plots

A.3.1 η dependence
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Figure A.15: Left two columns: η dependence of vn for pT ∈ (0.5, 1.0) GeV.
Right two columns: η dependence of vn for pT ∈ (1, 2) GeV. Each panel
corresponds to a different centrality class. The values are obtained using sub-
FCal event-planes.
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Figure A.16: Left two columns: η dependence of vn for pT ∈ (2, 3) GeV. Right
two columns: η dependence of vn for pT ∈ (4, 8) GeV. Each panel corresponds
to a different centrality class. The values are obtained using sub-FCal event-
planes.
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A.4 Comparison between results for full-FCal

and FCalP(N)

Figure A.17 shows the ratios of vn(pT) obtained from FCalP(N) to those ob-
tained using full-FCal for various centrality selections. The FCalP(N) results
are higher than those from full-FCal for v2 by about 5%, but the difference
decreases for mid-central collisions to about 2%. Also, the difference is al-
most independent of pT, except for most central 0-5% and peripheral collisions
(> 70%). The results for v3 and v4 are more consistent across all centralities.
The deviation for v5 and v6 are much larger, but these measurements have con-
siderable statistical and even larger systematic uncertainties (the systematic
uncertainties are not shown for clarity).
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Figure A.17: Ratios of vn obtained from FCalP(N) to those obtained from full-
FCal for various centrality selections in (0-40)% for top panels and (40-80)%
for the bottom panels. From left to right, they are v2 − v6.

Figure A.18 shows comparisons for the η dependence between the FCalP(N)

and full-FCal results for pT ∈ (1, 2) GeV and several centrality selections. The
η dependence is stronger for the FCalP(N) results. This can be seen more clearly
in the ratio plots shown in Fig. A.19. Similar ratio plots for other pT are shown
in Figs. A.20–A.21. For v2 the change is relatively small in mid-central events
but becomes larger in central and peripheral events. For n > 2, we see the
ratios drops with η by about 10% independent of centrality, again showing that
FCalP(N) results have stronger η dependence. The full-FCal measurement uses
tracks with η ∈ (−2.5, 2.5), while the FCalP(N) measurement uses the tracks
from the opposite η side, thus the η-gap is larger for the FCalP(N) (both on
average and at minimum separation) measurements. This results in the bias
from short-range correlations to be smaller for the FCalP(N) measurements,
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resulting in a stronger η dependence.
Based on these observations, we conclude that the differences between the

full-FCal and FCalP(N) are within (1-5)% for η integrated results, the only
outlier would be the v2 in (0-5)% central collisions which shows about 5% dif-
ference. The FCalP(N) results show stronger η dependence as the η separation
between the ID and the sub-FCal is larger, and thus the FCalP(N) are less
susceptible to short-range correlations.
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Figure A.18: Top two rows: vn(η) for pT ∈ (1, 2) GeV from full-FCal. Bottom
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Figure A.19: Ratios of the vn from FCalP (N) to those obtained from full FCal
for 1-2 GeV for various centrality selections. From the left to right they are
v2, v3, v4, v5 and v6, respectively.
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Figure A.20: Same as previous plot but for pT ∈ (2, 3) GeV.
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Figure A.21: Same as previous plot but for pT ∈ (3, 4) GeV.
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Appendix B

Two-particle correlations

B.1 Accounting for detector acceptance via event

mixing

The two-particle correlation method uses event mixing to remove detector
effects. The foreground pairs are considered by taking the trigger and partner
from the same event. The measured pair distribution in ∆φ averaged over
many events is given by:

NForeground
Measured (∆φ) =

1

Nevents

∑

events

∫ (

Nab(φ1 − φ2)ǫ
a(φ1)ǫ

b(φ2)

δ(φ1 − φ2 −∆φ)

)

dφ1dφ2

=
1

Nevents

∑

events

Nab(∆φ)

∫

ǫa(φ1)ǫ
b(φ1 −∆φ)dφ1

=

(∫

ǫa(φ1)ǫ
b(φ1 −∆φ)dφ1

)

× 1

Nevents

∑

events

Nab(∆φ)

= ǫabpair(∆φ)× 1

Nevents

∑

events

Nab(∆φ)

= ǫabpair(∆φ)×NForeground
ideal (∆φ) (B.1)

Where, ǫa(φ) and ǫb(φ) are the efficiencies for detecting particles of type a and
b (as function of φ), Nab(∆φ) is the pair distribution that would be obtained
in an ideal detector on an event by event basis. And NForeground

ideal (∆φ) is the
ideal pair distribution averaged over many events (which is what we want
to obtain). Eq. B.1 shows that the measured pair distribution is the ideal
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pair distribution function times the pair acceptance function ǫabpair(∆φ). The
pair acceptance function is simply the convolution of the individual efficiencies
ǫa(φ) and ǫb(φ) :

ǫabpair(∆φ) =

∫

ǫa(φ1)ǫ
b(φ1 −∆φ)dφ1 (B.2)

If the pair acceptance function ǫabpair(∆φ) can be evaluated then theNForeground
Ideal (∆φ)

can be obtained as :

NForeground
Ideal (∆φ) =

NForeground
Measured (∆φ)

ǫabpair(∆φ)
(B.3)

The pair acceptance can be reconstructed by the event mixing method. In
this method, mixed-event pairs are measured by taking trigger and partner
from different events.

NMixed
Measured(∆φ) =

∫ (

1

Nevents

∑

events

Na(φ1)

)

×
(

1

Nevents

∑

events

N b(φ2)

)

×ǫa(φ1)ǫ
b(φ2)δ(φ1 − φ2 −∆φ)dφ1dφ2 (B.4)

Where, Na(φ) and N b(φ) are the true single particle yields for particles a
and b. For the mixed background, the trigger and partner are completely
uncorrelated, so the following substitutions can be made:

1

Nevents

∑

events

Ψa(φ1) = 〈Na〉

1

Nevents

∑

events

Ψb(φ2) = 〈N b〉 (B.5)

Where 〈Na〉 and 〈N b〉 are the average angular yields of particles of type a and
b respectively. The above equation simply means that the true single particle
yields have no preferred direction when averaged over many events. Thus the
mixed pair distribution becomes:
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NMixed
Measured(∆φ) =

∫

〈Na〉〈N b〉ǫa(φ1)ǫ
b(φ2)δ(φ1 − φ2 −∆φ)dφ1dφ2

= 〈Na〉〈N b〉
∫

ǫa(φ1)ǫ
b(φ2)δ(φ1 − φ2 −∆φ)dφ1dφ2

= 〈Na〉〈N b〉
∫

ǫa(φ1)ǫ
b(φ1 −∆φ)dφ1

= 〈Na〉〈N b〉ǫabpair(∆φ) (B.6)

Dividing the measured foreground pairs by the background gives:

NForeground
Measured (∆φ)

NMixed
Measured(∆φ)

=
NForeground

Ideal (∆φ)ǫabpair(∆φ)

〈Na〉〈N b〉ǫabpair(∆φ)

=
NForeground

Ideal (∆φ)

〈Na〉〈N b〉
= C(∆φ) (B.7)

Where C(∆φ) is the correlation function that we wanted to construct.
In this derivation, only the dependence of the pair distributions and pair

efficiency on ∆φ has been considered. It is very straightforward to extend it
to also include ∆η dependence. Eq.B.1 generalizes to :

NForeground
Measured (∆φ,∆η) = ǫabpair(∆φ,∆η)×NForeground

ideal (∆φ,∆η) (B.8)

The pair acceptance is given by:

ǫabpair(∆φ,∆η) =

∫

ǫa(φ1, η1)ǫ
b(φ1 −∆φ, η1 −∆η)dφ1dη1 (B.9)

Similarly the mixed events distribution becomes:

NMixed
Measured(∆φ,∆η) = 〈Na〉〈N b〉ǫabpair(∆φ,∆η) (B.10)

And finally for the correlation function is obtained as :
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C(∆φ,∆η) =
NForeground

Measured (∆φ,∆η)

NMixed
Measured(∆φ,∆η)

=
NForeground

Ideal (∆φ,∆η)ǫabpair(∆φ,∆η)

〈Na〉〈N b〉ǫabpair(∆φ,∆η)

=
NForeground

Ideal (∆φ∆η)

〈Na〉〈N b〉 (B.11)

Note that the formalism derived here is completely general. Not only can it
be applied to heavy-ion collisions but also to p-p collisions as well. Of course,
the shape of the correlation function will differ depending on the colliding
system, but the trick of dividing by the mixed background in order to account
for the pair acceptance will always work.

B.2 Factorization of two-particle correlations

in heavy ion collisions

In heavy-ion collisions the yield of particles about can be expanded in a Fourier
series as:

dNa/dφ = Na
0

(

1 + 2
∞
∑

n=1

van × cos(nφ− nΦn)

)

(B.12)

Where van are the flow harmonics and Φn are the event-planes. The superscript
a is used to indicate dependence on other parameters such as particle species,
pT etc. If the dominant effect in the dynamics of the collision is flow, then the
two-particle correlation can be reconstructed from the single particle yields:

228



C(∆φ) ∝
∫ (

1 + 2
∞
∑

n=1

van × cos(nφ1 − nΦn)

)

×
(

1 + 2
∞
∑

m=1

vbm × cos(mφ2 − nΦm)

)

δ(φ1 − φ2 −∆φ)dφ1dφ2

=

∫ (

1 + 2
∞
∑

n=1

van × cos(nφ1 − nΦn)

)

×
(

1 + 2
∞
∑

m=1

vbm × cos(mφ1 −m∆φ− nΦm)

)

dφ1

=

∫ (

1 + 2
∞
∑

n=1

van × cos(nφ1 − nΦn)

+2
∞
∑

m=1

vbm × cos(mφ1 −m∆φ−mΦm)

)

dφ1

+

∫

4
∞
∑

n,m=1

vanv
b
m cos(nφ1 − nΦn)× cos(mφ1 −m∆φ−mΦm)dφ1

(B.13)

Using
∫

cos(nφ+ δ)dφ = 0, the terms linear in vn become 0. So the expression
for the correlation becomes:

C(∆φ) ∼
∫ (

1+4
∞
∑

n,m=1

vanv
b
m cos(nφ1−nΦn)× cos(mφ1−m∆φ−mΦm)

)

dφ1

(B.14)
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Using 2 cos(A)× cos(B) = cos(A+B) + cos(A−B) this can be written as:

C(∆φ) ∼
∫ (

(1 + 2
∞
∑

n,m=1

vanv
b
m cos(nφ1 − nΦn +mφ1 −m∆φ−mΦm)

+ 2
∞
∑

n,m=1

vanv
b
m cos(nφ1 − nΦn −mφ1 −m∆φ−mΦm)

)

dφ1

=

∫ (

1 + 2
∞
∑

n,m=1

vanv
b
m cos((n+m)φ1 − nΦn −mΦm −m∆φ)

+ 2
∞
∑

n,m=1

vanv
b
m cos((n−m)φ1 − nΦn +mΦm −m∆φ)

)

dφ1 (B.15)

Again using
∫

cos(kφ+ δ)dφ = 0 for k 6= 0, all the cosine terms vanish except
the n=m terms. This gives:

C(∆φ) ∼
∫ (

1 + 2
∞
∑

n=1

vanv
b
ncos(−n∆φ)

)

dφ1 (B.16)

Since the integrand is independent of φ1, the integration just gives a factor of
2π, which we drop as we are interested in only the angular shape. This gives

C(∆φ) ∼ 1 + 2
∞
∑

n=1

vanv
b
ncos(n∆φ) (B.17)

Thus, the harmonics obtained from the two-particle correlations are simply
the product of the corresponding single particle harmonics of the same order:

vcorrelationn = van × vbn (B.18)

However, this scaling relation can be violated due to many reasons. For
example due to correlations coming from jets and also from lack of collective
behavior in the medium. It is of importance to note that while measuring the
single particle distribution (Eq.B.12) required knowledge of the reaction plane,
the two-particle correlation (Eq.B.17) can be calculated without determining
the reaction plane.
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B.3 Systematic errors in 2PC method

B.3.1 Monte Carlo studies

Direct detector simulation of Pb+Pb collisions provide another handle on the
systematic uncertainties of the 2PC vn measurements. For this purpose, a
detailed Monte-Carlo study is done using events generated by the event gen-
erator HIJING [138]. Since HIJING lacks any physics that can generate flow,
a flow-afterburner code is used that implements a v2 signal by artificially ro-
tating the generated particles by appropriate angles [61]. However, the exact
implementation of the rotations also introduces small signals for v4 and v6.
The final set of particles are run through a full GEANT simulation of the
ATLAS detector, and then analyzed.

The analysis procedure is identical to real data analysis with similar cuts on
the reconstructed tracks. However, due to limited event statistics, the mixed
events are matched within 5mm in z-vertex, instead of the 1mm matching
used in data analysis (it is not a big effect as discussed in Section B.3.2).
Also the analyses are done in large intervals of pT, η and centrality wherever
possible to reduce statistical fluctuations.

In order to determine the truth vn,n(vn), a similar 2PC analysis is done
using the generated tracks (i.e. the tracks from the event generator), which
are the compared to the reconstructed vn,n(vn) to determine the systematic
errors. Only charged primary1 tracks are used for the truth analysis.

Figure B.1 shows the vn,n and vn at generator level integrated over a broad
centrality and pT range. As expected from the flow-afterburner only clear even
order harmonic flow signals are observed. The odd order flow signals are very
small, in particular v3,3 and v5,5 signal are consistent with zero, there is a very
small non-zero signal for v1,1 possibly due to artificial momentum imbalances
introduced in the rotation procedure of the flow implementation since this
procedure does not explicitly enforce momentum conservation.

In Fig.B.2 the truth and reconstructed v2,2 as a function of centrality and
pT for fixed-pT correlations for |∆η| < 5. The reconstructed values are system-
atically higher than the truth values by about 1-3% on the v2,2 level, and have
some centrality and pT dependence. This translates into a 0.5-1.5% difference
for v2. Figure B.3 and B.4 show the same studies done for v4,4 and v6,6. It
is seen that the deviation between truth and reconstructed values are appre-
ciably larger. Overall the v4,4 and v6,6 signal for correlations at reconstruction
level are about 4% and 10% higher than the correlation at truth level, which

1Primary tracks are the ones produced at the collision vertex as opposed to secondary
tracks which can be from decays that are displaced from the primary vertex. In the data
the z0 sin(θ) and d0 cuts remove secondary particles.
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Figure B.1: The vn,n and vn at generator (truth) level for fixed-pT correlation
in (0.5− 4.0) GeV, |∆η| ∈ (0, 5) and (0− 60)% centrality.
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Figure B.2: Left Plots: v2,2 values obtained from the correlations as a function
of ∆η for truth(black) and reconstructed(red) tracks. Right Plots: The frac-
tional difference between truth v2,2 and reconstructed v2,2. Top panels shows
the centrality dependence while the bottom panel shows the pT dependence.
All plots are made for |∆η| < 5.

translate into a 2% and 5% error for v4 and v6 respectively.
In summary, it is seen that the reconstructed distribution are systematically

higher than the truth for harmonics n=2,4,6, where there is an input signal.
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Figure B.3: same as Figure B.2 but for v4,4
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Figure B.4: same as Figure B.2 but for v6,6

The fractional deviations from the true flow signal seems to increase with
decreasing flow signal (n = 2 → 4 → 6). With the assumptions that the
difference smoothly interpolates as function of n, the systematic error for v3 is
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taken to be the average deviation seen for v2 and v4, and that for v5 to be the
average deviation seen for v4 and v6. The measured v1 is typically in between
v2 and v4, however, its error is conservatively quoted as that for v4. Table B.1
summarizes the systematic deviation between the reconstructed and truth for
vn. They are conservatively quoted to cover the centrality and pT dependent
variations.

δvn (%)
n=1 n=2 n=3 n=4 n=5 n=6

2% < 1.5% 1.5% 2% 3.5% 5%

Table B.1: Estimated systematic deviation of vn constructed from two-particle
azimuthal correlation between MC reconstructed and MC truth particles.
They are conservatively quoted to cover the centrality and pT dependent vari-
ations

B.3.2 Systematic study of event mixing procedure

The 2PC analysis uses the event mixing technique to estimate the pair accep-
tance. The mixed-events are matched with within 5% in centrality and 1mm
in z-vertex. Each event is typically mixed with 20 other events in order for
the mixed-event distribution to have much larger statistics. The two events
used for mixing are separated, by ∼ (4k − 80k) events between them2.

Potential detector effects present in same-event pairs that are not accounted
for in the mixed events need to be checked. There are three possible sources
that can lead to deviation from the true pair acceptance.

1. The two mixed events are typically separated in time, any transient
variation in the detector conditions can affect the same-event pairs but
not the mixed event-pairs.

2. The effect of finite centrality bin width in the mixing.

3. The effect of finite z-vertex matching in the mixing.

There are also some other effects that are not accounted for by event mix-
ing that are present in same-event pairs. For example in the same-event the

2Since 5% centrality binning is used for mixing, one in 20 events will have the same
centrality bin. Similarly because of 1mm z-vertex binning, one in 200 events will be in the
same z-vertex bin (events with zvtx100 mm are used in the 2PC analysis). Thus two events
in the same mixing bin have a typical minimum separation ∼ 20×200 = 4k and a maximum
separation of 4k × 20 = 80k.
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presence of the trigger track might affect the ability to reconstruct the asso-
ciated track, however such effects only affect close pairs, i.e. small ∆η–∆φ
separation. Since the 2PC analysis involves pairs with |∆η| > 2, these effects
are not an issue.

To quantify the variation of pair acceptance, it should first be pointed out
that any relative change of the pair acceptance by a small perturbation h(∆φ),
adds linearly to the Fourier coefficients:

h ∝ 1 + 2
∑

n

(ǫn cos(n∆φ))

dN/d∆φ× h ∝ 1 + 2
∑

n

(vn,n + ǫn) cos(n∆φ) +
∑

n,m

O(vn,nǫm)(B.19)

Thus the influence of a check or a cut can be evaluated by simply studying
the Fourier transform of the ratio of the pair acceptances with and without
the cut.

Check I : effects of proximity mixing

To check the time dependence of the pair acceptance, a special mixing pro-
cedure is run in which two mixed-event pools are kept. The first pool uses
events that are separated from each other by less than m events in between.
The second “delayed” pool uses events that are within [m, 2m] from each other
(see Fig. B.5). This is done for m = 10k, 20k and 40k and the variation of
the pair acceptance is studied by taking the ratio of the mixed pair distribu-
tion constructed from the two pools. The results are showed in Fig. B.6 for
2 < |∆η| < 5. It is seen that the disagreement is less than (1-2)×10−6 for
n=6, but slightly larger for n=1 and 2. The difference seems to grow a little
for higher pT.

Figure B.5: The idea of a delayed pool used for event mixing.

Figure B.7 shows the same study but for |∆η| < 0.1. It is seen that the
systematic deviations are about factor of two larger. While for an intermediate
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Figure B.6: The variation of pair acceptance for |∆η| ∈ (2, 5) (top panels) and
corresponding residual vn,n (bottom panels) for three correlations: (1-2)×(1-
2) GeV (left), (2-3)×(1-2) GeV (middle) and (2-3×(2-3) GeV (right). This is
done for 2 < |∆η| < 5. The curves is the upper panels indicate the residual
fake v6,6 contribution. The (0-45)% centrality interval is used to increase the
pair statistics.

∆η slice, for example 0.5 < ∆η| < 1.0, shown in Fig. B.8, the deviation is in
between. Table B.2 summarizes the systematic errors estimated from this
study.
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Figure B.7: Same as previous plot but for |∆η| < 0.1.
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Figure B.8: Same as previous plot but for 0.5 < |∆η| < 1.0.

residual vn,n (×10−6)
pT selections 2 < |∆η| < 5 0.1 |∆η| slice 0.5 |∆η| slice

paT, p
b
T < 2 GeV 1 2.5 2

paT, p
b
T > 2 GeV 2.5 5.5 4

paT > 2 GeV, pbT <2 GeV 1.8 4 3

Table B.2: Residual time dependent variation of the vn,n for various pT selec-
tions and ∆η bin widths.

Check II : effects of centrality matching

Centrality matching is necessary only if the pair acceptance has a centrality
dependence. Since fairly narrow centrality bins are used in the event mix-
ing (matched within 5%), the centrality dependence, if any, can have only
a small effect. To estimate this residual dependence, the mixed-event pair-
distributions are constructed for three different centrality matchings: 2.5%,
5% and 10%. The 2.5% and 5% centrality matched pair distributions are then
divided by the 10% matched pair distribution. The Fourier transformation of
this ratio gives the variation of the vn,n when changing the centrality matching
from 2.5% to 10%, and is used to estimated the systematic uncertainties asso-
ciated with centrality matching. The results for three representative |∆η| bins
are shown in Figures B.9-B.11. For the 2 < |∆η| < 5 slice, the variation is
less than 10−6 for pT < 2 GeV, but increases to about 2× 10−6 for (2-3) GeV.
The variation is also appreciably larger for narrow ∆η bins. The errors from
this check are conservatively quoted to be independent of n, they are listed in
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Figure B.9: The variation of the pair acceptance (top panels) and correspond-
ing residual vn,n (bottom panels) of 2.5% and 5% centrality mixing relative to
10% centrality mixing for three correlations: (1-2)×(1-2) GeV (left),(2-3)×(1-
2) GeV (middle) and (2-3)×(2-3) GeV (right). This is done for 2 < |∆η| < 5.
The curves on the top panels indicate the residual fake v6,6 contribution. The
(0-10)% centrality range is used.
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Figure B.10: Same as previous plot but for |∆η| < 0.1.
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Figure B.11: Same as previous plot but for 0.5 < |∆η| < 1.0.

residual vn,n (×10−6)
pT selections 2 < |∆η| < 5 0.1 |∆η| slice 0.5 |∆η| slice

paT, p
b
T < 2 GeV 1 3 1.5

paT, p
b
T > 2 GeV 2 3 2

paT > 2 GeV, pbT <2 GeV 1.25 3 3

Table B.3: Residual centrality dependent variation of the vn,n for various pT
selection and ∆η bin width

Check III : effects of z-vertex matching

The holes/inefficiencies in the detector are present at different values of η
depending on the position of the z-vertex. A finite z-vertex binning used
for the mixed events can thus have an impact on the accuracy with which
the mixed-events reproduce the pair acceptance. The 2PC analysis uses a
narrow binning of 1 mm to match the mixed events. To quantitatively evaluate
the residual effect of z-vertex binning, the mixed-event pair distribution are
evaluated for several different z-vertex binning sizes ranging from 25 mm to
1 mm. The ratio of the different pair distributions is then taken to that for
the 1 mm binning. The Fourier transform of these ratios is used to determine
the residual effects of z-vertex matching on vn,n. A wide centrality range of
(0-45)% is used to maximize the pair statistics. Figures B.12- B.14 show the
results for three different ∆η ranges. To guide the eye, ±2 × 10−6 bands are
plotted on all the vn,n vs n plots (bottom panels). A significant dependence
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on the z-binning is noticed, especially for the |∆η| ∈ (0, 0.1) bin (Fig. B.13).
However, the changes from 5 mm to 1 mm binning are relatively small. The
differences tend to increase a little for the higher pT bin combinations, and also
seem to have small but significant systematic variation with n. In particular,
the deviation for n=2 is larger than for other harmonic terms. However, since
the v2,2 signal is fairly large, this error, when converted into relative error,
becomes very small (typically less than 1%). Hence is much smaller than the
other sources of systematic errors. The errors from z-vertex matching are
conservatively assigned independent of n to cover the variation between 5 mm
mixing and 1 mm mixing for n>2. They are listed in Table B.4.
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Figure B.12: The variation of pair acceptance (top panels) and corresponding
residual vn,n (bottom panels) for various z-vertex binning relative to 1 mm
binning for three correlations: (1-2)×(1-2) GeV (left), (2-3)×(1-2) GeV (mid-
dle) and (2-3)×(2-3) GeV (right). This is done for 2 < |∆η| < 5. The curves
on the top panels indicate the residual fake v6,6 contribution. Dashed lines on
the bottom panels indicate ±2 × 10−6 band. The (0-45)% centrality interval
is used to increase the pair statistics.

Summary of the uncertainty

The final systematic errors from residual detector systematic estimated by
the above three checks are included in Table B.5. They are obtained as the
quadrature sum of all three sources. Note that these are absolute errors. The
errors for the vn are obtained by propagation of these errors when calculating
the vn via fixed-pT (Eq. 4.7) or mixed-pT (Eq. 4.9) correlations.
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Figure B.13: Same as previous plot, except for |∆η| ∈ (0.0, 0.1).
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Figure B.14: Same as previous plot, except for |∆η| ∈ (0.5, 1.0).

residual vn,n (×10−6)
pT selections 2 < |∆η| < 5 0.1 |∆η| slice 0.5 |∆η| slice

paT, p
b
T < 2 GeV 2 4 3

paT, p
b
T > 2 GeV 5 6 4

paT > 2 GeV, pbT <2 GeV 3 7 5

Table B.4: Residual z-vertex binning dependent variation of the vn,n for
various pT and ∆η bins.
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residual vn,n (×10−6)
pT selections 2 < |∆η| < 5 0.1 |∆η| slice 0.5 |∆η| slice

paT, p
b
T < 2 GeV 2.5 5.0 3.2

paT, p
b
T > 2 GeV 6 8.7 6

paT > 2 GeV, pbT <2 GeV 3.7 8.6 6.6

Table B.5: The systematic errors for v1,1 − v6,6 estimated for effects not
cancelled out by event mixing. These are calculated as the quadrature sum of
values in Tables B.2-B.4.
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B.4 Additional plots for v1,1 and v1

Figure B.15-B.16 show the fit result with default set up for other centrality
selections used for v1 analysis.
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Figure B.15: Same as Fig. 4.18 but for (0-1)%, (5-10)%, and (10-20)% cen-
trality intervals
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Figure B.16: Same as Fig. 4.18 but for (20-30)%, (30-40)%, and (50-60)%
centrality intervals.
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Appendix C

Event by Event vn
measurements

C.1 Response functions

Figure C.1 shows the difference of the x-component of the per-particle flow
vector for the two symmetric half-IDs for n=2 in four centrality ranges. Also
shown are fits to a Gaussian function. The lower panels show the ratio of
the distribution to the fit. The fits work well up to 50% centrality. However
significant deviations are observed in the tails of the distributions for more
peripheral collisions. The same behaviour is seen for higher order harmonics
as illustrated by Figure C.2.

Since the distributions in Figs. C.1-C.2 represent the difference between
two independent estimates of vn, sampled M times from the same underlying
azimuthal distribution, where the M is the multiplicity, the resulting distri-
butions should instead be described by the student’s T-distribution. To check
whether this is the case, the distributions are fit with both a T-distribution
and a Gaussian function for the (65-70)% centrality interval as shown in the
left panel of Fig. C.3. The T-distribution describes the measured distribution
quite well. The degrees of freedom extracted from the fit is about 50, this can
be compared with the event multiplicity in half ID which is about 80. The
right panel of Fig. C.3 also shows the distribution obtained with an η gap of 2
units between the subevents. The non-Gaussian tail is seen here as well, and
is again well described by the T-distribution. This implies that the tail has
nothing to do with non-flow effects, instead it is statistical in origin. This is
checked in a simple toy MC simulation where tracks are generated according to
the experimental multiplicity. This is shown in Fig. C.4, where the flow-vector
difference between two sub-subevents are plotted for n=2. A non-Gaussian
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Figure C.1: Top panels: The difference between the x-components of the per-
particle flow vector measured in the two symmetric half-IDs without an η gap,
for n=2 in four centrality intervals. The red lines indicate a fit to a Gaussian
function. Lower panels: The ratio of the distribution to the fit.
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Figure C.2: Same as previous plot but for n=4.

tail indeed shows up.
Figures C.5-C.7 summarize the basic properties of the difference of per-
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Figure C.3: The difference between the x-component of the per-particle flow
vector measured in the two symmetric half-IDs without a η gap (top left) and
with η gap of 2 units (top right) for n = 2 in the (65-70)% centrality interval.
Fits to a Gaussian function (blue) and a to student’s T-distribution (red)
are also shown. The bottom panels show the ratio of data to the student’s
T-distributions.

particle flow vector between the two symmetric half-IDs (such as those shown
in Fig. C.1), which are the starting points for obtaining the response functions
used in the unfolding. The centrality bins 1-13 correspond to 5% steps for
the (0-70)% centrality range, while the bins 14-19 corresponds to 1% steps for
the (0-5)% centrality range. These figures show that the Gaussian description
works well until the (50-55)% centrality where the χ2/NDF is less than 1.5 but
deviates strongly for more peripheral collisions (top left panels). The mean
(top right panels) of the distributions are less than 1% of the width of the
distributions. The width in x and y directions are very similar to each other
(bottom left panels). The differences between the widths in the two directions,
as shown by their ratios (bottom right panels) are less than 1% for n=2, about
1% for n=3, and less than 2-3% for n=4. These small differences indicate that
the residual detector effects are minimal.
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Figure C.4: The difference between the x-components (left panel) and y-
components (right panel) of the per-particle flow vector calculated in two
subevents for n=2, generated in a simple toy MC. The multiplicity for the
toy MC is sampled from the multiplicity distribution measured in the (65-
70)% centrality bin. The lines are a fit to a Gaussian function, clearly showing
the presence of a non-Gaussian tail.
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Figure C.5: As a function of centrality, the quality of the fit of Gaussian
to the x and y components (top left), the mean of x and y components (top
right), the width of the x and y components (bottom left), and the ratio of
the widths (bottom right). Plots are for n=2.
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Figure C.6: Same as previous plot but for n=3.
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Figure C.7: Same as previous plot but for n=4.
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Appendix D

Event-plane correlations

D.1 Resolution correction

Here the EP resolution correction formula (Eq. 6.10) is proven for two-plane
correlations. The generalization to three-plane correlations is straightforward.
The measured raw correlations can be expressed as:

cos(k(Ψn −Ψm)) = cos(k(Ψn − Φn)− k(Ψm − Φm) + k(Φn − Φm)

= cos(k(Φn − Φm)) cos(k(Ψn − Φn)) cos(k(Ψm − Φm))

+ cos(k(Φn − Φm)) sin(k(Ψn − Φn)) sin(k(Ψm − Φm))

− sin(k(Φn − Φm)) sin(k(Ψn − Φn)) cos(k(Ψm − Φm))

− sin(k(Φn − Φm)) cos(k(Ψn − Φn)) sin(k(Ψm − Φm))

(D.1)

Where, as per the usual notation Φn and Φm are the true event-plans and Ψn

and Ψm are the measured event-planes.
Averaging over a large number of events, the sine terms in Eq. D.1 become

zero. This is true because the fluctuations of Ψn about Φn are statistical and
thus have an equal probability to be positive and negative. Assuming that the
average of product of terms in Eq. D.1 can be replaced by the product of their
averages (or that the fluctuations of Ψm and Ψn about their truth values are
uncorrelated, this will be justified later), one obtains:

〈cos(k(Ψn −Ψm))〉 = 〈cos(k(Φn − Φm)〉〈cos(k(Ψn − Φn)〉〈cos(k(Ψm − Φm))〉
= 〈cos(k(Φn − Φm))〉Res{kΨn}Res{kΨm} (D.2)
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Where, Res{kΨn}) = 〈cos(k(Ψn−Φn))〉 and Res{kΨm} = 〈cos(k(Ψm−Φm))〉1.
This gives:

〈cos(k(Φn − Φm))〉 = 〈cos(k(Ψn −Ψm))〉/(Res{kΨn}Res{kΨm})
= 〈cos(k(Ψn −Ψm))〉/Res{k(Ψn −Ψm} (D.3)

Where
Res{k(Ψn −Ψm)} = Res{kΨn}Res{kΨm} (D.4)

Note that the net resolution is the product of two single-plane resolutions
and can become very small and thus have large uncertainties. Similarly for
the three-plane correlations, the resolutions are product of three individual
single-plane resolutions. The resolutions are the main constraining factors
that determine which two and three-plane correlations are measurable.

In order to ensure that the assumptions listed in the above derivation
are correct, it has to be ensured that the same particles are not used in the
determination of Ψn and Ψm, otherwise the fluctuations of Ψm and Ψn about
their truth values might be correlated. Thus while calculating cos(N(Ψn−Ψm),
the Ψn and Ψm must be measured is different parts of the detector. Similarly,
for the three-plane correlations, the three event-plane angles must be measured
in three separate parts of the detector..

D.2 Two-plane correlation analysis

D.2.1 Resolution determination

2SE results

Figure D.1 shows the relative angle distribution dN/d
(

n
(

ΨN
n −ΨP

n

))

between
the positive η and negative η ECalFCal. From these distributions the resolu-
tion factors are calculated as:

Res{kΨP
n } = Res{kΨN

n } =
√

〈cos k (ΨN
n −ΨP

n )〉 (D.5)

The red and blue histograms are foreground and background distributions,
respectively. The background distributions are calculated from mixed-events,
i.e. by combining the ΨN

n from one event with ΨP
n from another event with

similar centrality (matched within 5%) and z-vertex (matched within 3 cm).
Both the foreground and mixed-event distributions are normalized to unity.

1Note that for k=n, Res(kΨn) is simply the event-plane resolution for the nth harmonic
used in the EP method.
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The mixed-event distributions serve as estimations of the detector effects, while
the foreground distribution contains both detector effects and physics. To
cancel these non-physical structures, the correlation functions are obtained by
dividing the foreground by the mixed-event distributions2:

C(n(ΨN
n −ΨP

n )) =
S(n(ΨN

n −ΨP
n ))

B(n(ΨN
n −ΨP

n ))
(D.6)

The resolution factors are then calculated from these correlations functions.
This procedure is almost identical to that used to obtain the raw correlation
signal in Section 6.2.1, except here the correlations are between the event-
planes of the “same order”.
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Figure D.1: The 2SE correlation functions C(n(ΨN
n − ΨP

n )) for event-plane
at same order. Top to bottom rows corresponds to n=2-6, and columns cor-
respond to different centrality intervals.

The left panels in Fig. D.2 show the centrality dependence of the cosine
average,

〈

cos jn
(

ΨN
n −ΨP

n

)〉

, calculated from the 2SE correlation. The square
root of the cosine average gives the subevent resolution (Eq. D.5). The right

2This method of event mixing was not implemented in the EP vn analysis where the
resolution for the sub-FCal was directly obtained from the foreground distribution of ΨP

n
−

ΨN

n
. Here that method by is improved by using event mixing to further cancel out detector

effects.
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panels of Fig. D.2 show the values of
〈

sin jn
(

ΨN
n −ΨP

n

)〉

relative to the cosine
component which are an estimate of the systematic effects. The magnitude of
the sine terms correlates with the cosines and has a negative sign. The origin of
these non-zero sine terms can be understood as the result of a simple rotation
of Ψ angle in the P-side relative to the Ψ angle in the N-side. Such a rotation
can arise from energy mis-calibration, dead areas or low efficiency areas in the
calorimeters and leads to a relative shift δ between the Ψn measured in the
two sides. The measured cosine and sine terms are modified due to this shift
as:

〈

cos jn
(

ΨN
n −ΨP

n + δ
)〉

≈
〈

cos jn
(

ΨN
n −ΨP

n

)〉

cos jnδ
〈

sin jn
(

ΨN
n −ΨP

n + δ
)〉

≈
〈

cos jn
(

ΨN
n −ΨP

n

)〉

sin jnδ
〈

sin jn
(

ΨN
n −ΨP

n + δ
)〉

〈cos jn (ΨN
n −ΨP

n + δ)〉 ≈ tan jnδ ≈ jnδ (D.7)

If the sine term is purely related to a global rotation of one-side relative to the
other side, then the ratio should be independent of centrality and proportional
to j and n. From Fig. D.2 it is seen that this is indeed the case, with δ ∼
0.01 radians or half a degree. Note that a pure rotation is not removed by
dividing by the mixed-event distribution. This is because a rotation of a
uniform distribution still yields a uniform distribution, and hence the rotation
only manifests itself if the amplitude of the correlation is non-zero. The event-
mixing technique accounts only for non-physical correlations that lead to non-
uniform distributions in n

(

ΨN
n −ΨP

n

)

.
In this analysis, the value of the 〈sin〉 terms in the 2SE correlation is

used as an estimation of systematic errors, which is reduced by half for the
actual resolution calculation (due to taking the square root from subevent
correlation to resolution Eq. D.5). Note that this is an overestimation of the
actual influence on the measurement: the fractional change in the cosine term
in Eq. D.7 due to a rotation δ is:

1− cos jnδ ≈ (jnδ)2/2 ≈ tan2 jnδ/2 (D.8)

which is a very small number. Even for jn=12, the fractional change is only
about 0.122/2 = 0.5% in the resolution value. Nevertheless, the magnitude of
the sine term is quoted as the absolute error (or the magnitude of 〈sin〉/〈cos〉
term as the relative error).
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Figure D.2: Centrality dependence of
〈

cos jn
(

ΨN
n −ΨP

n

)〉

values (left panels)
and

〈

sinjn
(

ΨN
n −ΨP

n

)〉

/
〈

cosjn
(

ΨN
n −ΨP

n

)〉

values (right panels). Each row
corresponds to the order of the event-plane (n=2–6 from top to bottom). The
different symbols in each panel corresponds to different values of j.
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3SE results

The systematic uncertainties of the resolution correction are evaluated using
the three-subevent method:

Res{kΨA
n} =

√

〈cos k (ΨA
n −ΨB

n)〉 〈cos k (ΨA
n −ΨC

n )〉
〈cos k (ΨB

n −ΨC
n )〉

(D.9)

with reference detectors taken from different η ranges. It should be emphasized
that all the cosines in Eq. D.9 are calculated from the correlation function
defined in Eq. D.6. The checks can be roughly divided into two types. In
Type-I analysis, the resolutions are calculated separately for ECalFCalP and
ECalFCalN in two separate 3SE studies with the reference detectors B and
C chosen to be EM-barrel and FCal from the opposite η side. These two
detectors have an η separation greater than 1.0 from the ECalFCalP(N) and
from each other.

In the Type-II analysis, A and B are chosen as ECalFCalN and ECalFCalP
respectively, and C as the η ∈ (−.5, .5) part of the EM-barrel. This detector
is denoted as EMBR0, it is situated symmetrically between ECalFCalN and
ECalFCalP. This allows the calculation of the resolution for ECalFCalP via
Eq. D.9. Then the A and B are swapped detectors while keeping EMBR0 as
C to calculate the resolution for ECalFCalN. The Type-II checks are similar
to the 2SE method, as one can see from the following equation:

Res{ΨDetP
n } =

√

〈

cos
(

n
(

ΨDetP
n −ΨB

n

))〉 〈

cos
(

n
(

ΨDetP
n −ΨDetN

n

))〉

〈

cos
(

n
(

ΨDetN
n −ΨB

n

))〉 (D.10)

Res{ΨDetN
n } =

√

〈

cos
(

n
(

ΨDetN
n −ΨB

n

))〉 〈

cos
(

n
(

ΨDetP
n −ΨDetN

n

))〉

〈

cos
(

n
(

ΨDetP
n −ΨB

n

))〉 (D.11)

with cos
(

n
(

ΨDetN
n −ΨB

n

))

and cos
(

n
(

ΨDetP
n −ΨB

n

))

cancelling each other if
the resolution are the same for ECalFCalN and ECalFCalP, and the end results
would be identical to the two-subevent formula Eq. D.5. However the main
advantage here is that there is no need to make the assumption that the
ECalFCalN and ECalFCalP have the same resolution. The list of 2SE checks
are summarized in Table D.1.

The resolutions found by Type-I and Type-II 3SE combinations are next
compared to the resolutions obtained by the 2SE method. Figure D.3 shows,
as a function of centrality, the ratio of the resolutions (i.e. Type-I/2SE and

255



Type-I checks Type-II checks
DetP − EMBRN − FCALN DetP − EMBR0−DetN
DetN − EMBRP − FCALP DetN − EMBR0−DetP

Table D.1: List of 3SE combinations for ECalFCal resolution calculation.

Type-II/2SE) for the 2nd-order event-plane (i.e. n=2) and for various values
of j (in Res{2jΨ2}). Type-I results show an almost centrality independent de-
viation from the 2SE values, which increases almost linearly with increasing j
values, while the Type-II results are consistent with no deviation from the 2SE
results, except for very peripheral collisions. Note that the “mirror-image” be-
havior of the two sets of points in the right-hand plots (Type-II/2SE) follows
from the defining formulae Eq. D.10 and Eq. D.11 and the choice of detectors
used. These comparisons are repeated for n=3–6 in Figs. D.4-D.7, respec-
tively. Similar systematic deviations are observed with only slight centrality
dependence.

Table D.2 summarizes the systematic uncertainties for the ECalFCal. They
include contributions of the non-vanishing sine terms from the 2SE correlation,
as well as the deviations of the 3SE results. The systematic uncertainties from
the two sources are quoted as centrality independent (conservatively) and then
added in quadrature.

Error for Res{jnΨn}
n 2 3 4 5 6
3SE comparison [%] 1.4j 3.9j 3.3j 5.5j 18j
sine component [%] 1.0j 1.7j 2.0j 2.5j 5 j
total [%] 1.7j 4.3j 3.9j 6.0j 19j

Table D.2: Summary of systematic uncertainties for individual Res{jnΨn}
from 2SE/3SE comparison (Figs. D.4-D.7), and sine component of the 2SE
correlations (Fig. D.2). Note that the uncertainties of Res{jnΨn} are found
to be proportional to values of j.
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Figure D.3: The centrality dependence of the ratios of 3SE results to 2SE
results for Type-I (left panels) and Type-II (right panels) checks for 2nd-order
event-plane. Each row is for different j as in Res{2jΨ2}.
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Figure D.4: The centrality dependence of the ratios of 3SE results to 2SE
results for Type-I (left panels) and Type-II (right panels) checks for 3rd-order
event-plane. Each row is for different j as in Res{3jΨ3}.
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Figure D.5: The centrality dependence of the ratios of 3SE results to 2SE
results for Type-I (left panels) and Type-II (right panels) checks for 4th-order
event-plane. Each row corresponds to different values of j as in Res{4jΨ4}.
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Figure D.6: The centrality dependence of the ratios of 3SE results to 2SE
results for Type-I (left panels) and Type-II (right panels) checks for 5th-order
event-plane. Each row corresponds to different values of j as in Res{5jΨ5}.
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Figure D.7: The centrality dependence of the ratios of 3SE results to 2SE
results for Type-I (left panel) and Type-II (right panel) checks for 6th-order
event-plane Res{6Ψ6}.
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