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Abstract of the Thesis

The Influence of Proton Order on the Thermal Conductivity of Ice

by

Jonathan Tammo Siebert

Master of Arts

in

Physics

Stony Brook University

2014

Water is one of the most important reasons for the possibility of life on earth.
Even though water and ice have been in the focus of countless studies they
are far from being understood. Despite their simple molecular structure,
especially the ability of the molecule to form hydrogen bonds leads to a
variety of interesting properties. One of them is the density maximum of
water in its liquid state. This is caused by the hydrogen bound hexagonal
structure of low pressure ice.

In this work the influence of proton ordering on the thermal conductivity
of hexagonal ice is examined. It is experimentally impossible to achieve a pure
sample of proton ordered hexagonal ice because of the frozen proton mobility
at low temperatures. Therefore, in this work, proton ordered and unordered
ice is studied using non-equilibrium molecular dynamics simulations.

Proton ordered and unordered cells are simulated at different tempera-
tures. The used empirical force field model is shown to reproduce the ex-
perimentally expected increase of the thermal conductivity for the ordered
cells. Also the increase of thermal conductivity for lower temperatures is
reproduced qualitatively.
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1 Introduction
Water is one of the most important, if not the most important, reasons for
the possibility of life on earth. It covers over 70% of the earth’s surface and
gave our "blue planet" its name. Without water life on earth as we know it
would be impossible.

Despite its rather simple molecular structure of two hydrogen atoms being
bound to one oxygen atom, it shows a variety of interesting properties. One
of the reasons for this is the large dipole moment of the molecule arising from
the big difference in electronegativity between oxygen and hydrogen. This
allows the molecule to form hydrogen bonds. These bonds are responsible for
example for the structure of ice at low pressure which causes ice to float on
liquid water due to its smaller density. This is the best known of the several
anomalous properties of water.

Because of its importance and its many interesting properties, many stud-
ies have examined water in its many solid, liquid and gaseous phases. Whole
books have been published just about the up to now 15 crystal and two amor-
phous as well as the meta-stable known solid phases. A detailed discussion
of many properties of ice is for example given in the book by Petrenko and
Whitworth [23].

Although it has been under investigations for a very long time, water in
general and ice in particular are still far from understood. The physics of
water and ice is still a very active area of research.

In recent years computer simulations have been established as an addi-
tional method apart from experimental and theoretical research. It allows to
test experimental setups before they are built or to test theoretical predic-
tions before they can be validated in expensive experiments. In comparing
them with the theoretical and experimental results, the simulation meth-
ods can be refined and this leads to a further improvement of the available
simulation methods.

But simulations do not only play a supplementary role. They allow to
examine systems in a very controlled way. The effects of interest can be
probed in an isolated way without the constraints of an experiment. Also
experimentally not achievable configurations can be explored. The proton
ordered phase of ice, ice XI, that is examined in this work, is stable under
72K, but because of the low proton mobility, it is impossible to produce a
pure sample. In the simulations, on the other hand, the protons can be set
arbitrarily. Even proton-ordered ice at temperatures much higher than the
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transition temperature can be measured.
In this work, the influence of the proton ordering on the thermal conduc-

tivity is examined by use of the direct method proposed by Müller-Plathe
[20]. Similar studies have already been done for liquid water, for example
by Bedrov and Smith [6], by Bresme [8], by Zhang, Lussetti, de Souza, and
Müller-Plathe [34] and a very recent study doing a very thorough examina-
tion of multiple temperatures and pressures by Römer, Lervik, and Bresme
[26]. A study of proton disordered ice using an equilibrium method has been
done by English, Tse, and Gallagher [11].

Experimentally, the influence of the proton ordering on the thermal con-
ductivity has been measured in KOH doped, partially proton-ordered ice.
This was done for example by Andersson and Suga [4]. In this work now the
thermal conductivity of fully proton-ordered pure ice as well as of proton-
unordered ice is studied by simulations and compared. This will allow to
check whether the flexibility of the used TIP4P/2005f model introduces a suf-
ficient coupling between the intra- and inter-molecular bonds to capture the
differences in the hydrogen bond’s strengths for different proton configura-
tions. This is mandatory to reproduce the difference in thermal conductivity
between the proton-ordered and unordered case.

In section 2 a definition and explanation of the thermal conductivity as
well as some properties of water and the used water model are given. In sec-
tion 3 the used simulation and evaluation methods are explained. Afterwards
section 4 presents the results obtained by this work. In the last section 5 a
short summary and suggestions for future work on this topic are given.
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2 Background
The goal of this work is to examine the thermal conductivity of ice under
different conditions. This chapter gives a short overview over the theoretical
background. The thermal conductivity will be introduced and some proper-
ties of water and ice will be listed.

2.1 Thermal Conductivity

The thermal conductivity characterizes the ability of a material to transport
heat. Fourier’s law is the empirical relation between a heat current ~J and a
thermal gradient defining the thermal conductivity κij as:

Ji = −
∑
j

κij∂jT. (1)

It is only valid in a linear response regime, where the temperature gradient
is not too extreme. The minus sign accounts for the fact, that the heat will
always flow from hot to cold and therefore against the thermal gradient. In an
approximately isotropic and homogeneous material the thermal conductivity
reduces to a positive scalar:

~J = −κ · ∇T. (2)

The thermal conductivity is not a constant material property but it is
strongly temperature dependent. The absolute form of the temperature de-
pendence is determined by the type of the dominant heat carriers. In an
insulator such as ice the main heat carriers are phonons. The finiteness of κ
mainly arises from scattering of phonons in three phonon anharmonic scat-
tering, scattering of defects and scattering of the boundary of the crystal.

In the Debye model an estimate of thermal conductivity can be easily
derived. The full derivation can be found for example in Ashcroft and Mermin
[5, p. 495ff]. Their derivation uses kinetic theory as follows.

Let ε(T ) be the energy density of the crystal at temperature T . In the
relaxation time approximation the phonon scattering events are treated in
an averaged way. These events are considered to take place on average after
a time interval τ . After each scattering, the phonon will move in a random
direction. Since the derivation follows the Debye model, the velocity of the
phonon is taken to be the sound velocity c of the crystal. The mean free
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path l = cτ is assumed constant. Therefore, the heat flow given at point
~x0 = (x, y, z0)T can be computed by averaging over the energies of those
phonons, that scattered last on a sphere around ~x0 with radius l:

~J = 〈~c · ε(T )〉sphere. (3)

Due to the symmetry the x and y components become zero. For the heat
current in the z direction one gets:

Jz = 〈cz · ε (T (z))〉sphere

=
1

4π

∫ 1

−1

d cos(θ)

∫ 2π

0

dφ cz · ε (T(z))

≈ 1

2

∫ 1

−1

d cos(θ) c cos(θ) (ε(T(z0)) + ∂zε(T(z0)) · (z− z0))

= −1

3
cl∂T ε(T (z0))∂zT (z0),

(4)

where after the second step the energy was expanded linearly in z and in
the third step, z− z0 was set to l cos(θ). So the thermal conductivity in this
approximation is given by:

κ =
1

3
cvcl, (5)

where cv = ∂T ε(T ) is the specific heat of the crystal.
Apparently the thermal conductivity is proportional to the mean free

path of the phonons in the crystal. As mentioned earlier, there are several
competing processes with different mean free paths li. In the case of com-
peting scattering effects the effective mean free path leff is given in good
approximation by Matthiessen’s rule:

1

leff

=
∑
i

1

li
. (6)

In an experimental setup of a pure crystal, the contributions of impu-
rity and boundary scattering will be smaller than the contribution of three
phonon scattering events. The temperature dependence of the thermal con-
ductivity can be understood by examining the probability of phonon scatter-
ing events. This is also explained in [5, p. 501ff].
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They argue that the temperature dependence in the high temperature
regime is dominated by the temperature evolution of the mean phonon oc-
cupation numbers. The specific heat approaches the constant limit of the
Dulong and Petit law for high temperatures. The sound velocity is also not
strongly temperature dependent. But the mean phonon occupation num-
ber is approximately proportional to the temperature. The exact form of
the thermal conductivity’s temperature dependence is governed by the exact
type of scattering dominant in the crystal. Even without knowledge of the
phonon scattering probabilities they claim that the temperature dependence
is usually given by a power law of type κ ∝ T−x, where x is between one and
two.

Still following [5] one finds that the thermal conductivity in the low tem-
perature regime is dominated by two competing effects. First by lowering
the temperature far enough umklapp processes are frozen out in the crys-
tal, because mostly phonons with small wave vectors are present. Normal
processes do not change the total phonon wave vector and therefore do not
allow the crystal to reach equilibrium. This leads to an exponential increase
in thermal conductivity for very low temperatures. According to their ex-
planation the phonon mean free path increases rapidly until it reaches the
range where impurity and boundary scattering start to dominate. Then the
temperature dependence will be dominated by the T 3 decrease of the specific
heat for temperatures lower than the Dulong Petit regime.

The very large mean free path of phonons for low temperatures, and the
importance of quantum effects in that regime, prevents this work’s method
from being used in determination of the thermal conductivity. Therefore, in
this work only the high temperature limit will be examined.

2.2 Properties of Water and Ice

In this work ice is studied. Despite its rather simple molecular structure, H2O
shows a very interesting behavior. Due to its prevalence and its importance
to life on earth it has been subject of many studies. Whole books have been
published about its properties. The properties listed here are taken from
Petrenko and Whitworth [23]. Their book gives a good overview over the
properties of the solid phases of water.

Many of the interesting properties of water and ice arise from the polar
structure of the molecule. Because of the high electronegativity of oxygen,
most of the negative charge of the molecule is located around the oxygen
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atom. This allows the molecules to form hydrogen bonds.
Hydrogen bonds are responsible for the most commonly known anomalous

properties of water. Due to its structure the low pressure phase of ice has
a lower density than liquid water. Therefore, ice is able to float on water.
There are several other phases of water. The solid phases studied in this
work are described in the next section.

2.2.1 Phases of Ice

By now 15 stable solid phases of water are known. The last phase, ice
XV, was discovered in 2009 by Salzmann, Radaelli, Mayer, and Finney [27].
The phases differ in structure and are stable at different temperatures and
pressures. At atmospheric pressure there are two stable and one metastable
ice phase. The ice phase dominating in nature is ice Ih. Here the oxygen
atoms are located in a hydrogen-bound hexagonal lattice. Every oxygen has
four nearest neighbors. The hydrogen atoms are located along the hydrogen
bonds obeying the ice rules found by Pauling [22]:1

1. Along each hydrogen bond one and only one hydrogen atom is located.

2. Each oxygen atom has exactly two hydrogen atoms covalently bound
to it.

One possible structure is shown in figure 1a. Other than obeying these
rules the hydrogen atoms are assumed to be distributed randomly across the
crystal. This is only approximately correct. There are energy differences
between the different configurations. Therefore, the configurations are not
absolutely equally probable. For higher temperatures the energy differences
are small enough to be discarded.

Because of the random distribution of hydrogen atoms, there is no long
range order of the hydrogens. Therefore, this state is called proton disor-
dered. The ice Ih phase is stable for pressures up to around 0.2GPa and
above 72K. Between 130K and 220K there exists another metastable cubic
phase called ice Ic, which is proton disordered as well.

For low temperatures the potential energy dominates the free energy. As
stated in [23], for an energy gain of ∆E for occupying the lowest energy
structure, the temperature must be smaller than ∆E/∆Shyd. Here ∆Shyd is

1Earlier an irregular structure had already been proposed by Bernal and Fowler [7].
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the entropy resulting from the proton disorder. Its value is given at the end
of this section. In this case the most stable structure will be the one with
the lowest potential energy. It has been found by Tajima, Matsuo, and Suga
[31] in 1984 that low pressure ice undergoes a phase transition to hexagonal
ice XI at 72K. The resulting structure is proton ordered. Several structures
have been suitable candidates for this structure. In 1985 Leadbetter, Ward,
Clark, Tucker, Matsuo, and Suga [18] did a neutron diffraction experiment
on KOD-doped heavy ice to find the structure of ice XI. Also in 2004 Hirsch
and Ojamäe [14] did a quantum chemical calculation comparing the energy
of all possible ordered orthorhombic structures with an eight molecule unit
cell. They verified that the structure shown in figure 1b is the most stable.

Because of the low energy differences between the different hydrogen
structures and the high energy barriers for a change in proton arrangement,
the relaxation time for this first order phase transition is extremely long.
Reordering of the protons requires reordering of multiple hydrogens at once
for the ice rules to stay obeyed. Temporarily the ice rules have to be broken
to allow reordering. So-called Bjerrum defects occur. If one hydrogen atom
jumps to another bond it induces a D defect, which means two protons are
located along one hydrogen bond and a L defect, meaning the lack of any
proton along another hydrogen bond.

This transition is not observable on an experimental time scale. To
shorten the relaxation time the crystal can be doped with alkali hydrox-
ides. This method has also been used in the paper [31], which has been
cited above. The doping introduces artificial Bjerrum defects, which allow
relocation of the hydrogen bonds around the dopant in the crystal. After
a long annealing time of up to 256h they found that one dopant ion allows
approximately 15000 water molecules around it to rearrange into an ordered
structure.

Because of the low proton mobility the transition is not observed in pure
ice on an experimental timescale. Lowering the temperature below approx-
imately 100K leads to a glass transition, where the proton positions are
frozen. Haida, Matsuo, Suga, and Seki [13] did a calorimetric study show-
ing the transition for pure ice. They cooled their sample quickly from 120K
to temperatures between 89.4K and 107.6K. Afterwards they annealed their
samples for a long time in a carefully isolated calorimetric chamber. They
observed a temperature drift because of the proton ordering enthalpy relax-
ation. This verifies that partial ordering already occurs above the transition
temperature. From the drift they estimated the relaxation time to increase

7



(a) Ice Ih

(b) Ice XI

Figure 1: The structure of ice Ih (a) and ice XI (b) are shown. Both pictures
show 32 molecules. This corresponds to 8 unit cells of ice XI. Due to
the proton-disorder in ice Ih there are no real unit cells. The shown
structure is only one out of many possible proton disordered structures
obeying the ice rules. In both pictures the a and c axes are shown.
The third axis forms a 120° angle with the a and a 90° angle with the
c axis. The proton order in the ice XI structure can be seen well, when
compared to the ice Ih structure. The plot was done using the Jmol
package [1].
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T in K κ in W
m·K T in K κ in W

m·K

10 120 120 5.4
15 60 150 4.3
20 38 200 3.2
40 16.1 250 2.4
80 8.1 273.2 2.14

100 6.5

Table 1: Here the best estimate values for the thermal conductivity of
ice Ih at atmospheric pressure computed by Slack [29] on the basis of
several earlier experiments are shown. The uncertainty was estimated
to ±10%.

up to 145h at 89.4K.
The approximate degeneracy of the different proton configurations in

proton-disordered ice leads to an additional entropy per molecule. It has
been computed by Pauling [22] to be approximately

Shyd = kb ln

(
3

2

)
≈ 3.494 · 10−5 eV

K
. (7)

Pauling’s computation did not take the possibility of rings into account.
A more careful numerical derivation accounting for this possibility by using a
series expansion was done by Nagle [21]. He found a value of Shyd = (3.5333±
0.0009)·10−5eV/K, which differs only slightly from Pauling’s original finding.
In 1974 Haida et al. [13] did a careful experimental study. They compared the
entropy of water vapor computed by following the entropy change heating ice
from near 0K through melting and vaporization with the entropy calculated
from spectroscopic measurements of the water vapor. The difference between
those two values is the frozen-in residual entropy of the disordered hydrogen
system. Their value of Sres = (3.52±0.23) ·10−5eV/K agrees excellently with
the value computed by Nagle.

2.2.2 Thermal Conductivity of Ice

The thermal conductivity of the different ice phases has been the objective
of many studies. In 1980 Slack [29] used data from several sources to find
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best estimate values for the thermal conductivity of ice Ih. His values are
given in table 1.

The thermal conductivity of ice XI cannot be measured directly. Because
of the slow relaxation time described in section 2.2.1 it is impossible to pro-
duce a sample of pure ice XI. Therefore, the doping method described above
is used. Using that method, samples with approximately 68% ice XI were
produced by Andersson and Suga [4]. By fitting their results to the Debye
model they found the contribution of scattering by the dopant. Setting the
fitting parameter for point defect scattering to zero allowed to get the ther-
mal conductivity for pure ice. They verified this method by testing it on
KOH-doped ice Ih. Comparing these values against experimental values for
pure ice Ih, they found a good agreement.

The thermal conductivity of pure ice XI can then be found by use of a
further model. Andersson and Inaba [3] used the effective medium approxi-
mation described in [15]. This allows to extrapolate the thermal conductivity
of one substance in binary mixture with another substance when the thermal
conductivity of the second substance and the mixture as well as the mixing
ratio is known.

In 2005 Andersson and Inaba [3] published a summary of thermal con-
ductivity values for various ice phases in form of a review article. Using
data from several other publications they found power laws to describe the
thermal conductivity of different ice phases. For ice Ih they concluded that
later studies, for example by Andersson and Suga [4], backed Slack’s find-
ings. By using the additional data, they found the resulting values to agree
well with the earlier results. Their estimate of the uncertainty of 5% for the
temperature range 40-273K is only half as big as Slack’s value, though. The
ice XI data was taken from [4]. The parameterizations they found for the ice
phases studied in this work at 0.1 MPa are:

κice Ih =
632W

m

T
+ 0.38

W

m ·K
− 0.00197

W

m ·K2
· T

κice XI = 994
W ·K0.041

m
· T−1.041

(8)

The laws are valid for 40-273K for ice Ih and 50-72K for ice XI and
have an inaccuracy given as 5% and 6% respectively. They also gave a
simple power law for ice Ih but this is only valid up to 180K. The deviations
above this temperature were ascribed to the increasing contribution of optical
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Figure 2: The parametrization of the experimental results for the thermal
conductivity of the ices Ih and XI taken from [3] are shown. The data
points correspond to the results by Slack [29] with uncertainties of 5%
as given in [3]. The dashed line shows the continuation of the thermal
conductivity parametrization for temperatures higher than the phase
transition at 72K.

phonon scattering. The parameterization above includes this deviations and
is therefore used as reference in this work.

For ice XI there are no experimental data for temperatures over 72K,
since this is the transition temperature to ice Ih. The values received by
simulations in experimentally unachievable regions are therefore compared
against the power law in equation (8) even though its validity in this region
is not known.

The anisotropy of the thermal conductivity of ice Ih has been shown to be
of the order of 5% or less [29] at high temperatures2 based on measurements
on single crystals by Landauer and Plumb [17]. For ice XI there are no data
on the anisotropy of the thermal conductivity because of the lack of a single
crystal sample to measure. The data of Andersson and Suga [4] are found
by measurements of polycrystalline ice. Therefore, their values are averaged
over all directions.

2near 270K
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The two parameterizations are plotted in figure 2. The blue dashed line
is the continuation of the power law for the thermal conductivity of ice XI
above the transition temperature. The data points included are the values
found by Slack [29] with the smaller uncertainties argued for in [3]. The
parameterization and the plotted best estimate values agree excellently.

2.2.3 Water models

In this work the thermal conductivity of ice is examined by using molecular
dynamics simulations. The simulations are done using an empirical force
field. One widely used empirical water model is the TIP4P/2005 model. It
was proposed in 2005 by Abascal and Vega [2]. In this work a flexible version
of this model, the TIP4P/2005f, proposed by González and Abascal [12], was
used.

The TIP4P/2005 model is a four point model. In addition to the three
sites defined by the oxygen (O) and the two hydrogen (H) atoms, there is a
fourth site called M. This site carries the electric charge of the oxygen atom in
the molecule. In the rigid case it is positioned in the molecular plane equally
distant from the two H sites to retain the symmetry of the molecule and a
distance of dOM from the oxygen. The geometry of the H and O sites is set
to match the experimentally measured structure. Since the molecules have
to be charge neutral, the charge of the M site is minus two times the positive
charge of the H sites. Both the rigid and the flexible model include the same
type of intermolecular potentials. There is a Lennard-Jones interaction term
between the O sites of different molecules, given by the usual form:

VLJ = 4ε ·

((
σ

rOO

)12

−
(

σ

rOO

)6
)
. (9)

Additionally, there is an electrostatic interaction between the H and the
M sites. The potential between site i in one molecule and site j in another
molecule is given by:

Ves =
qiqj

4πε0rij
. (10)

The four parameters of the rigid model are σ, ε, qH and dOM. They were
determined by tuning them to fit experimentally determined properties of
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water and ice3. Later the flexible version TIP4P/2005f was introduced in
[12]. It contains the same intermolecular potentials but it does not set the
relative positions of the sites to a rigid geometry. Instead it introduces an
intramolecular potential, which allows the bond lengths to fluctuate. This
potential contains three parts:

Vintra = VOH1(r) + VOH2(r) + VHOH(θ). (11)
The potential between the O and the H sites is modeled by a Morse

potential. It is given by:

VOHi
= Dr · (1− exp(−β(rOHi

− req))2. (12)
In this work the quartic expansion of this potential is used, which is given
by:

VOHi
= Dr

(
β2(rOHi

− req)2 − β3(rOHi
− req)3 +

7

12
β4(rOHi

− req)4

)
. (13)

The quartic expansion does differ only very slightly from the full Morse po-
tential for the energies present in the simulations [12].

The angular potential is taken to be harmonic:

VHOH (θ) =
1

2
Kθ (θ − θeq)2 (14)

Because of the flexibility of the bond length, the position of the M site has
to be redefined. Due to the symmetry of the molecule it will still be situated
on the bisector of the HOH angle in the HOH plane. But the distance from
the O site is redefined to be:

dOM = drel
OM(rOH1 + rOH2) cos

(
θHOH

2

)
. (15)

In the flexible case drel
OM replaces dOM as a parameter. Furthermore, five

new parameters Dr, req, β, θeq and Kθ are introduced. González and Abascal
[12] determined the nine parameters of the flexible model to fit experimental
data. They started from the parameters of the rigid model given in [2] and
then varied them to fit the structure to the experimentally observed one4. In
this work these parameters are used. The values are given in table 2.

3For details refer to [2].
4For details refer to [12]
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Parameter Value Parameter Value

σ [Å] 3.1644 Dr [kJ/mol] 432.581
ε/kb [K] 93.2 req [Å] 0.9419
qH [e] 0.5564 β [nm−1] 22.87
drel

OM 0.131 94 θeq [◦] 107.4
Kθ [kJ/mol/rad2] 367.810

Table 2: The values for the parameters of the TIP4P/2005f model are taken
from [12]. The parameters were constructed there starting from the
rigid model defined in [2]. The values of the additional five parameters
on the right were then tuned to fit experimental properties.
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3 Simulation Method
In this work the empirical force-field model described in section 2.2.3 is used
for a non-equilibrium molecular dynamics simulation to investigate the in-
fluence of proton order on the thermal conductivity on water.

3.1 Non-Equilibrium Molecular Dynamics

In contrast to Monte Carlo methods, molecular dynamics samples the phase
space by following the system through time. By modeling the time evolution
of the system the method is suitable to analyze the dynamical properties of
a system. By forcing the system out of equilibrium one can directly measure
for example transport properties of a system.

This way of measuring transport properties is called the "direct method".
In this work it will be used to measure the thermal conductivity of various
ice cells. By varying the system, as for example by introducing defects or en-
forcing experimentally unavailable geometries, this method allows to examine
their influence on the thermal conductivity in an isolated way.

To measure the thermal conductivity, the system has to be forced into a
non-equilibrium state. This can be done in two different ways:

• Introducing a thermal gradient by thermostating two regions of the
cells to different temperatures:

These different temperatures enforce a temperature gradient in the sim-
ulation box which leads to a heat flux throughout the cell. Measuring
this flux by monitoring the velocities and energies of the particles, the
thermal conductivity can be evaluated.

• Introducing a heat current in the system:

When energy is transfered constantly from one region of the system to
a second one, a thermal gradient will build up. In the steady state this
thermal gradient becomes constant and by measuring it the thermal
conductivity can be evaluated as well.

In 1997 Müller-Plathe [20] suggested that the second method is better
suited to find the thermal conductivity by simulation. He claims that the
thermal gradient converges much faster than the heat flux. Therefore, by
imposing the heat flux and measuring the thermal gradient the system will
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converge faster, allowing shorter runs and a better averaging. Because of
these advantages the second method is used in this work. The heat flux is
introduced by the switching algorithm suggested in [20].

The algorithm was implemented and then used in a preexisting simulation
package, which is described below.

3.2 Simulation Package

All simulations in this work are done using the arce package by Ramirez
[24]. This software package allows molecular dynamics and Monte Carlo
simulations. In this work only the molecular dynamics functionality is used.
Even though the package allows path integral molecular dynamics (PIMD),
this feature is not used in this work. All simulations are done treating the
hydrogen cores classically which corresponds to PIMD with one bead.

A major advantage of the package are its modules to do simulations of
water and ice. Specifically it has modules for the classical force field models of
the TIP4P type described in section 2.2.3 with either rigid or flexible molec-
ular geometry. As described above, in this work, the TIP4P/2005 models
flexible version with the parameters from table 2 is used.

As is customary in such simulations, periodic boundary conditions are
applied to minimize the finite size effects in the simulation. The Lennard
Jones potential is cut off after half of the cell size whose thermal conductance
is measured. The long range terms in the potential cutoff are smoothened
by a uniform tail correction.

For the electrostatic forces the long range term cannot be neglected.
Therefore, a particle mesh Ewald method is used. This method collects
the sum over all pair potentials into two separate sums. The short range
terms are summed in real space. This real space sum is cut off after 8Å.
To account for the long range terms an additional sum in Fourier space is
performed. The long range sum in Fourier space converges quickly compared
to doing a sum in real space. Nonetheless, the reciprocal Ewald sum is the
computationally most expensive task of the simulation. Therefore, the pres-
ence of electrostatic forces only allows shorter runs of smaller cells than for
example in the studies [28] and [35] using a similar method on Silicon.

The integrators used within the package were derived by Martyna, Tuck-
erman, Tobias, and Klein [19]. For the NVE ensemble, a velocity-Verlet
algorithm is used. The equilibrations are done in the NPT ensemble. To en-
force the temperature, the system is coupled to a Nose Hoover chain of length
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four. To pressurize the system to the right value, the cell size is allowed to
fluctuate isotropically and the system is coupled to another barostat degree
of freedom.

For the production runs the thermostats are turned off and therefore
the cell size is fixed again. The run now uses the velocity-Verlet integrator.
Nonetheless, it is not in the NVE ensemble since now the system is forced
out of equilibrium.

3.3 Switching Algorithm

In all runs, the cell geometry shown in figure 3 is used. Periodic boundary
conditions are applied in all three directions. The cell has two short sides
along the x and y direction, and a long side along the z direction. At least
14 strips are introduced along the z direction of the cell. By calculating
the temperature in each strip, the temperature profile along the z direction
can be computed. The temperature in each strip is estimated as the kinetic
temperature of the molecules whose center of mass (com) is in the strip. The
kinetic temperature in strip n, Tn, is found, similarly to [20], as:

Tn =
2Ekin,n

3Nnkb

=
mH2O

3Nnkb

Nn∑
i∈n

v2
i,com,

(16)

where the sum is performed over all Nn molecules in the nth strip. This
estimation is based on the assumption of local equilibrium. According to the
equipartition theorem, in equilibrium all degrees of freedom will carry the
same average energy. Therefore, averaging only over the three translative
degrees of freedom of each molecule will give a good temperature estimation.

The heat flow is introduced by the velocity switching suggested in [20].
All equations following in this chapter are based on his work. The same
method has also been used in simulations of liquid water for example by
Bedrov and Smith [6]. The center of mass (com) velocity of the fastest and
therefore "hottest" molecule i in the cold strip vcom

i is changed with the com
velocity of the slowest and therefore "coldest" molecule j in the hot strip
vcom
j :

~v ′i,X = ~vi,X − ~vi,com + ~vj,com

~v ′j,X = ~vj,X − ~vj,com + ~vi,com,
(17)
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Figure 3: A schematic picture of the cell geometry is shown. Periodic
boundary conditions are applied. By switching the center of mass ve-
locity of the fastest molecule in the cold strip (11) and of the slowest
molecule in the hot strip (4) a heat flow is introduced. The temperature
in each strip is estimated by monitoring the average kinetic energy of
the molecules in each strip. To estimate the temperature gradient the
reservoirs (4 and 11) and their direct neighbors (3, 5, 10 and 12) are
not taken into account.

where i,X denotes the 3 atoms X of molecule i.
This will introduce energy in the hot reservoir and drain the same amount

of heat from the cold reservoir. The energy difference is given by:

Eswitched = E ′kin − Ekin

=
3∑
i=1

mi~v
′2
i

2
−

3∑
i=1

mi~v
2
i

2

=
3∑
i=1

mi(~vi,rel + ~v′com)2

2
−

3∑
i=1

mi(~vi,rel + ~vcom)2

2

=
mH2O

2
(~v′2com − ~v2

com) +
~v′com − ~vcom

2

3∑
i=1

mi~vi,rel

=
mH2O

2
(~v′2com − ~v2

com),

(18)

where the sum always goes over the three atoms in the molecule taking part
in the switching. In the last step the definition of the com velocity was used
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(
∑

imi~vi,rel = 0). Obviously the energy drain and gain are equal. Therefore,
the overall energy is conserved. This has similarly been shown in [6].

The com velocity is switched instead of switching the velocity of all atoms
of the molecule separately to prevent any unwanted effects on the structure
of the ice. The molecules will have different orientations and different sur-
roundings. Therefore, switching the atomic velocities could cause problems
in the molecular and crystal structure. This is prevented by switching the
com velocities instead.

Switching regularly introduces a heat transfer from the cold to the hot
strip. The switching is repeated regularly but not at every time step. As
Müller-Plathe [20] found, it is necessary to allow the system to rethermalize
after a switching event. By waiting a certain amount of steps between the
switches, one allows the velocities of the molecules in the reservoir strips to
regain a broad distribution. This ensures that the fastest molecule in the
cold strip is always faster than the slowest molecule in the hot strip, and
therefore the heat flow is always directed in the same direction.

A steady state is reached, when all energy transported by the switching
is canceled by the heat flux from the hot to the cold region and the average
temperature gradient does not change anymore. Only thermal fluctuations
will be present. The heat flux through the system is then given by [20]:

J =
1

2
· Eswitched

A ∆t

=
mH2O

4A ∆t
·
∑

switchings

(v2
i,com − v2

j,com),
(19)

whereA is the cross-sectional area of the cell and ∆t is the time over which the
switchings are conducted. The factor one half arises from the fact, that the
energy can be transported two ways, due to the periodic boundary conditions
and the cell geometry shown in figure 3.

If the heat flux and the thermal gradient are known, the thermal conduc-
tivity along the z direction can be computed as defined in equation (2) [20]:

κ = − J

∂zT

= − mH2O

4A ∆t ∂zT
·
∑

switchings

(v2
i,com − v2

j,com).
(20)
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The switching algorithm is easy to use and to implement and as stated
in [20] obviously conserves the total momentum of the cell. This is very
important since an overall drift of the cell has to be prevented. The overall
energy is also conserved. The positions remain unchanged, which leads to
conserved potential energy. Since all molecules have the same mass, switching
the com velocities of two molecules will conserve the kinetic energy.

The angular momentum of the cell is not necessarily conserved [20].
Therefore, the velocity switches could lead to a turning of the cell. But
the amount of angular momentum that can be introduced with one switch is
rather small. Also averaging over many switching events during the simula-
tion will further decrease this effect.

There have been other algorithms proposed and used to introduce a heat
flux in the system. Most are working by velocity rescaling. This would allow
the heat flux to be set constant to one specific value. This is not necessary
since the thermal conductivity is not dependent on the heat flux through the
system as long as it is small enough to stay in a linear response regime. Also
simple velocity rescaling will scale the relative velocities of the atoms in the
molecules as well. This could lead to unwanted effects. Because of this and
the simplicity of the switching algorithm, it is used in this work.

3.4 Finite Size Effects

Due to the small system size, ballistic heat transport is a dominant contribu-
tion to the heat flux. For small systems the main part of the heat conduction
is ballistic transport from one reservoir to the other. This has been found
for example in a study by Schelling et al. [28]. They argue that the average
mean free path for ballistic heat transport lres is given by half the distance
between the reservoirs. If this is smaller or of the same order as the mean
free path for the other scattering mechanisms, the thermal conductivity given
by equation (20) will differ notably from the bulk limit, which is found in
experimental studies. To extrapolate the bulk limit from the values found in
simulations for different cell lengths, they used Matthiessen’s rule as given
in equation (6). The same method is used in this work.

In the Debye model the thermal conductivity is proportional to the effec-
tive mean free path of the phonons as seen in equation (5). Using Matthiessen’s
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rule to find the effective mean free path, Schelling et al. [28] found:

κ ∝ leff =

(
1

lres

+
1

lbulk

)−1

. (21)

As expected the bulk limit is recovered by taking lres to infinity:

κbulk = lim
lres→∞

κ. (22)

Since the thermal resistivity κ−1 is proportional to the inverse of the
effective mean free path, its bulk limit can be extrapolated by taking l−1

res to
zero, doing a linear extrapolation [28]. If the thermal conductivity is known
for multiple cell lengths, then in a linear fit of the thermal resistivity against
the inverse cell length, the bulk thermal resistivity will be given by the y axis
interception of the fit.

To do a decent extrapolation, many data points are needed. The bulk
mean free path is of the same order of magnitude as the cell lengths con-
sidered in this work. Having much longer cells is computationally not man-
ageable. Therefore, even when the uncertainties of the different data points
corresponding to the simulation of one cell length are reasonably small the
uncertainty of the extrapolated value will still be large. Nonetheless, the ex-
trapolation is useful to compare the results of the simulation to experimental
findings. On the other hand many interesting properties can already be seen
by comparing cells of the same length with different properties.

3.5 Parameters of the Switching Algorithm

For the simulation runs there are several parameters to set. The most im-
portant ones are:

• Switching Frequency:

The number of steps between two switching events determines the size
of the heat current introduced into the system. The number of pausing
steps has to be chosen large enough to allow the reservoir strips to
rethermalize between switches. Also switching too often can lead to
unwanted waves in the system.

Nonetheless, the gap between switches should not be too large either.
If the number of switches is too small, the thermal fluctuations in the
heat flux and the thermal gradient will lead to large uncertainties.
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By simulating systems with different switching frequencies, it is found
that valid frequencies lie between 300 and 700 steps per switching. Most
simulations are done with a 600 steps gap. Some runs are done using
300 and 500 steps instead.

• Number of Strips:

The number of strips in the system should be chosen large enough to
allow a decent linear fit. The temperature profile of the cell is not
linear over the whole z range. Especially for high heat fluxes, there are
peaks in the temperature of the reservoirs. The linear fit is done in the
middle between the two reservoirs. To allow a decent fit at least four
points should be included. Therefore, the minimum number of strips
is 10.

To ensure that the fit is done in the linear regime, a buffer strip on
each side of the reservoirs was included. For this 14 strips are needed.
This allows a decent linear fit and therefore this number was used for
most calculations.

Increasing the strip number even further decreases the number of mole-
cules per strip. This increases the statistical fluctuations in the temper-
ature averaging. Some runs are using 18 strips in the system. Higher
numbers have not been considered.

• Cross-sectional Area of the Cell:

The size of the cell also has to be chosen carefully. To allow a de-
cent extrapolation, cells with a large distance between the reservoirs
are needed. To allow long cells, the cross-sectional area has to be
sufficiently small. Otherwise the number of molecules in the cell will
increase too much, leading to unfeasibly long simulation runs.

On the other hand choosing the cross-sectional area too small may
cause additional finite size effects. Also enough molecules per strips
are needed to decently define the temperature of the strip.

3.6 Details of the method

In addition to these parameters, also the parameters of the molecular dy-
namics have to be set. In this section the details of the used method and
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the evaluation of the results are explained. First details of the simulation
performed are described. Afterwards the evaluation methods are listed.

3.6.1 Details of the Simulation Method

All simulations in this work are done using the package and algorithms de-
scribed in section 3.2. For the non-equilibrium runs the switching algorithm
described in section 3.3 was added to the arce package. Also the temperature
estimation of the different strips was implemented. Otherwise, the package
was not changed.

For all simulations a time step of 0.5fs is used. The temperature is written
out every 25th step. The pressure is monitored every 10th step. To do a run
for one cell the following procedure is performed.

The cells are first equilibrated in an NPT run to the corresponding tem-
perature and 0.1MPa pressure by allowing the cell size to fluctuate isotrop-
ically. After 50-100ps of equilibration, the cell size is fixed and the ther-
mostat is switched off. Since there are fluctuations in the pressure even in
the pressurized system, fixing the last system size leads to different average
pressure values for the different cells. The pressure is not 0.1MPa on aver-
age. Nonetheless, this method is used. Due to the switching the pressure
in the system will change during the non-equilibrium simulation for all ini-
tial system sizes. Furthermore, the influence of the pressure on the thermal
conductivity is much smaller than the statistical uncertainties arising from
the thermal fluctuations. This has been found for example by Andersson
and Suga [4]. Because of that, no further effort is made to reach a certain
pressure in the system.

After the equilibration the switching is turned on and the simulation is
run in the non-equilibrium regime for 200ps or more. For some of the smaller
cells with a smaller heat flux simulation times of up to 500ps are reached. For
three runs only times of 150ps or 175ps are simulated. Due to the rather high
heat flux in these cases the steady state was reached rather early. Long runs
are necessary to reach the steady state in the system. Both the temperatures
of the strips and the heat flux fluctuate strongly. Especially the temperatures
in the small cells are found by averaging over just around 25 molecules. Also
only the "hottest" and "coldest" molecules out of a pool of 25 molecules
in the cold and hot reservoir are chosen for the switching. Therefore, large
fluctuations are expected. For the longer cells the averaging works better
but still around 100-200ps are needed to reach the steady state which in turn
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leads to very short averaging times.
Generally higher heat fluxes reduce the relative size of the fluctuations

and therefore allow shorter simulation runs. Most of the early runs were done
with high heat currents and relatively short simulation times. The later runs
are done with a lower heat current but a longer simulation time, because of
the temperature differences between the two reservoirs becoming rather large
for the high heat currents. But since the values for both types of runs agree
very well also the earlier runs are taken into account in the evaluation.

3.6.2 Details of the Evaluation

To find the thermal conductivity in the different cells, the temperature of the
strips is monitored in combination with the switched energy per time step.
Using these quantities, the beginning of the steady state is found. The usual
point for this was after 200ps for the low heat flux and 100ps for the higher
heat flux. Especially the short cells showed large thermal fluctuations, which
tended to delay the start of the steady state.

An example of the time evolution of the strip temperatures during the
switching is shown in figure 4. The shown plot had to be smoothened by a
moving window average. Because of the large thermal fluctuations otherwise
the overall time evolution would not be visible. The window size is set to
4000. Therefore, each data point in the plot shows the average of the last
50ps. The average leads to a misrepresentation of the first steps. It cannot be
seen in the plot that all strips start at roughly the same temperature. After
the sharp increase of the temperature gradient during the first 50-100ps the
convergence gets slower. In this run the steady state is considered to start
after 200ps (400000 steps).

Especially for smaller cells large fluctuations make it difficult to find the
start of the steady state. This is no major problem because for shorter cells
longer runs are feasible and available. Therefore, the averaging can be started
at a later point in the run without loosing the necessary statistics. Runs that
did not reach a steady state are excluded from the evaluation. One cause for
this is the running time being too short. But also runs with smaller cells are
excluded, when the thermal fluctuations are too big to determine the start
of the steady state. An example for an excluded run is shown in figure 5.

Especially for shorter cells there are many large fluctuations or tempera-
ture jumps that prevent the system to reach the steady state. Also several
runs have not been performed for a long enough time. Therefore, the number
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Figure 4: Here the time dependence of the strip temperatures is shown.
There are huge thermal fluctuations due to the small number of
molecules in each strip and due to fluctuations in the heat current.
To make the long time evolution visible the graph is smoothened using
a windowed average over 4000 data points (50ps). Therefore, each data
point corresponds to an average over the previous 4000 temperatures.
In this case the steady state is taken to set in after 200ps.

of excluded runs is rather large.
Because of the large fluctuations in both the switched energy and the

temperature of the strips, the starting point of the steady state is set in a
way to capture the most constant part of the run. This is done by including
all corresponding features of the two values. In some cases relatively large
fluctuations in the heat flux result in a fluctuation of the temperature profile.
In these cases the starting point is set to exclude both features.

The method of determining the start of the steady state is rather sub-
jective. It depends on the appearance of the time evolution of the strip
temperatures and the resulting temperature profile. A better method would
be to find the time after which the temperature does not change noticeably.
A similar evaluation has been done by Zhou et al. [35] for their examina-
tion of Silicon. Unfortunately this method is not realizable in the present
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Figure 5: In this plot the time evolution of the strip temperatures for
an unconsidered run is shown. As in figure 4 the graph is smoothened
using a windowed average over 400 data points (50ps). The fluctuations,
especially in the low temperature strips, even in the heavily smoothened
graph are much too big to determine a possible steady state.

case. The switching algorithm does not introduce a constant heat flow but
is subject to statistical fluctuations on a long time scale (up to 100ps) of
up to ±5%. These are assumed to average out over the whole steady state
area. Nonetheless, the time intervals that are compared to find the beginning
of the steady state would have to be rather long. This is not possible due
to the long simulation times. Therefore, due to the lack of alternatives the
manual version of determining the start of the steady state is used in this
work. Nonetheless, this method definitely leaves room for improvements in
future studies.

After the starting point is found, the temperature of the strips is deter-
mined by averaging over all later temperatures. This is done using a Gaussian
fit. Since the strip temperature is found by averaging over the kinetic energy
of all molecules in a strip a Gaussian distribution of temperature values is
expected for the different strips.

The temperature is only measured every 25th step, to get roughly indepen-
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dent values. A histogram is produced by separating the temperature interval
into 201 bins. The error on the number of values in each bin is simply given
as the square root of the corresponding bin count. Then a Gaussian function
is fit to the distribution. The fit parameter for the center of the distribution
is taken as the temperature of the strip. The uncertainty is estimated by
the square root of the corresponding diagonal entry in the covariance matrix
as given by the scipy [16] method optimize.curve_fit. To this value, half
of the bin size is added to account for the uncertainty resulting from the
discretization.

The thermal profile obtained by that method is used to find the thermal
gradient. The positions of the strips are taken as the distance of the strips
center from the center of the hot bath. Because of periodicity of the cell
as seen in figure 3 there are two data points for every separation. The only
exception are the reservoirs with zero separation for the hot region and the
maximum possible separation of half the length of the cell for the cold region.

Due to thermal fluctuations the two data points for the different direc-
tions do not perfectly match in most cells. To find a good estimate of the
average thermal gradient in the cell the mean of the two values is taken. The
uncertainty of the resulting value is then taken as half of the distance of the
two data points plus the square root of the added squares of the uncertainties
of the single data points.

The resulting four data points are fitted with a linear function using the
same scipy method optimize.curve_fit as for the Gaussian fit above. Again
the uncertainty is estimated as the square root of the covariant matrix diag-
onal entries returned by the fitting function. This can lead to an underesti-
mation of the uncertainties, when the data points lie well on a line by chance.
The fit method does not account for the size of the uncertainties other than
using them as weights. An alternative way of doing the fit would be for
example a bootstrapping algorithm. To do a decent bootstrapping fit good
knowledge of the uncertainties of the data points are needed. The method
described above only gives an upper bound on the uncertainties. Therefore,
the curve_fit method tends to give better results. It is therefore used for the
temperature gradient fit.

The heat flux is computed by use of equation (19). The amount of energy
switched for each switching event is taken to be independent due to the large
gaps between the switches. Therefore, the uncertainty of the energy trans-
fered by one switching is estimated by the standard deviation of the switched
energy divided by the square root of the number of values. Multiplying this
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by the number of switchings gives the uncertainty of the overall switched
energy ∆Eswitched. The uncertainty in the time interval ∆(∆t) of the heat
flux is taken to be the time gap between two switches. The uncertainty in
the heat flux is then given as:

∆J =
Eswitched

4A∆t

√(
∆Eswitched

Eswitched

)2

+

(
∆(∆t)

∆t

)2

. (23)

Using the computed values for the heat flux and the temperature gradi-
ent the thermal conductivity is computed using Fourier’s law (1). The two
variables are obviously correlated. Therefore, in an estimation of the uncer-
tainty the covariance terms cannot be neglected. To get an estimate of the
uncertainty of the resulting value, the relative uncertainties of the two values
are added. The resulting uncertainty for the thermal conductivity is given
by:

∆κ =
J

∂zT

(∣∣∣∣∆JJ
∣∣∣∣+

∣∣∣∣∆(∂zT )

∂zT

∣∣∣∣) . (24)

To get an estimate of the bulk value of the thermal conductivity an ex-
trapolation has to be done as described in section 3.4. For the extrapolation
to work several cells of different lengths have to be simulated. Then a linear
fit is done for κ−1 against l−1

z . The resulting y axis intercept then corre-
sponds to an infinitely large cell. This gives an estimate of the bulk thermal
conductivity.

The fit is done using a bootstrap method similar to the one suggested
by [35]. This method tries to correctly resample the data. 10000 new data
sets are produced on the basis of the old data set and the knowledge of its
uncertainties. To do this a Gaussian distribution is assumed for all data
points. The standard deviation of the distribution is set to the estimated
uncertainty. Then for every point a random deviation from the middle value
based on the corresponding distribution is found by the numpy [32] method
random.normal.

For each data set a least square fit is done using the scipy method opti-
mize.leastsq. The best estimate for the fit parameters and their uncertainties
is then found by taking the arithmetic mean and the standard deviation of the
parameter values found for all 10000 data sets. This extrapolation method
allows to get an estimate of the uncertainties for κ−1

bulk on the basis of the
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uncertainties of the single cells. If their uncertainties are well estimated the
extrapolated value and its uncertainty will be fairly well predicted.

The uncertainty of κbulk can then simply be found by uncertainty propaga-
tion. This result will be a good estimation as long as the relative uncertainty
of the resistivity is not too large. If the relative uncertainty becomes too
large, the linear approximation used in the uncertainty propagation breaks
down. This does not happen for all but one extrapolation. Therefore, the
uncertainty propagation is considered valid unless it is explicitly stated oth-
erwise.

3.7 Production of the Ice Cells

For the simulation runs ice crystals of different sizes and structures have to be
produced. To produce the ice XI cells a unit cell of four molecules, provided
by Marivi Fernandez-Serra, is periodically repeated to obtained the desired
size. The lattice constants are assumed to be equal to those used for the
proton ordered ice Ih. The oxygen atoms then are at the same positions as
for the ice Ih cells but the proton structure is ordered corresponding to the
ice XI structure.

For the ice Ih cells the ice_gen code by Marivi Fernandez-Serra is used.
Since ice Ih has a proton disordered structure, there is no unit cell which
can simply be repeated. To achieve such a disordered structure, the ice_gen
code first sets the oxygens onto the lattice, by repeating a four molecule unit
cell. Each oxygen has four possible hydrogen sites. Two hydrogens are now
distributed randomly onto these four sites. By doing that, the ice rules will
obviously be violated at first. Now a Monte Carlo method is used to obtain
an allowed structure.

To get an unordered structure, this method is repeated 100 times. Then
the structure with the lowest overall dipole moment is selected. Since an ice
Ih crystal has no dipole moment and ice XI is a ferro electric material, the
overall dipole moment is an order parameter. The cell with the lowest dipole
moment is therefore considered the "most unordered".
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4 Simulations and Results
The main goal of this work is to examine the thermal conductivity of proton-
ordered and unordered ice at different temperatures. For this, proton-ordered
and unordered cells are examined at 100K, 150K and 200K. Smaller temper-
atures are not considered, since the mean free path of the phonons increases
rapidly with decreasing temperature. To get a decently extrapolated bulk
value for low temperatures, very large cells would be needed. This cannot be
done in a decent time.

Furthermore, the introduction of defects in the cell and their influence
on the thermal conductivity is examined. Also some simulations are done to
verify the validity of parameters chosen in the simulation.

4.1 Check of the Method

To verify that the chosen cells allow to get a good understanding of the
present mechanisms, several runs are done comparing different possible cells.
The cross-sectional area of one cell is varied to ensure that it does not have
any influence on the thermal conductivity measured for a certain temperature
and cell length. Furthermore, runs are performed to examine the influence
of the dipole moment of the cell on its thermal conductivity.

4.1.1 Cross-Sectional Area

To verify that the cross-sectional area does not influence the thermal conduc-
tivity, an unordered cell with a cross-sectional area of three by five unit cells
(≈ 13.5Å by 22.6Å) is compared to results of the corresponding run with a
three by three unit cells (≈ 13.5Å by 13.5Å) cross-sectional area. The latter
is used for most of the other production runs. The two values are given in
table 3. They agree very well. Therefore, the cross-sectional area is taken
to have no influence on the thermal conductivity measurements. Because of
that, it is valid to use the smaller cross-sectional area, which allows longer
cells and longer runs due to the smaller number of molecules.

4.1.2 Non-Zero Dipole Moment

When constructing the unordered cells using the method described in section
3.7, it turns out that for cells with a cross-sectional area of three by three
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A lz [Å] κ [W/m/K] T̄ [K] p̄ [MPa] gap

3x3 116.6 1.25±0.07 102.90±0.02 −48.2±0.4 300
3x5 116.6 1.24±0.06 100.94±0.02 −27.2±0.3 600

Table 3: The results for two unordered cells of the same length with dif-
ferent cross-sectional areas at 100K are shown. In both cases 14 strips
were introduced. The resulting thermal conductivities agree excellently.
"gap" is the number of steps between two switching events.

unit cells, the dipole moment never reaches near zero values. Otherwise this
cross-sectional area is considered optimal. It is large enough to have enough
molecules in each strip even for short cells. Also it does not seem to induce
any additional finite size effects. On the other hand it is sufficiently small to
allow long cells, which are needed to extrapolate to the bulk limit.

To check whether this cross-sectional area produces any significantly dif-
ferent results from a cell with near zero dipole moment, cells with a cross-
sectional area of three by four unit cells are examined. Two types of cells are
simulated. For the first type the dipole moment is minimized as described
in section 3.7. This leads to cells with no significant dipole moment. These
cells are considered totally disordered. To see if the dipole moment has any
significant influence on the thermal conductivity, the second type of cell is
produced in the same way but with maximized dipole moment along the c
axis. This cells are called partially ordered.

For each type of cell, five cells with different lengths in the c direction are
examined. All simulations are done at 100K. This is the lowest temperature
considered in this work. For low temperatures the difference between ordered
and unordered ice increases, as seen in figure 2. Therefore, the differences
between unordered, partially ordered, and ordered cells should be biggest for
this temperature. By doing the simulations as described in section 3.6, the
results given in table 4 are obtained.

In the plot of the results, shown in figure 6, one sees, that there are some
deviations between the cell types. Generally the uncertainties of the near
zero dipole moment cells seem to be underestimated a little. But overall
there is no systematic trend in the differences between the two cell types.

Therefore, one can obtain the thermal conductivity of ice Ih by simulating
cells produced with ice_gen, even when they do not reach near zero dipole
moment. It seems that it is not possible to get cells with significant partial
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Near Zero Dipole Moment:

lz [Å] κ [W/m/K] T̄ [K] p̄ [MPa]

87.4 0.94±0.04 100.80±0.02 −6.2±0.3
102.3 1.22±0.04 99.76±0.02 −33.2±0.3
116.4 1.42±0.06 100.10±0.02 27.3±0.3
131.0 1.33±0.05 100.48±0.02 14.4±0.3
145.5 1.53±0.04 100.02±0.01 27.5±0.2

Maximized Dipole Moment:

lz [Å] κ [W/m/K] T̄ [K] p̄ [MPa]

87.6 1.12±0.11 102.91±0.02 −89.7±0.3
102.0 1.10±0.08 100.64±0.02 −13.8±0.3
116.6 1.26±0.10 102.03±0.02 −14.8±0.3
131.0 1.56±0.07 99.45±0.01 18.7±0.3
145.7 1.60±0.07 100.18±0.01 −19.3±0.3

Table 4: These are the results for an unordered cell with near zero dipole
moment and dipole moment maximized along the c direction. All sim-
ulations are first equilibrated to 100K and 0.1MPa. All cells contain
three by four unit cells in the a/b direction (≈ 13.5 by 18.1 Å). The
switching is done every 600 steps (300fs).

ordering using that method.
Most cells examined in this work have a cross-sectional area of three by

three unit cells. This does not allow a near zero dipole moment but as shown
above this does not cause any deviations. From here on, these cells will be
called unordered. Having this relatively small cross-sectional area allows to
simulate much longer cells and therefore to get closer to the bulk limit.

The method seems to give consistent results. The results for the different
cell types examined in this work are given in the next sections. Most of the
runs are done along the c direction of the crystal. This is justified by the lack
of anisotropy found in experimental studies as described in section 2.2.2. To
verify that this is reproduced by the simulation runs along the a/b direction
are done for comparison. But as long as it is not indicated otherwise, all
following results are obtained along c direction.

32



Figure 6: The thermal conductivities of cells with near zero dipole moment
and a dipole maximized along the c direction using the ice_gen code are
shown. Statistical fluctuations are visible, but there is no systematic
difference between the two cell types.

4.2 Unordered Ice Ih

In this section the results for all unordered cells are presented. First the
results along the c direction are shown. Here the cross-sectional area is taken
to be three by three unit cells. As mentioned in the last section, this leads
to a non-zero dipole moment of the cell. But as described in section 4.1.2,
this does not affect the results in any significant way. Therefore, the results
in this section are considered unordered regardless of their dipole moment.

Three different temperatures are examined. There are runs for 100, 150
and 200K. The results are shown in tables 5, 6 and 7 respectively. The data
was found following the evaluation procedure described in section 3.6.2. The
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Unordered Cells at 100K along c:

lz [Å] κ [W/m/K] T̄ [K] p̄ [MPa] nstr gap [fs]

72.8 0.95± 0.04 97.02±0.02 44.3±0.5 14 150
87.4 1.12± 0.06 97.85±0.02 −6.1±0.4 14 150

102.0 1.17± 0.06 99.67±0.02 −11.7±0.5 14 150
109.1 1.40± 0.08 98.98±0.02 44.8±0.3 14 300
116.6 1.27± 0.05 102.90±0.02 −48.2±0.4 14 150
131.0 1.35± 0.09 98.00±0.03 6.6±0.5 14 150
145.6 1.76± 0.17 101.35±0.02 18.2±0.3 14 300
182.1 1.63± 0.14 98.42±0.02 2.8±0.2 14 300
182.1 1.49± 0.08 98.82±0.02 1.9±0.3 18 250
218.4 1.98± 0.15 99.17±0.01 8.5±0.4 18 250
218.4 2.12± 0.19 99.69±0.01 12.7±0.3 14 300
254.6 2.75± 0.32 99.16±0.02 49.5±0.3 18 250
291.1 2.48± 0.15 100.13±0.02 29.1±0.3 18 250
291.1 2.23± 0.18 99.62±0.01 33.3±0.3 14 300

Table 5: Here the results of unordered ice cells equilibrated to 100K and
0.1MPa are shown. "gap" describes the break between switching events.
Only simulations that could be identified as reaching a steady state were
considered.

uncertainties of the pressure and the overall temperature are the standard
error of the mean given by dividing their standard deviation by the square
root of the number of data points. The pressure undergoes major fluctu-
ations during one simulation run. Since the thermal conductivity of ice is
not strongly pressure dependent, as for example found in [4], no significant
deviations are caused by that.

The other parameters of the runs are given in the appendix in section
A.1.1. The length of the runs, the starting point of the steady state and the
temperature differences between the hot and the cold region are shown in
the tables 17, 18 and 19.

The plots of the thermal conductivity values for the different temperatures
and cells are shown in figures 7, 8 and 9. As described in section 3.4 plotting
the resistivity against l−1

z allows to extrapolate the bulk thermal resistance
as the y axis intercept. Therefore, here plots of κ−1(l−1

z ) are shown.
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Figure 7: The results for all converged unordered cells at 100K along the c
direction are shown. The y axis intercept corresponds to the extrapo-
lated bulk value.

Unordered Cells at 150K along c:

lz [Å] κ [W/m/K] T̄ [K] p̄ [MPa]

102.0 1.05±0.05 148.27±0.03 72.3±0.4
124.1 1.23±0.05 147.37±0.02 −6.9±0.3
145.9 1.35±0.02 152.09±0.02 9.1±0.4
182.3 1.66±0.12 152.66±0.02 23.8±0.4
219.1 1.65±0.09 148.57±0.02 −27.9±0.3

Table 6: Here the results of unordered ice cells equilibrated to 150K and
0.1MPa are shown. All runs were done with 14 strips and with a gap
of 300fs between switchings. One run was omitted because of lack of
convergence.

The linear relationship is clearly visible in cases of 100 and 200K. The
solid lines correspond to the extrapolation fit, which is found as described in
section 3.6.2. The fit shows a decent agreement for all temperatures. In the
case of 100 and 200K the large amount of data points allows a more precise
fit. In the case of 150K the slope of the fit differs from the other two. It also
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Figure 8: The results for all converged unordered cells at 150K along the c
direction are shown. The y axis intercept corresponds to the extrapo-
lated bulk value.

Figure 9: The results for all converged unordered cells at 200K along the c
direction are shown. The y axis intercept corresponds to the extrapo-
lated bulk value.
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Unordered Cells at 200K along c:

lz [Å] κ [W/m/K] T̄ [K] p̄ [MPa] nstr gap [fs]

102.5 0.99± 0.05 199.26±0.05 −10.7±0.7 14 150
117.1 1.19± 0.08 201.84±0.05 1.6±0.7 14 150
117.1 1.25± 0.10 202.70±0.04 −0.6±0.6 18 250
131.6 1.16± 0.07 198.31±0.05 26.2±0.7 14 125
146.3 1.27± 0.13 196.40±0.05 11.5±0.9 14 125
146.2 1.29± 0.09 202.23±0.03 27.8±0.4 14 300
182.9 1.56± 0.15 197.76±0.03 1.6±0.5 18 250
182.9 1.37± 0.05 197.73±0.03 2.4±0.4 14 300
219.3 1.43± 0.14 201.43±0.03 42.7±0.5 18 250
219.3 1.62± 0.17 200.47±0.03 40.8±0.4 14 300
256.1 1.47± 0.20 197.82±0.03 −5.1±0.5 18 250
292.4 1.67± 0.12 198.92±0.03 29.3±0.6 14 300

Table 7: This table shows the results of unordered ice cells equilibrated
to 200K and 0.1MPa. "gap" describes the break between switching
events. Again only simulations that could be identified as reaching a
steady state were considered.

T[K] κ−1
bulk[m·K/W] m[m2 ·K/W] κbulk[W/m/K] κexp[W/m/K]

100 0.220 86±0.026 50 60.9± 3.6 4.53±0.54 6.50±0.33
150 0.253 57±0.068 96 70.4±10.0 3.94±1.07 4.30±0.21
200 0.420 16±0.061 11 52.9± 9.0 2.38±0.35 3.15±0.16

Table 8: The fit parameters found in the extrapolation of the bulk thermal
conductivity for proton disordered cells are shown. m is the slope of
the extrapolation plot. The experimental values are computed from the
parametrization in equation (8) taken from [3].

shows a large uncertainty. Additional data points would be needed to allow
a more exact extrapolation.

The extrapolated bulk thermal conductivities are listed in table 8. The
corresponding experimental values are computed from the parameterizations
in equation (8) taken from [3] as described in section 2.2.2.

Especially for lower temperatures the experimental values are significantly
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Figure 10: In this plot the results for unordered cells at 100, 150 and 200K
are shown.

higher than the values found in this work. This is not unexpected. Earlier
studies, for example by English et al. [11] on ice Ih using the TIP4Pice model,
also found lower thermal conductivities than experimentally expected.

As expected the thermal conductivity decreases for increasing temper-
atures. This can be seen very well in the comparison of the different cell
lengths for the three temperatures. This is plotted in figure 10. The values
for 150K lie between the points for 100 and 200K. This is visible even con-
sidering the large uncertainties of the individual values. The same behavior
is seen in the extrapolated values. Due to the large uncertainty in the ex-
trapolation of the 150K data this is not significant for the bulk value, but in
the individual data points the trend is clearly visible.

Also the slopes of the three extrapolation curves are very similar. Accord-
ing to the rough derivation in [28] the slope of the extrapolation is dependent
on the heat capacity of the branches significantly contributing to the heat
current and the sound velocity of the crystal. Those quantities will not differ
strongly for the three temperatures considered here. The agreement of the
three slopes is therefore expected. The slope of the extrapolation for 150K is
relatively large compared to the other two values. This is another indicator
that more data points are needed for that temperature to allow a decent
extrapolation. A more precise analysis of the slopes is given in section 4.5.
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Unordered Cells at 100K along a/b:

lz [Å] κ [W/m/K] T̄ [K] p̄ [MPa]

89.5 1.67±0.11 99.51±0.02 36.9±0.5
134.2 2.08±0.11 100.03±0.01 58.3±0.4
178.7 1.66±0.10 99.73±0.01 114.4±0.3
223.5 2.22±0.19 101.69±0.01 84.7±0.3
268.3 2.66±0.13 100.51±0.01 77.5±0.3

Table 9: The results along the a/b direction for cells equilibrated to 100K
and 0.1MPa are listed. All runs use a 600 step gap between switches
and 14 strips.

Figure 11: In this plot the examined unordered cells at 100K are shown for
both the a/b and the c direction. The runs for the a/b direction do not
give a consistent picture. The smaller two cells deviate significantly
from the c direction results. The largest cell also seems to have a
thermal conductivity being too high. The other values agree well.

To verify the low anisotropy of the thermal conductivity in ice Ih, also
cells with a heat flux along the a/b direction are being simulated. The cells
use a similar geometry as for the runs along the c direction. The cell is
turned so that one of the a/b axes is aligned with the z axis of the cell. The
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cross-sectional area is set to three unit cells in the other a/b direction and
two unit cells along the c direction.

Only one temperature is examined. All anisotropy effects should be visible
for 100K. The results for the different cell lengths are then compared to the
results for the c direction. The results are shown in table 9. As for the other
runs the additional parameters are shown in the section A.1.1 in table 20.

A comparison of the two crystal directions is shown in figure 11. It is
obvious that the two values for the smaller cells along the a/b direction do
not agree with the c direction. This cannot be explained by the presence of
large fluctuations. Also the thermal resistivity of the longest cell is signifi-
cantly lower than the corresponding values along the c direction. A possible
explanation for this behavior is that the examined cells only have two unit
cells along the c direction. Possibly even with an overall dipole moment of
near zero there can be two partially ordered sections canceling each others
dipole moment. But overall the deviations are not well understood.

The other two values agree well with the c direction. Generally more runs
with larger cross-sectional areas are needed to find the true anisotropy in the
system. Nonetheless, the results for the c direction are believed to represent
the effects of temperature changes and proton ordering well. So the results
still give a good representation of the systems under examination.

4.3 Ordered Ice XI

Ordered cells are simulated at temperatures of 100 and 200K. Because of the
low resolution of the method, there are no values for 150K taken into account.
As for the unordered case, first the values for temperature gradients along
the c direction are shown.

The results for all decently converged cells at 100 and 200K are shown
in tables 10 and 11 respectively. Especially in the ordered case all runs for
cells shorter than ≈100Å do not show a decent steady state. Therefore, all
those runs are excluded. This is ascribed to the fact that for ordered ice,
the mean free path is longer than for ice Ih. It can be seen already from
the experimental results that the thermal conductivity is much larger for the
proton ordered than for the proton disordered phase. For those long mean
free paths, the ballistic heat transport still dominates for larger separations
of the reservoirs.

Nonetheless, the same time constraints as for the unordered cells apply.
Therefore, it is not feasible to simulate cells with an even larger separation
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Ordered Cells at 100K along c:

lz [Å] κ [W/m/K] T̄ [K] p̄ [MPa]

116.5 2.45± 0.47 101.71±0.02 0.4± 0.3
131.1 2.82± 0.08 101.95±0.02 10.1± 0.3
145.7 3.36± 0.55 102.36±0.02 −15.2± 0.3
182.1 3.79± 0.79 100.79±0.01 −12.4± 0.3
218.5 3.49± 0.20 101.37±0.01 7.3± 0.3
291.3 4.60± 0.44 100.19±0.01 2.3± 0.2

Table 10: Here the results of ordered ice cells equilibrated to 100K and
0.1MPa are listed. All runs are done using 14 strips and a 375fs sepa-
ration between heat transfers. Shorter cells were simulated but failed
to converge due to the long mean free path.

between the reservoirs. As for the unordered case, the longest cell lengths
are ≈300Å. Also only runs with a relatively low heat current are available.
One possible improvement could be the inclusion of additional data points
with higher heat currents. This has not been done because of the higher risk
of non-physical waves or drifts and the risk of leaving the linear response
regime for high heat currents.

The other parameters of all runs are shown in the tables 21 and 22 in the
section A.1.2 in the appendix.

The extrapolation plots corresponding to the given values are shown in
figures 12 and 13. Again the values are plotted in an κ−1 against l−1

z plot
to allow the linear extrapolation fit. The data points again agree relatively
well with the linear fit. The agreement is much better in the case of 100K.
For 200K the values vary more, which is ascribed to the much larger thermal
fluctuations.

Generally the uncertainties of the extrapolated bulk thermal conductivi-
ties are much larger in the ordered case. The fit parameters of the extrapo-
lation are shown in table 12. The absolute uncertainties for the extrapolated
thermal resistivity differ for both cell types and most temperatures by a max-
imum of a factor of two. The ordered cells have a larger uncertainty because
of the smaller amount of runs that are available.

Nonetheless, the main factor for the large uncertainties in the thermal
conductivity is the fact that for the same absolute uncertainty in the thermal
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Figure 12: The results for all converged ordered cells at 100K along the c di-
rection are shown. The y axis intercept corresponds to the extrapolated
bulk value.

Ordered Cells at 200K along c:

lz [Å] κ [W/m/K] T̄ [K] p̄ [MPa]

117.4 1.54± 0.09 198.56±0.03 −107.7± 0.5
131.8 1.92± 0.14 202.63±0.03 −37.0± 0.4
146.5 2.04± 0.06 197.79±0.03 −52.0± 0.5
183.1 1.72± 0.09 201.90±0.03 −33.2± 0.4
256.2 2.27± 0.18 201.06±0.03 −13.2± 0.4
292.5 2.78± 0.29 200.93±0.03 13.4± 0.4

Table 11: The results of ordered ice cells equilibrated to 200K and 0.1MPa
are shown. All runs are done using 14 strips and a 375fs separation
between heat transfers. Again some runs are excluded because of lack
of decent convergence.
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Figure 13: The results for all converged ordered cells at 200K along the c di-
rection are shown. The y axis intercept corresponds to the extrapolated
bulk value.

T[K] κ−1
bulk[m·K/W] m[m2 ·K/W] κbulk[W/m/K] κexp[W/m/K]

100 0.107 46±0.059 33 32.3±11.3 9.31±5.14 6.50±0.33
200 0.267 10±0.049 67 40.3± 8.0 3.74±0.70 4.00±0.24

Table 12: The fit parameters found in the extrapolation of the bulk thermal
conductivity for proton ordered cells are shown. m is the slope of the
extrapolation plot. As explained in the text, the uncertainty of the
extrapolated thermal conductivity for 100K is questionable because of
the large relative uncertainty in the found thermal resistivity. The
experimental values are computed from the parametrization in equation
(8) taken from [3].

resistivity, the relative uncertainty will be much larger for the smaller thermal
resistivity in the ordered case. Especially for the ordered cell at 100K the
relative uncertainty becomes 55%. Here the probability distribution of the
thermal conductivity will not be approximated well as symmetric anymore.

To get a rough approximation of the uncertainty of the extrapolated value
the upper and lower bounds are estimated by inverting κ−1

bulk + ∆(κ−1
bulk) and
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Figure 14: In this plot the results for ordered cells at 100 and 200K are
shown.

κ−1
bulk −∆(κ−1

bulk) separately. As mentioned before, this will just give a rough
approximation of the uncertainty, but for a more careful analysis, the proba-
bility distributions would have to be known. Since all interesting results can
already be seen in the extrapolated thermal resistivity and the comparison
of the values for different cell lengths, no further effort is made to find the
true distribution for the thermal conductivity in this case.

The upper and lower bound that are found are κbulk,lower = 6.00 W
m·K and

κbulk,upper = 20.78 W
m·K . The estimated value for the bulk thermal conductivity

is 9.31 W
m·K . Obviously the uncertainty interval is not symmetric for a relative

uncertainty of this size. Considering the rough estimation of the interval
above, the significant deviation from the extrapolated thermal conductiv-
ity of unordered ice at 100K becomes much more pronounced. A further
comparison of the two cell types is given in the next section.

Again the temperature dependence of the thermal conductivity is qual-
itatively well represented. Even for the bulk thermal conductivity which is
subject to large uncertainties, the thermal conductivity for 100K is signifi-
cantly higher than for 200K. The same difference can be seen well for the
different cell lengths as well. This is shown in figure 14.

Also the slope of the extrapolation fit is similar for both temperatures.
As explained for the unordered case this supports the validity of the fit. The
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specific heat and the sound velocity of the ordered crystal should not differ
largely between 100 and 200K. Therefore, the slope of the curves should not
differ much as well.

Ordered Cells at 100K along a/b:

lz [Å] κ [W/m/K] T̄ [K] p̄ [MPa]

111.8 2.29±0.09 100.85±0.02 −0.3±0.5
134.2 1.95±0.20 100.27±0.02 −2.7±0.4
178.8 3.61±0.32 100.50±0.01 27.4±0.3
223.8 3.20±0.26 100.20±0.01 −15.2±0.3
268.3 5.07±1.15 100.31±0.01 14.2±0.4

Table 13: The results along the a/b direction for proton ordered cells equi-
librated to 100K and 0.1MPa are listed.

Figure 15: The results for both crystal directions in ordered cells at 100K
are shown. There are no significant deviations between the directions.
Therefore, it is sufficient to only examine the c direction.

To verify that the anisotropy of the ordered ice cells is negligible, also
cells with a heat flux along the a/b direction of the crystal are shown. Only
cells at 100K are examined. The results are listed in table 13. As always,
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the other parameters of the simulation runs can be found in the appendix.
They are given in table 23.

Plotting the values together with the values for the c direction does show
deviations but no significant trend can be seen. The plot is shown in figure
15. The deviations are purely statistical and do not show a significantly
different trend from the c direction results.

Therefore, the direction of the heat current does not have a significant
influence. Because of that, the examination of cells only along the c direction
will give a significant understanding of the underlying physics.

4.4 Comparison

In the previous two sections the results for the simulated ordered and disor-
dered structures at different temperatures have been presented. The extra-
polated bulk thermal conductivities are plotted together with the parame-
terizations from [3] shown in equation (8) in figure 16.

As described in the previous, section the uncertainty of the bulk thermal
conductivity of proton ordered ice at 100K cannot be estimated very well
because of the lack of knowledge of its distribution. Therefore, in the plot,
both proposed intervals are shown. The blue interval is found by uncertainty
propagation, ignoring the lack of linearity. The second interval is found by the
alternative method of inverting the upper and lower bound of the uncertainty
in the thermal resistivity as described in the previous section. It is shown as
a thick black interval.

Both intervals are very large. The blue interval is overestimating the lower
and underestimating the upper uncertainty. This is due to the assumption of
symmetry of the interval which is not valid in this case. The black interval is
believed to give a still rough but better justified estimate of the uncertainty.

Comparing the results to experiment, especially at lower temperatures,
the simulations seem to show a thermal conductivity which is significantly
too low. The value for 150K is very inexact. Additionally, the slope of
the extrapolation curve is much larger than for the other two extrapolations
in the unordered case. Under the assumption that this is caused by the
insufficient number of data points, this leads to an overestimation of the
thermal conductivity. Therefore, the visible but not significant twist of the
inverse temperature dependence is believed to be due to fluctuations and
insufficiency of data rather than being an actual property of the method or
the model.
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Figure 16: In this plot the extrapolated results for the proton ordered
and disordered cells are compared to the parameterizations taken from
[3] and given in equation 8. The values differ significantly as already
described in the previous sections. Nonetheless, the overall trends are
described qualitatively.

The underestimation of the thermal conductivity cannot be explained by
uncertainties of the method and is therefore ascribed to the properties of
the model. Apparently the TIP4P/2005f model does not correctly reproduce
the thermal conductivity of ice Ih. Using the TIP4PIce model, which is
optimized for the solid phases of H2O, English et al. [11] measured the thermal
conductivity of ice Ih by using a Green-Kubo-based method. They found even
lower values for the thermal conductivity. It seems that the TIP4P models
generally underestimate the thermal conductivity of ice Ih.

Even though the direct comparison with the experimental values does
not give satisfying results, the general mechanisms seem to be reproduced
decently well. As mentioned above, both cell types show the expected in-
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Figure 17: A comparison of all data points for ordered and unordered ice
at 100K is shown.

crease in thermal conductivity for lower temperatures. Additional data points
would be needed to quantify the exact temperature dependence. Nonetheless,
the overall trend seems to be decently reproduced.

The main goal of this work was to examine the influence of the proton
ordering on the thermal conductivity of ice. This influence is reproduced
well already in the extrapolated bulk values. Even considering the large
uncertainties, the thermal conductivity at a certain temperature is always
significantly higher for the proton-ordered ice. Also the gap shrinks for higher
temperatures as seen in figure 16. The large uncertainties do not allow a more
careful analysis of the separation though.

Comparing the runs for different cell lengths at one temperature, the
difference can be seen very well. Plots for this comparison are given in
figures 17 and 18 for 100 and 200K respectively. The separation of the two
cell types is obvious in both cases. As expected, the gap between the values
is larger for 100K, but even for the strongly fluctuating values at 200K and
the expected smaller differences, the separation is still significant.

The slope of the extrapolation differs for the two cell types as well. The
slope for the proton-ordered cells is significantly lower than for the proton-
unordered structures. This is discussed in more detail in the next section.

It can be concluded that even though the model and the extrapolation
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Figure 18: This plot compares the ordered and unordered ice cells at 200K.

method are not able to reproduce the experimental thermal conductivity, the
differences between the ordered and unordered cells, as well as the tempera-
ture dependence for the thermal conductivity in one cell type, are reproduced
qualitatively.

4.5 Sound Velocity

In their simple Debye model derivation, Schelling et al. [28] derived the slope
of the extrapolation to be 12/(cvv). Here cv is the specific heat of the phonon
modes contributing significantly to the heat current. They assume that these
are the acoustic modes. v is the average sound velocity. This prediction is
rather rough and can therefore just give a qualitative understanding of the
main influences on the slope. This is the purpose of the present section.

The specific heat of the acoustic modes is assumed to be given by the
Dulong-Petit limit as in [28]. Therefore, it should not differ for the proton
ordered and unordered structures. Under the assumption that their deriva-
tion is correct and the specific heat is actually the same, the sound velocities
of the two crystals should differ to explain the deviations of the extrapolation
slope.

The sound velocities are given by the slopes of the acoustic branches of
the phonon dispersion near the Γ point. The phonon dispersion relations of
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Figure 19: Here the first Brillouin zone is shown with the high symmetry
points used in the phonon dispersion graphs.

ice Ih have been found experimentally by Dorner [10] by inelastic neutron
scattering. For ice XI, due to the impossibility to produce a pure sample,
there are only results for ab initio lattice dynamics calculations, for example
by Wehinger, Chernyshov, Krisch, Bulat, Ezhov, and Bosak [33]. Their
results are shown in figures 20a and 20b respectively. The plots are taken
directly from their papers. Only a change of the axes labeling is done.

The rough estimates of the sound velocities found by doing a manual fit
to their plots are given in table 14. They seem to be significantly higher for
ice XI. This is a possible explanation for the reduced slope in the ordered
cells. The differences seem to be not high enough to account for the rather
drastic change. But the general direction is given correctly.

The generally lower sound velocity of the transverse branches along the
c∗ direction (ΓA) seems to suggest that the system is more anisotropic than
expected. Nonetheless, for the thermal conductivity the longitudinal branch
is dominant. It does not seem to show a significant difference between the
directions. This is a possible explanation for the lack of anisotropy found in
experiment.

To check if these values are reproduced by the TIP4P/2005f model one has
to get the phonon dispersion relations for ice Ih and ice XI from simulations
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(a) ice Ih

(b) ice XI

Figure 20: The experimental phonon dispersion curve for ice Ih found by
and taken from Dorner [10] is shown in (a). The plot of the phonon
dispersion curve for ice XI found by ab initio lattice dynamics calcu-
lations by Wehinger et al. [33] and taken from this paper, is shown in
(b).
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ice direction vT [km/s] vL[km/s]

Ih ΓA 1.6±0.3 4.3± 0.3
Ih ΓK 2.5±0.4 4.4± 0.3
Ih ΓM 2.3±0.4 4.5± 0.3
XI ΓA 1.8±0.4 5.5± 0.4
XI ΓK 2.8±0.4 5.4± 0.4
XI ΓM 2.9±0.4 5.6± 0.4

Table 14: In this table the sound velocities estimated from the slopes of
the phonon dispersion curves of ice Ih from [10] and ice XI from [33]
shown in figure 20 are listed. The values for ice XI seem to be higher
especially for the longitudinal velocities.

as well.
This is tried using scripts provided by Marivi Fernandez-Serra as well as

the arce package [24] and the vibrator program of the siesta package [30].
For the ordered ice, a four molecule unit cell is repeated to obtain a three
by three by three super-cell. For the unordered ice the same procedure is
done using a 32 molecule unit cell to be able to capture the effects of the
disordered protons. The crystal is first annealed by cooling it in 1K steps
from 5K to 1K. The arce package and the NPT ensemble are being used.
Then an additional longer run is done at 0.5K to obtain an estimate of the
relaxed structure.

Using a script written by Marivi Fernandez-Serra, the force constant ma-
trix is computed by moving the atoms in the central cell and then computing
the resulting force by use of a modified arce package [24]. This is then used
as input for the vibrator program. The lower bands of the resulting phonon
dispersion curves are shown in figures 21 and 22.

The negative regions directly show that the structure is not fully relaxed
yet. This also can be seen by checking the force constants matrix. The fact
that there are significantly negative values found shows that additional effort
would be needed to find the actual relaxed structure. The reason for this is
probably the lack of anisotropic cell size fluctuations during the annealing.
Nonetheless, there are already well represented branches seen. Their sound
velocities are compared to the experimental results. The considered branches
are marked by thick black lines. In the case of the ice Ih only half the Brillouin
zone is shown because of the doubled size of the unit cell examined.
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Figure 21: Here the phonon dispersion relations for a 32 molecule unit cell
found by the vibrator program of the siesta package [30] are shown. To
see the influence of the proton disorder not the four molecules unit cell
but a 32 molecule structure is used. Therefore, the displayed regions
show only half the Brillouin zone of the four molecule cell for each di-
rection. The black lines are drawn to estimate the slope of the acoustic
branch and therefore the sound velocity.

53



Figure 22: Here the phonon dispersion relations for one unit cell of ice XI
found by the vibrator program of the siesta package [30] are shown.
The black lines are drawn to estimate the slope of the acoustic branch
and therefore the sound velocity.
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ice direction v[km/s]

Ih ΓA 2.1
Ih ΓK 2.5
Ih ΓM 2.5
XI ΓA 1.6/2.1
XI ΓK 2.4

Table 15: Here the sound velocities found by the vibrator program [30] are
shown. It is not possible to give a decent uncertainty since the phonon
dispersion curves show behavior of unrelaxed cells and therefore the
curves themselves are of questionable accuracy. The values are of the
order of the transverse sound velocities found in table 14. There are two
values for ice XI in the ΓA direction since there are two distinct lines.
Nonetheless, they both seem to correspond to the transverse branches.

The resulting sound velocities are shown in table 15. Except for ice
XI along the c direction there always is one or no decently linear acoustic
branch. The other branches are not shown correctly due to the non-relaxed
structure. In the case of ice XI along the c direction the slopes of the two
different branches are so close to each other that they are believed to both
correspond to the transverse branch which should be degenerate. Generally
all shown branches show sound velocities which correspond roughly to the
reference values. They seem to be too high for the ΓA direction for both
cells and too low for the ΓK direction of ice XI. A more careful comparison
to the experimental values would require the actual relaxed structure.

4.6 Defects

Finally it is checked whether the method can reproduce the expected re-
duction in thermal conductivity due to defects in the structure. This is done
introducing two different types of point defects. First two HOD molecules are
introduced by changing the mass of one of the hydrogens in a molecule to the
deuterium mass of 2.014102u. The point defects are introduced at the two
centers between the reservoirs. The resulting change in thermal conductivity
is expected to be rather small. Therefore, an additional run is performed
using a more severe non-physical defect. The oxygen in two molecules is
replaced by an atom X which has a non-physically high mass of 1000u. The
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lz [Å] κ [W/m/K] T̄ [K] p̄ [MPa]

pure 218.5 3.49±0.20 101.37±0.01 7.8±0.2
HOD 218.4 3.63±0.20 101.89±0.01 18.8±0.3
H2X 218.5 3.02±0.26 99.95±0.01 11.4±0.2

Table 16: The results of the two different point defect types are shown
together with the corresponding pure structure. The defect runs are
using a 600 steps gap and 14 strips. The switching was run for 400ps
and the steady state was determined to start after 250 and 225ps for
HOD and H2X respectively.

defects are positioned in the same spot as the HOD in the other run. For
both runs proton-ordered structures are used.

The cells are first equilibrated to 100K and 0.1MPa and then examined
using the same procedure as for the pure cells. The results and the corre-
sponding value for the pure cell taken from table 10 are shown in table 16.
Also the three values are plotted in figure 23.

Figure 23: Here the thermal conductivity values for ordered cells of the
same size with and without defects are shown. Additionally, the value
of the extrapolation curve at the corresponding length is shown as a
black line.

There is no significant difference seen for the pure and the HOD defect
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cell. The HOD defect cell even seems to lie a little over the pure cell but
the difference is not significant. Comparing it to the value found by the
extrapolation fit of 3.91W/m/K shows that it is rather lower than the value
for the pure cells. This difference is also not statistically significant. This is
somewhat expected since the introduced additional mass is rather small and
does not severely change the system.

The thermal conductivity for the H2X defect is significantly smaller than
the other two cells. This is expected since the very heavy molecule will
basically not vibrate and therefore reduce the thermal flux carried by phonons
drastically.

Obviously the resolution of the method is not able to distinguish between
pure cells and a rather small defect as an introduced HOD molecule. Larger
defects are needed to show a significant deviation.
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5 Summary and Outlook
In this work the thermal conductivity of hexagonal ice with ordered and
unordered proton structure was examined. This was done by molecular dy-
namics simulations using the direct method proposed by Müller-Plathe [20].
This non-equilibrium method allows direct computer measurements of the
thermal conductivity of the system under examination.

Proton-ordered and unordered structures were examined at multiple cell
sizes and temperatures along the c axis of the crystal. Using the Matthiessen’s
rule approach proposed by Schelling et al. [28], the bulk limit was estimated
for proton unordered cells at 100, 150, and 200K, and for ordered cells at 100
and 200K.

The resulting values were subject to large uncertainties. Nonetheless, they
showed the expected rise in thermal conductivity for decreasing temperature.
This could already be seen very well, comparing the single cells.

Also the comparison of the ordered and unordered cells shows the ex-
pected higher thermal conductivity for ordered cells. Furthermore, the ex-
perimentally observed increase of this effect for lower temperature can be
seen in the results of this work as well.

The phonons that are dominant for the heat transport are the acoustic
phonons. If there is no change in the intra-molecular bond length, the proton
structure should not have a big influence on the thermal conductivity. The
hydrogen bond’s strength is strongly dependent on the local electric field.
For a rigid model the differences in this local field should be much smaller
for different proton configurations. Therefore this result is very promising be-
cause it shows that the coupling between the intra-molecular covalent bonds
and inter-molecular is sufficiently strong just by using a flexible rather than
a rigid model.

Introducing point defects into the cell leads to an expected decrease in
thermal conductivity for the more severe of the two defects. Two HOD defects
did not show a significant deviation from the pure ice case. The defect seems
to be not drastic enough to significantly change the thermal conductivity.
Increasing the mass of two oxygens to non-physical 1000u verified that the
reduction of the thermal conductivity for severe point defects is reproduced
by the method.

To check the validity of the chosen parameters, simulations with cells of
different cross-sectional areas or dipole moments were done. It turned out
that neither of the two quantities had a significant influence on the thermal
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conductivity. Data for the a/b crystal direction gives inconclusive results. For
the ordered case no significant deviations from the c axis data is found. The
unordered cells showed agreement in some cases but also some significantly
deviating values compared to the c axis runs. A more careful analysis is
needed to fully understand the reason for this.

The slopes of the extrapolation plots showed a significant difference be-
tween the two structures. The proton ordered structures had a lower slope in
the κ−1 (l−1

z ) plot. This can possibly be explained by a larger sound velocity
for the ordered structure, which is suggested by the experimental and ab ini-
tio lattice dynamics calculation data of Dorner [10] and Wehinger et al. [33].
The attempt to reproduce this by examining the phonon dispersion relations
produced by the TIP4P/2005f model failed due to insufficient relaxation of
the cells.

Future work on this should include a better determination of the phonon
dispersion curve produced by the used water model. Also a more careful
analysis could give a better understanding of the finite size effects and the
extrapolation method. The inclusion of nuclear quantum effects by the use of
path integral molecular dynamics could yield interesting results as well. Since
the method seems to generally work well, future work also could address the
question of the influence of partial ordering on the thermal conductivity.

The large uncertainties should be addressed in future work as well. Large
fluctuations in the heat current and the temperature gradient as well as the
lack of very long runs prevent a more quantitative analysis. A possible way
of improving the results is for example the implementation of an improved
algorithm introducing the heat current. A possible candidate is for example
the velocity rescaling algorithm sampling the canonical ensemble, proposed
by Bussi, Donadio, and Parrinello [9] and used for a similar work on liquid
water by Römer and Bresme [25].

Still the present work has shown that already the rather simple velocity
switching algorithm can give decent results. Generally it has been shown
that the molecular dynamics simulations using the direct method and the
TIP4P/2005f model can qualitatively reproduce the overall behavior of the
thermal conductivity of the proton ordered and unordered hexagonal ice.
Both the influence of the temperature and of the proton ordering show the
correct trend. Future work is necessary to improve the accuracy of the results
as well as to fully understand all effects that occurred.
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A Appendix

A.1 Additional Parameters

In this section the additional parameters of the runs in sections 4.2 and 4.3 are
listed. This includes the step that was determined as the start of the steady
state, the total number of steps and the temperature difference between the
hot and the cold reservoir ∆T .

A.1.1 Unordered Cells

Unordered Cells at 100K along c:

lz [Å] Start [steps] End [steps] ∆T [K]

72.8 300 000 600 000 50
87.4 300 000 500 000 58

102.0 250 000 400 000 58
109.1 700 000 900 000 36
116.6 250 000 400 000 64
131.0 250 000 350 000 70
145.6 550 000 800 000 41
182.1 350 000 750 000 41
182.1 300 000 500 000 56
218.4 350 000 500 000 56
218.4 400 000 700 000 50
254.6 325 000 450 000 58
291.1 250 000 400 000 65
291.1 350 000 500 000 56

Table 17: The additional parameters of the simulations of unordered cells
at 100K along the c direction are shown.
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Unordered Cells at 150K along c:

lz [Å] Start [steps] Ending [steps] ∆T [K]

102.0 700 000 1 000 000 50
124.1 400 000 900 000 57
145.9 500 000 800 000 68
182.3 400 000 700 000 68
219.1 400 000 700 000 78

Table 18: The additional parameters of the simulations of unordered cells
at 150K along the c direction are shown.

Unordered Cells at 200K along c:

lz [Å] Start [steps] End [steps] ∆T [K]

102.5 250 000 450 000 124
117.1 250 000 400 000 140
117.1 350 000 500 000 96
131.6 200 000 350 000 155
146.3 250 000 300 000 153
146.2 400 000 800 000 84
182.9 350 000 500 000 117
182.9 500 000 750 000 97
219.3 300 000 500 000 120
219.3 400 000 700 000 113
256.1 300 000 450 000 133
292.4 350 000 500 000 126

Table 19: The additional parameters of the simulations of unordered cells
at 200K along the c direction are shown.
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Unordered Cells at 100K along a/b:

lz [Å] Start [steps] End [steps] ∆T [K]

89.5 800 000 1 000 000 27
134.2 700 000 900 000 30
178.7 500 000 800 000 39
223.5 450 000 700 000 40
268.3 400 000 600 000 42

Table 20: The additional parameters of the simulations of unordered cells
at 100K along the a/b direction are shown.
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A.1.2 Ordered Cells

Ordered Cells at 100K along c:

lz [Å] Start [steps] Ending [steps] ∆T [K]

116.5 500 000 850 000 26
131.1 450 000 800 000 26
145.7 400 000 700 000 26
182.1 400 000 750 000 29
218.5 350 000 700 000 28
291.3 400 000 600 000 32

Table 21: The additional parameters of the simulations of ordered cells at
100K along the c direction are shown.

Ordered Cells at 200K along c:

lz [Å] Start [steps] Ending [steps] ∆T [K]

117.4 450 000 750 000 53
131.8 450 000 800 000 57
146.5 450 000 800 000 61
183.1 550 000 750 000 65
256.2 450 000 650 000 79
292.5 350 000 600 000 73

Table 22: The additional parameters of the simulations of ordered cells at
200K along the c direction are shown.
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Ordered Cells at 100K along a/b:

lz [Å] Start [steps] End [steps] ∆T [K]

111.8 700 000 900 000 26
134.2 600 000 800 000 27
178.8 500 000 700 000 28
223.8 400 000 600 000 29
268.3 400 000 500 000 32

Table 23: The additional parameters of the simulations of ordered cells at
100K along the a/b direction are shown.
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