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Abstract of the Dissertation

Holographic Pomeron

by

Alexander Stoffers

Doctor of Philosophy

in

Physics

Stony Brook University

2013

This thesis discusses the approach to hadronic scattering at high

energies and the description of the pomeron within holographic

QCD.

Based on a stringy Schwinger mechanism in curved space, the

pomeron emerges through the exchange of closed strings between

two dipoles and yields Regge behavior for the elastic scattering

amplitude. At low momentum transfer, the holographic space is

approximately flat and the string propagator which governs the

pomeron dynamics obeys a diffusion equation in rapidity and im-

pact parameter space. This diffusive process at strong coupling in

holography connects to the early idea of Gribov (parton) diffusion

in QCD at strong coupling. Curvature corrections to the flat-space

scattering amplitude in a confining background define the wee-

dipole density after identifying the holographic coordinate with the
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inverse virtuality of the dipoles. The curvature corrected pomeron

intercept is compared to the phenomenological value. The expo-

nentiated 1-pomeron exchange amplitude saturates and we give an

explicit derivation of the dipole saturation momentum both in the

conformal and confining background. Our holographic result for

the dipole-dipole cross section and the wee-dipole density in the

conformal limit are shown to be identical in form to the BFKL

pomeron result when the non-critical string transverse dimension

is D⊥ = 3. Thus, we have obtained an evolution for the wee-dipole

density as a function of both rapidity, impact parameter and vir-

tuality.

The open string picture allows us to define a local Unruh temper-

ature associated with the scattering process, which is small as the

impact parameter is large and small compared to the Hagedorn

temperature. Associated with the temperature on the boundary,

the Unruh temperature allows us to define the free energy of the

system. The induced instanton on the string world-sheet carries

entropy for a dipole source of N-ality k. This stringy entropy is nei-

ther coherent nor thermal. We argue that it is released promptly

over a time that is solely determined by the impact parameter and

the rapidity. It may explain the 3/2 jump in the total charged

multiplicities at about 10 participants reported over a wide range

of collider energies by PHOBOS. We predict the charged multiplic-

ities in pp, pA and central AA collisions at LHC. The total dipole-

dipole cross section is compared to DIS data from HERA and the

holographic result for the differential cross section compared to

proton-proton and deeply virtual Compton scattering data. With

the holographic parameters close to QCD expectations, the holo-

graphic results are in reasonable agreement with the data for a

variety of observables in the Regge regime.
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Chapter 1

Introduction

The field of theoretical high energy hadronic scattering has a long and col-

orful history all in an effort to explain the experimental result that the total

hadronic cross section slowly rises with the collision energy.

In the sixties, long before a field theoretical model for the strong interaction

was developed, early attempts to describe the soft (low momentum transfer)

hadronic interactions were done using Regge theory. However, the Regge tra-

jectories of the known spectrum of particles did not lead to a rising cross sec-

tion. Pomeranchuk and others [1–3] noticed that charge conjugation properties

of the scattering objects get washed out at very high energies. Consequently,

hadron-hadron and hadron-antihadron collisions will asymptotically have the

same total cross section. The phenomenological approach to describe the data

introduces a Regge trajectory with intercept close to one. Its lowest lying state

is called the pomeron.

With the emergence of QCD in the seventies, an early field theoretic descrip-

tion of the pomeron was undertaken by Low [4] and Nussinov [5]. Even at

high energies and moderate (strong and running) coupling, the perturbative

gluon contributions to the scattering amplitude have to be resummed. This

approach of reggeized gluons, pioneered by Balitsky, Fadin, Kuraev and Lipa-

tov (BFKL) [6–8], is successful in describing hard scattering processes.

With the advent of perturbative QCD (pQCD), the unitarity problem at weak

coupling surfaced. As a cure, the picture of parton saturation [9, 10] was in-
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vented in the eighties. As the running coupling gets weak at high energies,

the parton density becomes large and a semi-classical analysis known as Color

Glass Condensate [11–14] can be applied.

A connection between the hard and soft scattering processes was sought after

to study Regge properties of QCD with the HERA data available since the

nineties. How to get to the soft pomeron from pQCD is still elusive and hints

that an essentially non-perturbative approach is needed to describe the soft

scattering regime.

With the gauge/gravity duality established in the late nineties came the pos-

sibility to access dynamical properties of a strongly coupled field theory. At

the core of the duality is the description of a strongly coupled field theory with

large gauge degrees of freedom through the means of weakly coupled gravity

in higher, curved dimensions. It is this framework that we will use here to

study hadronic interactions in the Regge regime.

The gauge/gravity duality or AdS/CFT correspondence [15, 16] suggests

that large N gauge theories at strong coupling can be mapped onto weakly

coupled gravity in higher dimensions. The strict form of the duality implies

a conformal field theory on the boundary. We allow for deviations from the

conformal regime and access the confining regime of the field theory by de-

forming the bulk gravity solution in order to describe a field theory closer to

QCD. This approach is understood as holographic QCD. Early developments

are found in [17, 18].

Knowing that soft hadronic scattering needs an essentially non-perturbative

approach, holographic QCD gives us the possibility to describe strongly cou-

pled dynamics analytically. We further know that the hard scattering QCD

amplitude at high energies is dominated by a resummed gluon ladder exchange.

The holographic setup describing a large N theory not only has the right de-

grees of freedom, but diagrammatically speaking, the gluon ladder resembles

a surface which is readily at hand in the dual description as a string world

sheet. It is now interesting to try to connect the hard and soft regime in a

dual, holographic approach. The approach taken in this thesis further provides

a qualitative understanding of saturation towards the strong coupling region.
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Originally, elastic and inelastic parton-parton and dipole-dipole scattering

in the pomeron limit were addressed using non-critical and variational surface

exchanges in conformal and non-conformal AdS backgrounds [19–23]. The

pomeron and reggeon emerge from an imaginary contribution to the Nambu-

Goto string action in confined AdS with an unexplained multi-branch struc-

ture. Recently, key aspects of the pomeron were shown to follow from a stringy

Schwinger mechanism in dipole-dipole scattering with different pomeron pa-

rameters [24]. The unexplained multi-branch structure observed in [21–23]

follows from the N-ality of the dipole source.

An alternative derivation of the pomeron as a graviton using the Virasoro-

Shapiro amplitude in 10 dimensions was suggested in [25–29]. While the am-

plitude is real in flat space, it was argued that the effect of curvature will cause

it to reggeize with the spin-2 graviton transmuting to a spin-2 glueball Regge

trajectory and the pomeron. While the surface exchange and the graviton

approaches for the strongly coupled pomeron are similar in spirit, they differ

in content. Indeed, in conformal AdS the multigraviton interactions are dom-

inant for small dipoles [20], while in confined AdS gravitons are massive on

distance scales of the order of the confinement scale where the dipole-dipole

interaction is dominated by massless string exchange [24]. In the conformal

limit, both approaches appear similar although with totally different parame-

ters for the pomeron as the underlying exchange is different.

In perturbative QCD, dipole-dipole as onium-onium scattering has long

been used to describe high energy scattering, [30–41]. In the 1-pomeron ex-

change, this is equivalent to the BFKL approach [6–8]. The scattering am-

plitude can be defined through the convolution of densities of the wee-dipoles

originating from the parent dipoles and diffusing along the rapidity direction

in transverse space. This fundamental diffusion was forseen long ago by Gri-

bov [42] and will be referred to as Gribov’s diffusion.

Diffractive dipole-dipole scattering in holographic QCD is dominated by
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closed string pair creation at large rapidity χ and impact parameter b⊥. In [24]

it was argued that the elastic and forward part of the dipole-dipole scattering

amplitude is totally dominated by a string pair creation process reminiscent

of the Schwinger particle pair creation process whereby the induced longitu-

dinal electric field on the exchanged string worldsheet with string tension σT

is E/σT = tanh(χ/2). This induced electric field causes the string to feel a

longitudinal acceleration and consequently a local Unruh temperature. The

latter is an alternate and novel way of physically justifying Gribov’s wee par-

ton diffusion in the context of the pomeron exchange. Thus, the scattering

amplitude in holography is closely related to Gribov diffusion in curved space.

For a large impact parameter, the Unruh temperature is low and only the

tachyon mode of the non-critical string is excited. This tachyonic string mode

is diffusive in curved AdS3, which is reminiscent of Gribov’s diffusion in QCD.

In particular, the properly normalized diffusion kernel with suitable boundary

conditions in the infrared yields a wee-dipole density that is similar to the QCD

one in the conformal limit. The convolution of the two wee-dipole densities

yields the eikonalized scattering amplitude and allows for a “partonic” picture

similar to [43, 44], albeit at strong coupling.

Diffusion means dynamics without bulk motion and can either be addressed

in a phenomenological approach as a gradient expansion (Fick’s law) or on

a fundamental level as a random walk of its microstates. In our approach,

the connection between the two is the following: the expansion in curvature

corrections to the amplitude allows us to define a wee-dipole density on the

boundary, whose source in bulk is randomly walking string.

As the analysis of the Schwinger mechanism in [24] was carried out using

string exchange at low momentum transfer in the flat space approximation,

it is important to extend it to curved AdS space. Below, we show that the

extension to conformal AdS3 (short for transverse AdS5) yields a result that is

similar to the one for the onium-onium scattering amplitude following from the

BFKL pomeron exchange in QCD, the differences being the pomeron intercept

and diffusion constant. We also discuss the concept of dipole saturation for a

conformal and confining AdS3 background, a point of intense interest both at
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HERA and present and future colliders.

In [21–24] it was suggested that in the pomeron regime with confining ge-

ometry, the string is far from critical and supersymmetric with D⊥ < 8. The

QCD gluon ladder exchange is conformal at weak coupling, so it is natural

to enforce conformality on the string exchange. As we will show below this

is naturally achieved by extending the string in the holographic direction in

D⊥ = 3 with hyperbolic or AdS curvature.

The ensuing wee-dipole distribution and cross sections in our approach at

strong coupling compare favorably with those obtained using the BFKL resum-

mation kernel at weak coupling. The holographic pomeron in D⊥ = 3 follows

from an effective string theory perhaps of the type advocated by Luscher [45].

While we will use holographic QCD in the form of AdS5 with a hard wall

as a model throughout, a more systematic approach within holography and

following Luscher’s long string arguments may be sought in AdS along the

arguments in [46].

The holographic, strong coupling description allows access to the saturation

regime at small Bjorken x and small momentum transfer and we compare the

holographic dipole-dipole cross section to DIS data from HERA. This leads

to a fit of the t’Hooft coupling λ through the slope of the proton structure

function F2, while the remaining parameters are adjusted to be in reason-

able agreement with QCD expectations. In the kinematical regime present at

HERA, both contributions are of the same order of magnitude and a fit of the

parameters shows the necessity for a confining geometry.

Exclusive diffractive processes such as proton-proton (pp) diffraction and

deeply virtual Compton scattering (DVCS) reveal information about the pro-

ton shape in the transverse plane. The holographic dipole-dipole scattering

model is used to describe pp diffraction and DVCS. At large momentum trans-

fer, the holographic differential pp cross section is sensitive to length scales of

the typical string length which in the confining background is of the order of
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the IR cutoff. To get a better fit on the two parameters concerning the effec-

tive size of the proton and the IR cutoff, we compare the holographic result

for diffractive proton-proton and DVCS cross sections with the data. Other

attempts to use the gauge/gravity duality to describe pp diffraction and DVCS

can be found in [47, 48] and [49–52].

The issue of how entropy is released in hadron-hadron and nucleus-nucleus

collisions is a fundamental problem in the current heavy-ion program at col-

lider energies. How coherence, which is a hallmark of a fundamental collision,

turns to incoherence, which is at the origin of the concept of entropy, is a

theoretical question of central importance. A possible understanding of the

entropy deposition was attempted at weak coupling through the concept of

the color glass approach in classical but perturbative QCD [53–55] and at

strong coupling through the concept of black hole formation in holographic

QCD [56–60].

The evidence of a strongly coupled plasma released at collider energies with

large and prompt entropy deposition and flow suggest that a strong coupling

approach is needed for the mechanism of entropy decomposition. In this way,

the holographic approach with the release of a black hole falling along the

holographic direction provides a plausible mechanism for entropy production.

However, this mechanism is detached from our understanding of fundamental

pp collisions, which are after all the seeds at the origin of the entropy produc-

tion. Here we present an attempt to provide such an understanding.
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Chapter 2

High energy hadronic scattering

In this chapter, we introduce the scattering amplitude in the high energy

(Regge) regime. The energy scaling is characterized by Regge trajectories. The

scattering amplitude is related via the optical theorem to the total cross section

and is dominated by the lowest lying Regge trajectory, the pomeron. We will

give a brief overview of the different approaches towards dipole-dipole scat-

tering in QCD and the formulation of high energy scattering in gauge/gravity

duality.

Experiments on high energy hadronic scattering with small momentum

transfer show a striking feature: the cross section slowly rises with the energy.

Theoretically this imposes a challenge. A description of the scattering pro-

cess through an exchange of known particles fails to describe the data. One

approach is to introduce Regge trajectories. The spectrum of known particles

seems to relate the mass m to the spin j as m2(j) ∼ j, see Figure 2.1. More

generally, we can describe the scattering amplitude through reggeon exchange,

characterized by the Regge trajectory α(t). For soft processes, the trajectory

is characterized by the intercept and the slope.
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2.1 Regge regime

The phenomenology of soft high energy scattering reduces the scattering

problem to the exchange of reggeons. The family of reggeons corresponds to

poles in the complex angular momentum plane of the scattering amplitude.

The scattering process is captured by the the S-matrix, which translates the

initial to the final states,

Sfi = δfi + i(2π)4δ4(pf − pi)Tfi , (2.1)

where pf,i represent the sum of the final and initial momenta respectively. The

transfer or T -matrix is defined through the unitarity of the S-matrix and its

elements relate to the total cross section as

ImTfi = s σtot
fi . (2.2)

For the case of elastic scattering of two particles with incoming momenta

p1, p2 and outgoing momenta p3, p4, the Mandelstam variables are defined as

s = (p1 + p2)
2 = (p3 + p4)

2 and t = (p1 − p3)
2 = (p2 − p4)

2. A partial wave

expansion for the T -matrix in the t-channel with cos θ = 1 + 2s/t reads

Tfi(s, t) =
∞
∑

l=0

(2l + 1)al(t)Pl(cos θ) . (2.3)

Physical bound states are poles in the partial wave amplitude al(k). The sum

is changed into a complex integral, integrating over a contour C including the

real positive axis. Then the spin l is treated as a complex variable and Regge

trajectories are defined through al(k) → a(l, k).

In order to be able to close the contour on the imaginary axis, we have to

introduce a signature factor η. Eq. (2.3) can be rewritten as

Tfi(s, t) =
1

2i

∫

C
dl
2l + 1

sin lπ

∑

η=±1

η + eiπl

2
aη(l, t)Pl(cos θ) . (2.4)

The (Regge) poles on the real positive axis yield the physical states. In the so
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Figure 2.1: Chew-Frautschi plot from [61]. See text.

called Regge regime with s≫ −t ≫ m2, the asymptotics of Pl give

Tfi ∼
η + eiπα(t)

2 sin(πα(t))

sα(t)

Γ(α(t))
. (2.5)

The cross section is dominated by the highest trajectory α(t). In the Regge

regime, the trajectory is defined through the intercept α(0) and the slope α′

as

α(t) = αreggeon + α′t . (2.6)

The physical interpretation of the Regge trajectory α(t) for −t = m2 is that of

the spin j of the particle. This is illustrated for the meson spectrum in Figure

2.1, where the meson masses are plottet against the spin. The trajectory

appears linear and can be fitted with αmeson(0) = 0.55 and α′ = 0.86 GeV −2.

The total cross section (2.2) has an asymptotic high energy behavior that is
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governed by the Regge trajectory (2.6)

σtot(s) ∼ sαreggeon−1 . (2.7)

Describing the interaction by massless spin zero scalar exchange yields σtot ∼
s−1. Massless spin one vector exchange yields σtot ∼ s0 and exchanging spin

two objects leads to a rising cross section σtot ∼ s1.
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2.2 Pomeron

Pomeranchuk [1, 2] noted that any scattering process mediated by charged

particles vanishes at asymptotically high energies. Conversely, Foldy and

Peierls [3] found that when a cross section does not vanish asymptotically,

it must be dominated by the exchange of vacuum quantum numbers. In order

to describe the experimental data which show a slowly rising hadronic cross

section, σtot ∼ s0.08÷0.4, a Regge trajectory with intercept slightly larger than

one, (2.7), that has vacuum quantum numbers is needed. This trajectory is

called the pomeron.

The measured cross sections on hadronic scattering offers the ability to

distinguish two kinematical regimes. The soft pomeron regime with −t > 0

and the hard pomeron regime with −t < 0.

The soft regime is dominated by IR dynamics and needs an essentially non-

perturbative description. We can think of the exchange as being mediated by

glueballs of mass
√−t and spin αP(t). The pomeron trajectory is given by

αPsoft(t) ≃ 1.08− (0.25 GeV −2)t.

At sufficiently high energies the hard pomeron with αPhard ≃ 1.4 dominates

the cross section. It is this UV regime where pQCD approaches are useful.

The connection between the soft and hard pomeron is still elusive.

The approach taken here is using the gauge/gravity duality or holographic

QCD to tackle the problem of hadronic scattering. Although no exact dual

to QCD is known, the underlying field theory described is essentially strongly

coupled and its dynamics are dominated by gauge fields. The pomeron ex-

change is described by string exchange in bulk. The lowest lying string mode,

which is tachyonic, dominates the scattering amplitude and is identified with

the pomeron. The string is bosonic and non-critical with transverse modes

in three dimensional impact parameter space. In the Regge regime, the slice

of the bulk space in which the string is propagating is approximately flat.

Curvature corrections will modify the effective spin and the propagator of the

pomeron. The pomeron described here is non-critical, meaning that the string

12



is long and not highly excited. The explosive pomeron is discussed in [62].

Exponentiating the 1-pomeron exchange allows us to drive the cross section

towards the saturation regime, defining a density of “partons” in the scatterers

at strong coupling.
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2.3 Overview of approaches

2.3.1 Dipole-dipole scattering in QCD

QCD dipole-dipole scattering at large rapidity χ and weak coupling has

been extensively discussed by Mueller and others [30–40]. This approach to

high-energy hadron-hadron scattering was pioneered by Gribov [42, 63]. Typ-

ically, the scattering is viewed as a parent dipole of size a depleting into a

cascade of daughter dipoles (wee-dipoles) and smashing against a similar par-

ent dipole of size a′ for fixed impact parameter b⊥. The onium-onium cross

section in the 1-pomeron BFKL exchange reads [31]

σBKFL
tot (χ) = 2π

λ3/2

N2
c

aa′
e(α

BFKL−1)χ

(4πDBFKL χ)1/2
, (2.8)

with

αBFKL = 1 +
λ

π2
ln 2

DBFKL = 7λζ(3)/(8π2) (2.9)

the BFKL intercept and diffusion constant respectively. ζ is the Riemann zeta

function and λ = g2Nc. The intercept can be understood as a perturbative

series in λ at weak coupling.

2.3.2 Scattering in holographic QCD, AdS/CFT

Within the gauge/gravity duality, hadron-hadron scattering and the holo-

graphic pomeron has been discussed in numerous places, see e.g. [19–28, 64–

71].

The AdS/CFT correspondence has allowed us to approach problems in

field theories similar to QCD at strong coupling. Within this context, there

are two approaches to tackle the problem of high energy scattering:

1. Scattering as an exchange of a classical surface as pioneered in [19, 20].
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2. Exchange of closed string (or other SUGRA fields) in critical D = 10

dimensions using the Virasoro-Shapiro string amplitude, see [27].

We will now briefly discuss the two approaches.

1. The weakly coupled bulk gravity is described by a classical string ac-

tion. The scattering process is described by a minimal surface exchange in

bulk. Finding minimal surfaces in curved space is notoriously hard. One ma-

jor simplification comes from the observation that the dynamics of the gauge

theory on the boudary are dictated by a surface near the confining boundary.

In the Regge regime with t≪ s, this IR region of space is approximately flat.

The scattering amplitude is determined through a saddle point approximation

to the Euclidean path integral. For scattering heavy quarks, the boundary

conditions to the surface are well approximated by Wilson lines/loops and the

surface is helicoidal.

2. While in flat space the critical string scattering amplitude is real, the

effect of curvature will cause it to reggeize with the spin-2 graviton transmut-

ing to a spin-2 glueball. With λ → ∞ and to lowest order in string cou-

pling, the scattering amplitude is dominated by one-graviton exchange and

the dual pomeron in curved space string theory is a closed string graviton. A

confining geometry will induce a mass on the transverse fluctuations of the

metric tensor. These fluctuations are identified with a glueball on the bound-

ary. At finite λ, the pomeron intercept gets curvature corrections and reads

αP(graviton) = 2− 2/λ.

While the surface exchange and the graviton approaches for the strongly

coupled pomeron are similar in spirit, they differ in content. Indeed, in con-

formal AdS the multigraviton interactions are dominant for small dipoles [20],

while in confined AdS gravitons are massive on distance scales of the order

of the confinement scale where the dipole-dipole interaction is dominated by

massless string exchange [24]. In the conformal limit, both approaches appear

similar although with completely different parameters for the pomeron as the
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underlying exchange is different.
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Chapter 3

Holographic pomeron

In this chapter, we will introduce the setup to the problem of hadronic scat-

tering in holographic QCD through dipole-dipole scattering. The scattering

amplitude is formulated in Euclidean space, where the two dipoles, represented

by Wilson loops, are sloped at an angle θ which translates to a rapidity gap χ

when analytically continued to Minkowski space. The two loops are separated

by an impact parameter b⊥. The Wilson loop correlator gives the scattering

amplitude and is calculated for the exchange of long, non-critical strings in

a slice of AdS5, which we first approximate as flat. The longitudinal string

modes generate the pole structure of the correlator while the transverse modes

contribute to the diffusive properties of the string propagator. The loop-loop

correlator is dominated by the lowest lying tachyonic string mode. We will

show that the resulting cross section saturates the Froissart bound.

The diffusive nature of the propagator is used to include curvature corrections

to the amplitude and allows for the definition of a wee-dipole density in a

confined background. This density compares to the BFKL result in the UV

regime. With the dipole density at hand, we will then proceed to describe the

saturation regime in our holographic setup. We study the parameter depen-

dence of the saturation momentum and compare it to phenomenological QCD

approaches.

The Schwinger pair production mechanism used here relies on an electric field

in the T-dual description of the open string. We briefly review the connection
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between the Schwinger mechanism and the Unruh effect. The electric field

stems from the longitudinal string modes and its acceleration induces an Un-

ruh temperature on the string world-sheet. The string action equates to a free

energy and with the Unruh temperature as the local temperature of the field

theory at hand we can identify an entropy associated to the entropy process.

This entropy when expressed in the dynamical degrees of freedom, i.e. the

wee-dipoles, reveals that the ensemble here is neither thermal nor coherent.

Describing the entropy produced in the prompt stage of a collision, we can

identify the time it takes for the entropy to be released.
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3.1 Dipole-dipole scattering

The color dipole approach is useful to address the problem of high energy

scattering. Since the pomeron is an object with vacuum quantum numbers,

the color dipole has the correct degrees of freedom. It allows to connect the

quantum mechanical diffraction process to QCD.

We will now set up the basic formulation for the elastic dipole-dipole scat-

tering amplitude [72–75]. The dipoles are described by Wilson loops and we

seek to express the scattering amplitude in terms of the two loop correlator.

The dynamics are imposed by the impact parameter b⊥, conjugate to the

transferred momentum q⊥ and the rapidity gap χ related to the collisional

energy. We will then use the formulation of the Wilson loop expectation value

in a holographic setup to compute the scattering amplitude.

We recall the scattering-, or S-matrix (2.1), which carries all information about

the scattering of the initial to the final state, being defined as

Sfi = δfi + i(2π)4δ4(pf − pi)Tfi , (3.1)

where pf,i are the sum of the final and initial momenta. At high energies,

the eikonal approximation results in the factorization of the T-matrix and the

matrix elements, i.e. the scattering amplitudes, can be expressed as [73, 76, 77]

T12→34(s,q⊥) = 2is

∫

du1du2 ψ4(u1)ψ3(u1) TDD(χ,q⊥, u1, u2) ψ2(u2)ψ1(u2) ,(3.2)

where ui is related to the transverse size of the dipole element described by

the wave function ψi. The dipole-dipole scattering amplitude is given by

TDD(χ,q⊥, u1, u2) =

∫

dD⊥b⊥ eiq⊥·b⊥ (1− 〈W(C1)W(C2)〉G) (3.3)

≡
∫

dD⊥b⊥ eiq⊥·b⊥ WW , (3.4)

where the integration is taken over theD⊥ dimensional impact parameter space

separating the two diples. We will adapt the normalization 〈W〉 = 1 and focus

only on the connected part of the correlator. The subscript G indicates that
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the expectation value of the Wilson loop correlator is taken over gauge fields.

In QCD this implies that the gluonic flux tube does not break by dynamical

quark-, antiquark pair-production. The Wilson loops are evaluated along the

surfaces C1, C2. Note that in the eikonal approximation, the ultrarelativistic

dipole constituent is a scalar since it moves nearly on the light cone. In (3.3)

we have suppressed a dependence on the individual parton momenta and the

total momentum of the dipole is equally distributed amongst its components.

The size of the dipole is largest when the momentum is unequally distributed

and, hence, we are restricting our analysis to small dipoles [78].

In QCD with massive quarks, each Wilson loop represents a quark-anti-

quark dipole [79, 80] and is defined as

W(C) =
1

Nc
tr
[

P e−ig
∮

dxµAa
µt

a
]

, (3.5)

with the trace evaluated over the color degrees of freedom generated by the

SU(Nc) gauge group generators ta which interact with the strong coupling g.

In a static setup, when two quarks are separated by a distance L, (3.5) yields

the quark-(anti)quark potential V (L)

〈W〉 ∼ e−TV (L) , (3.6)

where the loop is rectangular in Euclidean space with sides T ≪ L.

In a holographic setup with large Nc and large t’Hooft coupling λ the

evaluation of the Wilson loop in the 4d field theory amounts to calculating a

minimal surface in the bulk space with the appropriate boundary conditions

[81, 82]. The Wilson loop is the minimal surface, spanned by a string ending

ending on the boundary of the AdS space. Calculating the renormalized clas-

sical (gravity) action of the string gives the expectation value of the Wilson

loop in the dual gauge theory. The endpoints of the string transform under

the Nc of the gauge group U(Nc). Their mass is inversely proportional to the

distance from the endpoint to the boundary. Thus, a string with the two end-

points at the boundary can be interpreted as two very massive quarks in the

20



field theory and fluctuations of the world-sheet can be treated perturbatively

[83, 84].

Early calculations of the Wilson loop correlator in static setup are found in

[85–87]. The correlator between two circular loops is stable when the distance

separating the loops is of the order of the radius of the individual loops. A

Gross-Ooguri phase transition [86] occurs when the distance is much larger

than the radius; in order to elongate the surface in bulk, supergravity inter-

actions in bulk between the two lumps are needed. In a non-supersymmetric

setup, the potential between two heavy mesons is generated by the exchange

of a “scalarball” [88].

In order to access the scattering amplitude, the boundary conditions for

the Wilson loops change from a static to a dynamic setup. In Euclidean space,

this amounts to changing the angle θ to a non-zero value. This is illustrated

in Figure 3.1. The role of the angle is played by the rapidity interval after

analytic continuation. This will yield an additional contribution to the static

potential, which will be attributed by an ’intrinsic’ entropy in the elastic scat-

tering amplitude.

The problem of finding a minimal surface to the dynamic setup has a long

history. Early approaches [19] attempting to solve for a string world-sheet at

constant time slices yield a reggeized amplitude at large s, but fail to describe

inelastic processes and give a negative pomeron intercept. In [20], a first order

perturbation in the bulk AdS fields is taken into account. The intercept is

purely kinematic, i.e. equal to one for the case of the graviton, as compared

to the QCD expectation s4αsN ln(2)/π.

In this work, we will consider the setup as depicted in Figure 3.1. The

idea is the following: When the dipoles are small compared to the impact

parameter and the rapidity is large, the surface connecting the two dipoles is

highly twisted and can then be approximated by the world-sheet of a string

with the appropriate boundary conditions, see Figure 3.2. The holographic

coordinate scales the momenta of the dipoles [25]. Accordingly, the change

in the holographic, curved coordinate (∆z) from one end of the string to the

other is proportional to the momentum transfer between the dipoles. Thus,

in the Regge regime with
√
s ≫ √−t = q⊥, the string is exchanged in an
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Figure 3.1: Dipole-dipole scattering setup in Euclidean space, see text. Figure
from [24].

approximately flat background. To describe a scattering process in which

a colorless object is exchanged, the string is bosonic and closed. We will

neglect corrections to the tree level approximation as the string coupling will

be assumed to be small. However, we will not limit ourselves to a classical

string configuration but take into account (quantum) oscillations. A similar

idea was put forward more than three decades ago [89].

The problem is set up in Euclidean space and then continued to Minkowski

space. Due to the expected pole structure of the amplitude, the analytic con-

tinuation is by no means trivial. The degree of reliance of the continuation

has been tested on the lattice [90, 91]. After analytic continuation from Eu-

clidean to Minkowski space, the angle θ is transformed to the rapidity interval

χ ≡ χmax + χmin = iθ, which is defined by

cos θ → coshχ ≡ 1√
1− v2

=
s

s0
− 1 , (3.7)

where the parameter s0 is related to the effective transverse scattering mass
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Figure 3.2: Twisted surface connecting the Wilson loops. See text. Figure
from [24].

as s0 = m2
⊥ = m2 + p2⊥.

As a background we will use AdSD⊥+2 with an IR cutoff realized through a

hard wall at some z0. Although the field theory corresponding to this geometry

is not exactly QCD, it captures essential features [44]. The space-time metric

is Euclidean AdSD⊥+2

ds2 =
1

z2

(

(dx0)2 + (dxL)2 + (dx1⊥)
2 + ...+ (dxD⊥−1

⊥ )2 + (dz)2
)

(3.8)

where we have set the AdS radius to one. The IR cutoff is at some z0, i.e.

0 ≤ z ≤ z0. The dipoles of size a,a′ are placed placed at the boundary z = 0.

The ’1-loop’ effective action yields the Wilson loop correlator

WW = g2s

∫ ∞

0

dT

2T
K(T ) . (3.9)
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The closed string is parametrized by one parameter, the modulus (’circumfer-

ence’) T . The factor g2s in (3.9) comes from the genus of the string configuration

compared to the disconnected configuration. The string propagator reads

K(T ) =

∫

T

d[x] e−S[x]+ghosts . (3.10)

For closed, long strings with the interaction between the strings neglegible,

the effective string action is the Polyakov action

S =
σT
2

∫ T

0

dτ

∫ 1

0

dσ
(

ẋµẋµ + x′µx′µ
)

(3.11)

with ẋ = ∂τx and x′ = ∂σx and string tension σT . We have made the following

gauge choice for the world-sheet metric hab = δab .

The string xµ(τ, σ) is closed

xµ(T, σ) = xµ(0, σ) (3.12)

and attaches to the dipole surfaces

cos(θ/2)x1(τ, 0) + sin(θ/2)x0(τ, 0) = 0 (3.13)

cos(θ/2)x1(τ, 1)− sin(θ/2)x0(τ, 1) = 0 . (3.14)

We already see that the freedom in moving the intersection point of the string

world-sheet with the dipole surfaces of width a, a′ yields a factor aa′ in the

collelator, (3.9), (3.10).
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3.2 Wilson loop correlator

The world-sheet is twisted in the x0, x1 coordinates

(

x0

x1

)

=

(

cos θσ − sin θσ

sin θσ cos θσ

)(

x̃0

x̃1

)

(3.15)

with θσ = θ(2σ − 1). This twist (rotation) in Euclidean space corresponds to

a Lorentz boost in the longitudinal direction after analytic continuation.

We can now evaluate the Wilson loop correlator by solving for the bosonic

string world-sheet with Neumann boundary conditions for x̃0 and Dirichlet

boundary conditions for x̃1. The Polyakov action is quadratic in the untwisted

coordinates and the solutions can be parametrized as

x̃0(τ, σ) =
+∞
∑

m=−∞

+∞
∑

n=0

x0mne
2πimτ/T cos(πnσ) (3.16)

x̃1(τ, σ) =

+∞
∑

m=−∞

+∞
∑

n=0

x1mne
2πimτ/T sin(πnσ) . (3.17)

Note that the temporal component has a non-vanishing ground state similar

to a zero mode

x̃0ZM(τ, σ) ≡
+∞
∑

m=−∞
x0m0e

2πimτ/T . (3.18)

The transverse, untwisted coordinates are periodic with Dirichlet boundary

conditions

x⊥(τ, σ) = −b⊥(1− 2σ)/2 +

+∞
∑

m=−∞

+∞
∑

n=0

x⊥mne
2πimτ/T sin(πnσ) . (3.19)

Since the action is quadratic, the propagator (3.10) factorizes as

K = K0L ×K∅L ×K⊥ ×Kghost , (3.20)
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with the individual contributions K0L, K∅L from the longitudinal zero/non-

zero modes, and K⊥ the contribution from the ⊥-modes. Due to the gauge

choice for the string world-sheet metric, the propagator gets the ghost contri-

bution Kghost.

The solutions are straight forward [24]. The contributions from the longi-

tudinal modes reads

K0L(T ) = (2 sinh(θT/2))−1 (3.21)

and

K∅L(T ) =
∞
∏

n=1

∏

s=±1

(2 sinh((n+ sθ/π)πT/2))−1 . (3.22)

The transverse part of the propagator is given by

K⊥ = e−σb2

⊥
T/2 η−D⊥(iT/2) (3.23)

with the Dedekind eta function

η(τ) ≡ q1/24
∏

n

(1− qn) (3.24)

and q ≡ e2πiτ . The ghost contribution to the propagator is given by

Kghost(T ) =
∞
∏

n=1

4 sinh2(nπT/2) . (3.25)

We can now analytically continue from Euclidean to Minkowski space by

letting θ → −iχ. The loop-loop correlator then reads

WW = g2s

∫ ∞

0

dT

2T
K(T ) (3.26)

=
ig2saa

′

4α′

∫ ∞

0

dT

T

1

sin(χT/2)
∞
∏

n=1

∏

s=±1

sinh(nπT/2)

sinh((nπ + isχ)T/2)
η−D⊥(iT/2)e−b2

⊥
T/4πα′

. (3.27)
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For χ → ∞, we see that the longitudinal zero modes are responsible for the

poles along the real T -axis. Picking up the residues at the positive poles

T = 2πk/χ, (3.27) equates to

WW =
g2saa

′

4α′

kmax
∑

k=1

(−1)k

k
η−D⊥(iπk/χ)e−kb2

⊥
/2α′χ . (3.28)

Using

η−D⊥(iπk/χ) =

(

πk

χ

)D⊥/2

eD⊥χ/12k

∞
∏

n=1

(

1− e−2χn/k
)−D⊥

(3.29)

=

(

πk

χ

)D⊥/2 ∞
∑

n=0

d(n)e−2χn/k , (3.30)

we can rewrite the Wilson loop correlator as

WW =
g2saa

′

4α′

kmax
∑

k=1

∞
∑

n=0

(−1)k

k

(

πk

χ

)D⊥/2

d(n)e−kb2

⊥
/2α′χ+χD⊥/12k−2χn/k .(3.31)

For large n [92] the density of string state d(n) rises exponentially

d(n) ∼ e2π
√

D⊥n/6

nD⊥/4
. (3.32)

The correlator (3.28) is dominated by the lowest transverse mode, n = 0. The

poles are at different winding k, which is interpreted as the N-ality. Since

dipoles of representation kmax can only exchange strings of k ≤ kmax, the

sum over the N-alities is bounded. The action for a k-string is the same as

overlapping k (k = 1)-strings. This is expected from large N QCD, where each

source is screened by gluons. For long strings, the only information about the

sources of the string that enters the Wilson loop is the N-ality [93]. We will

now make a further connection to large N QCD with gauge group SU(Nc) by

considering only strings that are stable and thus have kmax = [Nc/2], where

[Nc/2] is defined as Nc/2 if Nc even and Nc/2+ 1/2 if Nc odd. For QCD with

Nc = 3, this limits the exchange to k = 1, 2 strings.
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3.3 Scattering amplitude, cross section and the

Froissart bound

The Froissart bound [94] gives the maximum scaling of the cross section

allowed by unitarity (and analyticity) as

σtot ≤ const. ln2s ∼ χ2 . (3.33)

We will now show that the cross section (3.36) indeed saturates the Froissart

bound.

Combining (3.4) and (3.28), the dipole-dipole scattering amplitude correspond-

ing to 1-reggeon exchange reads

TDD = 2is

∫

dD⊥b⊥ eiq⊥·b⊥
g2saa

′

4α′

kmax
∑

k=1

∞
∑

n=0

(−1)k

k

(

πk

χ

)D⊥/2

d(n)e−kb2

⊥
/2α′χ+χD⊥/12k−2χn/k .(3.34)

This is divergent as s→ ∞ and violates the unitarity bound on the S-matrix

elements. Neglecting the reggeon-reggeon interaction, unitarity is restored by

exponentiating the 1-reggeon exchange,

TDD = 2is

∫

dD⊥b⊥ eiq⊥·b⊥

(

1− eWW
)

, (3.35)

which yields via the optical theorem

σtot(s) = 2

∫

dD⊥b⊥
(

1− eWW
)

. (3.36)

For s→ ∞ the loop-loop correlator becomes neglegible for b⊥ ≥ bmax and

the cross section (3.33) is neglegible for impact parameters larger than

b2
max =

D⊥α
′

6
χ2 . (3.37)

In this regime, we expect the cross section to be dominated by the geometry
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of the scatterers. At very high energies and impact parameters large enough

to neglect the microscopic structure of the scatterers, we expect the dipoles to

appear as ’black disks’. Indeed, (3.36) yields

σtot(s) ≃ 2

∫ bmax

dD⊥b⊥ = 2πb2
max =

D⊥πα′

3
χ2 , (3.38)

which nicely illustrates how the unitarization of the multi pomeron exchange

saturates the Froissart bound (3.33) in D⊥ = 2.
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3.4 Gribov Diffusion

Gribov diffusion [42, 95] reconciles the partonic picture with the non-

perturbative aspects of hadronic interactions at high energies. The assumption

is that hadronic interactions at strong coupling are the result of parton emis-

sion. Each emission changes the rapidity of the emitting parton, which results

in a diffusive motion for the partons in impact parameter space. The difference

in rapidities at the initial and following point in space mimics the diffusion

time. The spread in impact parameter space results in a spread in momenta.

The higher the energies, the ’broader’ the diffusive regime and lower momenta

start to become important. At large momentum, the hadron is Lorentz con-

tracted and its effective volume grows with ln(s), compare (4.14), while the

number of partons scales with the momentum as s#, compare (3.66). At higher

and higher energies, the wave functions of the partons overlap and the prob-

ability to recombine balances the production. The scattering objects become

’black disks’. Gribov anticipated that this should result in a constant total

cross section for all hadronic interactions.

We will now show that the string exchange picture naturally leads to a

diffusive process reminiscent of Gribov diffusion in which the long string dif-

fuses in rapidity through the impact parameter space. The diffusion constant

will be related to the t’Hooft coupling λ. We will then motivate a wee-dipole

density and show that it compares to the QCD BFKL expectation.

The Wilson loop correlator (3.31) and, hence, the scattering amplitude is

dominated by the tachyonic n = 0 contribution. This n = 0 mode corresponds

to the interacting pomeron. We can rewrite (3.28) as

WW ≈ g2s
4

(

π

σT

)D⊥/2 kmax
∑

k=1

(−1)k

k

aa′

α′ Kk(χ,b⊥) . (3.39)
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The emerging propagator at the poles,

Kk(χ,b⊥) =

(

k

2πα′ χ

)D⊥/2

e−kb2

⊥
/2χα′+D⊥χ/12k (3.40)

satisfies a diffusion equation in flat space

(

∂χ − D⊥
12k

)

Kk(χ,b⊥) = Dk ∇2
⊥Kk(χ,b⊥) , (3.41)

with the diffusion constant Dk = α′/2k. The effects of curvature will become

apparent at intermediate b⊥ and are discussed below.

For long strings, the diffusion propagator (3.40) emerges as the natural

version of the periodic string propagator in the diffusive regime b⊥ ∼ √
χα′.

We note that (3.41) is just the proper time evolution of the tachyonic string

mode

(

∂T⊥
+ (M2

0 −∇2
⊥)
)

Kk(T⊥,M,b⊥) = 0 (3.42)

after the identification T⊥ = Dkχ. The tachyonic mass follows from the har-

monic string spectrum

M2
n =

4

α′

(

n− D⊥
24

)

→ −D⊥
6α′ . (3.43)

The occurence of (3.42) is naturally explained by noting that the dominant

contribution to the closed string propagator in (3.9) stems from short proper

times T⊥ = 2πk/χ < 1 [24]. We will show in section 3.7 that T⊥ is the period of

the open string exchange by T-duality. So T⊥ = 1/(b⊥TU) effectively plays the

role of a ‘temperature’ for the open string. Indeed explicit arguments in [24]

show that TU ≈ χ/2πb⊥ > 1 acts as an Unruh temperature on the open string

world-sheet after properly identifying the induced longitudinal electric field

at the origin of this phenomenon. The Unruh temperature is high enough to

yield a dimensional reduction of the open string from D to D⊥ dimensions.

On the other hand, it is lower than the Hagedorn temperature for long and
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non-critical strings and forces the the dominant string mode to be the ground

state, the tachyon. Much like the heavy-quark string dimensionally reduces

and diffuses at finite and real temperature [96], so does the holographic string

under the effect of TU . This analogy provides a physically novel interpretation

of Gribov’s wee parton diffusion [42] in the context of the pomeron exchange.

We now relax the condition of large b⊥/
√
α′ and allow for curvature cor-

rections on the ⊥-modes. We focus on the dominant mode with N-ality k = 1,

as higher order modes are exponentially suppressed. In our holographic setup,

the curved coordinate z, compare (3.49), is inversely proportional to the mo-

mentum transfer q⊥. This allows us to evolve the scattering amplitude in the

transferred momentum. However, no exact string solution to the equation of

motion in AdS5 is known. Although the exact form of the string propagator

in curved AdS5 space is unknown, we expect the longitudinal pole structure

leading to the reduction (3.20) to remain unchanged since it follows from short

proper times i.e. T ∼ 1/χ < 1, which are insensitive to curvature. On dimen-

sional grounds, the diffusion constant will be the same as in the flat case. Since

χ > 1 we still expect a reduction of the tachyonic string to transverse space,

which is curved on the diffusion time scale. Tachyon diffusion in curved space

follows through

(

∂T⊥
+ (M2

0 − 1√
g⊥
∂µ g

µν
⊥
√
g⊥ ∂ν)

)

∆⊥(x⊥, x
′
⊥) = 0 , (3.44)

where we have suppressed T⊥,M to alleviate the notation. The metric g⊥ in

(3.44) is that of the transverse space with positive signature. Eq. (3.44) is the

curved space generalization of (3.42). Below we show how the curved diffusion

propagator ∆⊥ can be substituted for Kk to generalize (3.39) to curved AdS.

In general x⊥ is an arbitrary point in D⊥. In hyperbolic AdS type spaces it

is useful to separate x⊥ = (x, z) with z along the holographic direction and x

in the 2-dimensional physical space for D⊥ = 3 for instance with diffusion in

AdS3. The formal solution to (3.44) reads

∆⊥(x⊥, x
′
⊥) =< x⊥| e−T⊥(M2

0
−∇2

C)|x′⊥ > , (3.45)
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with ∇2
C the curved Laplacian in (3.44) and T⊥ = Dχ ≫ 1 for k = 1. The

transverse evolution propagator ∆⊥ in (3.45) ties to the tachyon propagator

G(j)

< x⊥|G(j) ≡
(

j + (M2
0 −∇2

C)
)−1 |x′⊥ > (3.46)

through an inverse Mellin transform

∆⊥ =

∫

C

dj

2iπ
ejT⊥ G(j) , (3.47)

with C a pertinent contour in the complex j-plane at the rightmost of all

singularities. The tachyon propagator in (3.46) obeys the curved equation

(

j + (M2
0 −∇2

C)
)

G(j, x⊥, x
′
⊥) =

1√
g
δD⊥

(x⊥ − x′⊥) . (3.48)

A similar propagator was noted in [27] starting from the graviton using the

critical closed string scattering amplitude in 10 dimensions.

3.4.1 Conformal

In transverse hyperbolic space AdSD⊥
with metric

ds2 =
1

z2

(

(dx1⊥)
2 + ... + (dxD⊥−1

⊥ )2 + (dz)2
)

(3.49)

all length scales are measured in units of the AdS radius which is set to 1, and

reinstated at the end by inspection. The propagator for a scalar field is given

by [85, 97]

GD⊥odd(j, ξ) =
1

4π

(

−1

2π sinh(ξ) d
dξ

)m−1
e−νξ

sinh(ξ)
(3.50)
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for D⊥ = 2m+ 1 and

GD⊥even(j, ξ) =
1

2π

(

−1

2π sinh(ξ) d
dξ

)m

Qν−1/2(cosh(ξ)) (3.51)

for D⊥ = 2m with

ν2 = j − j0

j0 = −M2
0 − (D⊥ − 1)2/4 . (3.52)

Q is a Legendre function of the second kind. The chordal distance ξ is defined

through

cosh ξ = 1 + d = 1 +
b2
⊥ + (z − z′)2

2zz′
, (3.53)

which gives for
b2

⊥

2zz′
≫ 1

ξ ∼ ln

(

b2
⊥
zz′

)

, sinh(ξ) ∼ b2
⊥

2zz′
. (3.54)

For D⊥ = 3, inserting the conformal propagator (3.50) in (3.47) yields the

conformal evolution kernel

∆⊥(χ, ξ) =
ej0Dχ

(4πDχ)3/2
ξe−

ξ2

4Dχ

sinh(ξ)
, (3.55)

with the diffusion constant D = α′/2 = 1/(2
√
λ) for conformal AdS3, after

restricting the N-ality to k = 1. This heat kernel was obtained in [98] using

a group theoretical approach. Equation (3.55) shows that in conformal AdS3,

the tachyon mode of the bosonic string diffuses in hyperbolic space along the

chordal distance as measured by ξ2 which is about twice the geometric dis-

tance for small displacement, i.e. ξ2 ≈ 2d≪ 1. Again the rapidity χ plays the

role of time.
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3.4.2 Confining

Confinement in AdS is captured in a simplified way by the hard-wall model,

whereby only a slice of the AdS space is considered with 0 ≤ z ≤ z0 and

z0 ≈ 1/Λ setting up the confinement scale [26]. In this case, all scales are

set by z0 implicitly in the intermediate expressions and explicitly in the final

ones. We note that in the hard wall model we still use the identification

α′ ≡ l2s/z
2
0 ≡

√
λ.

To simplify the analysis for the curved diffusion, we define the total wee-

dipole density N = ∆/(zz′)D⊥−2. Since the scattering amplitude is symmetric

under the interchange of the two dipoles and we are going to identify z, z′ with

the effective size of the dipoles, the correct rescaling of N is by powers of zz′.

Using the conformal variable u = −ln(z/z0), the diffusion equation for the

dipole density reads

(

∂T⊥
+ (M2

0 +D⊥ − 2)− ∂2u − e2u∇2
b⊥

)

N = 0 . (3.56)

The proper time evolution of N in AdS amounts to a transport or diffusion

equation with the initial condition

N(T⊥ = 0, u, u′,b⊥) = δ(u− u′)δ(b⊥) (3.57)

as one-dipole per unit area in the transverse b⊥.

The boundary condition for solving (3.56) follows from the conservation of

the diffusion charge in the slab 0 ≤ z ≤ z0 or 0 ≤ u ≤ ∞,

d

dT⊥

∫

du db⊥ e
T⊥(M2

0
+D⊥−2)N =

∫

db⊥e
T⊥(M2

0
+D⊥−2) ∂u=0N , (3.58)

assuming that the diffusion current vanishes at b⊥ = ∞ and at u = ∞ (UV

boundary) as no holographic source is subsumed. Thus, the Neumann bound-

ary condition
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∂u=0N = 0 (3.59)

enforces that the (singlet) wee-dipole current does not leak in the infrared at

z = z0. As a result

∫

du db⊥ e
T⊥(M2

0
+D⊥−2)N ≡ 1 (3.60)

is fixed both in the conformal and confining case. Other boundary conditions

on the wall, e.g. absorptive or mixed, will result in wee-dipole current loss in

the infrared or confining region, with (3.60) less than 1.

The solution to (3.56) subject to (3.57-3.59) is readily obtained by the

image method for the current conserving Neumann boundary condition

N(T⊥, u, u
′,b⊥) =

1

z20
eu

′+u∆(χ, ξ) +
1

z20
eu

′−u∆(χ, ξ∗) (3.61)

=
1

zz′
∆(χ, ξ) +

z

z′z20
∆(χ, ξ∗) , (3.62)

with the conformal solution (3.55) for ∆(χ, ξ). The invariance of the inter-

change of the two dipoles in the conformal case gets affected in the confining

contribution (second part of (3.62)). The chordal distances follow from (3.53)

as

coshξ = cosh(u′ − u) +
1

2
b2
⊥ e

u′+u (3.63)

coshξ∗ = cosh(u′ + u) +
1

2
b2
⊥e

u′−u , (3.64)

with −u the image of u with respect to the holographic wall at u = 0.
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3.4.3 Wee-Dipole Density

N obeys a Markovian type chain rule

∫

du”db⊥” N(T⊥ − T⊥”, u, u”,b⊥ − b⊥”)×N(T⊥”− T ′
⊥, u”, u

′,b⊥”− b′
⊥)

= N(T⊥ − T ′
⊥, u, u

′,b⊥ − b′
⊥) , (3.65)

which follows readily from the diffusion evolution kernel as a propagator in

rapidity space. Equation (3.65) suggests a Weizsaecker-Williams analogy for

the virtual dipole field surrounding each of the initial projectile and target

dipole. Thus, the total number of wee-dipoles either in the target or the

projectile follows from the normalization

N
wee

=

∫

du db⊥N = e−T⊥(M2

0
+D⊥−2) ≡ (s/s0)

αP−1 (3.66)

with the 1/
√
λ corrected intercept

αP = 1 +
D⊥
12

− (D⊥ − 1)2

8
√
λ

(3.67)

for D⊥ = 3. N is interpreted as the density of wee-dipoles of scale u at a

transverse distance b⊥ sourced by a dipole of scale u′ located at b′
⊥ = 0.

Their total number or multiplicity is given by (3.66) and grows exponentially

with the rapidity. This growth is at the origin of the violation of unitarity

in the scattering amplitude. Here it is tamed by the eikonalized amplitude

whereby a class of 1/Nc corrections are resummed.

Using the chain rule (3.65) and the dipole density (3.62), we obtain the

asymptotic dipole density

N(χ, z, z′,b⊥) ≈ 2
e(αP−1)χ

(4πDχ)3/2
z

z′b2
⊥
ln

(

b2
⊥
zz′

)

e
−ln2

(

b
2

⊥

zz′

)

/(4Dχ)
(3.68)

in the conformal case and in the limit
b2

⊥

2zz′
≫ 1. The analogue of (3.68) in the
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Figure 3.3: Holographic wee-dipole spatial distributions for z = z′ =
1.8GeV −1 and χ = 10. Confining density in (3.62): solid curve; asymptotic
density in (3.68): dashed curve. See text.

context of onium-onium scattering was discussed in [31–33]. In particular, in

the BFKL 1-pomeron approximation it is given by [31]

NBFKL(χ, z, z′,b⊥) ≈ 2
e(α

BFKL−1)χ

(4πDBFKLχ)3/2
z

z′b2
⊥
ln

(

b2
⊥
zz′

)

e
−ln2

(

b
2

⊥

zz′

)

/(4DBFKL χ)
,

(3.69)

with the BFKL intercept αBFKL and diffusion constantDBFKL, see (2.9). Mod-

ulo the pomeron intercept and the diffusion constant, which are different (weak

coupling or BFKL versus strong coupling or holography), the holographic re-

sult in the conformal limit is identical to the BFKL 1-pomeron approximation.

Again, the occurrence of the 3/2 exponent reflects on diffusion in D⊥ = 3

as noted earlier. It is remarkable that the BFKL resummation of perturba-

tive QCD diagrams is encoded in the stringy Schwinger mechanism discussed

in [24], albeit in hyperbolic space.

Figure 3.3 shows the distribution of the holographic wee-dipole density

(3.62) in solid line versus b⊥ for z = z′ = 1.8GeV −1 and χ = 10. The dashed

curve is the asymptotic distribution (3.68). Figure 3.4 shows the distribution
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Figure 3.4: BFKL wee-dipole spatial distributions for z = z′ = 1.8GeV −1 and
χ = 10. BFKL density (3.69): solid curve; improved BFKL density: dashed
curve. See text.

of the BFKL wee-dipole density (3.69) (solid line) versus b⊥/
√
zz′ for also

z = z′ = 1.8GeV −1 and χ = 10. The dashed curve is the improved BFKL

result in [38]. The latter follows from (3.69) by inserting a factor of 16 in

the argument of the logarithm which corresponds to scaling down the BFKL

distribution by a factor of 4 along the b⊥/
√
zz′ axis. The holographic results

use: D = 0.10 and αP−1 = 0.146, while the BFKL results use: DBFKL = 0.72

and αP − 1 = 0.477 with λ = 23. Both the holographic and the improved

distributions are less skewed and more centered. The holographic distribution

is less spread than the improved BFKL distribution in b⊥, therefore, less

infrared sensitive.
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3.5 Saturation

In the high energy limit, the total hadronic cross section reaches the unitar-

ity limit. In QCD, this is attributed to the saturation of the scattering objects,

leading to a saturation of the scattering amplitudes. We can explain this in

the partonic picture, using the example of deep inelastic scattering (DIS), i.e.

the process γ∗p → X . There are two parameters describing this process, see

Figure 3.5.

1/ The momentum Q of the virtual photon scanning the proton measures

the resolution. In pQCD, resolving the partons with higher momentum trans-

fer is done using DGLAP [95, 99, 100].

2/ Bjorken x is the fraction of the momentum carried by the parton struck

by the virtual photon. x is related to the center of mass energy by s = Q2/x

and the rapidity relates to x as Y = ln(1/x). An increase in s increases the

rapidity gap. This leads to a decrease in the momentum fraction carried by

partons and, thus, an effective increase in the number of partons per unit

volume. As the volume of the hardon increases slower (∼ ln(s), (4.15)) than

the number of partons (∼ sαP−1, (3.66)) in it, the partonic wave functions

will eventually overlap and the hadron will become “black”. The approach to-

wards the unitarity bound interpreted as an overlapping of partons and hence

blackening of the nucleus is called saturation. The saturation momentum Qs,

compare dashed line in Figure 3.5, is the typical parton momentum at high

energies and yields the average volume of the parton occupied in the hadron.

One approach towards the evolution of the scattering amplitude in rapidity is

the BFKL approach [7, 8]. Once unitarity corrections become important, this

approach has to be modified, leading to the BK equations [101–103].

Saturation in the context of holographic models was also discussed recently

in [66, 67] using different arguments. The arguments presented in [66, 67] are

based on the Virasoro-Shapiro amplitude in 10 dimensions [25, 26]. As we

noted above this construction is far from the pomeron kinematics in confining
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Figure 3.5: Saturation picture of a hadron. From [104].

geometries with massive glueballs. The saturation analysis in [68, 69] makes

use of an Euclidean surface that does not contain the stringy Schwinger mech-

anism with an essential singularity in the limit of a zero rapidity gap. The

surface exchanges in [21–24] do. A more model dependent approach to satura-

tion through the use of a black disk approximation for the dipole-dipole cross

section in transverse AdS was recently discussed in [71].

In the holographic approach taken here, we make a connection between the

following two pictures: The strong coupling (pomeron exchange) dynamics in

hadronic scattering on the one hand and the partonic picture of the scattering

object where the partons are identified as the wee-dipoles on the other hand.

In curved space the holographic picture suggests the identification of the

holographic direction with the effective size of the scatterer [25, 26, 105, 106].

We now suggest that dipole-dipole scattering in holography can be thought of

as scattering a wee-dipole cloud of virtuality 1/z onto a wee-dipole cloud of

virtuality 1/z′. This leads to the concept of dipole saturation as first discussed

in [9].
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For D⊥ = 3, we identify

aa′

α′ Kk(χ,b⊥) → zz′ N(χ, z, z′,b⊥) . (3.70)

In terms of (3.70), the leading (k = 1) contribution to (3.9) in a curved AdS

background reads

WW ≈ −g
2
s

4
(2πα′)3/2 zz′ N(χ, z, z′,b⊥) . (3.71)

The differential dipole-dipole cross section at finite impact parameter is then [24]

d4σtot
dudu′db⊥

= 2
(

1− eWW
)

. (3.72)

Assuming that the target is a proton with a dipole wave function peaked

at some fixed virtuality corresponding to uT, i.e. ϕT(u
′) = δ(u′ − uT), (3.72)

averaged over a target wave function reads

d3σtot
du db⊥

≈ 2
(

1− e〈WW〉) , (3.73)

with only the first cumulant retained and

〈WW〉 =
∫

dz ϕT(z)WW . (3.74)

Higher cumulants are suppressed by higher powers of g2s ≈ 1/N2
c . This amounts

to z′ → zT in (3.71).

Equation (3.73) suggests the definition of the saturation momentum Qs

from

d3σtot
dus db⊥

≡ 2
(

1− e−zsQs/(2
√
2)
)

, (3.75)

with Qs ≡ −2
√
2 〈WW〉 /zs fixed by the saturating dipole size zs =

√
2/Qs.

This saturating behavior is illustrated in Figure 3.6. This is the canonical

choice for which
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Figure 3.6: Saturating behavior of the dipole-dipole cross section, (3.73), at
χ = 15 for fixed b⊥ = 2GeV −1. (WWpoles ≡ WW). See text.

(

1− e−zsQs/(2
√
2)
)

→
(

1− e−1/2
)

≈ 0.4 , (3.76)

leading to a scattering amplitude of order 1. The saturation momentum follows

from the transcendental equation

zs√
2
Qs(χ,b⊥) =

g2s
2
(2πα′)

3/2
zszTN(χ, zs, zT,b⊥) = 1 . (3.77)

Saturation takes place whenever the dipole density N ∼ N2
c /λ

5

4 > 1 in

(hard wall) holography. This is comparable to perturbative QCD with N ∼
N2

c /λ > 1. As the dipole density N(χ, zs, zT,b⊥) is peaked around some finite

zs for fixed χ, zT,b⊥, the solution to (3.77) has in general two solutions. To

make them explicit, we now need to detail the holographic parameters.

Our set of dimensionless holographic parameters consists of: D⊥ = 3,

Nc = 3, λ = 23 and κ = 2.5. The choice of λ is fixed by the F2 slope

in comparison to the DIS data, see section 4.1. The value of κ is fixed by

the saturation scale, see below. Since λ = g2Nc, the Yang-Mills coupling is
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Figure 3.7: Illustration of the solutions to (3.77) with b2
⊥ = 0 GeV −2 (black,

solid), b2
⊥ = 1 GeV −2 (black, dashed) and b2

⊥ = 3 GeV −2 (red) at χ = 8. See
text.

g2/4π = 0.6, which is on the strong coupling side.

We note that although the original string coupling is small, i.e. λ/4πNc =

0.6 < 1 as required by holography, the physical value of Nc < λ is at odds

with the holographic and strong coupling limit. This notwithstanding, our

corrected soft pomeron intercept is

αP − 1 =
1

4
− 1

2
√
λ
= 0.146 . (3.78)

Although this numerical value is on the higher side of the pp scattering data

of 0.08, it only refers to the bare soft pomeron intercept which is likely to

decrease through multipomeron resummation.

Our set of dimensionfull holographic parameters consists of: z0 = 2 GeV −1,

zT = 1.8 GeV −1, s0 = 10−1 GeV 2, which are set close to the confining scale in

QCD. We kinematically translate the rapidity through

χ = ln

(

s

s0

)

≡ ln

(

Q2

s0

(

1

x
− 1

))

(3.79)
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using the DIS kinematics (see below). For fixed χ = 5 and zT = 2 and varying

b⊥, an illustration of (3.77) is shown in Figure 3.7, using these parameters.

The numerical dependence of the slope in Figure 3.7 near the origin (small

zs/z0) is linear.

3.5.1 Conformal

In the conformal limit, the dipole density is explicit, giving the implicit

saturation density

Qs(χ,b⊥) =
g2s√
2
(2πα′)

3/2 1

zs

e(αP−1)χ

(4πDχ)3/2
ξe−

ξ2

4Dχ

sinh(ξ)
. (3.80)

For large transverse separation
b2

⊥

2zszT
≫ 1, (3.80) defines a dipole density in

the transverse coordinate

Qs(χ,b⊥) ≈
√
2g2s (2πα

′)3/2
e(αP−1)χ

(4πDχ)3/2
zT
b2
⊥
ln

(

b2
⊥

zszT

)

e
−ln2

(

b
2

⊥

zszT

)

/(4Dχ)
.

(3.81)

The large χ = ln (s/s0) > 1 exponential asymptotics of (3.80-3.81) have two

solutions, say zs1 < zs2. Only the small dipole solution zs1 is retained in the

conformal case, as the large dipole solution zs2 is deep in the infrared and

unphysical. In the confined case, it is naturally cutoff by the wall, see below.

With this in mind and to leading exponential accuracy

Qs(χ,b⊥) ≈
zT
b2
⊥
e
2Dχ

(√
1+(αP−1)/D−1

)

. (3.82)

At large
√
λ
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Figure 3.8: x-dependence of the saturation momentum (3.86). Black, solid:
b2
⊥ = 0 GeV −2. Black, dashed: b2

⊥ = 1 GeV −2. Dashed red curve: saturation
momentum in the conformal limit, (3.80), with b2

⊥ = 1 GeV −2. The dashed
dotted blue curve is the GBW saturation momentum from (3.85). See text.

Qs(χ,b⊥) ≈
zT
b2
⊥

(

1

x

)

√
D⊥/6

√
λ

, (3.83)

illustrating the smallness of the exponent. For the parameters used above,

(3.82) reads

Qs(χ,b⊥) ≈
zT
b2
⊥

(

1

x

)0.228/2

. (3.84)

An early phenomenological approach to describe DIS data at HERA by Golec-

Biernat and Wuesthoff (GBW) in [41], defines the saturation momentum as

QGBW

s (x) =
(x0
x

)Λ/2

GeV . (3.85)

HERA data are fitted with x0 = 3.04 10−4 and Λ = 0.288. Note that the

GBW saturation momentum corresponds to the substitution zsQs/(2
√
2) →
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Figure 3.9: Impact parameter dependence of the saturation momentum (3.86).
Upper curve (black, solid): χ = 5, lower curve (black, dashed): χ = 8. Lowest
curve (red, dashed): Saturation momentum in the conformal limit, (3.80),
χ = 8. See text.

(zsQ
GBW
s /2)2 in (3.75). While the magnitude of the saturation momentum

in our holographic approach can be adjusted by tuning κ, we find that the

x−dependence of the saturation momentum, (3.84), agrees well with the phe-

nomenological fit in (3.85) as shown in Figure 3.8.

3.5.2 Confining

The identification (3.70) carries over to the confining case. The saturation

momentum follows from the transcendental equation

Qs(χ,b⊥) =
g2s
2
(2πα′)

3/2 e(αP−1)χ

(4πDχ)3/2

( 1

zs

ξe−
ξ2

4Dχ

sinh(ξ)
+
zs
z20

ξ∗e
− ξ2∗

4Dχ

sinh(ξ∗)

)

. (3.86)

The x-dependence of the saturation momentum (3.80), (3.86) is shown in Fig-

ure 3.8. Figure 3.9 shows the relevant solution (zs ≤ z0) for the saturation

momentum. Note the slow dependence of the holographic saturation momen-

tum on the longitudinal energy in the range ln(1/x) ≤ 12. Also note the

non-trivial dependence on the impact parameter in the scattering amplitude

or Qs as opposed to a factorization approach done in most saturation and
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color glass-condensate models, compare [107] and references within.
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3.6 Stringy Instanton

We will now explain the factor ekb
2

⊥
/2χα′

in the amplitude (3.34), which

drives the Regge behavior [24]. The kth contribution comes from the poles

and the pole structure originates from the twist in the longitudinal modes. We

will show that the rapidity triggers an electric field acting on the end points

of the open string. This is the expected instanton in the pair creation process

of the Schwinger mechanism.

We will now employ T-duality along the direction x1 by setting

∂τx
1 = ∂σy

1 (3.87)

∂σx
1 = ∂τy

1 . (3.88)

In terms of the coordinate y1, we can write the boundary conditions (3.14)

as a boundary term into the action. In Euclidean and T-dual form [24] the

Polyakov string action (3.11) now reads

S =
σT
2

∫ T

0

dτ

∫ 1

0

dσ
(

(∂x0)2 + (∂y1)2 + (∂x⊥)2
)

+
E

2

∫ T

0

dτ
(

y1∂τx
0 − x0∂τy

1
)

∣

∣

∣

∣

σ=0,1

, (3.89)

with

E = F01 = σT tanh(χ/2) (3.90)

a longitudinal electric field along the y1 direction.

The semiclassical extrema of (3.89) can be labeled by k > 0. They follow

from the saddle points of (3.89) along T and the world-sheet fields. Explicitly,

for x⊥ = b⊥ σ

x0 = R(σ) cos(2πkτ/T ) , y1 = R(σ) sin(2πkτ/T ) , (3.91)
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with

R(σ) = (b⊥/χ) cosh (χ (σ − 1/2)) . (3.92)

The saddle point of (3.89) along the T direction is algebraic, giving T = 2πk/χ.

A similar world-sheet instanton for D-brane scattering was discussed in [108].

The on-shell action (3.89) now becomes

S = σT 2πk
b2
⊥

2χ
=
kb2

⊥
2χα′ (3.93)

which reproduces the negative exponent in (3.28).

We note that with Euclidean signature, (3.90) refers to a magnetic field

along the transverse 01-direction, so that (3.91) describes a cyclotron motion

of the string instanton in the 01-plane with cyclotron frequency ωk = 2πk/T .

With Minkowski signature, the motion is hyperbolic with local acceleration

a(σ) =
1

R(σ)
=

χ

b⊥

1

cosh (χ (σ − 1/2))
, (3.94)

which has a maximum at the center of the open string, σ = 1/2.
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3.7 Schwinger mechanism and Unruh phenomenon

Schwinger showed in ’51 [109] that a strong electric field can pair produce

charged particles. Consider scalar QED, coupling charged massive particles

with charge e and mass m to a strong electric field E. The Euclidean action

acquires an imaginary part

Im SQED =
πm2

eE
, (3.95)

which yields the tunneling probability

Γvacuum→m ∼ e−ImS = e−
πm2

eE . (3.96)

The acceleration of the on-shell particle under the influence of the electric field

is

a = eE/m (3.97)

and (3.96) can be interpreted as

Γvacuum→m ∼ e−
πm
a . (3.98)

Charged particles are experiencing a constant acceleration and the classical

Euclidean orbits are closed trajectories. From (3.95) and (3.96) we readily

obtain the (proper) Euclidean time needed to complete the orbit

τEuclidean = ∂mImSQED =
2π

a
. (3.99)

Unruh [110] observed that a constantly accelerated observer experiences a

ground state that has the characteristics of a thermal ensemble, characterized

by an Unruh temperature TU given by

TU =
a

2π
. (3.100)

We have seen in chapter 3.6 that the open string experiences an acceleration
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which is maximal midway between the two surfaces. This allows us to assign

an Unruh temperature to the scattering process. To make this more explicit,

we will use our gravitational setup and show that the induced geometry on

the string world-sheet is indeed a Rindler frame. The Rindler frame can be

interpreted as the near horizon geometry of a (Schwarzschild) black hole, which

then introduces an (Unruh) temperature.

Indeed, the line element associated to the instanton (3.91) in Minkowski

signature is

ds2 ≈ −a2R2d(τb⊥)
2 + dR2 + dx⊥ 2 (3.101)

with Rindler time t(τ) = τb⊥. The Rindler acceleration a = χ/b⊥ implies

a Rindler horizon R = 1/2a. Due to this acceleration, the string feels a σ-

dependent Unruh temperature TU(σ) = a(σ)/2π that is maximal at the center

with TU = χ/2πb⊥ ≡ 1/β. Initially, this temperature is only felt in the

longitudinal direction. For small rapidities, χ ∼ 1, the scattering process is

dominated by b⊥ ∼ ls ∼ 1/m, and (3.94), (3.90) equate to the classical result

of a point particle (3.97)

a ∼ 1

b⊥

χ

cosh(χ)
∼ σ

m
tanh(χ) ∼ E/m . (3.102)

In this regime, the saturation momentum for short strings (ξ ≪ 1) asymptotes

Qs ∼ χ/ls ∼ a and we recover the familiar result using a classical QCD

approach [111].

52



3.8 Entropy

We have seen in section 3.6 that the stringy instanton solution (3.91) re-

duces the on-shell action to (3.93)

Sk ≈
1

2
σkb⊥β , (3.103)

with the k-string tension σk = kσT for N-ality k and β = 1/TU = 2πb⊥/χ.

For QCD with 3 colors, only the N-alities k = 1, 2 are allowed. For QCD at

large Nc, all N-alities up to the integer value of Nc/2 are allowed. Only the

N-ality k = 1 is selected in the process of scattering dipoles in the fundamental

representation. In section 4.4 we argue that k = 2 is released in dense AA

collisions.

Equation (3.103) receives quantum contributions that are captured by Gri-

bov diffusion at strong coupling. For large χ and b⊥, the quantum (O(n)) and

curvature (O(1/
√
λ)) corrections are readily implemented by the diffusive na-

ture of the propagator.

The dominant quantum correction follows from the transverse diffusion of

the tachyonic mode (n = 0) in AdSD⊥
. To order 1/

√
λ the onshell string action

(3.11) reads [24]

Sk ≈
k

4π
ξ2

β

b⊥
− 2π

b⊥
β

(

D⊥
12k

− (D⊥ − 1)2

8
√
λ

)

. (3.104)

This Euclidean stringy action amounts to a free energy Fk = Sk/β. It

follows that (3.104) carries an entropy

Sk ≡ β2∂Fk

∂β
≈ χ

(

D⊥
6k

− (D⊥ − 1)2

4
√
λ

)

(3.105)

or equivalently

Sk ≈ 2 (αPk − 1)χ . (3.106)
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For k = 1, the pomeron intercept is (αP1 − 1) ≈ 0.15 and the entropy per

unit rapidity is about 1/3. Using the optical theorem, the virtual wee-dipoles

become on-shell and their contribution to the entropy gives

Sk ≈ lnN2
wee,k , (3.107)

where Nwee,k is the total number of wee-dipoles surrounding each of the in-

coming dipole pairs involved in the collision, compare section 3.4.3

Nwee,k =

∫

dudb⊥ Nk = e(αPk−1)χ . (3.108)

This is to be contrasted with the fully thermal or incoherent expectation of

lnN and the fully Poissonian or coherent expectation of ln
√
N , with N the

mean multiplicity number.

Most of this entropy is the result of the tachyon excitation on the string.

Indeed, for large impact parameter b⊥, the Unruh temperature is smaller than

the Hagedorn temperature,

TU =
χ

2πb⊥
< TH =

√

3σT
πD⊥

, (3.109)

which translates to b⊥ > χ/(2πTH). As the impact parameter is reduced, the

Unruh temperature increases, causing the string excitations to exponentiate,

leading to a Hagedorn transition. At the Hagedorn point it may be mapped on

the Bekenstein-Hawkins (BH) temperature of a microscopic black hole [112–

115].
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3.9 Formation time

Over what time is the entropy (3.106-3.107) associated with the dipole-

dipole collision released? To answer this question, we note that the emergence

of an Unruh temperature on the string world-sheet suggests that semiclassi-

cally the metric is locally Rindler, see (3.101).

We suggest that the prompt release time tR can be set to be the time when

the diffusing string in transverse AdSD⊥
reaches the effective size of the Rindler

horizon R by analogy with the time it takes for a string to fall on a black hole

[113, 116]. Indeed, the string diffusion in rapidity causes the transverse string

size to increase as

< x2⊥ >= χα′ ≡ DR t(1) , (3.110)

with the diffusion constant in Rindler space DR = α′/(2R). Through the

last equality, we reinterpret (3.110) as a diffusion in Rindler space over a

typical Rindler time t(1) = b⊥. The release entropy time tR is then set by the

condition < x2⊥ > |t=tR = R2 = DRtR or tR = 2R3/α′. For a QCD string with

α′ = 1/(2GeV )2 = (0.1fm)2 and a typical impact parameter b⊥ ∼ 10
√
α′,

this results in tR ∼ (25 fm)/χ3, which is short.
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Chapter 4

Comparison to experiment

The parameters of our holographic dipole scattering approach are

• dimension D⊥ of the transverse space

• t’Hooft coupling λ

• string coupling gs

• IR cut-off z0

• typical onium mass
√
s0

A comparison to experimental data will allow us to fix the parameters

of our model and test it against further data. In addition, we will see that

the obtained values for the parameters are within reasonable agreement when

compared to QCD expecations.

A comparison to DIS data on the proton structure function F2 allows us to

fix both the transverse dimensionality of the space and the t’Hooft coupling.

In our approach, the scaling of the structure function with the momentum

transfer crucially depends on the dimensionality of the transverse space, and a

comparison to the measured Q2 dependence of F2 fixes D⊥. From the scaling

of the structure function with x, we can fix the t’Hooft coupling. Diffractive

pp scattering allows us to get a better fit on the IR cut-off and the string

coupling. The data is relatively insensitive to the precise value of the onium

mass.

56



4.1 Deep inelastic scattering

Deep inelastic scattering (DIS) of a lepton on a proton target can be viewed

as a small size dipole scattering through a proton [30–36]. A holographic ap-

proach to DIS starting from the graviton limit and based on the critical string

amplitude was elaborated in [105, 106], see also [117].

The dipole-dipole cross section is useful for the determination of the in-

clusive proton structure function F2(x,Q
2) for small Bjorken x and large Q2.

Specifically [35, 36],

F2(x,Q
2) =

Q2

4π2αEM
(σT + σL) , (4.1)

with the electromagnetic fine structure constant αEM . σT + σL = σtot can

be regarded as the total (virtual) photon-to-proton or dipole-to-dipole cross

section. By the optical theorem

σtot(s) = −1

s
Im T (s, t = 0) , (4.2)

whereby

T (s, 0) = −2is

∫

db⊥dudu
′ϕP(u)ϕT(u

′)
(

1− eWW
)

, (4.3)

which is an averaging of the zz′-dipole-dipole cross-section over the target

ϕT(u
′) and projectile ϕP(u) dipole wave functions respectively. Thus,

F2(x,Q
2) =

Q2

2π2αEM

∫

db⊥ du du
′ϕP(u)ϕT(u

′)
(

1− eWW
)

. (4.4)

The integration in (4.3), (4.4) involve all values of the impact parameter. While

the validity of our approach following [24] is for large b⊥, we note that the

dominant contribution to (4.3), (4.4) stems from b⊥ ∼ √
α′χ, which is large.

Typically, the (target) proton and (projectile) photon dipole distributions are
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peaked, say

ϕP(u) ≡
(

αEM/κ
2
)

δ(u− uP) (4.5)

ϕT(u
′) ≡ δ(u− uT) . (4.6)

The normalization of the projectile (current) distribution in (4.5) is fixed em-

pirically by the magnitude of the measured structure function F2. Of course,

(4.6) are schematic wave functions that nonetheless capture the key physics

and allow for analytical integration. We expect only small modifications if

more realistic wave functions are used.

Inserting (4.6) into (4.4) and using the dipole-dipole cross-section for D⊥ =

3 yields in the 1-pomeron exchange limit for the conformal case

F2(x,Q
2)
∣

∣

∣

conformal
≈ g2s

8π2κ2
(2πα′)

3/2
zTQ

e(αP−1)χ

√
4πDχ

(

e−
1

4Dχ
ln2(QzT)

)

(4.7)

and in the confining case

F2(x,Q
2)
∣

∣

∣

confining
≈ g2s

8π2κ2
(2πα′)3/2 zT Q

e(αP−1)χ

√
4πDχ

(

e−
1

4Dχ
ln2(QzT) + e−

1

4Dχ
ln2(Qz2

0
/zT)
)

,

(4.8)

with uP = ln(z0Q), uT = ln(z0/zT). We have used the fact that

N(T⊥, u, u
′, t = 0) =

e−T⊥(M2

0
+1)

√
4πT⊥

(

e−(u′−u)2/4T⊥ + e−(u′+u)2/4T⊥

)

(4.9)

for t = −q2
⊥ = 0, after making use of the Fourier transform

N(T⊥, u, u
′,q2

⊥) =

∫

db⊥ e
iq⊥·b⊥ N(T⊥, u, u

′,b⊥) . (4.10)

Since the diffusion kernel in (4.9) is generic, theQ2 dependency of the structure

function is sensitive to the ⊥-dimensions considered, N = ∆/(zz′)D⊥−2.

The above approximation is justified when the photon momentum is suf-

ficiently larger than the saturation scale, Q ≥ Qs, at all impact parameters
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Figure 4.1: Proton structure function F2 in the confining background, (4.8).
See text.
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b⊥. For the range of values for Q
2 and x considered to compare to the HERA

data, the value for the proton structure function F2 using the exponentiated

1-pomeron exchange, (4.4), differs by less than 8% compared to F2 from (4.8).

Figure 4.1 compares our result (4.8) to the HERA data [118], using the

following holographic parameter set:

• D⊥ = 3

• Nc = 3

• λ = 23

• κ = 2.5

• zT = 1.8 GeV −1

• z0 = 2 GeV −1

• s0 = 10−1 GeV 2

With our choice of parameters, our result for the 1-pomeron exchange ampli-

tude in the confining background appears to fit the DIS data overall. Note

that for z0 ∼ zT, the contribution from the hard wall is comparable to the

conformal contribution. Thus, the conformal result (4.7) alone is not sufficient

to describe the data with our set of parameters. Clearly our analysis is only

qualitative, and a more thorough study of the parameter dependences and the

fitting accuracy are needed.

Finally, we note that the transcendental equation for the saturation mo-

mentum, (3.77), defines the saturation line as a separatrix between the dilute

and dense wee-dipole environments. For fixed virtuality Q2 (inverse dipole size

squared) and impact parameter b⊥, Figure 4.2 shows the rapidities at which

the cross section saturates in the black solid and dashed curves, i.e. when the

condition in (3.77) is fulfilled. For comparison, the Golec-Biernat Wuesthoff

result in (3.85) is shown as the blue solid curve. The points are the measured

HERA data for the F2 structure function. We note that (3.77) admits in gen-

eral 2 distinct solutions for fixed x,Q2 or χ, but only the one with the largest χ

is shown which is warranted by our approximations. The HERA points at the

60



1 � z0
2

0.1 1 10 100 1000 104
Q2 @GeV2D

10

100

1000

104

105

106

1�x

Figure 4.2: Saturation lines in the confining background for b⊥ = 0 GeV −1

(black, dashed curve) and b⊥ = 2 GeV −1 (black, solid curve) in comparison
to the Golec-Biernat Wuesthoff result, (3.85), (blue, solid). The confining wall
is at 1/z20 = 1/4. The dots are the measured HERA data. See text.

left of the confining wall 1/z20 = 1/4 are well within the confining region. The

confined holographic saturation lines are stiff in longitudinal energy as already

noted in Figure 3.8 above. For b⊥ = 0 the HERA points to the far right of

the saturation line are well within the perturbative or dilute wee-dipole phase.

Those close or to the left of the saturation line correspond to the saturated

wee-dipole phase. The closer they are to the confining wall 1/z20 = 1/4 the less

perturbative they are in nature. The holographic saturation lines show that a

large swath of the measured points at HERA which are well within the holo-

graphic saturation domain are sensitive to the impact parameter dependence

b⊥ of the saturation scale.
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4.2 Diffractive pp scattering

Diffractive proton-proton scattering at small momentum transfer unravels

information about the transverse shape of the proton and the large |t| behavior
probes length scales of the typical string length, which in the confining back-

ground is of the order of z0. We will fit the effective dipole size of the proton,

zp, and the position of the hard wall, z0, to the data. All other numerical

values remain the same as in section 4.1.

In the eikonal approximation the differential cross section reads

dσap→bp

dt
(χ, |t|) = 1

16πs2
|T (χ, |t|)|2 (4.11)

=
1

4π

∣

∣

∣

∣

i

∫

db⊥

∫

du

∫

du′ eiq⊥·b⊥ |ψab(u)|2|ψp(u
′)|2 (1− eWW)

∣

∣

∣

∣

2

(4.12)

=
π

4

∣

∣

∣

∣

i

∫

d|b⊥|2
∫

du

∫

du′ J0(
√

|b⊥|2|t|) |ψab(u)|2|ψp(u
′)|2 (1− eWW)

∣

∣

∣

∣

2

(4.13)

with t = −q2⊥. Here, J0 is the Bessel function and the overlap amplitude is

defined by |ψab(u)|2 ≡ ψ∗
a(u)ψb(u).

Instead of using diffractive eigenstates [119], [120], perturbative [75], [121]

or holographic light-front wave functions [43, 44], we will fit the data assuming

the proton distribution is identified with the wee-dipole distribution, i.e. the

proton is sharply peaked at some scale 1/zp = e−up

z0
, [105]. More explicitly,

the square of the wave function will be approximated by a delta-function,

|ψp(u)|2 = Np δ(u− up). We treat the normalization constant Np that carries

the dipole distribution to the physical proton distribution as a parameter to

be fitted to the data.

4.2.1 Comparison to data: ISR

A comparison of the differential elastic pp cross section, (4.13), to the

CERN ISR data [122] is made by fitting the position of the dip and the slope
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Figure 4.3: Differential pp cross section. Dots: data from CERN ISR. Solid
line: holographic result. See text.

of the shoulder region (|t| > 1.5 GeV 2). We use the full, unitary amplitude

including higher order terms in the eikonal WW. The importance of higher

order terms in the eikonalized amplitude was also noted in [123]. A fit yields

z0 = 2 GeV −1 and zp = 3.3 GeV −1, see Figure 4.3. To leading order, the

position of the (first) dip is sensitive to the effective size of the scatterer and

the energy of the scattering object. It scales with 1/(Dχz2p) and occurs at

relatively low |t| with primary sensitivity to the size of the proton, zp.

At high momentum transfer (|t| > 2 GeV 2), the typical length scales

probed are of the size of the fundamental string length, which is of the order

of the IR cut-off. Thus, the slope of the shoulder region is fitted by primarily

adjusting the value of the confinement scale z0. The result for the cross section

in the conformal limit z0 → ∞ does not yield a reasonable fit to the data.

Note that unlike perturbative QCD reasoning [124] where the partons are re-

solved at large |t| leading to a power-like decrease, the slope of the cross section
at |t| ≥ 2 GeV 2 is essentially not power-like in our holographic model.
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Figure 4.4: Transverse distribution of the wee-dipole density N, (3.62), with√
s = 20 GeV .

The result zp > z0 violates the construction of the cut-off through a hard

wall at z0. While the implementation of confinement in AdS/QCD through

a hard-wall has well-known difficulties describing some features of QCD, this

toy model is nonetheless useful as it simplifies most computations and cap-

tures the essential features of the theory described. The cut-off through the

hard-wall has to be relaxed in order to fit the data in the high |t| region.

At |t| ∼ 0 GeV 2, the slope parameter B(s, |t|) gives the mean square proton

radius

B(s, |t| = 0) ≡
(

d

dt
ln(

dσpp→pp

dt
(s, t))

)

∣

∣

∣

t=0
=

1

2

∫

d|b⊥|2 |b⊥|2
(

1− eWW
)

∫

d|b⊥|2 (1− eWW)

=
1

2
< |b⊥|2 > (4.14)

The wee-dipole density N is peaked at b⊥

zp
small, see Figure 4.4, and expanding

the exponential in 4.13 to first order in g2s gives

B(s) ∼ Dχ (z2p + z20) . (4.15)
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Figure 4.5: Experimental data for the slope parameter in comparison with the
holographic result for the slope parameter, (4.14), for |t| = 0 GeV 2 (red, solid)
and |t| = 1 GeV 2 (red, dashed). See text.

The radius of the proton is not only protortional to the effective wee-dipole

size zp but also receives contributions from the IR cut-off. At strong coupling,

the diffusive nature of the eikonalized scattering amplitude is responsible for

the scaling of the proton radius with the rapidity, B(s) ∼ Dχ ∼ 1√
λ
ln
(

s
s0

)

.

In the approach taken here, the transverse structure of the proton is mod-

elled by a cloud of wee-dipoles surrounding a parent dipole. We can easily

understand the scaling of the proton size with the coupling. As the coupling

increases, the diffusion constant decreases, which results in the outer part of

the cloud becoming more dilute and, hence, the proton shinks.

Figure 4.5 shows the slope parameter for |t| = 0 GeV 2 and |t| = 1 GeV 2.

In our setup, the momentum distribution between the two constituents of each

dipole is symmetric resulting in a small-size dipole, whereas asymmetric, large-

size pairs dominate the small |t| region, see e.g. [78]. Thus, we suspect large-

size dipoles to dominate the region |t| ≤ 1 GeV 2. The Coulomb contribution

to the scattering amplitude can be neglected in the kinematic region |t| >
0.01 GeV 2 [125, 126].
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Figure 4.6: Differential pp cross section. Black dots: data from the TOTEM
experiment at LHC. Dashed blue line and red dots: holographic result. See
text.

4.2.2 Comparison to data: LHC

Elastic pp scattering at LHC energies of
√
s = 7 TeV , allows us to test the

energy dependence of our model. With the numerical values fitted at energies√
s ∼ 20 − 60 GeV , the fit (red line) in Figure 4.6 indicates a mismatch in

the energy dependence of the holographic model. In order to get a better fit

to the LHC data, the parameters governing the coupling (λ), the effective size

of the proton (zp) have to be slightly altered. The fit (blue, dashed line) in

Figure 4.6 is obtained with: λ = 24.5, zp = 3.5 GeV −1, Np = 0.0257.
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4.3 Deeply virtual Compton scattering (DVCS)

At high energies, DVCS is dominated by pomeron exchange. In the rest

frame of the proton, the virtual photon fluctuates into a quark-antiquark dipole

that interacts with the proton. We will now use the holographic dipole-dipole

amplitude to access the differential DVCS cross section
dσγ∗p→γp

dt
, (4.13). In the

above section we have refined the numerical values governing the transverse

shape of the proton (zp) and the IR cut-off scale (z0) for the energy range of√
s ∼ 20− 60 GeV . We will use these values to analyze the DVCS data in the

range
√
s ∼ 40− 100 GeV . Now that all parameters of the holographic cross

section are fixed, a comparison to the DVCS data serves as an additional test

for our model.

The γ∗γ overlap amplitude, |ψγ∗γ(u)|2, is approximated by a delta func-

tion, peaked at some finite virtuality Q = 1/z. With the effective size of the

proton, zp = 3.3 GeV −1, the position of the cut-off, z0 = 2 GeV −1, and the

normalization Np = 0.0257 fixed, we compare our holographic result to the

HERA data. Figure 4.7 illustrates an agreement of the cross section obtained

from the holographic dipole-dipole scattering amplitude with the data.
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Figure 4.7: Holographic result for the differential DVCS cross section compared
to the HERA data [127–129].

√
s = 82 GeV : solid - Q2 = 8 GeV 2, dashed -

Q2 = 15.5 GeV 2, dotdashed - Q2 = 25 GeV 2.
√
s = 40, 70, 100 GeV : solid -

Q2 = 8 GeV 2, dashed - Q2 = 10 GeV 2, dotdashed - Q2 = 20 GeV 2. See text.
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4.4 Multiplicities

In dipole-dipole scattering at large rapidity, the induced instanton on the

string world-sheet carries entropy Sk = 2(αPk − 1)χ, see section 3.8, with

αPk − 1 the pomeron intercept for a dipole source of N-ality k. This stringy

entropy is neither coherent nor thermal. We argued in section 3.9 that it is

released promptly over a time tR ≈ (b⊥/χ)3/(4α′) with α′/2 the pomeron

slope and b⊥ the impact parameter. Below we will show that this stringy

entropy may explain the 3/2 jump in the total charged multiplicities at about

10 participants reported over a wide range of collider energies by PHOBOS.

We predict the charged multiplicities in pp, pA and central AA collisions at

LHC.

The issue of how entropy is released in hadron-hadron and nucleus-nucleus

collisions is a fundamental problem in the current heavy-ion program at col-

lider energies. How coherence, which is a hallmark of a fundamental collision,

turns to incoherence, which is at the origin of the concept of entropy, is a

theoretical question of central importance. A possible understanding for the

entropy deposition was attempted at weak coupling through the concept of

the color glass approach in classical but perturbative QCD [53–55] and at

strong coupling through the concept of black hole formation in holographic

QCD [56–60].

The evidence of a strongly coupled plasma released at collider energies,

with large and prompt entropy deposition and flow, suggest that a strong cou-

pling approach is needed for the mechanism of entropy decomposition. In this

way, the holographic approach with the release of a black hole falling along the

holographic direction provides a plausible mechanism for entropy production.

However, this mechanism is detached from our understanding of fundamental

pp collisions, which are, after all, the seeds at the origin of the entropy pro-

duction.

pp collisions can be viewed as dipole-dipole scattering from each colliding

proton. The density of dipoles in the proton is set by the saturation momen-
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Figure 4.8: Energy dependence of the charged multiplicity for pp collisions.
See text.

tum Qs ≡
√
2/zs . In holographic QCD this follows from the transcendental

equation (3.77)

zs√
2
Qs(χ,b⊥) =

g2s
2
(2πα′)

3/2
zazp N(χ, zS, zp,b⊥) = 1 , (4.16)

with the effective string coupling gs and typical proton virtuality 1/zp. Unlike

in a partonic model, the colorless wee-dipoles are the objects that saturate the

transverse density.

The holographic parameters are set by the DIS data analysis, see analyis

above: λ = 23, D⊥ = 3, gs = 1.5, zp = 1.8 GeV −1, z0 = 2 GeV −1, s0 =

10−1 GeV 2.

If App ≈ 1 fm2 is the typical proton area, then AppQ
2
s ≈ 12 is the typical

number of dipoles with Q2
s ≈ 1/2GeV 2 the typical squared saturation momen-

tum. Thus, for pp collisions the typical entropy release per unit of rapidity

is

Spp/χ ≈
(

AppQ
2
s

)

× (S1/χ) ≈ 12× 1

3
= 4 . (4.17)
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Figure 4.9: Energy dependence of the charged multiplicity for central AuAu
collisions. See text.

In holography, the scaling of the entropy with the energy follows from the

scaling of the saturation momentum, (4.16). In the conformal limit and at

large χ, the entropy asymptotes

Spp ≈
(

s

s0

)

(√
1+2

√
λ(αP−1)−1

)

/
√
λ

ln(s/s0) , (4.18)

which is Spp ≈ (s/s0)
0.228ln(s/s0) using the parameters set by the DIS data.

In Figure 4.8 we show the pp charged multiplicities Nch,pp = Spp/7.5 [57] at

collider energies [130], with b⊥ = 1/3 fm. A recent discussion of the entropy

in the context of saturation models was made in [131].

We note that for pA collisions, ApA ≈ A1/3App so that SpA/Spp ≈ A1/3. In

AA collisions, if the collision is mainly between dipoles with N-ality k = 1,

a similar scaling with the nucleus number A = A1/3 × A2/3 is expected to

take place. Here A1/3 Lorentz contracted nucleons can be distributed in the

A2/3 transverse nucleus size. However, when the nucleons start to overlap, the

k = 2 N-ality can be exchanged,

71



1 10 210 310
0

5

10

15

20

25

30

22.4 GeV (Cu)

19.6 GeV (Au)

200 GeV

62.4 GeV
 〉

/2
 

p
ar

t
 N〈/

chT
o

t
N

 〉 
part

 N〈

d + Au

) + p  Inelasticpp(

Cu + Cu

Au + Au
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SAA

Spp
≈ A





[Nc/2]
∑

1

1

k



 . (4.19)

In QCD with Nc = 3, the sum is 3/2. The contribution of the k = 2 N-ality

is expected to take place when the number of participants is about 10 so that

101/3 ≈ 2 corresponds to two overlapping nucleons.

In Figure 4.10 we show the total charged multiplicities normalized to the

averaged number of participants as a function of the number of participants

for a range of collider energies [132]. For a fixed collider energy, we note the

characteristic 3/2 jump from pp to AA collisions at a number of participants

of around 10.

The charged multiplicity follows as Nch,AuAu = 3/2〈Au〉 Spp/7.5, with the

average participating gold nucleon number 〈Au〉. Using the same numerical

values as for Nch,pp and 〈Au〉 = 175 for most central collisions [133], Figure 4.9

shows an agreement of our holographic result with the experimental data at
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high energies, where the inelasticities are large. At LHC energies, we expect

Nch,pp ∼ 54, Nch,pP b ∼ 320, Nch,P bPb ∼ 16800 at
√
s = 2.76 TeV and Nch,pp ∼

82, Nch,pP b ∼ 470,Nch,P bPb ∼ 23400 at
√
s = 7 TeV using 〈APbPb〉 = 191 [134].
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Chapter 5

Conclusion

Dipole-dipole scattering in holographic QCD is purely imaginary at large

rapidity χ which is a key feature of QCD. It follows from the t-channel ex-

change of closed strings induced by a prompt longitudinal “electric” field.

The pomeron with N-ality 1 is a closed string exchange triggered by a stringy

Schwinger mechanism. The creation process fixes the Pomeron slope and in-

tercept in the elastic amplitude. From the open-closed string duality, Gribov’s

diffusion follows from the presence of a large “electric” acceleration and the

Unruh temperature causes the tachyonic mode of the dual open string to di-

mensionally reduce from D to D⊥ and diffuse.

In curved AdS space, the holographic direction is identified with the size

(inverse virtuality) of the dipole. The idea of Gribov diffusion appears as a

tachyon diffusion in both virtuality and transverse space. In the conformal

limit and for D⊥ = 3, the dipole-dipole scattering amplitude and its related

wee-dipole density are found to be identical to the QCD results for onium-

onium scattering using the QCD BFKL pomeron. The results are readily ex-

tended to confining AdS with a wall and yield an explicit relation for the dipole

saturation momentum as a function of rapidity χ (or equivalently ln(1/x)) and

impact parameter b⊥. For large impact parameter, the holographic saturation

momentum is closely related to the GBW saturation momentum [41].

The dipole-dipole scattering amplitude in both conformal and confining
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AdS3 is used to analyze the F2 structure function. A comparison with DIS

data from HERA shows that the x andQ2 dependence of our holographic result

are compatible with the data in the 1-pomeron exchange approximation, with

no a priori need for an eikonal multi-pomeron resummation. This conclusion

is only qualitative as a more thorough study of the parameter space of the

holographic model as well as the fitting accuracy are needed.

With the holographic parameters set by comparison to DIS data, we have

been able to get a reasonable fit to the elastic pp scattering data and obtain

a refinement of the effective dipole size zp of the proton at large rapidities.

The slope of the cross section in the region |t| > 2 GeV 2 is sensitive to the IR

cutoff scale, indicating the necessity of a confining background. However, the

hard wall seems to be too crude an approximation for an IR cutoff. In order to

fit the pp data, we need zp ≥ z0 suggesting that the smooth wall background

[135] is a more suitable setup. While the hard wall construct allows for explicit

and analytical results, the smooth wall construct is likely numerical.

The slope parameter B(s, |t|) at small momentum transfer t ∼ 1 GeV 2

agrees with the data and shows that our holographic model incorporates the

effective proton size correctly. As is typical for diffusive processes, the mean

square proton radius scales linear in rapidity. At strong coupling, the proton

shrinks with increasing t’Hooft coupling.

Having fixed the parameters of the holographic model, an agreement with the

DVCS data at small |t| builds further confidence in the holographic approach

to hadronic scattering.

We have suggested that the pomeron viewed as an exchange of an instanton

on the string world-sheet carries a free energy Fk = SkTU with Sk the instanton

action of N-ality k and TU the Unruh temperature. For large impact parameter

b⊥ the Unruh temperature is low and the entropy is mostly carried by the

lowest string excitation, which is tachyonic. This stringy entropy is neither

coherent nor thermal.

For smaller impact parameters, the Unruh temperature may reach the

Hagedorn temperature, transmuting the stringy entropy to partonic entropy.

The latter is likely commensurate with the Bekenstein-Hawkins entropy and
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indicates the onset of a microscopic black hole. Macroscopic black holes [56–

60] may be aggregates of these coalescing microscopic black holes as suggested

initially in [56].

We have argued that typical pp, pA and AA collisions at current collider

energies may probe this stringy entropy with low Unruh temperature. At

large rapidities, the holographic entropy is in agreement with the data for

the energy scaling of the charged multiplicities. The 3/2 jump in the charged

multiplicities reported by the current collider experiments with 10 participants

and higher is explained by the exchange of N-ality k = 1, 2 strings. We expect

similar jumps in the transport parameters, e.g. viscosity and flow.

Although the measured total multiplicities reflect on the final state hadronic

products, entropy conservation guarantees that our prompt and initial entropy

estimates are lower bounds. The general lore of energy and momentum con-

servation, say through viscous hydrodynamics evolution, suggests only a mod-

erate increase of the total entropy by about 25% in going from initial to final

states, making our estimates plausible.
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