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Abstract of the Dissertation

Exact Results in Supersymmetric and Superconformal Quantum Field Theories

by

Wolfger Peelaers

Doctor of Philosophy

in

Physics

Stony Brook University

2015

In this dissertation we perform exact, non-perturbative computations in
supersymmetric and superconformal quantum field theories.

In the first part, we show that the conformal bootstrap equations, which
implement the requirement that in a conformal quantum field theory any
four-point function should be crossing symmetric, have an exactly solvable
truncation in theories with extended supersymmetry. As a result, we in-
troduce a new 4d/2d correspondence that assigns to any four-dimensional
N = 2 superconformal quantum field theory, Lagrangian or non-Lagrangian,
a two-dimensional chiral algebra, and subsequently explore its structure in
the context of theories of class S.

In the second part, we extend the application of the so-called Higgs branch
localization technique to evaluate exactly the path integral of Lagrangian
supersymmetric quantum field theories, placed on compact three- and four-
dimensional Euclidean manifolds.

iii



Contents

1 Introduction 1

I Infinite Chiral Symmetry in Four Dimensions 6

2 Infinite Chiral Symmetry in Four Dimensions 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Chiral symmetry algebras in four dimensions . . . . . . . . . . 14

2.2.1 A brief review of chiral symmetry in two dimensions . . 15
2.2.2 Twisted conformal subalgebras . . . . . . . . . . . . . 17
2.2.3 The cohomology classes of local operators . . . . . . . 22
2.2.4 A chiral operator product expansion . . . . . . . . . . 24

2.3 The SCFT/chiral algebra correspondence . . . . . . . . . . . . 26
2.3.1 Schur operators . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Notable elements of the chiral algebra . . . . . . . . . . 33
2.3.3 The chiral algebras of free theories . . . . . . . . . . . 40
2.3.4 Gauging prescription . . . . . . . . . . . . . . . . . . . 45

2.4 Consequences for four-dimensional physics . . . . . . . . . . . 52
2.4.1 Conformal twisting and superconformal Ward identities 53
2.4.2 Four-dimensional unitarity and central charge bounds . 55
2.4.3 Saturation of unitarity bounds . . . . . . . . . . . . . . 61
2.4.4 Torus partition function and the superconformal index 64

2.5 Examples and conjectures . . . . . . . . . . . . . . . . . . . . 66
2.5.1 SU(2) superconformal QCD . . . . . . . . . . . . . . . 67
2.5.2 SU(N) superconformal QCD with N > 3 . . . . . . . . 74
2.5.3 N = 4 supersymmetric Yang-Mills theory . . . . . . . 81
2.5.4 Class S at genus two . . . . . . . . . . . . . . . . . . . 87

2.6 Beyond Lagrangian theories . . . . . . . . . . . . . . . . . . . 90

iv



3 Chiral Algebras of class S 92
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.2.1 Review of protected chiral algebras . . . . . . . . . . . 95
3.2.2 Review of theories of class S . . . . . . . . . . . . . . . 102

3.3 Chiral algebras of class S . . . . . . . . . . . . . . . . . . . . . 114
3.3.1 A TQFT valued in chiral algebras . . . . . . . . . . . . 116
3.3.2 Lagrangian class S building blocks . . . . . . . . . . . 121
3.3.3 Trinion chiral algebras . . . . . . . . . . . . . . . . . . 122
3.3.4 A theory space bootstrap? . . . . . . . . . . . . . . . . 133

3.4 Reduced punctures . . . . . . . . . . . . . . . . . . . . . . . . 137
3.4.1 Quantum Drinfeld-Sokolov for modules . . . . . . . . . 139
3.4.2 Virasoro central charge and the reduced stress tensor . 144
3.4.3 Reduction of the superconformal index . . . . . . . . . 145
3.4.4 Simple examples . . . . . . . . . . . . . . . . . . . . . 148

3.5 Cylinders and Caps . . . . . . . . . . . . . . . . . . . . . . . . 156
3.5.1 The cylinder chiral algebra . . . . . . . . . . . . . . . . 157
3.5.2 The (decorated) cap chiral algebra . . . . . . . . . . . 160

4 Chiral Algebras for Trinion Theories 162
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.2 Tn indexology . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.3 The T4 chiral algebra . . . . . . . . . . . . . . . . . . . . . . . 172

5 Conclusions 183

II Higgs Branch Localization 186

6 Higgs Branch Localization in Three Dimensions 187
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.2 Higgs branch localization on S3

b . . . . . . . . . . . . . . . . . 189
6.2.1 Killing spinors on S3

b . . . . . . . . . . . . . . . . . . . 190
6.2.2 The BPS equations . . . . . . . . . . . . . . . . . . . . 192
6.2.3 BPS solutions: Coulomb, Higgs and vortices . . . . . . 197
6.2.4 Computation of the partition function . . . . . . . . . 202
6.2.5 Matching with the Coulomb branch integral . . . . . . 209

v



6.2.6 Comparison with the two-dimensional vortex partition
function . . . . . . . . . . . . . . . . . . . . . . . . . . 213

6.3 Higgs branch localization on S2 × S1 . . . . . . . . . . . . . . 214
6.3.1 Killing spinors on S2 × S1, supersymmetric index and

deformed background . . . . . . . . . . . . . . . . . . . 214
6.3.2 The BPS equations . . . . . . . . . . . . . . . . . . . . 218
6.3.3 BPS solutions: Coulomb, Higgs and vortices . . . . . . 220
6.3.4 Computation of the index . . . . . . . . . . . . . . . . 224
6.3.5 Matching with the Coulomb branch integral . . . . . . 230

7 Higgs branch localization of N = 1 theories on S3 × S1 233
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
7.2 Killing spinors on S3×S1, supersymmetric index and deformed

background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
7.3 The BPS equations . . . . . . . . . . . . . . . . . . . . . . . . 240
7.4 BPS solutions: Coulomb, Higgs and vortices . . . . . . . . . . 243
7.5 Computation of the index . . . . . . . . . . . . . . . . . . . . 247

7.5.1 One-loop determinants from an index theorem . . . . . 247
7.5.2 Coulomb branch . . . . . . . . . . . . . . . . . . . . . 250
7.5.3 Deformed Coulomb branch . . . . . . . . . . . . . . . . 251
7.5.4 Higgs branch and vortices . . . . . . . . . . . . . . . . 252

7.6 Matching the Coulomb branch expression . . . . . . . . . . . . 255

8 Conclusions 260

III Appendices 262

A Infinite Chiral Symmetry in Four Dimensions 263
A.1 Superconformal algebras . . . . . . . . . . . . . . . . . . . . . 263

A.1.1 The four-dimensional superconformal algebra . . . . . 263
A.1.2 The two-dimensional superconformal algebra . . . . . . 265

A.2 Shortening conditions and indices of su(2, 2 | 2) . . . . . . . . . 266
A.3 Kazhdan-Lusztig polynomials and affine characters . . . . . . 270

B Chiral algebras of class S 275
B.1 Details for rank two theories . . . . . . . . . . . . . . . . . . . 275

B.1.1 Argyres-Seiberg duality . . . . . . . . . . . . . . . . . . 278

vi



B.1.2 Reduction of T3 to free hypermultiplets . . . . . . . . . 280
B.2 Cylinder and cap details . . . . . . . . . . . . . . . . . . . . . 283

B.2.1 Schur indices . . . . . . . . . . . . . . . . . . . . . . . 283
B.2.2 QDS argument . . . . . . . . . . . . . . . . . . . . . . 286

B.3 Spectral sequences for double complexes . . . . . . . . . . . . 291

C Chiral Algebras for Trinion Theories 294
C.1 Affine critical characters and the Schur index . . . . . . . . . . 294
C.2 The OPEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

D Higgs Branch Localization in Three Dimensions 300
D.1 Spinor conventions . . . . . . . . . . . . . . . . . . . . . . . . 300
D.2 Supersymmetric theories on three-manifolds . . . . . . . . . . 301

D.2.1 The superconformal algebra . . . . . . . . . . . . . . . 302
D.2.2 Commuting Killing spinors . . . . . . . . . . . . . . . . 304
D.2.3 Supersymmetric actions . . . . . . . . . . . . . . . . . 305

D.3 One-loop determinants from an index theorem . . . . . . . . . 306
D.4 One-loop deteminants on S2 × S1: poles at zero or infinity . . 309

E Higgs branch localization of N = 1 theories on S3 × S1 313
E.1 Spinor conventions . . . . . . . . . . . . . . . . . . . . . . . . 313
E.2 N = 1 supersymmetry algebra on Euclidean four-manifolds . . 314
E.3 Elliptic gamma function . . . . . . . . . . . . . . . . . . . . . 315

vii



List of Figures

2.1 Weak coupling limits of the genus two class S theory. . . . . . 87

3.1 Elementary building blocks of a two-dimensional TQFT. . . . 116
3.2 Additional building blocks of a class S TQFT. . . . . . . . . . 117
3.3 Associativity of composition of Tn chiral algebras. . . . . . . . 118
3.4 Duality and the S-diagram. . . . . . . . . . . . . . . . . . . . 120
3.5 Gluing together maximal punctures. . . . . . . . . . . . . . . . 134
3.6 Associativity with respect to gluing in free hypermultiplets. . . 136
3.7 Reduction from the so(8) theory to T2. . . . . . . . . . . . . . 150
3.8 Reduction from the e6 theory to free hypermultiplets. . . . . . 154
3.9 Characteristic property of the identity morphism. . . . . . . . 157

viii



List of Tables

2.1 This table summarizes the manner in which Schur operators
fit into short multiplets of the N = 2 superconformal algebra. 30

2.2 Dual Coxeter number and dimensions for simple Lie groups. . 59
2.3 Unitarity bounds for the anomaly coefficient k4d arising from

positivity of the B̂2 three-point function in non-singlet chan-
nels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4 Central charges for N = 2 SCFTs with Higgs branches given
by one-instanton moduli spaces for GF instantons. Models
corresponding to the right-most two columns are not known
to exist, but must satisfy these conditions for their central
charges if they do. . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5 The operator content of the chiral algebra up to level 5. . . . . 74
2.6 Chiral algebra generators for the genus two theory with h 6 3. 91

3.1 This table summarizes the manner in which Schur operators
fit into short multiplets of the N = 2 superconformal algebra. 97

3.2 Central charges of the chiral algebras χ[Tn] for small values of
n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.3 The operator content of the e6 current algebra up to dimension
four. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.4 The quantum numbers of redundant generators of the reduced
T3 chiral algebra. . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.1 T4 generators G, their dimension hG and their su(4)3 represen-
tation RG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.2 Quantum numbers and multiplicities of T4 null operators up
to dimension 7

2
. . . . . . . . . . . . . . . . . . . . . . . . . . . 175

ix



4.3 Explicit null relations up to dimension three, which can be
uplifted to four-dimensional Higgs branch chiral ring relations. 176

4.4 Explicit null relations at dimension 7/2, which can be uplifted
to four-dimensional Higgs branch chiral ring relations. Similar
comments as for Table 4.3 apply. . . . . . . . . . . . . . . . . 178

A.1 Unitary irreducible representations of the N = 2 superconfor-
mal algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

B.1 Null state relations at level two in the χ[T3] chiral algebra. . . 277
B.2 (Redundant) generators of the cylinder theory for g = su(3). . 287

x



Acknowledgments

I would like to express my gratitude to my advisor, Leonardo Rastelli, for his
guidance and support; for teaching me not only a great amount of physics,
but also how to do research in physics.

It is furthermore my pleasure to thank Peter van Nieuwenhuizen for teach-
ing all these excellent classes over the years and in particular for giving me
the opportunity to take a yearlong reading class on supersymmetry and su-
pergravity with him: the knowledge I gained and the skills I learned in these
classes are the foundation on which this dissertation has been built. I’d also
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Chapter 1

Introduction

Quantum field theory has proved itself to be a versatile and powerful frame-
work to describe nature at the shortest length scales. If a Lagrangian descrip-
tion is available, a quantum field theory can be defined in terms of the path
integral over the infinite-dimensional space of fields. The phenomenologi-
cally most successful instance of this kind, the Standard Model, adequately
captures all elementary particles and their non-gravitational interactions dis-
covered thus far. However, various experimental observations and theoretical
considerations indicate that it is only an effective theory with new physics
entering at higher energies. One of the theoretically most appealing exten-
sions of the Standard Model arises by enlarging its Poincaré symmetry to
(Poincaré) supersymmetry, which is often lauded for providing an elegant
solution to the hierarchy problem.1

Computations in the Lagrangian subspace of quantum field theories are
typically performed in a weakly coupled regime of the theory where standard
perturbation theory can be applied. However, our aim should be to obtain
exact, non-perturbative results. It is clear then that perturbative expansions
around a (possibly non-perturbative) saddle-point are not the correct tool,
since they are asymptotic series with zero radius of convergence and, by
their very nature, do not include any non-perturbative corrections. The
situation can be exemplified as follows: perturbative predictions made within
the Standard Model are in remarkable agreement with experimental data,
but we stand empty-handed to address problems such as the generation of

1The simple observation that the pairing of bosonic degrees of freedom to fermionic
ones leads to dramatic cancellations, in this case in the radiative corrections to the Higgs
boson mass, will be a recurring feature in Part II of this dissertation.
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a mass gap in pure Yang-Mills theories, quark confinement and spontaneous
chiral symmetry breaking in quantum chromodynamics,. . . , since they are
well outside the regime of validity of perturbation theory.

In combination with the aforementioned supersymmetry, the situation
improves dramatically. Indeed, apart from potential phenomenological ap-
plications, supersymmetric quantum field theories have long been recognized
as appealing theoretical laboratories to test more general ideas in quantum
field theories — perhaps their most attractive feature being our ability to
obtain exact, non-perturbative results. For example, the exact low energy
effective action of four-dimensional N = 2 super Yang-Mills theory, deter-
mined in [7] by leveraging holomorphy and electric-magnetic duality, when
further perturbed by a superpotential term that breaks N = 2 supersym-
metry to N = 1, exhibits quark confinement via condensation of magnetic
monopoles in a concrete way.

Another theoretically interesting class of quantum field theories are those
that feature conformal symmetry. In fact, their distinct character among
quantum field theories becomes clear when adapting the alternative way of
thinking about quantum field theory as the study of renormalization group
flows, whose fixed points are precisely conformal field theories.

The purpose of this dissertation now is to develop and apply general tools
that enable us to study in detail and in an exact fashion certain (classes of)
observables in theories endowed with additional symmetries – the aforemen-
tioned supersymmetry, conformal symmetry or a combination thereof – that
constrain their dynamics and thereby make them more tractable.

Infinite Chiral Symmetry in Four Dimensions

In recent years, the importance and abundance of superconformal quantum
field theories has become increasingly clear. Generically, they do not admit a
Lagrangian description and are strongly interacting. Techniques to access the
strongly coupled phases of these theories directly are scarce: for example, the
localization techniques of the next paragraph crucially rely on a Lagrangian
formulation. On the other hand, as conformal field theories, they possess a
convergent operator product expansion and are completely specified by their
conformal data, i.e., their spectrum of operators and the collection of three-
point couplings. The latter must satisfy the stringent consistency conditions
arising from the requirement that any four-point function should be crossing
symmetric or equivalently, that the operator algebra is associative, commonly

2



referred to as the conformal bootstrap equations. The conformal bootstrap
program [8, 9] then embodies the hope that given a few spectral assumptions,
crossing symmetry (and unitarity) will completely fix the conformal data of
the theory irrespective of the existence of a Lagrangian. Such an approach
was successfully carried out for certain classes of two-dimensional conformal
field theories, e.g., rational conformal field theories, but seemed to fall short
in more general (higher dimensional) CFTs. In combination with extended
supersymmetry, however, we will show in Part I that the crossing symmetry
equations admit an exactly solvable truncation.

More in detail, in chapter 2 we will show that in any four-dimensional
N = 2 superconformal field theory one can identify a subsector of protected
operators, restricted to be coplanar and treated at the level of cohomology
with respect to a particular nilpotent supercharge, whose operator prod-
uct expansions and correlation functions are meromorphic functions of their
position on the plane and thus define a chiral algebra. The resulting chi-
ral algebra has some remarkable properties: it features an enhancement of
global sl(2) conformal symmetry on the chiral algebra plane to full-fledged
Virasoro symmetry, and of possible flavor symmetries present in the four-
dimensional theory to affine symmetries. The two-dimensional translation of
exactly marginal gauging in the four-dimensional theory is elegantly given
by a BRST procedure. Interestingly, the spectrum and structure constants
of the chiral algebra are subject to a non-renormalization theorem and are
therefore independent of marginal couplings.

The chiral algebras associated to free theories are easily constructed and
are in principle sufficient ingredients to construct the chiral algebra for any
interacting Lagrangian theory via the gauging procedure. In practice, the
BRST cohomology problem is hard to solve, but we will formulate conjec-
tures and present various checks for the full chiral algebra associated to a
variety of Lagrangian theories. However, the 4d/2d correspondence does not
rely on the existence of a Lagrangian description in any way. In chapter 3,
we initiate the study of chiral algebras associated to N = 2 superconformal
theories of class S, which are obtained by a partially twisted compactifica-
tion of the six-dimensional (2, 0) theory on a punctured Riemann surface
[10, 11]. Thanks to their independence of exactly marginal couplings, chiral
algebras of class S are described by a generalized topological quantum field
theory (TQFT) on the Riemann surface. We conjecture the full set of gen-
erators of the chiral algebras corresponding to three-punctured spheres, i.e.,
associated to the trinion theories Tn, which are the natural basic building

3



blocks of said TQFT. Subsequently imposing associativity on the operator
algebra of these generators is expected to completely and uniquely fix the
chiral algebra. For the T3 theory we verify this expectation and checked the
conjecture in a variety of ways in chapter 3, and for the T4 theory in chap-
ter 4. It should be emphasized that such complete characterization implicitly
determines an infinite amount of protected conformal field theory data (spec-
tral data and three-point couplings) of the parent four-dimensional theory.
Through gluing, an arbitrary (maximal) punctured Riemann surface can be
obtained. The action of S-duality in the four-dimensional theory implies that
the TQFT should be associative. The final salient feature of class S theories
is the reduction of flavor symmetry by partial Higgsing: we find convinc-
ing evidence that the chiral algebra analogue is implemented by quantum
Drinfeld-Sokolov reduction.

Higgs Branch Localization

Recently, the exploration of exactly calculable quantities in supersymmet-
ric quantum field theories has focused on observables in the rich variety of
Lagrangian supersymmetric theories on compact Euclidean manifolds: the
application of supersymmetric localization techniques [12, 13] allows one to
compute exactly their partition function and to evaluate vacuum expectation
values of operators — local or non-local, order or disorder — preserving some
supersymmetry. In fact, the localization procedure supports (at least) two
alternative methods to perform the infinite-dimensional integrals over field
space, resulting in very different looking, but ultimately equal, expressions
for the partition function. In Part II of this dissertation, we will focus on
developing the second alternative method.

Technically, supersymmetric localization techniques guarantee that a one-
loop computation around the zeros of a positive definite deformation term
satisfying certain properties, gives the exact result for the path integral and
thus allow one to dramatically reduce it, in many examples to a finite-
dimensional problem. Since the seminal work in [14], a large number of
exact results have been obtained using what one may call Coulomb branch
localization, in which the path integral is reduced to an ordinary integral
over a classical Coulomb branch, i.e., the zeros of the canonically chosen
deformation term are arbitrary constant values for vector multiplet scalars
or holonomies around circles. It was first shown in the localization compu-
tation of N = (2, 2) theories on the two-dimensional sphere [15, 16] that
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upon choosing a particular additional deformation term (or equivalently, by
changing the integration contour of the auxiliary fields in complexified field
space) and if certain conditions on the parameters of the theory hold, the
localization locus instead consists of a finite number of discrete Higgs vacua,
where chiral multiplet scalars can acquire a vacuum expectation value solving
the D-term equations, accompanied by an infinite tower of point-like vortex
and anti-vortex solutions located at special points in the geometry. This
localization method is called Higgs branch localization. By closing the con-
tours of the integrals of the Coulomb branch localized result and summing
over the residues of the encircled poles, one can find a precise match with the
Higgs branch localized result. In chapter 6, we will show that Higgs branch
localization can be applied to three-dimensional N = 2 supersymmetric the-
ories on the squashed three-sphere S3

b and on S2 × S1, which computes the
three-dimensional supersymmetric index, thus providing a concrete deriva-
tion (alternative to the holomorphic blocks point of view in [17] and the
deformation argument in [18]) of the vortex anti-vortex factorized results ob-
tained by manipulating the Coulomb branch matrix integrals initiated in [19].
In chapter 7, we extend the Higgs branch localization results further to the
four-dimensional N = 1 superconformal index. In chapters 6,7, we also show
in detail that Coulomb branch localization and Higgs branch localization can
be viewed as limiting cases of an intermediate situation involving a deformed
Coulomb branch and a finite number of finite size vortices supported on the
compact geometry.

The contents of part I of this dissertation have appeared in the papers
[5, 2, 1], while those of part II have been published in [4, 3].
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Part I

Infinite Chiral Symmetry in
Four Dimensions
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Chapter 2

Infinite Chiral Symmetry in
Four Dimensions

2.1 Introduction

It has long been recognized that supersymmetric quantum field theories enjoy
many special properties that make them particularly useful testing grounds
for more general ideas about quantum field theory. This is largely a conse-
quence of the fact that many observables in such theories are “protected”,
in the sense of being determined by a semiclassical calculation with a finite
number of corrections taken into account, or alternatively by some related
“finite-dimensional” problem that admits the type of closed-form solution
that is uncharacteristic of interacting quantum field theories. In most cir-
cumstances, these techniques have a semiclassical flavor to them. For exam-
ple, in cases where supersymmetric partition functions can be computed by
localization, the calculation is generally performed starting from a weakly
coupled Lagrangian description of the theory.

A notable omission from the currently available techniques is a way to
directly access the interacting superconformal phases of theories that do not
admit a Lagrangian formulation. By now, there exists a veritable menagerie
of models in various dimensions that exhibit conformal phases with varying
amounts of supersymmetry, but only in the nicest cases do such models
belong to families that include free theories as special points, allowing for
properties of the interacting theory to be studied semiclassically. Even for
those Lagrangian models, the standard supersymmetric toolkit does not seem
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to exploit some of the most powerful structures of conformal field theory,
such as the existence of a state/operator map and of a well-controlled and
convergent operator product expansion.

Meanwhile, recent years have witnessed a surprising resurgence of prog-
ress centering around precisely these aspects of conformal field theory in
the form of the conformal bootstrap [8, 9]. In large part, this progress has
been inspired by the development of numerical techniques for extracting con-
straints on the defining data of a CFT using unitarity and crossing symmetry
[20, 21]. Generally speaking, these techniques are equally applicable to the-
ories with and without supersymmetry, and despite promising early results
[22, 23, 24, 25], it has not been entirely clear the extent to which supersymme-
try improves the situation. Nevertheless, the possibility that supersymmetry
may act as a crucible in which exact results can be forged even for strongly
interacting CFTs is irresistible, and we are led to ask the question:

Do the conformal bootstrap equations in dimension d > 2 admit a
solvable truncation in the case of superconformal field theories?

Having formulated the question, it is worth pausing to consider in what
sense the answer could be “yes”. The most natural possibilities correspond
to known situations in which bootstrap-type equations are rendered solv-
able. There are two primary scenarios in which the constraints of crossing
symmetry are nontrivial, yet solvable:

(I) Meromorphic (and rational) conformal field theories in two
dimensions.

(II) Topological quantum field theories.

The subject of this chapter is the realization of the first option in the context
of N > 2 superconformal field theories in four dimensions. The same option
is in fact viable for (2, 0) superconformal theories in six dimensions and was
worked out in [26]. Although we will not discuss the subject at any length
in the present chapter, the second option can also be realized using similar
techniques to those discussed herein.

The primary hint that such an embedding should be possible was already
observed in [27, 24], building upon the work of [28, 29, 30, 31, 32, 33]. In
a remarkable series of papers [28, 29, 30, 31, 32, 33, 27], the constraints of
superconformal symmetry on four-point functions of half-BPS operators in
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N = 2 and N = 4 superconformal field theories were studied in detail. This
analysis revealed that the superconformal Ward identities obeyed by these
correlators can be conveniently solved in terms of a set of arbitrary real-
analytic functions of the two conformal cross ratios (z, z̄), along with a set
of meromorphic functions of z alone. In a decomposition of the four-point
function as an infinite sum of conformal blocks, these meromorphic functions
capture the contribution to the double operator product expansion of inter-
mediate “protected” operators belonging to shortened representations. The
real surprise arises when these results are combined with the constraints of
crossing symmetry. One then finds [24, 27] that the meromorphic functions
obey a decoupled set of crossing equations, whose general solution can be
parametrized in terms of a finite number of coefficients. For example, in
the important case of the four-point function of stress-tensor multiplets in
an N = 4 theory, there is a one-parameter family of solutions, where the
parameter has a direct physical interpretation as the central charge (confor-
mal anomaly) of the theory. The upshot is that the protected part of this
correlator is entirely determined by abstract symmetry considerations, with
no reference to a free-field description of the theory.

In this chapter we establish a conceptual framework that explains and
vastly generalizes this observation. For a general N = 2 superconformal field
theory, we define a protected subsector by passing to the cohomology of a
certain nilpotent supercharge Q . This is a familiar strategy – for example,
the definition of the chiral ring in an N = 1 theory follows the same pattern
– but our version of this maneuver will be slightly unconventional, in that
we take Q = Q+S to be a linear combination of a Poincaré and a conformal
supercharge. In order to be in the cohomology of Q , local operators must
lie in a fixed plane R2 ⊂ R4. Crucially, their correlators can be shown to
be non-trivial meromorphic functions of their positions. This is in contrast
to correlators of N = 1 chiral operators, which are purely topological in a
general N = 1 model, and strictly vanish in an N = 1 conformal theory due
to R-charge conservation.

The meromorphic correlators identified by this cohomological construc-
tion are precisely the ingredients that define a two-dimensional chiral alge-
bra.1 Our main result is thus the definition of a map χ from the space of

1We have settled on the expression “chiral algebra” as it is the most common in the
physics literature. We consider it to be synonymous with “vertex operator algebra”,
though in the mathematical literature some authors make a distinction between the two
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four-dimensional N = 2 superconformal field theories to the space of two-
dimensional chiral algebras,

χ : 4d N = 2 SCFT −→ 2d Chiral Algebra.

In concrete terms, the chiral algebra computes correlation functions of certain
operators in the four-dimensional theory, which are restricted to be coplanar
and further given an explicit space-time dependence correlating their SU(2)R
orientation with their positions, see (2.2.27). For the case of four-point func-
tions of half-BPS operators, assigning the external operators this “twisted”
space-time dependence accomplishes precisely the task of projecting the full
correlator onto the meromorphic functions appearing in the solution to the
superconformal Ward identities. To recapitulate, those mysterious meromor-
phic functions are given a direct interpretation as correlators in the associated
chiral algebra, and turn out to be special instances of a much more general
structure.

The explicit space-time dependence of the four-dimensional operators is
instrumental in making sure that they are annihilated by a common su-
percharge Q for any insertion point on the plane. From this viewpoint, our
construction is in the same general spirit as [34] (see also [35]). These authors
considered particular examples of correlators in N = 4 super Yang-Mills the-
ory that are invariant under supercharges of the same schematic form Q+S.
Their choices of supercharges are inequivalent to ours, and do not lead to
meromorphic correlators.

The operators captured by the chiral algebra are precisely the operators
that contribute to the Schur limit of the superconformal index [36, 37, 38],
and we will refer to them as Schur operators. Important examples are the
half-BPS operators that are charged under SU(2)R but neutral under U(1)r,
whose vacuum expectation values parameterize the Higgs branch of the the-
ory, and the SU(2)R Noether current. The class of Schur operators is much
larger, though, and encompasses a variety of supermultiplets obeying less
familiar semi-shortening conditions. Operators associated to the Coulomb
branch of the theory (such as the half-BPS operators charged under U(1)r
but neutral under SU(2)R) are not of Schur type. In a pithy summary,
the cohomology of Q provides a “categorification” of the Schur index. It is

notions. We trust no confusion will arise with the overloading of the word “chiral” due
to its unavoidable use in the four-dimensional context, e.g., “chiral and anti-chiral 4d
supercharges”, “the N = 1 chiral ring”, etc.

10



a surprising and useful fact that this vector space naturally possesses the
additional structure of a chiral algebra.

Chiral algebras are rigid structures. Associativity of their operator alge-
bra translates into strong constraints on the spectrum and OPE coefficients
of Schur operators in the parent four-dimensional theory. We have already
pointed out that this leads to a unique determination of the protected part
of four-point function of stress-tensor multiplets in the N = 4 context [24].
Another canonical example is the four-point function of “moment map” oper-
ators in a general N = 2 superconformal field theory. The moment map M is
the lowest component of the supermultiplet that contains the conserved flavor
current of the theory, and as such it transforms in the adjoint representation
of the flavor group G. We find that the associated two-dimensional meromor-
phic operator J(z) := χ[M ] is the dimension-one generating current of an
affine Lie algebra ĝk2d

, with level k2d fixed in terms of the four-dimensional
flavor central charge. As the four-point function of affine currents is uniquely
fixed, this relation completely determines the protected part of the moment
map four-point function. In turn, this information serves as essential input
to the full-fledged bootstrap equations that govern the contributions from
generic long multiplets in the conformal block decomposition of these four-
point functions. These equations can be studied numerically to derive in-
teresting bounds on non-protected quantities, following the approach of [24].
Numerical bounds that arise for various choices of G were indeed obtained
in [39]. It is worth emphasizing that the protected part of the four-point
function receives contributions from an infinite tower of intermediate short-
ened multiplets, and without knowledge of its precise form the numerical
bootstrap program would never get off the ground. In theories that admit
a Lagrangian description, one could appeal to non-renormalization theorems
and derive the same protected information in the free field limit; the chiral
algebra then just serves as a powerful organizing principle to help obtain the
same result. However, the abstract chiral algebra approach seems indispens-
able for the analysis of non-Lagrangian theories – for example, when G is an
exceptional group.

As a byproduct of a detailed study of the moment map four-point func-
tion, we are able to derive new unitarity bounds that must be obeyed by the
central charges of any interacting N = 2 superconformal field theory. By
exploiting the relation between the two- and four-dimensional perspectives,
we are able to express certain coefficients of the four-dimensional conformal
block decomposition of the four-point function in terms of central charges;
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the new bounds arise because those coefficients must be non-negative in a
unitary theory. Saturation of the bounds signals special properties of the
Higgs branch chiral ring. This is a particular instance of a more general en-
coding of four-dimensional physics in the chiral algebra, the surface of which
we have only barely scratched. One notable aspect of this correspondence is
the interplay between the geometry of the Higgs branch and the represen-
tation theory of the chiral algebra; for example, null vectors that appear at
special values of the affine level imply Higgs branch relations.

We describe several structural properties of the map χ. Two universal
features are the affine enhancement of the global flavor symmetry, and the
Virasoro enhancement of the global conformal symmetry. The affine level
in the chiral algebra is related to the flavor central charge in four dimen-
sions as k2d = −1

2
k4d, while the Virasoro central charge is proportional to

the four-dimensional conformal anomaly coefficient,2 c2d = −12c4d. A per-
haps surprising feature of these relations is that the two-dimensional central
charges and affine levels must be negative. Another universal aspect of the
correspondence is a general prescription to derive the chiral algebra associ-
ated to a gauge theory whenever the chiral algebra of the original theory
whose global symmetry is being gauged is known.

Turning to concrete examples, we start with the SCFTs of free hyper-
multiplets and free vector multiplets, which are associated to free chiral
algebras. With the help of the general gauging prescription, we can com-
bine these ingredients to find the chiral algebra associated to an arbitrary
Lagrangian SCFT. We also sketch the structure of the chiral algebras asso-
ciated to SCFTs of class S, which are generally non-Lagrangian. In several
concrete examples, we present evidence that the chiral algebra has an eco-
nomical presentation as a W-algebra, i.e., as a chiral algebra with a finite
set of generators [42]. We do not know whether all chiral algebras associated
to SCFTs are finitely generated, or how to identify the complete set of gen-
erators in the general case. Indeed, an important open problem is to give
a more precise characterization of the class of chiral algebras that can arise
from physical four-dimensional theories. Ideally the distinguishing features
of this class could be codified in a set of additional axioms. Since chiral al-
gebras are on sounder mathematical footing than four-dimensional quantum

2There are two tensorial structures in the four-dimensional trace anomaly, whose coef-
ficients are conventionally denoted a and c. It is the c anomaly that is relevant for us, in
contrast to the better studied a anomaly, which decreases monotonically under RG flow
[40, 41].
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field theories, it is imaginable that this could lead to a well-defined algebraic
classification problem. If successful, this approach would represent concrete
progress towards the loftier goal of classifying all possible N = 2 SCFTs.

On a more formal note, four-dimensional intuition leads us to formulate
a number of new conjectures about chiral algebras that may be of interest
in their own right. The conjectures generally take the form of an ansatz for
the cohomology of a BRST complex, and include new free-field realizations of
affine Lie algebras at special values of the level and new examples of quantum
Drinfeld-Sokolov reduction for nontrivial modules. We present evidence for
our conjectures obtained from a low-brow, level-by-level analysis, but we
suspect that more powerful algebraic tools may lead to rigorous proofs.

The organization of this chapter is as follows. In §2.2 we review the argu-
ments behind the appearance of infinite-dimensional chiral symmetry alge-
bras in the context of two-dimensional conformal field theories. We explain
how the same structure can be recovered in the context of N = 2 super-
conformal field theories in four dimensions by studying observables that are
well-defined after passing to the cohomology of a particular nilpotent super-
charge in the superconformal algebra. This leads to the immediate conclusion
that chiral symmetry algebras will control the structure of this subclass of
observables. In §2.3, we describe in greater detail the resulting correspon-
dence between N = 2 superconformal models in four dimensions and their
associated two-dimensional chiral algebras. We outline some of the univer-
sal features of the correspondence. We further describe an algorithm that
defines the chiral algebra for any four-dimensional SCFT with a Lagrangian
description in terms of a BRST complex. In §2.4, we describe the immedi-
ate consequences of this structure for more conventional observables of the
original theory. It turns out that superconformal Ward identities that have
previously derived for four-point functions of BPS operators are a natural
outcome from our point of view. We further derive new unitarity bounds for
the anomaly coefficients of conformal and global symmetries, many of which
are saturated by interesting superconformal models. We point out that the
state space of the chiral algebra provides a categorification of the Schur limit
of the superconformal index. In §2.5, we detail the construction and analysis
of the chiral algebras associated to some simple Lagrangian SCFTs. We also
make a number of conjectures as to how to describe these chiral algebras as
W-algebras. In §2.6 we provide a sketch of the class of chiral algebras that
are associated to four-dimensional theories of class S. Appendix A reviews
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relevant material concerning the superconformal algebras and representation
theory used in our constructions.

2.2 Chiral symmetry algebras in four dimen-

sions

The purpose of this section is to establish the existence of infinite chiral
symmetry algebras acting on a restricted class of observables in any N = 2
superconformal field theory in four dimensions. This is accomplished in two
steps. First, working purely in terms of the relevant spacetime symmetry
algebras, we identify a particular two-dimensional conformal subalgebra of
the four-dimensional superconformal algebra,3

sl(2)× ŝl(2) ⊂ sl(4 | 2) ,

with the property that the holomorphic factor sl(2) commutes with a nilpo-

tent supercharge, Q , while the antiholomorphic factor ŝl(2) is exact with
respect to the same supercharge. We then characterize the local operators
that represent nontrivial Q -cohomology classes. The only local operators for
which this is the case are restricted to lie in a plane R2 ⊂ R4 that is singled
out by the choice of conformal subalgebra. The correlation functions of these
operators are meromorphic functions of the insertion points, and thereby de-
fine a chiral algebra. As a preliminary aside, we first recall the basic story
of infinite chiral symmetry in two dimensions in order to distill the essential
ingredients that need to be reproduced in four dimensions. The reader who is
familiar with chiral algebras in two-dimensional conformal field theory may
safely proceed directly to §2.2.2.

3In this section, we adopt the convention of specifying the complexified versions of
symmetry algebras. This will turn out to be particularly natural in the discussion of §2.2.2.
We generally attempt to select bases for the complexified algebras that are appropriate
for a convenient real form. Our basic constructions are insensitive to the signature of
spacetime, though in places we explicitly impose constraints that follow from unitarity in
Lorentzian signature.
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2.2.1 A brief review of chiral symmetry in two dimen-
sions

Let us take as our starting point a two-dimensional quantum field theory that
is invariant under the global conformal group SL(2,C). The complexification
of the Lie algebra of infinitesimal transformations factorizes into holomorphic
and anti-holomorphic generators,

L−1 = −∂z , L0 = −z∂z , L+1 = −z2∂z ,

L̄−1 = −∂z̄ , L̄0 = −z̄∂z̄ , L̄+1 = −z̄2∂z̄ ,
(2.2.1)

which obey the usual sl(2)× sl(2) commutation relations,

[L+1, L−1] = 2L0 , [L0, L±1] = ∓L±1 ,

[L̄+1, L̄−1] = 2L0 , [L̄0, L̄±1] = ∓L̄±1 .
(2.2.2)

We need not assume that the theory is unitary, but for simplicity we will
assume that the space of local operators decomposes into a direct sum of ir-
reducible highest weight representations of the global conformal group. Such
representations are labelled by holomorphic and anti-holomorphic scaling di-
mensions h and h̄ of the highest weight state,

L0|ψ〉h.w. = h|ψ〉h.w. , L̄0|ψ〉h.w. = h̄|ψ〉h.w. , (2.2.3)

and we further assume that h and h̄ are not equal to negative half-integers
(in which case one would find finite-dimensional representations of sl(2)).

Chiral symmetry arises as a consequence of the existence of any local
operator O(z, z̄) which obeys a meromorphicity condition of the form

∂z̄O(z, z̄) = 0 =⇒ O(z, z̄) := O(z) . (2.2.4)

Under the present assumptions, such an operator will transform in the trivial
representation of the anti-holomorphic part of the symmetry algebra and by
locality will have h equal to an integer or half-integer. Meromorphicity im-
plies the existence of infinitely many conserved charges (and their associated
Ward identities) defined by integrating the meromorphic operator against an
arbitrary monomial in z,

On :=

∮
dz

2πi
zn+h−1O(z) . (2.2.5)
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The operator product expansion of two meromorphic operators contains only
meromorphic operators, and the singular terms determine the commutation
relations among the associated charges, cf. [42]. This is the power of mero-
morphy in two dimensions: an infinite dimensional symmetry algebra orga-
nizes the space of local operators into much larger representations, and the
associated Ward identities strongly constrain the correlation functions of the
theory.

Some examples of this structure are ubiquitous in two-dimensional confor-
mal field theory. The energy-momentum tensor in a two-dimensional CFT
is conserved and traceless in flat space, ∂µTµν = T µ

µ = 0, leading to two
independent conservation equations

∂z̄Tzz(z, z̄) = 0 =⇒ Tzz(z, z̄) := T (z) ,

∂zTz̄z̄(z, z̄) = 0 =⇒ Tz̄z̄(z, z̄) := T (z̄) .
(2.2.6)

The holomorphic stress tensor T (z) is a meromorphic operator with (h, h̄) =
(2, 0), and its self-OPE is fixed by conformal symmetry to take the form

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
, (2.2.7)

which implies that the associated conserved charges obey the commutation
relations of the Virasoro algebra with central charge c,

Ln :=

∮
dz

2πi
zn+1T (z) , [Lm, Ln] = (m− n)Lm+n +

c

12
m(m2− 1)δm+n,0 .

(2.2.8)
Similarly, global symmetries can give rise to conserved holomorphic currents
JAz (z, z̄) =: JA(z) with (h, h̄) = (1, 0). The self-OPEs of such currents are
fixed to take the form

JA(z)JB(w) ∼ k δAB

(z − w)2
+
∑
C

ifABC
JC(w)

(z − w)
, (2.2.9)

with the structure constants fABC those of the Lie algebra of the global sym-
metry. The conserved charges in this case obey the commutation relations
of an affine Lie algebra at level k,

JAn :=

∮
dz

2πi
zn JA(z) , [JAm, J

B
n ] =

∑
c

ifABCJCm+n +mk δABδm+n,0 .

(2.2.10)
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The algebra of all meromorphic operators, or alternatively the algebra of their
corresponding charges, constitutes the chiral algebra of a two-dimensional
conformal field theory.

In most physics applications, the spectrum of a CFT will include non-
meromorphic operators that reside in modules of the chiral algebra of the
theory. In the generic case in which the chiral algebra is the Virasoro alge-
bra, this just means that there are Virasoro primary operators with h̄ 6= 0.
Nevertheless, the correlation functions of the meromorphic operators can be
taken in and of themselves to define a certain meromorphic theory. Such
theories are referred to by various authors as chiral algebras, vertex operator
algebras, or meromorphic conformal field theories. Though some of these
names are occasionally assigned to structures that possess some extra nice
properties, such as modular invariant partition functions, we will be dis-
cussing the most basic version. Henceforth, by chiral algebra we will mean
the operator product algebra of a set of meromorphic operators in the plane.4

So defined, a chiral algebra is strongly constrained by the requirements of
crossing symmetry. In what follows, we show that any N = 2 superconformal
field theory in four dimensions possesses a class of observables that define a
chiral algebra in this sense.

2.2.2 Twisted conformal subalgebras

Chiral algebras are ordinarily thought to be a special feature of conformal-
invariant models in two dimensions. Indeed, the appearance of an infinite
number of conserved charges as defined in (2.2.5) follows from the interaction
of two different ingredients that are special to two dimensions. Firstly, the
operators that give rise to the chiral symmetry charges are invariant under
(say) the anti-holomorphic factor of the two-dimensional conformal algebra,
while transforming in a nontrivial representation of the holomorphic factor,
so they are nontrivial holomorphic operators on the plane. The powerful
machinery of complex analysis in a single variable then produces the infinity
of conserved charges in (2.2.5).5

4In a preview of later discussions, we mention that by W-algebra we will mean a chiral
algebra for which the space of local operators is generated by a finite number of operators
via the operations of taking derivatives and normal-ordered multiplication.

5From another point of view, one can hardly hope to find a meromorphic sector in a
higher dimensional CFT due to Hartogs’ theorem, which implies the absence of singulari-
ties of codimension greater than one in a meromorphic function of several variables. This
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In dimension d > 2, it is the first of these conditions that fails the most
dramatically, while the latter seems more superficial. Indeed, correlation
functions in a conformal field theory in higher dimensions can be restricted
so that all operators lie on a plane R2 ⊂ Rd, and the resulting observables will
transform covariantly under the subalgebra of the d-dimensional conformal
algebra that leaves the R2 in question fixed,

sl(2)× sl(2) ⊂ so(d+ 2) . (2.2.11)

These correlation functions will be largely indistinguishable from those of an
authentic two-dimensional CFT, and if one could locate operators that were
chiral with respect to this subalgebra, then the arguments of §2.2.1 would go
through unhindered and a chiral symmetry algebra could be constructed that
would act on R2-restricted correlation functions. However, a local operator
that transforms in the trivial representation of either copy of sl(2) in (2.2.11)
will necessarily be trivial with respect to all of so(d+ 2). As such, the only
“meromorphic” operator on the plane in a higher dimensional theory is the
identity operator, and no chiral symmetry algebra can be constructed. This
is ultimately a consequence of the simple fact that the higher dimensional
conformal algebras do not factorize into a holomorphic and anti-holomorphic
part: any two sl(2) subalgebras will be related by conjugation.

The brief arguments given above are common knowledge, and essentially
spell the end to any hopes of recovering chiral symmetry algebras in a general
higher-dimensional conformal field theory. We have reproduced them here to
clarify the mechanism by which they will be evaded in the coming discussion.
In particular, we will see that the additional tools at our disposal in the case
of superconformal field theories are sufficient to give life to chiral algebras
in four dimensions. Before describing the construction, let us recall a simple
example which illustrates the mechanism that will be used.

Intermezzo: translation invariance from cohomology

In a quantum field theory with N = 1 supersymmetry in four dimensions,
there exists a special class of operators known as chiral operators (not to
be confused with the meromorphic operators of §2.2.1, which are chiral in a

has been overcome in, e.g., [43, 44] by considering extended operators that intersect in
codimension one. The problem, then, is that the meromorphic structure does not impose
constraints on the natural objects in the original theory – the local operators.
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different sense) that lie in short representations of the supersymmetry algebra
and satisfy a shortening condition in terms of a chiral half of the supercharges,

{Qα,O(x)] = 0 , α = ± . (2.2.12)

The translation generators in R4 are exact with respect to the chiral super-
charges,

Pαα̇ = {Qα, Q̃α̇} , (2.2.13)

and consequently, via the Jacobi identity, the derivative of a chiral operator
is also exact,

[Pαα̇,O(x)] = {Qα,O′(x)] . (2.2.14)

Because the chiral supercharges are nilpotent and anti-commute, the coho-
mology classes of chiral operators with respect to the supercharges Qα are
well-defined and independent of the insertion point of the operator. Schemat-
ically, one can write

[Oi(x)]Qα := Oi . (2.2.15)

Products of chiral operators are then free of short distance singularities and
form a ring at the level of cohomology. Correlation functions of chiral opera-
tors have the excellent property of being independent of the positions of the
operators,

〈O1(x1)O2(x2) . . .On(xn)〉 = 〈[O1(x1)][O2(x2)] . . . [On(xn)]〉
= 〈O1O2 . . .On〉 . (2.2.16)

A suggestive way of phrasing this well-known feature of the chiral ring is
that although chiral operators transform in a nontrivial representation of the
four-dimensional translation group, their cohomology classes with respect to
the chiral supercharges transform in the trivial representation. The passage
from local operators to their cohomology classes modifies the transformation
properties of these local operators under the spacetime symmetry algebra, in
this case rendering them trivial.

Holomorphy from cohomology

To recover chiral algebras in four dimensions, we adopt the same philosophy
just illustrated in the example of the chiral ring. We will find a nilpotent
supercharge with the property that cohomology classes of local operators with
respect to said supercharge transform in a chiral representation of an sl(2)×
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ŝl(2) subalgebra of the full superconformal algebra, and as such behave as
meromorphic operators. Such local operators will then necessarily constitute
a chiral algebra as described in §2.2.1.

The first task that presents itself is an algebraic one. To realize chiral
symmetry at the level of cohomology classes, we identify a two-dimensional
conformal subalgebra of the four-dimensional superconformal algebra,

sl(2)× ŝl(2) ⊂ sl(4 | 2) ,

along with a privileged supercharge Q for which the following criteria are
satisfied:

• The supercharge is nilpotent: Q 2 = 0.

• sl(2) and ŝl(2) act as the generators of holomorphic and anti-holomor-
phic Möbius transformations on a complex plane C ⊂ R4.

• The holomorphic generators spanning sl(2) commute with Q .

• The anti-holomorphic generators spanning ŝl(2) are Q commutators.

In searching for such a subalgebra, we can first restrict our attention
to subalgebras of sl(4|2) that keep the plane fixed set-wise. There are two
inequivalent maximal subalgebras of this kind: sl(2|1) × sl(2|1), which is
the symmetry algebra of an N = (2, 2) SCFT in two dimensions, and
sl(2) × sl(2|2), which is the symmetry algebra of an N = (0, 4) SCFT in
two dimensions. One easily determines that the first subalgebra cannot pro-
duce the desired structure; we proceed directly to consider the second case.

The four-dimensional N = 2 superconformal algebra and the two-dimen-
sional N = (0, 4) superconformal algebra are summarized in Appendix A.1.
In embedding the latter into the former, we take the fixed two-dimensional
subspace to be the one that is fixed pointwise by the rotation generator

M⊥ :=M +
+ −M+̇

+̇
. (2.2.17)

The generator of rotations acting within the fixed plane is the orthogonal
combination,

M :=M +
+ +M+̇

+̇
. (2.2.18)
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In more conventional terms, we are picking out the plane with x1 = x2 = 0.
Introducing complex coordinates z := x3 + ix4, z̄ := x3 − ix4, the two-
dimensional conformal symmetry generators in sl(2) × sl(2|2) can be ex-
pressed in terms of the four-dimensional ones as

L−1 = P++̇ , L+1 = K+̇+ , 2L0 = H +M ,

L̄−1 = P−−̇ , L̄+1 = K−̇− , 2L̄0 = H−M .
(2.2.19)

The fermionic generators of sl(2)×sl(2|2) are obviously all anti-holomorphic,
and upon embedding are identified with four-dimensional supercharges ac-
cording to

QI = QI− , Q̃I = Q̃I−̇ , SI = S−I , S̃I = S̃I−̇ , (2.2.20)

where I = 1, 2 is an sl(2)R index. Finally, the sl(2|2) superalgebra has a cen-
tral element Z, which upon embedding is given in terms of four-dimensional
symmetry generators as

Z = r +M⊥ , (2.2.21)

where r is the generator of U(1)r.
Amongst the supercharges listed in (2.2.20), one finds a variety of nilpo-

tent operators. Any such operator will necessarily commute with the gen-
erators L±1 and L0 in (2.2.19) since all of the supercharges do so. The
requirement of Q -exact anti-holomorphic Möbius transformations is harder
to satisfy. In fact, up to similarity transformation using generators of the
bosonic symmetry algebra, there are only two possible choices:

Q 1 := Q1 + S̃2 , Q 2 := S1 − Q̃2 ,

Q
†
1 := S1 + Q̃2 , Q

†
2 := Q1 − S̃2 .

(2.2.22)

Interestingly, Q 1 and Q 2 give rise to the same Q -exact generators of an anti-

holomorphic ŝl(2) algebra,

{Q 1 , Q̃1} = {Q 2 ,−Q2} = L̄−1 +R− =: L̂−1 ,

{Q 1 ,S2} = {Q 2 , S̃1} = L̄+1 −R+ =: L̂+1 ,

{Q 1 , Q
†
1} = {Q 2 , Q

†
2} = 2(L̄0 −R) =: 2L̂0 .

(2.2.23)

In addition, the central element of sl(2|2) is exact with respect to both su-
percharges,

{Q 1 , Q 2} = −Z . (2.2.24)
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Note that while ŝl(2) does act on the plane by anti-holomorphic conformal
transformations, it is not simply a subalgebra of the original global conformal
algebra. Rather, it is an sl(2)R twist of sl(2).6 Because the relevant real forms

of the sl(2) conformal algebra and sl(2)R are different, the generators of ŝl(2)
do not enjoy any reasonable hermiticity properties when acting on the Hilbert
space of the four-dimensional theory. In particular, we can immediately
see that L̂†±1 6= L̂∓1. This would complicate matters considerably if our
intention was to study operators that transform in nontrivial representations
of this twisted algebra. Fortunately, our plan is precisely the opposite: chiral
algebras can appear after passing to Q -cohomology, at which point all of

the objects of interest will effectively be invariant under the action of ŝl(2).
Consequently, reality/hermiticity conditions will play no role in the structure
of the “physical” operators/observables defined at the level of cohomology.

2.2.3 The cohomology classes of local operators

Our next task is to study the properties of operators that define non-trivial
Q i-cohomology classes. For the purposes of the present chapter, we are re-
stricting our attention to local operators in four dimensions; the inclusion
of non-local operators, such as line or surface operators, is an interesting
extension that will be addressed in future work.

We begin by identifying the requirements for an operator inserted at the
origin to define a nontrivial Q i-cohomology class. In particular, we will derive
the conditions under which an operator O(x) obeys

{Q i,O(0)] = 0 , O(0) 6= {Q i,O′(0)] , (2.2.25)

for i = 1 or i = 2. Because both Q i commute with L̂0 and Z, we lose no
generality in restricting to definite eigenspaces of these charges. A standard
cohomological argument then implies that since L̂0 and Z are actually Q i-
exact, an operator satisfying (2.2.25) must lie in the zero eigenspace of both
charges. In terms of four-dimensional quantum numbers, this means that

6In light of this, we may understand the absence of a similar construction using the
sl(2|1) × sl(2|1) algebra as a consequence of there being no sl(2)R with which to twist.
Similarly, our construction does not extend to N = 1 superconformal theories since they
only have an abelian R-symmetry.
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such an operator must obey7

1
2
(E − (j1 + j2))−R = 0 , r + (j1 − j2) = 0 , (2.2.26)

where E is the conformal dimension/eigenvalue of H, j1 and j2 are sl(2)1

and sl(2)2 Lorentz quantum numbers/eigenvalues of M +
+ and M+̇

+̇
, and

R is the sl(2)R charge/eigenvalue of R. As long as the four-dimensional
SCFT is unitary, the last line of (2.2.23) implies that any operator with

zero eigenvalue under L̂0 must be annihilated by Q i and Q
†
i for both i = 1

and i = 2. The relations in (2.2.26) therefore characterize the harmonic
representatives of Q i-cohomology classes of operators at the origin, and we
see that the two supercharges actually define the same cohomology. Notably,
these relations are known to characterize the operators that contribute to the
Schur (and Macdonald) limits of the superconformal index in four dimensions
[38], suggesting that the cohomology will be non-empty in any nontrivial
N = 2 SCFT. We will refer to the class of local operators obeying (2.2.26)
as the Schur operators of the SCFT. We will have more to say about the
features of these operators in §2.3.

Note that in contrast to the case of ordinary chiral operators in a su-
persymmetric theory, which are annihilated by a given Poincaré supercharge
regardless of the insertion point, for operators to be annihilated by the Q i

when inserted away from the origin requires that they acquire a more intri-
cate dependence on their position in R4. This is a consequence of the fact
that the translation generators do not commute with the superconformal
charges S−1 and S̃2−̇ appearing in the definitions of the Q i. Indeed, there is
no way to define the translation of a Schur operator from the origin to a point
outside of the (z, z̄) plane so that it continues to represent a Q i-cohomology
class. Within the plane, though, we can accomplish this task using the Q i-

exact, twisted ŝl(2) of the previous subsection. In particular, because the

twisted anti-holomorphic translation generator L̂−1 is a Q i anti-commutator
and the holomorphic translation generator L−1 is Q i-closed, we can define
the twisted-translated operators

O(z, z̄) = ezL−1+z̄L̂−1 O(0) e−zL−1−z̄L̂−1 , (2.2.27)

7In fact, the second relation in (2.2.26) follows from the first as a consequence of unitar-
ity and the four-dimensional superconformal algebra (see §2.3.1). We list it separately here
since it is an algebraically independent constraint at the level of the quantum numbers.
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where O(0) is a Schur operator. One way of thinking about this prescription
for the translation of local operators is as the consequence of introducing
a constant, complex background gauge field for the sl(2)R symmetry that
is proportional to the sl(2) raising operator. By construction, the twisted-
translated operator is Q i closed for both i = 1, 2, and the cohomology class
of this operator is well-defined and depends on the insertion point holomor-
phically,

[O(z, z̄)]Q =⇒ O(z) . (2.2.28)

What does such an operator look like in terms of a more standard basis
of local operators at the point (z, z̄)? To answer this, we must first note
that Schur operators at the origin occupy the highest-weight states of their
respective sl(2)R representation (this fact will be explained in greater detail
in §2.3). If we denote the whole spin k representation of sl(2)R as OI1I2···I2k
with Ii = 1, 2, then the Schur operator at the origin is O11···1(0), and the
twisted-translated operator at any other point is defined as

O(z, z̄) := uI1(z̄) · · · uI2k(z̄) OI1...I2k(z, z̄) , uI(z̄) := (1, z̄) . (2.2.29)

At any given point (z, z̄), this is a particular complex-linear combination
of the different elements of the sl(2)R representation of the corresponding
Schur operator. The precise combination depends on the insertion point as
indicated. What we have discovered is that the correlation functions of these
operators are determined at the level of their Q i-cohomology classes, and are
therefore meromorphic functions of the insertion points.8

2.2.4 A chiral operator product expansion

The most efficient language for describing chiral algebras is that of the oper-
ator product expansion. Let us therefore study the structure of the operator
product expansion of the twisted-translated Schur operators in order to see
the emergence of meromorphic OPEs befitting a chiral algebra.

Consider two operators: O1(z, z̄) is the twisted translation of a Schur
operator from the origin to (z, z̄), and O2(0, 0) is a Schur operator inserted
at the origin. Given the general expression for the twisted-translated operator

8For N = 4 SYM, a similar contraction of the SU(4)R indices with position-dependent
vectors was studied in [34]. The twists considered in that paper are different, and do not
give rise to meromorphic operators and chiral algebras.
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given in (2.2.29), the OPE of these two operators should take the form

O1(z, z̄)O2(0) =
∑
k

λ12k
z̄R1+R2−Rk

zh1+h2−hk z̄h̄1+h̄2−h̄k
Ok(0) , (2.2.30)

where the z̄R1+R2−Rk in the numerator comes from the explicit factors of z̄
appearing in (2.2.29), and Rk is the R-charge of the operator Ok. This form
of the OPE is so far a consequence of two-dimensional conformal invariance
and conservation of R-charge under multiplication. We have introduced the
two-dimensional quantum numbers h and h̄, which are expressible in terms
of four-dimensional quantum numbers as

h =
E + (j1 + j2)

2
, h̄ =

E − (j1 + j2)

2
. (2.2.31)

Though the OPE does not look meromorphic yet, we are already well on our
way. The left hand side of (2.2.30) is Q i-closed for any (z, z̄), with the z̄
dependence being Q i-exact. As a result, each individual term on the right
hand side must be Q i-closed, and the sum should be reorganized into two
groups. The first group will consist of the terms in which the operator Ok(0)
is a Schur operator, while the second will consist of the remaining terms, for
which the operatorOk(0) is Q i-exact. Recalling that the quantum numbers of
Schur operators obey h̄ = R, we immediately see that for those terms in the
OPE the z̄ dependence cancels between the denominator and the numerator,
thus providing the desired meromorphicity result:

O1(z, z̄)O2(0, 0) =
∑
kSchur

λ12k

zh1+h2−hk
Ok(0) + {Q , . . . ] . (2.2.32)

From the four-dimensional construction, we expect this OPE to be single-
valued, which implies that h1 + h2 − hk should be an integer. Indeed, this
integrality follows from the fact that h is a sum of SU(2) Cartans after
applying SU(2) selection rules. Clearly, in passing to Q i-cohomology classes
the OPE stays well-defined and the Q i-exact piece can be set to zero. Thus at
the level of cohomology, the twisted-translated operators can be reinterpreted
as two-dimensional meromorphic operators with interesting singular OPEs.

It may be instructive to see how this meromorphic OPE plays out in
a simple example. An extremely simple case, to which we shall return in
§2.3, is that of free hypermultiplets in four dimensions. The scalar squarks
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Q and Q̃ of the hypermultiplet are Schur operators, and the corresponding
twisted-translated operators take the form

q(z) := [Q(z, z̄) + z̄Q̃∗(z, z̄)]Q , q̃(z) := [Q̃(z, z̄)− z̄Q∗(z, z̄)]Q . (2.2.33)

The singular OPE of these twisted operators can be easily worked out using
the free OPE in four dimensions; we have

q(z)q(w) ∼ regular , q̃(z)q̃(w) ∼ regular ,

q(z)q̃(w) ∼ 1

z − w , q̃(z)q(w) ∼ − 1

z − w .
(2.2.34)

This is example is in some respects deceptively simple, in that the terms
appearing in the singular part of the OPE are meromorphic on the nose.
In more complicated theories, there will be cohomologically trivial terms
appearing in the singular part of the OPE, and meromorphicity will depend
on a more detailed knowledge of the action of the nilpotent supercharges.

Let us briefly point out one difference between the structure observed
here and that of a more conventional cohomological subalgebra. The chiral
ring in the free hypermultiplet theory is generated by the operators q(x) and
q̃(x). Because these operators both have R = 1/2, there can be no nonzero
correlation functions in the chiral ring. The existence of nontrivial corre-
lation functions in the chiral algebra described here follows precisely from
the presence of subleading terms in the z̄ expansion (2.2.33) with SU(2)R
quantum numbers of opposite sign relative to the leading term.

Having established existence of nontrivial Q-cohomology classes with me-
romorphic OPEs and correlators, we now take some time to develop the
dictionary between four-dimensional SCFT structures and their two-dimen-
sional counterparts.

2.3 The SCFT/chiral algebra correspondence

For any four-dimensional N = 2 superconformal field theory, we have iden-
tified a subsector of operators whose correlation functions are meromorphic
when they are restricted to be coplanar. This sector thus defines a map from
four-dimensional SCFTs to two-dimensional chiral algebras:

χ : 4d SCFT −→ 2d Chiral Algebra.
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The aim of this section is to elaborate on the structure of this correspondence,
focusing primarily on its more universal aspects. We begin with a short
preview of some of the more prominent features of the correspondence.

Our first main result is the generic enhancement of the global sl(2) con-
formal symmetry algebra to a full fledged Virasoro algebra. In other words,
for any SCFT T , we find that χ[ T ] contains a meromorphic stress tensor.
The two-dimensional central charge turns out to have a simple relationship
to the four-dimensional conformal anomaly coefficient,

c2d = −12c4d .

In particular, this implies that when T is unitary (which we always take to
be the case), χ[ T ] is necessarily non-unitary. In a similar vein, we find that
global symmetries of T are always enhanced into affine symmetries of χ[ T ],
and the respective central charges of these flavor symmetries enjoy another
simple relationship,

k2d = −1

2
k4d .

It is often helpful to think of a chiral algebra in terms of its generators. In
the chiral algebra sense of the word, generators are those operators that can-
not be expressed as the conformally normal-ordered products of derivatives
of other operators. While we do not find a complete characterization of the
generators of our chiral algebras, we do identify certain operators in four di-
mensions whose corresponding chiral operator will necessarily be generators.
In particular, operators that are N = 1 chiral and satisfy the Schur shorten-
ing condition form a ring which is a consistent truncation of the N = 1 chiral
ring, to which we refer as the Hall-Littlewood (HL) chiral ring. We find that
every generator of the HL chiral ring necessarily leads to a generator of the
associated chiral algebra. There may be additional generators of the chiral
algebra beyond the stress tensor and the operators associated to generators
of the HL chiral ring. We will find such additional generators in the example
of §2.5.4.

For the special case of free SCFTs we completely characterize the asso-
ciated chiral algebras. Unsurprisingly, free SCFTs give rise to free chiral
algebras. In particular, free hypermultiplets correspond to the chiral algebra
of dimension 1/2 symplectic bosons, while free vector multiplets correspond
to the small algebra of a (b, c) ghost system of dimension (1, 0).

Finally, we describe the two-dimensional counterpart of gauging a flavor
symmetry G in some general SCFT TG. Assuming that the chiral algebra
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associated to the ungauged SCFT is known, the prescription to find the
chiral algebra of the new theory is as follows. The direct product of the
original chiral algebra χ[ TG ] with a (b, c) system in the adjoint representation
of G admits a nilpotent BRST operator precisely when the beta function
for the four-dimensional gauge coupling vanishes. The chiral algebra of the
gauged theory is then obtained by restricting to the BRST coholomogy. We
find that this BRST operator precisely captures the one-loop correction to a
certain four-dimensional supercharge, so that restricting to its cohomology is
equivalent to the requirement that one should only retain those states that
remain in their original short representations once one-loop corrections are
taken into account.

2.3.1 Schur operators

As a first order of business, we pursue a more concrete characterization of
the four-dimensional operators whose correlation functions are captured by
the chiral algebra. Let us first reiterate the basic facts about these operators
that were derived in §2.2. The chiral algebra computes correlation functions
of operators that define nontrivial cohomology classes of the nilpotent super-
charges Q i. Such operators are obtained by twisted translations (2.2.29) of
Schur operators from the origin to an arbitrary point (z, z̄) on the plane. A
Schur operator is any operator that satisfies

[L̂0,O] = 0 ⇐⇒ 1
2

(E − (j1 + j2))−R = 0 , (2.3.1)

[Z,O] = 0 ⇐⇒ r + j1 − j2 = 0 . (2.3.2)

If T is unitary, then these conditions can be equivalently formulated as the
requirement that when inserted at the origin, an operator is annihilated by
the two Poincaré and the two conformal supercharges that enter in the defi-
nition of the Q i, i.e.,

[Q 1
−,O(0)] = [Q̃ 2−̇,O(0)] = [S−1 ,O(0)] = [S̃2−̇,O(0)] = 0 . (2.3.3)

This follows from the hermiticity conditions Q1†
− := S−1 and Q†

2−̇ := S̃2−̇ in
conjunction with the relevant anticommutators from Appendix A.1,

{Q1
− ,Q1†

− } = L̂0 −
1

2
Z , {Q̃2−̇ , Q̃†2−̇} = L̂0 +

1

2
Z . (2.3.4)
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It follows immediately that the state O(0)|0〉 is annihilated by all four super-
charges if and only if its quantum numbers obey (2.3.1) and (2.3.2). Actually,
(2.3.4) implies the additional inequality

L̂0 >
|Z|
2

, (2.3.5)

from which we may conclude that imposing only (2.3.1) is a necessary and
sufficient condition to define a Schur operator. We further note that Schur
operators are necessarily the highest-weight states of their respective SU(2)R
representations, and so carry the maximum eigenvalue R of the Cartan gen-
erator. If this were not the case, states with greater R would have negative
L̂0 eigenvalues, in contradiction with unitarity. Similarly, Schur operators
are necessarily the highest weight states of their SU(2)1 × SU(2)2 Lorentz
symmetry representation, carrying the largest eigenvalues for j1 and j2. The
index structure of a Schur operator is therefore of the form O1...1

+···+ +̇...+̇
.

From the definition of L0 in (2.2.19) and (2.3.1) we find that the holo-
morphic dimension h of a Schur operator is non-zero and fixed in terms of
its quantum numbers,

h = 1
2

(E + j1 + j2) = R + j1 + j2 . (2.3.6)

This is always a half integer, since R, j1 and j2 are all SU(2) Cartans. It
follows from (2.3.2) and (2.3.6), in conjunction with the non-negativity of j1

and j2, that the holomorphic dimension of a Schur operator is bounded from
below in terms of its four-dimensional R-charges,

h = R + j1 + j2 > R + |j1 − j2| = R + |r| . (2.3.7)

The inequality is saturated if and only if j1 or j2 is zero.

Supermultiplets of Schur type

Schur operators belong to shortened representations of the N = 2 super-
conformal algebra. The complete list of possible shortening conditions is
reviewed in Appendix A.2. In the notations of [45], the superconformal mul-
tiplets that contain Schur operators are the following,

B̂R , DR(0,j2) , D̄R(j1,0) , ĈR(j1,j2) . (2.3.8)
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Multiplet OSchur h r Lagrangian

“letters”

B̂R Ψ11...1 R 0 Q, Q̃

DR(0,j2) Q̃1
+̇

Ψ11...1
+̇...+̇

R+ j2 + 1 j2 + 1
2 Q, Q̃, λ̃1

+̇

D̄R(j1,0) Q1
+Ψ11...1

+···+ R+ j1 + 1 −j1 − 1
2 Q, Q̃, λ1

+

ĈR(j1,j2) Q1
+Q̃1

+̇
Ψ11...1

+···+ +̇...+̇
R+ j1 + j2 + 2 j2 − j1 Dn

++̇
Q, Dn

++̇
Q̃,

Dn
++̇
λ1

+, Dn
++̇
λ̃1

+̇

Table 2.1: This table summarizes the manner in which Schur operators
fit into short multiplets of the N = 2 superconformal algebra. For each
supermultiplet, we denote by Ψ the superconformal primary. There is then a
single conformal primary Schur operator OSchur, which in general is obtained
by the action of some Poincaré supercharges on Ψ. We list the holomorphic
dimension h and U(1)r charge r of OSchur in terms of the quantum numbers
(R, j1, j2) that label the shortened multiplet (left-most column). We also
indicate the schematic form that OSchur can take in a Lagrangian theory by
enumerating the elementary “letters” from which the operator may be built.
We denote by Q and Q̃ the complex scalar fields of a hypermultiplet, by λIα
and λ̃Iα̇ the left- and right-moving fermions of a vector multiplet, and by Dαα̇

the gauge-covariant derivatives.
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For the purpose of enumeration, it is sufficient to focus on those Schur op-
erators that are conformal primaries. Given such a primary Schur operator,
there is a tower of descendant Schur operators that are obtained by the action
L−1 = P++̇ = −∂++̇. It turns out that each of the supermultiplets listed in
(2.3.8) contains exactly one conformal primary Schur operator. In the case of
B̂R, this is also the superconformal primary of the multiplet, whereas in the
other cases it is a superconformal descendant. This representation-theoretic
information is summarized in Table 2.1, where we also provide the schematic
form taken by each type of operator in a Lagrangian theory.

The shortening conditions obeyed by the Schur operators make crucial
use of the extended N = 2 supersymmetry. Indeed, the hallmark of a Schur
operator is that it is annihilated by two Poincaré supercharges of opposite
chiralities (Q1

− and Q̃2−̇ in our conventions). This defines a consistent short-
ening condition because the supercharges have the same SU(2)R weight, and
thus anticommute with each other. No analogous shortening condition exists
in anN = 1 supersymmetric theory, because the anticommutator of opposite-
chirality supercharges necessarily yields a momentum operator, which anni-
hilates only the identity.

Although the most general Schur operators, which are those belonging to
ĈR(j1,j2) multiplets, may seem somewhat exotic, the Schur operators of type

B̂R, DR(0,j2) and D̄R(j1,0) are relatively familiar. Indeed, they can be under-
stood as special cases of conventional N = 1 chiral or anti-chiral operators.
Let us focus for the moment on the N = 1 Poincaré subalgebra that contains
the supercharges

Q2
α , Q̃2α̇ . (2.3.9)

We then ask what subset of Schur operators are also elements of the chiral
ring for this N = 1 subalgebra. In particular, such operators will be annihi-
lated by both spinorial components of the anti-chiral supercharge Q̃2α̇, α̇ = ±̇.
These operators have j2 = 0, and a quick glance at Table 2.1 tells us that
they are Schur operators of types B̂R and D̄R(j1,0). These operators saturate

the inequality (2.3.7), with r = −j1 < 0 for D̄R(j1,0) and r = 0 for the B̂R. As
these are precisely the operators that contribute to the Hall-Littlewood (HL)
limit of the superconformal index, we refer to them as Hall-Littlewood opera-
tors. They form a ring, the Hall-Littlewood chiral ring, which is a consistent
truncation of the full N = 1 chiral ring.

In a Lagrangian theory, the B̂R type Schur operators are gauge-invariant
combinations ofQ and Q̃, the complex hypermultiplet scalars that are bottom
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components of N = 1 chiral superfields (we are suppressing color and flavor
indices). Schur operators of type D̄R(j1,0) are obtained by further allowing
as possible letters the gauginos λ1

+, which are the bottom components of the
field strength chiral superfield W+. In the full N = 1 chiral ring, one also has
the other Lorentz component W− of the field strength, as well as the N = 1
chiral superfield belonging to the N = 2 vector multiplet. Operators that
contain those letters are, however, not a part of the HL chiral ring.

In complete analogy, we may also define a Hall-Littlewood anti-chiral ring,
which contains the Schur operators of type B̂R and DR(0,j2). These operators
are annihilated by chiral supercharges Q1

α, α = ±, and are thus N = 1 anti-
chiral with respect to the N = 1 subalgebra that is orthogonal to (2.3.9).
Schur operators of type B̂R belong to both HL rings – these are half-BPS
operators that are annihilated by both Q1

α and Q̃2α̇. They form a further
truncation of the N = 1 chiral ring to the Higgs chiral ring, and their vacuum
expectation values parametrize the Higgs branch of the theory. We note that
in Lagrangian theories that are represented by acyclic quiver diagrams, all
D-type multiplets recombine and are lifted from the N = 1 chiral ring at
one-loop order [38]. In such cases, the HL chiral ring will coincide with the
more restricted Higgs branch chiral ring.

Let us now look in greater detail at some Schur-type shortened multiplets
of particular physical interest:

• Ĉ0(0,0): Stress-tensor multiplet. The superconformal primary is a scalar
operator of dimension two that is a singlet under the SU(2)R × U(1)r.
The SU(2)R and U(1)r conserved currents, the supercurrents, and the
stress tensor all lie in this multiplet. The Schur operator is the highest
weight component of the SU(2)R current: J11

++̇
of the SU(2)R.

• Ĉ0(j1,j2): Higher-spin currents multiplets. These generalize the stress-
tensor multiplet and contain conserved currents of spin higher than two.
If any such multiplets are present, the SCFT must contain a decoupled
free sector [46]. Requiring the absence of these higher spin multiplets
will lead to interesting unitarity bounds for the central charge of inter-
acting SCFTs in §2.4.

• B̂ 1
2
: This is the superconformal multiplet of free hypermultiplets.

• B̂1: Flavor-current multiplet. The superconformal primary is the “mo-
ment map” operator MIJ , which is a scalar operator of dimension two
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that is an SU(2)R triplet, is U(1)r neutral, and transforms in the ad-
joint representation of the flavor group GF . The highest weight state of
the moment map – M11 – is the Schur operator. The claim to fame of
B̂1 multiplets is that they harbor the conserved currents JFαα̇ that gen-
erate the continuous “flavor” symmetry group GF of the SCFT, that
is, the symmetry group that commutes with the superconformal group.
Because B̂1 multiplets do not appear in any of the recombination rules
for short multiplets listed in Appendix A.2, it is absolutely protected:
JFαα̇ remains conserved on the entire conformal manifold of the SCFT.9

• D0(0,0) ⊕ D̄0(0,0): This is the superconformal multiplet of free N = 2
vector multiplets.

• D 1
2

(0,0) ⊕ D̄ 1
2

(0,0): “Extra” supercurrent multiplets. The top compo-

nents of these multiplets are spin 3/2 conserved currents of dimension
∆ = 7/2 (Jαα̇β̇ and Jαβα̇). They generate additional supersymmetry
transformations beyond the N = 2 superalgebra in question. In partic-
ular, in the N = 2 description of an N = 4 SCFT, one finds two copies
of each of these multiplets transforming as a doublet of the “flavor”
SU(2)F ⊂ SU(4)R that commutes with SU(2)R × U(1)r ⊂ SU(4)R.
The Schur operators have ∆ = 5/2, and have index structure O11

+̇
and

O11
+ . In N = 4 supersymmetric Yang-Mills theory, these are the oper-

ators Tr q1
i λ̃

1
+̇

and Tr q1
i λ

1
+, where i = 1, 2 is the SU(2)F index.

2.3.2 Notable elements of the chiral algebra

Armed with a working knowledge of the relevant four-dimensional operators,
we now proceed to derive some universal entries in the 4d/2d dictionary.
We first recall from §2.2.3 the process by which a meromorphic operator in
two dimensions is obtained from an appropriate protected operator in four
dimensions. Starting with a Schur operator in four dimensions, we obtain a

9The only other supermultiplet that contains a global flavor symmetry current is
Ĉ0( 1

2 ,
1
2 )

. However, that multiplet also contains higher-spin currents, thus showing that
the only points on a conformal manifold at which the flavor symmetry enhances are the
points where the SCFT develops a free decoupled subsector.
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two-dimensional chiral operator via the following series of specializations:

O1···1
+···++̇···+̇(x) Schur operator

O(z, z̄) ∼= uI1(z̄) · · ·uI2R(z̄)O(I1···I2R)(z, z̄) Twisted-translated Schur operator

[O(z, z̄)]Q Chiral cohomology class

O(z) Two-dimensional chiral operator

In general we will refer to this associated chiral operator via the following
notation:

O(z) = χ[O1···1
+···++̇···+̇] ,

where sometimes we will be lax about the argument of the χ map and
allow O1···1

+···++̇···+̇ to be replaced by the more generic form of the operator

OI1···I2Rα1···α2j1
α̇1···α̇2j2

. Our first task will be to understand the chiral operators that

are related to certain characteristic Schur operators of a four-dimensional the-
ory. In doing so we will discover some interesting and generic features of this
correspondence.

Virasoro enhancement of the sl(2) symmetry

The holomorphic sl(2) algebra generated by {L−1, L0, L1} is a manifest sym-
metry of the chiral algebra. Remarkably, this global conformal symmetry
is enhanced to the full Virasoro algebra. The Virasoro algebra is gener-
ated by the modes Ln, n ∈ Z, of a holomorphic stress tensor of dimension
two T (z). Surveying Table 2.1, we find a suitable candidate that is present
in any theory T : the Schur operator belonging to stress tensor multiplet
Ĉ0(0,0). One should note that the Schur operator in this multiplet is not the
four-dimensional stress tensor, but rather the component J11

++̇
of the SU(2)R

current JIJαα̇ .
The corresponding twisted-translated operator is defined as follows,

JR(z, z̄) := uI(z̄) uJ (z̄) JIJ
++̇

(z, z̄) . (2.3.10)

Per the discussion of §2.2, we identify the cohomology class [JR(z, z̄)]Q i with
a dimension two meromorphic operator in the chiral algebra χ[ T ],

TJ (z) := κ [JR(z, z̄)]Q i . (2.3.11)
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We provisionally include the subscript J as a reminder of the definition
(2.3.11); we still need to establish that the OPEs of TJ (z) with itself and
with other operators in the chiral algebra take the standard forms appropriate
to a two-dimensional stress tensor. With this in mind, we have also included
a normalization factor κ, to be fixed momentarily in order to recover the
canonical TT OPE.

The two- and three-point functions of the R-symmetry current with itself
are fixed by N = 2 superconformal invariance in terms of a single parameter
c4d, which is one of the two conformal anomaly coefficients (the other being
a4d). Starting from the OPE of two SU(2)R currents [47],

JIJµ (x)JKLν (0) ∼ 3c4d

4π4
εK(IεJ )Lx

2gµν − 2xµxν
x8

+
2i

π2

xµxνx · J (K(IεJ )L)

x6
+ · · · ,
(2.3.12)

we find the following OPE of twisted-translated Schur operators,

JR(z, z̄)JR(0, 0) ∼ − 3c4d

2π4z4
− 1

π2

JR(0, 0)

z2

− 1

π2
z̄
uIuJ J

IJ
−−̇(0)

z3
+

i

π2
z̄
J21

++̇
(0)

z2

+
i

π2
z̄2
J21
−−̇(0)

z3
+ · · · . (2.3.13)

Because the last three terms have non-zero L̂0 eigenvalue, they are guaranteed
to be Q i-exact. Upon setting κ = −2π2, we find the following meromorphic
OPE for TJ ,10

TJ (z) TJ (0) ∼ −6 c4d

z4
+

2 TJ (0)

z2
+
∂TJ (0)

z
. (2.3.14)

Happily, we recognize in (2.3.14) the familiar two-dimensional TT OPE with
central charge c2d given by

c2d = −12 c4d . (2.3.15)

10The term corresponding to the simple pole does not immediately follow from the
OPE given in (2.3.13). In particular, though the presence of ∂TJ (0) is guaranteed as a
consequence of the double pole, we may worry that an additional quasiprimary (in the
two-dimensional sense) may also appear. Such a quasiprimary O would have to be a boson
of holomorphic dimension h = 3 and have nonzero three point function 〈TJ TJO〉. This is
forbidden by Bose symmetry.
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This is the first major entry in our dictionary. Note that unitarity of the four-
dimensional theory requires c4d > 0, so the chiral algebra will have negative
central charge and will therefore necessarily be non-unitary.

It is not immediately clear from the arguments presented thus far that
TJ (z) will have the correct OPE with operators of the chiral algebra. In
other words, the assertion that TJ acts as the stress tensor of the chiral
algebra means that the “geometric” sl(2) generators {L−1, L0, L+1} defined
by the embedding (2.2.19) of the two-dimensional conformal algebra into
the four-dimensional one should coincide in cohomology with the generators
{LJ−1, L

J
0 , L

J
+1} defined by the mode expansion of TJ (z). It would be suffi-

cient to verify that this is the case for quasiprimary operators, by which we
mean operators O(z) that, when inserted at the origin, are annihilated by
the holomorphic special conformal generator

[L+1,O(0)] = 0 . (2.3.16)

In our construction, such an O(z) arises as the cohomology class of a twisted-
translated primary Schur operator. The assertion is then that in the chiral
algebra (i.e., up to Q i-exact terms), the TJ OPEs take the form

TJ (z)O(0) ∼ · · ·+ 0

z3
+
h O(0)

z2
+
∂O(0)

z
, (2.3.17)

where h is the holomorphic dimension of O and the dots indicate possible
poles of order four or higher. Though we have not been able to find a general
proof, we believe (2.3.17) to be a universal consequence of superconformal
Ward identities. It is thanks to the relation for the conformal dimension
h = R+ j1 + j2 that the SU(2)R current can reproduce the appropriate scal-
ing dimension, and the absence of additional operators should be excluded by
selection rules for three-point functions of Schur-type superconformal mul-
tiplets. In practice, we have been able to give an abstract argument that
this OPE holds only for the case where O is a scalar operator. For non-
scalar operators in the abstract setting, we leave the structure of these OPEs
as a conjecture. Later in this section, the OPE (2.3.17) will be shown to
hold in full generality in the theories of free hypermultiplets and free vector
multiplets. The abstract claim would follow if the most general solution of
the requisite Ward identity is expressible as a linear combination of struc-
tures corresponding to free field models, which is empirically the case in all
analogous situations with which the authors are familiar.
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Affine enhancement of the flavor symmetry

We next turn to the role played by the flavor symmetries of T in the associ-
ated chiral algebra. When T enjoys a flavor symmetry GF , the corresponding
conserved current Jαα̇ is an element of a B̂1 supermultiplet, which addition-
ally contains as its Schur primary the moment map operator M11 described
in the list at the end of §2.3.1. We expect the presence of GF symmetry
to make itself known via the chiral operator associated to the moment map.
Following the now-familiar procedure, we define a Q i-closed operator M(z, z̄)
via twisted translations of the Schur moment-map operator from the origin,
and identify the corresponding cohomology class as a meromorphic operator
in the chiral algebra,

M(z, z̄) := uI(z̄)uJ (z̄)MIJ (z, z̄) , J(z) := κ[M(z, z̄)]Q i . (2.3.18)

The normalization constant κ will be determined momentarily. The mero-
morphic operator J(z) has holomorphic dimension h = 1. We have sup-
pressed flavor indices up to this point, but these operators all transform in
the adjoint representation of the flavor symmetry group, and so we actually
find dimGF dimension one currents JA(z) in the chiral algebra. It is natural
to suspect that these operators will behave as affine currents for the flavor
symmetry. Indeed, a little calculation bears out this expectation. First, re-
call that the central charge k4d of the flavor symmetry is defined in terms of
the self-OPE of the conserved flavor symmetry current as follows,

JAµ (x) JBν (0) ∼ 3k4d

4π4
δAB

x2gµν − 2xµxν
x8

+
2

π2

xµxνf
ABCx · JC(0)

x6
+ · · · .

(2.3.19)
Here A,B,C = 1, . . . , dimGF are adjoint flavor indices, and we are using
normalizations such that long roots of a Lie algebra have length

√
2 as in

[47]. In the same conventions, the OPE of two moment maps reads

MA IJ (x)MBKL(0) ∼ − 3k4d

48π4

εK(IεJ )LδAB

x4
−
√

2

4π2

fABCMC (I(KεL)J )

x2
+ · · · .
(2.3.20)

The OPE for the corresponding twisted-translated operators follows directly,

MA(z, z̄)MB(0, 0) ∼− 3k4d

48π4

δAB

z2
+

√
2

4π2
i
fABCMC(0, 0)

z

+

√
2

4π2
fABCMC 21(0)

z̄

z
+ · · · , (2.3.21)
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where the last term is Q i-exact. Setting κ = 2
√

2π2, we recognize the canon-
ical current algebra OPE,11

JA(z)JB(w) ∼ k2d
δAB

(z − w)2
+
∑
C

ifABC
JC(w)

z − w , (2.3.22)

where the two-dimensional affine level k2d is related to the four-dimensional
flavor central charge k4d by

k2d = −k4d

2
. (2.3.23)

This is the second important entry in the dictionary.

The Hall-Littlewood chiral ring and chiral algebra generators

An interesting problem that will be of particular concern in §2.5 is that
of giving a simple description of the chiral algebra χ[ T ] associated to a
given T in terms of a set of generating currents. Generators of a chiral
algebra are by definition those sl(2) primary operators {Oj} for which the
normal ordered products of their descendants, i.e., operators of the form
∂n1O1∂

n2O2 . . . ∂
nkOk, span the whole algebra.12 When the chiral algebra

has only a finite number of generators, it is customary to refer to it as a
W-algebra.

While we have given a clear set of rules that identifies the spectrum of
the chiral algebra given the spectrum of the four-dimensional theory T , these
rules have little to say about the question of what operators are generators of
χ[ T ]. There turns out to be a subset of generators that is always relatively
easy to identify. Recall from §2.3.1 that the HL chiral and anti-chiral rings
are consistent truncations of the N = 1 chiral and anti-chiral rings of T ,
respectively. As such, they are commutative rings, and it is often possible

11In two dimensions it is standard to define a convention-independent affine level k2d as

k2d := 2k̃2d
θ2 , where k̃2d is the level when the length of the long roots are normalized to be

θ. In our conventions θ2 = 2 and so k̃2d = k2d.
12We are adopting the normal ordering conventions of [48], in which a sequence of chiral

operators represents left-nesting of conformally normal-ordered products:

O1O2 · · · On−1On := (O1(O2(· · · (On−1On)))) . (2.3.24)

The algebra of operators so-defined is non-commutative and non-associative.
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to give them presentations in terms of generators and relations. What we
show now is that the meromorphic operators associated to the generators of
the HL chiral and antichiral rings are in fact generators of χ[ T ] in the chiral
algebra sense.

Given the shortening conditions they obey, one finds that the chiral al-
gebra operators associated to HL operators have holomorphic dimension
h = R + |r|. In order to establish the claim made above, we will show
that an HL operator can never arise as a normal ordered product of other
operators that are not themselves of HL type. Let O1(z, z̄) and O2(z, z̄) be
two generic twisted-translated Schur operators, and let us assume that their
OPE contains an HL operator OHL

3 ,

O1(z, z̄)O2(0, 0) ∼ 1

zh1+h2−h3
OHL

3 (0, 0) + . . . (2.3.25)

By assumption, h3 = R3 + |r3|, while (2.3.7) implies that h1 > R1 + |r1|, h2 >
R2 + |r2|. The U(1)r charge is conserved, so r3 = r1 +r2 and |r3| 6 |r1|+ |r2|.
Furthermore, SU(2)R selection rules imply the triangular inequality R3 6
R1 + R2. Combining these (in)equalities, we find that h3 6 h1 + h2, which
implies that an HL operator may only appear on the right hand side as
a singular term (if h3 < h1 + h2) or as the leading non-singular term (if
h3 = h1 + h2). The latter possibility requires that O1 and O2 saturate the
respective bounds (2.3.7) for h1 and h2, which is to say that they themselves
must be HL operators. This argument establishes that HL operators cannot
be generated as normal ordered products of non-HL operators, and so the
generators of the HL chiral and antichiral rings must necessarily be generators
of the chiral algebra.

The Hall-Littlewood chiral ring and Virasoro primaries

A further interesting feature of the HL chiral ring operators is that their
corresponding meromorphic operators are always Virasoro primaries. For
the generators of the HL chiral ring, this is already clear since the generators
of any chiral algebra that includes a stress tensor are necessarily primaries
of the Virasoro subalgebra. For other HL operators, though, this is a useful
result that will help organize our thinking about some of the examples studied
in §2.5.

The statement follows from a relatively straightforward analysis of the
OPE of the meromorphic stress tensor with an arbitrary HL operator. In
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particular, let O1(z) be the meromorphic operator associated to an HL oper-
ator in four dimensions. The quantum numbers of O1 obey the HL relation

h1 = R1 + |r1| . (2.3.26)

Now the crucial observation from which our result follows is this: from a
four-dimensional perspective, the meromorphic stress tensor is a z̄-dependent
linear combination of operators with r = 0 and R = 0,±1. Consequently,
in the OPE of the meromorphic stress tensor with O1(0), the only operators
that may appear will have R = R1 ± 1 or R = R1 and r = r1. With what
power of z can such an operator appear in the OPE? A Schur operator Oγ(0)
with R = R1 + γ and M = |r1|+ 2min(j1, j2) will appear in the OPE as

T (z)O1(0) ⊃ Oγ(0)

z2+R1+|r1|−R−M
=

Oγ(0)

z2−γ−2min(j1,j2)
. (2.3.27)

This is at most a pole of order three (when γ = −1 and j1 = 0 or j2 = 0), but
such a pole cannot appear because HL operators are always sl(2) primaries –
thus the most singular term possible is a pole of order two. This is precisely
the property that characterizes Virasoro primary operators, and so we have
our result.

2.3.3 The chiral algebras of free theories

The simplest N = 2 SCFTs are the theories of a free hypermultiplet and
that of a free vector multiplet. For these special cases, we give a complete
description of the associated chiral algebras. These chiral algebras are useful
as the building blocks of interacting Lagrangian theories, some of which are
discussed in §2.4. We describe in turn the cases of hypermultiplets and vector
multiplets.

Free hypermultiplets

Let us consider the field theory of a single free hypermultiplet. The hy-
permultiplet itself lies in the short supermultiplet B 1

2
, in which the primary

Schur operators are the scalars Q and Q̃. These are the highest weight states
in a pair of SU(2)R doublets,

QI =

 Q

Q̃∗

 , Q̃I =

 Q̃

−Q∗

 . (2.3.28)
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The single free hypermultiplet enjoys an SU(2)F flavor symmetry, under
which QI and Q̃I transform as a doublet. To work covariantly in terms of
this SU(2)F , we can introduce the following tensor,

QIÎ :=

 Q Q̃

Q̃∗ −Q∗

 , (2.3.29)

where Î = 1, 2 is the newly minted SU(2)F index.
The Schur operators in this free theory are all the “words” that can be

constructed out of the “letters” {Q, Q̃, ∂++̇}. As there are no singularities
in the products of (∂++̇ derivatives of) Q and Q̃, the operator associated to
any given word is well-defined and the Schur operators in this theory form a
commutative ring. The set of all meromorphic operators in the free hyper-
multiplet chiral algebra are therefore precisely the Q i cohomology classes of
the twisted-translated versions of these words. This chiral algebra is itself a
free chiral theory in two dimensions. Let us see how this works.

The twisted-translated operators and the associated meromorphic oper-
ators for the hypermultiplet scalars themselves are defined as follows,

QÎ(z, z̄) := uI(z̄)QIÎ(z, z̄) , qÎ(z) := [QÎ(z, z̄)]Q i . (2.3.30)

The relation to the operators defined in §2.2.4 is qÎ(z) = (q(z), q̃(z)). This is
an SU(2)F doublet of dimension 1/2 meromorphic fields, the OPE of which
can be computed using the free-field OPE in four dimensions and the defini-
tion of the twisted translated operators in (2.3.30),

qÎ(z) qĴ (w) ∼ εÎĴ
z − w . (2.3.31)

It is reasonably easy to see that the entire spectrum of the chiral algebra
of four-dimensional hypermultiplets is obtained by taking normal ordered
products of the qÎ(z) and their descendants. In particular, one can show
that the following diagram commutes,13

{Oi ,Oj} OiOj

{[Oi] , [Oj]} : [Oi][Oj] :

×4d

Q i Q i

×::

, (2.3.32)

13We will see when we come to consider interacting theories in §2.5 that product struc-
tures on Schur operators do not always translate so simply into those of the chiral algebra.
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where the top row represents multiplication in the ring of Schur operators,
the bottom row represents creation/annihilation normal ordered products
of chiral vertex operators, and the vertical arrows represent the identifi-
cation of a Schur operator with its meromorphic counterpart in the chi-
ral algebra. It follows that the meromorphic operator associated to any
given word in (∂++̇derivatives of) Q and Q̃ is simply the corresponding cre-
ation/annihilation normal ordered product of (holomorphic derivatives of) q
and q̃.

The chiral algebra of the free hypermultiplet is thus none other than
the free symplectic boson algebra (cf. [49]). This simple example serves to
illustrate some of the general points made in the previous subsections. The
symplectic boson theory has a canonical stress tensor,

T (z) =
1

2
εÎĴ qÎ∂qĴ (z) , (2.3.33)

and it is easy to check that the modes {L+1, L0, L−1} appearing in Laurent
expansion of (2.3.33) reproduce the action of the holomorphic sl(2) symme-
try inherited from four dimensions. Thus the holomorphic sl(2) is indeed
enhanced to Virasoro symmetry. Moreover, we observe that given the form
of the SU(2)R current in four dimensions

J IJµ (x) ∼ εÎĴQ
(I
Î ∂µQ

J )

Ĵ (x) , (2.3.34)

The corresponding meromorphic operator TJ (z) will be equivalent to the
canonical stress tensor,

T (z) = TJ (z) . (2.3.35)

From the TT OPE we read off the central charge c2d = −1. Recalling that
the conformal anomaly coefficient of a free hypermultiplet is c4d = 1/12, this
result is in agreement the universal relation c2d = −12c4d. The symplectic
boson theory is like the theory of a complex free fermion (which of course
has c2d = 1), but with opposite statistics, hence the opposite value of the
central charge.

Finally we mention a minor generalization of the above story for hyper-
multiplets. Gauge theories with N = 2 supersymmetry are often described in
terms of half-hypermultiplets instead of whole hypermultiplets. The general-
ization of the chiral algebra to the half-hypermultiplet conventions is straight-
forward. Let us consider half-hypermultiplets transforming in a pseudo-real
representation R of some symmetry group G (at the moment we are working
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at zero coupling, so G is just a global symmetry group). The corresponding
chiral algebra will be generated by dimR meromorphic fields,

qi , i = 1, . . . , dimR , (2.3.36)

and the singular OPE of these operators will be given by

qi(z)qj(w) ∼ Ωij

z − w . (2.3.37)

Here Ωij is the anti-linear involution that maps the representation R to its
conjugate and squares to minus one. The description of the single full hy-
permultiplet in (2.3.31) actually fits into this framework with G = SU(2)F .

Free vector multiplet

The other key ingredient in Lagrangian SCFTs is the theory of free vector
multiplets. Free vectors lie in the short supermultiplet D̄0(0,0) and its conju-
gate D0(0,0), whose superconformal primaries are the complex scalar φ and its
conjugate φ̄, respectively. The primary Schur operators in these multiplets
are the fermions λ1

+ and λ̃1
+̇

, and as in the case of hypermultiplets, the entire
set of Schur operators in this theory is comprised of the words built out of
the letters λ1

+, λ̃1
+̇

, and ∂++̇.
The twisted-translated operators associated to the vector multiplet fermi-

ons are defined as follows,

λ(z, z̄) := uI(z̄)λI+(z, z̄) , λ̃(z, z̄) := uI(z̄)λ̃I+̇(z, z̄) , (2.3.38)

and the Q i-cohomology classes of these operators are Grassmann-odd, holo-
morphic fields of dimension h = 1,

λ(z) := [λ(z, z̄)]Q i , λ̃(z) := [λ̃(z, z̄)]Q i . (2.3.39)

Using the four-dimensional free field OPEs, it is easy to derive the OPEs of
these holomorphic fields. They are again the OPEs of a free chiral algebra:

λ̃(z)λ(0) ∼ 1

z2
, λ(z)λ̃(0) ∼ − 1

z2
. (2.3.40)

Indeed, the free-field form of these OPEs leads to an analogous commutative
diagram to (2.3.32), which ensures that all the meromorphic operators in this

43



theory are generated by λ(z) and λ̃(z) in the chiral algebra sense. We can
recognize this chiral algebra as the (b, c) ghost system of weight (1, 0),14

λ̃ := b(z) , λ(z) := ∂c(z) . (2.3.41)

In making this identification, we have introduced an extra spurious mode –
the zero mode c0 of c(z) – which is of absent in the algebra generated by
λ(z) and λ̃(z). Thus, the more precise statement is that the chiral algebra
associated to the vector multiplet is the so-called “small algebra” of the (b, c)
system, which is by definition the algebra generated by b(z) and ∂c(z) (cf.
[50, 51]). In other words, the Fock space of the small algebra is the subspace
of the (b, c) Fock space that does not contain c0, or equivalently, the subspace
annihilated by b0,

Fsmall := {ψ ∈ Fbc | b0ψ = 0} . (2.3.42)

The small algebra enjoys a global SL(2,R) symmetry under which λ(z) and
λ̃(z) transform as a doublet. We can make this symmetry manifest by in-
troducing the notation ρα with α = ±, where ρ+ := λ̃ and ρ− := λ. Note
that the Cartan generator of this symmetry acts as the U(1)r charge. In the
language of the small algebra, the OPE can be put in a covariant form,

ρα(z) ρβ(0) ∼ εαβ

z2
. (2.3.43)

As in the hypermultiplet case, the action of the {L+1, L0, L−1} modes
of the canonical ghost stress tensor can easily be seen to match the action
of the geometric sl(2) action inherited from the four-dimensional conformal
algebra. Furthermore, given the SU(2)R current of the free vector theory,

J IJαα̇ (x) ∼ λ(I
α λ̃
J )
α̇ (x) , (2.3.44)

we see that the canonical stress tensor coincides precisely with the dimension
two current TJ obtained from the R-symmetry current by the usual map,

T (z) = −1

2
εαβρ

αρβ(z) = TJ (z) . (2.3.45)

The central charge of the (b, c) ghost system/small algebra is c2d = −2, which
can be seen to agree with the relation (2.3.15) upon recalling that c4d = 1

6

for a free vector multiplet.

14Recall that the derivative of a dimension zero conformal primary field – c(z) in this
case – is again a conformal primary.
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2.3.4 Gauging prescription

The natural next step is to consider interacting SCFTs. Lagrangian N = 2
SCFTs can be described using hypermultiplets and vector multiplets as ele-
mentary building blocks (see [52] for a recent classification of all possibilities).
In particular, such an SCFT consists of vector multiplets transforming in the
adjoint representation of a semisimple gauge group G = G1 × G2 · · · × Gk,
along with a collection of (half)hypermultiplets transforming in some rep-
resentation R of the gauge group such that the one-loop beta functions for
all gauge couplings vanish. Supersymmetry ensures that the theory remains
conformal at the full quantum level. The building blocks of the corresponding
chiral algebra are a collection of symplectic bosons {q , q̃} in the representa-
tion R, and a collection of (b , c) ghost small algebras in the adjoint represen-
tation of G. When the gauge couplings are strictly zero, the chiral algebra is
simply obtained by imposing the Gauss law constraint, i.e., by restricting to
the gauge-invariant operators of the free chiral algebra of symplectic bosons
and ghosts. Our next step will be to determine what happens as we turn on
the gauge couplings.

In fact, as Lagrangian theories are a small subset of all possible N = 2
SCFTs, it is worthwhile to put the discussion in a more general context.
Given a general superconformal field theory T with GF flavor symmetry, a
new SCFT is obtained by gauging a subgroup G ⊂ GF provided the gauge
coupling beta function vanishes. We will denote the gauged theory with
a nonzero gauge coupling g as TG.15 Though T may be strongly coupled,
the gauging procedure can be described in semi-Lagrangian language. By
assumption, T possesses a conserved flavor symmetry current JAαα̇, where
A = 1, . . . dim G, which by N = 2 supersymmetry is the top component of
the moment map supermultiplet B̂1. The gauged theory TG is described by
minimally coupling an N = 2 vector multiplet to B̂1. Of particular impor-
tance is the addition to the action, in N = 1 notation, of the superpotential
coupling

g

∫
d2θΦAM11,A + h.c. , (2.3.46)

where Φ is the N = 1 chiral superfield in the N = 2 vector multiplet, and
M11 is the N = 1 chiral superfield whose bottom component is the complex

15More precisely, there is one independent gauge coupling for each simple factor of the
gauge group. To avoid clutter we focus on the procedure for gauging one simple factor at
the time, so G will taken to be a simple group in what follows.
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moment map M11; both transform in the adjoint representation of G.
Let us assume that the chiral algebra χ[T ] is known. It will suffice to work

abstractly, in the sense that the only features of χ[T ] that we will use follow
directly from the existence of the global G symmetry. In particular, there will
be an affine current JA(z) at level k2d = −1

2
k4d (cf. §2.3.2). As we mentioned

above, at zero gauge coupling the chiral algebra of the gauged theory is
obtained by imposing the Gauss law constraint on the tensor product algebra
of χ[T ] with the G-ghost small algebra (ρ+, ρ−). In fact, it will be more
useful to introduce the full (b, c) system and restrict to the small algebra by
imposing the auxiliary condition bA0 ψ = 0 for any state ψ.

The affine current associated to the G symmetry in the ghost sector is

JAgh := −i fABC (cBbC) . (2.3.47)

The Gauss law, or gauge-invariance, constraint requires that all physical
states should have vanishing total gauge charge, which is measured by the
zero mode of the total gauge symmetry current,

JAtot(z) := JA(z) + JAgh(z) . (2.3.48)

Symbolically, we can therefore define the chiral algebra at zero gauge coupling
as follows:

χ[T (0)
G ] = {ψ ∈ χ[T ]⊗ (bA, cA) | bA0 ψ = JAtot 0ψ = 0} . (2.3.49)

We are now ready to address the problem of identifying the chiral algebra
for TG with g 6= 0.

BRST reduction of the chiral algebra

On general grounds, we expect that the chiral algebra of the interacting gauge
theory will contain fewer operators than the non-interacting version, because
some of the short multiplets containing Schur operators that are present
at zero coupling will recombine into long multiplets and acquire anomalous
dimensions. Ideally, we would like to describe this phenomenon using only
the general algebraic ingredients that we have introduced so far. A crucial
hint comes from phrasing the condition of conformal invariance of the gauge
theory more abstractly. The vanishing of the one-loop beta function amounts
to the requirement that in the ungauged theory, the flavor symmetry central
charge is given by

k4d = 4h∨ , (2.3.50)
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where h∨ is the dual Coxeter number of the gauge group. This means that in
two-dimensional language, the corresponding symmetry in χ[T ] must have
its affine level given by

k2d = −2h∨ . (2.3.51)

The affine level of the ghost-sector flavor currents Jgh is easily calculated
to be 2h∨, so the requirement of conformal invariance translates into the
condition that the level of the total affine current JAtot be zero. Precisely in
this case, it is possible to construct a nilpotent BRST operator in the chiral
algebra. Imitating a construction familiar from coset conformal field theory
[53], we define

QBRST :=

∮
dz

2πi
jBRST(z) , jBRST := cA

[
JA +

1

2
JAgh

]
. (2.3.52)

Our contention is that the chiral algebra corresponding to the gauged theory
at finite coupling is obtained by passing to the cohomology of QBRST relative
to the ghost zero modes bA0 ,16

χ[TG] = H∗BRST[ψ ∈ χ[T ]⊗ (bA, cA)
∣∣ bA0 ψ = 0] . (2.3.53)

Apart from its elegance, there are compelling physical arguments behind this
claim. We will show that states of the chiral algebra that define nontrivial
cohomology classes of QBRST correspond to the four-dimensional Schur states
that survive in the interacting theory. By construction, all states of χ[T (0)

G ]
are annihilated by the four supercharges in (2.3.3). As we turn on the gauge
coupling, those supercharges receive quantum corrections, and only a subset
of states remains supersymmetric. We will see that QBRST precisely imple-
ments the O(g) correction to one of the Poincaré supercharges, which will
justify our conjecture under the assumption that higher order corrections do
not remove any additional states.

A preliminary remark is that the Gauss law constraint is imposed auto-
matically. Because

{bA0 , QBRST} = JAtot 0 , (2.3.54)

states in the small algebra that are QBRST-closed are automatically gauge
invariant. Consequently, we have the simpler expression,

χ[TG] = H∗BRST[χ[T (0)
G ]] . (2.3.55)

16In other terms, the BRST cohomology is being defined entirely in the small algebra:
two QBRST-closed states belong to the same cohomology class if and only if they differ by
an exact state QBRSTλ, where λ is also in the small algebra.
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We can rewrite QBRST and separate out the ghost zero modes,

QBRST = cA0 J
A
tot 0 + bA0 X

A +Q− , (2.3.56)

where we have defined

XA := − i
2
fABC

(∑
n6=0

: cB−nc
C
n : −cB0 cC0

)
, (2.3.57)

while Q− anticommutes with both cA0 and bA0 and can thus be expressed
purely in terms of (ρ+A, ρ−A),

Q− :=
∑
n6=0

1

n
: ρ−A−nJ

A
n : +

i

2
fABC

∑
n6=0
m6=0
m6=n

1

nm
: ρ−A−nρ

−B
m ρ+C

n−m : . (2.3.58)

The operator Q− fails to be nilpotent by a term proportional to JAtot 0, so it
is nilpotent when acting on gauge-invariant states. It follows that (2.3.54)
can be equivalently written as

χ[TG] = H∗Q− [ψ ∈ χ[T ]⊗ (ρ+A, ρ−A) ,with JAtot 0ψ = 0] . (2.3.59)

This is the form of our conjecture that makes more immediate contact with
four-dimensional physics. We will show that the action of Q− precisely
matches to the action of Q̃(1)

2−̇, the O(g) term in the expansion of the su-

percharge Q̃2−̇,

Q̃2−̇ = Q̃(0)

2−̇ + g Q̃(1)

2−̇ +O(g2) . (2.3.60)

In fact, Q− is the lowest component of an SL(2,R) doublet of operators Qα,
with

Q+ :=
∑
n6=0

1

n
: ρ+A
−nJ

A
n : +

i

2
fABC

∑
n6=0
m6=0
m6=n

1

mn
: ρ+A
−nρ

+B
m ρ−Cn−m : . (2.3.61)

In complete analogy, the action of Q+ will be shown to be isomorphic to
that of Q1(1)

− , the O(g) term in the expansion of Q1
−. The two Poincaré

supercharges Q1
− and Q̃2−̇ play a completely symmetric role in the definition

of Schur operators. The fact that QBRST contains Q− rather than Q+ is
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a consequence of our choice (2.3.41), which treated λ and λ̃ in a slightly
asymmetric fashion.

Fortunately, to leading order in the gauge coupling the action of the
relevant supercharges takes a universal form in the subspace of operators that
obey the tree-level Schur condition. Such operators are obtained by forming
gauge-invariant combinations of more elementary building blocks, namely the
conformal primaries of the “matter” SCFT T , the gauge-covariant derivative
D++̇, and the gauginos λ̃1

+̇
and λ1

+. The supersymmetry variation of a gauge-
invariant “word” is found by using the Leibniz rule to act on each elementary
“letter”.17 It is then sufficient to specify the SUSY variations of the letters:

1. Q1
− and Q̃2−̇ (anti)commute with the conformal primary operators in

the matter sector T .

2. For the gauge-covariant derivative D++̇ := ∂++̇ + gA++̇,

[Q1
−, D++̇] = gλ̃1

+̇ , [Q̃2−̇, D++̇] = gλ1
+ , (2.3.62)

where we have just used the tree-level variation of the gauge field, times
the explicit factor of g.

3. Finally the variations of the gauginos can be deduced from the non-
linear classical equations of motions of the vector multiplet, minimally
coupled to the moment map supermultiplet B̂1,

{Q̃2−̇, λ̃
1
+̇} = {Q1

−, λ
1
+} = F 11 = gM11 (2.3.63)

{Q̃2−̇, λ
1
+} = {Q1

−, λ̃
1
+̇} = 0 ,

where F 11 is the highest-weight of the SU(2)R triplet of auxiliary fields
in the N = 2 vector multiplet.18

If a Schur operator in the free theory is to retain its Schur status at O(g),
then when inserted at the origin it must be annihilated by the one-loop
corrections to the four relevant supercharges, {Q̃(1)

2−̇, (Q̃
(1)

2−̇)†,Q1(1)
− , (Q1(1)

− )†}.
17For the special case of N = 2 superconformal QCD, a very explicit description of the

action of Q1(1)
− in the subsector of tree-level Schur operators can be found in Section 5 of

[54].
18In an N = 1 description of the N = 2 vector multiplet, F 11 = F̄ , where F is the top

component of chiral superfield φ, whose superpotential coupling with the moment map is
given in (2.3.46).
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Equivalently, it must define a nontrivial cohomology class with respect to Q̃(1)

2−̇

and Q1(1)
− . Conveniently, the recombination rules for shortened multiplets of

Schur type (cf. Appendix A.2) are such that in any such recombination, the
Schur operators of T (0) are lifted in quartets that are related by the action
of these two supercharges in the manner indicated in the following diagram:

ĈR+ 1
2

(j1− 1
2
,j2)

ĈR(j1,j2) ĈR+1(j1− 1
2
,j2− 1

2
)

ĈR+ 1
2

(j1,j2− 1
2

)

Q̃(1)

2−̇Q1(1)
−

Q̃(1)

2−̇ Q1(1)
−

(2.3.64)

In the diagram, we are labeling Schur operators by the name of the super-
multiplet to which they belong.19 Consequently, if an operator remains in the
cohomology of either supercharge, it necessarily remains in the cohomology
of both, and so stays a Schur operator at one-loop order. For example, if
an operator becomes Q1(1)

− exact then it is either at the right or at the top

of the diagram and it follows that it is either Q̃(1)

2−̇ exact or not Q̃(1)

2−̇ closed,
respectively. The other cases can be treated analogously.

Under the 4d/2d identifications

Q̃(1)

2−̇ → Q− , Q1(1)
− → Q+ , D++̇ → ∂ , λ1

+ → ρ− , λ̃1
+̇ → ρ+ , (2.3.65)

one easily checks that (2.3.58) and (2.3.61) have precisely the right form to
reproduce the action of the O(g) correction to the four-dimensional super-
charges. Thus, the BRST cohomology specified in (2.3.53) is just the right
thing to project out states whose corresponding Schur operators are lifted at
one-loop order.

It is of some interest to note that this story of one-loop corrections to
the spectrum of Schur operators admits a simple truncation to the case of
HL chiral ring operators. The tree-level HL operators will be gauge-invariant

19To include all possible recombinations, we must formally allow j1 and j2 to take the
value − 1

2 as well, and re-interpret a Ĉ multiplet with negative spins as a B̂, D or D̄
multiplet, according to the rules:
ĈR(j1,− 1

2 )
:= D̄R+ 1

2 (j1,0)
, ĈR(− 1

2 ,j2)
:= DR+ 1

2 (0,j2)
, ĈR(− 1

2 ,−
1
2 )

:= B̂R+1.
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combinations of the HL operators of T and the gaugino λ1
+. The operators

that are lifted from the spectrum at one-loop will be those that are related
by the corrected supercharge Q̃(1)

2−̇, whose action in this sector is completely
determined by (2.3.63). The problem of finding the HL operators in the spec-
trum of the interacting theory thus becomes a miniature “HL-cohomology”
problem. In examples, it is sometimes useful to solve this problem as a first
step in order to determine some important operators that will necessarily
make an appearance in the chiral algebra.

Finally, a caveat is in order. We have assumed that the Schur operators
that persist at infinitesimal coupling will remain protected at any finite value
of the coupling. In some concrete cases, it can be demonstrated that no
further recombination of shortened multiplets is possible. Moreover, in the
examples of §2.5 we will propose simple economical descriptions for the chiral
algebras defined by this cohomological recipe, and demonstrate that they
have the symmetries expected at finite coupling from S-duality, giving strong
evidence for our proposal, at least in those examples.

Non-renormalization of three-point couplings

So far, we have studied how the spectrum of operators is modified when
the coupling is turned on, but we have said nothing about the OPE coeffi-
cients of the remaining physical operators in the gauged theory. Our implicit
assumption has been that the OPE coefficients of operators that remain pro-
tected at finite coupling are actually independent of the coupling. From
a two-dimensional perspective, it seems unlikely that the OPE coefficients
could change due to the extremely rigid structure of chiral algebras, and we
expect a corresponding non-renormalization statement to hold in four dimen-
sions. Indeed, such a non-renormalization theorem directly follows from the
methods and results of [55]. Let us consider the four-point function of three
Schur-type operators and of the exactly marginal operator Oτ responsible for
changing the complexified gauge coupling,

〈OI11 (x1)OI22 (x2)OI33 (x3)Oτ (x4) 〉 , (2.3.66)

where I = (I(1) . . . I(k)) with I(i) = 1, 2 are SU(2)R multi-indices and we
have suppressed Lorentz indices. Non-renormalization of the appropriate
three-point function of Schur-type operators will follow at once if we can
argue that the above four-point function vanishes for any x4 when x1,2,3 all
lie on the plane. By a conformal transformation, we can always take the
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fourth operator to lie on the same plane, and then focus on the SU(1, 1|2)
subalgebra of SU(2, 2|2) defined by the embedding (2.2.20). The Schur-type
operators are chiral primaries of this subalgebra. The marginal operator
Oτ , being the top component of an Ē2 multiplet of SU(2, 2|2), is of the
form Oτ = {Q1, [Q2, . . . ]} where QI := QI− are supercharges of SU(1, 1|2).20

All the properties exploited in [55] to show the vanishing of the four-point
function (2.3.66) are satisfied. The authors of [55] interpreted this result as
a non-renormalization theorem for three-point functions of chiral primaries
of two-dimensional (0, 4) theories, but exactly the same argument applies to
our case as well.

We close this section by pointing out a curious aspect of the gauging
prescription given here. Given a chiral CFT χ[T ] with affine G symmetry,
one can introduce a two-dimensional vector field Az̄ and gauge G. Following
standard arguments (for example, see [56, 53]), a change of variables in the
path integral eliminates the gauge field in favor of an extra G current algebra
at level −(2h∨ + k2d) and an adjoint-valued (b, c) ghost system. One must
also impose invariance under the standard BRST operator associated to the
gauge symmetry. In our case, 2h∨ + k2d = 0 so the extra current algebra is
trivial, and the BRST operator associated to the two-dimensional gauging
takes precisely the form of (2.3.52). In some sense, we have found that
“4d gauging = 2d gauging”. We find it plausible that a localization-style
argument may shed light on this correspondence.

2.4 Consequences for four-dimensional

physics

The chiral symmetry algebras that we have uncovered have extensive con-
sequences for the spectrum and structure constants of any N = 2 SCFT.
To give a simple example, Virasoro symmetry implies that any Higgs branch
half-BPS supermultiplet B̂R is accompanied by an entire module of semi-
short ĈR′(j,j) multiplets with R′ = R − 1, R,R + 1. In the four-dimensional
theory, the descendant operators arise by taking repeated normal ordered

20Similarly, the conjugate operator Ōτ is the top component of an E2 and can be writ-
ten as {Q̃1, [Q̃2, . . . ]}. An entirely analogous argument holds for the four-point function
containing Ōτ .
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products with certain components of the SU(2)R current, but the chiral al-
gebra perspective makes this structure much more transparent.

In this section we elaborate on the relationship between the observables
associated to the chiral algebra (i.e., its correlation functions and torus par-
tition function) and those of the parent four-dimensional theory. We first
point out that the superconformal Ward identities for four-point functions
of B̂R operators [32, 33] are a simple consequence of our cohomological con-
struction. This new perspective makes it clear that analogous Ward iden-
tities must hold for four-point functions of general Schur operators. The
presence of meromorphic functions in the solution of the Ward identities of
[28, 32, 33] was one of the initial clues that led to our work. We now have
a neat conceptual interpretation for them: they are nothing but the correla-
tion functions of the associated chiral algebra. By exploiting the relationship
between the two-dimensional and four-dimensional perspectives we are able
to derive new unitarity bounds that must be satisfied by the conformal and
flavor anomalies of a general interacting N = 2 SCFT. Finally, we delineate
the relationship between the torus partition function of the chiral algebra
and the superconformal index of the parent four-dimensional theory.

2.4.1 Conformal twisting and superconformal Ward
identities

By construction, for a given SCFT T , the correlation functions of χ[T ] are
equal to certain correlation functions of physical operators in T restricted to
lie on the plane. From the four-dimensional point of view these are somewhat
unnatural correlators to study, as they have explicit space-time dependence
built into the operators. On the other hand, each correlation function of χ[T ]
is canonically associated to a family of more natural correlation functions of
T that are obtained by replacing the twisted-translated operators with the
corresponding untwisted operators at the same points in R2.

Let us consider such a correlator now. For simplicity, we specialize to a
four-point function, in which case there is actually no loss of generality in
restricting the operators to be coplanar. We denote the untwisted operators
as OI(z, z̄), with SU(2)R multi-indices I = (I(1), . . . , I(k)) where I(i) = 1, 2.
The components of the multi-index are symmetrized; the operator trans-
forms in the spin k/2 representation of SU(2)R. Recall that in our conven-
tions, the Schur operator in this SU(2)R multiplet is the highest-weight state

53



O1...1(z, z̄). We represent the four-point function of such operators as

FI1I2I3I4(zi, z̄i) = 〈 OI11 (z1, z̄1)OI22 (z2, z̄2)OI33 (z3, z̄3)OI44 (z4, z̄4) 〉 . (2.4.1)

This is actually a collection of four-point functions labelled by the different
possible assignments for the R-symmetry indices. The full collection of four-
point functions can be conveniently packaged by introducing two-component
SU(2)R vectors u(yi) = (1, yi) and defining contracted operators that depend
on the auxiliary variable y as follows [32, 33]

Oi(zi, z̄i; yi) = uI1(yi) · · ·uIki (yi)O
(I1···Iki )
i (zi, z̄i) . (2.4.2)

A single function of xi and yi can be defined that encodes the full content of
the collection of correlation functions in (2.4.1),

F(zi, z̄i; yi) = 〈 O1(z1, z̄1; y1)O2(z2, z̄2; y2)O3(z3, z̄3; y3)O4(z4, z̄4; y4) 〉 .
(2.4.3)

Charge conservation ensures that this function is homogeneous in the aux-
iliary yi with weight 1

2

∑
ki, and the correlation function for a given choice

of external R-symmetry indices can be read off by selecting the coefficient of
the appropriate monomial in the yi variables.

This repackaging makes it simple to state the relationship with correlation
functions of χ[T ]. The twisted chiral operators defined in §2.2.2 are the
specialization of the repackaged operators in (2.4.2) to yi = z̄i. So if the
related four-point function of meromorphic operators Oi(z) = χ[Oi(z, z̄)] is
defined as

f(z1, z2, z3, z4) = 〈O1(z1)O2(z2)O3(z3)O4(z4)〉 , (2.4.4)

then the correlation functions are related according to

f(zi) = F(zi, z̄i; yi)
∣∣
yi→z̄i

. (2.4.5)

The fact that the left-hand side of this equation is a meromorphic function of
the operator insertion points is a consequence of the cohomological arguments
of the previous sections, but it is also precisely the final form of the supercon-
formal Ward identities for such a correlation function [28, 29, 30, 31, 32, 33].

This is a rather wonderful result: the entirety of the constraints imposed
by superconformal Ward identities on the four-point function of half-BPS
operators are captured by the existence of the twist of §2.2.2. It is worth
noting that while the Ward identities of [32] were derived specifically for
half-BPS operators in B̂R multiplets, here we see that the same type of Ward
identities holds more generally for any Schur-type operators.
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2.4.2 Four-dimensional unitarity and central charge
bounds

The natural inner product on the Hilbert space of the radially quantized four-
dimensional theory T does not survive the passage to Q cohomology. This
is an immediate consequence of the fact that Q is not hermitian. Hence,
unitarity in four dimensions does not imply unitarity in the chiral algebra.
In fact, we have seen that a unitary theory T always gives rise to a chiral
algebra χ[T ] with negative central charge, which is necessarily non-unitary.
Nevertheless, there is an interesting interplay between the structure of the
chiral algebra and four-dimensional unitarity. This leads to new unitarity
bounds for the anomaly coefficients of any four-dimensional SCFT. In this
section, we explore an elementary example that provides us with such bounds.
It is possible that more extensive analysis could lead to further constraints;
we leave such an analysis for future study.

The origin of nontrivial consistency conditions can be found in the fact
that, as summarized in (2.4.5), the meromorphic correlator f(zi) can be
computed in two different ways that must agree. The first computation
is the two-dimensional one: once the singular OPEs of the meromorphic
operators appearing in the correlator are known, the full correlation function
is completely fixed by meromorphy. The meromorphic correlator further
admits a unique decomposition into sl2 conformal blocks,21 leading to an
expression of the form

f(zi) =

(
z24

z14

)h12
(
z14

z13

)h34 1

zh1+h2
12 zh3+h4

34

∞∑
`=0

(−1)` a` g`(z) , (2.4.6)

where
g`(z) := (−1

2
z)`−1z 2F1(`, `; 2`; z) , (2.4.7)

and we have adopted the standard notation zij := zi − zj and z := z12z34

z13z24
.

Additionally, hi is the holomorphic scaling dimension of the i’th operator,
and we have defined hij = hi − hj.

The second computation is the four-dimensional one. The correlator in
(2.4.1) admits a decomposition into su(2, 2|2) superconformal blocks that
each represent the contribution of a given superconformal multiplet to the

21The result could also be expanded in Virasoro conformal blocks, but this is less natural
for comparison to four-dimensional quantities.
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four-point function. The contribution of each superconformal block to the
meromorphic part of the amplitude defined by (2.4.5) is fixed up to the three-
point coefficients. Thus for a given theory T , the spectrum and three-point
coefficients of BPS operators appearing in the conformal block expansion of
a given correlation function can be determined directly from the correlation
functions of χ[T ]. Non-trivial constraints arise when we require that the
three-point coefficients determined in this manner be consistent with unitar-
ity.

Let us now turn to a specific example to study in detail. We consider the
four-point function of superconformal primary operators in B̂1 multiplets.
As was explained in §2.3, these multiplets contain the spin one conserved
currents that generate the global (non-R) symmetry of the theory, and the
superconformal primaries are scalar moment map operators MA. Conse-
quently the results derived from this example will be relevant to any theory
with non-trivial flavor symmetry. The moment map operators have dimen-
sion two and transform in the adjoint representations of both the flavor group
GF and SU(2)R. The four-point function of such operators can be expanded
in channels corresponding to each irreducible representationR ofGF in which
the exchanged operators in the conformal block expansion may transform,

〈MA(z1, z̄1; y1)MB(z2, z̄2; y2)MC(z3, z̄3; y3)MD(z4, z̄4; y4)〉
=
∑

R∈⊗2adj

PABCD
R FR(zi, z̄i; yi) , (2.4.8)

where PABCD
R is the projector onto the irreducible representation denoted

by R. The projectors for the various groups can be obtained following the
procedures described in [57].

Per the discussion of §2.3.2, the chiral operators JA = χ[MA] are affine
currents, and the mermorphic correlators that emerge in the limit yi → z̄i
are equal to the four-point functions in the corresponding chiral algebra,

z2
12z

2
34〈JA(z1)JB(z2)JC(z3)JD(z4)〉 = fABCD(z) =

∑
R

PABCD
R fR(z) .

(2.4.9)
Each such function can be examined independently as a potential source
of nontrivial consistency conditions. In §2.3 we found that the level of the
affine Lie algebra symmetry generated by these currents is k2d = −1

2
k4d,

so this meromorphic four-point function is completely fixed in terms of the
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structure constants of the associated non-affine Lie algebra and the flavor
central charge,22

fABCD(z) =δABδCD + z2δACδBD +
z2

(1− z)2
δADδCB − z

k2d

fACEfBDE

− z

k2d(z − 1)
fADEfBCE . (2.4.10)

This correlator can be decomposed into GF channels, each of which can be
expanded in sl(2) conformal blocks as in (2.4.6). For example, for the singlet
channel R = 1, the above correlator gives

fR=1 = dimGF + z2

(
1 +

1

(1− z)2

)
+

4z2h∨

k2d(z − 1)

= dimGF −
∑

`=0,2,···

2`(`+ 1)(`!)2 (2(`+ 1)(`+ 2)k2d − 8h∨)

k2d(2`+ 1)!
g`+2(z) ,

(2.4.11)

where h∨ is the dual Coxeter number.
This operator product expansion can be compared with that of the full

four-point function in four dimensions. The superconformal block decompo-
sition of such a four-point function has been worked out in [30]. In particular,
operators that can potentially appear in the intermediate channel must be-
long to one of the following superconformal multiplets:

• A∆(j,j): Long multiplets that are SU(2)R singlets with j1 = j2 = j.

• Ĉ0(j,j): Semishort multiplets with j1 = j2 = j that contain conserved
currents of spin 2j + 2.

• Ĉ1(j,j): Semishort multiplets with j1 = j2 = j.

• B̂1: Half-BPS multiplets containing Higgs branch moment map opera-
tors.

• B̂2: Half-BPS multiplets containing Higgs branch chiral ring operators
of dimension four.

22Here we have rescaled the currents in such a way that the identity operator appears
with unit normalization in the current-current OPE.

57



• I: The identity operator.

The contribution of each such multiplet to the full four-point function is fixed
up to a single coefficient corresponding to the three-point coupling (squared),
and unitarity requires that this coefficient be real and positive. The contri-
bution of each multiplet to the meromorphic functions fR(z) appearing in
the superconformal Ward identities has also been determined in [30]. The
results are summarized as follows:

A∆( `
2
, `
2

) : 0 ,

Ĉ0( `
2
, `
2

) : λ2
Ĉ

0( `2 ,
`
2 )

g`+2(z) ,

Ĉ1( `
2
, `
2

) : −2λ2
Ĉ

1( `2 ,
`
2 )

g`+3(z) ,

B̂1 : λ2
B̂1
g1(z) ,

B̂2 : −2λ2
B̂2
g2(z) ,

Id : λ2
Id .

(2.4.12)

The coefficient λ2
• of each contribution is required by unitarity to be non-

negative.
Some of the coefficients appearing in (2.4.12) can be completely fixed by

symmetry. For example, the identity operator can only appear in the singlet
channel fR=1(z), where the corresponding coefficient is necessarily given by

λ2
Id = dimGF . (2.4.13)

The multiplet Ĉ0(0,0) contains a spin two conserved current, i.e., the stress
tensor. There can only be one such multiplet, and it contributes to the
meromorphic part of the four point function only in the singlet channel. The
three-point coupling is fixed in terms of the four-dimensional central charge.
In particular, one finds that in fR=1(z),

λ2
Ĉ0(0,0)

=
dimGF

3c4d

. (2.4.14)

Finally, multiplets of type B̂1 can contributes only to the adjoint channel,
and the corresponding three-point coupling in fadj(z) is fixed to be

λ2
B̂1

=
4h∨

k4d

. (2.4.15)
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GF h∨ dimGF GF h∨ dimGF

SU(N) N N2 − 1 E6 12 78

SO(N) N − 2 N(N−1)
2

E7 18 133

USp(2N) N + 1 N(2N + 1) E8 30 248

G2 4 14 F4 9 52

Table 2.2: Dual Coxeter number and dimensions for simple Lie groups.

As far as we know, these are the only contributions to this four-point function
that are fixed by symmetry in terms of anomaly coefficients. Additionally,
the multiplets Ĉ0( `

2
, `
2

) for ` 6= 0 necessarily contain conserved currents of spin

greater than two, and so are expected to be absent in interacting theories
[46]. We will take this to be the case in the following analysis.

We can determine the three-point coefficients in, say, the R = 1 channel
by comparing with the expansion of the χ[T ] four-point function in (2.4.11).
In particular, we find

λ2
Id = dimGF ,

λ2
Ĉ0(0,0)

− 2λ2
B̂2

=
8h∨

k4d

− 4 ,

λ2
Ĉ

1( `2 ,
`
2 )

=
2`+1(`+ 2)((`+ 1)!)2

k4d(2`+ 3)!
((`+ 2)(`+ 3)k4d − 4h∨) ,

(2.4.16)

where in the last line only odd ` may appear. The second line of (2.4.16),
after substituting the contribution of the stress tensor multiplet from (2.4.14),
implies a nontrivial bound that must be satisfied in order for the contribution
of the B̂2 multiplet to be consistent with unitarity,

dimGF

c4d

>
24h∨

k4d

− 12 . (2.4.17)

For reference, the dimensions and dual Coxeter numbers of the semi-simple
Lie algebras are displayed in Table 2.2. Similarly, the positivity of the last
line in (2.4.16) for ` = 1 implies the bound

k4d >
h∨

3
. (2.4.18)
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GF Bound Representation

SU(N) N > 3 k4d > N N2 − 1symm

SO(N) N = 4, . . . , 8 k4d > 4 1
24N(N− 1)(N− 2)(N− 3)

SO(N) N > 8 k4d > N − 4 1
2(N + 2)(N− 1)

USp(2N) N > 3 k4d > N + 2 1
2(2N + 1)(2N− 2)

G2 k4d >
10
3 27

F4 k4d > 5 324

E6 k4d > 6 650

E7 k4d > 8 1539

E8 k4d > 12 3875

Table 2.3: Unitarity bounds for the anomaly coefficient k4d arising from
positivity of the B̂2 three-point function in non-singlet channels.

The same analysis can be performed for the functions fR6=1(zi). In these
channels there will be no contribution from the stress tensor multiplet, so
the resulting bounds make reference only to the anomaly coefficient k4d,
as in (2.4.18). A priori, an independent bound may be obtained for each
representationR appearing in the tensor product of two copies of the adjoint.
For example, in the adjoint channel itself, there can be contributions from
B̂1 and Ĉ1( `

2
, `
2

) multiplets with even `. Unitarity then imposes a bound on

k4d that turns out to be equivalent to that of (2.4.18). Stronger bounds
can be found by considering other choices of R, the possible values of which
will depend on the particular choice of simple Lie algebra we consider. In
general, we find that for a given choice of GF , the strongest bound comes
from requiring positivity of the contributions of B̂2 multiplets in a single
channel. The bounds from other channels are then automatically satisfied
when the strongest bound is imposed. These strongest bounds are displayed
in Table 2.3, where we also indicate the representation R ∈ ⊗2adj that leads
to the bound in question. It should be noted that for the special case GF =
SO(8), the same strongest bound is obtained from multiple channels. The
representation appearing in the third line of Table 2.3 is in fact decomposable
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GF A1 A2 D4 E6 E7 E8 F4 G2

h∨ 2 3 6 12 18 30 9 4

k4d
8
3

3 4 6 8 12 5 10
3

c4d
1
2

2
3

7
6

13
6

19
6

31
6

5
3

5
6

Table 2.4: Central charges for N = 2 SCFTs with Higgs branches given
by one-instanton moduli spaces for GF instantons. Models corresponding to
the right-most two columns are not known to exist, but must satisfy these
conditions for their central charges if they do.

as 70 = 35s ⊕ 35c, and the degeneracy in the bounds can be understood as
a consequence of SO(8) triality. For GF = SU(2) one finds no additional
bounds to the ones given in (2.4.17) and in (2.4.18). Finally, we can see
that the bound (2.4.18) arising from positivity of the Ĉ1( 1

2
, 1
2

) multiplet in the
singlet channel is made obsolete by bounds arising from other channels for
all choices of GF listed in the table.

2.4.3 Saturation of unitarity bounds

Given the existence of these unitarity bounds, it is incumbent upon us to
consider the question of whether the bounds are saturated in any known
superconformal models. To understand what sort of theory might saturate
the bounds, it helps to identify any physical properties that a theory will
necessarily possess if it saturates a bound. When the inequalities in (2.4.17)
or Table 2.3 are saturated, it means precisely that there is no B̂2 multiplet
in the corresponding representation of GF contributing to the four-point
function in question. The absence of such an operator is intimately connected
with a well-known feature of theories with N = 2 supersymmetry in four
dimensions. Recalling that the Schur operators in the B̂R multiplets are
Higgs branch chiral ring operators, the absence of a B̂2 multiplet contributing
to the four-point function of B̂1 multiplets in the R channel amounts to a
relation in the Higgs branch chiral ring of the form

(M ⊗M)
∣∣
R = 0 , (2.4.19)

where M is the moment map operator and the tensor product is taken in the
chiral ring.
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There exists an interesting set of theories for which precisely such relations
are known to hold. These are the superconformal field theories that arise on a
single D3 brane probing a codimension one singularity in F -theory on which
the dilaton is constant [58, 59, 60, 61, 62, 63]. There are seven such singular-
ities, labelled H0, H1, H2, D4, E6, E7, E8, for which the corresponding SCFT
has global symmetry given by the corresponding group (with Hi → Ai). The
Higgs branch of each such theory is isomorphic to the minimal nilpotent or-
bit of the flavor group GF . These minimal nilpotent orbits admit a simple
description: they are generated by a complex, adjoint-valued moment map
M , subject to a set of relations that defined the so-called “Joseph ideal” (see
[64] for a nice discussion),

(M ⊗M)
∣∣
I2

= 0 , Sym2(adj) = (2 adj)⊕ I2 , (2.4.20)

where (2 adj) is the representation with Dynkin indices twice those of the
adjoint representation.

This leads to an interesting set of conclusions. For one, these theories
must saturate some of the B̂2-type bounds listed above. In particular, this
allows us to predict the value of c4d and k4d for these theories as a direct con-
sequence of the Higgs branch relations. These predictions are listed in Table
2.4. Indeed, these anomaly coefficients have been computed by other means
and the results agree [65]. On the other hand, an N = 2 superconformal
theory with GF symmetry can have as its Higgs branch the one-instanton
moduli space of GF instantons only if the B̂2 bound for all representations
in I2 can be simultaneously saturated. It is not hard to verify that the list
of cases for which this can be true includes the cases described above in F-
theory, along with GF = F4 and GF = G2. Theories with Higgs branches
isomorphic to the one-instanton F4 and G2 moduli spaces appear to be ab-
sent from the literature, and it is tempting to speculate that such theories
should nonetheless exist and have as their central charges the values listed
in the right-most two columns of Table 2.4.

Finally, it is interesting to rephrase the above discussion purely in the
language of the chiral algebra χ[T ]. From this perspective, there is a marked
difference between the bound (2.4.17) for the singlet sector and those of
Table 2.3 for non-singlets. In a theory saturating the non-singlet bounds,
the coefficient of a conformal block is actually set to zero in the OPE of
2.4.6. This should be considered in contrast to a theory that saturates the
singlet bound, in which case all of the sl(2) conformal blocks are present
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with nonzero coefficients. It follows that saturation of a non-singlet bound is
equivalent to the presence of a null state in the chiral algebra. In particular,
because the bounds in question appear in the B̂1 four-point function, such
null states can be understood entirely in terms of the affine Lie subalgebra
of the chiral algebra. This interpretation can be verified directly by studying
an affine Lie algebra with the level listed in Table 2.3.

The bound (2.4.17), on the other hand, does not imply the presence of
a null state in the chiral algebra. Instead, a theory χ[T ] that saturates
the singlet bound should have the property that the only sl(2) primary of
dimension two that appears in the OPE of two affine currents is identically
equal to the chiral vertex operator that arises from the Ĉ0(0,0) multiplet in
four dimensions, i.e., it should be the two-dimensional stress tensor. We thus
identify saturation of the singlet bound with the property that the Sugawara
construction gives the true stress tensor of the chiral algebra,

T2d =
1

k2d + h∨
(JaJa) . (2.4.21)

Sure enough, if the bound (2.4.17) is saturated, then we can rewrite the
bound as an equation for the central charge

c2d =
k2d dimGF

k2d + h∨
. (2.4.22)

This is precisely the central charge associated with the Sugawara construction
for the stress tensor of an affine Lie algebra.

Finally, we mention a number of additional theories that saturate some of
the unitarity bounds derived here. In particular, though the rank one theory
corresponding to the H0 singularity has no flavor symmetry, it will have an
extra SU(2) symmetry for rank larger than one (as will all the other rank
> 1 theories). In particular, for the case of rank two the flavor central charge
corresponding to this extra SU(2) is 17

5
and the central charge is c4d = 17

12

[65]. This theory therefore saturates the bound (2.4.17). Additionally, we
have found a number of theories that saturate bounds appearing in Table 2.3.
In particular, the new rank one SCFTs found in [66] with flavor symmetry
USp(10)7 and USp(6)5 × SU(2)8, where k4d is indicated as a subscript for
each group, saturate the bounds on k4d for the USp factors. However for
these theories the central charge bound is not saturated. The following the-
ories described in [67] also saturate bounds on k4d: S5 with flavor symmetry
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SU(10)10 (but not the rest of the SN series), the R0,N series with flavor sym-
metry SU(2)6 × SU(2N)2N , and the R2,N series with SO(2N + 4)2N × U(1)
flavor symmetry.

2.4.4 Torus partition function and the superconformal
index

Just as correlators of the chiral algebra are related to certain supersymmet-
ric correlators of the parent four-dimensional theory, it will not come as a
surprise that the torus partition function of the chiral algebra is related to a
certain four-dimensional supersymmetric index – indeed, to the Schur limit
of the superconformal index, as foreshadowed in our terminology.

We should first identify which quantum numbers can be meaningfully
assigned to chiral algebra operators. Of the various Cartan generators of the
four-dimensional superconformal algebra, only the holomorphic dimension
L0 and the transverse spin M⊥ = j1 − j2 (which is equal to −r for Schur
operators) survive as independent conserved charges of the chiral algebra.
The torus partition function therefore takes the form23

Z(x, q) := TrxM
⊥
qL0 . (2.4.23)

As usual, the trace is over the Hilbert space in radial quantization, or equiv-
alently over the local operators of the chiral algebra.

Specializing to x = −1, and noting that by the four-dimensional spin-
statistics connection implies (−1)j1−j2 = (−1)F , where F is the fermion
number, we find a weighted Witten index,

I(q) := Z(−1, q) = Tr (−1)F qL0 = Tr (−1)F qE−R . (2.4.24)

We recognize this as the trace formula that defines the Schur limit of the
superconformal index [38], cf. Appendix A.2.24 We should check that in
the two-dimensional and four-dimensional interpretations of this formula the

23To avoid clutter, we have omitted the obvious refinement by flavor fugacities. If the
theory is invariant under some global symmetry group GF , we may refine the trace formula
by
∏
i a
fi
i , where the fi are Cartan generators of GF and ai the associated fugacities.

24It was observed in [68] that the Schur index has interesting modular properties under
the action of SL(2,Z) on the superconformal and flavor fugacities. The identification
of the Schur index with a two-dimensional index may serve to shed some light on these
observations.
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trace can be taken over the same space of states. Strictly speaking, in the
four-dimensional interpretation the trace is over the entire Hilbert space of
the radially quantized theory. However, the point of the Schur index is that
only states obeying the Schur condition can conceivably contribute – the
contributions of all other states cancel pairwise. As the states of the chiral
algebra are in one-to-one correspondence with Schur states, the chiral algebra
index (2.4.24) is indeed equivalent to the Schur index.

The index is a cruder observable than the partition function, but be-
cause it is invariant under exactly marginal deformations, it is generally
easier to evaluate. In practice, to evaluate the index of a Lagrangian SCFT,
one enumerates all gauge-invariant states that can be formed by combining
the elementary “letters” that obey the Schur condition, see Table 2.1. This
combinatorial exercise is efficiently solved with the help of a matrix inte-
gral, where the integration over the gauge group enforces the projection onto
gauge singlets. Examples of this prescription will be seen in the following
section. By this procedure, one enumerates all gauge-invariant states that
obey the tree-level Schur condition; there will be cancellations in the index
corresponding to the recombinations of Schur multiplets into long multiplets
that are a priori allowed by representation theory.

There is an entirely isomorphic computation in the associated chiral al-
gebra. The “letters” obeying the tree-level Schur condition are nothing but
the states of the symplectic bosons and the ghost small algebra (in the ap-
propriate representations), and one is again instructed to project onto gauge
singlets. To reiterate, to evaluate the index we do not really need to compute
the cohomology of Q−, which defines the states of the chiral algebra of the
interacting gauge theory, cf. (2.3.59). We can simply let the trace run over
the redundant set of states of the free theory. By contrast, the trace in the
partition function (2.4.23) must be taken over only the states of the chiral
algebra for the interacting theory, which are the cohomology classes of Q−.

At the risk of being overly formal, we may point out that the physical
state space of the chiral algebra (which for gauge theories is defined by the
cohomological problem (2.3.59)), acts as a categorification of the Schur in-
dex. Once this vector space and the action of the charges are known, we
can perform the more refined counting (2.4.23). In physical terms, the cat-
egorification contains extra information relative to the Schur index in that
it knows about sets of short multiplets that are kinematically allowed to
recombine but do not. In addition, there may be multiplets that cannot
recombine but nonetheless make accidentally cancelling contributions to the
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index, and these are also seen in the categorification. Of course, the chiral
algebra structure goes well beyond categorification – it is a rich algebraic
system that also encodes the OPE coefficients of the Schur operators, and is
subject to non-trivial associativity constraints.

It should be noted that as a graded vector space, we also have a categori-
fication of the Macdonald limit of the superconformal index. Recall that the
states contributing to the Macdonald index are really the same as the states
that contribute to the Schur index, but their counting is refined by an extra
fugacity t/q associated to the charge r + R (for t = q we recover the Schur
index). Since each state in the vector space defined by the chiral algebra
corresponds to a Schur operator, the additional grading by r+R is perfectly
well-defined. However, there is no obvious chiral algebra interpretation of the
Macdonald limit of the superconformal index, because the additional grad-
ing is incompatible with the chiral algebra structure. More precisely, while
L0 and r are conserved charges for the twisted-translated operators (2.2.29),
r+R is not, since away from the origin the operators are linear combinations
of operators with different R eigenvalues. In particular r+R is not preserved
by the OPE.

2.5 Examples and conjectures

In this section we consider a number of illustrative examples in which the
four-dimensional superconformal field theory T admits a weakly coupled La-
grangian description. In such cases, the chiral algebra χ[T ] can be defined via
the BRST procedure of §2.3, which at the very least allows for a level-by-level
analysis of the physical states/operators in the algebra.

We can also consider the problem of giving an economical description of
the chiral algebra in terms of a set of generators and their singular OPEs.
A natural question is whether this set is finite, or in other words whether
the chiral algebra is a W-algebra. The results of §2.3.2 suggest a very gen-
eral ansatz for a possible W-algebra structure: the generators should be the
operators associated to HL chiral ring generators in four dimensions, and
possibly in addition the stress tensor. In each of the first three examples, our
results are compatible with this guess, and we formulate concrete conjectures
for the precise definition of each chiral algebra as a W-algebra. In the final
example, we find a counterexample to this simplistic picture. Namely, we
find a theory for which the chiral algebra contains at least one additional

66



generator beyond those included in our basic ansatz.
For the first example, we turn to perhaps the most familiar N = 2 super-

conformal gauge theory.

2.5.1 SU(2) superconformal QCD

The theory of interest is the SU(2) gauge theory with four fundamental hy-
permultiplets. Many aspects of this theory that are relevant to the structure
of the associated chiral algebra have been analyzed in, e.g., [69]. The field
content is an SU(2) vector multiplet and four fundamental hypermultiplets.
Because the fundamental representation of SU(2) is pseudo-real, the obvi-
ous U(4) global symmetry is enhanced to SO(8), with the four fundamental
hypermultiplets being reinterpreted as eight half-hypermultiplets. In N = 1
notation we then have an adjoint-valued N = 1 field strength superfield WA

α ,
an adjoint-valued chiral multiplet ΦB, and fundamental chiral multiplets Qi

a

transforming in the 8v of SO(8). Here a, b = 1, 2 are vector color indices that
can be raised and lowered with epsilon tensors, A,B = 1, 2, 3 are adjoint color
indices, and i = 1, . . . , 8 are SO(8) vector indices. By a common abuse of
notation, we use the same symbol for the scalar squarks in the matter chiral
multiplets as for the superfields, whereas the gauginos in the vector multiplet
are denoted λAα and λ̃Aα̇. In terms of the N = 1 superfields listed above, the
Lagrangian density takes the form

L = Im

[
τ

∫
d2 θd2θ̄ Tr

(
Φ†eV Φ +Q†ie

VQi
)

+τ

∫
d2θ

(
1
2
TrWαW

α +
√

2Qi
aΦ

a
bQ

ib
)]

, (2.5.1)

Where τ = θ/2π + 4πi/g2
YM is the complexified gauge coupling. The central

charge of the SU(2) color symmetry acting on the hypermultiplets is k
SU(2)
4d =

8, which satisfies condition (2.3.50) for τ to be an exactly marginal coupling.
The central charge for the SO(8) flavor symmetry and the conformal anomaly
c4d can also be read off directly from the field content,

k
SO(8)
4d = 4 , c4d =

7

6
. (2.5.2)

Although this description is sufficient to set up a BRST cohomology prob-
lem that defines the chiral algebra in the manner of §2.3, it is useful to first
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review some of the features of this theory that we expect to see reflected
in the two-dimensional analysis. We have seen that a special role is played
in the chiral algebra by the HL chiral ring, the elements of which are the
superconformal primary operators in B̂ and D-type multiplets. In this ex-
ample, these are the lowest components of N = 1 chiral superfields that are
gauge-invariant polynomials in Qi

a and WA
α . As this theory is represented

by an acyclic quiver diagram, all D-type multiplets recombine and the HL
chiral ring is identically the Higgs chiral ring.

In purely gauge invariant terms, the Higgs branch chiral ring is generated
by a single dimension two operator in the adjoint of SO(8),

M [ij] = Qi
aQ

aj . (2.5.3)

This is the moment map for the action of SO(8) on the Higgs branch.25 There
are additional relations that make the structure of the Higgs branch more
interesting. Already at tree-level, there are relations that follow automati-
cally from the underlying description in terms of squarks. When organized in
representations of SO(8), the of generators of these relations are as follows,

M ⊗M
∣∣
35s

= 0 , M ⊗M
∣∣
35c

= 0 . (2.5.4)

On the other hand, there are F -term relations as a consequence of the super-
potential in (2.5.1). They are absent in the theory with strictly zero gauge
coupling, and encode the fact that certain operators that are present in the
chiral ring of the free theory recombine and are lifted from the protected part
of the spectrum when the coupling is turned on. The generators of F -term
relations, again organized according to SO(8) representation, are as follows,

M ⊗M
∣∣
35v

= 0 , M ⊗M
∣∣
1

= 0 . (2.5.5)

One immediately recognizes the complete set of relations in (2.5.4) and (2.5.5)
as defining the SO(8) Joseph ideal described in §2.4. Indeed, for the particu-
lar case of GF = SO(8) we have I2 = 1⊕35v⊕35s⊕35c. The Higgs branch
of this theory is known to be isomorphic to the SO(8) one-instanton moduli
space, and the central charges (2.5.2) do in fact saturate the appropriate
unitarity bounds outlined in §2.4.

25It is a special feature of this theory (in contrast to, say, the Nf = 2Nc theories with
Nc > 2 that will be considered next) that the generators of the Higgs branch chiral ring
all have dimension two. In general, there will be higher-dimensional baryonic generators
that are not directly related to the global symmetry currents of the theory.
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As a final comment, let us recall that the gauge coupling appearing in
the Lagrangian (2.5.1) is exactly marginal and parameterizes a one-complex-
dimensional conformal manifold. S-duality acts by SL(2,Z) transformations
on τ , and the conformal manifold is identified with the familiar fundamental
domain of SL(2,Z) in the upper half plane. In the various weak-coupling
limits the theory can always be described using the same SU(2) gauge theory,
but in comparing one such limit to another, the duality transformations act
by triality on the SO(8) flavor symmetry. Consequently, though a given
Lagrangian description of this theory (and of the chiral algebra in the next
subsection) singles out a certain triality frame, the protected spectrum of the
theory, and so in particular the chiral algebra, should be triality invariant.

BRST construction of the associated chiral algebra

The chiral algebra can now be constructed using the procedure of §2.3.
We first define the chiral algebra χ[ Tfree ] of the free theory. Each half-
hypermultiplet gives rise to a pair of commuting, dimension 1/2 currents,
whose OPE is that of symplectic bosons

qia(z) := χ[Qi
a ] , qia(z) qjb(w) ∼ δijεab

z − w . (2.5.6)

Meanwhile, the vector multiplet contributes a set of adjoint-valued (b, c)
ghosts of dimension (1, 0) with the standard OPE,

bA(z) := χ[ λ̃A] , ∂cB(z) := χ[λB] , bA(z)cB(w) ∼ δAB

z − w . (2.5.7)

The generators of the SU(2) gauge symmetry in the matter sector arise from
the moment maps in the free theory, while in the ghost system they take the
canonical form described in §2.3,

JA(TA)ba = qiaq
ib , JAgh = −ifABC(cB bC) . (2.5.8)

The chiral algebra of the free theory is then given by the gauge-invariant
part of the tensor product of the symplectic boson and small algebra Fock
spaces,

χ[Tfree] = {ψ ∈ F(qia, ρ
A
+, ρ

A
−) | JAtot,0ψ = 0} . (2.5.9)

The current algebra generated by the JAmat has level k
SU(2)
2d = −4 = −2h∨,

which ensures the existence of a nilpotent BRST differential. The BRST
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current and differential are then constructed in terms of these currents,

JBRST = cA
(
JA +

1

2
JAgh

)
, QBRST =

∮
dz

2πi
JBRST(z) . (2.5.10)

The chiral algebra of the interacting theory is now the BRST cohomology

χ[ T ] = H∗BRST [χ[Tfree]] . (2.5.11)

We now perform a basic analysis of this cohomology. Already at this rudi-
mentary level, we will find that a substantial amount of four-dimensional
physics is packaged elegantly into the chiral algebra framework.

Enumerating physical states

It is a straightforward exercise to enumerate the physical operators up to
any given dimension and to compute the singular terms in their OPEs. This
is made easier with computer assistance – we have made extensive use of
K. Thielemans’ Mathematica package [48]. We now describe this enumera-
tion in detail for operators of dimension one and two in the chiral algebra. In
this example, the material we have reviewed above is already enough to pre-
dict the results of this enumeration. We will nevertheless find it instructive
to explore in some detail how the inevitable spectrum comes about.

We begin at dimension one. Dimension one currents in the chiral algebra
can only originate in D0(0,0) and B̂1 multiplets (cf. Table 2.1). The former
contain free vector multiplets, and so are not gauge invariant. Thus the
physical spectrum at dimension one should be isomorphic to the spectrum
of B̂1 multiplets. Sure enough, the complete list dimension-one operators in
χ[ Tfree ] is the following,

J [ij] = qiaq
ja , (2.5.12)

and these operators are the chiral counterparts of the SO(8) moment maps,
i.e.,

J [ij] = χ[M [ij]] . (2.5.13)

Direct computation further verifies that these operators exhaust the non-
trivial BRST cohomology at dimension one. It is also straightforward to
determine the singular terms in the OPEs of these currents,

J [ij](z)J [kl](0) ∼ −2(δikδjl − δilδjk)
z2

+
if

[ij][kl]
[mn] J [mn](0)

z
. (2.5.14)
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This is just an so(8) affine Lie algebra at level k2d = −2, which confirms the
general prediction of §2.3 that flavor symmetries are affinized in the chiral
algebra, subject to the relation k2d = −1

2
k4d.

Moving on, the four-dimensional multiplets that can give rise to two-
dimensional quasi-primary currents of dimension two are Ĉ0(0,0), B̂2, D0(0,1),
and D 1

2
(0, 1

2
) multiplets (along with the conjugates of the last two). In ad-

dition, conformal descendants of dimension two can arise from holomorphic
derivatives of the dimension one operators. Since no D-type multiplets ap-
pear in this theory, the only quasi-primaries at dimension two will correspond
to Higgs branch operators and the two-dimensional stress tensor.

The latter descends from the four-dimensional SU(2)R current. That
current being bilinear in the free fields of the noninteracting theory, the
corresponding two-dimensional operator can be obtained by simply replacing
the four-dimensional fields with their chiral counterparts and conformally
normal ordering,

T2d = 1
2
qia∂q

ia − bA∂cA . (2.5.15)

Alternatively, this is just the canonical stress tensor for the combined system
of free symplectic bosons and ghosts. Given the multiplicities of matter and
ghost fields, the two-dimensional central charge is easily determined to be
c2d = −14.

The remaining BRST-invariant currents of dimension two can be con-
structed as normal ordered products and derivatives of the so(8) affine cur-
rents,

∂J [ij] , (J ⊗ J)
∣∣
1,35,35,35,300

. (2.5.16)

The singlet term in the tensor product above, once appropriately normalized,
is the Sugawara stress tensor of the so(8) affine Lie algebra,

T so(8)
sug = 1

8
(J [ij]J [ij]) . (2.5.17)

The Sugawara central charge is determined by the usual formula,

csug =
k2d dimGF

k2d + h∨
= −14 . (2.5.18)

This matches the value for the canonical stress-tensor. This comes as no
surprise, since the central charges of this theory saturate the unitarity bound
(2.4.17), which implies that the canonical stress tensor should be equivalent
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to the Sugawara stress tensor. Indeed, (2.5.15) and (2.5.16) constitute an
overcomplete list, and we in fact have the following relations,

J ⊗ J
∣∣
1

= T2d + {QBRST, q
i
aq
ibbab} , (2.5.19a)

J ⊗ J
∣∣
35v

= {QBRST, q
(i
a q

j)bbab} , (2.5.19b)

J ⊗ J
∣∣
35c

= 0 , (2.5.19c)

J ⊗ J
∣∣
35s

= 0 , (2.5.19d)

The relations appearing here can be traced back to different aspects of the
four-dimensional physics. Relations (2.5.19a) and (2.5.19b) are the two-
dimensional avatars of the F -term relations in (2.5.5). Note that the first
relation appears differently in this two-dimensional context due to the pres-
ence of the two-dimensional stress tensor on the right hand side. This is a
remnant of the more complicated structure of normal ordering in the chiral
algebra as compared to the chiral ring. Relations (2.5.19c) and (2.5.19d)
are the tree-level relations. In the context of the chiral algebra, they can be
seen as a simple consequence of Bose symmetry and normal ordering without
making any reference to the BRST differential. This perfectly mirrors of the
nature of tree-level relations in four dimensions.

A W-algebra conjecture

Although the cohomological description of the chiral algebra is sufficient to
compute the physical operators to any given level, it would be ideal to have
a characterization entirely in terms of physical operators – for example, we
may hope for a description as a W algebra. We have seen that the physical
dimension two currents are all generated by the affine currents of dimension
one, i.e., the physical states enumerated so far all lie in the vacuum module
of the so(8) affine Lie algebra at level k = −2. What’s more, these operators
exhaust the list of operators that are guaranteed to be generators of the chiral
algebra according to §2.3. We are thus led to a natural conjecture:

Conjecture 1 When T is N = 2 SU(2) SQCD with four fundamental
flavors, then χ[ T ] is isomorphic to the so(8) affine Lie algebra at level
k2d = −2.

This is a mathematically well-posed conjecture, since the cohomological
characterization of the chiral algebra is entirely concrete. It seems plausible
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that a more sophisticated approach to the cohomological problem could lead
to a proof of the conjecture. We will be satisfied in the present work to test
it indirectly.

The superconformal index and affine characters

Conjecture 1 can be tested at the level of the indices of these theories. In
particular, we have the following conjectural relationship

ISchur(q;~a) = Trχ[Tfree](−1)F qL0

4∏
i=1

aµii = Trso(8)−2(−1)F qL0

4∏
i=1

aµii . (2.5.20)

The shorthand ~a = (a1, a2, a3, a4) denotes the SO(8) fugacities. Of course,
the affine Lie algebra has only bosonic states, so the factor of (−1)F is imma-
terial. In particular this observation implies that if Conjecture 1 is correct,
then all possible recombinations of tree-level Schur operators occur already
at one loop.

On the one hand, the Schur limit of the superconformal index for this
theory can be computed directly to fairly high orders in the q expansion by
starting with the defining matrix integral,

ISchur(q;~a) =

∮
[db]P.E.

[( √
q

1− q

)
χ8
SO(8)(~a)χ2

SU(2)(b) +

( −2q

1− q

)
χ3
SU(2)(b)

]
,

(2.5.21)
and expanding the exponential. Here

∮
[db] denotes integration over the fu-

gacity for the gauge group with the Haar measure.
On the other hand, the vacuum character of the so(8) affine Lie algebra

at level k = −2 can be computed once the spectrum of null primaries is
known. Said spectrum can be determined with the aid of the Kazhdan-
Lusztig polynomials, as we review in Appendix A.3. Ultimately, both the
character and the index are expanded in the form

1 +
∞∑
i=1

qn

(∑
R

dRχ
R(~a)

)
,

where the dR are positive integer multiplicities. At a given power of q,
there are only a finite number of non-zero dR. Up to O(q5), the resulting
degeneracies have been computed in both manners and agree. They are
displayed in Table 2.5.
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level SO(8) representations and their multiplicities

0 1

1 28

2 1, 28, 300

3 1, 2× 28, 300, 350, 1925

4 2× 1, 3× 28, 35v, 35s, 35c, 3× 300, 350, 1925, 4096, 8918

5 2× 1, 6× 28, 35v, 35s, 35c, 4× 300, 3× 350, 567v, 567s,

567c, 3× 1925, 2× 4096, 8918, 25725, 32928′

Table 2.5: The operator content of the chiral algebra up to level 5.

2.5.2 SU(N) superconformal QCD with N > 3

We next consider the generalization of the previous example to the case
of SU(N) superconformal QCD with N > 3. In these theories, the Higgs
branch has generators of dimension greater than two, thus guaranteeing the
existence of nonlinear W-symmetry generators in the chiral algebra. The
cohomological construction of the corresponding chiral algebra is analogous
to the SU(2) case, mutatis mutandi. We will not repeat the description
here in any detail. We first provide a brief outline of the relevant four-
dimensional physics of these models, and then perform a systematic analysis
of the physical operators of low dimension in the associated chiral algebra.

As in the SU(2) theory, there is a Lagrangian description of these models
in terms of the N = 1 chiral superfields

WA
α , ΦB , Qi

a , Q̃b
j , (2.5.22)

where a, b = 1, . . . , N are vector color indices, A,B = 1, . . . , N2 − 1 are
adjoint color indices, and i, j = 1, . . . , Nf with Nf = 2N are vector flavor

indices. The central charge is fixed by the field content to c4d = 2N2−1
6

.
For our purposes, the principal difference between the N > 3 theories

and the N = 2 case is in the structure of the Higgs branch chiral ring. In the
higher rank theories, the hypermultiplets transform in a complex representa-
tion of the gauge group, so the global symmetry is not enhanced and we have
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GF = SU(Nf )×U(1). The moment map operators for the global symmetry

reside in mesonic B̂1 multiplets, which can be separated into SU(Nf ) and
U(1) parts,

M i
j := Q̃a

jQ
i
a =⇒ µ := M i

i , µ i
j := M i

j −
1

Nf

µ δ i
j . (2.5.23)

The level of the non-Abelian part of the global symmetry is k
SU(Nf )

4d = 2N .
The baryons are of dimension N and no longer generate any additional global
symmetries. Rather, they transform in the N -fold antisymmetric tensor rep-
resentations of the flavor symmetry:

Bi1...iN := Qi1
a1
· · ·QiN

aN
εa1...aN ,

B̃i1...iN := Q̃a1
i1
· · · Q̃aN

iN
εa1...aN .

(2.5.24)

The mesons and baryons satisfy a set of polynomial relations. Following [69],
we introduce notation where “·” denotes contraction of an upper and a lower
index and “∗” denotes the contraction of flavor indices with the completely
antisymmetric tensor in Nf indices. The relations are then given by

(∗B)B̃ = ∗(MN) , M · ∗B = M · ∗B̃ = 0 ,

M ′ ·B = B̃ ·M ′ = 0 , M ·M ′ = 0 ,
(2.5.25)

where (M ′) j
i := M j

i − 1
N
µδji = µ j

i − 1
2N
µδji . Additionally, all quantities

antisymmetrized in more than N flavor indices must vanish.
This completes the description of the Hall-Littlewood chiral ring, since

again this theory admits a linear quiver description, so there are no D-type
multiplets after turning on interactions. The final representation of canonical
interest is the Ĉ0(0,0) multiplet, which again contributes an important Schur
operator in the form of the R = 1 component of the SU(2)R current:

J R=1
++̇ ∼ 1

2

(
Qi
a∂++̇Q̃

a
i − Q̃a

i ∂++̇Q
i
a

)
+ λA+λ̃+̇A . (2.5.26)

Like the SU(2) theory, these models all have one-complex-dimensional
conformal manifolds with interesting behaviors at the boundary points, where
S-dual descriptions become appropriate. In contrast to the SU(2) theory,
these S-dual descriptions are not the same as the original description, and
rather involve intrinsically strongly-coupled non-Lagrangian sectors. While
such dualities imply interesting structures for the associated chiral algebras,
their dependence on non-Lagrangian theories takes us outside the scope of
the current examples. This is discussed in much greater detail in chapter 3.
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Physical operators of low dimension

The nontrivial BRST cohomology classes of the chiral algebra can be com-
puted by hand for small values of the dimension. The physical operators of
dimension one again correspond to the moment map operators of the global
symmetry, which in this case includes only the mesonic chiral ring operators,

J ji := qaiq̃
aj − 1

Nf

δji qakq̃
ak = χ[µji ] , (2.5.27)

J := qakq̃
ak = χ[µ] . (2.5.28)

The singular OPEs of these currents are given by

J ji (z)J lk(0) ∼ − N(δliδ
j
k − trace)

z2
+

δliJ
j
k(z)− δjkJ li(z)

z
,

J(z)J(0) ∼ − 2N2

z2
.

(2.5.29)

This is an su(Nf )× u(1) affine Lie algebra at level k2d = −N .
At dimension two, we first consider the operators that are invariant under

the flavor symmetry. As expected, there is a canonical stress tensor,

T :=
1

2

(
qai∂q̃

ai − q̃ai∂qai
)
− bab∂cba = χ[J 1

++̇] , (2.5.30)

whose self-OPE fixes the two-dimensional central charge,

c2d = 2− 4N2 . (2.5.31)

Additionally, the algebra generated by the affine su(Nf ) × u(1) currents
(2.5.27) contains a dimension two singlet that is the Sugawara stress tensor
of the current algebra,

Tsug :=
1

Nf

(
J ji J

i
j −

1

Nf

JJ

)
. (2.5.32)

The corresponding Sugawara central charge is also equal to 2− 4N2, which
suggests that the two stress tensors T and T sug may be equivalent operators
as they were in the N = 2 theory. Indeed, we expect this to be the case
since the central charges in this theory again saturate the unitarity bound
(2.4.17). A short computation verifies that their difference is BRST exact,

T − Tsug =
1

Nf

{QBRST, qaiq̃
bjbab} . (2.5.33)
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A complete basis for the physical flavor singlets of dimension two is given by
T , JJ , and ∂J .

The remaining physical operators of dimension two are charged under
U(Nf ). An overcomplete basis of such operators is given by flavored current
bilinears J ji J

l
k and J ji J , in addition to derivatives of the currents ∂J ji . These

operators are not all independent. For example, the usual rules of conformal
normal ordering imply that

J ji J
l
k − J lkJ ji = δli∂J

j
k − δjk∂J li , (2.5.34)

so the antisymmetric normal ordered product of two SU(Nf ) currents is a
combination of descendants. For the symmetrized normal ordered product
there exists another relation:

1

2
(Jki J

j
k + J jkJ

k
i ) = δji

(
1

N2
f

JJ + T

)
− {QBRST, qαiq̃

βjbαβ} . (2.5.35)

In group-theoretic terms, the relations amount to the statement that the
parts of the symmetric product of two currents that transform in the singlet
and adjoint representations do not correspond to independent operators.

It is worth jumping ahead to the case of dimension N/2, where we find
operators that correspond to the baryonic chiral ring generators (2.5.24):

bi1i2...iNc := εα1α2...αNcqα1i1qα2i2 . . . qαNc iNc = χ[Bi1i2···iN ] ,

b̃i1i2...iNc := εα1α2...αNc
q̃α1i1 q̃α2i2 . . . q̃αNc iNc = χ[B̃i1i2···iN ] .

(2.5.36)

These are Virasoro primaries of dimension Nf/4. The only non-trivial OPE
that is not entirely fixed by symmetry is the b × b̃ OPE. For Nc = 3, for
example, it is given by

bi1i2i3(z)b̃j1j2j3(0) ∼
36 δ

[j1
[i1
δ
j2
i2
δ
j3]
i3]

z3
−

36 δ
[j1
[i1
δ
j2
i2
J
j3]
i3] (0)

z2

+
18 δ

[j1
[i1
J
j2
i2
J
j3]
i3] (0)− 18 δ

[j1
[i1
δ
j2
i2
∂J

j3]
i3] (0)

z
, (2.5.37)

where square brackets denote antisymmetrization with weight one.
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Relation to the Higgs branch chiral ring

Again, certain features of the Higgs branch chiral ring arise organically from
the chiral algebra. According to the general discussion in §2.3.2, the di-
mension two operators in the chiral algebra should in particular contain the
image of the Schur operators in B̂2 multiplets, which in the theories under
consideration simply correspond to the product of two of the mesonic oper-
ators µ and µji subject to the final relation in (2.5.25). Furthermore, these
Schur operators necessarily become Virasoro primary operators in the chiral
algebra.

From amongst the BRST cohomology classes at level two – spanned by T ,
JJ , J ji J , the symmetrized combination J ji J

l
k+J lkJ

j
i modulo relation (2.5.35),

and derivatives of level one currents – we find exactly three Virasoro primary
operators:

X := JJ −
N2
f

N2
f − 2

T ,

X j
i := J ji J ,

X jl
ik :=

1

2
(J ji J

l
k + J lkJ

j
i )− Nf

N2
f − 2

(
δliδ

j
k −

1

Nf

δji δ
l
k

)
T ,

(2.5.38)

which are subject to the additional constraints,

X jl
ik = X lj

ki , X il
ik = 0 , X jk

ij =
1

N2
f

δki X + {QBRST, . . .} .
(2.5.39)

We see that we should identify X = χ[µµ ], X j
i = χ[µµji ] and X jl

ik = χ[µjiµ
l
k ].

The first two relations in (2.5.39) then reflect the natural symmetry proper-
ties of the original Schur operator, whilst the last equation precisely repro-
duces the final equation in (2.5.25).

We note that the definitions (2.5.38) somewhat obscure the relationship
to four-dimensional physics because of the conformal normal ordering used
to define the products of interacting fields. The same dimension two opera-
tors take a completely natural form in terms of creation/annihilation normal
ordered products of symplectic bosons,

X = : qαiq̃
αiqβj q̃

βj : ,

X j
i = : qαiq̃

αjqβkq̃
βk : ,

X jl
ik = : qαiq̃

αjqβkq̃
βl : ,

(2.5.40)
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and this description also nicely illustrates the commutative diagram of §2.3.3.
Finally, at the level of Virasoro representations, the OPEs of the dimen-

sion one currents can now be summarized by the following fusion rules,

J ji × J lk → −N(δliδ
j
k − trace)1 + (δliJ

j
k − δjkJ li) + X jl

ik + . . . ,

J ji × J → X j
i + . . . ,

J × J → − 2N2
1 + X + . . . ,

(2.5.41)

where we have omitted operators of dimension higher than two. We see that
the product structure of the Higgs branch chiral ring is reproduced precisely
by the O(1) terms in these fusion rules.26

A W-algebra conjecture

The chiral algebra is not as simple in this case as it was for the SU(2) theory,
since the generators b and b̃ are higher-spin W-symmetry generators rather
than simple affine currents. Nevertheless, there is a natural guess as to how
to describe this more involved theory as a W algebra. It is useful to think of
the operator content of the algebra in terms of representations of the affine
u(Nf ) current algebra. From the analysis of levels one and two, we know
that there is the vacuum representation – which in particular contains the
affine currents and the stress tensor – and the “baryonic” representations,
for which the highest weight state is given by the baryon or anti-baryon of
(2.5.36). Other representations of the affine Lie algebra can only come from
multi-baryon states or from new generators of dimension greater than two,
where we have not performed a detailed analysis of the cohomology.

In four dimensions the mesons and the baryons are the complete set of
generators for the Hall-Littlewood chiral ring. The most obvious conjecture
is then that the corresponding two-dimensional operators generate the entire
W-algebra:

Conjecture 2 When T is N = 2 SU(N) superconformal QCD for with 2N
flavors for N > 2, then χ[T ] is isomorphic to the W algebra generated by
affine u(Nf ) currents at level ksu(Nf ) = −N along with baryonic generators b

and b̃ with the OPE (2.5.37) (or its generalizations to N > 4).

26We may similarly speculate that the Poisson bracket is encoded in the terms of the
OPE that correspond to simple poles, but we have not checked this in detail.
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Because no additional generators make an appearance in the singular OPEs
of the affine currents and baryons, it is guaranteed to be the case that the
W algebra we have just described forms a chiral subalgebra of χ[T ]. Our
conjecture is that this is in fact the whole thing. If true, this conjecture
would imply that the Schur index for the Nf = 2N theories decomposes into
characters of affine u(2N)−N with highest weights given by the vacuum or
by one or more baryons.

Superconformal Index

We can provide support for this conjecture by comparing with the supercon-
formal index. The Schur index of the theory is given by the following contour
integral,

ISchur(q; c,~a) = (2.5.42)∫
[d~b]P.E.

[ √
q

1− q
(
c χNf

SU(Nf )(~a)χN
SU(N)(

~b) + c−1 χNf

SU(Nf )(~a
−1)χN

SU(N)(
~b−1)

)
+

( −2q

1− q

)
χN2−1
SU(N)(

~b)

]
, (2.5.43)

where c is the U(1) fugacity and ~a = (a1, a2, . . . , aNf−1) denotes SU(Nf )
fugacities. For N = 3, the first few orders are given by

ISchur(q; c,~a) =1 +
(
1 + χ35

SU(6)(~a)
)
q + (c3 + c−3)χ20

SU(6)(~a)q3/2

+
((
χ
sym2(35)
SU(6) (~a)− χ35

SU(6)(~a)
)

+ 2χ35
SU(6)(~a) + 2

)
q2

+ (c3 + c−3)
(

2χ20
SU(6)(~a) +

(
χ35⊗20
SU(6) (~a)− χ20⊕70⊕70

SU(6) (~a)
))

q5/2

+ . . . , (2.5.44)

where we have explicitly indicated the presence of relations by listing them
with a minus sign. The dimension two relations in the chiral algebra were
elaborated upon in the previous subsection. At level 5/2, we can similarly
determine the Virasoro primaries

Yijk = Jbijk + ∂bijk, Ỹ ijk = Jb̃ijk − ∂b̃ijk (2.5.45)

Y j
i,klm =

1

2

(
J j
i bklm + bklmJ

j
i −

1

6
δji ∂bklm + δj[k∂b|i|lm]

)
(2.5.46)

Ỹ j,klm
i =

1

2

(
J j
i b̃

klm + b̃klmJ j
i +

1

6
δji ∂b̃

klm − δ[k
i ∂b̃

|j|lm]

)
, (2.5.47)
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subject to the constraints

εiklmnp
(
Y j
i,mnp +

1

6
δjiYmnp

)
= 0, Y j

i,jlm −
1

6
Yilm = {QBRST, . . .}

(2.5.48)

εjklmnp

(
Ỹ j,mnp
i +

1

6
δji Ỹ

mnp

)
= 0, Ỹ j,kli

i − 1

6
Ỹ jkl = {QBRST, . . .} ,

(2.5.49)

which again encode precisely the Higgs branch relations.
At level three, we have checked agreement between the Schur index and

the cohomology generated by the SU(6)×U(1) currents and the baryons by
explicitly computing the null states.

2.5.3 N = 4 supersymmetric Yang-Mills theory

The theories considered in the previous two subsections all shared the special
quality of admitting descriptions as linear quiver gauge theories, which meant
that D-type multiplets played no role in the analysis. We now turn to a
case where this simplification no longer holds, and so there will necessarily
be generators outside of the Higgs chiral ring. The theory in question is
N = 4 supersymmetric Yang-Mills theory with gauge group SU(N). For
our purposes, this is an N = 2 theory with an SU(N) vector multiplet and
a single adjoint-valued hypermultiplet. In N = 1 notation, we have the
following chiral superfields,

WA
α , ΦA , QA

i , (2.5.50)

where A = 1, . . . N2 − 1 an SU(N) adjoint index and i = 1, 2 is an SU(2)F
vector index. The flavor symmetry SU(2)F is the commutant of SU(2)R ×
U(1)r ⊂ SU(4)R, and so is an R-symmetry with respect to the full superal-
gebra. The central charges of the theory are given by

k
SU(2)
4d = N2 − 1 , c4d =

(N2 − 1)

4
. (2.5.51)

The Higgs branch chiral ring has N−1 generators. In terms of the N×N
matrices Qi := QA

i t
A, these are given by

TrQ(i1 · · ·Qik) , k = 1, . . . , N − 1 , (2.5.52)
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subject to trace relations. In this theory, the Hall-Littlewood chiral ring
contains additional D-type multiplets that are not described by the Higgs
chiral ring. More specifically, for SU(N) gauge group there are an additional
N − 1 HL generators given by

TrQ(i1 · · ·Qik)λ̃
1
+̇ , k = 1, . . . , N − 1 . (2.5.53)

There are corresponding generators of the HL anti-chiral ring that lie in D
multiplets and take the same form with λ̃1

+̇
replaced by λ1

+. Finally, the Schur
component of the SU(2)R current, which will give rise to the stress tensor in
two-dimensions, is given in terms of four-dimensional fields by

J R=1
++̇ ∼ 1

2
TrQi∂++̇Qjε

ij − Tr λ̃+̇λ+ . (2.5.54)

Cohomological description of the associated chiral algebra

The free chiral algebra follows the same pattern as the previous examples.
The two dimensional counterparts of the hypermultiplet scalars and gauginos
can be introduced as usual,

qAi (z) := χ[QA
i ] , bA(z) := χ[λ̃A] , ∂cA(z) := χ[λA] . (2.5.55)

The free chiral algebra has the free OPEs,

qAi (z)qBj (0) ∼ εijδ
AB

z
, bA(z)cB(0) ∼ δAB

z
.

The stress tensor is given by the usual canonical expression

T =
1

2
qAi ∂q

B
j εij − bA∂cA , (2.5.56)

which has a central charge of c2d = −3(N2 − 1). The SU(2)F currents are
given by

Jij = −1

2
qAi q

A
j , (2.5.57)

and satisfy a current algebra at level k2d = −N2−1
2

. The current algebra
contains a Sugawara stress tensor of the usual form,

TSug(z) =
1

N2 − 5
JijJkl ε

ikεjl , (2.5.58)
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with central charge equal to 3(N2−1)
N2−5

. Note that precisely for N = 2 and
for no other value of N , the Sugawara central charge matches with the true
central charge. As we will see, this is again a consequence of the two stress
tensors being equivalent in BRST cohomology.

The SU(N) currents for the matter and ghost sectors are given by

JA =
i

2
fABCqBi q

C
j εij , JAgh = −ifABCcBbC . (2.5.59)

The levels for the corresponding current algebras are −2N and 2N , respec-
tively. The BRST current is constructed as usual,

JBRST = cA
(
JASU(N) +

1

2
JAgh

)
, (2.5.60)

and its zero mode defines the nilpotent BRST operator QBRST.

Low-lying physical states

Let us first consider the case of SU(2) gauge group. In this case the difference
between the Sugawara stress tensor and the canonical stress tensor is BRST
exact,

T − TSug ∼ {QBRST , fABCqAi q
B
j b

C εij} . (2.5.61)

Based on the description of the HL chiral ring generators, we expect that
amongst the physical states should be an SU(2)F triplet of affine currents and
an SU(2)F doublet of dimension 3/2 fermionic generators. Up to dimension
two, the cohomology is generated by precisely these operators,

Jij = −1

2
(qAi q

A
j ) = χ[TrQiQj] ,

Gi :=
√

2(qAi b
A) = χ[TrQiλ̃+] ,

G̃i :=−
√

2(qAi ∂c
A) = χ[TrQiλ+] .

(2.5.62)
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The OPEs of these generators can be computed directly,

Jij(z)Jkl(w) ∼ −N
2 − 1

2

εl(iεj)k
(z − w)2

+
2ε(k(iJj)l)
z − w , (2.5.63)

Jij(z)Gk(w) ∼
1
2
(εkiGj(w) + εkjGi(w))

z − w , (2.5.64)

Jij(z)G̃k(w) ∼
1
2
(εkiG̃j(w) + εkjG̃i(w))

z − w , (2.5.65)

Gi(z)Gj(w) ∼ 0 , (2.5.66)

G̃i(z)G̃j(w) ∼ 0 , (2.5.67)

Gi(z)G̃j(w) ∼ −2(N2 − 1)εij
(z − w)3

+
4Jij(w)

(z − w)2
+

2εijT (w) + 2∂Jij(w)

z − w ,

(2.5.68)

where N = 2 and the symmetrization in the indices i, j and k, l has weight
one. The value of N has been left unspecified in (2.5.63) because the OPEs
will continue to hold for higher rank gauge groups. For the same reason, T (z)
has been included separately, though for N = 2 it not a distinct generator,
but rather is identified with the Sugawara stress tensor.

The operator product algebra in (2.5.63) can be immediately recognized
to be the “small” N = 4 superconformal algebra with central charge c2d =
−3(N2 − 1) [70]. It is natural that there should be supersymmetry acting
in the chiral algebra, since the holomorphic sl(2) that commutes with the
supercharges Q i is in enhanced to a holomorphic sl(2 | 2) when the four-
dimensional theory is N = 4 supersymmetric. However, like the case of the
global conformal algebra being generated not by the four-dimensional stress
tensor but by the chiral operator associated to the SU(2)R current, here the
enhanced supersymmetry in the chiral algebra is generated not by the four-
dimensional supercurrents, but by the Schur operators that lie in the same
D 1

2
(0,0) and D 1

2
(0,0) multiplets with them. Those are the Schur operators that

are transmuted into the two-dimensional supercurrents Gi and G̃i.
In SU(3) theory there are additional generators arising from the addi-

tional HL generators. Sure enough, direct computation produces the follow-
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ing list of new generators of dimension less than or equal to 5/2:

Bijk := Tr qiqjqk = χ[TrQiQjQk] ,

Bij := Tr qiqjb = χ[TrQiQjλ̃+] ,

B̃ij := Tr qiqj∂c = χ[TrQiQjλ+̇] ,

Bi := 3Tr qib∂c+ Tr ∂qjq
jqi= χ[3TrQiλ̃+λ+̇ + Tr ∂++̇QjQ

jQi] .

(2.5.69)

Precisely for the SU(3) case, the operator Bi is in fact equivalent to a com-
posite operator,

Bi ∼ εjj
′
εkk

′
JjkBij′k′ . (2.5.70)

This is a consequence of a chiral ring relation for this value of N which sets
εjj
′
εkk

′
TrQjQkTrQiQj′Qk′ to zero. This will not be the case for higher rank

gauge groups, and Bi will be an authentic generator of the algebra.

A super W-algebra conjecture

Because the chiral algebras of N = 4 SYM theories are supersymmetric, we
can introduce a more restrictive notion of generators for these algebras. More
precisely, we would like to identify those operators that generate the chiral al-
gebra under the operations of normal ordered products and superderivatives,
or the action of sl(2 | 2). In other words, we allow not just L1 descendants,
but also Gi,− 1

2
and G̃i,− 1

2
descendants.

The last three generators in (2.5.69) are superdescendants of Bijk, so we
have really only found one additional super-generator in the SU(3) theory.
In general, HL operators will be grouped by N = 4 supersymmetry into
multiplets comprised of a single B̂-type operator, an SU(2)F doublet of D-
type operators, and an SU(2)F doublet worth of D̄-type operators.

For a general simple gauge group, the natural guess is that the chiral
algebra is generated by the small N = 4 superconformal algebra along with
additional chiral primary operators arising from the Higgs chiral ring gener-
ators. Our conjecture is then the following:

Conjecture 3 The chiral algebra for N = 4 SYM theory with gauge group
G is isomorphic to an N = 4 superW-algebra with rank(G) generators given
by chiral primaries of dimensions di

2
, where di are the degrees of the Casimir

invariants of G.

We now perform some tests of this conjecture at the level of the supercon-
formal index.
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The superconformal index

Conjecture 3 can be tested up to any given level by comparing the index of
the chiral algebra defined in the conjecture with the superconformal index of
N = 4 SYM in the Schur limit. For gauge group SU(N), the Schur index is
given by a contour integral,

ISchur(q; a) =

∮
[d~b]P.E.

[( √
q

1− q

)
χ2(a)χN2−1(~b) +

( −2q

1− q

)
χN2−1(~b)

]
,

(2.5.71)

where a is an SU(2)F flavor fugacity. For SU(2) gauge group, expanding
the integrand in powers of q and integrating gives the following result up to
O(q4), where we have collected terms into SU(2)F characters χR(a),

ISchur(q; a) = 1 + χ3(a)q − 2χ2(a)q3/2 +
(
χ1(a) + χ3(a) + χ5(a)

)
q2

− 2
(
χ2(a) + χ4(a)

)
q5/2 +

(
χ1(a) + 3χ3(a) + χ5(a) + χ7(a)

)
q3

−
(
4χ2(a) + 4χ4(a) + 2χ6(a)

)
q7/2

+
(
3χ1(a) + 7χ3(a) + 4χ5(a) + χ7(a) + χ9(a)

)
q4 + . . . .

(2.5.72)

We can compare this result with the index of the W-algebra appearing in
the conjecture (in this case, just the small superconformal algebra with the
appropriate value of the central charge) by enumerating the states of the
chiral algebra and then finding and subtracting the null states at each level.
We have checked up to level four, and the results match exactly.

The same comparison can be done for the SU(3) case, where the Schur
index to O(q3) is given by

ISchur(q; a) =

1 + χ3(a)q +
(
χ4(a)− 2χ2(a)

)
q3/2 +

(
2χ1(a) + χ5(a)− χ3(a)

)
q2

+
(
χ6(a)− 3χ2(a)

)
q5/2 +

(
5χ1(a) + χ3(a) + 2χ7(a)− 3χ5(a)

)
q3 + . . . .

(2.5.73)

Up to level three the nulls were computed and they agree with the index.
Note that in this case there are cancellations in the index of the chiral algebra,
since there are bosonic and fermionic states appearing at the same level.
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SU(2)2SU(2)1 SU(2)3

SU(2)a

SU(2)b

SU(2)c

Figure 2.1: Weak coupling limits of the genus two class S theory.

2.5.4 Class S at genus two

At this point, the reader may be starting to get the impression that the
chiral algebra of any four-dimensional theory be entirely determined by the
structure of its various chiral rings. The purpose of this next example is to
show that such a simplistic picture is untenable.

Our example is the rank one class S theory associated to an unpunctured
genus two Riemann surface [10, 11]. The theory admits two inequivalent
weak-coupling limits, or S-duality frames, corresponding to the two general-
ized quiver constructions illustrated in Fig. 2.1. We will focus on the first
case, which is sometimes called the dumbbell quiver. The gauge groups are
denoted SU(2)1 for the left loop, SU(2)2 for central line, and SU(2)3 for
the right loop. The fields of the theory are two sets of half-hypermultiplets
transforming in the trifundamental representation of SU(2)3 and three SU(2)
vector multiplets. In N = 1 notation, we denote these by

Qa1b1a2 , Sa3b3a2 , W
(ν)
α Aν

, Φ
(ν)
Bν

, (2.5.74)

where ν = 1, 2, 3 indexes the three SU(2) gauge groups, aν , bν are funda-
mental indices of SU(2)ν , and Aν , Bν are adjoint indices of SU(2)ν . It is
convenient to rearrange the fields Qa1b1a2 and Sa3b3a2 in terms of irreducible
representations of the gauge groups. In particular, we can define

QA1a2
:=−iQa1b1a2(TA1)a1b1 , Qa2

:=
1√
2
εa1b1Qa1b1a2 ,

SA3a2
:= −iSa3b3a2(TA3)a3b3 , Sa2

:=
1√
2
εa3b3Sa3b3a2 .

(2.5.75)
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Finally, we introduce the fields

φa2 =
1√
2

(Qa2 + iSa2) , φ̄a2 =
1√
2

(Qa2 − iSa2) . (2.5.76)

The theory has a U(1)F flavor symmetry that is not completely obvious given
the usual structure of flavor symmetries in class S theories. The fields φ and
φ̄ have charges +1 and −1 respectively under the flavor symmetry, and the
remaining fields are neutral.

The BRST cohomology problem for this theory can be set up as in the
previous sections. In fact, the analysis may be somewhat simplified by lever-
aging the N = 4 analysis of the previous section. In particular, each loop in
the quiver corresponds to a small N = 4 superconformal algebra along with
a decoupled SU(2) doublet of symplectic bosons. The genus two theory is
obtained by gauging the diagonal subgroup of the SU(2) flavor symmetries
for each side. Nevertheless, the resulting cohomology problem is substan-
tially more intricate than those of the previous examples, and we will not
describe the level-by-level analysis.

Instead, we will take an indirect approach to understand the spectrum
of generators of this chiral algebra at low levels. In particular, by analyz-
ing various superconformal indices of this theory and comparing with the
structure of the HL chiral ring, we will be able to prove that the full chiral
algebra must have generators in addition to those related to HL chiral ring
generators and the stress tensor. More precisely, by studying the spectrum
up to dimension three, we find that there must be additional generators that
arise from Ĉ1(0,0) multiplets in four dimensions.

The Higgs branch chiral ring for this theory has been analyzed in [71]. It
has three generators: a U(1)F neutral operator of dimension two, which is
actually the moment map for U(1)F ,

M = −εa2a′2φa2φ̄a′2 , (2.5.77)

and two operators of dimension four,

O1 = 2 φa2φa′2 ε
a2b2εa

′
2b
′
2 QA1b2QB1b′2

δA1B1 . (2.5.78)

O2 = 2 φ̄a2φ̄a′2 ε
a2b2εa

′
2b
′
2 QA1b2QB1b′2

δA1B1 , (2.5.79)

that have charges +2 and −2 under the flavor symmetry. These generators
satisfy a flavor neutral relation of dimension eight:

O1O2 = M4 . (2.5.80)
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It will be helpful for us to write down the Hilbert series [71] for this theory,
refined by the U(1)F flavor symmetry:

g(τ, a) =
1− t4

(1− t)(1− a2t2)(1− a−2t2)

= 1 + t+
(
a2 + a−2 + 1

)
t2 +

(
a2 + a−2 + 1

)
t3 + . . . , (2.5.81)

where a is the U(1)F fugacity, and t is the fugacity for the dimension of the
operator.

The generalized quiver for this theory has closed loops, so there will be
additional elements of the HL chiral ring coming from D-type multiplets.
The HL index for this theory can be computed by standard methods, and is
given by

IHL(t; a) =1 + t+ (a2 + a−2 − 2a− 2a−1 + 1)t2

+ (a2 + a−2 − 2a− 2a−1 + 2)t3 + . . . . (2.5.82)

By subtracting off the contributions of the Higgs chiral ring operators (ob-
tained from (2.5.81)), we can find the contributions of just the D-type mul-
tiplets. In turn, we can extract the structure of the D-type generators.27 All
told, at dimension two there are two D1(0,0) multiplets with U(1)F charge
+1 and two with charge −1, and at dimension three there is a single D 3

2
(0, 1

2
)

multiplet that is U(1)F neutral. The two-dimensional counterparts of these
operators can be defined in an explicit calculation of the BRST cohomology.

Up to dimension three, we have now determined all of the generators
of the HL chiral ring. The question is whether these operators (along with
the conjugates of the D-type operators), in addition to the two-dimensional
stress tensor, are sufficient to explain the full spectrum of the chiral algebra
(up to dimension three). The generators are listed in the three blocks of
Table 2.6, together with their contribution to the Macdonald index and the
quantum numbers of the corresponding Schur operators.

The Macdonald limit of the superconformal index of this theory is ob-

27We have checked by a computation of the HL cohomology that the HL index captures
faithfully the complete spectrum of D-type multiplets up to dimension three.
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tained from the following contour integral,

IMD(q, t; a) =∮
[db1][db2][db3]P.E.

[ √
t

1− q
[(
χ3(b1)χ2(b3) + χ3(b2)χ2(b3)

)
+ (a+ a−1)χ2(b3)

]
+

(−t− q
1− q

)(
χ3(b1) + χ3(b2) + χ3(b3)

)]
, (2.5.83)

and the expansion including all operators up to dimension three is as follows,

IMD(q, t; a) =1 + t+ (a2 + a−2 − 2a− 2a−1 + 1)t2 + (−2a− 2a−1 + 2)qt+

+ (a2 + a−2 − 2(a+ a−1) + 2)t3 + (3− 2(a+ a−1))q2t+

+ (a2 + a−2 − 4(a+ a−1) + 5)t2q + . . . .

We find that not all of the terms in this expansion can be accounted for by
enumerating normal ordered products of generators and their descendants.
In particular, from the list of known generators, the only operators that
could contribute as t2q to the index (with no flavor fugacity) are the normal-
ordered product of a B̂1 and a Ĉ0(0,0) and the derivative of the normal-ordered

product of two B̂1 operators. This leaves a contribution of 3t2q remains to be
explained. We can thus conclude that there are at least three new operators,
and they must all must correspond to Ĉ1,(0,0) multiplets that are uncharged
under the flavor symmetry. We have included these as the last entry in
Table 2.6. The argument presented above shows that at least these three
multiplets must be present, however it does not take into account possible
cancellations in the index, which could hide even more additional generators.

2.6 Beyond Lagrangian theories

Although the discussion of the previous section focused on theories admitting
Lagrangian descriptions, the correspondence between N = 2 SCFTs and chi-
ral algebras is of course much more general. In particular, the vast landscape
of superconformal theories of class S, most of which are non-Lagrangian in
nature, will be mapped to an intricate and interesting class of chiral alge-
bras. A detailed study of the class of chiral algebras defined by this map is
the content of chapter 3.
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Multiplet Index contribution h U(1)R U(1)F

B̂1
t

1−q 1 0 0

B̂2
t2a2

1−q 2 0 +2

B̂2
t2/a2

1−q 2 0 −2

2×D1 (0,0) −2 t2a
1−q 2 1

2
+1

2× D̄1 (0,0) −2 tqa
1−q 2 −1

2
+1

2×D1 (0,0) −2 t
2/a

1−q 2 1
2

−1

2× D̄1 (0,0) −2 tq/a
1−q 2 −1

2
−1

D 3
2

(0, 1
2

)
t3

1−q 3 1 0

D̄ 3
2

( 1
2
,0)

tq2

1−q 3 −1 0

Ĉ0(0,0)
tq

1−q 2 0 0

3× Ĉ1(0,0) 3 t2q
1−q 3 0 0

Table 2.6: Chiral algebra generators for the genus two theory with h 6 3.
The first columns lists the name and multiplicity of the four dimensional
multiplets giving rise to the generators. The second column lists the contri-
bution of each multiplet to the Macdonald superconformal index, including
the flavor fugacity. The last columns list the two-dimensional quantum num-
bers of the generators. The first block of the table consists of Higgs chiral
ring generators, the second the remaining HL chiral and anti-chiral ring gen-
erators, the third the two-dimensional stress tensor, and the last block the
extra generators deduced from the superconformal index.
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Chapter 3

Chiral Algebras of class S

3.1 Introduction

A large and interesting class of interacting quantum field theories are the
theories of class S [10, 11]. These are superconformal field theories (SCFTs)
with half-maximal (i.e., N = 2) supersymmetry in four dimensions. The
most striking feature of this class of theories is that they assemble into vast
duality webs that are neatly describable in the language of two-dimensional
conformal geometry. This structure follows from the defining property of
theories of class S: they can be realized as the low energy limits of (partially
twisted) compactifications of six-dimensional CFTs with (2, 0) supersymme-
try on punctured Riemann surfaces.

Generic theories of class S are strongly interacting. (In many cases they
possess generalized weak-coupling limits wherein the neighborhood of a cer-
tain limit point on their conformal manifold can be described by a collection
of isolated strongly coupled SCFTs with weakly gauged flavor symmetries.)
It is remarkable, then, that one can say much of anything about these the-
ories in the general case. One classic and successful approach has been to
restrict attention to the weakly coupled phases of these theories by, for ex-
ample, studying the physics of Coulomb branch vacua at the level of the low
energy effective Lagrangian and the spectrum of BPS states. Relatedly, one
may utilize brane constructions of these theories to extract some features of
the Coulomb branch physics [72, 73].

An alternative – and perhaps more modern – tactic is to try to constrain
or solve for various aspects of these theories using consistency conditions
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that follow from duality. This approach was successfully carried out in [74]
(building on the work of [75, 76, 37, 38]) to compute the superconformal index
of a very general set of class S fixed points (see also [6, 77] for extensions to
even more general cases). Subsequently, the framework for implementing this
approach to study the (maximal) Higgs branch was established in [78]. The
general aspiration in this sort of program is that the consistency conditions
imposed by generalized S-duality and the (known) behavior of these theories
under certain partial Higgsing and weak gauging operations may be sufficient
to completely determine certain nice observables. In this sense the approach
might be thought of as a sort of “theory space bootstrap”. One expects
that this approach has the greatest probability of success when applied to
observables of class S theories that are protected against corrections when
changing exactly marginal couplings, thus leading to objects that are labelled
by topological data and have no dependence on continuous parameters.1

A new class of protected observables for four-dimensional N = 2 SCFTs
was introduced in chapter 2. There it was shown that certain carefully se-
lected local operators, restricted to be coplanar and treated at the level of
cohomology with respect to a particular nilpotent supercharge, form a closed
subalgebra of the operator algebra. Moreover their operator product expan-
sions and correlation functions are meromorphic functions of the operator
insertion points on the plane. This subalgebra consequently acquires the
structure of a two-dimensional chiral algebra. The spectrum and structure
constants of this chiral algebra are subject to a non-renormalization theo-
rem that renders them independent of marginal couplings. The existence of
this sector can formally be summarized by defining a map that associates to
any N = 2 SCFT in four dimensions the chiral algebra that computes the
appropriate protected correlation functions,

χ :

{
N = 2 SCFTs

/
Marginal deformations

}
−→

{
Chiral algebras

}
.

Chiral algebras with the potential to appear on the right hand side of this
map are not generic – they must possess a number of interesting properties
that reflect the physics of their four-dimensional ancestors.

In this chapter we initiate the investigation of chiral algebras that are
associated in this manner with four-dimensional theories of class S. For lack

1Observables with a manageable dependence on the marginal couplings, such as R4
ε1,ε2

and S4 partition functions, also provide natural settings for this type of argument.
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of imagination, we refer to the chiral algebras appearing in this fashion as
chiral algebras of class S. For a general strongly interacting SCFT, there
is at present no straightforward method for identifying the associated chiral
algebra. Success in this task would implicitly fix an infinite amount of pro-
tected CFT data (spectral data and three-point couplings) that is generally
difficult to determine. However, given the rigid nature of chiral algebras, one
may be optimistic that chiral algebras of class S can be understood in some
detail by leveraging the constraints of generalized S-duality and the wealth
of information already available about the protected spectrum of these theo-
ries. In the present work, we set up the abstract framework of this bootstrap
problem in the language of generalized topological quantum field theory, and
put into place as many ingredients as possible to define the problem con-
cretely. We perform some explicit calculations in the case of theories of rank
one and rank two, and formulate a number of conjectures for the higher rank
case. One of our main results is a general prescription to obtain the chiral
algebra of a theory with sub-maximal punctures given that of the related
theory with all maximal punctures. We demonstrate that the reduction in
the rank of a puncture is accomplished in the chiral algebra by quantum
Drinfeld-Sokolov reduction, with the chiral algebra procedure mirroring the
corresponding four-dimensional procedure involving a particular Higgsing of
flavor symmetries.

Ultimately we believe that the bootstrap problem for chiral algebras of
class S may prove solvable, and we hope that the existence of this remark-
able structure will pique the interest of readers with a passion for vertex
operator algebras. Characterizing these algebras should prove to be both
mathematically and physically rewarding.

The organization of this chapter is as follows. Section 3.2 is a two-part
review: first of the protected chiral algebra of N = 2 SCFTs, and then of
N = 2 SCFTs of class S. In Section 3.3, we outline the structure of the chiral
algebras of class S, using the A1 and A2 cases as examples. We also take some
steps to formalize the TQFT structure of the chiral algebras of class S so
as to emphasize that the structures outlined here are susceptible to rigorous
mathematical analysis. In Section 3.4, we describe the generalization of our
story to the case of theories with sub-maximal punctures. In the process,
we are led to consider the problem of quantum Drinfeld-Sokolov reduction
for modules of affine Lie algebras. In Section 3.5, we offer some comments
on unphysical chiral algebras that are expected to exist at a formal level in
order to complete the TQFT structure. A number of technical details having

94



to do with rank two theories are included in Appendix B.1. Details having
to do with unphysical cylinder and cap chiral algebras appear in Appendix
B.2. Finally, in Appendix B.3 we review the methods for computing the
cohomology of a double complex using spectral sequences. These methods
are instrumental to the analysis of Section 3.4.

3.2 Background

We begin with a review of the two main topics being synthesized in this
chapter: the protected chiral algebras of N = 2 SCFTs and superconformal
theories of class S. Readers who have studied chapter 2 should be fine
skipping Section 3.2.1, while those familiar with the class S literature (for
example, [10, 75, 74, 67]) may safely skip Section 3.2.2.

3.2.1 Review of protected chiral algebras

The observables we aim to study for class S fixed points are those described
by the protected chiral algebras introduced in chapter 2 (see also [26] for
the extension to six dimensions). The purpose of this section is to provide a
short overview of how those chiral algebras come about and the properties
that were deduced for them in the original papers. We simply state the facts
in this section; the interested reader is encouraged to consult the previous
chapter for explanations.

The starting point is the N = 2 superconformal algebra su(2, 2|2). The
fermionic generators of the algebra are Poincaré supercharges {QIα, Q̃α̇J } and
special conformal supercharges {SαI , S̃ α̇J }. From these, one can form two
interesting nilpotent supercharges that are mixtures of Poincaré and special
conformal supercharges,

Q 1 := Q1
− + S̃−̇2 , Q 2 := Q̃−̇2 + S−1 . (3.2.1)

These supercharges have the following interesting property. Let us define the
subalgebra of the four-dimensional conformal symmetry algebra that acts on
a plane R2 ⊂ R4 as sl(2)× sl(2). Let us further denote the complexification
of the su(2)R R-symmetry as sl(2)R. These subalgebras have the following
nice relationship to the supercharges Q i,

[Q i, sl(2)] = 0 , {Q i, ·} = diag
[
sl(2)× sl(2)R

]
. (3.2.2)

95



It follows from these relations that operators that are Q -closed must behave
as meromorphic operators in the plane. They have meromorphic operator
product expansions (modulo Q -exact terms) and their correlation functions
are meromorphic functions of the positions. Restricting from the full N = 2
SCFT to Q -cohomology therefore defines a two-dimensional chiral algebra.
For a pedagogical discussion of chiral algebras, see [42].

The conditions for a local operator to define a nontrivial Q -cohomology
element were worked out in chapter 2. It turns out that such operators are
restricted to lie in the chiral algebra plane: {x3 = x4 = 0}. When inserted
at the origin, an operator belongs to a well-defined cohomology class if and
only if it obeys the conditions

ĥ :=
E − (j1 + j2)

2
−R = 0 , Z := j1 − j2 + r = 0 . (3.2.3)

Unitarity of the superconformal representation requires ĥ > |Z|
2

, so the first

condition actually implies the second. We refer to operators obeying ĥ = 0 as
Schur operators. All Schur operators are necessarily su(2)R highest weight
states. Indeed, if the su(2)R raising generator did not annihilate a Schur
operator, it would generate an operator with ĥ < 0, which would violate
unitarity.

As sl(2) does not commute with Q, ordinary translations of Schur op-
erators in the chiral algebra plane fail to be Q -closed away from the ori-
gin. Rather, we translate operators using the twisted translation generator
L̂−1 := L−1 +R−, where R− is the lowering operator of su(2)R. As shown
in Eqn. (3.2.2), this is a Q -exact operation. We find that local operators
defining nontrivial Q -cohomology classes can be written in the form

O(z, z̄) := uI1(z̄) · · ·uIk(z̄)O{I1···Ik}(z, z̄) , where uI(z) :=

(
1

z̄

)
.

(3.2.4)
Here O1···1(0) is a Schur operator, and we are suppressing Lorentz indices. It
is these twisted-translated Schur operators, taken at the level of cohomology,
that behave as meromorphic operators in two dimensions,

O(z) := [O(z, z̄)]Q i . (3.2.5)

We now turn to a recap of the various types of four-dimensional operators
that may satisfy the Schur condition, and thus participate in the protected
chiral algebra.
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Multiplet OSchur h r Lagrangian

“letters”

B̂R Ψ11...1 R 0 Q, Q̃

DR(0,j2) Q̃1
+̇

Ψ11...1
+̇...+̇

R+ j2 + 1 j2 + 1
2 Q, Q̃, λ̃1

+̇

D̄R(j1,0) Q1
+Ψ11...1

+···+ R+ j1 + 1 −j1 − 1
2 Q, Q̃, λ1

+

ĈR(j1,j2) Q1
+Q̃1

+̇
Ψ11...1

+···+ +̇...+̇
R+ j1 + j2 + 2 j2 − j1 Dn

++̇
Q, Dn

++̇
Q̃,

Dn
++̇
λ1

+, Dn
++̇
λ̃1

+̇

Table 3.1: This table summarizes the manner in which Schur operators
fit into short multiplets of the N = 2 superconformal algebra. For each
supermultiplet, we denote by Ψ the superconformal primary. There is then a
single conformal primary Schur operator OSchur, which in general is obtained
by the action of some Poincaré supercharges on Ψ. We list the holomorphic
dimension h and U(1)r charge r of OSchur in terms of the quantum numbers
(R, j1, j2) that label the shortened multiplet (left-most column). We also
indicate the schematic form that OSchur can take in a Lagrangian theory by
enumerating the elementary “letters” from which the operator may be built.
We denote by Q and Q̃ the complex scalar fields of a hypermultiplet, by λIα
and λ̃Iα̇ the left- and right-moving fermions of a vector multiplet, and by Dαα̇

the gauge-covariant derivatives.

97



Taxonomy of Schur operators

A Schur operator is annihilated by two Poincaré supercharges of opposite
chiralities (Q1

− and Q̃2−̇ in our conventions). A summary of the different
classes of Schur operators, organized according to how they fit in shortened
multiplets of the superconformal algebra, is given in Table 3.1 (reproduced
from chapter 2). Let us briefly discuss each row in turn.

The first row describes half-BPS operators that are a part of the Higgs
branch chiral ring. These have E = 2R and j1 = j2 = 0. In a Lagrangian
theory, operators of this type schematically take the form QQ · · · Q̃Q̃. A
special case is when R = 1, in which case a conserved current is amongst
the super-descendants of the primary. The half-BPS primary is then the
“moment map” operator µA which has dimension two and transforms in the
adjoint representation of the flavor symmetry. The su(2)R highest weight
state of the moment map is a Schur operator.

The operators in the second row are more general N = 1 chiral oper-
ators, obeying E = 2R + |r| and r = −j1 − 1

2
. Together with the Higgs

branch chiral ring operators (which can be regarded as the special case with
r = 0), they make up the so-called Hall-Littlewood chiral ring. These are
precisely the operators that are counted by the Hall-Littlewood limit of the
superconformal index [38]. In a Lagrangian theory, these operators are ob-
tained by constructing gauge-invariant words out of Q, Q̃, and the gaugino
field λ1

+ (the bottom component of the field strength chiral superfield Wα

with α = +). In complete analogy, the third line describes N = 1 anti -
chiral operators obeying E = 2R + |r|, r = j2 + 1

2
, which belong to the

Hall-Littlewood anti-chiral ring. The second and third lines are CPT conju-
gate to each other. It is believed that D and D type operators are absent
in any theory arising from a (generalized) quiver description with no loops
(i.e., an acyclic quiver). These are theories for which the Hall-Littlewood
superconformal index matches [38] the “Hilbert series” for the Higgs branch
[79]. Equivalently, these are the theories for which the maximal Higgs branch
is an honest Higgs branch, with no low-energy abelian gauge field degrees of
freedom surviving.

The fourth line describes the most general type of Schur operators, which
belong to supermultiplets that obey less familiar semi-shortening conditions.
An important operator in this class is the conserved current for su(2)R, which
belongs to the Ĉ0(0,0) supermultiplet which also contains the stress-energy
tensor and is therefore universally present in any N = 2 SCFT. This current
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has one component with E = 3, R = 1, j1 = j2 = 1
2

which is a Schur operator.
Finally, let us point out the conspicuous absence of half-BPS operators

that belong to the Coulomb branch chiral ring (these take the form Trφk in
a Lagrangian theory, where φ is the complex scalar of the N = 2 vector
multiplet). These operators are in many ways more familiar than those
appearing above due to their connection with Coulomb branch physics. The
protected chiral algebra is thus complementary, rather than overlapping, with
a Coulomb branch based analysis of class S physics.

The 4d/2d dictionary

There is a rich dictionary relating properties of a four-dimensional SCFT
with properties of its associated chiral algebra. Let us briefly review some
of the universal entries in this dictionary that were worked out in chapter 2.
Interested readers should consult that chapter for more detailed explanations.

Virasoro symmetry

The stress tensor in a four-dimensional N = 2 SCFT lives in the Ĉ0(0,0) super-
multiplet, which contains as a Schur operator a component of the su(2)R con-

served current J (IJ )
αα̇ . The corresponding twisted-translated operator gives

rise in cohomology to a two-dimensional meromorphic operator of dimension
two, which acts as a two-dimensional stress tensor, T (z) := [J++̇(z, z̄)]Q. As
a result, the global sl(2) symmetry that is inherited from four dimensions is
always enhanced to a local Virasoro symmetry acting on the chiral algebra.
From the current-current OPE, which is governed by superconformal Ward
identities, one finds a universal expression for the Virasoro central charge,

c2d = −12 c4d , (3.2.6)

where c4d is the conformal anomaly coefficients of the four-dimensional theory
associated to the square of the Weyl tensor. Note that the chiral algebra is
necessarily non-unitary due to the negative sign in Eqn. (3.2.6).

Affine symmetry

Similarly, continuous global symmetries of the four-dimensional SCFT (when
present) are enhanced to local affine symmetries at the level of the associ-
ated chiral algebra. This comes about because the conserved flavor sym-
metry current sits in the B̂1 supermultiplet, whose bottom component is
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the moment-map operator discussed above. The su(2)R highest weight com-
ponent of the moment map operator then gives rise to an affine current,
JA(z) := [µA(z, z̄)]Q. The level of the affine current algebra is related to the
four-dimensional flavor central charge by another universal relation,

k2d = −1

2
k4d . (3.2.7)

Hall-Littlewood ring generators as chiral algebra generators

Identifying chiral algebra generators is of crucial importance if one is to find
an intrinsic characterization of any particular chiral algebra without reference
to its four-dimensional parent. A very useful fact is that generators of the
Hall-Littlewood chiral ring (and in particular those of the Higgs branch chiral
ring) necessarily give rise to generators of the protected chiral algebra after
passing to Q -cohomology. This follows from su(2)R and u(1)r selection rules,
which forbid such an operator from appearing in any non-singular OPEs.
A special case is the aforementioned affine currents, which arise from Higgs
branch moment map operators with E = 2R = 2. With the exception of
theories with free hypermultiplets, these are always generators.

Exactly marginal gauging

Given an SCFT T with a flavor symmetry G that has flavor central charge
k4d = 4h∨, one may form a new family of SCFTs TG by introducing an
N = 2 vector multiplet in the adjoint representation of G and gauging the
symmetry. This specific value of the flavor central charge ensures that the
gauge coupling beta function vanishes, so the procedure preserves conformal
invariance.

There exists a corresponding procedure at the level of chiral algebras that
produces the chiral algebra χ[TG] given that of the original theory χ[T ]. In
parallel with the introduction of a G-valued vector multiplet, one introduces
a dimension (1, 0) ghost system (bA, c

A) with A = 1, . . . , dimG. In the tensor
product of this ghost system and the chiral algebra χ[T ], one may form a
canonical nilpotent BRST operator given by

QBRST :=

∮
dz

2πi
jBRST(z) , jBRST(z) :=

(
cA
[
JA −

1

2
f C
AB cB bC

])
(z) ,

(3.2.8)
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where the affine currents JA(z) are those associated with the G symmetry
of χ[T ], and f C

AB are the structure constants for G. Nilpotency of this
BRST operator depends on the precise value of the affine level k2d = −2h∨,
and so the self-consistency of this procedure is intimately connected with the
preservation of conformal invariance in four dimensions. The gauged chiral
algebra is then obtained as the cohomology of the BRST operator relative to
the b -ghost zero modes,

χ[TG] = H?
BRST

[
ψ ∈ χ[T ]⊗ χ(b,c) | bA0 ψ = 0

]
(3.2.9)

Superconformal index

The superconformal index of a superconformal field theory is the Witten
index of the radially quantized theory, refined by a set of fugacities that keep
track of the maximal set of charges commuting with each other and with a
chosen supercharge. For our purposes, we consider the specialization of the
index of an N = 2 SCFT known as the Schur index [37, 38]. The trace
formula for the Schur index reads

I(Schur)(q; x) = TrH[S3](−1)F qE−R
∏
i

xi
fi , (3.2.10)

where F denotes the fermion number and {fi} the Cartan generators of the
flavor group. The Schur index counts (with signs) precisely the operators
obeying the condition (3.2.3). Moreover, for Schur operators E−R coincides
with the left-moving conformal weight h (the eigenvalue of L0),

E −R =
E + j1 + j2

2
=: h . (3.2.11)

It follows that the graded character of the chiral algebra is identical to the
Schur index,

Iχ(q; x) := TrHχ (−1)F qL0 = ISchur(q; x) , (3.2.12)

where Hχ denotes the state space of the chiral algebra. Note that this object
is not interpreted as an index when taken as a partition function of the
chiral algebra, because (with the exception of chiral algebras associated to
N = 4 theories in four dimensions) the protected chiral algebra itself is not
supersymmetric.

101



3.2.2 Review of theories of class S
Four-dimensional superconformal field theories of class S may be realized as
the low-energy limit of twisted compactifications of an N = (2, 0) super-
conformal field theory in six dimensions on a Riemann surface, possibly in
the presence of half-BPS codimension-two defect operators. The resulting
four-dimensional theory is specified by the following data:2

• A simply-laced Lie algebra g = {An, Dn, E6, E7, E8}. This specifies the
choice of six-dimensional (2, 0) theory.

• A (punctured) Riemann surface Cg,s known as the UV curve, where g
indicates the genus and s the number of punctures. In the low energy
limit, only the complex structure of Cg,s plays a role. The complex
structure moduli of the curve are identified with exactly marginal cou-
plings in the SCFT.

• A choice of embedding Λi : su(2)→ g (up to conjugacy) for each punc-
ture i = 1, . . . , s. These choices reflect the choice of codimension-two
defect that is present at each puncture in the six-dimensional construc-
tion. The centralizer hΛi ⊂ g of the embedding is the global symmetry
associated to the defect. The theory enjoys a global flavor symmetry
algebra given by at least ⊕si=1hΛi .

3

When necessary, we will label the corresponding four-dimensional SCFT as
T [g; Cg,s; {Λi}]. Because we are ultimately only interested in theories modulo
their exactly marginal couplings, we will not keep track of a point in the
complex structure moduli space of the UV curve.

For the sake of simplicity, we will restrict our attention to theories where
g is in the A series. The generalization to D and E series theories (at least
in the abstract discussion) should be possible to carry out without a great
deal of additional difficulty. In the An−1 case – i.e., g = su(n) – the data
at punctures can be reformulated as a partition of n: [n`11 n

`2
2 . . . n`kk ] with

2We restrict our attention in this note to regular theories. A larger class of theories can
be obtained by additionally allowing for irregular punctures [80]. Still more possibilities
appear when the UV curve is decorated with outer automorphisms twist lines [81, 82].

3In some exceptional cases the global symmetry of the theory is enhanced due to
the existence of additional symmetry generators that are not naturally associated to an
individual puncture.
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∑
i `ini = n and ni > ni+1. Such a partition indicates how the fundamental

representation f of su(n) decomposes into irreps of Λ(su(2)),

f→
k⊕
i=1

`iV 1
2

(ni−1) , (3.2.13)

where Vj denotes the spin j representation of su(2). An equivalent description
comes from specifying a nilpotent element e in su(n), i.e., an element for
which (ade)

r = 0 for some positive integer r. The Jordan normal form of
such a nilpotent element is given by

e =
k⊕
i=1

`i times︷ ︸︸ ︷
Jni ⊕ · · · ⊕ Jni , (3.2.14)

where Jm is the elementary Jordan block of size m, i.e., a sparse m × m
matrix with only ones along the superdiagonal. Thus every nilpotent element
specifies a partition of n and vice versa. The su(2) embedding comes from
defining su(2) generators t0, t± and demanding that Λ(t−) = e.

The trivial embedding is identified with the partition [1n] and leads to a
defect with maximal flavor symmetry h = su(n). A puncture labelled by this
embedding is called full or maximal. The opposite extreme is the principal
embedding, which has partition [n1]. This embedding leads to h = ∅, and
the puncture is effectively absent. Another important case is the subregular
embedding, with partition [n − 1, 1], which leads to h = u(1) (as long as
n > 2). Punctures labelled by the subregular embedding are called minimal
or simple.

The basic entities of class S are the theories associated to thrice-punc-
tured spheres, or trinions. The designations of these theories are convention-
ally shortened as

TΛ1Λ2Λ3
n := T [su(n); C0,3; {Λ1 Λ2 Λ3}] . (3.2.15)

For the special case of all maximal punctures, the convention is to further
define Tn := T

[1n][1n][1n]
n . All of the trinion theories are isolated SCFTs –

they have no marginal couplings. For most of these theories, no Lagrangian
description is known. An important class of exceptions are the theories with
two maximal punctures and one minimal puncture: T

[1n][1n][n−1,1]
n . These

are theories of n2 free hypermultiplets, which in this context are naturally
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thought of as transforming in the bifundamental representation of su(n) ×
su(n). In the case n = 2, the minimal and maximal punctures are the
same and the theory of four free hypermultiplets (equivalently, eight free
half-hypermultiplets) is the T2 theory. In this case the global symmetry
associated to the punctures is su(2) × su(2) × su(2) which is a subgroup of
the full global symmetry usp(8).

At the level of two-dimensional topology, an arbitrary surface Cg,s can be
assembled by taking 2g−2+s copies of the three-punctured sphere, or “pairs
of pants”, and gluing legs together pairwise 3g − 3 + s times. Each gluing
introduces a complex plumbing parameter and for a given construction of this
type the plumbing parameters form a set of coordinates for a patch of the
Teichmuller space of Riemann surfaces of genus g with s punctures. A parallel
procedure is used to construct the class S theory associated to an arbitrary
UV curve using the basic trinion theories. Starting with 2g−2+s copies of the
trinion theory Tn, one glues along maximal punctures by gauging the diagonal
subgroup of the su(n)× su(n) flavor symmetry associated to the punctures.
This introduces an su(n) gauge group in the four-dimensional SCFT, and
the marginal gauge coupling is related to the plumbing parameter. If one
wants, the remaining maximal punctures can then be reduced to sub-maximal
punctures using the Higgsing procedure described below.4 To a given pants
decomposition of a UV curve, one associates a “weakly coupled” frame of
the corresponding SCFT in which the flavor symmetries of a collection of
trinion theories are being weakly gauged. The equivalence of different pants
decompositions amounts to S-duality. It is only in very special cases that
a weakly coupled duality frame of this type will actually be described by a
Lagrangian field theory.

By now, quite a few general facts are known about theories of class S.
Here we simply review some relevant ones while providing pointers to the
original literature. The list is not meant to be comprehensive in any sense.

4In terms of the low energy SCFT, the operations of Higgsing at external punctures
and gauging of internal ones commute, so one may equally well think of gluing together
trinions some of whose punctures are not maximal. Our presentation here is not meant to
convey the full depth of what is possible in class S.
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Central charges

The a and c conformal anomalies have been determined for all of the regular
A-type theories in [67, 83]. The answer takes the following form,

c4d =
2nv + nh

12
, a =

5nv + nh
24

, (3.2.16)

where

nv =
s∑
i=1

nv(Λi) + (g − 1)
(

4
3
h∨ dim g + rank g

)
,

nh =
s∑
i=1

nh(Λi) + (g − 1)
(

4
3
h∨ dim g

)
,

(3.2.17)

and

nv(Λ) = 8 (ρ · ρ− ρ · Λ(t0)) + 1
2
(rank g− dim g0) ,

nh(Λ) = 8 (ρ · ρ− ρ · Λ(t0)) + 1
2

dim g 1
2
.

(3.2.18)

In these equations, ρ is the Weyl vector of su(n) and h∨ is the dual coxeter
number, which is equal to n for g = su(n). The Freudenthal-de Vries strange
formula states that |ρ|2 = h∨

12
dim g, which is useful in evaluating these ex-

pressions. Additionally, the embedded Cartan generator Λ(t0) has been used
to define a grading on the Lie-algebra,

g =
⊕
m∈ 1

2
Z

gm , gm :=
{
t ∈ g | adΛ(t0)t = mt

}
. (3.2.19)

This grading will make another appearance in Sec. 3.4.
The su(n) flavor symmetry associated to a full puncture comes with flavor

central charge ksu(n) = 2n. This is a specialization of the general formula
kADE = 2h∨. For a non-maximal puncture, the flavor central charge for a
given simple factor hsimp ⊆ h is given by [83],

khsimp
δAB = 2

∑
j

TrR(adj)
j

TATB , (3.2.20)

where TA, TB are generators of hsimp satisfying the normalization Trhsimp
TATB =

h∨hsimp
δAB and we have introduced the decomposition of the adjoint represen-

tation of su(n) into representations of hΛ ⊗ Λ(su(2)),

adjg =
⊕
j

R(adj)
j ⊗ Vj . (3.2.21)
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In cases where there are global symmetries that extend the symmetries as-
sociated to punctures, the central charge can be deduced in terms of the
embedding index.

Higgs branch chiral ring and their relations

Operators in an N = 2 SCFT whose conformal dimension is equal to twice
their su(2)R spin (E = 2R) form a ring called the Higgs branch chiral ring.
This ring is generally believed to be the ring of holomorphic functions (in
a particular complex structure) on the Higgs branch of the moduli space
of vacua of the theory. It is expected to be finitely generated, with the
generators generally obeying nontrivial algebraic relations. For theories of
class S the most general such relations have not been worked out explicitly
to the best of our knowledge. However, certain cases of the relations can be
understood.

For any puncture there is an associated global symmetry h, and the con-
served currents for that global symmetry will lie in superconformal represen-
tations that include moment map operators µA, A = 1, . . . , dim h that belong
to the Higgs branch chiral ring. Of primary interest to us are the relations
that involve solely these moment map operators. Let us specialize to the
case where all punctures are maximal, so hi = g for all i = 1, . . . , s. There
are then chiral ring relations given by

Trµk1 = Trµk2 = · · · = Trµks , k = 1, 2 . . . . (3.2.22)

There are additional Higgs branch chiral ring generators for a general class
S theory of the form

Q
I(k)

1 ···I
(k)
s

(k) , k = 1, . . . , n− 1 , (3.2.23)

of dimension Ek = 2Rk = 1
2
k(n−k)(2g−2+s). The multi-indices I(k) index

the k-fold antisymmetric tensor representation of su(n). There are generally
additional chiral ring relations involving these Q(k) operators, some of which
mix them with the moment maps [84]. The complete form of these extra
relations has not been worked out – a knowledge of such relations would
characterize the Higgs branch of that theory as a complex algebraic variety,
and such a characterization is presently lacking for all but a small number
of special cases. We will not make explicit use of such additional relations in
what follows.
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Higgsing and reduction of punctures: generalities

Theories with non-maximal punctures can be obtained by starting with a
theory with maximal punctures and going to a particular locus on the Higgs
branch [73, 85, 83, 86]. The flavor symmetry associated to a puncture is re-
flected in the existence of the above-mentioned half-BPS moment map opera-
tors, µA, that transform in the adjoint representation of the flavor symmetry
with corresponding index A = 1, . . . , n2−1. In reducing the flavor symmetry
via Higgsing, one aims to give an expectation value to one of the µi’s, say
µ1, while keeping 〈µi 6=1〉 = 0. Consistency with Eqn. (3.2.22) then requires
that 〈Trµk1〉 = 0 for any k, or put differently, 〈µ1〉 is a nilpotent su(n) matrix.
Since any nilpotent element can be realized as the image of t− ∈ su(2) with
respect to some embedding Λ : su(2) ↪→ su(n), the relevant loci on the Higgs
branch are characterized by such an embedding, where we have

〈µ1〉 = vΛ(t−) . (3.2.24)

The expectation value breaks the su(n) flavor symmetry associated with
the puncture to hΛ, the centralizer of the embedded su(2), as well as the
su(2)R symmetry (and also conformal symmetry). It will be important in the
following that a linear combination of the flavor and su(2)R Cartan generators
remains unbroken,5 namely

R̃ := R + J0 , J0 := Λ(t0) . (3.2.25)

In such a vacuum, the low energy limit of the theory is described by the
interacting class S SCFT with the same UV curve as the original theory,
but with the first puncture replaced by a puncture of type Λ. Additionally
there will be decoupled free fields arising from the Nambu-Goldstone fields
associated to the symmetry breaking [86, 85]. We identify R̃ as the Cartan
generator of the su(2)R̃ symmetry of the infrared fixed point.

It will prove useful to introduce notation to describe the breaking of
su(n) symmetry in greater detail. The generators of su(n) can be relabeled
according to the decomposition of Eqn. (3.2.21),

TA =⇒ Tj,m;W(Rj) , (3.2.26)

5We suspect not only this Cartan generator, but the full diagonal subalgebra of su(2)R
and the embedded su(2) is preserved on the sublocus of the Higgs branch in question.
It should be possible to prove such a thing using the hyperkahler structure on nilpotent
cones described in [87]. We thank D. Gaiotto, A. Neitzke, and Y. Tachikawa for helpful
conversations on this point.
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where m = −j,−j+1, . . . ,+j is the eigenvalue of the generator with respect
to Λ(t0), and W(Rj) runs over the various weights of the representation Rj

of hΛ. Expanding µ1 around its expectation value, we have

µ1 = vΛ(t−) +
∑
j

+j∑
m=−j

∑
W(Rj)

(µ̃1)j;m,W(Rj)Tj;m,W(Rj) . (3.2.27)

The operators (µ̃1)j;m,W(Rj) with m < j become the field operators of the
Nambu-Goldstone modes. Their number is given by dimCO

g
Λ(t−) – the com-

plex dimension of the nilpotent orbit of Λ(t−). They are ultimately organized
into 1

2
dimCO

g
Λ(t−) free hypermultiplets.

Superconformal index

The superconformal index of an SCFT is an invariant on its conformal man-
ifold. For theories of class S, this means that the index does not depend
on the complex structure moduli of the UV curve. On general grounds, one
then expects the class S index to be computed by a topological quantum
field theory living on the UV curve [75]. This expectation is borne out in
detail, with a complete characterization of the requisite TQFT achieved in a
series of papers [37, 38, 74]. Our interest is in the Schur specialization of the
index, which is identical to the graded character of the protected chiral al-
gebra, see Eqn (3.2.12). In [37], the corresponding TQFT was recognized as
a q-deformed version of two-dimensional Yang-Mills theory in the zero-area
limit. Here we will summarize this result and introduce appropriate notation
that will be useful in Sec. 3.4.3.

For the class S theory T [g; Cg,s; {Λi}], the Schur index takes the form6

ISchur(q; x) =
∑
R

CR(q)2g−2+s

s∏
i=1

ψΛi
R (xΛi ; q) . (3.2.28)

The sum runs over the set of finite-dimensional irreducible representations R
of the Lie algebra g. Each puncture contributes a “wavefunction” ψΛi

R (xΛi ; q),

6Not every possible choice of Riemann surface decorated by a choice of {Λi} at the
punctures corresponds to a physical SCFT. An indication that a choice of decorated surface
may be unphysical is if the sum in (3.2.28) diverges, which happens when the flavor
symmetry is “too small”. There are subtle borderline cases where the sum diverges, but
the theory is perfectly physical. These cases have to be treated with more care [88].
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while the Euler character of the UV curve determines the power of the “struc-
ture constants” CR(q) that appear. Each wavefunction depends on fugacities
xΛ conjugate to the Cartan generators of the flavor group hΛ associated to
the puncture in question. Note that by definition, the structure constants
are related to wave functions for the principal embedding, which corresponds
to having no puncture at all, i.e.,

CR(q)−1 ≡ ψρR(q) , (3.2.29)

where ρ denotes the principal embedding.7

To write down the general wavefunction we need to discuss some group
theory preliminaries. Under the embedding Λ : su(2) ↪→ g, a generic repre-
sentation R of g decomposes into hΛ ⊗ Λ(su(2)) representations,

R =
⊕
j

R(R)
j ⊗ Vj , (3.2.30)

where R(R)
j is some (generically reducible) representation of hΛ. We define

the fugacity assignment fugΛ(xΛ; q) as the solution (for x) of the following
character decomposition equation,8

χg
f (x) =

∑
j

χhΛ

R(f)
j

(xΛ)χ
su(2)
Vj

(q
1
2 , q−

1
2 ) , (3.2.31)

where χg
f (x) is the character of g in the fundamental representation (denoted

by f), and the right hand side is determined by the decomposition of Eqn.
(3.2.30) with R ≡ f. Note that x = fugΛ(xΛ; q) also solves the more general
character equation

χg
R(x) =

∑
j

χhΛ

R(R)
j

(xΛ)χ
su(2)
Vj

(q
1
2 , q−

1
2 ) , (3.2.32)

for any other representation R. A couple of simple examples help to clarify
these definitions. Taking g = su(2) and Λ : su(2) ↪→ su(2) the principal
embedding – in this case is just the identity map – the centralizer is trivial
and Eqn. (3.2.31) becomes

a+ a−1 = q
1
2 + q−

1
2 , (3.2.33)

7The discussion so far applies to a general simply-laced Lie algebra g. Recall that when
g = su(n), the principal embedding corresponds to the partition [n1].

8For g = su(n) the solution is unique up to the action of the Weyl group.
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which has the two solutions a = q
1
2 and a = q−

1
2 , which are related to

each other by the action of the Weyl group a ↔ a−1. A more complicated
example is g = su(3) and Λ the subregular embedding, which corresponds
to the partition [21, 11]. The centralizer is hΛ = u(1). Given su(3) fugacities
(a1, a2, a3) with a1a2a3 = 1, we denote the u(1) fugacity by b and then Eqn.
(3.2.31) takes the form

a1 + a2 + a3 = b−2 + b (q
1
2 + q−

1
2 ) . (3.2.34)

Up to the action of the Weyl group, which permutes the ai, the unique
solution is given by (a1, a2, a3) = (q

1
2 b, q−

1
2 b, b−2).

The wavefunction for a general choice of embedding and representation
now takes the following form,

ψΛ
R(xΛ; q) := KΛ(xΛ; q)χg

R(fugΛ(xΛ; q)) . (3.2.35)

The K-factors admit a compact expression as a plethystic exponential [77],

KΛ(xΛ; q) := PE

[∑
j

qj+1

1− qχ
hΛ

R(adj)
j

(xΛ)

]
, (3.2.36)

where the summation is over the terms appearing in the decomposition of
Eqn. (3.2.30) applied to the adjoint representation,

adjg =
⊕
j

R(adj)
j ⊗ Vj . (3.2.37)

Note thatR(adj)
0 = adjhΛ

⊕singlets. For the maximal puncture, corresponding
to the trivial embedding Λmax ≡ 0, the wavefunction reads

ψΛmax
R (x; q) = Kmax(x; q)χg

R(x) , Kmax(x; q) := PE

[
q

1− qχ
g
adj(x)

]
.

(3.2.38)
At the other extreme, for the principal embedding Λ = ρ, the decomposition
of Eqn. (3.2.37) reads

adjg =

rank g⊕
i=1

Vdi−1 , (3.2.39)

110



where {di} are the degrees of invariants of g, so in particular di = i + 1 for
su(n). We then find

ψρR(q) = PE

[
rank g∑
i

qdi

1− q

]
χg
R(fugρ(q)) . (3.2.40)

For g = su(n), the fugacity assignment associated to the principal embedding
takes a particularly simple form,

fugρ(q) = (q
n−1

2 , q
n−3

2 , . . . q−
n−1

2 ) . (3.2.41)

Together, Eqns. (3.2.29), (3.2.40), and (3.2.41) provide an explicit expression
for the structure constants CR(q).

Finally, let us recall the procedure for gluing two theories along maximal
punctures at the level of the index. Consider two theories T1 = T [g; Cg1,s1 ; {Λi}]
and T2 = T [g; Cg2,s2 ; {Λi}], each of which are assumed to have at least one
maximal puncture. We denote their Schur indices as ISchur

T1 (q; a, . . .) and
ISchur
T2 (q; b, . . .), where we have singled out the dependence on flavor fugaci-

ties a and b of the two maximal punctures that are going to be glued. As
usual, gluing corresponds to gauging the diagonal subgroup of the flavor sym-
metry G × G associated to the two maximal punctures. The index of the
glued theory is then given by∮

[da]∆(a) IV (q; a) ISchur
T1 (q; a, . . .) ISchur

T2 (q; a−1, . . .) , (3.2.42)

where [da] :=
∏r

j=1
daj

2πiaj
, ∆(a) is the Haar measure, and IV (q; a) is the index

of an N = 2 vector multiplet in the Schur limit,

IV (q; a) = PE

[ −2q

1− qχadj(a)

]
= Kmax(a; q)−2 . (3.2.43)

If we write the indices of T1 and T2 in the form dictated by Eqn. (3.2.28),
then the contour integral is rendered trivial because the K-factors in the
wave functions that are being glued cancel against the index of the vector
multiplet and the characters χg

R are orthonormal with respect to the Haar
measure. The result is that we obtain an expression that takes the form of
Eqn. (3.2.28), but with g = g1 + g2 and s = s1 + s2 − 2.
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Higgsing and reduction of punctures: superconformal index

We will now argue that the expression given in Eqn. (3.2.35) for the general
wavefunction of type Λ is dictated by the Higgsing procedure if one takes for
granted the formula given in Eqn. (3.2.38) for the maximal wavefunction. In
fact, the argument we are about to present should be applicable outside of the
narrow context under consideration here, so for some parts of the argument
we will use a fairly general language.

We are interested in the relationship between the Schur limit of the su-
perconformal index of an N = 2 SCFT and that of the low energy theory
at a point on the Higgs branch. It is a familiar feature of supersymmetric
indices that in some sense the only difference between the indices of UV
and IR fixed points is a possible redefinition of fugacities. In particular, if
a renormalization group flow is triggered by a vev that breaks some global
symmetry, then the fugacities dual to the broken generators must be set to
zero. Furthermore, if the index is to be interpreted as a superconformal in-
dex of the IR fixed point, then the appropriate R-symmetries that appear
in the superconformal algebra of that fixed point must be identified and the
fugacities redefined appropriately.

There are two related obstacles to applying this simple reasoning in many
cases. One is the appearance of accidental symmetries at the IR fixed point.
Fugacities dual to the generators of accidental symmetries cannot be intro-
duced in the UV description of the index, and so in particular if the su-
perconformal R-symmetry in the IR mixes with accidental symmetries, then
the superconformal index is inaccessible. The second obstacle is the possi-
ble presence of decoupled free fields in addition to the degrees of freedom
of interest at low energies. These two issues are related because whenever
decoupled free fields emerge at low energies, there will necessarily be an ac-
cidental global symmetry that acts just on those fields, and this symmetry
will generally contribute to the superconformal R-symmetry.

In nice cases it is possible to overcome these obstacles and write the
superconformal index of the IR theory in terms of that of the UV fixed point
in a fairly simple way. Sufficient conditions for us to be able to do this are:

• The only accidental symmetries at the IR fixed point are those associ-
ated to the decoupled Nambu-Goldstone bosons of spontaneous sym-
metry breaking.

• The Cartan generator of the su(2)R symmetry of the IR fixed point,
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when restricted to act on operators in the interacting sector, can be
identified and written as a linear combination of UV symmetries.

• The Higgs branch chiral ring operators that become the field operators
for Nambu-Goldstone bosons in the infrared are identifiable, and their
quantum numbers with respect to UV symmetries known.

When these conditions are met, the prescription for computing the index of
the IR fixed point is simple, and amounts to subtracting out the contributions
of the decoupled free fields to the index,

IIR(q; xIR) = lim
xUV→xIR

IUV(q; xUV)

INGB(q; xUV)
. (3.2.44)

Here xUV are the fugacities dual to the UV global symmetries, while xIR are
those dual to the IR global symmetries. The two sets of fugacities are related
to one another by a specialization. The denominator on the right hand side
is the index of 1

2
NNGB free hypermultiplets, where NNGB is the number of

complex Nambu-Goldstone bosons at the chosen locus of the Higgs branch.
The only subtlety is that the contributions of these free hypermultiplets are
graded according to the charges of the Higgs branch chiral ring operator that
becomes the field operator for the Nambu-Goldstone boson in the IR, so we
have

INGB(xUV; q) := PE

(∑
Oi

qROixfOi

1− q

)
. (3.2.45)

The reason that Eqn. (3.2.44) involves a limit is that the index will have a
pole at the specialized values of the fugacities. It is easy to see that this will
be the case because operators that acquire expectation values in the Higgs
branch vacuum of interest will always be uncharged under all of the fugacities
appearing in the specialized index. This invariably leads to a divergence in
the index.

Now let us return to the specific case of interest: the reduction of punc-
tures in class S theories. All of the conditions listed above are met. The
only accidental symmetries are those that act only on the decoupled Nambu-
Goldstone bosons arising from the spontaneous breaking of global and scale
symmetries. The Cartan generator of the low energy su(2)R (when restricted
to act in the interacting sector) was identified in Eqn. (3.2.25). Finally, we
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know precisely which operators in the UV theory will become the field oper-
ators for the Nambu-Goldstone bosons (cf. Eqn. (3.2.27)). Consequently we
know how these decoupling operators are acted upon by the UV symmetries.

Describing the index of the (interacting part) of the IR theory resulting
from the Higgsing associated to an embedding Λ in terms of the theory with
maximal punctures is now a simple exercise. The relevant specialization
is accomplished by redefining the su(2)R Cartan in the index according to
Eqn. (3.2.25), which leads to the replacement rule x 7→ fugΛ(xΛ; q). The
character χg

R is regular under this specialization. To check that we obtain the
expected wavefunction for the reduced puncture given in Eqns. (3.2.35) and
(3.2.36) it only remains to verify that the K-factors behave in the expected
manner. The fugacity replacement in the K-factor of the maximal puncture
leads to the following rewriting,

Kmax(a; q) = PE

[
q

1− qχadjg(a)

]
→ PE

 q

1− q
∑
j

χhΛ

R(adj)
j

(aΛ) χ
su(2)
Vj

(q
1
2 , q−

1
2 )

 ,

(3.2.46)

and upon expanding out the character χ
su(2)
Vj

(q
1
2 , q−

1
2 ) =

∑+j
m=−j q

m, we find
the expression

Kmax(a; q)→ PE

∑
j

qj+1

1− qχ
hΛ

R(adj)
j

(aΛ)

PE

 q

1− q
∑
j

χhΛ

R(adj)
j

(aΛ)

+j−1∑
m=−j

qm

 .

(3.2.47)

The first factor here reproduces the K-factor of the reduced flavor puncture
given in Eqn. (3.2.36). The second factor is strictly divergent because there
are constant terms in the plethystic exponent. However it is precisely this
second factor that is cancelled by the denominator in Eqn. (3.2.44). We
have been a little careless in this treatment by making a formal fugacity
replacement and then cancelling an infinite factor. A more rigorous treatment
proceeds via the limiting procedure described above, and produces the same
result.

3.3 Chiral algebras of class S
The organization of class S theories in terms of two-dimensional conformal
geometry has important implications for observables of these theories. In
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particular, any observable that is independent of exactly marginal couplings
should give rise to a (generalized) topological quantum field theory upon
identifying a given theory with its UV curve. As reviewed above, this insight
was originally exploited in the study of the superconformal index [74, 75, 76,
37]. Subsequently the strategy was formalized and extended to the case of the
(maximal) Higgs branch in [78]. There it was emphasized that this approach
has the additional benefit of providing a way to study the superstructure of
class S with some degree of mathematical rigor, evading problems associated
with the definition of interacting quantum field theories. The basic idea is
summarized in the following commutative diagram.

T [ Cg,s; g; {Λi} ]

{Cg,s; {Λi}} P [ T [ Cg,s; g; {Λi} ] ]

PTg

P ◦ Tg

(3.3.1)

For some protected observable P that can be defined for an N = 2 SCFT,
one defines the composition P ◦ Tg that associates the observable in question
directly to a UV curve. When the observable is something relatively simple
– like the holomorphic symplectic manifolds studied in [78] – one should be
able to define this composition in a rigorous fashion without having to define
the more complicated Tg-functor at all.

In the present work we take as our “observable” the protected chiral
algebra, which is indeed independent of marginal couplings. The composition
χ ◦ Tg has as its image the chiral algebras of class S, which are labelled by
Riemann surfaces whose punctures are decorated by embeddings Λ : sl(2) ↪→
sl(n). This class of chiral algebras has the form of a generalized topological
quantum field theory.

The aim of this section is to develop a basic picture of the structure of
this TQFT and to characterize it to the extent possible. In the first subsec-
tion, we make some general statements about the implications of the TQFT
structure from a physicist’s point of view. We also make a modest attempt
to formalize the predicted structure in a language closer to that employed in
the mathematics literature. In the second subsection, we discuss the basic
building blocks of the TQFT for the su(2) and su(3) cases. We also make
a conjecture about the general case. In the last subsection we make some
comments about the constraints of associativity and possible approaches to
solving for the class S chiral algebras at various levels of generality.
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(a) Cap

(b) Cylinder

(c) Trinion

Figure 3.1: Elementary building blocks of a two-dimensional TQFT.

3.3.1 A TQFT valued in chiral algebras

In a physicist’s language, the type of generalized TQFT we have in mind
is specified by associating a chiral algebra with each of a small number of
(topological) Riemann surfaces with boundary, namely the genus zero sur-
face with one, two, or three boundary circles (see Fig. 3.1).9 We must further
give a meaning to the procedure of gluing Riemann surfaces along common
boundaries at the level of the chiral algebra. Self-consistency of the general-
ized TQFT then requires that the resulting structure be associative in that
it reflects the equivalence of Fig. 3.3.

The full class S structure is more complicated than can be captured by
this basic version of a generalized TQFT due to the possibility of choosing
nontrivial embeddings to decorate the punctures. We can partially intro-
duce this additional structure by allowing the decorated objects illustrated
in Fig. 3.2. For our purposes these will be thought of as decorated versions of
the cap and cylinder. In choosing this interpretation, we are ignoring the fact
that in class S one can in certain cases glue along a non-maximal puncture.
This fact plays an important role already in the basic example of Argyres-
Seiberg duality interpreted as a class S duality. These decorated fixtures will
also be required to satisfy certain obvious associativity conditions.

We can define the gluing operation for chiral algebras associated to these
elementary surfaces by knowing a few of the general features of these chiral

9Strictly speaking, this is a redundant amount of information because composing a
trinion with a cap produces a cylinder. In anticipating the fact that the chiral algebra for
the cap is somewhat difficult to understand, we are considering them independently.
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algebras. Namely, it is guaranteed that the chiral algebras associated to these
surfaces will include affine current subalgebras associated to their boundary
circles. Indeed, to every full puncture in a class S theory of type su(n)
there is associated an su(n) global symmetry with central charge k4d = 2n.

Correspondingly, the associated chiral algebra will have an ŝu(n)−n affine
current subalgebra. Knowing this, the composition rule for chiral algebras
follows more or less immediately from the rules for gauging reviewed in Sec.
3.2.1. Two legs with maximal punctures can be glued by introducing (b, c)
ghosts transforming in the adjoint of su(n) and passing to the cohomology
of a BRST operator formed with the diagonal combination of the two affine
current algebras.

[⇤]

(a) Decorated cap

[⇤]

(b) Decorated cylinder

Figure 3.2: Additional building blocks of a class S TQFT.

Given the fairly involved nature of this gluing operation, associativity
for the TQFT as illustrated in Fig. 3.3 is an extremely nontrivial property.
Indeed, it is the reflection of generalized S-duality of the four-dimensional
SCFTs of class S at the level of chiral algebras. It is not a priori obvious
that it should even be possible to find chiral algebras for which this gluing
will satisfy the associativity conditions, and the existence of such a family of
chiral algebras is an interesting prediction that follows from the existence of
the class S landscape.

For the sake of the mathematically inclined reader, we can now formalize
this structure a bit more to bring the definition of this generalized TQFT into
line with the standard mathematical description. This type of a formalization
has also been presented by Yuji Tachikawa [89]. The structure in question
is a strict symmetric monoidal functor between two symmetric monoidal
categories that we outline now.

117



=

Figure 3.3: Associativity of composition of Tn chiral algebras.

The source category

The source category is a decorated version of the usual bordism category
Bo2. It has previously appeared in [78] for the same purpose. In fact, there
is a separate such category for each simply laced Lie algebra g (which for us

will always be su(n) for some n), and we will denote it as Bo
(g)
2 . The category

has the following structure:

• The objects of Bo
(g)
2 are the same as for the Bo2 – they are closed

oriented one-manifolds (i.e., disjoint unions of circles).

• A morphism in Bo2 between two objects B1 and B2 is a two-dimensional
oriented manifold B that is a bordism from B1 to B2. A morphism in
Bo

(g)
2 is a morphism from Bo2 that is additionally decorated by an

arbitrary finite number of marked points {si}, each of which is labelled
by an embedding Λi : su(2) ↪→ g.

• Composition is the usual composition of bordisms by gluing along
boundaries.

• The symmetric monoidal structure is given by taking disjoint unions.

• This category has duality, which follows from the existence of left-
and right-facing cylinders for which the S-bordisms of Fig. 3.4 are
equivalent to the identity.

The target category

The target category is a certain category of chiral algebras that we will call
CAg. We define it as follows
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• The objects are finite tensor powers of the g affine current algebra at
the critical level. This includes the case where the power is zero, which
corresponds to the trivial chiral algebra for which only the identity
operator is present.

Obj(CAg) =
∞∏
n=0

(⊗nĝ−h∨) .

• Given two objects o1 = ⊗n1 ĝ−h∨ and o2 = ⊗n2 ĝ−h∨ , the morphisms
Hom(o1, o2) are conformal chiral algebras containing o1⊗ o2 as a sub-
algebra. Note that this precludes a morphism which is just equal to
several copies of the critical affine Lie algebra, since there would be no
stress tensor.

• For χ1 ∈ Hom(o1, o2) and χ2 ∈ Hom(o2, o3), the composition χ2◦χ1 ∈
Hom(o1, o3) is obtained by the BRST construction of Sec. 3.2.1. That
is, one first introduces dim g copies of the (1, 0) ghost system and then
passes to the cohomology of the nilpotent BRST operator relative to
the b-ghost zero modes,

χ2 ◦ χ1 = H∗BRST(ψ ∈ χ1 ⊗ χ2 ⊗ χ(b,c)g

∣∣ b0ψ = 0) .

It is straightforward to show that this composition rule is associative.

• The symmetric monoidal structure is given by taking tensor products
of chiral algebras.

• The duality structure in this category is somewhat complicated and
involves the precise form of the chiral algebra that is the image of the
cylinder in Hom(S1 t S1,∅). We delay discussion of this chiral alge-
bra until Sec. 3.5.1. For now, we define a weaker version of duality
– namely that there exists a certain action of (Z2)r on the collection∐

p+q=r Hom((ĝ−h∨)p, (ĝ−h∨)q) that corresponds to the action of chang-
ing external legs of a bordism from ingoing to outgoing and vice versa.
This action is simple to describe. Note that a chiral algebra belonging
to the above collection of Hom spaces can be described as r copies of
the critical ĝ current algebra along with (possibly infinitely many) addi-
tional generators transforming as modules. The primary states of each
such module with respect to the affine current algebras will transform
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Figure 3.4: Duality and the S-diagram.

in some representation R1 ⊗ · · · ⊗ Rr of the global su(n)r symmetry.
The duality action associated to flipping the i’th leg of a bordism then
acts as Ri 7→ R∗i , and this action lifts to the full chiral algebra in the
obvious way.

The functor

A chiral algebra-valued TQFT of type g can now be defined as a functor that
realizes the horizontal arrow in diagram (3.3.1),

χ ◦ T : Bo
(g)
2 → CAg .

The image of such a functor in CAg defines a very interesting set of chiral
algebras. The necessary ingredients to define this functor are those outlined
in the previous discussion. Namely, we need to specify the images of the
basic topological Riemann surfaces in Fig. 3.1 and the decorated versions
in Fig. 3.2. In order for this to be a functor, the composition of Riemann
surfaces with three boundary components must be associative in the sense
of Fig. 3.3. A similar associativity condition is obtained by replacing any of
the boundary components in Fig. 3.3 with a general decoration Λ.

The problem of including decorations can be self-consistently ignored in
order to focus on the subproblem in which the source category is the more
traditional bordism category Bo2. In the remainder of this section we will
address the problem of understanding this more basic version of the TQFT,
sometimes with the addition of simple punctures, but not the most general
case. The addition of arbitrary decorations will be discussed in Sec. 3.4.
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3.3.2 Lagrangian class S building blocks

The basic building blocks of class S SCFTs are the theories associated to
spheres with three punctures. Of these, the simplest case is the theory with
two maximal punctures and one minimal puncture. This is the only regular
configuration which gives rise to a Lagrangian theory for arbitrary choice of
ADE algebra. For the su(n) theory, it is the theory of n2 free hypermultiplets,
so the associated chiral algebra is the theory of n2 symplectic boson pairs,
see chapter 2. Though this chiral algebra has a full usp(2n2) symmetry, it
is natural to use a basis which makes manifest the su(n)1 × su(n)2 × u(1)
symmetry associated to the punctures,

qia(z)q̃bj(0) ∼ δijδ
b
a

z
, i = 1, . . . , n a = 1, . . . , n . (3.3.2)

The currents generating the puncture symmetries are the chiral algebra rel-
atives of the moment map operators in the free hypermultiplet theory,

(Jsu(n)1)ij(z) := − (qiaq̃
a
j )(z) + 1

n
δji (q

k
a q̃

a
k)(z) ,

(Jsu(n)2)ba(z) := − (qiaq̃
b
i )(z) + 1

n
δba(q

i
cq̃
c
i )(z) ,

Ju(1)(z) := − (qiaq̃
a
i )(z) .

(3.3.3)

The su(n) current algebras are each at level ksu(n) = −n. Additionally, the
canonical stress tensor for this chiral algebra descends from the su(2)R current
of the free hypermultiplet theory

T (z) := (qai ∂q̃
i
a)(z)− (q̃ia∂q

a
i )(z) . (3.3.4)

The central charge of the Virasoro symmetry generated by this operator is
given by c = −n2.

These Lagrangian building blocks can be used to build up the chiral
algebras associated to any of the Lagrangian class S theories, i.e., to those
theories constructed from linear or circular quivers. For example, the chiral
algebras for N = 2 superconformal QCD were studied in chapter 2, and these
theories are constructed from a pair of these free field trinions by gauging a
single su(n) symmetry. The TQFT structure associated to these Lagrangian
theories is already quite interesting, but we will not dwell on the subject
here since these Lagrangian constructions are only the tip of the iceberg for
class S. Indeed, from an abstract point of view there is a different set of
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theories that are the most natural starting point for an investigation of class
S chiral algebras. These are the chiral algebras associated to spheres with
three maximal punctures.

3.3.3 Trinion chiral algebras

Our first order of business should then be to understand the elementary
building blocks for class S chiral algebras of type g = su(n), which are the
trinion chiral algebras χ[Tn]. In this section we will try to outline the general
properties of these chiral algebras. It is possible that these properties will
actually make it possible to fix the chiral algebras completely. It is a hard
problem to characterize these algebras for arbitrary n. Doing so implicitly
involves fixing an infinite amount of CFT data (i.e., operator dimensions and
OPE coefficients) for the Tn SCFTs, and this data is apparently inaccessible
to the usual techniques used to study these theories. Nevertheless, many
properties for these chiral algebras can be deduced from the structure of the
χ map and from generalized S-duality.

Central charge

From the general results reviewed in Section 3.2.1, we know that the chiral
algebra of any Tn theory should include a Virasoro subalgebra, the central
charge of which is determined by the c-type Weyl anomaly coefficient of the
parent theory according to the relation c2d = −12c4d. The central charges
of the Tn theories have been computed in [90], and from those results we
conclude that the corresponding chiral algebras will have Virasoro central
charges given by

c2d(χ[Tn]) = −2n3 + 3n2 + n− 2 . (3.3.5)

For any value of n the Virasoro central charge predicted by this equation is an
even negative integer. These chiral algebras will necessarily be non-unitary,
as is always the case for the protected chiral algebras of four-dimensional
theories. For reference, we display the Virasoro central charges for χ[Tn] for
low values of n in Table 3.2.
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n 2 3 4 5 6 7

c2d − 4 −26 −78 −172 −320 −534

Table 3.2: Central charges of the chiral algebras χ[Tn] for small values of n.

Affine current subalgebras

Global symmetries of the Tn theories imply the presence of chiral subalgebras
that are isomorphic to the affine current algebras for the same symmetry
algebra. The levels k2d of these affine current algebras are fixed in terms of
the four-dimensional flavor central charges k4d according to k2d = −1

2
k4d. The

Tn theories have su(n)3 global symmetry with each su(n) factor associated
to one of the punctures on the UV curve. The flavor central charge for each
su(n) is given by k4d = 2n. Consequently, the chiral algebras χ[Tn] will have
affine current subalgebras of the form

ŝu(n)−n × ŝu(n)−n × ŝu(n)−n ⊂ χ[Tn] . (3.3.6)

Note that k2d = −n is the critical level for an ŝu(n) current algebra, which
means that the Sugawara construction of a stress tensor fails to be normal-
izable. The chiral algebras χ[Tn] will still have perfectly good stress tensors,
but they will not be given by the Sugawara construction. Precisely the crit-
ical affine current algebra su(n)−n has been argued in [26] to describe the
protected chiral algebra that lives on maximal codimension two defects of
the six-dimensional (2, 0) theory in flat six dimensional space. Its reappear-
ance as a subalgebra of the class S chiral algebra is then quite natural. It
would be interesting to develop a better first-principles understanding of the
relationship between BPS local operators supported on codimension two de-
fects in six dimensions and local operators in the class S theories obtained
by compactification in the presence of said defects.

Chiral algebra generators from the Higgs branch

A definitive characterization of the generators of the protected chiral al-
gebra in terms of the operator spectrum of the parent theory is presently
lacking. However, as we reviewed in Section 3.2.1, any generator of the Hall-
Littlewood chiral ring is guaranteed to a generator of the chiral algebra. For
the Tn theories, the Hall-Littlewood chiral ring is actually the same thing as
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the Higgs branch chiral ring due to the absence of D and D̄ multiplets in
genus zero class S theories. The list of generators of the Higgs branch chiral
ring is known for the Tn theories, so we have a natural first guess for the list
of generators of these chiral algebras.

In the interacting theories (all but the T2 case), the moment map op-
erators for the flavor symmetry acting on the Higgs branch are chiral ring
generators. The corresponding chiral algebra generators are the affine cur-
rents described above. There are additional generators of the form [84]

QI1I2I3(`) , ` = 1, · · · , n− 1 . (3.3.7)

These operators are scalars of dimension ∆ = `(n − `) that transform in
the ∧` representation (the `-fold antisymmetric tensor) of each of the su(n)
flavor symmetries. There must therefore be at least this many additional
chiral algebra generators. We may denote these chiral algebra generators as

W I1I2I3
(`) (z) , I = [i1 · · · i`] , i∗ = 1, . . . , n . (3.3.8)

These operators will have dimension h` = 1
2
`(n − `), so for n > 3 we are

guaranteed to have non-linear chiral algebras.
For n > 3 the stress tensor must be an independent generator of the

chiral algebra. This is because the stress tensor can only be a composite
of other chiral algebra operators with dimension h 6 1. For an interacting
theory there can be no chiral algebra operators of dimension h = 1/2, so the
only possibility is that the stress tensor is a Sugawara stress tensor built as
a composite of affine currents. This can only happen if the su(n)3 symmetry
is enhanced, since as we have seen above the affine currents associated to
the su(n) symmetries are at the critical level and therefore do not admit
a normalizable Sugawara stress tensor. Such an enhancement of the flavor
symmetry only happens for the n = 3 case, as will be discussed in greater
detail below.

Let us now consider the two simplest cases of trinion chiral algebras:
n = 2 and n = 3. These are both exceptional in some sense compared to our
expectations for generic n, which will ultimately makes them easier to work
with in our examples.

The χ[T2] chiral algebra

In the rank one case, the trinion SCFT is a theory of free hypermultiplets.
This case is exceptional compared to the general free hypermultiplets dis-
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cussed in Section 3.3.2 because for su(2) the maximal puncture and minimal
puncture are the same, so the minimal puncture also carries an su(2) flavor
symmetry, and instead of n2 hypermultiplets transforming in the bifunda-
mental of su(n) × su(n), one instead describes the free fields as 23 = 8 half
hypermultiplets transforming in the trifundamental representation of su(2)3.
Consequently the symplectic bosons describing this theory are organized into
a trifundamental field qabc(z) with a, b, c = 1, 2, with OPE given by

qabc(z)qa′b′c′(w) ∼ εaa′εbb′εcc′

z − w . (3.3.9)

Each of the three su(2) subalgebras has a corresponding ŝu(2)−2 affine current
algebra in the chiral algebra. For example, the currents associated to the first
puncture are given by

J+
1 (z) :=

1

2
εbb
′
εcc
′
(q1bcq1b′c′)(z) ,

J−1 (z) :=
1

2
εbb
′
εcc
′
(q2bcq2b′c′)(z) ,

J 0
1 (z) :=

1

4
εbb
′
εcc
′
[
(q1bcq2b′c′)(z) + (q2bcq1b′c′)(z)

]
.

(3.3.10)

The currents associated to the second and third punctures are constructed
analogously. The stress tensor is now given by

T (z) := εaa
′
εbb
′
εcc
′
(qabc∂qa′b′c′)(z) , (3.3.11)

with corresponding Virasoro central charge given by c2d = −4.
In this simple case it is easy to explicitly compare the Schur superconfor-

mal index for the T2 theory with the vacuum character of the chiral algebra.
The Schur index has appeared explicitly in, e.g., [75]. It is given by a single
plethystic exponential,

I(q; a,b, c) = PE

[
q

1
2

1− qχ�(a)χ�(b)χ�(c)

]
. (3.3.12)

This is easily recognized as the vacuum character of the symplectic boson
system defined here. The only comment that needs to be made is that there
are no null states that have to be removed from the freely generated char-
acter of the symplectic boson algebra. In the next example this simplifying
characteristic will be absent.
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Crossing symmetry, or associativity of gluing, was investigated for this
chiral algebra in chapter 2. There it was proposed that the complete chiral

algebra obtained when gluing two copies of χ[T2] is the ŝo(8) affine current
algebra at level kso(8) = −2, and this proposal was checked up to level h = 5.
If the chiral algebra of the four-punctured sphere is precisely this current
algebra, then the crossing symmetry relation is implied immediately. This is
because the so(8) current algebra has an automorphism as a consequence of
triality that exchanges the su(2) subalgebras in accordance with Figure 3.3.
If one could prove that the solution to the BRST problem for this gluing is

the ŝo(8) current algebra, one would therefore have a proof of generalized
S-duality at the level of the chiral algebra for all rank one theories of class
S. We hope that such a proof will turn out to be attainable in the future.

The χ[T3] chiral algebra

The T3 theory is the rank-one e6 theory of Minahan and Nemeschanksky [61].
Before describing its chiral algebra, let us list a number of known properties
of this theory.

• The a and c4d anomaly coefficients are known to be given by a = 41
24

and c4d = 13
6

.

• The global symmetry is e6, for which the flavor central charge is ke6 = 6.
This is an enhancement of the su(3)3 symmetry associated with the
punctures. It can be understood as a consequence of the fact that the
extra Higgs branch generators have dimension two in this case, which
means that they behave as moment maps for additional symmetry gen-
erators.

• The Higgs branch of this theory is the e6 one-instanton moduli space,
which is the same thing as the minimal nilpotent orbit of e6. This
property follows immediately from the realization of this theory as a
single D3 brane probing an e6 singularity in F-theory.

• A corollary of this characterization of the Higgs branch is that the Higgs
branch chiral ring is finitely generated by the moment map operators
µA for A = 1, . . . , 78, subject to the Joseph relations (see e.g. [64]),

(µ⊗ µ)
∣∣
1⊕650 = 0 .

126



• The superconformal index of the T3 theory was computed in [76]. This
leads to a formula for the Schur limit of the index given by

IT3(q) = 1 + qχ[0,0,0,0,0,1]

+ q2(χ[0,0,0,0,0,2] + χ[0,0,0,0,0,1] + 1)

+ q3(χ[0,0,0,0,0,3] + χ[0,0,0,0,0,2] + χ[0,0,1,0,0,0] + 2 χ[0,0,0,0,0,1] + 1)

+ q4(χ[0,0,0,0,0,4] + χ[0,0,0,0,0,3] + χ[0,0,1,0,0,1] + 3 χ[0,0,0,0,0,2]

+ χ[0,0,1,0,0,0] + χ[1,0,0,0,1,0] + 3 χ[0,0,0,0,0,1] + 2)

+ . . .

where we denoted the e6 representations by their Dynkin labels and
suppressed the fugacity-dependence.

The only chiral algebra generators that are guaranteed to be present on
general grounds are the seventy-eight affine currents that descend from the
four-dimensional moment map operators. The level of the affine current
algebra generated by these operators will be k = −3. Note that this is not
the critical level for e6. The su(3)3 symmetry associated to the punctures
is enhanced, and criticality of the subalgebras does not imply criticality of
the enhanced symmetry algebra. For this reason, it is possible to construct
a Sugawara stress tensor for the current algebra that is properly normalized,
and indeed the correct value of the central charge is given by

c2d = −26 =
−3 dim(e6)

−3 + h∨e6
= cSugawara . (3.3.13)

One then suspects that the chiral algebra does not have an independent
stress tensor as a generator, but instead the Sugawara construction yields the
true stress tensor. Indeed, this was proven in chapter 2 to follow from the
saturation of certain unitarity bounds by the central charges of this theory.

This leads to a natural proposal for the χ[T3] chiral algebra:

Conjecture 4 The chiral algebra for the rank one E6 theory, also known as
T3, is isomorphic to the E6 affine Lie algebra at level k2d = −3.

The singular OPEs of the seventy-eight affine currents are fixed to the canon-
ical form,10

JA(z)JB(0) ∼ −3 δAB
z2

+
f C
AB JC(0)

z
. (3.3.14)

10Our conventions are that the roots of e6 have squared length equal to two.
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It is natural to consider the subalgebra su(3)3 ⊂ e6 associated to the three
punctures on the UV curve and to decompose the currents accordingly. The
adjoint representation of e6 decomposes as

78 −→ (8,1,1) + (1,8,1) + (1,1,8) + (3,3,3) + (3̄, 3̄, 3̄) . (3.3.15)

The affine currents are therefore rearranged into three sets of su(3) affine
currents along with one tri-fundamental and one tri-antifundamental set of
dimension one currents,

JA(z) −→
{

(J1) a
′

a (z) , (J2) b
′

b (z) , (J3) c
′

c (z) , Wabc(z) , W̃ abc(z)
}
.

(3.3.16)
The singular OPEs for this basis of generators are listed in Appendix B.1.
It is perhaps interesting to note that given this list of generators and the
requirement that the su(3) current algebras are all at the critical level, the
only solution to crossing symmetry for the chiral algebra that includes no
additional generators is the ê6 current algebra with k = −3. So the chi-
ral algebra is completely inflexible once the generators and their symmetry
properties are specified.

A nice check of the whole story is that the Joseph relations are reproduced
automatically by the chiral algebra. For the non-singlet relation, this follows
in a simple way from the presence of a set of null states in the chiral algebra.∣∣∣∣PAB

650(JAJB)(z)
∣∣∣∣2 = 0 ⇐⇒ (µ⊗ µ)

∣∣
650

= 0 , (3.3.17)

where PAB
650 is a projector onto the 650 representation. These states are only

null at this particular value of the level, so we see a close relationship between
the flavor central charge and the geometry of the Higgs branch. Similarly, the
singlet relation follows from the identification of the Sugawara stress tensor
with the true stress tensor of the chiral algebra,

T (z) =
1

−3 + h∨
(JAJA)(z) ⇐⇒ (µ⊗ µ)

∣∣
1

= 0 . (3.3.18)

So in this relation we see that the geometry of the Higgs branch is further
tied in with the value of the c-type central charge in four dimensions.

Note that these successes at the level of reproducing the Higgs branch
chiral ring relations follow entirely from the existence of an ê6 current algebra
at level k = −3 in the chiral algebra. However what is not necessarily
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implied is the absence of additional chiral algebra generators transforming as
some module of the affine Lie algebra. We can test the claim that there are
no additional generators by comparing the partition function of the current
algebra to the Schur limit of the superconformal index for T3 (cf. [76]).11 This
comparison is made somewhat difficult by the fact that affine Lie algebras
at negative integer dimension have complicated sets of null states in their
vacuum module, and these must be subtracted to produce the correct index.
The upshot is that up to level four, the vacuum character does indeed match
the superconformal index. In order for this match to work, it is crucial that
the ê6 current algebra has certain null states at the special value k = −3.
In Table 3.3, we show the operator content up to level four of a generic
ê6 current algebra along with the subtractions that occur at this particular
value of the level. It is only after making these subtractions that the vacuum
character matches the Schur index. Thus we conclude that if there are any
additional generators of the χ[T3] chiral algebra, they must have dimension
greater than or equal to five.

A more refined test of our identification of the χ[T3] chiral algebra comes
from the requirement of compatibility with Argyres-Seiberg duality [47]. The
meaning of Argyres-Seiberg duality at the level of the chiral algebra is as fol-
lows. Introduce a pair of symplectic bosons transforming in the fundamental
representation of an su(2) flavor symmetry,

qα(z)q̃β(0) ∼ δ β
α

z
, α, β = 1, 2 . (3.3.19)

In this symplectic boson algebra one can construct an su(2) current algebra
at level k = −1. Now take the e6 current algebra and consider an su(2) ×
su(6) ⊂ e6 maximal subalgebra. The su(2) current algebra coming from this
subalgebra has level k = −3. Thus the combined level of the symplectic-
boson-plus-χ[T3] system is ktot = −4, and consequently this current algebra
can be gauged in the manner described in Section 3.2.1 by introducing a
(b, c) ghost system in the adjoint of su(2) and passing to the cohomology
of the appropriate BRST operator. The resulting chiral algebra should be
identical to the chiral algebra obtained by taking two copies of the n = 3 free

11Because the current algebra is entirely bosonic, the Z2 graded vacuum character is the
same as the ungraded vacuum character. Indeed, it is a prediction of our identification
of the χ[T3] chiral algebra that there are no cancellations in the Schur index between
operators that individually contribute.
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dimension e6 representations with multiplicities mgeneric/mk=−3

0 1 × [0,0,0,0,0,0]

1 1 × [0,0,0,0,0,1]

2 1 × [0,0,0,0,0,2], 1/0× [1,0,0,0,1,0], 1 × [0,0,0,0,0,1],

1 × [0,0,0,0,0,0]

3 1 × [0,0,0,0,0,3], 1/0× [1,0,0,0,1,1], 1 × [0,0,0,0,0,2],

2/0× [1,0,0,0,1,0], 3/2× [0,0,0,0,0,1], 1 × [0,0,0,0,0,0]

2/1× [0,0,1,0,0,0],

4 1 × [0,0,0,0,0,4], 1/0× [1,0,0,0,1,2], 1/0× [2,0,0,0,2,0],

2/1× [0,0,1,0,0,1], 1/0× [0,1,0,1,0,0], 3/0× [1,0,0,0,1,1],

2/0× [0,0,0,1,1,0], 5/3× [0,0,0,0,0,2], 3/1× [0,0,1,0,0,0],

6/3× [0,0,0,0,0,1], 3/2× [0,0,0,0,0,0], 1 × [0,0,0,0,0,3],

2/0× [1,1,0,0,0,0], 6/1× [1,0,0,0,1,0]

Table 3.3: The operator content of the e6 current algebra up to dimension
four. The first multiplicity is valid for generic values of the level, i.e., any
value of k where null states are completely absent. The second multiplicity
is valid for k = −3, and if no second multiplicity is given then the original
multiplicity is also the correct one for k = −3. These latter multiplicities
precisely reproduce the coefficients appearing in the Schur superconformal
index for the T3 theory.
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hypermultiplet chiral algebra of Section 3.3.2 and gauging a diagonal su(3)
current algebra. This comparison is detailed in Appendix B.1.

Although we have not been able to completely prove the equivalence of
these two chiral algebras (the BRST problem for this type of gauging is not
easy to solve), we do find the following. On each side of the duality, we are
able to determine the generators of dimensions h = 1 and h = 3/2 which

amount to a û(6)−6 current algebra in addition to a pair of dimension h =
3
2

generators transforming in the tri-fundamental and tri-antifundamental
representations of u(6), with singular OPEs given by

bi1i2i3(z)b̃j1j2j3(0) ∼
36 δ

[j1
[i1
δ
j2
i2
δ
j3]
i3]

z3
−

36 δ
[j1
[i1
δ
j2
i2
Ĵ
j3]
i3] (0)

z2

+
18 δ

[j1
[i1
Ĵ
j2
i2
Ĵ
j3]
i3] (0)− 18 δ

[j1
[i1
δ
j2
i2
∂Ĵ

j3]
i3] (0)

z
. (3.3.20)

Thus these operators in addition to the u(6) currents form a closedW-algebra
which is common to both sides of the duality. We expect that these W-
algebras are in fact the entire chiral algebras in question. However, it should
be noted that the existence of this W-algebra actually follows from what
we have established about the χ[T3] chiral algebra without any additional
assumptions. That is to say, the possible addition of generators of dimension
greater than four could not disrupt the presence of this W-algebra. In this
sense, common appearance of this algebra can be taken as a check of Argyres-
Seiberg duality that goes well beyond the check of [64] at the level of the
Higgs branch chiral ring. It not only implies a match of a much larger set of
operators than just those appearing in the chiral ring, but it also amounts to
a match of the three-point functions for those operators, which include the
Higgs branch chiral ring operators.

Finally, let us mention one last consistency check on the identification of
χ[T3] to which we will return in Section 3.4.4. When one of the three maximal
punctures of the T3 theory is reduced to a minimal puncture by Higgsing,
the resulting theory is simply that of nine free hypermultiplets transforming
in the bifundamental representation of the remaining su(3) × su(3) flavor
symmetry (along with a u(1) baryon number symmetry associated to the
minimal puncture). Therefore if we have correctly identified the χ[T3] chi-
ral algebra, then it should have the property that when the corresponding
reduction procedure is carried out, the result is the symplectic boson chiral
algebra of Section 3.3.2. The proposal we have given will indeed pass this
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check, but we postpone the discussion until after we present the reduction
procedure in Section 3.4.

A proposal for χ[Tn]

We have seen above that for ranks one and two, the trinion chiral algebras
are finitely generated (in the chiral algebra sense) by currents that descend
from four-dimensional generators of the Higgs branch chiral ring. We know
from the results of chapter 2 that this cannot be a characterization that
holds true for the chiral algebra of an arbitrary N = 2 SCFT. Moreover,
in an interacting theory where the su(n)3 symmetry is not enhanced to a
larger global symmetry algebra, the chiral algebra stress tensor cannot be the
Sugawara stress tensor of the dimension one currents. This follows from the
fact that the su(n) current algebras are at the critical level, so the Sugawara
construction fails to produce an appropriate stress tensor. Therefore there
must be at least an additional generator corresponding to the stress tensor.
Aside from that, the analysis of the index performed in chapter 4 indicates
that there are more higher dimensional singlet generators, leading to the
conjecture

Conjecture 5 (Tn chiral algebra) The Tn chiral algebra χ(Tn) is gener-
ated by

• The set of operators, H, arising from the Higgs branch chiral ring:

– Three ŝu(n) affine currents J1, J2, J3, at the critical level k2d =
−n, one for each factor in the flavor symmetry group of the theory,

– Generators W (k), k = 1, , . . . , n−1 in the (∧k,∧k,∧k) representa-
tion of

⊗3
j=1 su(n)j, where ∧k denotes the k−index antisymmetric

representation of su(n). These generators have dimensions k(n−k)
2

,

• Operators Oi, i = 1, . . . n − 1, of dimension hi = i + 1 and singlets
under

⊗3
j=1 su(n)j, with the dimension 2 operator corresponding to the

stress tensor T of central charge c2d = −2n3 + 3n2 + n− 2,

modulo possible relations which set some of the operators listed above equal
to composites of the remaining generators.
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At any n > 4, the very existence of such a W algebra is quite nontrivial,
since for a randomly chosen set of generators one doesn’t expect to be able
to solve the associated Jacobi identities. In fact if the singular OPEs of
such a W algebra can be chosen so that the algebra is associative, it seems
likely that the requirements of associativity will completely fix the structure
constants, rendering the chiral algebra unique. It is worth observing that
precisely such uniqueness occurs in the case of the T3 chiral algebra. The
characterization given by the conjecture above for n = 3 doesn’t explicitly
imply e6 symmetry enhancement, but the unique chiral algebra satisfying
the requirements listed is precisely the e6 current algebra at the appropriate
level. A similar uniqueness result for the T4 chiral algebra will be presented
in chapter 4.

Before moving on, let us extrapolation a bit from Conjecture 5 to make
a further conjecture that, while not extremely well-supported, is consistent
with everything we know at this time.

Conjecture 6 (Genus zero chiral algebras) The protected chiral algebra
of any class S SCFT whose UV curve has genus zero is a W algebra whose
only generators are a stress tensor and the additional currents associated
to Higgs branch chiral ring generators of the four-dimensional theory. In
the special case when the central charge is equal to its Sugawara value with
respect to the affine currents, then the stress tensor is a composite.

The modest evidence in favor of this proposal is that genus zero theories have
honest Higgs branches with no residual U(1) gauge fields in the IR, so they
don’t have any of the additional N = 1 chiral ring generators discussed in
Section 3.2.1. Additionally the examples of chapter 2 for which there were
chiral algebra generators unrelated to four-dimensional chiral ring generators
was a genus one and two theories. It would be interesting to explore this
conjecture further, even in the Lagrangian case.

3.3.4 A theory space bootstrap?

Chiral algebras of general theories with maximal punctures can be con-
structed from the Tn chiral algebra by means of the BRST procedure re-
viewed in Sec. 3.2.1. Namely, let us suppose that we are handed the chiral
algebra T associated to some (possibly disconnected) UV curve with at least
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L

R

=)

Figure 3.5: Gluing together maximal punctures.

two maximal punctures, that we will label L and R. The chiral algebra asso-
ciated to the UV curve where these two punctures are glued together, which
we will call Tglued is obtained in two steps. We first introduce a system of
n2 − 1 (b, c) ghost pairs of dimensions (1, 0),

bA(z)cB(w) ∼ δ B
A

z − w , A,B = 1, . . . , n2 − 1 . (3.3.21)

These are taken to transform in the adjoint representation of su(n), and we
can construct the su(n) affine currents for that symmetry accordingly,

J bcA (z) := −f C
AB (cBbC)(z) . (3.3.22)

The ghost current algebra has level k
(b,c)
2d = 2h∨ = 2n. The chiral algebra

of the glued configuration is now defined in terms of the ghosts and the
chiral algebra of the original system by the BRST procedure of Sec. 3.2.1.
In addition to su(n) currents coming from the ghost sector, there will be
two more su(n) currents JLA(z) and JRA (z) associated to the two punctures
being glued. A nilpotent BRST operator is defined using these various su(n)
currents,

QBRST :=

∮
dz

2πi
jBRST(z) , (3.3.23)

jBRST(z) := (cAJLA)(z) + (cAJRA )(z) +
1

2
(cAJ bcA )(z) . (3.3.24)

The nilpotency of QBRST requires that the sum of the levels of the two matter
sector affine currents be given by kL + kR = −2h∨. As usual, this is a
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reflection of the requirement that the beta function for the newly introduced
four-dimensional gauge coupling vanishes. The new chiral algebra is given
by

χ[Tglued] = H∗BRST

[
ψ ∈ χ[T ]⊗ χ(b,c) | b0ψ = 0

]
. (3.3.25)

Using this gluing procedure, one may start with a collection of disconnected
χ[Tn] chiral algebras and build up the chiral algebra for an arbitrary gener-
alized quiver diagram with maximal punctures.

The deepest property of the chiral algebras obtained in this manner, which
is also the principal condition that must be imposed in order for the map
described in the previous section to be a functor, is that they depend only
on the topology of the generalized quiver. Of course this is the chiral algebra
reflection of generalized S-duality in four dimensions, and follows from the
more elementary requirement that the gluing described here is associative
(alternatively, crossing-symmetric) in the manner represented pictorially in
Fig. 3.3. This is a very strict requirement, and it is conceivable that the
χ[Tn] chiral algebras might be the unique possible choices for the image of
the trinion in CAsu(n) that satisfy this condition. Indeed, this requirement of
theory-space crossing symmetry imposes a strong constraint on any proposal
for the χ[Tn] chiral algebras. For the χ[T3] theory, where we have a proposal
for the chiral algebra, it would be interesting to investigate this associativity
condition. For the general case, it is interesting to ask whether this constraint
might help to determine the appropriate trinion chiral algebras. At present,
we see no obvious strategies that would utilize this direct approach.

Although we will have more to say about reduced punctures in Sec. 3.4,
we should point out that the associativity conditions described here apply
equally well to the case when not all punctures are maximal. A particularly
interesting case that we can consider immediately is when one puncture is
minimal. In this case, the requirement of associativity is the one illustrated
in Fig. 3.6. This relation is interesting because the theory with two maximal
punctures and one minimal puncture is a known quantity – the free hyper-
multiplet chiral algebra of Sec. 3.3.2 – and so the relation amounts to probing
the unknown trinion chiral algebra by coupling it to a known theory. One
may hope that this is a sufficient condition in place of the full Tn associativity
from which to try to bootstrap the class S chiral algebras. In fact, as we
will see in the next section, this condition does follow directly from the full
puncture condition, though the converse is not obvious.

Leaving direct approaches to the theory space bootstrap as an open prob-
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Figure 3.6: Associativity with respect to gluing in free hypermultiplets.

lem, let us note that associativity combined with the conjectures of the pre-
vious subsection provide a very constraining framework within which we can
attempt to characterize various class S chiral algebras. Namely, Conjecture
6 suggests a list of generators for an arbitrary genus zero chiral algebra, and
the requirement of associativity implies the presence of an automorphism
that acts as permutations on the su(n) subalgebras associated to the various
punctures. This permutation symmetry vastly constrains the possible OPE
coefficients of the aforementioned generators, which leads to a straightfor-
ward problem of solving the Jacobi identities for such a chiral algebra.

As a simple example of this approach, let us consider the rank one chiral
algebra associated to the sphere with five punctures. In this case, the chiral
algebra generators associated to Higgs branch chiral ring generators are five
sets of su(2) affine currents at level k = −2 along with a single additional
generator of dimension h = 3/2 with a fundamental index with respect to
each su(2) symmetry. Since this is a generic case, the stress tensor will be an
independent generator. If Conjecture 6 is correct, then there should be aW-
algebra with precisely these generators that, due to associativity, has an S5

automorphism group that acts as permutations on the five su(2) subalgebras.
Consequently, the number of independent parameters in the singular OPE
of the W-algebra generators is quite small. The only singular OPE not fixed
by flavor symmetries and Virasoro symmetry is that of two copies of the

136



quinfundamental field,

Qabcde(z)Qa′b′c′d′e′(w) ∼ εaa′εbb′εcc′εdd′εee′

(z − w)3
+ (3.3.26)

+
α(Jaa′εbb′εcc′εdd′εee′ + permutations)

(z − w)2
(3.3.27)

+
(β T + γ(εff

′
εgg
′
JfgJf ′g′ + 4 more))εaa′εbb′εcc′εdd′εee′

(z − w)
(3.3.28)

+
ζ(∂Jaa′εbb′εcc′εdd′εee′ + permutations)

z − w +
η(Jaa′Jbb′εcc′εdd′εee′ + permutations)

(z − w)
.

(3.3.29)

The parameters α, β and ζ are constrained in terms of the central charges
c = −24 and k = −2 by comparing with the 〈QQT 〉 and 〈QQJ〉 three-point
functions:

−8 β + 20 γ = 1 , ζ =
1

4
, α =

1

2
. (3.3.30)

This leaves a total of two adjustable parameters, which we may take to be
{γ, η}. It is a highly nontrivial fact then that the Jacobi identities for this
W-algebra can indeed be solved for a unique choice of these parameters,

γ = − 1

20
, η =

1

4
. (3.3.31)

Interestingly, this solution of crossing symmetry is special to the su(2) level
taking the critical value k = −2 and the Virasoro central charge taking the
expected value c2d = −24. Had we not fixed them by hand, we could have
derived them from crossing symmetry here.

We consider the existence and uniqueness of this solution as strong evi-
dence in favor of the validity of Conjecture 6 in this instance, seeing as the
existence of such a W-algebra would otherwise be somewhat unexpected.
Indeed, this characterization of the class S chiral algebras becomes all the
more invaluable for non-Lagrangian theories. See chapter 4 for a discussion
of the case of χ[T4].

3.4 Reduced punctures

The Tn building blocks outlined in Sec. 3.3.3 only allow us to construct class
S chiral algebras associated to undecorated UV curves, while the inclusion
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of the free hypermultiplet chiral algebras of Sec. 3.3.2 allow for decoration by
minimal punctures only. The purpose of this section is to develop the tools
necessary to describe theories that correspond to UV curves with general
non-trivial embeddings decorating some of their punctures.

From the TQFT perspective, the most natural way to introduce the nec-
essary additional ingredients is to find a chiral algebra associated to the
decorated cap of Fig. 3.2a. This turns out not to be the most obvious ap-
proach from a physical perspective since the cap doesn’t correspond to any
four-dimensional SCFT.12 Rather, it is more natural to develop a procedure
for reducing a maximal puncture to a non-maximal that mimics the Higgs-
ing procedure reviewed in Sec. 3.2.2. Naively, the four-dimensional Higgsing
prescription need not lead to a simple recipe for producing the chiral algebra
of the Higgsed theory in terms of that of the original theory. This is be-
cause the Higgsing spontaneously breaks the superconformal symmetry that
is used to argue for the very existence of a chiral algebra, with the theory only
recovering superconformal invariance in the low energy limit. Consequently
one could imagine that the Higgsing procedure irrecoverably requires that
we abandon the chiral algebraic language until reaching the far infrared.

Nevertheless, it turns out that the chiral algebra does admit its own Hig-
gsing procedure that has the desired result. Such a procedure cannot literally
amount to Higgsing in the chiral algebra, because quantum mechanically in
two dimensions there are no continuous moduli spaces of vacua. The best
that we can do is to try to impose a quantum-mechanical constraint on the
chiral algebra. A natural expectation for the constraint is that it should
fix to a non-zero value the chiral algebra operator that corresponds to the
Higgs branch chiral ring operator that gets an expectation value. This means
imposing the constraint

Jα−(z) = A , (3.4.1)

where Tα− = Λ(t−). Here A is a dimensionful constant that will be irrelevant
to the final answer as long as it is nonzero. We might also expect that we
should constrain some of the remaining currents to vanish. A motivation for
such additional constraints is that when expanded around the new vacuum on
the Higgs branch, many of the moment map operators become field operators
for the Nambu-Goldstone bosons of spontaneously broken flavor symmetry,
and we want to ignore those and focus on the chiral algebra associated to

12It does however correspond to a true compactification of the six-dimensional (2, 0)
theory [91]. We will return to the notion of such a decorated cap in Sec. 3.5.2.
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just the interacting part of the reduced theory.
There happens to be a natural conjecture for the full set of constraints

that should be imposed. This conjecture is as follows:

Conjecture 7 The chiral algebra associated to a class S theory with a punc-
ture of type Λ is obtained by performing quantum Drinfeld-Sokolov (qDS)
reduction with respect to the embedding Λ on the chiral algebra for the theory
where the same puncture is maximal.

Quantum Drinfeld-Sokolov in its most basic form is a procedure by which one
obtains a new chiral algebra by imposing constraints on an affine Lie algebra
ĝ, with the constraints being specified by an embedding Λ : su(2) ↪→ g. In
the case of interest to us, the chiral algebra on which we will impose these
constraints is generally larger than just an affine Lie algebra. Nevertheless,
these constraints can still be consistently imposed in the same manner. This
conjecture therefore amounts to a choice of the additional constraints beyond
(3.4.1) that should be imposed in order to reduce a puncture. It is interesting
to note that the right set of constraints will turn out to fix only half of the
currents that are expected to become Nambu-Goldstone bosons. We will see
that the removal of the remaining Nambu-Goldstone bosons occurs in a more
subtle manner.

Before delving into the details, we should make the observation that this
answer is not unexpected in light of the pre-existing connections between non-
maximal defects in the (2, 0) theory and qDS reduction [92, 83]. Though a
sharp connection between the AGT story and the protected chiral algebra
construction is still lacking, we take this as a positive indication that such
a connection is there and remains to be clarified. We now turn to a more
precise description of qDS reduction for chiral algebras with affine symmetry.
We will first develop the general machinery for performing such a reduction
in the cases of interest, whereafter we will perform a number of tests of the
claim that this is the correct procedure for reducing the ranks of punctures
in class S chiral algebras.

3.4.1 Quantum Drinfeld-Sokolov for modules

Quantum Drinfeld-Sokolov reduction is a procedure for imposing a set of
constraints given below in Eqn. (3.4.3) at the quantum level for an affine Lie
algebra ĝ at any level. In the following discussion, we will closely follow the
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analysis of [93] (see also [94] for a similar discussion for finite dimensional
algebras). Although traditionally the starting point for this procedure is a
pure affine Lie algebra, our interest is in the case of a more general chiral
algebra with an affine Lie subalgebra at the critical level. Said differently,
we are interested in performing qDS reduction for nontrivial ĝ−h∨ modules.
We will utilize essentially the same spectral sequence argument as was used
in [93]. Some basic facts about spectral sequences are collected in Appendix
B.3 for the convenience of the reader.

The general setup with which we are concerned is the following. We begin
with a chiral algebra (for simplicity we take it to be finitely generated) with

an ŝu(n)k affine subalgebra. We denote the generating currents of the affine
subalgebra as JA(z), while the additional generators of the chiral algebra will
be denoted as {φi(z)}, each of which transforms in some representation Ri

of su(n).
We now choose some embedding Λ : su(2) ↪→ su(N), for which the images

of the su(2) generators {t0, t+, t−} will be denoted by {Λ(t0),Λ(t+),Λ(t−}.
The embedded Cartan then defines a grading on the Lie-algebra,

g =
⊕
m∈ 1

2
Z

gm , gm :=
{
TA ∈ g | adΛ(t0)TA = mTA

}
. (3.4.2)

When the embedded Cartan is chosen such that some of the currents have
half-integral grading, then some of the associated constraints are second-class
and cannot be enforced by a straightforward BRST procedure. Fortunately,
it has been shown that one may circumvent this problem by selecting an
alternative Cartan generator δ which exhibits integer grading and imposing
the corresponding first class constraints [95, 94, 93]. We will adopt the con-
vention that an index α (ᾱ) runs over all roots with negative (non-negative)
grading with respect to δ, while Latin indices run over all roots. The first-
class constraints to be imposed are then as follows,

Jα = Aδαα− , (3.4.3)

where Λ(t−) = Tα− . These constraints are imposed à la BRST by introducing
dimension (1, 0) ghost pairs (cα, bα) in one-to-one correspondence with the
generators Tα. These ghosts have the usual singular OPE

cα(z)bβ(0) ∼
δαβ
z

, (3.4.4)
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and allow us to define a BRST current

d(z) =
(
Jα(z)− Aδαα−

)
cα(z)− 1

2
f γ
αβ (bγ(c

αcβ))(z) . (3.4.5)

The reduced chiral algebra is defined to be the BRST-cohomology of the
combined ghost/matter system. Note that this definition is perfectly reason-
able for the case where we are reducing not just the affine current algebra,
but a module thereof. The presence of the module doesn’t modify the system
of constraints of the BRST differential, but as we shall see, the operators in
the modules will be modified in a nontrivial way in the constrained theory.

This cohomological problem can be solved via a modest generalization of
the approach of [96, 93]. We first split the BRST current into a sum of two
terms,

d0(z) =
(
−Aδαα−

)
cα(z) ,

d1(z) = Jα(z)cα(z)− 1

2
f γ
αβ (bγ(c

αcβ))(z) .
(3.4.6)

We now introduce a bi-grading for the currents and ghosts so that the dif-
ferentials (d0, d1) have bi-grades (1, 0) and (0, 1), respectively,

deg (JA(z)) = (m,−m) , TA ∈ gm ,

deg (cα(z)) = (−m, 1 +m) , Tα ∈ gm , (3.4.7)

deg (bα(z)) = (m,−m− 1) , Tα ∈ gm .

This bi-grading can also be extended to the additional generators φi. We
decompose each such generator into weight vectors of su(n) according to

φi = φiIt
(Ri)
I , I = 1, . . . , dimRi , (3.4.8)

where the t
(Ri)
I form a weight basis for the representation Ri with weights

defined according to
Hα · t(Ri)I = λ

(Ri)
I,α t

(Ri)
I , (3.4.9)

where Hα is an element of the Cartan subalgebra of su(n). Given the ele-
ment δ in terms of which our grading is defined, the bi-grading of the extra
generators can be defined according to

deg (φiI) = (δ · t(Ri)I , −δ · t(Ri)I ) . (3.4.10)
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The differentials (d0, d1) are each differentials in their own right, that is, they
satisfy

d2
0 = d2

1 = d0d1 + d1d0 = 0 . (3.4.11)

Therefore they define a double complex on the Hilbert space of the ghost/
matter chiral algebra, which is the starting point for a spectral sequence
computation of the cohomology.

It turns out that a simplification occurs if instead of trying to compute
the cohomology of the double complex straight off, we first introduce “hatted
currents” [96, 93],

ĴA(z) = JA(z) + f γ
Aβ (bγc

β)(z) . (3.4.12)

Let us denote by A1 the subalgebra generated by bα(z) and Ĵα(z), and by
A2 the subalgebra produced by the remaining generators cα(z), Ĵᾱ(z), and
φi(z). One then finds that d(A1) ⊆ A1 and d(A2) ⊆ A2, with the generators
of A1 additionally obeying

d(bα(z)) = Ĵα(z)− Aδαα− , d(Ĵα(z)) = 0 . (3.4.13)

It follows that the BRST cohomology of A1 is trivial: H∗(A1, d) = C. From
the Künneth formula (see Appendix B.3), it follows that the BRST coho-
mology of the chiral algebra is isomorphic to the cohomology of the smaller
algebra A2,

H∗(A, d) ∼= H∗(A2, d) . (3.4.14)

Our task then simplifies: we need only compute the cohomology of A2. We
will address this smaller problem by means of a spectral sequence for the
double complex (A2, d0, d1).

The first step in the spectral sequence computation is to compute the
cohomology H∗(A2, d0). The only nontrivial part of this computation is
the same as in the case without modules. This is because the additional
generators φiI(z) have vanishing singular OPE with the c-ghosts, rendering
them d0-closed. Moreover, they can never be d0-exact because the b-ghosts
are absent from A2. For the currents and ghosts, one first computes

d0(Ĵᾱ(z)) = −Af γ
ᾱβ δγα−c

β(z) = −Tr
(
adΛ(t+)Tᾱ · Tβ

)
cβ(z) . (3.4.15)

It follows that d0(Ĵᾱ(z)) = 0 if and only if Tᾱ ∈ ker(adΛ(t+)). The same
equation implies that the cα(z) ghosts are d0-exact for any α. Because the
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d0-cohomology thus computed is supported entirely at ghost number zero,
the spectral sequence terminates at the first step. At the level of vector
spaces we find

H∗(A, d) ∼= H∗(A2, d0) , (3.4.16)

withH∗(A2, d0) being generated by the φiI(z) and by Jᾱ(z) for Tᾱ ∈ ker(adΛ(t+)).
In order to improve this result to produce the vertex operator algebra

structure on this vector space, we can construct representatives of these with
the correct OPEs using the tic-tac-toe procedure. Letting ψ(z) be a generator
satisfying d0(ψ(z)) = 0, the corresponding chiral algebra generator Ψ(z) is
given by

Ψ(z) =
∑
l

(−1)lψl(z) , (3.4.17)

where ψl(z) is fixed by the condition

ψ0(z) := ψ(z) , d1(ψl(z)) = d0(ψl+1(z)) . (3.4.18)

At the end, this procedure will give a collection of generators of the qDS
reduced theory along with their singular OPEs and it would seem that we
are finished. However, it is important to realize that this may not be a
minimal set of generators, in that some of the generators may be expressible
as composites of lower dimension generators due to null states. The existence
of null relations of this type is very sensitive to the detailed structure of the
original chiral algebra. For example, the level of the current algebra being
reduced plays an important role. In practice, we will find for the class S chiral
algebras, most of the generators Ψ(z) produced by the above construction
do in fact participate in such null relations.

Some null states of the reduced theory can be deduced from the presence
of null states in the starting chiral algebra. This can be an efficient way
to generate redundancies amongst the naive generators of the qDS reduced
theory like the ones described above. Abstractly, we can understand this
phenomenon as follows. Consider a null operator NK(z) that is present in
the original W-algebra, and that transforms in some representation R of
the symmetry algebra that is being reduced. Given an embedding Λ, the
representation R decomposes as in (3.2.30) under gΛ ⊕ Λ(su(2)). We can
thus split the index K accordingly and obtain {Nkj ,mj(z)}j>0, where kj is an

index labeling the representation R(R)
j and mj labels the Cartan of the spin

j representation Vj. For fixed values of the index mj we find an operator that
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will have proper dimension with respect to the new stress tensor (3.4.19).
Moreover, since introducing a set of free ghost pairs naturally preserves the
null property of the original operator and restricting oneself to the BRST
cohomology does not spoil it either, we find that this operator is null in
the qDS reduced theory. In practice, for each value of mj one chooses a
representative of the BRST class Nkj ,mj(z) + d(. . .) that only involves the
generators of the qDS reduced theory.

There are a couple of features of the qDS reduced theory that can be
deduced without studying the full procedure in specific examples. These
features provide us with the most general test of the conjecture that qDS
reduction is the correct way to reduce the ranks of punctures in the chiral
algebra. The first of these features is the Virasoro central charge of the
reduced theory, a subject to which we turn presently.

3.4.2 Virasoro central charge and the reduced stress
tensor

A useful feature of qDS reduction is that the stress tensor of a qDS reduced
chiral algebra takes a canonical form (up to BRST-exact terms) in which it
is written as a shift of the stress tensor of the unreduced theory,

T = T? − ∂J0 + ∂bαc
α − (1 + λα)∂(bαc

α) . (3.4.19)

Here T? is the stress tensor of the unreduced theory, J0 is the affine current
of the U(1) symmetry corresponding to Λ(t0), and λα is the weight for Tα
with respect to Λ(t0) as defined by Eqn. (3.4.9).13 The dimensions of the
ghosts measured by this new stress tensor are hbα = 1 + λα and hcα = −λα.
Meanwhile the dimensions of all remaining fields are simply shifted by their
J0 charge.

The central charge of the reduced theory can be read off from the most
singular term in the self-OPE of the reduced stress tensor. The result is given

13Note that in the case of half-integral gradings, the weights λα are defined with respect
to Λ(t0) and not with respect to the alternate Cartan element δ.
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by [95]

c− c? =

(
dim g0 −

1

2
dim g 1

2
− 12

∣∣∣∣√k + h∨Λ(t0)− ρ√
k + h∨

∣∣∣∣2
)
−
(
k dim g

k + h∨

)
,

= dim g0 −
1

2
dim g 1

2
− 12(k + h∨) |Λ(t0)|2 + 24Λ(t0) · ρ− dim g .

(3.4.20)

Here ρ is the Weyl vector of su(n), and in passing to the second line, we have
used the Freudenthal-de Vries strange formula |ρ|2 = h∨

12
dim g. In the cases

of interest the level of the current algebra is always given by k = −h∨ and
there is a further simplification,

c = c? + dim g0 −
1

2
dim g 1

2
+ 24Λ(t0) · ρ− dim g . (3.4.21)

This shift of two-dimensional central charge can be compared to our ex-
pectations based on the four-dimensional results in Eqns. (3.2.16)-(3.2.18).
The change of the four-dimensional central charge that occurs upon reducing
a maximal puncture down to a smaller puncture labelled by the embedding
Λ is given by

−12(c4d − c4d,orig.) = 2(nv(max.)− nv(Λ)) + (nh(max.)− nh(Λ)) ,

= dim g0 −
1

2
dim g 1

2
+ 24Λ(t0) · ρ− dim g .

(3.4.22)

Thus we see precise agreement with the change in two-dimensional central
charge induced by qDS reduction and that of the four-dimensional charge
induced by Higgsing after accounting for the relation c2d = −12c4d. We
take this as a strong indication the the qDS prescription for reducing chiral
algebras is indeed the correct one.

3.4.3 Reduction of the superconformal index

We can now check that the qDS reduction procedure has an effect on the
(graded) partition function of the chiral algebra that mimics the prescription
for reducing the Schur superconformal index described in Sec. 3.2.2. As was
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reviewed above, the Schur limit of the superconformal index is equivalent to
a graded partition function of the corresponding chiral algebra,

Iχ(q; x) := TrHχ (−1)F qL0 = ISchur(q; x) . (3.4.23)

Computing this graded partition function is straightforward for the qDS re-
duced theory owing to the fact that the BRST differential commutes with all
of the fugacities x that may appear in the index and has odd fermion number.
This means that we can ignore the cohomological aspect of the reduction and
simply compute the partition function of the larger Hilbert space obtained by
tensoring the unreduced chiral algebra with the appropriate ghosts system.14

This simpler problem of computing the partition function of the larger
Hilbert space parallels the index computation described in Sec. 3.2.2. There
are again two steps – the inclusion of the ghosts, and the specialization
of fugacities to reflect the symmetries preserved by the BRST differential.
Including the ghosts in the partition function before specializing the fugacities
requires us to assign them charges with respect to the UV symmetries. This
can be done in a canonical fashion so that upon specializing the fugacities
the BRST current will be neutral with respect to IR symmetries and have
conformal dimension one.

Recall that the ghost sector involves one pair of ghosts (bα, c
α) for each

generator Tα that is negatively graded with respect to δ. The charge assign-
ments are then the obvious ones – namely the charges of bα are the same as
those of Tα (let us call them fα), while those of cα are minus those of bα.
With these charge assignments, the graded partition function of the reduced
chiral algebra can be obtained as a specialization that mimics that which led
to the superconformal index,

IχΛ
(q; xΛ) = lim

x→xΛ

Iχ(q; x) I(b,c)Λ
(q; x) , (3.4.24)

I(b,c)Λ
:= PE

[
−
∑

Tα∈g<0

(
q xfα

1− q +
x−fα

1− q

)]
. (3.4.25)

As in the discussion of the index in Sec. 3.4.3, we can formally perform the
specialization ignoring divergences that occur in both the numerator and the

14There is a caveat to this argument, which is that if there are null states in the reduced
theory that do not originate as null states in the parent theory, then their subtraction will
not necessarily be accomplished by this procedure. We operate under the assumption that
such spurious null states do not appear. This assumption appears to be confirmed by the
coherence between this procedure and that discussed in Sec. 3.2.2.
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denominator as a consequence of constant terms in the plethystic exponent.
In doing this, the flavor fugacities are replaced by fugacities for the Cartan
generators of hΛ, while the q-grading is shifted by the Cartan element of
the embedded su(2). This leads to the following formal expression for the
contribution of the ghosts,15

I(b,c)Λ
“ = ” PE

[
−q

1− q
∑
j

χhΛ

R(adj)
j

(aΛ)
−1∑
i=−j

qi − 1

1− q
∑
j

χhΛ

R(adj)
j

(a−1
Λ )

j∑
i=1

qi

]
.

(3.4.26)
After a small amount of rearrangement and the recognition that the repre-
sentations R(adj)

j are pseudoreal, one finds that this exactly reproduces the
formal denominator in Eqn. (3.2.47). Again, when the limit in Eqn. (3.4.24)
is taken carefully, the divergences in this formal denominator cancel against
equivalent terms in the K-factors of the numerator to produce a finite result.
It is interesting that in spite of the asymmetry between b and c ghosts in
this procedure, they ultimately play the same role from the point of view of
four-dimensional physics – each ghost is responsible for cancelling the effect
of a single Nambu-Goldstone boson from the index.

Before moving on to examples, we recall that in [26] it was observed that
the K-factor for a maximal puncture matches the character of the corre-
sponding affine Lie algebra at the critical level, and it was conjectured that
a similar statement would be true for reduced punctures. That is to say, the
K-factor associated to the reduction of type Λ should be the character of the
qDS reduction of type Λ of the critical affine Lie algebra. Given the analysis
to this point, this statement becomes almost a triviality. The qDS reduction
of the affine current algebra proceeds by introducing the same collection of
ghosts as we have used here, and so the effect on the graded partition function
is the introduction of the same ghost term given in Eqn. (3.4.26) and the same
specialization of fugacities. Thus, the identification of the K-factors given in
Eqn. (3.2.36) with the character of the qDS reduction of the critical affine Lie
algebra depends only on our ability to equate the index (i.e., the partition
function graded by (−1)F ) with the ungraded vacuum character. This is a
simple consequence of the fact that the starting current algebra consists of
all bosonic operators and the spectral sequence calculation of Sec. 3.4.1 only

15For simplicity, we write the expression here for the case where Λ(t0) provides an
integral grading so there is no auxiliary δ. The case of half-interal grading can be treated
with modest modifications.
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found BRST cohomology elements at ghost number zero.

3.4.4 Simple examples

In light of the analysis in Section 3.4.1, the reduction problem admits an
algorithmic solution subject to two conditions. (A) the starting chiral alge-
bra should be finitely generated, i.e., it admits a description as aW-algebra.
(B) the L0 operator of the reduced theory should have a positive definite
spectrum. The latter condition must hold for any reductions where the end-
point corresponds to a physical class S theory, while the former conditions
is conjectured to be true for general class S theories but is more certainly
true in some simple examples. Given these conditions, the procedure is as
follows:

• List the (possibly redundant) generators of the qDS reduced chiral
algebra at the level of vector spaces. These are given by the hatted
currents Ĵᾱ for which Tᾱ ∈ ker(adΛ(t+)), along with all of the additional
generators {φi}.

• Apply the tic-tac-toe algorithm to construct genuine generators of the
chiral algebra. The OPEs of these reduced chiral algebra generators
can be computed directly using the OPEs of the original, unreduced
fields.

• Compute the null states at each level up to that of the highest-di-
mensional generator in order to check for redundancy. Remove any
redundant generators. What remains is a description of the reduced
chiral algebra as a W-algebra.

This procedure is still morally a correct one when the two conditions listed
above fail to be met, but in those cases the algorithm will not necessarily
terminate in finite time. In the examples discussed in this subsection, both
conditions above will indeed be satisfied, so this algorithm will be sufficient
to determine the answer entirely.

We now consider a pair of simple cases in which the reduction can be
performed quite explicitly. Our first example will be the complete closure of
a single puncture in the rank one theory of a four-punctured sphere, which as

we reviewed above has as its chiral algebra the affine Lie algebra ŝo(8)−2. The
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result of this closure is expected to be the T2 theory (see Figure 3.7). The sec-
ond example will be the partial reduction (corresponding to the semi-regular
embedding) of one puncture in the T3 theory to produce a theory of free
bifundamental hypermultiplets, which should correspond to free symplectic
bosons at the level of the chiral algebra. Details of the second calculation
beyond what is included in this summary can be found in Appendix B.1.2.

Reducing ŝo(8)−2 to χ[T2]

The starting point for our first reduction is the affine Lie algebra ŝo(8)−2.
We first introduce a basis for the affine currents that is appropriate for class
S and for the reduction we aim to perform. The adjoint of so(8) decomposes
into irreps of the su(2)(1)×su(2)(2)×su(2)(3)×su(2)(4) symmetries associated
to punctures according to

28so(8) → (3,1,1,1)⊕ (1,3,1,1)⊕ (1,1,3,1)⊕ (1,1,1,3)⊕ (2,2,2,2) .
(3.4.27)

Accordingly, we assemble the twenty-eight affine currents into these irreps,

JA(z) → {J (1)
(a1b1)(z) , J

(2)
(a2b2)(z) , J

(3)
(a3b3)(z) , J

(4)
(a4b4)(z) , Ja1a2a3a4(z)} ,

(3.4.28)
where aI , bI are fundamental indices of su(2)(I). In this basis, the OPEs of
the affine Lie algebra are given by

J
(I)
ab (z)J

(J)
cd (w) ∼ −k(εacεbd + εadεbc)δ

IJ

2(z − w)2
+
fefab;cdJ

(I)
ef δ

IJ

z − w ,

J
(1)
ab (z)Jcdef (w) ∼ εacJbdef + εbcJadef

2(z − w)
,

Jabcd(z)Jefgh(w) ∼ kεaeεbf εcgεdh
(z − w)2

+
J

(1)
ae εbf εcgεdh + εaeJ

(2)
bf εcgεdh + εaeεbfJ

(3)
cg εdh + εaeεbf εcgJ

(4)
dh

z − w ,

(3.4.29)

and similarly for the other J (I). Here the su(2) structure constants are given
by f efab;cd = 1

2
(εacδ

e
bδ
f
d + εbcδ

e
aδ
f
d + εadδ

e
bδ
f
c + εbdδ

e
aδ
f
c ), and for our case of interest

level is fixed to k = −2.
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=)su(2) su(2)

Figure 3.7: Reduction from the so(8) theory to T2.

We will choose the first puncture to close, meaning we will perform qDS
reduction on the current algebra generated by J

(1)
(ab) with respect to the prin-

cipal embedding,

Λ(t+) = −T11 , Λ(t−) = T22 , Λ(t0) = −T(12) . (3.4.30)

The grading provided by Λ(t0) is integral, so we can proceed without in-
troducing any auxiliary grading. The only constraint to be imposed in this
case is J

(1)
22 (z) = 1. This is accomplished with the help of a single ghost pair

(c22, b22), in terms of which the BRST operator is given by

d(z) = c22(J22 − 1)(z) . (3.4.31)

The remaining three sets of su(2) affine currents can be thought of as trivial
modules of the reduced currents, while the quadrilinear currents provide a
nontrivial module. In the language of the previous subsection we have16

{φi} = {J (2)
(a2b2) , J

(3)
(a3b3) , J

(4)
(a4b4) , Ja1a2a3a4} . (3.4.32)

The reduced generators of step one are simply the hatted current Ĵ
(1)
11 =

J
(1)
11 along with the additional generators in (3.4.32). Applying the tic-tac-toe

16We should note that there is something slightly unconventional about the reduction
procedure here. In this example the entire starting chiral algebra is an affine current
algebra, so one could in principle perform qDS reduction in the entirely standard manner.
This is not what our prescription tells us to do. Instead, we treat a single su(2) subalgebra
as the target of the reduction, and the rest as modules. The two procedures are naively
inequivalent, although we have not checked in detail to make sure that the results don’t
turn out the same.
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procedure produces true generators of the reduced chiral algebra,

Ĵ (1)
11 := Ĵ

(1)
11 − Ĵ (1)

12 Ĵ
(1)
12 − (k + 1)∂(Ĵ

(1)
12 ) ,

(J1)a2a3a4
:= J1a2a3a4 − Ĵ (1)

12 J2a2a3a4 ,

(J2)a2a3a4
:= J2a2a3a4 ,

J (I={2,3,4})
aIbI

:= J
(I={2,3,4})
aIbI

,

(3.4.33)

where Ĵ
(1)
12 := J

(1)
12 + b22c

22.
The stress tensor of the reduced algebra takes the form given in Eqn.

(3.4.19), where the original stress tensor was the Sugawara stress tensor of

ŝo(8)−2 and the generator of the embedded Cartan is J0 = −J (1)
12 . We can

then compute the conformal dimensions of the new generators and we find

[Ĵ (1)
11 ] = 2 , [J (I)

aIbI
] = 1 ,

[(J1)a2a3a4 ] = 3/2 , [(J2)a2a3a4 ] = 1/2 .
(3.4.34)

The currents J (I)
aIbI

persist as affine currents of su(2) subalgebras, so all of
their singular OPEs with other generators are determined by the symmetry
properties of the latter. Explicit calculation determines the OPEs that are
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not fixed by symmetry to take the following form,

Ĵ (1)
11 (z)Ĵ (1)

11 (0) ∼ −1

2

(2 + k)(1 + 2k)(4 + 3k)

z4
− 2(2 + k)Ĵ (1)

11 (0)

z2

− (2 + k)∂Ĵ (1)
11 (0)

z

Ĵ (1)
11 (z)(J1)a2a3a4(0) ∼ −1

2

(2 + k)(1 + 2k)(J2)a2a3a4(0)

z3
− 1

4

(7 + 2k)(J1)a2a3a4(0)

z2

− (Ĵ (1)
11 (J2)a2a3a4)(0)

z

Ĵ (1)
11 (z)(J2)a2a3a4(0) ∼ 1

4

(1 + 2k)(J2)a2a3a4(0)

z2
+

(J1)a2a3a4(0)

z

(J1)a2a3a4(z)(J2)b2b3b4(0) ∼ −1

2

(1 + 2k)εa2b2εa3b3εa4b4
z2

+
− 1

2 ((J2)a2a3a4(J2)b2b3b4)(0) + Ja2a3a4;b2b3b4(0)

z

(J2)a2a3a4(z)(J2)b2b3b4(0) ∼ εa2b2εa3b3εa4b4
z

(J1)a2a3a4(z)(J1)b2b3b4(0) ∼ 3

4

(1 + 2k)εa2b2εa3b3εa4b4
z3

+
1
4 (3 + 2k)((J2)a2a3a4(J2)b2b3b4)(0)− Ja2a3a4;b2b3b4(0)

z2

+
1
4 ((J2)a2a3a4∂(J2)b2b3b4)(0)

z

+
1
2 (1 + k)(∂(J2)a2a3a4(J2)b2b3b4)(0)

z

− 1

2

∂Ja2a3a4;b2b3b4(0)

z
,

(3.4.35)

where

Ja2a3a4;b2b3b4(z) = J (2)
a2b2

(z)εa3b3εa4b4 + J (3)
a3b3

(z)εa2b2εa4b4 + J (4)
a4b4

(z)εa2b2εa3b3 ,
(3.4.36)

and we have removed d-exact terms.
We expect the result of this reduction procedure to be the trifundamental

symplectic boson algebra χ[T2], and (J2)a2a3a4(z) has the correct dimension
and OPE to be identified with the trifundamental generator qa2a3a4 . In order
to complete the argument, we need all of the remaining reduced generators
to be expressible as composites of this basic generator. Indeed it turns out
to be a straightforward exercise to compute the null states in the reduced
algebra at dimensions h = 1, 3

2
, 2 and to verify that null relations allow all the
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other generators to be written as normal ordered products of (derivatives of)
(J2)a2a3a4(z). For example, we should expect that the su(2) affine currents
should be equivalent to the bilinears currents of Eqn. (3.3.10), and indeed
there are null relations (only for k = −2) that allow us to declare such an
equivalence,

1
2
(J2)abc(J2)a′b′c′ε

bb′εcc
′

= J (2)
aa′ ,

1
2
(J2)abc(J2)a′b′c′ε

aa′εcc
′

= J (3)
bb′ ,

1
2
(J2)abc(J2)a′b′c′ε

aa′εbb
′

= J (4)
cc′ ,

(3.4.37)

At dimensions h = 3/2 and h = 2 there are additional null states for our
special value of the level,

(J1)bcd = − 3
2
∂(J2)bcd + 2

3
(J2)(b1(c1(d1(J2)b2)c2)d2)(J2)b3c3d3ε

b2b3εc2c3εd2d3 ,

(3.4.38)

Ĵ (1)
11 = − 3

4
(J2)b1c1d1∂(J2)b2c2d2ε

b1b2εc1c2εd1d2

− 1
6
(J2)b1c1d1(J2)(b2(c2(d2(J2)b3)c3)d3)(J2)b4c4d4ε

b1b2εc1c2εd1d2εb3b4εc3c4εd3d4 .

(3.4.39)

Thus all of the additional generators are realized as composites of the basic
field (J2)abc(z), and we have reproduced the χ[T2] chiral algebra from qDS
reduction of the so(8) affine current algebra at level k = −2. We should
re-emphasize that the redundancy amongst generators due to null states
depends crucially on the precise value of the level. This is another instance
of a general lesson that we have learned: the protected chiral algebras of
N = 2 SCFTs realize very special values of their central charges and levels
at which nontrivial cancellations tend to take place. We will see more of this
phenomenon in the next example.

Reducing ( ê6 )−3 to symplectic bosons

In this case, our starting point is again an affine Lie algebra, this time (̂e6)−3.
Also we are again led to decompose the adjoint representation of e6 under
the maximal su(3)1× su(3)2× su(3)3 subalgebra associated to the punctures
on the UV curve as was done in (3.3.15), leading to a basis of currents given
by (3.3.16) subject to singular OPEs given by Eqn. (B.1.1). Our aim is now
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=)su(3) su(3) [31]

Figure 3.8: Reduction from the e6 theory to free hypermultiplets.

to perform a partial reduction of the first puncture. Accordingly, we divide
the generating currents as usual,

(J1) a′

a , {φi} = {(J2) b′

b , (J3) c′

c ,Wabc , W̃
abc} , (3.4.40)

where now a, b, c are fundamental indices of su(3)1,2,3, and the adjoint repre-
sentation is represented by a fundamental and antifundamental index subject
to a tracelessness condition.

The partial closing down to a minimal puncture is accomplished by means
of the subregular embedding,

Λ(t0) =
1

2
(T 1

1 − T 3
3 ) , Λ(t−) = T 1

3 , Λ(t+) = T 3
1 . (3.4.41)

The grading induced by the embedded Cartan turns out to be half-integral in
this case and must therefore be supplanted by the integral δ grading. Under
this grading the generators Λ(t−) = T 1

3 and T 2
3 are negative and of grade

minus one. The relevant constraints are thus (J1)
1

3 = 1 and (J1)
2

3 = 0. The
implementation of these constraints via the BRST procedure introduces two
ghost pairs b 1

3 , c
3

1 and b 2
3 , c

3
2 .

In the reduction of χ[T3], one finds that the currents (Ĵ1)ᾱ such that Tᾱ ∈
ker(ad(Λ(t+))), are given by (Ĵ1) 2

1 , (Ĵ
1) 3

1 , (Ĵ
1) 3

2 , and the current generating
the reduced u(1) symmetry

Ju(1) = (Ĵ1) 1
1 − 2(Ĵ1) 2

2 + (Ĵ1) 3
3 . (3.4.42)

Together with the additional generators in (3.4.40), these constitute the gen-
erators of the cohomology at the level of vector spaces. The tic-tac-toe pro-
cedure produces honest chiral algebra generators, which we denote by the
calligraphic version of the same letter as the vector space generator. The
quantum numbers of these redundant generators are summarized in Table
3.4. Their precise expressions can be found in Appendix B.1.2.
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Generator Dimension U(1) SU(3)2 SU(3)3

Ju(1) 1 0 1 1

(Ĵ 1) 2
1

3
2

3 1 1

(Ĵ 1) 3
1

2 0 1 1

(Ĵ 1) 3
2

3
2

−3 1 1

W1bc
3
2

1 3 3

W2bc 1 −2 3 3

W3bc
1
2

1 3 3

W̃1bc 1
2

−1 3̄ 3̄

W̃2bc 1 2 3̄ 3̄

W̃3bc 3
2

−1 3̄ 3̄

(J 2) b′

b 1 0 8 1

(J 3) c′
c 1 0 1 8

Table 3.4: The quantum numbers of redundant generators of the reduced T3

chiral algebra.

Again, we see that there are dimension one half generators (W3)bc =
W3bc and (W̃1)bc = W̃ 1bc that one naturally expects should be identified as
the symplectic bosons of the reduced theory. Indeed, up to d-exact terms,
the OPE for these generators is exactly what we expect from the desired
symplectic bosons,

(W3)bc(z)(W̃1)b
′c′(0) ∼ δ b′

b δ
c′
c

z
. (3.4.43)

These generators thus have the correct dimension, charges and OPE to be
identified with the expected hypermultiplet generators. Again, by studying
the null relations of the reduced chiral algebra at levels h = 1, 3

2
, 2 one finds

that precisely when the level k = −3, all of the higher dimensional generators
in Table 3.4 are related to composites of (W3)bc and (W̃1)bc (see Appendix
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B.1.2). In particular, one can verify that the u(1)⊕ su(3)2 ⊕ su(3)3 currents
are equal to their usual free field expression modulo null states.

3.5 Cylinders and Caps

The procedure we have introduced for reducing punctures is sufficiently gen-
eral that there is no obstacle to formally defining chiral algebras associated
to unphysical curves such as the cylinder and (decorated) cap. These are
unphysical curves from the point of view of class S SCFTs, although they
have a physical interpretation in terms of theories perturbed by irrelevant
operators that correspond to assigning a finite area to the UV curve [91].
It would be interesting to interpret the chiral algebras associated with these
curves in terms of those constructions, although naively extrapolating away
from conformal fixed points seems impossible. (There are other unphysical
curves, such as a thrice-punctured sphere with two minimal punctures and
one maximal puncture, and the chiral algebras for these can also be defined.
We focus on cylinders and caps in this section as they are particularly natural
objects in the TQFT.)

The chiral algebra associated to a cylinder is a particularly natural object
to consider from the TQFT perspective because it corresponds to the iden-
tity morphism (when taken with one ingoing and one outgoing leg). When
taken with two ingoing or two outgoing legs, it is the chiral algebra avatar
of the evaluation and coevaluation maps, respectively, of an ordinary two-
dimensional TQFT. Similarly, the chiral algebra of the undecorated cap is
the chiral algebra version of the trace map.

On the whole, we have not been able to systematically solve the BRST
problem for these theories in the general case. This is because, as we shall see,
the chiral algebras involve dimension zero (or negative dimension) operators,
which prevent us from applying the simple algorithm set forth in Sec. 3.4.
Nevertheless, we are able to develop a compelling picture of the mechanics
of the cylinder chiral algebra. It would be interesting from a purely vertex
operator algebra point of view to construct these algebras rigorously.
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⇠=

Figure 3.9: Characteristic property of the identity morphism.

3.5.1 The cylinder chiral algebra

The chiral algebra associated to a cylinder should be obtained by performing
a complete qDS reduction on one puncture of the trinion chiral algebra χ[Tn].
In the generalized TQFT, the cylinder chiral algebra plays the role of the

identity morphism for a single copy of the affine Lie algebra, Id : ŝu(n)−n 7→
ŝu(n)−n. The essential property associated with an identity morphism is
illustrated in Figure 3.9. As a statement about chiral algebras, the identity
property is quite interesting. It means that the chiral algebra should have the
property that when tensored with another class S chiral algebra χ[T ] along
with the usual (b, c) ghosts, restriction to the appropriate BRST cohomology
produces a chiral algebra that is isomorphic to the original class S chiral
algebra,

H∗BRST

(
ψ ∈ χId ⊗ χ[T ]⊗ χbc

∣∣ b0ψ = 0
) ∼= χ[T ] . (3.5.1)

As stated above, the qDS reduction problem in this case is substantially
complicated by the fact that amongst the list of naive generators of the
reduced chiral algebra, there will always be dimension zero currents. Con-
sequently, a systematic solution of the BRST problem that removes redun-
dancies from the list of generators is difficult even in the case of the χ[T2]
and χ[T3] theories, for which the starting point of the reduction is known. A
somewhat detailed analysis of the su(3) case can be found in Appendix B.2.

Although we don’t have a general first principles solution, the general
structure of the reduction and our intuition gained from other examples sug-
gests a simple characterization of the cylinder chiral algebra. We state this
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here as a conjecture.

Conjecture 8 (Cylinder chiral algebra) The chiral algebra associated to

a cylinder of type su(n) is finitely generated by an ŝu(n)−n affine current
algebra {(JL)A(z), A = 1, . . . , n2 − 1}, along with dimension zero currents
{gab(z), a, b = 1, . . . , n} that are acted upon on the left by the affine currents.
These dimension zero currents further obey a determinant condition det g =
1, i.e., they form a matrix that belongs to SL(n,C).

This turns out to be a surprisingly interesting chiral algebra. Let us mention
a few of its properties.

The first key property – one which is not completely obvious from the

description – is that this chiral algebra actually has two commuting ŝu(n)−n
current algebras. The second set of affine currents are defined as follows(
J c′

c

)
R

(z) :=
(
J b
b′

)
L
gbc g

b′c′ + n

(
gbc ∂g

bc′ − 1

n
δc
′

c gbd ∂g
bd

)
, (3.5.2)

where we have traded the adjoint index for a fundamental and antifunda-
mental index satisfying a tracelessness condition, and we’ve also introduced
the shorthand

gab(z) =
1

n!
εaa2...anεbb2...bn (ga2b2 . . . ganbn) (z) . (3.5.3)

Because of the determinant condition, this can be thought of as the inverse
of gab(z). The currents (JR)A(z) act on the dimension zero currents on the
right. The JR currents and the JL currents have nonsingular OPE with
one another, so they generate commuting affine symmetries. These are the
symmetries associated with the two full punctures of the cylinder.

The key feature of this chiral algebra should be its behavior as the iden-
tity under gluing to other class S chiral algebras. Let us thus consider a
chiral algebra associated to a UV curve Cg,s≥1 with at least one maximal
puncture. Let us consider a general operator in this theory which will take
the form X

b1b2...bq
a1a2...ap , with p fundamental indices and q antifundamental indices

(possibly subject to (anti)symmetrizations and tracelessness conditions) of
the flavor symmetry associated to the maximal puncture and with its trans-
formation properties under other flavor symmetries suppressed. Then our
expectations is that after gluing in the cylinder, there will be a new operator
of the same dimension of the same form, but where its transformation under
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the symmetry of the original maximal puncture has been replaced with a
transformation under the symmetry at the unglued end of the cylinder.

We can see how this might come about. Gluing a cylinder to the maximal
puncture means tensoring the original chiral algebra with the chiral algebra
of conjecture 8 in addition to the usual adjoint (b, c) system of dimensions
(1, 0). We then restrict ourselves to the BRST cohomology (relative to the
b-ghost zero modes) of the nilpotent operator

QBRST =

∮
dz cA((JL)A + JTA +

1

2
Jgh
A ) , (3.5.4)

where JTA is the current for the symmetry associated to the puncture on
Cg,s≥1 that is being glued. Our original operator, which was charged under
the su(n) that is being gauged and therefore does not survive the passage to
BRST cohomology, has a related transferred operator of the following form

X̂
c1c2...cp
d1d2...dq

= Xb1b2...bq
a1a2...ap

ga1c1 ga2c2 . . . gapcp gb1d1 gb2d2 . . . gbqdq . (3.5.5)

This operator is gauge invariant, since the gauged symmetry acts on gab, g
ab

on the left. In this sense the gab fields effectively transfer and conjugate the
symmetry from one end of the cylinder to the other. Notice that the trans-
ferred operators have the same dimension as before, because the gab(z) have
dimension zero. What’s more, by virtue of the unit determinant condition
on gab, we see that the OPE of the transferred fields ends up being exactly
the conjugate of the OPE of the original fields. It therefore seems likely that
we recover precisely the same chiral algebra on the other end of the cylinder
(up to conjugation of su(n) representations). Of course, for this construction
to work we have to assume that the spectrum of physical operators will con-
sist only of the transferred operators. It would be interesting to prove this
conjecture.

Finally, one can’t help but notice the similarities between this description
of the cylinder chiral algebra and the discussions of [78] regarding the holo-
morphic symplectic manifold associated with the cylinder in the Higgs branch
TQFT. In that work, the hyperkähler manifold T ∗GC was associated to the
cylinder. It is interesting to note that the chiral algebra we have described in
Conjecture 8 seems to be precisely what one obtains from studying the half-
twisted (0, 2) supersymmetric sigma model on GC [97, 98]. Alternatively, it
describes the global sections of the sheaf of chiral differential operators on
GC as defined in [99, 100, 101, 102, 103]. This connection is exciting, but
remains mostly mysterious to the authors at present.
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3.5.2 The (decorated) cap chiral algebra

The chiral algebra associated to a decorated cap can be defined by partially
reducing one puncture of the cylinder chiral algebra. The resulting chiral
algebra should have the interesting property that if you glue it to another
class S chiral algebra using the standard gauging BRST construction, it
effectively performs the appropriate qDS reduction on the original chiral
algebra.

In trying to characterize this chiral algebra, one immediately encoun-
ters the problem that it includes operators of negative dimension. Namely,
consider the first steps of the general reduction procedure as applied to the
cylinder chiral algebra. The (potentially redundant) generators for the dec-
orated cap labeled by an embedding Λ include the usual currents Jᾱ for
Tᾱ ∈ ker(adΛ(t+)), the dimensions of which are shifted by their Λ(t0) weight.
However, there are additional generators coming from the dimension zero
bifundamental fields gab of the cylinder theory. In terms of the reduced sym-
metry associated with the decoration, these fields are reorganized as follows:
for each irrep of su(2) in the decomposition (3.2.30) of the fundamental rep-

resentation there are 2j+1 generators transforming in representation f⊗R(f)
j

with dimensions −j,−j + 1, . . . , j. The dimension zero null relation corre-
sponding to the determinant condition in the cylinder theory of the cylinder
theory is expected to descend to the cap theory. The superconformal index
(see App. B.2.1) supports this expectation, and further suggests that there
may be no additional redundancies.

The existence of negative dimension operators makes this a rather exotic
chiral algebra, and we will not explore it much further. Nevertheless, let us
offer a couple of brief comments. In the description of the cap chiral algebra
given in the previous paragraph, it is not immediately clear that an affine
current algebra associated to the maximal puncture survives. However, one
finds that the necessary dimension one currents can be constructed using
the above fields in a manner similar to (3.5.2), using only those elements of
the left current algebra that survive in the cap chiral algebra. When gluing
the cap to another theory T , this current algebra will enter in the BRST
current (3.5.4). As in the case of the cylinder, the Gauss law constraint
can be solved by constructing transferred fields, which thanks to nonzero
conformal dimension of the various components of gab end up with their
dimensions shifted correctly. It remains to verify that restricting to the
BRST cohomology removes the transferred versions of the currents JTA for
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TA 6∈ ker(adΛ(t+)).
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Chapter 4

Chiral Algebras for Trinion
Theories

4.1 Introduction

In chapter 2 and reference [26] it was shown that even-dimensional extended
superconformal field theories (SCFTs)1 contain a protected subsector that is
isomorphic to a two-dimensional chiral algebra. This subsector is obtained
by restricting operators to be coplanar and treating them at the level of
cohomology with respect to a particular nilpotent supercharge, obtained as
a combination of a supercharge and a superconformal charge of the theory. In
showing the existence of the chiral algebra one relies only on the symmetries
of the theory and there is no need to have a Lagrangian description — a fact
that was used to study the chiral algebras associated with the six-dimensional
(2, 0)-theory in [26] and with those obtained from four-dimensional theories
of class S in chapter 3. In this note we will focus on the chiral algebras
associated with the so-called trinion or Tn theories of class S.

Chiral algebras of class S, i.e., the collection of chiral algebras associated
with four-dimensional theories of class S [10, 11], were argued to take the
form of a generalized topological quantum field theory (TQFT) in chapter 3.
Within this TQFT, gluing, the operation associated to four-dimensional ex-
actly marginal gauging, is achieved by solving a BRST cohomology problem,
and partially closing a puncture is implemented via a quantum Drinfeld-

1More precisely N = (2, 0) in d = 6, N ≥ 2 in d = 4, and “small” N = (0, 4) and
N = (4, 4) in d = 2.

162



Sokolov reduction. Furthermore, just as the isolated, strongly interacting Tn
theories, i.e., the theories whose UV-curve is a sphere with three punctures
of maximal type, are the basic building blocks of class S theories, so are their
associated chiral algebras the basic building blocks of said TQFT. Character-
izing the Tn chiral algebras is thus a prerequisite for an in principle complete
understanding of chiral algebras of class S.

However, while the existence of a chiral algebra inside a generic N = 2
SCFT can be argued in general terms, a complete characterization of its
generators is currently lacking.2 As for a partial characterization, it was
argued in chapter 2 that one is guaranteed to have at least generators in
one-to-one correspondence with the Higgs branch chiral ring generators.3

In particular, the Tn Higgs branch chiral ring contains as generators three
moment map operators, one for each factor in the Tn flavor symmetry algebra⊗3

i=1 su(n)i, and it was shown in chapter 2 that their corresponding chiral
algebra generators are three affine currents with affine levels k2d,i determined

in terms of the four-dimensional flavor central charges k4d,i as k2d,i = −k4d,i

2
.

These central charges are equal for the three factors, k4d,i = 2n, and thus

the affine current algebras ŝu(n) have critical level k2d ≡ k2d,i = −n. The
remaining generators of the Tn Higgs branch chiral ring give rise to additional
generators of the chiral algebra, which must be primaries of the affine Kac-
Moody (AKM) algebras.

It was also shown in chapter 2 that the existence of a four-dimensional
stress tensor implies that the chiral algebra must contain a meromorphic
stress tensor. Therefore the global sl(2) conformal algebra enhances to a Vi-
rasoro algebra, with the central charge fixed in terms of the four-dimensional
c-anomaly coefficient by c2d = −12c4d. However, the stress tensor is not
necessarily a new generator of the chiral algebra, as it could be a compos-
ite operator (i.e., obtained from normal-ordered products of the generators
and of their derivatives). Since the AKM current algebras are at the critical
level, they do not admit a normalizable Sugawara stress tensor, and therefore
the stress tensor can only be a composite if additional dimension two singlet
composites can be constructed. This is only possible (and in fact happens)

2For Lagrangian theories, this problem can (in principle) be circumvented by explicitly
constructing the full chiral algebra from the basic known chiral algebras associated with
the free hypermultiplet and vector multiplet.

3More generally, all generators of the so-called Hall-Littlewood chiral ring give rise to
generators of the chiral algebra. For class S theories with acyclic generalized quivers, such
as the Tn theories, the Hall-Littlewood chiral ring equals the Higgs branch chiral ring.
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for n = 2 and 3.
In section 4.2 we perform a detailed study of the graded partition function

of the Tn chiral algebra, which can be computed thanks to its equality to
the so-called Schur limit of the N = 2 superconformal index [37, 38], and
which shows that the collection of generators listed so far is not complete
for n > 4 (see section 4.2). Motivated by this analysis, we conjectured the
complete set of generators to be as in conjecture 5, which we reproduce here
for convenience:

Conjecture 9 (Tn chiral algebra) The Tn chiral algebra χ(Tn) is gener-
ated by

• The set of operators, H, arising from the Higgs branch chiral ring:

– Three ŝu(n) affine currents J1, J2, J3, at the critical level k2d =
−n, one for each factor in the flavor symmetry group of the theory,

– Generators W (k), k = 1, , . . . , n−1 in the (∧k,∧k,∧k) representa-
tion of

⊗3
j=1 su(n)j, where ∧k denotes the k−index antisymmetric

representation of su(n). These generators have dimensions k(n−k)
2

,

• Operators Oi, i = 1, . . . n − 1, of dimension hi = i + 1 and singlets
under

⊗3
j=1 su(n)j, with the dimension 2 operator corresponding to the

stress tensor T of central charge c2d = −2n3 + 3n2 + n− 2,

modulo possible relations which set some of the operators listed above equal
to composites of the remaining generators.

In other words, if one were to start with all generators of the above conjec-
ture, one would find that some of them could be involved in null relations with
composite operators, thereby being redundant. For example, in the chiral al-
gebra associated with T2, i.e., the theory of eight free half-hypermultiplets,
the affine currents and the stress tensor can be written as composites of the
dimension 1

2
generator W (1). For the case of T3, which corresponds to the

E6 theory of [61], convincing evidence was provided in chapter 3 that its chi-
ral algebra χ(T3) is fully generated by operators originating from the Higgs
branch chiral ring. The stress tensor can be written as a composite and also,
although not explicitly constructed in chapter 3, the dimension three singlet
operator is accounted for as a composite. For n > 3, as argued above, the
stress tensor cannot be a composite of generators in H, but the remaining
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dimension 3, . . . , n singlet generators could still be. In the case of the T4 chi-
ral algebra the dimensions three and four singlet generators are redundant,
as will be shown in section 4.3.

Our aim in section 4.3 is to verify Conjecture 9 for T4, in which case the
chiral algebra is generated by the operators in H and the stress tensor, by
explicitly constructing an associative algebra with these generators. Our ap-
proach to bootstrap this problem is to write down the most general operator
product expansions (OPEs) between the generators, and to demand asso-
ciativity of the operator product algebra by imposing the Jacobi-identities.
Since chiral algebras are very rigid, one can hope that these constraints are
sufficiently stringent to completely fix the operator algebra, as was famously
shown to be the case for the first time for the W3 algebra in [104] (see for
example [42] for a review of other cases). We indeed find that the OPEs are
completely and uniquely fixed. The analysis of the Jacobi-identities becomes
technically involved in several instances, and as a result we can only claim
that the conditions analyzed are necessary for an associative operator prod-
uct algebra. However we believe that the remaining Jacobi-identities provide
redundant constraints. As an interesting by-product of the explicit T4 chiral
algebra, we can compute four-dimensional Higgs branch chiral ring relations,
which appear as null relations in the chiral algebra setting. Some of these
relations are already known in the literature, (e.g., [105, 86]), and recovering
them here provides a further check of the chiral algebra, while others are new.

As mentioned, four-dimensional Higgs branch chiral ring relations can be
obtained from null relations in the chiral algebra. The explicit construction
of χ(T4) we present here thus provides a new, conceptually clear method
to obtain all Higgs branch chiral ring relations for the T4 theory. It seems
plausible that once their structure is understood, they can be generalized to
arbitrary Tn. In this chapter we obtain all χ(T4) null relations of dimension
smaller than four, already uncovering new Higgs branch chiral ring relations,
but the procedure can be taken further. For example, it would be possible to
verify the recently proposed null relation of [106], as well as uncover further
unknown ones. Furthermore, as will be elaborated upon in the next sec-
tions, our interpretation of the χ(Tn) chiral algebra partition function also
predicts the existence of certain types of null relations, facilitating the task
of explicitly computing them in the chiral algebra setting.

Further checks of the χ(T4) chiral algebra could be performed by par-
tially closing punctures (via a quantum Drinfeld-Sokolov (qDS) reduction
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(see chapter 3)) to obtain the free hypermultiplet, the E7 theory of [62], or
more generally the other fixtures of [67]. For example, the chiral algebra
associated with the E7 theory is conjectured to be described by an affine
ê7 current algebra at level k2d = −4 and it is easy to convince oneself that
the qDS procedure associated with the relevant su(2) embedding will indeed
result in dimension one currents corresponding to the decomposition of the
e7 adjoint representation. As shown in chapter 3, to complete the reduction
argument, certain null relations need to exist in order to remove redundant
generators in the reduced algebra. Such null relations are expected to descend
from those of χ(T4).

The construction of χ(T4) in this chapter makes use of the constraints
arising from associativity of the operator algebra. It would also be interest-
ing to study if the theory space bootstrap, as introduced in chapter 3, which
imposes instead associativity of the TQFT structure, might result in a com-
plementary route to construct the chiral algebra. In particular with an eye
towards a construction of χ(Tn), for n > 4, an alternative (or a combined)
approach might prove useful.

The organization of this chapter is as follows. In section 4.2 we analyze
the partition function of χ(Tn) employing its equality to the superconformal
index of Tn theories, and show how it motivates Conjecture 9, as well as
some other expectations about the chiral algebra. In section 4.3 we present
the explicit construction of the T4 chiral algebra and give explicit expressions
for various null relations. We also show how our expectations deduced from
the superconformal index are realized for T4. The readers interested only in
the explicit construction of χ(T4) can safely skip section 4.2 as section 4.3 is
mostly independent from it. Appendix C.1 contains some technical details on
the relation between critical affine characters and the superconformal index,
and in appendix C.2 we collect all singular OPEs defining the chiral algebra
χ(T4).

4.2 Tn indexology

In this section we analyze the partition function of the Tn chiral algebra,
which gives insights into its generators and relations. By writing the partition
function in a suggestive way we can justify Conjecture 9 and infer some
properties of the structure of the chiral algebra, such as its null relations.
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As shown in chapter 2, the graded partition function of the chiral algebra
χ(Tn) equals the so-called Schur limit of the superconformal index of the Tn
theory [37, 38]. We work under the assumption that all generators are bosonic
and thus the grading is immaterial. In appendix C.1 we show that the index
can be written in a way suggestive of its interpretation as a two-dimensional
partition function as

Zχ(Tn)(q; xi) =
∑
Rλ

q〈λ,ρ〉CRλ(q)
3∏
i=1

chRλ(q,xi) . (4.2.1)

Here xi denote flavor fugacities conjugate to the Cartan generators of the
su(n)i flavor symmetry associated with each of the three punctures, and the
sum runs over all irreducible su(n) representations Rλ of highest weight λ.
The summand contains the product of three copies — one for each punc-
ture — of chRλ(q,x), the character of the critical irreducible highest weight

representation of the affine current algebra ŝu(n)−n with highest weight λ̂,
whose restriction to su(n) is the highest weight λ [107].4 Furthermore, ρ
is the Weyl vector and 〈·, ·〉 denotes the Killing inner product. Finally, the
structure constants CRλ(q) can be written as

CRλ(q) = P.E.

[
2
n−1∑
j=1

qdj

1− q + 2
n−1∑
j=1

(n− j) qj − 2
n∑
j=2

∑
1≤i<j

q`i−`j+j−i

]
,

(4.2.2)
where `i=1,...,n denote the lengths of rows of the Young tableau describing
representation Rλ with `n = 0, dj are the degrees of invariants, i.e. dj = j+1
for su(n), and finally P.E. denotes the standard plethystic exponential

P.E. [f(x)] = exp

(
∞∑
m=1

f(xm)

m

)
. (4.2.3)

Let us provide some preliminary interpretative comments:

• We have obtained an expression for the partition function (4.2.1) that
is manifestly organized in terms of modules of the direct product of the

three critical affine current algebras
⊗3

i=1
̂(su(n)i)−n. Indeed, the fac-

tor q〈λ,ρ〉
∏3

i=1 chRλ(q,xi) in (4.2.1) captures threefold AKM primaries

4Our notation here and in appendix C.1 follows that of [108].
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of dimension 〈λ, ρ〉, transforming in representations (Rλ,Rλ,Rλ), in-
cluding for example all the W (k), and all of their AKM descendants.

• The role of the structure constants is to encode additional operators
beyond those captured by the threefold AKM modules. In particu-
lar, in the term Rλ=0 in the sum over representations, the structure

constant CRλ=0
(q) = P.E.

[
2
∑n−1

j=1
qdj

1−q

]
encodes two sets of additional

operators of dimensions dj = j+1, for j = 1, . . . , n−1, (and their sl(2)
descendants) acting on the vacuum module. These operators can either
be new generators, or obtained as singlet composites of the generators
captured by the AKM modules, which themselves are not present in
the modules. Let us now describe these two sets:

1. The fact that the three AKM current algebras are at the criti-
cal level implies that all the Casimir operators Tr(J1)k, Tr(J2)k,
Tr(J3)k with k = 2, 3, . . . , n are null within their respective AKM
algebra, and therefore that their action is not included in the affine
modules. However, these operators do not remain null in the full
chiral algebra, as it contains a stress tensor as well. In fact, null
relations set all Casimirs equal Tr(J1)k = Tr(J2)k = Tr(J3)k.5

These n − 1 Casimirs correspond to the first set of operators re-
instated by the structure constants.

2. The second set of operators motivates our conjecture that there
can be extra generators Oi with precisely dimensions hi = di =
i+ 1.

A more detailed discussion of these statements, and the interpretation of
the two remaining factors in (4.2.2) is given in the remainder of this section.
Readers not interested in this technical analysis can safely skip the remainder
of this section.

The AKM modules
Ignoring for a moment the structure constants, each term in the sum over

representations Rλ of (4.2.1) captures the states in the direct product of

5The existence of these null relations follows directly from the existence of relations on
the Higgs branch chiral ring setting the Casimir operators formed out of the moment map
operators of the three flavor symmetries equal [86]. The corresponding chiral algebra null
relations will be recovered in the next section.
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three critical affine modules with primary transforming in representation
(Rλ,Rλ,Rλ). The dimension of the threefold AKM primary is implemented
by the factor q〈λ,ρ〉, yielding

h(Rλ,Rλ,Rλ) = 〈λ, ρ〉 =
n−1∑
i=1

n− (2i− 1)

2
`i . (4.2.4)

These pairings of dimension and representations include all the threefold
AKM primary generators W (k), k = 1, . . . , n−1 in Conjecture 9. (Note that
the currents themselves are AKM descendants of the identity operator and
appear in the vacuum module.) We expect that the remaining threefold AKM
primaries in the sum over Rλ all arise from combinations of normal-ordered
products of generators in H (the set of generators originating from the Higgs
branch chiral ring generators), and do not give rise to additional generators.
It is clear that for each representation (Rλ,Rλ,Rλ) one can write down a
composite operator of the W (k), transforming in such representation, and
with the appropriate dimension. Then, it seems plausible that such operator
can always be made into a threefold AKM primary by — if necessary —
adding composites of the remaining operators in H. We have checked this
statement in a few low-dimensional examples for T4 (see equation (4.3.8) for
an explicit example). All in all, the AKM modules capture the generators
W (k), as well as other threefold AKM primaries obtained as their normal-
ordered product, and all of their AKM descendants.

The structure constants
The structure constants (4.2.2) encode additional operators on top of those

captured by the AKM modules already described. Let us start by analyzing
the factor

P.E.

[
2
n−1∑
j=1

qdj

1− q

]
. (4.2.5)

When inserted in (4.2.1), it encodes two sets of operators of dimensions dj
and their sl(2) descendants (taken into account by the denominator 1

1−q ),

normal-ordered with all operators in any given AKM module (Rλ,Rλ,Rλ).
As described before, one set adds back the Casimir operators Tr(J1)k =
Tr(J2)k = Tr(J3)k of the AKM algebras,6 and the second set motivates

6Both the Casimirs and the Casimirs normal-ordered with threefold AKM primaries
are new threefold AKM primaries, since they were null if one were to consider each AKM
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the claim that there can be additional generators Oi=1,...,n−1 of dimensions
hi = di = i+1.7 However, one should bear in mind that in some cases one can
construct (non-null) non-AKM-descendant singlet operators as composites
of the W (k) of dimensions h equal to one of these dimensions. Since the
only singlet operator in the sum over AKM modules, which is not an AKM
descendant, corresponds to the identity operator, such operators must be
accounted for by (4.2.5). This leaves two possibilities: it is either equal
(or set equal by a null relation) to a composite of smaller dimensional Oi
operators and/or of Casimirs, and consequently taken into account by the
plethystic exponentiation in (4.2.5). Or it must take the place of the would-
be generator O of dimension h. In other words, if one were to include O, one
would find a null relation between this would-be generator and the composite
of W (k). As was mentioned before, the simplest example is the stress tensor
T ≡ O1, which for T2 and T3 is a composite, but for Tn≥4 must be a new
generator. In the next section we will show that for T4 the generators of
dimension three and four are absent, as the type of composites described
above exist. However for n ≥ 5 it is not possible to write such a composite
of dimension three, and O2 must be a generator.

We now turn to the next factor in the structure constants (4.2.2)

P.E.

[
2
n−1∑
k=1

(n− k) qk

]
. (4.2.6)

Recalling that at the critical level the stress tensor is not obtained from the
Sugawara construction, the critical modules do not contain derivatives8 of the
threefold AKM primaries, although the full chiral algebra must. Similarly,
the action of the modes (Oi)−1, i = 2, . . . , n − 1, (Oi)−2, i = 2, . . . , n − 1,
(Oi)−3, i = 3, . . . , n − 1, . . . of the remaining singlet operators of the chiral
algebra are not yet included. The number of modes we have to take into
account at grade k is precisely given by n−k, and these modes are added by
one of the factors in (4.2.6). The other factor adds back similar modes of the
Casimir operators of the AKM current algebras, an explicit example of which

current algebra in isolation.
7For readers familiar with the classification of four-dimensional superconformal multi-

plets of [45], these generators arise from four-dimensional operators in the Ĉ multiplets.
8i.e., the action of the mode L−1. As is common practice we use the mode expansion

O(z) =
∑
n
On

zn+h of an operator O of dimension h, and Ln denotes the modes of the stress
tensor T .
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will be given in the next section (see (4.3.7)). It is clear that these modes
cannot be added for all representations: for example, they cannot be added
when considering the vacuum, since it is killed by all of them. Similarly, (and
here we restrict to n > 2) the only grade one modes acting on any of the W (k)

that do not kill it must be the ones which correspond to either acting on it
with a derivative, or normal-ordering it with a current, since these are the
only ways one can write a dimension k(n−k)

2
+ 1 composite in representation

(∧k,∧k,∧k).9 These facts are taken into account by the factor

P.E.

[
−2

n∑
j=2

∑
1≤i<j

q`i−`j+j−i

]
, (4.2.7)

which must subtract such relations, as well as other possible relations spe-
cific of each representation. Indeed, it is for example easy to verify that
(4.2.6) and (4.2.7) cancel each other for the vacuum module. For represen-
tations (∧k,∧k,∧k) only two q terms survive in the plethystic exponential in
the product of (4.2.6) and (4.2.7), which means that we are left with two
grade one modes. One might have expected four grade one modes: one cor-
responding to acting with a derivative and three to normal-ordering with the
three currents, but, as we will see in the next section, normal-ordering the
three currents with W (k) (making an operator in representation (∧k,∧k,∧k))
results in equal operators up to nulls (see equations (4.3.4) and (4.3.7)).

As a final observation we note that the sum in (4.2.1) only runs over
flavor symmetry representations of the type (Rλ,Rλ,Rλ), and the structure
constants (4.2.2) cannot alter flavor symmetry information. Therefore the
partition function predicts that any operator transforming in a representa-
tion (Rλ1 ,Rλ2 ,Rλ3) with not all equal λi cannot be a threefold AKM pri-
mary. More precisely, if we encounter an operator in unequal representations
(Rλ1 ,Rλ2 ,Rλ3) it must either be an AKM descendant, or obtained from one
via the operators taken into account by the structure constants (namely by
the action of any operators contributing to (4.2.5) and (4.2.6)). We will get
back to this point in the next section (around example (4.3.5)).

9Note that the normal-ordered product (JW (k)) in representation (∧k,∧k,∧k) is absent
in the critical module.
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4.3 The T4 chiral algebra

For the chiral algebra associated with the T4 theory, Conjecture 9 states that

the collection of generators G contains three ŝu(4) affine currents at the crit-

ical level k2d = −4, which we denote by (J1)
b1
a1

, (J2)
b2
a2

, (J3)
b3
a3

, two dimension
3
2

generators, W (1) and W (3), in the tri-fundamental and tri-antifundamental
representations of the flavor symmetry group respectively, which we rename
Wa1a2a3 and W̃ b1b2b3 , and one dimension two generator, W (2), in the 6 ×
6 × 6 representation which we denote explicitly as V[a1b1][a2b2][a3b3]. Here
ai, bi, ci, . . . = 1, 2, 3, 4 are (anti)fundamental indices corresponding to the
flavor symmetry factor su(4)i=1,2,3. Moreover, we must add the stress tensor
T as an independent generator, with central charge c2d = −78, but we claim
that the dimension three and four singlets operators can be obtained as com-
posites. As will be shown later the dimension three operator is argued to
be a Virasoro primary involving WW̃ |sing, where |sing means we take the sin-
glet combination, while the dimension four generator is a Virasoro primary
combination involving V V |sing. We summarize the conjectured generators in
Table 4.1.

generator G hG RG
(J1)a1

b1
1 (15,1,1)

(J2)a2
b2

1 (1,15,1)

(J3)a3
b3

1 (1, 1,15)

T 2 (1,1,1)

Wa1a2a3

3
2

(4,4,4)

W̃ a1a2a3 3
2

(4̄,4̄,4̄)

V[a1b1][a2b2][a3b3] 2 (6,6,6)

Table 4.1: T4 generators G, their dimension hG and their su(4)3 representation
RG.

As mentioned before, our strategy for finding the T4 chiral algebra is a
concrete implementation of the conformal bootstrap program. We start by
writing down the most general OPEs for this set of generators consistent with
the symmetries of the theory, and in particular we impose that the three dif-
ferent flavor symmetry groups appear on equal footing. This of course implies
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that the three flavor currents have the same affine level, simply denoted by
k2d. The OPEs of all the generators with the stress tensor are naturally fixed
to be those of Virasoro primaries with the respective dimensions. Moreover,
all generators listed in Table 4.1, with the exception of the stress tensor10,
are affine Kac-Moody primaries of the three current algebras, transforming
in the indicated representation. Therefore their OPEs with the currents are
also completely fixed. In the self-OPEs of the AKM currents and the stress
tensor, we could fix the affine level and the central charge to the values cor-
responding to the χ(T4) chiral algebra, k2d = −4 and c2d = −78. Instead
we leave them as free parameters and try to fix them the same way as any
other OPE coefficient. For the remaining OPEs we write all possible op-
erators allowed by the symmetries of the theory with arbitrary coefficients.
Our expectation is that this chiral algebra is unique, and that by imposing
associativity one can fix all the OPE coefficients, including k2d and c2d. This
indeed turns out to be true. Some of the resulting OPEs are quite long so
we collect them all in appendix C.2.11

The next step is to fix all the arbitrary coefficients by imposing Jacobi-
identities, implementing in this way the requirement that the operator al-
gebra is associative. Concretely, we impose on any combination of three
generators A,B,C the Jacobi-identities (see, e.g., [109])

[A(z) [B(w)C(u)]]− [B(w) [A(z)C(u)]]− [[A(z)B(w))]C(u)] = 0 , (4.3.1)

for |w − u| < |z − u|, where [A(z)B(w)] denotes taking the singular part of
the OPE of A(z) and B(w), and where we already took into account that our
generators are bosonic and no extra signs are needed. It is important to note
that the Jacobi-identities do not need to be exactly zero, but they can be
proportional to null operators. Since null operators decouple, associativity
of the algebra is not spoiled. For analyzing the Jacobi-identities we make
use of the Mathematica package described in [48]. Even so, the analysis is
quite cumbersome due to the large number of fields appearing in the OPEs

10It is clear that the stress tensor cannot be an AKM primary, as the OPE between
a dimension one operator (the current) and the stress tensor must have necessarily a 1

z2

pole. It is also not an AKM descendant, since at the critical level it cannot be given by
the Sugawara construction.

11In there and in what follows we adopt the standard conventions for the normal-ordering
of operators such that O1O2 . . .O`−1O` = (O1 (O2 . . . (O`−1O`) ...)).
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and the necessity of removing null relations, especially so for the Jacobi-
identities involving the generator V . These null relations are not known a
priori, therefore part of the task consists of obtaining all null operators at
each dimension and in a given representation of the flavor symmetry. Due
to these technical limitations we have only found necessary conditions for
the Jacobi-identities to be satisfied, not sufficient ones. Nevertheless these
conditions turn out to fix completely all the OPE coefficients, including the
level and the central charge of the theory, meaning the chiral algebra with
this particular set of generators is unique. After all coefficients are fixed, the
remaining Jacobi-identities analyzed serve as a test on the consistency of our
chiral algebra. We have checked a large enough set of Jacobi-identities to be
convinced that the remaining ones will not give any additional constraints. If
that is the case we have found an associative operator algebra with the same
set of generators and the same central charges as conjectured for the T4 chiral
algebra. A further check that the chiral algebra we constructed corresponds
indeed to the T4 chiral algebra can be performed by comparing the partition
function of the former to the one of the latter (which is nothing else than the
superconformal index of T4). Whereas in section 4.2 we have exploited the
index to motivate our claim about the full set of generators of the T4 chiral
algebra, in what follows we perform a partial check of the equality of the
actual partition function of the constructed chiral algebra with the index by
comparing the null states of the chiral algebra to the ones predicted by the
superconformal index up to dimension 7

2
. Even if there were generators that

we have missed in this analysis, the facts that the generators in our chiral
algebra must be present, and that the chiral algebra we constructed is closed
(assuming we have solved all constraints from the Jacobi-identities), imply
that we have found a closed subalgebra of the full T4 chiral algebra.

For practical purposes, it is useful to rewrite the partition function of the
Tn chiral algebra (4.2.1) alternatively as

Zχ(Tn)(q; xi) = P.E.

[
1

1− q
∑

generators G

qhGχ
su(n)3

RG (xi)

]
−
∑

nulls N

qhNχ
su(n)3

RN (xi) ,

(4.3.2)
in terms of a piece that describes the generators G of dimensions hG trans-
forming in representations RG of the su(n)3 flavor symmetry and their sl(2)
descendants, and a term that subtracts off explicitly the null operators N ,
of dimension hN and in representation RN . By comparing the expansion in
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h mult. R
2 2 (1,1,1)
5
2

2 (4,4,4), (4̄,4̄,4̄)

3 4 (1,1,1)

2 (6,6,6)

1 (6,6,10), and perms.

3 (15,1,1), and perms.

1 (15,15,1), and perms.
7
2

10 (4,4,4), (4̄,4̄,4̄)

2 (36,4,4), (3̄6,4̄,4̄) , and perms.

1 (20,20,4), (2̄0,2̄0,4̄) , and perms.

3 (20,4,4), (2̄0,4̄,4̄) , and perms.

Table 4.2: Quantum numbers and multiplicities of T4 null operators up to
dimension 7

2
.

powers of q of (4.2.1) with that of (4.3.2) (and under the assumption that
the full list of generators is as in Table 4.1) we can predict how many nulls
to expect in each representation and at each dimension. In Table 4.2 we
summarize the resulting quantum numbers of the low-lying null operators
N . We have explicitly constructed the null operators corresponding to the
entries in Table 4.2; the full list is given in Tables 4.3 and 4.4, where we have
defined Si to be the quadratic Casimir Si = (J i)biai(J

i)aibi .
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hN RN Null relations

2 (1,1,1) (J1)b1a1
(J1)a1

b1
= (J2)b2a2

(J2)a2
b2

= (J3)b3a3
(J3)a3

b3

5/2 (4,4,4) (J1)b1a1
Wb1a2a3 = (J2)b2a2

Wa1b2a3 = (J3)b3a3
Wa1a2b3

3 (1,1,1) (J1)b1a1
(J1)c1b1(J1)a1

c1
= (J2)b2a2

(J2)c2b2(J2)a2
c2

= (J3)b3a3
(J3)c3b3(J3)a3

c3

∂
(
(J1)b1a1

(J1)a1
b1

)
= ∂

(
(J2)b2a2

(J2)a2
b2

)
= ∂

(
(J3)b3a3

(J3)a3
b3

)
3 (6,6,6) (J1)c1[a1

V[b1]c1][a2b2][a3b3] = (J2)c2[a2
V[a1b1][b2]c2][a3b3] = (J3)c3[a3

V[a1b1][a2b2][b3]c3]

3 (10,6,6) W(a1[a2[a3Wb1)b2]b3] = −1
4
J c1(a1

V[|c1|b1)][a2b2][a3b3]

3 (15,1,1) (J1)b1a1
(J1)d1

c1
(J1)c1d1

= (J1)b1a1
(J2)b2a2

(J2)a2
b2

= (J1)b1a1
(J3)b3a3

(J3)a3
b3

(Wa1a2a3W̃
b1a2a3 − trace) = 1

16
(J1)b1a1

(J3)b3a3
(J3)a3

b3
+ 1

16
(J1)b1a1

T

+
[
((J1)c1a1

∂(J1)b1c1 − trace) + ((J1)b1c1∂(J1)c1a1
− trace)

]
−1

4
((J1)c1a1

(J1)d1
c1

(J1)b1d1
− trace)

3 (15,15,1) (Wa1a2a3W̃
b1b2a3 − traces) = 1

4

[
(J1)b1a1

∂(J2)b2a2
+ (J2)b2a2

∂(J1)b1a1

]
− 1

16

[
((J1)b1a1

(J2)c2a2
(J2)b2c2 − trace) + ((J2)b2a2

(J1)c1a1
(J1)b1c1 − trace)

]
Table 4.3: Explicit null relations up to dimension three, which can be uplifted to four-dimensional Higgs
branch chiral ring relations. Representations which are not real give rise to a similar null in the complex
conjugate representation, and representations which are not equal in the three flavor groups give rise to
similar null relations with permutations of the flavor group indices. Note that these, together with Table 4.4,
are in one-to-one correspondence to the null relations subtracted from the index given in Table 4.2.
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Null relations in the two-dimensional chiral algebra can be uplifted to
four-dimensional Higgs branch chiral ring relations, a partial list of which
is given in [86], by setting to zero all derivatives and generators not coming
from the Higgs branch chiral ring (in particular the stress tensor and the
other singlet generators, if present as independent generators). The nulls of
Tables 4.3 and 4.4 allow one to recover the low-dimensional Higgs branch
chiral ring relations in [86], and to find additional ones. Let us give a few
illustrative examples.
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hN RN Null relations

7/2 (20,4,4) 8W̃ f1b2b3V[d1(e1][a2b2][a3b3] ε|f1|a1)b1c1

= 9(J1)f1

[a1
(J1)g1

b1
W(c1]a2a3 εd1)e1f1g1 − 2(J1)f1

[d1
(J3)b3a3

W(e1]a2b3 ε|f1|a1)b1c1

+3∂(J1)f1

[d1
W(e1]a2a3 ε|f1|a1)b1c1 + 6∂

(
(J1)f1

[d1
W(e1]a2a3

)
ε|f1|a1)b1c1

(J1)f1

[d1
(J2)b2a2

W(e1]b2a3 ε|f1|a1)b1c1 = (J1)f1

[d1
(J3)b3a3

W(e1]a2b3 ε|f1|a1)b1c1

= (J1)f1

[d1
(J1)g1

(e1]W|g1|a2a3 ε|f1|a1)b1c1

7/2 (20,20,4) W̃ f1f2b3V[d1(e1][d2(e2][a3b3] ε|f1|a1)b1c1 ε|f2|a2)b2c2

= −1
2
(J1)f1

[d1
(J2)f2

[d2
W(e1](e2]a3 ε|f1|a1)b1c1 ε|f2|a2)b2c2

7/2 (36,4,4) (J1)b1(a1
(J2)b2a2

Wc1b2a3 εd1)b1e1f1 = (J1)b1(a1
(J3)b3a3

Wc1a2b3 εd1)b1e1f1 =

(J1)b1(a1
(J1)h1

c1
W|h1|a2a3 εd1)b1e1f1

7/2 (4,4,4) S1Wa1a2a3 = S2Wa1a2a3 = S3Wa1a2a3

8W̃ b1b2b3V[b1a1][b2a2][b3a3] = 2(J1)b1a1
(J3)b3a3

Wb1a2b3 + 9TWa1a2a3

+15∂
(
(J3)b3a3

Wa1a2b3

)
− 9

2
∂2Wa1a2a3 − 3

2
S1Wa1a2a3

−9
(
(J1)b1a1

∂Wb1a2a3 + (J2)b2a2
∂Wa1b2a3 + (J3)b3a3

∂Wa1a2b3

)
(J1)b1a1

(J2)b2a2
Wb1b2a3 = (J1)b1a1

(J3)b3a3
Wb1a2b3 = (J2)b2a2

(J3)b3a3
Wa1b2b3

= (J1)b1a1
(J1)c1b1Wc1a2a3 = (J2)b2a2

(J2)c2b2Wa1c2a3 = (J3)b3a3
(J3)c3b3Wa1a2c3

∂
[
(J1)b1a1

Wb1a2a3

]
= ∂

[
(J2)b2a2

Wa1b2a3

]
= ∂

[
(J3)b3a3

Wa1a2b3

]
Table 4.4: Explicit null relations at dimension 7/2, which can be uplifted to four-dimensional Higgs branch
chiral ring relations. Similar comments as for Table 4.3 apply.
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A simple calculation shows that the null relations

Tr(J1)2 = Tr(J2)2 = Tr(J3)2 , (4.3.3)

hold true. Each of these operators separately is null within its respective
critical current algebra, but thanks to the presence of the stress tensor T in
the full chiral algebra, one finds that only their differences are null. Similarly,
we have explicitly recovered the analogous relation for the third order Casimir
operators. These null relations are just two instances of the general null
relations setting equal the Casimir operators of the three current algebras,
which are similarly valid for general Tn. The corresponding Higgs branch
chiral ring relations on the moment map operators are well-known (see for
example [86]).

Another nice set of null relations is obtained by acting with a current on
the generators W (k):

(J1)b1a1
Wb1a2a3 = (J2)b2a2

Wa1b2a3 = (J3)b3a3
Wa1a2b3 ,

(J1)a1
b1
W̃ b1a2a3 = (J2)a2

b2
W̃ a1b2a3 = (J3)a3

b3
W̃ a1a2b3 ,

(J1)c1[a1
V[b1]c1][a2b2][a3b3] = (J2)c2[a2

V[a1b1][b2]c2][a3b3] = (J3)c3[a3
V[a1b1][a2b2][b3]c3] .

(4.3.4)

Null relations of this type are expected to be valid in general Tn as well, and
extend the ones listed in [86] for W (1),W (n−1). Some of the null relations
presented in Tables 4.3 and 4.4 are direct consequences of these nulls, ob-
tained by either acting with derivatives or normal-ordering them with other
operators, but others are new. For example, the last two nulls given in Table
4.3 are not obtained from previous nulls, and they give rise to known Higgs
branch chiral ring relations (they precisely turn into the relations given in
equation (2.7) of [86] after setting all derivatives and the stress tensor to
zero, and taking into account the different normalizations of the two- and
four-dimensional operators). All null relations involving the generator V in
Tables 4.3 and 4.4 give rise to new Higgs branch chiral ring relations.

As mentioned, when computing Jacobi-identities one might find that some
of them are not zero on the nose, but end up being proportional to null
states. In practice this happens quite often, and we find that consistency of
the Jacobi-identities relies precisely on the existence of some of these nulls.
For example, when examining the Jacobi-identities involving W , W̃ and V ,
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one encounters the following null relation:

W(a1[a2[a3Wb1)b2]b3] = −1

4
J c1(a1

V[|c1|b1)][a2b2][a3b3] , (4.3.5)

which only exists at k2d = −4.
We can now check a prediction made in section 4.2, namely that any

operator transforming in a representation (Rλ1 ,Rλ2 ,Rλ3) for not all equal
Rλi must be an AKM descendant (or be obtained from an AKM descen-
dant by acting on it with the operators which contribute to the structure
constants). The operator W(a1[a2[a3Wb1)b2]b3] would seem to contradict this
statement, since it transforms in the representation (10,6,6), and it clearly
cannot be obtained from an AKM descendant. Fortunately, there is no con-
tradiction with the superconformal index as this operator is set equal to an
AKM descendant by the null relation (4.3.5). More generally, we have verified
in several cases that threefold AKM primaries either appear in representa-
tions of the type (Rλ,Rλ,Rλ), or are null. Moreover we have checked that
all operators in representations which are not of the type (Rλ,Rλ,Rλ) are
either AKM descendants or obtained from them by acting with the operators
which contribute to the structure constants, such as a derivative, or normal-
ordering it with the stress tensor. A direct consequence of this interpretation
of the partition function is that we can predict the existence of certain types
of relations: whenever we can write an operator in a representation not of the
type (Rλ,Rλ,Rλ) which is neither a descendant nor obtained from one in the
manner described above, there has to be a null relation involving it. Since
null operators are threefold AKM primary, obtaining AKM primaries in said
representation provides a faster way to write down the null combinations
than to diagonalize norm matrices.

Finally we must point out that there exist operators that are not AKM
descendants and can never take part in an AKM primary combination. We
already encountered such an example, namely the stress tensor: since it is
not of Sugawara type it cannot be an AKM descendant, and the requirement
that the AKM currents are Virasoro primaries implies that it also is not an
AKM primary. Since the only other dimension two singlets are given by
the quadratic Casimir operators, which have zero OPEs with the currents,
one concludes that it is impossible to make an AKM primary combination
involving the stress tensor. Another example of an operator which cannot be
involved in any AKM primary combination is (WW̃ )|sing.. We expect that
the existence of this operator, as well as (V V )|sing. is precisely the reason why

180



the T4 chiral algebra does not require (Virasoro primary) singlet generators of
dimension three and four to close. Although these operators are not Virasoro
primaries on their own, they take part in Virasoro primary combinations, of
dimensions three and four respectively, which are not AKM primaries. Note
that by being neither AKM primaries nor descendants, their contribution
to the partition function is necessarily encrypted in the structure constant.
As explained in section 4.2, their contribution is indeed captured by the

P.E.
[
q3+q4

1−q

]
factor in the T4 structure constant (see (4.2.2)).

Looking at these operators it is natural to ask if the stress tensor and the
Virasoro primary singlet operators obtained from (WW̃ )|sing. and (V V )|sing.

form a closed subalgebra. If such an algebra closes, it must correspond to
the W4 algebra, which is the unique (up to the choice of central charge)
closed algebra with such a set of generators [110, 111]. In principle this
could be checked using our explicit construction; however, it is computa-
tionally challenging and we have not pursued it. More generally, one could
wonder whether the set of operators Oi in Conjecture 9 could form a closed
subalgebra, which then should be aWn =W(2, 3, . . . , n) algebra with central
charge c2d = −2n3 + 3n2 + n − 2. In particular, one should also be able to
test this statement for χ(T3) using the explicit construction of chapter 3, in
which case one would obtain the W3 algebra of [104].

In section 4.2 we argued that the structure constant factor of (4.2.6)
would add negative modes of the current algebra Casimir operators. Now we
can give an explicit example: the operator (J1)b1a1

Wb1a2a3 , which precisely at
the critical level becomes an AKM primary, and thus is not included in the
critical module of Wa1a2a3 . Taking the OPE of S1 with Wa1a2a3 we find

S1(z)Wa1a2a3(0) ∼ 15

4

Wa1a2a3

z2
+ 2

(J1)b1a1
Wb1a2a3

z
,

⇐⇒
[
(S1)m, (Wa1a2a3)n

]
=

15(m+ 1)

4
(Wa1a2a3)m+n + 2

(
(J1)b1a1

Wb1a2a3

)
m+n

,

(4.3.6)

where (O)n denote the modes of operator O, which in the case of
(
(J1)b1a1

Wb1a2a3)m+n correspond to the modes of the normal-ordered product. Acting
with the (S1)−1 mode of S1 on the AKM primary yields

(S1)−1|Wa1a2a3〉 = (S1)−1(Wa1a2a3)− 3
2
|0〉 = 2

(
(J1)b1a1

Wb1a2a3

)
− 5

2

|0〉 , (4.3.7)
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which exactly adds (J1)b1a1
Wb1a2a3 .12

When analyzing the superconformal index we also argued that threefold
AKM primaries in the sum over AKM modules, that do not correspond to
generators W (k) must be obtained by normal-ordered products of generators
of Higgs branch chiral ring origin. We can now give explicit examples. Let us
start by considering representation (15,15,15), for which the corresponding
primary must have dimension three. As described in the previous section
we can always write down a composite operator with the right quantum
numbers, in this case it is WW̃ |(15,15,15). Even though this operator is not a
threefold AKM primary, the following combination is:

WW̃ |(15,15,15) +
1

64
(J1)(J2)(J3) , (4.3.8)

and it is precisely this combination that is accounted for by the R = 15 term
in (4.2.1). Other examples at dimension three correspond to (10,10,10)
(and its conjugate), in which case the threefold AKM primary is simply

WW |(10,10,10) (and W̃W̃ |(10,10,10)).

12Recalling that the first null relation in (4.3.4), sets equal (J1)b1a1Wb1a2a3 =
(J2)b2a2Wa1b2a3 = (J3)b3a3Wa1a2b3 , this term and L−1|Wa1a2a3〉 (which produces ∂Wa1a2a3)
account for all the powers of q in the structure constants, since for the fundamental repre-
sentation only 2q survives in the plethystic exponential after combining (4.2.6) and (4.2.7).
It can be shown that the OPEs of higher dimensional Casimirs with Wa1a2a3 do not pro-
duce anything new.
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Chapter 5

Conclusions

We have outlined the main features of a new surprising correspondence be-
tween the four-dimensional N = 2 superconformal field theories and chiral
algebras. It should be apparent that there is a great deal more to learn about
this rich structure. There are many aspects that should be clarified further,
and many natural directions in which the construction could be generalized.
We will simply provide a concise list of what we consider to be the most
salient open questions, some of which are currently under investigation.

• For the Lagrangian examples considered in §2.5, as well as the class
S examples of chapter 3, we have made specific conjectures for the
description of the resulting chiral algebras asW-algebras. We hope that
some of these conjectures can be proved by more advanced homological-
algebraic techniques.

• A detailed analysis of the B̂1 four-point function that compared 4d
and 2d perspectives led to powerful new unitarity bounds that must
be obeyed in any interacting N = 2 SCFT with flavor symmetry. It is
likely that applying the same methods to more general correlators will
lead to further unitarity constraints.

• A better understanding of the implications of four-dimensional unitar-
ity may help clarify what sort of chiral algebra can be associated to a
four-dimensional theory. A sharp characterization of the class of chiral
algebras that descend from four-dimensional SCFTs could prove in-
valuable, both as a source of structural insights and as a possible first
step towards a classification program for N = 2 SCFTs.
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• We have seen that the four-dimensional operators that play a role in
the chiral algebra are closely related to the ones that contribute to
the Schur and Macdonald limits of the superconformal index. While
the Schur limit has been interpreted in §2.4.4 as an index of the chiral
algebra, the additional grading that appears in the Macdonald index
is not natural in the framework that we have developed. It would be
interesting if the additional refinement of the Macdonald index could
be captured by a deformation of the chiral algebra structure, perhaps
along the lines of [112].

• It seems inevitable that extended operators will ultimately find a place
in our construction. We expect that codimension-two defects orthog-
onal to the chiral algebra plane will play the role of vertex operators
transforming as non-trivial modules of the chiral algebra. One could
also apply the tools developed here to study protected operators that
live on conformal defects that fill the chiral algebra plane.

• As it was presented here, the definition of a protected chiral algebra
appears to use extended superconformal symmetry in an essential way.
Nevertheless, one wonders whether some aspects of this structure may
survive away from conformality, perhaps after putting the theory on a
nontrivial geometry.

• A related question is whether some aspects of our construction for
Lagrangian theories may be accessible to the techniques of supersym-
metric localization. The chiral algebra itself may emerge after an ap-
propriate localization of the four-dimensional path integral.

• In many examples, the structure of the 4d Higgs branch appears to play
a dominant role in determining the structure of the associated chiral
algebra. It is an interesting question whether there is a sense in which
the chiral algebra is an intrinsic property of the Higgs branch, possibly
with some additional structure added as decoration.

• The structure that we have utilized in this part does not admit a di-
rect generalization to odd space-time dimensions. However, a philo-
sophically similar approach leads to a correspondence between three-
dimensional N = 4 superconformal field theories and one-dimensional
topological field theories. The topological field theory captures twisted
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correlators of three-dimensional BPS operators whose positions are con-
strained to a line.

• The cohomological approach to chiral algebras that was successfully
pursued in this part can be repeated in two-dimensional theories with at
leastN = (0, 4) superconformal symmetry and six-dimensional theories
with N = (2, 0) superconformal symmetry [26]. As it was in the four-
dimensional case, correlation functions of the six-dimensional chiral
algebra should provide the jumping off point for a numerical bootstrap
analysis of the elusive (2, 0) theories.

• Combining the extension of this story to six dimensions with the inclu-
sion of defect operators has the potential to provide a direct explanation
for the AGT relation between conformal field theory in two-dimensions
and N = 2 supersymmetric field theories in four dimensions.
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Part II

Higgs Branch Localization
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Chapter 6

Higgs Branch Localization in
Three Dimensions

6.1 Introduction

In the last few years there has been a huge development in the study of
supersymmetric quantum field theories on compact manifolds, without topo-
logical twist. A stunning feature is that, in many cases, we are able to
compute exactly the path integral and the expectation values of (local and
non-local) operators that preserve some supersymmetry, with localization
techniques [12, 13]. The path integral can be reduced to something much
simpler, like a matrix integral or a counting problem, and explicitly evalu-
ated. After the seminal work of Pestun on S4 [14], the techniques have been
developed in many different contexts, essentially from two to five dimensions
(see [15, 16, 113, 114, 115, 116, 117, 118, 119, 120, 18, 121, 122, 14, 123, 124,
125, 126, 127, 128] for a non-exhaustive list).

Most of the work on supersymmetric theories with no twisting has been
within the so-called Coulomb branch localization: the path integral is reduced
to an ordinary integral over a “classical Coulomb branch”,1 parametrized ei-
ther by scalars in the vector multiplets, or by holonomies around circles.
The integrand can contain non-perturbative contributions (e.g. if the ge-
ometry contains an S4 or S5), or not. For instance, in three dimensions
[116, 117, 118, 119, 120, 121, 122] the integrand is simply the one-loop de-

1We used quotation marks because that would be the classical Coulomb branch on flat
space, while the theories we consider are on compact Euclidean curved manifolds.

187



terminant of all fields around the Coulomb branch configurations. It was
observed in [19] (inspired by [129]), though, that the S3 partition function
can be rewritten as a sum over a finite set of points on the Coulomb branch,
of the vortex times the antivortex partition functions [130],2 which do have
a non-perturbative origin. In this chapter we would like to gain a better
understanding of this phenomenon, from the point of view of localization.

A mechanism responsible for such a “factorization” was first understood
in [15, 16], in the analogous context of 2d N = (2, 2) theories on S2. It is
possible to perform localization in an alternative way (that can be thought
of either as adding a different deformation term, or as choosing a different
path integration contour in complexified field space), dubbed Higgs branch
localization, such that the BPS configurations contributing to the path inte-
gral are vortices at the north pole and antivortices at the south pole of S2.
Notice that such 2d factorization for supersymmetric non-twisted theories is
tightly related to the more general tt∗ setup [132].

In three dimensions quite some work has been done to understand factor-
ization. Building on [129], the authors of [17] gave very general arguments
why factorization should take place in terms of “holomorphic blocks”. Factor-
ization has been explicitly checked for U(N) theories with (anti)fundamentals
on S3 [133] and S2 × S1 [134, 135],3 manipulating the Coulomb branch in-
tegrals. General continuous deformations of the geometry have been studied
in [18, 136]. Finally, the more general tt∗ setup has been developed in three
and four dimensions [137]. Our approach is different.

In this chapter we are after a Higgs branch localization mechanism in
three-dimensional N = 2 R-symmetric Chern-Simons-matter theories, sim-
ilar to the two-dimensional one [15]. We focus on the squashed sphere S3

b

and on S2 × S1, knowing that more general backgrounds could be analyzed
with the tools of [138, 139, 136]. We show that both on S3

b and S2 × S1, as
in [15], an alternative localization (based on a different deformation term) is
possible which directly yields an expression

Z =
∑
vacua

Zcl Z
′
1-loop Zv Zav ,

whenever the flat-space theory could be completely Higgsed by a Fayet-
Iliopoulos term, and with some bounds on the Chern-Simons levels which

2The vortex partition function counts vortices in the Ω-background on R2, in the same
way as the instanton partition function of [131] counts instantons on R4.

3We slightly revisit some manipulations in [133, 135].
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apparently have been overlooked before. The sum is over a finite set of
points on the would-be “Coulomb branch”, where some chiral multiplets get
a VEV solving the D-term equations and completely Higgsing the gauge
group. What is summed is a classical and one-loop contribution, evaluated
on the vacua, times a vortex and an antivortex contributions, coming from
BPS vortex-strings at the northern and southern circles of S3

b or S2 × S1.
Both can be expressed in terms of the vortex partition function (VPF) on the
twisted R2

ε × S1 (a version of the VPF on the Ω-deformed R2 [130] dressed
by the KK modes on S1, much like the 5d instanton partition function of
[140] on R4

ε1,ε2
×S1). The precise identification of parameters depends on the

geometry.
We expect the same method to work on other three-manifolds, for instance

for the lens space index on S3
b /Zp [141, 142], and also in four dimensions on

manifolds like S3 × S1 [143, 75], S3
b /Zp × S1 [141, 144] and S2 × T 2 [124].

The case of S3 × S1 will be studied in chapter 7
The chapter is organized as follows. In section 6.2 we study the case of S3

b :
we analyze the BPS equations and their solutions, we study the effect of the
new deformation term responsible for Higgs branch localization, and write
the general form of the partition function. We conclude with the example of
a U(N) gauge theory with (anti)fundamentals [133]. In section 6.3 we do the
same in the case of S2×S1. We also consider the example of U(N) [135], and
show that S3

b and S2 × S1 are controlled by the very same vortex partition
function.

6.2 Higgs branch localization on S3
b

We start by studying the path integral of three-dimensional N = 2 R-
symmetric Yang-Mills-Chern-Simons-matter theories on the squashed three-
sphere S3

b , where b is a squashing parameter, and its supersymmetric localiza-
tion. Such a path integral has been computed, with localization techniques,
in [119], building on the works [116, 117, 118] (see also [120]). In their frame-
work the path integral is dominated by BPS configurations that look like a
classical Coulomb branch: the only non-vanishing field is an adjoint-valued
real scalar in the vector multiplet (together with an auxiliary scalar), which
can be diagonalized to the maximal torus. We thus dub this “Coulomb
branch localization”: the resulting expression in [119] is a matrix-model-like
partition function, that we review in section 6.2.4.
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Our goal is to perform localization in a different way, by including an
extra Q-exact term in the deformation action,4 so that the path integral is
dominated by BPS configurations that look like vortex strings at a northern
circle and antivortex strings at a southern circle. Vortices exist on the Higgs
branch, therefore we dub this Higgs branch localization, as in [15].

We will focus on a special class of backgrounds with three-sphere topology,
the squashed three-sphere S3

b of [119] as we said, because our goal is to spell
out how Higgs branch localization works. Much more general backgrounds
are possible on S3 [138, 139], and we expect Higgs branch localization to be
extendable to all those backgrounds easily. Moreover it has been shown in
[136] that the supersymmetric partition function depends on the background
through a single continuous parameter b (there might be multiple connected
components, though), therefore the computation on S3

b produces the full set
of possible functions one can obtain in this way from the field theory.

6.2.1 Killing spinors on S3
b

We consider a squashed three-sphere S3
b with metric [119]

ds2 = f(θ)2dθ2 + ˜̀2 sin2 θ dχ2 + `2 cos2 θ dϕ2 , (6.2.1)

where f(θ) =
√
`2 sin2 θ + ˜̀2 cos2 θ and the squashing parameter b is defined

as b =
√

˜̀/`. The ranges of coordinates are θ ∈ [0, π
2
] and χ, ϕ ∈ [0, 2π). In

fact, as apparent in [119] and remarked in [145] (see also [18]), any function
f(θ) which asymptotes to ˜̀, ` at θ = 0, π

2
respectively and which gives a

smooth metric, would lead to the same results. We choose the vielbein one-
forms as

e1 = ` cos θ dϕ , e2 = −˜̀sin θ dχ , e3 = f(θ)dθ , (6.2.2)

yielding the non-zero components of the spin connection ω13 = − `
f

sin θ dϕ

and ω23 = − ˜̀

f
cos θdχ. We underline the flat coordinates in this frame. We

also turn on a background gauge field that couples to the U(1)R R-symmetry
current:

V =
1

2

(
1− `

f

)
dϕ+

1

2

(
1−

˜̀

f

)
dχ . (6.2.3)

4Q is a supercharge, and the path integral is not affected by the insertion of Q-exact
terms [12, 13].
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The twisted Killing spinor equation5 Dµε = γµε̂ (where γa are Pauli matrices)
is then solved by the two spinors [119]

ε =
1√
2

 e−
i
2

(ϕ+χ−θ)

−e− i
2

(ϕ+χ+θ)

 , ε̄ =
1√
2

e i2 (ϕ+χ+θ)

e
i
2

(ϕ+χ−θ)

 (6.2.4)

by assigning R-charges R[ε] = −1 and R[ε̄] = 1. In fact they satisfy

Dµε =
i

2f
γµε , Dµε̄ =

i

2f
γµε̄ . (6.2.5)

We also define the charge conjugate spinor ε̃ ≡ −ε̄c = iε. For spinor conven-
tions see appendix D.1.

Two bilinears that we will need are:

ξa = iε̄γaε = −ε†γaε =
(
− i cos θ, i sin θ, 0

)
, ε̄ε = iε†ε = i . (6.2.6)

Using the coordinate frame (ϕ, χ, θ) we have

ξµ = iε̄γµε =
(1

`
,
1
˜̀
, 0
)
. (6.2.7)

There are also two useful scalar bilinears, ρ and α defined in (D.2.9), which
take values ρ = 0 and α = − 1

f
−ξµVµ = −1

2

(
1
`
+ 1

˜̀

)
. Therefore the commutator

of SUSY transformations (D.2.6) is

[δε, δε̄] = LAξ − σ −
i

2

(
1

`
+

1
˜̀

)
R . (6.2.8)

It will be useful to perform a frame rotation such that the Killing vector
field ξ = ξµ∂µ becomes one of the frame vectors. We then define the non-
underlined frame and its dual basis of vectors:

e1 = −f(θ)dθ e1 = −f(θ)−1∂θ

e2 = cos θ sin θ (` dϕ− ˜̀dχ) e2 = `−1 tan θ ∂ϕ − ˜̀−1 cot θ ∂χ

e3 = ` cos2 θ dϕ+ ˜̀sin2 θ dχ e3 = `−1∂ϕ + ˜̀−1∂χ .

(6.2.9)

5In our conventions Dµ = ∂µ + 1
4ω

ab
µ γab − iVµ. Charge conjugation is εc = Cε∗ = γ2ε

∗,
having chosen C = γ2.
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In particular ξ = e3. In this basis the spin connection reads

ωab =


0 − `

f sin2 θ dϕ− ˜̀

f cos2 θ dχ sin 2θ
2f (−` dϕ+ ˜̀dχ)

`
f sin2 θ dϕ+

˜̀

f cos2 θ dχ 0 −dθ
sin 2θ
2f (` dϕ− ˜̀dχ) dθ 0


(6.2.10)

and the Killing spinors become

ε =

 0

−e− i
2

(ϕ+χ)

 , ε̄ =

e i2 (ϕ+χ)

0

 (6.2.11)

as well as ε̃ = −ε̄c = iε. The relation between the two bases is ea =(
0 0 −1

sin θ cos θ 0
cos θ − sin θ 0

)
aa
ea, where the matrix has determinant one. In the rest of

this section we will use the non-underlined frame.
To conclude let us describe the metric of the squashed three-sphere using

Hopf coordinates φH = ϕ − χ and ψH = ϕ + χ, in which the Killing vector
ξ =

(
1
`

+ 1
˜̀

)
∂ψH +

(
1
`
− 1

˜̀

)
∂φH . On the round sphere of radius 1, ξ = 2∂ψH

generates pure motion around the Hopf fiber, whilst the squashing introduces
an additional rotation of the base space S2 with fixed points at θ = 0 and
θ = π

2
. The metric (6.2.1) reads in these coordinates:

ds2 = f(θ)2dθ2 +
`2 ˜̀2 sin2 2θ

4(`2 cos2 θ + ˜̀2 sin2 θ)
dφ2

H

+
1

4
(`2 cos2 θ + ˜̀2 sin2 θ)

(
dψH +

`2 cos2 θ − ˜̀2 sin2 θ

`2 cos2 θ + ˜̀2 sin2 θ
dφH

)2

. (6.2.12)

In fact one could instead take ∂φH as the Hopf vector field, and rewrite the
metric in the same form as above but with ψH ↔ φH .

6.2.2 The BPS equations

We will now consider the BPS equations for vector and chiral multiplets, and
how they can be obtained as the zero-locus of the bosonic part of a Q-exact
deformation action. See appendix D.2 for the SUSY transformations.

First we define

W r =
1

2
εrmnFmn , Fmn = εmnrW

r , (6.2.13)
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so that 1
2
FmnF

mn = WmW
m. Then, from (D.2.14), the BPS equations for

the vector multiplet are

0 = Qλ = i
(
Wµ +Dµσ

)
γµε−

(
D +

σ

f

)
ε

0 = Qλ† = −iε̃†γµ
(
Wµ −Dµσ

)
+ ε̃†

(
D +

σ

f

)
.

(6.2.14)

Recall that in Euclidean signature we regard λ and λ† as independent fields.
It is convenient to use the non-underlined frame and the Killing spinors in
(6.2.11); after taking sums and differences of the components, we get the
BPS equations:

0 = W1−iD2σ , 0 = W2+iD1σ , 0 = W3−i
(
D+

σ

f

)
, 0 = D3σ .

(6.2.15)
In fact—as it is standard—the equations (6.2.15) can be derived as the

zero-locus of the bosonic part of a Q-exact deformation action, whose La-
grangian is

Ldef
YM = QTr

[(Qλ)‡λ+ λ†(Qλ†)‡
4

]
. (6.2.16)

Here the action of the formal adjoint operator ‡ on Qλ and Qλ† is:

(Qλ)‡ = ε†
[
− iγµ(Wµ +Dµσ

†)−
(
D +

σ†

f

)]
(Qλ†)‡ =

[
i(Wµ −Dµσ

†)γµ +
(
D +

σ†

f

)]
ε̃ ,

(6.2.17)

where we treat σ as a complex field. The operator ‡ reduces to † when Aµ
and D are taken real. Decomposing σ = σR + iσI into its real and imaginary
parts, we find that the bosonic part of Ldef

YM is a positive sum of squares:

1

4
Tr
[
(Qλ)‡Qλ+Qλ†(Qλ†)‡

]
= Tr

{
1

2

(
W1 +D2σI

)2
+

1

2

(
W2 −D1σI)

2

+
1

2

(
W3 +

σI
f

)2

+
1

2
(D3σI)

2 +
1

2

∑
a=1,2,3

(DaσR)2 +
1

2

(
D +

σR
f

)2
}
.

(6.2.18)

If we restrict to real fields, σI = 0, from the zero locus of this action we
recover the localization locus Fµν = 0 and σ = −fD = const, as in [116]. On
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a three-sphere, Fµν = 0 allows us to set Aµ = 0, then Dµσ = ∂µσ and finally
σ can be diagonalized. On the other hand the equations (6.2.15) allow for
more general solutions with complex σ.

As in [15], Higgs branch localization can be achieved by adding another
Q-exact term to the deformation action. Consider

Ldef
H = QTr

[i(ε†λ− λ†ε̃)H(φ)

2

]
, (6.2.19)

whose bosonic part is

Ldef
H

∣∣∣
bos

= Tr
[(
W3 − i

(
D + σ

f

))
H(φ)

]
. (6.2.20)

The action Sdef
H =

∫
Ldef

H is bothQ-exact andQ-closed.6 H(φ) is a generic real
function of the complex scalar fields φ, φ† in chiral multiplets,7 taking values
in the adjoint representation. Actually one could even consider more gen-
eral functions H(φ, σ)—and we mention the interesting fact that H(φ, σ) =
H(φ) + κσI would lead to Yang-Mills-Chern-Simons vortex equations—but
we will not do so in this chapter.

The bosonic part of the new deformation term Ldef
H is not positive def-

inite. However if we consider the sum Ldef
YM + Ldef

H , the auxiliary field D
appears quadratically without derivatives and can be integrated out exactly
by performing the Gaussian path integral. This corresponds to imposing

D +
σR
f

= iH(φ) , (6.2.21)

in other words D + σR/f is formally taken out of the real contour. The
bosonic part of what we are left with is a positive sum of squares:

Ldef
YM + Ldef

H

∣∣∣
D, bos

= Tr

[
1

2

(
W1 +D2σI

)2
+

1

2

(
W2 −D1σI

)2

+
1

2

(
W3 +

σI
f

+H(φ)
)2

+
1

2
(D3σI)

2 +
1

2

∑
a=1,2,3

(DaσR)2

]
. (6.2.22)

6While exactness is manifest in (6.2.19), closeness follows from an argument in [126]. If
ε†, ε̃ were fields, the integral of the trace in (6.2.19) would be invariant under Q2 because
it is a neutral scalar. Therefore if ε is invariant under the bosonic operator Q2, then Sdef

H

is Q-closed. It is easy to check that Q2ε = Lξε+ i
2 (`−1 + ˜̀−1)ε = 0.

7If we want to be sure that Ldef
H does not change the vacuum structure of the theory,

we should limit ourselves to functions H that do not modify the behavior of the action at
infinity in field space [146]. This is the case if H(φ) is quadratic.
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The BPS equations describing its zero-locus are then

0 = W1 +D2σI , 0 = W2 −D1σI , 0 = W3 +
σI
f

+H(φ) ,

0 = D3σI , 0 = DaσR .
(6.2.23)

These equations differ from (6.2.15) only by the fact that the “D-term equa-
tion” (6.2.21) has been imposed.

Let us now consider the chiral multiplets, transforming in some (possi-
bly reducible) representation of the gauge and flavor symmetry group. At
this point it is useful to introduce some notation. We call R the (possi-
bly reducible) representation of the gauge and flavor symmetry group under
which all chiral multiplets transform. Accordingly, we consider a vector mul-
tiplet for the full gauge and flavor symmetry, the components for the gauge
group being dynamical and those for the flavor group being external, and
whose real scalar we call S. On a supersymmetric background, external vec-
tor multiplets should satisfy the same BPS equations (6.2.14), but of course
they do not have a kinetic action. Real expectation values of the external
components of S are the so-called real masses, so coupling a chiral multi-
plet in representation R to S includes real masses as well.8 On the other
hand, we decompose R into irreducible representations of the gauge group:
R =

⊕
iRi. In this notation, each chiral multiplet in representation Ri

couples to σ and to its real mass term mi. The projection of S on the
representation Ri is S

∣∣
Ri

= σ +mi.
For each irreducible gauge representation R, the BPS equations Qψ =

Qψ† = 0 give

0 = D3φ−
(
σ +m+ i

q

f

)
φ 0 = e−

i
2

(χ+ϕ)(D1 − iD2)φ+ ie
i
2

(χ+ϕ)F

0 = D3φ
† + φ†

(
σ +m+ i

q

f

)
0 = e

i
2

(χ+ϕ)(D1 + iD2)φ† + ie−
i
2

(χ+ϕ)F † ,

(6.2.24)

8In our discussion we are not completely general. In three dimensions, the flavor
symmetry group usually includes topological (or magnetic) symmetries which do not act
on the microscopic chiral multiplets in the Lagrangian, but rather on monopole operators,
and real mass parameters can be included for those symmetries as well. For instance, a
U(1) gauge theory has a U(1)T topological symmetry and a real mass for it is the Fayet-
Iliopoulos term. However in our formalism FI terms have to be included by hand, rather
than turning on the corresponding component of S.
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where m is the mass and q is the R-charge (all fields in R must have the same
mass and R-charge). Imposing the reality conditions φ = (φ†)†, F = (F †)†

and decomposing σ into real and imaginary parts as before, the equations
simplify to

(σR +m)φ = 0 , D3φ− i
(
σI +

q

f

)
φ = 0 , (D1 − iD2)φ = 0 , F = 0 .

(6.2.25)
In passing we note that, since ξ = e3 and using the first equation ReS

∣∣
Ri
φ =

0, the second one is

0 = ξµ
(
∂µ−iAµ−iqVµ

)
φ−i

(
σI+

q

f

)
φ =

[
LAξ −

iq

2

(1

`
+

1
˜̀

)
−S

∣∣
Ri

]
φ = Q2φ .

(6.2.26)
As before, these equations can also be obtained from the canonical defor-

mation action

Ldef
mat = Q (Qψ)†ψ + ψ†(Qψ†)†

4
. (6.2.27)

Up to total derivatives, its bosonic part reads

Ldef
mat

∣∣∣
bos

=
1

2

∣∣∣D3φ− i
(
σI + q

f

)
φ
∣∣∣2 +

1

2

∣∣(D1− iD2)φ
∣∣2 +

1

2

∣∣(σR+m)φ
∣∣2 +

1

2
|F |2 ,

(6.2.28)
where we recognize once again the BPS equations.

To conclude this section, let us rewrite the BPS equations in components
since it will be useful later on. For the vector multiplet we find

`−1 ˜̀−1Fϕχ =
(
− `−1 sin2 θ Dϕ + ˜̀−1 cos2 θ Dχ

)
σI

`−1Fθϕ + ˜̀−1Fθχ = −DθσI

`−1 tan θFθϕ − ˜̀−1 cot θ Fθχ = f(θ)H(φ) + σI

0 =
(
`−1Dϕ + ˜̀−1Dχ

)
σI

0 = DµσR

(6.2.29)

and for the chiral multiplet we get 0 = (σR +m)φ = F as well as(
`−1Dϕ + ˜̀−1Dχ

)
φ = i

(
σI +

q

f

)
φ(

f(θ)−1Dθ + i`−1 tan θ Dϕ − i˜̀−1 cot θ Dχ

)
φ = 0 .

(6.2.30)
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6.2.3 BPS solutions: Coulomb, Higgs and vortices

We will now analyze the solutions to (6.2.15), (6.2.23) and (6.2.25). First,
let us recall the solutions for the standard choice H(φ) = 0.

Coulomb-like solutions. Consider (6.2.15) and (6.2.25). We solve them
along a “real” contour where Aµ, σ,D are real, in particular σI = 0, and
(φ, φ†), (F, F †) are conjugate pairs. Moreover we assume that all chiral mul-
tiplets have positive R-charge. As mentioned before, the solutions are [116]

Aµ = 0 , σ = −fD = const , φ = F = 0 . (6.2.31)

Let us check that there are no solutions with non-trivial φ. We can Fourier
expand along the compact directions ϕ, χ:

φ(θ, ϕ, χ) =
∑

m,n∈Z

cmn(θ) einϕeimχ . (6.2.32)

The first equation in (6.2.30) imposes the constraint q = 2(m`+n˜̀)/(`+˜̀) for
m,n ∈ Z. In particular for incommensurable values of `, ˜̀, either q is one of
the special values above and in this case there is only one Fourier mode (m,n),
or φ = 0 is the only solution. Assuming that `, ˜̀ are incommensurable and
that m,n are fixed and solve the constraint, the second equation in (6.2.30)
reduces to

(
sin 2θ ∂θ + q cos 2θ + Lf(θ)

)
φ = 0 with L = 2(m − n)/(` + ˜̀).

The solution is

φ(θ, ϕ, χ) =
(1− s(θ)

1 + s(θ)

)L`
4
(1− s̃(θ)

1 + s̃(θ)

)−L˜̀

4
(sin 2θ)−q/2 einϕeimχ (6.2.33)

with

s(θ) =

√
`2 + ˜̀2 − (`2 − ˜̀2) cos 2θ

2`2
, s̃(θ) =

√
`2 + ˜̀2 − (`2 − ˜̀2) cos 2θ

2˜̀2
.

(6.2.34)
The functions s, s̃ are monotonic and positive, with s(0) = s̃(π

2
)−1 = ˜̀/` and

s(π
2
) = s̃(0) = 1. For q > 0 there are no smooth solutions. For q = 0 (then

m = n = 0) there is the constant Higgs-like solution φ = φ0 that we will
re-encounter below (in this case, σR is constrained by (σR + m)φ = 0), but
we will not consider it here since we assumed that R-charges are positive.
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Now let us study the new solutions with non-trivial H(φ). We integrate
D out first, i.e. we solve (6.2.23) and (6.2.25) and impose a “real” contour
for all fields but D (in particular σI = 0 again). We also take vanishing R-
charges, q = 0: arbitrary R-charges can be recovered by analytic continuation
of the final result in the real masses, as in [15]. We make the following choice
for H(φ):

H(φ) = ζ −
∑
i,a

T aadj φ
†
iT

a
Riφi (6.2.35)

where the sum is over the representations Ri and the gauge symmetry gen-
erators T a in representation Ri. The adjoint-valued parameter ζ is defined
as

ζ =
∑
a:U(1)

ζaha , (6.2.36)

i.e. a sum over the Cartan generators ha of the Abelian factors in the gauge
group, in terms of the real parameters ζa. We find the following classes of
solutions.

Deformed Coulomb branch. It is characterized by φ = 0, therefore from
(6.2.23):

F = ζ sin θ cos θ f(θ) dθ ∧ (` dϕ− ˜̀dχ) . (6.2.37)

Since S3
b has trivial second cohomology, any line bundle is trivial and we can

find a globally defined and smooth potential:

A = ζ
[(
G(θ)−G(π/2)

)
` dϕ+

(
G(0)−G(θ)

)
˜̀dχ

]
(6.2.38)

where G′(θ) = sin θ cos θ f(θ). We find

G(θ) =

(
`2 + ˜̀2 − (`2 − ˜̀2) cos 2θ

)3/2

6
√

2 (`2 − ˜̀2)
+ const (6.2.39)

G
(
π
2

)
−G(0) =

`2 + `˜̀+ ˜̀2

3(`+ ˜̀)
=

vol(S3
b )

4π2`˜̀
. (6.2.40)

The scalar σ is constant and it commutes with F , in particular we can choose
a gauge where it is along the Cartan subalgebra.
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Higgs-like solutions. They are characterized by H(φ) = 0 (we will relax
this condition momentarily). This implies Fµν = 0 and, choosing Aµ = 0,
also 0 = ∂µσ = ∂µφ (one has to exclude non-constant solutions for φ with
the same argument as above). Therefore σ can be diagonalized, and one is
left with the algebraic equations

H(φ) = 0 ,
(
σ +mi

)
φi = 0 ∀ i . (6.2.41)

The last equation can be more compactly written as Sφ = 0. These are
the standard D-term equations, and their solutions strongly depend on the
gauge group and matter content of the theory.

We will be interested in gauge groups and matter representations for
which generic parameters ζa and generic masses mi lead to solutions to
(6.2.41) that completely break the gauge group. More specifically, we will
be focusing on theories for which the Coulomb branch parameters σα, for
α = 1, . . . , rankG, are fixed (depending on the Higgs-like solution) in terms
of the masses mi, and for generic masses they are different breaking the gauge
group to U(1)rankG. Each U(1) is then Higgsed by one component of φ, along
a weight w ∈ R, getting VEV. One gets a discrete set of Higgs vacua. If the
gauge group is not completely broken (including the case of an unbroken dis-
crete gauge group), or if some continuous Higgs branch is left, the situation
is more involved and we will not study it here.

Vortices. Each Higgs-like solution is accompanied by a tower of other solu-
tions with arbitrary numbers of vortices at the north and at the south circles
(the Higgs-like solution should be thought of as the one with zero vortex
numbers). To see this, expand the BPS equations around θ = 0 at first order
in θ. Defining the coordinate r = ˜̀θ, the metric reads

ds2 ' dr2 + r2dχ2 + `2dϕ2 around θ = 0 (6.2.42)

which is R2 × S1. The BPS equations (6.2.29) and (6.2.30) reduce to

r−1Frχ = −H(φ) Frϕ = −`
˜̀
Frχ Fϕχ = 0

0 =
(
Dr −

i

r
Dχ

)
φ Dϕφ = −`

˜̀
Dχφ .

(6.2.43)
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The two equations on the left are the usual vortex equations9 on R2, while
the other equations complete the solutions to vortices on R2 × S1 once the
solutions on R2 are found. The equations cannot be solved analytically,
therefore let us qualitatively describe the solutions in the U(1) case with a
single chiral of charge 1, since—up to a rescaling of the charge—this is the
generic situation once the gauge group has been broken to U(1)rankG by the
VEV of σ. We take ζ > 0, in order to have solutions. Far from the core of
the vortex, for r �

√
m/ζ (the integer m will be defined momentarily), we

have 0 = H(φ) = Frχ = Frϕ therefore

φ '
√
ζ e−inϕ−imχ , A ' −n dϕ−mdχ . (6.2.44)

Stokes’ theorem on R2 implies 1
2π

∫
F = −m, i.e. m is the vortex number at

the north circle (while n will be interpreted below). At the core of the vortex
φ has to vanish in order to be smooth (if m 6= 0), therefore close to the core

φ ' B(re−iχ)me−inϕ , F ' ζr dr ∧
(`

˜̀
dϕ− dχ

)
A '

(
− n− `

˜̀
m+ ζ

`
˜̀
r2

2

)
dϕ− ζ r

2

2
dχ

for r �
√
m/ζ

(6.2.45)
where B is some constant. In particular, smoothness of φ requires m ∈ Z≥0.
Note that φ vanishes only at r = 0, therefore

˜̀Aϕ + `Aχ = −˜̀n− `m (6.2.46)

holds exactly. If we approximate r−1Frχ by a step function on a disk times

−ζ, we get that the size of the vortex is of order
√
m/ζ justifying the limits

we took. In the limit ζ →∞ the vortices squeeze to zero-size, therefore the
first-order approximation of the equations around θ = 0 is consistent.

We can similarly study the BPS equations expanded around θ = π
2

at first
order in π

2
− θ, defining a coordinate r̃ = `

(
π
2
− θ
)
. As before, the equations

reduce to the 2d antivortex equations (as the orientation induced from S3
b

is opposite) besides some other equations that complete the solutions to 3d.
For a U(1) gauge theory with a single chiral, the analysis above goes through
mutatis mutandis. Far from the core of the vortex, for r̃ �

√
n/ζ, we have

9They are more conventionally antivortex equations, the difference being only the ori-
entation.
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the same asymptotic behavior as in (6.2.44). Stokes’ theorem on R2 implies
1

2π

∫
F = −n, i.e. n is the antivortex number at the south circle, and the

analysis of the solution for r̃ �
√
n/ζ reveals that n ∈ Z≥0. The behavior of

the fields (6.2.44) in the intermediate region, far from both cores, provides a
link of parameters between the two cores and it is indeed a solution of the
full BPS equations.

For finite values of ζ, both curvature and finite size effects play a rôle.
From the second and third equations on the left in (6.2.29), integrating over
the sphere one can obtain

−4π2`

∫
Fθχ dθ = 4π2 ˜̀

∫
Fθϕ dθ =

∫
H(φ) dvolS3

b
≤ ζvol(S3

b ) , (6.2.47)

where we used that H(φ) is bounded by 0 ≤ H(φ) ≤ ζ on vortex solutions,
and vortex solutions have only θ dependence. Still working in a gauge with
smooth and globally defined connection A, we can define the vortex numbers
m,n at the north and south circle as the winding numbers of φ around χ, ϕ
respectively. The analyses at the cores are still valid, therefore m,n ∈ Z≥0
and

−Aϕ(0)

`
= −Aχ

(
π
2

)
˜̀

=
n

`
+
m
˜̀
. (6.2.48)

Then the bound above implies a bound on the vortex and antivortex numbers:

b n+ b−1m ≤ ζ
vol(S3

b )

4π2
√
`˜̀
. (6.2.49)

We conclude that for finite values of ζ there is a finite number of vor-
tex/antivortex solutions on the squashed three-sphere; when the bound is
saturated, the chiral field φ actually vanishes and the gauge field is as in
the deformed Coulomb branch described before. We thus get a nice picture
of the structure of solutions as we continuously increase ζ from 0 to +∞.
The Coulomb branch solution is continuously deformed into the deformed
Coulomb branch solution; as ζ crosses one of the thresholds, proportional
to bn + b−1m, a new (anti)vortex solution branches out, in which the value
of the matter field is infinitesimal at the threshold and increases further on.
This picture will be useful in the next section to understand how localization
changes as we change ζ continuously.
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For gauge groups of rank larger than one, there can be mixed Coulomb-
Higgs branches where part of the gauge group is broken to a diagonal torus
(along those components BPS solutions describe a deformed Coulomb branch)
and part is completely broken (admitting vortex solutions).

6.2.4 Computation of the partition function

Given the various classes of solutions to the BPS equations found in the
previous section, the computation of the partition function requires two
more steps: the evaluation of the classical action and of the one-loop de-
terminant of quadratic fluctuations around the BPS configurations, and the
sum/integration over the space of BPS configurations.

One-loop determinants from an index theorem

For the computation of the one-loop determinants around non-constant con-
figurations, one most conveniently makes use of an equivariant index theorem
for transversally elliptic operators [147], as in [148]. A similar technique has
been used on S4 [14, 149] and S2 [15]. One can give a cohomological form to
the Q-exact localizing action (this point is well explained in [14, 149]), and,
with the equivariant index theorem, the one-loop determinants of quadratic
fluctuations only get contributions from the fixed points of the equivariant
rotations on the worldvolume. Recall that the localizing supercharge squares
to

Q2 = LAξ −S− i

2

(
1

`
+

1
˜̀

)
R . (6.2.50)

The vector field ξ = 1
`
∂ϕ + 1

˜̀∂χ does not have fixed points on S3
b , on the

other hand its orbits do not close for generic values of b (ξ generates a non-
compact isometry group R) and since the index theorem requires a compact
group action, we cannot use it directly.10 The idea of [148] is to write ξ =(

1
`

+ 1
˜̀

)
∂ψH +

(
1
`
− 1

˜̀

)
∂φH in Hopf coordinates: it generates a free rotation of

the Hopf fiber and a rotation of the base space. We can reduce the operator
for quadratic fluctuations (i.e. the operator resulting from the quadratic
expansion of the localizing action around the background) along the Hopf

10For special values of b, e.g. the round sphere b = 1, the group action is a compact
U(1). Still the index theorem determines the index up to torsion, and in fact in those
cases the index turns out to be pure torsion. We thank Takuya Okuda for correspondence
on this issue.
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fiber, obtaining a transversally elliptic operator on the base S2. We thus
reduce the problem to the computation of a one-loop determinant on the
base S2, dressed by the KK modes on the Hopf fiber. The projection of ξ
to S2 gives a rotation with fixed points at θ = 0 (which we call North) and
θ = π

2
(which we call South). This is exactly the setup in [15]. Identifying

the equivariant parameters of the U(1)∂φH ×U(1)R ×G action as ε = 1
`
− 1

˜̀,

ε̌ = 1
`

+ 1
˜̀ and a = −i

(
1
`
Aϕ + 1

˜̀Aχ
)
− S, following [148] we obtain (see

appendix D.3) the one-loop determinant for a chiral multiplet of R-charge q
in gauge representation R:

Zchiral
1-loop“ = ”

∏
w∈R

∏
n∈Z

∏
m≥0

(m+ 1)`−1 + n˜̀−1 − q
2
ε̌− i w(aS)

n`−1 −m˜̀−1 − q
2
ε̌− i w(aN)

. (6.2.51)

In all BPS configurations that we consider in this section, aN = aS ≡ a and
some further simplifications take place. It is also convenient to introduce the

rescaled variable â ≡
√
`˜̀a, as well as b ≡

√
˜̀/` and Q = b+ b−1. Rescaling

numerator and denominator of (6.2.51) by
√
`˜̀ and neglecting overall signs,

we are led to

Zchiral
1-loop“ = ”

∏
w∈R

∏
m,n≥0

mb+ nb−1 +
(
1− q

2
)Q− iw(â)

mb+ nb−1 + q
2
Q+ iw(â)

(6.2.52)

=
∏
w∈R

sb

(
iQ

2
(1− q) + w(â)

)
. (6.2.53)

The last one is the regulated expression found in [119], in terms of the double
sine function sb. The one-loop determinant for the vector multiplet is simply

Zvec
1-loop =

∏
α>0

2 sinh
(
πb α(â)

)
2 sinh

(
πb−1 α(â)

)
, (6.2.54)

where the product is over the positive roots α of the gauge group.

Coulomb branch

Let us first quickly review the Coulomb branch localization formula, obtained
by choosing ζ = 0 in H(φ), or taking positive R-charges. The matrix model
was derived in [119]. The onlyQ-closed but notQ-exact pieces of classical ac-
tion are the CS and FI terms (that we report in appendix D.2.3). Evaluation
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on the Coulomb branch configurations gives

Scl = iπTrCSσ̂
2 − 2πiTrFI σ̂ , (6.2.55)

in terms of the rescaled adjoint scalar σ̂ ≡
√
`˜̀σ. The weighted traces TrCS

and TrFI are spelled out in appendix D.2.3, and for U(N) at level k they
reduce to Scl = iπkTrσ̂2 − 2πiξTrσ̂.

Since the equivariant parameters for gauge transformations are equal at
the two fixed circles, âN = âS = −σ̂, the one-loop determinants (6.2.52) and
(6.2.54) are

Zchiral
1-loop =

∏
w∈R

sb

(
iQ

2
(1− q)− w(σ̂)

)
(6.2.56)

Zvec
1-loop =

∏
α>0

2 sinh
(
πb α(σ̂)

)
2 sinh

(
πb−1 α(σ̂)

)
. (6.2.57)

This leads to the matrix integral of [119]:

ZS3
b

=
1

|W|

∫ ( rankG∏
a=1

dσ̂a

)
e−iπTrCS σ̂2+2πiTrFI σ̂ Zvec

1-loop Z
chiral
1-loop , (6.2.58)

where |W| is the dimension of the Weyl group. Notice that the Vandermonde
determinant for integration over the gauge algebra g cancels against the one-
loop determinant for gauge-fixing ghosts.

Deformed Coulomb branch

Let us now study the contributions for ζ 6= 0. The classical CS and FI actions
evaluated on the deformed Coulomb branch configurations give

SCScl = iπTrCS
(
σ̂ − iζκ

)2
, SFIcl = −2πiTrFI

(
σ̂ − iζκ

)
, (6.2.59)

and we defined the constant

κ ≡ vol(S3
b )

4π2r
=
r2

3

(
Q−Q−1

)
=
r

3

`2 + `˜̀+ ˜̀2

`+ ˜̀
, (6.2.60)

where r ≡
√
`˜̀. In both cases the effect of the deformation parameter ζ is

effectively to shift the integration variable σ̂ in the imaginary direction. The
same shift occurs in the equivariant gauge parameters

âN = âS = −Ŝ + iζκ
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defined above (6.2.51), as it follows from (6.2.38), and so also the one-loop
determinants simply suffer an effective imaginary shift of σ̂. Therefore the
whole deformed Coulomb branch contribution is simply obtained from the
undeformed Coulomb branch expression (6.2.58) by shifting the integration
contours in the imaginary directions.

Since the parameter ζ was introduced via a Q-exact term in the action,
the partition function should not depend on it. For ζ = 0 we have the original
Coulomb branch integral (6.2.58). Upon turning on ζ we effectively deform
the contours, shifting them in the imaginary directions, and the integral
remains constant until we cross some pole of the chiral one-loop determinant.
One can anticipate what happens when crossing a pole based on the bound
(6.2.49): the imaginary coordinates of the poles precisely correspond to values
of ζ for which new vortices appear on S3

b as solutions to the vortex equations,
and the contribution from the vortices precisely accounts for the jumps in
the deformed Coulomb branch integral.

Suppression. Our goal is to derive a localization procedure that reduces
the partition function to a pure sum over vortices, with no spurious contribu-
tions from deformed Coulomb branches. In order to do that, we can take a
suitable limit ζa → ±∞: in favorable situations, there exists (for a choice of
signs) a limit in which the deformed Coulomb branch contribution vanishes.

Let us define the U(1) charges of a gauge representationRj: q
(a)
j ≡ w(ha),

where ha are the Cartan generators of the Abelian factors in the gauge group,
as in (6.2.36), while w is any one weight of Rj.

11 We also decompose σ̂ =
σ̂R − iζκ into its real and imaginary parts. Using the asymptotic behavior
of the double-sine function (see e.g. the appendix of [150]):

sb(z) →


e+iπ

2

(
z2+ 1

12
(b2+b−2)

)
|z| → ∞ , | arg z| < π

2

e−i
π
2

(
z2+ 1

12
(b2+b−2)

)
|z| → ∞ , | arg z| > π

2
,

(6.2.61)

one finds that the absolute value of the integrand in the partition function
matrix model has the following suppression factor, for ζa → ±∞:∣∣∣integrand

∣∣∣ ∼ exp

[
−2πκ

∑
a

ζa

(
TrCS σ̂Rha−TrFIha+

1

2

∑
Rj

q
(a)
j

∑
w∈Rj

∣∣w(σ̂R)+mj

∣∣)] ,
11There is no dependence on the particular weight w chosen, since the U(1) generators

commute with all roots of the simple factors.
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where the first two terms in parenthesis originate from the classical action
while the last term comes from the chiral multiplets in those representations
Rj with q

(a)
j 6= 0. The one-loop determinants of chiral multiplets with q

(a)
j =

0 and that of vector multiplets are unaffected by ζ. One can achieve a
suppression of the deformed Coulomb branch contribution if there exists a
choice of signs in the limit ζa → ±∞ such that the factor above goes to zero
for all values of all components of σ̂R.

As a concrete example, consider a U(N) theory with Nf fundamentals,
Na antifundamentals and some adjoint chiral multiplets (there is a single
Abelian factor in the gauge group, and q equals 1, −1 and 0 respectively).
Setting the real masses to zero for simplicity, the factor above provides a
suppression of the deformed Coulomb branch for

ζ → +∞ and − Nf −Na

2
< k <

Nf −Na

2
, (6.2.62)

in particular Nf > Na, where the two constraints come from positive and
negative σ̂R. Similarly, we have suppression for

ζ → −∞ and
Nf −Na

2
< k < −Nf −Na

2
, (6.2.63)

In particular Na > Nf . These two cases, |k| < |Nf − Na|/2, are the “max-
imally chiral” theories of [151]. In case one or both bounds are saturated,
then the true FI term ξ needs to have the correct sign.

We stress that if the “maximally chiral” condition (including saturations
of the bounds) is not met, i.e. if |k| ≤ |Nf −Na|/2 is not met, the deformed
Coulomb branch contribution is not suppressed. As we will see in the next
section, this translates to the fact that the Coulomb branch integral cannot
be closed neither in the upper nor lower half-plane, and reduction to a sum
over residues (as in [19]) requires some more clever procedure (if possible at
all).

Higgs branch and vortex partition function

For finite values of the deformation parameters ζa, among the BPS configu-
rations of section 6.2.3 we find Higgs vacua and vortex solutions, where the
(anti)vortex numbers (m,n) are bounded by (6.2.49) (or its multi-dimen-
sional version). These BPS configurations contribute to the path integral,
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besides the deformed Coulomb branch discussed before. Let us determine
their contribution.

The classical actions can be integrated exactly (even though the vortex
solutions cannot be written explicitly) using D = −σ/f + iH(φ), the BPS
equations (6.2.29) and the knowledge of Aϕ(θ) at θ = 0, π

2
in a globally

defined gauge with Aθ = 0, as discussed around (6.2.45). One finds

SCScl = iπTrCS
(
σ̂− ib−1m− ibn

)2
, SFIcl = −2πiTrFI

(
σ̂− ib−1m− ibn

)
.

(6.2.64)
Here the vortex numbers m,n should really be thought of as GNO quantized
[152] elements of the gauge algebra, i.e. belonging to the coweight lattice.

The evaluation of the one-loop determinants for the off-diagonal W-
bosons and all chiral multiplets not getting a VEV is straightforward: one
identifies the equivariant gauge transformation parameters in the vortex
background from the expression of Q2 at the poles:

âN = âS = −
(
Ŝ− ib−1m− ibn

)
. (6.2.65)

These values have to be plugged into (6.2.52) and (6.2.54). For the rankG
chiral multiplets that get a VEV and, by Higgs mechanism, pair with the vec-
tor multiplets along the maximal torus of the gauge group becoming massive,
one has to be more careful. As pointed out in [16], the one-loop determinant
for the combined system is just the residue of the chiral one-loop.12 Therefore
the total contribution from the chiral multiplets is

Zchiral
1-loop = Res

S→SH

∏
w∈R

sb

(
iQ

2
− w

(
Ŝ− imb−1 − inb

))
, (6.2.66)

where SH denotes S evaluated on the particular Higgs vacuum, and the R-
charges have been set to zero. Finally, since each BPS solution is a smooth
configuration with no moduli, we simply sum over them with weight 1.

From (6.2.66) it is clear that the sum of the contributions from the fi-
nite number of vortices satisfying the bound (6.2.49) exactly accounts for the
jumps in the deformed Coulomb branch contribution every time the integra-
tion contour—which is shifted in the imaginary directions by ζa—crosses a
pole of the chiral one-loop determinant. This of course is expected, since the
path integral should not depend on ζ.

12The chiral one-loop diverges because it is evaluated at a point on the Coulomb branch
where the chiral multiplet, before pairing with the vector multiplet, is massless. Taking
the residue corresponds to removing the zero-mode.
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Vortex partition function. We obtain a more interesting result if we
take a suitable ζa → ±∞ limit in which the deformed Coulomb branch
contribution vanishes, and there is no bound on the (anti)vortex numbers.
Conditions for the existence of such a limit were discussed in section 6.2.4.

In this limit the path integral is completely dominated by (anti)vortex-
string configurations wrapping the northern and southern circles, and whose
size shrinks to zero. The resummed contribution of all vortex strings is
accounted by the K-theoretic vortex partition function, Zvortex, which can be
computed on the twisted R2

ε×S1: R2 is rotated by the equivariant parameter
ε as we go around S1, and this effectively compactifies the space. In fact one
associates equivariant parameters to flavor symmetries as well. In a suitable
scaling limit in which S1 shrinks (together with the equivariant parameters),
one recovers the vortex partition function in Ω-background of [130]. This all
is the 2d analog of the 4d and 5d instanton partition functions constructed
in [131, 140].

Let us compute the partition function in this limit. First, we have a finite
number of Higgs vacua. In each vacuum, σ̂α are fixed to some specific (real)
values that are functions of the real masses. The classical actions (6.2.64)
provide a weighting factor to Zvortex for the vortex configurations, times an
overall classical contribution:

Scl = iπTrCSσ̂
2 − 2πiTrFI σ̂ . (6.2.67)

The weighting factors for (anti)vortices have a term quadratic in the vortex
number and a linear term:

e−Sv = exp
[
iπb−2TrCSm

2 + 2πb−1
(
− TrCSσ̂ · +TrFI

)
m
]

e−Sav = exp
[
iπb2TrCSn

2 + 2πb
(
− TrCSσ̂ · +TrFI

)
n
]
.

(6.2.68)

The actions (6.2.64) also give rise to a term e2πiTrCSmn: in the absence of
parity anomaly in the matter sector, TrCSmn is integer and the term equals
1; otherwise TrCS is semi-integer and such that the term is a sign precisely
canceling the parity anomaly.13

Second, the one-loop determinants for the vector multiplet and the chiral
multiplets not acquiring a VEV are as in (6.2.56). The rankG chiral mul-
tiplets acquiring VEV bring a residue factor, which in this case is just 1.

13Concretely, for U(N)k with Nf fundamentals and Na antifundamentals, cancelation
of the parity anomaly requires 2k +Nf −Na ∈ Z. The general case is discussed in [153].
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Finally, the vortex partition function Zvortex depends on equivariant param-
eters for rotations of R2 (ε) and flavor rotations (g): they are identified—at
θ = 0 (N) and θ = π

2
(S)—from the SU(1|1) complex of the supercharge Q

at the poles, i.e. from Q2 in (6.2.50). We find

εN =
2π

b2
, gN = −2π

b
Ŝ , εS = 2πb2 , gS = −2πbŜ .

(6.2.69)
Eventually, Higgs branch localization gives the following expression of the

sphere partition function:

ZS3
b

=
∑

Higgs vacua

e−iπTrCS σ̂2+2πiTrFI σ̂ Z ′1-loop Zv Zav . (6.2.70)

The sum is over solutions to (6.2.41). The one-loop determinant Z ′1-loop

does not contain the rankG chiral multiplets getting VEV in (6.2.41). The
(anti)vortex-string contributions are expressed in terms of the 3d vortex par-
tition function:

Zv = Zvortex

(
eiπb

−2TrCS · , e2πb−1(−TrCS σ̂·+TrFI ·) ,
2π

b2
, −2π

b
Ŝ
)

Zav = Zvortex

(
eiπb

2TrCS · , e2πb(−TrCS σ̂·+TrFI ·) , 2πb2 , −2πbŜ
)
.

(6.2.71)

The first two arguments in the vortex partition function are exponentiated
linear functions on the gauge algebra, corresponding to the quadratic and
linear weights for the vortex numbers; the third is the rotational equivariant
parameter and the last one includes all flavor equivariant parameters. Notice
that the expression (6.2.70) is very much in the spirit of the “holomorphic
blocks” of [17].

We shall give a concrete example in the next section.

6.2.5 Matching with the Coulomb branch integral

We would like to briefly show, in the simple example of a U(N) gauge the-
ory with Nf fundamentals and Na antifundamentals, that Higgs branch and
Coulomb branch localization produce in fact the same partition function,
written in a completely different way. This computation has already been
done in the case of U(1) in [19], and in the case of U(N) in [133], there-
fore we will just review it in our conventions. We stress, however, that this
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computation is only valid for

|k| ≤ |Nf −Na|
2

(6.2.72)

where k is the Chern-Simons level; these theories have been dubbed “maxi-
mally chiral” in [151].14

The theory has SU(Nf )×SU(Na)×U(1)A flavor symmetry. We will use
a “quiver” notation, in which the fundamentals are in the antifundamental
representation of the flavor group SU(Nf ), and viceversa. Then we can
introduce real masses mα for fundamentals and m̃β for antifundamentals,
defined up to a common shift (which corresponds to a shift of the adjoint
scalar σ). Generic positive R-charges are encoded as imaginary parts of the
masses.

The matrix integral (6.2.58) is given by (we removed hat from σ̂):

Z
U(N),Nf ,Na

S3
b

=

1

N !

∫
dNσ e−iπk

∑
σ2
i+2πiξ

∑
σi

N∏
i<j

4 sinh
(
πb−1(σi − σj)

)
sinh

(
πb(σi − σj)

)
×

N∏
i=1

∏Na
β=1 sb

(
iQ
2

+ σi − m̃β

)∏Nf
α=1 sb

(
− iQ

2
+ σi −mα

) , (6.2.73)

where we used sb(−x) = s−1
b (x). Our goal is to rewrite it as a sum over

residues, as done in [19, 133]. First, one can employ twice the Cauchy deter-
minant formula that we use in the following form:

N∏
i<j

2 sinh(xi−xj) =
1∏N

i<j
2 sinh(χi − χj)

∑
s∈SN

(−1)s
N∏
i=1

N∏
j 6=s(i)

2 cosh(xi−χj) ,

(6.2.74)

14 The computation in this section leads to an expression for the S3 partition func-
tion which identically vanish for max(Nf , Na) < N , signaling supersymmetry breaking.

The fact that the maximally chiral theories (|k| ≤ |Nf−Na|
2 ) break supersymmetry for

max(Nf , Na) < N has been noticed in [151]. On the other hand, the minimally chiral

theories (|k| ≥ |Nf−Na|
2 ) generically do not break supersymmetry for max(Nf , Na) < N ;

the simplest example is pure Chern-Simons theory. In fact the manipulations carried out
here are not valid in the latter case. A similar reasoning applies to the index ZS2×S1 . We
thank Ofer Aharony for this observation.
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where the auxiliary variables χi must satisfy χi 6= χj (mod πi), to separate
the interacting matrix-model into a product of simple integrals. The simple
integrals will contain two sets of auxiliary variables χi, χ̃i. Assuming that
|k| < Nf−Na

2
(or |k| ≤ Nf−Na

2
and ξ < 0), these integrals can be computed by

closing the contour in the lower-half plane and then picking up the residues.
The regime |k| ≤ Na−Nf

2
can be studied in a similar way, closing the contours

in the upper-half plane. One gets contributions from the simple poles of
the one-loop determinants of fundamentals, located at the zeros of sb in the
denominator: σj = mγj − iµjb − iνjb

−1 ≡ τj(mγj , µj, νj) for µj, νj ∈ Z≥0

and γj = 1, . . . , Nf . Applying the Cauchy determinant formula backwards,
to re-absorb the auxiliary variables, one obtains

ZS3
b

=
(−2πi)N

N !

∑
~γ ∈ (ZNf )N

∑
~µ, ~ν ∈ZN≥0

e−iπk
∑
τ2
i +2πiξ

∑
τi

×
N∏
i<j

4 sinh
(
πb(τi − τj)

)
sinh

(
πb−1(τi − τj)

)
×

N∏
i=1

( ∏Na
β=1 sb

(
iQ
2

+ τi − m̃β

)∏Nf
α 6=γi sb

(
− iQ

2
+ τi −mα

) Res
x→0

sb

(iQ
2

+ iµib+ iνib
−1 − x

))
.

(6.2.75)

Of course, one could have just collected the residues of the multi-dimensional
integral with no need of the Cauchy formula. The residue can be computed
with the identity

sb

(
x+

iQ

2
+ iµb+ iνb−1

)
=

(−1)µν sb

(
x+

iQ

2

)
∏µ

λ=1 2i sinhπb
(
x+ iλb

) ∏ν
κ=1 2i sinhπb−1

(
x+ iκb−1

) (6.2.76)

and Resx→0 sb
(
x+iQ/2

)
= 1/2πi. At this point one can factorize the summa-

tion into a factor independent of ~µ and ~ν, a summation over ~µ and a summa-
tion over ~ν. To achieve that one uses 2k+Nf−Na = 0 (mod 2), which is the
condition for parity anomaly cancelation, so that (−1)(Nf−Na+2k)

∑
i µiνi = 1.

Finally one observes that each of the two summations over ~µ and ~ν vanishes
if we choose γi = γj for some i, j, and on the other hand it is symmetric under
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permutations of the γi’s. Therefore we can restrict the sum over unordered
combinations ~γ ∈ C(N,Nf ) of N out of the Nf flavors, and cancel the N ! in
the denominator.

We can also use the following identity (see e.g. appendix B of [135]), valid
when the γi’s are distinct:∏N

j<k sinh
(
Xγk −Xγj + i(µk − µj)Y

)∏N
i=1

∏Nf
β=1

∏µi
λ=1 sinh (Xγi −Xβ + iλY )

= (6.2.77)

=
(−1)

∑
j µj
∏N

j<k sinh
(
Xγk −Xγj

) [∏Nf
β 6∈{γl} sinh (Xγi −Xβ + iλY )

]−1

∏N
k=1

∏µk
λ=1

[∏N
j=1 sinh

(
Xγk −Xγj − i(µj − λ+ 1)Y

)]
and the observation

∏N
i<j(−1)µi−µj = (−1)(N−1)

∑
i µi , to eventually write:

ZS3
b

=
∑

~γ ∈C(N,Nf )

Z
(~γ)
cl Z

′ (~γ)
1-loop Z

(~γ)
v Z(~γ)

av , (6.2.78)

which exactly matches with the general result of Higgs branch localization
(6.2.70). The summation is over classical Higgs vacua, i.e. over solutions
to the algebraic D-term equations (6.2.41). Then we have a simple classical
piece, the one-loop determinant of all fields except the N chiral multiplets
(specified by ~γ) getting a VEV and Higgsing the gauge group, the vortex and
the anti-vortex contributions; all these functions are evaluated at the point
(~γ) on the Coulomb branch solving the D-term equations. Using a notation
in which α ∈ ~γ denotes the flavor indices in the combination ~γ, we can write
the classical and one-loop contributions as

Z
(~γ)
cl =

∏
α∈~γ

e−iπkm
2
α+2πiξmα

Z
′ (~γ)
1-loop =

∏
i∈~γ

∏Na
β=1 sb

(
iQ
2

+mi − m̃β

)∏Nf
α ( 6=i) sb

(
− iQ

2
+mi −mα

)
×
∏
i,j∈~γ
i 6=j

4 sinh
(
πb(mi −mj)

)
sinh

(
πb−1(mi −mj)

)
,

(6.2.79)
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the (anti)vortex contributions as

Z(~γ)
v = Z

(~γ)
vortex

(
eiπb

−2k , e2πb−1(−kmj+ξ)
∣∣
j∈~γ ,

2π

b2
, −2π

b
mα , −

2π

b
m̃β

)
Z(~γ)

av = Z
(~γ)
vortex

(
eiπb

2k , e2πb(−kmj+ξ)
∣∣
j∈~γ , 2πb2 , −2πbmα , −2πbm̃β

)
,

(6.2.80)
and the vortex-string partition function turns out to be (for Nf ≥ Na):

Z
(~γ)
vortex

(
Qj , Lj , ε , aα , bβ

)
=
∑

~µ∈ZN≥0

∏
j ∈~γ

Q
µ2
j

j L
µj
j (−1)(Nf−Na)µj

×
µj−1∏
λ=0

∏Na

β=1
2i sinh

aj − bβ + iελ

2∏
l∈~γ

2i sinh
aj − al + iε(λ− µl)

2

∏Nf

α 6∈~γ
2i sinh

aα − aj + iε(λ− µj)
2

.

(6.2.81)

The map of parameters in Zv and Zav precisely agrees with our general
expression (6.2.71). As we will see in section 6.3.5, precisely the same function
Zvortex controls the partition function on S2 × S1. Such an expression for
Zvortex can be compared with [154].15

6.2.6 Comparison with the two-dimensional vortex par-
tition function

Let us check that by taking the limit of small equivariant parameter and
scaling at the same time all other parameters in the same way, the 3d vortex
partition function (6.2.81) reduces to the 2d vortex partition function. After
a redefinition ε → −ε, we take a limit ε → 0 in (6.2.81) keeping the ratios
aα/ε and bβ/ε finite; we also send the CS level k → 0, that corresponds to
Qj → 1 and Lj → z. We get

Z
(~γ)
vortex →

∑
~µ∈ZN

≥0

z|~µ|

(−ε)(Nf−Na)|~µ|

∏
j ∈~γ

∏Na

β=1

(
iaj − ibβ

ε

)
µj∏

l∈~γ

(
iaj − ial

ε
− µl

)
µj

∏Nf

α 6∈~γ

(
iaα − iaj

ε
− µj

)
µj

.

(6.2.82)

15See also [155].
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Here |~µ| = ∑j µj and we used the Pochhammer symbol (a)n =
∏n−1

k=0(a+ k).
This expression is precisely the standard two-dimensional vortex partition
function in Ω-background, see e.g. [15].

6.3 Higgs branch localization on S2 × S1

We will now move to the similar study of Higgs branch localization for N = 2
theories on S2×S1, whose path integral computes the three-dimensional su-
persymmetric index [156]. Localization on the Coulomb branch for N = 6
Chern-Simons-matter theories was first performed in [121], and later gener-
alized to N = 2 theories in [122] (see also [157] for a further generalization
in which magnetic fluxes for global symmetries are introduced). It was later
pointed out in [129] (see also [158]) that in the presence of non-trivial mag-
netic fluxes, the angular momentum of fields can be shifted by half-integer
amounts, thus correcting the naive fermion number: such a different weighing
of the magnetic sectors helps to verify various expected dualities.

The expression that results from Coulomb branch localization is a matrix
integral over the holonomy of the gauge field. As in the previous section, we
will perform an alternative Higgs branch localization, in which the relevant
BPS configurations are discrete Higgs branches accompanied by towers of
vortex strings at the north and south poles of the two-sphere.

6.3.1 Killing spinors on S2×S1, supersymmetric index
and deformed background

Supersymmetric theories on three-manifolds, among which S2 × S1, have
been studied in [138, 139] considering the rigid limit of supergravity. In
this approach, the auxiliary fields of the supergravity multiplet are treated
as arbitrary background fields and SUSY backgrounds are found by setting
to zero the gravitino variations; in the presence of flavor symmetries, one
similarly sets to zero the external gaugino variations.

Here we will take a different approach: we will first recall the Killing
spinor solutions on S2 × R, and then compactify R to S1 with some twisted
boundary conditions: the supersymmetric index with respect to the super-
charges described by the Killing spinors indeed imposes twisted boundary
conditions. In a path integral computation, however, the twisted boundary
conditions are most conveniently described by turning on background fields
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for the charges appearing in the index formula, which finally leads to the
desired theory on a deformed background.

We take the metric

ds2 = r2(dθ2 + sin2 θ dϕ2) + dτ 2 , (6.3.1)

with vielbein e1 = r dθ, e2 = r sin θ dϕ, e3 = dτ , and set the background
U(1)R field Vµ to zero. The spin connection is ω12 = − cos θ dϕ. Consider
the Killing spinor equation

Dµε = γµε̂ (6.3.2)

where Dµ = ∂µ + 1
4
ωabµ γab. Following [122] we consider the factorized ansatz

ε± = f(τ) εS
2

± (θ, ϕ), where the 2d spinor satisfies Dµ̂ε
S2

± = ± 1
2r
γµ̂γ

3εS
2

± with
µ̂ = θ, ϕ. Plugging in (6.3.2) gives

ε± = e±τ/2r εS
2

± (θ, ϕ) , Dµε± = ± 1

2r
γµγ

3ε± . (6.3.3)

Notice that the spinors are not periodic on S1 and twisted boundary condi-
tions will be needed. On the sphere S2 there are four Killing spinors; then
we can write the S2 × R spinors in a compact form as

ε± = e±τ/2r exp
(
∓ iθ

2
γ2

)
exp

(iϕ
2
γ3

)
ε0 (6.3.4)

where ε0 =
(
C1
C2

)
is constant.

Killing spinors for supersymmetric index. We will choose the spinor ε
to be “positive” and with ε0 =

(
1
0

)
(so that γ3ε0 = ε0) and ε̄ to be “negative”

and with ε̄0 =
(

0
1

)
(so that γ3ε̄0 = −ε̄0):

ε = eτ/2rei
ϕ
2

cos θ/2

sin θ/2

 , ε̄ = e−τ/2re−i
ϕ
2

sin θ/2

cos θ/2

 . (6.3.5)

Another useful spinor is

ε̃ = −ε̄c = i e−τ/2rei
ϕ
2

 cos θ/2

− sin θ/2

 (6.3.6)
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which is also a “negative” Killing spinor. We choose them of opposite posi-
tivity so that bilinears be independent of τ ; this also guarantees that there
are no dilations in the algebra (ρ = 0). With these choices, the Killing vector
and the functions appearing in the algebra are

va = ε̄γaε = −ε̃†γaε = (0, sin θ, i) , ε̄ε = −ε̃†ε = i cos θ , α =
1

r
ε̄γ3ε =

i

r
.

(6.3.7)
We also have

ξ = i(ε̄γµε)∂µ = i
r
∂ϕ − ∂τ . (6.3.8)

On the other hand ε†ε = eτ/r and ε̃†ε̃ = e−τ/r, as required by the dimension
∆ (see below). The quantum numbers of the spinors are:

Spinor ∆ j3 R

ε −1/2 1/2 −1

ε̄ 1/2 −1/2 1

obtained by acting with the operators ∆ and j3 as defined below; the R-
charge follows from the supersymmetry variations. We also have

[δε, δε̄] =
1

r

((
−rLA∂τ︸ ︷︷ ︸

=∆

)
−
(
−iLA∂ϕ + r cos θσ︸ ︷︷ ︸

=j3

)
−R

)
. (6.3.9)

Supersymmetric index and deformed background. The spinors are
preserved by the mutually commuting operators

∆− j3 −R , R + 2j3 .

The first one is the commutator [δε, δε̄]. We will compute the index

I(x, ζi) = Tr (−1)2j3e−β(∆−j3−R) e−ξ(R+2j3) ei
∑
j zjFj . (6.3.10)

with x = e−ξ, ζj = eizj . Here Fj are the Cartan generators of the flavor
symmetries and the circumference of S1 is βr. To correctly describe the
fermion number in the presence of magnetic fluxes, we have used 2j3 [129,
158]. Notice that convergence of the trace requires |x| < 1. For each Cartan
generator of the flavor symmetry, besides the chemical potential ζj one could
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also turn on a fixed background flux on S2 [157]: the only example we will
consider in this chapter is a flux for the topological symmetry U(1)J .

In the path integral formulation on S2×S1, the index is described by the
twisted periodicity conditions

Φ(τ + βr) = eβ(−j3−R) eξ(R+2j3) e−i
∑
j zjFj Φ(τ) . (6.3.11)

These are also the boundary conditions satisfied by the spinors (with Fj = 0).

By the field redefinition Φ̃ ≡ e−
τ
βr (β(−j3−R)+ξ(R+2j3)−i

∑
j zjFj)Φ, one can make

the fields periodic again; such a redefinition is in fact a gauge transformation,
indeed one can alternatively turn on background flat connections on S1:

Vµ =
(

0, 0,− i
r

+
iξ

βr

)
, Ṽ (j)

µ =
(

0, 0,
zj
βr

)
(6.3.12)

for the R- and flavor symmetries respectively. The twist by the rotational
symmetry imposes the identification (τ, ϕ) ∼ (τ + βr, ϕ− i(β − 2ξ)). Intro-

ducing coordinates τ̂ = τ and ϕ̂ = ϕ + i(β−2ξ)
βr

τ , the identification becomes

(τ̂ , ϕ̂) ∼ (τ̂ + βr, ϕ̂). In hatted coordinates the metric (6.3.1) is

ds2 = r2dθ2 + r2 sin2 θ
[
dϕ̂− i

r

(
1− 2ξ

β

)
dτ̂
]2

+ dτ̂ 2 , (6.3.13)

which is complex. This metric can also be rewritten as

ds2 = r2dθ2 +
r2 sin2 θ

1−
(
1− 2ξ

β

)2
sin2 θ

dϕ̂2

+
(

1−
(
1− 2ξ

β

)2
sin2 θ

)(
dτ̂ −

ir
(
1− 2ξ

β

)
sin2 θ

1−
(
1− 2ξ

β

)2
sin2 θ

dϕ̂

)2

, (6.3.14)

which is a circle-fibration over a squashed two-sphere.
The index is thus computed by the partition function on a deformed

background. A vielbein for (6.3.13) is e1 = r dθ, e2 = r sin θ
(
dϕ̂ − i

r

(
1 −

2ξ
β

)
dτ̂
)
, e3 = dτ̂ , and the frame vectors are e1 = 1

r
∂θ, e2 = 1

r sin θ
∂ϕ̂, e3 =

∂τ̂ + i
r

(
1 − 2ξ

β

)
∂ϕ̂. The non-vanishing component of the spin connection is

ω12 = − cos θ
(
dϕ̂− i

r

(
1− 2ξ

β

)
dτ̂
)
. The Killing spinors corresponding to (6.3.5)

are

ε = eiϕ̂/2

cos θ/2

sin θ/2

 , ε̄ = e−iϕ̂/2

sin θ/2

cos θ/2

 . (6.3.15)
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They satisfy Dµε = 1
2r
γµγ

3ε and Dµε̄ = − 1
2r
γµγ

3ε̄, where Dµ = ∂µ+ 1
4
ωabµ γab−

iVµ− i
∑

j Ṽ
(j)
µ , and ε̃ = −ε̄c. The Killing vector and the functions appearing

in the algebra are

va = ε̄γaε =
(
0, sin θ, i

)
=⇒ ξµ =

(
0,

2iξ

βr
,−1

)
, ε̄ε = i cos θ , α =

iξ

βr
.

(6.3.16)
We thus find

[δε, δε̄] = −LA∂τ̂ +
2iξ

βr
LA∂ϕ̂ − cos θ σ − ξ

βr
R + i

∑
j

zj
βr
Fj . (6.3.17)

From standard arguments, it is known that the index is independent of
the parameter β. A significant simplification takes place by setting β = 2ξ,
since the rotational symmetry charge disappears from the trace (6.3.10), and
the complex metric (6.3.13) becomes the real metric on the product space
S2 × S1. Henceforth, we make this choice for the immaterial parameter β
and we further omit the hats.

6.3.2 The BPS equations

We will now proceed to derive the BPS equations. We define the quantities

Ya = Wa + δa3
σ

r
, (6.3.18)

where Wa was defined in (6.2.13). Using the explicit expressions for the
Killing spinors (6.3.15), the BPS equations from the gaugino variations (D.2.14)
can be written as

0 =
(
Y3 + iD

)
cos

θ

2
+
(
D1σ − iY2

)
sin

θ

2

0 = D3σ cos
θ

2
+
(
Y1 − iD2σ

)
sin

θ

2

0 =
(
− Y3 + iD

)
sin

θ

2
+
(
D1σ + iY2

)
cos

θ

2

0 = −D3σ sin
θ

2
+
(
Y1 + iD2σ

)
cos

θ

2
.

(6.3.19)

The localization locus can also be obtained from the positive definite
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deformation action (6.2.16), where now the action of ‡ is defined to be

(Qλ)‡ = ε†
(
− 1

2
γµνFµν −D − iγµDµσ −

i

r
σγ3
)

= ε†
(
− iγr(Yr +Drσ)−D

)
(Qλ†)‡ =

(1

2
γµνFµν +D − iγµDµσ +

i

r
σγ3
)
ε̃ =

(
i(Yr −Drσ)γr +D

)
ε̃ .

(6.3.20)
One then obtains Ldef

YM = 1
2
Tr
[
(Yµ)2 + (Dµσ)2 + D2

]
. Imposing the reality

conditions, the Coulomb branch localization locus immediately follows:

Yµ = 0 , Dµσ = 0 , D = 0 . (6.3.21)

Note that the string-like vortices are excluded by these equations since they
imply DµF12 = 0.

Higgs branch localization can be achieved by adding another Q-exact
term to the deformation action. We use the same term as in (6.2.19):

Ldef
H = QTr

[i(ε†λ− λ†ε̃)H(φ)

2

]
,

whose bosonic piece is

Ldef
H

∣∣∣
bos

= −Tr
[(

sin θ(D1σ) + cos θY3 + iD
)
H(φ)

]
. (6.3.22)

The Gaussian path integral over D imposes

D = iH(φ) . (6.3.23)

Then one is left with

Ldef
YM + Ldef

H

∣∣∣
D, bos

=
1

2
Tr

[(
Y2

)2
+
(
D2σ

)2
+
(
Y1

)2
+
(
D3σ

)2
+

(
D1σ cos θ − Y3 sin θ

)2
+
(
H(φ)−D1σ sin θ − Y3 cos θ

)2
]
, (6.3.24)

which is a sum of squares. The BPS equations are then

0 = D1σ cos θ −
(
F12 +

σ

r

)
sin θ , 0 = D2σ = D3σ

0 = H(φ)−D1σ sin θ −
(
F12 +

σ

r

)
cos θ , 0 = F13 = F23 .

(6.3.25)
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Consider now the chiral multiplets, transforming in some representation
R =

⊕
jRj of the gauge and flavor group, where Rj are irreducible gauge

representations. Imposing the reality conditions φ̄† = φ, F̄ † = F and σ† = σ,
one finds the BPS equations

0 = sin
θ

2
D+φ+ cos

θ

2

(D3 +D†3
2

φ+
q

r
φ+ σφ

)
, 0 = (D3 −D†3)φ

0 = cos
θ

2
D−φ− sin

θ

2

(D3 +D†3
2

φ+
q

r
φ− σφ

)
, 0 = F ,

(6.3.26)
where D± ≡ D1 ∓ iD2 and D3φ = Dτφ =

(
∂τ − i a

2ξr
− 1

2r
q − i z

2ξr

)
φ.

As before, these equations can be obtained from the canonical deforma-
tion action Ldef

mat. Its bosonic part reads

Ldef
mat

∣∣∣
bos

=
1

2
|F |2 +

1

8

∣∣∣D3φ−D†3φ
∣∣∣2

+
1

2

∣∣∣∣ sin θ2 D+φ+ cos
θ

2

(D3 +D†3
2

φ+
q

r
φ+ σφ

)∣∣∣∣2
+

1

2

∣∣∣∣ cos
θ

2
D−φ− sin

θ

2

(D3 +D†3
2

φ+
q

r
φ− σφ

)∣∣∣∣2 . (6.3.27)

6.3.3 BPS solutions: Coulomb, Higgs and vortices

We will now present the BPS solutions to the equations (6.3.21), (6.3.25) and
(6.3.26). First, let us recall the solutions for the standard choice H(φ) = 0.

Coulomb-like solutions. Consider (6.3.21) and (6.3.26). They allow for
a field strength

F =
m

2
sin θ dθ ∧ dϕ , (6.3.28)

where m can be diagonalized to lie in the Cartan subalgebra and it takes
values in the coweight lattice of the gauge group G (it is GNO quantized).
The gauge field can be written as

A =
m

2

(
κ− cos θ

)
dϕ+

a

2ξr
dτ , (6.3.29)

where in this section κ = 1 (κ = −1) on the patch excluding the south
(north) pole. We have also included a holonomy a, with [a,m] = 0, around
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the temporal circle. The BPS equations fix σ = −m/2r and D = 0, which is
the localization locus of [122].

Let us now analyze the BPS equations for a chiral multiplet in gauge
representation R, assuming that its R-charge q is positive, and show that
the only smooth solution is φ = 0. First, we decompose φ in Fourier modes
recalling that, in the presence of non-trivial flux on S2, φ is a section of a
non-trivial bundle and should be expanded in monopole harmonics [159]:

φ(τ, θ, ϕ) =
∑
p,l,m

cp,l,m exp
(2πipτ

2ξr

)
Ym

2
,l,m (6.3.30)

where the range of parameters is p ∈ Z, l ∈ |m|
2

+N and m = −l,−l+1, . . . ,+l.
The third component of the angular momentum is given by the eigenvalue
of16

j3 = −i∂ϕ − κ
m

2
, (6.3.33)

and on the monopole harmonics: j3 Ym
2
,l,m = m Ym

2
,l,m. Imposing a Hermitic-

ity condition on the holonomy a, the equation (D3 −D†3)φ = 0 corresponds
to (

∂τ − i
a

2ξr
− i z

2ξr

)
φ = 0 . (6.3.34)

This implies that only those modes for which
(
a−2πp+z

)
φ = 0 can survive.

Since the time dependence is completely fixed, we can reabsorb p by a large
gauge transformation and set p = 0. From the equations in the first column
of (6.3.26), the expressions for σ and the gauge field found above, we find(
j3 + q

2

)
φ = 0 and j+φ = 0. The first one imposes m = −q/2, whereas

16 From [159], the gauge invariant angular momentum operator on R3 in a monopole

background m is given by ~L = ~r × (−i ~D) − r̂m/2, where r̂ is a unit vector along the ~r
direction. In particular the third component is

j3 = −iDϕ −m/2 cos θ = −i∂ϕ − κ
m

2
. (6.3.31)

This result is directly applicable to S2. For later reference, we also write the operators j+
and j−:

j± = e±iϕ
(
± ∂θ + i cot θDϕ −

m

2
sin θ

)
= e±iϕ

(
± ∂θ + i cot θ ∂ϕ +

m

2
κ cot θ − m

2

1

sin θ

)
.

(6.3.32)
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the second one imposes that the angular momentum eigenvalue m take its
maximal value +l. For positive R-charge q > 0, there are no solutions. For
zero R-charge (then l = m = 0) one finds the constant Higgs-like solution
φ = φ0, if

(
a+ z

)
φ = 0.

Now let us see the new solutions with non-trivial H(φ). We integrate D
out first, i.e. we set D = iH(φ), solve (6.3.25) and (6.3.26), and take all
vanishing R-charges q = 0 (arbitrary R-charges can be recovered by analytic
continuation of the result by complexifying flavor fugacities). We take exactly
the same deformation function H(φ) as in (6.2.35). We find the following
classes of solutions.

Deformed Coulomb branch. It is characterized by φ = 0, and (in com-
plete analogy with [15]) can be completed to

F13 = F23 = 0 , F12 = 2ζ cos θ+
m

2r2
, σ = −rζ cos θ− m

2r
. (6.3.35)

We thus have Fθϕ = r2 sin θ (2ζ cos θ+m/2r2). The corresponding gauge field
can be written as

A =
(
r2ζ sin2 θ +

m

2
(κ− cos θ)

)
dϕ+

a

2ξr
dτ . (6.3.36)

Higgs-like solutions. They are characterized by Fµν = 0, σ = 0 and a
constant profile φ for the matter fields that solves the D-term equations

H(φ) = 0 ,
(
a+ z

)
φ = 0 . (6.3.37)

The solutions to these algebraic equations are analogous to the Higgs-like
solutions of section 6.2.3. We will be mainly interested in gauge groups
and matter representations such that, for ζa in a suitable range, all VEVs φ
completely break the gauge group.

Vortices. Each Higgs-like solution is accompanied by a tower of vortex-
string solutions with arbitrary numbers of vortices at the north and at the
south circles. To see this, we expand the BPS equations around θ = 0 and
θ = π.
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The S2 × S1 metric (6.3.1) in the θ → 0 limit becomes ds2 = dR2 +
R2dϕ2 + dτ 2, where R ≡ rθ, which is the metric of R2 × S1. The equations
(6.3.25) become, to linear order in R:

0 = DRσ −
1

r
FRϕ , 0 = Dϕσ = Dτσ

0 = H(φ)− 1

R
FRϕ −DR

(σR
r

)
, 0 = Fϕτ = FRτ ,

(6.3.38)

whereas the equations for the chiral fields (6.3.26) become

0 =
(
DR +

i

R
Dϕ +

R

r
σ
)
φ , 0 =

(
D3 −D†3

)
φ

0 =
(
− i

r
Dϕ + σ +

D3 +D†3
2

)
φ , 0 = F .

(6.3.39)

Let us qualitatively describe the solutions for a U(1) theory with a single
chiral field of charge 1. Working in the gauge Aθ = 0, (6.3.25) implies
that ∂θ

(
rσ cos θ − Aϕ

)
= 0 exactly. We write rσ cos θ = Aϕ − n, for some

integration constant n, so it is sufficient to specify the behavior of φ and Aϕ.

Far from the core (the length scale is set by
√
ζ−1) one finds

φ '
√
ζ einϕ , Aϕ ' n , (6.3.40)

and Stokes’ theorem implies that 1
2π

∫
F = n, which is the vortex number.

Close to the core:

φ ' B
(
Reiϕ

)n
, Aϕ ' 0 +O

(
e−

R2

2r2

)
, (6.3.41)

and in particular n ≥ 0. A similar analysis can be performed around the
south pole in the coordinate R̃ = r(π − θ). This time we write rσ cos θ =
Aϕ − m. Then Aϕ → 0 near the core and Aϕ → m, which we identify
with the vortex number, far from the core. We also find |φ| → B′R̃m near
the core, while it sits in the vacuum far from it: |φ|2 → ζ. The vortex
configurations we wrote around the north and south poles are connected by a
gauge transformation on the equator: φN = ei(n−m)ϕφS and ANϕ −ASϕ = n−m.

For finite values of ζ, we can derive a bound on the allowed vortex num-
bers. From (6.3.25) one deduces H(φ) r sin θ = ∂θσ, which results in the
inequality

rσ(π)− rσ(0) =
1

2π

∫
H(φ)dvol(S2) ≤ ζ

vol(S2)

2π
, (6.3.42)
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which upon plugging in the values of σ found above leads to the bound

m+ n ≤ ζ
vol(S2)

2π
. (6.3.43)

As in section 6.2.3, we conclude that for finite values of ζ there is a finite
number of vortex/antivortex solutions on S2. When the bound is saturated,
the chiral field φ actually vanishes and the gauge field is as in the deformed
Coulomb branch described above. We thus get a similar picture of the struc-
ture of solutions as in section 6.2.3.

6.3.4 Computation of the index

We will now evaluate the classical action and the one-loop determinants
of quadratic fluctuations, and then sum/integrate over the space of BPS
configurations.

One-loop determinants from the index theorem

As in section 6.2.4, we compute the one-loop determinants on non-trivial
backgrounds with the equivariant index theorem, following [148]. The local-
izing supercharge squares to

Q2 = −LA∂τ +
i

r
LA∂ϕ − cos θ σ − 1

2r
R + i

∑
j

zj
2ξr

Fj . (6.3.44)

The action of Q2 on the worldvolume consists of a free rotation along S1

generated by L∂τ and a rotation of S2 generated by L∂ϕ with fixed points
at the north and south poles. The equivariant parameters for the U(1)∂ϕ ×
U(1)R × U(1)Fflavor × G are given by ε = i

r
, ε̂ = − 1

2r
, ε̌j = i

zj
2ξr

and â =

iAτ + 1
r
Aϕ− cos θ σ. In appendix D.3 we compute the one-loop determinants

in our conventions. For a chiral multiplet in gauge representation R we have

Zchiral
1-loop “ = ”

∏
w∈R

∏
n∈Z

∏
k≥0

iπn− (k + 1)ξ + ξ q
2
− ξr w(âS)− i

2

∑
zjFj

iπn+ kξ + ξ q
2
− ξr w(âN)− i

2

∑
zjFj

,

(6.3.45)
which requires regularization. For the gauge multiplet one has

Zvec
1-loop =

∏
α>0

2 sinh
(
ξr α(âN)

)
2 sinh

(
− ξr α(âS)

)
. (6.3.46)
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Coulomb branch

Coulomb branch localization for the 3d index was first performed in [121]
for N = 6 Chern-Simons-matter theories, and later generalized to N =
2 theories in [122]. A subtlety involving the fermion number was pointed
out in [129] (see also [158]), and was later confirmed in [148] by computing
the one-loop determinants with the index theorem. Let us quickly review
these results. The Chern-Simons action evaluated on the Coulomb branch
configurations gives17

SCScl = − i

4π

∫
TrCSA ∧ F = −iTrCSam . (6.3.47)

Due to the modified fermion number, an extra phase (−1)TrCSm needs to be
taken into account [158].

To each Abelian factor (with field strength F ) in the gauge group is as-
sociated a topological symmetry U(1)J , whose current is J = ∗F . Coupling
U(1)J to an external vector multiplet with bosonic components (ABG, σBG, DBG)
is equivalent to introducing a mixed supersymmetric Chern-Simons term,
whose bosonic part is

SJ

∣∣∣
bos

=
i

2π

∫
Tr
(
ABG ∧ F + σDBG + σBGD

)
. (6.3.48)

An expectation value for σBG would correspond to an FI term. In this section,
though, we will be interested in turning on a holonomy b and a flux n. Notice
that this is indeed an example of an external flux for a flavor symmetry, in
the spirit of [157]. Evaluation on the Coulomb branch BPS configurations
yields

SJ = iTr
(
a n + bm

)
. (6.3.49)

We will introduce the topological fugacity w = e−ib. Also in this case extra
signs are required: this can be done by taking the index not to be a function
of w, but rather of (−1)nw. Such dependence will always be understood.

The gauge equivariant parameter is â =
ia

2ξr
+

κ

2r
m, where κ = 1 (−1)

on the northern (southern) patch, as in (6.3.29). The chiral one-loop deter-

17We recall that in order to correctly evaluate the CS action
∫
A∧F , one should construct

an extension F̃ of the gauge bundle to S2 × D2 (where the second factor is a disk) and
integrate

∫
F̃ ∧ F̃ .

225



minant then simplifies and, after regularization, becomes

Zchiral
1-loop =

∏
w∈R

(
x1−q e−iw(a) ζ−F

)−w(m)/2
(
x2−q−w(m) e−iw(a) ζ−F ;x2

)
∞(

xq−w(m) eiw(a) ζF ;x2
)
∞

,

(6.3.50)
where (a; q)∞ ≡

∏∞
k=0(1 − aqk) is the q-Pochhammer symbol, we defined

x = e−ξ and ζj = eizj , we used the short-hand notation ζF =
∏

i ζ
Fi
i , and q

is the R-charge. The regularization is similar to [121] (see also [148]). The
expression above includes all the correct extra signs. The vector one-loop
determinant becomes

Zvec
1-loop =

∏
α>0

4 sinh
(1

2
α
(
ia+ ξm

))
sinh

(
− 1

2
α
(
ia− ξm

))
(6.3.51)

=
∏
α∈G

x−
1
2
|α(m)|

(
1− x|α(m)|eiα(a)

)
. (6.3.52)

The index is thus computed by the matrix integral:

I
(
x, ζj, (−1)nw, n

)
=

1

|W|
∑

m∈ZrankG

∫ ( rankG∏
j=1

dzj
2πizj

)
(−1)TrCSm eiTrCSam−iTr(an+bm) Z1-loop ,

(6.3.53)

where |W| is the order of the Weyl group, zj = eiaj is the gauge fugacity and
the integration contour is counterclockwise along the unit circle.

Deformed Coulomb branch

The full Chern Simons action (D.2.16) and the mixed CS term (6.3.48) eval-
uated on the deformed Coulomb branch read

SCScl = −iTrCS
(
(a− 2ir2ξζ)m

)
, SJ = Tr

(
(a− 2ir2ξζ) n + bm

)
,

(6.3.54)
where, in this subsection, ζ refers to the deformation parameter (6.2.36).

We also need to include the phase (−1)TrCSm. The equivariant parameter is
given by

â = i
a− 2ir2ξζ

2ξr
+

κ

2r
m . (6.3.55)
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As in section 6.2.4, we observe that the net effect of the deformation pa-
rameter ζ is an imaginary shift of the integration variable a → a − 2ir2ξζ,
or equivalently z ≡ eia → x−2r2ζz. Effectively it modifies the radius of the
integration contour; since |x| < 1, the contour grows for ζ > 0 and shrinks
for ζ < 0. The effect on the integral is the same as in section 6.2.4: it remains
constant, until the contour crosses some pole and the integral jumps. In view
of the bound (6.3.43), this happens precisely when new vortex configuration
become allowed, providing the missing residue.

In order to obtain an expression of ZS2×S1 purely in terms of vortices,
we need to suppress the contribution from the deformed Coulomb branch.
Heuristically, this can be achieved if there is no pole at the origin or infinity.
As we show in appendix D.4 following [160], for a U(N) theory with Nf

fundamentals, Na antifundamentals and Chern-Simons level k, there is no
pole at infinity if Nf > Na and |k| ≤ Nf−Na

2
, thus suppression is obtained by

sending ζ → +∞; for Nf < Na and |k| ≤ Na−Nf
2

there is no pole at the origin,
thus suppression is obtained by sending ζ → −∞. For Nf − Na = k = 0
there are poles both at the origin and infinity, however the residues vanish.

Higgs branch and vortices

For finite values of the deformation parameters ζa, additional BPS con-
figurations are present, namely Higgs vacua and vortex solutions, whose
(anti)vortex numbers (m,n) are bounded by (6.3.43) (or its multi-dimen-
sional generalization). We determine here their additional contribution to
the path integral, besides the deformed Coulomb branch. The discussion is
similar to section 6.2.4, so we will be brief.

The classical actions can be evaluated exactly using D = iH(φ), the BPS
equations (6.3.25), the knowledge of the flux carried by the vortices and of
the corresponding values of Aϕ(θ) at θ = 0, π, in a gauge Aθ = 0. Recall that
the equations determine σ exactly in terms of Aϕ, see around (6.3.40). One
finds

SCScl = −iTrCS

(
(n−m)a+ iξ(m2 − n2)

)
(6.3.56)

SJ = iTr
[
n
(
a− iξ(m+ n)

)
+ b(n−m)

]
, (6.3.57)

where a is evaluated on the Higgs branch, a = −z. Again we need to include

the extra phase (−1)TrCS(n−m). The one-loop determinants are evaluated
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with (6.3.45) and (6.3.46), using the equivariant parameters

âN =
ia+ 2ξn

2ξr
, âS =

ia+ 2ξm

2ξr
(6.3.58)

at the north and south poles, where in both cases a is evaluated on its
Higgs branch location aH . The one-loop determinants for the rankG chi-
ral multiplets Higgsing the gauge group should be computed with a residue
prescription. Therefore, after a regularization similar to [148], the one-loop
determinant for chiral multiplets is

Zchiral
1-loop =

Res
a→ aH

[ ∏
w∈R

(
x1+w(m+n) e−iw(a) ζ−F (φ)

)w(m−n)/2 (
x2+2w(m) e−iw(a) ζ−F (φ);x2

)
∞(

x−2w(n) eiw(a) ζF (φ);x2
)
∞

]
.

(6.3.59)

Here F (φ) refers to the chiral multiplets, ζF =
∏

i ζ
Fi
i and we set the R-

charges to zero. For the vector one-loop determinant we have

Zgauge
1-loop =

∏
α>0

2 sinh
(α(ia+ 2ξn)

2

)
2 sinh

(
− α(ia+ 2ξm)

2

)
=
∏
α∈ g

x−
|α(n−m)|

2

(
1− x|α(n−m)|−α(n+m) eiα(a)

)
,

(6.3.60)

evaluated on the Higgs branch location. These expressions, for the vortices
that satisfy the bound (6.3.43), precisely reproduce the residues of the in-
tegrand in (6.3.53), which are the jumps of the deformed Coulomb branch
contribution as the contour crosses the poles.

Vortex partition function. We will now take a suitable limit ζa → ±∞,
in which the deformed Coulomb branch contribution is suppressed. Then the
resummed contribution of all vortex strings is described by the same vortex
partition function that we used on S3

b .
Let us compute the partition function in the limit. First, we have a finite

number of Higgs vacua. In each vacuum, the components of the holonomy aα
are fixed to some specific (real) values that are functions of the real masses.
The classical actions (6.3.56) provide an overall classical contribution:

SJ = iTr
(
n a
)
, (6.3.61)
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as well as the weighting factors for vortices and anti-vortices:

e−Sv = exp
[
− ξTrCSm

2 +
(
− iTrCSa · +Tr

(
− ξn + ib

)
·
)
m
]

e−Sav = exp
[
ξTrCSn

2 +
(
iTrCSa · +Tr

(
− ξn− ib

)
·
)
n
]
.

(6.3.62)

Second, the one-loop determinants for the vector multiplet and the chiral
multiplets not acquiring a VEV are as in the Coulomb branch. The rankG
chiral multiplets acquiring VEV bring a residue factor, which in this case is
some phase. Finally, the vortex partition function Zvortex depends on equiv-
ariant parameters for rotations of R2 (ε) and flavor rotations (g): they are
identified—at θ = 0 (N) and θ = π (S)—from the SU(1|1) complex of the
supercharge Q at the poles, i.e. from Q2 in (6.3.44). We find

εN = −2iξ , gN = i
(
a+

∑
j
zjFj

)
,

εS = 2iξ , gS = −i
(
a+

∑
j
zjFj

)
,

(6.3.63)

where the minus sign in the south pole parameters with respect to the north
pole ones is due to the opposite orientation.

Eventually, Higgs branch localization gives the following expression for
the index:

I =
∑

Higgs vacua

e−iTr(n a) Z ′1-loop Zv Zav . (6.3.64)

The (anti)vortex-string contributions are expressed in terms of the 3d vortex
partition function:

Zv = Zvortex

(
e−ξTrCS · , e−iTrCSa·+Tr(−ξn+ib)· , −2iξ , i

(
a+

∑
j
zjFj

))
Zav = Zvortex

(
eξTrCS · , eiTrCSa·+Tr(−ξn−ib)· , 2iξ , −i

(
a+

∑
j
zjFj

))
.

(6.3.65)
As in section 6.2.4, the first two arguments in the vortex partition function
are exponentiated linear functions on the gauge algebra, corresponding to
the quadratic and linear weights for the vortex numbers. We shall give a
concrete example in the next section.
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6.3.5 Matching with the Coulomb branch integral

We wish to shortly review, in our conventions, that the superconformal index
of a U(N) gauge theory with Nf fundamentals, Na antifundamentals and CS
level

|k| ≤ |Nf −Na|
2

, (6.3.66)

(see footnote 14) can be rewritten in a form that matches with the result
of Higgs branch localization, as done in [135],18 and moreover that the very
same Zvortex as in (6.2.81) emerges.

Concretely,

IU(N),Nf ,Na =
1

N !

∑
~m∈ZN

w
∑
j mj

∮ N∏
j=1

(
dzj

2πizj
(−zj)kmjz−nj

)

×
N∏

i,j=1
i 6=j

x−|mi−mj |/2
(

1− ziz−1
j x|mi−mj |

)

×
N∏
i=1

Nf∏
α=1

(
xz−1

i ζα
)−mi/2 (z−1

i ζαx
−mi+2 ; x2

)
∞(

ziζ−1
α x−mi ; x2

)
∞

Na∏
β=1

(
xziζ̃

−1
β

)mi/2 (ziζ̃−1
β xmi+2 ; x2

)
∞(

z−1
i ζ̃βxmi ; x2

)
∞

, (6.3.67)

where zj = eiaj and w = e−ib. The flavor fugacities ζα = eizα , ζ̃β = eĩzβ are
defined up to a common rescaling, since the flavor symmetry is SU(Nf ) ×
SU(Na)× U(1)A. The integration contour is along the unit circle for |ζ̃β| <
1 < |ζα|. We also introduced the extra sign (−1)k

∑
mj , as explained in section

6.3.4. Note that k+
Nf+Na

2
is integer if we impose parity anomaly cancelation:

this guarantees that the integrand is a single-valued function of zj.
For Nf > Na there is no pole at infinity (see appendix D.4). Moreover,

since |ζ̃β| < 1 < |ζα| and |x| < 1, only the one-loop determinants of fun-
damentals have poles outside the unit circle. More precisely, the numerator
of the one-loop determinants of fundamentals has zeros at zj = ζαjx

−mj+2rj ,
for all rj ≥ 1 and j = 1, . . . , N , while the denominator has zeros at zj =

18See also [134], where the factorized form of the index was first observed in the U(1)
case.
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ζαjx
mj−2rj for all rj ≥ 0. For mj ≤ 0 there is no superposition of zeros, while

for mj > 0 there is superposition and some of them cancel. The net result is
that the poles outside the unit circle are located at

zj = ζγj x
−|mj |−2rj , rj ∈ Z≥0 , γj = 1, . . . , Nf , j = 1, . . . , N .

(6.3.68)
Summing the residues, one obtains:

I =
1

N !

∑
~γ ∈ (ZNf

)N

∑
~µ, ~ν ∈ZN

≥0

(−1)−k
∑

j(µj−νj) w
∑

j(µj−νj)
N∏
i=1

(
ζ−1γi x

µi+νi
)−k(µi−νi)+n

×
N∏
i 6=j

x−
1
2 |(µi−νi)−(µj−νj)|

(
1−

ζ−1γj x
µj+νj

ζ−1γi x
µi+νi

x|(µi−νi)−(µj−νj)|
) N∏

i=1

(
xµi+νi+1

)−(µi−νi)/2

(x−2;x−2)µi
(x2;x2)νi

×
N∏
i=1

Nf∏
α (6=γi)

(
ζαζ
−1
γi x

µi+νi+1
)−(µi−νi)/2

(
ζαζ
−1
γi x

2νi+2 ; x2
)
∞(

ζ−1α ζγix
−2µi ; x2

)
∞

×
N∏
i=1

Na∏
β=1

(
ζ̃−1β ζγix

−µi−νi+1
)(µi−νi)/2

(
ζ̃−1β ζγix

−2νi+2 ; x2
)
∞(

ζ̃βζ
−1
γi x

2µi ; x2
)
∞

,

(6.3.69)

where we decomposed the summation over µi = ri +
mi+|mi|

2
and νi = µi−mi.

The q-Pochhammer symbol is (a; q)n =
∏n−1

k=0(1− qka).
At this point one can factorize the summation into a factor independent of

~µ and ~ν, a summation over ~µ and a summation over ~ν. One observes that each
of the two summations over ~µ and ~ν vanishes if we choose γi = γj for some
i, j, and on the other hand it is symmetric under permutations of the γi’s.
Therefore we can restrict the sum over unordered combinations ~γ ∈ C(N,Nf )
of N out of the Nf flavors, and cancel the N ! in the denominator. Finally,
rewriting the q-Pochhammer symbols in terms of sinh and using the identity
(6.2.77) one obtains

I =
∑

~γ ∈C(N,Nf )

Z
(~γ)
cl Z

′ (~γ)
1-loop Z

(~γ)
v Z(~γ)

av . (6.3.70)
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The classical and one-loop contributions are

Z
(~γ)
cl =

∏
j ∈~γ

ζ−nj

Z
′ (~γ)
1-loop =

∏
j ∈~γ

Nf∏
α (6=j)

(
ζ−1
j ζαx

2 ; x2
)
∞(

ζjζ−1
α ; x2

)
∞

Na∏
β=1

(
ζj ζ̃
−1
β x2 ; x2

)
∞(

ζ−1
j ζ̃β ; x2

)
∞

·
∏
i,j ∈~γ
i 6=j

2 sinh
(izi − izj

2

)
.

(6.3.71)

The vortex and antivortex contribution can be written as

Z(~γ)
v = Z

(~γ)
vortex

(
e−ξk , w−1

v e(−izjk−ξn)
∣∣
j∈~γ , −2iξ , izα , iz̃β

)
Z(~γ)

av = Z
(~γ)
vortex

(
eξk , wav e

(izik−ξn)
∣∣
i∈~γ , 2iξ , −izα , −iz̃β

)
,

(6.3.72)

and the vortex-string partition function turns out to be exactly the same
(6.2.81) as for the computation on S3

b , namely:

Z
(~γ)
vortex

(
Qj , Lj , ε , aα , bβ

)
=
∑

~µ∈ZN≥0

∏
j ∈~γ

Q
µ2
j

j L
µj
j (−1)(Nf−Na)µj

×
µj−1∏
λ=0

∏Na

β=1
2i sinh

aj − bβ + iελ

2∏
l∈~γ

2i sinh
aj − al + iε(λ− µl)

2

∏Nf

α 6∈~γ
2i sinh

aα − aj + iε(λ− µj)
2

.

The fugacity w for the topological charge is rotated by a phase: wv =
(−i)Nf−Na(−1)k+N−1w, wav = iNf−Na(−1)k+N−1w. The parameters that de-
termine Zv and Zav in terms of Zvortex are exactly as prescribed by our general
discussion in section 6.3.4.
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Chapter 7

Higgs branch localization of
N = 1 theories on S3 × S1

7.1 Introduction

Given the results in chapter 6 it is now a natural question to ask if Higgs
branch localization can be applied to four-dimensional theories as well. This
would imply that the partition function can be factorized. In this chapter, we
address this question – and answer it positively – for N = 1 supersymmetric
gauge theories on S3 × S1.1 At an RG fixed point, the partition function
on this geometry is known to describe the superconformal index [36], which
encodes information about the protected spectrum of the corresponding flat
space theory. A prescription to write down the Coulomb branch expression
computing the index of the IR fixed point to which a given Lagrangian UV
theory flows, was first given by Römelsberger in [143, 162] and it takes the
form of a matrix integral over the holonomy along the temporal circle S1

of the one-loop determinants, which are typically expressed in terms of the
plethystic exponential of the single letter partition functions of the fields in
the UV theory, but can also be written in terms of elliptic hypergeometric
functions [163]. Our main result shows that the index can alternatively be
written as

I =
∑

Higgs vacua

Zcl Z
′
1-loop Zv Zav , (7.1.1)

1Recently the gravity dual of these theories has been studied in [161].
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which has the typical form of a Higgs branch localized result. Here Zv and
Zav are the contributions from vortex-membranes wrapping a torus at two
distinct points in the geometry. As such they are given in terms of the elliptic
uplift of the usual vortex partition function in the Ω background [130].

The superconformal index is a powerful tool in checking various dualities,
see for example [163, 164, 165]. It would be very interesting to study the ef-
fects of such dualities on the vortex-membrane partition function. Moreover,
the elliptic vortex partition functions we encounter are naturally expected to
have nice modular properties. It would be interesting to study these along-
side the modular properties of the index itself [68]. The factorization results
obtained in this chapter are expected to be just one instance of a rich struc-
ture involving the four-dimensional uplift of the holomorphic blocks of [17].
Unraveling this structure is an outstanding problem. Finally, the N = 1
index can be further decorated with surface operators. Three possible ap-
proaches can be used to introduce them, namely to construct them as the IR
limit of vortex configurations as in [74], to perform a localization computa-
tion as in [148] for vortex-loops, or to consider a coupled 2d-4d system as in
[113]. Their connections among each other and with the vortex factorization
should be study-worthy.

On the other hand, we expect the techniques used in this chapter to be
applicable to N = 1 supersymmetric theories on different geometries as well,
most obviously L(r, 1) × S1[141, 144], but also more generally in theories
with more supersymmetry. For example, the N = 2 superconformal index
for theories of class S is computed by a TQFT correlator [75, 38] and it would
be very interesting to study its interplay with a possible vortex anti-vortex
factorization.

The outline of this chapter is as follows. In section 7.2 we introduce
the index we want to compute and construct the deformed background on
which the computation of the partition function achieves that goal. Next, we
derive the BPS equations in section 7.3 and find various classes of solutions
to them in section 7.4. We compute the index on the various solutions in
section 7.5. In section 7.6 we match our Higgs branch expression with the
Coulomb branch expression in some examples by manipulating the matrix
integral. Here we also explain how our results apply in the absence of an
abelian factor in the gauge group. Finally, the appendices contain the spinor
conventions we use, the N = 1 algebra and some useful identities satisfied
by the elliptic gamma function.
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7.2 Killing spinors on S3×S1, supersymmetric

index and deformed background

N = 1 supersymmetric theories on S3 × R were explicitly constructed in
[166] and later also in [143]. A systematic study of supersymmetric theories
on Euclidean four-manifolds, among which S3 × S1, with four or less super-
charges was performed in [167, 168, 169] by considering the rigid limit of
supergravity. Their method constructs supersymmetric backgrounds as solu-
tions to the Killing spinor equation, which in turn is obtained by setting to
zero the gravitino variations, as well as – in the presence of flavor symmetries
– to the equations that set to zero the gaugino variations, while treating the
bosonic auxiliary fields as arbitrary background fields. 2

For the particular case of the index, it is illustrative to construct the
sought-after supersymmetric background differently, namely by turning on
background gauge fields associated to the charges appearing in the supersym-
metric index such that in a path integral formulation they have the effect of
precisely implementing the twisted boundary conditions along the temporal
circle imposed by the index. As a preliminary step, we first construct the
solutions to the conformal Killing spinor equations on S3 ×R and select the
Killing spinor associated to the supercharge with respect to which we will
compute the index. Its lack of periodicity along R is remedied by the twisted
boundary conditions imposed by the associated index.

Killing spinors on S3×R We would like to solve the Killing spinor equa-
tion3

Dµε =

(
∂µ +

1

4
ω mn
µ γmn − iVµγ5

)
ε = γµε̃ (7.2.1)

on S3 × R with metric

ds2 = ds2
S3 + dτ 2 = `2

(
dθ2 + cos2 θ dϕ2 + sin2 θ dχ2

)
+ dτ 2 . (7.2.2)

Upon choosing the vielbeins e1 = ` cos θ dϕ, e2 = ` sin θ dχ, e3 = `dθ,
e4 = dτ, one finds the non-zero components of the spin connection to be
ω13 = − sin θ dϕ and ω23 = cos θdχ. At this point we also set the U(1)R
background field Vµ to zero.

2The parameter dependence of partition functions on these four-dimensional back-
grounds was studied in [136].

3Our spinor conventions are summarized in appendix E.1.
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Our first step in solving (7.2.1) is to write ε̃ = γ4ε̂ and decompose ε and
ε̂ into their right and left-handed components, which we denote as ε =

( η
ζ

)
and similarly ε̂ =

(
η̂

ζ̂

)
. The equation (7.2.1) then splits as(
∂µ +

1

4
ω mn
µ σmn

)
η = −iσµη̂ (7.2.3)(

∂µ +
1

4
ω mn
µ σ̄mn

)
ζ = iσ̄µζ̂ . (7.2.4)

Next, making a factorized Ansatz η = f(τ) ηS3 and η̂ = f(τ) η̂S3 , where ηS3

and η̂S3 only depend on the coordinates on the three-sphere, one immediately
recognizes that the spatial part of the Killing spinor equation simplifies to
the Killing spinor equation on S3(

∂µ̂ +
1

4
ω m̂n̂
µ̂ σm̂n̂

)
η

(s1,t1)

S3 = −iσµ̂η̂(s1,t1)

S3 , (7.2.5)

where µ̂ = ϕ, χ, θ. Its solutions are given by [119]

η
(s1,t1)

S3 =

 e
i
2

(s1χ+t1ϕ−s1t1θ)

−s1 e
i
2

(s1χ+t1ϕ+s1t1θ)

 , (s1, t1 = ±) (7.2.6)

if η̂
(s1,t1)

S3 = s1t1
2`
η

(s1,t1)

S3 . The time dependence is then determined by ∂τf(τ) =
s1t1
2`
f(τ) which implies that f(τ) = e

s1t1
2`

τ . In total one thus finds that

η(s1,t1) = e
s1t1
2`

τη
(s1,t1)

S3 , η̂(s1,t1) =
s1t1
2`

η(s1,t1) . (7.2.7)

Similarly, one finds that

ζ(s2,t2) = e−
s2t2
2`

τζ
(s2,t2)

S3 , ζ̂(s2,t2) = −s2t2
2`

ζ(s2,t2) , (7.2.8)

and the most general four-component solution is thus

ε =
∑

s1,t1=±

as1,t1

η(s1,t1)

0

+
∑

s2,t2=±

bs2,t2

 0

ζ(s2,t2)

 (7.2.9)

We found eight independent supercharges as expected for a superconformal
N = 1 theory. Note that the Killing spinors are not periodic along the time
circle which signals the need of twisted boundary conditions.
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Killing spinors for supersymmetric index We choose the combination
of supercharges described by the four-component spinor ε in (7.2.9) with as
only non-zero coefficients a++ = 1 and b−− = 1,

ε1 =

η(+,+)

ζ(−,−)

 . (7.2.10)

It satisfies Dµε1 = 1
2`
γµγ4γ5ε1 . The bilinears appearing in the algebra (see

formula (E.2.12) in appendix E.2) are then given by

vµ1∂µ =
2

`
(−i(∂ϕ + ∂χ) + `∂τ ) , ρ1 = 0 , α1 =

3i

`
, (7.2.11)

which upon plugging in (E.2.9) result in

δ2
ε1

= −2

`

(
−`LA∂τ + iLA∂ϕ+∂χ +

3

2
R

)
. (7.2.12)

Introducing the operators

∆ = −`LA∂τ , j1 = − i
2
LA∂χ+∂ϕ , j2 = − i

2
LA∂χ−∂ϕ , (7.2.13)

one can also write

δ2
ε1

= −2

`

(
∆− 2j1 +

3

2
R

)
. (7.2.14)

The action of the operators ∆, j1, j2, and R on ε1 is given by

∆ε1 = −1

2
γ5ε1 , j1ε1 =

1

2
γ5ε1 , j2ε1 = 0 , Rε1 = γ5ε1 . (7.2.15)

Note that as expected
(
∆− 2j1 + 3

2
R
)
ε1 = 0. We can find two more linearly

independent charges that vanish on the Killing spinor, namely 2j1 − R and
j2.

Alternatively, we could choose the combination of supercharges described
by the four-component spinor with as only non-zero coefficients a−+ = 1 and
b+− = 1

ε2 =

η(−,+)

ζ(+,−)

 , (7.2.16)
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which satisfies Dµε2 = − 1
2`
γµγ4γ5ε2 . Then we find

δ2
ε2

=
2

`

(
−`LA∂τ + iLA∂χ−∂ϕ −

3

2
R

)
=

2

`

(
∆− 2j2 −

3

2
R

)
. (7.2.17)

Now one has ∆ε2 = 1
2
γ5ε2, j1ε2 = 0, j2ε2 = −1

2
γ5ε2, and Rε2 = γ5ε2. We

find three linearly independent charges that vanish on the Killing spinor,
∆− 2j2 − 3

2
R, 2j2 +R and j1.

Supersymmetric index and deformed background One can introduce
two inequivalent superconformal indices in N = 1 theories, a left-handed one
and a right-handed one, namely

I1(t, y, ζj) = Tr(−)F e−β(∆−2j1+ 3
2
R) t3(2j1−R) y2j2

∏
j ζ

Fj
j

I2(t, y, ζj) = Tr(−)F e−β(∆−2j2− 3
2
R) t3(2j2+R) y2j1

∏
j ζ

Fj
j

(7.2.18)

where t = e−ξ, y = eiη, and ζj = eizj . Moreover, β` is the circumference of
the temporal circle and Fj are the Cartan generators of the flavor symmetry
group. Convergence requires that |t| < 1. These indices are precisely com-
puted with respect to the charges described by the Killing spinors ε1 and ε2

respectively. It is very important to remark that all charges appearing in
the index need to be non-anomalous – we will always assume this to be the
case. From here onward, we will focus on the index I1, knowing that I2 can
be dealt with completely similarly.

In the path integral formulation, the insertion of the chemical potentials
in the trace leads to twisted boundary conditions on all fields

Φ(τ + β`) = eβ(−2j1+ 3
2
R) t−3(2j1−R) y−2j2

∏
j

ζ
−Fj
j Φ(τ) , (7.2.19)

which are indeed also the boundary conditions satisfied by the Killing spinor
ε1. Alternatively, one can turn on flat background gauge connections along
the temporal circle

Vµ =

(
0, 0, 0, i

(
3β − 6ξ

2β`

))
, Ṽ (j)

µ =

(
0, 0, 0,

zj
β`

)
, (7.2.20)

for the R-symmetry and the flavor symmetry respectively. The twists by the
rotational charges j1 and j2 furthermore impose the identification

(ϕ, χ, θ, τ) ∼
(
ϕ+

i

2
(−2β + 6ξ + 2iη), χ+

i

2
(−2β + 6ξ − 2iη), θ, τ + β`

)
.

(7.2.21)
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Introducing the coordinates

ϕ̂ = ϕ− i
2

(−2β+6ξ+2iη)
τ

β`
, χ̂ = χ− i

2
(−2β+6ξ−2iη)

τ

β`
, θ̂ = θ , τ̂ = τ ,

(7.2.22)
the identification simplifies to (ϕ̂, χ̂, θ̂, τ̂) ∼ (ϕ̂, χ̂, θ̂, τ̂ + β`) . The metric in
these hatted coordinates reads

ds2 = `2 cos2 θ̂

(
dϕ̂+

i

2β`
(−2β + 6ξ + 2iη) dτ̂

)2

+

+ `2 sin2 θ̂

(
dχ̂+

i

2β`
(−2β + 6ξ − 2iη) dτ̂

)2

+ `2dθ̂2 + dτ̂ 2 , (7.2.23)

and is complexified. Its vielbeins are

e1 = ` cos θ̂

(
dϕ̂+

i

2β`
(−2β + 6ξ + 2iη) dτ̂

)
, e3 = `dθ̂ , (7.2.24)

e2 = ` sin θ̂

(
dχ̂+

i

2β`
(−2β + 6ξ − 2iη) dτ̂

)
, e4 = dτ̂ , (7.2.25)

while the dual frame vectors are given by

e1 =
(
` cos θ̂

)−1

∂ϕ̂ , e2 =
(
` sin θ̂

)−1

∂χ̂ , e3 = `−1∂θ̂ , (7.2.26)

e4 = ∂τ̂ −
i

2β`
(−2β + 6ξ + 2iη) ∂ϕ̂ −

i

2β`
(−2β + 6ξ − 2iη) ∂χ̂ , (7.2.27)

and the non-zero components of the spin connection read

ω13 = − sin θ̂

(
dϕ̂+

i

2β`
(−2β + 6ξ + 2iη) dτ̂

)
(7.2.28)

ω23 = cos θ̂

(
dχ̂+

i

2β`
(−2β + 6ξ − 2iη) dτ̂

)
. (7.2.29)

The solution to the Killing spinor equation Dµε = γµε̃ on the deformed
background, corresponding to ε1 in (7.2.10), is given by

ε1 =

η(+,+)

S3

ζ
(−,−)

S3

 , (7.2.30)

239



and satisfies Dµε1 = 1
2`
γµγ4γ5ε1 . The square of the supersymmetry variation

equals

δ2
ε1

= −2

`

[
−` LA∂τ̂ +

6iξ

2β
LA∂ϕ̂+∂χ̂

+
η

β
LA∂χ̂−∂ϕ̂ +

3ξ

β
R +

i

β

∑
j

zjFj

]
.

(7.2.31)
Thanks to pairwise cancellation, the index only receives contributions

from states satisfying δ2
ε1

= 0. It is thus independent of the parameter β, and
it will be convenient to choose it such that the metric (7.2.23) is real, namely
β = 3ξ. From now on, we make this choice for β and further omit the hats.

Fayet-Iliopoulos term It is well known that both the gauge and the mat-
ter Lagrangian areQ-exact.4 However, if the gauge group contains an abelian
factor5, we can write down a Fayet-Iliopoulos term [143]. Indeed, if the
Killing spinor satisfies Dµε1 = 1

2`
γµγ4γ5ε1, then it is easy to convince one-

self that δε1(D + 2
`
A4) = Dµ(ε̄1γ5γ

µλ) . When integrated over the compact
space, the variation of D + 2

`
A4 vanishes and thus results in an invariant

action. Note however, that in order for the action to be invariant under
large gauge transformations along the 4-direction the properly normalized
FI parameter needs to be an integer. Due to its discrete nature it avoids the
common lore that the index does not depend on continuous parameters.

7.3 The BPS equations

The BPS equations for the vectormultiplet of gauge group G are obtained
by setting to zero the gaugino variation

0 = δε1λ = −1

2
γµνFµν ε1 − γ5 D ε1 . (7.3.1)

Upon solving the resulting four equations for F14, F24, F34, D one obtains

F14 = i sin θ F12 , F34 = −i (cos θ F13 + sin θ F23) , (7.3.2)

F24 = −i cos θ F12 , D = i cos θ F23 − i sin θ F13 . (7.3.3)

4We use δε1 and Q interchangeably.
5In the presence of an abelian factor, the theory develops a Landau pole. However,

as was also argued in [74], one can exploit the independence of the index on the gauge
coupling to suppress the Landau pole arbitrarily by making the gauge coupling smaller
and smaller.
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Declaring that all fields are real, immediately leads to the localization locus
Fµν = D = 0. Flat connections on S3 × S1 are given by A = a

3ξ`
dτ , for

arbitrary holonomy a. Alternatively, we can obtain the localization equations
as the zero-locus of the bosonic part of the deformation action

Ldef
YM =

1

4
Q Tr (Qλ)‡λ, (7.3.4)

where the action of the formal hermitian conjugate ‡ operator on Qλ is

(Qλ)‡ =
1

2
ε†1 γ

µνFµν − ε†1 γ5 D . (7.3.5)

One then obtains for the bosonic piece

1

4
Tr (Qλ)‡ Qλ =

1

2
Tr

(
D2 +

1

2

∑
m,n

(Fmn)2

)
, (7.3.6)

whose zero-locus is indeed D = Fmn = 0.
Higgs branch localization requires the addition of an extra Q−exact de-

formation term

Ldef
H =

i

2
Q Tr ε†1γ5λ H(φ) , (7.3.7)

whose bosonic part is

Ldef
H

∣∣∣
bos

= −Tr (iD + cos θ F23 − sin θ F13) H(φ) . (7.3.8)

Upon adding Ldef
YM and Ldef

H , the auxiliary fieldD can be integrated out exactly
by performing the Gaussian path integral. Correspondingly, one imposes its
field equation D = iH(φ). The auxiliary field D is thus taken out of its real
contour. The bosonic part of the total deformation Lagrangian can then be
written as a sum of squares once again:

Ldef
YM

∣∣∣
bos

+ Ldef
H

∣∣∣
bos

=
1

2
Tr
(
(F12)2 + (F14)2 + (F24)2 + (F34)2+

+(−H(φ)− sin θ F13 + cos θ F23)2 + (cos θ F13 + sin θ F23)2
)
,

from which we read off the BPS equations

0 = F12 = F14 = F24 = F34 = −H(φ)− sin θ F13 + cos θ F23 (7.3.9)

= cos θ F13 + sin θ F23 . (7.3.10)
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Note that these equations could have been obtained equivalently from (7.3.2)-
(7.3.3) by imposing the D-term equation. More explicitly, these equations
read in the coordinate frame

0 = Fϕχ = Fϕτ = Fχτ

Fθτ =
2η

3ξ`
Fϕθ = − 2η

3ξ`
Fχθ

−`2H(φ) =
Fϕθ

sin θ cos θ
= − Fχθ

sin θ cos θ
.

(7.3.11)

Let us next turn our attention to chiral multiplets. We take them to
transform under some generic representation R of the flavor and gauge group.
Let us denote its decomposition in irreducible gauge representations as R =∑

iRi. The BPS equations for a single chiral multiplet transforming in rep-
resentation R are found by setting to zero each component of the variation of
the fermion χ under the supersymmetry transformation by ε1. Subsequently
imposing the reality property φ† = φ̄ and F † = F̄ and taking appropriate
linear combinations, one obtains

0 = (D4 −D†4)φ 0 = cos θ D2φ− sin θ D1φ+ iD3φ

0 = F 0 = 3rφ+ `
(

2i(cos θ D1φ+ sin θ D2φ)− (D4 +D†4)φ
)

(7.3.12)
Using that

D4φ =

(
Dτ −

η

3ξ`
(Dχ −Dϕ) +

r

2`
− i

3ξ`
z

)
φ , (7.3.13)

these equations can be written explicitly as (assuming the gauge field is real)

0 =

(
Dτ −

η

3ξ`
(Dχ −Dϕ)− i

3ξ`
z

)
φ , (7.3.14)

0 = F , (7.3.15)

0 = rφ+ i(Dϕφ+Dχφ) , (7.3.16)

0 = cot θ Dχφ− tan θ Dϕφ+ iDθφ . (7.3.17)
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7.4 BPS solutions: Coulomb, Higgs and vor-

tices

In this section we set out to solve the BPS equations. Let us first recall the
Coulomb branch solutions.

Coulomb branch The Coulomb branch solution was already mentioned
above:

D = 0 , A =
a

3ξ`
dτ . (7.4.1)

As usual a can be taken to lie in the Cartan algebra. Let us verify that
there are no solutions to the chiral multiplet equations for positive R-charges.
Fourier expanding the chiral field as

φ =
∑
p,m,n

e2πipτ/3ξ` einϕ eimχ cpmn(θ) , (7.4.2)

one finds from (7.3.14) that only modes for which

(a+ z)φ = 2πp− η(m− n) (7.4.3)

can exist. Via a large gauge transformation, we can set p = 0 . Next, equation
(7.3.16) further imposes that r = n + m. Finally, equation (7.3.17) reduces
to the differential equation

∂θcpmn = −(m cot θ − n tan θ)cpmn , (7.4.4)

which solves to cpmn(θ) = φ0(cos θ)−n(sin θ)−m , for some constant φ0 .
Smoothness at θ = 0 and θ = π

2
demands that m ≤ 0 and n ≤ 0 respectively.

Therefore, for positive R-charges, no solutions exist. For zero R-charge (then
m = n = 0), we find the constant Higgs like solution φ = φ0, if (a+ z)φ = 0.

Next, we study the new solutions which become available upon choosing
a non-trivial H(φ), i.e. we want to solve (7.3.9) and (7.3.12). We set the R-
charges to zero, r = 0: the exact non-anomalous R-charge should be restored
by giving an imaginary part to the flavor fugacities. We make the standard
choice for H(φ):

H(φ) = ζ −
∑
i,a

T aadj φ
†
iT

a
Riφi , (7.4.5)
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where the sum runs over the matter representations Ri and its generators
T aRi. Here, ζ is adjoint-valued and defined as a real linear combination of the
Cartan generators ha of the Abelian factors in the gauge group

ζ =
∑
a: U(1)

ζaha . (7.4.6)

We find the following classes of solutions.

Deformed Coulomb branch The deformed Coulomb branch is charac-
terized by φ = 0. A solution to the vector multiplet BPS equations (7.3.9) is
then given by

F = ζ`2 sin θ cos θ dθ ∧
(
dϕ− dχ− 2η

3ξ`
dτ

)
, (7.4.7)

which can be integrated to

A = −ζ`2

(
1

2
cos2 θ

(
dϕ− η dτ

3ξ`

)
+

1

2
sin2 θ

(
dχ+ η

dτ

3ξ`

))
+

a

3ξ`
dτ .

(7.4.8)

Higgs-like solutions Higgs-like solutions are defined by setting H(φ) = 0.
Then it follows that also Fµν = 0. From above, we know that φ = φ0 is a
constant constrained by the condition (a+ z)φ0 = 0 .

Solutions to the D-term equations

H(φ) = 0 , (a+ z)φ = 0 , (7.4.9)

depend both on the gauge group and on the matter representations. Here
we will restrict ourselves to cases where the vacuum expectation values of φ
completely break the gauge group.

Vortices Each Higgs-like solution is the root of a tower of vortex solutions
at the north and south torus. Indeed, using the other BPS equations, the
BPS equations (7.3.17) and the last equation in (7.3.11) become for θ → 0,
and introducing R ≡ `θ,

0 =

(
DR −

i

R
Dχ

)
φ , H(φ) = − 1

R
FRχ , (7.4.10)
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which we recognize as the standard (anti)vortex equations on R2. Once the
solutions to these equations are found, the other BPS equations will complete
it to solutions on R2×T 2. The vortex equations cannot be solved analytically,
so we shall content ourselves with qualitatively analyzing the behavior of the
solutions. We consider the case of a U(1) theory with a single chiral multiplet
of (gauge) charge +1. Up to rescalings of the latter, this is the generic case
once the gauge group is broken to its maximal torus. Let us start by making
the Ansatz

φ = e−inϕe−imχφ0(R) , A = Aτ (R)dτ + Aϕ(R)dϕ+ Aχ(R)dχ , (7.4.11)

where we didn’t include a time dependence since it can be removed by the
same large gauge transformation we employed earlier. When φ0 6= 0 one finds
from (7.3.14) and (7.3.17) the exact relations

Aτ =
1

3ξ`

(
η ((Aχ +m)− (Aϕ + n))− z

)
, Aϕ + Aχ = −(n+m) .

(7.4.12)
Given these exact relations, all BPS equations are satisfied except for the
vortex equations (7.4.10) themselves:

∂Rφ0 −
1

R
(m+ Aχ)φ0 = 0 , ζ − φ2

0 = − 1

R
∂RAχ , (7.4.13)

and moreover it is sufficient to outline the behavior of Aχ and φ. When

R→ 0 (more precisely, for R�
√

m
ζ

), in order to have a smooth connection,

one necessarily has Aχ → 0 . The first equation then further implies that
φ0 = BRm . In particular we deduce that m > 0. From the second equation
to leading order in R we deduce that ∂RAχ = −Rζ and thus Aχ = − ζR2

2
.

For R→∞ (R�
√

m
ζ

), φ sits in its Higgs vacuum φ0 → ζ. Then one finds

that Aχ → −m. Integrating the field strength over R2, one finds that m can
be interpreted as the vortex number 1

2π

∫
F = −m. When approximating

R−1FRχ by a step function of height −ζ, we immediately find a measure for

the size of the vortex to be
√

m
ζ

. For sufficiently large values of ζ the vortex

shrinks to zero size and the first order approximations we took are justified.
Momentarily, we will give an interpretation to n as well.

It is noteworthy that Aτ only asymptotically sits in its Higgs vacuum: for
R→ 0 one finds Aτ = 1

3ξ`
(2mη − z)− η

3ξ`
ζR2 .
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One can similarly analyze the behavior for θ → π
2
. Introducing ρ =

`
(
π
2
− θ
)
, one again finds the vortex equations among the BPS equations

0 =

(
Dρ −

i

ρ
Dϕ

)
φ , H(φ) = −1

ρ
Fρϕ . (7.4.14)

Let us also here analyze the qualitative behavior for the case of a U(1) theory
with a single chiral of charge +1. Starting by making the Ansatz

φ = e−inϕe−imχφ0(ρ) , A = Aτ (ρ)dτ + Aϕ(ρ)dϕ+ Aχ(ρ)dχ . (7.4.15)

we rediscover the exact relations (7.4.12) which solve all BPS equations but

∂ρφ0 −
1

ρ
(n+ Aϕ)φ0 = 0 , ζ − φ2

0 = −1

ρ
∂ρAϕ . (7.4.16)

For ρ�
√

n
ζ
, smoothness demands that Aϕ → 0 . In this region we then find

from the first equation that φ0 = B′ρn, implying that n > 0. To leading order
in ρ the second equations teaches that ∂ρAϕ = −ρζ and thus Aϕ = − ζρ2

2
. For

ρ �
√

n
ζ
, we have φ0 → ζ and Aϕ → −n. Since integrating over R2 gives

1
2π

∫
F = −n, we interpret n as the vortex number at the south torus.

Also here Aτ sits only asymptotically in its Higgs vacuum. Note also that
in the intermediate region both solutions glue together appropriately.

For smaller values of ζ both the presence of curvature in and the finite
volume of space will start affecting the solutions. However, we can derive
an exact bound by integrating H(φ) over spacetime and using the last BPS
equation in (7.3.11)

ζvol(S3 × S1) ≥
∫
S3×S1

H(φ) dvol(S3 × S1)

= 4π2`vol(S1)

∫ π
2

0

dθ∂θAϕ = −4π2`vol(S1)

∫ π
2

0

dθ∂θAχ

(7.4.17)

Here we used that on vortex solutions 0 ≤ H(φ) ≤ ζ and that vortex solutions
don’t have θ dependence. Defining the vorticities as the winding numbers
of φ around χ, ϕ respectively and employing the analysis at the core of the
vortex, we then find that

4π2`(n+m) ≤ ζvol(S3)⇒ n+m ≤ ζ
`2

2
. (7.4.18)
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One observes that for finite values of ζ only a finite number of vortices are
supported on S3×S1. The bound is saturated precisely when φ vanishes; the
solution is then described by the deformed Coulomb branch solution.

We thus find essentially the same interpretation as in chapter 6. Upon
increasing ζ from 0 to +∞ the original Coulomb branch solution is deformed
into the deformed Coulomb branch and each time ζ crosses a bound (7.4.18),
a collection of new vortices branches out.

7.5 Computation of the index

In the previous section, we found various classes of BPS solutions. The final
steps in the computation of the index using localization, are then to first
evaluate the classical action on and the one-loop determinants of quadratic
fluctuations around these solutions, and next integrate and/or sum over the
space of BPS configurations.

7.5.1 One-loop determinants from an index theorem

Although the computation of the one-loop determinants can be straightfor-
wardly performed on the Coulomb branch (in a Lagrangian theory like the
ones at hand) by enumerating letters, constructing the single letter parti-
tion function, subsequently plethystically exponentiating these and finally
imposing the Gauss law constraint by projecting onto gauge singlets, the
computation on non-constant configurations is most easily performed using
an equivariant index theorem for transversally elliptic operators [147]. The
idea is to bring the problem in cohomological form, and make use of the fact
that, via the equivariant index theorem, only the fixed points of the equiv-
ariant spatial rotations contribute to the one-loop determinants. A detailed
discussion can be found in [14].
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Recall from (7.2.31) that the supercharge squares to

δ2
ε1

= − 2

3ξ`

[
−3ξ` LA∂τ̂ + 6ξi LA1

2(∂ϕ̂+∂χ̂)
+ 2η LA1

2(∂χ̂−∂ϕ̂) + 3ξR + i
∑
j

zjFj

]
(7.5.1)

= − 2

3ξ`

[
−3ξ` LA∂τ̂ + (3ξi− η) LA∂ϕ̂ + (3ξi+ η) LA∂χ̂ + 3ξR + i

∑
j

zjFj

]
.

(7.5.2)

where we used the value β = 3ξ. An important observation is that δ2
ε1

pre-
cisely equals (upon properly identifying the equivariant parameters6) the
square of the supercharge used in the localization on S3

b in [148] (see also
6) with an additional free motion along the temporal circle generated by
−3ξ` LA∂τ̂ . Thus, taking into account the Kaluza-Klein modes along the tem-
poral circle, the computation of the equivariant index on S3 × S1 can be
effectively reduced to that on a squashed three-sphere. This latter compu-
tation was performed in [148] (see also appendix D) and involves a further
reduction along the Hopf fiber. The base space of the double reduction,
which is topologically a two-sphere, has two fixed points (one at θ = 0 which
we call North and one at θ = π

2
(South)) under the reduction of the spatial

rotations appearing in δ2
ε1
. The equivariant index only receives contributions

from these two points.
Introducing the equivariant parameter for gauge transformations

iâ = −3ξ`(−iAτ ) + 3ξi(−i(Aϕ + Aχ)) + η(−i(Aχ − Aϕ)) , (7.5.3)

we can now immediately write the one-loop determinant for the vector mul-
tiplet

Zvector
1-loop “ = ”∏

n,m∈Z
α∈g

(
πin− i

2
(3ξi− η)m− i

2
α(âN )

)1/2(
πin− i

2
(3ξi+ η)m− i

2
α(âS)

)1/2

, (7.5.4)

where α ∈ g denotes the roots of the gauge algebra g. Compared to the
unregularized vector multiplet one-loop determinant on the squashed three-
sphere an extra product over the integer n appears, which precisely captures

6The precise identifications between the equivariant parameters here and those on the
squashed three-sphere (see for example expression (D.3.3) in 6) are b = 3ξi−η, b−1 = 3ξi+η
up to a constant rescaling.
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the contribution of the Kaluza-Klein modes along the temporal circle. Reg-
ularizing the infinite products results in

Zvector
1-loop =[(
t3y−1 ; t3y−1

)
∞

(
t3y ; t3y

)
∞

]rank g
∏
α 6=0

(
1− eiα(âN )

)1/2 (
1− eiα(âS)

)1/2

×
∏
α 6=0

(
t3y−1 eiα(âN ) ; t3y−1

)
∞

(
t3y eiα(âS) ; t3y

)
∞ , (7.5.5)

in terms of the infinite q-Pochhammer symbol (z, q)∞ =
∏∞

j=0(1−zqj). Using
the standard plethystic exponential, it can be written as

Zvector
1-loop =

∏
α6=0

(
1− eiα(âN )

)1/2 (
1− eiα(âS)

)1/2

× P.E.

− t3y−1

1− t3y−1

rank g +
∑
α6=0

eiα(âN )

− t3y

1− t3y

rank g +
∑
α 6=0

eiα(âS)

 ,

(7.5.6)

For all BPS configurations we will consider âN = âS = â. The vector
multiplet one-loop determinant simplifies then further to

Zvector
1-loop =∏

α 6=0

(
1− eiα(â)

)
P.E.

[
−
(

t3y−1

1− t3y−1
+

t3y

1− t3y

)(
rank g +

∑
α 6=0

eiα(â)

)]
.

(7.5.7)

Observing that −
(

t3y−1

1−t3y−1 + t3y
1−t3y

)
= 2t6−t3(y+y−1)

(1−t3y−1)(1−t3y)
, one recognizes the sin-

gle letter partition function of the vector multiplet [162]. Using that

−
(

t3y−1

1− t3y−1
+

t3y

1− t3y

)
= 1− 1− t6

(1− t3y−1)(1− t3y)
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it can be written alternatively as [163]

Zvector
1-loop =

=
(
(t3y ; t3y)∞(t3y−1 ; t3y−1)∞

)rank g
∏
n,m≥0
α 6=0

1− eiα(â)(t3y)n(t3y−1)m

(1− eiα(â)(t3y)n+1(t3y−1)m+1)

=
(
(t3y ; t3y)∞(t3y−1 ; t3y−1)∞

)rank g
∏
α 6=0

1

Γ(eiα(â), t3y, t3y−1)
, (7.5.8)

in terms of the standard elliptic gamma function

Γ(z, p, q) =
∏
j,k≥0

1− pj+1qk+1/z

1− pjqkz . (7.5.9)

For the one-loop determinant of a chiral multiplet of R-charge r trans-
forming in gauge representation R we find the unregularized expression

Zchiral
1-loop“ = ”∏

w∈R

∏
n,m∈Z
p≥0

−πin+ i
2
(3ξi+ η)m+ i

2
(3ξi− η)(p+ 1) + 3

2
ξr + i

2
w(âS) + i

2
z

−πin+ i
2
(3ξi− η)m− i

2
(3ξi+ η)p+ 3

2
ξr + i

2
w(âN) + i

2
z

,

(7.5.10)

where w ∈ R denotes the weights of the representation R. Also here the
extra contribution of the Kaluza-Klein modes along the temporal circle is
given by the infinite product over the integer n.

When âN = âS = â, it can be regularized to

Zchiral
1-loop =

∏
w∈R

Γ
(
t3re−iw(â)−iz , t3y , t3y−1

)
(7.5.11)

=
∏
w∈R

P.E.

[
t3re−iz e−iw(â) − t3(2−r)eiz eiw(â)

(1− t3y−1)(1− t3y)

]
, (7.5.12)

where again one recognizes the correct single letter partition function [162].

7.5.2 Coulomb branch

Let us first briefly recall the Coulomb branch expression [162, 163]. As was
mentioned before, both the gauge and matter Lagrangians are Q-exact, and
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we only have to evaluate the Fayet-Iliopoulos term:

SFI =
−i`

2vol(S3)
TrFI

∫
S3×S1

(
D +

2

`
Aτ

)
dvol(S3×S1) = −iTrFIa . (7.5.13)

The equivariant parameter for the gauge transformation iâ = 3ξi`Aτ +
3ξ(Aϕ + Aχ) − iη(Aχ − Aϕ) simply gives âN = âS = a. The one-loop de-
terminants (7.5.8) and (7.5.11) are thus

Zvector
1-loop =

((t3y ; t3y)∞(t3y−1 ; t3y−1)∞)
rank g∏

α 6=0 Γ(eiα(a), t3y, t3y−1)
, (7.5.14)

Zchiral
1-loop =

∏
w∈R

Γ
(
t3re−iw(a)−iz , t3y , t3y−1

)
, (7.5.15)

and the index can be computed by

I =
1

|W|

∮ (rankG∏
j=1

dzj
2πizj

)
eiTrFIa Z1-loop , (7.5.16)

where |W| denotes the dimension of the Weyl group of the gauge group G,
zj = eiaj and the integration contour is along the unit circle. Note that
the quantized nature of the FI parameter can now be seen to ensure that
the integrand remains meromorphic. We should also mention that the usual
Vandermonde determinant cancels against the contribution of the gauge-
fixing ghosts.

7.5.3 Deformed Coulomb branch

Next, we study the situation on the deformed Coulomb branch. Using D =
iH(φ) which equals iζ on this solution, we obtain for the classical action

SFI = −iTrFI

(
a+ i

3

2
ξ`2ζ

)
, (7.5.17)

where we also used that Aτ = 1
3ξ`

(
a+ η`2

2
ζ cos 2θ

)
. For the equivariant

parameter â we find

â = âN = âS = a+ i
3

2
ξ`2ζ . (7.5.18)
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Both in the classical action and the one-loop determinants, the effect of
the deformation is seen to be given by an imaginary shift of the holonomy
variable a→ a+ i3

2
ξ`2ζ or thus z = eia → z t

3
2
`2ζ . When used in the matrix

integral (7.5.16), one effectively changes the radius of the integration contour.
Indeed, since t < 1, one finds that the contour shrinks (grows) for ζ → +∞
(ζ → −∞). When turning on the deformation parameter ζ, the integral
remains constant as long as no poles of the integrand are crossed. Moreover,
one can understand by looking at the bound (7.4.18), that the jumps in the
integral, which are equal to the residues of the crossed poles, are precisely the
contributions of the newly available vortex configurations. We thus recover
the same picture as was found in chapter 6 in three dimensions.

Of particular interest is the situation where the index is expressed only in
terms of vortices. This can be achieved if there exists a certain limit for the
parameters ζa → ±∞ such that the deformed Coulomb branch is suppressed.
In view of the shrinking/growing contour, such suppression can be obtained
heuristically if the residue at the origin or infinity vanishes.

7.5.4 Higgs branch and vortices

For finite values of the deformation parameters ζa, the deformed Coulomb
branch contribution of the previous subsection is complemented by finite size
vortex configurations satisfying the bound (7.4.18). Evaluation of their clas-
sical action can be done exactly in a gauge Aθ = 0, using the BPS equation
(7.3.11), the behavior of the vortices in their core and the exact relations
(7.4.12). We then find

SFI = −iTrFI (3ξi(n+m)− z + η(m− n)) , (7.5.19)

where the vortex numbers m,n are GNO quantized elements of the coweight
lattice. For the evaluation of the one-loop determinants, we first consider the
contribution from the off-diagonal W-bosons and those chiral multiplets that
do not acquire a vacuum expectation value. Their one-loop determinant is
simply found by inserting the equivariant parameter evaluated on the vortex
background

â = âN = âS = −z + 3ξi(m+ n) + η(m− n) , (7.5.20)

in the expressions for the one-loop determinants (7.5.8), with the contribution

of the diagonal vector multiplets, i.e. ((t3y ; t3y)∞(t3y−1 ; t3y−1)∞)
rank g

, re-
moved, and (7.5.11). The rank g chiral multiplets that do get a VEV are

252



eaten by the diagonal vector multiplets, which in turn become massive, via
the Higgs mechanism. As was explained in [16], the one-loop determinant of
this paired system is found as the residue of the product of their one-loop
determinants. In total one thus finds

Zvector
1-loop =

1∏
α 6=0 Γ

(
eiα(aH) (t3y)α(m) (t3y−1)α(n) , t3y, t3y−1

) , (7.5.21)

and

Zchiral
1-loop =

(
(t3y ; t3y)∞(t3y−1 ; t3y−1)∞

)rank g

× Res
a→aH

∏
w∈R

Γ
(
t3re−iw(a)−iz (t3y)−w(m) (

t3y−1
)−w(n)

, t3y , t3y−1
)
,

(7.5.22)

where aH is the holonomy evaluated in its Higgs vacuum.
It is clear from (7.5.19), (7.5.21) and in particular (7.5.22), that when

adding the contribution of the vortices satisfying the bound (7.4.18) to the
deformed Coulomb branch integral, we precisely recover the original Coulomb
branch expression, since they precisely contribute the residues of the crossed
poles. Since the deformation parameters enter our analysis via a Q-exact
piece, such picture was expected.

Elliptic vortex partition function Let us now send the deformation
parameters ζa to infinity in such a way that the contribution of the deformed
Coulomb branch vanishes. The index is then described purely in terms of
point-like vortices which wrap the torus and have arbitrary vortex numbers.
The elliptic uplift of the standard vortex partition function [130] describes
their total contribution and can be independently computed by considering
the theory on R2

ε × T 2
τ in the Ω-background. The plane R2 is effectively

compactified, since it is rotated as we go around either cycle of the torus.
The resulting elliptic vortex partition function Zvortex can depend on the
rotational parameter ε, the complex structure of the torus τ, flavor fugacities
g and a fugacity coupling to leftmoving fermion number. This is all the two
dimensional analog of the elliptic instanton partition function obtained by
studying the theory on R4

ε1,ε2
× T 2

τ , see for example [170].
In the computation of the partition function in this limit, there are three

contributions to be considered. First, there is the classical action evaluated
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on the vortex configuration (7.5.19) which splits into an overall classical
action

SFI = −iTrFI (aH) , (7.5.23)

and a weighting factor for the vortex partition functions

e−Sv = (t3y)TrFIm, e−Sav = (t3y−1)TrFIn . (7.5.24)

Second, the contribution of the off-diagonal vectormultiplets and the chiral
multiplets not taking on a vacuum expectation value is as in the Coulomb
branch (7.5.14), but evaluated on the Higgs branch location, i.e. a → aH ,
and with the contribution of the diagonal vector multiplets removed. The
contributions of the rank g chiral multiplets acquiring a vacuum expectation
value and the diagonal vector multiplets cancel each other. Third, there
is the vortex partition function itself. Its parameters can be read off from
(7.5.1):

εN = 3ξi+ η , τN =
3ξi− η

2π
+ i(−i) , gN = aH +

∑
j

zjFj , (7.5.25)

εS = 3ξi− η , τS =
3ξi+ η

2π
+ i(−i) , gS = aH +

∑
j

zjFj . (7.5.26)

The extra factor of i in the modular parameter is explained by the fact that
in our setup ∆ ∼ ∂τ while the momenta are Pϕ, Pχ ∼ i∂ϕ, i∂χ. The final
expression for the index as obtained by Higgs branch localization is thus

I =
∑

Higgs vacua

eiTrFI(aH) Z ′1-loop Zv Zav , (7.5.27)

where the sum runs over solutions to the D-term equations (7.4.9) and the
one-loop determinant excludes the chiral multiplets acquiring a VEV and the
diagonal vector multiplets. Finally,

Zv = Zvortex

(
(t3y)TrFI · ; t3y, t3y−1, ei(aH+

∑
j zjFj)

)
(7.5.28)

Zav = Zvortex

(
(t3y−1)TrFI · ; t3y−1, t3y, ei(aH+

∑
j zjFj)

)
. (7.5.29)

Here the first argument encodes the weight of the vortex sum and is given
as an exponentiated linear function on the gauge algebra, the second and
third argument are the exponentiated rotational parameter, eiε, and complex
structure, q = e2πiτ , respectively, and the last argument is the exponentiated
flavor equivariant parameter.
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7.6 Matching the Coulomb branch expression

In this section we give some examples of how manipulating the Coulomb
branch integral gives rise to our Higgs branch result (7.5.27).

Free chiral multiplet For completeness, let us first mention the factor-
ization of the simplest theory, namely the free chiral. Its index was given in
(7.5.11) and can be factorized as [144]

I = Γ
(
t3rζ , t3y , t3y−1

)
= Γ

(
t3rζ, t3y−1, t6

)
Γ
(
t3r+3yζ, t3y, t6

)
(7.6.1)

= Γ
(
t3r+3y−1ζ, t3y−1, t6

)
Γ
(
t3rζ, t3y, t6

)
. (7.6.2)

U(1) gauge theory Next, we consider the example of a U(1) gauge theory
with an equal number N of fundamental and antifundamental chiral multi-
plets, which is necessary to cancel the U(1)gauge U(1)gauge U(1)gauge anomaly.
The U(1)R U(1)R U(1)gauge anomaly then also cancels. The non-anomalous
R-charge assignment is determined by requiring the U(1)R U(1)gauge U(1)gauge

anomaly to vanish. This anomaly is obviously proportional to the R-charge
of the chiral fermion, namely r−1, which implies that one should take r = 1.
Note that these are not the superconformal R-charges of the free IR theory,
which equal r = 2

3
.

The matrix integral (7.5.16) reads explicitly

I = (p, p)∞ (q, q)∞×∮
dz

2πiz
zξFI

N∏
α=1

Γ(z−1ζα(pq)r/2, p, q)
N∏
β=1

Γ(zζ̃−1
β (pq)r/2, p, q) , (7.6.3)

where we introduced the notation that p = t3y and q = t3y−1. We intro-
duced fugacities ζα and ζ̃β for the SU(N) × SU(N) flavor symmetry. For
notational simplicity, let us absorb the R-charges in the flavor fugacities as
Zα = ζα(pq)r/2 and Z̃−1

β = ζ̃−1
β (pq)r/2.

The fundamentals contribute zeros at z = p−κ−1q−λ−1Zγ and poles at

z = pκqλZγ . The antifundamentals have zeros at z = pκ+1qλ+1Z̃δ and poles

at z = p−κq−λZ̃δ. Picking up the poles inside the unit circle7, i.e. the poles

7Here and in the next examples we are not careful about the pole at the origin. If it has
a non-zero residue, it would give rise to a not completely suppressed deformed Coulomb
branch contribution.
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arising from the fundamentals, we obtain using the formulas in appendix E.3

I =

N∑
γ=1

ZξFI
γ

N∏
α=1
α6=γ

Γ(Z−1γ Zα, p, q)

N∏
β=1

Γ(ZγZ̃
−1
β , p, q)

∑
κ,λ≥0

(pκqλ)ξFI (pq)
κλN

×
N∏
α=1

(Z̃−1Zα)−κλ
∏N
β=1

∏λ−1
j=0 θ(q

jZγZ̃
−1
β , p)

∏κ−1
i=0 θ(p

iZγZ̃
−1
β , q)∏N

α=1

∏λ
j=1 θ(q

−jZ−1γ Zα, p)
∏κ
i=1 θ(p

−iZ−1γ Zα, q)
. (7.6.4)

The intertwining factor vanishes as expected when reinstating the non-anoma-
lous R-charges,

(pq)N
N∏
α=1

(Z̃−1Zα)−1 =
(
(pq)1−r)N = 1, (7.6.5)

where we used that
∏

α ζα =
∏

α ζ̃α = 1. We then find

I =
∑
γ

Z
(γ)
cl Z

′(γ)
1-loop Z

(γ)
v Z(γ)

av , (7.6.6)

where the classical and one-loop contribution are given by

Z
(γ)
cl = ZξFI

γ (7.6.7)

Z
′(γ)
1-loop =

N∏
α=1
α 6=γ

Γ(Z−1
γ Zα, p, q)

N∏
β=1

Γ(ZγZ̃
−1
β , p, q) . (7.6.8)

The vortex contributions can be written as

Z(γ)
v = Z

(γ)
vortex

(
pξFI ; p, q, ζα, ζ̃β

)
, Z(γ)

av = Z
(γ)
vortex

(
qξFI ; q, p, ζα, ζ̃β

)
,

(7.6.9)
in terms of the vortex membrane partition function

Z
(γ)
vortex

(
L ; eiε, q = e2πiτ , aα, bβ

)
=∑

κ≥0

Lκ
∏κ−1

j=0

∏N
β=1 θ((e

iε)j AγB
−1
β , q)∏κ

j=1 θ((e
iε)−j, q)

∏N
α=1
α 6=γ

θ((eiε)−j A−1
γ Aα, q)

, (7.6.10)

where Aα = aα (eiεq)
1
2 and Bβ = bβ (eiεq)

− 1
2 .
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U(N) gauge theory For a U(Nc) = U(1) × SU(Nc) gauge theory with
Nf = Na = N fundamentals and antifundamentals, we should check can-
cellation of two potential anomalies, namely the U(1)gauge U(1)gauge U(1)R
anomaly and the SU(Nc) SU(Nc) U(1)R anomaly. The U(1)R U(1)R U(1)gauge

anomaly cancels thanks to Nf = Na. While the first anomaly is again pro-
portional to r − 1, and thus imposes that r = 1, the second one leads to the
usual R-charge assignment r =

Nf−Nc
Nf

. These are not compatible for Nc 6= 0.

One should thus not hope to achieve factorization in a U(Nc) theory with
only fundamentals and antifundamentals. One resolution, also used in two
dimensions [113, 115], might be to add extra matter to cancel the anomaly.
We will not pursue this resolution here.

Associated Cartan theory At first sight, Higgs branch localization breaks
down in the absence of an abelian factor in the gauge group since one cannot
introduce the Fayet-Iliopoulos parameter ζ of (7.4.6), which played such an
essential role. However, we will now argue that one can associate to any
theory with gauge group G a theory with gauge group U(1)rank g with equal
index up to numerical and other holonomy independent factors. A similar
observation was made in [171] for the two-sphere partition function. This
associated Cartan theory can be subjected to Higgs branch localization.

First, one remarks that the integration measure of the matrix integral
(7.5.16) for gauge group G is naturally equal to that of U(1)rank g up to the
numerical prefactor |W|−1. Next, the one-loop determinant of a chiral field in
gauge representation R of G can be equivalently thought of as the product of
one-loop determinants of chiral fields with U(1)rank g charges determined by
the weights w ∈ R. Finally, using the simple observation that the one-loop
determinant of the vector multiplet can be rewritten as

Zvector
1-loop =

((t3y ; t3y)∞(t3y−1 ; t3y−1)∞)
rank g∏

α 6=0 Γ(eiα(â), t3y, t3y−1)
(7.6.11)

=
(
(t3y ; t3y)∞(t3y−1 ; t3y−1)∞

)rank g
∏
α 6=0

Γ(t6e−iα(â), t3y, t3y−1) ,

(7.6.12)

where we used the elliptic gamma function identity Γ(z, p, q) Γ(pq/z, p, q) =
1, one can equivalently think of the vector one-loop determinant (up to a
holonomy independent prefactor) as the product of one-loop determinants
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of chiral fields with U(1)R charge equal to two and with U(1)rank g charges
determined by the non-zero roots α 6= 0.

SU(2) gauge theory Let us finally then consider the simplest physically
relevant example, namely an SU(2) gauge theory with Nf = Na = N fun-
damental and antifundamental chiral multiplets. The argument presented
above, indicates that factorization can be achieved provided that the R-
symmetry is not anomalous, i.e. if we use the well-known non-anomalous
R-charge assignment r =

Nf−Nc
Nf

= N−2
N
.

The index is computed by

I =
1

2
(p, p)∞ (q, q)∞

∮
dz

2πiz

1

Γ(z2, p, q)Γ(z−2, p, q)

×
N∏
α=1

Γ(z−1ζα(pq)r/2, p, q) Γ(zζα(pq)r/2, p, q)

×
N∏
β=1

Γ(zζ̃−1
β (pq)r/2, p, q) Γ(z−1ζ̃−1

β (pq)r/2, p, q)

=
1

2
(p, p)∞ (q, q)∞

∮
dz

2πiz

1

Γ(z2, p, q)Γ(z−2, p, q)

×
2N∏
A=1

Γ(z−1YA, p, q) Γ(zYA, p, q) ,

where we introduced fugacities ζα, ζ̃β for the SU(N) × SU(N) flavor sym-
metry. Since the fundamental representation of SU(2) is pseudoreal, we get
an enhanced flavor symmetry, with fugacities ZA = (ζα, ζ̃

−1
β ) . Finally, we

introduced YA = ZA(pq)r/2.
The poles from the one factor of the vectormultiplet cancel against the

zeros of the other factor and vice versa. The integrand further has zeros
at z = p−κ−1q−λ−1YB and z = pκ+1qλ+1Y −1

C and poles at z = pκqλYB and
z = p−κq−λY −1

C . Picking up the poles inside the unit circle, i.e. the poles at
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z = pκqλYB, we obtain using the formulas in appendix E.3

I =
1

2

2N∑
B=1

∏2N
A=1 Γ(YBYA; p, q)

∏2N
A=1
A 6=B

Γ(Y −1
B YA ; p, q)

Γ(Y 2
B ; p, q)Γ(Y −2

B ; p, q)

×
∑
κ,λ≥0

(pq)−2κλ(2−N)

2N∏
A=1

(YA)−2κλ

×
∏2λ

j=1 θ(q
−jY −2

B , p)
∏2κ

i=1 θ(p
−iY −2

B , q)∏2λ−1
j=0 θ(qjY 2

B, p)
∏2κ−1

i=0 θ(piY 2
B, q)

×
2N∏
A=1

∏λ−1
j=0 θ(q

jYAYB, p)
∏κ−1

i=0 θ(p
iYAYB, q)∏λ

j=1 θ(q
−jY −1

B YA, p)
∏κ

i=1 θ(p
−iY −1

B YA, q)
.

Note now that the intertwining factor as expected disappears for the cor-
rect non-anomalous R-charges: (pq)−2(2−N)

∏
A(YA)−2 = (pq)−2(2−N+RN) = 1

where we used that
∏

A ZA = 1. We thus find complete factorization

I =
1

2

2N∑
B=1

Z
′(B)
1-loop Z

(B)
v Z(B)

av , (7.6.13)

where the one-loop contribution is

Z
′(B)
1-loop =

∏2N
A=1
A 6=B

Γ(YBYA, p, q)Γ(Y −1
B YA, p, q)

Γ(Y −2
B , p, q)

(7.6.14)

and the vortex partition functions are given by

Z(B)
v = Z

(B)
vortex(p, q, ZA) , Z(B)

av = Z
(B)
vortex(q, p, ZA) . (7.6.15)

Here the vortex membrane partition function is given by

Z
(B)
vortex(p, q, ZA) =∑
κ≥0

∏2κ
i=1 θ(p

−iY −2
B , q)∏2κ−1

i=κ θ(piY 2
B, q)

1∏κ
i=1 θ(p

−i, q)

2N∏
A=1
A 6=B

∏κ−1
i=0 θ(p

iYAYB, q)∏κ
i=1 θ(p

−iY −1
B YA, q)

, (7.6.16)

where YA = ZA(pq)
N−2
2N .

The generalization of this result to SU(N) gauge group is technically
more involved, but is expected to take on a factorized form as well.
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Chapter 8

Conclusions

In this part we have extended the Higgs branch localization framework of
[15] to three-dimensional N = 2 R-symmetric theories on S3

b and S2 × S1,
and to four-dimensional N = 1 theories on S3 × S1. We expect the method
to work on much more general 3d backgrounds. We also expect to be able
to perform Higgs branch localization on four-dimensional N = 1 theories on
manifolds like S2 × T 2. Even more generally, the method should work for
theories with 8 supercharges, for instance in 4 and 5 dimensions.

Higgs branch localization expresses the partition function in terms of
the K-theoretic/elliptic vortex partition function (VPF), which could also be
computed in the Ω-background [131, 140, 130]. In fact, the partition function
on different three-dimensional geometries—like S3

b and S2×S1—is controlled
by the very same VPF, with different identifications of the parameters. This
has been extensively elaborated upon in [17]. A similar feature is expected
to hold for four-dimensional N = 1 theories.

In the special case of three-dimensional QCD-like theories, i.e. U(N)k
gauge theories with Nf fundamentals and Na antifundamentals, we have
noticed that the S3 and S2×S1 partition functions factorize into VPFs only

for |k| ≤ |Nf−Na|
2

, a fact that apparently has been overlooked before. It is a
natural question to understand factorization beyond such bound.

It might be worth studying more in detail aspects of the 3d VPF. For
instance, 3d mirror symmetry maps particles to vortices [153] and it would
be interesting to understand its action on the VPF. Through the mirror map
[172] between star-shaped quivers and the 3d reduction of class-S theories
[10, 11], this might shed more light on the latter. Similarly, the study of the
modular properties of the 4d VPF is of natural interest.
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The 3d VPF encodes (equivariant) geometrical information about the
Higgs branch of the theory. It might be interesting to investigate how the
VPF captures the quantum moduli space [173, 174, 175, 176] of Chern-
Simons-matter quiver theories arising from M2-branes at Calabi-Yau fourfold
singularities.
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Appendix A

Infinite Chiral Symmetry in
Four Dimensions

A.1 Superconformal algebras

This appendix lists useful superconformal algebras that are used in chapter
2. We adopt the convention of working in terms of the complexified version
of symmetry algebras. We adopt bases for the complexified algebras such
that the restriction to the real form that is relevant for physics in Lorentzian
signature is the most natural. In general, the structures described in chapter
2 are insensitive to the spacetime signature of the four-dimensional theory,
with the caveat that we will assume that the theories in question, when Wick
rotated to Lorentzian signature, are unitary.

A.1.1 The four-dimensional superconformal algebra

The spacetime symmetry algebra for N = 2 superconformal field theories in
four dimensions is the superalgebra sl(4 | 2). The maximal bosonic subalgebra
is so(6,C)× sl(2)R×C∗. The so(6,C) conformal algebra, in a spinorial basis
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with α, α̇ = 1, 2, is given by

[M β
α ,M δ

γ ] = δ β
γ M δ

α − δ δ
αM β

γ ,

[Mα̇
β̇
,Mγ̇

δ̇
] = δα̇δMγ̇

β̇
− δγ̇

β̇
Mα̇

δ̇
,

[M β
α ,Pγγ̇] = δ β

γ Pαγ̇ − 1
2
δ β
α Pγγ̇ ,

[Mα̇
β̇
,Pγγ̇] = δα̇γ̇Pγβ̇ − 1

2
δα̇
β̇
Pγγ̇ ,

[M β
α ,Kγ̇γ] = − δ γ

α Kγ̇β + 1
2
δ β
α Kγ̇γ ,

[Mα̇
β̇
,Kγ̇γ] = − δγ̇

β̇
Kα̇γ + 1

2
δα̇
β̇
Kγ̇γ ,

[H,Pαα̇] = Pαα̇ ,
[H,Kα̇α] = −Kα̇α ,
[Kα̇α,Pββ̇] = δ α

β δα̇
β̇
H + δ α

β Mα̇
β̇

+ δα̇
β̇
M α

β .

(A.1.1)

The sl(2)R algebra has a Chevalley basis of generators R± and R, where

[R+,R−] = 2R , [R,R±] = ±R± . (A.1.2)

In Lorentz signature where the appropriate real form of this algebra is su(2)R,
these generators will obey hermiticity conditions (R+)† = R−, R† = R. The
generator of the Abelian factor C∗ is denoted by r and is central in the
bosonic part of the algebra. It is also convenient to introduce the basis RIJ ,
with

R1
2 = R+ , R2

1 = R− , R1
1 =

1

2
r+R , R2

2 =
1

2
r−R , (A.1.3)

where we follow the conventions of [45] for r, and which obey the commuta-
tion relations

[RIJ ,RKL] = δKJRIL − δILRKJ . (A.1.4)

There are sixteen fermionic generators in this superconformal algebra
– eight Poincaré supercharges and eight conformal supercharges – denoted
{QIα, Q̃Iα̇, SαJ , S̃J α̇}. The nonvanishing commutators amongst them are as
follows,

{QIα, Q̃J α̇} = δIJPαα̇ ,
{S̃Iα̇, S α

J } = δIJKα̇α ,
{QIα, S β

J } = 1
2
δIJ δ

β
α H + δIJM β

α − δ β
α RIJ ,

{S̃Iα̇, Q̃J β̇} = 1
2
δIJ δ

α̇
β̇
H + δIJMα̇

β̇
+ δα̇

β̇
RIJ .

(A.1.5)
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Finally, the commutators of the supercharges with the bosonic symmetry
generators are the following:

[M β
α ,QIγ ] = δ β

γ QIα − 1
2
δ β
α QIγ ,

[Mα̇
β̇
, Q̃Iδ̇] = δα̇

δ̇
Q̃Iβ̇ − 1

2
δα̇
β̇
Q̃Iδ̇ ,

[M β
α ,S γ

I ] = − δ γ
α S β
I + 1

2
δ β
α S γ

I ,

[Mα̇
β̇
, S̃Iγ̇] = − δγ̇

β̇
S̃Iα̇ + 1

2
δα̇
β̇
S̃Iγ̇ ,

[H,QIα] = 1
2
QIα ,

[H, Q̃Iα̇] = 1
2
Q̃Iα̇ ,

[H,S α
I ] = − 1

2
S α
I ,

[H, S̃Iα̇] = − 1
2
S̃Iα̇ ,

[RIJ ,QKα ] = δ KJ QIα −
1

4
δIJQKα ,

[RIJ , Q̃Kα̇] = − δ IK Q̃J α̇ +
1

4
δIJ Q̃Kα̇ ,

[Kα̇α,QIβ] = δ α
β S̃Iα̇ ,

[Kα̇α, Q̃Iβ̇] = δ α̇

β̇
S α
I ,

[Pαα̇,S β
I ] = − δ β

α Q̃Iα̇ ,
[Pαα̇, S̃Iβ̇] = − δ β̇

α̇ QIα .

(A.1.6)

A.1.2 The two-dimensional superconformal algebra

The second superalgebra of interest is sl(2|2), which corresponds to the right-
moving part of the global superconformal algebra in N = (0, 4) SCFTs in
two dimensions. The maximal bosonic subgroup is sl(2)×sl(2)R, with gener-
ators {L0, L±1} for sl(2) and {R±,R} for sl(2)R. The non-vanishing bosonic
commutation relations are given by

[R,R±] = ±R± , [R+,R−] = 2R ,

[L̃0, L̃±1] = ∓L̃±1 , [L̃1, L̃−1] = 2L̃0 .

There are additionally right-moving Poincaré supercharges QI , Q̃J and
right-moving superconformal charges SJ , S̃I . The commutation relations
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amongst the fermionic generators are given by

{QI , Q̃J } = δIJ L̃−1 ,

{S̃I ,SJ } = δIJ L̃+1 ,

{QI ,SJ } = δIJ L̃0 −RIJ −
1

2
δIJZ ,

{Q̃J , S̃I} = δIJ L̃0 +RIJ +
1

2
δIJZ ,

whereRIJ are defined as in (A.1.3), but with r set to zero. Here Z is a central
element, the removal of which gives the algebra psl(2|2). The additional
commutators of bosonic symmetry generators with the supercharges are given
by

[L̃−1 , S̃I ] = −QI ,
[L̃−1 ,SI ] = −Q̃I ,
[L̃+1 , Q̃I ] = SI ,
[L̃+1 ,QI ] = S̃I ,
[L̃0 , S̃I ] = −1

2
S̃I ,

[L̃0 ,SI ] = −1
2
SI ,

[L̃0 , Q̃I ] = 1
2
Q̃I ,

[L̃0 ,QI ] = 1
2
QI .

(A.1.7)

A.2 Shortening conditions and indices of

su(2, 2 | 2)
The classification of short representations of the four-dimensional N = 2
superconformal algebra [177, 45, 36] plays a major role in the structure of
the chiral algebras described in chapter 2. This appendix provides a review
of the classification, as well as of the various indices that can be defined on
any representation of the algebra that are insensitive to the recombination
of collections of short multiplets into generic long multiplets.

Short representations occur when the norm of a superconformal descen-
dant state in what would otherwise be a long representation is rendered null
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by a conspiracy of quantum numbers. The unitarity bounds for a supercon-
formal primary operator are given by

E > Ei , ji 6= 0 ,

E = Ei−2 or E >Ei , ji = 0 ,
(A.2.1)

where we have defined

E1 = 2 + 2j1 + 2R + r , E2 = 2 + 2j2 + 2R− r , (A.2.2)

and short representations occur when one or more of these bounds are satu-
rated. The different ways in which this can happen correspond to different
combinations of Poincaré supercharges that will annihilate the superconfor-
mal primary state in the representation. There are two types of shortening
conditions, each of which has four incarnations corresponding to an SU(2)R
doublet’s worth of conditions for each supercharge chirality:

BI : QIα|ψ〉 = 0 , α = 1, 2 (A.2.3)

B̄I : Q̃Iα̇|ψ〉 = 0 , α̇ = 1, 2 (A.2.4)

CI :

{
εαβQIα |ψ〉β = 0 , j1 6= 0

εαβQIαQIβ |ψ〉 = 0 , j1 = 0
, (A.2.5)

C̄I :

{
εα̇β̇Q̃Iα̇ |ψ〉β = 0 , j2 6= 0

εα̇β̇Q̃Iα̇Q̃Iβ̇ |ψ〉 = 0 , j2 = 0
, (A.2.6)

The different admissible combinations of shortening conditions that can be
simultaneously realized by a single unitary representation are summarized
in Table A.1, where the reader can also find the precise relations that must
be satisfied by the quantum numbers (E, j1, j2, r, R) of the superconformal
primary operator, as well as the notations used to designate the different
representations in [45] (DO) and [36] (KMMR).1

1We follow the R-charge conventions of DO.
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Shortening Quantum Number Relations DO KMMR

∅ E > 2R + r A∆
R,r(j1,j2) aa∆,j1,j2,r,R

B1 E = 2R + r j1 = 0 BR,r(0,j2) ba0,j2,r,R

B̄2 E = 2R− r j2 = 0 B̄R,r(j1,0) abj1,0,r,R

B1 ∩ B2 E = r R = 0 Er(0,j2) ba0,j2,r,0

B̄1 ∩ B̄2 E = −r R = 0 Ēr(j1,0) abj1,0,r,0

B1 ∩ B̄2 E = 2R j1 = j2 = r = 0 B̂R bb0,0,0,R

C1 E = 2 + 2j1 + 2R + r CR,r(j1,j2) caj1,j2,r,R

C̄2 E = 2 + 2j2 + 2R− r C̄R,r(j1,j2) acj1,j2,r,R

C1 ∩ C2 E = 2 + 2j1 + r R = 0 C0,r(j1,j2) caj1,j2,r,0

C̄1 ∩ C̄2 E = 2 + 2j2 − r R = 0 C̄0,r(j1,j2) acj1,j2,r,0

C1 ∩ C̄2 E = 2 + 2R + j1 + j2 r = j2 − j1 ĈR(j1,j2) ccj1,j2,j2−j1,R

B1 ∩ C̄2 E = 1 + 2R + j2 r = j2 + 1 DR(0,j2) bc0,j2,j2+1,R

B̄2 ∩ C1 E = 1 + 2R + j1 −r = j1 + 1 D̄R(j1,0) cbj1,0,−j1−1,R

B1 ∩ B2 ∩ C̄2 E = r = 1 + j2 r = j2 + 1 R = 0 D0(0,j2) bc0,j2,j2+1,0

C1 ∩ B̄1 ∩ B̄2 E = −r = 1 + j1 −r = j1 + 1 R = 0 D̄0(j1,0) cbj1,0,−j1−1,0

Table A.1: Unitary irreducible representations of the N = 2 superconformal algebra.

268



At the level of group theory, it is possible for a collection of short repre-
sentations to recombine into a generic long representation whose dimension
is equal to one of the unitarity bounds of (A.2.1). In the DO notation, the
generic recombinations are as follows:

A2R+r+2+2j1
R,r(j1,j2) ' CR,r(j1,j2) ⊕ CR+ 1

2
,r+ 1

2
(j1− 1

2
,j2) , (A.2.7)

A2R−r+2+2j2
R,r(j1,j2) ' C̄R,r(j1,j2) ⊕ C̄R+ 1

2
,r− 1

2
(j1,j2− 1

2
) ,

A2R+j1+j2+2
R,j1−j2(j1,j2) ' ĈR(j1,j2) ⊕ ĈR+ 1

2
(j1− 1

2
,j2) ⊕ ĈR+ 1

2
(j1,j2− 1

2
) ⊕ ĈR+1(j1− 1

2
,j2− 1

2
) .

There are special cases when the quantum numbers of the long multiplet at
threshold are such that some Lorentz quantum numbers in (A.2.7) would be
negative and unphysical:

A2R+r+2
R,r(0,j2) ' CR,r(0,j2) ⊕ BR+1,r+ 1

2
(0,j2) , (A.2.8)

A2R−r+2
R,r(j1,0) ' C̄R,r(j1,0) ⊕ B̄R+1,r− 1

2
(j1,0) ,

A2R+j2+2
R,−j2(0,j2) ' ĈR(0,j2) ⊕DR+1(0,j2) ⊕ ĈR+ 1

2
(0,j2− 1

2
) ⊕DR+ 3

2
(0,j2− 1

2
) ,

A2R+j1+2
R,j1(j1,0) ' ĈR(j1,0) ⊕ ĈR+ 1

2
(j1− 1

2
,0) ⊕ D̄R+1(j1,0) ⊕ D̄R+ 3

2
(j1− 1

2
,0) ,

A2R+2
R,0(0,0) ' ĈR(0,0) ⊕DR+1(0,0) ⊕ D̄R+1(0,0) ⊕ B̂R+2 .

The last three recombinations involve multiplets that make an appearance
in the associated chiral algebra described in this work. Note that the E , Ē ,
B̂ 1

2
, B̂1, B̂ 3

2
, D0, D̄0, D 1

2
and D̄ 1

2
multiplets can never recombine, along with

B 1
2
,r(0,j2) and B̄ 1

2
,r(j1,0).

There exist a variety of trace formulas [36, 38] that can be defined on the
Hilbert space of an N = 2 SCFT such that the result receives contributions
only from states that lie in short representations of the superconformal al-
gebra, with the contributions being such that the indices are insensitive to
recombinations. The indices are defined and named as follows:

Superconformal Index : TrH(−1)Fp
1
2

(E+2j1−2R−r)q
1
2

(E−2j1−2R−r)tR+r,

Macdonald : TrHM
(−1)F q

1
2

(E−2j1−2R−r)tR+r ,

Schur : TrH(−1)F qE−R ,

Hall-Littlewood : TrHHL
(−1)F τ 2E−2R ,

Coulomb : TrHC
(−1)Fσ

1
2

(E+2j1−2R−r)ρ
1
2

(E−2j1−2R−r) .

269



The specialized Hilbert spaces appearing in the trace formulas above are
defined as follows,

HM := {ψ ∈ H
∣∣ E + 2j1 − 2R− r = 0} , (A.2.9)

HHL := {ψ ∈ H
∣∣ E − 2R− r = 0 , j1 = 0} , (A.2.10)

HC := {ψ ∈ H
∣∣ E + 2j1 + r = 0} . (A.2.11)

The different indices are sensitive to different superconformal multiplets. In
particular, the Coulomb index counts only E and D0 type multiplets. These
can be thought of as N = 1 chiral ring operators that are SU(2)R singlets.
Similarly, the Hall-Littlewood index counts only B̂R andDR multiplets, which
can be thought of as the consistent truncation of the N = 1 chiral ring to
operators that are neutral under U(1)r. The Schur and Macdonald indices
count only the operators that are involved in the chiral algebras of chapter
2: B̂R, ĈR, D, and D̄ multiplets. The full index receives contributions from
all of the multiplets appearing in Table A.1.

A.3 Kazhdan-Lusztig polynomials and affine

characters

Computing the characters of irreducible modules of an affine Lie algebra at
a negative integer level is a nontrivial task. For low levels, the multiplicity
and norms of states can be found by hand using the mode expansion of the
affine currents JA(z), but this computation quickly becomes rather involved.
Fortunately there exists another method to compute these characters, based
on the work of Kazhdan and Lusztig [178], which (with the aid of a computer)
can produce results to very high order. In this appendix we give a brief
introduction to this method. The interested reader is referred to, e.g., [179,
180] for more details.

A generic method to obtain an irreducible representation of any (affine)
Lie algebra is to start with the Verma module M built on a certain highest
weight state ψh.w., and then to subtract away all the null states in this module
with the correct multiplicities. Let us recall that according to the Poincaré-
Birkhoff-Witt theorem, the Verma module is spanned by all the states of the
form

(E−α1,1)n1,1(E−α1,2)n1,2 . . . (E−α1,m1)n1,m1 . . . (E−α2,1)n2,1 . . . (E−αN ,mN )nN,mN ψh.w. ,
(A.3.1)
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with nonnegative integer coefficients ni,j. Here the E−α,kα are the negative
roots with weight −α, and the auxiliary index kα ∈ {1, . . . ,mα} is only
necessary when the multiplicity mα of the given weight is greater than one.
The ordering of the roots in the above equation is arbitrary but fixed. If the
highest weight state ψh.w. has weight µ then the state defined as above has
weight

µ−α1(n1,1+n1,2+. . .+n1,m1)−α2(n2,1+. . .)−. . .−αN(. . .+nN,mN ) , (A.3.2)

and with a moment’s thought one sees that the character Mµ of the Verma
module is given by

charMµ = eµ
∏
α>0

(1− e−α)−mult(α) . (A.3.3)

This is the Kostant partition function. The product is taken over the set of
all the positive roots, which is infinite for an affine Lie algebra.

For a given affine Lie algebra there are special values of the highest weights
for which the Verma module becomes reducible due to the existence of null
states. We need to subtract all these null states to recover the irreducible
module. Since any descendant of a null state is also null, the null states
are themselves organized into Verma modules and we can subtract away
entire modules at a time. This procedure is further complicated by the
existence of “nulls of nulls”, i.e., null states inside the Verma module that
we are subtracting. In general, this leads to a rather intricate pattern of
subtractions. It follows that the character of the irreducible module with
highest weight λ, which we denote as Lλ, can be obtained from a possibly
infinite sum of the form

charLλ =
∑
µ6λ

mλ,µcharMµ , (A.3.4)

where the integers mλ,µ are not of definite sign and reflect the aforementioned
pattern of null states. Of course mλ,λ = 1. The vectors labeled by µ in the
above sum are called the primitive null vectors of the Verma module Mλ.

This leaves us with the task of determining the weights µ that appear
in (A.3.4) along with their associated multiplicities mλ,µ. The first task is
accomplished by noting that these weights are necessarily annihilated by all
raising operators, and therefore must be highest weight states in themselves.
The quadratic Casimir operator of an affine Lie algebra acts simply on highest
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weight states with weight µ as multiplication by |µ+ρ|2, where ρ is the Weyl
vector with unit Dynkin labels. On the other hand, the eigenvalue should be
an invariant of the full representation, which means that the only states µ
that can appear in (A.3.4) have to satisfy

|µ+ ρ|2 = |λ+ ρ|2 . (A.3.5)

Notice that so far we have made no distinction between unitary representa-
tions, where the highest weight λ is dominant integral (i.e., its Dynkin labels
are nonnegative integers), and non-unitary representations like the ones in
which we are interested. This distinction becomes crucial in the computation
of the multiplicities mλ,µ.

For the irreducible representations associated to dominant integral weights,
the weight multiplicities are invariant under the action of the Weyl group,
and correspondingly charLλ is invariant under the action of the Weyl group
on the fugacities. On the other hand, the Kostant partition function is es-
sentially odd under this action (cf. [179]),

w(e−ρ−µcharMµ) = sign(w)e−ρ−µcharMµ , (A.3.6)

where the sign of an element w in the Weyl group is simply given by −1
raised to the power of the number of generators used to express w. One
can easily convince oneself that the multiplicities mλ,µ therefore necessarily
satisfy

mλ,µ = sign(w)mλ,w·µ , (A.3.7)

where w · µ := w(µ + ρ) − ρ is the shifted action of the Weyl group on the
weight µ. All the multiplicities mλ,µ for weights µ on the same shifted Weyl
orbit are therefore related by factors of sign(w), and it suffices to know only
one multiplicity on each orbit. Happily, if the highest weight λ is dominant
integral, then it lies on the shifted Weyl orbit of any primitive null vector.
This essentially follows from the fact that there is a unique dominant integral
weight on every shifted Weyl orbit, and from (A.3.5) it can be shown that this
has to be λ. So, using that mλ,λ = 1, we find that all the weights appearing
in (A.3.4) are given by the shifted Weyl orbit of λ and have multiplicities
equal to sign(w). In summary, then,

charLλ =

∑
w∈W sign(w)ew(ρ+λ)−ρ∏
α>0(1− e−α)mult(α)

, (A.3.8)
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which is the famous Weyl-Kac character formula.
Let us return to the case where the λ is not dominant integral. This

is the case that interests us: indeed, for so(8)−2 the vacuum representation
has Dynkin labels [−2 0 0 0 0] and the zeroth Dynkin label is not positive.2

For non-dominant integral weights the above derivation already fails at the
very first step: the weight multiplicities in the irreducible representation
are not invariant under the action of the Weyl group. This is most easily
seen by taking the infinite irreducible representation of su(2) whose highest
weight is negative. In this case the single Weyl reflection maps the highest
weight, which of course has multiplicity one, to a positive weight, which
has multiplicity zero. The derivation of the coefficients mλ,µ now becomes
considerably more involved. Since we find qualitative differences depending
on the sign of k+ h∨, we will in the remainder of this appendix focus on the
relevant case k + h∨ > 0.

For the non-unitary representations considered here it is still true that all
the primitive null vectors lie on the shifted Weyl orbit of the highest weight
λ, and for k + h∨ > 0 there is still a unique dominant weight Λ on the same
orbit such that Λ + ρ has nonnegative Dynkin labels. For example, for the
vacuum module of so(8)−2 the dominant weight has Dynkin labels [0 0−1 0 0]
which happens to be related to [−2 0 0 0 0] by a single elementary reflection.
All the weights in (A.3.4), including λ itself, can thus be written as µ = w ·Λ
for some Weyl element w. We can therefore alternatively try to label these
weights with the corresponding element of the Weyl group w instead of µ.
We will see that such a relabeling has great benefits, but first we need to
mention two important subtleties.

The first subtlety concerns the fact that we may restrict ourselves to
elementary reflections of the Weyl group for which the corresponding Dynkin
label in Λ is integral, since it is only in those cases that null states can possibly
appear. These reflections generate a subgroup of the Weyl group that we will
denote as WΛ. In the case of so(8)−2 the weights are all integral and WΛ = W .
The second subtlety is the possibility of the existence of a subgroup W 0

Λ of
WΛ that leaves Λ invariant. This happens precisely when some of the Dynkin
labels of Λ + ρ are zero - in our case there is a single such zero. It is clear
that the weights µ can then at best be uniquely labeled by elements of the

2Recall that the zeroth Dynkin label for a weight vector in an affine Lie algebra ĝ is
given by k − (λ, θ) with λ the part of the weight vector corresponding to the original Lie
algebra g and θ the highest root of g.
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coset WΛ/W
0
Λ.

It is now a deep result that the multiplicitiesmλ,µ depend on the dominant
integral weight Λ only through the corresponding elements w and w′ of the
coset WΛ/W

0
Λ. We may therefore replace

mλ,µ → mw,w′ , (A.3.9)

where λ = w · Λ, µ = w′ · Λ and w and w′ are elements of the coset. The
celebrated Kazhdan-Lusztig conjecture tells us that the precise form of these
multiplicities is given by

mw,w′ = Q̃w,w′(1) . (A.3.10)

where the Kazhdan-Lusztig polynomial Q̃w,w′(q) is a single-variable poly-
nomial depending on two elements w and w′ of the coset WΛ/W

0
Λ. These

polynomials are determined via rather intricate recursion relations that are
explained in detail in [180]. For k + h∨ > 0 and integral weights, which is
the case that interests us here, the Kazhdan-Lusztig conjecture was proven
in [181, 182].

For the computations mentioned in the main text, we have implemented
the recursive definitions of the Kazhdan-Lusztig polynomials on cosets given
in [180] in Mathematica. Equations (A.3.3), (A.3.4), and (A.3.10) then allow
us to compute all the states in the irreducible vacuum character of so(8)−2

up to level five. The results are shown in Table 2.5.

274



Appendix B

Chiral algebras of class S

B.1 Details for rank two theories

This appendix includes details regarding a number of calculations having to
do with operations on the χ[T3] chiral algebra described in Sec. 3.3.3. For
all of these calculations, it is useful to have the realization of the χ[T3] chiral
algebra, which coincides with the affine e6 current algebra at level k = −3,
in the basis relevant for class S given in Eqn. (3.3.16). In this basis, the
singular OPEs are as follows,

(J1) a
′

a (z)(J1) ã
′

ã (0) ∼ k(δ ã
′

a δ
a′
ã − 1

3
δ a
′

a δ
ã′
ã )

z2
+
δ a
′

ã (J1) ã
′

a − δ ã
′

a (J1) a
′

ã

z
,

(J1) a
′

a (z)Wa′′bc(0) ∼ 1

z

(
δ a
′

a′′Wabc −
1

3
δ a
′

a Wa′′bc

)
,

(J1) a
′

a (z)W̃ a′′bc(0) ∼ − 1

z

(
δ a
′′

a W̃ a′bc − 1

3
δ a
′

a W̃
a′′bc

)
,

Wabc(z)Wa′b′c′(0) ∼ − 1

z
εaa′a′′εbb′b′′εcc′c′′W̃

a′′b′′c′′ ,

W̃ abc(z)W̃ a′b′c′(0) ∼ 1

z
εaa
′a′′εbb

′b′′εcc
′c′′Wa′′b′′c′′ ,

Wabc(z)W̃ a′b′c′(0) ∼ k

z2
δ a
′

a δ
b′

b δ
c′

c

+
1

z

(
(J1) a

′

a δ
b′

b δ
c′

c + δ a
′

a (J2) b
′

b δ
c′

c + δ a
′

a δ
b′

b (J3) c
′

c

)
,

(B.1.1)

and similarly for (J2) and (J3).
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We saw illustrated in Table 3.3 that there exists for k = −3 a null relation
in the 650-dimensional representation of e6. This is in agreement with the
Higgs branch relation of Eqn. (3.3.17). It will prove useful to have the explicit
expression for the components of this null vector upon decomposition in
terms of ⊕3

I=1su(3)I representations. Group theoretically, the decomposition
in question is given by

650 → 2× (1,1,1) + (8,1,1) + (1,8,1) + (1,1,8)

+ 2× (3,3,3) + 2× (3̄, 3̄, 3̄) + (8,8,1) + (1,8,8) + (8,1,8)

+ (6, 3̄, 3̄) + (6̄,3,3) + (3̄,6, 3̄) + (3, 6̄,3) + (3̄, 3̄,6) + (3,3, 6̄) .

The corresponding null vectors arise from the relations summarized in Table
B.1.
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Representation Null relation

(1,1,1) (J1) a2
a1

(J1) a1
a2

= (J2) b2
b1

(J2) b1
b2

= (J3) c2
c1

(J3) c1
c2

(8,1,1) + (1,8,1) + (1,1,8) 1
3

(
Wa1bcW̃

a2bc − 1
3
δa2
a1
WabcW̃

abc
)

+
(
(J1) a

a1
(J1) a2

a − 1
3
δa2
a1

(J1) a
α (J1) α

a

)
− 3∂(J1) a2

a1
= 0

(8,8,1) + (1,8,8) + (8,1,8) Wa1b1cW̃
a2b2c − 1

3
δa2
a1
Wab1cW̃

ab2c − 1
3
δb2b1

(
Wa1bcW̃

a2bc
)

+

1
9
δa2
a1
δb2b1

(
WabcW̃

abc
)

+ (J1) a2
a1

(J2) b2
b1

= 0

(3,3,3) (J1) α
a Wαbc = (J2) β

b Waβc = (J3) γ
c Wabγ

(3̄, 3̄, 3̄) (J1) a
α W̃

αbc = (J2) b
β W̃

aβc = (J3) c
γ W̃

abc

(6̄,3,3) + (3, 6̄,3) + (3,3, 6̄) 2(J1)
(a1|
α1 Wα2bcε

α1α2|a2) + W̃ (a1b1c1W̃ a2)b2c2εbb1b2εcc1c2 = 0

(6, 3̄, 3̄) + (3̄,6, 3̄) + (3̄, 3̄,6) 2(J1) α1

(a1| W̃
α2bcεα1α2|a2) +W(a1b1c1Wa2)b2c2ε

bb1b2εcc1c2 = 0

Table B.1: Null state relations at level two in the χ[T3] chiral algebra.
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B.1.1 Argyres-Seiberg duality

First we describe in detail the check of Argyres-Seiberg duality at the level
of chiral algebras described in Section 3.3.3. The first duality frame is that
of SQCD, the chiral algebra of which was described in chapter 2. There

the generators of the chiral algebra were found to include a ŝu(6)−3 × û(1)

affine current algebra with currents J ji and J , along with baryonic and anti-
baryonic operators {bijk, b̃ijk} of dimension ∆ = 3

2
. The singular OPEs for

these generators are as follows,

J ji (z)J lk(0) ∼ − 3(δliδ
j
k − trace)

z2
+

δjkJ
l
i(z)− δliJ jk(z)

z
,

J(z)J(0) ∼ − 18

z2
,

J ji (z)bk1k2k3(0) ∼
3δj[k1|bi|k2k3](0)− 1

2
δji bk1k2k3(0)

z
,

J(z)bk1k2k3(0) ∼ 3bk1k2k3(0)

z
,

J(z)bk1k2k3(0) ∼ − 3bk1k2k3(0)

z
,

bi1i2i3(z)b̃j1j2j3(0) ∼
36 δ

[j1
[i1
δ
j2
i2
δ
j3]
i3]

z3
−

36 δ
[j1
[i1
δ
j2
i2
Ĵ
j3]
i3] (0)

z2

+
18 δ

[j1
[i1
Ĵ
j2
i2
Ĵ
j3]
i3] (0)− 18 δ

[j1
[i1
δ
j2
i2
∂Ĵ

j3]
i3] (0)

z
.

(B.1.2)
Antisymmetrizations are performed with weight one, and lower (upper) in-
dices i, j, . . . transform in the fundamental (antifundamental) representation
of su(6). In the last line we have introduced the u(6) current Ĵ ij := J ij + 1

6
δijJ .

It was conjectured in chapter 2 that the SQCD chiral algebra is aW algebra
with just these generators. This proposal passed a few simple checks. All the
generators of the Hall-Littlewood chiral ring have been accounted for and the
OPE closes. There is no additional stress tensor as a generator because the
Sugawara stress tensor of the u(6) current algebra turns out to do the job
(this again implies a relation in the Higgs branch chiral ring of SQCD). The
spectrum of the chiral algebra generated by these operators also correctly
reproduces the low-order expansion of the superconformal index.

Our aim in the remainder of this appendix is to reproduce this chiral

278



algebra from the ‘exceptional side’ of the duality using our proposal that the
chiral algebra χ[T3] is the current algebra ( ê6 )−3. The two free hypermul-
tiplets contribute symplectic bosons qα and q̃α with α = 1, 2 with singular
OPE given by

qα(z)q̃β(0) ∼ δβα
z
. (B.1.3)

The χ[T3] chiral algebra should be re-expressed in terms of an su(6)× su(2)
maximal subalgebra, in terms of which the affine currents split as

{JA=1,...,78} =⇒ {X i
j, Y

[ijk]
α , Zβ

α} . (B.1.4)

The operators X i
j and Zβ

α are the affine currents of su(6) and su(2), respec-
tively, with X i

i = Zα
α = 0. The additional operators Y ijk

α transform in the
(20,2) of su(6) × su(2). The nonvanishing OPEs amongst these operators
are simply a rewriting of the ê6 current algebra,

Xj
i (z)X l

k(0) ∼ −3(δliδ
j
k − trace)

z2
+
δjkX

l
i(0)− δliXj

k(0)

z

Zβ
α(z)Zδ

γ(0) ∼ −3(δδαδ
β
γ − trace)

z2
+
δβγZ

∂
α(0)− δδαZβ

γ (0)

z

Xj
i (z)Y klm

α (0) ∼ −3δ
[k
i Y

lm]j
α (0)

z
− trace (B.1.5)

Zβ
α(z)Y ijk

γ (0) ∼ δβγY
ijk
α (0)

z
− trace

Y ijk
α (z)Y lmn

β (0) ∼ εαβε
ijklmn

z2
+
εijklmnεαγZ

γ
β (0)− 3εαβε

[ijklm|pX
|n]
p (0)

z
.

Gluing introduces a dimension (1, 0) ghost system in the adjoint of su(2) and
restricting to the appropriate cohomology of the following BRST operator,

JBRST = cαβ(Zβ
α − qαq̃β)− 1

2
(δα6
α1
δα2
α3
δα4
α5
− δα4

α1
δα6
α3
δα2
α5

)cα1
α2
bα3
α4
cα5
α6
. (B.1.6)

The cohomology can be constructed level by level using the OPEdefs pack-
age for Mathematica [48]. Up to dimension h = 3

2
, we find the following

operators,

X i
j , qαq̃

α , εijklmnq̃
αY lmn

α , εαβqαY
ijk
β . (B.1.7)
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Up to normalizations, these can naturally be identified with the generators
of the SQCD chiral algebra,

Xj
i ' J ji , 3qαq̃

α ' J ,
1

6
εijklmnq̃

αY lmn
α ' bijk , εαβqαY

ijk
β ' b̃ijk .

(B.1.8)
The equations relating chiral algebra generators in the two duality frames
are the same as the ones obtained in [64], with the operators being viewed as
generators of the Higgs branch chiral ring. In that work, establishing them
at the level of the Higgs branch required a detailed understanding of the
chiral ring relations on both sides. By contrast, to establish equivalence of
the chiral algebras we need to check that the above operators have the same
singular OPEs. Relations in the chiral ring will then show up automatically
as null states.

With the OPEdefs package we have also computed the OPEs of the com-
posite operators in (B.1.7) and found perfect agreement with (B.1.2). Most
of the OPEs are reproduced in a fairly trivial fashion. However, the simple
pole in the baryon-antibaryon OPE can only be matched by realizing that
there is a null state at level two in the ( ê6 )−3 algebra given by

Y ijk
α Y abc

β εαβεabclmn+108∂X
[i
[l δ

j
mδ

k]
n]+108X

[i
[lX

j
mδ

k]
n]+

1

72
Zβ
αZ

α
β δ

[i
[lδ

j
mδ

k]
n] . (B.1.9)

Thus we have shown that using our proposal for the χ[T3] chiral algebra in
the Argyres-Seiberg duality problem, one at least produces a self-contained
W-algebra that matches between the two sides of the duality. It would be nice
to prove that this W algebra is the full chiral algebra. Indeed, if one could
demonstrate this fact for the SQCD side of the duality, it seems likely that
it wouldn’t be too hard to prove that there can be no additional generators
in the χ[T3] chiral algebra beyond the affine currents.

B.1.2 Reduction of T3 to free hypermultiplets

In this appendix we provide some details about the reduction of the χ[T3]
chiral algebra to free symplectic bosons. This corresponds to the subregular
embedding su(2) ↪→ su(3), which is given by

Λ(t0) =
1

2
(T 1

1 − T 3
3 ) , Λ(t−) = T 1

3 , Λ(t+) = T 3
1 . (B.1.10)
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The grading on the Lie algebra by the Cartan element Λ(t0) is half-integral.
In order to arrive at first-class constraints, we introduce a different Cartan
element δ that gives an integral grading. More specifically, we have δ =
1
3
(T 1

1 + T 2
2 − 2T 3

3 ). With respect to the δ-grading there are two positively

graded currents and we consequently impose the constraints (J1)
1

3 = 1 and

(J1)
2

3 = 0. These are implemented via a BRST procedure with differential
given by

d(z) =
((

(J1) 1
3 − 1

)
c 3

1 + (J1) 2
3 c

3
2

)
(z) , (B.1.11)

where the ghost pairs b 1
3 , c

3
1 and b 2

3 , c
3

2 have the usual singular OPEs.
Implementing the first step of the qDS procedure, one obtains the (redun-

dant) generators of the chiral algebra at the level of vector spaces. Applying
the tic-tac-toe procedure to produce genuine chiral algebra generators, we
obtain the set of generators that were listed in Table 3.4. The explicit forms
of these generators are given as follows,

Ju(1) := (Ĵ1) 1
1 − 2(Ĵ1) 2

2 + (Ĵ1) 3
3

(Ĵ 1) 2
1 := (Ĵ1) 2

1

(Ĵ 1) 3
1 := (Ĵ1) 3

1 −
(
−(k + 1)∂(Ĵ1) 3

3 + (Ĵ1) 1
1 (Ĵ1) 3

3 − (Ĵ1) 1
2 (Ĵ1) 2

1

)
(Ĵ 1) 3

2 := (Ĵ1) 3
2 −

(
(k + 2)∂(Ĵ1) 1

2 + (Ĵ1) 3
3 (Ĵ1) 1

2 − (Ĵ1) 2
2 (Ĵ1) 1

2

)
W1bc := W1bc −W3bc(Ĵ

1) 1
1

W2bc := W2bc −W3bc(Ĵ
1) 1

2 (B.1.12)

W3bc := W3bc

W̃1bc := W̃ 1bc

W̃2bc := W̃ 2bc

W̃3bc := W̃ 3bc −
(
−W̃ 1bc(Ĵ1) 1

1 − W̃ 2bc(Ĵ1) 1
2

)
(J 2) b2

b1
:= (J2) b2

b1

(J 3) c2
c1

:= (J3) c2
c1

.

The generatorsW3bc and W̃1bc have the correct charges and mutual OPE
to be identified as the expected symplectic bosons. It follows that the reduc-
tion argument will be complete if we can show that at the specific value of
the level of interest k = −3, all the other generators listed in Eqn. (B.1.12)
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participate in a null state condition that allows them to be equated with
composites of W3bc and W̃1bc.

Indeed, we do find such relations to account for all additional generators.
At level h = 1, we find

Ju(1) = −W3bcW̃1bc , (B.1.13)

(J 2) b2
b1

= −
(
W3b1cW̃1b2c − 1

3
δb2b1W3bcW̃1bc

)
, (B.1.14)

(J 3) c2
c1

= −
(
W3bc1W̃1bc2 − 1

3
δc2c1W3bcW̃1bc

)
, (B.1.15)

W̃2bc =
1

2
εbb1b2εcc1c2W̃1b1c1W̃1b2c2 , (B.1.16)

W̃2bc = − 1

2
εbb1b2εcc1c2W3b1c1W3b2c2 . (B.1.17)

At dimension h = 3/2, one can find the null relations

(Ĵ 1) 2
1 =

1

6
W3b1c1W3b2c2W3b3c3ε

b1b2b3εc1c2c3 , (B.1.18)

(Ĵ 1) 3
2 = − 1

6
W̃1b1c1W̃1b2c2W̃1b3c3εb1b2b3εc1c2c3 , (B.1.19)

W1bc = 2∂W3bc +
5

12
W3b1c1W3b2c2W̃1b3c3εβb1b2εγc1c2εβbb3εγcc3 (B.1.20)

− 1

3
W3(b(cW3b1)c1)W̃1b1c1 , (B.1.21)

W3bc = − ∂W̃1bc +
1

3
W̃1b1c1W̃1b2c2W3b3c3εβb1b2εγc1c2ε

βbb3εγcc3 (B.1.22)

− 2

3
W̃1(b(cW̃1b1)c1)W3b1c1 . (B.1.23)

Finally, at dimension h = 2, we find

(Ĵ 1) 3
1 =

14

9
W3bc∂W̃1bc − 8

9
∂W3bcW̃1bc +

2

9
W3(b1(c1W3b2)c2)W̃1(b1(c1W̃1b2)c2)

− 7

36
W3b1c1W3b2c2W̃1b3c3W̃1b4c4εb1b2bεc1c2cεb3b4bεc3c4c . (B.1.24)

It is interesting to see these null relations as a consequence of the nulls
in the original chiral algebra. To that effect, let us re-derive the dimension
one nulls in this manner. Starting with the (8,1,1) null states in Table B.1
and specializing the indices to (a1, a2) = (3, 1), we find the null relation

0 = 1
3
W3bcW̃

1bc + (J (1)) a
3 (J (1)) 1

a + 3∂(J (1)) 1
3 = 1

3
W3bcW̃1bc + 1

3
Ju(1) + d(. . .) ,

(B.1.25)
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thus reproducing Eqn. (B.1.13). Alternatively, starting with the null states
in the (8,8,1) and specializing the indices to (a1, a2) = (3, 1), we obtain the
null relation

0 =

(
W3b1cW̃

1b2c − 1

3
δb2b1W3bcW̃

1bc

)
− 1

3
β1(J (1)) 1

3 (J (2)) b2
b1

=

(
W3b1cW̃1b2c − 1

3
δb2b1W3bcW̃1bc

)
+
(
J (2)

) b2

b1
+ d(. . .) , (B.1.26)

which precisely matches the null relation of Eqn. (B.1.14). Similarly, one
can reproduce (B.1.15). It is straightforward to check that the null relations
in Eqns. (B.1.16)-(B.1.17) can be obtained from the relations in the (6̄,3,3)
and (6, 3̄, 3̄) and specializing the indices appropriately.

B.2 Cylinder and cap details

This appendix describes the quantum Drinfeld-Sokolov reduction that pro-
duces the chiral algebra for cylinder and cap geometries when g = su(3). We
first introduce some general formulas for the Schur superconformal index as-
sociated to these geometries. These formulas prove useful for getting a basic
intuition for how these chiral algebras may be described.

B.2.1 Schur indices

Although they are only formally defined (there is no true four-dimensional
SCFT associated to the cylinder and cap geometries), the reduction rules for
the Schur index allow us to define an index for these geometries that must
behave appropriately under gluing. Let us determine these indices.

Cylinder Using the general results given in Eqns. (3.2.28) and (3.2.38),
the index of the two-punctured sphere theory can be determined immediately

Icylinder (q; a,b) = Kmax.(a; q)Kmax.(b; q)
∑
R

χR(a)χR(b)

= PE

[
q

1− q (χadj(a) + χadj(b))

]∑
R

χR(a)χR(b) .

(B.2.1)
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Upon using the relation
∑

R χR(a)χR(b) = δ(a,b−1), where the delta func-
tion is defined with respect to the Haar measure, we can rewrite this index
as

Icylinder (q; a,b) = PE

[
2q

1− qχadj(a)

]
δ(a,b−1) = I−1

V (a; q) δ(a,b−1) ,

(B.2.2)
where IV is the vector multiplet index (3.2.43). This makes it clear that
when the gluing prescription for the index given in Eqn. (3.2.42) is applied,
the index IT (q; a, . . .) of a generic theory T containing a maximal puncture
with fugacities a remains the same after gluing a cylinder to that maximal
puncture∫

[da]∆(a)IV (q; a) IT (q; a, . . .) Icylinder

(
q; a−1,b

)
= IT (q; b, . . .) . (B.2.3)

Here [da] =
∏rankg

j=1
daj

2πiaj
and ∆(a) is the Haar measure.

Returning to expression (B.2.1), we wish to rewrite the sum over repre-
sentations. Let us therefore consider the regularized sum∑

R

u|R|χR(a)χR(b) = PE [u χf(a)χf(b)− un] , (B.2.4)

where |R| denotes the number of boxes in the Young diagram corresponding
to the representation R of g = su(n). For g = su(2) we have checked this
equality exactly by performing the geometric sums and for su(3), su(4) and
su(5) in a series expansion in u. In the limit u → 1 one can verify that the
right hand side behaves as a δ-function with respect to the Haar measure,
as expected. Consequently, the cylinder index can then be rewritten in a
particularly useful form,

Icylinder (q; a,b) = PE

[
q

1− q (χadj(a) + χadj(b)) + χf(a)χf(b)− 1

]
.

(B.2.5)
By using χadj(a) = χf(a)χf(a

−1) − 1 and the δ-function constraint, one can
finally rewrite the index as

Icylinder (q; a,b) = PE

[
q

1− q (χadj(b) + (χf(a)χf(b)− 1)) + χf(a)χf(b)− 1

]
= PE

[
q

1− qχadj(b) +
1

1− q (χf(a)χf(b)− 1)

]
.

(B.2.6)
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Note that this looks like the partition function of a finitely generated chi-
ral algebra satisfying a single relation. Namely, it appears that the chiral
algebra has one set of dimension one currents transforming in the adjoint
of su(n), in addition to a bifundamental field gab of dimension zero subject
to a dimension zero constraint in the singlet representation. Going further,
using this interpretation of the index and reintroducing the fugacity u as in
(B.2.4), we see that u counts the power of the bifundamental generators in
an operator, and the constraint should then involve n bifundamental fields.
A natural form for such a relation (after proper rescaling of the generators)
is the following,

1

n!
εa1a2...anεb1b2...bnga1b1ga2b2 . . . ganbn = 1. (B.2.7)

Interpreting gab as a matrix, this is a unit determinant condition. This pic-
ture, guessed on the basis of the superconformal index, will be borne out in
the qDS analysis below.

Cap A similarly heuristic analysis is possible for the theory associated to
a decorated cap, which is obtained by further partially closing a puncture in
the cylinder theory. The index of the decorated cap theory takes the form

Icap(Λ) (q; a,bΛ) = Kmax.(a; q)KΛ(bΛ, q)
∑
R

χR(a)χR(fugΛ(bΛ; q))

= PE

[
q

1− qχadj(a) +
∑
j

qj+1

1− qTrR(adj)
j

(bΛ)

]∑
R

χR(a)χR(fugΛ(bΛ; q))

(B.2.8)

= I
−1/2
V (a; q) KΛ(bΛ, q) δ(a

−1, fugΛ(bΛ; q)) .

Again it is clear how gluing this index reduces the flavor symmetry of the
puncture. Using (3.2.42) and the general expression for a class S index
(3.2.28) for some theory T of genus g and containing s punctures, of which
the first is maximal with corresponding flavor fugacities a, one obtains by
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gluing the cap to this maximal puncture∫
[da]∆(a)IV (a; q) Icap(Λ)

(
q; a−1,bΛ

)
×
∑
R

CR(q)2g−2+sKmax.(a; q)χR(a)
s∏
i=2

ψΛi
R (xΛi ; q) (B.2.9)

=
∑
R

CR(q)2g−2+sKΛ(bΛ, q)χR(fugΛ(bΛ; q))
s∏
i=2

ψΛi
R (xΛi ; q) , (B.2.10)

where we have again used that Kmax.(a; q) = I
−1/2
V (a; q).

As in the previous paragraph we can rewrite the index in a suggestive
fashion,

Icap(Λ) (q; a,bΛ) =

PE

[∑
j

qj+1

1− qTrR(adj)
j

(bΛ) +
1

1− q (χf(a)χf(fugΛ(bΛ; q))− 1)

]
. (B.2.11)

A natural interpretation of this index is as that of a chiral algebra with
generators given by currents Jᾱ for Tᾱ ∈ ker(adΛ(t+)) with dimensions shifted
by their Λ(t0) weight. Moreover, for each su(2) irrep in the decomposition
(3.2.30) of the fundamental representation f there are an additional 2j + 1

generators transforming in representation f⊗R(f)
j with dimensions −j,−j +

1, . . . , j. The latter generators satisfy a singlet relation of dimension zero.

B.2.2 QDS argument

Now that we have some intuition for the kinds of chiral algebras to expect,
let us study the cylinder theory for g = su(2) by fully closing a puncture
in the χ[T3] theory. Full closure is achieved via the principal embedding
ρ : su(2)→ g, which is can be specified explicitly in components as

ρ(t−) = 2(T 1
2 + T 2

3 ) , ρ(t0) = T 1
1 − T 3

3 , ρ(t+) = T 2
1 + T 3

2 .
(B.2.12)

The grading by ρ(t0) is integral, with the negatively graded generators being
T 1

3 with grade minus two and T 1
2 , T 2

3 with grade minus one. We should
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dimension generators

0 W3bc, W̃1bc

1 W2bc, W̃2bc, (J 2) b2
b1
, (J 3) c2

c1

2 Ĵsum,W1bc, W̃3bc

3 (Ĵ 1) 3
1

Table B.2: (Redundant) generators of the cylinder theory for g = su(3).

then impose the constraints(
J (1)
) 1

2
+
(
J (1)
) 2

3
= 1 ,

(
J (1)
) 1

2
−
(
J (1)
) 2

3
= 0 ,

(
J (1)
) 1

3
= 0 .
(B.2.13)

Upon introducing three (b, c)-ghost systems – (b 1
2 , c

2
1 ), (b 2

3 , c
3

2 ), and (b 1
3 , c

3
1 )

– these first-class constraints are implemented by a BRST procedure via the
current

d(z) =

(J (1)) 1
2 c

2
1 (z)+(J (1)) 2

3 c
3

2 (z)+(J (1)) 1
3 c

3
1 (z)− 1

2
(c 2

1 +c 3
2 )(z)−b 1

3 c
2

1 c
3

2 (z) .

(B.2.14)

This cohomological problem is partly solved by following the same ap-
proach as that advocated in Subsec. 3.4.1. The redundant generators of the
reduced algebra are the tic-tac-toed versions of the currents (Ĵ1) 3

1 and Ĵsum ≡
(Ĵ1) 2

1 + (Ĵ1) 3
2 , as well as of the generators {(J2) b2

b1
, (J3) c2

c1
, Wabc, W̃

abc}.
These currents can be seen arranged according to their dimensions in Table
B.2.

The explicit form of the tic-tac-toed generators if dimensions zero and
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one are fairly simple,

W3bc := W3bc , (B.2.15)

W̃1bc := W̃ 1bc , (B.2.16)

W2bc := W2bc + 2W3bc(Ĵ
(1)) 3

3 , (B.2.17)

W̃2bc := W̃ 2bc + 2W̃ 1bc(Ĵ (1)) 1
1 , (B.2.18)

(J 2) b2
b1

:= (J2) b2
b1

, (B.2.19)

(J 3) c2
c1

:= (J3) c2
c1

. (B.2.20)

On the other hand, the higher dimensional generators are quite complicated,

Ĵsum := (Ĵ1) 2
1 + (Ĵ1) 3

2

−
(
−2(2 + k)∂(Ĵ1) 2

2 − 4(2 + k)∂(Ĵ1) 3
3

)
−
(

2(Ĵ1) 1
1 (Ĵ1) 2

2 + 2(Ĵ1) 1
1 (Ĵ1) 3

3 + 2(Ĵ1) 2
2 (Ĵ1) 3

3

)
,

(B.2.21)

W1bc := W1bc −
(

2W2bc(Ĵ
1) 1

1 − 2W3bc(Ĵ
1) 3

2

)
+

(
−4
(

(Ĵ1) 1
1 + (Ĵ1) 2

2

)
W3bc(Ĵ

1) 3
3 −

1

3
(−20− 12k)W3bc∂(Ĵ1) 3

3

)
− 8

3
∂W3bc(Ĵ

1) 3
3 ,

(B.2.22)

W̃3bc := W̃ 3bc −
(

2W̃ 2bc(Ĵ1) 3
3 + 2W̃ 1bc(Ĵ1) 3

2

)
+ 4(Ĵ1) 3

3 W̃
1bc(Ĵ1) 2

2

− W̃ 1bc∂

(
−4

3
(Ĵ1) 1

1 + (8 + 4k)(Ĵ1) 3
3

)
− ∂W̃ 1bc

(
−4

3
(Ĵ1) 1

1 −
4

3
(Ĵ1) 3

3

)
,

(B.2.23)

(Ĵ 1) 3
1 := (Ĵ1) 3

1 −
(

2(k + 2)∂(Ĵ1) 2
1 − 2(Ĵ1) 3

2

(
(Ĵ1) 2

2 + (Ĵ1) 3
3

))
+ 2(Ĵ1) 2

1

(
(Ĵ1) 1

1 + (Ĵ1) 2
2

)
+ 4(4 + 4k + k2)∂2(Ĵ1) 1

1

− 4(2 + k)(Ĵ1) 1
1 ∂(Ĵ1) 1

1 + 4(2 + k)(Ĵ1) 1
1 ∂(Ĵ1) 2

2

− 4
(

(Ĵ1) 1
1 + (Ĵ1) 3

3

)(
(Ĵ1) 2

2 + (Ĵ1) 3
3

)(
(Ĵ1) 1

1 + (Ĵ1) 2
2

)
.

(B.2.24)

Our next task should be to check for redundancies by computing null
relations. This analysis is substantially complicated by the presence of di-
mension zero fields in the cohomology. This means that we don’t have an
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algorithm for finding such redundancies that must terminate in principle.
Instead, we use the nulls of T3 to predict some of the nulls in the cylinder
theory.

Dimension zero nulls Starting with the (8,1,1) nulls and specializing
the indices to (a1, a2) = (3, 1) we obtain the null relation

0 =
1

3
W3bcW̃

1bc+(J1) a
3 (J1) 1

a −3∂(J1) 1
3 =

1

4
+

1

3
W3bcW̃1bc+d(. . .) . (B.2.25)

Similarly, starting with the (8,8,1) nulls and specializing the indices to
(a1, a2) = (3, 1) we obtain the null relation

0 =

(
W3b1cW̃

1b2c − 1

3
δb2b1W3bcW̃

1bc

)
+ (J (1)) 1

3 (J (2)) b2
b1

,

=

(
W3b1cW̃1b2c − 1

3
δb2b1W3bcW̃1bc

)
+ d(. . .) .

(B.2.26)

Similar nulls can be found by interchanging the second and third puncture.
In summary, we have the relations

W3b1cW̃1b2c = −1

4
δb2b1 , W3bc1W̃1bc2 = −1

4
δc2c1 . (B.2.27)

This shows that, up to a rescaling, W3bc(z) and W̃1bc(z) can be thought of
as inverses of one another.

Next, we look at the (6̄,3,3) nulls and specialize a1 = a2 = 1, which gives
us

0 = 2(J1) 1
α1
Wα2bcε

α1α21 + W̃ 1b1c1W̃ 1b2c2εbb1b2εcc1c2 ,

= W3bc + W̃1b1c1W̃1b2c2εbb1b2εcc1c2 + d(. . . ) .
(B.2.28)

Similarly from the nulls in the (6, 3̄, 3̄) we find

0 = (J1) α1
3 W̃α2bcεα1α23 +

1

2
W3b1c1W3b2c2ε

bb1b2εcc1c2 ,

= − 1

2
W̃1bc +

1

2
W3b1c1W3b2c2ε

bb1b2εcc1c2 + d(. . .) .
(B.2.29)

Combining these with the previous relations, we find that

1

3!
W̃1bcW̃1b1c1W̃1b2c2εbb1b2εcc1c2 = − 1

3!
W̃1bcW3bc = − 1

3!
W3bcW̃1bc =

1

8
,

(B.2.30)
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and

1

3!
W3bcW3b1c1W3b2c2ε

bb1b2εcc1c2 =
1

3!
W3bcW̃1bc = −1

8
. (B.2.31)

These are conditions on the determinants of W3bc and W̃1bc thought of
as three-by-three matrices. Note that we used the relation W̃1bcW3bc =
W3bcW̃1bc, which is true in cohomology:

W̃1bcW3bc =W3bcW̃1bc − d(9∂b 1
3 ) . (B.2.32)

If we now introduce rescaled operators gbc := −2W3bc and g̃bc := 2W̃1bc, then
g and g̃ have unit determinant and are inverses of one another. Because of
the determinant condition, this also means that we can rewrite g̃ in terms
of positive powers of g, so only one needs to be considered as an honest
generator of the chiral algebra.

Dimension one nulls We can continue the same analysis at dimension
one. The second relation in the (3,3,3) representation gives us

(J 2) β
b W3βc1 = (J 3) γ

c1
W3bγ . (B.2.33)

By taking the normal ordered product of both sides with W̃1bc2 and re-
ordering (ignoring BRST exact terms), we can make a sequence of replace-
ments using the dimension zero relations of the previous paragraph and end
up with the following implication,

W̃1bc2(J (2)) β
b W3βc1 = W̃1bc2(J (3)) γ

c1W3bγ

=⇒ (J (2)) β
b gβc1 g̃

bc2 = (J (3)) c2
c1 − 3

(
gβc1∂g̃

βc2 − 1
3δ
c2
c1gβγ∂g̃

βγ
)
.

(B.2.34)

At last, we see that the current J (3) is not an independent generator.
Other dimension one nulls can be obtained from the first equality in the

(3,3,3). Here we find

(J1) α
3 Wαbc = (J2) β

b W3βc =⇒ 1

2
W2bc +

2

3
∂W3bc = (J 2) β

b W3βc , (B.2.35)

which implies that the generator W2bc is not independent. Similarly, from
the (3̄, 3̄, 3̄) relations one finds

(J1) 1
α W̃

αbc = (J2) b
β W̃

1βc =⇒ 1

2
W̃2bc − 2

3
∂W̃1bc = (J 2) b

β W̃1βc, (B.2.36)
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which implies that W̃2bc is not an independent generator.
Based on the analysis of the index in B.2.1, we expect that all higher

dimensional generators can be similarly related via null relations to com-
posites of J 2 and gbc = −2W3bc. It would be interesting if this could be
proven as a consequence of only the null states that are guaranteed to exist
based on nulls of the unreduced theory, although such a simplification is not
a necessary condition for the existence of the desired nulls.

B.3 Spectral sequences for double complexes

In this appendix we review some of the basics of spectral sequences. Standard
references are [183, 184]. One can also consult Section 5.3 of [94] for a concise
summary of some of the most useful statements.

One of the simplest spectral sequences makes an appearance when one
considers a single cochain complex (M∗, d), where d : Mp → Mp+1 is a
differential of degree one satisfying d ◦ d = 0. A decreasing filtration of
M∗ is a family of subspaces {F pM ; p ∈ Z} such that F p+1M ⊆ F pM and
∪pF pM = M . We restrict our attention to bounded differential filtrations,
which satisfy two additional properties:

• There exist s, t ∈ Z such that F pM = M for p 6 t and F pM = 0 for
p > s.

• The filtration is compatible with the differential, i.e., d(F pM) ⊆ F pM .

We further introduce the spaces F pM r := F pM ∩M r. One then says that
the filtration is bounded in each dimension if it is bounded for each r. The
associated graded vector space is defined as

Ep,q
0 (M∗, F ) := F pMp+q/F p+1Mp+q . (B.3.1)

Note that at the level of vector spaces one has M r ∼= ⊕p+q=rEp,q
0 .

If F is a bounded differential filtration of (M∗, d), then also (F pM,d) is
a complex. The inclusion map F pM ↪→ M descends to a map in cohomol-
ogy H(F pM,d) → H(M,d) which is however not necessarily injective. We
denote the image of H(F pM,d) under this map as F pH(M,d). This defines
a bounded filtration on H(M,d).
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A spectral sequence is defined as a collection of bigraded spaces (E∗,∗r , dr)
where r = 1, 2, . . ., the differentials dr have degrees (r, 1 − r), and for all
p, q, r one has Ep,q

r+1
∼= Hp,q(E∗,∗r , dr). A spectral sequence is said to converge

to N∗ if there exists a filtration F on N∗ such that Ep,q
∞
∼= Ep,q

0 (N∗, F ). The
main theorem of concern is then for any complex (M,d) with a differential
filtration F bounded in each dimension, one can find a spectral sequence
with Ep,q

1 = Hp+q(F pM/F p+1M) that converges to H∗(M,d). In favorable
situations, one may have dr = 0 for r > r0 in which case the spectral sequence
terminates: Ep,q

r0
= Ep,q

∞ .
Let us consider the case of a double complex (M∗,∗; d0, d1), where M is

bigraded and d0, d1 are maps of degree (1, 0) and (0, 1) respectively, satisfying
d0 ◦ d0 = d1 ◦ d1 = d0 ◦ d1 + d1 ◦ d0. Diagrammatically, a double complex is
represented as: xd1

xd1

d0−−−→ Mp,q+1 d0−−−→ Mp+1,q+1 d0−−−→xd1

xd1

d0−−−→ Mp,q d0−−−→ Mp+1,q d0−−−→xd1

xd1

The associated total complex is defined as TotnM := ⊕p+q=nMp,q, with total
differential d := d0 +d1. A double complex allows for two filtrations, namely,

F p
I (Totn M) = ⊕r>pM r,n−r , F p

II(Totn M) = ⊕r>pMn−r,r . (B.3.2)

These filtrations are bounded in each dimension if for each n only a finite
number of Mp,q with n = p+ q are non-zero.

Correspondingly, we can consider two spectral sequences converging to
H∗(Tot M,d) with as first terms

IE
p,q
1
∼= Hp,q(M,d1) , IE

p,q
2
∼= Hp,q(H∗,∗(M,d1), d0) (B.3.3)

IIE
p,q
1
∼= Hp,q(M,d0) , IIE

p,q
2
∼= Hp,q(H∗,∗(M,d0), d1) . (B.3.4)

Note that here one can show that the first term of the spectral sequence
is equal to the one mentioned in the more general case above. Higher dif-
ferentials dr+1 for r > 1 are defined by dr+1x = d1y where y is defined by
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d0y = drx. Such a y can be proven to always exist, so that the higher
differentials are always well-defined.

Example As a simple example of the utility of spectral sequences, let us
reproduce a proof of the Künneth formula [94]. Consider a differential graded
algebra (A, d), i.e., a graded algebra endowed with a differential d of degree
one satisfying the Leibniz rule. Let it have two graded subalgebras A1 and
A2 which are respected by the differential, i.e., dAi ⊆ Ai. Let us assume the
multiplication map m : A1 ⊗ A2 → A is an isomorphism of vector spaces.
Then one can define the double complex (Mp,q; d0, d1) by

Mp,q := m(Ap
1⊗Aq

2) , d0(a1a2) = d(a1)a2 , d1(a1a2) = (−1)deg(a1)a1d(a2) .
(B.3.5)

Assume that this double complex is bounded in each dimension; then one
can make use of the spectral sequence for the double complex as described
above. One finds for the first couple of levels

Ep,q
1
∼= m(Ap

1 ⊗Hq(A2, d)) , Ep,q
2
∼= m(Hp(A1, d)⊗Hq(A2, d)) . (B.3.6)

Higher differentials all manifestly vanish, so the spectral sequence termi-
nates. At the level of vector spaces, the above-stated theorem implies that
H∗(A, d) ∼= m(H∗(A1, d) ⊗ H∗(A2, d)). This statement can be extended to
an isomorphism of algebras because a1a2 is a representative of an element in
H∗(A, d).
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Appendix C

Chiral Algebras for Trinion
Theories

C.1 Affine critical characters and the Schur

index

We show how to re-write the superconformal index [36] in the so-called Schur
limit [37, 38] in terms of characters of affine Kac-Moody modules at the
critical level. The superconformal index of class S theories was computed
in [75, 37, 38, 74], and the characters of affine Kac-Moody algebras at the
critical level in [107]. Here we just collect the final expressions and refer the
readers to the original work for details.

Our conventions for affine Lie algebras follow those of [108], and here
we simply review some notation needed to write the characters. We denote
the affine Lie algebra obtained by adding an imaginary root δ to a finite Lie
algebra g (of rank r) by ĝ. The Cartan subalgebra of ĝ (g) is denoted by ĥ (h),
and the positive roots of ĝ (g) by ∆̂+ (∆+). We also denote the real positive
roots of the affine Lie algebra, that is positive roots not of the form nδ, by
∆̂re

+. The character of a critical irreducible highest weight representation Rλ

with highest weight λ̂, whose restriction to the finite Lie algebra λ is by
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definition an integral dominant weight is given in [107]. It reads 1

chRλ =

∑
w∈W ε(w)ew(λ+ρ)−ρ∏

α∈∆+
(1− q〈λ+ρ,α∨〉)

∏
α̂∈∆̂re

+
(1− e−α̂)

, (C.1.1)

where W is the Weyl group of g, ε(w) is the signature of w, q = e−δ, ρ denotes
the Weyl vector, 〈·, ·〉 denotes the Killing inner product and α∨ is the coroot
associated to α.

The Schur limit of the superconformal index of a Tn theory is given by [37, 38]

ITn(q; xi) =
∑
Rλ

∏3
i=1KΛ(q; xi) χRλ(xi)

KΛt(q) dimqRλ

, (C.1.2)

with

KΛt(q) = P.E.

[
n−1∑
j=1

qdj

1− q

]
, KΛ(q; x) = P.E.

[
q χadj.(x)

1− q

]
. (C.1.3)

Here xi denotes flavor fugacities conjugate to the Cartan generators of the
su(n)i flavor group associated with each of the three punctures, Λ and Λt

are respectively the trivial and principal embeddings of su(2) ↪→ su(n), and
dj are the degrees of invariants. Furthermore, dimqRλ is the q-deformed
dimension of the representation Rλ, i.e.,

dimqRλ =
∏
α∈∆+

[〈λ+ ρ, α〉]q
[〈ρ, α〉]q

, where [x]q =
q−

x
2 − q x2

q−
1
2 − q 1

2

. (C.1.4)

As shown in [26], if λ = 0 is the highest weight of the vacuum module

chRλ=0
=
KΛ(q; xi)

KΛt(q)
. (C.1.5)

The expectation is that the full index for Tn can be re-written as a sum
of characters of critical modules2. Re-writing (C.1.1) to make manifest the

1Here we used that for a critical highest weight λ̂ + ρ̂ = λ + ρ, and normalized the
character to match the standard conventions for a partition function.

2Along similar lines, one can rewrite the Schur limit of the superconformal index of the

TSO(2n) theory [77, 6] in terms of critical affine ŝo(2n) characters.
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vacuum module we find

chRλ = chRλ=0

∏
α∈∆+

(
1− q〈ρ,α∨〉

1− q〈λ+ρ,α∨〉

)∑
w∈W ε(w)ew(λ+ρ)−ρ∑
w∈W ε(w)ew(ρ)−ρ , (C.1.6)

where we recognize the last term as the character of the representation with
highest weight λ of g,

χλ(x) =

∑
w∈W ε(w)ew(λ+ρ)∑
w∈W ε(w)ew(ρ)

. (C.1.7)

After factoring out a q−〈λ,ρ〉, the middle factor can be written in terms of the
q-deformed dimension (C.1.4) of the same representation:

∏
α∈∆+

(
1− q〈ρ,α∨〉

1− q〈λ+ρ,α∨〉

)
=
∏
α∈∆+

q−〈λ,α
∨〉/2

∏
α∈∆+

(
q−〈ρ,α

∨〉/2 − q〈ρ,α∨〉/2
q−〈λ+ρ,α∨〉/2 − q〈λ+ρ,α∨〉/2

)
(C.1.8)

= q−〈λ,ρ〉
1

dimqRλ

, (C.1.9)

where we used that α∨ = α, for su(n), to identify ρ in the last step. In total
we thus find

chRλ =
P.E.

[
q χadj.(x)

1−q

]
χλ(x)

q〈λ,ρ〉P.E.
[∑n−1

j=1
qdj

1−q

]
dimqRλ

. (C.1.10)

Using this result in the expression for the superconformal index (C.1.2) we ob-
tain (4.2.1). To obtain (4.2.2) we also note that the denominator of (C.1.10)
can be rewritten as

q〈λ,ρ〉 P.E.

[
n−1∑
j=1

qdj

1− q

]
dimqRλ = (C.1.11)

= P.E.

n−1∑
j=1

qdj

1− q +
∑
α∈∆+

q〈ρ,α〉 −
∑
α∈∆+

q〈λ+ρ,α〉


= P.E.

[
n−1∑
j=1

qdj

1− q +
n−1∑
j=1

(n− j) qj −
n∑
j=2

∑
1≤i<j

q`i−`j+j−i

]
. (C.1.12)
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C.2 The OPEs

In this appendix we give all the OPEs between the generators of the T4 chiral
algebra. Here all OPE coefficients (including the central charges) are already
set to the values required by the Jacobi-identities, as described in Section 4.3.
Since all generators are both Virasoro and AKM primaries, with the excep-
tion of the stress tensor which is neither and the AKM currents which are not
AKM primaries, all singular OPEs involving the affine currents and the stress
tensor are completely fixed by flavor symmetries and Virasoro symmetry, up
to the flavor central charges (k2d)i=1,2,3 = −4 and the Virasoro central charge
c2d = −78 appearing in the most singular term in their respective self-OPEs.
Different AKM currents are taken to have zero singular OPE. As discussed in
Section 4.3 we consistently treat the three flavor symmetries on equal foot-
ing, in particular we require k2d ≡ (k2d)1 = (k2d)2 = (k2d)3 . We recall that
also the precise values of c2d and k2d central charges are a result of imposing
the Jacobi-identities.

The singular OPEs of the W, W̃ generators among themselves were found
to be

Wa1a2a3(z) Wb1b2b3(0) ∼ 1

2 z
V[a1b1][a2b2][a3b3] ,

W̃ a1a2a3(z) W̃ b1b2b3(0) ∼ 1

2 z

1

8
εa1b1c1d1εa2b2c2d2εa3b3c3d3V[c1d1][c2d2][c3d3] ,

and

Wa1a2a3(z) W̃ b1b2b3(0) ∼
1

z3
δb1a1
δb2a2
δb3a3
− 1

4 z2

(
δb1a1
δb2a2

(J3)b3a3
+ perms.

)
− 1

4 z

(
δb1a1
δb2a2
∂(J3)b3a3

+ perms.
)

+
1

16 z

(
δb1a1

(J2)b2a2
(J3)b3a3

+ perms.
)

+
1

z
δb1a1
δb2a2
δb3a3

(
− 1

16
T − 1

96

(
(J1)α1

β1
(J1)β1

α1
+ 2 more

))
+

1

16 z

(
δb1a1
δb2a2

(J3)α3
a3

(J3)b3α3
+ perms.

)
,

where we have fixed the normalization of W and W̃ to convenient values.
In all these OPEs “+2 more” means we must add the same term for the
remaining two currents, and “+perms.” that all independent permutations
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of the previous term must be added. We also found the OPEs between the
W, W̃ and V generators to be

Wa1a2a3(z) V[b1c1][b2c2][b3c3](0) ∼
1

8
εa1b1c1d1εa2b2c2d2εa3b3c3d3

(
− 3

z2
W̃ d1d2d3 − 1

z
∂W̃ d1d2d3

)
− 1

8
εa1b1c1d1εa2b2c2d2εa3b3c3d3

1

3 z

(
(J1)d1

α1
W̃α1d2d3 + perms.

)
− 1

8 z

(
εα1b1c1d1εa2b2c2d2εa3b3c3d3(J1)d1

a1
W̃α1d2d3 + perms.

)
,

W̃ a1a2a3(z) V[b1c1][b2c2][b3c3](0) ∼

δa1

[b1
δa2

[b2
δa3

[b3

(
3

z2
Wc1]c2]c3] +

1

z
∂Wc1]c2]c3]

)
+

1

3 z
δa1

[b1
δa2

[b2
δa3

[b3

(
(J1)α1

c1]Wα1c2]c3] + perms.
)

+
1

z

(
δa2

[b2
δa3

[b3
(J1)a1

[b1
Wc1]c2]c3] + perms.

)
.

Finally, the singular V V OPE reads

V[a1b1][a2b2][a3b3](z)V
[c1d1][c2d2][c3d3](0)

∼ δ[c1a1 δ
d1]
b1
δ[c2a2 δ

d2]
b2
δ[c3a3 δ

d3]
b3

(
6

z4
− 1

2 z2
T − 1

4 z
∂T − 1

24 z2

(
(J1)α1

β1
(J1)β1

α1
+ 2 more

)
− 19

480 z
∂
(

(J1)α1

β1
(J1)β1

α1
+ 2 more

)
− 37

20 z
Wα1β1γ1W̃

α1β1γ1

+
1

40 z

(
(J1)β1

α1
(J1)γ1β1

(J1)α1
γ1 + 2 more

))
+ δ[c2a2 δ

d2]
b2
δ[c3a3 δ

d3]
b3

(
− 3

16 z
δ
[d1
[b1

(J1)
|γ1
a1]

(J1)β1|
γ1 (J1)

c1]
β1

+
33

80 z
(J1)β1

[a1
(J1)

[d1
|β1|(J

1)
c1]
b1]

− 43

80 z2
∂
(

(J1)
[d1
[a1

(J1)
c1]
b1]

)
− 3

2 z3
(J1)

[c1
[a1
δ
d1]
b1]

+
1

40 z3
T (J1)

[c1
[a1
δ
d1]
b1]

− 11

120 z

(
(J1)α1

β1
(J1)β1

α1
+ 2 more

)
(J1)

[c1
[a1
δ
d1]
b1]
− 5

4 z2
∂(J1)

[c1
[a1
δ
d1]
b1]

+
1

4 z2
(J1)α1

[a1
(J1)

[c1
|α1|δ

d1]
b1]

+
17

40 z
∂(J1)α1

[a1
(J1)

[c1
|α1|δ

d1]
b1]

+
7

40 z
(J1)α1

[a1
∂(J1)

[c1
|α1|δ

d1]
b1]
− 23

80 z
∂2(J1)

[c1
[a1
δ
d1]
b1]
− 1

4 z
(J1)

[d1
[a1

(J1)
c1]
b1]

)
+ permutations[1, 2, 3]
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+ δ[c3a3 δ
d3]
b3

(
1

4 z
δ
[d2
[b2

(J2)
c2]
a2]

(J1)
[d1
[a1

(J1)
c1]
b1]

+
3

4 z2
δ
[d2
[b2

(J2)
c2]
a2]

(J1)
[c1
[a1
δ
d1]
b1]

+

+
13

4 z
δ
[d2
[b2

(J2)
c2]
a2]
∂(J1)

[c1
[a1
δ
d1]
b1]
− 3

4 z
δ
[d2
[b2

(J2)
c2]
a2]

(J1)α1

[a1
(J1)

c1]
|α1|δ

d1
b1]

)
+ permutations[1, 2, 3]

+
19

5 z

(
δ[c2a2 δ

d2]
b2
δ[c3a3 δ

d3]
b3
δ
[d1
[b1
Wa1]β2γ3W̃

c1]β2γ3 + δ[c3a3 δ
d3]
b3
δ[c1a1 δ

d1]
b1
δ
[d2
[b2
Wβ1a2]γ3W̃

β1c2]γ3

+δ[c1a1 δ
d1]
b1
δ[c2a2 δ

d2]
b2
δ
[d3
[b3
Wβ1γ2a3]W̃

β1γ2c3]
)

− 4

z

(
δ[c3a3 δ

d3]
b3
δ
[d1
[b1
δ
[d2
[b2
Wa1]a2]γ3W̃

c1]c2]γ3 + δ[c1a1 δ
d1]
b1
δ
[d2
[b2
δ
[d3
[b3
Wγ1a2]a3]W̃

γ1c2]c3]

+δ[c2a2 δ
d2]
b2
δ
[d3
[b3
δ
[d1
[b1
Wa1]γ2a3]W̃

c1]γ2c3]
)

− 1

z
δ
[d1
[b1
δ
[d2
[b2
δ
[d3
[b3

(J1)
c1]
a1]

(J2)
c2]
a2]

(J3)
c3]
a3]
− 16

z
δ
[d1
[b1
δ
[d2
[b2
δ
[d3
[b3
Wa1]a2]a3]W̃

c1]c2]c3] ,

where the norm of V was also fixed, and for convenience we defined V [c1d1][c2d2][c3d3]

through V[a1b1][a2b2][a3b3] = 1
8
εa1b1c1d1εa2b2c2d2εa3b3c3d3V

[c1d1][c2d2][c3d3]. Here “per-
mutations[1,2,3]” means we must repeat the previous term with all possible
permutations of the flavor groups indices.
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Appendix D

Higgs Branch Localization in
Three Dimensions

D.1 Spinor conventions

We use essentially the same conventions as in [118, 119, 15]. In vielbein
space we take the gamma matrices γa =

(
0 1
1 0

)
,
(

0 −i
i 0

)
,
(

1 0
0 −1

)
which do not

have definite symmetry: [γ1, γ2, γ3]T = [γ1,−γ2, γ3]. We take the charge
conjugation matrix C, defined by CγµC−1 = −γµT, as C = −iεαβ = γ2

(where ε12 = ε12 = 1) so that

CγµC = −γµT , C2 = 1 . (D.1.1)

Indeed C = C−1 = C† = −CT = −C∗. Since Dirac spinors are in the 2
of SU(2), there are two products we can consider: ηTCε ≡ −i ηαεαβεβ and
η†ε ≡ η∗αε

α. When we use the first product, we omit TC (that is we write
ηε ≡ ηTCε). The two products are related by charge conjugation: εc ≡ Cε∗

and εc† = εTC, so that ηTCε = ηc†ε. Notice that (εc)c = −ε and there are no
Majorana spinors.

Barred spinors will simply be independent spinors. Products are con-
structed as spelled out before: ε̄λ ≡ ε̄αCαβλ

β, ε̄γµλ ≡ ε̄α(Cγµ)αβλ
β, etc. . . The

charge conjugation matrix C is antisymmetric, while Cγa are symmetric and
so Cγµ. Since γµν equals a single gamma matrix or zero, also Cγµν are
symmetric. For anticommuting fermions we get:

ε̄λ = λε̄ , ε̄γµλ = −λγµε̄ , ε̄γµνλ = −λγµν ε̄ . (D.1.2)
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Some useful relations among gamma matrices are:

[γµ, γν ] = 2gµν , γµγν = gµν + γµν ,

γµν = iεµνργρ , γµνεµνρ = 2iγρ

γµγ
νρ = iενρσgµσ + (δνµδ

ρ
α − δναδρµ)γα , γµνγ

ν = −γνγµν = 2γµ

γµγ
νργµ = −γνρ , γµγ

νγµ = −γν ,
γµγµ = 3 , γµνγ

ρν = −2δρµ − γ ρ
µ

γµνγργν = −2δµρ , γµνγργµν = 2γρ .

(D.1.3)

The antisymmetric tensor with flat indices is ε1̂2̂3̂ = ε1̂2̂3̂ = 1, and the covari-
ant forms with curved indices are εµνρ =

√
g εµ̂ν̂ρ̂ and εµνρ = 1√

g
εµ̂ν̂ρ̂.

The Fierz identity for anticommuting 3d Dirac fermions is

(λ̄1λ2)λ3 = −1

2
(λ̄1λ3)λ2 −

1

2
(λ̄1γ

ρλ3) γρλ2 . (D.1.4)

Since γα and γµν are dual, one finds

(γµρ)∗∗(γ
ρ)∗∗ = (γρ)∗∗(γρµ)∗∗ , −2 (γµ)∗∗(γ

µ)∗∗ = (γνρ)∗∗(γ
νρ)∗∗
(D.1.5)

where indices are not contracted. It might also be useful:

− i
4
ε̄γργµνε γργνOµλ = − i

2
ε̄ε γµOµλ+

i

2
ε̄γµεOµλ+

i

4
ε̄γαρε γρOαλ , (D.1.6)

where Oµ is any operator, acting on any field.

D.2 Supersymmetric theories on three-man-

ifolds

Following [118, 119], we write the superconformal transformation rules on
the gauge and matter multiplets on a three-dimensional manifold. The man-
ifold is restricted by the requirement that it admits solutions to the usual
Killing spinor equations, and that the superalgebra closes. After presenting
the supersymmetry variations, in section D.2.2 we present the anticommut-
ing supercharges by replacing the anticommuting Killing spinors in δε and
δε̄ with their commuting counterparts. Lagrangians invariant under the su-
persymmetry transformations were studied in [118, 119]. Most of them are
exact and therefore will not contribute in a localization computation. No-
table exceptions are the Chern-Simons and Fayet-Iliopoulos actions. A more
systematic analysis of SUSY on three-manifolds has been done in [138, 139].
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D.2.1 The superconformal algebra

We define the field strength as Fµν = ∂µAν−∂νAµ− i[Aµ, Aν ], and the gauge
and metric covariant derivative as Dµ = ∇µ − iAµ, where ∇µ is the metric-
covariant derivative. It follows, for instance, that for an adjoint scalar σ:
[Dµ, Dν ]σ = −i[Fµν , σ]. We will also turn on a background gauge field Vµ for
U(1)R, therefore

Dµ = ∇µ − iAµ − iVµ . (D.2.1)

The superconformal transformations of the vector multiplet are

δAµ = − i
2

(ε̄γµλ− λ̄γµε) δσ =
1

2
(ε̄λ− λ̄ε)

δλ =
1

2
γµνεFµν −Dε+ iγµεDµσ +

2i

3
σγµDµε

δλ̄ =
1

2
γµν ε̄Fµν +Dε̄− iγµε̄Dµσ −

2i

3
σγµDµε̄

δD = − i
2
ε̄γµDµλ−

i

2
Dµλ̄γ

µε+
i

2
[ε̄λ, σ] +

i

2
[λ̄ε, σ]

− i

6
(Dµε̄γ

µλ+ λ̄γµDµε) ,

(D.2.2)
and those of the chiral multiplet are

δφ = ε̄ψ δψ = iγµεDµφ+ iεσφ+
2iq

3
γµDµε φ+ ε̄F

δφ̄ = ψ̄ε δψ̄ = iγµε̄ Dµφ̄+ iε̄φ̄σ +
2iq

3
γµDµε̄ φ̄+ εF̄

δF = ε
(
iγµDµψ − iσψ − iλφ

)
+
i

3
(2q − 1)Dµε γ

µψ

δF̄ = ε̄
(
iγµDµψ̄ − iψ̄σ + iφ̄λ̄

)
+
i

3
(2q − 1)Dµε̄ γ

µψ̄ .

(D.2.3)
Here ε and ε̄ are independent spinors satisfying the Killing spinor equations

Dµε = γµε̂ , Dµε̄ = γµˆ̄ε , (D.2.4)

in terms of some other spinors ε̂, ˆ̄ε. Closure of the algebra requires the addi-
tional constraints:

γµγνDµDνε = −3

8

(
R− 2iVµνγ

µν
)
ε , γµγνDµDν ε̄ = −3

8

(
R+ 2iVµνγ

µν
)
ε̄

(D.2.5)
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with the same functions R and Vµν [118, 119]. Consistency implies that R
is the scalar curvature of the three-manifold and Vµν = ∂µVν − ∂νVµ is the
background gauge field strength. Then the algebra reads

[δε, δε̄] = LAξ + iΛ + ρ∆ + iαR, [δε, δε] = 0, [δε̄, δε̄] = 0 ,
(D.2.6)

where LAξ is the gauge-covariant Lie derivative (independent of the metric,
see below) along the vector field ξ, iΛ denotes a gauge transformation with
parameter iΛ, R is the R-symmetry charge,1 and ∆ the scaling weight.2 The
parameters themselves are given by

ξµ = iε̄γµε ρ =
i

3
(Dµε̄γ

µε+ ε̄γµDµε) =
1

3
Dµξ

µ

Λ = ε̄εσ α = −1

3
(Dµε̄γ

µε− ε̄γµDµε)− ξµVµ .
(D.2.9)

The Lie derivative LX with respect to a vector field X is a derivation
independent of the metric. On forms it is easily defined as LX = {d, ιX} in
terms of the contraction ιX ; using the normalization α = 1

n!
αµ1···µndx

µ1···µn ,
in components we have

[LXα]µ1···µn = Xµ∂µαµ1···µn + n (∂[µ1X
µ)αµ|µ2···µn] . (D.2.10)

The Lie derivative of spinors [185] (see [186] for explanations) is

LXψ = Xµ∇µψ +
1

4
∇µXν γ

µνψ , (D.2.11)

1The R-charges are:

R(Aµ, σ, λ, λ̄,D) = (0, 0,−1, 1, 0) , R(φ, φ̄, ψ, ψ̄, F, F̄ ) = (q,−q, q − 1, 1− q, q − 2, 2− q),
R(ε, ε̄) = (−1,+1) . . (D.2.7)

2The dilation weights are:

∆(Aµ, σ, λ, λ̄,D) = (1, 1, 32 ,
3
2 , 2) , ∆(φ, φ̄, ψ, ψ̄, F, F̄ ) = (q, q, q + 1

2 , q + 1
2 , q + 1, q + 1) ,

∆(ε, ε̄) = (1
2 ,

1
2 ) . (D.2.8)

Note that whereas the 1-form A has weight zero, its components have weight 1. The
commutator on Aµ gives the µ-component of the Lie derivative on the 1-form A, without
further action of the dilation group.
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where the covariant derivative is ∇µ = ∂µ + 1
4
ωabµ γab. Although this def-

inition seems to depend on the metric (through the spin connection and
the vielbein), the dependence in fact cancels out. Finally, we can define a
“gauge-covariant” Lie derivative that acts on sections of some (gauge) vector
bundle. On tensors it is simply obtained by substituting the flat derivative
∂µ with the covariant derivative, ∂µ → ∂Aµ = ∂µ − iAµ, while on spinors it is
obtained by substituting ∇µ → ∇A

µ in the first term. The gauge-covariant
Lie derivative of the connection (which does not transform as a section of
the adjoint bundle) is defined as

LAXA = LXA− dA(ιXA) , (LAXA)µ = XρFρµ = Xρ
(
2∂[ρAµ]− i[Aρ, Aµ]

)
.

(D.2.12)

D.2.2 Commuting Killing spinors

For given anticommuting spinors ε, ε̄, let us construct the corresponding su-
percharges Q, Q̃ in terms of commuting spinors ε and ε̃ = −Cε̄∗ (so that
ε̄ = ε̃c). They are constructed as follows:

δ = δε+δε̄ = εαQα+ ε̄αQ̃α , Q = εαQα , Q̃ = ε̃c αQ̃α = −(ε̃†C)αQ̃α .
(D.2.13)

We also need the charge conjugate λ̄ = C(λ†)T. On the vector multiplet we
get:

QAµ =
i

2
λ†γµε , Qλ =

1

2
γµνεFµν −Dε+ iγµε Dµσ +

2i

3
σγµDµε ,

Q̃Aµ =
i

2
ε̃†γµλ , Q̃λ† = −1

2
ε̃†γµνFµν + ε̃†D + iε̃†γµDµσ +

2i

3
Dµε̃

†γµσ ,

QD = − i
2
Dµλ

†γµε+
i

2
[λ†ε, σ]− i

6
λ†γµDµε ,

Q̃D =
i

2
ε̃†γµDµλ+

i

2
[σ, ε̃†λ] +

i

6
Dµε̃

†γµλ , (D.2.14)

Q̃λ = 0 , Qσ = −1

2
λ†ε ,

Qλ† = 0 , Q̃σ = −1

2
ε̃†λ ,
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On the chiral multiplet we get:

Qφ = 0 , Q̃φ = −ε̃†ψ
Qφ† = ψ†ε , Q̃φ† = 0

Qψ =
(
iγµDµφ+ iσφ)ε+

2iq

3
φ γµDµε , Q̃ψ = Cε̃∗F

Q̃ψ† = ε̃†
(
− iγµDµφ

† + iφ†σ
)
− 2iq

3
Dµε̃

†γµφ† , Qψ† = −εTCF †

QF = εTC
(
iγµDµψ − iσψ − iλφ

)
+
i(2q − 1)

3
Dµε

TCγµψ ,

Q̃F † =
(
− iDµψ

†γµ − iψ†σ + iφ†λ†
)
Cε̃∗ − i(2q − 1)

3
ψ†γµCDµε̃

∗ ,

Q̃F = 0 QF † = 0 .
(D.2.15)

Finally we define Q ≡ Q+ Q̃.

D.2.3 Supersymmetric actions

Let us write down the Q-closed but not Q-exact actions we consider in chap-
ter 6: they are the Chern-Simons (CS) action and the Fayet-Iliopoulos (FI)
action. Since they are non-trivial in Q-cohomology, their evaluation on the
BPS configurations is non-trivial. The CS action is

SCS = − i

4π

∫
TrCS

[
A ∧ F − 2i

3
A ∧ A ∧ A+

(
2Dσ − λ̄λ

)
dvol

]
, (D.2.16)

both on S3
b and S2 × S1. The symbol TrCS (as in [116]) means a trace

where each Abelian and simple factor in the gauge group is weighed by its
own (quantized) CS level k. For instance, for SU(N) this would just be
TrCS = kTr.

The FI action on S3
b is

SFI =
i

2π
√
`˜̀

∫
TrFI

(
D − σ

f

)
dvol(S3

b ) , (D.2.17)

where again TrFI is a trace where each Abelian factor is weighed by its own
FI term ξ. For U(N), this would just be TrFI = ξTr.
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D.3 One-loop determinants from an index the-

orem

The one-loop determinants of quadratic fluctuations around a non-trivial
background, in particular around our general vortex backgrounds, are most
easily evaluated with the help of an equivariant index theorem for transver-
sally elliptic operators [147]. Such a technique was used on S4 [14, 149] and
S2 [15], while the computations on S3

b and S2 × S1 have been done in [148].
We will summarize the latter computation here, adapted to our conventions,
referring to [14, 149, 15, 148] for details.

After the cancelations between bosons and fermions, the one-loop deter-
minant equals the ratio detcoker Doe Q2/ detker Doe Q2, where Doe is the projec-
tion, from a subset {ϕe} to a subset {ϕo} of fields, of the expansion of Q at
linear order around the background. The ratio of weights of the group action
of Q2 on respective spaces can be computed by first evaluating the index

indDoe(ε) = trker Doee
Q2(ε) − trcoker Doee

Q2(ε) , (D.3.1)

where ε summarizes the equivariant parameters, and then extracting the
determinant with the map∑

α
cαe

wα(ε) →
∏

α
wα(ε)cα . (D.3.2)

As explained in the main text, indDoe(ε) is computed with the help of the
index theorem, and it only gets contributions from the fixed points on the
worldvolume of the action of Q2. However the theorem can be applied if the
action is compact, which is not the case on S3

b and S2× S1 in general. Then
[148] propose to reduce along an S1 fiber, and be left with the computation
on S2, as in [15]. It turns out that for the chiral multiplet the operator Doe

is the Dolbeault operator Dz̄ with inverted grading acting on Ω(0,0), whose
index is − 1

1−z , while for the vector multiplet it is the real operator d∗ ⊕ d

acting on Ω1, whose index is 1
2
.
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The sphere S3
b . We write the metric in Hopf coordinates as in (6.2.12),

in terms of φH = ϕ− χ and ψH = ϕ+ χ. The square of the supercharge is

Q2 = LAξ − σ −
i

2

(1

`
+

1
˜̀

)
R =

b

r
LA∂ϕ +

b−1

r
LA∂χ −

rσ

r
− i

2r
(b+ b−1)R

=
b+ b−1

r
LAψH +

b− b−1

r
LAφH −

rσ

r
− i

2r
(b+ b−1)R

(D.3.3)

where we used r =
√
`˜̀ and b =

√
˜̀/`.

At the northern circle, θ = 0, the Hopf fiber is parametrized by ϕ (see
(6.2.1)) and Q2 acts freely on it with equivariant parameter b; the KK modes
thus contribute

∑
n∈Z e

ibn to the index. On the S2, parametrized by θ and
φH , resulting from the reduction along the Hopf fiber, Q2 has a fixed point
at θ = 0. There the SUSY variation of a chiral multiplet (see (6.2.30))
is schematically Dθ + i

θ
DφH ∼ Dz̄ if we identify z = θeiφH . In fact the

one-loop determinant of the chiral multiplet is the index of the Dolbeault
operator with inverted grading (as noticed in [14, 149, 15]), which is − 1

1−z .

Now we expand in t = eiφH and use the equivariant parameter (b − b−1),
getting −∑m≥0 e

i(b−b−1)m. Putting everything together, and recalling that
the multiplet transforms in a gauge representation R, the contribution to the
index of a chiral multiplet from the northern circle is:

ind chiralN = −
∑
w∈R

∑
n∈Z

eibn
∑
m≥0

ei(b−b
−1)me−

i
2
QRew(âN ) (D.3.4)

where Q ≡ b+ b−1 and â = −i
(
bAϕ + b−1Aχ

)
− rS.

At the southern circle, θ = π
2
, the Hopf fiber is parametrized by χ and

Q2 acts freely on it with equivariant parameter b−1, therefore the KK modes
yield

∑
n∈Z e

ib−1n. The SUSY variation around θ = π
2

is schematically −Dθ̃+
i
θ̃
DφH ∼ Dz̄ (where θ̃ = π

2
− θ) if we identify z = θ̃e−iφH . Again we expand in

t and use equivariant parameter (b− b−1), getting
∑

m≥1 e
i(b−b−1)m. Putting

together:

ind chiralS =
∑
w∈R

∑
n∈Z

eib
−1n
∑
m≥1

ei(b−b
−1)me−

i
2
QRew(âS) . (D.3.5)

The one-loop determinant is extracted with (D.3.2). We get the non-regulated
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expression

Zchiral
1-loop“ = ”

∏
w∈R

∏
n∈Z

∏
m≥0

(m+ 1)b+ nb−1 − Q
2
R− iw(âS)

nb−mb−1 − Q
2
R− iw(âN)

. (D.3.6)

This is the expression in (6.2.51), after a rescaling by
√
`˜̀ of both numerator

and denominator. If âN 6= âS, this expression cannot be further simplified;
the regulated expression could be written in terms of infinite q-Pochhammer
factors. In our case âN = âS ≡ â, thus we can simplify coincident factors
and, neglecting overall signs, we get

Zchiral
1-loop“ = ”

∏
w∈R

∏
m,n≥0

mb+ nb−1 +
(
1− R

2

)
Q− iw(â)

mb+ nb−1 + R
2
Q+ iw(â)

(D.3.7)

=
∏
w∈R

sb

(
iQ

2
(1−R) + w(â)

)
. (D.3.8)

This is the expression in (6.2.52), and the last regulated expression was found
in [119] in terms of the double sine function.

The one-loop determinant of the vector multiplet is computed in a sim-
ilar way, observing that the relevant complex is the de Rham complex: the
index of its complexification is just 1, therefore we get 1

2
. At the northern

and southern circles the indices are 1
2

∑
n∈Z e

ibn+α(âN ) and 1
2

∑
n∈Z e

ib−1n+α(âS)

respectively, summed over the roots α of the gauge group. Extracting the
eigenvalues and regularizing, we get

Zvec
1-loop =

∏
α>0

2 sinh
(
πb−1 α(âN)

)
2 sinh

(
πb α(âS)

)
, (D.3.9)

where the product is over the positive roots and the normalization is some-
what arbitrary.

The space S2 × S1. The square of the supercharge reads in this case

Q2 = −LA∂τ +
i

r
LA∂ϕ − cos θ σ − 1

2r
R + i

zj
2ξr

Fj . (D.3.10)

It generates a free rotation along S1 (of radius 2ξr) with equivariant param-
eter −1, thus resulting in the KK contribution

∑
n∈Z e

−iπn/ξr, and a rotation
of the base S2 with fixed points at θ = 0 and θ = π.
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At θ = 0 the SUSY variation of a chiral multiplet is of the form Dθ +
i
θ
Dϕ ∼ Dz̄ if we identify z = θeiϕ. As above, the one-loop determinant of the

chiral multiplet is then obtained from the index of the Dolbeault operator
with inverted grading, which is − 1

1−z . We expand in t = eiϕ and use the

equivariant parameter i
r
, getting −∑k≥0 e

−k/r. The total index at the north
pole is thus:

ind chiralN = −
∑
w∈R

∑
n∈Z

e−πin/ξr
∑
k≥0

e−k/re−
1
2r
Rei

zj
2ξr

Fjew(âN ) (D.3.11)

where â = iAτ + 1
r
Aϕ − cos θ σ. Similarly, at θ = π the SUSY variation is of

the form Dθ̃ + i
θ̃
Dϕ ∼ Dz̄ (where θ̃ = π − θ) if we identify z = θ̃eiϕ. Now we

expand the index of the Dolbeault operator in t−1 (since the orientation is
opposite) and use the equivariant parameter i

r
, getting

∑
k≥1 e

k/r. The total
index at the south pole is thus:

ind chiralS =
∑
w∈R

∑
n∈Z

e−πin/ξr
∑
k≥1

ek/re−
1
2r
Rei

zj
2ξr

Fjew(âS) . (D.3.12)

The one-loop determinant is extracted with (D.3.2), obtaining the non-reg-
ulated expression:

Zchiral
1-loop“ = ”

∏
w∈R

∏
n∈Z

∏
k≥0

−πin+ (k + 1)ξ − ξ
2
R + i

2

∑
j zjFj + ξr w(âS)

−πin− kξ − ξ
2
R + i

2

∑
j zjFj + ξr w(âN)

.

(D.3.13)
For the vector multiplet, a computation exactly parallel to the one for S3

b

gives

Zvec
1-loop“ = ”

∏
α∈g

∏
n∈Z

(
α(âN) +

2πin

2ξr

)1/2(
α(âS) +

2πin

2ξr

)1/2

=
∏
α>0

2 sinh
(
ξr α(âN)

)
2 sinh

(
− ξr α(âS)

)
,

(D.3.14)

where the product runs over the positive roots.

D.4 One-loop deteminants on S2 × S1: poles

at zero or infinity

In this appendix we study under what conditions the one-loop determinants
on S2 × S1 do not have poles at zero or infinity, and therefore the deformed
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Coulomb branch contribution can be suppressed in a suitable ζ → ±∞
limit—ζ being the coefficient in (6.2.35) and (6.2.36)—or equivalently the
Coulomb branch contribution can be reduced to a sum of residues as in sec-
tion 6.3.5. For simplicity we consider the case of a U(1) gauge theory with
Nf fundamentals, Na antifundamentals and CS level k; the case of U(N)
gauge group is a straightforward generalization. We follow an argument in
[160], correcting a small imprecision.

First, we remind that the chiral one-loop determinant on the Coulomb
branch can be written in two ways:

Zchiral
1-loop =

∏
w∈R

(
x1−q e−iw(a) ζ−F

)−w(m)/2
(
x2−q−w(m) e−iw(a) ζ−F ;x2

)
∞(

xq−w(m) eiw(a) ζF ;x2
)
∞

=
∏
w∈R

(−1)
w(m)+|w(m)|

2

(
x1−q e−iw(a) ζ−F

)|w(m)|/2
(
x2−q+|w(m)| e−iw(a) ζ−F ;x2

)
∞(

xq+|w(m)| eiw(a) ζF ;x2
)
∞

.

(D.4.1)

The first line is as in (6.3.50), where ζF ≡ ∏j ζ
Fj
j =

∏
j e

izjFj are the flavor
fugacities; the equality with the second line can be proven easily.

The index of the U(1) theory is then computed by

I∞ =
∑
m∈Z

(−1)km+Nf
|m|+m

2
+Na

|m|−m
2 wm x

Nf+Na

2
|m|

Nf∏
α=1

(
ζα
)|m|/2 Na∏

β=1

(
ζ̃−1
β

)|m|/2
∮

dz

2πiz
zkm−n−

1
2

(Nf−Na)|m| A∞(Nf , Na, x, ζ, ζ̃, z;m) , (D.4.2)

where we introduced

A∞(Nf , Na, x, ζ, ζ̃, z;m) =

Nf∏
α=1

(
z−1ζαx

|m|+2 ; x2
)
∞(

zζ−1
α x|m| ; x2

)
∞

Na∏
β=1

(
zζ̃−1

β x|m|+2 ; x2
)
∞(

z−1ζ̃βx|m| ; x2
)
∞

.

(D.4.3)
This is exactly the same integral as in (6.3.67), in the special case N = 1.
In particular z = eia, the integration contour is along the unit circle |z| = 1
for |ζ̃β| < 1 < |ζα|, and convergence of the Pochhammer symbols requires
|x| < 1. For fixed ζα, ζ̃β, x, the product A∞ is uniformly convergent on the
unit circle |z| = 1 and the convergence is faster the larger is |m|, therefore
one can argue as in [160] that for every ε there is an n such that∣∣A∞(Nf , Na, x, ζ, ζ̃, z;m)−An(Nf , Na, x, ζ, ζ̃, z;m)

∣∣ < ε ∀ |z| = 1 , ∀ m ,
(D.4.4)
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where An is the same quantity as in (D.4.3) with ∞ replaced by n in the
Pochhammer symbols. Then one can argue that

∣∣I∞ − In∣∣ ≤ ε
∑
m∈Z

∣∣∣xNf+Na

Nf∏
α=1

ζα

Na∏
β=1

ζ̃−1
β

∣∣∣|m|/2|w|m , (D.4.5)

where the right-hand-side is finite and O(ε) for small enough x. We can thus
approximate I∞ arbitrarily well by In by choosing a large enough n.

To compute In, we can deform its integration contour either towards
infinity or zero and pick up residues. We can rewrite

An = z−n(Nf−Na)

n−1∏
j=0

Nf∏
α=1

z − ζαx|m|+2j+2

1− zζ−1
α x|m|+2j

Na∏
β=1

1− zζ̃−1
β x|m|+2j+2

z − ζ̃βx|m|+2j
. (D.4.6)

The only factor that can contribute poles either at zero or infinity is z−n(Nf−Na).
For Nf > Na, An(z) does not provide poles at infinity for any arbitrarily

large n and we can deform the integration contour towards infinity. How-

ever the integrand also contains zkm−
Nf−Na

2
|m|−n; we have absence of poles at

infinity for all m ∈ Z if

|k| ≤ Nf −Na

2
. (D.4.7)

Here it is important to note that, when evaluating In, n is held fixed while
m is summed over Z. Theories with |k| within the bound have been dubbed
“maximally chiral” in [151]. If |k| is larger than the bound, In receives
contributions from poles at infinity for infinitely many values of m, and such
contributions do not disappear in the n→∞ limit; therefore the mere sum
of the residues not at infinity does not reproduce the correct result. We will
not attempt to perform the complete computation here.

For Nf < Na, An(z) does not have poles at zero and we can deform
the integration contour towards zero. Because of the extra factor in the
integrand, there are no poles at z = 0 for all m ∈ Z if

|k| ≤ Na −Nf

2
. (D.4.8)

The case Nf = Na is a bit special, because An(z) has a finite non-zero
value both at z = 0 and z = ∞. Consider k = 0. For n ≥ 1 there are no
poles at infinity, while for n ≤ −1 there are no poles at z = 0. For n = 0
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there are poles both at z = 0 and z = ∞, controlled by An(z = 0;m) and
An(z = ∞;m). However the series

∑
m∈Z of such residues is convergent and

can be resummed; moreover limn→∞An(z = 0,∞;m) = 0. Therefore the
contribution of the poles at z = 0,∞ to In is smaller and smaller as n is
taken larger and larger, and can be neglected. In this case the integration
contour can be deformed both towards zero or infinity.

Summarizing, we have shown that for

|k| ≤ |Nf −Na|
2

(D.4.9)

I∞ can be computed by deforming the integration contour towards z = 0
and/or z = ∞ and picking up the residues outside z = 0,∞, since the
essential singularity at z = 0 and/or z = ∞ does not contribute to the
integral. For |k| larger than the bound, the contributions from the essential
singularities should be taken into account, although we will not try to do
that here. Notice that exactly the same bound appeared in section 6.2.5
when computing the S3 partition function.
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Appendix E

Higgs branch localization of
N = 1 theories on S3 × S1

E.1 Spinor conventions

We choose to use four-component spinors. Bars on spinors are taken to be
the Majorana conjugate, i.e. ψ̄ = ψtC where C is the antisymmetric charge
conjugation matrix satisfying (γµ)tC = −Cγµ. Since we are in Euclidean
signature, it is impossible to impose the Majorana conjugate to be equal to
the Dirac conjugate, but rather we work ‘holomorphically’, i.e. the hermitian
conjugate spinor does not make an appearance.

We take the Euclidean gamma matrices to be

γm =

 0 −iσm

iσ̄m 0

 , (E.1.1)

where σm = (~σ, i12) and σ̄m = (~σ,−i12), where ~σ are the three Pauli matri-
ces. We also introduce γ5 = γ1γ2γ3γ4 =

(
12 0
0 −12

)
which squares to one. The

charge conjugation matrix is given explicitly by C = γ4γ2 =
(
iσ2 0
0 −iσ2

)
.

We also introduce σmn = 1
2

(σmσ̄n − σnσ̄m) and σ̄mn = 1
2

(σ̄mσn − σ̄nσm) ,
in terms of which one can write

γmn =
1

2
(γmγn − γnγm) =

σmn 0

0 σ̄mn

 . (E.1.2)
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Finally, for any four-component spinor ψ, we denote its right and left-
handed piece as ψR = 14+γ5

2
ψ and ψL = 14−γ5

2
ψ respectively.

E.2 N = 1 supersymmetry algebra on Eu-

clidean four-manifolds

In this section we present the N = 1 supersymmetry transformation rules
on any four-dimensional Euclidean manifold allowing for a solution to the
conformal Killing spinor equation Dµε = γµε̃. A more general and systematic
analysis of supersymmetry on four-dimensional Euclidean backgrounds has
been performed in [167, 168, 169].

The transformation rules on the vectormultiplet are

δAµ = ε̄γµλ (E.2.1)

δλ = −1

2
γµνFµν ε− γ5 D ε (E.2.2)

δD = ε̄ γ5 6Dλ , (E.2.3)

and those on the chiral multiplet are

δA = ε̄χ (E.2.4)

δB = ε̄iγ5χ (E.2.5)

δχ = (γµDµ(A+ iγ5B)) ε− i(F + iγ5G)ε+
3r

4
(A− iγ5B)6Dε (E.2.6)

δF = iε̄ 6Dχ+ i

(
3r

4
− 1

2

)
χ̄6Dε+ ε̄(A+ iγ5B)λ (E.2.7)

δG = −ε̄γ5 6Dχ+

(
3r

4
− 1

2

)
χ̄γ5 6Dε+ ε̄iγ5(A+ iγ5B)λ , (E.2.8)

for commuting ε. Here Dµ is the covariant derivative Dµ = ∂µ − iAµ − iVµ,
where Aµ is the gauge connection and Vµ is a background field for the R-
symmetry. In the chiral multiplet we decomposed φ = A−iB

2
, φ̄ = A+iB

2

and F = F+iG
2
, F̄ = F−iG

2
. The spinor ε needs to satisfy the Killing spinor

equation Dµε = γµε̃. One can check that the supersymmetry variations then
square to

δ2 = LA+V
v + ρ∆ + iαR , (E.2.9)
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where LA+V
v is the gauge and background R-symmetry covariant Lie deriva-

tive along the vector field v, ∆ is the scaling weight1 and R is the U(1)R
generator2. The parameters themselves are given by

vµ = ε̄γµε , ρ =
1

4
Dµv

µ , α = 3i¯̃εγ5ε . (E.2.12)

E.3 Elliptic gamma function

The elliptic gamma function is defined as

Γ(z, p, q) =
∏
j,k≥0

1− pj+1qk+1/z

1− pjqkz . (E.3.1)

It satisfies the shift formulas

Γ(pz, p, q) = θ(z, q)Γ(z, p, q) , Γ(qz, p, q) = θ(z, p)Γ(z, p, q) , (E.3.2)

where θ(z, q) = (z, q)∞(q/z, q)∞ in terms of the infinite q-Pochhammer sym-
bol (z, q)∞ =

∏
j≥0(1− zqj) . Furthermore, one has

Γ(z, p, q) Γ(pq/z, p, q) = 1 . (E.3.3)

The θ-function satisfies

θ(z, q) = θ(q/z, q) = −z θ(z−1, q) , (E.3.4)

1The scaling weights are

∆ (Aµ, λR, λL, D) =

(
1,

3

2
,

3

2
, 2

)
, ∆(εR, εL) =

(
1

2
,

1

2

)
,

∆(φ, φ̄, χR, χL,F , F̄) =

(
3r

2
,

3r

2
,

3r + 1

2
,

3r + 1

2
,

3r + 2

2
,

3r + 2

2

)
. (E.2.10)

2The R-charge assignments are

R (Aµ, λR, λL, D) = (0, 1,−1, 0) , R(εR, εL) = (1,−1) ,

R(φ, φ̄, χR, χL,F , F̄) = (r,−r, r − 1, 1− r, r − 2, 2− r) . (E.2.11)
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which when iterated gives for positive κ

θ(qκz, q) = θ (z, q) (−zq(κ−1)/2)−κ, θ(q−κz, q) = θ (z, q) (−z−1q(κ+1)/2)−κ

(E.3.5)
Given the above formulae, we can derive for positive κ, λ

Γ(pκqλz, p, q) =
(
−zq(λ−1)/2p(κ−1)/2

)−κλ
Γ(z, p, q)

λ−1∏
j=0

θ(qjz, p)
κ−1∏
i=0

θ(piz, q) ,

(E.3.6)
and

Γ(p−κq−λz, p, q) =

Γ(z, p, q)

(−z−1q(λ+1)/2p(κ+1)/2)
−κλ ∏λ

j=1 θ(q
−jz, p)

∏κ
i=1 θ(p

−iz, q)
. (E.3.7)

Finally, in order to compute residues, we have the following limit

lim
z→1

(1− z)Γ(z, p, q) =
1

(p, p)∞ (q, q)∞
. (E.3.8)
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