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Supersymmetry has been fruitful source of new Physics and Mathematics advancement. In

particular, supersymmetric theories on curved manifolds often leads to very interesting connections

between integrable geometry and supersymmetric physical quantities.

In this dissertation, we summarize the author’s recent work on 5d N = 1 supersymmetric

theories on curved 5d Riemannian manifolds and its relation to contact geometry, which is the odd-

dimensional counterpart of symplectic geometry in even dimension. We will discuss the geometric

implications of the Killing spinor equations derived from the rigid limit of 5d N = 1 supergravity.

Combining with the dilatino equations, we see that a large class of supersymmetric backgrounds are

transversal holomorphic foliations. With these, we go on to discuss the Higgs branch localization

of N = 1 theories on K-contact manifolds, in which case we discover that the BPS solutions are

generalized Seiberg-Witten equations on K-contact manifolds. These solutions are in one-to-one

correspondence with the poles of the Coulomb branch 1-loop determinant. Finally we will discuss

the properties of contact instantons that arise from Coulomb branch localization of N = 1 theories.
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Chapter 1

Introduction

1.1 Introduction

Quantum mechanics and the theory of relativity, the two greatest developments in physics in the

early 20th century, gave birth to the most powerful tool ever invented by mankind to describe our

universe, namely, Quantum Field Theory. It has enabled us to study our universe in unprecedented

depth and detail, making amazing predictions of what the constituents of our world are and how

they behave.

But the method of Quantum Field Theory does not stop at describing just our physical universe.

In the past decades after its birth, it has gone much further. Quantum Field Theory has proven to be

highly useful in revealing subtle mathematical structures and their relations to realistic or imaginary

physical models. We have the example of quantum anomalies, in which case the quantum violation of

classical conservation law reveals the cohomological structure of the group of gauge transformations.

We also have the renowned example of Donaldson-Witten theory, where physical observables reveal

the cohomological structure of the instanton moduli spaces, and the hidden smooth structures on

four manifolds. The list goes on endlessly.

In many of these cases where Quantum Field Theory shines, the concept of supersymmetry

plays an important role. The presence of supersymmetry in a theory often leads to interesting

exactly computable physical quantities, thanks to the delicate cancellations between bosonic and

fermionic degrees of freedom. On the other hand, the existence of a supersymmetric theory on a

given manifold often implies that the manifold carries a certain geometric structure. What’s more

interesting is that, the above mentioned computable physical quantities and the underlying geometry

are closely related, namely these physical quantities are actually invariants of the geometries. This

can be viewed as a generalized notion of Donaldson-Witten theory: smooth structures are replaced

by geometric structures, the N = 2 SU(2) theory is replaced by more general supersymmetric

theories.

In this dissertation, we will focus on N = 1 supersymmetric theories on Riemannian five-

manifolds. We will explore the relation between the existence of N = 1 supersymmetry and the

contact or transversal holomorphic foliations on the five-manifolds. We will also discuss the notion

1



of 5-dimensional Seiberg-Witten equations and their role in supersymmetric partition functions.

In Chapter [2], we will study the basic relation between 5d N = 1 theories and almost contact

geometries. We will explore the necessary geometric conditions for the existence of different number

of supercharges.

In Chapter [3], we will further show that the existence of a large class of N = 1 supersymmetry

implies transversal holomorphic foliation on the five manifold.

In Chapter [4], we introduce the notion of 5d Seiberg-Witten equations, and its role in the Higgs

branch localization. In particular, we will study the local behavior of Higgs branch BPS equations of

N = 1 theories around special circles, and use these information to match the poles in the integrand

of the partition function.

2



Chapter 2

5d Rigid Supersymmetry and Contact

Geometry

2.1 N = 1 Minimal Off-shell Supergravity

5 dimensional minimal off-shell supergravity was studied by Zucker [1]1. In his paper, the linearized

supergravity multiplet and its SUSY transformation rules are obtained through coupling to the

current multiplet of supersymmetric Maxwell multiplet. Then the linearized multiplet is covari-

antized (making the transformation local) and its supergravity transformation can be derived. In

this section we summarize his work, and obtain the Killing spinor equation needed for the rigid

limit.

The super-Maxwell multiplet consists of the field content (ϕ,Aµ, λ
′), where ϕ is a real scalar,

A is a gravi-photon with field strength fmn = ∂mAn − ∂nAm, and λ′ is the gaugino, a complex

4-dimensional spinor.

The flat space Lagrangian reads

L = −1

4
fmnf

mn +
1

2
∂mϕ∂

mφ+
i

2
λ̄′Γm∂mλ

′. (2.1.1)

This Lagrangian is invariant under the on-shell supersymmetry transformation

δϕ = iε̄λ′, δAm = iε̄Γmλ
′, δλ′ =

1

2
fmnΓmnε− ∂mφΓmε, (2.1.2)

which form a closed algebra modulo the equation of motion:

Γm∂mλ
′ = 0. (2.1.3)

There are several symmetries of the theory:

• Spacetime symmetry, whose conserved current is the energy-momentum tensor

Tmn = −fmkfnk +
1

4
ηmnfklf

kl + ∂mϕ∂nϕ−
1

2
ηmn(∂ϕ)2 +

i

8
λ̄′ (Γm∂n + Γn∂m)λ′. (2.1.4)

1It is called N = 2 in [1], however, it actually has 8 supercharges following from the symplectic Majorana reality

condition and it is more sensible to call it N = 1

3



• Supersymmetry, whose conserved current is

JmI = ΓnΓmλ′I∂nϕ+
1

2
fnlΓ

nlΓmλ′I . (2.1.5)

• SU(2) R-symmetry, whose the conserved R-current is

Jam = λ̄′IτaΓmλ
′
I . (2.1.6)

These currents can form a supermultiplet if proper additional objects are added to close the

algebra. The complete current multiplet consists of(
C, ζ,Xa, wmn, J

a
m, Jm, J

a
(1), T

mn
)
. (2.1.7)

Then one can couple this multiplet to linearized gravity. The bosonic components of the mul-

tiplet are (hmn, (Am)a, Vmn,Am, t, C), where am is U(1) gauge field with field strength Fmn =

∂mAn − ∂nAm. The fermions are an auxiliary spinor λ of dimension 3/2 (not to be confused with

the gaugino λI of the N = 1 vector multiplet in a later section) and the gravitino ψmI

L =
1

8
hmnT

mn +
i

4
J̄mI ψ

I
m − 4C ′C − 2iζ̄λ− 1

2
wmnV

mn +Xata +
1

2
√

3
AmJm(1) +

1

4
JamA

m
a . (2.1.8)

Requiring the Lagrangian to be supersymmetric, one obtains supergravity transformation (with

parameter ξI which is a symplectic Majorana spinor) of the linearized multiplet. Further covariantiz-

ing the transformation gives the full Supergravity transformation (here we only list schematically

first few lines and omit coefficients in front of each term)

δeim ∼ ξIΓiψIm

δAm ∼ ξIψIm

δψIm ∼ Dω̂mξI + F̂mnΓnξI + V pqΓmpqξI + (Am)I
JξJ + tI

JξJ + ...

δλI =
(
4∇mV mnΓn + FmnFklΓmnkl + C

)
ξI + 4

[(
DmtI

J
)

Γm + tI
J(F + 2V )mnΓmn

]
ξJ + ...

,

(2.1.9)

where ... in the third line denotes terms that will vanish when taking rigid limit. In the last line we

schematically show a few terms involving V , and use ... to denote remaining complicated terms.

The rigid limit procedure sets fermions to zero, keeping only the bosonic fields (metric and

other fields) to some background which needs to be determined. If such background is invariant

under certain supergravity transformation, in particular, δψ = 0, one obtain a rigid supersymmetric

background with the resulting metric.

The condition δψ = 0 reads, with some coefficients reinstalled without loss of generality,

δψmI = ∇mξI − tIJΓmξJ −
1

2
FmnΓnξI −

1

2
V pqΓmpqξI − (Am)I

JξJ = 0. (2.1.10)

which is the Killing spinor equation we are going to analyze in the following sections.

In principle one needs to also solve the equation from δλ = 0 in taking the rigid limit. However,

in this chapter we do not discuss this equation, but rather focus on the simpler yet important Killing

spinor equation (2.1.10).
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2.2 Symplectic Majorana spinors and bilinears

In this section, we review the properties of symplectic Majorana spinor and their bilinears. Note

that we consider bosonic spinors in the following discussions. More detail can be found in the

appendix [A]

On a 5-dimensional Riemannian manifold M , one can define Hermitian Gamma matrices, the

charge conjugation matrix and SU(2) symplectic Majorana spinors2.

Hermitian Gamma matrices are denoted as Γ

{Γm,Γn} = 2gmn, (2.2.1)

and hermiticity implies

Γm = (Γm)T . (2.2.2)

The Charge conjugation matrix is denoted as C,

CΓmC−1 = (Γm)T = Γm. (2.2.3)

We also define the SU(2)-invariant tensor εIJ and εIJ

ε12 = −ε21 = −ε12 = 1, (2.2.4)

and raising and lowering convention

εIJX
J = XI , ε

IJXJ = XI . (2.2.5)

With these quantities we define the symplectic-Majorana spinor condition as

ξαI = εIJCαβξ
β
J , (2.2.6)

and a C-valued product of any two spinors denoted by parenthesis ()

(ξη) ≡ ξαCαβηβ, (2.2.7)

and further a positive-definite inner product ( , ) between symplectic Majorana spinors ξ, η

(ξ, η) ≡ εIJ (ξIηJ) . (2.2.8)

2.2.1 Bilinears from 1 symplectic Majorana spinor

Now we’re ready to define bilinears constructed from one symplectic Majorana spinor ξI .

(1) Function s ∈ C∞(M):

s ≡ εIJ (ξIξJ) = 2 (ξ1ξ2) . (2.2.9)

2Note that ordinary Majorana condition cannot be defined in 5d.

5



Note that this function is strictly positive if ξ is nowhere-vanishing:

s = εIJξαI Cαβξ
β
J =

∑
α

ξαI ξ
α
I > 0. (2.2.10)

(2) Vector field R ∈ Γ(TM):

Rm ≡ εIJξIΓmξJ , (2.2.11)

and the corresponding 1-form

κm ≡ gmnRn, (2.2.12)

which implies, when acting on Ωp(M)

ιR ◦ ∗ = (−1)p ∗ ◦ (κ∧) . (2.2.13)

(3) 2-form3

ΘIJ
mn ≡

(
ξIΓmnξ

J
)
, (2.2.16)

with symmetry

ΘIJ = ΘJI . (2.2.17)

Let tIJ be an arbitrary triplet of functions, namely

tIJ = tJI , I = 1, 2; (2.2.18)

then its contraction with Θ gives a real 2-form

(tΘ) ≡ tIJ
(
ΘJ

I

)
. (2.2.19)

Using the Fierz identities one can derive useful relations between these quantities, which we list

in appendix A.2.4.

Given the nowhere-vanishing 1-form κ and the vector field R, one can decompose the tangent

bundle TM = TMH ⊕ TMV , where at any point p ∈ M , TMH |p is annihilated by κ, while TMV

is a trivial line bundle generated by R. Let’s call TMH , and similarly all tensors annihilated by κ

(or R) “horizontal”, while those in the orthogonal complement ”vertical”. In particular, one has

decompositions

Ω2 (M) = Ω2
V (M)⊕ Ω2

H (M) = κ ∧ Ω1
H (M)⊕ Ω2

H (M) (2.2.20)

For an arbitrary nowhere-vanishing triplet of functions tIJ with the property (readers may find

conventions in Appendix [A])

tIJ = tJI , tIJ = εII
′
εJJ

′
tI′J ′ (2.2.21)

3One could of course go on defining higher forms ΘIJ
lmn ≡ ξIΓlmnξ

J and ΘIJ
mnpq ≡ ξIΓmnpqξ

J , but duality of

Gamma matrices gives

ΘIJ
lmn = −

√
g

2!
εpqlmnΘIJ

pq , (2.2.14)

and

ΘIJ
mnpq =

√
gεrmnpqΘ

IJ
r , (2.2.15)

6



one can define a map ϕt : Γ (TM)→ Γ (TM) as

(ϕt)m
n ≡ 1

s

√
−2

tr (t2)
(tΘ)m

n. (2.2.22)

Obviously, one has

ϕt ◦ ϕt = −1 + s−2R⊗ κ, (2.2.23)

and when restricted on TMH , ϕt is some sort of a“complex” structure:

ϕt ◦ ϕt|TMH
= −1. (2.2.24)

Together with the vector field s−1R and 1-form s−1κ, ϕλ defines an almost contact structure on

M [2] (see also Appendix C).

Finally, let us comment on the “(anti)self-dual” horizontal forms. Define operator ∗H ≡ s−1ιR∗,
which is the hodge dual “within” horizontal hyperplanes. It is easy to verify that acting on any

horizontal p-forms

∗2H = (−1)p. (2.2.25)

In particular, we decompose the horizontal 2-forms into 2 subspaces according to their eigenvalues

of ∗H
Ω2
H = Ω2+

H ⊕ Ω2−
H , ∗Hω±H = ±ω±H , ∀ω

±
H ∈ Ω±H . (2.2.26)

We call the horizontal forms in Ω2+
H “self-dual”, while the others “anti-self-dual”. Clearly, these 2

notions are interchanged as one flips the sign of the vector field R, hence this notion of “self-duality”

is not as intrinsic as the well-established notion of self-duality on 4-dimensional oriented manifolds.

Suppose Ω+ is a self-dual 2-form. Then it satisfies, by definition,

√
g

2s
εpqlmnR

lΩ+
pq = Ω+

mn. (2.2.27)

It follows immediately that

Ω+
mnΓmnξI = 0 , (2.2.28)

using the fact that the inner product (ψ,ψ) ≡ εIJ (ψIψJ) is positive definite, and the action of Γmn

preserve symplectic Majorana property.

2.2.2 Bilinears from 2 symplectic Majorana spinors

In this section, we consider the case when there are 2 symplectic Majorana spinors, and analyze

their bilinears.

Denote the two spinors ξI and ξ̃I . Obviously they each generates a set of quantities as we

discussed in the previous sections: (s,R, κ,Θ) and (s̃, R̃, κ̃, Θ̃).

In addition to these quantities, they form some new mixed bilinears. Conventions for IJ indices

can be found in appendix A.
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• Functions

uIJ ≡ (ξI ξ̃J), (2.2.29)

with triplet-singlet decomposition

uIJ = u(IJ) + u[IJ ] = ûIJ −
1

2
εIJu, (2.2.30)

where

u ≡ εIJuIJ . (2.2.31)

Notice that

uIJ = εII
′
εJJ

′
uI′J ′ ≡ uIJ , (2.2.32)

and in particular function u is real-valued

u = u =
∑
I

ξαI ξ̃
α
I , (2.2.33)

which results in positivity

uIJu
IJ =

∑
uIJuIJ =

1

2
u2 + ûIJ û

IJ ≥ 0. (2.2.34)

• Vector fields QIJ

QmIJ ≡ (ξIΓ
mξ̃J), (2.2.35)

with a decomposition

QIJ = Q̂IJ −
1

2
εIJQ, (2.2.36)

where

Qm ≡ εIJ(ξIΓ
mξ̃J). (2.2.37)

Note that similar to the function case, we have

QIJ = QIJ , (2.2.38)

and in particular a real vector field

Q = Q. (2.2.39)

We denote corresponding 1-forms

τIJ ≡ (QIJ)mdx
m = τ̂IJ −

1

2
εIJτ. (2.2.40)

• Two forms

χIJmn ≡ (ξIΓmnξ̃
J). (2.2.41)

Also we define

χ ≡ εIJχIJ , χ̂IJ = χ(IJ). (2.2.42)
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These bilinears satisfy various algebraic relations. Here we list some relevant formulas.

• Norms and inner products of vector fields

(1)

R · R̃ = 4uIJu
IJ − ss̃⇒


∣∣∣s̃R+ sR̃

∣∣∣2 = 8ss̃uIJu
IJ∣∣∣s̃R− sR̃∣∣∣2 = 4ss̃

(
ss̃− 2uIJu

IJ
) (2.2.43)

(2)

QIJ ·QKL = 2uILuKJ − uIJuKL −
1

2
εIKεLJss̃ (2.2.44)

In particular 
∣∣uIJQIJ ∣∣2 =

1

2

(
uIJuIJ

)
ss̃

|Q|2 = −2ûIJ û
IJ + ss̃

(2.2.45)

(3)

R ·QIJ = suIJ , R̃ ·QIJ = s̃uIJ . (2.2.46)

Positivity of the norms implies

ss̃ ≥ 2uIJu
IJ = 2ûIJ û

IJ + u2. (2.2.47)

When ss̃ = 2uIJu
IJ , we have R and R̃ are parallel at such point, which in general we like to

avoid.

(4) Using Fierz identity, one can shows

s̃R+ sR̃ = 4uIJQ
IJ = 2uQ+ 4ûIJQ̂

IJ , (2.2.48)
RmR̃n −RnR̃m = −4uIJχ

IJ
mn ⇒ κ ∧ κ̃ = −4uIJχ

IJ

gmn = − 2ss̃∣∣∣sR̃− s̃R∣∣∣2
[
RmR̃n +RnR̃m − 4(QIJ)m

(
QIJ

)
n

]
, (2.2.49)

where the last equation tells us that the metric is completely determined by the bilinears

constructed from 2 solution.

• Contraction between the vectors and 2-forms

ιR (tχ) = s (tτ̂)− (tû)κ

ιQ(tΘ) = (tû)κ− s (tτ̂)

ιûQ̂ (tΘ) = (tû) (uκ+ sτ)

ιR(tIJΘ̃IJ)− ιR̃
(
tIJΘIJ

)
= 4tIJ (uτ̂IJ − ûIJτ)

(2.2.50)

where again tIJ is arbitrary triplet of functions.
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2.3 Killing spinor equation

In this section we will discuss what constraints will be imposed on geometry of M when there exists

different numbers of solutions to the Killing spinor equation (2.1.10). We focus on situations where

there are 1, 2, and 4 pairs of solutions to the equation.

Recall that the Killing spinor equation required by rigid limit of supergravity is

δψmI = ∇mξI − ΓmtI
JξJ −

1

2
V pqΓmpqξI −

1

2
FmnΓnξI − (Am)I

JξJ = 0, (2.3.1)

where tIJ is a triplet of scalars (or more precisely, a global section of the ad(PSU(2)) where PSU(2)

is an underlying principal SU(2)R-bundle, with gauge field (Am)I
J), F is a closed 2-form, V is a

2-form.

The symplectic Majorana spinor ξI is a section of the SU(2)R twisted spin bundle of M . In

general the SU(2)R-bundle P is non-trivial. We define the gauge-covariant derivative on tIJ

∇AmtIJ ≡ ∇mtIJ − (Am)I
KtK

J + tI
K(Am)K

J , (2.3.2)

and curvature of A as

(Wmn)I
J ≡ ∇m(An)I

J −∇n(Am)I
J −

[
(Am)I

K(An)K
J − (An)I

K(Am)K
J
]
. (2.3.3)

Note that the Killing spinor equation is SU(2) gauge covariant. It is also invariant under complex

conjugation, provided that the auxiliary fields satisfies reality conditions: F and V are real,

tIJ = εII
′
εJJ

′
tI′J ′ , (2.3.4)

and similar for A. The reality condition on tIJ and A is just saying that they are linear combinations

of Pauli matrices with imaginary coefficients.

Apart from the above obvious symmetries, the equation further enjoys a shifting symmetry and

a Weyl symmetry.

• Shifting symmetry: The equation is invariant under the shifting transformation of auxiliary

fields V and F  V → V + Ω+

F → F + 2Ω+
, (2.3.5)

where Ω+ is any self-dual 2-form discussed in (2.2.26), following from the fact that

Ω+
mnΓmnξI = 0. (2.3.6)

• Weyl symmetry: after rescaling the metric g → e2φg, one can properly transform the auxiliary

fields as well as the Killing spinor solution such that the Killing spinor equation is invariant.

This can be seen by first rearranging the Killing spinor equation (2.1.10) into the form

∇mξI = Γmξ̃I +
1

2
PmnΓnξI , (2.3.7)
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where

ξ̃I ≡
(
tI
J +

1

2
VpqΓ

pqδJI

)
ξJ , Pmn ≡ Fmn − 2Vmn. (2.3.8)

and we ignore the gauge field AIJ for simplicity.

Focusing on (2.3.7) alone as an equation for pair (ξ, ξ̃) on any d-dimensional manifold, it is

obvious that

ξ̃I =
1

d
Γm∇mξI −

1

2d
PmnΓmnξI . (2.3.9)

Substituting it back to (2.3.7), one obtains the equation

D(g)ξI =
1

2d
PpqΓmΓpqξI +

1

2
PmnΓnξI (2.3.10)

where the well-known differential operator Dg is defined as

D(g) ≡ ∇m −
1

d
ΓmΓn∇n. (2.3.11)

and depends on the metric g. It’s easy to show that4

D(e2φg)eφ/2 = eφ/2D(g). (2.3.14)

Hence, equation (2.3.7) is invariant under rescaling

g → e2φg, P → eφP, ; ξ → eφ/2ξ. (2.3.15)

Now we return to the equation (2.1.10), and compute the transformation of auxiliary fields

under Weyl rescaling. Suppose the scaling function φ is constant along vector field R:

Rm∇mφ = 0, (2.3.16)

then one can see that the Killing spinor equation (2.1.10) is invariant under rescaling

g → e2φg, tIJ → e−φtIJ , V → eφV − eφ

2s
(κ ∧ dφ) , F → eφF − eφ

s
(κ ∧ dφ) , (2.3.17)

provided we also rescale ξ → eφ/2ξ. Note that the Weyl rescaling only affects the vertical part

of F and V . One can therefore use this rescaling symmetry with appropriate φ to make F

horizontal, namely

ιRF = 0. (2.3.18)

However, unless explicitly stated, in most of the following discussions, we will keep the general

F without exploiting the Weyl symmetry.

4Under Weyl rescaling g → e2φg, the spin connection is shifted according to

∇gmψ → ∇e
2φg
m ψ = ∇gmψ +

1

2
(∇gnφ) Γm

nψ. (2.3.12)

To prove the Weyl transformation rule for D(g), one just need to plug the above formula into

D
(
e2φg

)(
eφ/2ψ

)
= ∇e

2φg
m

(
eφ/2ψ

)
− 1

d
ΓmΓn∇e

2φg
n

(
eφ/2ψ

)
. (2.3.13)
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Let us comment on the reality condition defined earlier.

(1) In 5 dimension Euclidean signature, the spinors belong to 22 dimensional pseudoreal rep-

resentation of Spin(5) ∼ Sp(2), spinor (ψ∗)α and (Cψ)α ≡ Cαβψ
β transform in the same way. It

is impossible to impose the usual Majorana condition, but one can impose the symplectic Majo-

rana condition on spinors. In this sense, 4 complex (8 real) supercharges correspond to unbroken

supersymmetry, namely N = 1.

The reality conditions introduced above are required by the supergravity that we started from,

where one is interested in a real-valued action. However, it is fine to relax the reality condition on

the Killing spinors and auxiliary fields, as long as one is only interested in a formally supersym-

metric invariant theory. It makes perfect sense to consider complexified Killing spinor equation. In

particular, the reality condition is not used in many of the following discussion, for instance, sec-

tion 4.1 actually can be carried out without assuming the reality condition (except for the shifting

symmetry of Ω+ which requires positivity following from reality condition). One only needs to work

with C-valued differential forms. Also, when we compare our 5d Killing spinor equation to the 4d

equations appearing in [3][4], we drop the reality requirement. However, in this paper we mainly

restrict ourselves to the real case, and reality condition does helps simplify certain discussions.

(2) Solutions to equation (2.1.10) come in pairs. Suppose ξ is a solution, corresponding to one

supercharge Q, then its complex conjugate ξ′

ξ′1 = ξ2 = ξ1, ξ′2 = −ξ1, (2.3.19)

automatically satisfies (2.1.10) corresponding to the supercharge Q. The pair of solutions ξI and ξ′I
define the same scalar function s and vector field R, but 2-forms Θ with different sign.

In view of such “pair-production” of solutions, we focus on finding different number of pairs

of solutions to (2.1.10), and discuss them separately in the following subsections. When analyzing

the case when M admits 1 and 2 pairs of solutions, we will select one representative solution from

each pair, say, ξ and ξ̃, and study the relation between the bilinears that can be formed by these

representing Killing spinors. Generically, the vector fields R and R̃ from separate pairs should not

be parallel everywhere on M .

(3) One may worry about possible zeroes of Killing spinors. Similar to that in [4], the Killing

spinor equations are a first order homogeneous differential equation system, whose set of solutions

span a complex vector space Ck≤4, with each solution completely specified by its value at a point p ∈
M . By the symplectic Majorana condition, ξ1(p) = 0 implies ξ2(p) = 0, and hence ξI(∀x ∈M) = 0.

Therefore, any non-trivial solution of the Killing spinor equation must be nowhere-vanishing, which

ensures that the many bilinears defined (especially the almost contact structure) will be global.

In some sense, our Killing spinor equation is a generalization of the well-known Killing spinor

equation

∇mψ = λΓmψ, (2.3.20)

The constant λ can be real, pure-imaginary or zero, and the equation is accordingly called real,

imaginary Killing spinor equation and covariantly constant spinor equation. If a manifold admits a
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Killing spinor, its Ricci curvature must take the form

Ric = 4 (n− 1)λ2g, (2.3.21)

hence Einstein. For λ pure imaginary, Baum gave a classification in [5][6]. Prior to [7], manifolds

with real Killing spinor are better known in low dimensions. For instance, 4-dimensional complete

manifolds with real Killing spinor were shown to be isometric to the 4-sphere [8]. In 5-dimension,

simply-connected manifolds with real Killing spinors were shown to be round S5 or Sasaki-Einstein

manifolds, with solutions coming down from covariantly constant spinors on their Calabi-Yau cone.

In [7], these results were generalized to higher dimensions: in dimension n = 4k+1, only S4n+1 and

Sasaki-Einstein manifolds admits real Killing spinors, while in n = 4n+ 3 ≥ 11 dimension, only the

round sphere, Sasaki-Einstein and 3-Sasakian manifolds admit real Killing spinors.

Our generalized Killing spinor equation has milder constraints on the geometry of manifold. We

will see that the existence of one Killing spinor requires some soft geometry structure, one being an

almost contact structure, similar to [9]. Of course, as the number of solutions increase, the geometry

will be more constrained.

2.3.1 Manifolds admitting 1 pair of supercharges

General Result and ACMS structure

In this subsection we will analyze the case when there is one pair of solutions to the Killing spinor

equation (2.1.10). We partially solve the auxiliary fields in terms of bilinears constructed, and

rewrite the (2.1.10) into a simpler form. We will also briefly discuss 3 interesting cases with special

auxiliary field configurations, which lead to geometrical restrictions of M being locally foliated by

special manifolds, or dimensional reduction to known 4d equations.

By differentiating the bilinears and using (2.1.10), one arrives at the following differential con-

straints on the quantities:

• Derivative on real positive function s

ds = −ιRF. (2.3.22)

• Derivative on real vector field R

∇mRn = 2(tΘ)mn −
√
gεrpqnmRrVpq + sFmn. (2.3.23)

• Derivative on the 2-form with any triplet rIJ

∇k
(
rIJΘIJ

)
mn

=
(
∇Ak rIJ

)
(ΘIJ)mn

+tr (rt) (gnkRm − gmkRn)− 2rJItI
K(∗ΘJK)kmn

+2
[
(∗V )nk

lrIJ(ΘIJ)ml − (∗V )mk
l(rIJΘIJ

)
nl

]
−FkprIJ(∗ΘIJ)mnp

. (2.3.24)

13



Let us comment on the above relations. The first equation implies s = const and can be

normalized to s = 1 when F is horizontal. Recall that one can always use the Weyl symmetry of

the equation to achieve this, although we keep the general situation. The second implies that R is

a Killing vector field:

∇mRn +∇nRm = 0 . (2.3.25)

The 3rd relation can be simplified as one puts in the solutions to F and VH .

Using the 2nd and 3rd equation, one can solve (partially) the auxiliary fields in terms of the

bilinears (field V is decomposed as V = VH + κ ∧ η) :

F = (2s)−1dκ+ 2s−1Ω− + 2s−1Ω+

VH = −s−1(tΘ) + s−1Ω− + s−1Ω+

ηm =
1

4s3

(
ΘIJ

)mn∇k(ΘIJ)nk −
3

4

(
∇ms−1

)
− 1

s2
(An)IJ

(
ΘIJ

)nm , (2.3.26)

where Ω± are self-dual (+) and anti-self-dual (−) 2-forms respectively, satisfying extra condition

LRΩ± = 0. (2.3.27)

From previous discussions, we know that Ω+ corresponds to the arbitrary shifting symmetry of

Killing spinor equation, so we may simply consider Ω+ = 0.

Ω− is in general non-zero. For instance, the well-known Killing spinor equation ∇mξI = tI
JΓmξJ

corresponds to

Ω− = −1

4
dκ, (2.3.28)

which is non-zero. Also, at the end of the paper we construct a supersymmetric theory for the

N = 1 vector multiplet using the Killing spinor equation corresponding to

Ω− =
1

4
dκ. (2.3.29)

However, to highlight some interesting underlying geometry related to (2.1.10), we will consider

Ω− = 0, (2.3.30)

in this section unless explicitly stated. It is straight forward to generalize to non-zero Ω−, with

sight modification to the following discussions.

Now that the auxiliary fields are partially solved, we can start simplifying the Killing spinor

equation. As mentioned before, tIJ is a global section of associate rank-3 vector bundle of PSU(2),

it may have zeroes. Below we will focus on 2 cases corresponding to t 6= 0 and t = 0 everywhere on

M .

First let us consider the case when tIJ 6= 0.

(1) tIJ 6= 0
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Notice that the quantities (g, s−1R, s−1κ, ϕt) actually form an almost contact metric structure

(abbreviated as ACMS). Using the ACMS, one can further rewrite the Killing spinor equation:

∇̂mξ̂I − (Âm)I
J
ξ̂J = 0 , (2.3.31)

where we rescaled ξ

ξ̂I ≡ (
√
s)−1ξI , (2.3.32)

(Âm)I
J ≡ (Am)I

J +
1

s
RmtI

J +
1

tr (t2)

(
∇AmtJK

)
tKI + η terms

=
1

s
RmtI

J +
1

tr (t2)

(
∇mtJK

)
tKI + η terms,

(2.3.33)

and ∇̂ being the compatible spin connection introduced in the appendix C.9.

∇̂mξI = ∇mξI +
1

tr (t2)
(Tm)J IξJ −

1

2s
∇mRnΓnξI +

1

2
(∇m log s) ξI

− 1

tr (t2)
ηq(tΘ)qmtI

JξJ +
1

2

(
∗V V

)
mpq

ΓpqξI
.. (2.3.34)

Notice that the new gauge connection is no longer SU(2) connection, since the term

(Tm)IJ ≡
(
∇AmtIK

)
tKJ , (2.3.35)

might not be symmetric in I, J , but rather

T IJm − T JIm =
1

2
εIJ∇mtr

(
t2
)
, (2.3.36)

which corresponds to an new extra U(1) gauge field. Fortunately this extra U(1) part is in pure

gauge,

ÂIJU(1) ∼ ε
IJ∇ ln tr

(
t2
)
, (2.3.37)

and can be easily gauged away. Hence, let us choose a gauge

∇tr
(
t2
)

= 0. (2.3.38)

Before moving to the t ≡ 0 case, let us make a few remarks.

(1) The appearing of ACMS has already been hinted in literatures . In [9], supersymmetric

theory is obtained on any 3d almost contact metric manifold. [10] constructed twisted version of

the super-Chern-Simons theory considered in [11] on any Seifert manifold M3. Their twisted theory

is defined with a choice of contact structure on M3, with fermions replaced by differential forms.

Note that the non-degenerate condition of a contact structure is crucial in defining the theory and

the supersymmetry used for localization. Similar situations appear in [12][13], where the authors

constructed twisted YM-CS theory on any 5d K-contact manifold M .

(2) There is an interesting configuration (among many similar ones). It corresponds to the case

when

2V = F. (2.3.39)
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In such configuration,

dκ = −4tΘ + 4κ ∧ η ⇒ κ ∧ dκ ∧ dκ ∝ κ ∧ (tΘ) ∧ (tΘ) 6= 0, (2.3.40)

which implies κ is a contact structure. To make things even simpler one can use the Weyl rescaling

symmetry to make field F as well as V horizontal, and therefore s = 1:

F =
1

2
dκ+ 2Ω−, V =

1

4
dκ+ Ω−, (2.3.41)

where F , V , Ω− are now all closed anti-self-dual 2-forms. The Killing spinor equation can be

rewritten as

∇mξI = Γm

(
tI
J +

1

4
F pqΓpqδ

J
I

)
ξJ , (2.3.42)

which takes the familiar form

∇mξI = Γmξ̃I , (2.3.43)

with ξ̃I = (tI
J + (1/4)F pqΓpqδ

J
I )ξJ . We will use this Killing spinor equation to construct a super-

symmetric theory for the N = 1 vector multiplet in section 2.4.

There are many examples of contact manifolds. For instance, any non-trivial U(1)-bundle over

a 4d Hodge manifold, with unit Reeb vector field R pointing along the U(1) fiber is a contact

manifold. One should note that trivially fibered S1-bundle, namely M = S1 ×N with Reeb vector

field pointing along S1 is not contact, because the non-degenerate condition cannot be satisfied.

However, this type of manifold still serve as important examples admitting supersymmetry. Hence,

we will have a brief discussion related to this type of manifold at the end of this section.

(2) tIJ ≡ 0.

There is no natural ACMS arises in this case (although, if possible, one could choose by hand

a nowhere-vanishing section of ad(PSU(2)) to play the role of tIJ , and similar calculations goes

through. In this paper we do not consider this approach). The auxiliary fields F and V read Fmn = (2s)−1 (∇mRn −∇nRm)

Vmn = Rmηn −Rnηm
, (2.3.44)

and the Killing spinor equation reads

∇mξ̂I +

[
− 1

4s2
(Rl∇mRn −Rn∇mRl) +

1

2
(ιR ∗ η)mnl

]
Γnlξ̂I = (Amξ̂)I . (2.3.45)

Similar to the previous discussion, we again have a new connection ∇̂ defined as

Γ̂lmn = Γlmn +
1

s2

(
Rl∇mRn −Rn∇mRl

)
− 2(ιR ∗ η)lmn, (2.3.46)

satisfying

∇̂m
(
s−1Rn

)
= 0, (2.3.47)

although there is no obvious geometrical interpretation for this connection.
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Again the Killing spinor equation can be rewritten as

∇̂mξ̂I = (Am)I
J ξ̂J , (2.3.48)

where ξ̂ =
√
s−1ξ has unit norm

To end this section, we discuss, in the following subsections, 3 special cases related to 5-manifolds

of the form M = S1×M4, with the Reeb vector field R pointing along S1. As we will see there are 2

cases corresponding to two different types of auxiliary field configurations: V horizontal, F vertical

and V , F both vertical. The first configuration leads to geometric restrictions on the sub-manifold

M4, while the second corresponds to the dimensional-reduction of our 5d equation to 4d already

discussed in the literatures.

For such product form (or foliation) to appear, one first needs the horizontal distribution TMH

to be integrable: the Frobenius integrability condition for κ reads

dκ ∧ κ = 0 , or equivalently dκ = κ ∧ λ, λ ∈ Ω1
H(M). (2.3.49)

Recall that F ∝ dκ (Ω− is assumed to be 0), one sees that the Frobenius integrability condition

requires vertical F

F = κ ∧ (...). (2.3.50)

Special Manifold foliation

To proceed to the first class of special cases, let us define a local SU(2) section of “almost complex

structure”:

Ja ≡ i

s
(σa)IJΘJ

I , (2.3.51)

satisfying

JaJb = εabcJc − δabI + δabs−1R⊗ s−1κ. (2.3.52)

It is immediate that when restricted on TMH ,

JaJb = εabcJc − δabI . (2.3.53)

Moreover, we have

∇̂k(Ja)mn = (Âk)
a
b

(
Jb
)
mn

, (2.3.54)

where

(Âm)ab ≡ (−i)2(Âm)IK(σa)J I(σb)
K
J . (2.3.55)

Note that we can solve the new connection in terms of “almost complex structures”:

(Âk)
a
b =

1

4
(Jb)

mn∇̂k(Ja)mn , (2.3.56)

which, depending on whether tIJ = 0, provides constraints on tIJ or A.
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These equations closely resemble that of Quaternion-Kähler geometry, where one has on manifold

M a SU(2) bundle of local almost complex structure Ja satisfying

JaJb = εabcJc − δabI, (2.3.57)

and is parallel with respect to the gauged connection

∇Ja = AabJ
b, (2.3.58)

with the Levi-civita connection ∇ and a SU(2) gauge connection A.

However the situation here is slightly different. We do not have actually a manifold but rather

a horizontal part of tangent bundle TMH of 5-fold M .

Let us assume V is horizontal:

η = 0. (2.3.59)

The induced connection (for t 6= 0 case; t = 0 case goes through similarly and yields the same

conclusion) on TMH is

∇̂XY = ∇XY − g
(
s−1R,∇XY

)
s−1R− 1

tr (t2)

(
∇AXtIK

)
tKJΘIJ (Y ) , ∀X,Y ∈ TMH (2.3.60)

Consider the special case where the sub-bundle TMH is integrable as the tangent bundle TM4

of a co-dimension 1 sub-manifold M4, then ∇̂ reduces to a connection on M4. The first 2 terms of

the connection combine to be the induced Levi-Civita connection ∇M4 on M4 (s−1R being the unit

normal vector), while the third term add to it a torsion part:

Γ̂nmk = Γnmk + γnmk, (2.3.61)

where

γnmk = − 1

tr (t2)

(
∇AmtIK

)
tKJ

(
ΘIJ

)n
k
. (2.3.62)

Rewrite the Quaternion-Kähler-like equation as

∇̂M4
k Jamn = ∇M4

k Jamn − γlkmJaln − γlknJaml = (Âk)
a
bJ

b
mn. (2.3.63)

Now one can put back expression for both γ and Ja, and sees that the torsion terms gives

γlknJ
a
ml − γlkmJanl =

1

tr (t2)

(
∇Ak tIK

)
tK

L(σa)K
J(σb)

I
J

(
Jb
)
mn
≡ (Bk)

a
b(J

b)mn. (2.3.64)

This implies that the Quaternion-Kähler-like equation, restricted on a horizontal sub-manifold M4,

actually reduces to Quaternion-Kähler equation (with newer version of gauge field Â+B)

∇M4Ja = (Â+B)abJ
b =

(
(Ak)I

J +RktI
J
)

(σa)IK(σb)
K
J

(
Jb
)
mn
. (2.3.65)

Thus, we see that for generic auxiliary fields tIJ and Am, provided that the horizontal distribution

can be globally integrated to a sub-manifold M4, M4 is actually a Quaternion-Kähler manifold. Of
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course, there are special combinations of tIJ and A such that Â+ B vanish. In such case, M4 is a

HyperKähler manifold.

With the integrability condition satisfied, we see that M is now locally foliated by Quaternion-

Kähler (or HyperKähler in special case) manifold. In particular, compact manifold M could be a

direct product

M = S1 ×M4, M4 is Quaternion Kahler . (2.3.66)

In view of the fact that there are only 2 compact smooth Quaternion-Kähler manifolds in 4d,

possible examples are M = S1 × CP 2, S1 × S4, where the vector field R is chosen to be the unit

vector field along S1, with gauge field A turned on on CP 2 and S4. There are more examples when

M4 is allowed to be non-compact or orbifolds.

Normal ACMS, Cosymplectic manifold and Kähler foliation

As mentioned above, there are 2 ways to define ACMS structure on M using the data coming from

Killing spinors: with the nowhere-vanishing auxiliary field tIJ or some other nowhere-vanishing

section of ad(P ). In general the ACMS structure so defined does not have nice differential property.

However, when some (rather strong) conditions are satisfied, the ACMS will behave nicer.

Let us focus on the case t 6= 0 and (s−1R, s−1κ, ϕt) define ACMS on M .

One obtains

LRtΘ =
1

2

(
∇ARtIJ

)
(ΘIJ) + s∇p

(
1

s
Rm

)
(tΘ)npdx

m ∧ dxn. (2.3.67)

Setting

∇ARt = 0, ∇m
(
s−1Rn

)
= 0⇔ ∇mRn ∝ Fmn = 0, (2.3.68)

one has LRtΘ = 0 and hence Ls−1Rϕt = 0.

If, in additional to the above, one further imposes V to be horizontal and ∇At = 0, then it is

easy to see that the ACMS satisfies

∇ϕt = 0, (2.3.69)

and hence it is cosymplectic. In this case, the Levi-civita connection ∇ on M respects the ACMS,

the restriction of ∇ on the horizontal distribution is automatically a connection on TMH .

Note that ∇R = 0 implies that the horizontal distribution is locally integrable. Therefore,

restricted on the integral sub-manifold, ∇ is the induced Levi-civita connection, ϕt is an almost

complex structure which can be shown to have vanishing Nijenhuis tensor and hence actually a

complex structure. It is parallel with respect to induced Levi-civita connection, hence is Kähler.

In summary, we see that

∇AtIJ = 0, F = 0, V = VH = −tΘ, (2.3.70)

implies a cosymplectic ACMS (namely ∇ϕt = 0), and M is locally foliated by 4d Kähler manifold,

with the Kähler structure provided by ϕt.
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Recall that we had conclusion that M is locally foliated by Quaternion-Kähler manifold in the

previous subsection, for configuration FH = 0, V = VH . Suppose M = M4×S1 with a Reeb vector

field R from a Killing spinor pointing along S1, then we see that M4 must be Quaternion-Kähler as

well as Kähler. If M4 is a smooth compact manifold, then this leaves only one possibility:

M = CP2 × S1. (2.3.71)

Of course, for more general Reeb vector field pointing along other directions, one could have other

possibilities of M4.

Reducing to 4d

Finally let us point out the reduction of (2.1.10) to 4d already discussed in literatures[4][4]. Consider

M = M4×S1 with spinor ξI and auxiliary fields independent on the S1 coordinate. The 4d part of

the Killing spinor equation reads

∇µξI = tI
JγµξJ +

1

2
Fµ5γ

5ξI +
1

2
V ν5γµν5ξI +

1

2
V λργµλρξI +

1

2
Fµνγ

νξI + (Aµ)I
JξJ , (2.3.72)

and the S1 part serves as direct constraints on auxiliary fields

∂5ξI = tI
JξJ +

1

2
F5µγ

µξI +
1

2
V µνγµνγ5ξI + (A5)I

JξJ = 0. (2.3.73)

There are now 2 different ways to reduce the equation, each gives rise to the Killing equation

discussed in [4][4]. The involved vertical condition VH = FH = 0 and requirement t = 0 or tIJ ∝ εIJ
indeed imply the Frobenius Integrability condition

dκ ∧ κ = 0, (2.3.74)

which is necessary for M to be a product.

I. Reduction to [4]

Setting t = A = Fµν = Vµν = 0, namely F and V are both vertical 2-forms, the equation

simplifies to  ∇µξI =
1

2
Fµ5γ

5ξI +
1

2
V ν5γµν5ξI

∂5ξI = F5µγ
µξI = 0

, (2.3.75)

or written in terms of Weyl components ξI = (ζI , ζ̃I),
∇µζI =

1

2
Fµ5ζI +

1

2
V ν5σµνζI

∇µζ̃I = −1

2
Fµ5ζ̃I −

1

2
V ν5σ̃µν ζ̃I

, (2.3.76)

with constraint on Fµ5

F5µσ̃
µζI = 0, F5µσ

µζ̃I = 0. (2.3.77)
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Suppose we relax the reality condition on ξ and also F and V , and define new complex auxiliary

vector fields A and V  2iAµ ≡ Fµ5 − Vµ5 = ∂µa5 − Vµ5

−2iVµ ≡ Vµ5

, (2.3.78)

then the above equation takes a familiar form ∇µζI = −i (Vµ −Aµ) ζI − iV νσµνζI

∇µζ̃I = i (Vµ −Aµ) ζ̃I + iV ν σ̃µν ζ̃I
, (2.3.79)

which is just the Killing equations discussed in [4] for 2 separate pairs of chiral spinors (ζ1, ζ̃1) and

(ζ2, ζ̃2). Vµ5 has to satisfy conservation condition ∇µV µ5 = 0, and Fµ5 is holomorphic w.r.t JIµν
and J̃Iµν if any of them is non-zero. The conservation condition on Vµ5 is equivalent to d∗-closed

condition on vertical 2-form V

∇µV µ5 = 0⇔ ∇mVmn = 0⇔ d ∗ V = 0. (2.3.80)

Now that we choose not to impose reality condition on auxiliary fields, it is also fine for ξI to be

non-sympletic-Majorana, hence ξ1 and ξ2 are now unrelated complex spinors, and one of the two

can vanish. This then leads to different numbers of Killing spinor solutions in 4d, ranging from 1

to 4. In [4], the cases when M4 admits 1, 2 and 4 supercharges are discussed in detail. Here we list

a few points and discuss their 5d interpretation. More results can be obtained similarly.

(1) 2 supercharges of the form (ζ, 0) and (η, 0): then assuming M4 is compact, M4 has to be

a Hyperhermitian manifold up to global conformal transformation. Moreover, the auxiliary fields

satisfy

• a) Vµ −Aµ is closed 1-form.

• b) ∂µVν − ∂νVµ is anti-self-dual 2-form.

Condition a) is obviously satisfied by definition: Vµ − Aµ ∼ ∂µa5 is obviously closed. The

condition b) reads in 5d point of view

ιRdV = − ∗ dV, (2.3.81)

(2) 2 supercharges of the form (ζ, 0) and (0, ζ̃): there are 2 commuting Killing vector on M4,

and hence M4 is locally T 2-fibration over Riemann surface Σ. The auxiliary fields Vµ5 and Fµ5 are

given in terms of Jµν and J̃µν .

II. Reduction to [4]

Setting A = Fµν = Vµν = 0,
1

2
Fµ5 =

1

2
Vµ5 =

i

3
bµ, t = (i/6)MI2×2, one similarly obtains

∇µζI =
i

6
Mσ̃µζ̃I +

i

3
bµζI +

i

3
bνσµνζI

∇µζ̃I =
i

6
MσµζI −

i

3
bµζ̃I −

i

3
bν σ̃µν ζ̃I

, (2.3.82)
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which is the Killing spinor equation for 2 pairs of spinor (ζ1, ζ̃1) and (ζ2, ζ̃2) discussed in [4] for but

with condition M = M̃ .

Again, ξI are no longer symplectic Majorana, and solution of the 5d Killing spinor equation

leads to different number of solutions to 4d Killing spinor equation. Let us list a few examples from

the detail discussion in [4]. Interested reader can refer to their paper for more results.

(1) 1 supercharge of the form (ζ, ζ̃): Any manifold (M4, g) with a nowhere-vanishing complex

Killing vector field K which squares to zero and commutes with its complex conjugate

KµK
µ = 0, [K, K̄] = 0, (2.3.83)

admits solution of the form (ζ, ζ̃) to the 4d Killing spinor equation. K and the metric can be used

to build up a Hermitian structure on M4.

(2) 2 supercharges of the form (ζ1, 0) and (ζ2, 0): M4 is anti-self-dual with V5µ and F5µ closed

1-forms, and hence in 5d point of view, they are closed vertical 2-forms. Moreover, the form of

solution requires M̃ = 0, and according to our reduction, M = M̃ = 0. If F = V are exact, then

M4 is locally conformal to a Calabi-Yau 2-fold. Otherwise, M4 is locally conformal to H3 × R.

(3) 2 supercharges of the form (ζ1, 0) and (0, ζ̃2): One must have M = M̃ = 0. This is equiva-

lent to M4 having solution (ζ1, ζ̃2) with M = M̃ = 0.

2.3.2 Manifolds admitting 2 pairs of supercharges

In this section we consider the case when 2 pairs of solutions to the (2.1.10) exist. We see that when

certain assumptions on vectors QIJ are made, and if the Killing vector fields form closed algebra,

the geometry of M will be heavily constrained. And in particular, all the resulting geometries admit

contact metric structures.

The spinors ξ and ξ̃ satisfy equations:

∇mξI = tI
JΓmξJ +

1

2
V pqΓmpqξI +

1

2
FmpΓ

nξI + (Am)I
JξJ

∇mξ̃I = tI
JΓmξ̃J +

1

2
V pqΓmpq ξ̃I +

1

2
FmnΓnξ̃I + (Am)I

J ξ̃J

. (2.3.84)

Similar to the previous section, we have

• Derivative on uIJ

(1)

uIJduIJ = ûIJdûIJ +
1

2
udu = −2tIJ(ûτ̂)IJ − ι(uQ)F. (2.3.85)

(2)

du = −ιQF. (2.3.86)

• Derivative on QIJ

∇mQn +∇nQm = 0 ., (2.3.87)
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namely, Q is a Killing vector.

The derivative on uIJ implies relation

2uIJu
IJ = ss̃+ C, (2.3.88)

where the function C is invariant along R and R̃. When tIJ = 0, C reduces to constant.

Notice that when C = 0,

sR̃ = s̃R, (2.3.89)

and when C = −ss̃
s̃R = −sR̃, (2.3.90)

which are degenerate cases that we do not consider in the following.

• Commutator between R and R̃

K ≡ [R, R̃]m = 8 (tû)Qm − 8u(tQ̂)m − 4
(
ιRιR̃ ∗ V

)m
+
(
s̃ιRF − sιR̃F

)m
. (2.3.91)

Recall that we now have several Killing vector fields, R, R̃, K and Q. If some of them form

closed Lie algebra, the geometry of M will be heavily constrained. In the rest of this section, we

discuss several simplest possibilities where they form 2 or 3 dimensional Lie algebras.

1. R and R̃ form 2-dimensional algebra

There exist only two 2-dimensional Lie algebras up to isomorphisms. One is the abelian algebra,

the other is a unique non-abeilian algebra.

When R and R̃ commute, namely K = 0, one obtains the abelian algebra. If the orbits of R

and R̃ are closed, then M is acted freely by T 2, and therefore M is a T 2-fibration.

The non-abelian algebra corresponds to K 6= 0. Assume K is a linear combination of R and R̃,

then

[R, R̃] = aR+ bR̃. (2.3.92)

Contracting with R and R̃ it gives as2 + b (ss̃+ 2C) = sιR̃ιRF

a (ss̃+ 2C) + bs̃2 = s̃ιR̃ιRF
. (2.3.93)

The determinant of the system is

det = s2s̃2 − (ss̃+ 2C)2 = −4C (C + ss̃) . (2.3.94)

Notice that away from the degenerate cases when C = 0 and C = −ss̃, the determinate is non-zero.

Therefore, when ιRιR̃F 6= 0, the system allows solution (a, b)
b =

sιR̃ιRF

2 (ss̃+ C)

a =
s̃ιR̃ιRF

2 (ss̃+ C)

. (2.3.95)
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Notice however that R, R̃ and their commutator are all Killing vectors, therefore the coefficients

a and b must be constant. This implies
s

s̃
= const, (2.3.96)

and further

LRs̃ = LR̃s = 0⇒ ιRιR̃F = 0, (2.3.97)

hence

a = b = 0. (2.3.98)

To summarize, if R and R̃ form 2-dimensional algebra, it can only be trivial abelian algebra.

What remains is the Killing vectorQ. AssumeQ and the commuting R and R̃ form 3 dimensional

algebra: 
[R, R̃] = 0

[Q,R] = aR+ bR̃+mQ

[Q, R̃] = cR+ dR̃+ nQ

. (2.3.99)

Let us make a Weyl rescaling to set ιRF = 0. Then it automatically implies ιRιQF = ιR̃ιQF = 0

by previous arguments. Therefore, LR (us̃) = LR(R̃ ·Q) = R̃ · [R,Q] = 0

LR̃ (us) = LR̃ (R ·Q) = R · [R̃,Q] = 0
. (2.3.100)

It is immediate to see that the determinant of the above linear system is

det ∝ |sR̃− s̃R|2|Q|2, (2.3.101)

and hence non-trivial solution requires Q = 0 or s̃R = sR̃, which we do not consider. Therefore,

one has Q,R, R̃ forming abelian algebra, and M is a T 3-fibration over Riemann surface Σ. Up to

an overall rescaling factor, the metric can be written as

ds2 = hαβdx
αdxβ +

3∑
i=1

(dθi + αi(x))2, (2.3.102)

where θi are the periodic coordinates along R, R̃ and Q provided their orbits are closed, and αi are

1-forms that determine the fibration.

2. R, R̃ and [R, R̃] form 3-dimensional algebra

Assume that the algebra takes the form
[R, R̃] = K

[R,K] = aR+ bR̃+mK

[R̃,K] = cR+ dR̃+ nK

. (2.3.103)
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In general, ιRιR̃F does not vanish. However, we can make a Weyl rescaling to make, for instance,

ιRF = 0, and in particular, s is constant and ιRιR̃F = 0. This implies

R ·K = R̃ ·K = 0. (2.3.104)

It is then easy to solve the coefficients in the above linear relation:
a = − 1

4C
|K|2 ss̃+ 2C

ss̃+ C

b =
1

4C
|K|2 s2

ss̃+ C

,


c = − 1

4C
|K|2 s2

ss̃+ C

d =
1

4C
|K|2 ss̃+ 2C

ss̃+ C

. (2.3.105)

The fact that all coefficients must be constants implies

s

s̃
= const,

s2

ss̃+ 2C
= const, (2.3.106)

and therefore both s̃ and C are constant as well.

It is then straight forward to renormalize and linearly recombine the vectors to form a standard

su(2) algebra. Therefore topologically M is a SU(2)-fibration over a Riemann surface Σ; however,

there is no non-trivial SU(2) bundle over a Riemann surface from the fact that the 3-skeleton of

the classifying space BSU(2) is a point), hence topologically M = S3×Σ. Up to an overall scaling

factor which was used to bring s to 1, the metric takes the form

ds2
M = ds2

Σ + ds2
S3 = hαβ(x)dxαdxβ +

3∑
a=1

eaea, (2.3.107)

where ea = κ, κ̃, γ are SU(2) invariant 1-forms on SU(2). Note that ιRF = ιR̃F = 0 implies F is a

form on Σ:

F =
1

2
Fαβ (x) dxα ∧ dxβ. (2.3.108)

Recall that there is one more Killing vector field Q. The metric has isometry subgroup SU(2)L×
SU(2)R, which comes from the isometry of S3. If Q /∈ su(2)L × su(2)R, then Q must generate

continuous isometry in Σ, which implies Σ = T 2 or S2 if M is compact. In this case, by requiring

Q commutes and being orthogonal to R, R̃ and K, one can derive new constraints on the auxiliary

fields. For instance,

R ·Q = 0⇔ u = 0⇔ ιQF = 0 (2.3.109)

which, combining with the fact that F is a 2-form on Σ, implies actually F = 0.

2.3.3 Manifolds admitting 8 supercharges

In this section, we discuss the optimal case where the Killing spinor equation has full 4 complex

dimensional space of solutions. This is done by taking the commutator of the ∇, applying Killing

spinor equation and matching the Gamma matrix structure on both sides. We will see that there

are 3 cases corresponding to the survival of only one of the 3 auxiliary fields (t, V, F ), with the other

two vanishes identically. Here we list main results that we will discuss in detail:

25



• V 6= 0: M is positively curved, with product structure T k × G where G is a compact Lie

group. The non-trivial example is then T 2 × SU(2) with standard bi-invariant metric.

• F 6= 0: M is locally of the form M3 ×H2, where M3 is a 3 dimensional flat manifold.

• t 6= 0: M is locally a space of constant curvature with positive scalar curvature, hence M is

locally isometric to S5.

• t = V = F = 0: M has zero curvature, hence is locally isometric to R5.

By explicitly writing down the commutator [∇m,∇n]ξI using Killing spinor equation, one would

obtain 2 immediate results:

• Terms independent of Γ.(
WI

J
)
mn
≡ ∇m(An)I

J −∇n(Am)I
J + (An)I

K(Am)K
J − (Am)I

K(An)K
J = 0 . (2.3.110)

For simply-connected 5-manifolds, flat connections must be gauge equivalent to trivial con-

nections.

• Terms linear in Γ.

0 =
(
∇mtIJ

)
Γn −

[
(Amt)I

J − (tAm)I
J
]

Γn

+
1

2
(∇mFnp)ΓpδIJ − Fnp(∗V )mp

qΓqδI
J − 2tI

J(∗V )mn
lΓl

− (m↔ n)

. (2.3.111)

The solutions to the equation are:

Case 1 {
tIJ = 0

F = 0
(2.3.112)

Case 2

V = 0 (2.3.113)

Now we study 2 cases separately.

Case 1: Only V 6= 0.

The solution tIJ = 0 and F = 0 implies (2.3.111) vanishes identically, no further condition on

V is required.

Combining with previous section, we know that

ds = 0, (2.3.114)

and we conveniently set s = 1.

By identifying the terms quadratic in Γ matrices, one sees that the
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• The curvature tensor satisfies a flat condition:

R̂mnkl(∇̂) = 0, (2.3.115)

where R̂ is the curvature tensor of a metric connection with anti-symmetric torsion

∇̂mXn = ∇mXn + 2(∗V )nmkX
k. (2.3.116)

with ∇ the Levi-civita connection of g. This result is most easily understood by looking at

the Killing spinor equation, where V can be absorbed into the metric connection as a totally

anti-symmetric torsion.

• The Ricci curvature

Ricmn = 4(∗V )pqm(∗V )pqn. (2.3.117)

• Scalar curvature

R = +4(∗V )kmn(∗V )kmn ≥ 0, (2.3.118)

which indicates the manifold must have positive curvature. Moreover, compact manifolds

admitting metric connection with anti-symmetric torsion are known to be products of T k×G
where G is a compact group. This leaves us only a few possibilities, the non-trivial one being

M = SU (2)× T 2, (2.3.119)

which has standard positive curvature.

Case 2: V = 0

Putting back V = 0 into (2.3.111), one has gnk
(
∇AmtIJ

)
− gmk

(
∇An tIJ

)
= 0

(∇mFnk)− (∇nFmk) = 0
. (2.3.120)

These 2 condition implies covariant-constantness of tIJ and F :

∇AmtIJ = 0, ∇kFmn = 0 . (2.3.121)

In particular,

d ∗ F = 0, dF = 0⇔ ∆F = 0, (2.3.122)

and 2nd/3rd Betti number is forced to be non-zero, if F 6= 0:

b2 = b3 ≥ 1 (2.3.123)

Compare the the terms quadratic in Γ, one obtains

1

4
RmnpqΓ

pqδI
J = −2

(
t2
)
I

J
Γmn −

1

2
FmpFnsΓ

psδI
J +

[
2tI

JFpmΓpn − (m↔ n)
]
. (2.3.124)

The solutions are

tIJ = 0 or F = 0. (2.3.125)

i) t = 0 while F 6= 0, t = 0:
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• Riemann tensor

Rmnkl = FmlFnk − FmkFnl. (2.3.126)

Note that the expression satisfies interchange symmetry automatically, while the 1st Bianchi

identity implies

Fm[lFnk] − Fm[kFnl] = 0⇒ F ∧ F = 0. (2.3.127)

• Ricci tensor

Ricmn = FmkF
k
n. (2.3.128)

.

• Scalar curvature

R = −FmnFmn, (2.3.129)

which is negative definite if F 6= 0. Also note that F is covariantly constant, hence Rmnnkl is

also covariantly constant.

Let’s further constraint the form of curvature using the condition F ∧ F = 0. Noting that

Fmn is a 5 × 5 antisymmetric matrix, we choose a coordinate where it takes block diagonal

form:

F = F12dx
1 ∧ dx2 + F34dx

3 ∧ dx4. (2.3.130)

Requiring that F ∧ F = 0 forces

F12F34 = 0. (2.3.131)

Assuming

F12 6= 0, (2.3.132)

with all other component zero, one arrives at a Riemann tensor with only one non-vanishing

component:

R1212 = −(F12)2 < 0. (2.3.133)

Combining with the fact that F is parallel, this implies the 5-manifold M should locally be

product manifold

M = T 3 ×H2, (2.3.134)

where F = F12dx
1 ∧ dx2 serves as the volume form of H2.

The metric of M can be written as

ds2 = ds2
T 3 +

F12

y2

(
dx2 + dy2

)
. (2.3.135)

ii) The case where t 6= 0, F = 0
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• Riemann tensor

Rmnkl = 2tr
(
t2
)

(gmlgnk − gmkgnl) , (2.3.136)

where interchange symmetry and first Bianchi identity are automatically satisfies.

The second Bianchi identity forces tr(t2) to be constant. The form of curvature implies that

M is a space of constant curvature, and therefore it must be locally isometric to S5. This

corresponds to the well-known fact that maximal number of solutions to the well-known Killing

spinor equation can only be achieved on round S5.

2.4 Supersymmetric Theory for Vector Multiplet

In section 4, we analyzed many properties of the proposed Killing spinor equation (2.1.10 from

supergravity, and discussed some necessary geometric conditions on the underlying manifold for

solutions to exist.

In this section, we propose a slightly generalized version of the supersymmetric theory for N = 1

vector multiplet. It is not the most general one, as there are other known examples (constructed

by dimensional reduction from 6d, for instance) in recent literatures that does not completely fit in

the following discussion.

Let us consider a simplified Killing spinor equation, where we set F = 2V ≡ F in (2.1.10)

DmξI = tI
JΓmξJ +

1

4
FpqΓmpqξI +

1

2
FmnΓnξI . (2.4.1)

Dm contains Leve-civita connection, spin connection, gauge field Am from the vector multiplet and

background SU(2)-gauge field AI
J , depending on the objects it acts on. The change of notation to

Fmn is to avoid confusion with the field strength of N = 1 gauge field

Fmn ≡ ∇mAn −∇nAm − i [Am, An] . (2.4.2)

We propose a supersymmetry transformation of N = 1 vector multiplet with parameter ξ being

solution to the (2.4.1) is

δξAm = iεIJ (ξIΓmλJ)

δξφ = iεIJ (ξIλJ)

δξλI = −1

2
FmnΓmnξI + (Dmφ) ΓmξI + εJKξJDKI + 2φtI

JξJ +
1

2
φFpqΓpqξI

δξDIJ = −i (ξIΓ
mDmλJ) + [φ, (ξIλJ)] + itI

K (ξKλJ)− i

4
Fpq (ξIΓpqλJ) + (I ↔ J)

. (2.4.3)

Using previous results we obtain

dκ = −4 (tΘ) + 2sVV , F = −2

s
(tΘ) +

2

s
Ω− + VV , (2.4.4)

with VV denoting the vertical part of field V .
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As discussed in an earlier remark, the above equation implies that κ is a contact structure

κ ∧ dκ ∧ dκ 6= 0. (2.4.5)

Applying Weyl rescaling symmetry, one can eliminate VV and set s = 1. The Reeb vector field is

then compatible with the contact structure κ:

ιRκ = 1, ιRdκ = 0. (2.4.6)

Combining with the fact that R is a Killing vector field, the structure (κ,R, g) is actually a K-contact

structure.

For simplicity let us consider a special case where

F = dκ, (2.4.7)

namely Ω− = 1/4dκ.

Then it is straight forward to prove that the following Lagrangian S(κ, g) is invariant under

(2.4.3):

S =

∫
M

tr

[
F ∧ ∗F − κ ∧ F ∧ F − dAφ ∧ ∗dAφ−

1

2
DIJD

IJ + iλI /DAλ
I − λI

[
φ, λI

]
−itIJ (λIλJ) + 2φtIJDIJ +

i

2
∇mκn

(
λIΓ

mnλI
)

+ 2φF ∧ ∗dκ+
1

4
Rφ2

] . (2.4.8)

where R is the scalar curvature of the manifold.

As already mentioned, in the explicit form (2.4.8) we took the choice to assume Ω− = (1/4)dκ,

which is in fact a special case of a large family of supersymmetric theories in the following sense.

Under supersymmetry (2.4.3) with ξ satisfying (2.4.1) without imposing Ω− = (1/4)dκ, the

Lagrangian without κ ∧ F ∧ F has variation

i

2
FmnFpq

(
ξIΓ

mnpqλI
)

(2.4.9)

Such term can be identified in two ways. If we assume F is not only closed, but also exact

F = dA =
1

2
dκ+ 2Ω− (2.4.10)

for some 1-form A, then the term can be identified as variation of

A ∧ F ∧ F (2.4.11)

In such case, the theory is specified by κ and A.

However, if we do not assume anything of F , then the term can also be identified as variation of

F ∧
(
A ∧ dA+

2

3
A ∧A ∧A

)
(2.4.12)

In such case, the theory is specified by nowhere-vanishing 1-form κ and a closed anti-self-dual 2-form

Ω−, although the gauge invariance is not nicely manifested.
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Following an analysis similar to that in [14], one can add to the Lagrangian (2.4.8) a δ-exact

term δξV with

V = tr
(

(δξλ)†λ
)
. (2.4.13)

Then the localization locus is

F−H = φdκ, ιRF = 0, dAφ = 0, DIJ + 2φtIJ = 0 (2.4.14)

For general Ω−, the first equation will take a more general form

F−H = φdκ+ φΩ−H . (2.4.15)

This localization locus is a generalization of the contact instanton in [12].

It would be interesting to perform a complete localization for the theory (2.4.8) with the above

localization locus, which we leave for future study.

2.5 Discussion

So far we have obtained many constraints on geometry of M imposed by the existence of super-

charges. For 1 pair of supercharges, generically M must be almost contact manifold, and using

the compatible connection, the Killing spinor equation can be simplified to a compact form. We

also discussed a few interesting cases related to product manifold.d, which leads to special foliation

and reduction to known 4-dimensional Killing spinor equations. The presence of 2 pairs super-

charges with 2 additional assumptions restricts the isometry algebra of M , forcing M to be S3 or

T 3-fibration over Riemann surfaces. The presence of 4 pairs of supercharges allows for only 3 major

possibilities, where the corresponding topologies and geometries are basically fixed.

There are several problems that are interesting to explore further.

(1) We obtained necessary conditions for supercharges to exist, but not sufficient conditions. In 3

dimension[9], the general solution to Killing spinor equation is obtained from the special coordinate,

which requires some integrability of the almost contact structure. However, we do not have such

integrability for the almost contact structure we defined, partly because the definition involves

auxiliary field tIJ , and the differential property of tIJ is not known at priori. Moreover, in the

extreme case where tIJ = 0, it is not obvious that M is still a almost contact manifold. Perhaps it

is possible to define almost contact structure of M without referring to tIJ .

(2) We partially solved the auxiliary fields, but not all: gauge field A and tIJ are entangled

together. If tIJ and A could be solved in terms of pure bilinears separately, the first problem above

can also be solved.

(3) In the discussions, we made a few assumptions and simplifications. For examples, we did

not study all possible bilinears formed by all solutions, but focused on those formed by the rep-

resentatives from each pair. One should be able to obtain more information of M by taking into

account all of them. Also, to simplify computation we assumed Ω− = 0 in some discussions. It

is straight-forward and interesting to reinstate general Ω−, and understand its role in the almost

contact metric structure.
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(4) We start from Zucker’s off-shell supergravity[1]. However, it is not coupled to matter fields,

and hence one would not automatically obtain any supersymmetric theory for matter multiplets.

Our analysis, in this sense, is far from enough to obtain a complete picture. A next step one could

try is to start from known 5-dimensional off-shell supergravity coupled with matter and take the

rigid limit. For instance, one can start with N = 1 supergravity coupled to Yang-Mills matters in

[15, 16], which was considered in [14]. After turning on auxiliary fields tIJ and Vmn, the Killing

spinor equation involved is then

∇mξI = tI
JΓmξJ +

1

2
VmpqΓ

pqξI , (2.5.1)

which is a special case of our more general equation.

2.6 Examples

In this section, we present simple explicit examples that illustrate some of the discussion before, by

solving Killing spinor equations on selected manifolds and determining the auxiliary fields.

2.6.1 M = S1 × S4

In earlier discussion, we discussed the possibility of having M = S1 ×N with N a 4d Quaternion-

Kähler manifold. In this section, we consider the case where N = S4.

Denote the coordinate along S1 to be θ, xµ are stereo-projection coordinates on S4. The metric

of S1 × S4 is simply

ds2 = dθ2 +
δµνdx

µdxν

(1 + r2)2 (2.6.1)

with function r2 =
4∑

µ=1
(xµ)2

As discussed before, we partially fix the auxiliary fields

F = 0, V = tΘ (2.6.2)

However, non-zero tΘ will generate globally defined almost complex structure on S4, which we

already know does not exist, hence we can set t = 0 and V = 0. The only auxiliary fields allowed

is thus SU(2) gauge field A.

The Killing spinor equation (2.3.31) now reads ∂θξI = (Âθ)I
J
ξJ

∇µξI = (Âµ)I
J
ξJ

(2.6.3)

The gauge field Aµ is determined by the a choice of Quaternion-Kähler structure on S4. Denoting

z1 ≡ x1 + ix2, z2 ≡ x3 + ix4 (2.6.4)
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one can define locally 3 almost complex structures as the basis,
J1 =

(
∂

∂z1
⊗ dz2 −

∂

∂z2
⊗ dz1

)
+ h.c.

J2 =
1

i

(
∂

∂z1
⊗ dz2 −

∂

∂z2
⊗ dz1

)
+ h.c.

J3 = i
∂

∂zi
⊗ dzi − i

∂

∂zi
⊗ dzi

(2.6.5)

and determine the gauge field using (2.3.56).

We choose the Gamma matrices to be

Γi = σi ⊗ σ2, Γ4 = I ⊗ σ1, Γ5 = I ⊗ σ3, C = Γ13 (2.6.6)

and the obvious vielbein

e5 = −dθ, ea =
1

1 + r2
δaµdx

µ (2.6.7)

solution is given as

ξ1 = ei
∫
Aθdθχ+ ⊗ χ−, ξ2 = −e−i

∫
Aθdθχ− ⊗ χ− (2.6.8)

2.6.2 M = S2 × S3

Consider S3 as a U(1) bundle over S2. Let S3 be embedded into C2,

S3 =
{
|z1|2 + |z2|2 = 1| (zi) ∈ C2

}
(2.6.9)

Similarly define

z2 = ρeiθ, z ≡ z1

z2
⇒ ρ2

∣∣
S3 =

1

1 + |z|2
, z1 = zz2 = ρeiθz (2.6.10)

and hence the induced round metric on S3 can be written as

ds2 = dz1dz1 + dz2dz2 =

dθ + i
zdz̄ − z̄dz

2
(

1 + |z|2
)
2

+
dzdz̄(

1 + |z|2
)2

= (dθ + a)2 + g1

(2.6.11)

where

g1 =
dzdz̄(

1 + |z|2
)2 (2.6.12)

is the metric on CP 1 = S2 with radius 1/2. In coordinate,

g1
zz̄ = g1

z̄z =
1

2
(

1 + |z|2
)2 =

1

2
∂z∂z̄ ln(1 + |z|2) ≡ ∂z∂z̄K (2.6.13)

and

. (2.6.14)
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The vector field R ≡ ∂θ is a Killing vector field, and its dual is κ = dθ +A, such that ιRκ = 1.

Define the frame on S3 to be

e3 ≡ eθ = κ, e1 =
Redz

1 + |z|2
, e2 =

Imdz

1 + |z|2
(2.6.15)

s.t.

g = eθeθ + e1e1 + e2e2 (2.6.16)

then it is obvious that

ωθab = 0, a, b = θ, 1, 2 (2.6.17)

from the fact

deθ ∼ idz ∧ dz̄(
1 + |z|2

)2 (2.6.18)

The base manifold S2×S2 is complex, with natural complex structure and Kähler form. Setting

the radius of the stand-alone S2 to be l, with local complex coordinate w, the metric of S3 × S2

reads

g = (dθ + a)2 +
dzdz̄(

1 + |z|2
)2 +

4l2dwdw̄(
1 + |w|2

)2 (2.6.19)

with Kähler form on base manifold

ω =
idz ∧ dz̄

2
(

1 + |z|2
)2 +

i4l2dw ∧ dw̄

2
(

1 + |w|2
)2 (2.6.20)

or in components

ωzz̄ = −ωz̄z =
i

2
(

1 + |z|2
)2 , ωww̄ = −ωw̄w = igww̄ =

il

2
(

1 + |z)2
)2 (2.6.21)

The 2 complex structures on both CP 1 can form linear combination

ϕ± ≡ J1 ± J2 (2.6.22)

which satisfies

ϕ2
± = −1 +R⊗ κ (2.6.23)

Let us now construct the auxiliary fields. We choose tIJ such that tr
(
t2
)

= −1

2
, and therefore

4(tΘ)2 ∼ −1 + ... (2.6.24)

We identify a combination of the 2 complex structures on 2 CP 1 as tΘ. Recall that tΘ also satisfies

ιR ∗ (tΘ) = − (tΘ), hence we identify

ϕ− ∼ 2 (tΘ) (2.6.25)
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or a 2-form equation

2 (tΘ) =
idz ∧ dz̄

2
(

1 + |z|2
)2 −

i4l2dw ∧ dw̄

2
(

1 + |w|2
)2 (2.6.26)

Then we obtain F and V :

F =
1

2
dκ =

idz ∧ dz̄

2
(

1 + |z|2
)2 (2.6.27)

and

V = tΘ =
idz ∧ dz̄

4
(

1 + |z|2
)2 −

il2dw ∧ dw̄(
1 + |w|2

)2 (2.6.28)

With these auxiliary fields, one can solve the Killing spinor equation

∇̂mξ̂I = (Âm )I
J
ξ̂J (2.6.29)

Denote α = w, w̄, and µ, ν = z, z̄, we have
∇αξI = (Aα)I

JξJ

∇µξI −
1

2
(∇µRν) ΓνξI = (Âµ)I

J
ξJ

∇θξI = (Âθ)I
J
ξJ

(2.6.30)

where

Rθ = 1, Rz =
1

2

−iz̄
1 + |z|2

= −i∂zK, Rz̄ =
1

2

iz

1 + |z|2
= i∂̄z̄K (2.6.31)

and we used

∇µRθ = ∇θRθ = 0 (2.6.32)

Choosing gauge field to be (Am)JI = (Am)(σ3)JI ,

iAz =
z̄

4
(

1 + |z|2
) , iAz̄ = − z

4
(

1 + |z|2
) , Aθ = −1

4
(2.6.33)

and representation of Gamma matrices

Γw,w̄ ∼ σ1,2 ⊗ 1, Γz,z̄,θ ∼ σ3 ⊗ σ1,2,3 (2.6.34)

one obtains the chiral solution (ξ2 is obtained from symplectic Majorana condition)

ξ1 = e−
i
4
θχ+ ⊗ χ+ (2.6.35)

The calculation can be easily generalized to M = S3 × Σ for Riemann surface Σ.
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Chapter 3

5d Supersymmetric Background and

Transversal Holomorphic Structures

3.1 Introduction

This chapter focusses on the question that to what extend this notion and use of holomorphy can

be extended to general five-dimensional backgrounds admitting rigid N = 1 supersymmetry. Our

analysis is based on the gravitino and dilatino equations of [16, 15] which in our conventions and in

Euclidean signature are

DmξI = tI
JΓmξJ + FmnΓnξI +

1

2
VpqΓmpqξI (3.1.1)

and

4
[(
DmtI

J
)

Γm + tI
J(F + 2V)mnΓmn

]
ξJ +

(
4∇mVmnΓn + FmnFklΓmnkl + C

)
ξI = 0 (3.1.2)

Here, I = 1, 2 are indices for the fundamental representation of SU(2)R. F = dA is a U(1) field

strength and V an antisymmetric tensor. The triplet t JI is valued in the adjoint representation of

SU(2)R. The covariant derivatives are DmξI = ∇mξI − A J
mI ξJ and Dmt

J
I = ∇mt JI − [Am, t]

J
I .

For later convenience, note that (3.1.1) can also be rewritten as

DmξI = Γmξ̃I +
1

2
(Vpq −Fpq) ΓmpqξI , ξ̃I = tI

JξJ +
1

2
FmnΓmnξI . (3.1.3)

In the Lorentzian theory, the spinors ξI satisfy a symplectic Majorana condition (2.2.6). Transi-

tioning to the Euclidean theory one usually drops such reality conditions and effectively doubles the

degrees of freedom of all fields involved. In general, the spinor ξI defines a possibly complex vector

R. Imposing the reality condition (2.2.6) for ξI it follows that R is real and non-vanishing and

that the tangent space decomposes as in (C.3.1), which one refers to as an almost Cauchy-Riemann

(CR) structure (of hypersurface type).

In opposite to the familiar case of almost complex structures, the integrability condition for

(C.3.1) is not unique. Indeed, there are two possibilities. To begin, there is the case of a integrable
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CR structure,

[T 1,0, T 1,0] ⊆ T 1,0, (3.1.4)

that defines a CR manifold. CR manifolds have previously appeared in the context of the rigid limit

of new minimal supergravity with Lorentzian signature in [17]; there, the authors found fibrations

of the real line over three dimensional CR manifolds. Alternatively, there is the condition

[T 1,0 ⊕R, T 1,0 ⊕R] ⊆ T 1,0 ⊕R, (3.1.5)

which defines a transversally holomorphic foliation (THF).1 The work of [3] relates rigid supersym-

metry in three dimensions with the existence of a THF. Note that Sasakian manifolds fulfill both

(3.1.4) and (3.1.5) as here [RSasakian, T
1,0] ⊆ T 1,0.

Naturally, the question whether solutions to the Killing spinor equations (3.1.1) and (3.1.2)

admit integrable CR structures or THFs is closely related to the question whether a given five

dimensional manifold M admits any solution in the first place. As we alluded above, this question

was already addressed in [20] and [21], but not exhaustively answered. As we will see, existence of

a solution to the Killing spinor equations that satisfies the symplectic Majorana condition implies

the existence of a globally non-vanishing Killing vector field parallel to R. We will show that the

existence of such a Killing vector field is not only necessary, but also sufficient. While we will do

so by directly constructing a single solution and arguing that there are no topological obstructions,

one can already give a short argument why one should be able to expect this result. The existence

of a non-vanishing vector field implies thatM admits an SO(4) structure. Since the theory has an

SU(2)R symmetry, one can perform an operation akin to a Witten twist in four dimensions and

identify the the SU(2)R with an SU(2) factor inside the structure group.

The structure of this note is as follows: The relation between the supersymmetry spinor ξI ,

almost CR-structures and almost contact structures is the topic of section 3.2. Then, we will

discuss the integrability of the Killing spinor equations, possible obstructions and general differential

properties of (3.1.1) and (3.1.2) in section 3.3. Section 3.4 is concerned with the implications for

localization. We will argue that the results of [22, 21] can be generalized to CR-manifolds and

THFs. Subsequently we discuss the existence of globally well-defined solutions (section 3.5) before

concluding with some examples from the literature in section 3.6. Various appendices complement

the discussion.

During the final stages of this project [23] appeared, which has some overlap with our work.

There, the authors study rigid supersymmetry on Riemannian five-manifolds using a holographic

approach.

3.2 Algebraic Properties

In this section we will further discuss the algebraic structures arrising from the existence of the

spinors ξI .

1For some background material on transversely holomorphic foliations, see e.g. [18, 19].
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3.2.1 The Almost Contact Structure

Recall that we have a set of bi-spinors that can be defined for any given ξI :

s ≡ εIJ (ξIξJ) , Rm ≡ −s−1εIJ (ξIΓ
mξJ) ≡ gmnκn, (ΘIJ)mn ≡ (ξIΓmnξJ) . (3.2.1)

Let us emphasize that we have included a minus sign as well as the normalizing factor s−1 in

the definition of R where we tacitly assume that s 6= 0. If one imposes the symplectic Majorana

condition (2.2.6) one finds that s and R are a real function and a real vector field respectively.

Moreover, s ≥ 0 with equality if and only if ξI = 0. It follows that s > 0 everywhere on M since

the gravitino equation is linear and of first order. Finally, the two forms ΘIJ lie in the adjoint

representation of SU(2)R.

Using Fierz-identities, one can show the following identities involving the bispinors:

1 = ιRκ, 0 = ιRΘIJ , ιR ∗ΘIJ = ΘIJ , ?ΘIJ = κ ∧ΘIJ , RmγmξI = −ξI . (3.2.2)

Here, ∗ is the usual five-dimensional Hodge dual and ιR denotes interior multiplication. The first of

the above equations tells us that M carries an SO(4) structure. This allows us to introduce a lot of

structure that is familiar from four-dimensional geometry. As is usual, we will refer to vectors and

forms parallel to R and κ respectively as vertical and their orthogonal complement as horizontal.

I.e. forms can be decomposed as ω = ωH +ωV . Then the Hodge dual defines the notion of self-dual

and anti self-dual forms on the horizontal subspace, as discussed around 2.2.26. Since the ΘIJ

are both horizontal and self-dual, ΘIJ = (ΘIJ)+, they define an isomorphism between su(2)R and

the su(2)+ factor in the typical so(4) ∼= su(2)+ × su(2)− decomposition of the Lie algebra of the

structure group. One can also verify some more involved identities involving ΘIJ :

ΘIJmpΘ
pn

KL = −1

4
s2(εIKεJL + εILεJK)Π n

m +
1

4
s(εJKΘ n

ILm + εIKΘ n
JLm + εJLΘ n

IKm + εILΘ n
JKm ),

s−2ΘIJklΘ
IJ
mn =

1

2
(ΠkmΠln −ΠknΠlm + εklmnpR

p) .

(3.2.3)

Here Πmn = gmn − κmκn and thus the latter of these is a projection to horizontal, self-dual two-

forms.

Suppose now that mIJ is an SU(2)R triplet. Later we will show that mIJ = tIJ emerges

naturally when imposing integrability and we will refer to this as the canonical choice. Yet for now,

we continue with a generic mIJ and define2 detm ≡ −1/2
∑
IJ

mI
JmJ

I . Once we impose the reality

condition (3.2.10) for mIJ , detm will be positive semi-definite. For now we proceed with the milder

assumption detm 6= 0 and define the following tensor

Φmn = (Φ[m])mn ≡ s−1

√
1

detm
mIJ(ΘIJ)mn. (3.2.4)

2 Note that∑
IJ

mI
JmJ

I = m1
1m1

1 + m1
2m2

1 + m2
1m1

2 + m2
2m2

2 = −2m11m22 + 2m12m21 = −2 detm••.
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As follows from (3.2.3), Φ satisfies the following condition:

Φm
kΦ

k
n = −δmn +Rmκn. (3.2.5)

Mathematicians refer to a multiplet (κ,R,Φ) as an almost contact structure if

κmR
m = 1, Φm

kΦ
k
n = −δmn +Rmκn, Φm

nR
n = κnΦn

m = 0 (3.2.6)

As we have shown, the quantities defined using ξI and a suitable mIJ satisfy these relations, and

therefore define an almost contact structure. Note that Φ is invariant under mIJ 7→ fmIJ for any

non-zero function f .

3.2.2 The Almost CR Structure

Equations (3.2.5) and (3.2.6) indicate that for each m, Φ[m] defines an almost CR structure. In-

deed, each Φ[m] induces a decomposition of the complexified horizontal tangent bundle (almost CR

structure) as in appendix [C.3] via

X ∈ T 1,0 ⇔ ΦX = ıX. (3.2.7)

The decomposition holds also for the exterior algebra and all horizontal n-forms ω = ωH can be

decomposed into (p, q)-forms via

ω =
∑
p+q=n

ωp,q. (3.2.8)

In this context Φmn is a horizontal (1, 1)-form. Similar to the case of four-dimensional Kähler

manifolds, self-dual and anti-self-dual 2-forms have a simple (p, q)-decomposition,

ω+ = ω2,0 + ω0,2 + ω|Φ, ω− = ω1,1, (3.2.9)

with ω1,1 primitive and thus annihilated by contraction with Φ.

We continue by discussing the integrability of the almost CR structure. While this can be done

using a direct analysis of the Niejenhuis tensor, we prefer to do a spinorial analysis in the spirit of

[9].3 This is computationally more straight forward, yet requires us to impose the reality condition

mIJ = εII
′
εJJ

′
mI′J ′ . (3.2.10)

for the triplet which we alluded to previously. The bar denotes complex conjugation. Let us

emphasize that we are also using the symplectic Majorana condition since we assume R to be real.

In appendix E.1 we show that one can characterize elements of T 1,0 in terms of a spinorial

equation:

X ∈ T 1,0 ⇔ XmHI
JΓmξJ = 0, (3.2.11)

where

HI
J = H J

I [m] =

√
1

detm
mI

J − iδJI . (3.2.12)

3For a third possibility using differential forms orthogonal to T 1,0 or T 1,0 ⊕ R respectively see [17].
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Similarly, one can also characterize the tangent vectors in T 1,0 ⊕ RR by the spinorial equation

X ∈ T 1,0 ⊕R ⇔ (Πm
nX

n)HI
JΓmξJ = 0. (3.2.13)

Recall that Πm
n = δmn −Rmκn is a projection that maps a generic tangent vector to its horizontal

component.

3.3 Differential Properties

We finally turn to the integrability conditions for the decomposition (C.3.1). To do so, we will first

establish some useful identities involving the bispinors (3.2.1), the( refGamma-rep-2)) and dilatino

(3.1.2) variations. Subsequently we consider the case of CR structures as a warm-up before studying

the integrability conditions for THFs.

3.3.1 Supersymmetry variations and bispinors

Recall that by studying the gravitino variation (3.1.1), one finds that the scalar s satisfies ∇ns =

2sRmFmn, from which it follows that LRF = LRs = 0. Similarly, the non-normalized vector field

sR is Killing:

∇m (sRn) = 2
(
tIJΘIJ

)
mn
− 2sFmn − 2s(ιR ? V)mn, ∇m (sRn) +∇n (sRm) = 0. (3.3.1)

One also finds that ιRdκ = −s−1ds while ιRd(sκ) = −2ds. There is a more involved relation

involving the two-form tIJΘIJ :

∇k
(
tIJΘIJ

)
mn

= Dkt
IJ(ΘIJ)mn + 2 det t (gnkRm − gmkRn) + 2FkptIJ (ξIΓmn

pξJ)

+gnkVpqtIJ (ξIΓmpqξJ)− 2VnqtIJ (ξIΓmkqξJ)

−gmkVpqtIJ (ξIΓnpqξJ) + 2VmqtIJ (ξIΓnkqξJ) . (3.3.2)

Similarly we are interested in the consequences of the dilatino equation (3.1.2) for bispinors

and background fields. By contraction with tIJξI one finds that Rm∇m(tIJ t
IJ) = 2LR det t = 0.

Contraction with ξI on the other hand fixes the value of the scalar,

C = 4κn∇mVmn − 4s−1(F + 2V)mn
(
tIJΘIJ

)mn
+ 2(ιR ∗ F)mnFmn. (3.3.3)

We can extract additional information from the dilatino equation and start by projecting it onto its

“chiral” components. Recalling the last identity in (3.2.2) we consider the projector 1
2(1−RmΓm).

Acting on (3.1.2) and using (3.3.3), one finds

0 = DRt
J
I ξJ + t JI R

l(F + 2V)mnΓlmnξJ + s−1(F + 2V)mn(tKLΘKL)mnξI . (3.3.4)

A related identity can be obtained by contracting (3.1.2) with ξIΓmn and projecting onto the

horizontal subspace: (
RkDkt

IJ
)

(ΘIJ)mn − 2
[
(F + 2V)H × (tIJΘIJ)

]
mn

= 0. (3.3.5)
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where (η × ω)mn = η p
m ωpn − ω p

m ηpn. In passing, one needs to use the simple identity

Ωmn =
(
ω+
)
nk

(
ω−
)k
n
−
(
ω+
)
nk

(
ω−
)k
m

= 0. (3.3.6)

As a point of consistency note that one can obtain the same result by contracting (3.3.4) with ξIΓmn

and again projecting onto the horizontal part.

3.3.2 Integrability

Cauchy-Riemann structures

Having established the existence of the almost CR structure C.3.1, it is natural to ask if it satisfies

any integrability condition. As a warm-up to the integrability condition of a THF (3.1.5), we

consider the slightly simpler case of a CR structure (3.1.4).

Thus we study the condition (3.2.11) for the commutator [X,Y ] for arbitrary X, Y ∈ T 1,0.

I.e. by acting with Y nDn on (3.2.11) and antisymmetrizing in X,Y , one finds that

[X,Y ] ∈ T 1,0 ⇔ 0 = X [mY n]
[
DmH

J
I ΓnξJ +H J

I ΓnDmξJ
]
. (3.3.7)

This reduces quickly to

X [mY n]
[
DmH

J
I ΓnξJ − [H, t] JI ΓmnξJ + 2H J

I (F + V)mnξJ
]
. (3.3.8)

Per usual, (3.3.8) can be mapped to two equations by suitable contractions.

To begin, we contract (3.3.8) with ξI and find that ([H, t] JI Θ I
J )2,0 = 0. Due to the reality

conditions for ξI , m J
I and t JI this means that [H, t] JI Θ I

J ∈ Ω1,1. This in turn is equivalent to

[H, t] JI being proportional to m J
I . However, [H, t] JI is proportional to [m, t] JI and thus the only

solution is m J
I = ft JI for any non-zero function f .

Being rid of the commutator term, we consider the contraction with ξJ symmetrized over SU(2)R

indices. This leads to sHIJ [X [mY n](F+V)mn]. The necessary vanishing of the expression in square

brackets means that (F + V)2,0 = 0.

Finally, we contract with ξJΓk:

X [mY n]DmH
K
I

(
ΘJKkn −

1

2
εJKsgkn

)
. (3.3.9)

By symmetrizing and antisymmetrizing over I and J , it is clear that both terms in parantheses

have to vanish independently. It follows that DXH
J
I = 0.

In summary, the almost CR-structure is integrable and the manifold is CR if and only if

m J
I = ft JI , (F + V)2,0 = 0, DX

(
t JI√
det t

)
= 0, ∀X ∈ T 1,0. (3.3.10)

Note that due to our reality condition for t JI , the last statement is actually equivalent to

DX

(
t JI√
det t

)
= 0, ∀X ∈ TMH , (3.3.11)

where TMH = T 1,0 ⊕ T 0,1.
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Transversally holomorphic foliations

Having discussed integrable CR structures, we now turn to the integrability condition for transversal

holomorphic foliations (3.1.5). Using identical arguments to those from the previous section, we

note that the integrability condition is

[X,Y ] ∈ T 1,0 ⊕R ⇔ 0 = X [mY n]
[
DmH

J
I Π k

n ΓkξJ +∇mΠ k
n H

J
I ΓkξJ +H J

I Π k
n ΓkDmξJ

]
.

(3.3.12)

To begin, consider (3.3.12) for X,Y ∈ T 1,0. Direct substitution gives

X [mY n](DmH
J
I Γn − [H, t] JI Γmn − 2 ? Vmnk(Γk +Rk)H J

I )ξJ (3.3.13)

Now, since X,Y ∈ T 1,0, the only contributions to the last term arise from the components of ?V that

lie in Ω2,1⊕Ω2,0 ∧R. However, since (Γk +Rk)ξI = Πk
lΓ
lξI the latter of these is annihilated by the

projection while the former vanishes due to holomorphy — i.e. for any ω ∈ Ω0,1, H J
I ωkΓ

kξJ = 0.

Thus we are left with

X [mY n](DmH
J
I Γn − [H, t] JI Γmn)ξJ (3.3.14)

Once again, contraction with ξI gives the first necessary condition, ([H, t]IJΘIJ)2,0 = 0, from which

it follows once again that m J
I = ft JI . Just as in the CR case the second condition is DXH

J
I = 0,

∀X ∈ T 1,0.

We continue our analysis of (3.3.12) by considering X ∈ T 1,0 and Y = R. Using the results

from the previous paragraph, one finds that the necessary and sufficient condition is the vanishing

of

Xm[−DRH
J
I Γm + 2(F + 2ιR ? V)mn(Γn +Rn)H J

I ]ξJ . (3.3.15)

By inspection one finds that the only contributing terms including F or V lie in Ω2,0 — (Ω1,0⊕Ω0,1)∧
R as well as Ω0,2 components are projected to zero while those in Ω1,1 vanish due to holomorphy.

The components in Ω2,0 are of course self-dual under ιR? so the above can be rewritten in terms of

F + 2V instead of F + 2ιR ? V.

To further simplify this, we consider the chiral projection of the dilatino equation (3.3.4). Acting

with XmH J
I Γm on (3.3.4) one finds that

H J
I DRt

K
J XmΓmξK = 4H J

I t K
J XmιR ? (F + 2V)mnΓnξK . (3.3.16)

Now, we first note that DRt
J
I =

√
det tDRH

J
I as DR(det t) = 0. Together with H K

I H J
K =

−2ıH J
I it follows that

DRH
J
I XmΓmξK = 2ı(det t)−1/2XmH J

I t K
J ιR ? (F +2V)mnΓnξK = 2XmH J

I ιR ? (F +2V)mnΓnξK .

(3.3.17)

As before we argue that only the Ω2,0 and Ω0,2 terms contribute. Thus we find that (3.3.15) vanishes

without any further conditions. In the end, the integrability conditions are

m J
I = ft JI , DX

(
t JI√
det t

)
= 0, ∀X ∈ T 1,0. (3.3.18)
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As in the case of the CR structure the reality condition for t JI implies that the last condition holds

for all horizontal sections of the tangent bundle. By comparison with equation (3.3.10) it is clear

that any solution defining a THF also defines an integrable CR structure while the converse is not

the case.

3.4 Implications for Localization

3.4.1 The ∂b and ∂̄b operators

Suppose that our manifold satisfies either of the integrability conditions (3.3.10) or (3.3.18). Let us

show one can define nilponent operators ∂b and ∂̄b similar to those on complex structures. To do

so, consider a (0, 1)-form α0,1. We can decompose its exterior derivative as

dα0,1 = πV
(
dα0,1

)
+ π2,0

(
dα0,1

)
+ π1,1

(
dα0,1

)
+ π0,2

(
dα0,1

)
, (3.4.1)

where πV and πp,q are projectors to the vertical and (p, q) components. Since neither [T 1,0, T 1,0]

nor [T 1,0 ⊕R, T 1,0 ⊕R] have a component in T 0,1 one finds that

dα0,1
(
X1,0, Y 1,0

)
= X1,0

(
α0,1

(
Y 1,0

))
− Y 1,0

(
α0,1

(
X1,0

))
− α0,1

([
X1,0, Y 1,0

])
. (3.4.2)

In other words, π2,0
(
dα0,1

)
= 0, which allows us to define (dV , ∂b, ∂̄b) via

dα0,1 = πV
(
dα0,1

)
+ π1,1

(
dα0,1

)
+ π0,2

(
dα0,1

)
≡ dV α0,1 + ∂bα

0,1 + ∂̄bα
0,1. (3.4.3)

From d = ∂b+ ∂̄b+dv and d2 = 0 it follows directly that ∂2
b = ∂̄2

b = 0 and one can define cohomology

groups Hp,q

∂̄b
via the exact sequence

. . .
∂̄b−→ Ωp,q−1 ∂̄b−→ Ωp,q ∂̄b−→ Ωp,q+1 ∂̄b−→ . . . (3.4.4)

3.4.2 Mode counting and partition functions

As mentioned in the introduction, partition functions for supersymmetric gauge theories calcu-

lated in the context of topological field theories or localization simplify significantly on Kähler and

Sasakian manifolds. The argument relies not only on the existence of the differential ∂̄b (∂̄ in the

Kähler case). Indeed, one also requires the compatibility of the decomposition C.3.1 with the action

of the Lie derivative £sR. In this section we will go over this argument of [22, 24] in some detail

and discuss under what circumstances it applies to the manifolds in question.

Consider a vector multiplet with Lie algebra g. The bosonic modes lie in Ω1(g)⊕H0(g)⊕H0(g),

where H0(g) denotes harmonic Lie algebra valued functions. Fermionic modes on the other hand

can be mapped to Ω+(g)⊕Ω0(g)⊕Ω0(g). The one-loop contribution to the perturbative partition

function is given by4 √
detfermions £sR

detbosons £sR
. (3.4.5)

4This was shown to be true for generic Sasakian manifolds in [25]. Here we assume it to be true for five-dimensional

Riemannian manifolds admitting a integrable CR-structure or THF.
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If £sRΦ = £sRκ = 0 we can calculate the determinants using the decomposition C.3.1. Clearly

£sRκ = 0, so we need to evaluate £sRΦ = ιsRdΦ. Direct calculation using (3.3.2) yields

dΦ = −s−1ds∧Φ + s−1D

(
tIJ√
det t

)
∧ΘIJ + 2s−1 [ιR(F + 2V) ∧ Φ− κ ∧ ((F + 2V)× Φ)] , (3.4.6)

Thus

£sRΦ = DR

(
tIJ√
det t

)
ΘIJ − 2

[
(F + 2V)H × Φ

]
= 0 (3.4.7)

where we used (3.3.5). In conclusion we can rewrite (3.4.5) as√
det£sR(Ω2,0 ⊕ Ω0,0Φ⊕ Ω0,2 ⊕ Ω0,0 ⊕ Ω0,0)

det£sR(Ω1,0 ⊕ Ω0,1 ⊕ Ω0,0κ)

1

det£sR H
0
, (3.4.8)

where we used the notation detΩp,q £sR = det£sR Ωp,q and dropped the various appearances of g for

readability. As [£sR, ∂̄b] = 0 it follows that the above simplifies to√√√√det£sR H
0,2

∂̄b
det£sR H

0,0

∂̄b

det£sR H
0,1

∂̄b

√√√√det£sR H
2,0

∂̄b
det£sR H

0,0

∂̄b

det£sR H
1,0

∂̄b

. (3.4.9)

It is interesting to note that the above argument does not require a property akin to Lefschetz

decomposition on Kähler manifolds. Recall that the Lefschetz theorem relates cohomology groups

of the Dolbeault operator as H0,0

∂̄
∼= H1,1

∂̄,ω
, where the subscript ω denotes forms parallel to the

symplectic form ω. Such a decomposition, while true for e.g. Sasaki-Einstein manifolds does not

hold in general for the operator Φ. That is, for α ∈ Ω1,1
Φ one can write α = aΦ for some scalar

function a, yet ∂̄bα = 0 is not in one-to-one correspondence with ∂̄ba = 0 since ∂̄bΦ does not vanish

in the general case.

3.4.3 BPS equations on the Higgs branch

The nilponency of ∂̄b has also immediate implications on the Higgs branch BPS equations of N = 1

theories. In [26] these were studied for supersymmetric backgrounds that are K-contact. Defining

∂̄a ≡ ∂̄b − ıa0,1 for a U(1) connection a with field strength Fa, some of the relevant equations are

∂̄aα+ ∂̄∗aβ = 0, F 0,2
a = 2iᾱβ, F dκa =

1

2

(
ζ − |α|2 + |β|2

)
. (3.4.10)

Here, α is a 0-form and β is a (0, 2)-form; both are related to the scalar in the hypermultiplet. The

superscript dκ denotes the component along dκ. The BPS equations and the nilpotence then imply

that ∂̄a∂̄
∗
aβ = −∂̄a∂̄aα = ıF 0,2

a α = −2|α|2β. Thus 2
∫
|α|2|β|2 +

∫
|∂̄∗aβ|2 = 0, and it follows that{

β = 0

∂̄aα = 0
, or

{
α = 0

∂̄∗aβ = 0
. (3.4.11)

In other words, similar to our discussion in the previous section we see that results for Sasaki

(-Einstein) manifolds can be extended to geometries that are either THF or CR.
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3.5 A Karlhede-Rocek-Witten twist in five dimensions

As discussed above in section 3.3.1 as well as in [20] a necessary condition for the existence of a

solution of the background supergravity variations for supersymmetry spinors satisfying the sym-

plectic Majorana condition is the existence of a Killing vector. Recall that the symplectic Majorana

condition (2.2.6) implies that s > 0 from which it follows that v has no zeroes. In other words,

the Killing vector is globally non-vanishing.5 In this section we will show that the existence of a

globally non-vanishing Killing vector is also sufficient for the manifoldM to admit supersymmetry

spinors that solve (3.1.1) and (3.1.2).6 At the heart of the argument is the idea that the existence

of the vector implies that the manifold supports an SO(4) structure. This in turn allows us to

do a standard Witten twist [27, 28]. Our strategy is to work in a patch using methods familiar

from Kaluza-Klein reduction, yet show that we can write the overall result in terms of globally

well-defined objects. In principal one should be able to make the same argument using the general,

local solution of [20].

Given a manifold M with a Killing vector v = ∂τ we can write the vielbein as7

ê α
µ =

(
e a
m kam

0 k

)
, Ê µ

α =

(
E m
a −aa
0 k−1

)
. (3.5.1)

I.e. the metric takes the form ds2 = gmndx
mdxn + k2(dτ + a)2, where ∂τ = v. The spin connection

is

ω̂abc = ωabc, ω̂ab5 =
1

2
kfab, ω̂5bc = −1

2
kfbc, ω̂5b5 = −∂b log k. (3.5.2)

Here, f = da. Keeping in mind (3.2.2), we demand the spinor ξI to be anti-chiral. That is,

Γ5ξI = −ξI which is why we write ξI ≡ ξ−I .

3.5.1 Gravitino Equation

One can then decompose the gravitino variation (3.1.1) into components along a = 1, . . . 4, compo-

nents along a = 5 as well as chiral and anti-chiral parts:

0 = Daξ
−
I − aa(∂τξ

−
I −A

J
τI ξ

−
J ) + Fa5ξ

−
I + ΓabVb5ξ−I , (3.5.3)

0 = −1

4
kfabΓ

bξ−I − t
J
I Γaξ

−
J −FabΓ

bξ−I −
1

2
VbcΓabcξ−I , (3.5.4)

0 = k−1(∂τξ
−
I −A

J
τI ξ

−
J ) + t JI ξ

−
J −

1

8
kfbcΓ

bcξ−I +
1

2
VbcΓbcξ−I , (3.5.5)

0 =
1

2
∂b log kΓbξ−I + Fb5Γbξ−I . (3.5.6)

5If one does not impose the symplectic Majorana condition, the situation is more complicated. I.e. both s and R

are generally complex; it is also clear that the vector vanishes if the spinors are parallel. Moreover, note that R does

not even vanish at a single point. Assume ∃p ∈ M such that R|p = 0. It follows that s(p) = 0 and thus ξI |p = 0.

From the gravitino equation it follows immediately that ξI vanishes identically on M.
6We would like to thank Diego Rodriguez-Gomez for many discussions and collaboration that lead to the approach

used in this section.
7 In this section, greek indices run from one to five while roman ones only run from one to four.
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The last of these, (3.5.6), is solved by A = −1
2k
−1v. It follows that

Fa5 = −1

2
∂a log k, Fab = −1

2
kfab. (3.5.7)

Equation (3.5.3) is solved by setting A J
τI = 0, ξ−I =

√
kχI , where χIχ

I = 1, and — more impor-

tantly — DaχI = ∇aχI − A J
aI χJ = 0. The possibility of finding a χ such that ∇aχI = A J

aI χJ is

of course at the heart of this argument. As long as Γ5χI = −χI , it is possible to find such a spinor;

explicit calculations can be done using ’t Hooft matrices for example [29]. With all our previous

assumptions and observations (3.5.4) becomes

4Vab =
1

2
kεabcd5f

cd + 4s−1ΘIJ
ab tIJ . (3.5.8)

Substituting this into (3.5.5) we find that tIJ = 0 since

0 =
1

8
(kfab − 4Vab) Θab

IJ =
1

8

(
kfab −

1

2
kεabcd5f

cd + 4s−1ΘKL
ab tKL

)
Θab
IJ =

1

2
Θab
IJΘKL

ab tKL. (3.5.9)

In summary, the gravitino equation is fully solved by

ξ−I =
√
kχI , DaχI = 0, A = −1

2
k−1v, tIJ = 0, 4Vab =

1

2
kεabcd5f

cd, Va5 = 0. (3.5.10)

By now it is clear that the spinor bilinears s, v coincide with the scalar and vector defined by the

background, k, v, i.e. s = k, v = v, so we drop the distinction.

3.5.2 Dilatino Equation

Performing a similar decomposition of the Dilatino equation, one finds

0 = 4D̂t JI Γaξ−J − 8t JI (F + 2V)a5Γaξ−J + 4∇̂αVαbΓbξ−I − 4FabFc5Γabcξ−I , (3.5.11)

0 = −4D̂5t
J
I ξ
−
J + 4t JI (F + 2V)abΓ

abξ−I − 4∇̂αVα5ξ−I + FabFcdΓabcdξ−I + Cξ−I . (3.5.12)

Imposing the solution to the gravitino equations (3.5.10), this simplifies of course considerably.

Also, note that

∇̂αVαb = ∇aVab + ∂a log kVab, ∇̂αVα5 = −1

2
kfabVab. (3.5.13)

Then, (3.5.12) is solved by C = −1
4k

2fabfcdε
abcd5. Since 4s∇bVba = −1

2sε
abcd5fbc∂dk, one finds that

(3.5.11) is solved trivially.

3.5.3 Topological Issues

To conclude, we discuss whether the solution (3.5.10) is globally well-defined. Since F is globally

exact we only have to worry about the SU(2)R field strength. Our strategy is to rewrite this in

terms of the Riemann tensor. Thus we use the integrability condition for the spinor χI ,

0 = [Da, Db]χI = −F IJab χJ +
1

4
Rabαβγ

αβχI . (3.5.14)
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This implies F IJab = −2s−1RabκλΘIJκλ from which it follows that we can express the SU(2)R con-

nection in terms of a projection of the Riemann tensor. In summary, the two connections are

F IJ = −2s−1RHµνΘIJµν , F = −1

2
d(k−1v). (3.5.15)

where RHµν = Πσ
κΠτ

λRστµνdx
κ ⊗ dxλ denotes the horizontal part of the curvature two-form. In both

cases, all objects appearing on the right hand side are globally well defined. We proceed to consider

characteristic classes defined by F IJ . Using (3.2.3) one finds that

F J
I ∧ F I

J = −4RHκλ ∧RHµν
(

ΠκµΠλν +
1

2
εκλµνρκρ

)
. (3.5.16)

The expression is completely horizontal and since v is Killing, 0 = £v(F
J

I ∧F I
J ) = ιvd(F J

I ∧F I
J )

from which it follows that (3.5.16) is closed and defines thus an element of the de Rham cohomolgy

group H4(M) as it should. Usually the next question would be whether this element is trivial

and whether it might be an obstruction to the existence of the solution given by (3.5.10) and C.

However, equation (3.5.16) clearly show that this class has a representative that is independent of

our specific solution since it can be expressed in terms of v and the Riemann tensor. Thus, in the

case that the class is non-trivial, it is clear that the corresponding cycle in homology exists and vice

versa.

One might worry about the f dependence of V. In general, the manifolds are not bundles yet

only foliations and one cannot necessarily think of f as the curvature of a connection. Yet as we

saw above, f is a projection of F onto the horizontal space — f = −2k−1FH . While one might

not consider f globally as the curvature of a connection, it is well-defined as a two-form. Since it

doesn’t enter the solution directly yet only via V, this is good enough and we conclude that any

manifoldM admits a solution to (3.1.1) and (3.1.2) with symplectic Majorana spinor if and only if

there is a non-vanishing Killing vector v.

3.6 Examples

It follows from the previous section that any direct product R×M4 or S1×M4 admits a solution to

the Killing spinor equations and thus rigid supersymmetry. Similarly, it is clear that such manifolds

do at least not trivially8 admit an integrable CR-structure or a THF ifM4 does not admit a complex

structure — the example coming to mind here being R× S4. See however the discussion in [23].

3.6.1 Sasakian manifolds

Sasakian manifolds are the odd-dimensional analogs of Kähler manifolds. They are either charac-

terized by having Kähler metric cones, or by the existence of a Killing spinor satisfying

(∇m − iAm) ξ =
i

2
Γmξ. (3.6.1)

8 “Trivially” here means that one simply embeds the Killing vector in the obvious way. For a specific choice of

M4 and Killing vector, this might change.
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Here, A is the connection one-form associated to the Ricci-form on the metric cone. The equation

and its complec conjugate corresponds to the special case of (3.1.1) with

F = V = 0, (Am)I
J = Am(σ3)I

J , tI
J =

i

2
(σ3)I

J . (3.6.2)

Since both t and A have only components along σ3 one finds that ∇mtIJ = 0. The dilatino equation

is solved by

C = 0. (3.6.3)

Hence, N = 1 supersymmetry can be defined on any 5-dimensional Sasakian structure as was first

observed without resorting to supergravity [25].

Sasakian structures are examples of both Cauchy-Riemann or transversal-holomorphic struc-

tures, as follows from the fact that ∇mtIJ = F = V = 0.

3.6.2 Squashed S5 with SU(3)× U(1) Symmetry

Squashed five-spheres have appeared in various literatures. In particular, [20, 30] discussed a class

of squashed S5, defined by metric

ds2
S5
b

=
1

b2
(dτ + h)2 + dσ2 +

1

4
sin2σ

(
dθ2 + sin2θdϕ2

)
+

1

16
sin22σ(dψ + cos θdϕ)2. (3.6.4)

Our discussion follows that of [30] closely. The real constant b is the squashing parameter, which

gives a round sphere when b = 1, h is a 1-form defined as

h = −1

2
sin2σ (dψ + cos θdϕ) . (3.6.5)

where ω can be viewed as the Kahler form on CP 2, satisfying dω = 0. The metric is written in

a form adapted to the smooth U(1)-fibration over CP 2, where b−2(dτ + h)2 is the metric in the

U(1)-fiber direction, and b is there to squash the radius. In this way it is easy to see the metric has

U(1)×SU(3) symmetry, where U(1) rotates the fiber, and SU(3) is the isometry of CP 2. The CP 2

Kähler form is ω = 1
2dh. With the vielbein

e1 =
1

2
sinσ cosστ3, e2 = dσ, e3 =

1

2
sinστ2, e4 =

1

2
sinστ1, e5 = b−1(dτ + h),

(3.6.6)

one finds

ω = e1 ∧ e2 − e3 ∧ e4, ω ∧ ω = −2e1 ∧ e2 ∧ e3 ∧ e4, ∗ (ω ∧ ω) = −2e5, (3.6.7)

where we have introduced the left-invariant one forms

τ1 + ıτ2 = e−ıψ(dθ + ı sin θdφ), τ3 = dψ + cos θdφ. (3.6.8)

This class of squashed sphere admits solutions to the Killing spinor equations

∇mξI +
i

2
(Am)I

JξJ = − i

2b

(
1 +Q

√
1− b2

)
(σ3)I

JΓmξJ +

√
1− b2
b

ωmnΓnξI +
1

2

√
1− b2
2b

ωpqΓmpqξI .

(3.6.9)
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where Q is a real parameter. And of course one can define bilinears as in (3.2.1). In terms of

(A.1.11), the quarter BPS solution with Q = −3 is given by

ξ1 =
c+√

2
e−

3ıτ
2


1

1

0

0

 , ξ2 =
c−√

2
e

3ıτ
2


1

−1

0

0

 . (3.6.10)

The symplectic Majorana condition (2.2.6) corresponds to (c−)∗ = c+. For more involved 3/4 BPS

solutions refer to [30].

Comparing (3.1.1) with (3.6.9) one identifies

tI
J = − i

2b

(
1 +Q

√
1− b2

)
(σ3)I

J , F =

√
1− b2
b

ω, V =

√
1− b2
2b

ω, (Am)I
J =

(
1 +Q

√
1− b2

)√
1− b2

b
e5.

(3.6.11)

Note that κ = −e5 and one finds that ω is horizontal and self-dual since ?ω = κ ∧ ω. Furthermore

dκ = −2b−1ω and ∇mωmn = 4b−1κn. Moreover

ωmnωklΓ
mnklξI = ωmnωklε

mnkl
rΓ

rξI = 2ωmn(∗ω)mnrΓ
rξI = 2ωmnω

mnκrΓ
rξI = −8ξI . (3.6.12)

Finally, substituting everything into the dilatino equation (3.1.2), one finds

0 = −4ı

b2
(1 +Q

√
1− b2)

√
1− b2(σ3) J

I ωmnΓmnξJ + 8

√
1− b2
b2

κmΓmξI − 8
1− b2

b2
ξI +CξI . (3.6.13)

From (3.3.3) it follows that

C = 8

√
1− b2
b2

+ 8
1− b2

b2
− 4ı

(1 +Q
√

1− b2)
√

1− b2
b2s

ωmnΘ J
mnI (σ3) I

J , (3.6.14)

so the above simplifies to

0 = −4ı
(1 +Q

√
1− b2)

√
1− b2

b2
[
(σ3) J

I ωmnΓmnξJ + s−1ωmnΘ L
mnK (σ3) K

L ξI
]
, (3.6.15)

which vanishes identically for the above solution.

Now compare the “algebraic equation” of [30]. Rewritten in our conventions, it is

0 = (1 +Q)
√

1− b2ξI −
ı

2

√
1− b2(σ3) J

I ωmnΓmnξJ , (3.6.16)

where we used (3.2.2). Contracting with ξI one finds (σ3) J
I ω

mnΘ I
mnJ = 2ıs(1 + Q). Substitut-

ing this into (3.6.15) yields (3.6.16), which tells us that the Dilatino equation and the “algebraic

equation” are equivalent in the case of squashed S5.

Comparing (3.6.11) with (3.3.10) and (3.3.18) it is clear that the squashing does not change the

fact that S5 admits both a CR-structure and a THF. In principle this is already clear from the form

of the metric (3.6.4) since changes in the parameter b do not affect the CP 2 base of the bundle.
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Chapter 4

5d Higgs Branch Localization and

Seiberg-Witten Equations

4.1 5-dimensional N = 1 Minimal Off-shell Supergravity

4.1.1 N = 1 Supergravity

In this subsection we briefly recall 5-dimensional minimal off-shell supergravity discussed in [1][31][16,

15] (see also literatures on superspace formalism [32][33]), and then extract the generalized Killing

spinor equation by taking the rigid limit, following the idea of [34].

The Weyl multiplet contains the following bosonic field content (note that there is a curly V
and straight V )

GBoson =
{
eAm, Am, Vmn, tIJ , C, (Vm)IJ

}
. (4.1.1)

Here I, J = 1, 2 are indices of SU(2)R symmetry, Am is the abelian gauge field corresponding to

central charge with field strength F = dA, V is a 2-form, C is a scalar. Field tIJ and VIJ are both

SU(2)R triplet, meaning that

tIJ = εIKεJLtKL. (4.1.2)

and similarly for VIJ . The fermionic field content contains

GFermion = {ψI , ηI} , (4.1.3)

where ψ is the gravitino, η is the dilatino. Finally, the supergravity transformation δSugra has

symplectic-Majorana parameter ξI .

To obtain a supersymmetric theory of some matter multiplet on some manifold M , one can first

couple it to the above Weyl multiplet G, and then set all fields in G to some background values that

is invariant under the supergravity transformation δSugra. In particular, we set the fermions (ψ, η)

to zero background, and requires two spinorial differential equations (with coefficients comprised

with fields {V,V,F , tIJ , C})
δSugraψ = 0, δSugraη = 0, (4.1.4)
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with transformation parameter ξI , and look for background values of {V,V,F , tIJ , C} that admit a

solution ξI . The result of such procedure is [34, 4, 3, 35]:

• Supersymmetry transformation Q obtained from δSugra by substituting in background values

of {V,V,F , tIJ , C}.

• A Q-invariant Lagrangian from the coupled supergravity Lagrangian, where all remaining

bosonic fields from G are auxiliary background fields.

• Some geometric data, including metric g, p-forms and so forth, determined by combinations

of {V,V,F , tIJ , C}.

First of all, we focus on the equation δSugraψ = 0, which we refer to as the generalized Killing

spinor equation in the following discussion. The generalized Killing spinor equation reads

∇mξI = tI
JΓmξJ + FmnΓnξI +

1

2
VpqΓmpqξI , (4.1.5)

where ∇ contains the usual Levi-Civita spin connection as well as SU(2)R gauge field Vm when

acting on objects with I, J indices. Strictly speaking, ξI is a section of the bundle S ⊗ V where V

is a SU(2)R-vector bundle on which (VM )I
J is defined, therefore we should require M to be a spin

manifold.

Equation (4.1.5) is studied in [21], where geometric restrictions imposed by different numbers

of solutions is discussed. Subsequently, in [20] both differential equations δψ = δη = 0 are solved in

a coordinates patch. It is shown that, locally, deformations of auxiliary fields that preserves (4.1.5)

and (4.1.6) can be realized as Q-exact deformation or gauge transformations. This suggests that

path integrals of appropriate observables may be topological or geometrical invariants. For us, it is

important to note that δSugraη = 0 implies (which we may call the dilatino equation)

4
(
∇mtIJ

)
ΓmξJ + 4∇mVmnΓnξI + 4tI

J (Fmn + 2Vmn) ΓmnξJ + FmnFklΓmnklξI = −CξI (4.1.6)

This will be used to ensure the closure of the rigid N = 1 supersymmetry. Note that the field C

can be solved using this equation in terms of {V,F ,V, tIJ}, by contracting both sides with ξI :

4Rn∇mVmn − 4(F + 2V)mn
(
tIJΘIJ

)mn
+ 2(ιR ∗ F)mnFmn = sC (4.1.7)

where R, Θ and s are defined using ξI as explained earlier.

So to summarize, for the rigid limit to give rise to a rigid supersymmetry, we are required to

study the Killing spinor equations and the dilatino equation
∇mξI = tI

JΓmξJ + FmnΓnξI +
1

2
VpqΓmpqξI

4
(
∇mtIJ

)
ΓmξJ + 4∇mVmnΓnξI + 4tI

J (Fmn + 2Vmn) ΓmnξJ + FmnFklΓmnklξI = −CξI

where one can immediately solve C in terms of other auxiliary fields using (4.1.7).
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4.1.2 Generalized Killing Spinor Equation

In this subsection we will review some basic properties the Killing spinor equations that are relevant

to later discussions. Some terminology in K-contact geometry will be reviewed in the following

subsection.

As introduced in the previous subsection, the Killing spinor equation for symplectic-Majorana

spinor ξI is

∇mξI = tI
JΓmξJ + FmnΓnξI +

1

2
VpqΓmpqξI . (4.1.8)

Recall that we have several background fields coming from the Weyl multiplet: F is a closed 2-form,

and V is a usual 2-form as the field strength of A, tI
J is a triplet of scalars. The connection ∇

contains the Levi-Civita spin connection and possibly a non-zero SU(2)R background gauge field

Vm acting on the I-indices. All these fields are from the Weyl multiplet G and we call them auxiliary

fields below.

Equation (4.1.8) can also be written in a more convenient form

∇mξI = Γmξ̃I +
1

2
PpqΓmpqξI , ξ̃I ≡ tIJξJ +

1

2
FmnΓmnξI , P ≡ V − F . (4.1.9)

1. Symmetries

The Killing spinor equation enjoys several symmetries that will help simplify later discussions.

• Background SU(2)R symmetry, which acts on the I-index.

• Shifting symmetry: one can shift the auxiliary fields F and V by any anti-self-dual1 2-form

Ω−

F → F + Ω−, V → V + Ω−. (4.1.10)

and the equation is invariant.

• Other symmetries related to the many degrees of freedoms discussed in [20]. We will come

back to this shortly.

2. Solving the Killing spinor equation

Let ξI be a solution to the Killing spinor equation (4.1.8). Then one can construct bi-linears s,

Rm, κm and ΘIJ using ξI . By directly applying equation (4.1.8), one obtains several differential

properties of these bi-linears:

• ∇ms = 2RnFnm ⇔ ds = 2ιRF and therefore LRs = 0, LRF = 0, where we have used the

Bianchi identity dF = 0.

• ∇mRn = 2tIJ(ΘIJ)mn − 2sFmn − 2(ιR ∗ V)mn, or equivalently,

dκ = 4
(
tIJΘIJ

)
− 4sF − 4ιR ∗ V, LRg = 0. (4.1.11)

1Defined using Rm ≡ −(ξIΓ
mξI), and in the sense of general s as we remarked earlier.
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Using the above basic properties, one can partially solve

F = −dκ
4s
− Ω+ + Ω−

s
, VH = s−1

(
tIJΘIJ + Ω+ − Ω−

)
. (4.1.12)

Recall that the Killing spinor equation enjoys a shifting symmetry, and therefore one can always

set Ω− = 0 in the above solutions; so let us do this. Then we have

s (FH + VH) = −dκH
4

+ tIJΘIJ (4.1.13)

To further simplify later discussion, let us apply the results in [20]. The Killing spinor equation

and the dilatino equation are solved locally, and it is shown that the auxiliary fields are highly

unconstrained by the existence of solutions.

The freedom can be understood by looking at the Fierz identities. In some sense, solving the

equations is just to properly match the “Γ-matrices structure” in (4.1.8) and (4.1.6). Note that one

can use the Fierz-identities

− 1

4s
λKL(ΘKL)mnΓmnξI = λI

JξJ , λKL(ΘKL)mnΓnξI = −λIJ (Rm + sΓm) ξJ (4.1.14)

to alter the Γ-structures. Hence one can adjust the SU(2)R-gauge field (Vm)IJ to cancel terms with

Γ-matrices in (4.1.8), and consequently other auxiliary fields are left unconstrained.

We can use the local freedom in s and tIJ to smoothly adjust them such that s = 1 and tr(t2) ≡
tI
J tJ

I = −1/2 in a patch. Note that given a global Killing spinor solution, s and tr(t2) should be

patch-independent functions, and therefore, the adjustment can be made global. Therefore, let us

deform the solution and auxiliary fields such that globally s ≡ 1 ⇒ ιRF = 0 and tr(t2) ≡ −1/2.

Furthermore, it is shown in [20] that resulting deformations in the actions are Q-exact, and therefore

the above adjustment does not change the expectation values of BPS observables.

3. A special class of solutions

Equation (4.1.13) implies that it is interesting to look at a special class of solutions where the

auxiliary fields F and V are such that

(F + VH) = Λdκ⇒ dκ =
4

Λ + 1
tIJΘIJ , ιRF = 0. (4.1.15)

for some constant Λ ∈ R. This implies κ is a contact 1-form, namely it satisfies (assuming tIJ 6= 0)

κ ∧ dκ ∧ dκ ∝ κ ∧
(
tIJΘIJ

)
∧
(
tIJΘIJ

)
6= 0. (4.1.16)

4. Towards a K-contact structure

Now the bi-linears from the special class of solutions satisfy various conditions:
κ ∧ dκ ∧ dκ 6= 0, κ (R) = 1, ιRdκ = 0

(dκ)mn =
4

1 + Λ
(tΘ)mn, LRg = 0, κm = gmnR

n
. (4.1.17)
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The first row tells us that (κ,R) defines a contact structure, while the second row implies the contact

structure closely resembles a K-contact structure. The only violation appears in

dκ =
4

1 + Λ
(tΘ)mn =

[
1

1 + Λ

](
2gmkΦ

k
n

)
, Φm

kΦ
k
n = −δmn +Rmκn. (4.1.18)

where we defined Φ = 2
(
tIJΘIJ

)
, instead of the standard form

(dκ)mn = 2gmkΦ
k
n, Φm

kΦ
k
n = −δmn +Rmκn (4.1.19)

It is easy to bring the system to a standard K-contact structure. Let us use an adapted veilbein

{eA} such that

g =
∑
a

eaea + κ⊗ κ, e5 = κ, ιRe
a=1,2,3,4 = 0, Φ(e1) = e2,Φ(e3) = e4. (4.1.20)

Define a function λ by λ2 ≡ (1 + Λ)−1, and we rescale the horizontal piece of g by g → g′ =∑
a
e′ae′a + κ⊗ κ with e′a = λea.

With the new metric, the quantities (κ,R, g′,Φ) defines a standard K-contact structure on M :κ ∧ dκ ∧ dκ 6= 0, κ (R) = 1, ιRdκ = 0

(dκ)mn = 2g′mkΦ
k
n, LRg′ = 0, κm = gmnR

n
(4.1.21)

Along with the change in metric, one needs to properly deform the auxiliary fields to preserve

the equation (4.1.8). By explicitly working out the change in spin connection ωAB, one can identify

the required deformations in F and V (both are deformed by multiples of dκ), which indeed also

preserve the condition (4.1.15), and therefore no inconsistency arises. Finally, since the deformed

auxiliary fields are independent and unconstrained as shown in [20], the resulting deformations

preserves the two equations (4.1.8) and (4.1.6) (and field C can be solved using (4.1.7)), and the

actions are deformed by Q-exact, hence do not change the expectation values of BPS observables.

To summarize, any solution to (4.1.8) of the special class can be transformed into a standard

one, such that the resulting set of geometric quantities (κ,R, g,Φ) form a K-contact structure. Later

we will discuss BPS equations on K-contact and Sasakian backgrounds, where the equations are

better behaved than on completely general supersymmetric backgrounds.

4.1.3 K-contact Geometry

In this subsection, we summarize most important aspects and formula of contact geometry that we

will frequently use in later discussions. For more detail introduction, readers may refer to appendix

[C].

1. Contact structure

A contact structure is most conveniently described in terms of a contact 1-form. A contact

1-form on a 2n+ 1-manifold is a 1-form κ such that

κ ∧ (dκ)n 6= 0. (4.1.22)

54



This is analogous to the definition of a symplectic form on an even dimensional manifold.

We can associate quantities (R, g,Φ) to κ called a contact metric structure, such that

κmR
m = 1, Rmdκmn = 0, Φm

kΦ
k
n = −δmn +Rmκn, (dκ)mn = 2gmkΦ

k
n (4.1.23)

The vector field R is called the Reeb vector field, and Φ is like an almost complex structure in

directions orthogonal to R.

On a contact metric 5-manifold, we will frequently use an adapted vielbein {eA}, {eA}, such that

e5 = R, Φ (e1) = e2, Φ (e3) = e4, and

dκ = 2
(
e1 ∧ e2 + e3 ∧ e4

)
, g =

∑
a=1,2,3,4

ea ⊗ ea + κ⊗ κ, (4.1.24)

Note that the first equation implies dκ is self-dual, namely ιR ∗ dκ = dκ. We will also use the

complexification of {eA}: ezi ≡ e2i−1 + ie2i, ez̄i ≡ e2i−1 − ie2i, e5 = κ

ezi ≡
1

2
(e2i−1 − ie2i) , ez̄i ≡

1

2
(e2i−1 + ie2i) , e5 = R

(4.1.25)

so that

{
1,

1√
2
ez̄1 ,

1√
2
ez̄2 ,

1

2
ez̄1 ∧ ez̄2

}
are orthonormal.

2. K-contact and Sasakian structure

A K-contact structure is a contact structure κ and the associated (R, g,Φ), such that

LRg = 0 ⇔ ∇mRn +∇nRm = 0 (4.1.26)

Note that one immediately has LRΦ = 0.

For a general contact structure, the integral curves of R, or equivalently, the 1-parameter dif-

feomorphisms ϕR(t) (the Reeb flow) generated by R, can have three types of behavior. The regular

or quasi-regular types are such that the flow are free or semi-free U(1) action, respectively. The

irregular type is such that the flow is not U(1), and therefore the integral curves of R generally are

not closed orbits.

Generic irregular Reeb flows are difficult to study, however, situation can be improved when

the contact structure is K-contact. In this case, the closure of the Reeb flow (it preserves g by

definition), viewed as a subgroup of the Isom(M, g), is a torus T k ⊂ Isom(M, g); k is called the rank

of the K-contact structure. On a K-contact 5-manifold, 1 ≤ k ≤ 3.

Finally, a Sasakian structure is a K-contact structure with additional property

∇mΦk
n = gmnR

k − κnδkm (4.1.27)

Sasakian structures are the Kähler structures in the odd-dimensional world. They satisfies certain

integrability condition, and all quantities discussed above, as well as some metric connections as-

sociated with g, live in great harmony. We will later see that on Sasakian structures, the Higgs
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branch BPS equations have very simple behavior, very much like Seiberg-Witten equations on

Kähler manifolds.

To end this section, we tabulate the correspondence between the structures (including some we

haven’t mentioned) in even and odd dimensional worlds.

Even Odd

Symplectic Contact

Almost Hermitian K-contact

Complex Cauchy-Riemann

Kähler Sasakian

Kähler-Einstein Sasaki-Einstein

HyperKähler 3-Sasakian

4.2 Higgs Branch Localization and 5d Seiberg-Witten Equation

In this section, we begin by reviewing the 5-dimensional N = 1 vector multiplet and hypermul-

tiplet. Then we consider deforming the theory with Q-exact terms to localize the path-integral.

We discuss the deformed Coulomb branch solutions and the Higgs branch. We rewrite the Higgs

branch equations and interpret them as 5-dimensional generalizations of Seiberg-Witten equations

on symplectic 4-manifolds. We also discuss basic properties of solutions to the 5d Seiberg-Witten

equations, including their local behavior near closed Reeb orbits.

4.2.1 Vector-multiplet and Hyper-multiplet

1. Vector-multiplet

The Grassman odd transformation Q of vector multiplet (Am, σ, λI , DIJ) can be obtained di-

rectly from N = 1 supersymmetry transformation, which can be obtained by taking the rigid limit

of coupled supergravity in [16, 15]. Using a symplectic-Majorana spinor ξI satisfying Killing spinor

equation (4.1.9), the transformation can be written as

QAm = iεIJ (ξIΓmλJ)

Qσ = iεIJ (ξIλJ)

QλI = −1

2
FmnΓmnξI + (Dmσ) ΓmξI +DI

JξJ + 2σξ̃I

QDIJ = −i (ξIΓ
mDmλJ) + [σ, (ξIλJ)] + i(ξ̃IλJ)− i

2
Pmn(ξIΓ

mnλJ) + (I ↔ J)

, (4.2.1)

where Dm (·) = ∇m − i [Am, ·], and ξ̃I is defined in (4.1.9). Here the spinor ξI is Grassman even.

The transformation squares to

Q2 = −iLAR + Gsσ +RRIJ + LΛ (4.2.2)
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where G is gauge transformation, R is SU(2)R rotation acting on a generic field XI as RRIJXI =

RI
JXJ , and L is Lorentz rotation acting on spinors. The parameters are{

Rm = −(ξIΓ
mξI)

s = (ξIξ
I)

,

Λmn = (−2i)
(

(ξJΓmnξ̃
J)− s

(
P+
mn − P−mn

))
RI

J = 2i
[
3(ξI ξ̃

J) + Pmn
(
ΘI

J
)
mn

] (4.2.3)

and we used the vector field Rm to define self-duality Ω±H(M), see (2.2.26).

Note that, similar to [14], there is a term in δ2DIJ that breaks the closure of the supersymmetry

algebra, of the form

δ2DIJ = ...+ σ

[
(ξIΓ

m∇mξ̃J) +
1

2
Pmn(ξIΓmnξ̃J) + (I ↔ J)

]
. (4.2.4)

Such a term vanishes if there exists a function u and a vector field vm such that

/∇ξ̃I +
1

2
PmnΓmnξ̃I = uξI + vmΓmξI (4.2.5)

In the case of Pmn = 0, one can show that v = 0 and the function u always exists and is proportional

to the scalar curvature of the metric (g,∇LC). In the presence of Pmn, by explicitly expanding every

term, one can show that

/∇ξ̃I +
1

2
PmnΓmnξ̃I

=
(
∇mtIJ

)
ΓmξJ +∇mVmnΓnξI + t (Fmn + 2Vmn) ΓmnξI +

1

4
FklFmnΓmnklξ

+
3

2
FmnFmnξ − 2FmnVmnξ + 5(tI

K
K
J
)ξJ −∇m (Vmn −Fmn) Γnξ.

(4.2.6)

We observe that the first row is just the left hand side of (4.1.6), and therefore, recalling (tI
K
K
J
)ξJ =

1/2
(
tL
KtK

L
)
ξI ,

/∇ξ̃I +
1

2
PmnΓmnξ̃I

=

[
5

2

(
tL
KtK

L
)
− 1

4
C +

3

2
FmnFmn − 2FmnVmn

]
ξI −∇m (Vmn −Fmn) Γnξ.

(4.2.7)

Namely, we found the required function and the vector field to beu =
5

2

(
tL
KtK

L
)
− 1

4
C +

3

2
FmnFmn − 2FmnVmn

vn = ∇m (Fmn − Vmn) ,
(4.2.8)

We therefore confirmed that the term (4.2.4) vanishes happily, thanks to (4.1.6). Finally, we point

out that function u will appear in the supersymmetric Yang-Mills Lagrangian for the vector multiplet

(which is denoted as P in [20]), in the form of

LYM = ...− 4uσ2 + 4iσFmnPmn − Pmn
(
λIΓ

mnλI
)
. (4.2.9)
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2. Hypermultiplet

A hypermultiplet in 5-dimension consists of a set of scalars φAI , two spinors ψA and a set of

auxiliary scalars ΞAI′ . Here I, I ′ = 1, 2 are two different copies of SU(2) indices (in particular, I

corresponds to the SU(2)R-symmetry), while A = 1, 2 is a separate Sp(1) index. They satisfy

reality conditions

φAI = εIJΩABφ
B
J , ψAα = ΩABCαβψ

Bβ , ΞAI′ = ΩABε
I′J ′ΞBJ ′ . (4.2.10)

In the above, ΩAB is the invariant Sp(1) tensor Ω12 = −Ω21 = 1.

The reality conditions reduces the independent components. The field φAI can be represented

by two complex scalar φ1,2

φAI=1 =
1√
2

(
φ1

φ2

)
, φAI=2 =

1√
2

(
−φ2

φ1

)
(4.2.11)

and similarly for the field ΞAI′ . The field ψA can be represented in terms of one spinor ψ

ψA =

(
ψ

−Cψ̄

)
(4.2.12)

In the following, we couple the hypermultiplet to a U(Nc) vector multiplet by setting the inde-

pendent fields to be in appropriate representation of U(N), for instance,

φ1 : N, φ2 : N̄, ψ : N, ψ̄ : N̄ (4.2.13)

We define Dm on any field Φ in hypermultiplet as DmΦ = ∇mΦ− iAm (Φ), where ∇m may contain

spin connection and SU(2)R-the background gauge field (Vm)IJ .

It is well-known that one cannot write down an off-shell supersymmetry transformation for a

hypermultiplet with finitely many auxiliary fields. But it is possible to write down a Grassmann

odd transformation Q which squares to bosonic symmetries. As transformation parameters, we

use a symplectic-Majorana spinor ξI satisfying Killing spinor equation (4.1.9), and an additional

SU(2)′-symplectic-Majorana spinor ξ̂I′ , satisfying

(ξ̂I ξ̂
I) =

(
ξIξ

I
)

= s,
(
ξIΓ

mξI
)

= −Rm = −(ξ̂IΓ
mξ̂I), (ξ̂I′ξJ) = 0. (4.2.14)

One can view ξ̂I′ as a orthogonal complement of ξI in the spinor space, and therefore corresponds

to anti-chiral spinors, in the sense that ΓCξI = sξI , ΓC ξ̂I′ = −sξ̂I′ where ΓC ≡ −RmΓm. Using the

Fierz identities, one can show completeness relations for an arbitrary spinor ς (see appendix [A]):

ξI
(
ξIς
)

= −1

4
(s+ ΓC) ς

s=1−−→ −1

2
P+ς, ξ̂I′(ξ̂

I′ς) = −1

4
(s− ΓC) ς

s=1−−→ −1

2
P−ς. (4.2.15)

The Grassman odd transformation Q is as follows:

QφAI = −2i
(
ξIψ

A
)

QψA = εIJΓmξIDmφ
A
J + iεIJξIσφ

A
J − 3ξ̃IφAI + PpqεIJΓpqξIφ

A
J + εI

′J ′ ξ̂I′ΞJ ′

QΞJ ′
A = 2ξ̂J ′

(
iΓmDmψ

A + σψA + εKLλKφ
A
L −

i

2
PpqΓpqψA

) . (4.2.16)
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The transformation squares to the bosonic symmetries

Q2 = −iLAR + Gsσ +RRIJ +R
R̂ J′
I′

+ LΛ. (4.2.17)

where G is the gauge transformation, R is SU(2) rotations on I, J and I ′, J ′ indices, L is Lorentz

rotation; the parameters are

Λmn = (−2i)
(

(ξJΓmnξ̃
J)− s

(
P+
mn − P−mn

))
RI

J = 2i
[
3(ξI ξ̃

J) + Pmn
(
ΘI

J
)
mn

]
R̂ J ′
I′ = (−2i)

[(
ξ̂I′Γ

m∇mξ̂J
′
)
− 1

2
Pmn

(
ξ̂I′Γ

mnξ̂J
′
)] . (4.2.18)

As in previous sections we define the function s ≡ (ξIξ
I), and Ω±H(M) is defined with respect to the

vector field Rm ≡ −(ξIΓξ
I).

4.2.2 Twisting, Q-exact Deformations and Localization Locus

In this subsection, we first review a redefinition (the twisting) of field variables in vector multiplet

and hypermultiplet. Then using the redefined variables, we introduce the Q-exact deformation

terms and derive the localization locus. Here we explicitly used gauge group U(Nc), but in general

one can choose gauge groups with U(1)-components.

The twisting

First introduced in [12][13] in the context of Sasaki-Einstein backgrounds, all field variables with

I or I ′ indices can be “twisted” (invertible using Fierz-identities (A.2.6)) using ξI and ξ̂I′ . In our

situation, assuming s = 1 and recalling (4.1.12), we define:Ψm ≡
(
ξIΓmλ

I
)
, χmn ≡

(
ξIΓmnλ

I
)

+ (κmΨn − κnΨm)

H = 2F+
A +DIJΘIJ + σ

(
2tIJΘIJ + dκ+ + 4Ω+

) ,

{
φA+ ≡ εIJξIφAJ
ΞA− ≡ εI

′J ′ ξ̂I′Ξ
A
J ′

(4.2.19)

After such redefinitions, χ and H are both horizontal self-dual two forms with respect to vector

field Rm, φA+ are chiral spinors2 while ΞA=1,2
− are anti-chiral.

In terms of these twisted field variables, the originally complicated BRST transformations can

2More explicitly, with the gauge index in place,(
φA=1

+

)a
= ξ1

(
φA=1

)a
+ ξ2(−φA=2)a (4.2.20)

.
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be rewritten into very simple forms:

QA = iΨ

Qσ = −iιRΨ

QΨ = −ιRFA + dAσ

Qχ = H

QH = −iLARχ− [σ, χ]

,


QφA+ = iP+ψ

A

QψA = /DφA+ + iσφA+ +
1

8
(dκ)mnΓmnφA+ + ΞA−

QΞA− = −iP− /DψA − σP−ψA −Ψm (Γm +Rm)φA+

. (4.2.21)

In order to derive QψA and QΞA−, one needs to use the symmetry (ξI ξ̃J) = (ξJ ξ̃I) and completeness

relations (4.2.15). Also we will use dκ · φ+ ≡ 1/2(dκ)mnΓmnφ+ to simplify the notations in the

following discussions.

For later convenience, we separate Qψ into chiral and anti-chiral part:

QψA+ = P+ /DφA+ + iσφA+ +
1

4
dκ · φA+, QψA− = P− /Dφ

A
+ + ΞA−, (4.2.22)

which implies that

Q2 = −i
(
RmDm +

1

4
dκ·
)
− σ (4.2.23)

Note that dκ is horizontal, and therefore its Clifford multiplication does not change chirality,

similar to that in 4-dimension. Also, the new spinorial variables have reality condition, for instance,

where C is the charge conjugation matrix,

φA+ = ΩABCφ
B
+ (4.2.24)

Q-exact terms

We are now ready to introduce the Q-exact terms. There are three of them3

QVVect = Q

∫
Tr

(
χ ∧ ∗

(
2F+

A −H
)

+
1

2
Ψ ∧ ∗QΨ̄

)
QVHyper = Q

∫
M

ΩABQψAψ
B

QVMixed = Q

∫
M

Tr [2χ ∧ ∗h (φ+)]

, (4.2.25)

where h maps the “spinor” φA+ in the hypermultiplet to a adjoint-valued self-dual 2-form h(φ+). Its

explicit form will be given in

h (φ) = α (φ)− ζ

2
dκ+ − F+

A0/2
, (4.2.26)

where ζ ∼ ζ1Nc×Nc is a “fake” FI-parameter taking value in the u(1)-component of the Lie-algebra

u(Nc), A0 is a non-dynamical gauge field which we put in by hand for later computations, taking

3In the second line, expanding the terms and using the reality, one obtains, for instance the kinetic term

Dmφ
A=1,aDmφA=1

a +Dmφ
A=2
a DmφA=2,a, where a is the gauge index that were suppressed.
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value in the u(1) in u(Nc) with the property ιRFA0/2 = 0 (FA0/2 = 1/2dA0)4. α is an adjoint-valued

bilinear map from chiral spinors to self-dual 2-forms, whose explicit form will be given in a spinor

basis later on, schematically of the form

αmn(φ)ab = (φA=1,a
+ ΓmnφA=1

+,b ), (4.2.27)

Up to this point, other than s = 1, we make no assumption on the background geometry. Hence dκ

does not have to be self-dual; dκ+ means we extract the self-dual part from dκ. To ensure positivity,

we need to analytically continue σ → −iσ, ΞA− → iΞA−.

Now one can expand all terms, and integrate out auxiliary field H, or equivalently, impose the

field equation of H:

H = F+
A + h (φ) . (4.2.28)

Then the bosonic Q-exact terms reads

(
F+
A + h(φ+)

)2
+

1

2
(ιRFA)2 + (dAσ)2 +

∣∣∣∣DAφ+ +
1

4
dκ · φ+

∣∣∣∣2 + Ξ2
− + |σφ|2, (4.2.29)

and therefore, we have the localization locus

F+
A + h (φ+) = 0

/DAφ
A
+ +

1

4
dκ · φA+ = 0

,



ιRFA = 0

dAσ = 0

ΞA=1,2
− = 0

σ
(
φA+
)

= 0

. (4.2.30)

Note that using the reality condition of φA+, the second equation on the left is equivalent to that of

one component φ+ ≡ φA=1
+

/DAφ+ +
1

4
dκ · φ+ = 0 (4.2.31)

and similarly σ (φ+) = 0 ⇔ σ
(
φA+
)

= 0. Therefore, in the following, we will just ignore the index

A, and regard φ+ as in the fundamental representation of gauge group G = U(Nc).

4.2.3 Deformed Coulomb Branch

The deformed Coulomb branch is the class of solutions to (4.2.30) such that φA+ = 0. Then the

equations reduces to

dAσ = 0, F+
A − F

+
A0/2

=
ζ

2
dκ+, ιRFA = 0 (4.2.32)

This is a deformed version of the contact-instanton equation introduced in [13]. The undeformed

version is later studied in [36, 37, 38, 39], in the context of κ being a contact structure. So in

principle, there could be a tower of instantonic solutions, very much like the deformed instantons

in 4d.

4It is straight-forward to generalize to other gauge groups with U(1) components generated by ha. There one

picks ζ = ζaha, and A0 takes value in the diagonal h1 proportional to identity. For gauge groups without any

U(1)-components, one cannot perform the Higgs branch localization described in this article.
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To be more concrete, we consider the case when κ is a contact 1-form. Then dκ+ = dκ, and one

immediately has a most simple solution (assuming ιRFA0/2 = 0)

A =
ζ

2
κ+

1

2
A0 (4.2.33)

where σ takes constant value in the Lie-algebra g. On top of these simple solutions, one may have

a lot of instantonic solutions.

When (κ,R, g,Φ) give rise to a Sasakian structure, the reference A0 can be chosen to be the

restriction on KM of the Chern connection on KC(M), where C(M) is the Kahler cone of Sasakian

manifold M . In such case, one can show that dA0 ∝ dκ and ιRFA0/2 = 0.

4.2.4 5d Seiberg-Witten Equation

Let us consider other classes of solutions to (4.2.30), with non-vanishing φ+. To be concrete in many

statements, we will focus on the case where (κ,R, g,Φ) form a K-contact structure, or Sasakian

structures to ensure concrete existence of solutions. This will allow us to rewrite the equations

in a very geometric way that resembles the 4-dimensional Seiberg-Witten equation on symplectic

manifolds. We will see that Sasakian structures serve as examples where Higgs vacua always exist,

and other non-trivial solutions have nice behavior. We also discuss the case of general K-contact

structures.

The algebraic equation

When we look for non-vanishing solution of φ+, one of the non-trivial BPS equations is (σ +m) (φ+) =

0, where we have restored some masses for the hypermultplets by giving VEV to the scalars in

the background vector multiplets that gauge the flavor symmetry. Let us consider gauge group

G = U(Nc) and Nf hypermultiplets, then we need to solve a matrix equation
(
σab +mi

j
)
φbj = 0,

where a, b = 1, ..., Nc are gauge indices, while i, j = 1, ..., Nf are flavor indices. After diagonalizing

mi
j = diag(m1, ...,mNf ), one observes that, assuming Nc ≤ Nf , any solution is determined by an

ordered subset of integers {n1, ..., nNc} of size Nc

σab = −mnaδ
a
b , φai ∼ δi,na , {n1, ..., nNc} ⊂ {1, ..., Nf} . (4.2.34)

Therefore Nc among the Nf of φ’s are selected to have non-zero values. The remaining Nf −Nc of

φ’s are fixed to be zero, and trivially satisfy all other BPS equations. These vanishing components

do not have further non-trivial solutions which we will discuss shortly. The 1-loop determinants

for the trivial components will be the same as that in the Coulomb branch, with the argument σ

replaced by solutions (4.2.34).

The selected Nc (< Nf ) non-zero components, on the other hand, requires extra care. First of

all, given generic masses {mna 6= mnb if a 6= b}, equation dAσ = 0 implies A is also completely

diagonalized. Therefore, in such favorable situations, the gauge group U(Nc) is completely broken

to U(1)Nc , which acts as phase rotations on the Nc non-zero components of φ. For each of these

components, one only needs to consider a U(1)-gauge field, which we will assume from now on.
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These non-zero components will have to satisfy the remaining BPS equations individually, to which

we will discuss the solutions shortly. To do so, we will first rewrite the remaining BPS equations in

a more familiar form.

Rewriting the localization locus

In the appendix [C][D], we review in detail SpinC spinors and corresponding Dirac operators on

any 5-dimensional K-contact structures. We summarize here several most relevant aspects:

• The spinor bundle S has a canonical Dirac operator /∇TW
, induced from generalized Tanaka-

Webster connection on TM for any given K-contact structure[40][41][42]. One can show that

this Dirac operator can be written in terms of the Levi-Civita connection ∇LC:

/∇TW
= /∇LC

+
1

8
(dκ)mnΓmn ⇒



P− /∇
TW

φ+ = P− /∇
LC
φ+

P+ /∇
TW

φ+ = P+ /∇
LC
φ+ +

1

4
dκ · φ+

= −
(
∇LC
R φ+ +

1

4
dκ · φ+

) (4.2.35)

which are precisely the ones appearing in Qψ± without the gauge field A.

• There exists a canonical SpinC-bundle W 0 = T 0,•M∗H , with chiral decomposition

W 0
+ = T 0,0M∗H ⊕ T 0,2M∗H , W 0

− = T 0,1M∗H (4.2.36)

and determinant line bundle KM ≡ T 0,2M∗H . Any other SpinC-bundle W can be written

as W = W 0 ⊗ E for some U(1)-line bundle E. It is important to note that, when the

manifold is spin, namely when the genuine spinor bundle exists, then S and W 0 is related by

S ⊗ K1/2
M = W 0 ⇒ S+ = K

−1/2
M ⊗ K1/2

M . Therefore W can also be written as W = S ⊗ L
where L = K

1/2
M ⊗ E.

• On KM there exists a canonical U(1) connection A0, such that the Dirac operator (induced

from ∇TW on TM and A0/2 on K
1/2
M ) on the canonical SpinC-bundle W 0 satisfies the identity5

DTW
A0/2

= LR ⊕
√

2
(
∂̄ + ∂̄∗

)
: Ω0,even → Ω0,even ⊕ Ω0,odd (4.2.37)

Now we can include the gauge field A onto the stage. As discussed above, we only consider

G = U(1) and A is viewed as a U(1)-connection of certain line bundle L. Therefore, φ+ should be

really considered as a section of W+ ≡ S+⊗L. We decompose L = K
1/2
M ⊗E so that S⊗L = W 0⊗E,

and we also decompose the gauge field A according to

φ+ ∈W+
0 ⊗ E = S+ ⊗ K

1/2
M ⊗ E

A0/2 + a = A.
(4.2.38)

5It is the restriction onto K−1
M of the Chern connection defined on TC(M), where C(M) is the almost hermitian

cone over the K-contact 5-manifold M ; however, there are other choices (induced by ∇TW discussed in [41], for

instance) of A0 that leads to similar identification, with the only difference that LR is replaced by LR − ia0 (R) for

some appropriate U(1) gauge field a0.

63



Therefore, the Dirac operator /D
TW
A on W+ = W+

0 ⊗ E can be identified as

/DA +
1

8
dκmnΓmn = /D

TW
A = LaR ⊕

√
2
(
∂̄a + ∂̄∗a

)
: W+ →W+ ⊕W−. (4.2.39)

where LaR = LR − ia (R) , ∂̄a = ∂̄ − ia0,1 and so forth.

With such identification in mind, one can rewrite the Dirac-like equation in (4.2.30)

/DAφ+ +
1

8
dκmnΓmnφ+ = /D

TW
A φ+ = 0⇔ LaRφ+ = 0,

(
∂̄a + ∂̄∗a

)
φ+ = 0. (4.2.40)

In particular, we write φ+ = α⊕ β ∈ Ω0,0 (E)⊕ Ω0,2 (E), and (4.2.30) can be written as

F dκa =
1

2

(
ζ − |α|2 + |β|2

)
dκ

F 0,2
a = 2iᾱβ

∂̄aα+ ∂̄∗aβ = 0

LaRα = LaRβ = 0

,



ιRFa + ιRFA0/2 = 0

dAσ = 0

ΞA=1,2
− = 0

σ (α) = σ (β) = 0

(4.2.41)

where we have decompose F+
a = F dκa + F 2,0

a + F 0,2
a , and the bilinear map α(φ) is written more

concretely as (see appendix [A, D] for choice of basis and matrix representation of ΓAB)

α (φ) ≡ 1

2

(
|α|2 − |β|2

)
dκ+ 2i

(
αβ̄ − ᾱβ

)
, (4.2.42)

It is clear that the equations on the left take a similar form of ζ-perturbed Seiberg-Witten equa-

tions on a symplectic 4-manifold[43, 44, 45], and therefore we will call them the 5d Seiberg-Witten

equations in the following discussion.

Let us pause to remark that, the operator /∇ + 1/8dκmnΓmn is discussed in the context of

Sasaki-Einstein manifold, and similar results were obtained in [25]. The unperturbed version of

Seiberg-Witten-like equation on a contact metric manifold is also proposed in [42].

In the following we will focus on equations on the left in (4.2.41). They are a novel type of

equations that awaits more study. Let us try to make a first step to understanding the solutions.

As discussed earlier, we consider the gauge group G = U(1), and therefore σ and ζ are just real

constants.

A Higgs vacuum

First, we argue that the 5d Seiberg-Witten equations on Sasakian structures have one simple

solution.

First of all, on any K-contact structure, (α, β) = (
√
ζ, 0), together with a = 0, or equivalently

A = 1/2A0, is obviously a solution to the 5d Seiberg-Witten equations.

The remaining BPS equation is

ιRFA0/2 = 0 (4.2.43)

If A0 is chosen to be induced from 6d Chern connection, this may be not true on a general K-

contact background; however, if the K-contact structure is Sasakian, then (4.2.43) indeed holds
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[42][40]. Therefore on a Sasakian structure, one always has at least one most simple solution, which

we will call a Higgs vacuum.

Properties of general solutions

Let us now focus on the 5d Seiberg-Witten equations on a K-contact structure (with emphasis

on Sasakian structures). First of all, the Dirac equations imply

∂̄a∂̄aα+ ∂̄a∂̄
∗
aβ = 0⇒ −iF 0,2

a α−N (∂aα) + ∂̄a∂̄
∗
aβ = 0

⇒ 2

∫
M
|α|2|β|2 −

∫
M
β ∧ ∗CN (∂aα) +

∫
M

∣∣∂̄∗aβ∣∣2 = 0.
(4.2.44)

where N is the Nijenhuis tensor N : T 1,0M∗H → T 0,2M∗H , which vanishes for any Sasakian structure.

Therefore, when (κ,R, g,Φ) is Sasakian, one has

∂̄∗aβ = ∂̄aα = |α| |β| = 0. (4.2.45)

Namely, either α or β must vanish, and the two types of solutions are

Sasakian:

{
β = 0

∂̄aα = 0
or

{
α = 0

∂̄∗aβ = 0
. (4.2.46)

However, unlike the case of 4-dimensional Kahler manifold, at the moment we do not have a

topological characterization of the two types of solutions. Let us consider the curvature equation

integrated over M∫
M
F dκa ∧ ∗dκ =

∫
M
F dκa ∧ κ ∧ dκ =

1

2

∫
M

(
ζ − |α|2 + |β|2

)
dκ ∧ ∗dκ. (4.2.47)

In the case of a 4-dimensional Kahler manifold, the left hand side would be replaced by the inter-

section number c1 (E) · [ω], a topological number independent on ζ. Therefore, when ζ = 0, the sign

of c1 (E) · [ω] will determine whether α or β will survive; in particular, in the limit ζ � +1, only

the solutions with β = 0 survive. On a 5-dimensional Sasakian manifold, however, the left hand

side is not a topological number, and therefore at the moment we do not have a topological criteria

to determine which of the (4.2.46) will survive.

For non Sasakian K-contact structure, one needs to take the Nijenhuis tensor into account.

Combining the Weitzenbock formula, Kahler identities and triangle inequalities, we obtain several

estimates (where we rescaled (α, β)→ (
√
ζα,
√
ζβ), z is some constant, and λ > 1 is a real constant)

2

∫
M
F dκa ∧ ∗dκ >

(
1− 2z

ζ

)∫
M

∣∣dJaα∣∣2
+2ζ

∫
M

(
1− |α|2

)2
+ 2ζ

∫
M
|α|2|β|2 + 2ζ

(
1− 1

λ

)∫
M
|β|2

, (4.2.48)

and ∫
M
ρA0 |β|

2 +
1

2

∫
M
|∇A0+aβ|2 + ζ

∫
|β|4 +

ζ

2

∫
|β|2 < z

ζ

∫ ∣∣dJaα∣∣2, (4.2.49)

In the inequalities, ∇A0+a is the connection on KM ⊗E, ρA0 is some function depending on A0 but

not on ζ. Again, if the integral on the left in the first estimate is bounded from above, or it scales
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at most of order ζε<1 (ε = 0 in 4-dimension, since it is topological and independent on ζ), then the

above estimate tells us as ζ → +∞, almost everywhere on M

|β| → 0, |α| → 1, (4.2.50)

and |daJα| does not grow faster than ζ. The second estimate then implies the overall derivative

∇A0+aβ → 0 faster than ζε−1, and therefore
∣∣∂̄∗aβ∣∣ =

∣∣∂̄aα∣∣→ 0 as well.

Therefore, let us make a bold conjecture that we have a similar situation as in 4-dimension.

Namely for a general K-contact manifold, as ζ → +∞, β is highly suppressed, and we are left with

α satisfying ∂̄aα = 0, which approaches α → 1 rapidly once away from any zeros α−1(0) ∈ M . In

the case of Sasakian manifold, the type of solutions with non-zero β are less and less likely to survive

when ζ → +∞. With this conjecture in mind, we study the local behavior of 5d Seiberg-Witten

equations with large positive ζ near any closed Reeb orbit.

4.2.5 The Local Model Near Closed Reeb Orbits

On a generic contact manifold, the integral curve of the Reeb vector field may have uncontrollable

behavior, as we mentioned early on. However, if the structure is K-contact, then the contact flow,

viewed as a subgroup of the group Isom(M, g) of isometries, has a closure of T k ⊂ Isom(M, g).

In other words, the integral curve of the Reeb vector field going through a point p ∈M forms a

torus of dimension less than or equal to k. One can think of the curves as similar to irrational flows

on a torus. The integer k ≤ 3 for a K-contact five-manifold, and is called the rank of the structure.

So, a rank-1 K-contact structure is a quasi-regular or regular contact structure, and k ≥ 2 are all

irregular.

The isometric T k-action highly degenerates at the closed Reeb orbits, namely k − 1 of the

generators do nothing to the points on closed Reeb orbits. Therefore, at a small neighborhood

C × C2 of a closed Reeb orbits C, the k − 1 generators rotates the C2 (leaving C fixed), while the

remaining 1 generator, corresponding to the Reeb field R, translates along C.
Bearing this picture in mind, one can write down an adapted coordinate (θ, z1, z2) on a small

neighborhood C×C2 of any closed orbit C, such that T k = {t0, ..., tk−1} acts on it in an intuitive way.

Such a coordinate system is characterized by the numbers (λ0;λj ,m1j ,m2j), j = 1, ..., k − 1, where

λ0, ..., λj are rationally independent positive real numbers, m1j and m2j are two lists of integers. In

such a coordinate, the Reeb vector R and contact 1-form κ can be written as
R = λ0

∂

∂θ
+ i

∑
i=1,2

k−1∑
j=1

λjmij

(
zi
∂

∂zi
− z̄i

∂

∂z̄i

)

κ =
1

λ0

1−
∑
i=1,2

k−1∑
j=1

λjmij |zi|2
 dθ +

i

2

∑
i=1,2

zidz̄i − z̄idzi

(4.2.51)

The isometric subgroup T k acts on the patch by

(t0, t1, ..., tk−1) ·
(
eiθ, z1, z2

)
=

t0eiθ, k−1∏
j=1

t
m1j

j z1,
k−1∏
j=1

t
m2j

j z2

 (4.2.52)
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Let us pick a basis for horizontal 1-forms in region C × C2

e5 = κ, ezi ≡ dzi − i
Λi
λ0
zidθ, ez̄i ≡ dz̄i + i

Λi
λ0
z̄idθ, (4.2.53)

where Λi ≡
∑k

j=1 λjmij . It is straight-forward to show that LRezi = iΛie
zi , LRez̄i = −iΛiez̄i . One

can also easily verify that dκ = iez1 ∧ ez̄1 + iez2 ∧ ez̄2 . This suggests that one can view ezi , ez̄i as

spanning T 1,0M∗ and T 0,1M∗. Under such assumption, one can show ∀α ∈ Ω0,0,
∂α =

(
∂ziα+

i

2
z̄iLRα

)
ezi , ∂̄α =

(
∂z̄iα−

i

2
ziLRα

)
ez̄i

∂ezi =
Λi
2
ezi ∧ (z̄1e

z1 + z̄2e
z2) , ∂̄ezi = −Λi

2
ezi ∧

(
z1e

z̄1 + z2e
z̄2
) (4.2.54)

Examples

Let us look at the example of squashed S5 ⊂ C3

S5
ω ≡

(z1, z2, z3) ∈ C3|
∑

i=1,2,3

ω2
i |zi|

2 = 1

 (4.2.55)

One can define the Reeb vector field R and contact 1-form κ by restriction of

R ≡ i
∑

i=1,2,3

ωi

(
zi
∂

∂zi
− z̄i

∂

∂z̄i

)
, κ ≡ i

2

∑
i=1,2,3

(zidz̄i − z̄idzi) (4.2.56)

Then it is easy to show that near the orbit C3 ≡
{
θ ∈ [0, 2π] |

(
0, 0, eiθω−1

3

)
∈ S5

ω

}
, one can rewrite

R and approximate κ in the new coordinate θ = (2i)−1 log (z3/z̄3), wi ≡ ω−1
3

√
ωiziz

−1
3 .

R = ω3
∂

∂θ
+ i

∑
i=1,2

(ωi − ω3)

(
wi

∂

∂wi
− w̄i

∂

∂w̄i

)

κ =
1

ω3

1−
∑
i=1,2

(ωi − ω3) |wi|2
 dθ +

i

2

∑
i=1,2

widw̄i − w̄idwi

. (4.2.57)

The natural T 3 action can be rearranged as(
eiϕ, eiϕ1 , eiϕ2

)
· (z1, z2, z3) =

(
eiϕ1eiϕz1, e

iϕ2eiϕz2, e
iϕz3

)
, (4.2.58)

so that its action on the local coordinate is
(
eiϕeiθ, eiϕ1w1, e

iϕ2w3

)
, implying m11 = m22 = 1, and

λ1,2 = ω1,2 − ω3.

Similar steps can be done on Y pq manifolds, which has K-contact rank k = 2. Let us recall

how Y pq manifolds are defined [46, 47]. Y pq manifolds are Sasaki-Eintstein manifolds with topology

S2 × S3. They can be obtained by first looking at S3
z1,z2 × S

3
z3,z4 ⊂ C4 defined by equations

(p+ q) |z1|2 + (p− q) |z2|2 = 1/2, p|z3|2 + p|z4|2 = 1/2 (4.2.59)
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Then one can define a nowhere-vanishing U(1)-vector field T which rotates the phases of zi according

to the charges [p+ q, p− q,−p,−p]. The Y pq manifolds is then the quotient (S3 × S3)/U(1)T . The

Saaski-Einstein Reeb vector field is defined to be rotations of zi with irrational charges [ω1, ω2, ω3, ω4]

ω1 = 0, ω2 =
1

(p+ q) l
, ω3 = ω4 =

3

2
− 1

2 (p+ q) l
. (4.2.60)

It is easy to show that near the closed Reeb orbit C ≡ {(zi) ∈ Y pq|z2 = z4 = 0}, one has

λ0 = pω1 + (p+ q)ω3, λ1 = 3, m11 = 1, m21 = 0. (4.2.61)

The 5d Seiberg-Witten equation near C
We study the equations near a closed orbit C. Again, we rescale (α, β) → (

√
ζα,
√
ζβ) for a

better looking equation:

F+
a =

ζ

2

(
1− |α|2 + |β|2

)
dκ, F 0,2

a = 2iζᾱβ, LaRα = LaRβ = 0, ∂̄aα+ ∂̄∗aβ = 0 (4.2.62)

Using (4.2.54) and its underlying assumption, the last equation in (4.2.62) can be reduced to usual

equation on C2, since LaRα = LaRβ = 0,

∂̄aα+ ∂̄∗aβ = 0 on C2. (4.2.63)

However, as we discussed early on, we conjecture that when ζ → +∞, β,∇β → 0 and therefore the

differential equations of α and β reduce to the holomorphic equation on C2

∂̄aα = 0, ζ → +∞. (4.2.64)

In this sense, the zero set of large-ζ 5d Seiberg-Witten solutions corresponds to pseudo-holomorphic

objects in K-contact manifold M . Namely near orbit C, α−1(0) takes the form of C ×Σ where Σ is

“pseudo-holomorphically” mapped into M . Of course this is just a naive description and far from

rigorous; more careful treatment is needed.

There are known smooth solutions to the 4-dimensional Seiberg-Witten equations, which are

lifts of 2-dimensional vortex solutions; however, there are more solutions that we do not yet know

how to describe. Nevertheless, let us assume that α has the usual asymptotic behavior α →
ein0θein1ϕ1+in2ϕ2 , where n0 ∈ Z, n1,2 ∈ Z≥0 is required by holomorphicity and smoothness at the

origin6: near the origin, α ∼ ein0θzn1
1 zn2

2 . Therefore,

LaRα = LRα− ia (R)α = 0⇔ λ0n0 + n1

k−1∑
j=1

λjm1j + n2

k−1∑
j=1

λjm2j = a (R) (4.2.65)

Note that the winding number n0,1,2 should be bounded by ζ, similar to the situation in [48]. We

demonstrate this on a Sasakian structure in the limit ζ � 1. We consider the integral∫
M
F dκa ∧ ∗dκ =

ζ

2

∫ (
1− |α|2

)
dκ ∧ ∗dκ 6

ζ

2
Vol (κ) , (4.2.66)

6Not all modes above are possible. The precise range of these integers requires global analysis of the solution,

which we will discuss in later examples.
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where Vol (κ) ≡
∫
dκ ∧ ∗dκ. On the other hand, if E is a trivial line bundle and thus a can be

viewed as a global 1-form,∫
M
F dκa ∧ ∗dκ =

∫
M
da ∧ ∗dκ =

∫
M
da ∧ κ ∧ dκ =

∫
M
a ∧ dκ ∧ dκ

=

∫
(ιRa)κ ∧ dκ ∧ dκ

(4.2.67)

Notice that if we assume the connections a invariant under LR, then

ιRFa = 0⇒ LRa = dιRa = 0, (4.2.68)

which leads to a bound on the winding numbers

λ0n0 + n1

k−1∑
j=1

m1jλj + n2

k−1∑
j=1

m2jλj = ιRa 6
ζ

2
(4.2.69)

Later we will see that this bound corresponds to poles in the perturbative Coulomb branch matrix

model. More general situation needs more careful treatment, and we leave it for future study.

4.3 Partition Function: Suppression and Pole Matching

Suppose one obtains a BPS solution to the localization locus (4.2.30), then the contribution to the

partition function from this particular solution is the product

e−SclZvect
1-loopZ

hyper
1-loop, (4.3.1)

where exp [−Scl] is the exponentiated action evaluated on the BPS solution. The 1-loop determi-

nants are

Zvect
1-loopZ

hyper
1-loop =

sdetvect (−iLR + i (σ + iιRAcl))

sdetHyper

(
−i∇TW

R + i (σ + iιRAcl)
) (4.3.2)

where we have shifted σ → −iσ, and Acl denotes the value of A as a solution to (4.2.30). Let us

denote for a moment HA ≡ ∇TW
R − iA(R), which we recall is part of the Dirac operator /D

TW
A .

In the Coulomb branch, where one does not include the deformation QVmixed, one encounters

the BPS equations as a “decoupled” system of differential equationsF+
A = 0, dAσ = 0, ιRFA = 0

/DAφ+ +
1

8
dκmnΓmnφ+ = 0, σ (φ+) = 0, FA=1,2

− = 0
(4.3.3)

In [25], it is shown that on a Sasaki-Einstein geometry (or other geometry with a large scalar

curvature), a solution A to the first line will imply the second line has only trivial solution φ+ = 0;

namely the operator /D
TW
A , and in particular HA does not have zero as one of its eigenvalues. Let

iλm 6= 0 be an eigenvalue of HA labeled by some quantum numbers m, with the corresponding

eigenstate φm. Then

HAφm = iλmφm (4.3.4)
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This is equivalent to the statement HA+∆Amφm = 0, where the ∆Am (R) = λm. Namely, there exists

certain new gauge field A + ∆Am with ∆Am(R) = λm, such that HA+∆Am has zero eigenvalue.

Of course, A + ∆A cannot be a solution to the original Coulomb branch BPS equations, but it

could be a solution to some deformed BPS equations. In our case, they are precisely the Higgs

branch BPS equations, where the QVmixed is taken into account. Therefore, solutions to the Higgs

branch equations are expected to correspond to poles in the Coulomb branch matrix model, which

are factors of the form (iσ − iλm)−1 coming from the hypermultiplet determinant. We will see this

more precisely later in this section.

4.3.1 Suppression of the Deformed Coulomb Branch

In this subsection, we will review the supersymmetric actions for vector and hypermultiplet, and

show that it is possible to achieve suppression of perturbative deformed Coulomb branch as ζ → +∞
when certain bounds on the Chern-Simons level and the hypermultiplet mass are satisfied. This

allows two things for theories containing hypermultiplets and appropriate Chern-Simons level,:

1) one can take a large ζ limit, and only focus on the contributions from 5d Seiberg-Witten

solutions to the partition function.

2) One can take the Coulomb branch matrix model, close the integration contour of σ, and

identify each pole of the integrand with a 5d Seiberg-Witten solution. Note that this is possible

when the integrand is suppressed when ζ →∞, and this requires the presence of hypermultiplets.

3) For theories that do not satisfy the bounds, the above two statement are not valid in general.

For instance, for pure super-Yang-Mills theory, one cannot close the contour and rewrite the matrix

integral into sum of residues, and the deformed Coulomb branch will persist in large ζ limit.

The supersymmetric actions

The Super-Yang-Mills and hypermultiplet action can be obtained by taking rigid limit of super-

gravity action. The bosonic parts read

LYM = tr
[
F ∧ ∗F −A ∧ F ∧ F − dAσ ∧ ∗dAσ − 1/2DIJD

IJ

−4uσ2 + σFmnFmn + 2σ
(
tIJDIJ

)
+ σFmnPmn

] (4.3.5)

LHyper = εIJΩAB∇mφAI ∇mφBJ − εI
′J ′ΩABΞAI′Ξ

B
J ′ + εIJΩAB

(
R
4

+ h− 1

4
PmnPmn

)
φAI φ

B
J (4.3.6)

Note that we use the original field variables to write the action, and it is straight forward to use

the invertible twisting to convert to new field variables.

One can also add in Q-invariant Chern-Simons terms for the vector multiplet [13], and we have

made the shift σ → iσ stated earlier

LSCS5 = LCS5 (A− iσκ)− ik

8π2
tr (Ψ ∧Ψ ∧ κ ∧ FA−iσκ) , (4.3.7)

LSCS3,2 = LCS3,2 (A− iσκ)− itr (dκ ∧ κ ∧Ψ ∧Ψ) , (4.3.8)
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where the pure Chern-Simons terms are
LCS5 (A) =

ik

24π2
tr

(
A ∧ dA ∧ dA+

3

2
A ∧A ∧A ∧ dA+

3

5
A ∧A ∧A ∧A ∧A

)
LCS3,2 (A) = itr

(
dκ ∧

(
A ∧ dA+

2

3
A ∧A ∧A

)) (4.3.9)

The 5d Chern-Simons level k is an integer. As noted in [13], LSCS3,2 is not invariant under rescaling

of κ, while LSCS5 is invariant.

The classical contributions

The deformed Coulomb branch equations are

dAσ = 0, F+
A − F

+
A0/2

=
ζ

2
dκ+, ιRFA = 0 (4.3.10)

On a Sasakian background, ιRFA0/2 = 0, the perturbative solutions are

A =
1

2
A0 +

ζ

2
κ, σ = constant ∈ u(Nc) (4.3.11)

Evaluated on (4.3.11), the actions discussed above give the classical perturbative contribution

to the partition function. We are interested the asymptotic behavior of these contributions as

ζ → +∞.

1) The two Chern-Simons terms contribute up to factors of order expO(ζ)

exp
(
iSSCS5 + iµSSCS3,2

)
→ exp

[
−tr

(
k

24π2

(
σ +

i

2
ζ

)3

+ iµ

(
σ +

i

2
ζ

)2
)

vol (κ)

]
(4.3.12)

where we denote the contact volume Vol (κ) =
∫
M κ ∧ dκ+ ∧ dκ+ =

∫
M dκ+ ∧ ∗dκ+, and µ is a real

coupling constant.

2) There is no classical contribution from LHyper since all fields in the hypermultiplet vanish.

3) Finally, there is classical contribution from LYM. To evaluate it, one needs to consider the

field redefinition Hmn = 2F+
mn +

(
2σtIJ +DIJ

)
(ΘIJ)mn − 4F+

mn, the equation of motion of H and

BPS equation to solve DIJ in terms of σ

Hmn = F+
mn + h(φ)mn, F+

mn + h(φ)mn = 0. (4.3.13)

Using some Fierz-identities, the field redefinition implies

DIJ =
(
hmn + 2F+

mn

)
(ΘIJ)mn − 2σtIJ . (4.3.14)

With this one can evaluate the classical contribution of super-Yang-Mills action. In the simplest

case with F = P = 0 (namely on a Sasaki-Einstein background), we have

exp [−SYM] = exp

[
−1

2
tr

(
σ +

i

2
ζ

)2

Vol (κ) + ...

]
(4.3.15)
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where ... denotes O(ζ) terms involving FA0/2. So we see there are competing ζ2-dependent terms

in the norm of the classical contribution when ζ → +∞7

∣∣∣e−SYM+iSSCS5
+iµSSCS3,2

∣∣∣ ∼ exp

[
1

8
tr

(
1 +

k

4π2
σ

)
Vol(κ)ζ2

]
(4.3.16)

On more general background with non-vanishing F and P, the classical contribution from

exp{−SYM} has the same leading behavior of ζ2 as above, although the precise value will de-

pend on the geometric background. The 1-loop determinant will be more complicated products of

triple-sine function,

The perturbative 1-loop contributions

The perturbative 1-loop determinant from Coulomb branch was studied in [12, 49, 25]. It was

shown that the 1-loop determinant can be expressed in terms of triple sine functions S3(z|ω), or

their particular products.

The triple sine function S3(z|ω) with ω = (ω1, ω2, ω3) is defined as the regularized infinite

product

S3 (z|ω) ≡
+∞∏

n1,n2,n3=0

 ∑
i=1,2,3

(ni + 1)ωi − z

 ∑
i=1,2,3

niωi + z

 (4.3.17)

or in terms of generalized Γ-function Γ3(z|ω1, ω2, ω3):

S3 (z|ω) ≡ 1

Γ3 (z|ω1, ω2, ω3) Γ3 (ω1 + ω2 + ω3 − z|ω1, ω2, ω3)
(4.3.18)

What is most important to us is the asymptotic behavior of the triple-sine function: when ωi > 0,

we have when z →∞ (B3,3 are multiple Bernoulli functions, see [50, 51])

logS3 (z|ω) ≡ − 1

3!
B3,3 (z) (log z + C)− 1

3!
B3,3 (|ω| − z) (log (|ω| − z) + C)

−γζ3 (0, z)− γζ3 (0, |ω| − z) +O
(
z−1
)

+O
(

(|ω| − z)−1
) (4.3.19)

which implies

S3 (z|ω)→


exp

[
− iπ

3!

z3

ω1ω2ω3
+O

(
z2
)]
, Im z > 0

exp

[
iπ

3!

z3

ω1ω2ω3
+O

(
z2
)]
, Im z < 0

(4.3.20)

The 1-loop determinant from perturbative Coulomb branch computed in literatures are products

(over weights µ ∈ R to which the hypermultiplet belong) of triple sine functions, with argument of

the form

z = i 〈µ, σ〉+ im+N (ω) . (4.3.21)

7Although we are focusing our discussion on ζ-dependent terms, the ζ-independent terms including trσ2 are still

present in the matrix model integral as ζ →∞ as a convergence factor when integrating σ.
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Here N(ω) is a real constant determined by equivariant parameters8. For us, R is the fundamental

or anti-fundamental representation of U(Nc) gauge group.

If we consider the deformed Coulomb branch, then what we need is to compute the super-

determinant of

iQ2 = ∇TW
R − iA (R)− σ = ∇TW

R −
(
σ +

i

2
ζ + const

)
(4.3.22)

from hypermultiplet9, which effectively shifts σ → σ + iζ/2 + const in the Coulomb branch 1-loop

determinant. In the limit of large ζ, each S3 factor of the 1-loop determinant of hypermultiplet

tends to

|S3 (z|ω)| 〈µ,σ〉+m>0,|ζ|→∞−−−−−−−−−−−−→

∣∣∣∣∣exp

[
− iπ

6ω1ω2ω3

(
i

〈
µ, σ +

iζ1Nc×Nc
2

〉
+ im+ constant

)3
]∣∣∣∣∣

leading terms−−−−−−−−→ exp

[
π

8ω1ω2ω3
(〈µ, σ〉+m) ζ2

] (4.3.23)

Similarly,

|S3 (z|ω)| 〈µ,σ〉+m<0,|ζ|→∞−−−−−−−−−−−−→

∣∣∣∣∣exp

[
− iπ

6ω1ω2ω3

(
i

〈
µ, σ +

iζ1Nc×Nc
2

〉
+ im+ constant

)3
]∣∣∣∣∣

leading terms−−−−−−−−→ exp

[
− π

8ω1ω2ω3
(〈µ, σ〉+m) ζ2

] (4.3.24)

Note that this asymptotic result is different from that in 3d. In 3d, there is an overall ±1 factor

in the exponent, corresponding to how the u(1) parts act on the specific weight, while here such

factor is squared to 1. This reflects the symmetry in the matter content, where the fundamental

and anti-fundamental (or R and R̄ in general) appear in a symmetric way in the hypermultiplet.

As a simplest example, consider Nf massless hypermultiplets on S5 charged under gauge group

G = U(1). They contribute 1-loop determinant at large ζ

∼ exp
[
−π

8
Nf |σ +m| ζ2

]
, (4.3.25)

so the overall ζ2-terms in the norm of the matrix model integrand is

exp

[
1

8

(
1 +

k

4π2
σ

)
4π3ζ2 − π

8
Nf |σ +m| ζ2

]
. (4.3.26)

Therefore there is a window of suppression as ζ → +∞

−Nf < k < Nf ,
4π2

g2
YMNf

≤ |m| , (4.3.27)

where we have reinstated the gYM which was omitted in front of the Yang-Mills action. In the above,

the bound on k comes from the competing σ and |σ| as one integrates σ from −∞ → +∞, while

8For the individual triple sine function to converge, N(ω) is required to have imaginary part, but as discussed in

[52], after all ingredients are multiplied together, one can take the real limit.
91-loop determinant of vector multiplet is not affected by ζ
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the bound on m comes from negating the positive ζ2-term from the Yang-Mills action. Within

the suppression window, when performing the full matrix integral, because the integrand as a

meromorphic function of σ falls of exponentially fast far way from the real line, one can close the

contour in the upper half plane, picking up residues from the poles; or alternatively, one can deform

the integration contour from R to R + iζ, and collecting a residue each time the contour passes a

pole.

Similar result can be obtained for squashed S5, where the volume Vol (κ) ∝ (ω1ω2ω3)−1, which

only contributes an overall factor of the partition function as ζ → +∞. On Y pq manifolds, one

needs to replace the 1-loop determinant with generalized triple-sine functions, which are products

of original triple-sine functions, and we expect one will have a similar suppression window where

the Chern-Simons level and the hypermultiplet mass are constrained as ζ → +∞.

One can generalize the above result to other gauge groups with U(1) factors. For instance,

consider on squashed S5 the gauge group G having U(1)-generators ha. Define ζ = ζaha. Let

the hypermultiplets belong to representations Rf=1,...,Nf , and µ will denote weights in Rf . The

eigen-value of ha on µ, namely the U(1) charge, is denoted by qfa ≡ 〈µ, ha〉. The large-ζ behavior

of the exponent of the integrand is

∼ π

8ω1ω2ω3

∑
a,b

ζaζb

4π2tr (hahb) + ktr (σhahb)−
Nf∑
f=1

∑
µ∈<f

qfaq
f
b |〈µ, σ〉+mf |

 (4.3.28)

The suppression can be achieved if the representations and the masses are such that the above

expression tends to exp[−∞] as ζa → ±∞ (with some choice of sign). For instance, whenG = U(Nc),

and Nf hypermultiplets in the fundamental Nc, the above reduces to

∼ πζ2

8ω1ω2ω3

4π2Nc + ktr (σ)−
Nf∑
f=1

∑
µ∈Nc

|〈µ, σ〉+mf |

 , (4.3.29)

and therefore suppression can be achieved if

|k| < Nf ,

Nf∑
f=1

mf >
4π2

g2
YM

. (4.3.30)

Finally, we remark that the bound above is a sufficient bound, obtained by only looking at the

norm of the integrand. To fully understand when suppression can actually be achieved and whether

or not the bound can be relaxed, more careful analyses are required. Also, the meaning of the mass

bound is not clear to the authors at the moment, and we hope to get a better understanding in the

future.

4.3.2 Matching The Poles And The Shift

Similar to 3-dimensional Higgs branch localization [48], if one performs the integral of the Coulomb

branch matrix model by closing the contour appropriately, one picks up residues from the enclosed
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poles. Before checking the matching between poles and 5d Seiberg-Witten equation, let us first

understand the operator ∇TW
R − iιRA properly.

The operator ∇TW
R,A and LR

Let φ+ = ξ ⊗ σE be a section of S+ ⊗ E, where E is equipped with A as a U(1) connection10.

Equivalently, noting that S+ = K
−1/2
M ⊗K1/2

M , one can choose an appropriate section σ̂ of K
1/2
M ,

and rewrite φ+ = (ξ ⊗ σ̂)⊗ (σ̂−1 ⊗ σE), where we have factored out a piece ξ⊗ σ̂ ∈ Γ
(
W 0

+

)
. σ̂ then

provides the explicit connection 1-form for the abstract canonical connection “A0” on KM :

∇A0/2σ̂ = −iA0

2
σ̂, (4.3.31)

and hence

∇TW
R,Aφ+ = LR (ξ ⊗ σ̂)⊗ (σ̂−1 ⊗ σE)− i (ιRa)φ+, (4.3.32)

where we have used ∇TW
R,A0/2

= LR on W 0
+, a = A−A0/2 as a connection on E ⊗K−1/2

M .

In the case where A = 0, namely the perturbative Coulomb branch solution, one has ιRa =

−ιRA0/2 and therefore the shift in eigenvalues of ∇TW
R and LR

∆
(
∇TW
R ,LR

)
=
i

2
ιRA0. (4.3.33)

On the other hand, one of the BPS equation reads

∇TW
R,Aφ+ = 0⇔ LR (ξ ⊗ σ̂)⊗ (σ̂−1 ⊗ σE) = i (ιRa)φ+ (4.3.34)

As a section of T 0,0M∗ ⊕ T 0,2M∗, ξ ⊗ σ̂ contributes eigenvalues of LR of the form

λ0n0 + n1

k−1∑
j=1

λjm1j + n2

k−1∑
j=1

λjm2j , n0 ∈ Z, n1,2 ∈ Z≥0. (4.3.35)

corresponding to modes with asymptotic behavior ∼ ein0zn1
1 zn2

2 near each closed Reeb orbit. Now

the remaining puzzle is to determine the value of ιRA0.

Squashed S5 and ιRA0

As an example, let us consider matching the poles of 1-loop determinant on squashed S5 with

the local solutions to the 5d Seiberg-Witten equation. We will focus on the orbit C3 discussed before,

and recall the formula (4.2.57).

Note that one can define local orthonormal vielbein eA by first defining an orthonormal frame

at θ = 0, then use R to translate them to almost the whole C3. In particular, one can define eA in

such a way that it is adapted to and invariant under the K-contact structure, namely LReA = 0.

However, translating eA back to θ = 2π will in general disagree with the starting value. To obtain

10Namely, ∇AσE = −iAσE ⇒ ∇TW
A (ξ ⊗ σE) =

(
∇TW − iA

)
ξ ⊗ σE
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a vielbein well-defined on C3, one can rotate the original eA along the way. For instance, in terms

of the complex basis

ezi → exp

(
i
ωi − ω3

ω3
θ

)
ezi , ez̄i → exp

(
−iωi − ω3

ω3
θ

)
ez̄i (4.3.36)

Then we have

LRez̄i = −i (ωi − ω3) ez̄i ⇔

{
LRe2i−1 = − (ωi − ω3) e2i

LRe2i = (ωi − ω3) e2i−1
(4.3.37)

In this basis, one can compute the derivative along R

∇LC
R ψ = Rm∂mψ +

1

2

∑
i=1,2

(ωi − ω2) Γ2i−1Γ2iψ − 1

4
dκ · ψ (4.3.38)

Let ψ+ = (a, b)T ∈ S+. Using the explicit representation (A.1.10) the derivative ∇LC
R reduces to

∇LC
R ψ+ = Rm∂mψ+ +

1

2

∑
i=1,2

(ωi − ω3)iσ3ψ+ − iσ3ψ+, (4.3.39)

where we used Γ12ψ+ = Γ34ψ+ = iσ3ψ+ and dκ · ψ+ = 4iσ3ψ+.

When ω1,2,3 = 1, one can define Killing spinor by

∇LC
m ξ = − i

2
Γmξ. (4.3.40)

Suppose ξ−1/2 ∈ K
−1/2
M is a solution to the above Killing spinor equation, then using the above local

expression of ∇LC, one can show that ξ behaves like ∼ exp
(

3i
2 θ
)

along C3. Finally, if we require σ̂

to satisfy

ξ−1/2 ⊗ σ̂ = Const ∈ Γ(T 0,0M∗), (4.3.41)

one deduces that along C3

∇R,A0/2σ̂ = −3i

2
σ̂ = − i

2
(ιRA0) σ̂, (4.3.42)

namely, along C3, σ̂ has periodic behavior exp(−3i
2 θ) to cancel that of ξ−1/2. This implies the shift

∆
(
∇TW
R ,LR

)
=
i

2
ιRA0 =

3i

2
. (4.3.43)

On a general squashed S5
ω, we continue to choose σ̂ such that it has exp

(
−3i

2 θ
)

periodic behavior

along all three closed Reeb orbits. Then near any of three orbits, we recover the shift of eigenvalues

as in [52][49]

∆
(
∇TW
R ,LR

)
=
i

2
ιRA0 =

i (ω1 + ω2 + ω3)

2
(4.3.44)

Finally, the bound (4.2.69) on the winding numbers can now be written as∑
i=1,2,3

(
ni +

1

2

)
ωi 6

ζ

2
+
ιRA0

2
. (4.3.45)
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where we defined n3 = n0 − n1 − n2, which is non-negative if one consider all three closed Reeb

orbits C1,2,3. Recall that the 1-loop determinant in deformed Coulomb branch is obtained by a shift

in that of Coulomb branch

σ → σ + i

(
ζ

2
+
ιRA0

2

)
⇔ Imσ =

ζ

2
+
ιRA0

2
. (4.3.46)

Combining with the (4.3.45), bound saturation then means

Imσ =
∑

i=1,2,3

(
ni +

1

2

)
ωi, ni ≥ 0, (4.3.47)

Poles of the S5
ω perturbative 1-loop determinant

Recall that the perturbative 1-loop determinant of a hypermultiplet coupled to a U(1) vector

multiplet on S5
ω is

ZHyper
1-loop

(
S5
ω

)
=

[
S3

(
iσ + im+

ω1 + ω2 + ω3

2
|ω
)]−1

(4.3.48)

The poles are the zeros of the infinite products

∏
n>0

 ∑
i=1,2,3

(
ni +

1

2

)
ωi − i (σ +m)

∏
n>0

 ∑
i=1,2,3

(
ni +

1

2

)
ωi + i (σ +m)

, (4.3.49)

where we have reinstated the mass induced from a background U(1) vector multiplet. All the

possible poles are

−m± i
∑

i=1,2,3

(
ni +

1

2

)
ωi = σ ⇔ Reσ = −m, Imσ = ±

∑
i=1,2,3

(
ni +

1

2

)
ωi, (4.3.50)

The first equation above is just the equation (σ +m)φ = 0 in the Higgs branch, and the second

is just the bound we obtained above, if one takes the poles with + sign. These are the poles that

will be picked up when one close the contour in the upper half plane of the σ-plane. Note that this

is allowed thanks to the suppression of deformed Coulomb branch as ζ ∼ Imσ → +∞.

The case of Y pq manifolds

Recall (4.2.61) that near the orbit z2 = z4 = 0, the Sasaki-Einstin Reeb vector field can be

written as

R = [pω1 + (p+ q)ω3]
∂

∂θ

+i (ω2 + ω1 + 2ω3)

(
u1

∂

∂u1
− ū1

∂

∂ū1

)
+ i (ω4 − ω3)

(
u2

∂

∂u2
− ū2

∂

∂ū2

) (4.3.51)

where

ω1 = 0, ω2 =
1

(p+ q) l
, ω3 = ω4 =

1

2

(
3− 1

(p+ q) l

)
. (4.3.52)
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One can then read off again ιRA0 = 3 by choosing the section σ̂ with the same criteria as S5,

and the bound on local winding number is also determined

n0

(
3

2
(p+ q)− 1

2l

)
+ 3n1 +

3

2
≤ ζ

2
+

1

2
ιRA0, n0 ∈ Z, n1 ∈ Z≥0. (4.3.53)

After redefinition ne1 ≡ n1 + n0p, nα ≡ n0, the bound saturation corresponds to the poles11

Imσ = 3ne1 + nα

(
3

2
(q − p)− 1

2l

)
+

3

2
. (4.3.56)

We remark that the redefinition seems to implies ne1 ∈ Z, but global analysis, namely, the equation

(71) in [52] implies ne1 + nαp = ne2 ≥ 0 for the poles in the upper-half σ plane.

4.4 Summary

In this work, we apply the idea of Higgs branch localization to supersymmetric theories of N = 1

vector and hypermultiplet on general K-contact background. We show that with this generality the

localization locus are described by perturbed contact instanton equations in the deformed Coulomb

branch, and 5d Seiberg-Witten equations in the Higgs branch. Neither of these two types of equa-

tions is well understood. We focused on the latter, and some study basic properties of its solutions,

including their local behavior near closed Reeb orbits, which is shown to reduce to 4-dimension

Seiberg-Witten equations. This seems to implies that these BPS solutions corresponds to “pseudo-

holomorphic” objects in K-contact manifolds, if the 4-dimensional story can some how be lifted.

Finally, we study the suppression of deformed Coulomb branch as the parameter ζ → +∞, and

manage to match the poles of perturbative Coulomb branch matrix model with the bound on local

winding numbers.

From this point on, it is straight-forward to use the factorization property of perturbative

partition function on S5 and Y pq manifolds to perform the contour integral of σ. The result should

produce classical and 1-loop contributions of each local Seiberg-Witten solutions, in a form of

products of contributions from each closed Reeb orbit.

Another question that we did not address is that whether the partition function is invariants

of certain geometric structure. In [20], it is shown that the generalized Killing spinor equation

(4.1.5) has huge degrees of local freedom, including the background metric g, κ and R, which are

reflected as Q-exact deformations in the partition function. Therefore it would be interesting to

11The involved generalized triple sine function is [52]

∏
Λ+
n

[
4∑
i=1

(
nei +

1

2

)
ωi + i (σ +m)

]∏
Λ−
n

[
4∑
i=1

(
nei +

1

2

)
ωi + i (σ +m)

]
, (4.3.54)

where Λ±n denotes restrictions on nei{
ne1 + ne2 − ne3 − ne4 = nαq

ne1 − ne2 = −nαp
,

{
nei > 0, n ∈ Λ+

n

nei < 0, n ∈ Λ−n
(4.3.55)
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explore the geometric or topological meaning of N = 1 partition functions and expectation values

of BPS operators. We believe that one needs to look closely the constraint (4.1.6) and understand

its geometric meaning. Also, one can further study the 5d Seiberg-Witten equations (4.2.41). For

instance, it would be interesting to understand its moduli spaces, which we did not take into account

when matching the poles. But it is likely that on generic K-contact structures, the moduli spaces

are zero-dimensional, considering the matching of perturbative poles and local solutions. Another

interesting question is whether the solutions to (4.2.41) correspond to certain “pseudo-holomorphic”

objects, similar to the 4-dimensional story. If so, the partition functions will have more explicit

geometrical meaning in terms of a “counting” of these objects.

Finally we have the issue of A0. In several discussions, including obtaining the bound on

winding number, we relied on the assumption that the K-contact structure is Sasakian, in order to

have a simplification ιRFA0/2 = 0. It is not clear if this can always be achieved on general K-contact

structures, or if there are other wiser choice of A0 with the horizontal property, while simultaneously

enables the identification /D
TW
A0/2 ↔ LR +

(
∂̄ + ∂̄∗

)
.
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Appendix A

Gamma Matrices and Spinors

A.1 Gamma Matrices

We denote the 5d Gamma matrices as Γm, which is defined by the anti-commutation relation

{Γm,Γn} = 2gmn, m, n = 1, 2, 3, 4, 5. (A.1.1)

We require them to be Hermitian

(Γm)† = Γm (A.1.2)

Also we have charge conjugation matrix C = C+

CΓmC−1 = (Γm)T = Γm (A.1.3)

These matrices have the following symmetry properties:

Cαβ = −Cβα, (CΓm)αβ = −(CΓm)βα (A.1.4)

(CΓmn)αβ = (CΓmn)βα, (CΓlmn)αβ = (CΓlmn)βα (A.1.5)

and complex conjugation properties∑
β

CαβCβγ = −δαγ , (Γm)αβ = (Γm)βα (A.1.6)

The symmetry properties of CΓ results in symmetry properties of bilinears of spinors:

(ξ1ξ2) = − (ξ2ξ1) , (ξ1Γmξ2) = − (ξ2Γmξ1)

(ξ1Γmnξ2) = (ξ2Γmnξ1) , (ξ1Γlmnξ2) = (ξ2Γlmnξ1)
(A.1.7)

We define

Γmn ≡
1

2
(ΓmΓn − ΓnΓm) (A.1.8)

and similarly for Γmnk, Γmnkl. These products of Gamma matrices satisfy

Γmnk = −
√
g

2
εmnkpqΓ

pq, Γmnkl =
√
gεmnklpΓ

p (A.1.9)
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One can define a chiral and anti-chiral decomposition using any unit-normed vector field. In our

case, we use the Reeb vector field R and define a chiral operator ΓC ≡ −RmΓm, and decompose

S = S+ ⊕ S−.

An explicit representation of Gamma matrices we will use is

Γ1 =

(
0 −iσ3

iσ3 0

)
, Γ2 =

(
0 −I
−I 0

)
,

Γ3 =

(
0 −iσ1

iσ1 0

)
, Γ4 =

(
0 −iσ2

iσ2 0

)
,

Γ5 =

(
−I 0

0 +I

)
(A.1.10)

Another representation we will use is

Γ1 = −σ1 ⊗ I, Γ2 = σ2 ⊗ σ1, Γ3 = σ2 ⊗ σ2, Γ4 = σ2 ⊗ σ3, Γ5 = σ3 ⊗ I (A.1.11)

A.2 Spinors and Symplectic-Majorana Spinors

A.2.1 Spinor Products

As opposed to that in 4-dimension, one cannot impose simple Majorana condition on a 5d spinor

ξ. But one can define a symplectic-Majorana spinor , as a pair of spinors ξI , I = 1, 2, such that

ξαI = Cαβε
IJξβJ . (A.2.1)

Note that given any usual spinor ξ, one can upgrade it to the symplectic-Majorana version by

setting ξI=1 = ξ, ξI=2 = C−1ξ̄.

Using C, one can define a C-valued anti-symmetric product of any two arbitrary spinors ξ and

χ

(ξχ) ≡
∑

α,β=1,2

ξαCαβχ
β ∈ C. (A.2.2)

The product satisfies (here we consider Grassmann even spinors)

(ξχ) = − (χξ) , (ξΓmχ) = − (χΓmξ) , (ξΓmnχ) = (χΓmnξ) (A.2.3)

One can also define an R-valued symmetric inner product on S. Let ξ and χ be any two spinors,

and we upgrade them to symplectic-Majorana spinor ξI and χI . Then the inner product 〈, 〉 is

defined as

〈ξ, χ〉 ≡ εIJ (ξIχJ) =
∑
α

ξα1 χ
α
1 + ξα1 χ

α
1 =

∑
α

ξαχα + ξαχα ∈ R (A.2.4)

In particular, if ξ 6= 0 then 〈ξ, ξ〉 = 2
∑
α
ξαξα > 0.
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A.2.2 Fierz identities

For arbitrary Grassmann even spinors ξ1,2,3, we have the basic Fierz identity

ξ1 (ξ2ξ3) =
1

4
ξ3 (ξ2ξ1) +

1

4
Γmξ3 (ξ2Γmξ1)− 1

8
Γmnξ3 (ξ2Γmnξ1) (A.2.5)

It follows immediately two useful formula
ξ1 (ξ2ξ3) + ξ2 (ξ1ξ3) = −1

4
Γmnξ3 (ξ2Γmnξ1)

2ξ1 (ξ2ξ3)− 2ξ2 (ξ1ξ3) = ξ3 (ξ2ξ1) + Γmξ3 (ξ2Γmξ1)

(A.2.6)

A.2.3 SU(2)R Indices

In this subsection we review our convention for the SU(2)R indices I, J,K, ....

The SU(2)-invariant tensor ε is defined as ε12 = ε21 = 1, with contraction

εIK = εIJεJK = −εIJεKJ = −εKI = δIK ⇒ εIJεIJ = −2 (A.2.7)

and raising/lowering rules

XI = εIJXJ ⇔ XI = εIJX
J (A.2.8)

With this ”metric”, we define for any 2 triplets of functions XIJ and Y IJ a product in a natural

way:

(XY )IJ ≡ εLKXIKY LJ = XI
KY

KJ (A.2.9)

Note that this product has the following symmetry:

(XY )IJ = −(Y X)JI (A.2.10)

and in particular (
X2
)IJ

= −
(
X2
)JI

=
1

2
tr(X2)εIJ (A.2.11)

where we define the trace for triplet products:

tr (XY ) ≡ XI
JYJ

I = −XIJY
IJ (A.2.12)

with cyclic symmetry

tr (XY ) = tr (Y X) (A.2.13)

As an example, when XI
J =

i

2
(σ3)I

J

trX2 = −1

2
(A.2.14)

Note that if non-zero quantity XIJ satisfies reality condition

XIJ = εII
′
εJJ

′
XI′J ′ (A.2.15)
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then the trace is negative definite

tr
(
X2
)
< 0 (A.2.16)

For objects of direct sum of triplet and singlet,

XIJ ≡ X̂IJ −
1

2
εIJX, X

IJ ≡ X̂IJ +
1

2
εIJX (A.2.17)

with

X = εIJXIJ = −εIJXIJ (A.2.18)

A.2.4 Useful identities

The Fierz-identities implies several useful formula. Let ξI be a symplectic-Majorana spinor and

(s, κ,R,Θ) be the associated quantities described in the main text:

s ≡ εIJ (ξIξJ) , Rm ≡
(
ξIΓmξI

)
= gmnκn, (ΘIJ)mn ≡ (ξIΓmnξJ) (A.2.19)

ThenRmΓmξI = −ξI

Ω−mnΓmnξI = 0
, tIJ(ΘIJ)mkt

KL(ΘKL)kn =
s2

2

(
tI
J tJ

I
)

(−δmn +Rmκn) , (A.2.20)

for any symmetric tensor tIJ and anti-self-dual (w.r.t to Rm) 2-form Ω+. In particular, if tIJ 6= 0

everywhere and satisfies tIJ = εII
′
εJJ

′
tI′J ′ , then the 2-form tIJΘIJ is nowhere-vanishing, since it

squares to (
tIJΘIJ

)
mn

(
tIJΘIJ

)mn
= −2s2

(
tIJ tIJ

)
> 0. (A.2.21)

|R|2 = RmRm = ιRκ = s2 (A.2.22)

ιRΘIJ = 0 (A.2.23)

ιR ∗ΘIJ = −sΘIJ ⇔ Rk
(
ξIΓmnkξ

J
)

= +s
(
ξIΓmnξ

J
)

(A.2.24)

κ ∧Θ ∧Θ 6= 0 (A.2.25)

(λ1Θ)m
p(λ2Θ)p

n = s(λ1)I
K(λ2)KJ

(
ΘIJ

)
m

n
+
s2

2
tr (λ1λ2) δm

n − 1

2
tr (λ1λ2)κmR

n (A.2.26)

(λΘ)mn(λΘ)mn = −2s2tr(λ2) (A.2.27)

∗ (λΘ)nkl(λΘ)m
l =

s

2
tr
(
λ2
)

[gmkRn − gmnRk] (A.2.28)

(∗λΘ)mnk(λΘ)mn = 2tr
(
λ2
)
sRk (A.2.29)

Also there are several useful spinor identities

RmΓmξI = sξI (A.2.30)

RmΓnmξI = (sΓn −Rn) ξI (A.2.31)

(λΘ)nmΓnξI = (Rm − sΓm)λI
JξJ (A.2.32)

(λΘ)nmΓknξI = Γk (Rm − sΓm)λJ IξJ − (λΘ)kmξI ⇒ (λΘ)mnΓmnξI = 4sλJ IξJ (A.2.33)
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Appendix B

Conventions in Differential Geometry

In this section we review our convention in differential forms, spin connection and more tensor

analysis.

B.1 Differential forms

For any differential p-form ω, the components ωm1...mp and ωA1...Ap are defined as

ω =
1

p!
ωm1...mpdx

m1 ∧ ... ∧ dxmp =
1

p!
ωA1...Ape

A1 ∧ ... ∧ eAp (B.1.1)

for coordinate {xm} and vielbein {eA}. The wedge product is defined such that

dxm ∧ dxn (X,Y ) = XmY n −XnY m (B.1.2)

The exterior derivative d acting on ω is then

dω =
1

p!
∂kωm1...mpdx

k ∧ dxm1 ∧ ... ∧ dxmp (B.1.3)

and therefore (dω)km1...mp
= (p+ 1) ∂[kωm1...mp]. In particular,

(dκ)mn = ∂mκn − ∂nκm = ∇LC
m κn −∇LC

n κm (B.1.4)

B.2 Covariant Derivatives

Let∇ be an arbitrary connection on TM , then for any vectorX = Xm∂m, one defines the connection

coefficients Γkmn as ∇mXk = ∂mX
k + ΓkmnX

n. The torsion tensor of such a connection is defined

as T kmn ≡ Γkmn − Γknm.

B.2.1 Levi-civita Connection

In the main text, we denote Levi-civita connection on M as ∇:

∇g = 0 (B.2.1)
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with connection coefficients

Γkmn =
1

2
gkl
(
∂gml
∂xn

+
∂gnl
∂xm

− ∂gmn
∂xl

)
(B.2.2)

and curvature tensor

[∇m,∇n]Xk = Rmnl
kX l (B.2.3)

Ricci tensor is defined as

Ricmn = Rmkn
k (B.2.4)

B.2.2 Lie derivative

Lie derivative for (1,1), (0,2) tensor are defined as

LXTmn = Xk∇kTmn − (∇kXm)T kn +
(
∇nXk

)
Tmk (B.2.5)

LXTmn = Xk∇kTmn +
(
∇mXk

)
Tkn +

(
∇nXk

)
Tmk (B.2.6)

with the obvious relation

LXTmn = (∇mXl +∇lXm)T ln + gmlLXT ln (B.2.7)

In particular, when acting on a differential forms ω, one has the Cartan formula

LXω = dιXω + ιXdω. (B.2.8)

B.2.3 Vielbein and Spin connection

Let {eA} be an orthonormal basis with respect to metric g. Then given any connection ∇ preserving

g, one can write down Cartan structure equation and so define connection 1-form (also called spin

connection) ωAB

deA + ωAB ∧ eB = TA ⇔ ∇meB = ωm
A
BeA (B.2.9)

Preserving the metric g implies anti-symmetric property ωAB + ωBA = 0. ωAB can be solved from

the structure equation, and expressed in terms of Γkmn

ωm
A
B = eAk e

n
BΓkmn − enB∂meAn (B.2.10)

It is easy to solve the spin connection for the Levi-Civita connection ∇LC of g. Suppose deA =

CABCe
B ∧ eC with CABC + CACB = 0, and ωAB = ωC

A
Be

C , then

ωC
A
B = −CACB − CBAC + CCBA (B.2.11)

One can use this to obtain ωm
A
BΓAB, or one can exploit the identification∑
A,B

ωm
A
BΓAB ↔

∑
A,B

ωm
A
Be

A ∧ eB (B.2.12)
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to simplify computation:

deA +
∑
B

ωABe
B = 0⇔ ι∂mde

A +
∑
B

ωm
A
Be

B − eBmωAB = 0

⇒
∑
A,B

ωm
A
Be

A ∧ eB = −
∑
A

(
eA ∧ ι∂mdeA + eAmde

A
) (B.2.13)

Given any connection∇ that preserves metric g, maybe with torsion, one can induce a connection

on the spin bundle S

∇mψ = ∂mψ +
1

4
ωm

A
BΓABψ (B.2.14)

We will sometimes use · to denote Clifford action of any differential p-form ω on spinors:

ω · ψ =
1

p!
ωA1...ApΓ

A1...Apψ. (B.2.15)

So in particular, dκ · ψ =
1

2
dκmnΓmnψ.
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Appendix C

Contact Geometry

In this appendix we review some basics aspects about contact geometry and K-contact structures.

Interested readers may refer to [2] for more detail 1.

Symplectic geometry is a well-known type of geometry in even dimensions. There, a symplectic

structure is defined to be a closed and non-degenerate 2-form ω. In odd dimensions, there is a similar

type of structures, called contact structures, which have many similar and interesting behaviors as

symplectic structures.

C.1 Hyperplane Field

A hyperplane field E on a manifold M is a codimension one sub-bundle of the tangent bundle TM .

Locally, E can always be defined as the kernel of certain 1-form κ. The Euler number χ(M) = 0

implies that generic vector fields or 1-forms on M have no zeros. So l. In particular, any nowhere-

vanishing 1-form κ defines a global hyperplane field E = ker(κ). Note that rescaling κ→ efκ does

not change the corresponding hyperplane field. If M is further equipped with a Riemannian metric

g, one can define a vector field R associated to κ

g (R, ·) ≡ κ (·) . (C.1.1)

C.2 Almost contact structure

Let M be a 2n + 1 oriented dimensional smooth manifold. An almost contact structure2 on M

consists of a nowhere-vanishing 1-form κ, a nowhere vanishing vector field R and a (1, 1)-type

tensor Φm
n viewed as a map Φ : Γ(TM)→ Γ(TM), such that

κ (R) = 1, Φ2 = −1 +R⊗ κ. (C.2.1)

1However we point out that the convention of exterior derivative d in [2] is such that, for instance,

dκ =
1

2
(∂mκn) dxm ∧ dxn (C.0.1)

2An almost contact structure can also be defined as a reduction of structure group from SO(2n+ 1) to U(n).
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Note that the condition Φ (R) = κ ◦ Φ = 0 can be derived from the above conditions.

Given an almost contact structure, one can always find a (actually infinitely many) compatible

metric g such that

g (R, ·) = κ (·) . (C.2.2)

Together with the metric, (κ,R,Φ, g) is called an almost contact metric structure.

C.3 Almost CR structure

A almost contact structure is equivalent to the notion of almost CR structure, which emphasizes

the decomposition of TMH = T 1,0 ⊕ T 0,1, induced by Φ, such that

Φ|T 1,0 = i, Φ|T 0,1 = −i (C.3.1)

C.4 Contact Structure

Let M be a 2n + 1-dimensional compact smooth manifold. Let κ be a nowhere-vanishing 1-form.

Then it defines the horizontal vector bundle TMH ⊂ TM , as we mentioned in the section 2.2.1.

In particular, κ defines a contact structure, or contact distribution TMH , if it satisfies

κ ∧ (dκ)n 6= 0, Everywhere on M. (C.4.1)

κ itself is called a contact 1-form of the structure. So in odd dimensions, dκ plays the role of

symplectic form in even dimensions; indeed, it renders the horizontal bundle TMH as a symplectic

vector bundle of rank 2n.

Once a contact 1-form is given, there is unique vector field R such that

κmR
m = 1, Rm(dκ)mn = 0. (C.4.2)

and we call it the Reeb vector field associated to contact the 1-form κ. The Reeb vector field on

a compact contact manifold generates 1-parameter family of diffeomorphisms (an effective smooth

R-action on M), which is usually called the Reeb flow ϕR(t), or the contact flow; the flow translates

points along the integral curves of the R. It follows from the definition that the flow preserves the

contact structure, since LR = ιRdκ+ dιR and LRκ = 0, LRdκ = 0.

It is important to note that the integral curves (or equivalently, the Reeb flow) of R have three

types of behaviors:

1) The regular type is that all the curves are closed and the Reeb flow generates free U(1)-action

on M , rendering M a principal U(1)-bundle over some 2n-dimensional symplectic manifold.

2) A quasi-regular type is that although the curves are all closed, the Reeb flow only generates

locally-free U(1)-action.

3) The irregular type captures the generic situations, where not all the integral curves are closed.

Irregular Reeb flows can have very bad behaviors, but if the Reeb vector field preserves some metric

on M , then the behavior could still be tractable. In other context, irregular Reeb flows are better
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than the other two types, in the sense that they are non-degenerate and may provide isolated closed

Reeb orbits.

C.5 Contact metric structure

Just as in symplectic geometry, one would like to have some metric and almost conplex structure

into the play, so that the contact structure has more “visible” properties.

Given a contact 1-form κ, one can define a set of quantities (κ,R, g,Φ) where g is a metric and

Φ is a (1, 1)-type tensor, such that

gmnR
n = κm, 2gmkΦ

k
n = (dκ)mn = ∇LC

m κn −∇LC
n κm, Φ2 = −1 +R⊗ κ. (C.5.1)

where ∇LC denotes the Levi-Civita connection of g. We call such set of quantities a contact metric

structure.

There are a few useful algebraic and differential relations between quantities. First we have

Φn
mR

m = κnΦn
m = 0,

(−1)n

2nn!
κ ∧ (dκ)n = Ωg. (C.5.2)

where Ωg is the volume form associated to metric g. From this one can show that dκ satisfies

ιR ∗ dκ = dκ. (C.5.3)

And in fact, if one takes an adapted vielbein, for instance in 5-dimension, satisfying e5 = R, Φ (e2i−1) =

e2i, κ (e1,2,3,4) = 0, i = 1, 2, one has

dκ = 2
(
e1 ∧ e2 + e3 ∧ e4

)
. (C.5.4)

Moreover, using ιRdκ = 0 and κ(R) = 1, it can shown that

Rn∇mκn = κn∇mRn = Rm∇mRn = 0, (C.5.5)

namely R is geodesic.

There are useful relations between R and Φ: for any contact metric structure,

Rm∇LC
m Φn

k = 0. (C.5.6)

and also

∇LC
m Rn = −Φn

m −
1

2
(Φ ◦ LRΦ)nm. (C.5.7)

C.6 K-contact structure

As we have mentioned earlier, irregular Reeb flows can be more tractable if certain metric is invariant

under the flow. This leads to the notion of K-contact structure, where the Reeb vector field is Killing

with respect to the metric in a contact metric structure:
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It is called a K-contact structure, if a contact metric structure satisfies an additional condition

LRg = 0. (C.6.1)

Note that this is equivalent to, since Φ and dκ are related by metric g, it is easy to see that LRΦ = 0,

and consequently, ∇mRn = −Φn
m.

C.7 Sasakian Structure

A Sasakian structure is a K-contact structure (κ,R, g,Φ) with additional constraint

(∇XΦ)Y = g (X,Y )R− κ (Y )X (C.7.1)

Sasakian structures are Kähler structures in the odd dimensional world. Therefore, it enjoys many

simple properties that allow simplification in computations.

C.8 Generalized Tanaka-Webster connection

There have been several special connections on contact metric structures introduced in various

literatures. For us, the most important one is the generalized Tanaka-Webster connection. There are

actually two special connections, both of which are called generalized Tanaka-Webster connection,

one introduced by Tanno [53] and the other introduced in [41]. Their names comes from the

property that when restricted on a integrable CR structure, the two connections reduces to the

usual Tanaka-Webster connection. The former connection satisfies

∇κ = ∇R = ∇g = 0. (C.8.1)

On a general contact metric structure, the two connections are different. However, when the

structure is K-contact, the two connections induces the same Dirac operator on the spin bundle S

via the standard formula

/∇TW ≡ Γm∇TW
m = Γm

(
∂m +

1

4

(
ωTW
m

)A
B

ΓAB
)
. (C.8.2)

In terms of the Levi-Civita connection ∇LC, this Dirac operator reads

/∇TW
ψ = /∇LC

ψ +
1

4
dκ · ψ, (C.8.3)

which is the operator that appears in the localization locus (4.2.30). Using the projection P± to

chiral and anti-chiral spinors, one has for chiral spinor ∀φ+ ∈ Γ(S+)

P− /∇
TW

φ+ = P− /∇
LC
φ+, P+ /∇

TW
φ+ = −

(
∇LC
R +

1

4
dκ·
)
φ+ = −∇TW

R φ+. (C.8.4)
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C.9 Compatible Connection

Suppose ∇ is any affine connection on TM , then one can define new connection ∇̂ that preserves

ϕ:

∇̂mXn ≡ ∇mXn +Kn
mkX

k (C.9.1)

where

Kn
ml ≡ −

1

2

(
∇mϕlk

)
ϕk

n − 1

2
κl∇mRn +Rn∇mκl (C.9.2)

If the affine connection ∇ is chosen to be the Levi-civita connection associated to the ACMS

structure, then one has

Knml = −Klmn (C.9.3)

As mentioned, we have

∇̂mϕnk = 0 (C.9.4)

Moreover, for any X,Y ∈ Γ(TMH), one has

g(∇̂XY,R) = 0 (C.9.5)

which means ∇̂XY ∈ Γ(TMH), the restriction of ∇̂ on TMH gives directly a connection ∇̂|TMH
≡

∇H on TMH .

The connection coefficients are now

Γ̂n ml = Γnml +Kn
ml (C.9.6)

and the corresponding change of spin connection

∆ωma
b = ωma

b +Kb
ma (C.9.7)

where we define the spin connection3

ωma
b ≡ eb (∇mea) = ebn∇mean = ebn∂me

n
a + Γbma (C.9.10)

In three dimension, where one has relation

ϕmn = εmnkR
k, Rm = κm (C.9.11)

K can be simplified as

Kn
ml = Rn∇mRl −Rl∇mRn (C.9.12)

3Note that the position of the flat indices a and b indicates that

∇mψ = ∂mψ −
1

4
ωmabΓ

abψ (C.9.8)

as opposed to the frequently used notation ωm
b
a which indicates

∇mψ = ∂mψ +
1

4
ωmabΓ

abψ (C.9.9)
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The covariant derivative on spinor with new connection is now

∇̂mξI = ∇mξI −
1

4
KlmnΓnlξI (C.9.13)

Now, let’s consider the ACMS data coming from
(
s−1R, s−1κ, r (t) tΘ, g

)
, where

r (t) =
1

s

√
−2

tr (t2)
(C.9.14)

such that

r(t)2(tΘ)2 = −1 +
(
s−2R

)
⊗ κ (C.9.15)

Substituting all these into definition of K, one has (with the assumption that Ω− = 0)

Knml =
1

s2
(Rn∇mRl −Rl∇mRn) +

1

s

1

tr (t2)
(Tm)IJ

(
ΘIJ

)
ln

−r(t)2 [(∗VV )kmr(tΘ)l
r − (∗VV )lmr(tΘ)k

r] (tΘ)kn

(C.9.16)

where

(Tm)IJ ≡
(
∇AmtIK

)
tKJ (C.9.17)

Note that when s = 1, Knml = −Klmn.

To calculate the spin connection, one needs several convenient formula

(tΘ)nmΓnξI = (sΓm −Rm) tI
JξJ (C.9.18)

(tΘ)nmΓknξI = Γk (Γms−Rm) tJ IξJ − (tΘ)kmξI ⇒ (tΘ)mnΓmnξI = −4stJ IξJ (C.9.19)

RmΓnmξI = (sΓn −Rn) ξI (C.9.20)

Finally, one has

∇̂mξI = ∇mξI +
1

tr (t2)
(Tm)J IξJ −

1

2s
∇mRnΓnξI +

1

2
(∇m log s) ξI

− 1

tr (t2)
ηq(tΘ)qmtI

JξJ +
1

2

(
∗V V

)
mpq

ΓpqξI
(C.9.21)

Some remark. We used almost contact data ϕ defined as ∼ tΘ, but in fact one could use any

SU(2) triplet function λ to define ϕλ ∼ λΘ, and in particular, one could choose λ = λaσ
a. It also

has corresponding compatible connection ∇̂λ, such that

∇̂λϕλ = 0 (C.9.22)

However, the tensor Klmn would not have the above simple form.
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Appendix D

SpinC bundle and the Dolbeault-Dirac

operator

In this appendix we review the SpinC bundles on a contact metric manifold and a canonical Dirac

operator on any K-contact structure.

Consider a contact metric structure (κ,R, g,Φ). Then on the horizontal tangent bundle TMH ,

Φ defines a complex structure and thus induces a (p, q)-decomposition of the complexification

TMH ⊗ C = T 1,0M ⊕ T 0,1M, ∧•TM∗H ⊗ C = ⊕T p,qM∗ (D.0.1)

Let us focus on a 5-dimensional contact metric structure (M ;κ,R, g,Φ). One can start from an

adapted vielbein eA as discussed before, and consider the complexification

ez1 ≡ e1 + ie2, ez2 ≡ e3 + ie4. (D.0.2)

With this complex basis, one sees that dκ is of type-(1, 1) as expected

dκ = i
(
ez1 ∧ ez̄1 + ez2 ∧ ez̄2

)
. (D.0.3)

The bundle W 0 ≡ T 0,•M∗ is also a SpinC bundle in the sense that TM∗ acts on it in a Clifford

manner ω · ψ =
√

2i
(
ωīē

ī ∧ ψ − gījωjιeīψ
)
, ω = ωie

i + ωīē
ī ∈ Γ (TM∗H)

κ · ψ = e1 · e2 · e3 · e4 · ψ
. (D.0.4)

which satisfies the Clifford algebra {ω·, µ·} = 2g (ω, µ). In particular, W 0 decomposes into chiral

and anti-chiral spinor bundle according to the eigenvalue ±1 of ΓC ≡ −κ ·

W 0 = W 0
+ ⊕W 0

−, W 0
+ ≡ T 0,0M∗ ⊕ T 0,2M∗, W 0

− ≡ T 0,1M∗. (D.0.5)

Using the complex basis ez̄i , one can define an orthonormal basis of W 0:

W 0
+ = span

{
1,

1

2
ez̄1 ∧ ez̄2

}
, W 0

− = span

{
1√
2
ez̄1 ,

1√
2
ez̄2
}

(D.0.6)
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If one represents

φ = a1 +
a2

2
ez̄1 ∧ ez̄2 +

a3√
2
ez̄1 +

a4√
2
ez̄2 ↔ (a1, a2, a3, a4)T , (D.0.7)

then the above Clifford action is represented as (A.1.10).

On a contact metric structure, there may be other SpinC bundles. They can be obtained by

tensoring an arbitrary complex line bundle E:

W = W 0 ⊗ E, W± = W 0
± ⊗ E (D.0.8)

In particular, when the manifold is spin, the spin bundle S can be obtained by

S = W 0 ⊗K−1/2
M ⇔W 0 = S ⊗K1/2

M (D.0.9)

where KM ≡ T 0,2M∗. More generally, any SpinC bundle W can be written as W = S ⊗ L1/2

for some complex line bundle L1/2 (and its square L is called the determinant line bundle of W ).

For instance, W 0 = S ⊗ K1/2
M and therefore the determinant line bundle L0 of W 0 is L0 = KM .

Generally, the determinant line bundle L of W = W 0 ⊗ E is L = KM ⊗ E2.

This implies that given a connection on S (which can be induced from a metric connection ωAB)

and a U(1)-connection1 A on L1/2, we have a connection on W = S ⊗ L1/2

∇Aψ = ∇ψ − iAψ, ∀ψ ∈ Γ(W ) (D.0.10)

The situation of W 0 is a bit special, since one can induce a canonical U(1)-connection A0 on KM

using the Chern connection ∇C on the almost-hermitian cone C(M). Therefore, taking A0 as a

reference connection, any connection A on a SpinC bundle W can be written in terms of a U(1)-

connection a on E as A = 1
2A0 + a.

The above construction is good for any contact metric structure. Now let us focus on a K-contact

structure, and use the generalized Tanaka-Webster connection to induce a connection ∇TW on S.

Combining with a U(1)-connection A on L1/2, one can define a Dirac operator /D
TW
A [41, 42, 53]

/D
TW
A ≡ Γ · ∇TW

A (D.0.11)

In [41], it is shown that when E is trivial and a = 0, namely A = 1/2A0,

/D
TW
A0/2 (α+ β) = LR (α+ β) + ∂̄α+ ∂̄∗β, α+ β ∈ Ω0,0 ⊕ Ω0,2 = Γ(W 0

+) (D.0.12)

where the Dolbeault operator ∂ and ∂̄ are defined in the usual way2

∂ ≡ πp+1,q ◦ d : T p,qM∗ → T p+1,qM∗, ∂̄ ≡ πp,q+1 ◦ d : T p,qM∗ → T p,q+1M∗ (D.0.14)

1A local basis σ on L1/2 is assumed, such that ∇A (fσ) = df ⊗ σ − iA⊗ (fσ)
2On a K-contact structure, on has in general (recall that LR preserves Φ and therefore the (p, q)-decomposition)

d : T p,qM∗ → κ ∧ T p,qM∗ ⊕
(
T p+1,qM∗ ⊕ T p,q+1M∗ ⊕ T p+2,q−1M∗ ⊕ T p−1,q+1M∗

)
(D.0.13)
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Note that the two operators do not square to zero in general; define N (ωp,q) ≡ πp−1,q+2 (dωp,q) and

N̄ (ωp,q) ≡ πp+2,q−1 (dωp,q), then one has

∂̄2αp,q = −N (∂αp,q)− ∂N (αp,q) , ∂2αp,q = −N̄
(
∂̄αp,q

)
− ∂̄N̄ (αp,q) , (D.0.15){

∂, ∂̄
}
ωp,q = −dκ ∧ LRωp,q −

{
N, N̄

}
(ωp,q) , (D.0.16)

which are almost identical to those on symplectic 4-manifolds, except for the term dκ ∧ LR. On

a Sasakian structure, the Nijenhuis map N and N̄ vanish and ∂2 = ∂̄2 = 0, similar to Kähler

structure.

Weitzenböck Formula

We review several useful formula for studying 5d Seiberg-Witten equations, which are direct

generalization from those on symplectic 4-manifolds.

Consider W = W 0 ⊗ E with U(1)-connection a on E, with curvature Fa = da. Then for

α ∈ Ω0,0(E), β ∈ Ω0,2(E), one has Weitzenböck formula

2∂̄∗a∂̄aα = dJ∗a d
J
aα− ΛF 1,1

a α+ 2iLaRα, 2∂̄a∂̄
∗
aβ = ∇∗A0+a∇A0+aβ − ΛFA0+a + 2iLaRβ. (D.0.17)

where we define operator dJa ≡ ∂a + ∂̄a, ∇A0+a is the connection induced by A0 and a on KM ⊗E,

Λ as the adjoint of wedging dκ:〈
αp−1,q−1,Λβp,q

〉
=

1

2

〈
dκ ∧ αp−1,q−1, βp,q

〉
, 〈α, β〉 ≡

∫
M
α ∧ ∗Cβ (D.0.18)

The Weitzenböck formula can be shown using Kähler identities

i∂̄∗aω
p,q = [Λ, ∂a]ω

p,q, −i∂∗aωp,q =
[
Λ, ∂̄a

]
ωp,q, ∀ωp,q ∈ Ωp,q(E). (D.0.19)

and the fact that the Dolbeault operators can be expressed in terms of ∇TW

∂̄ = ez̄i ∧∇TW
ezi

, ∂̄∗ = −2ι (ez̄i)∇TW
ezi

. (D.0.20)

for an adapted complex vielbein.
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Appendix E

The integrability of Transversal

Holomorphic Foliation

In this appendix we discuss the spinorial holomorphy condition and the integrability of the canonical

almost transversal holomorphic foliation Φ = Φ[t] in terms of its Niejenhuis tensor.

E.1 The spinorial holomorphy condition

We prove the spinorial characterization of T 1,0 and T 1,0 ⊕ RR in equations (3.2.11) and (3.2.13).

Assume X ∈ T 1,0, namely Φm
nX

n = iXm. Then

−
√

1

detm
mI

J
(
ξIΓmΓnξJ

)
Xn + iδJI

(
ξIΓmΓnξJ

)
Xn = 0, (E.1.1)

which simplifies to HI
J
(
ξIΓmΓnξJ

)
Xn = 0, where HI

J ≡ (detm)−1/2mI
J − iδJI .

Due to the reality properties of mIJ we have the identity
∑
HI

KHJ
K = 2iHI

J . Contracting

the above with Xm and inserting the identity, one has

XmHI
KHJ

KεII
′
ξαI′Cαβ(Γm)βγ(Γn)γδξ

δ
JX

n = 0

⇔ XmHK
I(Γm)γβξ

β
IX

nHK
J(Γn)γδξ

δ
J = 0

⇔
∑
K,α

∆α
K∆α

K = 0

(E.1.2)

This implies ∆α
K = 0, namely HI

JXmΓmξJ = 0.

It is obvious how to extend toX ∈ T 1,0⊕RR, one just need to project out the vertical components

of X, and the horizontal components should satisfy HI
JXmΓmξJ = 0. Namely,

HI
JΠm

nX
nΓmξJ = 0, Πm

n = δnm −Rmκn. (E.1.3)
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E.2 The Nijenhuis tensor and [T 1,0, T 1,0]

Given an almost CR structure (κ,R,Φ), one can define its Nijenhuis tensor as

NΦ (X,Y ) ≡ − [X,Y ] + κ ([X,Y ])R+ [ΦX,ΦY ]− Φ [ΦX,Y ]− Φ [X,ΦY ] , (E.2.1)

which can be expressed in components

Nk
mn ≡ Φl

m∇lΦk
n − Φl

n∇lΦk
m + Φk

l∇nΦl
m − Φk

l∇mΦl
n. (E.2.2)

For simplicity, we restrict our analysis to the canonical almost CR structure determined by tIJ ,

namely

Φm
n ≡

√
1

det t
tIJ (ξIΓ

m
nξJ) . (E.2.3)

By explicitly inserting the Killing spinor equation and the dilatino equation into (E.2.2), one finds

that

NΦ (X,Y ) + dκ (ΦX,ΦY )R = 0, ∀X,Y ∈ Γ(TMH), (E.2.4)

provided that

XmDm

(
tIJ√
det t

)
= 0, ∀X ∈ Γ(TMH), (E.2.5)

where TMH is the horizontal part of the tangent bundle. Of course this condition is the same as in

(3.3.18).

We will now show that the above condition (E.2.4) is equivalent to the statement that[
T 1,0, T 1,0

]
⊂ T 1,0 ⊕ CR. (E.2.6)

To do so, consider X,Y ∈ T 1,0. Using Φ(X) = ıX and κ([X,Y ]) = −dκ(X,Y ), one can evaluate

(E.2.1):

NΦ(X,Y ) + dκ(X,Y ) = −2(1 + ıΦ)[X,Y ] = −2[X,Y ]0,1. (E.2.7)

It is clear that (E.2.4) implies that [X,Y ] ∈ T 1,0 ⊕ CR and vice versa.

E.3 £sRΦ and [T 1,0, R]

In section 3.4 we showed gravitino and dilatino equations imply that for the canonical almost CR

structure £sRΦ = 0. For any X ∈ TM it follows that

£sR(ΦX) = Φ(s[R,X]−X(s)R) = sΦ([R,X]). (E.3.1)

On the other hand

£sR(ΦX) = [sR,ΦX] = s[R,ΦX]− (ΦX)(s)R (E.3.2)

and thus

sΦ([R,X]) = s[R,ΦX]− (ΦX)(s)R, (E.3.3)
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which we rewrite as

[R,ΦX] = Φ([R,X]) + (ΦX)(log s)R. (E.3.4)

Now, consider that any X1,0 ∈ T 1,0 can be written as X1,0 = X − ıΦX for some X ∈ TMH .

Then

[X1,0, R] = (1− ıΦ)[X,R] + ı(ΦX)(log s)R = [X,R]1,0 + (κ([X,R]) + ı(ΦX)(log s))R ∈ T 1,0 ⊕ CR.
(E.3.5)

In other words, we have confirmed that the canonical almost CR structure defines a THF as long

as the triplet t JI is covariantly constant; i.e. equation (3.3.18).
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