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Abstract of the Dissertation

A Look at Heavy Ion Collisions Through the
SO(3)-Invariant Flow

by

Maŕıa del Pilar Staig Fernández

Doctor of Philosophy

in

Physics

Stony Brook University

2013

One of the measurements obtained from heavy ion collisions is
the correlation between two final particles as a function of the
difference of azimuthal angle and pseudorapidity. These correla-
tions show structure in the azimuthal direction that is elongated
in pseudorapidity, and that has its origin in the initial state after
the collision, and in its evolution.

We implemented a Glauber Monte Carlo code to study initial state
fluctuations that appear on an event by event basis because of the
random positions of the nucleons in the nuclei. We calculated the
initial average deformations and their fluctuations as a function of
the centrality of the collision and found that for central collisions
all of the asymmetry parameters are on equal footing, but that
as the collisions become more peripheral the second asymmetry
parameter becomes more important, because of the almond-like
shape of the region where the two nuclei intersect.

To study the evolution of the matter created after the collision
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we used the SO(3)-invariant flow developed by S. Gubser and A.
Yarom, that is an extension of Bjorken flow that includes flow in
the radial direction. The hydrodynamic equations including per-
turbations to this background can be solved analytically in terms
of known special functions that can be collected to describe the
shape of a specific perturbation. We used as initial condition a
Gaussian perturbation, and found that the two particle correlation
obtained resembles the curve from experiments. We also explored
the effects of viscosity on the final particle correlation, and on the
spectra of the flow coefficients, and found that viscosity kills the
higher harmonics.

The same method can be used to study other perturbations to
the background. In particular, we studied fluctuations that appear
near the critical temperature produced by Quark Gluon Plasma
clusters undergoing a Rayleigh type collapse, and suggest that the
observed widening in rapidity correlations may be an indication of
sound propagating from such fluctuations.
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Chapter 1

Introduction

The history of nuclear matter can be traced back to the early XX century, when
Ernst Rutherford discovered the nucleus in 1911 [1]. More than a hundred
years later the knowledge of nuclear physics has increased immensely, both
theoretically and experimentally. Together with the proton and the neutron–
the particles that form the atomic nucleus–an immense zoo of particles, named
hadrons, has been discovered. The existence of all of these particles, which
puzzled the community for years as more and more of what were thought to
be elementary particles appeared, was solved in 1964 by the quark model [2–
4], that proposed that the hadrons were in fact not elementary particles, but
composite particles made out of quarks. The theory describing quarks and
their interactions is known as Quantum Chromodynamics (QCD): quarks are
said to come come in three different colors (charges of the strong force) and
their interactions are mediated by colored bosons named gluons. At everyday
energies colored particles are always bound together in color neutral combi-
nations (mesons and baryons). This property of QCD known as confinement,
ceases to exist for larger energies, when the force between quarks decreases in
a phenomenon known as asymptotic freedom [5, 6]. This happens because the
strong coupling constant is not a fixed parameter, it depends on the energy
scale: it is large for small energies and small for large energies as Figure (1.1)
exemplifies.

At high temperature and high energy density a new phase of nuclear mat-
ter, characterized for being composed of deconfined quarks and gluons, is cre-
ated. The necessary conditions to create this new state of matter, known
by the name Quark Gluon Plasma (QGP)–term coined in [8]– existed in the
very early universe (microseconds after the Big Bang), and can now be repro-
duced by colliding highly energetic nuclei. The search for the QGP is carried
by various collaborations at Cern in Switzerland and Brookhaven National
Laboratory (BNL) in the United States. The first evidences of the creation
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Figure 1.1: Summary of measurements (symbols) of the dependence of the
strong coupling constant αs(Q) on the energy scale Q, compared to QCD
predictions (solid lines). Taken from [7].

of this new form of matter came from the Super Proton Synchrotron (SPS)
at Cern in the year 2000 (see [9] and references within), when the results
of colliding ions proved to be qualitatively different to the simple superposi-
tion of many nucleon-nucleon collisions. The signs that indicated that a new
phase of matter had been created included: an enhancement in the number
of hadrons containing strange quarks relative to proton-proton collisions, and
a suppression of charmonium states. Another characteristic feature of heavy
ion collisions detected at SPS was that the created matter at the time when
all collisions between particles stop, is expanding with velocities greater than
half the speed of light. This expansion, indicates an initial explosion of matter
due to large pressure gradients, and it is the origin of the name Little Bang,
used to designate the explosion after a heavy ion collision.

On the same year as this promising results were announced at Cern, the
Relativistic Heavy Ion Collider (RHIC) at BNL–specially built to probe the hot
dense matter created after heavy ion collisions–started its operations, and by
2004 further evidence of the creation of QGP was presented by the four RHIC
collaborations: BRAHMS (Broad RAnge Hadron Magnetic Spectrometers),
PHENIX ( Pioneering High Energy Nuclear Interaction eXperiment), Phobos
and STAR (Solenoidal Tracker at RHIC) [10–13].

The measurements from RHIC indicated that a very dense matter had been
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created: The number of charged particles per unit rapidity in central collisions
exceeded by 40% − 50% the value obtained for the yield in proton-proton
collisions rescaled by the number of binary collisions, and the estimated energy
density corresponded to at least 15 GeV/fm3 at its peak, while decreasing to
about 5 GeV/fm3 after a time of 1 fm/c, both well above the critical energy
density estimated to be εc ∼ 1 GeV/fm3 by lattice calculations [14].

Another indication of the presence of a very dense medium was the sup-
pression of particles with high transverse momentum, quantified by the nuclear
modification factor

RAA =

d2NAA

dpT dη

〈Ncoll〉 d
2Nnn

dpT dη

, (1.1)

that is the ratio between the particle yield in nucleus-nucleus collisions and
the yield in proton-proton collisions rescaled by the number of binary collisions
between nucleons. This high-pT suppression was first measured at RHIC, and
it results from the interaction of energetic partons with the colored medium.

The two previous paragraphs addressed the question of the creation of a
very dense medium, with energy density above the critical value, after a heavy
ion collision; however, the question of how this medium behaves still remains.
The answer seems to be that it behaves like a fluid: the matter presents a
collective behavior, that agrees well with hydrodynamical calculations given
that the thermalization time–before the matter reaches equilibrium and can be
considered to be a fluid–is small τtherm ∼ 1fm/c. The maximum flow velocity
calculated from RHIC data is between 0.7c and 0.75c, greater than what had
been measured at SPS.

At present there are two heavy ion colliders: RHIC and the Large Hadron
Collider (LHC) at Cern. The latter one started running in 2010, and has three
experiments that study heavy ion collisions: ALICE (A Large Ion Collider
Experiment), ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon
Solenoid). Results from LHC confirm what was found at RHIC, and it is now
believed that QGP has been created; however, it is not a plasma of freely
moving quarks, but it is composed of strongly interacting particles, and it
behaves like an almost perfect fluid, with values of shear viscosity to entropy
ratio close η/s = 1/(4π), that is the minimal value for this transport coefficient,
and was calculated [15, 16] using the AdS/CFT correspondence [17].
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1.1 Collective Flow

The first signs that evidenced the collective motion of the QGP where the
presence of a radial flow, and of elliptic flow for non-central collisions. Both
quantities refer to the expansion of the fireball (as the QGP created after
the collision is usually called) in the transverse plane, but while radial flow is
isotropically distributed in the azimuthal angle, the elliptic flow exists because
of anisotropies in the transverse plane, in particular its origin is in the almond-
like shape of the overlap region between the colliding nucleons, which is present
in all but the most central collisions. The effects of radial flow are seen in the
slope of the measured hadron spectra, that will vary for different values of the
flow. The presence of elliptic flow is seen in plots of two-particle correlations as
a function of the difference in azimuthal angle between them, that present two
peaks located at ∆Φ = 0 and ∆Φ = π, indicating that most of the particles
go in the same direction or in exactly opposite directions, as would be the
case for an initial ellipse that expands in the direction of its short axis because
of the higher pressure gradients. The quantity of interest is the v2 coefficient
that is the second coefficient of the Fourier expansion of the single-particle
distribution (see Equation (1.2) below).

Relativistic hydrodynamics has been very successful in describing radial
and elliptic flow data (see e. g. [18–21]), and in estimating from this last
quantity the value of the viscosity of the QGP (see [22] for a review). However,
some data from central collisions remained puzzling, because the shape of the
two particle correlation differed from the already described two peaked shape
attributed to elliptic flow. It has one peak on the near side ( ∆Φ = 0), and
two smaller peaks located at ∆Φ ∼ 2 and ∆Φ ∼ 4, that are connected by a
flat region on the away side, as shown in Figure (1.2). The explanation to this
result came from B. Alver and G. Roland [23], who suggested that the away
side structure originated from triangular fluctuations to the initial conditions
of the fireball.

The azimuthal distribution of final particles can be written as a Fourier
expansion

dN

dΦ
∝ 1 + 2

∞∑
n=1

vn cosn(Φ− ψFn ) , (1.2)

where vn is known as the flow coefficient, and ψFn corresponds to the event plane
(EP) angle. Each of the terms in the expansion is associated to a particular
geometry of the collision, and for non-central collisions the second term is
the most important one, because in this case the shape of the overlap region
between the nuclei is roughly elliptical. However, in more central collisions
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Figure 1.2: Two-particle correlation as a function of the azimuthal difference
∆Φ from ATLAS. The black dots correspond to the data and the solid black
curve is the sum of the terms of the Fourier expansion up to n = 6, that are
shown independently in the colored curves. Taken from [24].

the initial shape of the fireball is determined by fluctuations, so contributions
from the triangular flow, as well as of higher terms in the expansion become
important. In fact, measurements of higher order harmonics have now been
presented by five collaborations [25–29].

1.2 Outline of the Thesis

The contents of this thesis correspond to work done in collaboration with my
advisor Edward Shuryak in [30–33], and our main goal was to explore pertur-
bations to the expanding background fireball produced in heavy ion collisions,
and their effect on the final particle distribution function and correlations.

Chapter 2 explores initial state fluctuations that appear right after heavy
ion collisions because of the random positions of the nucleons in the nuclei. We
use Glauber Monte Carlo to model these initial fluctuations, and to calculate
the coefficients εn that parameterize the initial anisotropy , together with the
associated angles ψn.
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The rest of the thesis is concerned with the hydrodynamic evolution of the
background fireball and of perturbations to it. We use an exact solution to
the hydrodynamic equations–the SO(3)-invariant flow–developed by S. Gubser
and A. Yarom [34, 35] that is an extension to Bjorken’s Flow [36], and that pre-
serves its boost invariance in the beam direction, and its rotational invariance
in the transverse plane, but not the translation invariance in the transverse
plane, thus allowing the fireball to expand in the radial direction. A review
of the SO(3)-invariant flow is presented in Chapter 3, together with solutions
to perturbations to this background solution, for ideal and viscous cases. We
discuss the effects that the presence of viscosity has on perturbations, and we
study the hydrodynamical evolution of certain initial conditions.

In Chapter 4 we study the final particle distribution functions, two particle
correlations and flow coefficients obtained at freeze-out time. We study in
detail the case where there is one Gaussian perturbation at the initial time,
and the effects that viscosity and the width of the perturbation have on the
final results.

Finally, in Chapter 5 we continue to study the hydrodynamic evolution of
a perturbation on top of the SO(3)-invariant background, but this time the
focus is not on perturbations to the initial state, but on perturbations that
appear near the critical temperature Tc instead.
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Chapter 2

Initial State

In heavy ion collisions the expression initial state may, depending on the con-
text, refer to different stages of the collision such as the setting of the nuclear
wave function before the collision, the state right after the collision, and the
state after the matter reaches an approximate equilibrium. It is to this latter
meaning that we refer to in this thesis: to the initial state that determines the
initial conditions for the hydrodynamical evolution of the QGP.

There are many different ways to model the fluctuating initial conditions for
hydrodynamics in heavy ion collisions. One of the most popular options is the
Glauber Monte Carlo model, that consist in randomly generating the positions
of the nucleons in the nuclei according to a distribution of nuclear matter, and
then determine which of them collide according to their transverse separation.
The local density of matter produced is assumed to be simply proportional
to the local density of all participant nucleons, and the energy density is in
fact calculated by asigning to each wounded nucleon (the ones that suffered a
collision) a Gaussian in the transverse plane. This is the model that we use to
simulate initial conditions and it is described in detail in the following Section.

2.1 The Glauber Model

The Glauber Model (for a review see e. g. [37]) is used to describe processes
in which nucleons scatter on nuclear matter. In the context of heavy ion
collisions it can be used to describe the initial conditions in the transverse
plane of the matter created in the collision. The model assumes that the
interactions between the two colliding nuclei are determined by the interaction
among individual nucleons, each of which can experience a number of collisions
with the nucleons from the other nucleus as the two nuclei pass through each
other. Because the Glauber Model uses nucleon nucleon collisions, one of the
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Figure 2.1: Nuclear density distribution with mean radius R = 6.38 fm and
thickness a = 0.535 fm.

inputs that it requires is the nucleon nucleon cross section σNNinel , that depends
on the energy of the collision.

The model also needs as an input a nuclear density distribution, that can
be well parameterized by the Wood-Saxon distribution

ρnuclear(r) ∝
ρ0 nuclear

1 + exp r−R
a

, (2.1)

for spherical nuclei such as gold and lead, which are used in heavy ion collisions
at RHIC and LHC, respectively. In the expression r =

√
x2 + y2 + z2 is the

three dimensional radius, R is the mean nuclear radius, a is the skin depth
and ρ0 is chosen such that after spatial integration of the Wood-Saxon profile
one obtains the total number of nucleons. An example of this distribution for
a gold nucleus is shown in Figure 2.1, with R = 6.38 fm and a = 0.535 fm [38].
The distribution is flat up to some surface determined by the mean radius
R, and then falls rapidly to zero. The witdth of this fall, where the nuclear
density changes from being 90% of the maximum to 10% is of about 2.3 fm.

To use the Glauber model it is necessary to work with high energy collisions,
because one of the main assumptions that is made is that the colliding nucleons
travel in a straight trajectory as the nuclei pass through each other. In this
way a nucleon at a given position in the transverse plane will collide with all of
the nucleons from the other nucleus that occupy the same transeverse position
as it does. This is represented in Figure (2.2) by the darker zones present in
both nuclei: any nucleons located in the darker red zone will collide with all
of the nucleons in the darker blue zone. The only parameter that determines

8



Figure 2.2: Longitudinal (right) and transverse (left) views of the collision
between two nuclei in the Glauber Model. The impact parameter between
the two nuclei is given by b, and s is the distance to a given element in the
overlapping region.

wether two nucleons collide is their relative position in the transverse plane,
thus the z-coordinate may be integrated out to obtain the probability per area
that a nucleon has of being in the darker zone

T̂A(s) =

∫
ρ̂A(s, z)dz , (2.2)

where the nuclear density ρ(r) has been normalized, such that

ρ̂(r) =
ρ(r)

A
, (2.3)

with A the number of nucleons in the nucleus A, and s is the location of the
darker (overlapping) zone. The thickness fucntion

T̂AB(b) =

∫
T̂A(s)T̂B(s− b)d2s , (2.4)

is the integral over the transverse plane of the probability that nucleons of the
two colliding nuclei (A and B) are in the overlapping zone. The probability of
one interaction between nucleons is T̂AB(b)σNNinel , and the probability of having
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n interactions can be obtaind from the binomial distribution

P (n, b) =

(
AB
n

)(
T̂AB(b)σNNinel

)n (
1− T̂AB(b)σNNinel

)AB−n
. (2.5)

Summing this probability over n, it is posible to obtain the cross-section of
the heavy ion collision

d2σABinel

db2
=

AB∑
n=1

P (n, b) , (2.6)

= 1−
(

1− T̂AB(b)σNNinel

)AB
, (2.7)

and by suming over it times the number of interactions one gets the number
of collisions among nucleons

Ncoll(b) =
AB∑
n=1

P (n, b) , (2.8)

= ABT̂AB(b)σNNinel . (2.9)

One last quantity of interest is the numer of wounded or participant nucleons
given by [39]

Npart(b) = A

∫
T̂A(s)

(
1− (1− T̂B(s− b)σNNinel )B

)
d2s

+B

∫
T̂B(s− b)

(
1− (1− T̂A(s)σNNinel )A

)
d2s (2.10)

that are all of the nucleons that collide when the collision among the two nuclei
takes place, and it is related to the centrality of the collision.

2.1.1 Centrality

In the Glauber model there is a connection between the impact parameter b,
the number of participants Npart and the number of binary collisions Ncoll, but
none of these quantities can be directly related to experimental measurements.
A way to connect Glauber results to experiments is by defining centrality
classes with both methods, and relating them.

In experiments, the centrality classes are defined using the charged particle
multiplicity Nch per event. This quantity can be measured for a large collection
of events, yielding a distibution. The total integral of the distribution can be
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Figure 2.3: Schematic figure showing the relation between the experimen-
tal observable Nch and the Glauber computed quantities Npart and b. Taken
from[37].

calculated, and different centrality classes are defined by binning the data,
where each bin corresponds to a centrality class, that is the integral over the
bin is a percentage of the total integral, as shown in the schematic plot in
Figure (2.3), where the vertical lines separate different bins. In a similar way,
centrality classes in the Glauber model can be defined as a fraction of the total
cross section [21]

c(b) =
2π
∫ b

0
b′db′

(
1− eσinNNTAA(b′)

)
2π
∫∞

0
b′db′

(
1− eσinNNTAA(b′)

) , (2.11)

where TAA(b) = AAT̂AA is the thickness function defined in Equation (2.4),
and the approximation (1+x/N)N ∼ ex for large N has been used. Notice that
b = 0 corresponds to a perfectly central collision, that is a centrality of 0%,
while a completely peripheral collision would have a centrality of 100%. Table
(2.1) shows the values of the ranges of impact parameter as well as the average
impact parameter, and the average number of participants corresponding to
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centrality bmin (fm) bmax (fm) 〈b〉 (fm) 〈Npart〉
0-5% 0.0 3.3 2.20 352.2

5-10% 3.3 4.7 4.04 294.7
10-15% 4.7 5.8 5.27 245.6
15-20% 5.8 6.7 6.26 204.2
20-30% 6.7 8.2 7.48 154.5
30-40% 8.2 9.4 8.81 103.8
40-50% 9.4 10.6 10.01 64.9
50-60% 10.6 11.6 11.11 36.6
60-70% 11.6 12.5 12.06 18.8
70-80% 12.5 13.4 12.96 7.5
80-90% 13.4 14.3 13.85 4.4

Table 2.1: Impact parameter and number of participants for different centrality
ranges in Au+Au collisions. [40]

different centrality classes as calculated in [21, 40]. These centrality classes
are taken to be the same as the ones calculated from experiments, thus the
quantities from the Glauber model can now be related to experiment.

2.1.2 Glauber Monte Carlo

In the Glauber Monte Carlo approach for heavy ion collisions the position of
the nucleons in each of the nuclei is randomly selected according to the nuclear
density distribution. The distribution we use is the Woods-Saxon distribution
from Equation (2.1), that resembles a realistic nuclear density, being mostly
flat towards the center of the nucleus and decreasing rapidly near the edge.

Once the transverse positions of the nucleons have been selected, they
remain fixed during the collision process, because it is assumed that they move
in straight lines and that the nucleon nucleon cross-section of any two nucleons
is independent of the previous collisions that the nucleons have encountered.

Collisions between two nucleons take place when they pass sufficiently close
to each other, that is when their distance of separation d in the transverse plane
satisfies

d ≤
√
σinelNN

π
. (2.12)

The inelastic nucleon-nucleon cross-section σinel
NN depends on the energy of the

collision, and for RHIC with center of mass energy
√
sNN = 200 GeV, it has
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Figure 2.4: Two events generated via Glauber Monte Carlo, with the same
number of participant (or wounded) nucleons Npart. The participant nucleons
are blue and the expectators are gray.

an average value of 42 mb [41]. The internal configurations of the nucleons
generate fluctuations to the nucleon nucleon cross-section, as discussed in [42,
43], and can be included in the Glauber Monte Carlo calculations by using a
Gaussian distribution with variance

wNN =
〈σ2

NN〉 − 〈σNN〉
2

〈σNN〉2
, (2.13)

that for RHIC energies ranges between 0.2 and 0.3 [43].
Because of the randomness of the position of the nucleons in the nuclei,

each simulation of a collision is different from all the others, as exemplified in
Figure (2.4), where we present two different collision events for the same num-
ber of participants Npart, with very different results. While on the left plot the
region formed by the wounded nucleons resembles the expected almond-like
shape one obtains when considering a smooth nuclear density, on the plot on
the right the intersection region shows some deformations. Each event that
is calculated is unique–much like in real heavy ion collisions–because of the
fluctuations in the relative positions of the nucleons in the nuclei, so any quan-
tities that are analyzed are usually averaged over many events. In experiments
this averaging takes place in the final stage, after freeze-out, and the average
is taken over the final particle distributions. In theoretical calculations there
are two approaches: the event-by-event approach where a number of randomly
created initial states are let to evolve independently until freeze-out, and the
average is taken over final particle distributions (see e. g. [44–46]), and the
approach where an average is taken over initial states, and the result is the
one that then goes through the hydrodynamic evolution (see [47, 48]).

Whatever the method used, it is clear now that fluctuations in the initial
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state play a fundamental role in the final particle distribution functions and
in the flow coefficients. Not only is there a fluctuating ellipticity [49], but
also triangularity, as proposed by B.Alver and G. Roland in [23] and defor-
mations associated to higher angular harmonics. In the next section we study
how to quantify the deformation of the interaction zone with the asymmetry
parameters εn.

2.2 Initial Conditions from Glauber Monte Carlo

We begin by simulating a large ensemble of events from which we extract
the transverse radial position, and azimuthal location of the participant (or
wounded) nucleons. These positions determine the two-dimensional shape of
every event, and from them it is possible to compute the anisotropy parameters
εn that quantify the deformation of the overlapping zone in a collision.

The participant anisotropies are calculated from

εn =

√
〈rn cosnφ〉2 + 〈rn sinnφ〉2

〈rn〉
, (2.14)

where the averages are taken over all the participating nucleons. This ex-
pression is calculated in the center of mass of the participant nucleons for
each event. Therefore, the dipole moment n = 1 made out of the average
coordinates

〈x〉 = 〈r cosφ〉 = 0, 〈y〉 = 〈r sinφ〉 = 0 (2.15)

is zero by definition.
The participant anisotropy parameters εn correspond to the coefficients of

the Fourier expansion of the azimuthal distribution function

f(φ) =
1

2π

(
1 + 2

∑
n

εn cos (n(φ− ψn))

)
, (2.16)

where the ψn are the angles between the x axis and the major axis of the
participant distribution.

In our definition of the εn (2.14) we have used the standard choice of rn,
where n is the selected term in the Fourier expansion; however, the transverse
shape of the event can, in principle, be expanded in a double series in x, y,
or in a double series over the moments rm cosnφ and rm sinnφ with integer
m, n.
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Since the dipole m = n = 1 term is zero by construction, we define the
first odd deformation ε1, ψ1 using the term of the expansion m = 3, n = 1,
which appears together with the triangular deformation m = n = 3,

ε1 =

√
〈r3 cosφ〉2 + 〈r3 sinφ〉2

〈r3〉
. (2.17)

The participant anisotropies can be calculated for any event, in particular
for the examples presented in Figure (2.4) we find that the plot on the left
has ε2 = 0.311 and ε3 = 0.170 , and the one on the right has ε2 = 0.338
and ε3 = 0.407, so in this last example the triangular deformation is larger
than the elliptical one, even though we are dealing with a semi-peripheral
collision. This example is useful to understand, the importance of initial state
fluctuations, but instead of looking at individual cases, it is best to study the
average behavior of the anisotropy parameters and their fluctuations, and to
analyze their behavior for all centralities.

The calculated anisotropies are plotted in Figure (2.2) as a function of
centrality for n = 1..6. The plot shows that the eccentricity has the largest
value for the well known elliptic deformation ε2 and a nonzero value of tri-
angularity ε3, in agreement with the results reported in [23]. Note that, for
the near central collisions, Npart > 300, the elliptic deformation is no longer
dominant, and it is also due to fluctuations. This conclusion becomes evident
as one looks at the bottom plot in Figure (2.2), which shows the variations
of these εn. An interesting observation originating from these results is that
all other deformations (except for ε1, which is small because the “true dipole”
remains zero) are comparable in magnitude, ranging from εn ∼ 0.1 for central
collisions to 0.3 to 0.5 for the more peripheral ones. While in the central bins
these perturbations can be considered small , this is not true for the most
peripheral bins, when the number of participants is smaller.

The obtained results show that there is absolutely no ground to single out
ε3 in the initial stage after the collision. In fact, both ε4 and ε5 are larger than
ε3, and ε6 is of about the same order as ε3, and they should all be studied
equally.

The variance of the participant anisotropies also depends on centrality,
being larger for more peripheral collisions and smaller in the central cases,
and for all the six values of n it is comparable in magnitude to the average
deformation.

15



Figure 2.5: Average anisotropies εn (top) and their variance (bottom) as a
function of the number of participants Npart, for n=1..6.
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2.2.1 The angles

The angles ψn that define the direction of the major axis of the overlap region
can be calculated by

tannψn =
〈rn sinnφ〉
〈rn cosnφ〉

, (2.18)

except for the first angle associated to n = 1, that is given by

tannψn =
〈r3 sinφ〉
〈r3 cosφ〉

, (2.19)

because the origin of the coordinates is set in the center of mass of the par-
ticipant nucleons. These angles differ from the angles of the flow, that point
in the direction of maximum flow, that is: in the direction of the small axis of
the original matter distribution, where the pressure gradients are the largest.
The two angles are related by

ψFn = ψn +
π

n
. (2.20)

Using the expressions (2.18), and (2.19) for all of the calculated events
with 100 < Npart < 300, we obtain the distribution of the ψn’s for the first
six harmonics as shown in Figure (2.6). We discuss each of the distributions
separately, starting by the ψn with n even, that present a more clear interpre-
tation.

The first thing to notice from Figure (2.6) is that all of the even harmonics
present peaks at some angular position. The most obvious one is the distri-
bution of the second (elliptic) harmonic. The angle ψ2 is strongly peaked at
π/2, that corresponds to an elongation of the system in the y direction. This,
of course, agrees with the expectations of having and almond-shaped overlap
region between the two nuclei. The distribution of the fourth angle ψ4 presents
peaks at angles 0 and π/2, and because of the quartic symmetry of the fourth
harmonic this simply means that the maxima of the distribution tend to be
aligned with the coordinate axes x and y. The distribution of the sixth har-
monic is different; it is peaked at the angle π/6. This means that it has no
maximum in the x direction, but it has in the y direction. This results show
that the even harmonics, especially the second and the fourth, are strongly cor-
related with the reaction plane, with all of them producing maxima along the
y (out-of-plane) direction. The distribution of the sixth harmonic though also
correlated to the reaction plane, is non-zero for all angles, so the correlation
is not that strong in this case.
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Figure 2.6: Distribution of the angles ψn for the first six harmonics, for a
centrality bin corresponding to 100 < Npart < 300.
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The clear correlations present for the even harmonics are not evident in
the case of the odd ones. The distribution of the angle ψ1 is nonzero at all
angles, this implies that it is not very strongly correlated with the reaction
plane. It has two maxima, at π/2 and at 3π/2, that is: it points in the ±y
direction. These peaks have their origin in what we will call “tip’ fluctuations,
because they are at the tips of the almond. Although the contributions from
angles 0, π (in the x direction) are about twice smaller than the peaks, they
also make an important contribution. We will call them “waist” fluctuations.
Note that, while the area of the “waist” is larger than that of the “tips”, its
contribution is smaller.

The distributions for ψ3, ψ5 in Figure (2.6) are flat, so they are completely
uncorrelated with the reaction plane (also noted in Reference [23] ). However,
further scrutiny shows that they are in fact well correlated with ψ1, as shown
in Figure (2.7), where we have included points repeated by periodicity. The
distribution can be crudely characterized by some “bumps” plus some “stripes”
connecting them.

The bumps occur when one of the vertices of the triangular shape (de-
fined by ψ3) coincides with the direction of ψ1, when it is pointing in the ±y
direction, and we interpret them as corresponding to events with additional
hot-spots at the tips of the almond. It is a very natural place for maximal
fluctuations to be, for two reasons: because this is where the participant den-
sity in both nuclei is near zero, and because of the factor r3 they have larger
weight than all other places that are closer to the center.

The stripes can be separated in two kinds: those with positive slopes and
those with negative slopes. The latter ones simply follow from the ψ1 distri-
bution, and they correspond to ψ1 = π/2, 3π/2, 5π/2, 7π/2, etc, when the
dipole deformation is in the ±y direction. The stripes with positive slopes are
indeed nontrivial correlations between the angles given by

ψ3 =
1

3
(ψ1 + π) , (2.21)

ψ3 =
1

3
(ψ1 + 3π) . (2.22)

Another way to see this correlation is by looking at the histogram of cos (ψ1 − 3ψ3)
for all of the events in the centrality range of interest, as the one presented
in Figure (2.8). It consists of two clearly different parts: a very narrow peak
near -1 and a wide flat distribution between -1 and 1. This plot demonstrates
the qualitative feature of the phase distribution which was pointed out ear-
lier. The peak near −1, that happens when the combination of angles equals
π, originates from two of the features discussed above: from fluctuations at
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Figure 2.7: Scatter plot of the ψ3 vs ψ3 − ψ1 and of the ψ5 vs ψ5 − ψ1, for
100 < Npart < 300.
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Figure 2.8: Histogram of cos (ψ1 − 3ψ3), for 100 < Npart < 300.

the tips of the almond, when both ψ1 and ψ3 are strongly correlated close to
π/2, and from the “positive slope lines” in Figure (2.7) because, for them the
combination ψ1 − 3ψ3 equals π, or an odd multiple of π.

A similar situation happens for other odd harmonics. For example, the
correlation of ψ5 with ψ1 is analogous to the one just discussed. The stripes
with negative slopes are the same as in the former case, simply a result of
the ψ1 distribution, and correspond to the angle ψ1 pointing in the vertical
direction. The bumps again indicate that one of the major axes of the the
n = 5 distribution is aligned with the ψ1 angle, with both pointing in the
±y direction, or the tips. The stripes with positive slopes correspond to the
relations

ψ5 =
1

5
(ψ1 + 2π) , (2.23)

ψ5 =
1

5
(ψ1 + 4π) , (2.24)

and so on.
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2.3 Harmonics and their Relative Phases Ex-

tracted from Correlations

2.3.1 Central collisions: two- versus many-particle cor-
relators

In an ideal central collision, where the impact parameter is negligible, the
overall system is completely symmetric in the azimuthal angle. However, any
particular event has fluctuations that break this symmetry, and that give rise
to different harmonics of the flow, that correspond to the coefficients of the
Fourier expansion of the single-particle distribution as see in Equation (1.2).
The same expression can be also written using the complex exponent

dN

dΦ
=
∑
n

vne
in(Φ−ψFn ) , (2.25)

where the sum covers all integer values of n, positive and negative, with v0 = 1,
v−n = vn, and ψF−n = ψFn .

If the elementary perturbation is local (like e. g. a delta function in the
transverse plane), then its angular position in the transverse plane is the only
meaningful azimuthal orientation. The perturbations have random positions
in the transverse plane, which we express as

ψFn = ψp + ψ̃Fn , (2.26)

where the tilde indicates the angle relative to the perturbation, and ψp is the
random phase due to the location of the perturbation. Because ψp is a random
variable, all observables must be averaged over it.

To calculate the two-particle correlation, one must square the single body
distribution (2.25) to get∑

n1 ,n2

vn1vn2exp
[
in1Φ1 + in2Φ2 − in1ψ̃

F
n1
− in2ψ̃

F
n2
− i(n1 + n2)ψp

]
, (2.27)

and average over the ψp phase. As a result, in the double sum above only the
terms that satisfy

n1 + n2 = 0 , (2.28)

survive. The double sum collapses into a single sum with squared pre-exponent
v2
n, that is a function only of the difference between angles ∆Φ = Φ1−Φ2, and
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all the phases ψ̃Fn disappear.
The situation is different in the many-body (three or more) correlation

functions. Indeed, if the single-particle distribution (2.25) is cubed (as needed
to compute the three-particle correlation) , one finds a triple sum in which the
random phase appears as exp[i(n1 +n2 +n3)ψp], that leads to the “triangular”
condition

n1 + n2 + n3 = 0 . (2.29)

Eliminating one of them (e. g. n3), one finds the double sum∑
n1 ,n2

vn1vn2vn1+n2exp
[
in1(Φ1 − Φ3) + in2(Φ2 − Φ3)− in1(ψ̃Fn1

− ψ̃Fn1+n2
)

−in2(ψ̃Fn2
− ψ̃Fn1+n2

)
]
,

(2.30)

in which the relative phases of different harmonics are still present. Therefore,
it is possible to measure the relative phase of the harmonics experimentally,
focusing on the corresponding combinations〈

vn1vn2vn3 cos
(
n1ψ

F
n1

+ n2ψ
F
n2

+ n3ψ
F
n3

)〉
, (2.31)

where the three integers must satisfy the condition (2.29).
To relate these results from final particle correlations to the initial condi-

tions it is useful to consider (linearized) hydrodynamics, then one can approx-
imate the flow harmonics by the product of the initial deformations and the
linear response terms

〈
vn1vn2vn3 cos

(
n1ψ

F
n1

+ n2ψ
F
n2

+ n3ψ
F
n3

)〉
=

(
vn1

εn1

)(
vn2

εn2

)(
vn3

εn3

)
×
〈
εn1εn2εn3 cos

(
n1ψ

F
n1

+ n2ψ
F
n2

+ n3ψ
F
n3

)〉
.

(2.32)

Then, it is necessary to change the flow angles ψFn to the deformation angles
ψn. In each of the three terms the ni that multiplies the flow angle is canceled
by the ni in the denominator, from Equation (2.20), leaving only 3π, which is
just a total sign change

cos
(
n1ψ

F
n1

+ n2ψ
F
n2

+ n3ψ
F
n3

)
= − cos (n1ψn1 + n2ψn2 + n3ψn3) . (2.33)
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2.3.2 Mid-central collisions and the two-particle corre-
lators relative to the event plane

A non-zero impact parameter violates axial symmetry and creates an elliptic
flow, no longer caused by fluctuations, but by the deformed shape of the overlap
region between the nuclei. For mid-central collisions the average value of the
second anisotropy coefficient is large itself, and it is also large compared to
its fluctuations. For example, ε2 is about 0.5 (0.3) for 100 (200) participants,
with δε2 ∼ 0.1. Furthermore, as seen in Figure (2.6), its angle ψ2 is very
much directed at ±π/2, which means that the flow angle is peaked “in-plane”:
ψF2 = 0, π, as indeed is observed.

If one of the harmonics in the correlation (2.34) is the second on (e. g.
n3 = 2), the product can be approximated by

〈
vn1vn2vn3 cos

(
n1ψ

F
n1

+ n2ψ
F
n2

+ n3ψ
F
n3

)〉
=

(
vn1

εn1

)(
vn2

εn2

)(
vn3

εn3

)
〈ε2〉

×
〈
εn1εn2 cos

(
n1ψ

F
n1

+ n3ψ
F
n2

)〉
,

(2.34)

where the large and non-fluctuating ε2 was factored out from the other two
harmonics, which are small and fluctuating, and by putting ψF2 = 0 we have
selected the the frame in which the reaction plane is the x axis.

From the Glauber computations, it is possible to determine the particular
combinations of amplitudes and phases of two harmonics

〈εn1εn2 cos (n1ψn1 − n2ψn2)〉 , (2.35)

especially in the case when n1, and n2 differ by two units, when the triangular
condition is satisfied. We have studied two examples of the kind, with odd
harmonics 1, 3 and 5, and the results for different centralities are presented in
Figure (2.9). Both combinations are negative, and increase in absolute value
towards more peripheral collisions, while going to zero for central ones. This
is expected to occur, because for central collisions the azimuthal symmetry of
the the overlap region is recovered, and all of the eccentricities, including ε2
become small.
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Figure 2.9: Correlators 〈ε1ε3 cos (ψ1 − 3ψ3)〉 (top) and 〈ε3ε5 cos (3ψ3 − 5ψ5)〉
(bottom) as a function of centrality.
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Chapter 3

Hydrodynamic Evolution

3.1 Hydrodynamics in Heavy Ion Collisions

Hydrodynamics is a macroscopic theory that can be used to describe the col-
lective motion of particles when the average distance traveled by them before
colliding with another particle is much smaller than the size of the system.
When this condition is satisfied, the matter under study can be considered to
be continuous, and thus the quantities that describe it–such as the pressure,
the temperature, the energy density and the velocity–can be defined at each
point in spacetime.

The local conservation of energy, momentum and baryon number is descri-
bed by the hydrodynamic equations

∇µT
µν = 0 , (3.1)

∇µJ
µ
B = 0 , (3.2)

where T µν is the stress-energy tensor, and JµB is the baryon current. In all of
our calculations we disregard the baryon conservation Equation (3.2), because
in the region of the phase diagram that is explored in heavy ion collisions, the
baryon content is very small, so we take it to be zero. The ∇µ represents the
covariant derivative

∇µT
µν = ∂µT

µν + ΓµµλT
λν + ΓνµλT

µλ , (3.3)

with the Christoffel symbols corresponding to

Γσµν =
1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν) , (3.4)

which, of course, become zero when the Minkowski metric gµν = ηµν is used,
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but are important in curved space or when curved coordinates are used, as it
will be seen below.

The stress-energy tensor for a perfect fluid (no viscosity and no heat con-
duction) can be written in terms of the energy density, the pressure and the
fluid four-velocity, and to determine its precise form, one can go to the frame
where the fluid is at rest, where only the diagonal elements of the tensor survive
with the T 00 component being the energy density, and all the T ii components
corresponding to the pressure. Writing this in a frame-invariant way, one gets

Tµν = (ε+ p)uµuν + pgµν , (3.5)

that is the stress-energy tensor for a perfect fluid valid in any frame.
There is one more element missing to have the problem of ideal hydrody-

namics completely formulated, and that is the equation of state (EoS), that
holds information about the nature of the fluid under study. In particular,
in heavy ion collisions we use an equation of state that establishes the rela-
tion between the energy density and the pressure. In this thesis, we take this
relation to be

ε = 3p , (3.6)

that corresponds to the equation of state of conformal matter, and that is
usually used to describe the QGP. This choice of equation of state makes the
stress-energy tensor traceless, which implies that is is invariant under confor-
mal transformations, a property necessary for the development of the SO(3)-
invariant flow that we use in our calculations, and that we describe in detail
later in this chapter.

Results from heavy ion collisions, seem to indicate that the QGP is an
almost perfect fluid, with a very small viscosity (for a review on viscosity in
the QGP see [22]). To include this viscosity in the ideal description of a fluid
that we have just given, it is necessary to add all gradients of the velocity to
the stress-energy tensor. In the limit in which these gradients are small, the
expansion is done up to first order in derivatives of the flow, and in this case
one has

Tµν = (ε+ p)uµuν + pgµν − ησµν − ζ(∇λu
λ)Pµν , (3.7)

where

σµν = Pα
µ P

β
ν

(
∇αuβ +∇βuα −

2

3
gαβ∇λu

λ

)
, (3.8)
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is a symmetric, and traceless tensor, and

Pµν = uµuν + gµν , (3.9)

is the projection tensor. The coefficients of the third and fourth term in
Equation (3.7) correspond to the shear viscosity η, and the bulk viscosity ζ.
We will only study the effects of the shear viscosity on the flow, and will
neglect the bulk viscosity, which multiplies a tensor with non-vanishing trace,
and thus cannot be included when the matter is required to be conformal.

3.1.1 Sound

It is possible to add small perturbations to the zeroth order hydrodynamical
description just detailed. This is done by modifying the stress-energy tensor

T µν = T µν0 + δT µν , (3.10)

which simply consists in adding perturbations to both the energy density, and
the flow four-velocity. When these perturbations are small, the problem can
be treated in the linear approximation, an the solution to the hydrodynamic
equations (3.1) for the perturbations corresponds to a propagating mode: the
sound, that moves with speed

c2
s =

∂p

∂ε
. (3.11)

For the equation of state that we use (3.6) the speed of sound is cs = 1/
√

3. The
sound waves traveling through the medium perturb it, generating compression
and rarefaction of the medium, and thus zones with greater energy density
than others. It is the effects of this propagating sound modes in the QGP,
that we study in this Chapter, for a particular solution to the hydrodynamic
equations (3.1).

3.2 Bjorken’s Flow

To apply hydrodynamics to heavy ion collisions it is necessary to determine the
symmetries and the initial conditions that the fluid must respect. Depending
on how these characteristics are fixed, the solution to the fluid equations, and
thus the behavior of the fluid itself will change. One possible solution that
describes the evolution of matter produced in the region of midrapidity was
developed by J.D. Bjorken [36], and is commonly referred to as Bjorken’s flow.
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Bjorken’s solution only takes into account the expansion of the fluid in the
longitudinal direction, while neglecting the radial expansion, it is thus a useful
description of the region near the beam axis , where the expansion of the fluid
is mostly longitudinal. The symmetries that it preserves are: translation and
rotation invariance in the transverse plane, and longitudinal boost invariance.
The latter means that at the middle–the location where the collision took
place–the matter remains at rest while it moves with speed z/t at a distance
z from the center, where t is the time since the collision and z the position in
the direction of beam axis. Because of these symmetries it is more convenient
to study Bjorken’s solutions in hyperbolic-cylindrical coordinates (τ, r, φ, η),
that are related to the usual cartesian coordinates by

t = τ cosh η , x = r cosφ , (3.12)

z = τ sinh η , y = r sinφ , (3.13)

or

τ =
√
t2 − z2 , (3.14)

η =
1

2
ln
t+ z

t− z
, (3.15)

where τ is the proper time and η the rapidity. The metric in the new coordi-
nates is given by

gµν =


−1 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 τ 2

 , (3.16)

and the four-velocity of the fluid is simply

uµ = (1, 0, 0, 0) . (3.17)

Placing these terms in Equation (3.7), one obtains the stress energy tensor

Tµν =


ε(τ) 0 0 0

0 p(τ) 0 0
0 0 p(τ) 0
0 0 0 p(τ)

 , (3.18)

in the case with no viscosity. Both the energy density and the pressure depend
only on the proper time, thus preserving all the required symmetries: boost
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invariance along the beamline, and translation and rotation invariance in the
transverse plane. To solve the hydrodynamic equations it is necessary to use
the Christoffel symbols defined in Equation(3.4) that correspond to

Γητη = Γηητ =
1

τ
, Γτηη = τ , (3.19)

Γφrφ = Γφφr =
1

r
, Γrφφ = −r , (3.20)

and to determine the relation between the energy density and the pressure.
Using the conformal equation of state ε = 3p, the energy density solution is

ε(τ) =
ε0
τ 4/3

(3.21)

In a heavy ion collision, the nuclei ar finite, and so is the matter produced
after the collision, so the Bjorken description with its translation and rotation
invariance in the transverse plane is only an approximation of reality near the
beam axis in central collisions.

3.3 Gubser’s SO(3)-Invariant Flow

Gubser’s flow [34, 35] is a solution to the relativistic Navier-Stokes equations
that generalizes Bjorken’s flow by replacing the translational invariance in the
transverse plane by a symmetry under a special conformal transformation,
while keeping the boost invariance and the axial symmetry in the transverse
plane. In this way, the matter together with expanding longitudinally also
expands in the transverse plane giving rise to radial flow. In this section we
discuss Gubser’s solution as it was formulated in [34], and then rederived in
[35].

What Gubser does is to modify Bjorken’s solution by changing the sim-
metries that must be conserved in the medium. In particular, he changes the
translation invariance in the transverse plane by the following special confor-
mal transformation

ξi =
∂

∂xi
+ q2

(
2xix

µ ∂

∂xµ
− xµxµ

∂

∂xi

)
, (3.22)

where xi = xi = x, y and q is a quantity with dimensions of inverse length that
determines the transverse size of the matter. If one takes the limit of q → 0,
the transverse size of the fireball goes to infinity, and one recovers Bjorken’s
flow. The transformations (3.22) together with rotations in the transverse
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plane form an SO(3) group, that gives the name to the new solution: SO(3)-
invariant flow.

For Gubser’s solution to hold the matter needs to be conformal, this means
the stress-energy tensor must be traceless. This requirement is accomplished
by using

ε = 3p ∼ T 4 (3.23)

as an equation of state, which implies a speed of sound cs = 1/
√

3 in the
medium, and by setting the bulk viscosity ζ to zero. Another thing to bear in
mind is that the existence of azimuthal rotation invariance in Gubser’s solution
implies that it is only a representative of central collisions, and not applicable
to peripheral collisions that do not preserve rotation symmetry.

Working in the (τ, r, φ, η) coordinates with the metric

ds2 = −dτ 2 + τ 2dη2 + dr2 + r2dφ2 , (3.24)

the only form of the four-velocity that respects rotation invariance, boost-
invariance and invariance under longitudinal reflections (η → −η) is

uµ = (− coshκ(τ, r), sinhκ(τ, r), 0, 0) . (3.25)

The transverse velocity of the medium then corresponds to

v⊥ = tanhκ(τ, r) , (3.26)

where the function κ(τ, r) is

κ(τ, r) = arctanh

(
2q2τr

1 + q2τ 2 + q2r2

)
. (3.27)

To get the expression for the energy density it is necessary to plug in the ve-
locity and the equation of state in the equations for relativistic hydrodynamics

∇µTµν = 0 (3.28)

and in the ideal case, when not only the bulk viscosity but also the shear
viscosity vanishes, it takes the form

ε =
ε̂0(2q)8/3

τ 4/3 [1 + 2q2(τ 2 + r2) + q4(τ 2 − r2)2]4/3
, (3.29)

where ε̂0 is some normalization parameter.
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Gubser’s solution is invariant under an SO(3) group, however this invari-
ance is not evident in the form of the velocity and the energy density presented
in Equation (3.25) and Equation (3.29), respectively. In Reference [35] Gub-
ser and Yarom rederived the same solution, but doing a Weyl rescaling of the
metric and changing to a new set of coordinates, where the SO(3)-invariance
is clearly visible. The rescaling of the metric is accomplished by dividing it by
τ 2,

dŝ2 =
ds2

τ 2
, (3.30)

=
−dτ 2 + dr2 + r2dφ2

τ 2
+ dη2 . (3.31)

The new, rescaled metric has a hat (ˆ), as do all the quantities in the rescaled
frame, to distinguish them from the same quantities in the usual flat space.

With the change of coordinates both the φ and the η coordinates are left
untouched, while τ and r are replaced by the new set ρ and θ, that relate to
the original coordinates by

sinh ρ = −1− q2τ 2 + q2r2

2qτ
, (3.32)

tan θ =
2qr

1 + q2τ 2 − q2r2
. (3.33)

In these new coordinates the rescaled metric takes the form

dŝ2 = −dρ2 + cosh ρ
(
dθ2 + sin 2θdφ2

)
+ dη2 , (3.34)

where the ρ-coordinate takes the place of the new time coordinate, and the
θ-coordinate is the new radial coordinate. Gubser’s solution is invariant under
the SO(3)group of rotations parametrized by θ and φ. It is necessary to keep
in mind that the θ-coordinate does not correspond to the typical polar angle
that is measured from the beamline, so these rotations are not in the usual
polar and azimuthal angles, but in θ as defined in Equation (3.33) and the
azimuthal angle.

The four velocity of the fluid must, as before, preserve boost invariance
and rotation invariance, the last of which is included in the SO(3)-invariance
that the flow must conserve. In the new coordinates (ρ, θ, φ, η) a four-velocity
that satisfies these requirements is given by

ûµ = (−1, 0, 0, 0) . (3.35)
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The velocity has no dependence on any of the coordinates, thus the fluid is at
rest in the rescaled geometry.

The rescaled energy density in the new coordinates takes the simple form

ε̂ =
ε̂0

(cosh ρ)8/3
, (3.36)

which again is invariant under all the required symmetries, because it depends
only on the temporal ρ-coordinate. The same is true of the rescaled tempera-
ture, which is related to the energy density by

T̂ = ε̂1/4 . (3.37)

In the viscous case, the equations become more complicated when one works
with the energy density, and it becomes more natural to change to the tem-
perature. Again in this case the solution only depends on the new time ρ, and
it is given by

T̂ (ρ) =
T̂0

(cosh ρ)2/3

(
1 +

H0

9T̂0

sinh 3ρ 2F1

(
3

2
,
7

6
,
5

2
,− sinh 2ρ

))
, (3.38)

where H0 is a dimensionless constant that relates the shear viscosity to the
energy density according to η = H0T

3, and 2F1 is the hypergeometric function.
In the inviscid case the second term vanishes, so the solution is just the first
term of the expression.

3.3.1 Taking the results back to flat space

To understand how Gubser’s solution relates to heavy ion collisions it is nec-
essary to go back to the usual coordinates (τ, r, φ, η) and to rescale the quan-
tities that describe the fluid.

Different quantities X rescale differently according to a given conformal
weight αx as in the relation

X = Ω−αxX̂ . (3.39)

For example, in Gubser’s case the metric was rescaled by

ds2 = τ 2dŝ2 , (3.40)

so gµν (gµν) has a conformal weight -2 (2). The conformal weights for relevant
quantities in d-dimensional spacetime are presented in the Table (3.1).
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quantity gµν uµ Tµν ε p T
conformal weight -2 -1 d-2 d d 1

Table 3.1: Conformal weights for the metric, the four-velocity, the stress energy
tensor, the energy density, the pressure and the temperature on d-dimensional
spacetime.

We are particularly interested in the four velocity, and the energy density.
The four velocity in Minkowski space and in the (τ, r, φ, η) coordinates can
be obtained from the one in the rescaled metric and in (ρ, θ, φ, η) coordinates
from the relation

uµ = τ
∂x̂ν

∂x̂µ
ûν , (3.41)

that gives us back expression in Equation (3.25). The energy density trans-
formation is simply

ε =
1

τ 4
ε̂ . (3.42)

3.3.2 Gubser’s Flow and Heavy Ion Collisions

The SO(3)-invariant flow is an idealization of the flow present in the matter
that is produced after a heavy ion collision. It requires the conformal EOS
ε = 3p, that resembles the EOS of nuclear matter only during the QGP phase,
where the speed of sound is about 1/

√
3 = 0.557. In the near-Tc domain and

during the hadronic phase, the conformal EOS is no longer applicable, and the
speed of sound in the matter changes in the near Tc region, and during the
hadronic phase. So, in principle, Gubser’s flow should be a good description
of the QGP phase of matter produced after a collision. To make the match
between the idealized description and the reality of the collision, it is necessary
to fix some parameters of the Gubser description such as q and T0, and also
f∗ the constant of proportionality between the energy density and the fourth
power of the temperature.

Let us start by addressing the issue of fixing the q-parameter. To do this we
follow [34, 35] who, based in calculations from [50], chose q = 1/4.3 fm−1. To
determine this value of the parameter, they looked at the nuclear distribution
before the collision, where both nuclei are taken to be moving towards each
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other at the speed of light, with stress-energy tensor of the form

Tuu = f (r) δ(u) , Tv v = f (r) δ(v) , (3.43)

with

u = t− z , v = t+ z . (3.44)

The function f(r) describes the distribution of matter in the nucleus and its
shape depends on the particular model used. In order to obtain Gubser’s
flow after the collision, it is necessary that the nuclei before the collision sat-
isfy SO(3)-invariance, this together with reflection invariance imply that the
distribution of nuclear matter before the collision should be [50]

fSO(3) =
2q2E

π (1 + q2r2)3 ,
(3.45)

where E is the energy in each of the nuclei. The distribution of matter in
a real nucleus does not quite look like fSO(3); it is better represented by a
Woods-Saxon profile,

fWS(r) =
E

−8πa3Li3 (−eR/a)

∫ ∞
∞

dz

1 + e(
√
r2+z2−R)/a

, (3.46)

where R is the nuclear radius, a the nuclear skin depth and Li3 a polylogarithm
function. This distribution is mostly flat, and falls off towards the nuclear edge.
To make the fSO(3) profile closer to the real distribution function the value of
q is chosen such that the root-mean-squared radius weighted with the energy
profile,

〈
r2
〉

=

∫
r2f(r)dr∫
f(r)dr

(3.47)

is equal when using fSO(3) and fWS. For a gold nucleus, with values of the nu-
clear radius of R = 6.38 fm and of the nuclear skin depth of a = 0.535 fm [38],
the parameter q is fixed to be (4.3 fm)−1, as mentioned earlier. So, while the
mean squared radius of the two distributions is the same, their general shape
differs. As Figure (3.1) shows the fSO(3) profile is more peaked at the cen-
ter, and also it decays more slowly, compared to the Wood-Saxon distribution
which is more spread out and decays rapidly near the nuclear edge. These dif-
ferences are evidence that the model is a bit far from reality, however, it is very
useful for studying the hydrodynamic phenomena that occur after the collision
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Figure 3.1: Comparison of the nuclear energy density profile for the SO(3)-
invariant model (solid green) and for the Wood-Saxon model (dashed blue) in
arbitrary units (a.u.). The Wood-Saxon profile is normalized to be 1 at r = 0,
while fSO(3) has been normalized to have the same integral value that fWS

and its width has been selected to have the same root-mean-squared radius as
fWS, as in [50].

because, even after perturbations to the smooth background are included, the
solutions to the hydrodynamic equations remain mostly analytical.

Having fixed the transverse size of the nucleus, and thus the shape of
the initial energy density profile, we also need to determine the value of the
ε̂0 or equivalently of the T̂0 parameter, that will set the initial value of the
energy density/temperature. To calculate T̂0, we again follow the calculations
in Reference [34], and start from the total entropy for a slice of constant time
τ , that is given by

S =

∫
nµsµ

√
det (gij)drdφdη , (3.48)

where gij is the metric for 3D space in (r, φ, η) coordinates, nµ is the vector
normal to the surface, and

sµ = suµ , (3.49)

is the entropy current, with s the entropy density, that in the case of conformal
invariance corresponds to

s =
4

3

ε

T
. (3.50)
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We can get rid of the temperature in this equation by noting that the energy
density and the temperature satisfy the relation

ε = f∗T
4 (3.51)

for values above the critical temperature Tc. We use f∗ = 11, the same value
adopted in Reference [34], that was extracted from lattice calculations [14, 51].
From Equation (3.48) we can get the entropy per unit rapidity

dS

dη
= 2πτ

∫
suτrdr , (3.52)

=
8π

3τ 2
f 1/4
∗ ε̂

3/4
0

∫
coshκ(τ, r)

(cosh ρ(τ, r))2 rdr , (3.53)

with κ defined in Equation (3.27) and ρ the new time coordinate from Equa-
tion (3.32). After the integral is done we can solve for

ε̂0 =
1

f
1/3
∗

(
3

16π

dS

dη

)4/3

, (3.54)

or for

T̂0 =
1

f
1/12
∗

(
3

16π

dS

dη

)1/3

, (3.55)

that is the quantity that we use. Note that there is no time dependence on
the result because we were working in the ideal case, so entropy is conserved
throughout the whole process. This is not true for the viscous case, where a
different calculation is needed. This computation was performed in Reference
[34] for a shear viscosity to entropy ratio of η/s = 0.134 and the T̂0 obtained
in the ideal case differed in around only 2% from the result obtained when
viscosity was included, so in our calculations we simply use the same value of
T̂0 in all cases.

The entropy per unit rapidity in Equation (3.55) can be related to experi-
ment by the relation

dS

dη
≈ 7.5

dNch

dη
, (3.56)

where the number of charged particles per unit rapidity dNch/dη can be mea-
sured and the number 7.5 comes from calculations in Reference [50]. For cen-
tral (0−5%) collisions at LHC the number of charged particles per unit rapidity
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corresponds to dNch/dη ∼ 1600 [52], that when plugged in Equation (3.55 )
gives a value of T̂0 ≈ 7.3. When this estimate is used, the freeze-out time is
approximately τfo ∼ 6 fm, a rather short time compared to the more realistic
value of τfo ∼ 12 fm. We are mostly interested in studying the propaga-
tion of sound perturbations, and the size of the sound horizon depends on
the freeze-out time, so to have a more realistic estimate of the displacement
of the perturbations, we use T̂0 = 10.1, that corresponds to having about
2.6(dNch/dη)LHC .

In the ideal case, the background temperature in flat space corresponds to

T =
1

τf
1/4
∗

T̂0

(cosh ρ(τ, r))2/3
; (3.57)

this means we are using an initial temperature at the center of the fireball
of about 630 MeV. The temperature and overall entropy that we use in our
calculations is rather large, however, by fixing T̂0 thus, we ensure a realistic
size of the fireball at freeze-out, and overall transverse expansion velocities
that mimic the reality of RHIC/LHC collisions.

Now that we have fixed the parameters of the flow, there is still one more
issue we must determine before we can start exploring it: we need to set the
time when the hydrodynamical description starts to be applicable. Right after
the collision the system is not in equilibrium, and it needs to reach an approx-
imate equilibrium before hydrodynamics starts to give a correct description
of the situation. While the mechanism of equilibration remains unknown, its
duration is known to be of about a fraction of fm/c. In our calculations we
assume that thermalization occurs at time τ = 1 fm/c, and it is at this time
that we define our initial conditions and start evolving using hydrodynamics.
The evolution lasts until the final freeze-out is reached, at which point the
interaction between secondaries becomes ineffective and sound propagation
stops.

3.4 Perturbations on Top of the SO(3)-invariant

Flow

The SO(3)-inavariant flow gives a smooth description of the energy density,
temperature, and flow of the matter formed after a heavy ion collision; how-
ever, in reality there are fluctuations of these quantities due to the fluctuations
of the positions of the nucleons in the nuclei as described in Chapter 2. To
include this in our description of the fireball, it is necessary to consider small
perturbations to Gubser’s flow, that will modify the overall temperature and
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Figure 3.2: Temperature (left) and transverse velocity(right) profiles for the
SO(3)-invariant flow solution at different times.

velocity profiles of the nuclear matter under study. It is now, when looking at
perturbations to the background flow, that the benefits of performing the Weyl
rescaling and the change of coordinates to make the SO(3)-invariance explicit
become evident. In what follows of this section we describe how perturbations
to the flow are added to the SO(3)-invariant flow as it was done in [35] and
later in [31].

Let us first describe the ideal case, where the background temperature is
given by just the first term in Equation (3.38). Both the background temper-
ature (now called T̂B) and the background four-velocity (now ûB µ) receive a
perturbation such that the total temperature and four-velocity in the rescaled
frame correspond to

T̂ = T̂B(1 + δ) , (3.58)

ûµ = ûB µ + ûP µ , (3.59)

where δ and ûP µ are the perturbations to the original solutions for the temper-
ature and the velocity, respectively. Both of these quantities could in principle
depend on all four coordinates (ρ, θ, φ, η), but for the time being we will dis-
regard perturbations in rapidity. The reasoning behind this decision is that
for now we are only interested in including perturbations in the transverse
plane, so that the waves they induce propagate also in the transverse plane
only. This is because the features present in two particle correlations from
RHIC and LHC–the near side ridge and the away side shoulders–are rapidity
independent, and we work under the assumption that they appear because of
rapidity-independent initial state perturbations in the transverse plane. So for
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now we will use

δ = δ(ρ, θ, φ) (3.60)

ûP µ = (0, ûθ(ρ, θ, φ), ûφ(ρ, θ, φ), 0) , (3.61)

and reserve perturbations in rapidity for a later chapter. Notice that cor-
rections to the ρ-component of the four velocity have been omitted, this is
because they only appear at quadratic order, they do not contribute to the
linear perturbations that we explore.

When the expressions (3.58) and (3.59) are plugged into the hydrodynamic
equations and only the linear terms in the perturbation are kept, one obtains
a system of coupled first-order differential equations. These equations may be
re-written as a second-order differential equation for one of the perturbations;
for delta the equation reads

∂2δ

∂ρ2
− 1

3 cosh 2ρ

(
∂2δ

∂θ2
+

1

tan θ

∂δ

∂θ
+

1

sin 2θ

∂2δ

∂φ2

)
+

4

3
tanh ρ

∂δ

∂ρ
= 0 . (3.62)

This equation can be solved exactly, but before going into that we start by
simply studying the solution in the short wavelength approximation, to get a
general idea of its behavior.

3.4.1 The short wavelength approximation for the sound
waves on top of the SO(3)-invariant flow

We want to look at the oscillatory behavior of the solution, so we start by
assuming that the solution will be an oscillatory exponential function times
some function that will determine the amplitude. Furthermore, we use variable
separation, so we start from a function of the form

δ = ei(fρ(ρ)−fθ(θ)−fφ(φ))Fρ(ρ)Fθ(θ)Fφ(φ) , (3.63)

where fi >> 1, such that the derivatives taken over the exponential are dom-
inant. When we take this solution and plug it into Equation (3.62) we have
terms with different powers of the derivatives of the fi functions; in this way,
we study the equation separating it in different equations depending on which
power of the derivatives over the exponent they have. The first step is to look
only at the second derivatives, because they produce terms of second order in
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the exponent, they are the leading ones. In this way we find

fρ(ρ) = ± 2√
3
k arctan eρ + A , (3.64)

fθ(θ) = ±
∫
dθ

√
k2 − m2

sin 2θ
+B , (3.65)

fφ(φ) = ±mφ+ C . (3.66)

The integral in (3.65) can be solved, but it gives a cumbersome result. So in
what follows (of this subsection) we assume no φ dependence just to get an
idea of the result. When we do this, the functions in the exponent reduce to

fρ(ρ) = ± 2√
3
k arctan eρ + A , (3.67)

fθ(θ) = ±kθ +B . (3.68)

(3.69)

The function fρ(ρ) is almost linear in ρ in the region that we are interested in
studying (−2 < ρ < 1), so we find the phase of the solution to be ∼ kρ, which
means that we indeed expect to find solutions in the form of the sound wave
propagation (in this region).

Now that we have found the functions in the exponent we look for the wave
amplitude by canceling among themselves the terms with the first power of
the large exponent: By doing this we find the amplitudes to be

Fρ(ρ) ∼ 1

(cosh ρ)1/6
, Fθ(θ) ∼

1

sin θ
(3.70)

3.4.2 The exact separation of variables for the pertur-
bation

In the previous section we studied the general behavior of the solution to
the perturbation equation (3.62) in the short wavelength approximation, but
now we look for the exact solution. Again we use variable separation, and plug
δ(ρ, θ, φ) = δ(ρ)Θ(θ)Φ(φ) in Equation (3.62), finding three separate equations
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for the δ(ρ), Θ(θ) and Φ(φ) functions

δ′′(ρ) +
4

3
tanh ρ δ′(ρ) +

λ

3 cosh 2ρ
δ(ρ) = 0 , (3.71)

Θ′′(θ) +
1

tan θ
Θ′(θ) +

(
λ− m2

sin 2θ

)
Θ(θ) = 0 , (3.72)

Φ′′(φ) +m2Φ(φ) = 0 , (3.73)

that are analytically solvable, and yield

δ(ρ) =
1

(cosh ρ)2/3

(
C1P

2/3

− 1
2

+ 1
6

√
12λ+1

(tanh ρ) + C2Q
2/3

− 1
2

+ 1
6

√
12λ+1

(tanh ρ)
)

(3.74)

Θ(θ) = C3P
m
l (cos θ) + C4Q

m
l (cos θ) (3.75)

Φ(φ) = C5e
imφ + C6e

−imφ (3.76)

where λ = l(l + 1) and P and Q are associated Legendre Polynomials. The
part of the solution depending on θ and φ can be combined to form spheri-
cal harmonics Ylm(θ, φ), such that δ(ρ, θ, φ) ∝ δl(ρ)Ylm(θ, φ). The spherical
harmonics are orthogonal functions, so any function can be decomposed into
a sum of them, this will allow us to define a desired shape for the initial con-
ditions and to write them as combinations of the Ylm(θ, φ). Then, by simply
multiplying the spherical harmonics by the ρ-dependent part of the solution
δ(ρ), one can obtain the evolution of the specified initial system.

Using Gubser’s solution one has from the beginning of the hydrodynamic
evolution an analytical fuction that describes the φ-dependence of the tem-
perature and the velocity of othe fluid. This dependence can be related to the
final particle distribution in the azimuthal angle φ, that is usually expanded
in its Fourier components and quantities associated to different values of m
are referred to as different harmonics. In this model, to each m correspond
many values of l, as long as the condition l ≤ m holds. The radial depen-
dence is associated to the number l, and thus different values of l will produce
different radial dependences, though traditionally (as we did when using the
Glauber model in Chapter 2), to each value of m is associated only a rm term,
except for m = 1 that uses r3. Now, we consider a more general form for the
radial dependence, just determined by the initial conditions for θ and for the
evolution in ρ.

Let us now explore the asymptotic behavior of the Legendre functions when
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l >> 1 that is given by Reference [53]:

Pm
l (cos θ) =

2√
π

Γ(l +m+ 1)

Γ(l + 3
2
)

cos
[
(l + 1

2
)θ − π

4
+ mπ

2

]
√

2 sin θ
(3.77)

Qm
l (cos θ) =

√
π

Γ(l +m+ 1)

Γ(l + 3
2
)

cos
[
(l + 1

2
)θ + π

4
+ mπ

2

]
√

2 sin θ
(3.78)

These expressions show that for large l the solution presents oscillatory be-
havior in θ with an amplitude given by 1√

sin θ
, the same as we obtained in the

short wavelength approximation for Fθ(θ) in the previous section.
For the ρ-dependent part of the solution we proceeed in the same way. In

the large l limit the Legendre polynomials as a function of tanh ρ correspond
to

Pm
l (tanh ρ) =

√
2

π

Γ(l +m+ 1)

Γ(l + 3/2)

√
cosh ρ

cos

((
l +

1

2

)
arccos (tanh ρ)− π

4
+
mπ

2

)
, (3.79)

Qm
l (tanh ρ) =

√
π

2i

Γ(l +m+ 1)

Γ(l + 3/2)

√
cosh ρ

cos

((
l +

1

2

)
arccos (tanh ρ) +

π

4
+
mπ

2

)
. (3.80)

Again we see an oscillatory behavior and a wave amplitude. In this case the
amplitude is given by

√
cosh ρ and if we divide this by (cosh ρ)2/3 as we have in

the exact solution (3.74), we get an amplitude for the wave of 1
(cosh ρ)1/6

, which

is the same as we got in the preceding section using the short wavelength
approximation.

So we have checked that for large l the function δ(ρ, θ, φ), and therefore the
temperature perturbation in the rescaled frame T̂1(ρ, θ, φ) = T̂b(ρ)δ(ρ, θ, φ),
does behave like a sound wave. In Figure (3.3) we present the evolution in ρ
of both the δl(ρ) and the vl(ρ) function in the region of interest that coincides
with the time during which the fireball evolves hydrodynamically. Only terms
with values of l up to 10 are presented, and in both cases they show oscillatory
behavior for larger values of l, as expected.

3.4.3 Viscous Effects

In [30] we introduced the viscosity-based scale, which all structures produced
by pointlike perturbations would obtain at freeze-out. Without going into
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Figure 3.3: The ρ-dependent part of the temperature δl(ρ) (top) and the
velocity vl(ρ) (bottom) perturbations to Gubser’s flow for values of l=1..10,
the shade of gray of the curves gets lighter as l increases.

detail, let us just remind the reader that while the width of the circle grows
with time as τ 1/2, its radius grows as τ , and therefore the relative contrast (the
former divided by the latter) is improving as τ−1/2. As far as the amplitude
of the wave is concerned, in a short-plain-wavelength approximation the stress
tensor harmonics with momentum k are attenuated by a factor

δTµν(t, k) = exp

(
−2

3

η

s

k2t

T

)
δTµν(0, k) (3.81)

known from textbooks on sound (e. g. [54]), sometimes called the viscous filter.
Note that the exponent contains the momentum squared, owing to the extra
derivative in the viscous tensor, and therefore, the effect of viscosity for the
higher harmonics is strongly enhanced (see [55] for studies of the viscous filter).
Obviously, the same qualitative behavior is expected for our l, m harmonics.
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Figure 3.4: The effect of viscosity on the ρ-dependent part of the temperature
δl(ρ) (left) and the velocity vl(ρ)(right) perturbations to Gubser’s flow for four
different values of l (l=1,3,5,10) increasing from top to bottom. The values
of η/s used are 0 (solid green line), 1/4π (dashed blue line), and 1/2π (dash-
dotted red line).

45



The basic equations for the ρ-dependent part of the perturbation, now with
viscosity terms, can be written as a system of coupled first-order equations
[35]. We are assuming rapidity independence; thus, the systems of Eqs. (107),
(108), and (109) from the referred paper become two coupled equations, for
the ρ-dependent part of the temperature and the velocity perturbations,

dw

dρ
= −Γw, w =

(
δv
vv

)
(3.82)

where the index v stands for viscous and the matrix components are

Γ11 =
H0 tanh 2ρ

3T̂B
(3.83)

Γ12 =
l(l + 1)

(
H0 tanh ρ− T̂B

)
3T̂B cosh 2ρ

(3.84)

Γ21 = 1 +
2H0 tanh ρ

H0 tanh ρ− 2T̂B
(3.85)

Γ22 =
8T̂ 2

B tanh ρ+H0T̂B (−4 (3l(l + 1)− 10) (cosh ρ)−2 − 16) + 6H2
0 tanh 3ρ

6T̂B

(
H0 tanh ρ− 2T̂B

)
(3.86)

This system can also be written as a closed second-order differential equation
for δv:

d2δv
dρ2
− dδv

δρ

(
Γ11 −

1

Γ12

dΓ12

dρ
+ Γ22

)
− δv

(
dΓ11

dρ
− Γ11

Γ12

dΓ12

dρ
+ Γ11Γ22 + Γ12Γ21

)
= 0 (3.87)

Unfortunately, unlike the zero-viscosity case considered above, the equations
one gets after separation of variables cannot all be solved analytically and
thus they neeed to be solved numerically, which has been done using MATHE-
MATICA’s ordinary differential equation solver. The part of the solution that
depends on θ and φ is not affected by viscosity, so it continues to be given by
the spherical harmonics Ylm(θ, φ).

Our results for the nonzero viscosity use either H0 = 0.33 (η/s = 0.134),
such as in Reference [35], or the value H0 = 0.19 (η/s = 1/(4π) = 0.08),
the conjectured lowest value possible predicted by AdS/CFT in the strong
coupling limit.
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In Figure (3.4) we plot the time dependence δvl(ρ) for several harmonics and
compare them to the inviscid case δl(ρ) for some l’s. As expected, the viscosity
reduces higher harmonics more, but as far as time dependence is compared to
the inviscid case, we see that viscosity literally kills the contribution at a
certain time, which becomes shorter and shorter for larger l. As the time
is limited by freeze-out time, we observe that contributions of all sufficiently
large l > lmax ∼ 10 become completely negligible.

The ρ-dependent part of the velocity can be calculated once δvl is known

vvl(ρ) = −δ
′
vl + Γ11δvl

Γ12

(3.88)

The curves for the ρ-dependent part of the velocity vvl(ρ) are plotted in Figure
(3.4), for differnt values of viscosity. Comparing this to vl(ρ) at zero viscosity
we see that the amplitude for the velocity is also damped in the viscous case
for large l and increasing ρ.

3.5 Propagation of a local initial state pertur-

bation

We have already described the tools for the evolution of the SO(3)-invariant
flow and of perturbations on top of it, now we will proceed to describe the
initial conditions that we study. Motivated by the idea of hot spots described
in Chapter 2 we will consider a Gaussian perturbation to the background, and
study its evolution.

The idea is that when a heavy ion collision takes place, there will be hot
spots formed in the new matter at locations in the transverse plane where
a large number of nucleons collide. These hot spots, as well as the average
background, are expected to evolve through the hydrodynamic equations until
the matter freezes out, leaving a particular azimuthal distribution that can be
then measured in detectors. What we do is to simulate one of these hot spots
by placing a Gaussian at ρ = ρ0. We use as starting time for hydrodynamics
the time τ = 1 fm, so the value of ρ0 is determined by this time and by the
radial position where the hot spot is placed.

The initial Gaussian in the θ and φ coordinates

δ(ρ0, θ, φ) ∝ e
θ2+θ20−2θθ0 cos (φ−φ0)

2s2 , (3.89)

where θ0 is the location of the perturbation in the θ-coordinate determined by
τ = 1 fm, and by the radial position of the Gaussian, and φ0 is the azimuthal
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location of the Gaussian, may be re-written as a sum of spherical harmonics.

δ(ρ0, θ, φ) =
∑
lm

clmδl(ρ0)Ylm(θ, φ) , (3.90)

where the function δl(ρ), will determine the evolution. The coefficients clm
will be specific for any initial condition, and they are calculated using the
orthogonality condition of the spherical harmonics

clm =

∫ 2π

0

∫ π

0

δ(ρ0, θ, φ)Y ∗lm(θ, φ) sin θdθdφ . (3.91)

The function δl(ρ), presented in Equation(3.74) needs to have its constants
C1 and C2 fixed at some value. To fix them we use two initial conditions
δ(ρ0) = 1 and vl(ρ0) = 0, and because for inviscid case

vl(ρ) =
3 cosh 2ρ

l(l + 1)

dδl
dρ

, (3.92)

the second condition just means that

dδl
dρ

∣∣∣∣
ρ=ρ0

= 0 . (3.93)

With this, the constants C1 and C2 are fixed, and the function δl is given by

δl(ρ) =

dql
dρ

∣∣∣
ρ0
pl(ρ)− dpl

dρ

∣∣∣
ρ0
ql(ρ)

dql
dρ

∣∣∣
ρ0
pl(ρ0)− dpl

dρ

∣∣∣
ρ0
ql(ρ0)

(3.94)

with

pl(ρ) =
1

(cosh ρ)2/3
P

2/3

− 1
2

+ 1
6

√
12l(l+1)+1

(tanh ρ) , (3.95)

and

ql(ρ) =
1

(cosh ρ)2/3
Q

2/3

− 1
2

+ 1
6

√
12l(l+1)+1

(tanh ρ) . (3.96)

It is interesting to note that the denominator in Equation (3.94) has the form
of Wronskian of the fucntions pl and ql evaluated at ρ0. Because the associated
Legendre functions P ν

µ and Qν
µ are linearly independent, the denominator is
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Figure 3.5: Evolution of the initial Gaussian perturbation in the rescaled frame
but in the regular coordinates (τ, r, φ). From top to bottom: τ = 1 fm/c, τ = 4
fm/c, τ = 6 fm/c.
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going to be non-zero for any value of ρ0 that is chosen, thus the function δl(ρ)
will always be finite.

With all the constants determined by the chosen initial conditions, it is pos-
sible to study the evolution of the initial Gaussian perturbation. Figure (3.5)
shows a Gaussian perturbation in the rescaled frame at initial time, and how
it has evolved into an expanding circle after some time has elapsed. The Gaus-
sian shown here was originally placed at τ = 1 fm, θ = 1.5, and φ = π, and
has a width s = 0.1. When changing to the more usual coordinates this cor-
responds to an original radial position r = 4.1 fm and a width of 0.4 fm. The
picture was obtained by combining all the spherical harmonics with |m| < l up
to l = 30, that as can be seen add up coherently to form a consistent picture
of sound-wave propagation.
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Chapter 4

Final Particle Distribution and
Flow Harmonics

In this chapter we try to connect our results to real data measured in heavy
ion collisions. Detectors at both, RHIC and LHC, measure the particles that
go through them, so to be able to compare the results we obtain using the
SO(3)-invariant flow to the experiments it is necessary to change from the fluid
description that we have been considering to a particle description. The final
particle distribution, and also the correlations between particles are measured
in experiment, and thus these are the quantities that we need to obtain as a
final result.

4.1 Freeze-out and the Cooper-Frye Mecha-

nism

As a consequence of the expansion of the fireball its temperature and energy
density decrease, and when the latter is around ε ∼ 1 GeV/fm the process
of hadronization–when partons become hadrons–takes place. The hadronic
matter continues to interact through elastic and inelastic scattering. The
moment when inelastic scattering stops is known as chemical freeze-out, while
the moment when aslso elastic scattering stop is known as kinetic freeze-out.
The surface at which all scattering processes stops is the freeze-out surface,
also called the surface of last scattering. It is at this point–when the matter
becomes dilute and thus the interactions, ineffective–that we change from the
fluid description to the particle description. The distribution of particles that
one obtains on the freeze-out surface should be the same as the one measured
in the detectors, because at this point all of the interactions have stopped.
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The Cooper-Frye formula [56], connects the fluid and the particle descrip-
tions, and gives the distribution of particles after freeze-out. The method is
described nicely in many references (see e. g. [57–59]), but for completeness
we include it here. The distribution of particles in phase-space after freeze-out
is given by

E
dN

d3p
=

dN

dypTdpTdΦ
=

∫
f

(
P µuµ
T

)
pµdΣµ , (4.1)

where f is the distribution function, d3Σµ is the normal to the freeze-out
hyper-surface, T is the temperature, pT is the transverse momentum of the
particle,

y =
1

2
ln
E + pL
E − pL

(4.2)

is the rapidity,

mT =
√
m2 + p2

T , (4.3)

is the transverse mass, and Φ momentum azimuthal angle. The distribution
function depends on the kind of particle being studied, it can be either a Bose
or a Fermi distribution

f

(
pµuµ
T

)
=

gi
(2π)3

1

e
pµuµ−µi

T ± 1
(4.4)

depending on if one is dealing with bosons or with fermions. The coefficient
gi represents the degeneracy of the species i of particles. Because we study
cases with high transverse momentum (pT & 1) GeV we may use the classical
approximation, the Boltzmann distribution function

f

(
pµuµ
T

)
=

gi
(2π)3

e
−pµuµ
T , (4.5)

that for large pT ’s is similar to both the Bose and the Fermi distributions.
The integral that we want to calculate to compute the final distribution of

particles is

dNi

dypTdpTdΦ
= − gi

(2π)3

∫
e
pµuµ
T pµdΣµ , (4.6)

where the minus sign in the exponent has been removed because we work in the
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(−, +, +, +) signature, and expressions (4.4),(4.5) were for the mostly minus
metric. For the same reason, a minus sign is in front of the whole expression.

The four-momentum in Minkowski space is

pµ = (p0, px, py, pz) (4.7)

= (mT cosh y, pT cos Φ, pT sin Φ, mT sinh y) , (4.8)

but we work using the hyperbolic metric in the (τ, r, φ, η) coordinates, per-
forming the transformation:

pµ =
∂x̄ν

∂xµ
pν , (4.9)

the four momentum becomes

pµ = (pτ , pr, pφ, pη) , (4.10)

= (mT cosh (y − η), pT cos (Φ− φ),
pT
r

sin (Φ− φ),
mT

τ
sinh (y − η)) .

(4.11)

To calculate the term in the exponent we need also the four-velocity

uµ = (uτ , ur, uφ, uη) , (4.12)

= (uB τ + δuτ , uB r + δur, δuφ, 0) , (4.13)

where

uB τ = − coshκ(τ, r) , (4.14)

uB r = sinhκ(τ, r) , (4.15)

are the background flow, while all the other terms are due to the perturbation
of the background, and are given explicitly by

δuτ = τ
∂θ

∂τ
ûθ , (4.16)

δur = τ
∂θ

∂r
ûθ , (4.17)

δuφ = τ ûφ . (4.18)

(4.19)

For now we only work in the transverse plane, that is why no perturbation
in the η direction was included. The terms with hats ûθ and ûφ correspond
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to the θ and φ components of velocity perturbations in the rescaled frame,
respectively. Then the product pµuµ in the exponent is

pµuµ = mT cosh (y − η) (uB τ + δuτ ) + pT cos (Φ− φ) (uB r + δur)

+ pT
sin (Φ− φ)

r
δuφ . (4.20)

The last thing needed to compute the final particle distribution is the
freeze-out surface,

Σµ = (Σ0, Σx, Σy, Σz) , (4.21)

and its normal. In general, the freeze-out surface, being a 3-dimensional space,
can be parameterized by three parameters

Σµ = (τfo(r, φ) cosh η, x, y, τfo(r, φ) sinh η) (4.22)

or in (τ, r, φ, η) coordinates

Σµ = (Στ , Σr, Σφ, Ση) , (4.23)

= (τfo(r, φ), r, φ, η) . (4.24)

τfo is the freeze-out time, and in general it could also depend on the η-
coordinate, but because we are only looking at perturbations in the transverse
plane, we don’t include this dependence. The freeze-out time is the time at
which decoupling occurs, when the matter transitions from a state of thermal
equilibrium to free particles. To determine this time, and thus the freeze-
out surface, there are different prescriptions such as to consider isochronous
freeze-out, when the decoupling happens at a constant time, or isothermal
freeze-out, when it happens at a constant temperature. This last approach,
resembles more a realistic situation, when the decoupling happens as the fire-
ball expands and the energy density decreases, and it is thus

T (τ, r, φ) = Tfo (4.25)

the freeze-out condition that we use.
The normal to the freeze-out surface is calculated by

d3Σµ = −
√
−detg εµνλρ

∂Σν

∂r

∂Σλ

∂φ

∂Σρ

∂η
drdφdη , (4.26)

= −εµνλρ
∂Σν

∂r

∂Σλ

∂φ

∂Σρ

∂η
τrdrdφdη , (4.27)
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where

εµνλρ = −εµνλρ =


1 even permutation
−1 odd permutation
0 otherwise

, (4.28)

so in the case of isochronous freeze-out the surface elmente is given by

d3Σµ = (−1, 0, 0, 0)τrdrdφdη (4.29)

while for isothermal freeze-out it corresponds to

d3Σµ = (−1,
∂τ

∂r
,
∂τ

∂φ
, 0)τrdrdφdη (4.30)

We will work in this last case, but before looking at perturbations to the flow,
let us analyze the freeze-out surface due to the background, when the only
dependece is in the r-coordinate. Then, the freeze-out time can be calculated
by solving

dτfo
dr

= − (∂TB/∂r)

(∂TB/∂τ)
. (4.31)

The red curve in the left plot in Figure (4.1) shows the freeze-out time calcu-
lated in this way, when the freeze-out temperature is taken to be Tfo = 120
MeV, while the plot on the right shows the transverse velocity evaluated at
the freeze-out time. The shape of the obtained freeze-out surface for large
values of the radial coordinate (r > 9 fm) is qualitatively different from what
is expected to occur in real collisions. The initial tail of Gubser’s flow energy
density is power-like as seen in Figure (3.1), and so a tail is also present in the
freeze-out time profile: for smaller times the freeze-out surface is at large r,
while for later times it rises. This behavior is not compatible with the more
realistic behavior of the fireball starting with a smaller radius (∼ 7 fm) and
expanding at later times, which would yield a freeze-out surface that moves
outwardly instead of inwardly for increasing times . The main effect of this
difference is the sign of the particle flow direction, determined by the sign of
pµd3Σµ. If one simply does not include the almost vertical part of the freeze-
out surface in the calculations, the particle number, energy and momentum are
not conserved across the surface, but the error is small, about 2% for central
collisions [18].

Because the tail obtained for the freeze-out surface in the Gubser case is far
from reality, and because in the real case, the vertical part of the surface only
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Figure 4.1: Temperature contour plot, with the freeze-out time profile (red
dashed line) for the background SO(3) invariant flow (left). Transverse velocity
profile for the SO(3)-invariant flow at freeze-out (right). The black disk on
both plots indicates the position of the maximum of the transverse velocity at
freeze-out. Isothermal freeze-out was considered, with Tfo = 120 MeV.

contributes a small part of the total number of particles, we will ignore the
integration over r outside the point of maximal flow at r = 9.07 fm, indicated
by a black disk in both plots in Figure (4.1).

4.2 An Initial Bump-like Perturbation

In this section we explore the effects that a local initial perturbation such as
the one described in Section (3.5), has on the final particle distribution. The
initial perturbation is a Gaussian that evolves in time to become an expanding
circle until freeze-out time, when sound stops propagating, and the excess of
energy density in the zones where the cirlce was last generate an excess in the
freeze-out surface, and also of particles that is seen in the azimuthal particle
distribution.

4.2.1 Freeze-out Surface and the Single Particle Distri-
bution

The perturbations produce two different effects in the final particle distribution
function: they modify the flow velocity, and they modify the freeze-out surface.
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The first effect is simply the perturbed velocity added to the background flow,

uµ = uB µ + δuµ , (4.32)

while the second effect is related to the perturbation to the temperature/energy
density. For a hot spot, the deformation in the temperature profile is an excess
in the temperature in a localized zone, compared to the background tempera-
ture in the same region. As we use the isothermal freeze-out prescription,

TB(τ, r) + δT (τ, r, φ) = Tfo , (4.33)

the excess in temperature translates into an excess of time till freeze-out, so
the perturbation to the temperature generates a deformation to the freeze-out
surface,

τfo(r, φ) = τB(r) + δτ(r, φ) , (4.34)

such as the one shown in Figure (4.2) for a perturbation initially placed at
r = 4.1 fm, in the ideal case. Because we work in the small perturbation

Figure 4.2: Freeze-out surface τ(x, y) produced by an initial Gaussian per-
turbation on top of the SO(3)-invariant flow in the inviscid case. Isothermal
freeze-out was considered, with Tfo = 120 MeV.

approximation, we will only include terms up to first order in δτ(r, φ), so
the four-velocity in the exponent of the Cooper-Frye formula (4.1) will be
approximated by

uµ = uB µ(τB) + δuµ(τB) + δuS µ , (4.35)

where the first term comes just from the background, the second term is the
perturbation to the velocity, and the third term is the modification to the
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background velocity from the freeze-out surface

δuS µ =
duB µ(τB + δτ)

d(δτ)

∣∣∣∣
δτ=0

δτ . (4.36)

The perturbation to the freeze-out surface is plotted in Figure 4.3 for two cases:
the ideal case, and a case with shear viscosity to entropy ratio η/s = 0.134.
Both plots present a similar shape for the freeze-out deformation: the remains

Figure 4.3: Excess of freeze-out surface δτ(x, y). Ideal case (left) and visocus
case with η/s = 0.134 (right) . Only the half of the surface that is affected by
the perturbation is shown.

of the expanding sound circle meeting the edge of the fireball. The main
difference between the two cases is the size of the deformation, that is much
larger in the ideal case, but gets damped in the viscous case. It is also posible
to see that when viscosity is included the peaks are wider than in the ideal
case, and the shape in general is softer: all the changes are less abrupt. With
all the ingredients required by the Cooper-Frye method–the momentum, the
velocity, the temperature and the freeze-out surface–we estimate the particle
distribution at freeze-out using the maximum of the exponent approximation.
The results obtained for a perturbation initially located at r = 4.1 fm are
presented in Figure (4.4), for the ideal case (top plot) and for the case when
the shear viscosity to entropy ratio i s η/s = 0.16 (bottom plot). The different
colors of the curves plotted represent different widths of the initial Gaussian
perturbations: the magenta lines are for an initial width of 0.4 fm, while the
blue lines are for a width of 1 fm. The magnitude of the latter ones is larger
than the former because while we changed the width of the Gaussian, we
did not vary its height, so when a larger width is used, the total energy of the
perturbation is larger, and this translates into an increased number of particles
at freeze-out.

Because we were mainly interested in studying the shapes of the final par-
ticle distribution functions, and on understanding the effects that viscosity
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Figure 4.4: Single particle distribution (arbitratry units) for initial Gaussian
with widths 0.4 fm (magenta) and 1 fm (blue), for the ideal case (top) and the
case with viscosity to entropy ratio η/s = 0.16 (bottom).

and the width of the Gaussian have on the final result, we took a qualita-
tive approach only. The principal features of the particle distribution are two
horns with a dip in the middle, that are centered around the original azimuthal
position of the perturbation. This characteristic shape is the remnant of the
original expanding sound circle as it intersects the edge of the fireball. In the
ideal case it is possible to see high frequency oscillations on the curve that
are due to the arbitrary limit of the number of terms used (l < lmax = 30)
in the expansion in spherical harmonics of the Gaussian. These oscillations
disappear when we include viscosity, because as described in Section (3.4.3),
given enough time, viscosity kills all harmonics with l & 10. Other effects of
viscosity are to dampen and broaden the peaks and smooth out the curves.
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4.2.2 The two-Particle Correlations and the Power Spec-
trum

To calculate the two particle correlation we take the product of two single-
particle distributions and perform the averaging over the random axial position
of the initial perturbation,

dN

d (∆Φ)
∼
∫

dN

d (Φ1 − ψ)

dN

d (Φ2 − ψ)
dψ . (4.37)

Because we work in perfectly central collisions, after taking the average, the
original dependence of the two angles Φ1 and Φ2, becomes a dependence on
only the azimuthal difference ∆Φ = Φ1 − Φ2. For non-central collisions the
situation is more complicated because the direction of the impact parameter,
which breaks the axial symmetry, must also be taken into account.

Our results for the two particle distributions for three different values of
shear viscosity to entropy ratio are shown in Figure (4.5) together with a plot
from ATLAS [24] for comparison. Note first their distinctive shape, with a
larger peak centered at ∆Φ = 0, when both particles belong to the same
maximum of the single particle distribution, and two smaller peaks around
∆Φ = π, when the two particles belong to two different peaks, connected by a
flat region between them. This shape presents the general features, found in
two particle correlations for central collisions measured in experiments (e. g.
Figure (4.5) ); however, there some differences that we proceed to discuss.

The first thing that one notices when comparing our calculated plots to the
experimental data is that when there is no viscosity or the viscosity is small,
there appears some extra structure in the two particle correlation: There are
two smaller peaks at both sides of the large ∆Φ = 0 one. The additional peaks
originate from the correlation between one of the peaks in the single particle
distribution with the matter inside the circle, that is what is left of the original
Gaussian. These extra peaks are attenuated when viscosity is used, and for
η/s = 0.134 they have already disappeared. The extra structure also vanishes
in the case when a larger width of the initial perturbation is used, because
in this case, as well as in the cases with larger viscosity the matter between
the two horns in the single particle distribution functions (see Figure (4.4)) is
small or non-existent.

The characteristic two particle correlation with a large peak at ∆Φ = 0
and two smaller peaks joined by a plateau on the away side, were found by
experiments at both RHIC and LHC, for central collisions of heavy ions. To-
gether with the result from ATLAS presented in Figure (4.5), ALICE [60] has
similar results for the same centrality 0%− 1%, while the STAR collaboration
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Figure 4.5: Two particle correlation, produced by a Gaussian perturbation on
top of the SO(3)-invariant flow at initial time, as a function of the azimuthal
angle difference ∆Φ (rad). The top left plot was obtained in the ideal case,
while the top right and the bottom left plots correspond to calculations includ-
ing viscosity, with η/s = 1/(4π) and η/s = 0.134, respectively. The bottom
right plot, taken from [24] , was measured at LHC by the ATLAS collaboration
for the most central (0%− 1%) collisions.

[61] also measures the same structure for a wider centrality range (0%−12%).
Comparing our calculated two-particle distributions to these data we find a
great similarity between their shapes, especially for the higher shear viscosity
to entropy ratio. The width of the main peak is correctly reproduced, pro-
vided the viscosity is correct. Also the double hump structure on the away
side, with the correct shape of the plateau in between is found, but the length
of the plateau, and thus the location of the two peaks on the away side is dif-
ferent. While in experiment the peaks are located at about ∆Φ ∼ ±2 in our
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calculations they are located closer to ∆Φ ∼ ±1.4. This shift in the location
of the peaks is because we keep the equation of state ε = 3p fixed through
the whole evolution and thus the velocity of sound is also constant, and also
the shape/size of the freeze-out surface is not quite realistic in our analytic
approach.

Let us emphasize that this nontrivial shape comes from the hydrodynami-
cal calculation itself, with the initial condition simply being a local hot spot.
Sound propagates starting from the initial perturbation by a distance com-
parable to the fireball radius. The angular positions of the secondary peaks
depend entirely on the ratio of the sound horizon to the size of the fireball (the
speed of sound and the freeze-out time).

Now we turn to an equivalent description of the results from two particle
correlations: the so-called power spectra for the two-particle correlation func-
tions. It can be calculated from either the Fourier transform of the correlator
as a function of ∆Φ, or from the modulus squared of the flow harmonics in the
single particle spectrum v2

n. In this last form the expansion of the two particle
correlation function is

dN

d∆Φ
= 1 + 2

∑
m

|vm|2 cos (m∆Φ) , (4.38)

so it carries the same information as the flow coefficients, and thus the power
spectrum of harmonics, in which the |vm|2 coefficients are plotted versus m.
(Notice that these vm are the coefficients of the Fourier expansion of the parti-
cle distribution and are not to be confused with the velocity coefficients vl(ρ)
of the perturbation discussed in Chapter 3.) The main advantage of studying
the power spectrum is that the behavior of all the harmonics, and in particu-
lar the existence of higher harmonics, becomes more visible compared to the
two-particle correlation itself.

The results obtained for the spectral plot are presented in Figure (4.6) for
four different values of viscosity to entropy ratio η/s = 0, 0.08, 0.134, 0.16 and
for three different widths of the initial Gaussian perturbation 0.4, 0.7 and 1 fm.
For all cases the curves present maxima and minima, resembling the structure
of the power spectrum of the angular harmonics of the CMB distribution over
the sky such as the famous Figure 7 of Reference [62]. In both the Big and the
Little Bang, the time allocated to the hydrodynamical stage of the evolution
is limited by the so-called freeze-out time τfo, after which the collision rates in
matter can no longer keep up with the system’s expansion. At this time the
propagation stops and each harmonic has at this moment a different phase of
oscillation.

While the CMB measurements read the temperature perturbation δ(fo)
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Figure 4.6: Spectral plots for three widths of the initial perturbation 0.4,
0.7 and 1 fm, from top to bottom. The magenta (small-dashed), the (red)
dash-dotted, the (green) solid, and (black) dashed curves are for η/s =
0, 0.08, 0.134, 0.16, respectively. The data points are preliminary data from
ATLAS reported at QM2011 and in [24]. Similar data (not shown here) have
been reported by the PHENIX[63] and STAR[64] collaborations. All the curves
are arbitrarily normalized to fit the third harmonic.)
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directly from the sky, and thus the nodes of δl(fo) correspond to the minima,
in the Little Bang one has to calculate the specific combination of the temper-
ature and the flow perturbations. The nodes of this observable combination
give rise to the accoustic minima and maxima, and as the figure shows, they
are rather insensitive to many details such as dissipation.

The three plots in Figure (4.6) correspond to three different widths of the
initial perturbation, 0.4, 0.7, and 1 fm, and they show that the values of the
flow coefficients depend significantly on this parameter, especially for high
harmonics. The larger the width of the initial perturbation, the smaller the
height of the larger harmonics in the power spectrum. This can be explained by
going back to the description of the original perturbation as a sum of spherical
harmonics. In principle, to describe a function you need an infinite number of
terms, and this is in fact true if you have a very thin Gaussian resembling a
δ-function, but when the Gaussian is more spread out, the terms with higher
values of l, m contribute less, and this is the effect that we are looking at in
these three plots.

The different curves on each plot correspond to different viscosities (see
caption), and they show the effect that this parameter has on the flow co-
efficients: it dampens higher harmonics. This is to be expected, as higher
harmonics of the flow have higher gradients of the flow. One can also see from
these figures that the fit to the viscosity value must be done together with the
fit to the initial size, as they have an influence in the damping of the higher
coefficients of the flow.

We do not attempt an actual fit here, because to do so, an accurate knowl-
edge of the initial conditions, in particular of the with of the initial Gaussian,
would be necessary. Such knowledge would include the size of the created
hot-spot right after the collision and its evolution in the pre-hydrodynamical
stage, where this size should grow. To define the particular value one needs
to know the non-equilibrium physics at this stage.

One more comment on the plots in Figure (4.6) is perhaps in order: all
the curves look shifted towards greater m-values than the data points– this is
especially noticeable for m = 4, ..., 6. Larger m corresponds to smaller angular
size of the sound circles. This happens because we have not fitted the freeze-out
temperature and time τfo to these data: Decreasing the former and increasing
the latter one can certainly get a better fit. We have not done so because
our calculations were done for conformal matter with fixed speed of sound
and ε/T 4, which can only give us an approximate idea of the evolution of the
background and perturbation, but cannot accurately describe real collisions.

So far we have demonstrated some qualitative features of the one-body
spectrum and two-body correlations resulting from a local perturbation, se-

64



-1 0 1 2 3 4 5

DΦ HradL
-1 0 1 2 3 4 5

DΦ HradL

Figure 4.7: (Left) The two particle distribution in arbitrary units as a function
of azimuthal angle difference ∆Φ (rad), for r = 2 fm (blue long-dashed line),
r = 3 fm (brown dash-dotted line), and r = 4.1 fm (red solid line). (Right)
The two particle distribution in arbitrary units as a function of azimuthal
angle difference ∆Φ (rad), for r = 4.1 fm (red solid line), r = 4.7 fm (green
short-dashed line), and r = 5.5 fm (black dashed double dotted line). All plots
are from the same value of viscosity to entropy ration η/s = 0.134.

lecting one typical location. In principle, perturbations can be located at any
position within the fireball, and now we provide further detail on the modifica-
tions to the two-particle correlations depending on the location of the hot spot.
Because we only consider central collisions, by location we mean the radial po-
sition of the hot spot. As shown in Figure (4.7), changing the location of the
spot visibly affects the shape of the two-particle correlation. When the spot
is located near the center of the fireball, the two particle correlation presents
only one peak located at ∆Φ = 0 and no structure on the away side. The
characteristic two peaks appear when the initial perturbation is located not
too close to the center (r ∼ 3−5 fm), that is when the expanding sound circle
has sufficient time to reach the edge of the fireball, such that two separate
peaks appear in the single-particle correlation.

Furthermore, as one can see, the amplitude of the modulation decreases
in this case. This happens not because of a change of the hot-spot amplitude
(which is the same in all cases), but because of the (partial) cancellation be-
tween hydro perturbations for velocities of the first type (in the sound wave)
and the second type (extra radial flow stemming from the modification of the
freeze-out surface). As we have discovered, the very sign of the projection of
the former on the radial direction depends on the position of the initial pertur-
bation. For perturbations located near the center of the fireball it is positive,
but as the hot spot gets located at larger r, it decreases, becoming negative
until it gets as large as the second one and cancels it, when the hot spot is
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located at the very edge of the fireball.
We find that the radial position of the initial perturbation affects the final

two-particle correlation but that, for perturbations that are not too close to
the center of the fireball initially, the final shape obtained is quite similar, with
the length of flat region on the away side growing a bit as the initial location
becomes more peripheral.

In real heavy ion collisions more than one hot spot may exist, and one
may wonder if there will be an interaction between the different perturbations
that would change the shape of the calculated two particle correlations. We
argue that this is not the case, because in the linear approximation the sound
waves would just pass each other without interfering, and there should be no
correlation between the different signals. The case of an initial condition with
more than one perturbation was studied by the Brazilian group [65], and they
indeed found that the presence of numerous tubular structures (that they use
to preserve the rapidity independence) did not alter the shape of the two-
particle correlation found when compared with the results obtained for just
one tube.

66



Chapter 5

Perturbations in the η-direction

In the previous chapters (2,3,4) we have discussed the origins of initial state
fluctuations in the transverse plane and their effects to final particle distribu-
tions after the hydrodynamic evolution. Now, we focus on perturbations that
are localized in the longitudinal direction, so the rapidity invariance of the
perturbations that we used before is now lost.

5.1 QGP clusters

There are many sources of fluctuations in heavy ion collisions. Up to now, we
have only described initial state fluctuations that perturb the smooth back-
ground of the QGP, and how these disturbances evolve hydrodynamically.
Together with these fluctuations, there are also fluctuations that occur dur-
ing the hydrodynamical expansion of the fireball, and that follow from the
dissipation-fluctuation theorem, the theoretical grounds of which have been
recently studied by Kapusta, Muller and Stephanov [66]. Also, it is expected
that as the system expands and its temperature passes through the phase
transition region T ≈ Tc, from QGP to the hadronic phase, there will be en-
hanced critical fluctuations [67]. They are expected to be enhanced near the
second-order critical point [68], and this idea motivated the current downward
energy scan program at RHIC.

We propose a different strategy to search for critical fluctuations, by using
the sound they emit. In a near-ideal fluid sound is the only long-lived propa-
gating mode. The underlying assumption that we make is that the “acoustic”
properties of the matter are there not only during the QGP era, but are main-
tained for the time period between the critical region (T ≈ Tc ≈ 170MeV )
and the final (kinetic) freeze-out (T ≈ 120MeV ) .

It is very likely that in the region near Tc an inhomogeneous intermediate
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state will form, and that by its end, certain QGP clusters will remain.We
propose that, instead of slowly evaporating, the QGP clusters undergo a
Rayleigh-type collapse, transferring (part of) their energy/entropy into outgo-
ing shocks/sounds. These “mini-Bangs”, as we will call them, are the source of
sound spheres, distorted by flow. They should be distinguishable from sounds
caused by the initial state perturbations, because the latter ones originate at
early times and are rapidity-independent, while the late-time “mini-Bangs”
have sound waves propagating in the longitudinal (rapidity) direction as well
as in the transverse plane.

These clusters produced around Tc are not the only sources of perturba-
tions in the longitudinal direction, jets are dependent on rapidity as well. As
the trigger pt grows the contribution of the jet fragmentation also grows, and
beyond say 10 GeV it becomes dominant. Whatever the model of jet quench-
ing, it is clear that some fraction of the energy goes into the medium and thus
jets must also induce a sound wave [69]. From a hydrodynamical point of
view, these sounds are similar to those from the “mini-bangs”, and differ only
by the fact that jet quenching deposits energy along the light-like trajectory
rather than at a particular space-time point.

5.2 Sound Propagation From the Cluster

The main idea in the work we now describe is that in the near-Tc region,
after most of the QGP has transformed into hadronic matter, some clusters
of QGP still remain, and that under the right conditions they will collapse
releasing energy in the form of sound to the medium. The idea of the collapsing
cluster was inspired in collapsing bubbles of air in water, in experiments of
sonoluminescence (for a review of the subject see [70]). The change in the
radius of the bubble is given by the Rayleigh-Plesset equation

R̈R +
3

2
Ṙ2 =

1

ρ

(
p− 4η

Ṙ

R

)
, (5.1)

where R(t) describes the radius of the bubble as a function of time, ρ is the
density, p the pressure and η the shear viscosity. The solution to this equation
shows the collapse of the radius, and details of the calculation and the solution
can be found in Appendix A.

In what follows, we will only focus on the effects that the changing radius of
the cluster has on the medium: When the radius of a cluster rapidly decreases,
it produces spherical sound waves that expand and propagate through it. This
effect is similar to what happens when a Gaussian perturbation is placed in the
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medium: it too generates divergent sound waves. We will use this relation to
look at the effect that the presence of clusters could have on the final particle
distribution.

The propagating sound wave generated by the collapse of the QGP cluster
propagates on an hadronic background, which of course has many differences
with the QGP, one of them being the speed of sound. We however ignore this
difference for the time being, in order to use the SO(3)-invariant flow described
in Chapter 3. In this work we only aim to obtain a qualitative description of
the propagating sounds, and the Gubser-Yarom framework provides very nice
analytical tools to do so, as discussed in Chapters 3 and 4. There are now
two differences with the previous study: (i) the perturbation is not defined
at initial time, but at some “hadronization” surface; (ii) the perturbation will
now depend on η as well as on θ and φ, and thus the temperature in the
rescaled frame will take the form

T̂ =
T̂0

(cosh ρ)2/3

(
1 +

∑
klm

cklmδkl(ρ)Ylm(θ, φ)eikη

)
, (5.2)

while the perturbations to the velocity, also in the rescaled frame, correspond
to

ûθ =
∑
klm

cklmvkl(ρ)∂θYlm(θ, φ)eikη , (5.3)

ûφ =
∑
klm

cklmvkl(ρ)∂φYlm(θ, φ)eikη , (5.4)

ûη =
∑
klm

cklmv
η
kl(ρ)Ylm(θ, φ)eikη . (5.5)

The ρ-dependent functions now depend not only on l but also on k, and
they can be computed from the sistem of three coupled differential equations
described in [35]

dw

dρ
= −Γw, w =

 δkl
vkl
vηkl

 (5.6)
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with

Γ11 =
H0 tanh 2ρ

3T̂B
(5.7)

Γ12 =
l(l + 1)

(
H0 tanh ρ− T̂B

)
3T̂B cosh 2ρ

(5.8)

Γ13 =
ik
(

2H0 tanh ρ+ T̂B

)
3T̂B

(5.9)

Γ21 = 1 +
2H0 tanh ρ

H0 tanh ρ− 2T̂B
(5.10)

Γ22 =
8T̂ 2

B tanh ρ+H0T̂B (−4 (3l(l + 1)− 10) (cosh ρ)−2 − 9k2 − 16) + 6H2
0 tanh 3ρ

6T̂B

(
H0 tanh ρ− 2T̂B

)
(5.11)

Γ23 =
iH0k

2H0 tanh ρ− 2T̂B
(5.12)

Γ31 =
ik
(

3H0 tanh ρ+ T̂B

)
H0 tanh ρ+ T̂B

(5.13)

Γ32 =
il(l + 1)kH0

4 cosh 2ρ
(
H0 tanh ρ+ T̂B

) (5.14)

Γ33 =
T̂B

(
(9l(l + 1)− 4)H0(cosh ρ)−2 + 4H0(3k2 + 4)− 8T̂B tanh ρ

)
+ 12H2

0 tanh 3ρ

12T̂B

(
H0 tanh ρ+ T̂B

)
(5.15)

that is an extension of Eqn. (3.82) and (3.86) to include the perturbations in
η. Once the solution to this system of equations is found, the cklm coefficients
need to be calculated for the chosen Gaussian that will generate the expanding
sound wave. The only thing needed now to start studying the sound originating
from the perturbation is its location and the time when it appears.

We expect the QGP clusters to appear when the temperature reaches the
critical value ∼ 175 MeV, this means that they should be placed on the
isotherm T = Tc that corresponds to the dashed magenta curve in Figure
(5.1). Having specified the surface on top of which the clusters can appear,
we just need to select a spatial location for them.

The transverse momenta of the final particles in the region we are interested
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Figure 5.1: Isothermal surfaces for Tc = 175 MeV (blue solid line) and Tfo =
120 MeV (magenta dashed line). The sound emission from near-Tc phenomena
is expected at the former surface, and its propagation ends on the latter one.

in studying– say 1.2 to 2.4 GeV , which is well described by hydrodynamics
– exceed the freeze out temperature Tf ≈ 120MeV by a large factor ranging
from 10 to 20. If those particles were produced by the pure tail of the ther-
modynamic Boltzmann factor, its probability would be truly negligible. But
the hydrodynamical expansion makes a big difference: in the moving fluid the
exponent is not the energy in the lab frame but in the frame co-moving with
the fluid, pµuµ, which is smaller than the momentum itself by the so called
“blue shift factor”

pµuµ
Tf
≈ pT
Tf

√
1− v⊥
1 + v⊥

. (5.16)

It depends on the local transverse flow velocity v⊥, that varies over the surface
Σ, with a maximum near the edge. The transverse flow velocity reaches at
LHC v⊥ ∼ 0.8c, for which this factor is ∼ 1/3, reducing the quantity in
Boltzmann’s exponent to only ∼ 3..7. It is much smaller than pt/Tf , but still
can be considered a large parameter. This blue shift narrows the contribution
from the surface integral to the particle spectra to a relatively small vicinity
of the radial position r = r∗ where r∗ is the location of the maximal transverse
flow. Furthermore, assuming for simplicity zero impact parameter (central
collisions) and rapidity independence of the system, we conclude that at such
pt the observed particles come from the “freeze-out cylinder”, with radius
r = r∗, depicted in Figure (5.2). The large transverse flow strongly enhances
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Monday, February 25, 13 Figure 5.2: The schematic representation of the freeze-out cylinder and a sound
perturbation, for “internal” (upper picture) and “peripheral” (lower picture)
sources. In the latter case we show the intersection of the sound sphere and
the freeze-out cylinder.

the contribution of this cylinder, basically projecting it onto the detector.
Sound perturbations, propagating on top of the background flow form dis-

torted sound spheres around the origination point. These perturbations fall
into two classes: (a) the ones with sound spheres that never reach the maxi-
mum flow region on the freeze-out surface, or “internal” ones, and (b) the ones
with sound spheres that cross the freeze-out cylinder, or “peripheral’ ones’, see
Figure (5.2). For the reasons discussed in the previous paragraph the latter
perturbations should be dominant over the former, as they benefit maximally
from the blue-shift effect. Thus we come to conclusion that clusters located
not too far from cylinder of radius r = r∗ are the only ones that can can be
observed.

The distance from the edge of the cylinder at which the cluster must
be placed in order to be detected is determined by the distance the sound
can travel between its emission point and the final freeze out moment. Thus
the corresponding perturbation should be located approximately at a “sound
sphere” of radius Rs = cs(τf − τemission) from the edge, as shown schemati-
cally in Figure (5.2(b)). As one can see from Figure(5.1), the time difference
between the surface of critical temperature and the freeze-out surface is about
2 fm/c for remission < 6 fm, but grows to 6 fm/c at remission ≈ 8 fm. So, the
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Thursday, June 6, 13
Figure 5.3: Temperature at the (zeroth order) freeze-out as a function of
spatial rapidity η, for a perturbation placed at r = 6 on the isothermal T = Tc.
The four different curves correspond to different cuts in the transverse plane
coordinates x = 6, 7, 8, 8.3fm, y = 0 fm, (red, blue, green, gray, respectively).

nearer to the edge the cluster is, the greater time the perturbation will have to
travel. Repeating the same argument as above, we expect that the observable
effect is basically a projection of the intersection of the sound sphere and the
freeze-out cylinder, where both the perturbation and blue-shift are maximal.

To get some signal from the perturbation, we placed it close to the edge
(r ∼ 6) of the expanding matter at the time when the medium reaches the
critical temperature, and let it evolve until the system reaches freeze-out. A
sample of results for the temperature perturbation is presented in Figure (5.3),
corresponding to different cuts through the “sound sphere”. One can see that
at appropriate positions a double-peak structure in the longitudinal coordinate
– represented by a spatial rapidity η – emerges, substituted by a single peak
centered at the cluster rapidity (gray dotted line) when looking at the very
edge of the fireball.

5.3 Particle spectra and correlations

To calculate the final particle distributions we used the Cooper-Frye method
discussed in Section 4.1, implementing an approximate isothermal freeze-out
prescription, taking as freeze-out surface the surface obtained by setting TBack(τ, r) =
Tfo (solid curve in Figure 5.1).

The integrals over r and η in (4.1) are computed using Mathematica’s
numerical integration, while we approximated the integral over φ by using the
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Thursday, June 6, 13Figure 5.4: Single particle distribution as a function of rapidity y, for az-
imuthal angle Φ=0, 0.3, 0.6 (red,blue, black) counted from the cluster location,
for pT = 1.5 GeV. The original perturbation was placed at r = 6 fm.

saddle point method φ = Φ. The pseudorapidity integral was evaluated in
the range |η| < 5, while the integral over r was calculated from r = 0 to
r = r∗, where r∗ is the value of the radius at which the background v⊥ on the
freeze-out surface reaches its maximum. A sample of the results is shown in
Figure5.4 for pions at p⊥ = 1.5 Gev: here one can also find the characteristic
double-peak shapes.

Here however comes the difficulty: in the theoretical calculation we may
calculate all the distributions knowing the location of the original cluster. In
particular, in Figure (5.4) the angle is counted from the cluster location. In
experiment the location of the clusters in azimuth and rapidity φc, yc is un-
known, and thus we can only observe correlators, that are integrated over it.
To reconstruct the original single-body distributions starting from the correla-
tion functions of more than one particle is not a trivial task, as there does not
exist a unique single particle distribution for every two particle correlation.

5.3.1 From the Single Particle Distribution to the Many-
particle Correlation: a Simple Example

In principle, to determine the single particle distribution, an experiment should
be able to measure a sample of n-body correlation functions. In the case of
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correlations in rapidity, the many-particle correlations can be written as

dN

dy1 . . . dyn
=

∫
dycP (yc)

∏
i=1..n

f(yi − yc) , (5.17)

where P (yc) is the probability to have a cluster at rapidity yc, and f(yi − yc)
is the single particle distribution function produced by a cluster located at
rapidity yc, like, for example, the two-peak function presented in Figure (5.4).

As rapidity distributions are usually rather rapidity-independent, the prob-
ability of a cluster being at a given location P (yc) can be approximated by
a constant. In this case, the n-body distribution depends only on rapidity
differences–for two-particle correlations the dependence is only on ∆y = y1−y2.
It is convenient to define Fourier transform of the single-particle distribution

f̃(k) =

∫
dyeikyf(y) , (5.18)

and rewrite the Fourier transform of the n-body spectrum in the form

dÑ

dk1 . . . dkn
= 2πδ

(∑
i=1..n

ki

) ∏
i=1..n

f̃(k) , (5.19)

where the delta function stems from the integral over the unknown cluster
rapidity yc, and results in the conservation of the momentum associated to
rapidity–a consequence of the existence of translation invariance in this coor-
dinate. A very special case is the two-body one, in which only one momentum
remains since k2 = −k1 = k, and one can rewrite Equation (5.19) as the power
spectrum

dÑ

dk
∼ |f̃(k)|2 , (5.20)

that contains the square modulus of the harmonic amplitudes, but not the
phase.

As a particular toy model, let’s consider the f(y) of a double-peaked shape,
as the one we found for certain kinematic window and initial radial position
of the cluster. If we describe the two peaks by the simple expression

f(y) =
1

2
(δ(y − a) + δ(y + a)) , (5.21)

one finds the Fourier transform to be f̃(k) = cos ka, such that the power
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spectrum is given by

|f̃(k)|2 =
1

4
(e2ika + e−2ika + 2) . (5.22)

By taking the backwards Fourier transform of the power spectrum one finds
the 2-particle correlation function: the three terms in this expression produce
three peaks, two at ∆y = ±2a and one with an amplitude twice the one of the
others located at ∆y = 0.

This issue and expressions are close analogs of formulae which have been
derived in the theory of correlators as a function of the azimuthal angle. In
particular, a three-peak structure of the kind emerged from hydrodynamical
calculations in our work as described in Chapter 4. Indeed, for central collisions
the axial symmetry of the background flow, results in angular momentum zero
for the observable harmonics of the many-body correlators.

As a side remark, we point out that while the experimental two-body cor-
relator does indeed have the predicted shape with three maxima, that does
not uniquely prove that the original spectrum has the predicted two-peaked
shape. For example, various harmonics may have random phases, which are
not observable in the power spectrum. For flow harmonics this remains unre-
solved, and further studies of many-body correlators could help elucidate this
issue.

Given the single-particle perturbation function f(y), all multi particle ones
can be calculated, e.g. from the (approximate) relations above. We however
cannot offer any straightforward inverse procedure, deriving f(y) from mea-
sured correlators: comparing the calculated predictions with the measurements
seems to be the only way. Since there are many multi body correlation func-
tions, one should be able eventually get to convinced that the f(y)’s have
certain shape, such as e. g. the one coming from the projected sound sphere.

5.3.2 Two-particle Correlation: Results

Let us now return to joint two-particle distributions, both in rapidity and
angle

dN

d∆Φd∆y
=

∫
dN

d(y1 − yc)d(Φ1 − ψc)
dN

d(y2 − yc)d(Φ2 − ψc)
dψdy , (5.23)

where yc and ψc represent the rapidity and azimuthal location of the cluster
respectively. Unfortunately, as one can see from Figure (5.1), the time for
sound propagation under consideration is rather limited to about 2 fm, except
in the improbable case of a cluster at very large r > 6 fm. Thus the sound-
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Figure 5.5: Two particle correlation functions for a cluster located initially at:
(Left) r = 6 fm, and (Right) r = 6.5 fm. The solid (blue) curve corresponds
to the correlation in ∆η with |∆Φ| < 0.87, and the dashed (magenta) curve
corresponds to the correlation in ∆Φ with |∆η| < 0.8. In both cases the single
particle distribution functions had been normalized such that their integral
was 1.

induced peaks in rapidity are only shifted by about ±1/2 unit of rapidity, as
the single-particle distribution in Figure (5.4) shows, which in most kinematics
is not enough to see the peaks in the observable correlators.

We study the case with asymmetric kinematics, in which the trigger is a
higher momentum particle and serves to determine the cluster location, while
the associate particles have smaller p⊥,and are sensitive to the double-hump
region of the fireball. We calculate the two particle correlation with one particle
with p⊥ = 1.5 GeV and one with pT = 2.5 GeV. We integrate over ∆φ in the
range |∆φ| < 0.87, to obtain the particle correlations projected in ∆η, and
integrate over |∆η| < 0.8, to generate the two particle correlation projected
in ∆Φ. We present the results in Figure (5.5) for two initial locations of the
perturbation, at r = 6 fm and r = 6.5 fm. The correlations obtained are very
different, because the time that the sound circle had to propagate depends on
the initial location of the perturbation.

The shape of the particle distributions, and the two-particle correlations
shown in Figure (5.5) vary greatly, depending on the initial radial position of
the perturbation. For a perturbation located initially at r = 6 fm one finds a
two-particle correlation in ∆η with only one peak, while for that at r = 6.5
fm there are three peaks very well defined. The difference happens, because
for the different sound origination points, the evolution will be longer at some
places and shorter at others. Furthermore, to produce a noticeable effect the
perturbation must be placed near the edge of the fireball—if it is located close
to the center the sound circles will not reach the edge.
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•  The lowest pT bin shows a structure with a flat top in Δη%
•  This feature is reproduced by AMPT 
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Figure 5.6: Correlation functions of two charged hadrons in the kinematic
range defined in the figure, as a function of pseudorapidity and azimuthal
angle differences between the two particles, taken from [72].

5.3.3 Phenomenology

Experiments at RHIC have not focused so much on rapidity correlations. We
have only Phobos collaboration data [71], which used their large rapidity cover-
age due to the silicon detector. These data display rather strong modifications
of the two-particle correlators in AA, relative to pp. The analysis of that data
using some version of a cluster model has been reported in [71], and it showed
that the charged multiplicity per cluster in AuAu collisions is significantly
larger that what is seen pp collisions, up to 〈Nch〉 ∼ 6 charged particles (or up
to 10 including neutrals). Furthermore, the produced clusters do not decay
isotropically but are instead more extended in (pseudo)rapidity. The width
of the cluster decay changes from about 0.8 in pp to about 1.4 at mid-central
collisions, a quite substantial broadening.

The first LHC data on two-particle pseudorapidity correlations provided
further puzzles. As seen in Figure (5.6) (from ALICE collaboration [72]), the
observed correlator presents variations from a Gaussian shape: the top of the
curve is flat, with a double hump structure.

We propose the idea that the increased width in rapidity and the modified
shape are caused by the sound waves emitted by the decaying clusters. Our
calculations above produced a variety of shapes of the two-particle correlators,
from near-Gaussian to three-peak ones, but we did not reproduce the two
peaked shape form ALICE.
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Before we argued that known examples of cluster collapse lead to efficient
(nearly complete) transfer of its stored energy into the shocks/sounds, but in
practice the efficiency of this process is hard to evaluate, and some smaller
cluster may remain after partially collapsing. If one assumes a two-component
model of the particle source, in which certain number of secondaries, propor-
tional to a parameter A, originate from the QGP cluster itself, while a number
proportional to a parameter B come from the sound emitted from its collapse,
the two-particle correlator, projected on the rapidity difference ∆y, can be
written in a form containing three terms

dNcorr

d∆y
= A2fcc(∆y) + ABfcs(∆y) +B2fss(∆y) (5.24)

The first term stands for both secondaries coming from the cluster decay: as
it is expected to decay isotropically the function fcc(∆y) is the same near-
Gaussian distribution as is well known for the two-body resonance decays.
The second term has a trigger coming from the cluster, fixing its rapidity, and
the second from the sound: we expect the function fcs(∆y) to show the double
peaked shape originating from the sound single particle distribution. The third
term ∼ B2 is the convolution of the two single-particle ones just specified,
averaged over the unobserved rapidity of the cluster, that was calculated in
the preceding section for some particular cases.

With our calculations we did not obtain the expected two-peaked structure
in the rapidity correlation, however more studies exploring different conditions
for the perturbation (e. g. different widths, and locations) are needed to de-
termine if the sounds from the QCD phase transition can be “heard”.
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Chapter 6

Summary

The final particle correlations measured by different experiments studying the
collision of heavy ions present some characteristic features that depend on the
azimuthal angular difference between the particles, but not on the difference
in rapidity. In two-particle correlations, for example, the data show very de-
fined correlations in ∆Φ, that are elongated in ∆η. This independence on the
longitudinal direction implies that the origin of these features is in the initial
conditions of the matter created in the collision. The idea is that because
the collision occurs at zero rapidity, and the created matter then expands lon-
gitudinally, the transverse distribution created at the initial time expands in
the longitudinal direction, thus generating the rapidity independence of the
measured correlations.

We studied fluctuating initial conditions using the Glauber Monte Carlo
method, and found that the participant anisotropy coefficients–the anisotropy
coefficients calculated in the center of mass of the participant or wounded
nucleons–are non-zero for all the centrality ranges. For very central collisions,
all the anisotropy coefficients were found to originate from fluctuations, and,
excepting ε1, to be of similar magnitudes, of the order εn ∼ 0.1. The case of
the dipole asymmetry, when n = 1, is a little different from the others, because
in the center of mass of the wounded nucleons the average < x > and < y >
are zero, so the true dipole is also zero, and the calculated ε1 is about 0.05.
This result indicates that before the hydrodynamic evolution at least the first
six harmonics have similar values, and in principle there is no reason to single
out just the triangularity ε3, over the other terms in the expansion.

For more peripheral collisions, the most important anisotropy coefficient
is the ellipticity ε2, because the almond-like shape of the overlap region con-
tributes to make this deformation more sizeable. The other terms in the ex-
pansion are by no means negligible, but they still exist because of fluctuations:
the variance of the anisotropy coefficients has approximately the same value
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as the coefficients themselves, except in the n = 2 case.
In this description, to each anisotropy parameter there is an associated

angle ψn, that indicates the direction of the major axis of the distribution, and
that can be related to the angle that describes the direction of greater flow
during the hydrodynamic expansion. We calculated the distribution of these
angles for collisions in the centrality range determined by 100 < Npart < 300,
and found that the distributions for n even, are very well defined, and that they
show an alignment with the y axis: that is, the major axis of the distribution
defined by εn and ψn is in the direction of the tips of the almond-like overlap
region in the case with even values of the integer n.

The situation for the distribution of the ψn angle is somewhat different
in the cases when n takes odd values. The ψ1-distribution is also correlated
(though only weakly) with the direction of the tips of the almond, but ψ3 and
ψ5 present a completely flat distribution. Further study of these quantities
showed that while the ψn with odd n are not correlated to the mayor axis of the
elliptic distribution, they do present non-trivial correlations among themselves.
For example, one of the cases we studied indicated that the condition 3ψ3 −
ψ1 = π is satisfied for many of the events.

Two-particle correlations in central collisions show no dependence on the
phases ψn (or ψFn ); however, this is not the case for three- or more-particle
correlations, nor for two-particle correlations in the non-central case. These
latter correlators depend on the phases, in particular for three particles the
important phase is the combination n1ψn1 +n2ψn2 +n3ψn3 , where the integers
must satisfy the triangular condition n1 + n2 + n3 = 0.

We understood the non-trivial correlation of the phases of the deformations
to be caused by the presence of hot/cold spots in the initial matter distribu-
tion, so we proceeded to investigate what the evolution of such a hot spot
would be, and its effect on the final particle distribution. To study the hydro-
dynamic evolution of the fireball and its perturbations, we used an analytic
solution called the SO(3)-invariant flow, an extension to Bjorken’s flow that
includes radial flow. We placed an initial Gaussian perturbation on top of the
background fireball, and let it evolve. The original Gaussian propagated from
its center as an expanding circle, and by freeze-out it had reached the edge of
the expanding matter, contributing two peaks to the freeze-out surface and to
the single particle distribution.

We studied the two-particle correlations and the flow coefficients for differ-
ent widths of the initial Gaussian perturbation, and for different viscosities.
For the appropriate values of viscosity and/or widths of the perturbation, we
found that the shape of the two-particle correlation produced by just one initial
Gaussian perturbation agrees quite well with the data, presenting one large

81



peak located at ∆Φ = 0 and two smaller peaks connected by a flat region on
the away side.

We also studied the power spectrum of the flow coefficients that, even
though carries the same information as the two particle correlation, allows for
a better understanding of the higher harmonics of the flow. We found these
plots to present a shape with maxima and minima that reminded us of the
power spectrum of the angular harmonics of the cosmic microwave background
radiation. The effect that the presence of viscosity has on the spectra is to
decrease the contribution from the higher harmonics of the flow: the greater
the viscosity, the smaller the higher harmonics become. This relationship could
in principle be used to determine the value of the shear viscosity to entropy
ratio η/s; however, our ignorance about the initial conditions prevents us from
doing this. The problem is that the width of the initial Gaussian perturbation
has the same effect that viscosity has: it damps the higher harmonics, so
without an a priori knowledge of the initial conditions it is not possible for us
to fix the viscosity.

It is necessary to mention that we have worked in a very idealized situation.
The SO(3)-invariant flow that we have used to describe the hydrodynamic
evolution of the fireball, is only useful to study perfectly central collisions when
the matter being considered is conformally invariant. While this might be true
for the QGP phase, it is certainly not so for the hadron gas, but we kept the
evolution going even after the chemical freeze-out had occurred. The difference
between the conformal and non-conformal regimes is in the equation of state,
and because of this, also in the speed of sound. Different values for the speed
of sound would certainly affect our results, but the difference would be not in
the general features that we were able to reproduce, but in details such as the
exact separation between the two peaks in the single-particle distribution, or
the length of the flat region in the away side of two-particle correlations.

Even though, as we have said, the description obtained by using the SO(3)-
invariant flow is not perfectly accurate, and many assumptions must be done,
it is an analytical tool very useful for describing the general picture of what
happens to the fireball and to its perturbations. Encouraged by our successful
results in studying perturbations in the transverse plane, we decided to study
also perturbations in the longitudinal direction. These are not initial time
perturbations, they appear when the matter is near the critical temperature,
as clusters of remnant QGP in a hadron gas medium. The idea is that as the
pressure of the background becomes higher than the one of the clusters, they
suffer a Rayleigh-type collapse, generating an expanding sound wave. Because
placing a Gaussian perturbation on the background produces the same effect,
we put one near the edge of the fireball on the isotherm T = Tc, and allowed
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it to evolve. We found that the resulting two-particle correlations obtained
following this procedure vary greatly depending on the radial location, because
due to the shape of the isotherm the time that the perturbation has to evolve
changes drastically for perturbations initially located at r < 6 fm and r > 6
fm. We suggest that measured correlations in rapidity may originate from this
phenomenon, especially in the case with one of the particles coming from the
not completely collapsed cluster, and the other one from the perturbation due
to the sound circle. Again we must emphasize that the results obtained are
only qualitative, because we are using a conformal solution, in principle valid
only during the QGP phase, to describe the evolution of the hadron gas, so
the true effects of critical perturbations may differ from the calculated ones.
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Appendix A

A Drop’s Collapse

A.1 The Rayleigh collapse

This appendix contains well known material worked out by people who study
sonoluminescence, for a review see e. g. [70], that is given for self-consistency.
All of the calculations are non-relativistic, so they are only presented here to
give an idea of how a collapsing bubble behaves.

The equation that describes the radius of the bubble as a function of time
may be derived starting from Euler’s hydrodynamic equations

ρ[∂tu + (u∇)u] = −∇p ,

∂tρ+ ∇(ρu) = 0 . (A.1)

The flow is assumed to preserve spherical symmetry, and the flow potential is
defined by

u = ∇φ(r, t) . (A.2)

Then, one finds that Euler’s equations become

ρ

(
∂tφ+

1

2
(∂rφ)2

)
= −p . (A.3)

∂tρ+ ∂rφ∂rρ+ ρ∇2φ = 0 (A.4)

Combining the two equations and using dp/dρ = c2, dh = dp/ρ where h is the
enhtalpy, and c is the sound velocity (the speed of light in our units is 1), one
obtains a single equation for the flow potential

∇2φ− 1

c2
∂2
t φ =

u

c2
(∂tu− ∂rh) . (A.5)
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Now comes the crucial step: if all flows are slow compared to c, the Lapla-
cian term is the dominant one. It then provides a simple Coulomb-like solution
to the potential

φ ∼ f1(t)
1

r
+ f2(t) , (A.6)

as a function of r. The two time dependent functions should be matched to
the boundary conditions of the problem. One of them is at the bubble wall
located at some R(t): the condition matches the flow velocity with the wall
speed

ur = ∂rφ = Ṙ , (A.7)

where the dot denotes the time derivative. This condition fixes one of the
functions in the solution

φ = −ṘR
2

r
+ f2(t) , (A.8)

and putting it back into Euler equation in the form (A.3) one finds, taking it
at r = R, the ordinary differential equation for R(t)

R̈R + (2− 1/2)Ṙ2 =
p(r →∞, t)

ρ
, (A.9)

where the (1/2) comes from the second term of (A.3) and the r.h.s. is the
effective pressure far from the bubble.

If the r.h.s. is positive, the system is stable, but as it crosses into the
negative a collapse takes place. What was discovered by Lord Rayleigh is that
even if the r.h.s. is put to zero, the equation admits a simple analytic solution
(known as the original Rayleigh collapse solution)

R(t) ∼ (t∗ − t)2/5 . (A.10)

While the time-dependent singularity has a positive power, it is less than one,
and thus produces an infinite velocity

Ṙ ∼ (t∗ − t)−3/5 , (A.11)

at t = t∗. Needless to say, large velocity is incompatible with the approxima-
tion of small u << c made above: therefore the near-collapse stage should be
treated separately and more accurately (see below).
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so, the viscosity 0.8 which is twice son, reduces the radius by a factor 10, or volume by a factor 1000: 

nothing is left. All goes into radiation

let me now change it a bit calculating the sound radiation rate from those curves

RR := (1-t)^0.4; diff(RR,t); diff(diff(RR,t),t);

RR := 1K t
0.4

K
0.4

1K t
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K
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ok, now I introduce various r.h.s.,e.g. some volume and surface ones: should be balanced at radius 1

eta:=0.08; sys:={ R1(t)=diff(R(t),t), R2(t)=diff(R1(t),t), R2(t)*R
(t)+(3/2)*R1(t)^2=-4*eta*R1(t)/R(t),              R(0)=1,R1(0)=
-0.4, R2(0)=-.24}; 

Figure A.1: The time evolution of the drop radius R(t), for the values of
η/ρ = 0.01..0.1 with a 0.01 step.

A comprehensive review [70] on sonoluminiscence includes both the theo-
retical and the phenomenological discussion of the shock waves produced by
the collapsing air bubbles in water, under the influence of small-amplitude
sounds driving an effective pressure to negative at each sound cycle. The
reader interested in details can find it in this review: let us only mention that
the observed shocks from collapsing bubbles have velocities of about 4 km/c,
few times the speed of sound in water c = 1.4 km/s, suggesting the pressure
in the collapse reaching a range as high as 40-60 kbar. Those values also im-
ply a reduction of the bubble’s volume by a huge factor ∼ 106. Emission of
light, indicating very high temperatures T ∼ 1 eV � Tr→∞, gave the name of
sonoluminiscence to the whole phenomenon. One last comment is that these
experiments found a rather high efficiency ∼ O(1/2) of the energy transferred
into the shocks/sounds.

A.2 The collapse with the viscosity and sound

radiation

The r.h.s. of the equation for the R(t) can include a number of extra terms.
The most obvious of them is the bulk pressure, which drives the collapse. The
next is the surface tension, preventing collapse of too small bubbles because its
role grows as 1/R at small R. Ignoring those terms for now, we focus on the
dissipative effect of the flow due to viscosity. With the standard Navier-Stokes
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term on the r.h.s. Equation (A.9) becomes

R̈R +
3

2
Ṙ2 = −4ηṘ

ρR
. (A.12)

Solving this equation with variable value of the viscosity we found its critical
magnitude capable to turn the catastrophic Rayleigh collapse into a “soft
landing”. In Fig. (A.2) we show a set of solutions with increasing values of
η ∗ T/ρ, showing how the collapse can be stopped by viscosity. The value of
the ratio η ∗T/ρ > 0.6 is needed for this to happen. For smaller values it goes
into the Rayleigh singularity, which simply stops our numerical solver (we use
default one on Maple 16).

The second effect we study is the sound radiation. For a spherical source
with a time-dependent volume V (t) = (4π/3)R(t)3 the outgoing wave solution
at large distances is (see hydrodynamics textbooks such as [54])

φ = − V̇ (t− r/c)
4πr

, (A.13)

corresponding to the flow velocity of radiated sound

vr = Ṙ =
V̈

4πrc
, (A.14)

resulting in the intensity of the sound radiation

I =
ρ

4πc
|V̈ |2 , (A.15)

at large distances. In Fig.A.2 we plot the time evolution of the volume accel-
eration squared (to which sound radiation intensity is proportional) for five
trajectories, generated by smooth viscosity-induced end of the collapse. What
one can see from those figures is that the sound radiation has a sharp peak
at certain moment, which becomes much more pronounced as the viscosity is
reduced toward its critical value mentioned above. This peak in the sound
emission represents the “mini-bang” we are discuss in Chapter 5.
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Figure A.2: The time evolution of the quantity |V̈ (t)|2, entering the sound
radiation intensity, for the values of η/ρ = 0.06, 0.07, 0.08, 0.09, 0.1.
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