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Abstract of the Dissertation

Title of Dissertation

by

Betül Pamuk

Doctor of Philosophy

in
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2014

Despite the simplicity of the molecule, condensed phases of water show
many physical anomalies, some of which are still unexplained to date. This
thesis focuses on one striking anomaly that has been largely neglected and
never explained. When hydrogen (1H) is replaced by deuterium (2D), zero
point fluctuations of the heavy isotope causes ice to expand, whereas in nor-
mal isotope effect, heavy isotope causes volume contraction. Furthermore, in
a normal isotope effect, the shift in volume should decrease with increasing
temperature, while, in ice, the volume shift increases with increasing tem-
perature and persists up to the melting temperature and also exists in liquid
water.

In this dissertation, nuclear quantum effects on structural and cohesive
properties of different ice polymorphs are investigated. We show that the
anomalous isotope effect is well described by first principles density functional
theory with van der Waals (vdW-DF) functionals within the quasi-harmonic
approximation. Our theoretical modeling explains how the competition be-
tween the intra- and inter-molecular bonding of ice leads to an anomalous
isotope effect in the volume and bulk modulus of ice. In addition, we predict
a normal isotope effect when 16O is replaced by 18O, which is experimentally
confirmed. Furthermore, the transition from proton disordered hexagonal
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phase, ice Ih to proton ordered hexagonal phase, ice XI occurs with a tem-
perature difference between 1H and 2D of 6K, in good agreement with ex-
perimental value of 4K. We explain, for first time for that this temperature
difference is entirely due to the zero point energy.

In the second half of this thesis, we expand our study to the other ice
phases: ice Ic, ice IX, ice II, ice VIII, clathrate hydrates, and low and high
density amorphous ices. We employ the methodology that we have developed
to investigate the isotope effect in structures with different configurations.
We show that there is a transition from anomalous isotope effect to normal
isotope effect in these structures as the density increases. We analyse the
bonding mechanism of these structures and make links to the most important
anomalies of liquid water.
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parameters, γk (black dots), and the average Grüneisen param-
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c/a, given in Å. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xvii



15 Top: For ice IX and ice II, classical volume, V0, and isotope
dependent volumes. Bottom: Classical and isotope dependent
bulk modulus. Pressure is given in GPa, temperature in K,
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anneme ve babama teşekkür etmek istiyorum. Onlara teşekkür edebilmenin
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1 Introduction

Water is the matrix of life. Our lives depend on it. As humans, we have
been interacting with water, since the very beginning of our existence. Yet,
we still do not have a full understanding of it. The structure of water under
different conditions is still puzzling the scientists. Water does not behave like
most materials, and its properties are different than normally expected. Each
unexpected behaviours is an anomaly of water, which make understanding
this liquid very difficult.

In order to interpret the properties of solid ice, liquid water, and gaseous
vapour, we first need to understand the structure of a water molecule and
how it bonds to its neighbours. Water is composed of hydrogen and oxygen
atoms, as was established by the experiments of Cavendish and Lavoisier in
the 1780s. Gay-Lussac and Humboldt discovered that its structure is one
volume of oxygen to two volumes of hydrogen, H2O. The ratio of the weights
of hydrogen and oxygen was found by Dumas in 1842 as close to 2 to 16. As
other stable isotopes (with different atomic masses) of hydrogen and oxygen
were discovered, it was established that naturally occurring water is a mixture
of different isotopes of hydrogen (1H), deuterium(2H or D), tritium (3H or
T), and oxygen 16O, 17O, and 18O.

The intra-molecular bonds of a water molecule are such that each hydro-
gen atom of the molecule are covalently bonded to the oxygen atom, form-
ing an OH bond. The most simplistic model to understand the electronic
structure of a water molecule is to put point charges in agreement with the
experimentally observed OH bond lengths and angles and the magnitude of
the point charges are modified to reproduce experimental properties such as
the dipole moment. However, this model does not take into account how the
atomic orbitals are modified as the atoms are brought in contact. In water,
the oxygen atoms have two occupied molecular orbitals, called lone-pairs,
which are pointed away from the hydrogen atoms and perpendicular to the
molecular plane. There exist more complex force field models that are fitted
to reproduce properties of water at certain points of the phase diagram, and
a few of these that are employed in this dissertation will be introduced in the
Chapter 2.

The dominant intermolecular bond that connects a water molecule to its
neighbouring molecules is the “hydrogen bond”. The lone pair orbitals of
the oxygen atom are negatively charged and attract the positively charged
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hydrogen atoms of the next molecule. The positions of the lone-pairs of the
oxygen and the covalent bond are consistent with the tetrahedral structuring
of the liquid water and ice. Therefore the hydrogen of one water molecule
points, in general, towards the oxygen of the neighbouring water molecule.
The OH–O hydrogen bonding (Hbond) can be considered a weak covalent
bond [15].

Furthermore, the dipole-dipole fluctuations of the molecules lead to long-
range forces, that are called “van der Waals” forces which become important
in the bonding mechanism of liquid water. Van der Waals bonds (vdW
bonds) contribute to the structuring of water, even if there is a non-bonding
configuration. This type of configuration, in a simplistic picture, is when
the oxygen atoms of liquid water point towards each other without a linking
hydrogen in between. The complexity of these bonds are well incorporated
in density functional theory, which will be introduced in Chapter 2, as well.

Understanding the bonding mechanism of water is the key to interpreting
the anomalies of water. It is not possible to go through every single one
of these anomalies, as it is beyond the scope of this dissertation, but in
this chapter, we will introduce some of the relevant and recently debated
anomalies.

One of the most well known anomalies is the fact that ice floats on water.
As liquid water freezes to form its solid phase, ice, it expands. Normally,
during freezing, the disordered molecules of a liquid form an orderly stacked
structure, which results in decreasing the volume, hence increasing the den-
sity of the material. However, during freezing under ambient conditions, the
disordered liquid water molecules order themselves to form ice, such that
the ice molecules bond together to form a hexagonal structure. Ice prefers
to form a hexagonal structure, because each molecule can make a hydrogen
bond with its neighbours obeying the electrostatic forces of the covalency of
its inter- and intra-molecular bonds explained above. Details of this hexag-
onal structure of ice are the topics of Chapters 3, 4, and 5. The general idea
behind ice floating on liquid water is that the hexagonal ice has voids between
its molecules, which are called the interstitial site. Forming these interstitial
sites results in an expansion of volume and a decrease in the density during
freezing, causing ice to float on liquid water.

However, liquid water does not always freeze immediately to solid ice.
Liquid water to solid hexagonal ice is a phase transition between two stable
phases, but liquid water can go into a metastable phase during cooling. It
is possible to cool liquid water below its freezing temperature, as it goes

2



into this metastable phase, and this is called “supercooled” water. Because
supercooled water is metastable, it freezes into ice under any perturbation,
making this phase very difficult to probe. As the temperature decreases
from liquid water into the metastable phase, the supercooled water stays
liquid until ∼ 228 K, after which it freezes. One can also obtain glassy ice
states that retain the disordered structure of liquid water. These states are
called amorphous ices, and they exist in two different densities. A general
idea about the structure of amorphous ices will be introduced in Chapter 6
of this dissertation. If the temperature of amorphous ices are increased, an
ultraviscous liquid is formed around ∼ 150 K. However, it is not possible
experimentally to probe supercooled water between these temperatures, and
this part of the phase diagram is called “no man’s land”.

Understanding the supercooled water is important because the response
functions of water diverge in this regime. For example, typically, the spe-
cific heat, thermal expansion coefficient, and isothermal compressibility are
expected to decrease with temperature monotonically. Experimentally, it is
known that temperature dependence of specific heat of liquid water has a
minimum [16] and then it increases sharply in the supercooled regime [17].
The thermal expansion coefficient of water becomes negative at the temper-
ature of maximum density [18] and diverges at ∼ 228K [17]. The isothermal
compressibility has a minimum [18] and again diverges at ∼ 228K in the su-
percooled region of the phase diagram [17]. One should also note that these
temperatures are different for normal water (H2O) and heavy water (D2O);
the temperature of specific heat minimum is ∼ 310K for H2O and ∼ 330K
for D2O [16], the temperature of maximum density is ∼ 277K for H2O and
∼ 284K for D2O [18, 19], and the temperature of isothermal compressibility
minimum is ∼ 320K for H2O and ∼ 322K for D2O [18].

One of the challenges is explaining these anomalously diverging response
functions in the supercooled phases, because it is especially difficult to re-
produce the experimentally measured anomalies with theoretical simulations.
Even though some of the anomalies are reproduced with molecular dynamics
or Monte Carlo simulations using empirical force field models, there are quan-
titative differences between different models [20–23]. In addition, it is still
unclear whether these empirical force field models can capture the correct
physics of hydrogen bonds in ice and water [6]. To explain these anoma-
lous responses in the supercooled region, the existence of a phase transition
between high density and low density liquids with a liquid-liquid critical
point has been hypothesized using empirical force field models. [24]. There

3



are many studies in the supercooled [25–28] and high temperature [21, 23]
regimes. Although some of the simulations find this second critical point
[27–30], it is not settled that the second critical point is a model indepen-
dent feature [25, 31–35]. Therefore, there is a clear need for an insight from
quantum calculations, such as density functional theory [36].

Although our story will come back to these anomalies eventually, it be-
gins with a completely different anomaly of water and ice. The volume of
a material decreases with decreasing temperature. As the temperature de-
creases and gets close to T = 0 K, the volume deviates from a linear decrease.
This deviation is due to the quantum vibrations of the nuclei, and the vol-
ume of different ions can be distinguished by the energy of vibrations around
zero-point, which is directly linked to their mass. Normally, the phonon vi-
brations of the heavy isotope are smaller and more localized than those of
the light isotope. Therefore, the volume of the heavy isotope is smaller than
the volume of the light isotope, which is a way to interpret how nuclear quan-
tum effects play a role in the structure of a material. This is the case, for
example, for neon, where 22Ne has smaller lattice parameter than 20Ne. The
volume of 20Ne expands by 0.6% with respect to 22Ne at the zero-point [37].
This “normal” isotope effect corresponds to a ∼12% zero-point expansion of
20Ne relative to a hypothetical “classical” or “frozen” lattice [38, 39]. Since
H2O and Ne have similar molecular masses, one might expect similar effects.
However, the volume of normal ice, H2O at T = 0 is ∼0.1% smaller than that
of heavy ice, D2O [3, 40]. It has rarely been mentioned in the literature that
this is opposite of the usual behavior, and no explanation has been offered.
Chapters 3 and 4 of this dissertation give an explanation for this anomaly in
hexagonal ices.

Furthermore, this anomalous isotope effect in hexagonal ice does not di-
minish with increasing temperature, as normally expected, but the volumes
of H2O and D2O get separated close to the melting point, causing an increase
in the anomalous isotope effect with increasing temperature. The anomalous
inverse isotope effect persists in liquid water up to the boiling point, where
the molecular volume of H2O is smaller than that of D2O[1, 18] at all tem-
peratures.

Fig. 1 shows experimental results for volume per molecule and isother-
mal bulk modulus for liquid water. The figure is replotted using reference
[1] eq. 34, 38, and 41 for volumes and the corresponding equations of com-
pressibility eq. 35 and 39 for bulk modulus. These equations are derived
to fit the results from different experiments with minimum deviation. It is

4



275 300 325 350 375
T (K)

29.75

30

30.25

30.5

30.75

31

31.25
V

ol
um

e 
/ M

ol
ec

ul
e 

(Å
3 )

H
2
O

D
2
O

H
2

18
O

(a) Volume per molecule of liquid water
for different isotopes.

275 287.5 300 312.5 325 337.5 350 362.5 375
T (K)

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

B
 (

G
P

a)

H
2
O

D
2
O

(b) Bulk modulus of liquid water for
different isotopes.

Figure 1: Isotope effect on the volume per molecule and bulk modulus of
liquid water, replotted using Ref. [1] eq. 34, 38, and 41 for volumes and eq.
35 and 39 for bulk modulus.

clearly stated that the difference between the equation for H2O and D2O is
only due to the isotope change in the hydrogen atoms, so these results can be
trusted to show the isotope effect in the liquid. Therefore, it is clear that the
isotope effect persists in liquid water up to the boiling temperature; we can
distinguish the volumes of different isotopes. It is anomalous for the replace-
ment of H with D; the volume increases, and the bulk modulus decreases.
However, it is normal for the replacement of H2

16O with H2
18O; the volume

decreases. These results also show the isotope effect in the temperature for
the compressibility minimum in Fig. 1b. The compressibility minimum is at
T = 321 K for H2O, while it is slightly larger at T = 324 K for D2O from
Ref. [1].

This anomaly is linked to the interplay between the intramolecular co-
valent bonds and the intermolecular Hbonds of water. Numerous recent
studies [2, 11, 41–45] address the contribution of zero-point nuclear quantum
effects to the structures of ice and water. The issue is delicate, because of
the peculiar electrostatic-covalent nature [15] of the hydrogen bond (Hbond)
in water.

It is well known that hydrogen bonded materials show an anti-correlation
[46] effect between the OH covalent bond and the OH–O Hbond. As the OH–
O distance diminishes, the OH covalent bond weakens (its length increases
and vibrational frequency diminishes [47, 48]) while the OH–O Hbond does
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the opposite. Therefore, it is expected to observe an anomalous isotope effect
in Hbonded materials that present this anticorrelation between intra- and
inter-molecular bonds. However, the isotope effect diminishes with increasing
temperatures in these structures; for example the anomalous isotope effect
between KD2PO4 and KH2PO4 converges around T ∼ 300 K, and becomes
normal [49]; while it is divergent in ice and still exists up to the boiling point
in liquid water. Because it is more complicated to define and analyse Hbonds
and OH covalent bonds in liquid water, we turn to ice to understand how
nuclear quantum effects change this anti-correlation between these bonds.

Ice has a rich phase diagram with 16 different crystalline phases, which
mainly originates from the polymorphism of water. This polymorphism is
another result of the uniqueness of the bonding mechanism of the water
molecule. In each of the following chapters, we will investigate several of
these crystalline phases to understand how nuclear quantum effects change
the structure of ices and liquid water.

Another source of richness of the phase diagram is due to the availabil-
ity of different proton configurations that satisfy Bernal-Fowler “ice-rules”
[50]. This leads to additional phase transitions between proton ordered and
proton disordered configurations, as a result of a balance between different
energies of possible proton configurations and residual entropy, estimated
by Pauling [51]. We start our investigation with hexagonal ices, ice Ih and
ice XI, where the isotope effect is known to be anomalous from experiments
[3, 40]. Applying the methodology we have developed, we investigate the
source of this anomalous isotope effect in Chapter 3. Furthermore, we anal-
yse the differences in the structural properties of proton ordered ice XI and
proton disordered ice Ih, in terms of lattice parameters, anisotropy of the
bulk modulus, and investigate the anomalous isotope effect in the total bulk
modulus of these systems in Chapter 4. As we understand the structures of
proton ordered and disordered hexagonal ices, we also can use our methods
to obtain: i) which phase is the most stable at the zero temperature limit,
ii) if there is a phase transition predicted by our theory iii) how the isotope
effects change this transition temperature. Experimentally it is known that
the transition temperature of D2O is 4 K larger than H2O [52, 53], and in
Chapter 5, we will show that ab initio DFT is a good candidate to predict
this isotope effect in agreement with these experimental results.

Once we show that our methodology is a good candidate to investigate
hexagonal ices in detail, we move on to different polymorphs of ice. In each
section of Chapter 6, we analyse the isotope effect in different ice polymorphs.
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We start by cubic ice Ic, which has a structure similar to that of ice Ih. We
investigate and reproduce the experimentally shown anomalous isotope effect
in clathrate hydrates [5]. Then we move on to high pressure ice phases, ice
IX, ice II, and ice VIII. We show that as the density of the ices increase, there
is a transition from anomalous to normal isotope effect. Lastly, we analyse
amorphous ices, where there is no underlying lattice and the long range order
vanishes, which is similar to what happens in liquid water.

In the conclusion, Chapter 7, all the results are summarised, and one
last analysis of the bonding mechanism of all the investigated structures is
performed. Finally, we return back to Fig. 1, and make links to the above
mentioned anomalies of liquid water.
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2 Theory

This chapter will focus on the theory and the approximations that will be
used throughout this thesis. Although the understanding and development
of ab initio density functional theory could be a topic of a whole dissertation,
we will give a broad introduction to the theory for the sake of completeness.
This inclusion is important as DFT is applied in all of the calculations of
this thesis. Ref. [54] will be mostly followed for the introduction to the
many body theory and DFT. In addition, a general introduction to the two
force field models of liquid water, qTIP4P/F and TTM3-F, that have been
employed and a comparison of them to DFT will also be given. Then, the
phonon calculations and how these calculations are used to obtain Helmholtz
free energy with the quasi-harmonic approximation will be explained in the
second half of this chapter.

2.1 Introduction to Many Body Theory

Condensed matter systems can be understood by solving the quantum me-
chanical Schrödinger equation for interacting electrons and nuclei. In the
most general form, the Hamiltonian of interacting particles is,

Ĥ = − ~

2me

∑

i

∇2
i +

∑

i,I

ZIe
2

|ri −RI|
+

1

2

∑

i 6=j

e2

|ri − rj|
(1)

−
∑

I

~
2

2MI

∇2
I +

1

2

∑

i 6=j

ZIZJe
2

|RI −RJ|

= T̂e + V̂eI + V̂ee + T̂I + V̂II

where i and j runs over the electrons and I and J runs over the nuclei
in the system, me and MI are the masses of the electron and the nuclei re-
spectively, and ZI represents the nuclear charge. The first term corresponds
to the kinetic energy of the electrons, T̂e. The second term is the interaction
of the electrons with the nuclei, V̂eI , which can be considered as an external
potential when we are solving for the electronic energy of the system. There-
fore, when we refer to the external potential Vext, this term will be included
as well as any other additional potential energy due to an external field. The
third term is the Coulomb interaction between the electrons, V̂ee while the
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last term is the Coulomb interaction between the nuclei, V̂II .The fourth term
is the kinetic energy of the nuclei in the system, T̂I .

For a condensed matter system, it is not possible to solve this equation
exactly. This is because the many body interactions become more compli-
cated, as the number of particles increases. Therefore, at this point we make
approximations to solve the Schrödinger equation for this Hamiltonian. The
inverse mass of the nuclei is small compared to the other terms of the Hamil-
tonian, therefore the mass of the nuclei can be set to infinity and the kinetic
energy of the nuclei can be neglected. This is called the Born-Oppenheimer
(BO) or adiabatic approximation. Another way of observing BO approxi-
mation is by decoupling the Hamiltonian of the kinetic energy of the nuclei
from the rest of the Hamiltonian, let us call this the electronic Hamiltonian,
i.e Ĥ = T̂I + Ĥe(r,R). Therefore, one can solve the electronic Hamiltonian
using the positions of the nuclei as a parameter. And the quantum mechan-
ics due to the kinetic energy of the nuclei can, in principle, be added at any
point, if desired.

For the rest of this thesis, BO approximation will be employed in all DFT
calculations. However, one must note that this approximation works best
for heavy nuclei, and as the atomic nuclei becomes smaller, the error from
this approximation starts to become important. Hydrogen is the atom with
the smallest mass, therefore the quantum effects due to the nuclei become
important in systems with hydrogen, such as water and ice. One way to
overcome this problem is to use path integral molecular dynamics [43]. In
this thesis, we will consider the nuclear quantum effects by obtaining the
phonon energies as will be explained in the following sections.

2.2 Hartree and Hartree-Fock Approximation

Instead of solving the interacting particle system, another simplification is
considering non-interacting electrons in an effective external field from the
nuclei. Then one can solve time independent Schrödinger equation for N
independent one-electron Hamiltonian, instead of solving the Schrödinger
equation of N-electron Hamiltonian.

Ĥeffψi(r) =

[

− ~

2me

∇2 + Veff (r)

]

ψσ
i (r) = εσi ψ

σ
i (r) (2)

In the non-interacting scheme of the electrons, the total energy and the
total density can be written in terms of the sum of the values of individual
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electrons: E =
∑

i εi and n(r) =
∑

i |ψi(r)|2.
In the Hartree level of the approximation, one can solve for the classically

interacting electrons. Then Fock introduced the Pauli exclusion principle by
orthogonalizing the electron wave function and setting the ground state wave
function equal to a Slater determinant of single electron wavefunctions of
spin-orbitals, φi(rj, σj), which are the product of position ψσ

i (rj) and function
of spin:

Φ =
1

N !1/2

∣
∣
∣
∣
∣
∣
∣
∣

φ1(r1, σ1) φ1(r2, σ2) φ1(r3, σ3) ...
φ2(r1, σ1) φ2(r2, σ2) φ2(r3, σ3) ...
φ3(r1, σ1) φ3(r2, σ2) φ3(r3, σ3) ...

. . . ...

∣
∣
∣
∣
∣
∣
∣
∣

(3)

The expectation value of the independent electron Hamiltonian becomes,

< Φ|Ĥ|Φ > =
∑

i,σ

∫

drψσ∗
i (r)

[

−1

2
∇2 + Vext(r)

]

ψσ
i (r) + EII (4)

+
1

2

∑

i,j,σi,σj

∫

drdr′ψσi∗
i (r)ψ

σj∗

j (r′)
1

|r− r′|ψ
σi

i (r)ψ
σj

j (r)

−1

2

∑

i,j,σ

∫

drdr′ψσ∗
i (r)ψσ∗

j (r′)
1

|r− r′|ψ
σ
j (r)ψ

σ
i (r

′)

The first terms of this equation involve the kinetic energy of the electrons,
the potential due to the external fields, from the nuclei and other fields, and
the nuclei-nuclei Coulomb interaction energy. The important improvement
comes from the second and the third terms of this equation. The second
term involves the direct interaction of the electrons with each other; electron
i at position r directly interacts with the electron j at position r′. The third
term involves the exchange interaction, where the electron i at position r
exchanges position with the electron j at position r′. Then the corresponding
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Schrödinger equation for the electronic part becomes,









−1

2
∇2 + Vext(r) +

∑

j,σj

∫

dr′ψ
σj∗

j (r′)ψ
σj

j (r′)
1

|r− r′|
︸ ︷︷ ︸

V̂Hartree

(5)

−
∑

j

∫

dr′ψσ∗
j (r′)ψσ

i (r
′)

1

|r− r′|
ψσ
j (r)

ψσ
i (r)

︸ ︷︷ ︸

Exchange: V̂i,σ
x










ψσ
i (r) = εσi ψ

σ
i (r)

This is a direct result of the Slater determinant form of the wave func-
tion, which makes it antisymmetric, agreeing with the fact that electrons are
fermions, and therefore it automatically satisfies the Pauli exclusion princi-
ple. While this takes care of the additional energy from the exchange of the
electrons, all correlation effects other than the Pauli exclusion are neglected
in this approximation.

2.3 Exchange and Correlation Hole

The non-interacting particle scheme is missing the correlation effects due to
the interactions of the electrons. For simplicity, let us consider the two-body
interactions only. For a completely non-interacting particle scheme, because
the probabilities are not correlated, the probability of finding an electron at
position r with spin σ and at position r′ with spin σ′ is just the product of
individual probabilities: n(r, σ)n(r′, σ′). Therefore, we can separate this from
the probability of the interacting particle scheme to obtain the probabilities
due to the correlations only:

∆n(r, σ; r′, σ′) = n(r, σ; r′, σ′)− n(r, σ)n(r′, σ′) (6)

Let us now concentrate on the change in the energy when the interactions
between the electrons due to Pauli exclusion principle is introduced with
Hartree-Fock approximation (HF) on top of the non-interacting Hartree ap-
proximation. With further investigation of the exchange term of the Hartree-
Fock equation, one can see that in addition to satisfying the Pauli exclusion
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principle, this term introduces a subtraction of the self interactions of the
electrons that is included in the Hartree part of the equation. This can be
thought as the interaction of an electron with a positive exchange hole that
surrounds it, resulting in a lowering of the Hartree energy from the direct
interaction of the electrons. As a result, the exchange hole can never be
positive and because one electron cannot be at r and r′ at the same time,
the integration of the nx(r, σ; r

′, σ′) over all r′ is exactly one missing electron
at position r.

Now, we can separate the pair correlation function into exchange and
correlation terms:

∆n(r, σ; r′, σ′) = nxc = nx(r, σ; r
′, σ′) + nc(r, σ; r

′, σ′) (7)

The integration of the correlation hole must be zero, because the total
pair correlation function integrates to one. Therefore, it is a redistribution of
the density of the hole. This term becomes important for electrons with the
opposite spin, since electrons with the same spin are already taken care of
by the exchange term via the exclusion principle. An example of correlation
effects would be screening, where the collective correlation of the electrons
reduce the interaction between any two electrons; which is especially an im-
portant effect in metallic systems. The correlation effects are much harder
to calculate and incorporate in the approximations, because they include
both kinetic and potential interactions of the system. How the exchange and
correlation terms are approximated in DFT will be briefly explained in the
following sections.

2.4 Introduction to DFT

2.4.1 Homogeneous Electron Gas

The idea of treating electronic energy as a functional of its density was first
introduced by Thomas and Fermi in 1930 [54, 55]. They have treated only
the kinetic energy of the free electron gas, by obtaining the energy density,

ǫ = 1
4π3

∫

k<kF
dk~2k2

2me
= 1

π2

~
2k5F

10me
, as a functional of the electron density n =

k3F
3π2 ,

where kF is the Fermi wave vector spanning the occupied one electron levels
up to the Fermi surface. Then Dirac also introduced the local exchange
among the electrons to the Thomas-Fermi density functional [54, 56] and
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ended up with the local exchange and correlation functional.

ETF [n] =
3

10
(3π2)2/3

∫

d3rn(r)(5/3) +

∫

d3rVext(r) (8)

−3

4

(
3

π

)1/3 ∫

d3rn(r)(4/3) +
1

2

∫

d3rd3r′
n(r)n(r′)

|r− r′|

where the first term corresponds to the local Thomas-Fermi approximation
to the kinetic electron energy, the second term is the external field, the third
term is the local correlation energy and the last term is the electrostatic
Hartree energy.

Although the Thomas-Fermi-Dirac density functional is a very crude ap-
proximation, which lacks detailed correlations of electrons and treats the
system locally, this formalism set the foundation for density functional the-
ory. Instead of solving the Schrödinger equation for the energy of interacting
electron wavefunctions with many degrees of freedom, one can instead solve
for energy as a functional of a smooth electron density, with only three vari-
ables. The generalization and the formulation of this idea came with the
Hohenberg-Kohn theorems followed by the Kohn-Sham ansatz, which made
DFT applicable to different systems.

2.4.2 Hohenberg-Kohn Theorems

Hohenberg and Kohn theorems (HK) develop an exact variational principle
for the ground state energy, as a variational functional of electron density
n(r) [57].

Theorem 1: For a system of interacting particles in an external potential
Vext(r), the potential is uniquely determined by the ground state electron
density, n0(r)

The proof of this theorem is done reductio ad absurdum. Let us assume
that we have two systems, labeled as (1) and (2), with different external
potentials with the same electron densities. The ground state energy of the
first system,

E(1) = 〈ψ(1)| Ĥ(1) |ψ(1)〉 < 〈ψ(2)| Ĥ(1) |ψ(2)〉 (9)

is smaller, because the ground state of the second system, ψ(2) is not the
ground state of the first system. Rewriting the second part of this equation
in terms of the ground state energy of the second system, and the external
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potentials,

〈ψ(2)| Ĥ(1) |ψ(2)〉 = 〈ψ(2)| Ĥ(2) |ψ(2)〉+ 〈ψ(2)| Ĥ(1) − Ĥ(2) |ψ(2)〉 (10)

= E(2) +

∫

d3r[V
(1)
ext (r)− V

(2)
ext (r)]n0(r)

eq.9 becomes

E(1) < E(2) +

∫

d3r[V
(1)
ext (r)− V

(2)
ext (r)]n0(r) (11)

Similarly for the second system we can write:

E(2) < E(1) +

∫

d3r[V
(2)
ext (r)− V

(1)
ext (r)]n0(r) (12)

Adding these last two equations, we end up with the contradicting result:

E(1) + E(2) < E(2) + E(1) (13)

Therefore, two different external potentials cannot give the same ground state
energy E0.

Theorem 2: A universal energy as a functional of the electronic density,
E[n(r)], can be defined for any given external potential. For a particular
external potential, Vext(r), the global minimum of the energy functional is
the ground state energy of the system, and the density that minimizes the
energy is the exact ground state density, n0(r).

For the proof of the second theorem, let us consider the energy functional
of a system under external field, where the kinetic and the interaction energy
are also uniquely determined as a functional of electron density:

EHK [n] = T [n] + Eint[n] +

∫

d3rVext(r)n(r) + EII (14)

Following the first theorem, we can consider the ground state density, n(1)

corresponding to the external potential V
(1)
ext :

E(1) = EHK [n
(1)] = 〈ψ(1)| Ĥ(1) |ψ(1)〉 (15)

Now, if we consider another density, n(2) corresponding to a different wave
function, it follows that the energy of the first state is immediately smaller
than the second state:

E(1) = 〈ψ(1)| Ĥ(1) |ψ(1)〉 < 〈ψ(2)| Ĥ(1) |ψ(2)〉 = E(2) (16)
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Therefore, the ground state energy of the system, E0 is uniquely determined
by minimizing the electronic density to the ground state electron density,
n0(r).

Note that these theorems state that if the exact electronic energy func-
tional is known, the exact ground state energy can be obtained by minimizing
it with respect to the variations in the electron density. Therefore, DFT is a
theory that only concerns obtaining the ground state energy accurately. In
addition, HK theorems do not give any insight into the form of the electronic
energy functional.

2.4.3 Kohn-Sham Ansatz

The Kohn-Sham ansatz (KS) states that the exact ground state electron
density n0 can be represented by the ground state density of an auxiliary
system of non-interacting particles [58]. In this way, the complicated many-
body problem is replaced by an independent particle problem with interacting
electronic densities. Separating the kinetic and the potential parts, the KS
Hamiltonian becomes:

Ĥσ
aux = −1

2
∇2 + V σ(r) (17)

Following HK theorems, for the KS ansatz, it can be stated that, if the
ground state density of the system is known, it exactly determines the Kohn-
Sham potential, VKS, the interaction between electron densities. Then, solv-
ing Schrödinger-like systems of equations for the density functionals, called
Kohn-Sham equations, the Kohn-Sham potential, VKS, determines all the
states of the system, with its minimum being the ground state. The ground
state of non-interacting particles directly leads to the ground state density,
closing the cycle of HK theorems.

KS equations lead to a ground state energy density functional:

EKS[n] = Ts[n] +

∫

drVext(r)n(r) + EHartree[n] + EII + Exc[n] (18)

where Ts[n] is the independent particle kinetic energy, Vext is the external
potential due to the nuclei and any other applied field, EHartree is the clas-
sical Coulomb interaction of the electron density, and EII is the interaction
between the nuclei. All other many-body interactions from the exchange and
the correlation of the electron densities are embedded into the Exc term.

15



Applying the variational principle to EKS to solve for the ground state
energy of the system:

δEKS

δψσ∗
i (r)

=
δTs

δψσ∗
i (r)

+

[
δEext

δn(r, σ)
+
δEHartree

δn(r, σ)
+

δExc

δn(r, σ)

]
δn(r, σ)

δψσ∗
i (r)

= 0 (19)

From the definitions of the independent electron kinetic energy;

δTs
δψσ∗

i (r)
= −1

2
∇2ψσ

i (r) (20)

and the electronic density follows,

δn

δψσ∗
i (r)

= ψσ
i (r) (21)

Using the method of Lagrange multipliers, δ[〈ψ| Ĥ |ψ〉−E(〈ψ|ψ〉−1)] = 0
eq. 19 leads to the afore mentioned Shrödinger-like Kohn-Sham equations:

(Hσ
KS − εσi )ψ

σ
i (r) = 0 (22)

and Kohn-Sham effective Hamiltonian becomes:

Hσ
KS(r) = −1

2
∇2 + Vext(r) +

δEHartree

δn(r, σ)
+

δExc

δn(r, σ)
︸ ︷︷ ︸

V σ
KS

=Vext(r)+VHartree(r)+Vxc(r)

(23)

Up to this point, the Kohn-Sham density functional theory is an exact
theory. In principle, it is possible to solve the interacting many-body problem
using these independent particle equations, if one knows all the energy density
functionals of the Hamiltonian in eq. 23. Therefore, DFT is an ab initio
theory.

The difficulty lies in obtaining the energy functional for the many-body
interactions, involving the exchange terms and the correlations both from the
kinetic and potential energies. All of these many-body terms are included in
the exchange and correlation functional:

Exc[n] = 〈T̂ 〉 − Ts[n] + 〈Vint〉 − EHartree[n] (24)

If Exc[n] term were known exactly, then the exact ground state energy of
the system would immediately also be determined. However, the exact form
of Exc[n] is not known exactly, and the development of these functionals to
obtain a universally working DFT is still a field in progress by itself.
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2.4.4 Exchange and Correlation Functionals

Although the exchange and correlation functional is not known explicitly,
there exist local, semi-local and non-local approximations. Exc is expressed
in terms of the energy density ǫxc, which itself is a functional of electron
density,

Exc[n] =

∫

drn(r)ǫxc([n], r) (25)

and approximations are applied to this energy density term.
i) Local density approximation (LDA):
The local density approximation is the simplest approximation one can

make to the energy density. In LDA, ǫxc is assumed to be identical to the
homogeneous electron gas energy density:

ELDA
xc [n] =

∫

d3rn(r)ǫhom.
xc [n(r)] (26)

Ceperley and Alder determined the form of this energy density functional to
a great accuracy [59]. This approximation works best for solids that resemble
a homogeneous electron gas, with a smoothly varying electronic density. As a
result, it fails for molecular systems, where the electron density goes to zero,
with a continuous density form outside the molecular radius. Therefore, LDA
functional will not be used in this thesis.

ii) Generalized gradient approximation (GGA):
To accommodate variations in the electronic density, a Taylor-like expan-

sion is applied to include not only the electronic density itself, n(r), but also
the gradient of the density, ∇n(r) in the exchange and correlation energy
density functional:

EGGA
xc [n] =

∫

d3rn(r)ǫGGA
xc [n(r),∇n(r)] (27)

Therefore, GGA functionals work better for inhomogeneous systems. This
form is generalized such that

EGGA
xc [n] =

∫

d3rn(r)ǫhomx [n(r)]Fxc[n(r),∇n(r)] (28)

where ǫhomx is the exchange energy density functional of the unpolarised elec-
tron gas and Fxc is a dimensionless term that satisfies physically motivated
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constraints on the exchange and correlation hole. This is one of the ap-
proaches to the development of different GGA functionals. Another method
is developing a functional with parameters fitted to a database. One must be
cautious when using these fitted functionals; while they would provide good
results for the systems in the fitted database, they may not work as well for
other systems, as these functionals are not universal.

At the beginning of Chapter 3, several different GGA functionals will be
tested for proton ordered hexagonal ice XI. In the rest of chapters, PBE func-
tional developed by Perdew-Burke-Ernzerhof, will be used [7] as the standard
GGA functional. The exchange enhancement factor Fxc of PBE is not fitted
to any database. Instead it is developed to satisfy physical constraints acting
on the exchange and correlation hole, and in this case the main concern of
this functional is to satisfy Lieb-Oxford bound. In this thesis, PBE functional
will be used to compare the performance of a semi-local GGA approximation
to functionals that include non-local van der Waals correlations.

iii) Non-local correlations with van der Waals density function-
als (vdW-DF):

Non-local effects are completely missing from GGA functionals. However,
quantum fluctuations could induce a dipole moment even in an inert gas,
which in turn would induce dipole moments in its neighbours. Therefore,
dipole-dipole, dipole-induced dipole, and induced dipole-induced dipole, etc.
effects lead to long range correlations. The lowering of the energy due to these
correlations are represented by van der Waals interactions. Recently, several
energy density functionals that incorporate van der Waals interactions as a
non-local functional have been developed. In this thesis, we will follow the
development by Dion et. al in Ref. [8]:

EvdW
xc = EGGA

x + LLDA
c + Enl

c (29)

where the van der Waals functional uses the exchange part of a GGA func-
tional, which is close to the HF term to avoid overbinding attraction from
the exchange term. It uses the local correlations from the LDA functional,
and adds non-local correlations Enl

c [n] in the form of a functional:

Enl
c [n] =

1

2

∫

d3rd3r′n(r)φ(q, q′, |r− r′|)n(r′) (30)

where the parameters q and q′ are themselves functionals of n and its gradi-
ent, q[n(r),∇n(r)], evaluated at r and r′. The constraint on Enl

c [n] follows
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such that it must have a r−6 dependence of potential at long range sepa-
rations, which is the signature of van der Waals potential. The non-local
correlations also goes to zero for systems with constant electronic density.
The advantage of this functional is that it only depends on |r− r′|, instead
of depending on r and r′ separately. However, double integrals over the all
space is computationally quite expensive, and the application of these van
der Waals functionals had to wait another five years for the development of
non-local kernel factorisation by Román-Pérez and Soler [60].

In the original vdW-DF functional, revPBE functional [10] has been used
for the GGA exchange term [8]. This original functional is tested on ice XI
in Chapter 3. We have also changed the exchange flavour of this functional
from revPBE to PBE, labelled as vdW-DFPBE functional. This functional
has been shown to perform better for liquid water and hexagonal ice [6, 9,
61]. Therefore, in the main part of this thesis the vdW-DFPBE functional is
compared to the semi-local PBE functional.

2.4.5 Self Consistent Loop to Solve Kohn-Sham Equations

Kohn-Sham equations are solved self consistently. First, an initial guess
of the density is used to obtain the external potential, as follows from HK
theorems. At this point, either orthogonal single electron plane waves, or
localised atomic orbitals can be used to generate the densities. These are
two separate approaches to DFT, and the siesta package [62, 63] that is
employed in this thesis is based on the latter approach.

Then, KS equations are solved using this external potential. The new
electronic density is deduced from the ground state, and compared to the
initial guess. This new density is used as an input to solve the KS equations
again, until the output density is consistent with the input density within a
small tolerance, which is determined by the user and depends on the system.

From the output electronic density, the ground state electronic energy
and also the forces on the atoms of the system will be calculated for futher
analysis of the structures used in this dissertation.

2.4.6 Hellmann-Feynman Theorem and Structural Relaxation

Once the ground state energy is obtained with the self consistent field, as
explained above, then the forces on the system can also be calculated. The
force conjugate to the position of a nucleus in the system can be written in
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terms of the energy as:

FI = − ∂E

∂RI

= −〈ψ| ∂Ĥ
∂RI

|ψ〉 − 〈 ∂ψ
∂RI

| Ĥ |ψ〉 − 〈ψ| Ĥ | ∂ψ
∂RI

〉 − ∂EII

∂RI

(31)

The ground state electronic density corresponds to the total energy mini-
mum, therefore all the electron-electron interaction contributions lead to a
cancellation of the middle terms. The only contribution comes from the ex-
plicit dependence on the ionic positions, which are from the external potential
and ion-ion interaction terms. Then the forces become:

FI = −
∫

d3rn(r)
∂Vext(r)

∂RI

− ∂EII

∂RI

(32)

Once the forces on the atoms are obtained for that particular ionic po-
sitions, then a conjugate gradient approach of variational principle can be
used to minimise these forces. In this way, the atomic positions are varied
to minimise the total electronic energy by minimising the forces along the
energy gradient. The structure is considered to be relaxed, when the atomic
forces are smaller than a force tolerance criteria.

2.5 Force Field Models for Water

Although ab initio calculations are quantum mechanical calculations with
high accuracy, they are computationally quite expensive. Therefore, it is only
possible to simulate systems with small number of atoms, and the simulation
times are limited. In order to overcome this problem, force field models for
the system of interest are developed. A potential model for the interaction
force fields of molecules is parametrised. These parameters are either fitted
to reproduce experiments or a set of ab initio calculations to obtain the
empirical or semi-empirical force field models. Then the model Hamiltonian
can be solved using the variational principle, for example. The advantage of
having these force field models is that they allow for longer simulation times
for larger set of atoms. In this thesis, two of these force field models, one fitted
to the experiments and one fitted to high level ab initio calculations, will be
utilised to compare to DFT results. Both of these models put emphasis on an
accurate description of the vibrational spectra of liquid water, which is the
first important step for the analysis followed in this thesis. The comparisons
of these force field models with DFT yield the limitations of both of these
models and gives insight into the future improvements of models for water.
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2.5.1 qTIP4P/F: quantum Transferable Intermolecular 4-Point
Potential / Flexible

The qTIP4P/F force field model [11] is based on an earlier version of the
TIP4P/2005 flexible force field model. This is a 4-site model, where three of
the sites are the locations of the hydrogen and oxygen nuclei, but the charges
are not necessarily located on the same site as the nuclei. The fourth site
comes from the location of the negative partial charge, −qM , called M-site:
rM = γrO + (1 + γ)(rH1

+ rH2
)/2, which is fraction of γ along the oxygen

atom and the center of mass of hydrogens. The two positive partial charges,
qM/2 are located on the hydrogen sites. Intermolecular forces are based on
the electrostatic interactions and a Lennard-Jones type potential between
the oxygen atoms, following the authors’ notation:

Vinter =
∑

i

∑

j>i

{

4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

+
∑

m∈i

∑

n∈j

qmqn
rmn

}

(33)

where i, j goes through the oxygen sites and m, n goes through the partial
charge sites. The flexibility of the molecule is obtained via a Morse potential,
where OH stretching modes are accommodated via a harmonic oscillator:

Vintra =
∑

i

[

VOH(ri1 + VOH(ri2 +
1

2
kθ(θi − θeq)

2

]

, (34)

VOH(r) = Dr

[

α2
r(r − req)

2 − α3
r(r − req)

3 +
7

12
α4
r(r − req)

4

]

where ri are the intra-molecular OH covalent bonds and θi are the H-O-H
bond angle of each molecule.

The inter-molecular parameters of the Lennard-Jones potential are ε, σ,
qM , and γ and are the same as the original flexible TIP4P/2005 model, which
was parametrised to fit the temperature of maximum density, and stability
of several ice polymorphs [22].

The intra-molecular parameters Dr, αr, req, kθ, and θeq, were optimised
to reproduce the experimental structure, self diffusion constant, and vibra-
tional absorption spectra of the liquid water. The optimisation of these
parameters was obtained by using path integral molecular dynamics sim-
ulations, which can incorporate nuclear quantum mechanical contributions
[11]. Furthermore, intra-molecular OH stretching modes of this model are
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anharmonic, and it reproduces the anti-correlation effects between the intra-
and inter-molecular bonds. Therefore, this is a good model to test to estab-
lish whether or not it can reproduce the anomalous isotope effect due to the
nuclear quantum effects.

2.5.2 TTM3-F: Thole-type Model version 3.0 - Flexible

The TTM3-F semi-empirical force field model [12] is a 4-site model, as well.
This is also a flexible model, where molecular angles and bond lengths are
allowed to change throughout the simulations. In addition, each molecule is
assigned a monomer dipole moment as will be explained briefly.

The oxygen site is charge neutral, the hydrogen site has a static positive
charge, and the negative charge is located on the massless M-site, in this case
defined as, again following the authors’ notation: rM = rO + (γ/2)(rOH1

+
rOH2

). The charges, qi, and the dipole moment, p =
∑

i qiri, are assigned
by fitting to ab initio calculations of the monomer potential energy surface
and dipole moment surfaces (DMS). However, a transformation is applied to
the charges obtained from the gas phase DMS to get the liquid phase DMS,
which should incorporate the increase in the charge on hydrogen atoms with
increasing OH separation.

qHi
=

(
qDMS
Hi

+ dr(rOHi
− re) + dθ(θ − θe)

)
(35)

− γ

2(1− γ)

[
∑

i

−
(
qDMS
Hi

+ dr(rOHi
− re) + dθ(θ − θe)

)

]

qM =
∑

i

−qHi

where qDMS
Hi

are obtained from the ab initio calculations, with a fitting
parameter γ adjusted for accurate dipole and quadrupole moments. The
point charges are smeared with an effective charge density, following Thole’s
method:

n(r) =
1

(aiaj)1/2
3as
4π

exp

(

−as
(

r

(aiaj)1/6

)3
)

(36)

where as is the smearing of the charge density, ai are the atomic polarisabil-
ities for H-site, aH , and M-site, aM . In this way, the flexibility and the po-
larisability are incorporated into the model: the charges are redistributed for
the polarisability, as the geometry changes with the flexibility of the model.
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Finally, the inter-molecular interactions are taken into account through a van
der Waals type potential:

V (r) =
ε

1− 6/λ

{
6

λ
exp

(

λ
[

1− r

σ

])(σ

r

)6
}

(37)

All the parameters of this model are found by fitting to high level ab
initio calculations of water clusters, (H2O)n, with n = 3− 6, 20. This model
produced good structural properties and energetics for water clusters and
good structure and thermodynamic properties of liquid water. The parame-
ters are adjusted especially to provide the vibrational spectra, with a focus
on reproducing the intra-molecular OH stretching frequencies of both water
clusters and liquid water [12] . Having a model with an accurate description
of the vibrational spectra is the first step to analysing the nuclear quantum
effects, therefore this model is also selected to compare to DFT results in
this thesis.

2.6 Phonon Calculations

For an accurate description of the nuclear quantum effects of an ice struc-
ture, which is the main goal of this thesis, obtaining an accurate electronic
structure energy is only the first step. Next, we need energy contributions
from the nuclei-nuclei interactions. For this purpose, the phonon energies
due to the quantum fluctuations of the ions are calculated to be added to
the electronic energy.

In solids, the phonon energies are modelled as ions connected with oscil-
lators, and the corresponding potential energy is obtained by considering the
displacements from the equilibrium positions, u(R):

VII =
1

2

∑

R,R′,α,α′

uα(R)
∂2V

∂uα(R)uα′(R′)
︸ ︷︷ ︸

Dαα′ (R−R′)

uα′(R′) (38)

where, α = x, y, z. Then the corresponding equations of motions become:

Müα(R) = − ∂V

∂uα(R)
= −

∑

R′α′

Dαα′(R−R′)uα′(R′) (39)

with solutions of the form of plane waves: u(R, t) = ǫei(k·R−ωt), the eigen-
value problem becomes,

Mω2
ǫ = D(k)ǫ (40)
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where ǫ is defined as the polarisation vector and D(k) =
∑

RD(R)e−ik·R is
the dynamical matrix.

In the frozen phonon approximation, the atoms of the system are dis-
placed in the 6 different directions, and the forces on each atom are cal-
culated, as explained in eq. 31. By taking the differences of the forces
on the atoms of the relaxed configuration, the dynamical matrix is ob-
tained. Diagonalising the dynamical matrix, immediately yields the eigen-
values ω =

√

D(k)/M , which correspond to the phonon frequencies of the
system.

2.7 Quasi-harmonic Approximation

2.7.1 Helmholtz Free Energy

To include the nuclear quantum effects, the Helmholtz free energy F (V, T )
[64] is calculated as a function of volume and temperature within the volume-
dependent quasiharmonic approximation (QHA). [6, 65] One can neglect
thermal contributions to the electronic free energy because of the large band
gap of ice.

To derive Helmholtz free energy, we start with the partition function of on
particle in a potential of a harmonic oscillator, for simplicity, with equations
of state εk =

~ω
2
+ n~ω:

Z ≡
∑

n

e−εn/kBT =
∑

n

e−( ~ω
2
+n~ω)/kBT (41)

= e−~ω/2kBT
∑

n

e−n~ω/2kBT

= e−~ω/2kBT 1

1− e−~ω/kBT

where kB is the Boltzmann constant. In the last step of this derivation, the
geometric sum:

∑

n ar
ns = a

1−rs
has been used. The single particle partition

function can be expanded to a system of solids, by obtaining the frequencies
of all particles, at all positions. This can simply be stated by changing ω
to ωk, where k stands for both phonon branches, and phonon wave vectors
within the Brillouin zone. Then, the definition of the vibrational free energy
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from the partition partition follows:

Fv ≡ −kBT lnZ = −kBT
∑

k

(
ln e~ωk/2kBT − ln(1− e−~ωk/kBT

)
(42)

= −kBT
∑

k

(−~ωk

2kBT
− ln(1− e−~ωk/kBT )

)

=
∑

k

[
~ωk

2
− kBT ln

(
1− e−~ωk/kBT

)
]

Finally, by including the entropy from the possible disorder in the hydro-
gen positions to the vibrational free energy, we get the total Helmholtz free
energy: F = E0 + Fv − TSH as in eq. 43.

F (V, T ) = E0(V ) +
∑

k

[
~ωk(V )

2
+ kBT ln

(
1− e−~ωk(V )/kBT

)
]

−TSH (43)

where E0(V ) is the energy for classical (T = 0K or frozen) nuclei, at the
relaxed atomic coordinates for each volume. The equilibrium volume and
bulk modulus are calculated from the minimum and the curvature at each T .
The phonon frequencies, ωk are calculated with k running over both phonon
branches and phonon wave vectors within the Brillouin zone. The last part
of the Free energy is related to the entropy due to the proton disorder, SH .
This term is zero for proton ordered phase, ice XI. For proton disordered
phase, ice Ih, we use the estimation by Pauling, SH = NkB ln(3/2), which
was obtained by counting hydrogen orientations that obey the ice rules, [51]
and experimentally confirmed for fully disordered cases, [66, 67]. We assume
that SH does not change with temperature.

Lastly, the classical limit of the free energy is obtained by taking the
classical limit of QHA given in eq. 44.

F (V, T ) = E0(V ) +
∑

k

[

kBT ln

(
~ωk(V )

kBT

)]

− TSH (44)
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2.7.2 Implementation of QHA

QHA takes into account the anharmonicities in the phonon modes due to
the change in the volume. Therefore, the direct implementation is done by
obtaining the phonon frequencies of the system at each volume to calculate
the free energy in eq. 43. This can easily be done with the semi-empirical
force field models, but an accurate calculation of the phonon modes with
ab initio DFT can be computationally expensive. Therefore, in our DFT
calculations, the number of phonon calculations is reduced by an indirect
implementation of QHA.

The employment of QHA is done starting with the definition of Grüneisen
parameters given in eq.(45)

γk = −∂(lnωk)

∂(lnV )
= − V

ωk

∂ωk

∂V
(45)

Rearranging this definition and integrating both sides, we get:

∫ ωk

ω(V0)

∂ωk

ωk

= −
∫ V

V0

γk
∂V

V
(46)

We take the reference point, V0, as the equilibrium volume of the classical
energy E0(V ) in our calculations.

ln

(
ωk

ω(V0)

)

= −γk ln
(
V

V0

)

(47)

This is the first approximation to the QHA, labelled QH1:

ωk(V ) = ω(V0)

(
V

V0

)−γk

(48)

If the Taylor expansion of the logarithm in eq. 47 is taken, then it gives
the second approximation to the QHA, labelled QH2 which we used in our
calculations for this thesis:

ωk(V ) = ω(V0)

(

1− γk
V − V0
V0

)

(49)

where γk is the Grüneisen parameter of the mode, as shown in eq. 45. Now,
instead of calculating ωk(V ) at every volume, γk is obtained from a linear fit
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to three (or five depending on the system size) frequencies selected around
the classical equilibrium volume, V0. Then eq. 49 is used to obtain the
full volume dependency of the frequencies ωk(V ) to calculate the total free
energy in eq. 43. Hence, the volume dependence of ωk(V ) is linearised with
the QHA at each T , through the Grüneisen parameter calculations.

As shown in recent contributions [6, 65], the QH2 in 49 is an excellent
approximation to the full QHA for hexagonal ice. A comparison of these
approximations for one of our systems will be presented in Chapter 3 to
validate the usage of QH2 in our systems, and we will refer to QH2 as QHA
unless otherwise mentioned. Furthermore, Ref. [65] compares QHA with
PIMD simulations, and shows that QHA results agrees well with the PIMD
calculation for obtaining the quantum volume and bulk modulus of ices.

2.7.3 Volume Change at T = 0 K

The quasi-harmonic volume shift is:

V − V0
V0

=
1

V0B0

∑

k

γk~ωk

(

nk +
1

2

)

(50)

where V0 is the frozen or classical volume, V is the quantum volume and
B0 is the bulk modulus of the system.

At T = 0, nk = 0 and it can be seen that ∆V = V − V0 is proportional
to the average 〈γkωk〉.

2.7.4 Cohesive Energy

To determine which structure is the most stable one at zero temperature,
cohesive energies of ices are calculated without (E0

c ) and with (Ec) zero point
effects. The cohesive energy is defined as the difference between the energy
of a molecule within the crystal and the energy of a monomer. The classical
cohesive energy, E0

c is defined as eq. 51 from the Kohn-Sham energies of
the ice and monomer, and similarly, the quantum cohesive energy with zero
point effects, Ec is defined as eq. 52.

E0
c =

E ice
0

Nmolecules

− Emonomer
0 (51)

Ec =
F ice(V0, 0)

Nmolecules

− Emonomer
0 − Emonomer

ph (52)
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where the vibrational phonon energy
∑

k ~ωk/2 of the branches calculated
for the monomer is Emonomer

ph .

2.7.5 Bulk Modulus and Pressure

In addition to calculating the energies of the two phases to predict the phase
transition, we also make a detailed analysis of bulk modulus of hexagonal
ices. For bulk modulus calculations, we change the lattice parameters by
0.15% and obtain the energy of the relaxed configuration within each fixed
volume. Then, we make a new fit to the curve of energy as a function of
volume, E(V). The curvature of this fit is used to calculate the bulk modulus
as in eq. 53.

B = V0
∂2E

∂V 2

∣
∣
∣
∣
V=V0

(53)

where energy E(V) is the Kohn-Sham energy, E0(V), for classical calcula-
tions, and the Helmholtz Free energy, F(V), for the calculations including
the nuclear quantum effects. V0 is the equilibrium volume of the correspond-
ing energy.

Similarly, for systems that are stable under pressure, the volume that
corresponds to the experimental pressure is obtained from the slope of the
energy:

P = −∂E
∂V

(54)

Other thermodynamic relations can also be derived from the partition func-
tion, by using eq. 43.

2.8 Conclusion

In this chapter, we have briefly explained the foundations of ab initio DFT,
and the density functional approximations are described. Furthermore, two
semi-empirical force field models, qTIP4P/F and TTM3-F, which will be
used to compare to DFT results are introduced. Next, the phonon calcula-
tions are described to explain the Helmholtz free energy. Most importantly,
Grüneisen parameters are defined to develop the methodology for obtaining
the Helmholtz free energy within the quasi-harmonic approximation. In this
way, a concise explanation of the theory that is utilised in the rest of this
thesis is provided.
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3 Nuclear Quantum Effects on the Volume of

Hexagonal Ices

Hexagonal ice is the phase of ice that is formed when liquid water freezes
under ambient conditions. This was also the first of the identified ice phases,
therefore it is called ice I. Moreover, it forms with an underlying hexagonal
lattice of oxygen atoms, so it is labelled ice Ih. While the oxygen atoms have
a hexagonal order, protons of the water molecules of ice Ih are disordered.
As the temperature decreases, ice Ih goes under a phase transition to form
ice XI and its hydrogen atoms become ordered. Details of the structures of
these two hexagonal ice phases will be explained in Chapters 3, 4 and 5.

In this chapter, the structural lattice parameters and volumes of the two
phases of hexagonal ice are compared. As explained in the introduction, the
nuclear quantum effects become important at low temperatures, and lattice
parameters of different isotopes can be distinguished. Therefore, how zero-
point vibrations of the lattice affect these structures is investigated through
an analysis of the isotope effect in volume. Under normal isotope effect, the
volume of a heavy isotope is smaller than that of a light isotope, as in the
example of Ne, which has similar atomic mass than water [39]. However,
in hexagonal ice Ih, it is experimentally known that this effect is reversed.
Heavy ice (D2O) has larger lattice parameters and volume than regular ice
(H2O) [3, 40], resulting in an anomalous isotope effect. The underlying mech-
anism behind this anomaly has not been understood before. Moreover, there
has not been an investigation of the isotope effect in the oxygen atoms. We
provide an explanation of the anomalous isotope effect in hexagonal ices, by
calculating the phonon modes and the corresponding Grüneisen parameters.
The different signs of the Grüneisen parameter of different modes, corre-
sponding to different bonds, reveals a clear anti-correlation between intra-
and inter-molecular bonds.

The details of this anti-correlation will be discussed in the rest of this
chapter.
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3.1 Structures

3.1.1 Proton Disordered Hexagonal Ice - Ice Ih

The stable phase of ice under ambient conditions is the hexagonal ice, ice
Ih. In this phase, the oxygen atoms form an underlying lattice of a wurtzite
structure. The wurtzite structure is defined by two lattice parameters: lattice
parameter a along the x-y plane, and lattice parameter c along the z-axis.
The hydrogen atoms of hexagonal ice can occupy only certain orientations,
which satisfy the hydrogen bonding requirements. The hydrogen bonding
requirement is defined by the Bernal-Fowler ice rules, where each oxygen
is tetrahedrally coordinated to hydrogen atoms, making two covalent bonds
and two hydrogen bonds [50]. The hexagonal ice Ih is characterised by the
disorder in the occupation of these possible proton orientations that can
satisfy the “ice rules”.

To take into account the proton disorder in the structure, we have per-
formed our calculations with 96 water molecules, with cell size of 3a×2

√
3a×

2c. The protons are oriented such that there is no net dipole moment in the
bulk. This structure is shown in Fig. 2.

Figure 2: H-disordered ice Ih structure. The image on the left is the top view
of the x-y plane; the image on the right is the side view of the x-z plane.

3.1.2 Proton Ordered Hexagonal Ice - Ice XI

As the temperature is lowered from the ambient conditions, the proton mo-
bility of ice decreases, and the transition to the proton ordered phase is
frustrated. However, the proton mobility can be enhanced in the presence
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of impurities of KOH− [52, 53, 68] and a phase transition from the proton
disordered hexagonal ice Ih phase to the proton ordered hexagonal ice XI
phase is observed at around 72 K for H2O and 76 K for D2O [52, 53]. Ice XI
has 4 molecules in the unitcell with a net dipole moment along the ĉ axis.
The structure of this phase is shown in Fig. 3.

Figure 3: Proton ordered ice XI structure. The image on the left is the top
view of the x-y plane; the image on the right is the side view of the x-z plane.

3.1.3 Proton Ordered Hexagonal Ice - Bernal-Fowler Ice

The four protons of ice XI do not follow the hexagonal symmetry of under-
lying oxygen atoms. Considering the symmetries of the lattice, we have also
generated a proton ordered hexagonal lattice where both oxygens and hydro-
gens follow hexagonal symmetry, which is called Bernal-Fowler ice (BF ice).
BF ice has 12 molecules in the unit cell with a net dipole moment along the
ĉ axis, as shown in Fig. 4.

3.2 Computational Details

Before going into the discussion of the results and the underlying physical
mechanisms, one must explain all the details of the computational parameters
such that the results are reproducible by everyone. This section goes through
these details of parameters that were employed in the siesta DFT package.
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Figure 4: Proton ordered BF ice structure. The image on the right is the top
view of the x-y plane; the image on the left is the side view of the x-z plane.

3.2.1 Calculation Details and Parameters

All structural relaxations are performed using a real-space mesh cutoff of 500
Ry for the real space integrals, an electronic k-grid cutoff of 10 Å (corre-
sponding to 38 k-points) for unit cell calculations, a force tolerance of 0.001
eV/Å and a density matrix tolerance of 10−5 electrons.

The force constant calculations of proton ordered ice XI structure are
performed with a finer real-space mesh cutoff of 800 Ry. We used an atomic
displacement ∆x=0.06 Å for the frozen phonon calculation.

The force constant calculations of proton disordered ice Ih are performed
with a mesh cutoff of 500 Ry. We used an atomic displacement ∆x=0.08
Å for the frozen phonon calculation.

The phonon frequencies, ωk(V0) and Grüneisen parameters γk(V0) are ob-
tained by diagonalizing the dynamical matrix, computed by finite differences
from the atomic forces in a (3 × 3 × 3) supercell, at volumes slightly be-
low and above V0. We tested these parameters to obtain force constants in
phonon calculations as accurate as possible, so that the Grüneisen parameter
calculations have minimum noise. The Grüneisen parameters are calculated
for 5 volumes around the minimum varied with an isotropic change in the
lattice parameters for Γ point calculations of ice XI. In order to cover the full
Brillouin zone of H-ordered ice XI, 729 k-points are selected, dividing each
reciprocal lattice vector into 9 equal sections. Therefore, the Grüneisen pa-
rameters are calculated for 3 volumes for a k-point sampling of ice XI and at
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the Γ point of H-disordered ice Ih due to increase in the system size. Results
of our error estimation will be presented below.

3.2.2 Atomic Basis Sets

We used a basis set of triple-ζ polarized (tζ+p) atomic orbitals in the first set
of all calculations. The siesta basis set input file, with information about
the cutoff radii of the orbitals is given in Appendix A. We present the same
information for double-ζ polarized (dζ+p) atomic orbital basis set that has
been used in previous studies [9]. In order to compare the performance of
this basis set, we calculated the lattice parameters of the proton ordered (H-
ordered) ice XI structure at the Γ point with the PBE functional. The first
two lines of Table 2 show that a triple-ζ polarized orbital basis improves the
results as compared to plane wave calculations [69].

3.2.3 Validation of QHA and Error Analysis

To test the validity of the QHA in ice Ih, Fig. 5 compares the QHA result
for V (T ) with fully anharmonic PIMD simulations [2], using the q-TIP4P/F
force field [11] in both cases. Differences between the QHA and PIMD in-
crease with temperature, but their overall agreement is satisfactory.
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Figure 5: Volume per molecule for different isotopes calculated using the
q-TIP4P/F force field both with PIMD [2] simulations and the QHA.

In particular, with this force field both calculations predict a normal
isotope effect [2], which includes a lattice contraction when H is replaced
by D and a convergence of H and D volumes with increasing T, contrary
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to the experimental result. To complement these results, we have repeated
the calculations using the polarizable TTM3-F[12, 70] potential. This force
field has recently been shown to outperform q-TIP4P/F when compared to
experiments in PIMD simulations of H2

18O and D2
18O. Results provided

in Table 3 show that this polarizable force field also fails to reproduce the
anomalous isotope effect. However, as it will be discussed, TTM3-F improves
over q-TIP4P/F, displaying a stronger anti-correlation effect.

In addition, QH1, and QH2 levels of approximation are compared to
the full QHA, labeled QH0. As seen in Fig 6, QH2 performs better than
QH1. Indeed it is an excellent approximation to the full QHA, in which
the frequencies are calculated at each volume. Using DFT instead of the
empirical potential the differences between QH1 and QH2 are much smaller,
as seen in the error estimation below.
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Figure 6: Volume per molecule for H2O and for the classical limit calculated
using q-TIP4P/F using different versions of the QHA. QH0 stands for the
full QHA, and QH1 and QH2 are explained in the text.

We present here an analysis of the main numerical sources of error in
our calculations, beyond any DFT approximation. These error estimation
calculations are performed with tζ+p basis as descibed in Ref. [6]. We have
identified three:

(i) Numerical evaluation of Grüneisen constants:
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We choose 5 volumes slightly below and above V0 to calculate ωk and
γk for the calculations where the phonons are obtained for Γ-sampling only.
However, we choose 3 volumes when the QHA is computed using phonons
obtained by sampling the full (4 molecules, hexagonal) Brillouin zone. To
estimate the error involved in calculating Grüneisen constants from 3 or 5
volumes we compare the vdW-DFPBE functional volume QHA results ob-
tained using Γ-sampling phonons. As seen in Table 1, the volume decreases
by ∼0.03% when 5 volumes are used instead of 3. The magnitude of the
isotope shift is hardly affected.

Table 1: Isotope-dependent volume per molecule (Å3) at T = 0 K for H-
ordered ice XI structure with the vdW-DFPBE functional at Γ point. cla
represents the classical result. (i) shows the V(T=0) as function of the num-
ber of volumes chosen to calculate ωk and γk, (ii) as function of the ∆x atomic
displacement used to compute the force constants, and (iii) as function of the
two different QHA methods, QH1 to QH2.

(i) # of volumes 5 3
cla 30.88 30.88
H2O 31.01 31.02
D2O 31.10 31.11
H2

18O 30.98 30.99

(ii) ∆x for phonons 0.06 Å 0.08 Å
cla 30.88 30.88
H2O 31.02 30.97
D2O 31.11 31.07
H2

18O 30.99 30.95

(iii) QHA method QH1 QH2
cla 30.88 30.88
H2O 31.00 31.01
D2O 31.09 31.10
H2

18O 30.97 30.98

(ii) Frozen phonon approximation:
The second possible source of error is the atomic displacement ∆x used

to compute the force constants by finite differences, within the frozen phonon
approximation. We compare vdW-DFPBE volumes at Γ with mesh cutoff of
800 Ry using 3 volumes to compute ωk and γk. Phonons are calculated using
two different displacements: ∆x = 0.06 Å and ∆x = 0.08 Å. Table 1 shows
that this is the largest source of error. Volumes for the same isotope are
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modified by ∼ 0.14% when ∆x = 0.08 Å changes to ∆x = 0.06 Å. However,
the volume isotope shift is almost unchanged.

(iii) Numerical quasiharmonic approximation:
The last source of error is due to the method of linearising the volume

dependence of the frequencies in the quasiharmonic approximation. This has
already been discussed above, using the q-TIP4P/F model, but we present
results using DFT in this section. We compare results for the QH1 and QH2
linearisations using the vdW-DFPBE functional (Γ-sampling for phonons).
The real-space mesh cutoff is 800 Ry and the atomic displacement is ∆x=0.06
Å for force constant calculations. We used 5 different volumes to obtain
the frequencies and Grüneisen constants. As seen in Table. 1 QH1 predicts
smaller volumes than QH2, with a difference of ∼0.03%. This is much smaller
than the differences obtained using the q-TIP4P/F force field. As expected,
both give the same sign and almost no change for the isotope effect. Overall,
as seen above, QH2 gives better results when compared to the experiments.

3.3 Results

3.3.1 Initial results with different functionals

First, electronic structure calculations are performed for all three hexagonal
ices. The structure is relaxed within a volume fixed by the lattice parame-
ters to obtain the Kohn-Sham energy, and this calculation is repeated for a
variety of lattice parameters to get the optimal lattice parameters, and the
corresponding volume at the energy minimum.

The level of approximation within DFT depends on the choice of the func-
tional. The initial calculations were performed with a variety of functionals
and compared with the experiments. Some of the most common functionals
in the ab initio calculations of water, within semi-local generalized gradient
approximation (GGA) are the PBE and revPBE functionals [7, 10]. With
the recent developments of incorporating non-local van der Waals forces into
the exchange and correlation functional, we also performed calculations with
vdW-DF (also referred in the literature as DRSLL) functional [8], which was
implemented recently [60]. The exchange part of the original functional was
replaced with PBE, to compare the importance of van der Waals interactions
to this functional separately, and this combination is labelled as vdW-DFPBE.
In addition, we extended our initial set of functionals to the WC, vdW-DFWC,
BLYP, and a more recetly developed vdW-DF2 (also sometimes referred in
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the literature as LMKLL) functionals. This initial test of functionals are
performed with ice XI, which has 4 molecules in the unit cell, making it com-
putationally affordable to perform such a series of calculations. The initial
set of frozen lattice parameters, a and c, their ratio and the corresponding
classical volume at the Kohn-Sham energy minimum are given in Table 2.

Table 2: A summary of results with different functionals. a and c lattice
parameters, their ratio (c/a), corresponding volume per molecule of proton
ordered and proton disordered ices, for several DFT functionals. Proton
ordered ice XI with PBE functional is calculated for double-ζ polarized and
triple-ζ polarized atomic orbital basis sets. All phonon calculations are at
the Γ point. Structural experimental results are for T = 10 K. All lengths
and volumes are in Å and Å3.

Ice XC a c c/a V0 H2O D2O
XI PBE (dζ+p) 4.44 7.25 1.633 30.94
XI PBE (tζ+p) 4.39 7.17 1.633 29.98 29.91 30.05
XI revPBE 4.52 7.42 1.642 32.84 32.88 32.98
XI WC 4.26 6.96 1.634 27.32 27.13 27.19
XI BLYP 4.50 7.33 1.629 31.14 32.23 32.12
XI vdW-DFPBE 4.44 7.23 1.628 30.88 31.01 31.10
XI vdW-DFrevPBE 4.56 7.43 1.629 33.45 33.73 33.76
XI vdW-DFWC 4.32 7.03 1.627 28.35 28.10 28.19
XI vdW-DF2 4.54 7.36 1.621 31.97 31.86 31.83
XI PBE [69] 4.40 7.20 1.636 30.23
XI revPBE [69] 4.53 7.45 1.642 33.13

BF PBE 4.39 7.17 1.633 29.98
BF vdW-DFPBE 4.44 7.23 1.628 30.88

Ih PBE 4.39 7.17 1.633 29.91 29.93 30.04
Ih vdW-DFPBE 4.44 7.24 1.630 30.90 31.16 31.23

Ih Expt. [3] 4.497 7.321 1.628 32.054
Ih Expt. [3] 4.498 7.324 1.628 32.082

Comparing the results from different functionals, it can be realized that
PBE and WC functionals predict the volume to be smaller than the experi-
mental lattice parameter, while revPBE overestimates the volume. Inclusion
of van der Waals forces on these functionals always increases the volume,
softening the Hydrogen bonding of the system. However, vdW-DFWC does
not improve over WC results, while vdW-DFPBE brings results much closer
to the experiments than PBE alone. On the other hand, inclusion of van
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der Waals with BLYP would shift the results above the experiments, since
BLYP itself is already close to the experimental results. Similarly, inclu-
sion of van der Waals forces with revPBE, which already makes ice softer
compared to PBE, elongates the hydrogen bonds even more, increasing the
volume more. In addition, the isotope effect is almost zero at zero temper-
ature with the vdW-DFrevPBE functional, and this will be discussed in more
detail in the following sections. The only functional that predicts a normal
isotope effect with Γ point phonon calculation, is vdW-DF2, hence it is not
a good candidate to investigate nuclear quantum effects. Therefore, the best
functionals to compare the GGA to vdW-DF functionals are PBE and vdW-
DFPBE. Hence, we have performed the rest of the calculations with these two
functionals.

For the comparison of basis sets, we have performed calculations with the
PBE functional with dζ+p and tζ+p basis, and compared our results to the
plane wave calculations of Ref. [69]. It is clear that the tζ+p basis improves
the results and moves them significantly closer to the plane wave calculations.
Therefore, for obtaining the structural properties, such as lattice parameters
and volume, tζ+p basis can be considered a good basis.

From the frozen lattice parameter calculations, we realize that the lattice
parameters do not change when the protons are fully ordered with a hexag-
onal symmetry as in BF-ice, or ordered as in ice XI. In both ordered ices,
the structures have a net dipole moment along the ĉ directions. Comparison
to the proton disordered ice Ih with no net dipole moment shows that the
ordering mainly changes the c lattice parameter. Proton disordered ice Ih
with the PBE functional has the same lattice parameter as the H-ordered ice
XI, whereas the proton disordered system with the vdW-DFPBE functional
has a larger volume than the H-ordered structure due to the change in the c
lattice parameter.

3.3.2 Phonon Band Diagrams of Proton Ordered Phases

Obtaining the isotope effect from Γ point phonon calculations is not accurate
enough, especially for a small system with 4 molecules, like ice XI. In order
to improve the results of ice XI, a 3 × 3 × 3 cell is obtained and the force
constants matrix of the unit cell within this supercell is calculated within
the frozen phonon approximation. Then the phonon bands along certain
hexagonal symmetry points are calculated.

As it is shown in Fig. 7, there exist small and negative phonon modes
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Figure 7: Phonon bands of proton ordered ice XI.

at certain directions, close to the Γ point. These imaginary modes, shown
as negative modes in the band diagram might correspond to an instability
in the system, which might be due to the proton ordering not obeying the
hexagonal symmetry of the system. This was the underlying reason we have
obtained an ice, obeying Bernal-Fowler rules with full hexagonal symmetry,
both in oxygens and in hydrogens. As explained before, this fully symmetric
ordering of the protons over partially symmetric ordering of the protons, did
not change the lattice parameter and volume. Furthermore, Fig. 8 shows
that this system also has negative phonon modes, hence it can be concluded
that these modes do not result from breaking of the symmetry of the system.

Investigating these negative modes shows that they are due to numerical
errors in the force constants calculations and phonon frequency calculations.
They are almost always orders of magnitude smaller than the rest of the
phonon modes, and there are numerical errors within the convergence of force
constants matrix. Therefore, in all of the calculations, they are not taken into
account, by setting the mode and the corresponding Grüneisen parameter to
zero. Because ice XI and BF-ice give similar lattice parameters, and because
the negative frequency modes are entirely numerical errors, we conclude that
they will give similar structural results. From now on, we assume that BF-ice
and ice XI will give similar results, therefore we concentrate only on proton
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Figure 8: Phonon bands of proton ordered BF-ice.

ordered ice XI and compare it to proton disordered ice Ih.

3.3.3 Projected Phonon Density of States and Grüneisen Param-
eter

After the analysis of the phonon band structure of the proton ordered struc-
tures, we move on to obtaining the phonon modes not only along certain
symmetry directions, but also in the full Brillouin zone, for ice XI. This is
done by dividing the Brillouin zone of ice XI into 9 × 9 × 9 = 729 k-points,
all of them with equal weights. Ice Ih phonon modes are calculated at the
Γ point of the 96 molecule cell, which corresponds to 24 k-points when the
unitcell is compared to ice XI.

For this estimation, we have performed a careful analysis of the phonon
density of states and corresponding Grüneisen parameters, γk, of both phases.
Correct estimation of Grüneisen parameter plays a crucial role, because the
average value 〈ωkγk〉 determines whether a system has normal or anomalous
isotope effect. Negative γk’s imply a softening of the modes with decreasing
volume, favouring larger bulk modulus for a lighter isotope.

Within each structure, considering how frequencies and Grüneisen pa-
rameters are grouped together, we can separate the phonon modes into 6
bands. Fig. 9 also shows the average values of the Grüneisen parameters
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Figure 9: Phonon density of states projected on hydrogen and oxygen for
H2O of proton ordered ice XI.

corresponding to each band.
The highest frequencies correspond to anti-symmetric (ω ∼ 3314 cm−1

for H2O) and symmetric (ω ∼ 3115 cm−1 for H2O) stretching modes of the
O-H covalent bond with a weight mostly on the Hydrogens. The stretching
modes have negative γk’s, favouring anomalous isotope effect.

The bending modes (ω ∼ 1646 cm−1) are very harmonic and their γk
is always around zero, hence, these modes do not play a significant role in
the determination of the anomaly of the isotope effect. These modes do
not contribute to the interplay between covalent bond stretchings and the
Hydrogen bond network.

Libration modes (ω ∼ 847 cm−1) are also dominated by the Hydrogens,
while the translational modes (ω ∼ 271 cm−1) are mostly dominated by
Oxygens. But these two modes contribute to the strength of the Hydrogen
bonding network, and they clearly have positive γk, favouring the normal
isotope effect. There is also a band with small frequencies (ω ∼ 74 cm−1)
that has negative γk. This band is also associated with the stretching modes
of the Hydrogen bond, and the negative Grüneisen parameters are responsible
for the negative thermal expansion of hexagonal ice. [3]
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Therefore, there is an anti-correlation between the translational and li-
brational modes, which determine the strength of the Hydrogen bond and the
stretching modes which determine the strength of the OH covalent bond. The
anomalous isotope effect is a result of a fine balance between cancellations of
contributions from each band [6, 71].

3.3.4 Volume Change at T = 0 K

The effect of the Grüneisen parameters on the anomalous isotope effect at
the T = 0 K limit can be seen easily from the eq. 50. At T = 0, nk = 0,
it can be seen that ∆V = V − V0 is proportional to the average 〈γkωk〉.
The anomalous isotope shift observed when replacing H by D implies that
∆V (H2O) < ∆V (D2O).
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Figure 10: 〈γkωk〉 for each phonon branch calculated using vdW-DFPBE. Top:
H2O, bottom: D2O. The continuous horizontal line indicates 〈γkωk〉 = 0

Figure 10 shows < γkωk > for each branch as a function of the frequency
for H2O and D2O. For both molecules, the translation and libration branches,
less energetic than the OH stretching branches, have positive Grüneisen con-
stants. The bending modes have a Grüneisen constant very close to 0, so they
contribute very little to the sum. The stretching modes of the covalent OH
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bond have negative Grüneisen constants and larger frequency. Therefore, it
is clear that in ice Ih, the isotope shift depends on a fine balance between the
contribution of the H-bond-related frequencies with γk > 0 and the branches
related to the OH covalent bond with γk < 0.

3.3.5 Volume as a Function of Temperature

Table 3 shows the T = 0 K volumes for several isotope combinations of H,
D, 16O, and 18O, for all the DFT functionals [7, 8, 10, 60] and the force fields
used in this study. Also included in this table is a 32 beads PIMD result for
a single unit cell (Γ sampling) using the PBE-DF, compared to a calculation
with the QHA for an identical system. The simulation was done at T = 200
K [6].

As the experimental study from Röttger et al. did not consider H2
18O,

high resolution X-ray diffraction experiments of the three isotopes H2O, D2O
and H2

18O were performed. Results are presented in Table 3.
With the exception of vdW-DFrevPBE, all of the XC functionals predict an

anomalous isotope effect at T = 0 K when H is replaced by D, in agreement
with experiments. However, the isotope effect has the normal sign for the
O atom. Experiments confirm this result, with a 0.06% volume contraction
when 18O replaces 16O (T=100K) [6]. The comparison of structures (ii) and
(iii) shows that the results are largely independent of the ordering of the pro-
tons. Agreement with experiments improves as Brillouin zone integration is
improved. With respect to their generalized gradient approximation (GGA)
counterparts, vdW-DFs soften the afore-mentioned anticorrelation effect, re-
ducing the magnitude of the H→D isotope shift, but have little effect on
the O shift. When phonons from the full Brillouin zone are accounted for,
the vdW-DFrevPBE fails to predict the isotope shift at T = 0. However the
anomalous shift for this functional is recovered at T > 100 K [6]. Overall,
vdW-DFPBE has proven to be very robust for a variety of structural and dy-
namical properties of water [8, 15, 72]. It also gives our best lattice constant
for ice at T=0 K.
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Table 3: DFT volume (in Å3/molecule) for proton ordered (H-ordered) and proton disordered (H-disordered)
ice Ih for different isotopes, obtained with the quasiharmonic approximation (QHA) or path integral (PIMD)
simulations, which are obtained within our collaboration[6]. k-mesh is the effective number of k points for
sampling the 4-molecule hexagonal Brillouin zone in the phonon calculation (one for Γ-sampling). IS(A-

B)=V (A)
V (B)

− 1, is the relative isotope shift for the exchange of isotope A by B. The exchange and correlation

(XC) functionals are: PBE [7], vdW-DFPBE [8, 9], revPBE [10], and vdW-DFrevPBE [8]. The force fields (FF)
are q-TIP4P/F[11] and TTM3-F[12] Vcla is the volume for classical nuclei. Also shown are the experimental
results from ref [3] and the ones obtained within our collaboration ref [6]. Note they are at different
temperatures.

T(K) k-mesh Ice Method XC/EFF Vcla H2O D2O H2
18O IS(H-D) IS(16O -18O)

200 1 XI PIMD[6] PBE 31.02 31.21 −0.61%
200 1 XI QHA PBE 30.6 30.00 30.16 29.98 −0.53% +0.07%
0 24 Ih QHA[6] q-TIP4P/F 30.98 32.30 32.13 32.24 +0.53% +0.18%
0 24 Ih QHA TTM3-F 31.66 31.67 31.67 31.67 +0.002% +0.002%
0 24 Ih QHA PBE 29.91 29.93 30.04 29.91 −0.35% +0.07%
0 24 Ih QHA vdW-DFPBE 30.90 31.20 31.30 31.14 −0.32% +0.19%
0 1 XI QHA PBE 29.98 29.91 30.05 29.89 −0.47% +0.07%
0 1 XI QHA vdW-DFPBE 30.88 31.01 31.10 30.98 −0.29% +0.10%
0 1 XI QHA revPBE 32.84 32.88 32.98 32.85 −0.30% +0.09%
0 1 XI QHA vdW-DFrevPBE 33.45 33.73 33.76 33.70 −0.09% +0.09%
0 729 XI QHA PBE 29.98 30.09 30.19 30.07 −0.33% +0.07%
0 729 XI QHA vdW-DFPBE 30.88 31.17 31.22 31.14 −0.16% +0.10%
0 729 XI QHA revPBE 32.84 33.18 33.23 33.15 −0.15% +0.09%
0 729 XI QHA vdW-DFrevPBE 33.45 33.95 33.94 33.92 +0.03% +0.09%
10 Ih Exp[3] 32.054(5) 32.082(3) −0.089(18)%
100 Ih Exp[3] 32.047(3) 32.072(5) −0.079(18)%
100 Ih Exp[6] 32.079(4) 32.103(4) 32.058(4) −0.076(18)% 0.064(18)%
220 Ih Exp[3] 32.368(4) 32.437(3) −0.212(15)%
220 Ih Exp[6] 32.367(4) 32.429(4) 32.357(4) −0.191(17)% 0.032(17)%

qζ+dp
0 24 Ih QHA PBE 30.51 30.52 30.68 30.49 −0.52% +0.10%
0 24 Ih QHA vdW-DFPBE 31.24 31.52 31.60 31.49 −0.25% +0.10%
0 729 XI QHA PBE 30.48 30.64 30.78 30.60 −0.46% +0.13%
0 729 XI QHA vdW-DFPBE 31.08 31.45 31.52 31.41 −0.32% +0.13%
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Therefore, in the following we use this functional and the QHA to explore
the volume of ice Ih in structure (ii), including full Brillouin zone phonon
integration, as a function of isotope masses and temperature. However, the
results, and in particular the anomalous isotope effect, are very robust and
largely independent of the XC functional, harmonic approximation, system
size, and proton ordering.
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Figure 11: Volume change V (T )/VH2O(0)− 1, relative to H2O at T = 0, for
different isotopes calculated using the QHA with the vdW-DFPBE functional.
Also shown are the experimental results from Ref. [3].

Fig. 11 shows V (T ) of ice Ih for standard isotope substitutions of H and
O. Experimentally, the anomalous H→D isotope effect increases from 0.09%
at T = 10 K to 0.25% at T = 250 K, and this increase is reproduced by
our calculations (from 0.16% to 0.32%). The classical volume becomes larger
than any of the quantum results above 100 K.

This implies that, for larger temperatures, a classical isobaric ab initio
molecular dynamics simulation of ice will overestimate its volume, relative
to a quantum PIMD simulation.

Substitution of 16O by 18O affects mainly the low frequency modes, dom-
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Figure 12: Volume as a function of atomic mass of oxygen and hydrogens
for T = 0 K (on the left) and T = 200 K (on the right). The colour shows
the volume increase from small (blue) to large (red) volume. Note that at
T=0K, the classical limit is below the quantum volume, while it is above at
T=200K.

inated by positive values of γk, producing a normal isotope effect. The tem-
perature dependence of the isotopic O substitution is also normal, and the
volume shift is 50% smaller at T=220 K than at T=100 K. This is illus-
trated in Fig. 12, where the volume per molecule is plotted as a function of
oxygen and hydrogen mass for two different temperatures, starting from the
quantum regime (H2O) and moving towards the classical regime where the
oxygen and hydrogen mass goes to infinity. At T = 0 K, around the quan-
tum regime, an increase in the hydrogen mass results in an increase in the
volume, demonstrated in the red points on the plot. However, an increase
in the oxygen mass results in a decrease in the volume, demonstrated in the
blue points. Moreover, the volume in the classical limit is smaller than the
quantum volume at T = 0 K, but at large temperatures, T = 200 K, the
volume at the classical limit is always larger than the quantum limit.

Somewhat surprisingly, the net effect at T = 0, relative to classical nuclei,
is dominated by quantum oxygen, resulting in a quantum volume ∼1% larger,
This small expansion (10 times smaller than that of Ne) is a consequence
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of two competing anharmonicities: the contraction effect of H-dominated
stretching modes and the expansion effect of librational and translational
modes. As T increases, the contribution of the stretching modes becomes
dominant, causing the net quantum effect to change sign and to become
anomalous above ∼70 K. This dominance increases with T , making the vol-
ume shift four times larger at the melting temperature than at T=0. These
results are not inconsistent with the requirement that, at high enough T the
isotope shift is isotope independent, but we find that the convergence towards
the classical limit starts at T>∼900 K.

Our results may also have significant implications for the understanding
of nuclear quantum effects in liquid water (in which the anomalous isotope
shift is experimentally larger than in ice [18]). PIMD simulations, using the
q-TIP4P/F and TTM3-F EFFs, produce a less structured liquid than classi-
cal MD simulations [11, 12, 42]. However, as we have seen, these EFFs do not
reproduce the anomalous isotope effect in ice, because they fail to describe
accurately the derivatives of the frequencies, which govern the anharmonic-
ities and the nuclear quantum effects in the structure and dynamics. This
suggests that these models may be inadequate to reproduce some quantum
effects in the liquid as well as in the solid. Therefore, the observed loss of
structure in the liquid, for quantum vs classical nuclei, should be reanalyzed
with an EFF that reproduces the anomalous quantum effects in ice.

Note that all these results are obtained with tζ+p basis, as published in
Ref [6]. After publication of this work, came the improvement of the basis
sets, and we have developed the method to reevaluate the volume dependency
of Kohn-Sham energy with qζ+dp basis, as will be explained in Section 4.2.
The improvement in the volume calculations does not change any of the
discussion and conclusions of this chapter, but improving the energy will
become more important in the following chapters. Therefore, the improved
results of the volume calculations are included in the Table 3 and we will
refer to these numbers in the rest of the discussions of this thesis.

3.4 Conclusion

We have shown that the anomalous nuclear quantum effects on the volume
of hexagonal ices can be fully understood using the quasi-harmonic approx-
imation with density functional theory. The main reason of the anomaly
is the anti-correlation between inter-molecular Hydrogen bonds, dominated
by the low frequency modes with positive Grüneisen parameters, and intra-
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molecular covalent bonding, dominated by the high frequency modes with
negative Grüneisen parameters. The theory with a correct description of
these anharmonicities should correctly reproduce not only the phonon fre-
quencies, but also the derivatives of the frequencies. Therefore, the EFFs
tested in this study still have room for improvement on how they describe
these anharmonicities, and DFT is the level of the theory needed for this
type of study. We have also shown that inclusion of non-local forces with the
vdW-DF functional improves over the semi-local PBE functional and is the
best candidate to predict the experimental results so far.
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4 Nuclear Quantum Effects on the Bulk Mod-

ulus of Hexagonal Ices

Similar to the anomalous nuclear quantum effects in the volume of hexagonal
ices, it is expected that there is also an anomalous isotope effect in the bulk
modulus. The bulk modulus of the heavy ice (D2O) is expected to be smaller
than the bulk modulus of normal ice (H2O) [73]. Moreover, the anisotropy
in the wurtzite structure reveals itself, not only in the lattice parameters,
but also in the bulk modulus along different directions. This can be analysed
extensively with a detailed calculation of the different components of the
strain tensor.

In addition to lattice parameter experiments, there is a clear need for
precise bulk modulus experiments, due to a dispersion of experimental values
in the literature (see Ref. [4] and the references therein). For comparison
with our calculations, we report some of the frequently referred experimental
values [4, 13, 74]. Furthermore, understanding how the bulk modulus changes
in different directions of lattice parameters would give a better insight into
the anisotropy of the structures. There is a clear anisotropy when lattice
parameters are considered, but how the compressibility is affected by this
anisotropy is not well understood. The dispersion in the experimental results
as well as the lack of theoretical analysis of anisotropy in the bulk modulus
needs to be addressed.

In this chapter, we will show the anisotropy of the hexagonal ices by calcu-
lating the related strain tensor components. By re-evaluating Helmholtz free
energy with more converged computational calculations than in the previous
chapter, we also calculate the nuclear quantum effects in the bulk modulus.

4.1 Initial Analysis of the Structure and Preliminary
Calculation of the Frozen Bulk Modulus

In order to obtain a fast and accurate calculation of the bulk modulus, three
methods were used for ice XI unit cell calculations. The structure is obtained
from the equilibrium lattice configuration with V0 = 29.92Å in the Table 4.
We have changed the volume of the cell by changing both lattice parameters
by 0.15%. As the volume changes, we have:

(i) relaxed all the atoms in the cell (labelled “Relax All”);
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(ii) rescaled only the O-O distance, keeping the O-H covalent bond length
constant (labelled “Rescale Oxygen”);

(iii) rescaled all the atomic positions, without relaxation (labelled “Rescale
All” in the table).

These methods also give an insight into the structure of the hexagonal ice
XI, in terms of how the energy, pressure and the bulk modulus change, when
different bond lengths are constrained. All the rescaling is done with respect
to the relaxed configuration at the minimum of the E0(V) curve. Then we
have calculated the Kohn-Sham energy, E0 and pressure of the new system.
All calculations are performed with the PBE functional and the tζ+p basis
set, as explained in the previous chapter.

The bonds that correspond to the molecules directed along the x-y plane
are labelled 1. The bond of a molecule directed along the z direction is
labelled 3, and the other bond of the same molecule that is along the x-y
plane is labelled 2. This labelling is also shown in the Fig. 13.

Figure 13: Unit cell of the H-ordered ice XI structure. The image on the right
is the top view of the x-y plane; the image on the left is the side view of the
x-z plane. Red symbolizes the Oxygens and white symbolizes the Hydrogens.
rOO and rOH shows the O-O distances and O-H distances as labelled in Table
4 below.

Table 4 shows how the O-O distances and O-H covalent bond lengths
change with volume for each method. The O-O distances are the same, when
only oxygen atoms are rescaled and all atoms are rescaled. However, these
distances are underestimated when the volume is rescaled to lower volumes
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from V0 = 29.92Å and overestimated for larger volumes. When only the
oxygen atoms are rescaled, the O-H distances are kept the same as those of
V0. Similar to O-O distances, when everything is rescaled to lower volumes,
O-H distances are underestimated.

Table 4: Bond lengths as the atomic positions are rescaled with volume
change using different methods with the PBE functional. V is the volume
per molecule. All the distances are in units of Å and volume in Å3.

Relax All Rescale Oxygen Rescale All
V rOO1 rOO2 rOO3 rOO1 rOO2 rOO3 rOO1 rOO2 rOO3

29.65 2.6801 2.6802 2.6817 2.6774 2.6828 2.6847 2.6774 2.6828 2.6847
29.78 2.6841 2.6841 2.6859 2.6828 2.6854 2.6873 2.6828 2.6854 2.6873
29.92 2.6881 2.6881 2.6900 2.6881 2.6881 2.6900 2.6881 2.6881 2.6900
30.05 2.6922 2.6922 2.6941 2.6935 2.6908 2.6927 2.6935 2.6908 2.6927
30.19 2.6962 2.6962 2.6977 2.6989 2.6935 2.6954 2.6989 2.6935 2.6954

Relax All Rescale Oxygen Rescale All
V rOH1 rOH2 rOH3 rOH1 rOH2 rOH3 rOH1 rOH2 rOH3

29.65 1.0074 1.0074 1.0072 1.0067 1.0068 1.0065 1.0007 1.0008 1.0005
29.78 1.0070 1.0071 1.0069 1.0067 1.0068 1.0065 1.0037 1.0038 1.0035
29.92 1.0067 1.0068 1.0065 1.0067 1.0068 1.0065 1.0067 1.0068 1.0065
30.05 1.0064 1.0065 1.0062 1.0067 1.0068 1.0065 1.0097 1.0098 1.0096
30.19 1.0060 1.0061 1.0059 1.0067 1.0068 1.0065 1.0128 1.0128 1.0126

In addition to calculating the bulk modulus from the curvature of the
energy, as given in eq. 53 (labelled BE

0 in Table 5), the bulk modulus can
also be obtained from the slope of the volume dependency of the pressure,
as given in eq. 55:

BP
0 = −V0

∂P

∂V

∣
∣
∣
∣
V=V0

(55)

Table 5 shows the bulk modulus calculated from eq. 53 and eq. 55 for each
of these three methods. Rescaling all the distances without any relaxation
clearly gives non-physical bulk modulus results, as the experimental bulk
modulus of hexagonal ice is reported to be between 8-12 GPa [4, 13, 74].
Rescaling O-O distances while keeping the O-H covalent bond seems to give
a ∼ 50% higher bulk modulus compared to relaxing all the atoms in the cell,
which seems to give the most physical results. Also, comparing BE

0 and BP
0 ,

relaxing all the atoms give similar results for isotropic change in the lattice
parameters. Therefore, the most physical results are obtained by BE

0 from
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Table 5: Bulk modulus of the system calculated both from energy and pres-
sure for different rescaling methods with the PBE functional. Note that
volume is the unit cell volume of 4 molecules and is given in units of Å3.
Bulk modulus results are in GPa.

Relax All Rescale Oxy Rescale All
V0 119.615 119.632 119.670
BE

0 17.924 46.253 220.057
BP

0 16.815 27.286 116.272

eq. 53 and full cell relaxations are very important for accurate calculations.
It should be noted that the B0 is very sensitive to the fitting to the energy.
This shows that obtaining accurate bulk modulus results is difficult both
theoretically, as well as experimentally.

4.2 Fast and Accurate Calculations with tζ+p and qζ+dp
Basis Sets

Even though results with the tζ+p basis are accurate enough for general
structural purposes, for precise order-disorder free energy values, the energy
must be very well converged. Recently, a systematic method to obtain the
finite-range atomic basis sets for liquid water and ice has been proposed [36].
We use quadrupole-ζ double polarized (qζ+dp) basis obtained with the new
proposed framework, to calculate the energy of the relaxed configuration of
the tζ+p basis in order to refine the Kohn-Sham energy calculations. siesta
input files for both basis sets are given in Appendix A.

The relaxation calculations with the qζ+dp basis is computationally more
expensive. In order to address this, we propose to calculate the structural
relaxations with a computationally affordable basis, the tζ+p basis in this
case, and then perform an energy calculation of the relaxed configuration
with the qζ+dp basis. To test the validity of this method, we have per-
formed full structure relaxations with the qζ+dp basis with the vdW-DFPBE

functional only with ice XI structure, since four molecule calculations are
computationally affordable. As shown in Fig. 14, for the same configuration,
the energy difference between the tζ+p basis and the qζ+dp basis is 948.6
meV, whereas the energy changes only by 1.3 meV when the configurational
relaxation is performed for the qζ+dp basis.

In addition, the equilibrium volume V0 at the Kohn-Sham energy mini-
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mum shifts from the tζ+p basis to the qζ+dp basis for the same configura-
tion, but more importantly, there is no volume shift when the qζ+dp basis
configurational relaxation is performed. For the tζ+p basis, the error com-
pared to the qζ+dp basis is −0.23% in lattice constant a, is −0.28% in c,
and is −0.71% in the total volume. When we perform the qζ+dp basis cal-
culations at the tζ+p basis relaxed configurations, we get exactly the same
equilibrium lattice parameters and volume as the full relaxations with the
qζ+dp basis. This shows that we can perform structural relaxations with
a computationally affordable basis and then calculate the energy of these
configurations with a very well converged basis. With this method, we get
two fold convergence, both in electronic energy, i.e. along y-axis of Fig. 14,
and in structural volume , i.e. along x-axis of Fig. 14. Once, the curve for
Kohn-Sham energy as a function of volume, E0(V) is obtained, the classical
volume is calculated from the minimum of a third order polynomial fit to
this data.
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Figure 14: Relative Kohn-Sham energy as a function of volume for the vdW-
DFPBE functional. The equilibrium energy of fully relaxed structure with the
qζ+dp basis is set to 0 eV. The equilibrium energy of fully relaxed structure
with the tζ+p basis is set is shifted by 948.6 meV to show them in the same
frame. The qζ+dp basis energy difference between the fully relaxed structure
and the tζ+p basis relaxed structure is 1.3 meV. The dots are the calculated
data and the lines are a third order polynomial fit to the data.
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For the free energy calculations which include the nuclear quantum effects,
the vibrational modes are calculated using the frozen phonon approximation.
All the force constant calculations are performed with the tζ+p basis. There
are two reasons for this: the tζ+p basis giving a good first approximation to
the configurational information, and the high computational time cost of the
qζ+dp basis. In addition, the largest error in the free energy calculations
comes from the initial E0(V) contribution, which we reduce significantly with
this introduced method. The error from the zero point energy contribution
is much smaller compared to the electronic energy contribution. Therefore,
the phonon frequency calculation details and the parameters used to obtain
the force constants matrix are the same as in Chapter 3.

4.3 Antiferroelectric Proton Ordered Ice XI: Ice aXI

The proton ordering of structure of ice XI is determined to be ferroelectric
by experiments [75–78]. However, there is a debate about whether the pro-
ton ordering is ferroelectric or antiferroelectric from a theoretical standpoint.
Force field models give different predictions as the most stable phase depend-
ing on the model and parametrization [79, 80]. However, DFT calculations
agree with the experiments that the most stable phase of ice XI is ferroelec-
tric ordered phase [81, 82]. Therefore, we have included one more phase to
our hexagonal ices to compare the bulk modulus properties of antiferroelec-
tric ordered ice aXI to those of ferroelectric ordered ice XI and disordered
ice Ih. Our main aim in the following chapter will be to study the nuclear
quantum effects in the transition temperature between proton disordered ice
Ih, ferroelectric proton ordered ice XI, and antiferroelectric proton ordered
ice aXI. Therefore, it is important to understand its structural properties
first in this chapter.

The structure of antiferroelectric proton ordered ice, which we have cho-
sen to label, ice aXI, is presented in Fig. 15. Ice aXI has 8 molecules in the
unit cell with dipole moment pointing in opposite directions such that the
system has no net dipole moment.

4.4 Classical Lattice Parameter

In order to interpret the dynamics behind the phase transition, first, we de-
termine the lattice parameter of each system. Lattice parameters are kept
constant within each relaxation, and varied systematically to cover the E(a,c)
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Figure 15: Antiferroelectric proton ordered ice XI structure. The image on
the left is the top view of the x-y plane; the image on the right is the side
view of the x-z plane.

surface. The optimal lattice parameters are selected considering the mini-
mum of the E(a,c) surface, the E(V) curve, and the proximity to the zero pres-
sure region. The optimum lattice parameters with highly converged qζ+dp
atomic orbital basis are shown in Table. 6.

We also present experimental lattice parameters from Ref. [76] as they
study neutron diffraction of both ice XI and ice Ih, in detail. They com-
pare the orthorhombic structure of ice XI with the hexagonal structure of
ice Ih. Since we keep the hexagonal symmetry in our ice XI calculations,
we compare the experimental lattice parameter a, of ice Ih to the experi-

mental lattice parameters
√

(ab/
√
3) of ice XI. In this case, we see that the

experimental lattice parameter a changes very slightly from the ordered to
disordered phase, whereas the lattice parameter c changes significantly [76].

We have calculated that proton disordered ice Ih with the PBE functional
has the same lattice parameter as both proton ordered ices, ice XI and ice aXI.
Ice Ih with the vdW-DFPBE functional has a larger volume than ferroelectric
proton ordered ice XI, and this change in the volume is due to the change in
the lattice parameter c, which is in good agreement with the experimental
results, again showing the importance of inclusion of van-der Waals forces in
these calculations. On the other hand, the antiferroelectric proton ordered
ice aXI has larger volume than both ice Ih and ice XI. The lattice parameter
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Table 6: a and c lattice parameters, their ratio (c/a), and the corresponding
volume per molecule, Volume/H2O= a2c

√
3/2/NH2O, for the force field model

(FF) and exchange and correlation functional (XC). All lengths are in Å and
volumes in Å3.

FF/XC Ice a c c/a Volume/H2O
TTM3-F Ih 4.54 7.41 1.632 33.07
TTM3-F aXI 4.55 7.41 1.629 33.21
TTM3-F XI 4.54 7.43 1.637 33.16
PBE Ih 4.42 7.21 1.631 30.49
PBE aXI 4.42 7.21 1.631 30.49
PBE XI 4.42 7.21 1.631 30.49
vdW-DFPBE Ih 4.45 7.27 1.634 31.17
vdW-DFPBE aXI 4.46 7.25 1.624 31.18
vdW-DFPBE XI 4.45 7.25 1.629 31.08
Expt. [3] 10K H2O Ih 4.497 7.321 1.628 32.05
Expt. [3] 10K D2O Ih 4.498 7.324 1.628 32.08
Expt. [76] 5K D2O Ih 4.497 7.324 1.629 32.07
Expt. [76] 5K D2O XI 4.501 7.292 1.620 31.98

a of this structure is smaller than that of ice Ih, and lattice parameter c
is larger than that of ice Ih. The difference in the volume from ice XI is
only due to the change in the lattice parameter a. Comparing vdW-DFPBE

results to the experimental lattice parameter changes between ordered and
disordered phases indicates that this functional gives similar lattice changes
to the experiments between the ferroelectric proton ordered ice XI and proton
disordered ice Ih. Moving on to the TTM3-F force field model, ice Ih has
a smaller volume than ice XI, which is opposite to the experimental results;
and ice aXI has the largest volume. The change in volume with TTM3-F is
due to the lattice parameter a when ordering is from ice Ih to antiferroelectric
ordered ice aXI, and is due to the lattice parameter c when ordering is from
ice Ih to ferroelectric ordered ice XI. The changes in the lattice parameter c is
opposite with TTM3-F to those from the vdW-DFPBE functional. This shows
that only a DFT calculation with vdW-DFPBE functional predicts the correct
lattice structure and volume behaviour, as compared to the experimental
results, demonstrating the importance of using ab initio calculations with
the inclusion of non-local van der Waals forces to correctly predict these
values.
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4.5 Strain Tensor and Bulk Modulus Relations

Now that we have developed the computational methods to obtain the bulk
modulus of the system, and established the structural anisotropy in the sys-
tem with a detailed optimization of the lattice parameters, we can focus on
calculating the anisotropy in the bulk modulus of hexagonal ices. In order to
do this, let us first obtain the relationships between the different directional
components of the total bulk modulus, by calculating the strain tensor.

When there is a small uniform deformation on a solid, the axes are dis-
torted in orientation by ǫαβ. [83] Then the displacement of an atom due to
this deformation can be defined as:

R(r) ≡ (xǫxx + yǫyx + zǫzx)x̂+ (xǫxy + yǫyy + zǫzy)ŷ

+(xǫxz + yǫyz + zǫzz)ẑ

= u(r)x̂+ v(r)ŷ + w(r)ẑ (56)

From the displacement, the coefficients of the strain tensor can be defined
by the relation

eαβ ≡ ǫαβ =
∂uα
∂xβ

+
∂uβ
∂xα

(57)

where α and β runs over the x̂, ŷ, ẑ directions.
Within the approximation of Hooke’s law, we can write the elastic energy

density as a quadratic function of the strains as follows,

∆E

V
=

1

2

6∑

λ=1

6∑

µ=1

C̃λµeλeµ (58)

where 1 ≡ xx; 2 ≡ yy; 3 ≡ zz; 4 ≡ yz; 5 ≡ zx; 6 ≡ xy.
Noting that only certain combinations enter the stress-strain relations,

the elastic stiffness constants are symmetrical;

Cαβ =
1

2

(

C̃αβ + C̃βα

)

= Cβα (59)

Furthermore, we change the lattice parameters along the lattice directions
in the hexagonal ice system. Therefore, we are interested only in symmetry-
preserving strains: exx = eyy = ∆a/a and ezz = ∆c/c and there are no shear
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strains. This reduces the elastic stiffness constants to the upper left 3 × 3
part of the elasticity tensor. Then eq. 58 becomes;

∆E

V
=

1

2
[C̃11e1e1 + C̃22e2e2 + C̃33e3e3

+(C̃12 + C̃21)e1e2

+(C̃13 + C̃31)e1e3

+(C̃23 + C̃32)e2e3]

=
1

2
[C11e

2
xx + C22e

2
yy + C33e

2
zz + 2C12exxeyy

+2C13exxezz + 2C23eyyezz]

=
1

2
[2C11e

2
xx + C33e

2
zz + 2C12e

2
xx + 4C13exxezz]

=
1

2

[

2(C11 + C12)

(
∆a

a

)2

+ C33

(
∆c

c

)2

+ 4C13

(
∆a

a

)(
∆c

c

)]

(60)

More simply, we can also write this as:

∆E
V

= 1
2

(
∆a/a, ∆a/a, ∆c/c

)





C11 C12 C13

C12 C11 C13

C13 C13 C33









∆a/a
∆a/a
∆c/c



 (61)

Let us now consider dilation under hydrostatic pressure.

δ ≡ V ′ − V

V
= exx + eyy + ezz (62)

By using the definition of bulk modulus, we can link dilation to energy as
∆E
V

= 1
2
Bδ2. Combining this with the last part of eq. 60, we can see that

when we only change lattice parameter a, the dilation is δ = 2∆a/a and bulk
modulus we get corresponds to:

∆E

V
=

1

2
[2(C11 + C12)

δ2

4
]

Ba =
C11 + C12

2
(63)
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Similarly, when we change only the lattice parameter c, the dilation is
δ = ∆c/c and bulk modulus we get corresponds to:

∆E

V
=

1

2
C33δ

2

Bc = C33 (64)

This shows that calculations for hexagonal ice, by varying values of a and c
near the minimum, we acquire theoretical values of three constants of interest,
(C11 + C12), C13, and C33. There are three other elastic constants, that one
can only compute by calculating energies of sheared structures: C11 − C12,
C14 and C44.

To obtain C13 let us again consider hydrostatic pressure. The stress tensor
is then σαβ = Pδαβ. In 6-component vector notation, we only need the first
three components. The relation between stress and symmetry-conserving
strain becomes





P
P
P



 = −





C11 C12 C13

C12 C11 C13

C13 C13 C33









∆a/a
∆a/a
∆c/c



 (65)

If we equate the pressure in the first two equations from the matrix, we get
the relations between ∆a/a and ∆c/c.

(C11 + C12 − 2C13)
∆a

a
= (C33 − C13)

∆c

c
(66)

This gives us relations between ∆V/V and ∆a/a and ∆c/c,

∆V

V
= 2

∆a

a
+

∆c

c
=

[
2(C33 − C13)

C11 + C12 − 2C13

+ 1

]
∆c

c

=

[

2 +
C11 + C12 − 2C13

C33 − C13

]
∆a

a
(67)

Finally, the bulk modulus is defined by P = −B∆V/V , from the second
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equation of the P matrix

B = (2C13
∆a

a
+ C33

∆c

c
)

(
C33 − C13

2C33 − 2C13 + C11 + C12 − 2C13

a

∆a
)

= (2C13
∆a

a
+ C33

(C11 + C12 − 2C13)

C33 − C13

∆a

a
)

(
C33 − C13

2C33 − 4C13 + C11 + C12

a

∆a
)

=
2C13(C33 − C13) + C33(C11 + C12 − 2C13)

2C33 − 4C13 + C11 + C12

=
C33(C11 + C12)− 2C2

13

C11 + C12 + 2C33 − 4C13

(68)

Now that we know B, (C11 + C12), and C33, we can use eq. 68 to obtain
C13.

4.6 Anisotropy in the Bulk Modulus

Considering the wurtzite structure of ice, with different lattice parameters
along different directions as explained above, the bulk modulus of ice is ex-
pected to be different with respect to the compressions along the x-y plane
and z-axis. Therefore, components of strain tensor are different for displace-
ments along different directions. This anisotropic directionality of the bulk
modulus can be compared to the overall isotropic bulk modulus.

In order to calculate the isotropic bulk modulus, B, as explained in eq.
53, we change both lattice parameters by 0.15%, and obtain the curvature of
volume dependence of the energy. In addition to the isotropic bulk modulus,
we calculate the anisotropic contributions to strain tensor:

i) (C11+C12)/2 by keeping the lattice parameter c constant while changing
the lattice parameter a by 0.15%. This shows how the bulk modulus changes
along x-y plane, as given in eq. 63

ii) C33 component of the strain tensor, by keeping the lattice parameter
a constant while changing the lattice parameter c by 0.15%. Similarly, this
shows how the bulk modulus changes along z-axis, as given in eq. 64.

iii) C13 component of the bulk modulus using the relation between the
isotropic bulk modulus and other obtained components by using eq. 68.
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Table 7: The classical bulk modulus and the related components of the strain
tensor given in units of GPa. Experimental results are extrapolated to T=0K
from eq.4 of Ref [13]. e is the experimental result from the reference, and c

is the calculated result using eq. 68.

FF/XC Ice B0 (C11 + C12)/2 C33 C13

TTM3-F Ih 13.74 15.04 20.29 10.82
TTM3-F aXI 14.13 14.75 20.36 12.17
TTM3-F XI 14.24 14.39 20.83 13.25
PBE Ih 14.24 17.41 27.12 7.85
PBE aXI 14.31 17.52 26.85 7.97
PBE XI 14.27 17.37 26.28 8.17
vdW-DFPBE Ih 13.52 15.69 21.92 9.25
vdW-DFPBE aXI 14.05 16.16 20.77 10.29
vdW-DFPBE XI 14.32 16.13 22.07 10.58
Expt [13] Ih 8.48 10.31 14.76 5.63e

Expt [13] Ih 8.48 10.31 14.76 5.09c

In addition, we check eq. 68 against the experimental data of Ref [13] and
in the last two rows of Table 7. Using experimental values of B0, (C11+C12)/2,
and C33, we have calculated C13, and the calculated result compares well
with the experiment, considering the dispersion both in the experimental
and theoretical results.

As we have mentioned before, there is dispersion in experimental results of
the bulk modulus of proton disordered ice Ih and very few of them comment
on the anisotropic contributions [4]. The experimental results we present
[13] in Table 7 lie on the lower end of this dispersion when the isotropic bulk
modulus is compared. However, they still give a qualitative intuition about
the order of magnitude of different components of the strain tensor.

Comparing our calculations of the anisotropic bulk modulus along differ-
ent directions shows that the bulk modulus along the xy-plane, the average
of C11 and C12 is smaller than along z-axis, C33. Therefore, hexagonal ice is
softer along the x-y plane than along z-axis.

Furthermore, there are no bulk modulus experiments of proton ordered
ice XI, which makes it difficult to comment on structural differences of ice XI
and ice Ih. Focusing on the structural differences between the ferroelectric
proton ordered ice XI and proton disordered ice Ih, all components of the
bulk modulus are similar when a semi-local PBE approximation is consid-
ered. Both the isotropic and anisotropic bulk modulus of ice XI is clearly
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larger than bulk modulus of ice Ih, when non-local vdW forces are consid-
ered via the vdW-DFPBE functional. This predicts that proton disordered
ice Ih is softer than proton ordered ice XI. Both DFT results are consistent
with the corresponding lattice parameter calculations. However, there is an
inconsistency between lattice parameter and bulk modulus calculations with
the TTM3-F force field model, and there is no net trend between different
components of the strain tensor. With the TTM3-F force field model, bulk
modulus of ice XI is larger than that of ice Ih, and the volume of ice XI is
also larger than ice Ih, while it is expected to be the opposite. Therefore,
the vdW-DFPBE functional gives more reasonable bulk modulus results.

4.7 Nuclear Quantum Effects in Isotropic Bulk Mod-
ulus

In addition to classical bulk modulus, we can also estimate the contributions
from nuclear quantum zero point effects from the curvature of free energy cal-
culations of eq. 43. For this estimation, we have performed a careful analysis
of the phonon density of states and corresponding Grüneisen parameters, γk,
of both phases, as described in eq. 45. The results of the phonon density of
states and corresponding Grüneisen parameters have already been shown in
Fig. 9 in the previous chapter. Correct estimation of Grüneisen parameter
plays a crucial role, because the average value 〈ωkγk〉 determines whether a
system has normal or anomalous isotope effect. Negative γk’s imply a soft-
ening of the modes with decreasing volume, favouring a larger bulk modulus
for a lighter isotope. With the normal isotope effect, the bulk modulus of
the heavier isotope is larger, whereas with the anomalous isotope effect, the
bulk modulus of the lighter isotope is larger.

After this analysis of Grüneisen constants, the curvature of the free energy
is calculated to find the bulk modulus of the system, using the eq. 43. The
results of the bulk modulus calculations at T = 0 K are given in Table. 8 and
the temperature dependence of the bulk modulus is given in Fig. 16 for the
vdW-DFPBE functional with the k-point sampling over the Brillouin zone of
proton ordered ice XI.

For DFT calculations, this analysis reproduces the anomalous effect on
the isotopes of hydrogen atoms, i.e the bulk modulus of H2O is larger than
the bulk modulus of D2O. However, the bulk modulus of the oxygen isotopes
show a normal effect, i.e the bulk modulus of H2O is smaller than the bulk
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Figure 16: Bulk modulus as a function of temperature calculated with quasi-
harmonic approximation for vdW-DFPBE functional with k-point sampling
over the Brillouin zone of proton ordered ice XI. The experimental results
are taken from Ref. [4].

modulus of H2
18O. This behaviour is reproduced qualitatively for both DFT

functionals. Comparing our results with previous DFT plane wave studies
[73], we see that our PBE calculations perform quite similarly. However,
the plane wave calculations that include van der Waals forces with the vdW-
DF2 functional [84] do not reproduce the anomalous isotope shift. Therefore,
vdW-DFPBE is still a better candidate for this type of analysis. This is in
agreement with our vdW-DF2 results predicting normal isotope effect in
volume, as seen in Table 2 of Chapter 3. These results clearly reveal that
there is still room for improvement of van der Waals forces representation
with the density functionals.

On the other hand, the TTM3-F force field model does not correctly pre-
dict the anomalous isotope effect at low temperatures. With this model,
there is a crossing from normal to anomalous isotope effect at ∼ 270 K,
close to the melting temperature, where the low frequency modes with pos-
itive Grüneisen parameter become classical and high frequency modes with
negative Grüneisen parameter dominate with the quantum effects [71].

As the temperature increases, the bulk modulus of all systems decrease.
The convergence to the classical bulk modulus occurs at the temperatures
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Table 8: The bulk modulus including the quantum zero point effects given
in units of GPa.

FF/XC Ice B0 H2O D2O H2
18O IS(H-D) IS(16O-18O)

TTM3-F Ih 13.74 12.81 12.85 12.86 −0.31% −0.39%
TTM3-F aXI 14.13 13.03 13.08 13.09 −0.38% −0.46%
TTM3-F XI 14.24 13.04 13.09 13.10 −0.38% −0.46%
PBE Ih 14.24 14.18 13.44 14.33 +5.22% −1.06%
PBE aXI 14.31 13.79 13.15 13.95 +4.63% −1.17%
PBE XI 14.27 13.70 13.18 13.84 +3.80% −1.02%
vdW-DFPBE Ih 13.52 13.45 13.43 13.46 +0.15% −0.07%
vdW-DFPBE aXI 14.05 13.36 13.23 13.43 +1.00% −0.53%
vdW-DFPBE XI 14.32 13.26 13.06 13.37 +1.51% −2.37%
Expt. [69, 74] Ih 12.1
Expt. [13] Ih 8.48
Expt. [2, 4] Ih 10.9
PBE [73] XI 14.60 14.43 14.09 +2.35%
vdW-DF2 [73] XI 12.59 11.59 11.60 −0.09%

much higher than the melting temperature of ice. This is an indication that
the nuclear quantum effects are still important in the liquid phase water and
must be considered for correct structural analysis.

4.8 Conclusion

We have shown that there is a clear need for a better and more accurate
understanding of the bulk modulus of hexagonal ices. There is dispersion in
experimental data of the isotropic bulk modulus, and very few experiments
actually focus on the anisotropy in hexagonal ice. We have developed a fast
and accurate computational method to obtain the optimal lattice parameters,
and the volume dependence of the electronic Kohn-Sham energy, which is
important for accurate bulk modulus calculations and will be even more
important in the next chapter. The relationship between the strain tensor
and the bulk modulus is used to calculate the anisotropic contributions to
the overall bulk modulus. It is shown that the compressibility of the system
is smaller along the ẑ-axis than x-y plane. Finally, the nuclear quantum
effects on the isotropic bulk modulus are calculated using the QHA method.
As expected, there is an anomalous isotope effect in the bulk modulus of
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hexagonal ice. When H is replaced with D, the bulk modulus of the heavy
ice is smaller than that of light ice. Similar to the isotope effect on the
volume, the isotope effect is normal when 16O is replaced by 18O.

Now that we have a detailed analysis of the structure of proton ordered
and disordered phases, we can also use our methodology to investigate the
transitions between these phases.
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5 Phase Transition from proton disordered

Ice Ih to proton ordered Ice XI

From theoretical standpoint, the structure of proton ordered phase and exis-
tence of order-disorder phase transition have been studied extensively. How-
ever, the debate about the most stable phase of ice is not yet settled [79].
Simulation models based on experimental data cannot estimate the small
differences between different proton orderings. Predicted stable phase of
ice by empirical force field models depends strongly on the parametrization
of the boundary conditions, electrostatic multipoles, and treatment of long
range interactions. [79, 80, 85–89]. According to Ref. [79], TIP4P-FQ [90]
model predicts proton disordered phase as the stable phase, while SPC/E
[91], TIP4P [92], TIP5P-E [93] and NvdE [88] models predict proton ordered
phases at low temperature limit.

There is also a debate on the structure of the proton ordered phase.
As explained in the previous chapters, the experimental structure of proton
ordered ice XI is such that hydrogen atoms are ordered with a net dipole mo-
ment along the ẑ-axis. This is called the ferroelectric ordered phase. From
the models studied in Ref. [79], only NvdE model predicts ferroelectric or-
dered phase as the lowest energy phase, in agreement with the experiments.
The rest of the mentioned models, predict the ordered phase with an antifer-
roelectric ordering, where hydrogen atoms are ordered with opposite dipole
moments along different planes, with no net dipole moment along ẑ-axis.
Furthermore, according to Ref. [80], SPC [94] , TIPS2 [95] , BSV-pol [96] ,
RWK2 [97, 98] and KW-pol [99] models predict that disordered configuration
has lower energy than ferroelectric ordered phase. Modifying polarisability of
KW-pol model (MKW-pol model), they obtained a potential energy surface
where ferroelectric ordering has lower energy than disordered configurations
[80]. Therefore, it is worth testing a polarisable force field model, TTM3-F
to check if it will correctly predict that proton disordered phase has larger
energy than proton ordered phase at low temperatures. Experiments with
neutron diffraction [76–78], as well as experiments performed under an elec-
tric field [75] confirm that the low energy structure at low temperatures has
ferroelectric ordering. Consequently, our goal is investigate the order-disorder
transition of different isotopic configurations of ferroelectric ordered ice XI,
antiferroelectric ordered ice aXI, and disordered ice Ih, from an ab initio
perspective.
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The effect of proton disorder on hexagonal ice structure has also been
studied before using ab initio density functional theory (DFT). It has been
shown that DFT calculations correctly reproduce lattice structure of ice XI
[100], and cohesive energy of ice XI is larger than ice Ih [81, 82]. A DFT
based Monte Carlo study, where DFT calculations of Hydrogen bond con-
figuration energies are used to parametrize a model to perform Monte Carlo
simulations, predicted ice XI as the most stable phase with a phase transi-
tion temperature at 98 K. [101, 102] Another recent DFT based Monte Carlo
study of dielectric properties of ice, predicted the Curie temperature of the
order-disorder phase transition to be around 70-80K [103]. The advantage of
DFT based Monte Carlo simulations is that they can parse configurational
entropy of the free energy surface in quite detail. However, none of these
calculations include the zero point nuclear quantum effects, and investigate
the transition temperature difference between different isotopes.

In the previous chapters, we have shown that ab initio DFT is essen-
tial to observe the correct behaviour of isotope effect in hexagonal ices and
QHA with inclusion of van der Waals forces correctly predicts the anomalous
isotope effect. Within the framework of quasi-harmonic approximation, we
can obtain temperature and volume dependence of free energy. This is an
important advantage in predicting the most stable phase not only at zero
temperature limit, but also in a range of temperatures. We have also pre-
sented that a polarisable and flexible force field model, TTM3-F, predicts an
anomalous isotope effect at high temperatures. Although it does not per-
form well at low temperatures, this is the only water model that shows an
improvement on the prediction of the isotope effect, which makes it a good
candidate to compare with the ab initio DFT results.

In this chapter, we use the quasiharmonic approximation to study how
nuclear quantum effects change the phase transition temperature of ices with
different isotopic configurations. In this chapter, we extend our study of nu-
clear quantum effects to analyse the contribution to order-disorder phase
transition by using both ab initio DFT functionals and TTM3-F force field
model. We again analyse the importance of van der Waals forces by compar-
ing a generalized gradient approximated functional, PBE to a van der Waals
functional, vdW-DFPBE. We obtain temperature dependence of free energy
for both ice phases using the quasi-harmonic approximation and we compare
the phase transition temperature of different isotopes.
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5.1 Cohesive Energy

In order to understand the phase transition between proton ordered ice XI
and proton disordered ice Ih, we have calculated the cohesive energy from
eq.s 51 and 52. This is a good test to determine whether TTM3-F force field
model or DFT can predict ice XI as the stable phase at the zero temperature
limit correctly. We also consider how the cohesive energy changes when the
zero point nuclear effects are added to the electronic energy, and the results
are given in Table 9.

Table 9: The classical and quantum cohesive energy, Ec (meV) including the
zero point effects.

FF/XC Ice E0
c H2O D2O H2

18O
TTM3-F Ih 601.07±0.22 521.17±0.22 536.24±0.22 522.87±0.23
TTM3-F aXI 600.30 520.33 535.41 522.04
TTM3-F XI 599.71 520.11 535.11 521.81
PBE Ih 620.44 502.07 526.70 504.15
PBE aXI 626.21 507.17 531.95 509.25
PBE XI 629.06 509.02 534.07 511.11
vdW-DFPBE Ih 723.94 601.64 627.65 603.64
vdW-DFPBE aXI 725.53 602.58 628.80 604.57
vdW-DFPBE XI 728.75 605.18 631.52 607.18

It is important to note that there is more than one possible proton dis-
ordered configuration in ice Ih. In order to accommodate for different pos-
sible proton disordered configurations, we have performed a large cell of 96
molecules in our DFT calculations. Because DFT calculations are compu-
tationally expensive, we cannot perform more than one of these structures;
however, with the force field models it is computationally possible to do
these calculations for multiple configurations. Therefore, we have performed
all calculations with 5 different 96 molecule configurations of ice Ih with
TTM3-F force field model. These results are incorporated in the cohesive
energy results of TTM3-F model, given in Table 9. The dispersion in energy
due to the residual entropy of hydrogen disorder is on the order of 0.22 meV,
which makes it clear that our quantitative prediction of the most stable phase
is within this dispersion. This also shows the dispersion in the free energy
values and gives an error estimation for F(T) calculations. The difference in
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cohesive energy between the ordered and disordered systems are in agreement
with the free energy results at T = 0K.

Let us first concentrate on the proton disordered ice Ih and ferroelectric
ordered ice XI. For both functionals, proton ordered ice XI is more stable
than the disordered ice Ih with DFT calculations, while TTM3-F force field
model predicts proton disordered ice Ih as the stable phase. When we want
to put antiferroelectric ordered ice aXI into perspective of the energies of
ferroelectric ordered ice XI and proton disordered ice Ih, we realize that
aXI energy is in between ice Ih and ice XI. However, TTM3-F predicts the
stability order to be Ih → aXI → XI, from high cohesive structure to low
cohesive, which disagrees with the experiments. Furthermore, considering the
error in the cohesive energy, it is impossible to exactly predict the correct
stable phase at the zero temperature limit with this model. On the other
hand, both DFT functionals predict the stability order to be XI → aXI → Ih,
agreeing with the experiments that the most stable phase is the ferroelectric
ordered phase.

5.2 Transition Temperature

In order to analyse the proton order to disorder phase transition tempera-
ture, we study the Helmholtz Free energy at zero pressure. First, we evaluate
volume dependence of free energy, F(V) at a fixed temperature. Then we cal-
culate value of free energy minimum, F(V0) for each temperature. Therefore
we obtain the temperature dependence of free energy, by evaluating free en-
ergy minimum for each temperature, F (V0(T )), as in eq.s 43, 44.

We first concentrate on the classical limit of the free energy, without con-
sidering the nuclear quantum effects, as given in eq. 44. Consistent with
previously reported results, DFT predicts a phase transition in this limit,
regardless of the chosen functional. In addition, both semi-local PBE and
non-local vdW-DFPBE functional overestimates the phase transition temper-
ature, when nuclear quantum effects are not included in the calculations.
On the other hand, TTM3-F force field model does not correctly predict the
stable phase in the low temperature limit and the difference between the free
energies of the two phases increases with temperature. Therefore, it does not
show a phase transition, as shown in the first column of Table 10.

However, we need to consider the nuclear zero point effects to compare
the predicted phase transition temperature to the experiments. Fig. 17
shows the temperature dependence of the free energy with zero point effects
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Figure 17: Relative free energy per molecule including the quantum zero
point effects as a function of temperature. The lines show DFT results with
the vdW-DFPBE functional and the dotted lines are the results with TTM3-F
model.

Table 10: The classical and quantum proton order to disorder transition
temperature, Tc (K) including zero point effects for ice Ih-ice XI and ice Ih
to ice aXI.

Ice Method T0
c H2O D2O H2

18O
aXI PBE 153 151 156 151
aXI vdW-DFPBE 42 30 35 30
XI PBE 221 202 215 203
XI vdW-DFPBE 105 91 97 90
XI Expt [52, 53] 72 76

for H2O. For low temperatures, TTM3-F model predicts ice Ih as the stable
phase with ∼ 1 meV energy difference from ice XI at zero temperature; and
a divergence of energy at higher temperatures, making the prediction correct
for high temperatures only. DFT correctly predicts the most stable phase as
ice XI for low temperatures, with an energy difference of ∼ 4.5 meV. As the
temperature increases, there is a crossing at T = 91 K and ice Ih becomes
the stable phase beyond this temperature for H2O.
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Inclusion of zero point effects also allows us to obtain the isotope effect
in the phase transition temperature, since it is experimentally known that
the order-disorder transition temperature of heavy ice (D2O) is larger than
light ice (H2O) by 4K [52, 53]. Table 10 shows that we already observe
the phase transition with the classical electronic energy calculations for both
PBE and vdW-DFPBE approximations, but this temperature decreases with
the inclusion of zero-point effects. The vdW-DFPBE results are below the
glassy transitions where proton mobility diminishes around 100-110 K [104,
105] and in general agreement with the experimental order-disorder phase
transition temperatures; whereas the PBE results are even above the glassy
transitions. Although semi-local PBE functional gives a correct prediction
of the stable phase, phase transition temperature is much larger than the
experimental range. In agreement with the experimental 4K difference in
the phase transition temperature of the isotopes, the vdW-DFPBE functional
predicted transition temperature of D2O ice is larger than the light ice with
6 K difference. Therefore, it is important to note that inclusion of non-local
van der Waals forces is critical for a reasonable prediction of the transition
temperature.

5.3 Contribution from Each Term of QHA to Total
Free Energy

5.3.1 Classical Free Energy

Let us now have a look at the classical limit of free energy to analyse the
phase transition without zero-point effects, eq. 44. To understand how each
component of eq. 44 contributes to the total free energy, we present in Fig.
18c, the temperature dependence of E0(V0(T )), and −TS terms separately,
in addition to the full temperature dependence of the classical free energy.

Different than the quantum free energy, we see an overall increase in the
classical limit of the free energy, Fig. 18a. Therefore, it is worth looking
into each component of the classical limit separately, from the equilibrium
volume of classical free energy, V F0

0 , for each temperature.
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Figure 18: Contribution to the classical free energy from each term of eq. 44
calculated with the vdW-DFPBE functional, with respect to ice XI energies.
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The Kohn-Sham energy contribution to the classical free energy, E0(V
F0

0 (T ))
is increasing with the increasing temperature, similar to the quantum limit,
as shown in Fig. 18b.

Since we do not have any zero point energy contribution, the only other
contribution to the free energy comes from the classical limit of the entropy
term. We again calculate the entropy contribution for a series of volumes
and do a second order fit to obtain the full temperature dependence, −TS =

kBT ln
(

~ωk(V
F0

0
(T ))

kBT

)

.

We see that both parts of the classical free energy increases with the
temperature, but the main contribution comes from the classical Kohn-Sham
energy, which also plays the key role in determining the stable phase.

5.3.2 Free Energy with Zero Point Effects

In addition to the exact values, given in Fig. 19, we also present the difference
between the energies of ice Ih and ice XI for H2O and D2O separately, in Fig.
20.

The temperature dependence of the Kohn-Sham energy is obtained by
first calculating the equilibrium volume of the free energy, V0 and then
calculating the Kohn-Sham energy at that volume for each temperature:
E0(V0(T )). As shown in Fig 19b and 20b this component of the energy
increases with the temperature and the slopes of the increase of proton dis-
ordered ice Ih is smaller than proton ordered ice XI.

To analyse the temperature dependence of the phonon modes separately,
we first calculate zero point vibrations for a series of volumes within the
quasi-harmonic approximation (QHA) and do a linear fit. Then we calculate
the zero point energy contribution to the free energy, from this fit.

EZP =
∑

k

~ωk(V0(T ))

2
(69)

This part of the free energy is slowly decreasing with the temperature, given
in Fig. 19c and 20c, but it is not strong enough to overcome the increase from
the Kohn-Sham term. But more importantly, the stability of the structures
is reversed: Proton ordered ice XI has smaller negative shift from the phonon
energies to the electronic Kohn-Sham energy than proton disordered ice Ih.

73



0 50 100 150 200 250
T (K)

-473.25

-473.225

-473.2

-473.175

-473.15

-473.125

-473.1

-473.075

-473.05

-473.025

-473
F

re
e 

E
ne

rg
y 

(e
V

)

XI H
2
O

Ih H
2
O

XI D
2
O

Ih D
2
O

(a) Quantum free energy.

0 50 100 150 200 250
T (K)

-473.706

-473.7055

-473.705

-473.7045

-473.704

-473.7035

-473.703

-473.7025

-473.702

-473.7015

-473.701

-473.7005

-473.7

E
0 (

eV
) XI H

2
O

Ih H
2
O

XI D
2
O

Ih D
2
O

(b) Kohn-Sham energy contribution to
free energy.

0 50 100 150 200 250 300
T (K)

0.525

0.55

0.575

0.6

0.625

0.65

0.675

0.7

E
Z

P (
eV

)

XI H
2
O

Ih H
2
O

XI D
2
O

Ih D
2
O

(c) Phonon zero point energy contri-
bution to free energy.

0 50 100 150 200 250
T (K)

-0.06

-0.055

-0.05

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

-T
S

 (
eV

)

XI H
2
O S

v

Ih H
2
O S

v
XI D

2
O S

v

Ih D
2
O S

v

Ih S
H

Ih H
2
O S

c
Ih D

2
O S

c

(d) Entropy contribution to free en-
ergy.

0 50 100 150 200 250
T (K)

0

5e-05

0.0001

0.00015

0.0002

0.00025

S
 (

eV
/K

)

XI H
2
O S

v

Ih H
2
O S

v

Ih S
H

XI D
2
O S

v

Ih D
2
O S

v

Ih H
2
O S

c
D

2
O S

c

(e) Entropy as a function of temper-
ature.

Figure 19: Contribution to quantum free energy from each term of eq. 43
calculated for H2O and D2O, with the vdW-DFPBE functional.
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Fig. 20b shows that the electronic energy difference between the two
ices is larger for H2O than D2O, which would result as a larger transition
temperature for H2O than D2O, and this is against the expectations from
the experimental results. However, when we take the zero-point energies of
the two isotopes into account, Fig. 20c shows that the difference between the
two ices is smaller for H2O than D2O. When this is added to the electronic
energy, as in Fig. 20d, it is clear that the transition temperature of H2O
is shifted below the transition temperature of D2O, which agrees with the
experimental results.

Similarly, we calculate the vibrational contribution to the entropy for
a series of volumes and make a third order fit to obtain the temperature
dependence in the form of

−TSv =
∑

k

kBT ln
(
1− e−~ωk(V0(T ))/kBT

)
(70)

For the residual entropy due to the Hydrogen disorder in ice Ih, we calculate
the Pauling entropy SH = NkB ln(3/2). [51] Then the total configurational
energy for ice Ih is calculated as:

−TSc = −TSv − TSH (71)

The decrease of the entropy related term as the increase in the tempera-
ture, −TS, is given in Fig. 20e and 20f. On the other hand, both vibrational
and configurational entropy terms work against the expectations, contribut-
ing to the free energy for H2O more than D2O, but this is small compared
to the zero-point contributions.

This part of the free energy combined with the decrease in the zero point
energy, overcomes the increase in Kohn-Sham part resulting with a net de-
crease in the total free energy. Therefore, this is the term that determines
the overall temperature dependence of the total free energy.
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Figure 20: Difference between proton disordered ice Ih and proton ordered
ice XI, for each contribution to quantum free energy from each term of eq.
43 calculated for H2O and D2O, with the vdW-DFPBE functional.
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Furthermore, when all these energies are added up to the total free energy,
Fig. 20a, it is clear that the reason H2O crosses from positive to negative
values at a lower temperature than D2O, is due to zero-point effects of the
phonon modes, while the overall shape of the free energy is determined by
fine cancellations between the zero-point and entropic contributions. One of
the reasons of the quantitative difference from the experimental results of
transition temperature can be as a result of the error in the estimation of
residual entropy due to disorder in both systems. The residual entropy at
the transition that ice XI loses much but not all of the entropy at Tc [76],
but this is more likely due to the existence of domains of ordered ice XI
regions occurring around the impurity, and coexisting with disordered ice Ih
[106]. Another reason of the quantitative difference can be due to the loss
of precision of QHA at larger temperatures, as the temperature dependence
of the phonon vibrations is not taken into account. This is also the case in
the calculated V0 with isotope effects; the calculated values deviate from the
experimental values at larger temperatures [6].

All in all, QHA within DFT with non-local vdW forces, is predicting a
6K temperature difference between the isotopes, as compared to the exper-
imental 4K difference. This difference is solely due to the nuclear quantum
effects from the phonon vibrational energy differences, and it is predicted
without invoking tunnelling effects.

5.4 Phonon Density of States

Now that we have shown the main reason behind the difference in the phase
transition temperature of different isotopes is zero point energy, let us say
a few words to compare phonon density of states of the two ices, before
concluding this chapter.

Fig. 21 shows phonon density of states for H2O for both proton ordered ice
XI and proton disordered ice Ih at zero temperature. The colors represent
the average Grüneisen parameter of each band separately. We observe a
redshift in the low energy phonon modes of proton disordered ice Ih with
respect to proton ordered ice XI. Translations are sharpened while librations
are softened in ice Ih. On the other hand, there is a blueshift with softening
in the symmetric and anti-symmetric stretching modes of ice Ih. Therefore,
with proton ordering, we weaken the covalency of the intra-molecular bonds,
while strengthening the inter-molecular Hydrogen bonding. This combined
with the weights of the Grüneisen parameters results as an overall slightly
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Figure 21: Density of vibrational states for H2O for proton ordered ice XI
and disordered Ih structures, as obtained with the vdW-DFPBE functional.
Average Grüneisen constants of the different modes are given in color code.

larger zero point energy for ice XI than ice Ih, as also shown previously in
Fig. 20c.

5.5 Conclusion

In this chapter, we have shown that the ab initio DFT with van der Waals
forces is the only robust functional that predicts the phase transition between
proton ordered ice XI and proton disordered ice Ih. Without van der Waals
forces, PBE functional correctly predicts that ice XI is the stable phase at
low temperatures, but this functional overestimates the phase transition tem-
perature. The antiferroelectric ordered ice aXI has free energy in between
ferroelectric ordered ice XI and proton disordered ice Ih. As a result, the
transition temperature from ice Ih to ice aXI is smaller than the transition
temperature from ice Ih to ice XI. Comparing the vdW-DFPBE functional, to
the experiments, the most stable phase at zero temperature limit is ferroelec-
tric proton ordered ice XI, and the phase transition is from ice Ih to ice XI.
Force field models need improvement to correctly estimate the stable phases
of hexagonal ices at low temperatures. TTM3-F model, cannot predict the
low temperature phase as the proton ordered phase, therefore it cannot show
the order-disorder phase transition.

We have also investigated how nuclear quantum effects are changing the
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phase transition temperature. The vdW-DFPBE functional is also a good can-
didate to look into the phase transition temperature difference of different
isotopes. Although the transition temperature is larger than the experimen-
tal values, with 91 K for H2O and 97 K for D2O, the temperature difference
between H2O and D2O is 6 K with this functional, in agreement with the
experimental 4 K difference. We made a detailed analysis of the contribution
of each term in QHA to the total Helmholtz free energy, and concluded that
this temperature difference of different isotopes is only due to the difference
in the zero point energy of different ices, and nuclear quantum effects play a
crucial role in this phase transition.
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6 Zero Point Effects in Other Ice Phases and

Ice-like Structures

We have shown that ab initio density functional theory within quasi-harmonic
approximation, is correctly predicting the isotope effect in hexagonal ices, ice
Ih and ice XI. Experimental results show that this anomalous isotope effect
of the replacement of H with D, also persists in liquid water, [1, 18] although
the structure of the liquid is very different that ice. Even though there is still
a hydrogen bond network, the molecules are not ordered as in hexagonal ice,
meaning that there is no defined underlying lattice structure. Furthermore,
there is a debate about the structure of liquid water, especially in the super-
cooled regime. One of the theories is that there is a mixture of high density
liquid and low density liquid phases, as it was introduced at the beginning
of this thesis. Therefore, analysing nuclear quantum effects in liquid water
is not straightforward.

In order to understand how the isotope effect changes with the density
and Hbond distance, we have looked at several different phases of ice under
different pressure regimes. By analysing how the isotope effect magnitude
and sign (normal vs. anomalous) changes with different structures with dif-
ferent bond lengths, we can make links to the effects in liquid water. For
this purpose, we have looked at cubic ice Ic, clathrate hydrate structure I,
high density ices: ice IX, ice II, and ice VIII, and the amorphous ices with
different densities. Each of these structures and the resulting phonon density
of states, Grüneisen parameters, and the isotope effects will be detailed in
this chapter.

6.1 Cubic Ice Ic

6.1.1 Structure

Cubic ice Ic is a metastable phase with a structure similar to hexagonal
ice. Oxygen atoms of ice Ic are arranged in cubic structure of diamond. The
relationship between the hexagonal ice and the cubic ice is defined by different
stacking orders: ice Ih is stacked in a sequence of ABABAB while ice Ic is
stacked in a sequence of ABCABC. There are also studies on the formation
of ice with a mixture of ice Ih and ice Ic, with stacking disorders. However,
the standard formation of ice Ic is obtained when the temperature of the
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amorphous ice is increased above ∼ 130 K [107]. In addition, supercooled
water crystallises to ice Ic upon cooling [108]. Ice Ic also forms when high
pressure phases from ice II to ice IX are recovered in liquid nitrogen and
heated [109, 110]. Therefore, there is no sharp phase transition between ice
Ic and ice Ih.

Figure 22: Cubic ice Ic structure. The image on the left is the top view of
the x-y plane; the image on the right is the side view of the x-z plane.

We are only interested in understanding the isotope effect with changing
density, and therefore the stacking disorder between ice Ic and ice Ih is beyond
the scope of this thesis. Furthermore, we have shown that the isotope effect
remains anomalous regardless of the proton ordering of the system. Hence, in
this section, we will analyse only proton ordered ice Ic, which has a diamond
lattice structure; i.e face centred cubic structure with 2 molecules in the unit
cell, as shown in Fig. 22.

6.1.2 Computational Details

All structural relaxations are performed with tζ+p atomic orbital basis set
initially, using a real-space mesh cutoff of 600 Ry for the real space integrals,
electronic k-grid Monkhorst Pack of 6×6×6 (corresponding to 132 k-points)
for unit cell calculations, force tolerance of 0.001 eV/Å and a density ma-
trix tolerance of 10−5 electrons. For the volume dependency of Kohn-Sham
energy, the electronic energy of these relaxed configurations are recalculated
using qζ+dp atomic orbital basis sets.

All the force constants calculations are performed with tζ+p basis sets.
We used an atomic displacement ∆x=0.06 Å for the frozen phonon calcula-
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tion. The rest of the methodology follows from the previous chapters. The
phonon frequencies, ωk(V0) and Grüneisen parameters γk(V0) are obtained
by diagonalizing the dynamical matrix, computed by finite differences from
the atomic forces in a (3 × 3 × 3) supercell, at volumes slightly below and
above V0. The Grüneisen parameters are calculated for 3 volumes for k-point
sampling and the phonon modes are calculated by diving Brillouin zone to a
grid of 9× 9× 9, with equal weights on each mode.

6.1.3 Results

6.1.3.1 Phonon Density of States and Grüneisen Parameters

First, we compare the phonon density of states projected on hydrogen and
oxygen atoms for ice Ic, given in Fig. 23, with ice XI from previous calcu-
lations of Fig. 9. We also present the Grüneisen parameter of each mode,
depicted by the black points in the lower panel, and the average Grüneisen
parameter of each band, with a red line, in Fig. 23.

The grouping of the density of states is very similar for both structures.
Very low frequency modes corresponding to stretching modes of Hydrogen
bonds (∼ 66 cm−1) have negative γk, meaning that this structure also shows
negative thermal expansion at low temperatures, similar to ice Ih. Bending
modes (∼ 1639 cm−1) have an average γk at around zero and therefore these
modes do not contribute to the isotope effect.

Translations (∼ 272 cm−1) and librations (∼ 826 cm−1) are defined by
the changes in the Hbond, and they have positive γk. The high frequency
antisymmetric (∼ 3283 cm−1) and symmetric (∼ 3089 cm−1) stretching
modes, dominated by H atoms, have negative Grüneisen parameter. The
inter-molecular Hbonding and intra-molecular OH covalent bonding of ice Ic
is very similar to ice Ih. Therefore, the bonding of anticorrelation of these
anharmonicities also exist for this system.

6.1.3.2 Isotope Effects on Volume and Bulk Modulus

As expected from the distribution of Grüneisen parameters with the phonon
density of states, ice Ic presents a large anomalous isotope effect in the vol-
ume. The volume of heavy, D2O ice Ic is 0.16% larger than normal ice Ic at
T = 0 K, as presented in Table 11. Similar to hexagonal ices, the isotope
effect is normal when 16O is replaced by 18O, and the volume decreases by
0.13%.
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Figure 23: Top: Phonon density of states projected on H and O for ice
Ic. Bottom: Corresponding Grüneisen parameters, γk (black dots), and the
average Grüneisen parameter of each band (red lines).

Fig. 24a shows the temperature dependence of volume for different iso-
topes for ice Ic. Similar to hexagonal ices, there is a negative thermal ex-
pansion in ice Ic at ∼ 60 K, as obtained with the vdW-DFPBE functional.
The anomalous isotope effect increases with temperature, as the volumes of
H2O and D2O get separated from each other, while the normal isotope effect
decreases as the volumes of H2O and H2

18O converge close to the melting
point.

The isotope effect on the bulk modulus is similar to the isotope effect on
the volume of ice Ic, as shown in the second part of Table 11 and presented in
Fig. 24. The difference between the bulk modulus of H2O and D2O increases
with temperature on the anomalous side, while bulk modulus of H2O and
H2

18O remain normal at all temperatures.
In summary, we have shown that the bonding of ice Ic is very similar

to ice Ih, with similar phonon density of states, and Grüneisen parameters.
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Table 11: Top: Frozen lattice parameter, classical volume, and isotope de-
pendent volumes. Bottom: Classical and isotope dependent bulk modulus
at T = 0 K. Distances are given in Å, volumes in Å3, and bulk modulus in
GPa.

XC a V0 H2O D2O H2
18O IS(H-D) IS(16O -18O)

PBE 6.25 30.47 30.87 30.99 30.83 −0.39% +0.13%
vdW-DFPBE 6.29 31.14 31.60 31.65 31.56 −0.16% +0.13%
Expt. [111] 6.358 32.127

XC B0 H2O D2O H2
18O IS(H-D) IS(16O -18O)

PBE 14.24 12.74 12.32 12.92 +3.30% −1.41%
vdW-DFPBE 14.47 13.24 13.10 13.34 +1.02% −0.81%

This results with an anomalous isotope effect on the volume and bulk modu-
lus with increasing temperatures, for hydrogen isotopes, and normal isotope
effect for oxygen isotopes, similar in both ice Ih and ice Ic.

6.2 Clathrate Hydrate Structure I

Gas hydrates, also known as clathrates are crystalline structures composed
of cages of water molecule networks holding hosts of hydrocarbons and other
molecules in their cavities [112, 113]. Clathrates are found in permafrost and
continental margins under high pressures [114] and they are quite important
for many practical reasons. They have a potential as a fuel resource, both as
deposits of hydrocarbons with much larger reserves than oil or natural gas
[113, 115] and also as a potential usage for H2 storage [116]. Furthermore,
they also can provide a possible solution to capture and store the excess ato-
mospheric carbon [117]. However, besides the host of interesting applications
they offer, they can also be a nuisance as they are known to clog the subsea
gas pipelines and cause economical and ecological risks [115]. Therefore, it
is quite important to understand the structural properties of the clathrates
in detail.

In clathrates, the hydrogen bonding (Hbond) networks of tetrahedrally
coordinated host water molecules are not significantly affected by the in-
teractions of the guest molecules. Therefore, high pressures are required to
stabilize these clathrate structures [113, 118]. Clathrates are known to form
different structures, such as structure I, structure II, structure H, etc. (for
more detail, refer to [112, 113, 118] and references within). In this section,
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Figure 24: Volume per molecule and bulk modulus of ice Ic as a function of
temperature for different isotopes calculated using the QHA with the vdW-
DFPBE functional.

we will focus on one of the most common forms, so called Structure I (sI)
with CH4 as the host molecule.

There has been recent theoretical interest in clathrates. There are quite a
few ab initio density functional theory (DFT) and quantum chemical calcu-
lations on clathrates in terms of the structural stability [119–121], methane
and hydrogen storage [122, 123], molecular vibrations [124, 125], energetics
and kinetics between the host and the guest molecules [126–128]. In addition,
the structural properties of clathrates have been investigated using empirical
force field molecular dynamics to analyse nucleation and growth mechanisms
[129–134] and the energy landscape [135].

However, the zero point effects have not been theoretically analysed for
clathrates, until this work. Similar to hexagonal ices, the anomalous isotope
effect has been experimentally observed for clathrates [5], where the lattice
constant of the heavy hydrogen isotope (D2O) is larger than that of the nor-
mal isotope (H2O) at a fixed temperature and pressure. In this section, we
make a similar analysis to hexagonal ices and we address the problem of un-
derstanding nuclear quantum effects in these structures. We investigate the
same structure as the experimental clathrate structure I with CH4 molecules
inside the cages. We further compare the empty and filled structures and
analyse how the size of empty water cages change in the presence of CH4

molecules.
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6.2.1 Structure

In this section, we study clathrate structure I, which is formed by two 512

cages and six 51262 cages for a total of 46 H2O molecules per unit cell with
a host of 8 CH4 molecules. We will perform cohesive energy analysis on two
cases of this structure:

(i) Filled sI: H2O cages of sI with the host of 8 CH4 molecules.
(ii) Empty sI: Empty H2O cages of sI without the host CH4 molecules.

Figure 25: Clathrate hydrate structure I. The image on the left is the top
view of the x-y plane; the image on the right is the side view of the x-z plane.
Note that this is only a representation of the coordination of the unit cell of
the system, and periodic boundary conditions apply during the calculations.

6.2.2 Computational Details

All the calculations are performed with the non-local van der Waals func-
tional, vdW-DFPBE for exchange and correlation [8, 9, 60]. This functional
has been shown, in previous chapters, to perform well for water and ice Ih
[6, 9].

The relaxations for calculating the E0(V) curve are perfomed using a
real-space mesh cutoff of 500 Ry for the integrals, electronic k-grid cutoff
of 10 Å, force tolerance of 0.005 eV/Å and a density matrix tolerance of
10−4 electrons. Instead of doing a variable cell optimization, we calculate
the energy for a fixed volume by changing the lattice parameters. The curve
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for Kohn-Sham energy as a function of volume is obtained and the classical
volume is calculated from the minimum of a third order polynomial fit. The
minimum of the energy-volume curve is the frozen volume of the system used
in the free energy calculations with the quasi-harmonic approximation.

For the calculations of nuclear quantum effects, the vibrational modes
are calculated using the frozen phonon approximation. The force constant
calculations are performed with an atomic displacement of ∆x = 0.08 Å.

6.2.3 Results

It is well established that clathrates are metastable structures at zero pressure
and temperature. In order to confirm that our calculations agree with this,
we have performed a detailed cohesive energy, Ec calculation of sI. We have
calculated both classical, Ec

0 and quantum, Ec
H/D2O

cohesive energy including
the nuclear zero point effects. The results are given in Table 12.

Table 12: Classical and isotope dependent cohesive energy of the empty
clathrate structure I, given in meV.

E0
c H2O D2O H2

18O
712.204 595.48 620.23 597.41

Comparing these results to those of hexagonal ice from Table 9, it is clear
that the zero point effects are quite important for cohesive energy calcula-
tions, because they tend to decrease the cohesive energy of the system in the
direction of unstability, both for ice Ih and clathrate sI. In agreement with
the experiments, at zero pressure and temperature, clathrate structure I is
metastable compared to both proton disordered and proton ordered hexago-
nal ice.

6.2.3.1 Phonon Density of States and Grüneisen Parameters

In order to understand the zero point quantum effects on this structure,
the phonon density of states projected on the oxygen and hydrogen atoms
and the corresponding Grüneisen parameters are calculated. For the filled
structures, there is a large numerical error in the low frequency modes. As
explained in Chapter 3, the negative phonon modes in the low frequency
modes are not included in the analysis and in this case, there are quite
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a few modes that are thrown away in the filled structure. These are the
contributions from the host CH4 molecules, and they are coupled to the low
frequency translational modes of the cage. Therefore, the results from the
filled structures do not show the zero point effects from these modes. This is
equivalent to removing contributions from CH4 of filled cages, and provides
a fairly good comparison to the empty cages. The main difference between
the phonon modes of filled and empty cages is in the sign of the Grüneisen
parameter of the low frequency modes. This will only affect the negative
thermal expansion prediction at low temperatures and will not affect the
sign of the isotope effect as will be shown in the next subsection.

Comparing the results in figures 9 and 26 shows that there is an overall
softening of the modes in the clathrate structure compared to ice Ih.
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Figure 26: Top: Phonon density of states projected on H and O for the
empty clathrate structure I. Bottom: Corresponding Grüneisen parameters,
γk (black dots), and the average Grüneisen parameter of each band (red
lines).

As expected, the anticorrelation between the Hbonds and covalent OH

88



bonds [6], is still observable in the empty sI, in the projected density of
states and the corresponding Grüneisen parameters. If the average Grüneisen
parameter of each phonon branch is compared between the empty sI and
ice Ih, the clathrate has a smaller positive value for the translational and
librational modes. On the other hand, for the symmetric and anti-symmetric
stretching modes of the covalent OH bonds, empty structure I has larger
negative values than H-ordered ice Ih. In the end, the anticorrelation between
the positive and negative Grüneisen parameters with their corresponding
frequencies results in an overall anomalous isotope shift in the volume and
bulk modulus of H2O and D2O, as shown in the next section below.

6.2.3.2 Isotope Effects on Volume and Bulk Modulus

The cell volume per H2O molecule and the bulk modulus results calculated
from the minimum and the curvature of the energy as a function of volume
are shown in Table 13. The initial calculations are performed at the free
energy curve minimum, therefore at zero pressure.

Both Table 13, and Fig. 27a show one striking difference between the
empty and filled structures. The volume per molecule of the empty structure
is larger than the volume per molecule of the filled structure at the zero tem-
perature limit. Inclusion of the zero point effects increases the volume, but
does not change the fact that inclusion of the host CH4 molecules decreases
the volume of the structure. This continues up to ∼ 250 K, and then there is
a crossing, where the volume of the filled structure becomes larger than the
volume of the empty structures, as shown in Fig. 27a. It should be noted
that the QHA does not involve the anharmonic terms on the phonon modes
directly due to the temperature, as explained in the theory chapter. There-
fore, the divergence of the volume with the temperature does not involve
the temperature effects directly, and has larger error with increasing tem-
perature. However, the difference in the volume between the isotopes in all
temperature ranges are in good agreement regardless of the host molecules.
And the isotopic volume change, IS(H-D) in the Table 13 is very similar for
both structures.
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Table 13: Top: For clathrate structure I, frozen lattice parameter, classical
volume, and isotope dependent volumes. Bottom: Classical and isotope
dependent bulk modulus at T = 0 K and experimental temperatures and
pressures. Volumes are given in Å3, bulk modulus in GPa, temperature in
K, and pressure in bar.

Structure P T V0 H2O D2O H2
18O IS(H-D) IS(16O -18O)

Empty 0.00 0 35.53 35.90 35.97 35.86 −0.20% +0.11%
Empty 0.00 271 37.21 36.20 36.40 36.18 −0.55% +0.06%
Empty 0.00 273 37.23 36.21 36.41 36.19 −0.55% +0.06%
Empty 59.41 271 37.17 36.18 36.38 36.16 −0.55% +0.06%
Empty 59.41 273 37.19 36.19 36.39 36.17 −0.55% +0.06%
Empty 601.19 271 36.86 35.97 36.15 35.95 −0.50% +0.06%
Empty 601.19 273 36.88 35.97 36.16 35.95 −0.53% +0.06%
Filled 0.00 0 34.95 35.45 35.51 35.42 −0.17% +0.09%
Filled 0.00 271 37.11 36.27 36.46 36.26 −0.52% +0.03%
Filled 0.00 273 37.13 36.29 36.48 36.27 −0.52% +0.06%
Filled 59.41 271 37.08 36.25 36.44 36.24 −0.52% +0.03%
Filled 59.41 273 37.10 36.27 36.45 36.25 −0.50% +0.06%
Filled 601.19 271 36.83 36.07 36.24 36.05 −0.47% +0.06%
Filled 601.19 273 36.85 36.08 36.26 36.07 −0.50% +0.03%
Expt. [5] 59.41 271 − 37.12 − − −0.40% −
Expt. [5] 59.41 273 − − 37.27 − −0.40% −
Expt. [5] 601.19 271 − 36.90 − − −0.43% −
Expt. [5] 601.19 273 − − 37.06 − −0.43% −
Structure T P B0 H2O D2O H2

18O IS(H-D) IS(16O -18O)
Empty 0.00 0 11.46 10.56 10.38 10.65 +1.71% −0.85%
Empty 0.00 271 5.85 8.78 8.24 8.82 +6.15% −0.46%
Empty 0.00 273 5.79 8.75 8.20 8.79 +6.29% −0.46%
Empty 600.00 271 6.81 9.39 8.89 9.42 +5.33% −0.32%
Empty 600.00 273 6.75 9.36 8.86 9.40 +5.34% −0.43%
Filled 0.00 0 14.55 13.39 13.26 13.47 +0.97% −0.60%
Filled 0.00 271 7.73 10.31 9.75 10.31 +5.43% +0.05%
Filled 0.00 273 7.64 10.27 9.70 10.26 +5.55% +0.05%
Filled 600.00 271 8.49 10.85 10.33 10.85 +4.79% +0.04%
Filled 600.00 273 8.42 10.81 10.28 10.80 +4.90% +0.05%
Expt. [5] 600.00 271 − 9.11 − − +9.88% −
Expt. [5] 600.00 273 − − 8.21 − +9.88% −
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There is also a difference in the negative thermal expansion of filled and
empty clathrate cages. Similar to hexagonal ices, the empty cages show a
negative thermal expansion at ∼ 96 K, while filled cages do not show a
negative thermal expansion. This difference is due to removing the negative
phonon modes from CH4 molecules from the analysis, which are coupled to
the low frequency modes of the H2O cages. This, in return, removes the
contributions from the Grüneisen parameters of these modes to the nuclear
quantum effect. These are the modes with negative γk that lead to negative
thermal expansion.

Therefore, the DFT prediction should be taken from the results of empty
cages, as the main contribution to this effect would be from the water
molecules. DFT predicts these structures to have negative thermal expan-
sion. However, this difference between empty and filled systems, does not
affect the isotopic volume change.

The next comparison we can make is between empty clathrate sI and
hexagonal ices, to understand the structural differences of the cages to the
ice. When we investigate the volume and bulk modulus of the clathrates to ice
Ih results from previous studies [6], it is clear that clathrates are much softer
structures than ice, with larger volume per molecule and correspondingly
smaller bulk modulus.
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Figure 27: Volume per molecule and bulk modulus of clathrate structure I as
a function of temperature for different isotopes calculated for zero pressure
using the QHA with the vdW-DFPBE functional. Dashed lines represent the
filled structure and the straight lines represent the empty structure.

In addition to the absolute values of these calculations, it is also important
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to understand the role of zero point quantum effects, and compare the relative
isotope shift from H → D. Tables 3 and 13 show that the anomalous isotope
shift is larger than ice Ih for higher temperatures, since volume difference
increases from 0.20% at 0K to 0.55% at 271K for the empty clathrate sI.
This comparison also shows that the isotope shift is enhanced in clathrate
structures, in agreement with our results from the Grüneisen parameters.
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Figure 28: Volume change in clathrate structure I as a function of pressure
relative to H2O for both isotopes at their respective experimental tempera-
tures. Dashed lines are the filled structures and the solid lines are the empty
structures. Also shown are the experimental result from Ref. [5].

However, these structures are metastable at this pressure, making it hard
to compare to experiments [5]. In order to compare our results of isotope
effects to the experimental results [5], we look at the free energy profiles
of corresponding temperatures. From Fig. 27a, we take free energy as a
function of volume at the corresponding experimental temperatures, T = 271
K for H2O and T = 273 K for D2O. Then we calculate the pressure as a
function of volume from this free energy function, as explained in eq. 54. The
corresponding volume and pressure values are taken for comparison to two
experimental temperature values of 271 K for H2O and 273 K for D2O. The
absolute values of the pressure and volume for corresponding experimental
temperatures are given in Table 13. In order to compare the relative isotope
shift in structure I, the experimental H2O volume at the lowest experimental
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pressure and the calculated H2O volume at zero pressure are both set to zero.
Then the relative change in the volume from H2O to D2O are plotted in Fig.
28.

These results show that the vdW-DFPBE functional captures the correct
anomalous isotope effect. The relative isotope shift calculations in the volume
from H to D for both empty and filled clathrate structure I are in agreement
with the experiments. Even though there is a difference in the slopes of
the experimental and the theoretical values, which is reflected in the bulk
modulus results of the Table 13, the net isotope shift in the volume is well
represented in these theoretical lines, as reflected in the volume results of the
same table.

6.3 Ice Nice IX and Ice Two II

6.3.1 Structures

6.3.1.1 Structure of Ice IX

“Now suppose,” chortled Dr. Breed, enjoying himself, “that there were many
possible ways in which water could crystallize, could freeze. Suppose that
the sort of ice we skate upon and put into highballs–what we might call ice-
one– is only one of several types of ice. Suppose water always froze as ice-
one on Earth because it had never had a seed to teach it how to form ice-
two, ice- three, ice-four...? And suppose,” he rapped on his desk with his
old hand again, “that there were one form, which we will call ice-nine–a
crystal as hard as this desk–with a melting point of, let us say, one-hundred
degrees Fahrenheit, or, better still, a melting point of one-hundred-and-thirty
degrees.”

Kurt Vonnegut - Cat’s Craddle

We are lucky that the structure of real ice nine is different than the one
imagined by Kurt Vonnegut. Ice IX is a phase of ice that is stable under
pressure and low temperatures, therefore it cannot cause ice I to nucleate at
the ambient temperatures, and cannot be used to bring the world’s end.

Instead, ice IX forms via a phase transition from metastable ice III. The
proton ordering of ice III occurs when high permittivity due to the proton
disorder of ice III falls gradually at around 173 K [136]. Neutron diffraction
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Figure 29: Ice IX structure. The image on the left is the top view of the x-y
plane; the image on the right is the side view of the x-z plane.

experiments show that the unit cell of ice IX is tetragonal with proton or-
dering [137, 138]. Ice IX has 12 molecules in the unit cell as shown in Fig.
29.

6.3.1.2 Structure of Ice II

Ice II forms when pressure is applied on hexagonal ice Ih at temperatures
between 193 K and 231 K, or when pressure is released from ice V at 243 K
[139]. When ice II is heated, a phase transition to ice III occurs. However,
cooling of ice III does not transform it back to ice II, instead, ice III stays
metastable until it transforms into ice IX [139].

The structure of ice II is determined both from X-ray [140] and neutron
diffraction measurements [141]. This structure is determined to be com-
pletely proton ordered.

The unit cell is rhombohedral with α = 113.1◦ and has 12 molecules, as
shown in Fig. 30. This angle is kept constant in all calculations.

Table 14 shows the frozen lattice parameters of ice IX and ice II at the
zero temperature and pressure limit, compared with the experimental values.
For ice IX, the PBE functional predicts slightly smaller a lattice parameter,
but overestimates the tetragonality by predicting much larger c lattice pa-
rameter than the vdW-DFPBE functional. Interestingly, the PBE functional
and the vdW-DFPBE functional give very similar lattice parameters for ice
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Figure 30: Ice II structure. The image on the left is the top view of the x-y
plane; the image on the right is the side view of the x-z plane.

Table 14: Top: Frozen lattice parameters, a and c, and the tetragonality c/a,
given in Å.

Ice XC a c c/a
IX PBE 6.62 7.33 1.107
IX vdW-DFPBE 6.65 6.76 1.102
IX Expt. [137] 6.692 6.715 1.003
II PBE 7.72 − −
II vdW-DFPBE 7.71 − −
II Expt. [140] 7.78 − −

II. As compared to the PBE functional, inclusion of the van der Waals forces
with the vdW-DFPBE functional, shows an overall better agreement with the
experiments, especially when the tetragonality of ice IX is considered.

6.3.2 Computational Details

All structural relaxations are performed with dζ+dp atomic orbital basis set
developed in Ref. [36], using a real-space mesh cutoff of 500 Ry for the real
space integrals, force tolerance of 0.001 eV/Å and a density matrix tolerance
of 10−5 electrons. For unit cell calculations of ice II, electronic k-grid cutoff
of 15Å (corresponding to 50 k-points) is employed, while electronic k-grid
Monkhorst Pack of 6× 6× 6 (corresponding to 132 k-points) is employed for
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ice IX.
For the volume dependency of Kohn-Sham energy, the electronic energy

of these relaxed configurations are recalculated using qζ+dp atomic orbital
basis sets.

All the force constants calculations are performed with dζ+dp basis sets.
We used a real-space mesh cutoff of 800 Ry for the real space integrals and an
atomic displacement ∆x=0.06 Å for the frozen phonon calculation. The rest
of the methodology follows from the previous chapters. The phonon frequen-
cies, ωk(V0) and Grüneisen parameters γk(V0) are obtained by diagonalizing
the dynamical matrix, computed by finite differences from the atomic forces
in a (3 × 3 × 3) supercell, at volumes slightly below and above V0. The
Grüneisen parameters are calculated for 3 volumes with k-point sampling
and the phonon modes are calculated by diving Brillouin zone to a grid of
9× 9× 9, with equal weights on each mode.

6.3.3 Results

6.3.3.1 Phonon Density of States and Grüneisen Parameters

As the density of the ice structure increases from hexagonal ices, ice XI, ice
Ih to higher density ices ice II, and ice IX, it becomes harder to distinguish
the low frequency Hbond stretching modes from the rest of translations.
These low frequency modes clearly have negative Grüneisen parameter in
ice XI, ice Ih, and ice Ic, while low frequency modes of ice II, and ice IX
have a mixture of negative and positive Grüneisen parameters. Therefore,
we will analyse these five bands for the rest of the structures: translational,
librational, bending, symmetric and anti-symmetric stretching modes.

Fig. 31 shows the phonon density of states of ice IX, which has a similar
profile to ice II. At the low frequency limit, the translational modes (ω ∼ 197
cm−1) have a mixture of positive and negative Grüneisen parameters, but
overall the average is positive. Librational modes (ω ∼ 783 cm−1) always
have positive Grüneisen parameters. These two modes are in competition
with symmetric (ω ∼ 3203 cm−1) and anti-symmetric stretching (ω ∼ 3385
cm−1) modes at the high frequency limit, but the Grüneisen parameter of
these modes are less negative in magnitude. Similar to ice II, the weight of
these modes is smaller than hexagonal ices at T = 0 K.

Fig. 32 shows the phonon density of states projected onto hydrogen and
oxygen atoms, the corresponding Grüneisen parameters, and the average of
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Figure 31: Top: Phonon density of states projected on H and O for ice
IX. Bottom: Corresponding Grüneisen parameters, γk (black dots), and the
average Grüneisen parameter of each band (red lines).

γk of each band. For ice II, the low frequency translational modes (ω ∼ 197
cm−1) have an average of positive Grüneisen parameters, although the low
energy end of the spectra has a mixture of positive and negative modes,
pulling the average downwards. Librational modes (ω ∼ 756 cm−1) also
have positive Grüneisen parameters, and these modes contribute towards a
normal isotope effect. As in all structures, the bending modes (ω ∼ 1667
cm−1) are very harmonic and they have Grüneisen parameters that are zero,
hence do not have a significant effect on the sign of the isotope effect. High
frequency symmetric stretching modes (ω ∼ 3237 cm−1) and anti-symmetric
stretching modes (ω ∼ 3404 cm−1) have negative Grüneisen parameters,
but the magnitude of γk decreases as the density of the structure increases.
Therefore, these modes that favour anomalous isotope effect, starts to have
less weight at T = 0 K limit.

The results of the fine balance between these competing anharmonicities
are discussed in the next section.
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Figure 32: Top: Phonon density of states projected on H and O for ice
II. Bottom: Corresponding Grüneisen parameters, γk (black dots), and the
average Grüneisen parameter of each band (red lines).

6.3.3.2 Isotope Effects on Volume and Bulk Modulus

Differences from the results of previous calculations start to occur in ice
structures with high densities. First, we compare the isotope effect on these
structures predicted by different functionals. Table 15 compares the volume
and bulk modulus results with the PBE and the vdW-DFPBE functionals.
For ice IX, the difference between these two functionals is the most clear.
The vdW-DFPBE functional favours interstitial sites, while it is energetically
expensive to fill these interstitial sites with the PBE functional. As a result,
this difference becomes visible in ice IX, which is the ice structure with
lowest density amongst the high density ices. For ice IX, the PBE functional
predicts an anomalous isotope effect on the volume for the replacement of
hydrogen with deuterium, both at zero pressure and under experimental
pressure values. The magnitude of the anomalous isotope effect is small at the
T = 0 K limit, and the difference between the volumes of the isotopes, IS(H-
D), gets separated with increasing temperature. While the isotope effect on
the bulk modulus is consistent for the isotope effect on the volume for the
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vdW-DFPBE functional, the bulk modulus results of different isotopes are the
same within the error of our numerical calculations for the PBE functional
and this makes it hard to establish the sign of the isotope effect predicted by
PBE.

Table 15: Top: For ice IX and ice II, classical volume, V0, and isotope
dependent volumes. Bottom: Classical and isotope dependent bulk modulus.
Pressure is given in GPa, temperature in K, volume in Å3 and bulk modulus
in GPa.

Ice XC P T V0 H2O D2O H2
18O IS(H-D) IS(16O -18O)

IX PBE 0.00 0 26.82 27.30 27.32 27.26 −0.072% +0.125%
IX PBE 0.00 165 27.82 27.54 27.59 27.52 −0.173% +0.078%
IX PBE 0.28 0 26.13 26.59 26.61 26.56 −0.070% +0.123%
IX PBE 0.28 165 27.04 26.80 26.84 26.77 −0.165% +0.079%
IX vdW-DFPBE 0.00 0 24.95 25.44 25.41 25.41 +0.095% +0.103%
IX vdW-DFPBE 0.00 165 25.84 25.76 25.76 25.74 +0.007% +0.063%
IX vdW-DFPBE 0.28 0 24.49 24.93 24.90 24.90 +0.087% +0.094%
IX vdW-DFPBE 0.28 165 25.25 25.20 25.19 25.18 +0.009% +0.058%
IX Expt. [137] 0.28 165 − 25.060 − − − −
II PBE 0.00 0 24.77 24.84 24.83 24.83 +0.010% +0.014%
II PBE 0.00 123 24.85 24.85 24.85 24.85 +0.005% +0.010%
II vdW-DFPBE 0.00 0 24.62 25.10 25.07 25.07 +0.118% +0.099%
II vdW-DFPBE 0.00 123 25.17 25.20 25.18 25.18 +0.080% +0.074%
II Expt. [140] 0.00 123 − 25.354 − − − −
Ice XC P T B0 H2O D2O H2

18O IS(H-D) IS(16O -18O)
IX PBE 0.00 0 10.67 10.58 10.57 10.58 +0.039% −0.068%
IX PBE 0.00 165 9.81 10.13 10.09 10.13 +0.325% +0.028%
IX PBE 0.28 0 10.79 10.71 10.71 10.72 +0.032% −0.055%
IX PBE 0.28 165 10.05 10.34 10.31 10.33 +0.276% +0.035%
IX vdW-DFPBE 0.00 0 14.36 13.18 13.24 13.24 −0.456% −0.498%
IX vdW-DFPBE 0.00 165 11.49 11.89 11.87 11.92 +0.120% −0.306%
IX vdW-DFPBE 0.28 0 15.44 14.42 14.47 14.48 −0.355% −0.388%
IX vdW-DFPBE 0.28 165 13.03 13.36 13.35 13.39 +0.089% −0.221%
II PBE 0.00 0 15.36 15.15 15.16 15.16 +0.010% +0.014%
II PBE 0.00 123 15.10 15.09 15.10 15.10 +0.005% +0.010%
II vdW-DFPBE 0.00 0 19.10 17.27 17.39 17.37 −0.666% −0.561%
II vdW-DFPBE 0.00 123 16.39 16.62 16.68 16.68 −0.373% −0.370%
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For ice II, the PBE and vdW-DFPBE functionals give consistent results.
For both functionals, the isotope effect on volume starts normal at low tem-
peratures and the crossing to the anomalous isotope effect occurs close to
the experimental temperature. At high temperatures, the anomalous isotope
effect is recovered. While the isotope effect on the volume is robust, the
isotope effect on the bulk modulus is different. For the PBE functional, the
isotope effect results of different isotopes are close to each other, such that
it is hard to determine the sign of the isotope effect within the numerical
error of our calculations. However, it is clear that for the vdW-DFPBE func-
tional, the isotope effect on the bulk modulus becomes anomalous at high
temperatures.
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Figure 33: Volume per molecule and bulk modulus of ice IX as a function
of temperature for different isotopes calculated using the QHA with vdW-
DFPBE functional.

The isotope effect results of the vdW-DFPBE functional, which will be
detailed below, are robust for these systems. Fig. 33 for ice IX and Fig.
34 for ice II show how the isotope effect on the volume and the bulk modu-
lus changes with temperature, as obtained with the vdW-DFPBE functional.
Common for both ice IX and ice II, at T = 0 K, the isotope effect is normal.
As explained before, this is due to the low frequency modes with γk > 0
dominating the temperature dependence of the volume and bulk modulus.

Fig. 33a, and Fig. 34a show the temperature dependence of the volume
of ice IX and ice II respectively, for different isotopes, and the classical limit,
where zero point effects are not taken into account. At temperatures after
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Figure 34: Volume per molecule and bulk modulus of ice II as a function of
temperature for different isotopes calculated using the QHA with the vdW-
DFPBE functional.

the classical limit crosses the quantum limit, the isotope effect from H to
D, becomes anomalous. This is because the low frequency modes become
classical, while the energy of the high frequency modes are still above the
classical limit at these temperatures. Therefore, the quantum effects of these
high frequency modes with γk < 0 start to dominate, and the isotope effect
becomes anomalous. The isotope effect on oxygen isotopes from 16O to 18O
remains normal for all temperatures at all structures.

The results of bulk modulus are similar to the volume results, as given in
Fig. 33b and Fig. 34b for ice IX and ice II respectively. The bulk modulus of
D2O is larger than H2O at T = 0 K, as a normal isotope effect in this limit.
As the temperature increases, there is a crossing and the bulk modulus of
D2O is becomes smaller than H2O, resulting as an anomalous isotope effects
at higher temperatures.

Therefore for these structures with increasing density, we see that the
anomalous isotope effect is not robust any more and there is a crossing from
normal isotope effect to anomalous isotope effect with increasing tempera-
ture.
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6.4 Ice Eight VIII

6.4.1 Structure

Ice VII and its proton ordered form ice VIII are the most dense ice phases,
located at the high pressure region of the ice phase diagram. Ice VIII has
tetragonal structure with two interpenetrated networks [142, 143], that are
independent of each other, each with underlying structure of ice Ic. Within
each network, the aforementioned ice rules are satisfied, but there are no
Hbond connection between the two networks. This results in having water
molecules of one network in the interstitial cells of the other network. Ex-
istence of these interstitial molecules is very interesting. The structure of
liquid water is in between ice Ih and ice VIII, where the interstitial sites
are starting to be filled compared to ice Ih, but not entirely filled compared
to ice VIII. The bonding between these unconnected networks of ice VIII
is dominated by the van der Waals interaction. Therefore, the inclusion of
vdW forces into the calculations become even more important for this case.
We will study this using two different approximations to the exchange and
correlation functionals, with and without including vdW interactions. Pre-
vious studies that have detailed analysis of the Hbonded O-O networks and
non-bonded O· · ·O networks, do not include vdW effects in their calculations
[144, 145].

Figure 35: Ice VIII structure. The image on the left is the top view of the
x-y plane; the image on the right is the side view of the x-z plane.
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The structure of ice VIII is determined to be tetragonal from neutron
diffraction experiments. Each interpenetrating layer has ferroelectric order-
ing along ẑ-axis with opposite signs, resulting in a net antiferroelectric struc-
ture [143, 146–148] Ice VIII has 8 molecules in the unit cell as shown in Fig.
35.

One interesting structural difference of ice VIII is that the oxygen-oxygen
distance of the first Hbonded shell is shorter than the shortest non-bonded
(vdW) configuration. Each molecule has 4 tetrahedral Hbonded configura-
tion. Experimentally the distance between the molecules of this configu-
ration is: rHbonded

OO = 2.979(1)Å [143] and for the vdW-DFPBE functional
it is rHbonded

OO = 2.943Å. Then, each molecule has 4 vdW bonded config-
uration, 2 of which are closer than the Hbond distance, and 2 are fur-
ther. Experimentally, the first vdW bonded (non-bonded) configuration dis-
tance is: rvdW1

OO = 2.743(9)Å [143] and for the vdW-DFPBE functional it
is rvdW1

OO = 2.822Å. The second vdW bonded configuration distance for the
vdW-DFPBE functional is: rvdW2

OO = 3.075Å, resulting an average of 4 vdW
bond lengths of rvdWOO = 2.949Å, as shown in Table 18.

6.4.2 Computational Details

All structural relaxations are performed with dζ+dp atomic orbital basis set
developed by Ref. [36], using a real-space mesh cutoff of 600 Ry for the real
space integrals, electronic k-grid Monkhorst Pack of 4×4×4 (corresponding
to 32 k-points) for unit cell calculations, force tolerance of 0.001 eV/Å and
a density matrix tolerance of 10−5 electrons. For the volume dependency of
Kohn-Sham energy, the electronic energy of these relaxed configurations are
recalculated using qζ+dp atomic orbital basis sets.

All the force constants calculations are performed with dζ+dp basis sets.
We used a finer real-space mesh cutoff of 800 Ry with an atomic displacement
∆x=0.06 Å for the frozen phonon calculation. The rest of the methodology
follows from the previous chapters. The phonon frequencies, ωk(V0) and
Grüneisen parameters γk(V0) are obtained by diagonalizing the dynamical
matrix, computed by finite differences from the atomic forces in a (3× 3× 3)
supercell, at volumes slightly below and above V0. The Grüneisen parameters
are calculated for 3 volumes with k-point sampling and the phonon modes
are calculated by diving Brillouin zone to a grid of 9 × 9 × 9, with equal
weights on each mode.

The QH2 level of approximation has been employed in all the ice struc-
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tures of this thesis, except for ice VIII. In this case, QH2 makes the volume
dependency of the free energy too soft, making the analysis impossible for
high temperatures. Therefore, QH1 level of the QHA has been used for the
free energy calculations of ice VIII.

6.4.3 Results

6.4.3.1 Phonon Density of States and Grüneisen Parameters

According to DFT calculations, in ice VIII, the nuclear quantum effects result
in normal isotope effect [73, 149]. However, it is not immediately clear from
these results why the anticorrelations between the Hbond and covalent bond
balance each other, resulting in the normal isotope effect. The inelastic
neutron scattering spectrum of ice VIII shows a weak coupling between the
intra-molecular and inter-molecular modes [150], which may actually point
to the normal isotope effect in this system. There are no experiments, to
our knowledge, that measure the isotope effects on ice VIII. Therefore, we
repeat our analysis of projected density of states and their corresponding
Grüneisen parameters for ice VIII structure to compare with these previously
established DFT calculations.

At the low frequency limit, the translational modes (ω ∼ 194 cm−1),
dominated by the oxygen atoms, have clearly positive Grüneisen parameters
with a large average. Similarly, librational modes (ω ∼ 724 cm−1), also have
γk > 0. Bending modes (ω ∼ 1628 cm−1), have positive Güneisen parameter,
but they are very close to zero on average, similar to the rest of the analysed
structures, contributing little to the isotope effect.

At the high frequency limit, the symmetric (ω ∼ 3392 cm−1) and anti-
symmetric stretching (ω ∼ 3500 cm−1) modes have Grüneisen parameters
that are slightly negative, but close to zero on average. The main difference
between the structures occurs at this high frequency limit. As the density
increases, the Grüneisen parameters of the stretching modes get closer to
zero, contributing the least, among all the structures, towards the anomalous
isotope effect.

6.4.3.2 Isotope Effects on Volume and Bulk Modulus

At the other extreme of the ice phase diagram, at high pressures, the density
of the ice is largest. Therefore, in ice VIII, the isotope effect is normal at all
temperatures. As explained in the previous section, the contributions from
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Figure 36: Top: Phonon density of states projected on H and O for ice
VIII. Bottom: Corresponding Grüneisen parameters, γk (black dots), and
the average Grüneisen parameter of each band (red lines).

the negative Grüneisen parameters become small enough to tip the balance
of the anharmonities, and result in a normal isotope effect.

When we compare the results with the PBE functional to the vdW-DFPBE

functional, PBE gives larger volume both for classical and quantum limits.
With the increase of the pressure, volume decreases significantly, and for both
functionals, the isotope effect on volume starts to decrease with increasing
temperature. Overall the isotope effect on volume IS(16O -18O) is smaller
than IS(H-D).

When the PBE functional is considered, at the zero pressure limit, the
isotope effect on bulk modulus is consistent with the isotope effect on vol-
ume, both being normal. However, there is an inconsistency in the isotope
effect on the bulk modulus under pressure: at P = 2.5 GPa the isotope
effect on the bulk modulus becomes anomalous. Inclusion of the van der
Waals forces with the vdW-DFPBE functional removes this inconsistency.
This shows that the vdW-DFPBE functional softens the system such that the
slope and the curvature of the free energy surface of different isotopes are
consistently shifted up to the experimentally measured pressures. At much
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Table 16: Top: For ice VIII, classical volume, and isotope dependent volumes.
Bottom: Classical and isotope dependent bulk modulus. Pressure is given in
GPa, temperature in K, volume in Å3 and bulk modulus in GPa.

XC P T V0 H2O D2O H2
18O IS(H-D) IS(16O -18O)

PBE 0.0 0 20.57 21.70 21.53 21.67 +0.78% +0.14%
PBE 2.5 0 20.57 19.16 19.03 19.14 +0.68% +0.10%
vdW-DFPBE 0.0 0 20.04 21.09 20.90 21.06 +0.90% +0.14%
vdW-DFPBE 2.5 0 18.33 19.06 18.94 19.04 +0.63% +0.11%
Expt. [143] 2.4 10 − 18.359 − − − −
XC P T B0 H2O D2O H2

18O IS(H-D) IS(16O -18O)
PBE 0.0 0 16.39 14.75 15.07 14.82 −2.17% −0.47%
PBE 2.5 0 23.87 24.71 24.64 24.70 +0.28% +0.04%
vdW-DFPBE 0.0 0 21.82 16.22 17.42 16.42 −7.40% −1.23%
vdW-DFPBE 2.5 0 33.51 32.28 32.58 32.33 −0.93% −0.16%

higher pressures, for example at around P ∼ 5 GPa, the isotope effects starts
normal at low temperatures and then becomes anomalous. Further on, at
around P ∼ 10 GPa, it becomes completely anomalous for bulk modulus
also with the vdW-DFPBE functional. Isotope effect on the volume remains
normal at these pressures.

Fig. 37 shows the isotope effect on the volume and the bulk modulus
of ice VIII calculated with the vdW-DFPBE functional. We first present the
zero pressure limit where the volume is larger than the experimental pressure
region, P = 2.5 GPa. Consistently, the bulk modulus is much smaller in the
zero pressure limit, making the structure softer than the structure under
pressure. For the vdW-DFPBE functional, the isotope effect on volume and
bulk modulus remains normal up to the melting point.
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Figure 37: Volume per molecule and bulk modulus of ice VIII as a function of
temperature for different isotopes calculated using the QHA with the vdW-
DFPBE functional.
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The normal isotope effect on the volume is very robust in the pressure
range up to P ∼ 10 GPa, and up to the melting point. Therefore, we can
conclude that in liquid water, if the density gets higher such that the Hbond
networks are broken, the resulting isotope effect would be normal instead of
anomalous.

6.5 Amorphous Ices

6.5.1 Structure

Analysing different phases of ice with different densities, and bonding con-
figurations shows the general changes in the isotope effect with increasing
density. However, the structure of liquid water is different from these ice
phases. In ices, there is always an underlying lattice, resulting in an ordered
tetragonality, well defined Hbonds and interstitial sites. Upon melting, this
underlying lattice vanishes. There are still Hbond networks in liquid water,
but without any order to the system, which makes it difficult to make links
from ices to the liquid water. Therefore, we have decided to investigate amor-
phous ices, where similar to the liquid, there is no long-range order, which
can be seen in Fig. 40a.

Amorphous ices occur when the liquid is frozen at low temperatures such
that molecular rearrangement cannot occur. High density amorphous ice
(HDA) forms when ice Ih or ice Ic is frozen at 77 K at high pressures along
the solid-liquid boundary extrapolation, with a sharp transition at 1.12 GPa
[139, 151, 152]. When pressure is released to atmospheric pressure, and
temperature is increased to ∼ 125 K, it remains amorphous, but density de-
creases, and it transforms into low density amorphous ice (LDA) [153]. When
LDA is further heated, above ∼ 129 K it goes under a glass transition and
then crystallises into ice Ic. The properties of LDA ice are similar to amor-
phous solid water (ASW) that forms when when liquid water is frozen below
∼ 120 K at atmospheric pressure. Another method of producing amorphous
ices is firing a jet of water into a cryoliquid at 77 K, and this phase is called
hyperquenched glassy water (HGW) [154, 155]. Upon heating, ASW and
HGW also go under a glass transition at ∼ 136 K, and then crystallise into
ice Ic above ∼ 150 K [156]. Because they are all low density amorphous ices,
ASW, HGW, and LDA are sometimes referred as LDA in the literature.

We prepare our amorphous ices by selecting from the inherent structures
from ab initio molecular dynamics simulations of liquid water under differ-
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ent densities and structures. We distinguish between different amorphous
ices depending on their density in this section. In order to make links to the
debate in the liquid, we call our structures that are obtained from low density
liquid simulations, LDL-like and high density liquid simulations, HDL-like.
We obtain one structure of LDL-like amorphous ice from 128 molecule simu-
lations of liquid water with the PBE functional with density ρ = 1 g/cm3 at
T = 300 K. We obtain two structures of HDL-like amorphous ices from 64
molecule simulations of liquid water with the vdW-DFPBE functional with
density ρ = 1 g/cm3 at T = 300 K and one structure at T = 350 K. Finally,
we obtain one structure of HDL-like amorphous ices from 128 molecule simu-
lations of liquid water with the vdW-DFPBE functional with a higher density
ρ = 1.2 g/cm3 at T = 300 K.

Once we obtain the structures, we quench them to T = 0 K and repeat
the same procedure as before. We calculate the Kohn-Sham energy for sev-
eral fixed volumes to obtain E0(V ) and calculate the phonon frequencies at
around the energy minimum to obtain the free energy with QHA.

6.5.1.1 Changes in the Structure

The calculations start with an inherent structure from the molecular dy-
namics simulation of 64 molecule water simulation with the vdW-DFPBE

functional with density ρ = 1 g/cm3 at T = 300 K, and the structure is
quenched to zero temperature. As the volume is decreased, a jump in E0(V )
curve occurs for some of these inherent structures.

Let us first focus on the first step of the procedure. Fixing the lattice
parameter at a = 12.415 Å, keeping the volume constant, we do conjugate
gradient relaxation of this configuration to its minimum energy. At this point,
if we compare the number of Hbonds and vdW bonds in the system, we see
that there is a change in the overall number of bonds as we relax the system.
As a reference, the change in the number of Hbonds of each molecule from
the snapshot of molecular dynamics to the conjugate gradient relaxed system
is given in Fig. 38a. We see that that upon relaxation, several molecules gain
and several of them lose a single Hbond, but there is one molecule that lost
2 Hbonds and one lost 3 Hbonds. This means that upon relaxation, the
interstitial sites are closing around those molecules, resulting a lower energy
with the van der Waals functional.

After this first relaxation, we change the volume of the cell and relax again
for that fixed volume, and continue until a minimum energy is reached. We
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Figure 38: The change, from conjugate gradient relaxed (CG) coordinates
to molecular dynamics snapshot (MD), in the number of Hbonds of each
molecule at the molecular dynamics cell parameter 12.415 Å is shown in
the first panel. The second and third panels show change in the number of
Hbonds and vdW bonds of each molecule for cell parameter 12.04 Å. “High
E” labels the high energy configuration and “low E” labels the low energy
configuration.

give the relaxed coordinates of the previous volume, in fractional coordinates
of the lattice parameters, as an input of the new volume. In this way, as the
system goes down in energy and volume, we search for a minimum of the
Kohn-Sham energy. However, for this specific configuration, we see that
there is a local to global minimum transition with a sharp change in the
energy curve. This sharp change occurs when the volume decreased from
the lattice parameter 12.04 Å to 12.03 Å. Furthermore, if we start with the
relaxed fractional coordinates of 12.03 Å and give these as an input to the
12.04 Å cell, we see that this jump is not reversible. This EKS(V) curve if
given in Fig. 39

In order to make sure that this is not due to a numerical error, we required
the Mesh cutoff of 550.0 Ry and checked that there is not a large jump
between the used cutoffs of each cell relaxation. In addition, we used a fine
force tolerance of 0.005 eV/Å and density matrix tolerance of 10−5 electrons
to reduce the numerical error in energy calculations.

Now that we know this is not due to a numerical error in parametriza-
tion, we can focus on the two configurations of lattice parameter of 12.04
Å, which corresponds to the volume at the energy drop. Fig. 39 shows
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Figure 39: E0(V ) for the selected configuration. The black circles are start-
ing from the large cell size and decreasing the volume, and the red squares
are starting from the cell right after the sudden change in the energy and
increasing the volume. The lines are to guide the eye.

this sharp change in the Kohn-Sham energy. High energy phase with Kohn-
Sham energies before the sharp change in the E0(V ) curve is labelled as the
black dots, whereas low energy phase with Kohn-Sham energy after the sharp
change in the E0(V ) curve is labelled as the red squares. If we have a look
at the number of the bonds in the high and low energy configurations, and
count the number of bonds with a cutoff of 4.5 Å around each molecule,
we see that the change in energy roughly corresponds to the Hbond energy,
consistent with the changes in the number of bonds as shown in Fig. 38b.

Similarly, the vdW energy bond count before and after the sharp change
in the energy for the 12.04 Å cell is given in Fig. 38c. Comparing these two
plots, the vdW bond configuration is subject to a lot more variation than
the Hbond configuration. However, it can be concluded that after the drop
in the energy, there is an overall decrease in the vdW bonded configurations,
and increase in the Hbonded configurations, filling the interstitial sites and
favouring higher density.

The plots of Hbonds (Fig. 38b) and vdW bonds (Fig. 38c) of each
molecule show that there is a clear change in the environment of the molecules.
The sign of the bond is assigned so that it shows the change in the number

111



(a) For molecule # 1 the configuration
of neighbours at the high energy (red)
and the low energy (blue) phase.
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(b) The normalized mean square displace-
ment of the neighbours from high energy
phase to the low energy phase for each
molecule.

Figure 40: The configuration of the amorphous ice before and after the change
in the energy are investigated. Oxygen atoms are labelled with red for high
energy phase and blue for low energy phase. Panel (b) shows the mean
square displacement of neighbours of each molecule from high energy to the
low energy phase.

of bonds in the low energy configuration with respect to the high energy con-
figuration. When this is repeated for each molecule, the overall mean square
displacement is given in Fig. 40b.

These results show how the structure finds its equilibrium density through
relaxations after quenching from liquid water temperature to amorphous ice
at T = 0 K. First, its volume decreases, therefore it favours a higher density
that its liquid structure. As this happens, the interstitial sites are filled
increasing the overall Hbond configuration of the system. At the sudden
energy jump point, the change in the total energy is consistent with energy
gained by making an Hbond. This jump in the energy is observed in several
different inherent structures taken from this molecular dynamics simulations
of the vdW-DFPBE functional at density ρ = 1 g/cm3. The fact that it
is irreversible, shows that a stable phase is reached through this change in
the configuration. This shows that the vdW-DFPBE functional favours high
density structures. This is in fact consistent with the findings of Ref. [61],
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where they show that the vdW-DFPBE functional tends to make liquid water
more HDL-like. This can be seen in the radial distribution functions gOO(r)
of this functional, where the second shell of the oxygen-oxygen distribution
is almost inside the first shell [61].

For the rest of the discussion, the selected structures do not present the
sudden change in the Kohn-Sham energy, and their E0(V ) curve is smooth.
This helps to select the configurations around the minimum volume to calcu-
late phonon frequencies and the Grüneisen parameters. And all the following
free energy surfaces are, therefore, smooth and do not show this behaviour.

6.5.2 Computational Details

Structural relaxations of LDL-like structure from the PBE functional simula-
tions and HDL-like structure from the vdW-DFPBE functional simulations of
density ρ = 1.2 g/cm3 are performed with dζ+p atomic orbital basis set. Re-
laxations of HDL-like structure from the vdW-DFPBE functional simulations
of density ρ = 1 g/cm3 at T = 300 K are performed with tζ+p atomic orbital
basis set. Relaxations of HDL-like structure from the vdW-DFPBE functional
simulations of density ρ = 1 g/cm3 at T = 350 K are performed with dζ+dp
atomic orbital basis set developed by Ref. [36]. For the volume dependency
of Kohn-Sham energy, the electronic energy of these relaxed configurations
are recalculated using qζ+dp atomic orbital basis sets.

We have used a real-space mesh cutoff of 550 Ry for the real space inte-
grals, and the used mesh cutoff is consistent in all the fixed volume relax-
ations. A force tolerance of 0.005 eV/Å and a density matrix tolerance of
10−5 electrons is used in the configurational relaxations. All the force con-
stants calculations are performed with the same basis sets used in the initial
structural relaxations. The rest of the methodology follows from the previous
chapters.

6.5.3 Results

6.5.3.1 Phonon Density of States and Grüneisen Parameters

Following the same methodology, the amorphous structures obtained from
the molecular dynamics simulations are quenched to zero temperature. After
relaxing the structure and finding its new equilibrium density and volume at
the zero temperature limit, the vibrational spectra is calculated around this
equilibrium volume and the Grüneisen parameters are obtained.
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(a) PDoS of LDL-like amorphous ice.
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(b) PDoS of HDL-like amorphous ice
from ρ = 1.0g/cm3 T = 300K simu-
lation.
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(c) PDoS of HDL-like amorphous ice
from ρ = 1.0g/cm3 T = 350K simu-
lation.
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(d) PDoS of HDL-like amorphous ice
from ρ = 1.2g/cm3 T = 300K simu-
lation.

Figure 41: Top: Phonon density of states projected on H and O for amor-
phous ices. Bottom: Corresponding Grüneisen parameters, γk (black dots),
and the average Grüneisen parameter of each band (red lines).
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Fig. 41 shows the phonon density of states projected onto hydrogen
and oxygen atoms and the corresponding Grüneisen parameter of each mode
and the average of each branch. Similar to other ices, the low frequency
translational modes ∼ 180 cm−1 have a large weight from the oxygen atoms
and these modes have positive Grüneisen parameter. The librational modes,
∼ 700 cm−1 are dominated by the hydrogen atoms and these have positive
Grüneisen parameter as well. As explained before, these two modes are signa-
tures of hydrogen bonding and they have large positive γk. In all structures,
the bending modes ∼ 1600 cm−1 are very harmonic and their average γk is
around zero, not contributing to the sign of the isotope effect.

The first difference from the ices is that the symmetric and anti-symmetric
stretching frequencies, ∼ 3300 cm−1, are blueshifted compared to the hexag-
onal ices. The largest frequency of hexagonal ices is around 3500 cm−1, while
it is around 4000 cm−1 for amorphous ices. Moreover, the clear two peaks
of hexagonal ices vanish, and the stretching modes of amorphous ices re-
semble liquid water; it is not possible to distinguish between the symmetric
and anti-symmetric stretching modes, due to the long range disorder in these
systems.

However, a common trend both in hexagonal and amorphous ices is that
the slope of the Grüneisen parameters of the stretching modes is positive.
The absolute value of γk corresponding to the symmetric stretching modes
are larger in magnitude than anti-symmetric stretching modes. Furthermore,
the magnitudes of the averages of these modes get closer to zero, as compared
to hexagonal ices. Therefore, their contribution to the anomalous isotope
effect is smaller in amorphous ices.

6.5.3.2 Isotope Effects on Volume and Bulk Modulus

The resulting isotope effect from the balancing of the phonon modes and the
Grüneisen parameters is different for different amorphous structures. Table
17 shows both classical and quantum volume per molecule, and the corre-
sponding isotope effect shift in the volume, as well as the bulk modulus. Fur-
thermore, Fig. 42 presents the volume per molecule for different amorphous
structures and similarly, Fig. 43 presents the corresponding bulk modulus.
Comparing these two figures show that volume and bulk modulus results are
consistent with each other. Therefore, the discussion here will focus on the
isotope effect on the volume.

For LDL-like amorphous ice, the density is low, and the packing of the
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Table 17: Top: For amorphous ices, classical volume, and isotope dependent
volumes. Bottom: Classical and isotope dependent bulk modulus. Temper-
ature is given in K, density in g/cm3, volume in Å3 and bulk modulus in
GPa.

Structure from MD T V0 H2O D2O H2
18O IS(H-D) IS(16O -18O)

LDL-like ρ = 1.0 T = 300 0 29.60 30.07 30.12 30.03 −0.18% +0.14%
LDL-like ρ = 1.0 T = 300 250 32.37 31.18 31.39 31.16 −0.69% +0.06%
HDL-like1 ρ = 1.0 T = 300 0 26.80 27.71 27.63 27.66 +0.28% +0.16%
HDL-like1 ρ = 1.0 T = 300 250 30.46 29.01 29.10 28.98 −0.29% +0.09%
HDL-like2 ρ = 1.0 T = 300 0 27.21 27.81 27.77 27.78 +0.15% +0.11%
HDL-like2 ρ = 1.0 T = 300 250 28.70 28.48 28.51 28.47 −0.10% +0.05%
HDL-like ρ = 1.0 T = 350 0 26.78 27.63 27.53 27.58 +0.35% +0.16%
HDL-like ρ = 1.2 T = 300 0 24.23 24.57 24.55 24.55 +0.09% +0.07%
HDL-like ρ = 1.2 T = 300 250 25.10 25.01 25.02 24.00 −0.04% +0.03%

Structure T B0 H2O D2O H2
18O IS(H-D) IS(16O -18O)

LDL-like ρ = 1.0 T = 300 0 8.87 8.28 8.22 8.33 +0.81% −0.63%
LDL-like ρ = 1.0 T = 300 250 4.11 6.15 5.81 6.17 +5.61% −0.36%
HDL-like1 ρ = 1.0 T = 300 0 11.74 9.90 10.06 9.99 −1.66% −0.96%
HDL-like1 ρ = 1.0 T = 300 250 1.10 5.60 5.34 5.65 +4.60% −0.95%
HDL-like2 ρ = 1.0 T = 300 0 11.70 10.80 10.86 10.84 −0.59% −0.42%
HDL-like2 ρ = 1.0 T = 300 250 8.65 9.18 9.12 9.19 +0.60% −0.18%
HDL-like ρ = 1.0 T = 350 0 14.02 9.69 10.20 9.92 −5.21% −2.35%
HDL-like ρ = 1.2 T = 300 0 17.68 16.73 16.79 16.78 −0.38% −0.29%
HDL-like ρ = 1.2 T = 300 250 14.45 14.85 14.82 14.86 +0.16% −0.09%

structure is such that volume per molecule is the largest, both at the clas-
sical and the quantum limit. Furthermore, it has more negative Grüneisen
parameters for the stretching modes than other amorphous ices. As a result,
the isotope effect is normal for LDL-like amorphous ice, up to the melting
point. Furthermore, the isotope effect IS(H-D) is divergent with increasing
temperature, which signifies that the isotope effect in liquid water is expected
to be anomalous.
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(b) V(T) of HDL-like amorphous ice from
ρ = 1.0g/cm3 T = 300K simulation.
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(c) V(T) of HDL-like amorphous ice from
ρ = 1.0g/cm3 T = 350K simulation.
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(d) V(T) of HDL-like amorphous ice
from ρ = 1.2g/cm3 T = 300K simula-
tion.

Figure 42: Volume per molecule for amorphous ices as a function of temper-
ature for different isotopes calculated using the QHA with the vdW-DFPBE

functional.

117



0 50 100 150 200 250
T (K)

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9
B

 (
G

P
a)

H
2
O

D
2
O

H
2

18
O

Classical
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(b) B(T) of HDL-like amorphous ice
from ρ = 1.0g/cm3 T = 300K simula-
tion.
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(c) B(T) of HDL-like amorphous ice
from ρ = 1.0g/cm3 T = 350K simu-
lation.
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from ρ = 1.2g/cm3 T = 300K simula-
tion.

Figure 43: Bulk modulus for amorphous ices as a function of temperature for
different isotopes calculated using the QHA with the vdW-DFPBE functional.
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For HDL-like amorphous ices, the isotope effect is different than for LDL-
like amorphous ice. All HDL-like ices, are more closely packed than LDL-like
ices, having smaller volume per molecule. For all cases, it starts as the normal
isotope effect, labelled with positive IS(H-D) in the zero temperature limit
in Table 17. Unlike the LDL-like case, the isotope effect is convergent, with
a crossing from normal isotope effect happening at T ∼ 211 K. Then the
isotope effect becomes anomalous and the volumes of H and D get separated
up to the melting point. This predicts an anomalous isotope in the liquid
phase of these structures as well.

The isotope effect in amorphous ices has largely been neglected before.
The modelling for the experimental analysis of the structure factors and
distribution functions assume that the structures of these systems do not
change with the replacement of the isotope [157]. However, this thesis shows
that the isotope effect is different for amorphous ices with LDL-like and
HDL-like structures. HDL-like structures are more likely to have normal
isotope effect, as the temperature decreases, while LDL-like structures are
more likely to have anomalous isotope effect. Therefore, the modelling for
these experimental analysis needs to be modified to take these differences
into account for better accuracy.

Only the HDL-like structure obtained from molecular dynamics simula-
tions of ρ = 1.0 g/cm3 at T = 350 K, has a slightly different behaviour
than the rest of the HDL-like structures. For this structure, QHA fails much
sooner and it is possible to predict the isotope effect only up to T ∼ 175K.
For higher temperatures, the slope of the total energy from the phonon modes
softens the system too much and it becomes unphysical; for example classical
behaviour deviates from being linear. The reason for this is due to the high
packing of this structure. It is obtained from a simulation that is around
the compressibility minimum, and interstitial sites of this structure is more
densely packed than the rest of the HDL-like ices. It has the largest posi-
tive IS(H-D) value for volume amongst all HDL-like ices, which means that
it has the largest normal isotope effect at the zero temperature limit. This
indicates that, as the structure of the liquid gets close to the compressibility
minimum, the anomaly in the isotope effect is expected to be smaller.

6.6 Conclusion

To conclude this chapter, we have done an extensive analysis of different
polymorphs of ice. Starting from cubic ice Ic, which has a similar struc-
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ture to hexagonal ices, the investigation of the anomalous isotope effect is
extended to high pressure ice phases, ice IX, ice II and the most dense ice
phase, ice VIII. Furthermore, we have reproduced the experimental results
of anomalous isotope effect in clathrate hydrates. Finally, we analysed LDL-
like and HDL-like amorphous ices to obtain how the isotope effect changes in
these structures. We concluded that both for the crystalline ice phases and
the amorphous ices, the effect from the hydrogen isotopes is anomalous for
less dense structures, which have open interstitial sites. There is a transition
from anomalous isotope effect of least dense hexagonal ices to normal isotope
effect of most dense ice VIII. This is directly linked to the density, but more
importantly, the packing of the structures and how densely the interstitial
sites are filled. In the next chapter, we will conclude this dissertation by
making links between this packing of these structures, compressibility, and
the anomalous isotope effect in liquid water.
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7 Conclusion: From Ices to Liquid Water

Understanding how nuclear quantum effects change the structure of water
is a challenging problem. In this thesis, this problem has been addressed
by using the quasiharmonic approximation to understand isotope effect in
different ice polymorphs.

We have first presented an anomaly in hexagonal ice, which, until our
work, had never been explained. It has been experimentally known that
the isotope effect on the hexagonal ice is anomalous, where the volume of
D2O is larger than H2O [3]. This goes against normal isotope effect where
the heavy isotope is expected to have smaller volume, such as in the case
of Ne [37–39]. Although this anomaly has been known from experiments,
surprisingly, it had never been explained and its relevance within the con-
text of the anomalies of water is only now being explored. In this thesis, we
have analysed how hydrogen bonds in ice change with the quantum effects,
by calculating how zero point energy changes the structure of the system.
To obtain the Helmholtz free energy, we have employed the QHA by cal-
culating the Grüneisen parameter of each phonon mode. By projecting the
phonon density of states on hydrogen and oxygen atoms of the system, and
by comparing the corresponding Grüneinsen parameter of the mode, we have
shown that there is a competition between intermolecular Hbonds, and in-
tramolecular OH covalent bonds of hexagonal ices. The Grüneisen constants
of intramolecular covalent stretching modes have opposite sign to those of the
intermolecular Hbond bending modes. These can be understood as compet-
ing anharmonicities while fine balance is the origin of the anomalous isotope
effect. While D2O is a smaller molecule with shorter OH covalent bonds,
the anticorrelation leads to longer Hbonds, resulting as a larger volume than
H2O.

We have also done a similar analysis on H2
18O. Even though it has es-

sentially the same molecular mass as D2O, DFT has predicted that the can-
cellations of the Grüneisen parameters of anharmonicities leads to a normal
isotope effect. This prediction has been confirmed by experiments on the
volume of H2

18O, which have also been done for the first time within our
collaboration. The competition between the anomalous isotope effect from
hydrogen atoms and the normal isotope effect from oxygen atoms, explains
why the expansion from the classical frozen volume to the quantum volume
is smaller in hexagonal ice than Ne [6, 39].
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With the structural analysis of the lattice parameters and the volume of
hexagonal ices, we have also computed quantum effects on the bulk modulus.
Very little is know about this, even though it is a very relevant parameter
given that understanding anomalous compressibility of ice might shed light
into the anomalies of liquid water. There is a large dispersion in the exper-
imental results on the bulk modulus, and no detailed experimental or theo-
retical analysis on the anisotropy of the bulk modulus. As there are different
lattice parameters and directionality of the system, the bulk modulus along
the x-y plane and the z-axis is different. Furthermore, a similar anomalous
isotope effect is expected to exist on the bulk modulus. Therefore, we have
conducted an analysis on the different components of the strain tensor and
shown that the frozen bulk modulus along the z-axis is larger than the com-
pressibility along the x-y plane. In addition, we have calculated the isotope
effect on the total bulk modulus of the hexagonal ices. We have concluded
that there is a similar anomalous isotope effect, that the bulk modulus of
D2O is smaller than H2O, and normal isotope effect in the bulk modulus of
oxygen atoms.

Although the qualitative results on the structural properties are similar
for both hexagonal ices; proton ordered ice XI and proton disordered ice Ih,
there is also an isotope effect in the phase transition temperature. Experi-
mentally, the isotope effect on the phase transition between ice XI and ice Ih
is such that the transition temperature is 4 K larger for D2O than H2. The
source of this isotope effect has also been investigated by a detailed analysis
of contributions to the total Helmholtz free energy from each term. There,
we have resolved, for the first time, that this difference in the transition tem-
peratures of different isotopes is entirely due to the difference in the zero
point energies. DFT predicts this isotope effect in the temperature as 6 K,
in good agreement with the experimental results. In addition, we have anal-
ysed that the most stable phase of ice at the zero temperature is ferroelectric
proton ordered ice XI, and the free energy of antiferroelectric proton ordered
hexagonal ice, ice aXI, is in between ice XI and proton disordered ice Ih.

After this detailed analysis on the structures of hexagonal ices, ice XI
and ice Ih, we have moved on to investigating the isotope effect on different
polymorphs of ice. First, we have obtained that in cubic ice, ice Ic, the isotope
effect is anomalous, similarly to ice Ih. Next, we have looked into clathrate
hydrates, where in structure I with CH4 filling, it has been experimentally
shown that the isotope effect is anomalous [5]. We have reproduced this
anomalous isotope effect in good agreement with the experiments, and shown
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that the effect is anomalous regardless of the filling of the ice cages. Then
we have moved onto high pressure ice phases, where the interstitial sites of
hexagonal ices start to get filled. In the intermediate ice phases, ice IX and
ice II, we observe that the difference between the volumes of H and D, starts
as a small and normal isotope effect and becomes anomalous at much higher
temperatures. Once we get to the other end of the phase diagram, ice VIII
is the most dense ice phase, where the interstitial sites are completely filled,
the isotope effect on the volume becomes completely normal both at zero
pressure and at high pressures. The isotope effect on the volume is very
robust, unlike the isotope effect in the bulk modulus, which is much harder
to obtain with high accuracy. The bonding is well defined in ice phases,
while in liquid water, there is no underlying lattice and no long range order.
Therefore, we have decided to look into amorphous ices. We have obtained
our amorphous ices from ab initio molecular dynamics simulations of liquid
water. Low and high density liquid like amorphous ices have been analysed,
and a transition has been observed from the anomalous isotope effect in LDL-
like amorphous ices to a normal isotope effect in HDL-like amorphous ices
at the zero temperature limit.

Table 18: Average oxygen-oxygen distance in Å for Hbonded and vdW
bonded configurations and average number of bonds per molecule for different
configurations of structures. The quantum H2O volume in Å3 and isotope
effect from hydrogen to deuterium, IS(H-D) at zero temperature and pressure
are also included.

Ice < rHbond

OO > < NHbond > < rvdWOO > < NvdW > VH2O IS(H-D)
XI 2.719 4.000 0.000 0.000 31.41 −0.32%
Clathrate 2.728 4.000 0.000 0.000 35.90 −0.20%

LDL-likeρ=1.0
T=300

2.765 3.953 3.899 0.688 30.07 −0.18%
Ic 2.719 4.000 0.000 0.000 31.60 −0.16%

HDL-likeρ=1.2
T=300

2.815 4.047 3.582 2.109 24.57 +0.09%
IX 2.737 4.000 3.489 2.000 25.44 +0.10%
II 2.756 4.000 3.487 2.000 25.10 +0.12%

HDL-like2ρ=1.0
T=300

2.783 4.063 3.748 0.969 27.81 +0.15%

HDL-like1ρ=1.0
T=300

2.790 4.063 3.622 0.969 27.71 +0.28%

HDL-likeρ=1.0
T=350

2.917 3.781 3.834 1.938 27.63 +0.35%
VIII 2.943 4.000 2.949 4.000 21.09 +0.90%

These observations lets us make one final analysis on these systems. Table
18 shows the average distance between oxygen atoms when they are Hbonded,

123



< rHbond
OO >, van der Waals bonded < rvdWOO >, and the average number of

each bond in the analysed configurations. Also included are the isotope effect
with respect to H2O and its quantum volume. The structures are listed from
the most anomalous to least anomalous.

For the structures with anomalous effect, the Hbond length is small and
is highly populated, while those systems have no (ice XI, clathrate, ice Ic) or
very few (LDL-like amorphous) vdW bonds. As the density of the structures
increases, moving on to ices IX, HDL-like amorphous, ice II, Hbond length
keeps increasing, but more importantly, the systems have more van der Waals
bonds, populating the interstitial sites. Then the effect starts to become
normal, but small, and a transition to anomalous isotope effect happens at
high temperatures.

In the most extreme case of ice VIII, both Hbond length is largest, vdW
bond length is smallest and number of vdW bonds is largest. Then, for all
temperatures and pressures, the isotope effect stays normal.

This shows that the density or rOO distance by itself is not enough to
predict the sign of the isotope effect. For example for HDL-likeρ=1.2

T=300 struc-
ture, in spite of the fact that rOO distance of both bonds are larger than ice
IX and ice II, the volume is smaller, resulting as quite a large density. This
is because both bonds are more populated, leading to a conclusion of smaller
volume per molecule and a normal isotope effect, after all. Therefore, there is
a fine balance between the bond length distances and how many bonds each
molecule has. Although it is not enough by itself, the density is an overall
signature of this fine balance.

Finally, we can make some links to liquid water, by exploiting the exper-
imental results on the isotope effect on the volume of liquid water [1, 18].
Fig. 44 shows the difference between the volume per molecule of liquid water
with D2O and H2O, VD2O − VH2O, replotted from Fig. 1a of Introduction.
This shows that the volume difference decreases with increasing tempera-
ture, therefore the isotope effect goes from anomalous towards normal, but
not crossing up to the boiling temperature. Fig. 44b shows the second
derivative of the volume difference between the isotopes (Fig. 44), obtained
to show how the slope of the isotope effect changes with increasing temper-
ature. Here, we can observe an interesting result: There are two different
regions in Fig. 44b, a rapidly decresing slope with increasing temperature
up to T ∼ 310 K, and a slowly decresing region until close to the melting
temperature.

As the hexagonal ice Ih, which is already a structure with large anoma-
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Figure 44: Isotope effect on the volume per molecule of liquid water, calcu-
lated from Fig. 1a of Introduction, obtained from Ref. [1].

lous isotope effect, melts, the effect in liquid water also starts as large and
anomalous. With the increasing temperature, the anomaly of the isotope
effect decreases rapidly up to T ∼ 310 K, which is close to isothermal com-
pressibility minimum temperature, T ∼ 320 K. Until the compressibility
minimum temperature, all the interstitial sites are being filled, and the iso-
tope effect goes towards being normal very quickly. This is similar to moving
from ice Ih towards ice VIII in the analysed structures. Once the compress-
ibility minimum is reached, then the change in the isotope effect is stabilised
and it keeps on decreasing at a much slower rate, until it gets close to the
boiling temperature. With this, we can conclude that the nuclear quantum
effects and anomalous isotope effect are linked to the compressibility mini-
mum of liquid water. This conclusion opens new horizons for the development
of semi-empirical water models, showing that a complete theory should be
able to explain different anomalies of water, in different regions of the phase
diagram.
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tacho. Optimal finite-range atomic basis sets for liquid water and ice.
J. Phys.: Condens. Matter, 25:435504–435515, 2013.

[37] D.N. Batchelder, D.L. Losee, and R.O. Simmons. Isotope effects in the
lattice constant and thermal expansion of 20Ne and 22Ne single crystals.
Phys. Rev., 173:873, 1968.

128



[38] C. P. Herrero. Isotope effects in structural and thermodynamic prop-
erties of solid neon. Phys. Rev. B, 65:014112, 2001.

[39] P. B. Allen. Zero-point and isotope shifts: relation to thermal shifts.
Phil. Mag. B, 70:527–534, 1994.
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[60] Guillermo Román-Pérez and José M. Soler. Efficient implementation of
a van der waals density functional: Application to double-wall carbon
nanotubes. Phys. Rev. Lett., 103(9):096102, 2009.

[61] Fabiano Corsetti, Emilio Artacho, José M. Soler, S. S. Alexandre, and
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A Atomic Orbital Basis Sets

The siesta basis set input files, with information about the cutoff radii of
the orbitals of each basis set used in this dissertation.

Double-ζ Polarized Basis (dζ+p):

%Block PAO.Basis

O 3 -0.24233

n=2 0 2 E 23.36061 3.39721

4.50769 2.64066

1.00000 1.00000

n=2 1 2 E 2.78334 5.14253

6.14996 2.59356

1.00000 1.00000

n=3 2 1 E 63.98188 0.16104

3.54403

1.00000

H 2 0.46527

n=1 0 2 E 99.93138 2.59932

4.20357 1.84463

1.00000 1.00000

n=2 1 1 E 24.56504 2.20231

3.52816

1.00000

%EndBlock PAO.Basis

Triple-ζ Polarized Basis (tζ+p):

%Block PAO.Basis

O 3 -0.18361

n=2 0 3 E 50.06241 5.0

7.0 4.0 2.4

1.00000 1.00000 1.0

n=2 1 3 E 10.0 6.0

7.0 4.0 2.2
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1.00000 1.00000 1.0

n=3 2 1 E 50.0 0.0

6.0

1.00000

H 2 0.94703

n=1 0 3 E 50.0 6.0

7.0 4.0 2.0

1.00000 1.00000 1.0

n=2 1 1 E 1000.0 0.0

6.0

1.00000

%EndBlock PAO.Basis

Double-ζ Double Polarized Basis (dζ+dp):

%Block PAO.Basis

O 3

n=2 0 2 E 50.0 7.5

8.0 2.7

n=2 1 2 E 10.0 8.3

8.5 2.6

n=3 2 1 E 40.0 8.3 Q 6.8 0.22

8.5

H 2

n=1 0 2 E 50.0 8.3

8.5 2.2

n=2 1 1 E 20.0 7.8 Q 6.5 0.9

8.0

%EndBlock PAO.Basis

Quadrupole-ζ Double Polarized Basis (qζ+dp):

%Block PAO.Basis

O 3

n=2 0 4 E 50.0 8.0
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10.0 5.0 3.5 2.0

n=2 1 4 E 10.0 8.0

10.0 5.0 3.5 2.0

n=3 2 2 E 40.0 9.0 Q 6.0

10.0 2.2

H 2

n=1 0 4 E 50.0 8.0

10.0 5.0 3.5 2.0

n=2 1 2 E 50.0 9.0 Q 3.5

10.0 2.0

%EndBlock PAO.Basis
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B Coordinates of Ice Structures

The coordinates and lattice vectors of the crystalline ice structures are given
in this section. These are relaxed configurations obtained with the initial
selection of basis sets, and they provide a good starting point for calculations
with these structures.

Table 19: Coordinates and lattice vectors of ice structures.

ice IX ice Ih
0.000000 4.440000 0.000000 13.320000 0.000000 0.000000
3.845153 2.220000 0.000000 0.000000 15.380611 0.000000
0.000000 0.000000 7.230000 0.000000 0.000000 14.480000

O 0.037408 -0.065154 0.166902 O -0.032649 2.602335 0.501545
H 0.981330 -0.094337 0.496610 H -0.009003 2.634055 1.501072
H -0.409000 -0.897461 0.496412 H 0.009681 3.545100 0.171201
O 2.601639 -0.066362 1.065865 O 2.252376 1.271024 4.078566
H 3.082069 -0.899478 0.790754 H 2.256987 1.231584 5.078058
H 2.587135 -0.041233 2.065395 H 2.263922 0.327190 3.747496
O 2.526048 0.065181 3.781947 O 2.168166 1.291769 -0.419371
H 1.582116 0.094286 4.111687 H 1.353824 1.742801 -0.054449
H 2.972390 0.897554 4.111409 H 2.156310 0.343752 -0.100381
O -0.038093 0.066459 4.680771 O 0.025690 2.581576 3.219588
H -0.023739 0.041281 5.680321 H 0.844906 2.108364 3.543923
H -0.518736 0.899452 4.405643 H 0.070424 3.517829 3.570601

Clathrate O 0.050589 5.140613 4.109920
11.680000 0.000000 0.000000 H 0.879160 5.616982 3.813182
0.000000 11.680000 0.000000 H 0.038075 5.155849 5.109948
0.000000 0.000000 11.680000 O 2.239104 6.449679 0.456563

O 2.901512 0.077849 5.825032 H 2.247145 6.450493 1.456446
O 5.836069 2.932283 -0.037540 H 2.231600 7.407989 0.168340
O -0.028056 5.852349 2.897311 O 2.255691 6.415069 3.183515
O 2.145925 2.184956 2.165205 H 3.091313 5.972608 3.509419
O -2.150960 -2.114181 2.083479 H 2.264413 7.355831 3.523852
O -2.154567 2.173754 -2.168953 O 0.038804 5.145219 -0.470021
O 2.107971 -2.105301 -2.158584 H 0.857153 5.633266 -0.166702
O -2.164093 -2.102020 -2.179754 H 0.046155 5.123852 -1.470000
O 2.139071 2.166517 -2.154121 O 4.397347 2.595789 0.431834
O 2.126815 -2.095798 2.135684 H 3.569191 2.138973 0.107208
O -2.156563 2.167529 2.118606 H 4.377495 3.533106 0.082758
O -0.009964 3.620790 1.342617 O 6.665369 1.302818 4.076357
O 0.005482 -3.608238 1.333891 H 5.865636 1.772786 3.701353
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O -0.009524 3.632539 -1.388949 H 7.473941 1.796954 3.756409
O -0.037866 -3.583352 -1.385974 O 6.620931 1.289402 -0.428161
O 1.347150 0.031561 3.609423 H 5.792270 1.753903 -0.115031
O 1.346498 0.044276 -3.630502 H 6.587304 0.356316 -0.067270
O -1.382376 0.019114 3.573269 O 4.450297 2.579413 3.149120
O -1.380085 0.031756 -3.637048 H 3.639899 2.095493 3.481053
O 3.602299 1.407776 -0.002995 H 4.398614 2.582664 2.149928
O -3.618209 1.386922 -0.031990 O 4.482198 5.136016 4.085886
O 3.587680 -1.341313 -0.026879 H 4.485307 4.201068 3.730405
O -3.645296 -1.330509 -0.044141 H 5.303800 5.589749 3.741076
H -2.730806 -2.688006 2.665821 O 6.674409 6.424800 0.451272
H 2.675411 -2.698075 -2.734096 H 5.871853 5.942437 0.099029
H -0.058689 5.036779 2.320222 H 7.483188 5.927501 0.136331
H 2.311890 0.094820 5.017415 O 6.693838 6.434513 3.170666
H 4.997122 2.384541 -0.046199 H 6.674790 6.459328 2.171040
H -0.843926 5.850215 3.475257 H 6.695982 7.380941 3.494488
H 5.840235 3.969738 1.327264 O 4.447439 5.159212 -0.465017
H 3.490198 0.885478 5.788013 H 3.638713 5.652548 -0.142758
H -0.022620 4.468281 -1.936670 H 4.412353 5.161277 -1.464746
H -4.493491 1.870065 -0.042628 O 8.844929 2.555429 0.479547
H 0.001656 -4.439845 1.888806 H 8.015300 2.085220 0.176861
H -0.023231 -4.450993 -1.881979 H 8.842827 2.547076 1.479856
H 1.885688 0.055394 -4.472606 O 11.112833 1.307687 4.091998
H -1.923267 -0.001952 4.413389 H 11.106785 1.293909 5.092573
H -0.013199 3.717868 0.348663 H 11.944143 1.787197 3.808265
H -0.013521 -3.756369 -0.403980 O 11.086030 1.315849 -0.427799
H 0.352654 0.005221 3.697337 H 10.266436 1.776130 -0.085080
H -0.385224 0.023659 -3.726896 H 11.873133 1.820143 -0.071732
H -3.780948 0.401915 -0.029844 O 8.894341 2.583182 3.192754
H 3.664728 -0.346285 -0.034166 H 9.722197 2.137061 3.534989
H -0.814339 3.104885 -1.663746 H 8.921037 3.532017 3.508051
H 1.620386 -0.775673 -3.125682 O 8.918763 5.157661 4.058186
H -1.648484 -0.790896 3.047370 H 8.121113 5.653715 3.713443
H 3.060677 1.665119 0.797722 H 9.731637 5.626962 3.713165
H 3.034625 -1.592611 -0.823496 O 11.134008 6.405161 0.439446
H -3.115603 -1.620858 0.754818 H 11.120748 7.347872 0.105848
H -0.813399 3.070092 1.574975 H 11.962021 5.976648 0.076067
H -1.620408 -0.773055 -3.091152 O 11.160541 6.405250 3.156567
H 1.611826 -0.772341 3.071870 H 11.189160 6.388138 2.156741
H 3.047096 1.672080 -0.794097 H 11.981889 5.938907 3.485662
H 1.344197 2.696979 1.852525 O 8.895630 5.120537 -0.419919
H -1.370590 -2.677993 1.811747 H 8.897595 4.182705 -0.072343
H 1.328097 -2.658029 -1.864244 H 9.730984 5.564882 -0.095858
H 1.810864 1.404904 2.695234 O -0.026149 10.289555 0.428910
H -1.857517 1.371718 -2.690555 H -0.063067 11.222685 0.068685
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H -2.706872 1.844011 -1.402321 H -0.846140 9.822957 0.095745
H -1.403229 -2.658624 -1.844059 O 2.232974 8.984107 4.071877
H 1.331937 2.692852 -1.879696 H 1.423676 9.471145 3.742763
H -1.878784 1.360059 2.643494 H 2.199564 8.987029 5.071345
H 1.815852 1.390192 -2.698994 O 2.222299 9.017266 -0.418024
H 2.669505 -1.803542 1.346849 H 1.412903 9.509001 -0.095653
H -2.707301 1.843359 1.349030 H 3.027550 9.495505 -0.067016
H 2.722514 -2.678944 2.691164 O 0.031685 10.289305 3.146830
H 0.807704 -3.081829 1.617616 H 0.004969 10.326620 2.147355
O 9.424776 5.919888 4.438480 H 0.034245 11.232657 3.478497
O 2.205084 5.872456 4.466003 O 0.040276 12.839345 4.104876
O 9.461059 5.890271 7.176535 H 0.870654 13.296305 3.784671
O 2.226050 5.875291 7.195341 H 0.072497 12.829055 5.104341
O 5.806386 7.238222 2.198656 O 2.189569 14.087658 0.429318
O 5.831868 7.239235 9.385921 H 1.379884 13.616074 0.079819
O 5.843160 4.521603 2.161545 H 2.988032 13.598165 0.076979
O 5.851084 4.504503 9.430142 O 2.254530 14.095081 3.150236
O 7.163358 9.520141 5.802618 H 2.242459 14.069671 2.150445
O 7.199556 2.281800 5.796332 H 3.082646 13.616985 3.445456
O 4.436118 9.505348 5.815469 O -0.046454 12.838696 -0.485858
O 4.473969 2.291031 5.810191 H -0.855526 13.329059 -0.160883
O 7.945081 8.059062 3.652675 H -0.062221 12.866246 -1.485922
O 3.710402 3.763834 3.674729 O 4.464823 10.262531 0.483391
O 8.002977 3.742634 7.943781 H 5.267308 9.770360 0.145334
O 3.675788 8.035230 7.962303 H 4.500170 10.234578 1.482725
O 3.688416 3.732930 7.973390 O 6.700216 8.987570 4.111016
O 7.969406 8.044799 7.921941 H 7.523980 9.453113 3.786189
O 3.676520 8.014930 3.688457 H 6.737698 8.984588 5.110851
O 7.978212 3.756286 3.651118 O 6.652915 8.972270 -0.488208
O 8.741839 0.044075 5.811433 H 6.667052 8.020559 -0.179661
O 5.810210 8.768343 -0.049485 H 6.627093 8.953964 -1.487978
O -0.006396 5.875894 8.740601 O 4.477985 10.250162 3.200690
H 9.500130 5.918848 5.435220 H 3.666736 9.773222 3.539518
H 1.365091 5.840919 3.926197 H 5.278938 9.772907 3.563450
H 5.830114 6.242133 9.462045 O 4.463096 12.822146 4.069193
H 6.169759 9.618789 5.820874 H 4.492920 11.875576 3.745661
H 2.113596 5.852879 6.203106 H 5.295977 13.272948 3.747597
H 5.792555 7.721137 1.324424 O 6.621982 14.118701 0.482821
H 7.743592 1.443084 5.793156 H 6.622232 14.101288 1.483247
H 8.875935 6.719109 4.191944 H 5.807801 13.628912 0.171257
H 8.923340 5.086237 7.439374 O 6.691098 14.109096 3.194979
H 7.149046 7.751344 3.131379 H 7.526139 13.659517 3.512289
H 5.028720 7.486125 8.840919 H 6.708736 15.051358 3.529926
H 6.643337 4.226474 8.884822 O 4.420369 12.814017 -0.446954
H 4.239713 2.835224 5.002179 H 4.447635 11.868941 -0.120054
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H 2.757163 5.061227 7.439113 H 4.457772 12.781049 -1.446044
H 8.914862 6.681392 7.454647 O 8.854068 10.267248 0.442457
H 2.749597 5.084640 4.171920 H 8.040080 9.814007 0.078595
H 5.052104 4.223584 8.895394 H 8.835081 11.216892 0.129298
H 4.170076 8.970483 5.012185 O 11.140601 8.973763 4.039520
H 7.490057 2.807748 4.995630 H 11.183096 8.032886 3.701508
H 7.412231 8.983608 6.611084 H 11.954057 9.444483 3.697835
H 4.485472 4.043961 3.106718 O 11.078343 8.980831 -0.447042
H 3.144604 7.252554 7.633581 H 10.252832 9.455734 -0.141017
H 7.608445 8.592917 4.429611 H 11.048393 8.974351 -1.447191
H 7.708995 3.194726 7.158995 O 8.912023 10.250767 3.157964
H 8.520308 4.542792 3.947738 H 8.894197 10.238766 2.157933
H 7.193796 7.729208 8.471686 H 9.740450 9.767859 3.443865
H 4.442625 7.676983 3.141429 O 8.928727 12.820398 4.046120
H 3.990713 3.192172 7.186712 H 8.953473 11.881930 3.700544
H 8.564861 3.138763 8.512808 H 9.755671 13.277605 3.718090
H 3.110774 3.131602 8.529058 O 11.082041 14.135504 0.470126
H 8.531894 8.612088 8.527582 H 11.123936 14.150739 1.469457
H 3.136210 7.218814 3.967107 H 11.090023 15.089338 0.166665
H 5.825811 6.253888 2.033148 O 11.153624 14.125919 3.188781
H 5.466397 2.180302 5.792894 H 11.977569 13.683135 3.543590
H 8.574649 3.182606 3.086663 H 11.159966 15.065319 3.533082
H 6.654847 4.242995 2.677060 O 8.860518 12.850114 -0.415940
H 3.135047 3.175173 3.102411 H 8.049735 13.327073 -0.077668
H 3.898136 10.346904 5.789965 H 9.657967 13.344552 -0.068090
H 3.947172 8.568585 7.158660 O -0.017697 2.537408 7.663125
H -4.477380 -1.883585 -0.045626 H 0.789944 2.049208 7.331573
H -2.694996 -1.813028 -1.380601 H -0.822428 2.046169 7.329145
H 9.320770 0.011381 6.625452 O 2.188003 1.292966 11.343950
H 8.142135 -0.756295 5.838317 H 1.361164 1.739055 11.001093
H 0.788522 5.870739 8.133656 H 2.139617 1.310419 12.342893
H -0.813042 5.886478 8.146174 O 2.226687 1.263885 6.798060
H 5.786389 8.196601 -0.869751 H 3.029378 1.745781 7.150320
H 5.003256 9.358510 -0.073107 H 2.267783 0.330926 7.157047
H 5.825786 3.502094 -0.861691 O -0.032083 2.533215 10.381155
C -0.042351 -0.080489 0.012287 H -0.044617 2.505404 9.381012
H -0.288767 -1.147627 -0.016247 H -0.862258 2.076636 10.701817
H 0.318642 0.185555 1.012015 O -0.019390 5.089844 11.294029
H -0.936163 0.508740 -0.222400 H -0.039392 4.153938 10.940491
H 0.739606 0.133563 -0.725498 H -0.848019 5.540273 10.960480
C 2.870182 5.688782 -0.178774 O 2.203242 6.405785 7.720347
H 3.397708 4.804915 0.203460 H 2.183533 6.411484 8.720546
H 3.571388 6.530823 -0.246718 H 1.374488 5.931463 7.421137
H 2.049149 5.950460 0.501353 O 2.192908 6.416535 10.439454
H 2.464129 5.469904 -1.175442 H 1.368196 5.947442 10.756662
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C 8.714724 5.881324 -0.182637 H 2.155519 7.351201 10.794845
H 8.028718 5.057246 0.053077 O -0.015941 5.126629 6.825458
H 9.215577 5.680899 -1.138906 H -0.041528 4.177473 7.139183
H 9.467884 5.969042 0.611673 H -0.845782 5.576596 7.155988
H 8.147426 6.818626 -0.255729 O 4.413393 2.592672 7.720676
C 0.074279 8.739912 5.868273 H 4.418893 2.597250 8.720761
H -0.117266 7.960008 5.119861 H 4.413511 3.544447 7.414191
H 0.950908 9.330171 5.570154 O 6.637719 1.255219 11.333807
H 0.261462 8.272162 6.843874 H 6.668865 0.309251 11.011651
H -0.799349 9.401464 5.939627 H 6.628758 1.227532 12.334016
C -0.056556 2.873094 5.723895 O 6.623946 1.306048 6.793881
H -0.365942 1.836568 5.909037 H 6.607154 1.332169 5.793922
H 1.030097 2.910223 5.569722 H 5.809214 1.788396 7.115770
H -0.324176 3.496281 6.587505 O 4.419557 2.546170 10.437361
H -0.565963 3.253425 4.828209 H 3.607781 2.077853 10.787258
C 5.809269 -0.049876 2.854006 H 5.216335 2.047364 10.779241
H 5.788235 -0.998578 2.301424 O 4.424087 5.125111 11.296789
H 6.775552 0.055611 3.365215 H 3.592661 5.574759 10.969551
H 5.001823 -0.038529 3.597379 H 4.399500 4.176518 10.980044
H 5.674297 0.783941 2.152468 O 6.694450 6.385527 7.691773
C 5.699233 -0.040060 8.714631 H 5.871391 5.932708 7.348748
H 6.026708 -1.046524 9.008120 H 7.479082 5.876716 7.335956
H 6.455452 0.414990 8.061299 O 6.633801 6.417127 10.407103
H 5.568891 0.577877 9.612253 H 5.809898 5.930680 10.700137
H 4.744880 -0.108640 8.175597 H 6.652261 6.377378 9.407504
C 5.822667 5.826597 5.754443 O 4.434876 5.155031 6.804808
H 5.911314 4.894220 6.323809 H 4.429599 5.154722 5.804987
H 6.579750 6.540167 6.099487 H 3.603725 5.618484 7.112096
H 4.823762 6.251672 5.905064 O 8.868553 2.534018 7.712082
H 5.975502 5.620302 4.689072 H 8.030735 2.088608 7.394343

ice Ic H 8.829008 2.553091 8.711211
0.000000 3.140000 3.140000 O 11.055419 1.300701 11.329116
3.140000 0.000000 3.140000 H 10.234289 1.788541 11.030283
3.140000 3.140000 0.000000 H 11.059887 1.328254 12.328885

O -0.001706 -0.001705 -0.021491 O 11.072610 1.245029 6.800576
H 0.565225 0.565225 0.576866 H 10.248493 1.683619 7.160817
H -0.569160 -0.569160 0.575928 H 11.082205 0.304424 7.141032
O 1.568398 1.568399 1.549257 O 8.838155 2.586808 10.435544
H 1.001524 2.136099 2.147069 H 8.027545 2.116079 10.783743
H 2.136099 1.001524 2.147069 H 8.804194 3.525394 10.780918

ice IX O 8.844418 5.143523 11.345103
6.600000 0.000000 0.000000 H 8.019694 5.620956 11.041857
0.000000 6.600000 0.000000 H 8.848543 5.149065 12.345536
0.000000 0.000000 6.600000 O 11.073527 6.414941 7.700884

O 2.367953 0.825109 -0.763825 H 10.264767 5.950925 7.339086
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H 1.519561 1.227186 -1.105580 H 11.068552 7.348456 7.342500
H 2.641754 1.458006 -0.044041 O 11.080711 6.387409 10.420123
O -0.291169 -2.255919 1.481233 H 10.249381 5.933663 10.741746
H 0.411315 -2.115332 0.784851 H 11.045555 6.391320 9.420622
H 0.183858 -2.029106 2.327730 O 8.892181 5.090002 6.769010
O -2.082156 1.818274 0.139800 H 8.903660 5.084365 5.768544
H -2.228062 0.833620 0.225942 H 8.889767 4.140209 7.081496
H -2.059841 2.125337 1.087884 O 0.024938 10.222916 7.712068
O -2.529386 -0.805900 0.819752 H 0.856852 9.749822 7.421239
H -1.681056 -1.207805 1.161820 H 0.012710 10.218433 8.712319
H -2.802847 -1.438815 0.099849 O 2.171406 8.978289 11.339863
O 0.129792 2.275684 -1.424502 H 1.343190 9.456705 11.045363
H -0.572916 2.134599 -0.728398 H 2.187537 9.015501 12.339218
H -0.344806 2.048909 -2.271205 O 2.239207 8.957356 6.788178
O 1.920775 -1.799539 -0.083832 H 2.246861 8.020917 7.139899
H 2.066704 -0.814921 -0.169961 H 3.075187 9.405587 7.105276
H 1.898375 -2.106522 -1.031917 O -0.040601 10.257211 10.428741
O 3.230223 0.146758 2.618392 H -0.061450 11.205869 10.744280
H 3.051225 1.049242 2.231471 H -0.870030 9.807749 10.761256
H 3.904734 -0.277097 2.021034 O -0.014404 12.840884 11.278117
O -1.253186 -0.012785 4.067380 H 0.805308 13.317640 10.960717
H -0.352939 -0.430704 3.962017 H -0.808311 13.346911 10.940450
H -1.907803 -0.762079 4.028890 O 2.259620 14.089022 7.723083
O 0.359111 3.796956 1.805690 H 2.289024 14.090276 8.723201
H -0.378414 3.287689 2.244835 H 3.085913 13.625138 7.402411
H -0.073393 4.345483 1.096108 O 2.245237 14.108248 10.440996
O -3.391679 -0.127127 -2.562879 H 3.071693 13.658926 10.780742
H -3.212477 -1.029535 -2.175966 H 2.246992 15.043923 10.794176
H -4.066296 0.296542 -1.965494 O 0.046048 12.792912 6.829166
O 1.092421 0.032353 -4.011660 H 0.065773 11.850043 7.163171
H 0.192128 0.450128 -3.906205 H 0.868833 13.240734 7.180400
H 1.746938 0.781730 -3.972603 O 4.465123 10.244131 7.669642
O -0.519755 -3.777528 -1.749754 H 5.302385 9.790933 7.364076
H 0.217755 -3.268295 -2.189062 H 4.496209 11.183329 7.325316
H -0.087344 -4.326232 -1.040248 O 6.605886 8.985667 11.270800

ice II H 6.585780 8.044119 10.931663
7.660000 0.000000 0.000000 H 5.774238 9.429419 10.936374
-3.005302 7.045833 0.000000 O 6.713346 8.963845 6.828616
-3.005302 -4.549137 5.380438 H 6.738911 8.019333 7.156625

O 2.367953 0.825109 -0.763825 H 7.536430 9.422548 7.163774
H 1.519561 1.227186 -1.105580 O 4.376448 10.257891 10.382769
H 2.641754 1.458006 -0.044041 H 3.549102 9.793704 10.697989
O -0.291169 -2.255919 1.481233 H 4.375265 10.242821 9.382531
H 0.411315 -2.115332 0.784851 O 4.471574 12.811688 11.314839
H 0.183858 -2.029106 2.327730 H 4.446146 11.879416 10.953927
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O -2.082156 1.818274 0.139800 H 5.301490 13.241796 10.957707
H -2.228062 0.833620 0.225942 O 6.687663 14.114991 7.680215
H -2.059841 2.125337 1.087884 H 7.515045 13.683922 7.318434
O -2.529386 -0.805900 0.819752 H 6.673548 15.055777 7.341336
H -1.681056 -1.207805 1.161820 O 6.694567 14.074313 10.401652
H -2.802847 -1.438815 0.099849 H 6.729173 14.084504 9.402045
O 0.129792 2.275684 -1.424502 H 7.513394 13.598643 10.723294
H -0.572916 2.134599 -0.728398 O 4.474580 12.813877 6.790149
H -0.344806 2.048909 -2.271205 H 4.484110 12.828895 5.789786
O 1.920775 -1.799539 -0.083832 H 5.300377 13.292098 7.091945
H 2.066704 -0.814921 -0.169961 O 8.927010 10.283718 7.694317
H 1.898375 -2.106522 -1.031917 H 9.747808 9.835726 7.338682
O 3.230223 0.146758 2.618392 H 8.929970 11.218439 7.337745
H 3.051225 1.049242 2.231471 O 11.065007 8.954952 11.315838
H 3.904734 -0.277097 2.021034 H 11.055569 8.014262 10.975587
O -1.253186 -0.012785 4.067380 H 10.234877 9.393619 10.969105
H -0.352939 -0.430704 3.962017 O 11.119471 8.976123 6.765579
H -1.907803 -0.762079 4.028890 H 11.156309 8.983758 5.766349
O 0.359111 3.796956 1.805690 H 11.952542 9.422442 7.093281
H -0.378414 3.287689 2.244835 O 8.853848 10.237347 10.409863
H -0.073393 4.345483 1.096108 H 8.010152 9.774234 10.683610
O -3.391679 -0.127127 -2.562879 H 8.870094 10.257975 9.410060
H -3.212477 -1.029535 -2.175966 O 8.900880 12.790242 11.346439
H -4.066296 0.296542 -1.965494 H 8.882688 11.838345 11.040803
O 1.092421 0.032353 -4.011660 H 8.887006 12.789599 12.346406
H 0.192128 0.450128 -3.906205 O 11.132341 14.066321 7.704106
H 1.746938 0.781730 -3.972603 H 11.121005 14.077780 8.704345
O -0.519755 -3.777528 -1.749754 H 11.966193 13.591796 7.420805
H 0.217755 -3.268295 -2.189062 O 11.074734 14.128086 10.414166
H -0.087344 -4.326232 -1.040248 H 10.277603 13.640768 10.770787

ice VIII H 11.029697 15.063781 10.765995
4.770000 0.000000 0.000000 O 8.900071 12.838727 6.763715
0.000000 4.770000 0.000000 H 8.936667 12.835863 5.763773
0.000000 0.000000 6.900000 H 9.735068 13.285342 7.087026

H -0.098339 2.592267 5.267611
O -0.098518 3.380241 5.868872
H -0.098227 4.168129 5.267489
H 1.498694 3.380243 0.092218
O 2.286695 3.380413 0.693464
H 3.074609 3.380129 0.092076
H 2.286691 2.592256 4.529108
O 2.286822 3.380304 3.927908
H 2.286583 4.168179 4.529363
H 2.286578 0.207315 1.817444
O 2.286759 0.995168 2.418884
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H 2.286690 1.783165 1.817668
H -0.098218 0.207275 1.079291
O -0.098467 0.995209 0.477917
H -0.098335 1.783208 1.079186
H 1.498740 0.995134 6.254029
O 2.286642 0.995178 5.652692
H 3.074518 0.995261 6.254074
H -0.886250 3.380130 2.804164
O -0.098428 3.380408 2.202701
H 0.689527 3.380253 2.803957
H -0.886266 0.995312 3.542077
H 0.689650 0.995201 3.542198
O -0.098348 0.995194 4.143454
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C Ongoing Projects: PbTiO3/H2O Interfaces

The main focus of this dissertation has been understanding the structure of
water. An accurate knowledge of the structure of water is important to un-
derstand how it interacts with other materials. One purpose of investigating
how water interacts with different surfaces is to find a good material for cheap
and efficient photocatalysis. It is known that TiO2 is a good photocatalysis
material, however this surface does not dissociate water unless there are im-
purities in the system. Presence of OH− ions are crucial for water oxidation
reaction. In this section, we are interested in ferroelectric PbTiO3, which has
a different structure and has bulk polarization. We perform a study to un-
derstand how we can control the dynamics of adsorption and dissociation of
water on PbTiO3 thin film surfaces by changing polarity. The first question
that needs to be answered is how many layers of PbTiO3 are needed to have
a stable thin film. Once this is established, water is placed on the thin film
and ab initio DFT molecular dynamics simulations are performed, both at
the semi-local PBE and van der Waals level of approximation, with a recently
developed vdW-DF-cx functional [158]. We are interested in understanding
how changing the direction of polarity of the perovskite and changing the
termination layer from TiO2 to PbO, changes the structure and reactivity of
water.

C.1 Structures

At room temperature, bulk PbTiO3 has a tetragonal perovskite structure
and is ferroelectric [14]. Ti and O atoms are displaced with respect to Pb
atoms, and the displacement of the O atoms are larger than Ti atoms. This
is a result of the ferroelectric distortions and leads to a net dipole moment
in the bulk structure. Above 763 K, PbTiO3 goes under a phase transition
to the cubic structure [14].

We have performed two simulations with two different PbTiO3 slab thick-
nesses of 2

√
2a× 2

√
2a× c and 2

√
2a× 2

√
2a× 2c. This provides a stability

check of having one or two layers of the slab. This configuration also pro-
vides both TiO2 terminated and PbO terminated surfaces. In addition, we
have also looked at these two configurations with +ẑ and −ẑ polarisation,
resulting in four different molecular dynamics simulations run at the same
time. Moreover, with the vdW-DF-cx functional, we have also included one
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Figure 45: Initial conditions of the unit cell for simulations of PbTiO3/water
surfaces with +ẑ polarisation on the left and −ẑ polarisation on the right, as
obtained with the PBE functional lattice parameters. Light grey atoms are
Ti, dark grey atoms are Pb, red atoms are O and white atoms are H. The top
layer of the slab is TiO2 terminated, which is shown as directly interacting
with the liquid water, and the bottom layer of the slab is PbO terminated,
interacting with the liquid water as the periodic boundary conditions are
applied.

and two layers of slab of the cubic structure configuration, to investigate the
stability of the system without any polarisation.

Once the water is placed on the slab, periodic boundary conditions pro-
vides us to check TiO2/water and PbO/water interactions simultaneously.
We have placed liquid water of 15 Å thickness along the c axis. Depending
on the functional, box size along the x-y axis varies, therefore, the systems
have 59 H2O molecules for simulations with the PBE functional, and 65 H2O
molecules for simulations with the vdW-DF-cx functional. Two of the initial
configurations of the simulations are shown in Fig. 45 for two layered slab
structure, while the other two configurations are one layered slab with the
exact same water configuration.
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C.2 Computational Details

We have performed ab initio molecular dynamics (AIMD) simulations as im-
plemented in the siesta code. There are two sets of interface calculations:
The first set of simulations were performed with PBE functional, with the
same basis set and pseudopotentials as in Ref. [159] for Pb, Ti, O and H.
The second set of simulations were performed with a recently developed vdW-
DF-cx functional and we have switched to the dζ+dp basis sets for O and H
atoms for this set of AIMD simulations. A real-space mesh cutoff of 500 Ry
for the real space integrals, a force tolerance of 0.01 eV/Å and a density ma-
trix tolerance of 10−4 electrons have been used for the structural relaxations
to obtain the bulk lattice parameters of PbTiO3. For the surface/water in-
teractions, AIMD simulations were performed for an initial equilibration by
means of temperature annealing to 330 K, with a time step of 0.5 fs. The
simulations with PBE functional are annealed for 3.5 ps, while the ongoing
simulations with vdW-DF-cx functional presented here are annealed for ∼
1-1.5 ps depending on the system size.

C.3 Results

C.3.1 Lattice Parameters of Bulk PbTiO3

The lattice parameters of bulk PbTiO3 are obtained by calculating the elec-
tronic Kohn-Sham energy, E(V) of a unit cell of five atoms. The structure is
relaxed for a fixed volume, and the lattice parameters are varied for several
volumes. The optimal lattice parameters are selected for the volume that
minimises the Kohn-Sham energy, E(V).

Table 20: Lattice parameters given in Å of bulk PbTiO3 for PBE and
vdW-DF-cx functionals and the corresponding tetragonality c/a. The exper-
imental values are at room temperature and zero pressure, from Ref. [14].

XC a c c/a
PBE 3.85 4.60 1.195
vdW-DF-cx 3.92 4.03 1.028
Expt. 3.9036(1) 4.1440(2) 1.0616

This structural relaxations are performed both by PBE and vdW-DF-
cx functionals. As semi-local functional, PBE functional overestimates the
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tetragonality of the system, by mainly overestimating the c lattice parame-
ter, and slightly underestimating the a lattice parameter. When the non-local
interactions are included, vdW-DF-cx functional gives a larger a lattice pa-
rameter, but decreases c lattice parameter substantially, such that the tetrag-
onality of the system is comparable to the room temperature experimental
results of Ref [14].

Our initial goal has been investigating how the structural properties of
the liquid water under the influence of an external dipole, therefore the
large dipole moment from the overestimated tetragonality of the PBE func-
tional was desirable. However, once the simulations with the PBE func-
tional started, we have observed structural deformations on the PbTiO3 slab.
Therefore, XC functional has been changed to obtain more realistic tetrago-
nality of the slab structure, and the vdW-DF-cx functional has been selected
for a better simulation of the liquid water, as it has been shown that vdW
effects are important for the liquid structure. These lattice parameter results
for the bulk shows that the inclusion of vdW effects also important for the
structure of the slab.

C.3.2 Stability of the Slab with the PBE Functional

The four configurations of PbTiO3 slab with water, with different slab thick-
ness and polarisation direction, have been annealed to 330 K for 3.5 ps. Fig.
46 shows the configuration at the end of this simulation.

These results show that the one or two layers of PbTiO3 slabs with the
PBE functional are not stable. During the annealing process, they lose their
crystal lattice structure completely, therefore making the analysis of the po-
larisation difficult. One of the reasons for this can be due to the overestima-
tion of the tetragonality with the PBE functional. As mentioned before, to
test the validity of this solution to the stability problem, we have stopped our
simulations with this functional and switched to the vdW-DF-cx functional.
Preliminary results with this functional will be provided in the following
section.

However, already with these results, there are conclusions we can with-
draw for these interfaces. As expected, TiO2 terminated surface is highly
interactive with the liquid water. There is molecular adsorption of water to
the TiO2 terminated surface in all four simulations. Moreover, there exists a
dissociation event of a water molecule on the TiO2 terminated surface, when
the slab thickness is increased to two layers.
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(a) 1 layer PbTiO3/water.

(b) 2 layers PbTiO3/water.

Figure 46: The configuration of the slab/water interface at the end of 3.5
ps annealing with the PBE functional. The structures on the left are +ẑ
polarised and the structures on the right are −ẑ polarised. The unit cell is
repeated in +x and -y direction, and the slab is repeated once in +z direction
to show the full interaction with the liquid water within the periodicity.
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On the other hand, the PbO terminated surface are more hydrophobic
than the TiO2 terminated surface. There is a clear separation of the liquid
water from the PbO surface, creating voids between the liquid and the PbO
surface. This is most extreme when the slab is positively polarised with a
thickness of 2 layers.

The structural instability of the slab and the existence of the separation
between the surface and the liquid makes the analysis of the polarisation very
difficult. Therefore, these simulations have been stopped at this point and
the functional has been changed.

C.3.3 Simulations with the vdW-DF-cx Functional

Once the functional is changed to the vdW-DF-cx, the instability problem of
PbTiO3 slab is partially fixed. At this point, we have also decided to increase
the number of configurations, and included one and two layers of slab with
cubic symmetry, without any polarisation.

Figure 47: PbTiO3 slab shown from the top, along x-y direction, simulated
with 15 Å vacuum on top, at the last step of AIMD with annealing to 330
K for 2.5 ps. 1 layer of slabs are shown on top, and 2 layers of slabs are
shown at the bottom. The cubic structure without polarisation on the right,
+ẑ polarisation in the middle, and −ẑ polarisation on the right, as obtained
with the vdW-DF-cx functional.
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(a) 1 layer PbTiO3/water.

(b) 2 layers PbTiO3/water.

Figure 48: The configuration of the slab/water interface with the vdW-DF-cx
functional. The structures on the left are unpolarised cubic, the structures in
the middle are +ẑ polarised, and the structures on the right are −ẑ polarised.
The unit cell is repeated in +x and -y direction, and the slab is repeated once
in +z direction to show the full interaction with the liquid water within the
periodicity.
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In addition, to check the stability of the slab, we have performed annealing
of the slab only, with dipole corrections, with 15 Å vacuum instead of liquid
water. The run time of these AIMD simulations of annealing to 330 K are
2.5 ps. Although lattice distortions are present during the annealing process,
and the change from the crystal structure is highly reduced as compared to
the PBE simulations. The configurations at the end of 2.5 ps, are given in
Fig. 47.

Next, liquid water has been placed on these slabs, and the instability of
the slab is again reduced with respect to the previous case. At the end of 1 ps,
the separation of the liquid from PbO surface is reduced, but it is still more
actively interacting with the TiO2 terminated surface. So far, with run times
vary depending on the system size. Cubic structure with 1 layer has 4216,
with 2 layers has 2781, +ẑ polarised structure with 1 layer has 3751, 2 layers
has 2849, −ẑ polarised structure with 1 layer has 4033, 2 layers has 2134
time steps, with step size of 0.5 fs. The configurations at the end of these
time steps are also shown in Fig. 48. We aim to continue these equilibration
runs at least up to the same time length of the PBE simulations, for a better
comparison. However, these configurations already shows that water is not
separated from the PbO surface any more, resolving the problem of having
vacuum between the interfaces. And these results are in agreement with
our conclusions from the PBE simulations. The majority of configuration of
the water molecules on the PbO terminated surface are up/down, meaning
that the H atoms are either pointing towards or away from the surface, in
this case, they seem to point towards the surface. On the other hand, the
majority of the water molecules on the TiO2 surface are flat, meaning that
the H atoms are parallel to the surface. On this surface, water molecules are
adsorbed such that the O atoms of the water molecule are coordinated to
the Ti atoms of the surface. Furthermore, there is a dissociation event of the
water molecule, for the +ẑ polarised surface, the adsorbed water molecule
loses one of its H atom to the O atom of the TiO2.

Up to these run times, the slab keeps its crystal structure, making it pos-
sible to analyse the interaction of water with the surfaces. However, all the
conclusions presented before have been done by observations with visualisa-
tion tools. In order to quantify the interactions of water with the surface,
the vibrational spectrum of the liquid water has been analysed. This is ac-
complished by separating the liquid into two sections, half interacting with
the TiO2 surface, and other half interacting with the PbO surface. Then, the
vibrational spectrum is obtained by calculating the Fourier transformation of
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Figure 49: Projected vibrational density of states of liquid water interacting
with the PbO terminated and TiO2 terminated surfaces. 1 layer of slabs are
shown on top, and 2 layers of slabs are shown at the bottom. The cubic
structure without polarisation on the right, +ẑ polarisation in the middle,
and−ẑ polarisation on the right, as obtained with the vdW-DF-cx functional.

the velocity-velocity autocorrelation function. With this method, we expect
to see differences, especially in the stretching modes of the liquid water in-
teracting with different surfaces. The phonon density of states are projected
to show the spectrum of the molecules on the PbO terminated surface, and
TiO2 terminated surface separately, and the results up to these simulation
times are shown in Fig. 49. The main difference between these vibrational
density of states emerge when the dissociation events start. This can already
be seen in the difference of the stretching frequencies of the water molecules
on the TiO2 terminated surface when the slab is +ẑ polarised. The stretching
frequencies of the water molecules interacting with the TiO2 surface is larger,
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mainly due to the existence OH− ions. Longer simulations will allow more
water molecules to dissociate on this surface, making this difference between
the vibrational density of states more clear.

C.4 Conclusion and Future Work

In this section, an ongoing project of the investigation of the PbTiO3/water
inferface has been introduced. Four different configurations for two different
slab thickness of one or two layers have been analysed. These configura-
tions have perovskite structure with + or −ẑ polarisation, or cubic structure
without any polarisation. The periodicity of the configuration is such that
it allows us to analyse how water interacts with two possible interfaces: one
interface is PbO terminated, while the other is TiO2 terminated.

The results with the PBE functional show that the perovskite with high
tetragonality and large dipole moment is not stable when the thickness of
the slab is one or two layers. This instability is reduced when the functional
is changed to the vdW-DF-cx functional, which brings the tetragonality of
the bulk perovskite closer to the experimental values.

More importantly, these reveal that the TiO2 terminated surface is more
hydrophilic than the PbO terminated surface. There is a clear separation of
water and the PbO terminated surface, making this surface more hydrophobic
compared to the TiO2 terminated surface. There are molecular adsorption
events already happening with the TiO2 surface regardless of the thickness
of the slab. Moreover, there exists dissociation of water molecules on this
surface.

Now, the AIMD simulations of these systems with the vdW-DF-cx func-
tional are performed. These simulations need to continue for longer times,
before more water molecules dissociate on the interfaces. In the future, we
aim to quantify our investigation of the structural changes in the liquid wa-
ter under the external dipole moment from the perovskite PbTiO3 slab. As
shown in the preliminary plots, we will analyse how the vibrational spectrum
of the liquid water, especially with the focus on the stretching modes of the
OH covalent bond, differ as the interaction is clearly different with differ-
ent surfaces. Another possible future analysis is to check the changes in the
dipole moment of the water molecules along the ẑ direction, and make links
to other work that has been performed in our group. We hope to keep our
collaboration active for this project and other future projects to come...
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