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Supersymmetry has been fruitful source of new Physics and Mathematics advancement. In
particular, supersymmetric theories on curved manifolds often leads to very interesting connections
between integrable geometry and supersymmetric physical quantities.

In this dissertation, we summarize the author’s recent work on 5d N' = 1 supersymmetric
theories on curved 5d Riemannian manifolds and its relation to contact geometry, which is the odd-
dimensional counterpart of symplectic geometry in even dimension. We will discuss the geometric
implications of the Killing spinor equations derived from the rigid limit of 5d N/ = 1 supergravity.
Combining with the dilatino equations, we see that a large class of supersymmetric backgrounds are
transversal holomorphic foliations. With these, we go on to discuss the Higgs branch localization
of N = 1 theories on K-contact manifolds, in which case we discover that the BPS solutions are
generalized Seiberg-Witten equations on K-contact manifolds. These solutions are in one-to-one
correspondence with the poles of the Coulomb branch 1-loop determinant. Finally we will discuss

the properties of contact instantons that arise from Coulomb branch localization of N' = 1 theories.
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Chapter 1

Introduction

1.1 Introduction

Quantum mechanics and the theory of relativity, the two greatest developments in physics in the
early 20th century, gave birth to the most powerful tool ever invented by mankind to describe our
universe, namely, Quantum Field Theory. It has enabled us to study our universe in unprecedented
depth and detail, making amazing predictions of what the constituents of our world are and how
they behave.

But the method of Quantum Field Theory does not stop at describing just our physical universe.
In the past decades after its birth, it has gone much further. Quantum Field Theory has proven to be
highly useful in revealing subtle mathematical structures and their relations to realistic or imaginary
physical models. We have the example of quantum anomalies, in which case the quantum violation of
classical conservation law reveals the cohomological structure of the group of gauge transformations.
We also have the renowned example of Donaldson-Witten theory, where physical observables reveal
the cohomological structure of the instanton moduli spaces, and the hidden smooth structures on
four manifolds. The list goes on endlessly.

In many of these cases where Quantum Field Theory shines, the concept of supersymmetry
plays an important role. The presence of supersymmetry in a theory often leads to interesting
exactly computable physical quantities, thanks to the delicate cancellations between bosonic and
fermionic degrees of freedom. On the other hand, the existence of a supersymmetric theory on a
given manifold often implies that the manifold carries a certain geometric structure. What’s more
interesting is that, the above mentioned computable physical quantities and the underlying geometry
are closely related, namely these physical quantities are actually invariants of the geometries. This
can be viewed as a generalized notion of Donaldson-Witten theory: smooth structures are replaced
by geometric structures, the N' = 2 SU(2) theory is replaced by more general supersymmetric
theories.

In this dissertation, we will focus on A/ = 1 supersymmetric theories on Riemannian five-
manifolds. We will explore the relation between the existence of A/ = 1 supersymmetry and the

contact or transversal holomorphic foliations on the five-manifolds. We will also discuss the notion



of 5-dimensional Seiberg-Witten equations and their role in supersymmetric partition functions.

In Chapter [2], we will study the basic relation between 5d A" = 1 theories and almost contact
geometries. We will explore the necessary geometric conditions for the existence of different number
of supercharges.

In Chapter [3], we will further show that the existence of a large class of N' = 1 supersymmetry
implies transversal holomorphic foliation on the five manifold.

In Chapter [4], we introduce the notion of 5d Seiberg-Witten equations, and its role in the Higgs
branch localization. In particular, we will study the local behavior of Higgs branch BPS equations of
N =1 theories around special circles, and use these information to match the poles in the integrand

of the partition function.



Chapter 2

5d Rigid Supersymmetry and Contact

Geometry

2.1 N =1 Minimal Off-shell Supergravity

5 dimensional minimal off-shell supergravity was studied by Zucker [1]'. In his paper, the linearized
supergravity multiplet and its SUSY transformation rules are obtained through coupling to the
current multiplet of supersymmetric Maxwell multiplet. Then the linearized multiplet is covari-
antized (making the transformation local) and its supergravity transformation can be derived. In
this section we summarize his work, and obtain the Killing spinor equation needed for the rigid
limit.

The super-Maxwell multiplet consists of the field content (¢, Ay, \'), where ¢ is a real scalar,
A is a gravi-photon with field strength f,,, = 9n A, — OnA.,, and X is the gaugino, a complex
4-dimensional spinor.

The flat space Lagrangian reads
L= _ifm”fmn - %8mg08m¢ + %X’rmamx. (2.1.1)
This Lagrangian is invariant under the on-shell supersymmetry transformation
dp =ieN, 6A,, = iel, N, 6N = %fmnfm”e — O @I, (2.1.2)
which form a closed algebra modulo the equation of motion:
"0\ = 0. (2.1.3)
There are several symmetries of the theory:

e Spacetime symmetry, whose conserved current is the energy-momentum tensor

1 1 =
T = _fmkfnk + annfklfkl + am¢an¢ - inmn(a(p)2 + g)‘/ (Fmaﬂ + Pnam) N (2‘1'4)

Tt is called A = 2 in [1], however, it actually has 8 supercharges following from the symplectic Majorana reality

condition and it is more sensible to call it A" =1



e Supersymmetry, whose conserved current is
JP =TT\, + % Fu MmN, (2.1.5)
e SU(2) R-symmetry, whose the conserved R-current is
Jo = N1rer, N ;. (2.1.6)

These currents can form a supermultiplet if proper additional objects are added to close the

algebra. The complete current multiplet consists of
(C, XY W, Iy I, J(al),Tm") . (2.1.7)

Then one can couple this multiplet to linearized gravity. The bosonic components of the mul-
tiplet are (M, (Am)®, Vinn, Am, t,C), where a,, is U(1) gauge field with field strength F,,, =
OmAn, — On Ay The fermions are an auxiliary spinor A of dimension 3/2 (not to be confused with
the gaugino A; of the A/ = 1 vector multiplet in a later section) and the gravitino "

1 (- - 1 1 1
P mnTmn o m, 1 —4C'C — 94 — S Wmn mn aia . m ZJeA™m 21.
£=h 1y = 4C'C = 2iCA — Sw V™ 4 X1 +2\/§A T+ g TmAR. (2.1.8)

Requiring the Lagrangian to be supersymmetric, one obtains supergravity transformation (with
parameter £; which is a symplectic Majorana spinor) of the linearized multiplet. Further covariantiz-
ing the transformation gives the full Supergravity transformation (here we only list schematically

first few lines and omit coefficients in front of each term)
dep, ~ &y,

0 Am ~ Erpl

,

5 rm ~ DEEr + FnTEr + VPIT alr + (Am) €0 + 11767 + ...

SA1 = (AVR V™ Ty 4 Frn Ful ™™ + C) &1 + 4 [(Dintr”) T+t (F +2V),, T €7 + ..
(2.1.9)
where ... in the third line denotes terms that will vanish when taking rigid limit. In the last line we
schematically show a few terms involving V', and use ... to denote remaining complicated terms.
The rigid limit procedure sets fermions to zero, keeping only the bosonic fields (metric and
other fields) to some background which needs to be determined. If such background is invariant
under certain supergravity transformation, in particular, 53 = 0, one obtain a rigid supersymmetric
background with the resulting metric.

The condition §y = 0 reads, with some coefficients reinstalled without loss of generality,

1 1
Vmr = Vs — t1' Ty — = FrpnlI™Er — iqurmpqéf — (A, Te5=0. (2.1.10)

2
which is the Killing spinor equation we are going to analyze in the following sections.

In principle one needs to also solve the equation from d\ = 0 in taking the rigid limit. However,
in this chapter we do not discuss this equation, but rather focus on the simpler yet important Killing

spinor equation (2.1.10).



2.2 Symplectic Majorana spinors and bilinears

In this section, we review the properties of symplectic Majorana spinor and their bilinears. Note
that we consider bosonic spinors in the following discussions. More detail can be found in the

appendix [A]

On a 5-dimensional Riemannian manifold M, one can define Hermitian Gamma matrices, the

charge conjugation matrix and SU(2) symplectic Majorana spinors?.

Hermitian Gamma matrices are denoted as T’

{Tr, T} = 29mn, (2.2.1)

and hermiticity implies
Tm= @' (2.2.2)

The Charge conjugation matrix is denoted as C,
crmet =@ =T, (2.2.3)
We also define the SU(2)-invariant tensor ¢!/ and e
€= = ¢y =1, (2.2.4)
and raising and lowering convention
ey X’ = Xp, X, = X1, (2.2.5)
With these quantities we define the symplectic-Majorana spinor condition as
&7 = €'/ Cupt?, (2.2.6)
and a C-valued product of any two spinors denoted by parenthesis ()
(&n) = €% Capn”, (2.2.7)

and further a positive-definite inner product (, ) between symplectic Majorana spinors &, 7
(&) =€ (Emy). (2.2.8)

2.2.1 Bilinears from 1 symplectic Majorana spinor

Now we’re ready to define bilinears constructed from one symplectic Majorana spinor &;.
(1) Function s € C*(M):
s= e (ge)) = 2(616). (2.2.9)

2Note that ordinary Majorana condition cannot be defined in 5d.




Note that this function is strictly positive if £ is nowhere-vanishing:

s = EPCapt =Y €7E7 > 0. (2.2.10)
(2) Vector field R € I'(T'M):
R™ = lT¢rmey, (2.2.11)
and the corresponding 1-form
Km = gmn R, (2.2.12)

which implies, when acting on QP (M)

trox = (—1)P x o (kA). (2.2.13)

(3) 2-form?
oL = (&'Twnt’), (2.2.16)

with symmetry
ol = e/l (2.2.17)

Let t;; be an arbitrary triplet of functions, namely
trg=ty, I =12 (2.2.18)
then its contraction with © gives a real 2-form
te)=t,(e’)). (2.2.19)

Using the Fierz identities one can derive useful relations between these quantities, which we list

in appendix A.2.4.

Given the nowhere-vanishing 1-form s and the vector field R, one can decompose the tangent
bundle TM = TMpy & T My, where at any point p € M, T My, is annihilated by x, while T'My
is a trivial line bundle generated by R. Let’s call T My, and similarly all tensors annihilated by
(or R) “horizontal”, while those in the orthogonal complement ”vertical”. In particular, one has
decompositions

Q* (M) =02 (M) D Q% (M) =r AQ3 (M) @ Q3 (M) (2.2.20)

For an arbitrary nowhere-vanishing triplet of functions ¢;; with the property (readers may find

conventions in Appendix [A])

try=ty, trg= EHIEJJ/th/ (2.2.21)

30ne could of course go on defining higher forms 677 = ¢'T},,,£7 and Gfﬁlnpq = €' Tnpet”, but duality of

Gamma matrices gives

Olin = —ge”qzm%;’, (2.2.14)
and
e'{r;.]npq = \/geTmnpqein (2215)



one can define a map ¢, : I' (TM) — T'(TM) as

1 -2
"= te) ". 2.2.22
(th)m s\ tr (t2) ( )m ( )
Obviously, one has
propr=—1+s R~, (2.2.23)
and when restricted on T'Mp, ¢ is some sort of a“complex” structure:
¢t ° Ptlppg,, = —1- (2.2.24)

Together with the vector field s™'R and 1-form s~ '&, @) defines an almost contact structure on
M]2] (see also Appendix C).

Finally, let us comment on the “(anti)self-dual” horizontal forms. Define operator *y = s~ 'i*,
which is the hodge dual “within” horizontal hyperplanes. It is easy to verify that acting on any
horizontal p-forms

*h = (=P (2.2.25)

In particular, we decompose the horizontal 2-forms into 2 subspaces according to their eigenvalues
of X
0% = Q4 @04, gt = +wi Yot € OF. (2.2.26)

We call the horizontal forms in Q? “self-dual”, while the others “anti-self-dual”. Clearly, these 2
notions are interchanged as one flips the sign of the vector field R, hence this notion of “self-duality”
is not as intrinsic as the well-established notion of self-duality on 4-dimensional oriented manifolds.

Suppose Q7 is a self-dual 2-form. Then it satisfies, by definition,
g
Q—\CepqlmanQ;;q — Q. (2.2.27)

It follows immediately that

O M =0, (2.2.28)

using the fact that the inner product (1,v) = €/’ (¢1¢5) is positive definite, and the action of T,

preserve symplectic Majorana property.

2.2.2 Bilinears from 2 symplectic Majorana spinors

In this section, we consider the case when there are 2 symplectic Majorana spinors, and analyze
their bilinears.

Denote the two spinors &7 and £~ 1- Obviously they each generates a set of quantities as we
discussed in the previous sections: (s, R, k,©) and (8, R, &, (:))

In addition to these quantities, they form some new mixed bilinears. Conventions for IJ indices

can be found in appendix A.



e Functions

ury = (€1€7), (2.2.29)
with triplet-singlet decomposition
R 1
ury =gy ) = Uy = e, (2.2.30)
where
uw=eury. (2.2.31)
Notice that
w7 =l up g =l (2.2.32)

and in particular function u is real-valued

u=u=Y &, (2.2.33)
T
which results in positivity
uUuU:ZuUTU: %uQ—I—aUﬁU > 0. (2.2.34)
e Vector fields Qs
Q7 = (&T™8y), (2.2.35)
with a decomposition
Qrs = Qrs — %GIJQ, (2.2.36)
where
Q™ = e (TmE). (2.2.37)

Note that similar to the function case, we have

Qs =Q", (2.2.38)
and in particular a real vector field
Q=0Q. (2.2.39)
We denote corresponding 1-forms
. 1
117 = (Qrg),,dx™ = Trj — SE1IT: (2.2.40)
e Two forms
Xiim = (€' Tn€”). (2.2.41)
Also we define
x = "x1s, X1s = x@9)- (2.2.42)



These bilinears satisfy various algebraic relations. Here we list some relevant formulas.

Norms and inner products of vector fields
(1)
~12
_ ’§R+8R‘ = 8ssuryul’
R-R=4upju'’ — 55 = . (2.2.43)
’§R — sR‘ = 45§ (s§ — QuIJuU)
(2) ,
Qry-Qkr =2urLugy — urjuKr — SEIKELISS (2.2.44)
In particular
Ly 2L 1 .
u = — (u"“uysy) s§
[0 Qu[" =5 (u ) (2.2.45)
QI = =246 + s5
(3) )
R'Q]JZSU[J, R'Q[J:§UIJ. (2.2.46)
Positivity of the norms implies
s5 > 2upul’ = 205,07 + u?. (2.2.47)

1J

When s§ = 2usju!’, we have R and R are parallel at such point, which in general we like to

avoid.

(4) Using Fierz identity, one can shows
SR+ sR = 4U]JQIJ = 2u@ + 411]JQIJ, (2.2.48)

RmRn — Ran = _4UIJX£ﬁ]n = KAK= —4UIJXIJ

255 (2.2.49)

(Rt Rty — 4(Q10),(@"),]

9mn = —

- 2
sk~ K|
where the last equation tells us that the metric is completely determined by the bilinears

constructed from 2 solution.

Contraction between the vectors and 2-forms

tr (tx) = s(t7) — (ta) &

1 (tO) = (ta) K — s (t7) (2.2.50)
Ly (10) = (ta) (uk + s7)

Lr(tOr)) —1p (H701) = 4t (utry — apy7)

where again tj; is arbitrary triplet of functions.



2.3 Killing spinor equation

In this section we will discuss what constraints will be imposed on geometry of M when there exists
different numbers of solutions to the Killing spinor equation (2.1.10). We focus on situations where

there are 1, 2, and 4 pairs of solutions to the equation.

Recall that the Killing spinor equation required by rigid limit of supergravity is

1 1
5¢m1 = vmgl - Fmtlng - §qurmpq£] - iananl - (Am)IJgJ = Oa (231)

where t7; is a triplet of scalars (or more precisely, a global section of the ad(Pg(2)) where Pgp(9)
is an underlying principal SU(2)z-bundle, with gauge field (4,,) IJ), F is a closed 2-form, V is a
2-form.

The symplectic Majorana spinor £; is a section of the SU(2)xr twisted spin bundle of M. In
general the SU(2)g-bundle P is non-trivial. We define the gauge-covariant derivative on tr;

VALY = Vit — (An) S tx? + 75 (Am) 7 (2.3.2)
and curvature of A as
(Win)1” = Vin(An) ;) = Via(Am),” - [(Am)IK(An)KJ — (An) " (Am) 7] - (2.3.3)

Note that the Killing spinor equation is SU(2) gauge covariant. It is also invariant under complex

conjugation, provided that the auxiliary fields satisfies reality conditions: F' and V are real,
try = EH,EJJIt[/J/, (2.3.4)

and similar for A. The reality condition on t;; and A is just saying that they are linear combinations
of Pauli matrices with imaginary coefficients.
Apart from the above obvious symmetries, the equation further enjoys a shifting symmetry and

a Weyl symmetry.

e Shifting symmetry: The equation is invariant under the shifting transformation of auxiliary
fields V and F

V-V4+atr
(2.3.5)
F— F+2Q7f
where Q% is any self-dual 2-form discussed in (2.2.26), following from the fact that
Qf T = 0. (2.3.6)

e Weyl symmetry: after rescaling the metric g — e2?g, one can properly transform the auxiliary
fields as well as the Killing spinor solution such that the Killing spinor equation is invariant.

This can be seen by first rearranging the Killing spinor equation (2.1.10) into the form
-1

10



where )
&= <t1‘] + 2qurpqc${> €7, Pon = Frn — 2V, (2.3.8)
and we ignore the gauge field Ayy for simplicity.

Focusing on (2.3.7) alone as an equation for pair (£,€) on any d-dimensional manifold, it is

obvious that

~ 1 1
gl = gFmegl - ﬁpmnrmngl (239)
Substituting it back to (2.3.7), one obtains the equation
1 1
D(g)§I = ﬁppqrmrpqél + ipmnl—‘nfl (2.3.10)
where the well-known differential operator Dy is defined as
1
D(g) =V — gFmF"Vn. (2.3.11)

and depends on the metric g. It’s easy to show that?

D(e*?g)e?/? = ?/2D(g). (2.3.14)
Hence, equation (2.3.7) is invariant under rescaling

g— e2g, P —e®P, ¢ — e/ (2.3.15)

Now we return to the equation (2.1.10), and compute the transformation of auxiliary fields

under Weyl rescaling. Suppose the scaling function ¢ is constant along vector field R:
R™V,¢ =0, (2.3.16)

then one can see that the Killing spinor equation (2.1.10) is invariant under rescaling

¢ [
g—€g, try — e %try, V= eV — ;— (kANdg), F — eF — i (kANdo)|,  (2.3.17)
s s

provided we also rescale & — e?/2¢. Note that the Weyl rescaling only affects the vertical part
of F and V. One can therefore use this rescaling symmetry with appropriate ¢ to make F
horizontal, namely

LrF = 0. (2.3.18)

However, unless explicitly stated, in most of the following discussions, we will keep the general

F without exploiting the Weyl symmetry.

4Under Weyl rescaling g — €>?g, the spin connection is shifted according to

1
Vit = Vi 0w = Vi + 5 (VE6) D, (23.12)
To prove the Weyl transformation rule for D(g), one just need to plug the above formula into
20 6/2\ _ e (972, _ lp proes (672
D (e g) (e w) =V (e w) STl (e w) . (2.3.13)
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Let us comment on the reality condition defined earlier.

(1) In 5 dimension Euclidean signature, the spinors belong to 22 dimensional pseudoreal rep-
resentation of Spin(5) ~ Sp(2), spinor (¢¥*), and (Ct))s = Cuptp? transform in the same way. It
is impossible to impose the usual Majorana condition, but one can impose the symplectic Majo-
rana condition on spinors. In this sense, 4 complex (8 real) supercharges correspond to unbroken
supersymmetry, namely N = 1.

The reality conditions introduced above are required by the supergravity that we started from,
where one is interested in a real-valued action. However, it is fine to relax the reality condition on
the Killing spinors and auxiliary fields, as long as one is only interested in a formally supersym-
metric invariant theory. It makes perfect sense to consider complexified Killing spinor equation. In
particular, the reality condition is not used in many of the following discussion, for instance, sec-
tion 4.1 actually can be carried out without assuming the reality condition (except for the shifting
symmetry of Q" which requires positivity following from reality condition). One only needs to work
with C-valued differential forms. Also, when we compare our 5d Killing spinor equation to the 4d
equations appearing in [3][4], we drop the reality requirement. However, in this paper we mainly
restrict ourselves to the real case, and reality condition does helps simplify certain discussions.

(2) Solutions to equation (2.1.10) come in pairs. Suppose ¢ is a solution, corresponding to one

supercharge @, then its complex conjugate £’

G=&==&, &=-&, (2.3.19)

automatically satisfies (2.1.10) corresponding to the supercharge Q. The pair of solutions ¢; and &
define the same scalar function s and vector field R, but 2-forms © with different sign.

In view of such “pair-production” of solutions, we focus on finding different number of pairs
of solutions to (2.1.10), and discuss them separately in the following subsections. When analyzing
the case when M admits 1 and 2 pairs of solutions, we will select one representative solution from
each pair, say, £ and f , and study the relation between the bilinears that can be formed by these
representing Killing spinors. Generically, the vector fields R and R from separate pairs should not
be parallel everywhere on M.

(3) One may worry about possible zeroes of Killing spinors. Similar to that in [4], the Killing
spinor equations are a first order homogeneous differential equation system, whose set of solutions
span a complex vector space CF<%, with each solution completely specified by its value at a point p €
M. By the symplectic Majorana condition, &;(p) = 0 implies 2(p) = 0, and hence &;(Vx € M) = 0.
Therefore, any non-trivial solution of the Killing spinor equation must be nowhere-vanishing, which

ensures that the many bilinears defined (especially the almost contact structure) will be global.

In some sense, our Killing spinor equation is a generalization of the well-known Killing spinor
equation
Vimtp = Al'n, (2.3.20)

The constant A can be real, pure-imaginary or zero, and the equation is accordingly called real,

imaginary Killing spinor equation and covariantly constant spinor equation. If a manifold admits a
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Killing spinor, its Ricci curvature must take the form
Ric=4(n—1) Mg, (2.3.21)

hence Einstein. For A pure imaginary, Baum gave a classification in [5][6]. Prior to [7], manifolds
with real Killing spinor are better known in low dimensions. For instance, 4-dimensional complete
manifolds with real Killing spinor were shown to be isometric to the 4-sphere [8]. In 5-dimension,
simply-connected manifolds with real Killing spinors were shown to be round S° or Sasaki-Einstein
manifolds, with solutions coming down from covariantly constant spinors on their Calabi-Yau cone.
In [7], these results were generalized to higher dimensions: in dimension n = 4k + 1, only S***! and
Sasaki-Einstein manifolds admits real Killing spinors, while in n = 4n + 3 > 11 dimension, only the
round sphere, Sasaki-Einstein and 3-Sasakian manifolds admit real Killing spinors.

Our generalized Killing spinor equation has milder constraints on the geometry of manifold. We
will see that the existence of one Killing spinor requires some soft geometry structure, one being an
almost contact structure, similar to [9]. Of course, as the number of solutions increase, the geometry

will be more constrained.

2.3.1 Manifolds admitting 1 pair of supercharges
General Result and ACMS structure

In this subsection we will analyze the case when there is one pair of solutions to the Killing spinor
equation (2.1.10). We partially solve the auxiliary fields in terms of bilinears constructed, and
rewrite the (2.1.10) into a simpler form. We will also briefly discuss 3 interesting cases with special
auxiliary field configurations, which lead to geometrical restrictions of M being locally foliated by

special manifolds, or dimensional reduction to known 4d equations.

By differentiating the bilinears and using (2.1.10), one arrives at the following differential con-

straints on the quantities:

e Derivative on real positive function s

ds = —gF. (2.3.22)

e Derivative on real vector field R

Vi Ry = 2(t@)mn - \/gerpqnmRT‘/Pq + 8 Fmn. (2323)

e Derivative on the 2-form with any triplet 77
Vk(?"IJ@[J)mn = (V™) (O 1)
+tr (rt) (gnk B — gmrRn) — 2r7 15 (x0 511,00
2 [(*V)nleIJ(@IJ)ml - (*V)mkl(TIJ@IJ)nl}

—kaTIJ(*@]J)

(2.3.24)

mnp

13



Let us comment on the above relations. The first equation implies s = const and can be
normalized to s = 1 when F' is horizontal. Recall that one can always use the Weyl symmetry of
the equation to achieve this, although we keep the general situation. The second implies that R is

a Killing vector field:

VR + VB = 0], (2.3.25)

The 3rd relation can be simplified as one puts in the solutions to F' and V.
Using the 2nd and 3rd equation, one can solve (partially) the auxiliary fields in terms of the
bilinears (field V' is decomposed as V = Vg + k A7) :

F=(25) 'dr 4 2571Q" + 25710+

Vg = —s1(tO) +s71Q" + s71Q* , (2.3.26)

1 mn 3 _ 1
n" = 7(@U) vk(61J>nk 1 (vms 1) - ?(AH)IJ(GIJ

where Q7 are self-dual (+) and anti-self-dual (—) 2-forms respectively, satisfying extra condition
LrOE = 0. (2.3.27)

From previous discussions, we know that Q' corresponds to the arbitrary shifting symmetry of
Killing spinor equation, so we may simply consider Q* = 0.
Q)™ is in general non-zero. For instance, the well-known Killing spinor equation V,,&; = t7/T,,& 7
corresponds to
QO = —id/ﬂ, (2.3.28)

which is non-zero. Also, at the end of the paper we construct a supersymmetric theory for the

N =1 vector multiplet using the Killing spinor equation corresponding to
_ 1
O = Zdn. (2.3.29)
However, to highlight some interesting underlying geometry related to (2.1.10), we will consider
Q" =0, (2.3.30)

in this section unless explicitly stated. It is straight forward to generalize to non-zero €2~, with

sight modification to the following discussions.

Now that the auxiliary fields are partially solved, we can start simplifying the Killing spinor
equation. As mentioned before, ¢7; is a global section of associate rank-3 vector bundle of Pgy(g),
it may have zeroes. Below we will focus on 2 cases corresponding to t # 0 and ¢ = 0 everywhere on
M.

First let us consider the case when tr; # 0.

(1) trg #0

14



Notice that the quantities (g,s 'R, s 'k, ;) actually form an almost contact metric structure

(abbreviated as ACMS). Using the ACMS, one can further rewrite the Killing spinor equation:

A~ A ~ J A
Vinkr — (Am)r €5 =0}, (2.3.31)
where we rescaled &
&r= (V) (2.3.32)
AT 1
(An)r” = (Aw);”" + =Rty + —— (Vist"™) tir + n terms
s tr (t2) 9.3.33
1 J 1 JK (2:3.33)
= Rutr” + — @ (Vint”™) tir 4 n terms,
and V being the compatible spin connection introduced in the appendix C.9.
A 1 J 1 " 1
mel = vmé[ + 72(Tm) ]5] - 7vanF 51 + - (vm 10g 5) 51
tr (t2) . 2s 2 (2.3.34)
_ q 4 J - 14 Pq
tr (tg)nq(t@) mtl €J + 2(*V )mqu f[
Notice that the new gauge connection is no longer SU(2) connection, since the term
(Tin)ry = (VTA;JIK) LK g, (2.3.35)
might not be symmetric in 7, J, but rather
1
TL — T = e/ Vntr (), (2.3.36)

2

which corresponds to an new extra U(1) gauge field. Fortunately this extra U(1) part is in pure

gauge,
AIU‘{I) ~ eV intr (t2) , (2.3.37)

and can be easily gauged away. Hence, let us choose a gauge
Vir () = 0. (2.3.38)

Before moving to the ¢t = 0 case, let us make a few remarks.

(1) The appearing of ACMS has already been hinted in literatures . In [9], supersymmetric
theory is obtained on any 3d almost contact metric manifold. [10] constructed twisted version of
the super-Chern-Simons theory considered in [11] on any Seifert manifold Ms. Their twisted theory
is defined with a choice of contact structure on M3, with fermions replaced by differential forms.
Note that the non-degenerate condition of a contact structure is crucial in defining the theory and
the supersymmetry used for localization. Similar situations appear in [12][13], where the authors
constructed twisted YM-CS theory on any 5d K-contact manifold M.

(2) There is an interesting configuration (among many similar ones). It corresponds to the case
when

2V = F. (2.3.39)
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In such configuration,
dik = -4t + 4 An =k Nde Ndk x KA (1O) A (t©) # 0, (2.3.40)

which implies x is a contact structure. To make things even simpler one can use the Weyl rescaling

symmetry to make field F' as well as V horizontal, and therefore s = 1:
1 _ 1 _
F = §d/€ +207, V= Zd/i +Q7, (2.3.41)

where F, V, Q= are now all closed anti-self-dual 2-forms. The Killing spinor equation can be
rewritten as

1
Vimér =T'm <tr’ + 4ququ6{) ¢y, (2.3.42)

which takes the familiar form
Vnér = Dk, (2.3.43)

with & = (tr7 + (1/4)ququ5‘[])§J. We will use this Killing spinor equation to construct a super-
symmetric theory for the N' = 1 vector multiplet in section 2.4.

There are many examples of contact manifolds. For instance, any non-trivial U(1)-bundle over
a 4d Hodge manifold, with unit Reeb vector field R pointing along the U(1) fiber is a contact
manifold. One should note that trivially fibered S'-bundle, namely M = S' x N with Reeb vector
field pointing along S is not contact, because the non-degenerate condition cannot be satisfied.
However, this type of manifold still serve as important examples admitting supersymmetry. Hence,

we will have a brief discussion related to this type of manifold at the end of this section.

(2) t IjJ = 0.
There is no natural ACMS arises in this case (although, if possible, one could choose by hand
a nowhere-vanishing section of ad(Pg(2)) to play the role of t;;, and similar calculations goes

through. In this paper we do not consider this approach). The auxiliary fields F' and V' read

Frn = (25) "1 (ViR — Vi Rin)

) (2.3.44)
Vinn = Ronnin — R
and the Killing spinor equation reads
¢ 1 1 nl & £
vmgl + _@ (Rlvan - anle) + i(LR * n)mnl I 61 = (Amf)[ (2345)
Similar to the previous discussion, we again have a new connection V defined as
. 1
Mo = Tl + — (RleRn - anle) —20r*n), ., (2.3.46)
s
satisfying
Vi (s7'R™) =0, (2.3.47)

although there is no obvious geometrical interpretation for this connection.
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Again the Killing spinor equation can be rewritten as
Vinér = (Am); &, (2.3.48)
where € = V/s~1¢ has unit norm

To end this section, we discuss, in the following subsections, 3 special cases related to 5-manifolds
of the form M = S' x My, with the Reeb vector field R pointing along S'. As we will see there are 2
cases corresponding to two different types of auxiliary field configurations: V horizontal, F' vertical
and V| F both vertical. The first configuration leads to geometric restrictions on the sub-manifold
My, while the second corresponds to the dimensional-reduction of our 5d equation to 4d already
discussed in the literatures.

For such product form (or foliation) to appear, one first needs the horizontal distribution 7'My

to be integrable: the Frobenius integrability condition for x reads
dr A k=0 ,or equivalently dx = K A X, X € Qp(M). (2.3.49)

Recall that F' oc dr (27 is assumed to be 0), one sees that the Frobenius integrability condition
requires vertical F
F=xrA(.). (2.3.50)

Special Manifold foliation

To proceed to the first class of special cases, let us define a local SU(2) section of “almost complex

structure”: .
J= é(G“)IJG"z, (2.3.51)
satisfying
JOJY = e J¢ — 5T + 6T R® s k. (2.3.52)
It is immediate that when restricted on T'My,
| o = eabe e — gob | (2.3.53)
Moreover, we have
V() = (Ak)“b(f’)mn : (2.3.54)
where
(Am)™, = (=) (Am) i (0%) [ (00)" . (2.3.55)

Note that we can solve the new connection in terms of “almost complex structures”:

(A = )"kl | (2:3.56)

which, depending on whether ¢;; = 0, provides constraints on ¢y or A.
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These equations closely resemble that of Quaternion-Kéahler geometry, where one has on manifold

M a SU(2) bundle of local almost complex structure J¢ satisfying
JoJb = eabege — goby, (2.3.57)
and is parallel with respect to the gauged connection
VJE = A%J°, (2.3.58)

with the Levi-civita connection V and a SU(2) gauge connection A.
However the situation here is slightly different. We do not have actually a manifold but rather
a horizontal part of tangent bundle T'My of 5-fold M.
Let us assume V is horizontal:
n = 0. (2.3.59)

The induced connection (for ¢ # 0 case; t = 0 case goes through similarly and yields the same

conclusion) on T'My; is

VxY =VxY —g(s'R,VxY)s 'R~ (V&tX) tg 017 (Y), VX, Y € TMy  (2.3.60)

1
tr (¢2)
Consider the special case where the sub-bundle T'Mp is integrable as the tangent bundle T'My
of a co-dimension 1 sub-manifold My, then V reduces to a connection on My. The first 2 terms of
the connection combine to be the induced Levi-Civita connection VM on My (s™! R being the unit

normal vector), while the third term add to it a torsion part:

Ik = Tk + 9" s (2.3.61)
where )
Vo = = (Vintr™) tr s (077)" . (2.3.62)
tr (t2)
Rewrite the Quaternion-Kahler-like equation as
@244‘]7?111 = VQ/LI Jrarm - ’ylkaﬂL - 'Ylknqul - (Ak)abjrbrm' (2363)

Now one can put back expression for both v and J¢, and sees that the torsion terms gives

a a 1 a N a
VoI = Vo = @) (Vit: ™)t (0% e/ (on) (Jb>mn = (Br)"(J")mn- (2.3.64)

This implies that the Quaternion-Kéahler-like equation, restricted on a horizontal sub-manifold My,

actually reduces to Quaternion-Kéahler equation (with newer version of gauge field A+ B)

VMige = (A + B)",Jb = ((Ak)f’ + Rktf]) (@) (), (Jb) . (2.3.65)

mn

Thus, we see that for generic auxiliary fields ;5 and A,,, provided that the horizontal distribution
can be globally integrated to a sub-manifold My, My is actually a Quaternion-Kéhler manifold. Of

18



course, there are special combinations of ;7 and A such that A + B vanish. In such case, My is a
HyperKéhler manifold.

With the integrability condition satisfied, we see that M is now locally foliated by Quaternion-
Kéhler (or HyperKéhler in special case) manifold. In particular, compact manifold M could be a

direct product

M = S' x My, M, is Quaternion Kahler | (2.3.66)

In view of the fact that there are only 2 compact smooth Quaternion-Kéhler manifolds in 4d,
possible examples are M = S! x CP?, S' x S%, where the vector field R is chosen to be the unit
vector field along S', with gauge field A turned on on CP? and S*. There are more examples when

My is allowed to be non-compact or orbifolds.

Normal ACMS, Cosymplectic manifold and Kéhler foliation

As mentioned above, there are 2 ways to define ACMS structure on M using the data coming from
Killing spinors: with the nowhere-vanishing auxiliary field ¢;; or some other nowhere-vanishing
section of ad(P). In general the ACMS structure so defined does not have nice differential property.

However, when some (rather strong) conditions are satisfied, the ACMS will behave nicer.

Let us focus on the case t # 0 and (s™ 'R, s 'k, ;) define ACMS on M.

One obtains

1
LtO = = (Vat!7) (©1)) + sVP (SRm> (t0),,,dz"™ A da’. (2.3.67)

1
2
Setting

V}%t =0, Viu (S*IRn) =0 VR, x Fpp =0, (2.3.68)

one has LrtO = 0 and hence L ,-1z¢; = 0.
If, in additional to the above, one further imposes V' to be horizontal and VA4t = 0, then it is
easy to see that the ACMS satisfies
Vi =0, (2.3.69)

and hence it is cosymplectic. In this case, the Levi-civita connection V on M respects the ACMS,
the restriction of V on the horizontal distribution is automatically a connection on T'Mjp;.

Note that VR = 0 implies that the horizontal distribution is locally integrable. Therefore,
restricted on the integral sub-manifold, V is the induced Levi-civita connection, ¢; is an almost
complex structure which can be shown to have vanishing Nijenhuis tensor and hence actually a
complex structure. It is parallel with respect to induced Levi-civita connection, hence is Kéahler.

In summary, we see that
v =0, F=0, V =Vy = —tO, (2.3.70)

implies a cosymplectic ACMS (namely V¢, = 0), and M is locally foliated by 4d Kéhler manifold,
with the Kahler structure provided by ;.
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Recall that we had conclusion that M is locally foliated by Quaternion-Kéhler manifold in the
previous subsection, for configuration Fi; = 0, V = V. Suppose M = M, x S with a Reeb vector
field R from a Killing spinor pointing along S', then we see that My must be Quaternion-Kéhler as

well as Kahler. If My is a smooth compact manifold, then this leaves only one possibility:
M = CP? x S (2.3.71)

Of course, for more general Reeb vector field pointing along other directions, one could have other

possibilities of My.

Reducing to 4d

Finally let us point out the reduction of (2.1.10) to 4d already discussed in literatures[4][4]. Consider
M = M, x S! with spinor &; and auxiliary fields independent on the S' coordinate. The 4d part of

the Killing spinor equation reads
J 1 5 1 v5 1 Ap 1 v J
vué[ =1t ’V,ugJ + iF,uS'Y &r+ iv 'YuuSgl + §V ’Yu)\pél + iF,uV'Y &+ (Au)] &7, (2'3'72)
and the S! part serves as direct constraints on auxiliary fields

1 1
Ostr =176 + 5 Fspn"€r + 5V s + (43), /€7 = 0. (2:3.73)

There are now 2 different ways to reduce the equation, each gives rise to the Killing equation
discussed in [4][4]. The involved vertical condition Vi = Fy = 0 and requirement t = 0 or t;; o €1

indeed imply the Frobenius Integrability condition
de Nk =0, (2.3.74)

which is necessary for M to be a product.
I. Reduction to [4]
Setting t = A = F,,, =V, = 0, namely F' and V are both vertical 2-forms, the equation

simplifies to
V.ér = 1F > lvy5
uSl = 2 u57Y g[ + 2 'Y/AVE)gI

: (2.3.75)
0581 = F5 /M€ =0
or written in terms of Weyl components {; = ({y, 51),
1 1 .5
Vulr = §FM5C1 + QV I
} 1 Y o (2.3.76)
VuCr = —§FH5C1 - §V"55WCI
with constraint on Fj5
F5,6"¢r = 0, Fs,otlp = 0. (2.3.77)
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Suppose we relax the reality condition on £ and also F' and V', and define new complex auxiliary

vector fields A and V
2Z'Au = FM5 — VM5 = 3ua5 - Vu5

, (2.3.78)
—27;Vu = VH5
then the above equation takes a familiar form
Vil = =i (Vu = Ap) G = iV70(r
g SN e (2.3.79)

v,u ~I =1 (Vu - Au) 5] + Z'Vya'/“,&[

which is just the Killing equations discussed in [4] for 2 separate pairs of chiral spinors ((, Q:l) and
(¢2,C2). Vs has to satisfy conservation condition V,V#> = 0, and F,; is holomorphic w.r.t Jiy
and JEV if any of them is non-zero. The conservation condition on V5 is equivalent to d*-closed

condition on vertical 2-form V'
V, V¥ =06 V™, =0 d+V =0. (2.3.80)

Now that we choose not to impose reality condition on auxiliary fields, it is also fine for &7 to be
non-sympletic-Majorana, hence £; and £ are now unrelated complex spinors, and one of the two
can vanish. This then leads to different numbers of Killing spinor solutions in 4d, ranging from 1
to 4. In [4], the cases when My admits 1, 2 and 4 supercharges are discussed in detail. Here we list
a few points and discuss their 5d interpretation. More results can be obtained similarly.

(1) 2 supercharges of the form (¢,0) and (n,0): then assuming My is compact, My has to be

a Hyperhermitian manifold up to global conformal transformation. Moreover, the auxiliary fields

satisfy
e a) V, — A, is closed 1-form.
e b) 9,V, —0,V, is anti-self-dual 2-form.

Condition a) is obviously satisfied by definition: V,, — A, ~ 0Jas is obviously closed. The

condition b) reads in 5d point of view
LRrdV = — % dV, (2.3.81)

(2) 2 supercharges of the form (¢,0) and (0,¢): there are 2 commuting Killing vector on My,

and hence My is locally T?-fibration over Riemann surface 3. The auxiliary fields V5 and F)5 are

given in terms of J,, and j;w'

I1. Reduction to [4]

1 1 )
Setting A = Fj,, =V, =0, §Fu5 = §Vu5 = %bu, t = (i/6)M 22, one similarly obtains

T 1 T,
VMCI = gMa,uCI + gbuCI + gb O-,UJ/CI
. . . ) (2.3.82)
(3 (3 ~ 1 U~ ~
VuCr = EMJHCI — ngC] — gb 0w Cr
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which is the Killing spinor equation for 2 pairs of spinor (¢1,¢1) and ((2, C2) discussed in [4] for but
with condition M = M.

Again, &1 are no longer symplectic Majorana, and solution of the 5d Killing spinor equation
leads to different number of solutions to 4d Killing spinor equation. Let us list a few examples from
the detail discussion in [4]. Interested reader can refer to their paper for more results.

(1) 1 supercharge of the form (C, E) Any manifold (My, g) with a nowhere-vanishing complex

Killing vector field K which squares to zero and commutes with its complex conjugate
K,K" =0, [K,K] =0, (2.3.83)

admits solution of the form (¢,() to the 4d Killing spinor equation. K and the metric can be used
to build up a Hermitian structure on Mj.
(2) 2 supercharges of the form (¢1,0) and ({2,0): My is anti-self-dual with Vs, and F5, closed

1-forms, and hence in 5d point of view, they are closed vertical 2-forms. Moreover, the form of

solution requires M = 0, and according to our reduction, M = M = 0. If F =V are exact, then
My is locally conformal to a Calabi-Yau 2-fold. Otherwise, My is locally conformal to H? x R.

(3) 2 supercharges of the form ((1,0) and (0,(s): One must have M = M = 0. This is equiva-
lent to My having solution (¢1, () with M = M = 0.

2.3.2 Manifolds admitting 2 pairs of supercharges

In this section we consider the case when 2 pairs of solutions to the (2.1.10) exist. We see that when
certain assumptions on vectors (J;; are made, and if the Killing vector fields form closed algebra,
the geometry of M will be heavily constrained. And in particular, all the resulting geometries admit

contact metric structures.

The spinors £ and §~ satisfy equations:

1 1
Vimér = tr'Tmr + 5V Conpg€r + 5 Fnpl"61 + (Am) €5
) o 1 ) o (2.3.84)
Vi€t =t Ty + SV Topgbs + 5 a1 + (Am) '€

Similar to the previous section, we have

e Derivative on uyy

(1)

1
u]JdUIJ = ﬂ]‘]dﬂjj + §udu = —2tIJ(fo')IJ — L(uQ)F- (2.3.85)
(2)
du = —1gF. (2.3.86)
e Derivative on Qg
| VinQn + VaQum =0}, (2.3.87)
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namely, () is a Killing vector.

The derivative on uy; implies relation
2upyul’ = 55+ C, (2.3.88)

where the function C' is invariant along R and R. When t;; = 0, C reduces to constant.
Notice that when C' = 0,
sR = 3R, (2.3.89)

and when C' = —s3§

5R = —sR, (2.3.90)

which are degenerate cases that we do not consider in the following.
e Commutator between R and R

K =[R,R™ =8(ta) Q™ — 8u(tQ)™ — A(epep* V)" + (SupF — supF)™. (2.3.91)

Recall that we now have several Killing vector fields, R, R, K and Q. If some of them form
closed Lie algebra, the geometry of M will be heavily constrained. In the rest of this section, we
discuss several simplest possibilities where they form 2 or 3 dimensional Lie algebras.

1. R and R form 2-dimensional algebra

There exist only two 2-dimensional Lie algebras up to isomorphisms. One is the abelian algebra,
the other is a unique non-abeilian algebra.
When R and R commute, namely K = 0, one obtains the abelian algebra. If the orbits of R
and R are closed, then M is acted freely by T2, and therefore M is a T2-fibration.
The non-abelian algebra corresponds to K # 0. Assume K is a linear combination of R and R,
then
[R,R] = aR + bR. (2.3.92)

Contracting with R and R it gives

as? +b(s5+2C) = stppF

. (2.3.93)
a(s§+2C) + bs* = SuppF
The determinant of the system is
det = 5252 — (55 4+ 20)% = —4C (C + 53) . (2.3.94)
Notice that away from the degenerate cases when C = 0 and C' = —s8§, the determinate is non-zero.
Therefore, when trtzF # 0, the system allows solution (a, b)
B stptrl
S 2(ss+C
(s5+C) (2.3.95)
B StptpF
- 2(s5+0)
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Notice however that R, R and their commutator are all Killing vectors, therefore the coefficients

a and b must be constant. This implies

i = const, (2.3.96)
S
and further
£R§:£RS=0:>LRLRF:0, (2.3.97)
hence
a="b=0. (2.3.98)

To summarize, if R and R form 2-dimensional algebra, it can only be trivial abelian algebra.
What remains is the Killing vector Q. Assume @ and the commuting R and R form 3 dimensional
algebra:
[R,R] =0
[Q,R] = aR+bR+mQ . (2.3.99)
[Q,R] = cR+ dR + nQ
Let us make a Weyl rescaling to set tgF' = 0. Then it automatically implies tgigF = tzLoF =0

by previous arguments. Therefore,

Lr(u) = Lr(R-Q) =R [R,Q] =0
~ . (2.3.100)
Lp(us)=Li(R-Q)=R-[RQ]=0
It is immediate to see that the determinant of the above linear system is
det o |sR — 3R|%|Q)?, (2.3.101)

and hence non-trivial solution requires @ = 0 or SR = SR, which we do not consider. Therefore,
one has Q, R, R forming abelian algebra, and M is a T3-fibration over Riemann surface . Up to

an overall rescaling factor, the metric can be written as
3
ds® = hagda®da’ + " (db; + ai(x))?, (2.3.102)
i=1

where 6; are the periodic coordinates along R, R and Q provided their orbits are closed, and a; are

1-forms that determine the fibration.

2. R, R and [R, R] form 3-dimensional algebra
Assume that the algebra takes the form

[R,R] = K
[R,K] =aR+bR+mK . (2.3.103)
[R,K] = cR+dR +nkK
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In general, tgtz F' does not vanish. However, we can make a Weyl rescaling to make, for instance,

trF' =0, and in particular, s is constant and tgtzF = 0. This implies

R-K=R-K =0. (2.3.104)

It is then easy to solve the coefficients in the above linear relation:

1 985 +2C 1 5 8
a=—-——I|K|"—— c=—-——|K|*—=
4C ss+C 4C ss+C (2.3.105)
1, .5 s ’ 1, 985+2C o
b=—|K d= —|K|"——
4C ‘s§+C 4C’ | ss+C
The fact that all coefficients must be constants implies
> g % ¢ (2.3.106)
— = const, ———— = cons .3.
S " s5+2C ’

and therefore both § and C' are constant as well.

It is then straight forward to renormalize and linearly recombine the vectors to form a standard
su(2) algebra. Therefore topologically M is a SU(2)-fibration over a Riemann surface X; however,
there is no non-trivial SU(2) bundle over a Riemann surface from the fact that the 3-skeleton of
the classifying space BSU(2) is a point), hence topologically M = S3 x . Up to an overall scaling

factor which was used to bring s to 1, the metric takes the form

3
dsi; = ds + ds%s = hops(z)dzdz’ + Z ee?, (2.3.107)
a=1
where e = k, &,y are SU(2) invariant 1-forms on SU(2). Note that tgrF = tzF = 0 implies F is a
form on X: )
F = 5 Fap () dz® A dz. (2.3.108)

Recall that there is one more Killing vector field (). The metric has isometry subgroup SU(2), x
SU(2)R, which comes from the isometry of S3. If Q ¢ su(2)r x su(2)g, then Q must generate
continuous isometry in ¥, which implies ¥ = T2 or §? if M is compact. In this case, by requiring
Q commutes and being orthogonal to R, R and K, one can derive new constraints on the auxiliary
fields. For instance,

R Q=0cu=0&1gF =0 (2.3.109)

which, combining with the fact that F' is a 2-form on ¥, implies actually F' = 0.

2.3.3 Manifolds admitting 8 supercharges

In this section, we discuss the optimal case where the Killing spinor equation has full 4 complex
dimensional space of solutions. This is done by taking the commutator of the V, applying Killing
spinor equation and matching the Gamma matrix structure on both sides. We will see that there
are 3 cases corresponding to the survival of only one of the 3 auxiliary fields (¢, V, F'), with the other

two vanishes identically. Here we list main results that we will discuss in detail:
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V # 0: M is positively curved, with product structure 7% x G where G is a compact Lie

group. The non-trivial example is then 72 x SU(2) with standard bi-invariant metric.

F #0: M is locally of the form Mz x H?, where M3 is a 3 dimensional flat manifold.

t # 0: M is locally a space of constant curvature with positive scalar curvature, hence M is

locally isometric to S°.

e t =V = F =0: M has zero curvature, hence is locally isometric to R>.

By explicitly writing down the commutator [V,,, V,]¢r using Killing spinor equation, one would

obtain 2 immediate results:

e Terms independent of I.

n= vm(An)IJ - vn(Am)IJ + (An)IK(Am)KJ - (Am)IK(An)KJ =0} (2.3.110)

(W)

m

For simply-connected 5-manifolds, flat connections must be gauge equivalent to trivial con-

nections.
e Terms linear in I'.
0= (Vints?) Ty — [(Amt)/ - (tAm),J] r,
+%(vanp)Fp5[J — B P(+V) p, Todr” — 2677 (+V),,, /Ty - (2.3.111)

—(m << n)

The solutions to the equation are:

Case 1
{ t}f]: 0 (2.3.112)

Case 2
V=0 (2.3.113)

Now we study 2 cases separately.

Case 1: Only V # 0.
The solution #// = 0 and F = 0 implies (2.3.111) vanishes identically, no further condition on

V' is required.

Combining with previous section, we know that
ds =0, (2.3.114)

and we conveniently set s = 1.

By identifying the terms quadratic in I matrices, one sees that the
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e The curvature tensor satisfies a flat condition:
Rypnia(V) =0, (2.3.115)
where R is the curvature tensor of a metric connection with anti-symmetric torsion
Vi X" = Vi X™ 4 2(xV)"  XF. (2.3.116)

with V the Levi-civita connection of g. This result is most easily understood by looking at
the Killing spinor equation, where V' can be absorbed into the metric connection as a totally

anti-symmetric torsion.

e The Ricci curvature

Ricompn = 4(xV )P (xV) (2.3.117)

pqn’

e Scalar curvature

R = +4(V)" (xV), >0, (2.3.118)

which indicates the manifold must have positive curvature. Moreover, compact manifolds
admitting metric connection with anti-symmetric torsion are known to be products of T% x G

where G is a compact group. This leaves us only a few possibilities, the non-trivial one being
M = SU (2) x T?, (2.3.119)
which has standard positive curvature.

Case 2: V=0
Putting back V' = 0 into (2.3.111), one has

gk (Viitr?) = gk (Virtr?) =0

(2.3.120)
These 2 condition implies covariant-constantness of ¢;; and F':
VAT =0, ViFn =0]. (2.3.121)
In particular,
d«F =0, dF =0 AF =0, (2.3.122)
and 2nd/3rd Betti number is forced to be non-zero, if F' # 0:
V=0 >1 (2.3.123)
Compare the the terms quadratic in I', one obtains
1 1
J Bonnpa 7617 = =2(#) Do — g EmpFnsTP*0r + (277 Fyn TP — (m 5 m)] . (2.3.124)
The solutions are
try=0 or F=0. (2.3.125)

i) t = 0 while F # 0,¢ = 0
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e Riemann tensor
Rmnkl = leFnk - kaFnl- (23126)

Note that the expression satisfies interchange symmetry automatically, while the 1st Bianchi

identity implies

FonFor) — Fppluy =0= FAF =0. (2.3.127)
e Ricci tensor
Ricymn = FppFF,,. (2.3.128)
e Scalar curvature
R = —Fpn F™, (2.3.129)

which is negative definite if F' # 0. Also note that F' is covariantly constant, hence R,,ppk; 1S

also covariantly constant.

Let’s further constraint the form of curvature using the condition F' A F' = 0. Noting that
Fon is a b x 5 antisymmetric matrix, we choose a coordinate where it takes block diagonal
form:

F = Fiadz! A daz? + Fada® A daxt. (2.3.130)

Requiring that ' A F' = 0 forces
FiaF34 = 0. (2.3.131)

Assuming
Fiy # 0, (2.3.132)

with all other component zero, one arrives at a Riemann tensor with only one non-vanishing
component:
2
Ri212 = —(F12)” < 0. (2.3.133)

Combining with the fact that F' is parallel, this implies the 5-manifold M should locally be
product manifold
M = T3 x H?, (2.3.134)

where F' = Flodx! A dz? serves as the volume form of H?2.

The metric of M can be written as

F
ds? = ds3; + ﬁ (dz” + dy?) . (2.3.135)

ii) The case where t # 0, F =0
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e Riemann tensor
Rmnkl = 2tr (t2) (gmlgnk - gmkgnl) ’ (23136)

where interchange symmetry and first Bianchi identity are automatically satisfies.

The second Bianchi identity forces tr(#?) to be constant. The form of curvature implies that
M is a space of constant curvature, and therefore it must be locally isometric to S°. This
corresponds to the well-known fact that maximal number of solutions to the well-known Killing

spinor equation can only be achieved on round S°.

2.4 Supersymmetric Theory for Vector Multiplet

In section 4, we analyzed many properties of the proposed Killing spinor equation (2.1.10 from
supergravity, and discussed some necessary geometric conditions on the underlying manifold for
solutions to exist.

In this section, we propose a slightly generalized version of the supersymmetric theory for N’ = 1
vector multiplet. It is not the most general one, as there are other known examples (constructed
by dimensional reduction from 6d, for instance) in recent literatures that does not completely fit in
the following discussion.

Let us consider a simplified Killing spinor equation, where we set F' = 2V = F in (2.1.10)
J 1 g 1 "
D& =t1" Ty + ZFP Conpg€r + ifm”P £r. (2.4.1)

D,,, contains Leve-civita connection, spin connection, gauge field A,, from the vector multiplet and
background SU (2)-gauge field A 1”7, depending on the objects it acts on. The change of notation to
Fomn is to avoid confusion with the field strength of N’ = 1 gauge field

Foim = VinAn — Vi Ap — i [Am, An] . (2.4.2)

We propose a supersymmetry transformation of N = 1 vector multiplet with parameter ¢ being
solution to the (2.4.1) is

Se A = ic" (€T mAy)
Sep =il (E1M))

1 1 (2.4.3)
OeAr = —ianTm"& + (D) T™r + €’ K€y Dper + 20t17¢ 5 + §¢5ququ£[
6¢Dry = =i (&0 Dy Ag) + [0, (E1A0)] + it™ (ExXy) — 17 ETpAs) + (1 J)
Using previous results we obtain
2 2

with V4, denoting the vertical part of field V.
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As discussed in an earlier remark, the above equation implies that x is a contact structure
kANdk Ndk #0. (2.4.5)

Applying Weyl rescaling symmetry, one can eliminate V4 and set s = 1. The Reeb vector field is

then compatible with the contact structure x:
trk = 1,1rdk = 0. (2.4.6)

Combining with the fact that R is a Killing vector field, the structure (k, R, g) is actually a K-contact
structure.

For simplicity let us consider a special case where
F =dk, (2.4.7)

namely Q- = 1/4dk.
Then it is straight forward to prove that the following Lagrangian S(k,g) is invariant under
(2.4.3):

1
S:/WJPWWF—KAFAF—dmm*@@—QDUD”+4Mme—AJ¢Aﬂ
M
. (2.4.8)
1
—ﬁ”(MXD+Q¢H”%J+%VmKnOﬂﬂmﬂj+2¢FA*WV#ZR&

where R is the scalar curvature of the manifold.
As already mentioned, in the explicit form (2.4.8) we took the choice to assume Q~ = (1/4)dk,
which is in fact a special case of a large family of supersymmetric theories in the following sense.
Under supersymmetry (2.4.3) with ¢ satisfying (2.4.1) without imposing Q= = (1/4)dk, the

Lagrangian without k A F' A F' has variation
 FonFp () 249
Such term can be identified in two ways. If we assume F is not only closed, but also exact
F=dA= %d/@ + 207 (2.4.10)
for some 1-form A, then the term can be identified as variation of
ANFAF (2.4.11)

In such case, the theory is specified by x and A.

However, if we do not assume anything of F, then the term can also be identified as variation of
F A <A/\dA+§A/\A/\A> (2.4.12)

In such case, the theory is specified by nowhere-vanishing 1-form x and a closed anti-self-dual 2-form

), although the gauge invariance is not nicely manifested.
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Following an analysis similar to that in [14], one can add to the Lagrangian (2.4.8) a J-exact
term ¢V with
V=tr ((65/\)T/\) . (2.4.13)

Then the localization locus is
Fg =¢dk, 1gpFF=0, da¢p =0, Drj+2¢t;; =0 (2.4.14)
For general €7, the first equation will take a more general form
Fp = ¢dr + 9. (2.4.15)

This localization locus is a generalization of the contact instanton in [12].
It would be interesting to perform a complete localization for the theory (2.4.8) with the above

localization locus, which we leave for future study.

2.5 Discussion

So far we have obtained many constraints on geometry of M imposed by the existence of super-
charges. For 1 pair of supercharges, generically M must be almost contact manifold, and using
the compatible connection, the Killing spinor equation can be simplified to a compact form. We
also discussed a few interesting cases related to product manifold.d, which leads to special foliation
and reduction to known 4-dimensional Killing spinor equations. The presence of 2 pairs super-
charges with 2 additional assumptions restricts the isometry algebra of M, forcing M to be S3 or
T3-fibration over Riemann surfaces. The presence of 4 pairs of supercharges allows for only 3 major
possibilities, where the corresponding topologies and geometries are basically fixed.

There are several problems that are interesting to explore further.

(1) We obtained necessary conditions for supercharges to exist, but not sufficient conditions. In 3
dimension[9], the general solution to Killing spinor equation is obtained from the special coordinate,
which requires some integrability of the almost contact structure. However, we do not have such
integrability for the almost contact structure we defined, partly because the definition involves
auxiliary field t;y, and the differential property of t;; is not known at priori. Moreover, in the
extreme case where t;; = 0, it is not obvious that M is still a almost contact manifold. Perhaps it
is possible to define almost contact structure of M without referring to ¢y ;.

(2) We partially solved the auxiliary fields, but not all: gauge field A and ¢;; are entangled
together. If t;; and A could be solved in terms of pure bilinears separately, the first problem above
can also be solved.

(3) In the discussions, we made a few assumptions and simplifications. For examples, we did
not study all possible bilinears formed by all solutions, but focused on those formed by the rep-
resentatives from each pair. One should be able to obtain more information of M by taking into
account all of them. Also, to simplify computation we assumed Q2= = 0 in some discussions. It
is straight-forward and interesting to reinstate general 27, and understand its role in the almost

contact metric structure.
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(4) We start from Zucker’s off-shell supergravity[1]. However, it is not coupled to matter fields,
and hence one would not automatically obtain any supersymmetric theory for matter multiplets.
Our analysis, in this sense, is far from enough to obtain a complete picture. A next step one could
try is to start from known 5-dimensional off-shell supergravity coupled with matter and take the
rigid limit. For instance, one can start with N' = 1 supergravity coupled to Yang-Mills matters in
[15, 16], which was considered in [14]. After turning on auxiliary fields ¢7; and Vj,,, the Killing

spinor equation involved is then
1
Vinér = tr'Timés + 5 Vmpa 761, (2.5.1)

which is a special case of our more general equation.

2.6 Examples

In this section, we present simple explicit examples that illustrate some of the discussion before, by

solving Killing spinor equations on selected manifolds and determining the auxiliary fields.

2.6.1 M=S'"xS5*

In earlier discussion, we discussed the possibility of having M = S* x N with N a 4d Quaternion-
Kéhler manifold. In this section, we consider the case where N = S4.
Denote the coordinate along S' to be @, z# are stereo-projection coordinates on S*. The metric

of 81 x §% is simply

0,dxtdz”

ds? = dp> + 2 (2.6.1)

(1+72)

4 2
with function 72 = 3 (2#)
pn=1

As discussed before, we partially fix the auxiliary fields

F=0,V=t0 (2.6.2)

However, non-zero t© will generate globally defined almost complex structure on S*, which we
already know does not exist, hence we can set t = 0 and V' = 0. The only auxiliary fields allowed
is thus SU(2) gauge field A.

The Killing spinor equation (2.3.31) now reads

Opér = (AQ)IJSJ

o (2.6.3)
Viuér = (Au)r &

The gauge field A, is determined by the a choice of Quaternion-Kihler structure on S*. Denoting

21 =zt +ix?, zp = 23 4 izt (2.6.4)
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one can define locally 3 almost complex structures as the basis,

J = (a ® dzg — i ®dzl> + h.c.

0z 0%
1/ 0 0
2
= | —Qdxn - —&d h.c.
7 i<8zl® 2" 57 % Zl>+ ¢
3 __ L 7
J —z—aZi@)dzl Ziz,-@dzl

and determine the gauge field using (2.3.56).

We choose the Gamma matrices to be
M=ol@o?, M=Ioc, T"=I®03, C =T

and the obvious vielbein
ed = —df, e* =

1472 Opda”

solution is given as
gr=eT MUy @x_, &=—e TN @
2.6.2 M=.5%x53

Consider S3 as a U(1) bundle over S2. Let S® be embedded into C2,
§% = {[212 + |2l = 1] () € €2}

Similarly define
1

1+\z|2’

0 _ ~1 2
a=pet, 2= o 2 =
z2

2] = 229 = pewz

and hence the induced round metric on S can be written as

dz — zd dzdz
ds® = dzyd77 + dzadzg = |dO +i—r Z;’ T
2(141:7) | (1412P)
= (df +a)’ + ¢'
where
1 dzdz
g ey

2
(1+14F)
is the metric on CP! = S? with radius 1/2. In coordinate,

1 1
91z =gi, = — 3 — §8z82 In(1 + |Z|2) = 0,0: K

2(1+ \z|2)

and
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(2.6.12)

(2.6.13)
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The vector field R = 0y is a Killing vector field, and its dual is K = df + A, such that tgx = 1.
Define the frame on S® to be

3_ 8 1 Redz 9 Imdz

ee=e =K, €6 =——5, €=—"3 (2.6.15)
1+ |z 1+ |2)?
s.t.
g=cée’ t+ele! +e%e? (2.6.16)
then it is obvious that
woap = 0,a,0=0,1,2 (2.6.17)
from the fact 1y A d3
de® ~ EDOE (2.6.18)

(1+1:2)°

The base manifold S? x S? is complex, with natural complex structure and Kéhler form. Setting

the radius of the stand-alone S? to be I, with local complex coordinate w, the metric of S x 52

reads )
dzdz 41 dwdw
g=(df+a)?+ ——— 4 T (2.6.19)
(1+1=7)  (1+P)
with Kahler form on base manifold
idz N\ dZ i41%dw A dw
=R ARy (2.6.20)
2 (1 + \z|2> 2(1 + W)
or in components
i . il
wzi e _wzz frnd 72’ wwzf; = _w?I)’u} g ’ngm = —2 (2621)
2 (1 + \z|2) 2 (1 + \2)2)
The 2 complex structures on both CP! can form linear combination
pr =J1 £ (2.6.22)
which satisfies
i =—1+R®k (2.6.23)
1
Let us now construct the auxiliary fields. We choose t;; such that tr (tQ) =3 and therefore
4(t0)? ~ =1 + ... (2.6.24)

We identify a combination of the 2 complex structures on 2 CP! as t©. Recall that t© also satisfies
tr * (1©) = — (t0), hence we identify
w_ ~2(tO) (2.6.25)
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or a 2-form equation

idz N\ dZ i4l2dw A dw
2(t0) = Svin N2
2(1+|z| ) 2(1—|—|w| )
Then we obtain F' and V:
1 idz N\ dz
F = di=————0
2(1 + ]2\2>
and

Vet = idz A\ dz il2dw A dw

4(1 + \z|2)2 ) (1 + \w!2)2

With these auxiliary fields, one can solve the Killing spinor equation

Denote o = w, w, and u,v = 2, z, we have

Vaér = (Aa); €
J

Vit — 5 (VuR) TVe = (), 6

V& = (Ae)[‘]g]

where . . L

—iz iz -
Ry=1,R,=-——5=—10,K, Rz = -— =
’ 21+ |2 21+ |2
and we used
VuRg =VeRg =0
Choosing gauge field to be (A;,)7 = (Am)(03)7,

z 1
iy = A= g =

) 4
4(1+\z\2) 4(1+\z\2)
and representation of Gamma matrices

Pwaw~0o1201, I',z9~03®0123

one obtains the chiral solution (&2 is obtained from symplectic Majorana condition)

& =e 1 ® x4

The calculation can be easily generalized to M = S x ¥ for Riemann surface X.
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Chapter 3

5d Supersymmetric Background and

Transversal Holomorphic Structures

3.1 Introduction

This chapter focusses on the question that to what extend this notion and use of holomorphy can
be extended to general five-dimensional backgrounds admitting rigid A = 1 supersymmetry. Our
analysis is based on the gravitino and dilatino equations of [16, 15] which in our conventions and in

FEuclidean signature are
Dinés = 1Ty + P61 + SV Ty (31.1)
and
(Dot ) T 4 7 (F 4 2V),, 7] €5 + (AV V™ T+ Fon T 4 C) &7 =0 (3.1.2)

Here, I = 1,2 are indices for the fundamental representation of SU(2)g. F = dA is a U(1) field
strength and V an antisymmetric tensor. The triplet ¢ IJ is valued in the adjoint representation of
SU(2)r. The covariant derivatives are D,,&r = V&1 — Amljfj and Dmtl‘] = thl‘] - [Am,t]f].

For later convenience, note that (3.1.1) can also be rewritten as

o _ 1
Dinér =T + 5 VP = FP) Donpelr, - &1 = tr’es + 5 Fmnl e (3.1.3)

In the Lorentzian theory, the spinors £ satisfy a symplectic Majorana condition (2.2.6). Transi-
tioning to the Euclidean theory one usually drops such reality conditions and effectively doubles the
degrees of freedom of all fields involved. In general, the spinor £; defines a possibly complex vector
R. Imposing the reality condition (2.2.6) for &; it follows that R is real and non-vanishing and
that the tangent space decomposes as in (C.3.1), which one refers to as an almost Cauchy-Riemann
(CR) structure (of hypersurface type).

In opposite to the familiar case of almost complex structures, the integrability condition for

(C.3.1) is not unique. Indeed, there are two possibilities. To begin, there is the case of a integrable
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CR structure,
A A ey A (3.1.4)

that defines a CR manifold. CR manifolds have previously appeared in the context of the rigid limit
of new minimal supergravity with Lorentzian signature in [17]; there, the authors found fibrations

of the real line over three dimensional CR manifolds. Alternatively, there is the condition
Mo R TYWoR CTYaR, (3.1.5)

which defines a transversally holomorphic foliation (THF).! The work of [3] relates rigid supersym-
metry in three dimensions with the existence of a THF. Note that Sasakian manifolds fulfill both
(3.1.4) and (3.1.5) as here [Rsasakian, T+°] € T10.

Naturally, the question whether solutions to the Killing spinor equations (3.1.1) and (3.1.2)
admit integrable CR structures or THF's is closely related to the question whether a given five
dimensional manifold M admits any solution in the first place. As we alluded above, this question
was already addressed in [20] and [21], but not exhaustively answered. As we will see, existence of
a solution to the Killing spinor equations that satisfies the symplectic Majorana condition implies
the existence of a globally non-vanishing Killing vector field parallel to R. We will show that the
existence of such a Killing vector field is not only necessary, but also sufficient. While we will do
so by directly constructing a single solution and arguing that there are no topological obstructions,
one can already give a short argument why one should be able to expect this result. The existence
of a non-vanishing vector field implies that M admits an SO(4) structure. Since the theory has an
SU(2)r symmetry, one can perform an operation akin to a Witten twist in four dimensions and
identify the the SU(2)g with an SU(2) factor inside the structure group.

The structure of this note is as follows: The relation between the supersymmetry spinor &;,
almost CR-structures and almost contact structures is the topic of section 3.2. Then, we will
discuss the integrability of the Killing spinor equations, possible obstructions and general differential
properties of (3.1.1) and (3.1.2) in section 3.3. Section 3.4 is concerned with the implications for
localization. We will argue that the results of [22, 21] can be generalized to CR-manifolds and
THF's. Subsequently we discuss the existence of globally well-defined solutions (section 3.5) before
concluding with some examples from the literature in section 3.6. Various appendices complement
the discussion.

During the final stages of this project [23] appeared, which has some overlap with our work.
There, the authors study rigid supersymmetry on Riemannian five-manifolds using a holographic

approach.

3.2 Algebraic Properties

In this section we will further discuss the algebraic structures arrising from the existence of the

spinors &;.

'For some background material on transversely holomorphic foliations, see e.g. [18, 19].

37



3.2.1 The Almost Contact Structure

Recall that we have a set of bi-spinors that can be defined for any given &;:

s=e(&1¢)), R™ = —s7 el (T ) = g™k, (©1.7)n = E1Tmné) - (3.2.1)

Let us emphasize that we have included a minus sign as well as the normalizing factor s~! in

the definition of R where we tacitly assume that s # 0. If one imposes the symplectic Majorana
condition (2.2.6) one finds that s and R are a real function and a real vector field respectively.
Moreover, s > 0 with equality if and only if & = 0. It follows that s > 0 everywhere on M since
the gravitino equation is linear and of first order. Finally, the two forms ©;; lie in the adjoint
representation of SU(2)g.

Using Fierz-identities, one can show the following identities involving the bispinors:
1 = Rk, 0=1rO71, LR *Or; = 0Oy, *Or; =K A Oy, R"™ & = =& (3.2.2)

Here, * is the usual five-dimensional Hodge dual and ¢r denotes interior multiplication. The first of
the above equations tells us that M carries an SO(4) structure. This allows us to introduce a lot of
structure that is familiar from four-dimensional geometry. As is usual, we will refer to vectors and
forms parallel to R and & respectively as vertical and their orthogonal complement as horizontal.
I.e. forms can be decomposed as w = wy +wy. Then the Hodge dual defines the notion of self-dual
and anti self-dual forms on the horizontal subspace, as discussed around 2.2.26. Since the O
are both horizontal and self-dual, ©7; = (O7,)", they define an isomorphism between su(2)r and
the su(2); factor in the typical so(4) = su(2)4 x su(2)— decomposition of the Lie algebra of the

structure group. One can also verify some more involved identities involving Oy ;:

1 1
OrimpOr " = *ESQ(EIKEJL ternesi)ly" + 15(€rxOrpm” + €1k O yim" + €7LOricm” + €110 1xm");

s720 10O, = = (Wil — W I + €xtmnp RY) -

N

(3.2.3)

Here 11, = gmn — Kmkn and thus the latter of these is a projection to horizontal, self-dual two-
forms.

Suppose now that my; is an SU(2)g triplet. Later we will show that m;; = ¢7; emerges

naturally when imposing integrability and we will refer to this as the canonical choice. Yet for now,

we continue with a generic my; and define? detm = —1/2> m;”m /. Once we impose the reality
IJ
condition (3.2.10) for mz;, det m will be positive semi-definite. For now we proceed with the milder

assumption det m # 0 and define the following tensor
1 1

D = (P[M))yn = 5 detmme(GIJ)mn. (3.2.4)

2 Note that

J. I 1.1 2 1 1.2 2.2
E mrimy =mpmy mpTme +me my 4 meme” = —2myimaoz + 2miama; = —2 det Mee.
1J
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As follows from (3.2.3), @ satisfies the following condition:
Pk, = —0™ + R™k,,. (3.2.5)
Mathematicians refer to a multiplet (k, R, ®) as an almost contact structure if
kmR™ =1, ®".®F, = 6™+ R™k,, ®",R"=k,®",, =0 (3.2.6)

As we have shown, the quantities defined using &; and a suitable my; satisfy these relations, and
therefore define an almost contact structure. Note that ® is invariant under my; — fmj; for any

non-zero function f.

3.2.2 The Almost CR Structure

Equations (3.2.5) and (3.2.6) indicate that for each m, ®[m] defines an almost CR structure. In-
deed, each ®[m] induces a decomposition of the complexified horizontal tangent bundle (almost CR

structure) as in appendix [C.3] via
XeTW & &X=1X. (3.2.7)

The decomposition holds also for the exterior algebra and all horizontal n-forms w = wpg can be

decomposed into (p, ¢)-forms via

w = Z WP (3.2.8)

ptq=n
In this context ®,,, is a horizontal (1,1)-form. Similar to the case of four-dimensional Kahler

manifolds, self-dual and anti-self-dual 2-forms have a simple (p, ¢)-decomposition,
wt = w? + W% + w|,, w™ =whl (3.2.9)

with wb! primitive and thus annihilated by contraction with ®.
We continue by discussing the integrability of the almost CR structure. While this can be done
using a direct analysis of the Niejenhuis tensor, we prefer to do a spinorial analysis in the spirit of

[9].3 This is computationally more straight forward, yet requires us to impose the reality condition
myy = GII/GJJ/m[/J/. (3.2.10)

for the triplet which we alluded to previously. The bar denotes complex conjugation. Let us
emphasize that we are also using the symplectic Majorana condition since we assume R to be real.
In appendix E.1 we show that one can characterize elements of 71 in terms of a spinorial

equation:
XeT & X"H/T,& =0, (3.2.11)

[ 1 .
H]J = HIJ[m} = mmjj — Z(S}] (3212)

3For a third possibility using differential forms orthogonal to T1° or TH° @ R respectively see [17].

where
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Similarly, one can also characterize the tangent vectors in 7% @ RR by the spinorial equation
XeTWaoR & (™, X" H;'T,&5=0. (3.2.13)

Recall that II'"", = ;" — R™k,, is a projection that maps a generic tangent vector to its horizontal

component.

3.3 Differential Properties

We finally turn to the integrability conditions for the decomposition (C.3.1). To do so, we will first
establish some useful identities involving the bispinors (3.2.1), the( refGamma-rep-2)) and dilatino
(3.1.2) variations. Subsequently we consider the case of CR structures as a warm-up before studying

the integrability conditions for THFs.

3.3.1 Supersymmetry variations and bispinors

Recall that by studying the gravitino variation (3.1.1), one finds that the scalar s satisfies V, s =
2sR™ Fn, from which it follows that LrF = Lrs = 0. Similarly, the non-normalized vector field
sR is Killing:

— 28Fmn — 2s(tp % V) Vm (sRy) + Vi, (sRy,) = 0. (3.3.1)

mn’

Vi (sRy) = 2(t"701)

mn

One also finds that tgdsk = —s~'ds while trd(sk) = —2ds. There is a more involved relation

involving the two-form /70y ;:

Vi(t"011),,, = Det"? (011) n + 2 det t (gnieRn — gmkRn) + 2Fkpt’” (E1Tmn"E )
iV (E1T mpg€) — 2Vt (€T miglr)
_gmkqutlj (é[rnpqu) + 2qut1J (f]rnkq&]) . (332)

Similarly we are interested in the consequences of the dilatino equation (3.1.2) for bispinors
and background fields. By contraction with ¢//¢; one finds that R™V,,(t;;t!/) = 2Lz dett = 0.

Contraction with &/ on the other hand fixes the value of the scalar,
C = 4k, Vi V™ — ds N F +2V),,, (t7701))™" + 2(0r % F)™™ Fnn. (3.3.3)

We can extract additional information from the dilatino equation and start by projecting it onto its
“chiral” components. Recalling the last identity in (3.2.2) we consider the projector 3(1 — R™T',).
Acting on (3.1.2) and using (3.3.3), one finds

0= Dgt, €5+ t;) RUF + 2V)" " Tpnls + s~ HF 4 2V)™ (5L O k1) k- (3.3.4)

A related identity can be obtained by contracting (3.1.2) with &'T',,, and projecting onto the

horizontal subspace:
(Rkat”) (O17) = 2 [(F+ 207 x (t701,)] =0 (3.3.5)
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where (7 X W)mn = Pm’ Wpn — W Mpn. In passing, one needs to use the simple identity
_\k \k
Qn = (w'f‘)nk(w ) " (W+)nk (w ) = 0. (3.3.6)

As a point of consistency note that one can obtain the same result by contracting (3.3.4) with /T,

and again projecting onto the horizontal part.

3.3.2 Integrability
Cauchy-Riemann structures

Having established the existence of the almost CR structure C.3.1, it is natural to ask if it satisfies
any integrability condition. As a warm-up to the integrability condition of a THF (3.1.5), we
consider the slightly simpler case of a CR structure (3.1.4).

Thus we study the condition (3.2.11) for the commutator [X,Y] for arbitrary X, Y € T10.
Le. by acting with Y™ D,, on (3.2.11) and antisymmetrizing in X,Y’, one finds that

X,v]eT < 0=Xx"y"[D,H,T.&;+ H/T,Diny] . (3.3.7)
This reduces quickly to
XUy ™ Dy Hy Ty = [Ho 1) Tons + 2H ) (F 4+ V)mns] - (3.3.8)

Per usual, (3.3.8) can be mapped to two equations by suitable contractions.

To begin, we contract (3.3.8) with ¢/ and find that ([H,t],70,7)?% = 0. Due to the reality
conditions for &7, mIJ and tIJ this means that [H, t] IJ © JI € Qb This in turn is equivalent to
[H,t];” being proportional to m;’. However, [H,t],” is proportional to [m,¢],” and thus the only
solution is m IJ = ft IJ for any non-zero function f.

Being rid of the commutator term, we consider the contraction with £; symmetrized over SU(2)g
indices. This leads to sH77[X[™Y™(F +V)mn]. The necessary vanishing of the expression in square
brackets means that (F + 1)*0 = 0.

Finally, we contract with &;1':

1
XWWM%Hﬁ(Qmm—ZUM%Q. (3.3.9)

By symmetrizing and antisymmetrizing over I and J, it is clear that both terms in parantheses
have to vanish independently. It follows that Dx H IJ = 0.
In summary, the almost CR-structure is integrable and the manifold is CR if and only if
t;7
Vdett

Note that due to our reality condition for ¢ IJ , the last statement is actually equivalent to

m) = ft,), (F+V)*’ =0, DX( >:Q VX e T (3.3.10)

t J
D L >:Q VX € TMy, 3.3.11
X<\/dett H ( )

where TMy = T40 @ 70!
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Transversally holomorphic foliations

Having discussed integrable CR structures, we now turn to the integrability condition for transversal
holomorphic foliations (3.1.5). Using identical arguments to those from the previous section, we

note that the integrability condition is

X,Y]eTYaR o 0=xMmyn [DmH,J 1, *T4€s + VoIl FH, IThés + Hﬂnnkrkpmgj} .
(3.312)
To begin, consider (3.3.12) for X,Y € T2, Direct substitution gives

XY Dy H Ty — [H, ), Do — 2% Vi (0 + RE)H T )e (3.3.13)

Now, since X,Y € T10, the only contributions to the last term arise from the components of ) that
lie in Q> ® Q%9 A R. However, since (I'* + RF)¢r = Hklf‘l§1 the latter of these is annihilated by the
projection while the former vanishes due to holomorphy — i.e. for any w € Q%! H I T Tke; = 0.

Thus we are left with
Xy (D, H,'T, — [H,t]'Tpun)&s (3.3.14)

Once again, contraction with &/ gives the first necessary condition, ([H,#]/©;;)%% = 0, from which
it follows once again that m IJ = ft IJ . Just as in the CR case the second condition is Dx H [‘7 =0,
VX e THO.

We continue our analysis of (3.3.12) by considering X € T*? and Y = R. Using the results
from the previous paragraph, one finds that the necessary and sufficient condition is the vanishing
of

X" —DrH; Ty 4 2(F + 20 * V) (T + R H,; 7)€ (3.3.15)

By inspection one finds that the only contributing terms including F or V lie in Q29 — (Q199 Q%) A
R as well as Q%2 components are projected to zero while those in Q! vanish due to holomorphy.
The components in 229 are of course self-dual under tp* so the above can be rewritten in terms of
F + 2V instead of F + 2utg x V.

To further simplify this, we consider the chiral projection of the dilatino equation (3.3.4). Acting
with X™H,’T,, on (3.3.4) one finds that

H;'Dpt XXM, 65c = 4H, 7t KX 0p % (F + 2V) Tk - (3.3.16)

Now, we first note that DRtI‘] = vdet tDRHIJ as Dp(dett) = 0. Together with H]KHK‘] =
-0 H IJ it follows that

DrH;? X™Tére = 2u(det t) V22X H, Tt K ipx (F+2V)mn ™ = 2X™H,; 1p % (F+2V) Ik
(3.3.17)
As before we argue that only the Q20 and Q%2 terms contribute. Thus we find that (3.3.15) vanishes

without any further conditions. In the end, the integrability conditions are

Vdett
42
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m/ = ft,;7,  Dx ( ! ) =0, vxer1". (3.3.18)



As in the case of the CR structure the reality condition for ¢ IJ implies that the last condition holds
for all horizontal sections of the tangent bundle. By comparison with equation (3.3.10) it is clear
that any solution defining a THF also defines an integrable CR structure while the converse is not

the case.

3.4 Implications for Localization

3.4.1 The 0, and 0, operators

Suppose that our manifold satisfies either of the integrability conditions (3.3.10) or (3.3.18). Let us
show one can define nilponent operators d, and 0, similar to those on complex structures. To do

so, consider a (0,1)-form a®!. We can decompose its exterior derivative as
da®t = 7y (dao’l) + 720 (dao’l) + bl (dao’l) + 702 (dao’l) , (3.4.1)

where 7y and 774 are projectors to the vertical and (p,q) components. Since neither [T719, 71:0]
nor [T19 @ R, T'Y @ R] have a component in T%! one finds that

dOéO’l (Xl,(]’ YI,O) — XI,O (OZO’I (YLO)) _ Yl,O (ao,l (XI,U)) _ aO,l ([XLO,YLO]) ) (342)
In other words, 720 (dao’l) = 0, which allows us to define (dy, 0y, Jp) via
do®! =y, (dao’l) + bl (dao’l) + 792 (dao’l) = dya®! + 8, + 9yl (3.4.3)

From d = 0y + 0y +d, and d? = 0 it follows directly that 85 = 55 = 0 and one can define cohomology

groups H g;q via the exact sequence
9 _1 0 9 9
Dy qrast By gpa Dy gpatt By (3.4.4)

3.4.2 Mode counting and partition functions

As mentioned in the introduction, partition functions for supersymmetric gauge theories calcu-
lated in the context of topological field theories or localization simplify significantly on Kéhler and
Sasakian manifolds. The argument relies not only on the existence of the differential J; (9 in the
Kaéhler case). Indeed, one also requires the compatibility of the decomposition C.3.1 with the action
of the Lie derivative £s5. In this section we will go over this argument of [22, 24] in some detail
and discuss under what circumstances it applies to the manifolds in question.

Consider a vector multiplet with Lie algebra g. The bosonic modes lie in Q! (g) ® H(g) ® H%(g),
where H°(g) denotes harmonic Lie algebra valued functions. Fermionic modes on the other hand
can be mapped to Q7 (g) ® 2°(g) ® 2°(g). The one-loop contribution to the perturbative partition
function is given by*

detfermions £ sR

. 3.4.5
detbosons "ESR ( )

“This was shown to be true for generic Sasakian manifolds in [25]. Here we assume it to be true for five-dimensional

Riemannian manifolds admitting a integrable CR-structure or THF.
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If £p® = £5pk = 0 we can calculate the determinants using the decomposition C.3.1. Clearly
£srk = 0, so we need to evaluate £3pP = 1;rd®P. Direct calculation using (3.3.2) yields

tIJ
d(b = —SildS A (b + SilD <m> A @[] + 2871 [LR(I"‘ 2V) A @ — KA ((F"’ 2V) X (p)] 5 (346)
€

Thus
IJ

vdett

where we used (3.3.5). In conclusion we can rewrite (3.4.5) as

£sR<I>:DR< >@IJ—2[(JF+2V)H><<I>] =0 (3.4.7)

det 020 @ 00.0p @ Q0.2 i Q0,0 iy Q0,0 1
\/ € st( S @ @ ® ) (348)

detg ,(Q10 @ Q01 @ QO0k) detg,,, HO’

where we used the notation detgr.a £3r = det ¢, 2P7 and dropped the various appearances of g for
readability. As [£sr, 0] = 0 it follows that the above simplifies to

0,2 0,0 2,0 0,0
detstHéb detggsRH(% det£5RH5b dethSRH&

0,1 1,0
detg , Hgb detg , Hgb

(3.4.9)

It is interesting to note that the above argument does not require a property akin to Lefschetz
decomposition on Kéhler manifolds. Recall that the Lefschetz theorem relates cohomology groups
of the Dolbeault operator as Hg’o = H (%:i}, where the subscript w denotes forms parallel to the
symplectic form w. Such a decomposition, while true for e.g. Sasaki-Einstein manifolds does not
hold in general for the operator ®. That is, for a € Q}b’l one can write a = a® for some scalar
function a, yet Jya = 0 is not in one-to-one correspondence with 9ya = 0 since 9,® does not vanish

in the general case.

3.4.3 BPS equations on the Higgs branch

The nilponency of Jj has also immediate implications on the Higgs branch BPS equations of ' = 1
theories. In [26] these were studied for supersymmetric backgrounds that are K-contact. Defining

04 = Oy —1a%! for a U(1) connection a with field strength F,, some of the relevant equations are

- 1
Do+ 0,8 =0, F)*=2iap,  Fi = (¢ = lal®+18P). (3.4.10)

Here, a is a 0-form and § is a (0, 2)-form; both are related to the scalar in the hypermultiplet. The
superscript dr denotes the component along dx. The BPS equations and the nilpotence then imply
that 9,98 = 9,0, = 1Fy*a = —2|a|?8. Thus 2 [ |af28]2 + [8:8]2 = 0, and it follows that

6=0 a=0
_ , or _ . (3.4.11)
Ogax =0 aaB=0

In other words, similar to our discussion in the previous section we see that results for Sasaki

(-Einstein) manifolds can be extended to geometries that are either THF or CR.
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3.5 A Karlhede-Rocek-Witten twist in five dimensions

As discussed above in section 3.3.1 as well as in [20] a necessary condition for the existence of a
solution of the background supergravity variations for supersymmetry spinors satisfying the sym-
plectic Majorana condition is the existence of a Killing vector. Recall that the symplectic Majorana
condition (2.2.6) implies that s > 0 from which it follows that v has no zeroes. In other words,
the Killing vector is globally non-vanishing.? In this section we will show that the existence of a
globally non-vanishing Killing vector is also sufficient for the manifold M to admit supersymmetry
spinors that solve (3.1.1) and (3.1.2).5 At the heart of the argument is the idea that the existence
of the vector implies that the manifold supports an SO(4) structure. This in turn allows us to
do a standard Witten twist [27, 28]. Our strategy is to work in a patch using methods familiar
from Kaluza-Klein reduction, yet show that we can write the overall result in terms of globally
well-defined objects. In principal one should be able to make the same argument using the general,
local solution of [20].

Given a manifold M with a Killing vector v = 0, we can write the vielbein as’

e. % ka ~ E™ —q
er=1" ", Er="" ‘. 3.5.1
" ( 0 k ) ( 0 k—1> ( )

Le. the metric takes the form ds? = g, dx™dx™ + k2(dT + a)2, where 0, = v. The spin connection

is
R . 1 . 1 A
Wabe = Wabe;,  Wabs = ikfaba Wspe = *ikfbc, Wshs = *ab logk (352)
Here, f = da. Keeping in mind (3.2.2), we demand the spinor &; to be anti-chiral. That is,
I'°¢r = —¢&7 which is why we write &7 = -
3.5.1 Gravitino Equation

One can then decompose the gravitino variation (3.1.1) into components along a = 1, ...4, compo-

nents along a = 5 as well as chiral and anti-chiral parts:

0= Dol — aa(0:&; — A f7E7) + Fuséy +TaVP¢], (3.5.3)
0= hIaEr — 1'Taty — Ful’€y — SV (3:5.4)
0=k 08 — Ay ’€5) +17¢5 - ékfbcr”%; + %vbcrbcfﬂ (3.5.5)
0= %ab log kTP¢; + FipsTP6; . (3.5.6)

5If one does not impose the symplectic Majorana condition, the situation is more complicated. I.e. both s and R
are generally complex; it is also clear that the vector vanishes if the spinors are parallel. Moreover, note that R does
not even vanish at a single point. Assume Jp € M such that R|, = 0. It follows that s(p) = 0 and thus &;], = 0.
From the gravitino equation it follows immediately that £; vanishes identically on M.

5We would like to thank Diego Rodriguez-Gomez for many discussions and collaboration that lead to the approach
used in this section.

7 In this section, greek indices run from one to five while roman ones only run from one to four.
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The last of these, (3.5.6), is solved by A = —1k~'v. It follows that
1 1
fa5 = —§8a log k‘, ]:ab = —§kfab. (357)

Equation (3.5.3) is solved by setting 4 ;7 =0, & = Vkxr, where xrx! = 1, and — more impor-
tantly — Dgx1 = VaXxr — AaIJXJ = 0. The possibility of finding a x such that Vx5 = AaIJXJ is
of course at the heart of this argument. As long as I'°x; = —, it is possible to find such a spinor;
explicit calculations can be done using 't Hooft matrices for example [29]. With all our previous

assumptions and observations (3.5.4) becomes
1 .
4Vap = §7€€abcd5f6d +4s7'Otr. (3.5.8)

Substituting this into (3.5.5) we find that ¢7; = 0 since
1 ab 1 1 cd -1 KL ab 1 ab AKL

O — g (kfab - 4Vab) @IJ - g k‘fab - ikﬁabcde + 48 @ab tKL @IJ - §@U@ab tKL. (359)

In summary, the gravitino equation is fully solved by
_ 1 1
& =Vkxs, Daxi=0, A= — 5k Yo, t1;=0, 4V, = 5keabalsf“l, Vas = 0. (3.5.10)

By now it is clear that the spinor bilinears s, v coincide with the scalar and vector defined by the
background, k, v, i.e. s =k, v = b, so we drop the distinction.
3.5.2 Dilatino Equation
Performing a similar decomposition of the Dilatino equation, one finds

0 = 4Dt 1% — 8t,7(F 4+ 205D + AV VT — AF o Fus T, (3.5.11)
0= —4Dst, €5 + 4t (F + 2V) T — AV V8, + FaupFeal % + CE . (3.5.12)

Imposing the solution to the gravitino equations (3.5.10), this simplifies of course considerably.
Also, note that

. - 1

VoV =V V% 4+ 8%ogkVy, VoV = —5k fap V. (3.5.13)

Then, (3.5.12) is solved by C' = —%k‘zfabfcdeabc‘i‘:’. Since 45V, Vb = —%seab0d5fb60dk‘, one finds that
(3.5.11) is solved trivially.
3.5.3 Topological Issues

To conclude, we discuss whether the solution (3.5.10) is globally well-defined. Since F is globally
exact we only have to worry about the SU(2)p field strength. Our strategy is to rewrite this in

terms of the Riemann tensor. Thus we use the integrability condition for the spinor y7y,

1
0= [Da, Delxr = —Fyi'xs + 7 Rabasy*x1- (3.5.14)
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This implies FC{I;] = —25 ' Rupn©®T7%A from which it follows that we can express the SU(2)g con-

nection in terms of a projection of the Riemann tensor. In summary, the two connections are
1
1J —1pH olJ -1
F'Y = -2s" R, 07", F = —§d(k: 0). (3.5.15)

where Rfy = I\ Ryrppda® & dz* denotes the horizontal part of the curvature two-form. In both
cases, all objects appearing on the right hand side are globally well defined. We proceed to consider
characteristic classes defined by F!/. Using (3.2.3) one finds that

1
F/nFyT = —4RE AR (H““HA” + Qew”%p> . (3.5.16)

The expression is completely horizontal and since v is Killing, 0 = £, (F [‘] ANF JI ) = td(F IJ ANF JI )
from which it follows that (3.5.16) is closed and defines thus an element of the de Rham cohomolgy
group H*(M) as it should. Usually the next question would be whether this element is trivial
and whether it might be an obstruction to the existence of the solution given by (3.5.10) and C.
However, equation (3.5.16) clearly show that this class has a representative that is independent of
our specific solution since it can be expressed in terms of v and the Riemann tensor. Thus, in the
case that the class is non-trivial, it is clear that the corresponding cycle in homology exists and vice
versa.

One might worry about the f dependence of V. In general, the manifolds are not bundles yet
only foliations and one cannot necessarily think of f as the curvature of a connection. Yet as we
saw above, f is a projection of F onto the horizontal space — f = —2k~!FH. While one might
not consider f globally as the curvature of a connection, it is well-defined as a two-form. Since it
doesn’t enter the solution directly yet only via V), this is good enough and we conclude that any
manifold M admits a solution to (3.1.1) and (3.1.2) with symplectic Majorana spinor if and only if

there is a non-vanishing Killing vector v.

3.6 Examples

It follows from the previous section that any direct product R x My or S* x M, admits a solution to
the Killing spinor equations and thus rigid supersymmetry. Similarly, it is clear that such manifolds
do at least not trivially® admit an integrable CR-structure or a THF if My does not admit a complex

structure — the example coming to mind here being R x S*. See however the discussion in [23].

3.6.1 Sasakian manifolds

Sasakian manifolds are the odd-dimensional analogs of Kahler manifolds. They are either charac-

terized by having Kéahler metric cones, or by the existence of a Killing spinor satisfying

(Vi — i Am) € = %rmg. (3.6.1)

8 “Trivially” here means that one simply embeds the Killing vector in the obvious way. For a specific choice of

My and Killing vector, this might change.

47



Here, A is the connection one-form associated to the Ricci-form on the metric cone. The equation
and its complec conjugate corresponds to the special case of (3.1.1) with
i
F=V=0, (An);" =An(o3),”, t//= 5(03)/. (3.6.2)
Since both ¢ and A have only components along o3 one finds that V,,,t;; = 0. The dilatino equation

is solved by

C=0. (3.6.3)
Hence, N' = 1 supersymmetry can be defined on any 5-dimensional Sasakian structure as was first
observed without resorting to supergravity [25].

Sasakian structures are examples of both Cauchy-Riemann or transversal-holomorphic struc-
tures, as follows from the fact that V,,t;; =F =V = 0.

3.6.2 Squashed S° with SU(3) x U(1) Symmetry

Squashed five-spheres have appeared in various literatures. In particular, [20, 30] discussed a class
of squashed S°, defined by metric

1
b2

Our discussion follows that of [30] closely. The real constant b is the squashing parameter, which

1 1
dsfqg, = —(dr 4+ h)* + do* + ZsinZU (d02 + sin29dcp2) + Esin22a(dw + cos fdyp)?. (3.6.4)

gives a round sphere when b = 1, h is a 1-form defined as
1
h = —isiHQU (dip + cos d) . (3.6.5)

where w can be viewed as the Kahler form on CP?, satisfying dw = 0. The metric is written in
a form adapted to the smooth U(1)-fibration over CP2, where b=2(dr + h)? is the metric in the
U(1)-fiber direction, and b is there to squash the radius. In this way it is easy to see the metric has
U(1) x SU(3) symmetry, where U(1) rotates the fiber, and SU(3) is the isometry of CP2. The CP?
Kéhler form is w = %dh. With the vielbein

el = 3 sin o cos 073, e? = do, e3 = 3 sin oo, et = 3 sinoTy, ed = b_l(d’l' + h),
(3.6.6)
one finds
w=e'net - net, wAw=—2e Ne2 Aed Aet, (WA w) = —2€°, (3.6.7)
where we have introduced the left-invariant one forms
1 4110 = e ¥ (df 4 15in 0dg), T3 = dip + cos 0do. (3.6.8)
This class of squashed sphere admits solutions to the Killing spinor equations
1 ) — 1— b2 11— b2
vmgl + i(Am)Ing = _?b (1 + Q 1- b2> (JS)IJFng + b Wmnrngl + 5 2 wpqrmpqgf'
(3.6.9)
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where @ is a real parameter. And of course one can define bilinears as in (3.2.1). In terms of
(A.1.11), the quarter BPS solution with @ = —3 is given by

1 1
Cy _ 3T 1 C_ 3T -1
= ——e¢ , = —e 2 . 3.6.10
&1 7 0 ) 7 0 ( )
0 0

The symplectic Majorana condition (2.2.6) corresponds to (c—)* = c¢4. For more involved 3/4 BPS
solutions refer to [30].
Comparing (3.1.1) with (3.6.9) one identifies

: Y o (14 QvI=0) V-7
T= e (14 QVI= 1) (03),, F= w, V= w, (Am)’ = "
2b b 2b b
(3.6.11)
Note that x = —e® and one finds that w is horizontal and self-dual since xw = k A w. Furthermore
drk = —2b"'w and V™wy, = 4b~'k,,. Moreover

mnkl r
T

WinnwWitI™ME L = wmnwie &1 = 2w (xw)"™" T7Er = 20w "k, I7Er = =887, (3.6.12)

Finally, substituting everything into the dilatino equation (3.1.2), one finds

V1 =52 1— b2
b2

4
= Kk IMEr — 8

0= —35( (14 QV1—62)V1 — b2(03)  wmn ™€ + 8

From (3.3.3) it follows that

V1 — b2 +81—b2 (1+Q\/1—b2)\/1—b2

&+ CE&r. (3.6.13)

C=8"% = P w™e, 7 (03) ], (3.6.14)
so the above simplifies to
1+ QV1—-0)V1-1? mn
0— —4,1+C ) [(03) 7 wmnl ™€y + s WO, i (03) &0 ] (3.6.15)

b2
which vanishes identically for the above solution.

Now compare the “algebraic equation” of [30]. Rewritten in our conventions, it is

0= (1+ QT =B — £V/T— B(os) o™y, (3.6.16)

where we used (3.2.2). Contracting with ¢/ one finds (03),7w™0,, ;1 = 215(1 + Q). Substitut-
ing this into (3.6.15) yields (3.6.16), which tells us that the Dilatino equation and the “algebraic
equation” are equivalent in the case of squashed S°.

Comparing (3.6.11) with (3.3.10) and (3.3.18) it is clear that the squashing does not change the
fact that S° admits both a CR-structure and a THF. In principle this is already clear from the form
of the metric (3.6.4) since changes in the parameter b do not affect the CP? base of the bundle.
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Chapter 4

5d Higgs Branch Localization and
Seiberg-Witten Equations

4.1 5-dimensional A/ =1 Minimal Off-shell Supergravity

4.1.1 N =1 Supergravity

In this subsection we briefly recall 5-dimensional minimal off-shell supergravity discussed in [1][31][16,
15] (see also literatures on superspace formalism [32][33]), and then extract the generalized Killing
spinor equation by taking the rigid limit, following the idea of [34].
The Weyl multiplet contains the following bosonic field content (note that there is a curly V
and straight V')
GBoson = {€mms  Ams Vin, trss Co (Vi)ps b (4.1.1)

Here I,J = 1,2 are indices of SU(2)g symmetry, A,, is the abelian gauge field corresponding to
central charge with field strength F = dA, V is a 2-form, C is a scalar. Field ¢t;; and Vs are both
SU(2)g triplet, meaning that

try =Bty (4.1.2)

and similarly for V;;. The fermionic field content contains

gFermion - {¢17 77]} 5 (413)

where 1) is the gravitino, n is the dilatino. Finally, the supergravity transformation dsugra has
symplectic-Majorana parameter £;.

To obtain a supersymmetric theory of some matter multiplet on some manifold M, one can first
couple it to the above Weyl multiplet G, and then set all fields in G to some background values that
is invariant under the supergravity transformation dsygra. In particular, we set the fermions (v, 7)
to zero background, and requires two spinorial differential equations (with coefficients comprised
with fields {V,V, F,t;;,C})

Osugra®y = 0, OSugra”) = 0, (4.1.4)

50



with transformation parameter &7, and look for background values of {V,V, F,t;;,C} that admit a
solution &7. The result of such procedure is [34, 4, 3, 35]:

e Supersymmetry transformation () obtained from dsygra by substituting in background values

of {V,V,.F,t[],C}.

e A Q-invariant Lagrangian from the coupled supergravity Lagrangian, where all remaining

bosonic fields from G are auxiliary background fields.

e Some geometric data, including metric g, p-forms and so forth, determined by combinations
of {V, V,f,t[J,C}.

First of all, we focus on the equation dsygra?? = 0, which we refer to as the generalized Killing

spinor equation in the following discussion. The generalized Killing spinor equation reads

1
mel = tIJFng + anFTLfI + iqurmpqgj, (415)

where V contains the usual Levi-Civita spin connection as well as SU(2)r gauge field V;,, when
acting on objects with I, J indices. Strictly speaking, &5 is a section of the bundle S ® V' where V'
is a SU(2)r-vector bundle on which (Va;);” is defined, therefore we should require M to be a spin
manifold.

Equation (4.1.5) is studied in [21], where geometric restrictions imposed by different numbers
of solutions is discussed. Subsequently, in [20] both differential equations 1) = dn = 0 are solved in
a coordinates patch. It is shown that, locally, deformations of auxiliary fields that preserves (4.1.5)
and (4.1.6) can be realized as Q-exact deformation or gauge transformations. This suggests that
path integrals of appropriate observables may be topological or geometrical invariants. For us, it is

important to note that dsygran = 0 implies (which we may call the dilatino equation)
4 (Vintr?) T™Ey + AV V™ Tl + dt1” (Fonn + 2Vimn) T8 + Frn Ful ™ e = —C¢r - (4.1.6)

This will be used to ensure the closure of the rigid A/ = 1 supersymmetry. Note that the field C
can be solved using this equation in terms of {V, F,V,t I }, by contracting both sides with e

AR, NV V™ — A(F +2V),,, (17010)™" + 2(1p % F)™™ Fr = sC (4.1.7)

where R, © and s are defined using &; as explained earlier.
So to summarize, for the rigid limit to give rise to a rigid supersymmetry, we are required to

study the Killing spinor equations and the dilatino equation
1
Vil = t1'Tim€y + Funl &1 + iqurmquf

4 (th[J) Fmgj + 4vmvmn1—xn€I + 4t1J (fmn + 2an) Pman + fmnfklrmnk%I = _C§I

where one can immediately solve C' in terms of other auxiliary fields using (4.1.7).
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4.1.2 Generalized Killing Spinor Equation

In this subsection we will review some basic properties the Killing spinor equations that are relevant
to later discussions. Some terminology in K-contact geometry will be reviewed in the following
subsection.

As introduced in the previous subsection, the Killing spinor equation for symplectic-Majorana

spinor &7 is

1
Vinér =t/ Ty + Frnl "6 + 5V Copa1 |- (4.1.8)

Recall that we have several background fields coming from the Weyl multiplet: F is a closed 2-form,
and V is a usual 2-form as the field strength of A, ;7 is a triplet of scalars. The connection V
contains the Levi-Civita spin connection and possibly a non-zero SU(2)r background gauge field
Vi acting on the I-indices. All these fields are from the Weyl multiplet G and we call them auziliary
fields below.

Equation (4.1.8) can also be written in a more convenient form

N 1 ~ 1
Vimér =Tmér + §qur771pq£13 Er=tr'e + §fmnfm”&, P=V-F|. (4.1.9)

1. Symmetries

The Killing spinor equation enjoys several symmetries that will help simplify later discussions.
e Background SU(2)r symmetry, which acts on the I-index.

e Shifting symmetry: one can shift the auxiliary fields F and V by any anti-self-dual' 2-form
O
F=F+Q, V=>V+Q . (4.1.10)

and the equation is invariant.

e Other symmetries related to the many degrees of freedoms discussed in [20]. We will come
back to this shortly.

2. Solving the Killing spinor equation

Let &7 be a solution to the Killing spinor equation (4.1.8). Then one can construct bi-linears s,
R™, Ky, and Oy using &;. By directly applying equation (4.1.8), one obtains several differential

properties of these bi-linears:

e Vs = 2R"Fpm < ds = 2upF and therefore Lrs = 0, LrF = 0, where we have used the
Bianchi identity dF = 0.

e Vo,.R, = 2tIJ(@[J)mn — 28Fmn —2(tgp x V) or equivalently,

mn?
dk =4 (t"701)) —4sF — g+ V,  Lrg=0. (4.1.11)
'Defined using R™ = —(£;1"™¢7), and in the sense of general s as we remarked earlier.
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Using the above basic properties, one can partially solve

Qt + Q-
}‘:_%_%’ V=570, +0"-Q7). (4.1.12)

Recall that the Killing spinor equation enjoys a shifting symmetry, and therefore one can always

set 27 = 0 in the above solutions; so let us do this. Then we have
dk
s(Fg+Vy) = —TH—I-LJJ@[J (4.1.13)

To further simplify later discussion, let us apply the results in [20]. The Killing spinor equation
and the dilatino equation are solved locally, and it is shown that the auxiliary fields are highly
unconstrained by the existence of solutions.

The freedom can be understood by looking at the Fierz identities. In some sense, solving the
equations is just to properly match the “I-matrices structure” in (4.1.8) and (4.1.6). Note that one
can use the Fierz-identities

1
— E)\KL(GKL)WLF’””& =\7¢, MLYOkr),, T = A7 (R +sT) &7 (4.1.14)

to alter the I'-structures. Hence one can adjust the SU(2)g-gauge field (V;,,)1.s to cancel terms with
-matrices in (4.1.8), and consequently other auxiliary fields are left unconstrained.

We can use the local freedom in s and t7; to smoothly adjust them such that s = 1 and tr(t?) =
t;’t;1 = —1/2 in a patch. Note that given a global Killing spinor solution, s and tr(¢#?) should be
patch-independent functions, and therefore, the adjustment can be made global. Therefore, let us
deform the solution and auxiliary fields such that globally s = 1 = (gF = 0 and tr(t?) = —1/2.
Furthermore, it is shown in [20] that resulting deformations in the actions are Q-exact, and therefore

the above adjustment does not change the expectation values of BPS observables.

3. A special class of solutions

Equation (4.1.13) implies that it is interesting to look at a special class of solutions where the
auxiliary fields F and V are such that

4
(F+Vy) = Adk = dk = mt”eu, tpF = 0. (4.1.15)

for some constant A € R. This implies « is a contact 1-form, namely it satisfies (assuming t;; # 0)

kANde Ndk o< KA (t”@IJ) A (t”@u) # 0. (4.1.16)

4. Towards a K-contact structure

Now the bi-linears from the special class of solutions satisfy various conditions:

kNde Ndk #0, k(R)=1, tpdk =0

A (4.1.17)

(dK) = 775 (1O)

TrA Lrg =0, Em=gmR"

mn’
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The first row tells us that (k, R) defines a contact structure, while the second row implies the contact

structure closely resembles a K-contact structure. The only violation appears in

4 1
- = |——1(2¢,,.®%, O™, F, = 6" + Rk, 4.1.1

where we defined ® = 2 (tI 7O J), instead of the standard form
(dK) oy = 20mk®"n, @7 @F, = =67 + R™ ki (4.1.19)

It is easy to bring the system to a standard K-contact structure. Let us use an adapted veilbein
{e”} such that

g= Zeaea +r®kK, € =k (e 3 =0 ®(e') =e? 0(e3) =l (4.1.20)
a
Define a function A by A2 = (1 —i—A)_l, and we rescale the horizontal piece of g by g — ¢ =
S + k@ K with € = Xe.
a
With the new metric, the quantities (x, R, ¢’, ®) defines a standard K-contact structure on M:
kANde Ndk #0, k(R)=1, tpdk =0

(4.1.21)
(dﬁ’)mn = 2g;nkq)kn, ['Rgl =0, Rm = gman

Along with the change in metric, one needs to properly deform the auxiliary fields to preserve

Ap, one can identify

the equation (4.1.8). By explicitly working out the change in spin connection w
the required deformations in F and V (both are deformed by multiples of dk), which indeed also
preserve the condition (4.1.15), and therefore no inconsistency arises. Finally, since the deformed
auxiliary fields are independent and unconstrained as shown in [20], the resulting deformations
preserves the two equations (4.1.8) and (4.1.6) (and field C' can be solved using (4.1.7)), and the
actions are deformed by (Q-exact, hence do not change the expectation values of BPS observables.

To summarize, any solution to (4.1.8) of the special class can be transformed into a standard
one, such that the resulting set of geometric quantities (k, R, g, ®) form a K-contact structure. Later
we will discuss BPS equations on K-contact and Sasakian backgrounds, where the equations are

better behaved than on completely general supersymmetric backgrounds.

4.1.3 K-contact Geometry

In this subsection, we summarize most important aspects and formula of contact geometry that we

will frequently use in later discussions. For more detail introduction, readers may refer to appendix

).

1. Contact structure

A contact structure is most conveniently described in terms of a contact 1-form. A contact

1-form on a 2n + 1-manifold is a 1-form x such that
kA (dr)" # 0. (4.1.22)
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This is analogous to the definition of a symplectic form on an even dimensional manifold.

We can associate quantities (R, g, ®) to x called a contact metric structure, such that
kmR™ =1, R"™dkpy =0, @@, = 6™ + Rk,  (dr),,, = 29mr®"n (4.1.23)

The vector field R is called the Reeb vector field, and ® is like an almost complex structure in
directions orthogonal to R.

On a contact metric 5-manifold, we will frequently use an adapted vielbein {e}, {ea}, such that
es =R, ®(e1) =e2, P(e3) = ey, and

dK:2(€1A€2+€3/\64), g = Z e’ e+ K K, (4.1.24)
a=1,2,3,4

Note that the first equation implies dk is self-dual, namely (g * dk = dx. We will also use the

complexification of {e4}:

Zi 2i—1 _+_7;€21, ezi 2i—1 . 21 5

efi=e =e —ie”, e’ =k
1 1 (4.1.25)
€ =5 (€2i—1 —ieg;), ez = 3 (e2i-1 +ie), es=R
so that {1 Legl ieg2 1621 A 622} are orthonormal.
b \/5 ) \/5 ) 2
2. K-contact and Sasakian structure
A K-contact structure is a contact structure x and the associated (R, g, ®), such that
Lrg=0 & VR, +V,R,=0 (4.1.26)

Note that one immediately has Lr® = 0.

For a general contact structure, the integral curves of R, or equivalently, the 1-parameter dif-
feomorphisms ¢r(t) (the Reeb flow) generated by R, can have three types of behavior. The regular
or quasi-reqular types are such that the flow are free or semi-free U(1) action, respectively. The
irregular type is such that the flow is not U(1), and therefore the integral curves of R generally are
not closed orbits.

Generic irregular Reeb flows are difficult to study, however, situation can be improved when
the contact structure is K-contact. In this case, the closure of the Reeb flow (it preserves g by
definition), viewed as a subgroup of the Isom(M, g), is a torus T C Isom(M, g); k is called the rank
of the K-contact structure. On a K-contact 5-manifold, 1 < k < 3.

Finally, a Sasakian structure is a K-contact structure with additional property
vmq)kn = gman - Hnéﬁl (4127)

Sasakian structures are the Kéhler structures in the odd-dimensional world. They satisfies certain
integrability condition, and all quantities discussed above, as well as some metric connections as-

sociated with g, live in great harmony. We will later see that on Sasakian structures, the Higgs
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branch BPS equations have very simple behavior, very much like Seiberg-Witten equations on

Kahler manifolds.

To end this section, we tabulate the correspondence between the structures (including some we

haven’t mentioned) in even and odd dimensional worlds.

Even

Odd

Symplectic

Almost Hermitian

Contact

K-contact

Complex Cauchy-Riemann
Kahler Sasakian
Kahler-Einstein Sasaki-Einstein
HyperKéahler 3-Sasakian

4.2 Higgs Branch Localization and 5d Seiberg-Witten Equation

In this section, we begin by reviewing the 5-dimensional N' = 1 vector multiplet and hypermul-
tiplet. Then we consider deforming the theory with Q)-exact terms to localize the path-integral.
We discuss the deformed Coulomb branch solutions and the Higgs branch. We rewrite the Higgs
branch equations and interpret them as 5-dimensional generalizations of Seiberg-Witten equations
on symplectic 4-manifolds. We also discuss basic properties of solutions to the 5d Seiberg-Witten

equations, including their local behavior near closed Reeb orbits.

4.2.1 Vector-multiplet and Hyper-multiplet

1. Vector-multiplet

The Grassman odd transformation @ of vector multiplet (A,,,o,Ar, Dry) can be obtained di-
rectly from A = 1 supersymmetry transformation, which can be obtained by taking the rigid limit
of coupled supergravity in [16, 15]. Using a symplectic-Majorana spinor {; satisfying Killing spinor
equation (4.1.9), the transformation can be written as

(

QAp = ic! (&0 mAy)
Qo =iel7 (&1M))

) . ) . (4.2.1)
QN = _Qanrm”& + (Do) T + D&y + 20&;

QD1y = =i (€T DmAs) + [0, (€6A0)] + (€)= 5P (ET™As) + (I 5 )

where D, (1) = V,, —

The transformation squares to

i[Ap, ], and &; is defined in (4.1.9). Here the spinor &; is Grassman even.

Q* = =il + Gso + R, + L (4.2.2)
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where G is gauge transformation, R is SU(2)x rotation acting on a generic field X; as Rp, X1 =

R’ X, and L is Lorentz rotation acting on spinors. The parameters are

{ R™ = —(f[Fmél) Amn = (_27’) ((EJPmngJ) -5 (P’I:ZTL - P&n)) (4 9 3)

s=@e) | mY =2 @) o),

and we used the vector field R™ to define self-duality Q7 (M), see (2.2.26).
Note that, similar to [14], there is a term in 62D;; that breaks the closure of the supersymmetry

algebra, of the form
?Drj=..+0o {(&Fmvmé;) + %Pm"(ffrmng}) + (I J)] . (4.2.4)
Such a term vanishes if there exists a function u and a vector field v,, such that
Y+ %Pmnrmngl = uér + vl (4.2.5)

In the case of P, = 0, one can show that v = 0 and the function u always exists and is proportional
to the scalar curvature of the metric (g, V). In the presence of Py, by explicitly expanding every

term, one can show that
- 1 -
Wﬁ] + 573 an{[
1
= (thIJ) Fng + vamnrngl +t (]:mn + Qan) an&[ + kazlfmnrmnklf (4'2'6)

3
5 FrnF ™ = 2F V"6 + 5(t/5 k7)Es = Vi (V™ — F™ T8,

We observe that the first row is just the left hand side of (4.1.6), and therefore, recalling (¢;% KJ)§ J=
1/2 (¢ %tk &5,

-1 B
Y+ §Pmnf‘mn€1

4.2.7
5 K L 1 3 mn mn mn mn ( )
= i(tL ti ) —ZC+§]:mn.7: —2FmnY & — Vi Y™ — F™MITE.
Namely, we found the required function and the vector field to be
5 K, L 1 3
u=— (tp"™¢t — —C + =Fpn F™ — 2F V™
p (hte”) =30+ 3 (4.2.8)

Un:vm (]jmn_vmn)’

We therefore confirmed that the term (4.2.4) vanishes happily, thanks to (4.1.6). Finally, we point
out that function u will appear in the supersymmetric Yang-Mills Lagrangian for the vector multiplet
(which is denoted as P in [20]), in the form of

Lym = ... — 4uo® 4+ 4io Fpn P™ = Py (AT™AT) (4.2.9)
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2. Hypermultiplet

A hypermultiplet in 5-dimension consists of a set of scalars gZ)f, two spinors 1 and a set of

auxiliary scalars Ef‘,. Here I,I' = 1,2 are two different copies of SU(2) indices (in particular, I

corresponds to the SU(2)g-symmetry), while A = 1,2 is a separate Sp(1) index. They satisfy

reality conditions
ot = Qupdl, A = QupCapyPP, =4 = Qape’ TS (4.2.10)

In the above, Q4p is the invariant Sp(1) tensor Q19 = —Q91 = 1.
The reality conditions reduces the independent components. The field qb‘;‘ can be represented

by two complex scalar ¢!?

1 (¢ 1 [ -4
Py = 7 ( e ) . Py = 7 ( o ) (4.2.11)

and similarly for the field Ef‘/. The field ¥# can be represented in terms of one spinor ¥

_ (G
P = ( o ) (4.2.12)

In the following, we couple the hypermultiplet to a U(N,) vector multiplet by setting the inde-

pendent fields to be in appropriate representation of U(N), for instance,
' i N, #? . N, ¥ N, ¥ N (4.2.13)

We define Dy, on any field ® in hypermultiplet as D,,® = V,,,® —i4,, (P), where V,,, may contain
spin connection and SU(2)r-the background gauge field (V;,,); ;-

It is well-known that one cannot write down an off-shell supersymmetry transformation for a
hypermultiplet with finitely many auxiliary fields. But it is possible to write down a Grassmann
odd transformation Q which squares to bosonic symmetries. As transformation parameters, we
use a symplectic-Majorana spinor {; satisfying Killing spinor equation (4.1.9), and an additional

SU (2)'-symplectic-Majorana spinor &/, satisfying
(€€ = (&rg') =5, (aT™¢") = —R™ = ~(&T™EN), (€rés) =0. (4.2.14)

One can view f 1 as a orthogonal complement of £; in the spinor space, and therefore corresponds
to anti-chiral spinors, in the sense that I'cé; = s&r, Fcé[/ = —Sép where I'c = —R™T",,,. Using the

Fierz identities, one can show completeness relations for an arbitrary spinor ¢ (see appendix [A]):

1 s= 1 Ty 1 s= 1
&(€'0) =~ (s +Te)s = o P, &€l =1 (s-To)s ™5 —3Pc. (4.2.15)

The Grassman odd transformation @ is as follows:
Qo7 = —2i (€rv™)

Qut = I D) + i o0 = 307 + Prge TP 0) + VB g1
Q=" =28, (iFmDmlDA + op? + KN — ;ququ¢A)
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The transformation squares to the bosonic symmetries
Q° = —iL+ Gso + Rp,u + Ry » + La. (4.2.17)
I/

where G is the gauge transformation, R is SU(2) rotations on I, J and I', J’ indices, L is Lorentz

rotation; the parameters are

7

Ao = (=20) (€T mnE”) = 5(Ph — i)

Ry’ =2i [3(&5") + Pm”(@f’)mn} . (4.2.18)

- A A 1 2 o
_ (o ™ JY .~ T éd
kRI/ - ( 21) |:<£I I'"Viné ) 273mn (5[ r f ):|
As in previous sections we define the function s = (&7¢7), and Q7;(M) is defined with respect to the
vector field R™ = —(&;T¢l).

4.2.2 Twisting, ()-exact Deformations and Localization Locus

In this subsection, we first review a redefinition (the twisting) of field variables in vector multiplet
and hypermultiplet. Then using the redefined variables, we introduce the @Q-exact deformation
terms and derive the localization locus. Here we explicitly used gauge group U(N,), but in general

one can choose gauge groups with U(1)-components.

The twisting
First introduced in [12][13] in the context of Sasaki-Einstein backgrounds, all field variables with
I or I’ indices can be “twisted” (invertible using Fierz-identities (A.2.6)) using &; and é 1. In our

situation, assuming s = 1 and recalling (4.1.12), we define:

U = (600N, xon = (EDmn M) + (k¥ — £, 0,0) A dJg A
(&r ). x (&r )+ (k K 7{¢; e (£219)

H=2F; +D"01;+0 (2t"01; + ds" +4Q7)

After such redefinitions, xy and H are both horizontal self-dual two forms with respect to vector

field R™, d)ﬂ are chiral spinors® while =4=12 are anti-chiral.

In terms of these twisted field variables, the originally complicated BRST transformations can

2More explicitly, with the gauge index in place,

((ﬁi:l)a _ 51 (¢A:1)a + 62(_F)“ (4.2.20)
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be rewritten into very simple forms:

QA =iV
Qo = —iLp¥ Qof = iPyy”
1
QU = —gFa+dac , { QU = Dé? +icedt + g(dn)mnrmnqﬁ +=4 . (4.2.21)
Qx=H QA = —iP_ Py — oP_yp* — W™ (T, + Ry) 67

In order to derive Qi and QZ4, one needs to use the symmetry (&; éJ )= (fng ) and completeness
relations (4.2.15). Also we will use dk - ¢4 = 1/2(dK)mnI™" ¢+ to simplify the notations in the
following discussions.

For later convenience, we separate (v into chiral and anti-chiral part:

QUi = Py o2 +iogt + %dn ¢f, QUi =P_perlt +E4, (4.2.22)

which implies that
1
Q* = —i <RmDm + 4d/<;~> —0 (4.2.23)

Note that dx is horizontal, and therefore its Clifford multiplication does not change chirality,
similar to that in 4-dimension. Also, the new spinorial variables have reality condition, for instance,

where C' is the charge conjugation matrix,

o4 = QapCpl (4.2.24)

Q-exact terms

We are now ready to introduce the Q-exact terms. There are three of them?
1 _
QWect = Q/Tr <xA « (2Fy — H) + 3 YA *Q\IJ)

QVHyper = Q /M QAwaB ) (4225)

QWtieed = Q /M Tr [2x A #h (64)]

where h maps the “spinor” qbf in the hypermultiplet to a adjoint-valued self-dual 2-form h(¢4 ). Its

explicit form will be given in

h(@)=a(@) -5

where ¢ ~ (1, xn, is a “fake” Fl-parameter taking value in the u(1)-component of the Lie-algebra

det — FT

2 (4.2.26)

u(N.), Ap is a non-dynamical gauge field which we put in by hand for later computations, taking

3In the second line, expanding the terms and using the reality, one obtains, for instance the kinetic term
D=2 D™ @A=1 4 D, ¢2=2D,,¢A=2:2, where a is the gauge index that were suppressed.
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value in the u(1) in u(N.) with the property trFa /o =0 (Fay/2 = 1/2dAp)*. « is an adjoint-valued
bilinear map from chiral spinors to self-dual 2-forms, whose explicit form will be given in a spinor

basis later on, schematically of the form

mn(9)"y = (84 Trnnd{3h), (4.2.27)

Up to this point, other than s = 1, we make no assumption on the background geometry. Hence dx
does not have to be self-dual; ds™ means we extract the self-dual part from dx. To ensure positivity,

Ay =4,

we need to analytically continue o — —io, =
Now one can expand all terms, and integrate out auxiliary field H, or equivalently, impose the

field equation of H:

H=F{+h(s). (4.2.28)
Then the bosonic Q-exact terms reads
> 1 1 2
(Ff +1(64))" + 5(erFa)® + (da0)* + |Dady + dis - 61| +E2 + oo, (4.2.29)

and therefore, we have the localization locus

LRFAZO
Fj+h(¢+):0 dao =0
T T (4.2.30)
o (52) =0

Note that using the reality condition of <Z>ﬁ, the second equation on the left is equivalent to that of

one component ¢ = ¢4~

Dby + idm e =0 (4.2.31)

and similarly o (¢41) =0 < o (qﬁfﬁ) = 0. Therefore, in the following, we will just ignore the index
A, and regard ¢, as in the fundamental representation of gauge group G = U(N,).

4.2.3 Deformed Coulomb Branch

The deformed Coulomb branch is the class of solutions to (4.2.30) such that ¢4 = 0. Then the

equations reduces to

dao =0, Fi— F;(O/z = gdnt trFa=0 (4.2.32)

This is a deformed version of the contact-instanton equation introduced in [13]. The undeformed
version is later studied in [36, 37, 38, 39|, in the context of k being a contact structure. So in

principle, there could be a tower of instantonic solutions, very much like the deformed instantons
in 4d.

1t is straight-forward to generalize to other gauge groups with U(1) components generated by h,. There one
picks ¢ = (%ha, and Ag takes value in the diagonal h; proportional to identity. For gauge groups without any

U(1)-components, one cannot perform the Higgs branch localization described in this article.
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To be more concrete, we consider the case when & is a contact 1-form. Then dxk™ = dk, and one

immediately has a most simple solution (assuming tgrFy, /o = 0)

¢ 1
A=2 —A 4.2.
2/1 + 5410 (4.2.33)

where o takes constant value in the Lie-algebra g. On top of these simple solutions, one may have
a lot of instantonic solutions.

When (k, R, g, ®) give rise to a Sasakian structure, the reference Ay can be chosen to be the
restriction on Ky of the Chern connection on K¢ (), where C'(M) is the Kahler cone of Sasakian

manifold M. In such case, one can show that dAg o dk and tgrFy, /2 = 0.

4.2.4 5d Seiberg-Witten Equation

Let us consider other classes of solutions to (4.2.30), with non-vanishing ¢ . To be concrete in many
statements, we will focus on the case where (k, R, g, ®) form a K-contact structure, or Sasakian
structures to ensure concrete existence of solutions. This will allow us to rewrite the equations
in a very geometric way that resembles the 4-dimensional Seiberg-Witten equation on symplectic
manifolds. We will see that Sasakian structures serve as examples where Higgs vacua always exist,
and other non-trivial solutions have nice behavior. We also discuss the case of general K-contact

structures.

The algebraic equation

When we look for non-vanishing solution of ¢, one of the non-trivial BPS equations is (o + m) (¢4) =
0, where we have restored some masses for the hypermultplets by giving VEV to the scalars in
the background vector multiplets that gauge the flavor symmetry. Let us consider gauge group
G = U(N.) and Ny hypermultiplets, then we need to solve a matrix equation (aab + mij) qb;’- =0,
where a,b = 1, ..., N, are gauge indices, while i, j = 1,..., Ny are flavor indices. After diagonalizing
mij = diag(m, ...,me), one observes that, assuming N. < Ny, any solution is determined by an

ordered subset of integers {ni,...,ny,} of size N,
o = —mna5g7 gzﬁf‘ Néi,naa {nl,...,nNC} C {1,...,Nf}. (4.2.34)

Therefore IN. among the Ny of ¢’s are selected to have non-zero values. The remaining Ny — N, of
¢’s are fixed to be zero, and trivially satisfy all other BPS equations. These vanishing components
do not have further non-trivial solutions which we will discuss shortly. The 1-loop determinants
for the trivial components will be the same as that in the Coulomb branch, with the argument o
replaced by solutions (4.2.34).

The selected N, (< N¢) non-zero components, on the other hand, requires extra care. First of
all, given generic masses {my, # my, if a # b}, equation dgqo = 0 implies A is also completely
diagonalized. Therefore, in such favorable situations, the gauge group U(N,) is completely broken
to U(1)Ne, which acts as phase rotations on the N, non-zero components of ¢. For each of these

components, one only needs to consider a U(1)-gauge field, which we will assume from now on.
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These non-zero components will have to satisfy the remaining BPS equations individually, to which
we will discuss the solutions shortly. To do so, we will first rewrite the remaining BPS equations in

a more familiar form.

Rewriting the localization locus

In the appendix [C][D], we review in detail Spin® spinors and corresponding Dirac operators on

any 5-dimensional K-contact structures. We summarize here several most relevant aspects:

e The spinor bundle S has a canonical Dirac operator WTW, induced from generalized Tanaka-
Webster connection on T'M for any given K-contact structure[40][41][42]. One can show that

this Dirac operator can be written in terms of the Levi-Civita connection VC:
™ LC
P.Y "¢ =PV ¢y

1 ™, LC 1
Y = 9 (), D = YO = PV o pdr - 0 (4.2.35)

—— (V0 + jan-0. )
which are precisely the ones appearing in Qi+ without the gauge field A.
e There exists a canonical Spin®-bundle W9 = T 0"M}}, with chiral decomposition
WO =190 @ T2 My, WO =T1% My, (4.2.36)

and determinant line bundle Ky = T 0’2M}"I. Any other Spin®-bundle W can be written
as W = W% ® E for some U(1)-line bundle E. It is important to note that, when the
manifold is spin, namely when the genuine spinor bundle exists, then S and WV is related by
S® K}Vf =W'= S, = Kﬂ}l/z ® Kjl\f. Therefore W can also be written as W = S ® L
where £ = K}V;Q ® E.

e On K, there exists a canonical U(1) connection Ag, such that the Dirac operator (induced
from VIW on TM and Ag/2 on K ]1\4/2) on the canonical Spin®-bundle W0 satisfies the identity®

D3Ny = LrR& V2 (0 +0%) : Q¥ven — QOeven g Oodd (4.2.37)

Now we can include the gauge field A onto the stage. As discussed above, we only consider
G =U(1) and A is viewed as a U(1)-connection of certain line bundle £. Therefore, ¢ should be
really considered as a section of W, = 5, ® L. We decompose L = K ]1\/;2®E so that S L = WO®E,
and we also decompose the gauge field A according to

b, WS ®E=5,0 Ki* ® E

(4.2.38)
A0/2 + a = A.

5Tt is the restriction onto Kj;' of the Chern connection defined on TC(M), where C(M) is the almost hermitian
cone over the K-contact 5-manifold M; however, there are other choices (induced by VW discussed in [41], for
instance) of Ao that leads to similar identification, with the only difference that Lg is replaced by Lr — iao (R) for
some appropriate U(1) gauge field ao.
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Therefore, the Dirac operator ]ﬁiw on Wy = WOJr ® E can be identified as
1 _ _
D+ g™ = W =L V2 (8,0 Wy s W e W (4.2.39)

where L} = Lg —ia (R), 9, = 0 —ia%! and so forth.

With such identification in mind, one can rewrite the Dirac-like equation in (4.2.30)
1 mn ™W a 3 Yk
Dads + gdrmnl™ oy =Dy ¢y =0 Lypr =0, (9a+9;) ¢4 =0, (4.2.40)

In particular, we write ¢, = a @ € Q%0 (E) @ Q%2 (E), and (4.2.30) can be written as

( " 1
Fiv =S (= 1ol +187) dx [ trFa+ nFay =0
02 _ o= daoc =0
Fa —_210‘5 , L (4.2.41)
dur + 018 =0 == =0

where we have decompose F,” = Fg“ + F20 4+ F8’2, and the bilinear map «a(¢) is written more

concretely as (see appendix [A, D] for choice of basis and matrix representation of I' 4 )

1

a(@)=; (\a|2 - |5|2) dr +2i (aff — ap) | (4.2.42)

It is clear that the equations on the left take a similar form of {-perturbed Seiberg-Witten equa-
tions on a symplectic 4-manifold[43, 44, 45], and therefore we will call them the 5d Seiberg- Witten
equations in the following discussion.

Let us pause to remark that, the operator ¥ + 1/8dk,, ™" is discussed in the context of
Sasaki-Einstein manifold, and similar results were obtained in [25]. The unperturbed version of

Seiberg-Witten-like equation on a contact metric manifold is also proposed in [42].

In the following we will focus on equations on the left in (4.2.41). They are a novel type of
equations that awaits more study. Let us try to make a first step to understanding the solutions.
As discussed earlier, we consider the gauge group G = U(1), and therefore o and ( are just real
constants.

A Higgs vacuum

First, we argue that the 5d Seiberg-Witten equations on Sasakian structures have one simple
solution.
First of all, on any K-contact structure, (a, 3) = (1/(,0), together with a = 0, or equivalently
A =1/2A, is obviously a solution to the 5d Seiberg-Witten equations.
The remaining BPS equation is
tRF 4,2 =0 (4.2.43)

If Ap is chosen to be induced from 6d Chern connection, this may be not true on a general K-

contact background; however, if the K-contact structure is Sasakian, then (4.2.43) indeed holds
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[42][40]. Therefore on a Sasakian structure, one always has at least one most simple solution, which
we will call a Higgs vacuum.

Properties of general solutions

Let us now focus on the 5d Seiberg-Witten equations on a K-contact structure (with emphasis

on Sasakian structures). First of all, the Dirac equations imply

0a0att + 0,06 = 0= —iF?0q — N (0pr) + 0,0:6 =0

2 [ JalsP — [ nseN @a)+ [ (08 =0,

where N is the Nijenhuis tensor N : T’ LOM}‘; — TO’QMI*{, which vanishes for any Sasakian structure.

(4.2.44)

Therefore, when (k, R, g, ®) is Sasakian, one has
0:B = Ouc = |l |B] = 0. (4.2.45)

Namely, either a or § must vanish, and the two types of solutions are

6=0 a=0
Sasakian: _ or _ : (4.2.46)
Ogax =0 a,6=0

However, unlike the case of 4-dimensional Kahler manifold, at the moment we do not have a
topological characterization of the two types of solutions. Let us consider the curvature equation

integrated over M

1
/ Fj"“/\*dm:/ Fgwmmﬁ:/ (¢~ lo +182) dn A s (4.2.47)
M M

M 2

In the case of a 4-dimensional Kahler manifold, the left hand side would be replaced by the inter-
section number ¢; (F) - [w], a topological number independent on . Therefore, when ¢ = 0, the sign
of ¢1 (F) - [w] will determine whether o or 8 will survive; in particular, in the limit ¢ > +1, only
the solutions with # = 0 survive. On a 5-dimensional Sasakian manifold, however, the left hand
side is not a topological number, and therefore at the moment we do not have a topological criteria
to determine which of the (4.2.46) will survive.

For non Sasakian K-contact structure, one needs to take the Nijenhuis tensor into account.
Combining the Weitzenbock formula, Kahler identities and triangle inequalities, we obtain several

estimates (where we rescaled (a, 3) = (v/Ca, v/(B3), 2 is some constant, and A > 1 is a real constant)

2/MF5M/\*dn> (1—25> /M}dgaP |
w20 [ (1-taP) w2 [ jaPlaf 2 (1-3) [ 1o

2 1 2 4 £ 2 2 J |2
/MpAo 18] +2/M|VAO+a6| +</B| +2/|5y < C/\daa\ : (4.2.49)

In the inequalities, V 4,44 is the connection on Kj; ® E, pa, is some function depending on Ay but

(4.2.48)

and

not on (. Again, if the integral on the left in the first estimate is bounded from above, or it scales
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at most of order (*<! (¢ = 0 in 4-dimension, since it is topological and independent on (), then the

above estimate tells us as ¢ — +00, almost everywhere on M
18] =0, |a| —1, (4.2.50)

and |d%a| does not grow faster than (. The second estimate then implies the overall derivative
V ag+af — 0 faster than (71, and therefore !5;/6‘ = ‘&La‘ — 0 as well.

Therefore, let us make a bold conjecture that we have a similar situation as in 4-dimension.
Namely for a general K-contact manifold, as { — +o00, 8 is highly suppressed, and we are left with
a satisfying 9, = 0, which approaches a — 1 rapidly once away from any zeros a~!(0) € M. In
the case of Sasakian manifold, the type of solutions with non-zero 5 are less and less likely to survive
when ¢ — +o0o. With this conjecture in mind, we study the local behavior of 5d Seiberg-Witten

equations with large positive ( near any closed Reeb orbit.

4.2.5 The Local Model Near Closed Reeb Orbits

On a generic contact manifold, the integral curve of the Reeb vector field may have uncontrollable
behavior, as we mentioned early on. However, if the structure is K-contact, then the contact flow,
viewed as a subgroup of the group Isom(M, g) of isometries, has a closure of Tk Isom(M, g).

In other words, the integral curve of the Reeb vector field going through a point p € M forms a
torus of dimension less than or equal to k. One can think of the curves as similar to irrational flows
on a torus. The integer k < 3 for a K-contact five-manifold, and is called the rank of the structure.
So, a rank-1 K-contact structure is a quasi-regular or regular contact structure, and k& > 2 are all
irregular.

The isometric T*-action highly degenerates at the closed Reeb orbits, namely k — 1 of the
generators do nothing to the points on closed Reeb orbits. Therefore, at a small neighborhood
C x C? of a closed Reeb orbits C, the k — 1 generators rotates the C? (leaving C fixed), while the
remaining 1 generator, corresponding to the Reeb field R, translates along C.

Bearing this picture in mind, one can write down an adapted coordinate (6, z1,22) on a small
neighborhood C x C? of any closed orbit C, such that T% = {tg, ..., ;_1 } acts on it in an intuitive way.
Such a coordinate system is characterized by the numbers (Ao; Aj, m1j,mo;), j =1,...,k — 1, where
Ao, ---; Aj are rationally independent positive real numbers, m1; and mg; are two lists of integers. In

such a coordinate, the Reeb vector R and contact 1-form x can be written as

B) = B) 0
R = )\0% + ZZZI:Q; Ajmij <Z’lazZ — Zlazl)
’ o (4.2.51)
1 — 1 _
IQ:)\— 1-— Z Z)\jmij|zi|2 d9+§ Z zidz; — Zdz;
0 i=1,2 j—1 i=1,2
The isometric subgroup T* acts on the patch by
‘ = k—1
(to, tl, ceey tk—l) : (619, 21, 22) = toele, H t;-nlj 21, H t;-an z9 (4.2.52)
j=1 j=1
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Let us pick a basis for horizontal 1-forms in region C x C?

A; . A
e =k, € =dz—i—zdl, 7 =dz+i—zdh, (4.2.53)
Ao Ao

where A; = E?:l Ajmj. It is straight-forward to show that Lre® = iA;e*, Lre® = —iA;e*. One
can also easily verify that dx = ie*! A e*! + ie*2 A e*2. This suggests that one can view e, e% as

spanning TV9M* and T%'M*. Under such assumption, one can show Vo € Q00

OJa = <8Zioz + ;ZiﬁRa> e*, Qo= (852.04 — ;zi£3a> e

A A (4.2.54)
e = ?zezi A (Z1€7 + 2e™),  De” = —?Zezi A (2167 + 22€72)
Examples
Let us look at the example of squashed S° C C3
8> = { (21,20, 23) € C3| Z Wzt =1 (4.2.55)
i=1,2,3
One can define the Reeb vector field R and contact 1-form s by restriction of
. o _ 0 i _
R=1 Z w; (zzazZ — ziaZ), K= 3 Z (z:dz; — Z;dz;) (4.2.56)

i=1,2,3 i=1,2,3

Then it is easy to show that near the orbit Cs = {6 € [0,2n] | (0,0,ew; ') € S2}, one can rewrite
R and approximate  in the new coordinate 6 = (2i) ™' log (23/23), w; = w3t wizizg L.

0 ) 0 0
R= OJ3% +1 Z (w; — ws3) (wiﬁw- — wlau_]i>

)

i=1,2
(4.2.57)
1 1
Kr=—|1— Z (wi — w;;) ’wi‘Q do + 5 Z w;dw; — w;dw;
w3 =12 =12
The natural 7% action can be rearranged as
(ew, ei‘pl,eiw) (21,22, 23) = (ewlei‘pzl, ei2e1P 2y, ewz;g) , (4.2.58)

so that its action on the local coordinate is (ewew, 1wy, ei‘/’2w3), implying mi; = mg2 = 1, and
A2 = w12 — w3.

Similar steps can be done on YP? manifolds, which has K-contact rank &k = 2. Let us recall
how YP? manifolds are defined [46, 47]. YP? manifolds are Sasaki-Eintstein manifolds with topology
S? x S3. They can be obtained by first looking at S2 . x S2 _ C C* defined by equations

21,22 23,24

(p+q) 21> + (p— @) [22]* = 1/2, plzs|® + plza|* = 1/2 (4.2.59)
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Then one can define a nowhere-vanishing U (1)-vector field T' which rotates the phases of z; according
to the charges [p+ ¢, p — ¢, —p, —p]. The YP? manifolds is then the quotient (S% x $3)/U(1)r. The

Saaski-Einstein Reeb vector field is defined to be rotations of z; with irrational charges w1, we, w3, w4]
1 3 1

Ty W3=W4= oo 4.2.60

(p+a)l 2 2(p+q)l ( )

It is easy to show that near the closed Reeb orbit C = {(z;) € YP4|z2 = z4 = 0}, one has

w1:0, W =

M=pwi+@P+quws, A\ =3 mp=1 mo =0. (4.2.61)

The 5d Seiberg- Witten equation near C
We study the equations near a closed orbit C. Again, we rescale (o, 3) — (v/Ca, /() for a
better looking equation:
¢
Using (4.2.54) and its underlying assumption, the last equation in (4.2.62) can be reduced to usual

(1 ~af?+ W) dr, F%2=2icap, Lo =L%6=0, Ga+dB=0 (42.62)

equation on C?, since LEa = LEB =0,
Dgor + 028 =0 on C2 (4.2.63)

However, as we discussed early on, we conjecture that when { — 400, 8, V3 — 0 and therefore the

differential equations of o and f reduce to the holomorphic equation on C?
Jor =0, ( — +o0. (4.2.64)

In this sense, the zero set of large-¢ 5d Seiberg-Witten solutions corresponds to pseudo-holomorphic
objects in K-contact manifold M. Namely near orbit C, a~1(0) takes the form of C x ¥ where X is
“pseudo-holomorphically” mapped into M. Of course this is just a naive description and far from
rigorous; more careful treatment is needed.

There are known smooth solutions to the 4-dimensional Seiberg-Witten equations, which are
lifts of 2-dimensional vortex solutions; however, there are more solutions that we do not yet know
how to describe. Nevertheless, let us assume that o has the usual asymptotic behavior @ —
einoleimertinees where ng € Z, ny 2 € Z>q is required by holomorphicity and smoothness at the

origin®: near the origin, o ~ €092 222, Therefore,

k—1 k—1
[:(]I%Oz = Lra —ia (R) a=0%< \gng +n1 Z )\jmlj + N2 Z )\ijj =aqa (R) (4.2.65)
j=1 =1

Note that the winding number ng 2 should be bounded by ¢, similar to the situation in [48]. We

demonstrate this on a Sasakian structure in the limit { > 1. We consider the integral

/ F% A sdk = ¢ / |a] dli A xdk < gVol (k), (4.2.66)

5Not all modes above are possible. The precise range of these integers requires global analysis of the solution,

which we will discuss in later examples.
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where Vol (k) = [dk A xdk. On the other hand, if E is a trivial line bundle and thus a can be

viewed as a global 1-form,

/F;’”/\*dm:/ da/\*d/{:/ da/\m/\dmz/ aNdk Adk
M M M M

(4.2.67)
:/(LRG)K/\dli/\d/i

Notice that if we assume the connections a invariant under Lz, then
trFy = 0= Lra=diga =0, (4.2.68)

which leads to a bound on the winding numbers

k—1 k—1

Aong + 1 Z mlj/\j + no Z mgj/\j = Lpa <
j=1 j=1

¢
5 (4.2.69)

Later we will see that this bound corresponds to poles in the perturbative Coulomb branch matrix

model. More general situation needs more careful treatment, and we leave it for future study.

4.3 Partition Function: Suppression and Pole Matching

Suppose one obtains a BPS solution to the localization locus (4.2.30), then the contribution to the
partition function from this particular solution is the product

— S, r7vect hyper
e CZl-loopZLloop’ (431)

where exp [—Sg] is the exponentiated action evaluated on the BPS solution. The 1-loop determi-

nants are ' . .
gvect Zhyper _ sdetyect (_ZﬁR +1 (O' + ZLRAd))

1-1 -loop — j j ‘
oop“1-loop SdetHyper (—ZVFIF%W +1 (0’ + ZLRACI))

(4.3.2)

where we have shifted o0 — —io, and A, denotes the value of A as a solution to (4.2.30). Let us
denote for a moment H4 = VLY — iA(R), which we recall is part of the Dirac operator JZ)EW.
In the Coulomb branch, where one does not include the deformation (QViixeq, One encounters

the BPS equations as a “decoupled” system of differential equations

F{=0, dac=0, gFa=0
1 _ (4.3.3)
Dads + glkimnl™"d =0, 0 (p) =0, FI7*=0

In [25], it is shown that on a Sasaki-Einstein geometry (or other geometry with a large scalar
curvature), a solution A to the first line will imply the second line has only trivial solution ¢4 = 0;
namely the operator lDXW, and in particular H 4 does not have zero as one of its eigenvalues. Let
idm # 0 be an eigenvalue of H 4 labeled by some quantum numbers m, with the corresponding

eigenstate ¢n. Then
HAd)m = i)\m(z)m (4.3.4)
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This is equivalent to the statement Hayaa, ¢m = 0, where the AAy (R) = An. Namely, there exists
certain new gauge field A + AA,, with AAyn(R) = An, such that H a4, has zero eigenvalue.
Of course, A + AA cannot be a solution to the original Coulomb branch BPS equations, but it
could be a solution to some deformed BPS equations. In our case, they are precisely the Higgs
branch BPS equations, where the QVihixed is taken into account. Therefore, solutions to the Higgs
branch equations are expected to correspond to poles in the Coulomb branch matrix model, which
are factors of the form (ioc — i)\m)_l coming from the hypermultiplet determinant. We will see this

more precisely later in this section.

4.3.1 Suppression of the Deformed Coulomb Branch

In this subsection, we will review the supersymmetric actions for vector and hypermultiplet, and
show that it is possible to achieve suppression of perturbative deformed Coulomb branch as { — 400
when certain bounds on the Chern-Simons level and the hypermultiplet mass are satisfied. This
allows two things for theories containing hypermultiplets and appropriate Chern-Simons level,:

1) one can take a large ¢ limit, and only focus on the contributions from 5d Seiberg-Witten
solutions to the partition function.

2) Omne can take the Coulomb branch matrix model, close the integration contour of o, and
identify each pole of the integrand with a 5d Seiberg-Witten solution. Note that this is possible
when the integrand is suppressed when ¢ — oo, and this requires the presence of hypermultiplets.

3) For theories that do not satisfy the bounds, the above two statement are not valid in general.
For instance, for pure super-Yang-Mills theory, one cannot close the contour and rewrite the matrix

integral into sum of residues, and the deformed Coulomb branch will persist in large ¢ limit.

The supersymmetric actions

The Super-Yang-Mills and hypermultiplet action can be obtained by taking rigid limit of super-

gravity action. The bosonic parts read

Lym =tr [FA+F — ANFANF —dgo Axdao —1/2D; D"

(4.3.5)
—duc?® + o F™F, ., + 20 (tIJD[J) + UanPm”]
1J Avm B rJy —A—=B 1J R 1 mn A B
EHyperZG QAva¢]V (Z)J — € QAB‘:‘I":‘J’—i_e QAB Z"‘h—zlpmnp ¢I ¢J (436)

Note that we use the original field variables to write the action, and it is straight forward to use
the invertible twisting to convert to new field variables.
One can also add in Q-invariant Chern-Simons terms for the vector multiplet [13], and we have

made the shift ¢ — io stated earlier
ik
,Cscs5 = ,Ccss (A — i(fﬁ) — étr (\If AU AKA FA,Z'U,{) , (4.3.7)
T

L3css, = Loss, (A —iok) —itr (dk ANk AU AT, (4.3.8)
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where the pure Chern-Simons terms are
ik
2472

2
Lcss.o (A) = itr <dl€ A (A NdA + §A ANAN A))

Les, (A) =

tr(A/\dA/\dA—l—gA/\A/\A/\dA—i-gA/\A/\A/\A/\A)
(4.3.9)

The 5d Chern-Simons level k is an integer. As noted in [13], Lscs,, is not invariant under rescaling

of k, while Lgcg, is invariant.

The classical contributions

The deformed Coulomb branch equations are

dao =0, Fy—Fj .= gd/ﬁ, trRFA =0 (4.3.10)

On a Sasakian background, tgFy /2 = 0, the perturbative solutions are

1
A= §A0 + gn, o = constant € u(N;) (4.3.11)

Evaluated on (4.3.11), the actions discussed above give the classical perturbative contribution
to the partition function. We are interested the asymptotic behavior of these contributions as
¢ — 4o0.

1) The two Chern-Simons terms contribute up to factors of order exp O(()

—tr (24";2 (0 + ;<>3 +ip <a + ;4)2> vol (H)] (4.3.12)

where we denote the contact volume Vol (k) = [, k Ads™ ANdk™ = [}, ds™ A xdk™, and p is a real

exp (iSscs5 + Z',UJSSCS&Z) — exp

coupling constant.
2) There is no classical contribution from Lyyper since all fields in the hypermultiplet vanish.
3) Finally, there is classical contribution from Lyy. To evaluate it, one needs to consider the

field redefinition H,,, = 2F;} + (20t” + DU) (©11),0m — 4F

+n» the equation of motion of H and

BPS equation to solve Dy in terms of o
Hpn =FE5 +0$),,  Et,+h(6),,, =0. (4.3.13)
Using some Fierz-identities, the field redefinition implies
Drj = (hn + 2F%,) (©1.2)™" — 20t 1. (4.3.14)

With this one can evaluate the classical contribution of super-Yang-Mills action. In the simplest

case with F =P = 0 (namely on a Sasaki-Einstein background), we have

SN2
exp [—Sym] = exp [—;tr (0’ + ;C) Vol (k) + ... (4.3.15)
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where ... denotes O(() terms involving Fy /5. So we see there are competing ¢%-dependent terms

in the norm of the classical contribution when ¢ — +oo0”

e_SYM+iSSCS5 +iuSscs, o

~ exp [;tr (1 + 47]{;20> VOI(H)CQ] (4.3.16)

On more general background with non-vanishing F and P, the classical contribution from
exp{—Sym} has the same leading behavior of (% as above, although the precise value will de-
pend on the geometric background. The 1-loop determinant will be more complicated products of

triple-sine function,

The perturbative 1-loop contributions

The perturbative 1-loop determinant from Coulomb branch was studied in [12, 49, 25]. It was
shown that the 1-loop determinant can be expressed in terms of triple sine functions Ss(z|w), or

their particular products.

The triple sine function S3(z|w) with w = (w1,w2,ws) is defined as the regularized infinite
product
+o0
S3 (z|lw) = H Z i+ 1w — =z Z niw; + 2 (4.3.17)
ni,n2,n3=0 \i=1,2,3 1=1,2,3

or in terms of generalized I'-function I's(z|w1,ws,ws):

1
z|wi, wa, w3) I's (w1 + w2 + w3 — z|wi, w2, w3)

S (z|lw) = T ( (4.3.18)

What is most important to us is the asymptotic behavior of the triple-sine function: when w; > 0,

we have when z — oo (Bs 3 are multiple Bernoulli functions, see [50, 51])

1 1
log S5 (z|w) = —gB&g (z) (logz+ C) — §B3’3 (lw| = 2) (log (Jw| — 2) + C)

(4.3.19)
=763 (0,2) = 1G3 (0, |l = 2) + O (:7) + O (| = 2)7")
which implies
; 3
exp [_m - +O(Z2)], Imz>0
3' WiWaWws
Sz (z|lw) — (4.3.20)
n G +O(22) Imz <0
3! wWiwaows ’

The 1-loop determinant from perturbative Coulomb branch computed in literatures are products
(over weights 1 € R to which the hypermultiplet belong) of triple sine functions, with argument of
the form

z=1(u,0) +im+ N (w). (4.3.21)

" Although we are focusing our discussion on ¢-dependent terms, the ¢-independent terms including tro? are still

present in the matrix model integral as { — oo as a convergence factor when integrating o.
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Here N(w) is a real constant determined by equivariant parameters®. For us, 2R is the fundamental
or anti-fundamental representation of U(N,) gauge group.

If we consider the deformed Coulomb branch, then what we need is to compute the super-
determinant of

iQ? = V%W —iA(R) -0 = V%W — (a + %C + const> (4.3.22)

from hypermultiplet?, which effectively shifts ¢ — o + (/2 + const in the Coulomb branch 1-loop
determinant. In the limit of large (, each S3 factor of the 1-loop determinant of hypermultiplet

tends to
. i1 3
|S3 (z|w)] o) m>0)lc|veo exp S W, o+ USHALA + im + constant
60.)10.)20.)3 2
(4.3.23)
leading terms 2
o () )
Similarly,
. i1 3
|S3 (z|w)] o) m<0 oo exp S W, o+ USHALA + im + constant
6w1w2w3 2
(4.3.24)
leading terms exp |:_ - ™ (<,U,, U) 4 m) C2:|
wWi1WoWws

Note that this asymptotic result is different from that in 3d. In 3d, there is an overall £1 factor
in the exponent, corresponding to how the u(1) parts act on the specific weight, while here such
factor is squared to 1. This reflects the symmetry in the matter content, where the fundamental
and anti-fundamental (or R and ‘R in general) appear in a symmetric way in the hypermultiplet.
As a simplest example, consider Ny massless hypermultiplets on S5 charged under gauge group

G = U(1). They contribute 1-loop determinant at large ¢
~ exp [-%Nf o+ m| gﬂ, (4.3.25)

so the overall ¢?-terms in the norm of the matrix model integrand is

1 k
exp [8 <1 + 471'20> Ar3(? — ng o+ m| (2] . (4.3.26)

Therefore there is a window of suppression as { — 400

472

— Ny <k <Ny @ ———r
d d 93Ny

<|m|, (4.3.27)

where we have reinstated the gyy which was omitted in front of the Yang-Mills action. In the above,

the bound on k comes from the competing o and |o| as one integrates o from —oo — o0, while

8For the individual triple sine function to converge, N(w) is required to have imaginary part, but as discussed in
[52], after all ingredients are multiplied together, one can take the real limit.
91-loop determinant of vector multiplet is not affected by ¢

73



the bound on m comes from negating the positive (?-term from the Yang-Mills action. Within
the suppression window, when performing the full matrix integral, because the integrand as a
meromorphic function of o falls of exponentially fast far way from the real line, one can close the
contour in the upper half plane, picking up residues from the poles; or alternatively, one can deform
the integration contour from R to R + ¢, and collecting a residue each time the contour passes a
pole.

Similar result can be obtained for squashed S°, where the volume Vol (k) o (wlwgwg)_l, which
only contributes an overall factor of the partition function as ( — +oco. On YP? manifolds, one
needs to replace the 1-loop determinant with generalized triple-sine functions, which are products
of original triple-sine functions, and we expect one will have a similar suppression window where
the Chern-Simons level and the hypermultiplet mass are constrained as { — +o0.

One can generalize the above result to other gauge groups with U(1) factors. For instance,
consider on squashed S° the gauge group G having U(1)-generators h,. Define ¢ = (%h,. Let
the hypermultiplets belong to representations Ry—; Nys and g will denote weights in Ry. The
eigen-value of h, on p, namely the U(1) charge, is denoted by q(]; = (u, hq). The large-¢ behavior

of the exponent of the integrand is

a b 2
~ mZg ¢¥ [ 4r*tr (hahs) + ktr (0hahy) — lel%; alal |, o) +my| (4.3.28)
f

The suppression can be achieved if the representations and the masses are such that the above
expression tends to exp[—oo] as {, — £oo (with some choice of sign). For instance, when G = U(N,.),

and Ny hypermultiplets in the fundamental N, the above reduces to

w2 9

~ ——— |47° N, + kt 4.3.29
S TN + ktr ( g E (o) +myg|| ( )

f=1peN.

and therefore suppression can be achieved if
Ny A

2
|k| < Ny, E my > —5— (4.3.30)

=1 Gimr

Finally, we remark that the bound above is a sufficient bound, obtained by only looking at the
norm of the integrand. To fully understand when suppression can actually be achieved and whether
or not the bound can be relaxed, more careful analyses are required. Also, the meaning of the mass
bound is not clear to the authors at the moment, and we hope to get a better understanding in the

future.

4.3.2 Matching The Poles And The Shift

Similar to 3-dimensional Higgs branch localization [48], if one performs the integral of the Coulomb

branch matrix model by closing the contour appropriately, one picks up residues from the enclosed
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poles. Before checking the matching between poles and 5d Seiberg-Witten equation, let us first
understand the operator Vﬁw — itr A properly.

The operator Vg’VX and LR

Let ¢, = £ ® o be a section of Sy ® F, where E is equipped with A as a U(1) connection'’.

Equivalently, noting that S, = KX;/ ’® Kjl\f, one can choose an appropriate section & of Kjl\f,
and rewrite ¢ = (€ ® 6) ® (67! ® o), where we have factored out a piece {® 6 € T' (WY). 6 then

provides the explicit connection 1-form for the abstract canonical connection “Agy” on Kj;:

A
V ag/20 = —2'70&, (4.3.31)
and hence
Vit =Lr((®6)® (67" ®op) —i(tra) o+, (4.3.32)

where we have used VEVX()M =L on WE, a=A— Ap/2 as a connection on E ® K]\*/Il/2.

In the case where A = 0, namely the perturbative Coulomb branch solution, one has tgpa =
—trAo/2 and therefore the shift in eigenvalues of Vﬁw and Lp

A(VEY, L) = Serdo. (4.3.33)
On the other hand, one of the BPS equation reads
Vind+ =0 L (E®6)® (67 @op) =i(1ra) b+ (4.3.34)

As a section of TOOM* @ TO2M*, € ® & contributes eigenvalues of Lr of the form

k—1 k—1
Aong + 1y Z /\jm1j + no Z /\jmgj, ng € 7, nig € ZZO. (4.3.35)
Jj=1 J=1

corresponding to modes with asymptotic behavior ~ €021 2 near each closed Reeb orbit. Now

the remaining puzzle is to determine the value of tpAg.

Squashed S° and trAy

As an example, let us consider matching the poles of 1-loop determinant on squashed S° with

the local solutions to the 5d Seiberg-Witten equation. We will focus on the orbit C3 discussed before,
and recall the formula (4.2.57).

Note that one can define local orthonormal vielbein e? by first defining an orthonormal frame
at 6 = 0, then use R to translate them to almost the whole Cs. In particular, one can define e? in
such a way that it is adapted to and invariant under the K-contact structure, namely L£Lre? = 0.

However, translating e/ back to § = 27 will in general disagree with the starting value. To obtain

YNamely, Vaorp = —idop = V5" (EQog) = (VTW —iA){QRop
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a vielbein well-defined on Cs3, one can rotate the original e? along the way. For instance, in terms

of the complex basis

e* — exp <2‘wi — s 9) e¥i, e*i — exp <—iwi s 0) e’ (4.3.36)
w3 w3
Then we have ' 4
_ _ Lpe? ™ = — (w; — ws) e
Lre® = —i(w; — w3) €% & , (i ‘) (4.3.37)
,CReQ’ = (w; —w3) e?—1

In this basis, one can compute the derivative along R

VECy = R™O, + = Z o) T2 7020 — Zdk - 1) (4.3.38)

112

Let 11 = (a,b)T € S;. Using the explicit representation (A.1.10) the derivative VEC reduces to

1 . .
VE b =R 0ty + 5 ), (wi — wa)iogypy —iogiy, (4.3.39)
i=1,2
where we used T2, = I3, = io3, and drk -y = diogty.
When wy 23 = 1, one can define Killing spinor by

VLCe = —%Fmg. (4.3.40)

Suppose {_1/2 € K A}l/ ? is a solution to the above Killing spinor equation, then using the above local

expression of VIC, one can show that ¢ behaves like ~ exp (%9) along C3. Finally, if we require &

to satisfy
£ 1/2® 6 = Const € D(T™'M*), (4.3.41)
one deduces that along Cs
31 i R
VR a0/20 = =50 = —5 (trA0) G, (4.3.42)

namely, along Cs, ¢ has periodic behavior exp(— 9) to cancel that of {_; /5. This implies the shift

i 3i
A(VEV, LR) = §L3A0 =5 (4.3.43)

On a general squashed S>, we continue to choose & such that it has exp ( —%9) periodic behavior
along all three closed Reeb orbits. Then near any of three orbits, we recover the shift of eigenvalues
as in [52][49]

A(VEV, LR) = %LRAO _! on ¥ (;2 T es) (4.3.44)
Finally, the bound (4.2.69) on the winding numbers can now be written as
1 trA
Z (nz + 2) w; < g+ RQ 0 (4.3.45)
1=1,2,3

76



where we defined n3 = ng — ny — no, which is non-negative if one consider all three closed Reeb
orbits C1 2,3. Recall that the 1-loop determinant in deformed Coulomb branch is obtained by a shift
in that of Coulomb branch

A A
U—)J+i(g+LR2 0)<:>Ima:g+LR20. (4.3.46)

Combining with the (4.3.45), bound saturation then means

1
Imo = Z <nl + ) wi, n; >0, (4.3.47)

_ 2
i=1,2,3

Poles of the S2 perturbative 1-loop determinant

Recall that the perturbative 1-loop determinant of a hypermultiplet coupled to a U(1) vector

multiplet on S2 is
w1 + wa + w3 |W>} -

7 Hyper (Sg) = [53 (ia +1im + 5

1-loop

(4.3.48)

The poles are the zeros of the infinite products

1 , 1 .
H | Z <n, + 2> wi —i(oc+m) H | Z <nZ + 2> wi+i(oc+m) ]|, (4.3.49)
n>0 \i=1,2,3 n=>0 \i=1,2,3

where we have reinstated the mass induced from a background U(1) vector multiplet. All the

possible poles are

1 1
—mE1 Z <ni+2>w¢:0®ReU:—m, Imo =+ Z (ni+>wi, (4.3.50)

. . 2
i=1,2,3 i=1,2,3

The first equation above is just the equation (o +m) ¢ = 0 in the Higgs branch, and the second
is just the bound we obtained above, if one takes the poles with + sign. These are the poles that
will be picked up when one close the contour in the upper half plane of the o-plane. Note that this

is allowed thanks to the suppression of deformed Coulomb branch as {( ~ Imo — +o0.

The case of YP4 manifolds
Recall (4.2.61) that near the orbit zo = z4 = 0, the Sasaki-Einstin Reeb vector field can be

written as

R:[pw1Jr(erQ)wg]2

o6 (4.3.51)
+i (w2 + w1 + 2ws) ui—ﬂi + i (wg —ws) ui—ﬂi
2 + w1 3/ " gy, 194, 1 - ws) (U2 = Uag o
where
w1 =0 w*$ ww1<3—1> (4.3.52)
1=0 = T =g pral) 3.
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One can then read off again tpAg = 3 by choosing the section & with the same criteria as S°,

and the bound on local winding number is also determined

3

no ((p+q)—1> +3n1 +

3
2 2 2

1
< g + ibRAo, ng € Z,n, € Zzo. (4353)

After redefinition n., = nj + ngp, no = no, the bound saturation corresponds to the poles!!

3 1

3
Imo = 3”61 + Ng <2 (q — p) - 2l> + 5 (4356)

We remark that the redefinition seems to implies n., € Z, but global analysis, namely, the equation

(71) in [52] implies ne, + nep = ne, > 0 for the poles in the upper-half o plane.

4.4 Summary

In this work, we apply the idea of Higgs branch localization to supersymmetric theories of N’ = 1
vector and hypermultiplet on general K-contact background. We show that with this generality the
localization locus are described by perturbed contact instanton equations in the deformed Coulomb
branch, and 5d Seiberg-Witten equations in the Higgs branch. Neither of these two types of equa-
tions is well understood. We focused on the latter, and some study basic properties of its solutions,
including their local behavior near closed Reeb orbits, which is shown to reduce to 4-dimension
Seiberg-Witten equations. This seems to implies that these BPS solutions corresponds to “pseudo-
holomorphic” objects in K-contact manifolds, if the 4-dimensional story can some how be lifted.
Finally, we study the suppression of deformed Coulomb branch as the parameter ( — +o0, and
manage to match the poles of perturbative Coulomb branch matrix model with the bound on local
winding numbers.

From this point on, it is straight-forward to use the factorization property of perturbative
partition function on S° and Y?? manifolds to perform the contour integral of o. The result should
produce classical and 1-loop contributions of each local Seiberg-Witten solutions, in a form of
products of contributions from each closed Reeb orbit.

Another question that we did not address is that whether the partition function is invariants
of certain geometric structure. In [20], it is shown that the generalized Killing spinor equation
(4.1.5) has huge degrees of local freedom, including the background metric g, £ and R, which are

reflected as @Q-exact deformations in the partition function. Therefore it would be interesting to

"The involved generalized triple sine function is [52]

4
H [Z (nel + %) w; +1i(oc+m) [Z (nei + %) w;i +1i(oc+m)|, (4.3.54)
Af{ i=1 Ay i=1
where Af denotes restrictions on ne,
Ney + Ney — Nez — Ney = Nag ne; = 0, ne Al
! 2 3 * , - " (4.3.55)
Ne; — Ney = —NaP Ne, <0, neA,
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explore the geometric or topological meaning of N' = 1 partition functions and expectation values
of BPS operators. We believe that one needs to look closely the constraint (4.1.6) and understand
its geometric meaning. Also, one can further study the 5d Seiberg-Witten equations (4.2.41). For
instance, it would be interesting to understand its moduli spaces, which we did not take into account
when matching the poles. But it is likely that on generic K-contact structures, the moduli spaces
are zero-dimensional, considering the matching of perturbative poles and local solutions. Another
interesting question is whether the solutions to (4.2.41) correspond to certain “pseudo-holomorphic”
objects, similar to the 4-dimensional story. If so, the partition functions will have more explicit
geometrical meaning in terms of a “counting” of these objects.

Finally we have the issue of Ag. In several discussions, including obtaining the bound on
winding number, we relied on the assumption that the K-contact structure is Sasakian, in order to
have a simplification tgFy, /2 = 0. It is not clear if this can always be achieved on general K-contact
structures, or if there are other wiser choice of Ay with the horizontal property, while simultaneously
enables the identification lﬁg;% “ L+ (0+0%).
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Appendix A

Gamma Matrices and Spinors

A.1 Gamma Matrices

We denote the 5d Gamma matrices as I'™, which is defined by the anti-commutation relation

{Fm’ FTL} — 2gmn’

We require them to be Hermitian

m,n=1,2,3,4,5.

()t =

Also we have charge conjugation matrix C = C4

crret = (T =1m

These matrices have the following symmetry properties:

Cap = ~Chas (CTin)as = —(CTm) 50

(Can)aﬁ = (Can)ﬁa, (CFlmn)a/g = (CFlmn)/ja

and complex conjugation properties

Z@Cﬁv = —0%, (I™M)% = ™7,

B

The symmetry properties of CI' results in symmetry properties of bilinears of spinors:

(£1&2) = — (£&2&1), (&l'm&e) = — (Lel'mér)

(61lmné2) = (E2lmné1) s (E1ltmné2) = (&2l 1mné1)

We define

and similarly for 'k, I'mnki- These products of Gamma matrices satisfy

ank =

1

Tpun = = (Tl — Tly)

2

g
- 7 Emnkpq e )
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(A.1.1)

(A.1.2)

(A.1.3)

(A.1.4)

(A.L5)

(A.16)

(A.1.7)

(A.1.8)

(A.1.9)



One can define a chiral and anti-chiral decomposition using any unit-normed vector field. In our
case, we use the Reeb vector field R and define a chiral operator I'c = —R™I',,,, and decompose
S=5eS5_.

An explicit representation of Gamma matrices we will use is

() ()
10 — -1
I = 0 (A.1.10)
3 — 0 —iot 4 - 0 —io? 0 +I
icl 0 ' ioc?2 0 '

Another representation we will use is

F12—0'1®]I, F2:0'2®O'1, F?):O'Q(X)O'Q, I'y =09 ® o3, F5:O'3®]I (Alll)

A.2 Spinors and Symplectic-Majorana Spinors

A.2.1 Spinor Products

As opposed to that in 4-dimension, one cannot impose simple Majorana condition on a 5d spinor

&. But one can define a symplectic-Majorana spinor, as a pair of spinors £, 1 = 1,2, such that
E% = Copel’eh. (A.2.1)

Note that given any usual spinor £, one can upgrade it to the symplectic-Majorana version by
setting &r—1 = &, &r—0 = CYE
Using C, one can define a C-valued anti-symmetric product of any two arbitrary spinors & and

&)= > &Cupx’ €C. (A.2.2)

a,f=1,2

The product satisfies (here we consider Grassmann even spinors)

(5)() - - (Xé)’ (frmX) == (erf)a (éanX) = (erng) (A23)

One can also define an R-valued symmetric inner product on S. Let £ and x be any two spinors,
and we upgrade them to symplectic-Majorana spinor ; and x;. Then the inner product (,) is

defined as
Ex) = (Ex) =D T +HENT =D X"+ ER (A.2.4)

In particular, if £ # 0 then (£,&) =2 £26% > 0.
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A.2.2 Fierz identities

For arbitrary Grassmann even spinors {23, we have the basic Fierz identity

61 (626s) = 16 (©061) + (TG (€Tméa) = 5T™6s (Gl mnta)

It follows immediately two useful formula

61 (626s) + 62 (€16s) = — 1 T™"6s (ETmnt)
261 (§283) — 262 (§163) = &3 (&261) + T3 (&2l'mén)

A.2.3 SU(2)r Indices

In this subsection we review our convention for the SU(2)% indices I, J, K, ....

12

The SU(2)-invariant tensor € is defined as €' = €31 = 1, with contraction

EIK = EIJEJK = —EIJGKJ = —GK] = 51[( = GIJEIJ =-2

and raising/lowering rules
XI = EIJXJ & X = E[JXJ

(A.2.5)

(A.2.6)

(A.2.7)

(A.2.8)

With this ”metric”, we define for any 2 triplets of functions X’” and Y/ a product in a natural

way:
(XY)IJ = GLKXIKYLJ _ XIKYKJ

Note that this product has the following symmetry:

and in particular
1J Jr 1
2\~ (x2) — S x2)el
(X9 = —(x3)” = Lu(x)e
where we define the trace for triplet products:

tr (XY) = X'y, = X,/

with cyclic symmetry
tr (XY) =tr (YX)

As an example, when X;7 = %(03)1‘]

1
trxX?=—=
2
Note that if non-zero quantity X s satisfies reality condition

— ’ /
X[J = €II EJJ XI/.]’
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(A.2.10)

(A.2.11)

(A.2.12)

(A.2.13)

(A.2.14)

(A.2.15)



then the trace is negative definite

tr (X?) <0 (A.2.16)
For objects of direct sum of triplet and singlet,
X[JEX]J—%GUX, X”zX”+%e”X (A.2.17)
with
X=X = —ergxt’ (A.2.18)

A.2.4 Useful identities

The Fierz-identities implies several useful formula. Let &; be a symplectic-Majorana spinor and

(s,k, R,©) be the associated quantities described in the main text:

s=el(&€), R™=(ETwé&) = 9™ k0, (O17)pn = (ETmnl) (A.2.19)
Then
Rmrmgl = _§I 2
ot )" KL OkL)k = % (tr7t 1) (=67 + R™ky) (A.2.20)

for any symmetric tensor ¢;; and anti-self-dual (w.r.t to R™) 2-form Q. In particular, if t;; # 0

. N / / . . . . .
everywhere and satisfies t7; = €/!'¢/7 ¢ty v, then the 2-form t//©;; is nowhere-vanishing, since it

squares to

(t"701s), (t701,)"™" = =25 (t't1;) > 0. (A.2.21)
|R|> = R™R,, = tpk = s° (A.2.22)
1r© =0 (A.2.23)
tpx O = 50! & RF (T,,,87) = +5 (€'Thnnt”) (A.2.24)
KANOANO #£0 (A.2.25)
(MO)m”(A20)," = s(M1), " (\2) g, (077) "+ S;tr (A1 Aa) 6, — %tr (MA2) kmR™  (A.2.26)
(A0)™(A@), . = —25%tr(\?) (A.2.27)
*(00),u(A0),,,' = Str (V) [gmui B = gonn Rl (A.2.28)
(+A0)™"*(X@),,, = 2tr (A?) sRF (A.2.29)

Also there are several useful spinor identities
R™D &1 = sé1 (A.2.30)
R™Dpmér = (s — Rp) &1 (A.2.31)
(A0),, . T"¢r = (Ry, — sT) A\17€5 (A.2.32)
(AO), THer =Tk (R, — sTm) M 165 — (AO)F €1 = (A\O), T™¢; = 4\ 1€ (A.2.33)
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Appendix B

Conventions in Differential Geometry

In this section we review our convention in differential forms, spin connection and more tensor

analysis.

B.1 Differential forms

For any differential p-form w, the components wp,, . m, and wa, .4, are defined as

1

1
w = —'wml_,_mpdxml A ANdETP = —'wAl_,_ApeAl A ... Aedr (B.1.1)
b: p

for coordinate {z™} and vielbein {e4}. The wedge product is defined such that
dz™ A dz™ (X,Y) = X™Y" — X"Y™ (B.1.2)

The exterior derivative d acting on w is then

1
dw = —'8kwmlmmpdxk Adx™ AN dx™P (B.1.3)
p!
and therefore (dw)kml._.mp = (p+1) OpWm,..m,)- In particular,
(dK),n = Ombn — Opkim = V,I;LCI-@H - V{;C/im (B.1.4)

B.2 Covariant Derivatives

Let V be an arbitrary connection on T'M, then for any vector X = X™0,,, one defines the connection
coefficients T'¥,,,,, as V,, X* = 0,,X* +T%,,,X™. The torsion tensor of such a connection is defined
as 7%, =Tk, —Tk. .

B.2.1 Levi-civita Connection

In the main text, we denote Levi-civita connection on M as V:

Vg=0 (B.2.1)
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with connection coeflicients

1 Ogmi | Ognr  Og
% = g™ m mo_ Zomn B.2.2
mn = 99 ( ox™ * ox™ ! ( )
and curvature tensor
(Vs V] X* = Ry X! (B.2.3)
Ricci tensor is defined as
Ricmn = Roin” (B.2.4)

B.2.2 Lie derivative

Lie derivative for (1,1), (0,2) tensor are defined as
LxT™, = XEVT™, — (Ve X™) T, + (vnxk) ™, (B.2.5)

LXT = X"V T + (Vi X*) Ty + (0 XF) Ty (B.2.6)
with the obvious relation
LxTmn = (Vi Xi + ViX) Ty + g £x T (B.2.7)
In particular, when acting on a differential forms w, one has the Cartan formula

Lxw=dixw+ txdw. (B.2.8)

B.2.3 Vielbein and Spin connection

Let {e*} be an orthonormal basis with respect to metric g. Then given any connection V preserving

g, one can write down Cartan structure equation and so define connection 1-form (also called spin

connection) wp

de +wig Nel =T & Ve = wn gea (B.2.9)

Preserving the metric ¢ implies anti-symmetric property w” g 4+ w?4 = 0. w5 can be solved from

the structure equation, and expressed in terms of I'*,,,
wnp = e’,?e%kan - e%&meﬁ (B.2.10)

It is easy to solve the spin connection for the Levi-Civita connection V€ of g. Suppose de? =
CApceB A eC with CApc + CAcp = 0, and wip = wcABeC, then

wep = —CAcp — CPac+CCpa (B.2.11)
One can use this to obtain w,,” BFAB, or one can exploit the identification

ZwmABFAB > ZwmABeA A eP (B.2.12)
A,B A,B
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to simplify computation:

de? + ZwABeB =0« Lamd€A + ZwmABeB — efzwAB =0
B B
= ZwmABeA ANeP = — Z (eA A g, de + e,’f,‘ldeA)
AB A

(B.2.13)

Given any connection V that preserves metric g, maybe with torsion, one can induce a connection

on the spin bundle §
1
Vi) = Ot + Jwm” D474 (B.2.14)

We will sometimes use - to denote Clifford action of any differential p-form w on spinors:

1
W= ijAln_AprAlmAw. (B.2.15)

1
So in particular, dk - 1) = idmmnf‘m"w.
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Appendix C

Contact Geometry

In this appendix we review some basics aspects about contact geometry and K-contact structures.
Interested readers may refer to [2] for more detail !.

Symplectic geometry is a well-known type of geometry in even dimensions. There, a symplectic
structure is defined to be a closed and non-degenerate 2-form w. In odd dimensions, there is a similar
type of structures, called contact structures, which have many similar and interesting behaviors as

symplectic structures.

C.1 Hyperplane Field

A hyperplane field E¥ on a manifold M is a codimension one sub-bundle of the tangent bundle T'M.
Locally, E can always be defined as the kernel of certain 1-form x. The Euler number x (M) = 0
implies that generic vector fields or 1-forms on M have no zeros. So 1. In particular, any nowhere-
vanishing 1-form x defines a global hyperplane field E = ker(x). Note that rescaling x — e/ does
not change the corresponding hyperplane field. If M is further equipped with a Riemannian metric

g, one can define a vector field R associated to k

g(R, ) =k(). (C.1.1)

C.2 Almost contact structure

Let M be a 2n + 1 oriented dimensional smooth manifold. An almost contact structure? on M
consists of a nowhere-vanishing 1-form s, a nowhere vanishing vector field R and a (1,1)-type
tensor ®™,, viewed as a map ¢ : I'(T'M) — I'(T' M), such that

k(R)=1, ®*=-14+R®k. (C.2.1)

"However we point out that the convention of exterior derivative d in [2] is such that, for instance,

dk = % (Ombin) dz™ A dz™ (C.0.1)

2An almost contact structure can also be defined as a reduction of structure group from SO(2n + 1) to U(n).
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Note that the condition ® (R) = k o ® = 0 can be derived from the above conditions.
Given an almost contact structure, one can always find a (actually infinitely many) compatible

metric g such that
g(R,)=k(). (C.2.2)

Together with the metric, (k, R, ®,¢) is called an almost contact metric structure.

C.3 Almost CR structure

A almost contact structure is equivalent to the notion of almost CR structure, which emphasizes
the decomposition of TMy = T1° @ T%!, induced by ®, such that

(I)’Tl,o - i, ¢’T0,1 = — (C?)l)

C.4 Contact Structure

Let M be a 2n + 1-dimensional compact smooth manifold. Let x be a nowhere-vanishing 1-form.
Then it defines the horizontal vector bundle T My C T M, as we mentioned in the section 2.2.1.

In particular, x defines a contact structure, or contact distribution T' My, if it satisfies
A (dk)" #0, Everywhere on M. (C.4.1)

k itself is called a contact 1-form of the structure. So in odd dimensions, dx plays the role of
symplectic form in even dimensions; indeed, it renders the horizontal bundle T My as a symplectic
vector bundle of rank 2n.

Once a contact 1-form is given, there is unique vector field R such that
EmR™ =1, R™(dK)mn = 0. (C.4.2)

and we call it the Reeb vector field associated to contact the 1-form x. The Reeb vector field on
a compact contact manifold generates 1-parameter family of diffeomorphisms (an effective smooth
R-action on M), which is usually called the Reeb flow ¢r(t), or the contact flow; the flow translates
points along the integral curves of the R. It follows from the definition that the flow preserves the
contact structure, since Lr = tpdk + dig and Lrk =0, Lrdk = 0.

It is important to note that the integral curves (or equivalently, the Reeb flow) of R have three
types of behaviors:

1) The regular type is that all the curves are closed and the Reeb flow generates free U(1)-action
on M, rendering M a principal U(1)-bundle over some 2n-dimensional symplectic manifold.

2) A quasi-regular type is that although the curves are all closed, the Reeb flow only generates
locally-free U(1)-action.

3) The irregular type captures the generic situations, where not all the integral curves are closed.
Irregular Reeb flows can have very bad behaviors, but if the Reeb vector field preserves some metric

on M, then the behavior could still be tractable. In other context, irregular Reeb flows are better
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than the other two types, in the sense that they are non-degenerate and may provide isolated closed

Reeb orbits.

C.5 Contact metric structure

Just as in symplectic geometry, one would like to have some metric and almost conplex structure
into the play, so that the contact structure has more “visible” properties.
Given a contact 1-form k, one can define a set of quantities (k, R, g, ) where g is a metric and

® is a (1,1)-type tensor, such that
ImnR" = Km, 2gmk<I>kn = (dk),,, = V%ICH,L — V%Cmm, P2 = -1+ R® k. (C.5.1)

where VC denotes the Levi-Civita connection of g. We call such set of quantities a contact metric
structure.

There are a few useful algebraic and differential relations between quantities. First we have

(=n"
", R" = K,9", =0, TN (dr)"™ = Q. (C.5.2)
where €, is the volume form associated to metric g. From this one can show that dx satisfies

LR * dk = dk. (C.5.3)

And in fact, if one takes an adapted vielbein, for instance in 5-dimension, satisfying es = R, ® (eg;—1) =

ez, k(e1234) =0, i=1,2, one has
dk =2 (el Ae*+ed A 64) . (C.5.4)
Moreover, using trdk = 0 and x(R) = 1, it can shown that
R"Vpkp = 6,V R" = RV, R" =0, (C.5.5)

namely R is geodesic.

There are useful relations between R and ®: for any contact metric structure,
R™VECH™, = 0. (C.5.6)
and also .
VLCRr = o, — (@0 LR®)",,. (C.5.7)
C.6 K-contact structure

As we have mentioned earlier, irregular Reeb flows can be more tractable if certain metric is invariant
under the flow. This leads to the notion of K-contact structure, where the Reeb vector field is Killing

with respect to the metric in a contact metric structure:
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It is called a K-contact structure, if a contact metric structure satisfies an additional condition
ﬁRg =0. (C.6.1)

Note that this is equivalent to, since ® and dx are related by metric g, it is easy to see that Lr® = 0,

and consequently, V,, R" = —®",,.

C.7 Sasakian Structure
A Sasakian structure is a K-contact structure (k, R, g, ®) with additional constraint
(Vx®) Y =g(X,)Y)R—kr(Y)X (C.7.1)

Sasakian structures are Kahler structures in the odd dimensional world. Therefore, it enjoys many

simple properties that allow simplification in computations.

C.8 Generalized Tanaka-Webster connection

There have been several special connections on contact metric structures introduced in various
literatures. For us, the most important one is the generalized Tanaka-Webster connection. There are
actually two special connections, both of which are called generalized Tanaka-Webster connection,
one introduced by Tanno [53] and the other introduced in [41]. Their names comes from the
property that when restricted on a integrable CR structure, the two connections reduces to the

usual Tanaka-Webster connection. The former connection satisfies
Vk=VR=Vg=0. (C.8.1)

On a general contact metric structure, the two connections are different. However, when the
structure is K-contact, the two connections induces the same Dirac operator on the spin bundle §

via the standard formula

vy =y IW — pm <8m + i(w?nW)ABrAB) . (C.8.2)

In terms of the Levi-Civita connection VC, this Dirac operator reads
1
v Wy = ¥y + Lk, (C.8.3)

which is the operator that appears in the localization locus (4.2.30). Using the projection Py to
chiral and anti-chiral spinors, one has for chiral spinor V¢ € I'(S4)

P_VTW<Z5+ = P_WLC¢+a P+77TW<15+ == <VIEC + idfi) ¢ = —VE" . (C.84)
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C.9 Compatible Connection

Suppose V is any affine connection on T'M, then one can define new connection V that preserves

(Voh

Vi X" =V X" + K" XF (C.9.1)
where ) )
Ky = =5 (Vmgolk> k" = SRV + RVt (C.9.2)

If the affine connection V is chosen to be the Levi-civita connection associated to the ACMS
structure, then one has
Kot = —Kimn (C.9.3)

As mentioned, we have
Vimgnt =0 (C.9.4)

Moreover, for any X,Y € I'(T'Mp), one has
9(VxY,R) =0 (C.9.5)

which means VyY € (T Mp), the restriction of V on TMy gives directly a connection ©|TMH =
VH on TMy.
The connection coefficients are now
I ot =Tt + K™ (C.9.6)
and the corresponding change of spin connection
where we define the spin connection®
b_ b _ b n __ b n b
Wima' =€ (Vimeq) = Ve = €’ n0mel + TV, (C.9.10)
In three dimension, where one has relation

Pmn = €mnkR*, B = Fim (C.9.11)

K can be simplified as
K" = R"'Vyo R — RV, R" (C.9.12)

3Note that the position of the flat indices a and b indicates that
1
Vit = Omth — Jwmarl*'0 (C.9.8)
as opposed to the frequently used notation wy,?, which indicates

Vnth = Omth + iwmabr“bw (C.9.9)
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The covariant derivative on spinor with new connection is now

A 1
Vidr = Vér — ZKlmnFnlél

Now, let’s consider the ACMS data coming from (silR, s k7 (1) O, g), where

1/ =2
rO=\am®
such that
r(t)’(t0)? = —1+ (s 2R) @ &

Substituting all these into definition of K, one has (with the assumption that Q= = 0)

L - S i
Knml = 2 (anle RleRn) + str (tg) (Tm)[J (@ )l

n
() [V )y (80), = (V) (10),7] (1©)F,
where
(Tr) 1y = (Vits™) ties
Note that when s =1, K1 = —Kimn-
To calculate the spin connection, one needs several convenient formula

(t@)nmrngl = (Srm - Rm) tIJéJ

(t(_))nmrlmgl =r* (Fms - Rm) tjlgj - (t@)kmf] = (t@)mnl“m"& = —4St‘][§J
Rmrnmgl = (SFn - Rn) 61

Finally, one has

A B 1 J 1 n 1
Vinér = Vinér + — @ (Tin)” 1€5 — 5 VBl "+ 5 (Vimlogs)&r
1 1
_ q J - v Pq
o (tg)nq(t@) mt1” &7+ 2(*1/ ) mpgl P

(C.9.13)

(C.9.14)

(C.9.15)

(C.9.16)

(C.9.17)

(C.9.18)

(C.9.19)
(C.9.20)

(C.9.21)

Some remark. We used almost contact data ¢ defined as ~ t©, but in fact one could use any

SU(2) triplet function A to define ¢y ~ AO, and in particular, one could choose A = A\,0®. It also

has corresponding compatible connection V, such that
Vapr =0

However, the tensor Kj,,, would not have the above simple form.
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Appendix D

SpinCC bundle and the Dolbeault-Dirac

operator

In this appendix we review the Spin® bundles on a contact metric manifold and a canonical Dirac
operator on any K-contact structure.
Consider a contact metric structure (k, R, g, ®). Then on the horizontal tangent bundle T My,

® defines a complex structure and thus induces a (p, ¢)-decomposition of the complexification
TMy®C=T"Ma T M, ATM}; @ C = @TPIM* (D.0.1)

Let us focus on a 5-dimensional contact metric structure (M; k, R, g, ®). One can start from an

adapted vielbein e as discussed before, and consider the complexification
et =el +ie?, e =ed 4 ek (D.0.2)
With this complex basis, one sees that dk is of type-(1,1) as expected
dk =i (e N e + e ne™?) . (D.0.3)

The bundle W9 = T0*M* is also a Spin® bundle in the sense that TM* acts on it in a Clifford

manner i N ' i
W =2 (wgél N — g”wjae;w> . w=wie' +we €' (TMy)

H‘wzel‘€2'63‘64'¢

(D.0.4)

which satisfies the Clifford algebra {w-, -} = 2¢ (w, ). In particular, W% decomposes into chiral

and anti-chiral spinor bundle according to the eigenvalue £+1 of I'c = —k -
wWo=wlew? Wwl=1"M*aT1"?M*, W°=T"M* (D.0.5)
Using the complex basis %, one can define an orthonormal basis of W9:

1 . 5 1 - 1 .
Wf: = span {1, iezl A ezQ} . WY =span {\/ﬁezl, ﬂ622} (D.0.6)
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If one represents

¢ =a1+ — 42 Zl Ne Z + — + a4 2 & (al,ag,ag,a4)T, (D.0.7)

2 AR

then the above Clifford action is represented as (A.1.10).
On a contact metric structure, there may be other Spin® bundles. They can be obtained by

tensoring an arbitrary complex line bundle E:
W=w'®@E, Wi=WI!®EFE (D.0.8)
In particular, when the manifold is spin, the spin bundle S can be obtained by
S=W'wK,;* «W’=5e K/ (D.0.9)

where Ky = T%2M*. More generally, any Spin® bundle W can be written as W = § ®@ L'/2
for some complex line bundle L'/? (and its square L is called the determinant line bundle of W).
For instance, W° = S ® K, 1/2 and therefore the determinant line bundle L? of W0 is L0 = K.
Generally, the determinant line bundle L of W = WO ® E is L = Ky ® E2.

This implies that given a connection on S (which can be induced from a metric connection w g)
and a U(1)-connection’ A on L2, we have a connection on W = S ® L/?
Vay =V —iAy, Yy e (W) (D.0.10)

The situation of W is a bit special, since one can induce a canonical U(1)-connection Ag on Ky
using the Chern connection V¢ on the almost-hermitian cone C'(M). Therefore, taking Ay as a
reference connection, any connection A on a Spin® bundle W can be written in terms of a U(1)-
connection a on F as A = %Ao + a.

The above construction is good for any contact metric structure. Now let us focus on a K-contact
structure, and use the generalized Tanaka-Webster connection to induce a connection VTW on S.

Combining with a U(1)-connection A on L'/2, one can define a Dirac operator lﬂiw [41, 42, 53]
W=r. vV (D.0.11)

In [41], it is shown that when F is trivial and a = 0, namely A = 1/2A4,,
JZ)AO/Q (a+B)=Lr(a+p)+0a+0B, a+peQ™ e’ =T7W) (D.0.12)

where the Dolbeault operator 0 and O are defined in the usual way?

d=naPthiod . TPIM* — TPTLIN* . = aPiT o d : TPIM* — TPITI N (D.0.14)

A local basis o on L*/? is assumed, such that Va (fo) = df ® 0 —iA ® (fo)
20n a K-contact structure, on has in general (recall that Lr preserves ® and therefore the (p, ¢)-decomposition)

d:TPM* = sk ANTPIM* @ (TP M & TP M @ TP M @ TP M) (D.0.13)
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Note that the two operators do not square to zero in general; define N (wP4) = 7P~ 14%2 (dwP9) and

N (wP4) = wPT24-1 (dwP4), then one has
PPl = —N (9aP9) — ON (), 9*aP4 = —N (daP?) — IN (aP1), (D.0.15)

{0,0} WP = —dr A LraP? — {N, N} (wP), (D.0.16)

which are almost identical to those on symplectic 4-manifolds, except for the term dx A Lr. On
a Sasakian structure, the Nijenhuis map N and N vanish and 0° = 0% = 0, similar to Kéhler

structure.

Weitzenbdck Formula

We review several useful formula for studying 5d Seiberg-Witten equations, which are direct
generalization from those on symplectic 4-manifolds.

Consider W = W° ® E with U(1)-connection a on E, with curvature F, = da. Then for
a € QY(E), B € QY%2(E), one has Weitzenbock formula

2070, = dJ*dla — AF a4+ 2iL%a, 20,058 = Vi, 1aVag+aB — AFagta + 2iLEB. (D.0.17)

where we define operator d = 9, + 04, V Ao+a 1s the connection induced by Ag and a on Ky ® E,
A as the adjoint of wedging dk:

1
(aP=ha=l ABPA) = 5 (dis NP~ H01 gPay o (o, B) z/ a A xcf (D.0.18)
M
The Weitzenbock formula can be shown using Kéahler identities

i0WPT = [A, 0] WP, —idfwP? = [A,8,] WP, VPl € QPY(E). (D.0.19)

and the fact that the Dolbeault operators can be expressed in terms of VTW
O=e ANV, 0 =—2u(e5) VIV, (D.0.20)

for an adapted complex vielbein.
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Appendix E

The integrability of Transversal

Holomorphic Foliation

In this appendix we discuss the spinorial holomorphy condition and the integrability of the canonical

almost transversal holomorphic foliation ® = ®[¢] in terms of its Niejenhuis tensor.

E.1 The spinorial holomorphy condition

We prove the spinorial characterization of 710 and 7% @ RR in equations (3.2.11) and (3.2.13).
Assume X € TH%, namely ®™, X" = iX™. Then

1 m n . m n

which simplifies to Hy” (/7T ,£;) X™ = 0, where H;” = (detm)™*m;” — 7.
Due to the reality properties of m;; we have the identity ZH[KHJK = 2iH;"”. Contracting

the above with X™ and inserting the identity, one has

X Hi HyR e e Cop(T™)P_(1,)7,565X™ =0

¥
& XM H! (D) g€ X" Hie! (Dn) 565 = 0 (E.1.2)
&Y AKAE =0

K,«a

This implies A% = 0, namely H7X™T,,&; = 0.
It is obvious how to extend to X € TMY®RR, one just need to project out the vertical components

of X, and the horizontal components should satisfy H;” X™T',,&; = 0. Namely,

H /™, X"T,,6; =0, ™, =6 — R™k,,. (E.1.3)
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E.2 The Nijenhuis tensor and [T T19]
Given an almost CR structure (k, R, ®), one can define its Nijenhuis tensor as
No (X,Y)=—-[X, Y]+ (X, Y])) R+ [2X,PY] - D [®X,Y] - D [X, DY], (E.2.1)
which can be expressed in components
N, = @, Vv, 0%, — 3!, v,0F,, + %V, !, — oF Vv, o, (E.2.2)

For simplicity, we restrict our analysis to the canonical almost CR structure determined by tr;,

/1
q)mn = @tIJ (glrmné—]) . (E23)

By explicitly inserting the Killing spinor equation and the dilatino equation into (E.2.2), one finds
that

namely

N3 (X,Y) +dr (X, 2Y)R =0, VX,Y e I'(TMp), (E.2.4)
provided that
lry >
XDy, =0, VX e I'(TMpy), E.2.5
(e (M) (E.25)
where T'Mp is the horizontal part of the tangent bundle. Of course this condition is the same as in

(3.3.18).

We will now show that the above condition (E.2.4) is equivalent to the statement that
(70, 79 c 7' & CR. (E.2.6)

To do so, consider X,Y € T4, Using ®(X) =X and x([X,Y]) = —dr(X,Y), one can evaluate
(E.2.1):
No(X,Y) +dr(X,Y) = —2(1 +1®)[X,Y] = —2[X, V%L (E.2.7)

It is clear that (E.2.4) implies that [X,Y] € T @ CR and vice versa.

E.3 £.® and [T, R]

In section 3.4 we showed gravitino and dilatino equations imply that for the canonical almost CR
structure £,5® = 0. For any X € T'M it follows that

Lsr(®X) = ®(s[R, X] — X(s)R) = s®([R, X]). (E.3.1)
On the other hand
Lsp(®X) = [sR,®X] = s[R,®X] — (PX)(s)R (E.3.2)
and thus
s®([R, X]) = s[R, ®X] — (®X)(s)R, (E.3.3)
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which we rewrite as

[R,8X] = ®([R, X]) + (®X)(log 5)R. (E.3.4)

Now, consider that any X0 € T19 can be written as X% = X —1®X for some X € TMy.
Then

(X' R] = (1 —1®)[X, R] +1(®X)(logs)R = [X, R]* + (k([X, R]) + 1(®X)(log s))R € T & CR.
(E.3.5)
In other words, we have confirmed that the canonical almost CR structure defines a THF as long

as the triplet ¢,/ is covariantly constant; i.e. equation (3.3.18).
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