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Abstract of the Dissertation

Stimulated Raman Adiabatic Passage between
Metastable and Rydberg States of Helium

by

Yuan Sun

Doctor of Philosophy

in

Physics

Stony Brook University

2013

Two directions are available in atomic physics research, namely, the internal

degree of freedom of the atom and the external degree of freedom of the atom.

Here I am going to present an experiment whose focus is on the internal degree

of freedom, namely, the coherent manipulations of atoms. The motivation of

this experiment is to investigate the coherent population transfer and associated

effects of a three level atomic system, with the third level being a long–lived

Rydberg state. The scheme adopted here is stimulated Raman adiabatic passage,

often known as STIRAP.

The basic layout of this experiment is that an atomic beam of metastable helium

(n = 2) with average velocity 1070 m/s is orthogonally crossing two laser beams
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in a tunable dc electric field. The infred laser near λ = 790 - 830 nm connects

the 33P state to the Rydberg states (n = 12 - 50) and the uv laser of λ = 389

nm connects the metastable 23S state to the 33P state. The positions of the

two lasers, the detunings of the lasers’ frequencies with respect to the atomic

transitions, and the polarizations of the lasers can all be varied. An ion detector

is set up above the uv and ir lasers interaction region to detect ions produced by

the Rydberg atoms.

A third laser is applied several mm downstream after the uv and ir lasers in-

teraction region, providing a strong bichromatic force acting on the 23S → 23P

transition with λ = 1083 nm. The atoms in the Rydberg states would not be

affected by this while the atoms remaining in the 23S state would be deflected

by a large angle. The absolute fraction of Rydberg atoms can be established by

measuring the flux of the deflected atoms.

It has been known for a long time that the Rydberg atoms can be ionized by back-

ground thermal radiation at room temperature and this is observed in our exper-

iment. This fact actually enables precise measurement, especially spectroscopy,

of Rydberg atoms by simply looking at the ions, which are easy to detect. It is

also confirmed that background thermal radiation could significantly redistribute

the population among neighboring Rydberg states.

The 23S, 33P and the final Rydberg state all have magnetic sublevels, hence

the linkage pattern of the excitation pathways has non-trivial crossings, if the

polarizations of the two lasers are not parallel to each other. Those crossings in

the excitation paths can lead to interference which would determine the excita-

tion probability and the orientation of the excited atom. Calculations predict
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interesting interference patterns as a function of laser polarizations and Rabi

frequencies. However, detunings of lasers would wash these interesting details

out and only leave the main structures. Those interference structures have been

experimentally observed.

The transverse velocity distribution in the atomic beam turns out to be a limiting

factor in the efficiency of production of Rydberg atoms. The transverse velocity of

an atom can not only induce one-photon detuning but also two-photon detuning,

which could effectively reduce the STIRAP process efficiency. By adding a laser

to make Doppler molasses in the transverse direction, we can heat or cool the

atomic beam transversely and verify this effect.
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Chapter 1

Introduction

1.1 Survey and Motivation

Two relatively distinct directions exist in atomic physics research. One direction tends

to focus on the internal degree of freedom of an atom, such as the Ramsey fringes, while

the other direction tends to treat the atom as a whole and focus on atom-atom interaction,

such as BEC. Often a lot of techniques would be shared in both directions, and sometimes

a chemical interaction between both directions can lead to interesting consequences, such as

the Rydberg-Rydberg blockade experiments [1].

Of particular interest is the vision about where the field of AMO physics is going. Let us

first look at a few examples of currently emerging ‘patterns’. In terms of super-fine resolu-

tion imaging technology, there is the single atom imaging of ultra cold atoms, which I find

amusing if compared to the STORM of optical microscopy, and SEM from the condensed

matter community. In terms of many body physics, ultracold atoms now have the name of

‘quantum simulator’. In terms of high energy physics, AMO physicists are now experimen-

tally searching for EDM. On the direction of the external degree of freedom of the atom,

1



the trend seems to be that to build larger and larger quantum mechanical objects from the

bricks of cold atoms/molecules, and then research many body physics with them. Yet, it is

very hard to say what the vision for the entire field is just because AMO physics is now so

broad and interdisciplinary.

The precision aspect of atomic physics has a profound influence in the common life. For

instance, what would the world be without atomic physics? Well, my GPS does not work

hence I could not drive home!

Rydberg atoms have this advantage of allowing the internal and external degrees of

freedom to be exploited at the same time in a ‘harmonic’ way. The wavelengths of the

transitions between Rydberg energy levels correspond to a very interesting frequency range in

the electromagnetic wave spectrum. Therefore the Rydberg atom is a very hopeful candidate.

1.1.1 The Era of Quantum Mechanics

Quantum mechanics has deeply changed the way the science is, the way people’s lives are,

and more profoundly, the way we think. I could not imagine how atomic physics would be

like without quantum mechanics. Within the realm of atomic physics, quantum mechanics

is not merely some complicated math formulation. Rather, it provides a consistent picture

which combines experimental results and interpretations together.

The way we approach a problem now, usually, is to begin with writing down the Schrödinger

equation. This is fundamentally different than, say, 100 years ago, at which time we would

first seek a classical description. We are so used to the quantum way of thinking that our

ideas often advance our methods now, for example, the quantum communication and the

quantum computer, which are rather hard to experimentally build because the world we live

in is so classical.
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Therefore, as our tools have been advancing all the time, more and more purely quantum

devices will show up. What we will really enjoy doing is to perform the corresponding

scientific research to embrace this era of quantum mechanics.

1.1.2 Recent Trends: Rydberg Atoms and Quantum Information

After the recent discovery of the Rydberg–Rydberg blockade phenomena, the Rydberg

atom ensemble has become an ideal candidate for quantum information purposes [2] [3].

The underlying story is simple, and even belongs to the regime of classical physics only:

the Rydberg atom has a large electric dipole moment, and then the electric field generated

by the dipole moment of a Rydberg atom would induce Stark shift in neighboring Rydberg

atoms. The story becomes interesting when an quantum entanglement can be established

by this Rydberg–Rydberg interaction. Namely, when two atoms are put next to each other

and subject to a resonant excitation laser, only one of the two atoms can be excited into

the Rydberg state because of this dipole induced Stark shift. This phenomena is named

Rydberg blockade. It has been observed extensively in many related experiments, especially

in the form that only a certain portion of an atom cloud can be excited into the Rydberg

states, provided the density is high enough for the dipole interaction to be strong enough.

Therefore, the entanglement can be viewed as that the system of these two atoms have

a ground state |g, g〉 and an excited state 1√
2
(|g, e〉 + |e, g〉). The state |e, e〉 is out of the

consideration for the fact that its energy is quite different from 1√
2
(|g, e〉 + |e, g〉), as a

consequence of the Rydberg blockade.

If we make N atoms entangled in this manner instead of two, then we have a system

of the ground state |g, · · · , g〉 and the excited state 1√
N

(|e, g, · · · , g〉 + |g, e, · · · , g〉 + · · · +

|g, · · · , g, e〉). This is essentially a two level system, and henceforth it gets the name ‘super
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atom’ [4]. Again, the reason for this simplification is the entanglement established via the

Rydberg blockade, which shifts the energy of all the other configurations of the excited states.

The Rabi oscillations of a super atom will have a Rabi frequency different from that of a

single atom, precisely by the factor of
√
N . This Rabi frequency has been experimentally

observed in the Rabi oscillation of a super atom and hence the entanglement is verified.

One key issue in quantum information science is the entanglement, and the Rydberg

atom is now a hopeful candidate for the entanglement established by the Rydberg blockade.

Currently, various further exploitations are under way. The advantage of Rydberg atoms is

the possibility of entangling many atoms all together.

Another recent development, led by Prof. Lukin and Prof. Vuletic’s collaboration team

at Harvard and MIT, is the new optically nonlinear medium realized by the Rydberg atoms.

This is along the line of a series of innovations in quantum optics lead by Prof. Lukin,

both theoretically and experimentally. The basic idea is to open a transparency window for

photons via EIT in a cold atom ensemble, which relies upon a transition to the Rydberg

state. Because of the Rydberg blockade, once one atom is excited by one photon, the other

photon can not excite neighboring atoms and hence its group speed is no longer limited by

the EIT. Therefore in the end, the two photons tend to ‘combine’ altogether.

1.1.3 Atom Optics and Motivation of Our Work

Atom optics is the field of manipulating atoms analogous to that of manipulating light

with optics. The history dates back to Stern and Gerlach’s experiments in the early 1920s [5]

[6], followed by the atomic-diffraction experiments by Estermann [7] and others in the early

1930s . These experiments demonstrated unambiguously that wave mechanics also applies

to composite particles. Recent progress in the area of matter waves greatly enhanced the

4



development of atom optics. The utilization of the wave property of the atoms makes the

name ‘atom optics’ very appropriate.

We first do a little history digest. In the late 1970s, Hänsch and Schawlow proposed

a method to cool atomic gases by laser radiation [8]. Further exploitations of this idea

eventually led to the invention of laser-cooling, with a Nobel prize awarded in 1997. With

the help of laser cooling, the atomic samples can be brought down to temperatures of the

order of 10−6 K or less, and therefore the atomic de Broglie wavelengths are on the order

of microns or longer [9]. The creation of the Bose-Einstein condensates in a dilute gas of

alkali atoms [10] follows as a natural consequence of the cooling technologies. It has been

shown extensively that atomic beams can be reflected [11], diffracted [12][13] and focused

[14][15][16][17], by applying laser beams around the atomic resonances. A static electric field

(or magnetic field) gradient can also be used for the same purpose on a beam of slow neutral

atoms [18] [19].

The atom optics has one application in neutral atom nanolithography [20]. The high

internal energy of He* atoms could be utilized to print nanoscale structure through a resist

assisted lithography mode [21]. Preliminary results showing the focusing effect of an electric

hexapole lens on Rydberg atoms have been described in S-H. Lee’s thesis [22], which relies

upon the large electric dipole moment of the Rydberg atoms.

1.2 Atomic Absorption of Light

1.2.1 Energy Transfer between Atom and Light

During the interaction between the atom and the light field, energy transfer takes place.

The atom could undergo absorption, spontaneous emission and stimulated emission. Once
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the condition of the light fields is given, it is straightforward to know the time evolution of

the atom by treating the light fields semi-classically and therefore the energy exchange from

the atom’s point of view can be figured out.

However, if the light field is composed of more than one light beam it would be interesting

to figure out the energy exchange between the atom and each single one of the light beams.

Many authors have treated this problem very well in the framework of quantum optics, such

as in [23].

Here I am going to briefly present a method under the semi-classical picture, without

arousing further quantum field theories.

When some external force is exerting work on a particle, the power is P = ~F · ~v. When

some electromagnetic field is exciting an atom, it can also be viewed as the electromagnetic

field is doing work on the electron. Then the power is P = (−e ~E−e~v× ~B) ·~v = −e ~E ·~v, since

the Lorentz force does not do work. Now we want to construct a corresponding (quantum)

operator for the power. The operator ~p
m

would be used for ~v, therefore we have P = −e ~E · ~p
m

,

where e is positive as a charge unit.

The expectation value of the power operator describes the power delivered to the atom

by the light field. P (t) = 〈α(t)|P|α(t)〉 when the wavefunction of the atom (more precisely,

the electron) is |α(t)〉. Since the atom is treated semi-classically, the work (which is the

integration of P (t) over time) of the light field won’t be automatically quantized by ~ω.

Of particular interest is how this simple method could be applied to the case of a two

level atom, with |1〉 being the ground state and |2〉 being the excited state. First let us look

at the example without spontaneous emission. Then formally we have:

P (t) = − e

m

(
〈α(t)|1〉 〈α(t)|2〉

) 0 ~E · ~p12

~E · ~p21 0


〈1|α(t)〉

〈2|α(t)〉

 (1.1)
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Here in (1.1), ~pij = 〈i|~p|j〉 and the diagonal elements are zero because of the parity of the

momentum ~p. This can be formally computed and linked to the dipole moment, by using

commutators of ~x and H0: [~x,H0] = i~ ~p
m

.

~p12 = 〈1|~p|2〉 = m〈1|−i
~

[~x,H0]|2〉 = −imω0〈1|~x|2〉 (1.2)

Usually, when we are solving for 〈1|α(t)〉 and 〈2|α(t)〉, the solution is described in the

rotating wave frame. Therefore, let us rewrite the above equation with respect to the rotating

wave frame |1′〉 and |2′〉 assuming that |2′〉 is rotating at frequency ω′, i.e. |2′〉 = e−iω
′t|2〉.

P (t) = − e

m

(
〈α(t)|1′〉 〈α(t)|2′〉

) 0 e−iω
′t ~E · ~p12

eiω
′t ~E · ~p21 0


〈1′|α(t)〉

〈2′|α(t)〉


= −2

e

m
Re(〈α(t)|1′〉〈2′|α(t)〉e−iω′t ~E · ~p12) (1.3)

Some caution is in order here. Usually some very high frequency term (most often, twice

the optical frequency) will show up in the result of the above equation (1.3). However, this

semi-classical method has no ability to predict or compute the details in such a short period

of time as the reciprocal of the very high frequency. Our interest is not in what is going on

during a very short time interval either. Therefore, the actual physical quantity of ‘power’,

shall be viewed as the time-averaged value of (1.3) within a reasonable time interval. Then

the very high frequency terms would cause no more worries. We will see examples in later

discussions.

If the two level atom is only driven by a single frequency laser beam then according to (1.3)

the laser does no net work on atom. Indeed this is the case, since if there is no spontaneous

emission acting as dissipation, absorption and stimulated emission would balance out leaving
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the laser doing zero work on the atom.

1.2.2 Absorption of Light by a Two Level Atom with Spontaneous

Emission

In the case of a two level atom with spontaneous emission, the method in 1.2.1 applies

all the same. The change is that now the density matrix approach has to be taken and the

expectation value of the power operator has to be taken under the density matrix approach

too.

First, we solve the Optical Bloch Equation for the time evolution of ρ(t) =

ρ11 ρ12

ρ21 ρ22

.

We still want to write it in the rotating wave frame whose ‘rotation frequency’ ω′ and the

atomic resonance frequency ω0 satisfy δ = ω′ − ω0. And let ρ̃12 = ρ12e
−iδt. Then we can

write the Optical Bloch Equation as the follows:

d

dt
ρ11 = +γρ22 +

i

2
(Ω∗ρ̃21 − Ωρ̃12)

d

dt
ρ22 = −γρ22 +

i

2
(Ωρ̃12 − Ω∗ρ̃21)

d

dt
ρ̃12 = −(

γ

2
+ iδ)ρ̃12 +

i

2
Ω∗(ρ22 − ρ11)

d

dt
ρ̃21 = −(

γ

2
− iδ)ρ̃21 +

i

2
Ω(ρ11 − ρ22) (1.4)

In (1.4) γ is the spontaneous decay rate, and Ω is the Rabi frequency of the laser field.

Here Ω might be the consequence of many laser fields, not necessarily restricted to a single

one. Formally, the definition of the Rabi frequency is ~Ω ≡ −eEtotal〈2|r|1〉.

In analogy to (1.3), we can compute P (t) of one of the laser fields, once ρ = ρ(t) is

calculated from (1.4). Here the basis is with respect to the rotating wave frame too. Since
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Atom Gas Cell

Saturation Beam
Probe Beam

Figure 1.1: Schematic drawing of saturation absorption spectroscopy

we are in the world of only two levels for now, polarization effects aren’t showing up, and I

will drop the vector property of ~E and ~p.

P (t) = − e

m
tr(

ρ11 ρ12

ρ21 ρ22


 0 e−iω

′tEp12

eiω
′tEp21 0

)

= − e

m
(ρ12e

iω′tEp21 + ρ21e
−iω′tEp12) = −2

e

m
Re(ρ12e

iω′tEp21) (1.5)

Let us now apply this method to saturation absorption spectroscopy. Namely, we have a

strong saturation laser beam and a weak probe laser beam of the same frequency, counter-

propagating and overlapping in the atom gas cell. The intensity of both laser beams are

unchanged while the frequency of both lasers are scanned across the resonance of the two

level atoms inside the cell. We are interested to know the absorption of the probe beam for

a given velocity group of atoms.

Suppose the atom is an ideal two level atom with spontaneous emission rate γ and the

resonance frequency is ω0. Both the saturation beam and the probe beam are detuned at
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δ. Suppose the Rabi frequency of the saturation beam is Ωs and the Rabi frequency of the

probe beam is Ωp. And suppose the velocity of the atom is v. Typically the probe beam is

much weaker than the saturation beam hence the internal time evolution of the atom can be

regarded as being solely determined by the saturation beam, provided we assume the phases

of the two lasers are the same. According to results of a steady state solution, the time

evolution of the two level atom can be described by:

ρ21 =
iΩs

2(γ/2− i(δ + kv))(1 + s)
(1.6)

Where the saturation parameter s is defined as:

s ≡ |Ωs|2

2|(γ/2− i(δ + kv))|2
=

|Ωs|2/2
(δ + kv)2 + γ2/4

(1.7)

According to (1.5), the work done on the atom by the probe beam can be computed in a

similar way. Note that an atom traveling at speed v for the saturation beam is traveling at

speed −v for the probe beam. And note that the frequency belonging to the rotating frame

is ω′, in order to arrive at (1.6).

Pp(t) = −2
e

m
Re{ iΩs

2(γ/2− i(δ + kv))(1 + s)
e−iω

′tEp cos((ω′ − kv)t)p12}

= 2~ω0
Ωp

Ωs

s

1 + s
{(γ/2 sin(kvt) + cos(kvt)(δ + kv)) sinω′t cosω′t

+ sin(kvt)(δ + kv) cos2 ω′t+ γ/2 cos(kvt) sin2 ω′t} (1.8)

Those terms as in (1.8) are fast oscillating at the laser frequency ω′. The real physical

world responses at a speed much lower than that, henceforth the right way to interpret that

10



high frequency ω′ is to take the average over time. sinω′t cosω′t would average to 0, while

cos2 ω′t and sin2 ω′t would average to 1/2. So finally we arrive at the power of the probe

beam’s work on the atom, or put in another way, the absorption of the probe beam by the

atom.

Pp(t) = ~ω0
Ωp

Ωs

s

1 + s
{sin(kvt)(δ + kv) + γ/2 cos(kvt)} (1.9)

Let us focus on the v = 0 atoms only, and then (1.9) becomes Pp(t) = ~ω0
Ωp
Ωs

s
1+s
· γ/2.

We can compare this to the scattering rate of the probe beam without saturation beam:

~ω0
sp

1+sp
· γ/2, where sp is the saturation parameter for the probe beam. We see clearly that

the absorption of the probe beam is suppressed, by the factor Ωp
Ωs

.

(1.9) is valid for small kv and small δ. Since if the atom sees the two lasers different in

frequency it is very likely that its internal motion is no longer dominated by the saturation

beam and hence it voids my previous assumption for the calculation.

This simple method of calculating absorption of light, together with the momentum

transfer associated, can of course be extended to a more general setting. The light field

would be quantized and the Hamiltonian shall be given under the quantized light field setting,

revoking the semi-classical picture. The expectation value of any operators shall be evaluated

by wavefunctions obeying this Hamiltonian. And the operator which represents the power

shall be written in an invariant way.

1.2.3 Quantum Nature of Light and Fluctuations

All we have done previously is around the expectation value of a ‘power operator’. How-

ever, if we stop at any moment to make a measurement, or care about the classical and

mechanical motion of the atom which is to be discussed in the following section, the atom
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is not going to necessarily follow this expectation value. Rather, the atom would drop into

different eigenstates with certain probabilities, whose average value in the end would reduce

to the expectation value.

A complete and satisfactory answer to this issue could be complicated. Yet to get a better

understanding of what is going on, we can take a look at the uncertainty, or variance, of this

‘power operator’ P whose expectation value P (t) is computed in (1.5). In plain language, I

am going to evaluate 〈(∆P)2〉 = 〈P2〉−〈P〉2. So now it is time to check 〈P2〉, which requires

to compute the operator p2 in the 2 by 2 form first as a crucial step.

Actually it is a subtle task to compute p2 under the two level atom setting. A seemingly

very direct calculation would look like (1.10), but this is wrong. Since, the assumption of

entering the two-level atom’s world: ‘The two levels form a complete set’ is not applicable

is this case. The operator p can couple |1〉 or |2〉 to essentially every eigenstate of the atom

Hamiltonian with the correct parity.

 0 e−iω
′tEp12

eiω
′tEp21 0

 ·
 0 e−iω

′tEp12

eiω
′tEp21 0

 =

p12p21 0

0 p12p21

 (1.10)

The evaluation of p2 can be viewed from another aspect too. We can start from H0 =

p2

2m
+ V (x), and we know that: −〈1|H0|1〉 + 〈2|H0|2〉 = ~ω0. The parity of V (x) is the

same as the parity of p2: V (x) = V (−x). However, the value of −〈1|V (x)|1〉 + 〈2|V (x)|2〉

depends on the details of the two level system we are talking about. If I am pursuing an

‘approximate’ answer, then the details can be forgotten and I will use H0 to approximate

p2

2m
.
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〈P2〉 ≈ e2E2

m2
tr(

ρ11 ρ12

ρ21 ρ22


0 0

0 2m~ω0

)

= 2ρ22~ω0
e2E2

m
(1.11)

The term E2 in (1.11) is fast oscillating, say, if E = E0 cosωt and the time-averaged

value is 1
2
E2

0 .

1.3 Momentum Transfer between Atom and Light

Once we can figure out the energy exchange between the atom and each single light field,

we would be able to get the momentum exchange almost for free. Thanks to Einstein, we

know that each ~ω of energy quanta corresponds to ~k of momentum, provided ω = ck. Put

in another way, we are able to compute the optical force on an atom, though throughout

the discussions here it would be packed under the name of ‘momentum exchange’. All we

have to do is to follow the procedure as in 1.2.1 and especially in 1.2.2, since generally we

are talking about optical force on an atom with spontaneous emission.

Suppose the atom is ‘pinned’ at the origin, and three lasers are acting on it, see Fig 1.2.

Each of those lasers would have their own characteristics, i.e. Rabi frequency Ωi(t), detuning

∆i(t), initial phase φi, and the direction of the k vector, ~di, with i = 1, 2, 3. It is assumed

that the atom does not move during the interaction, which is an idealization. At the site of

the atom, the effect of the lasers is merely to provide an oscillating electric field, hence the

spatial dependence of the lasers is irrelevant in order to solve for the time evolution of the

density matrix of the two level atom.
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Atom

Laser 1 Laser 2

Laser 3

Figure 1.2: Schematic drawing of an atom in multiple laser fields

Then (1.4) could be numerically solved to acquire the time dependence of the density

matrix. Then, according to (1.5), the work done on the atom by each of the individual

lasers is known. As discussed at the beginning of this section, the energy transfer is exactly

proportional to the momentum transfer. The spontaneous emission is usually regarded as

symmetric hence it takes away energy while its net effect of carrying momentum is zero.

Therefore the momentum ∆pi transfered to the atom by the ith laser is:

∆pi =
k

ω

∫ t1

t0

P (t)dt = −2

c

e

m

∫ t1

t0

Re(ρ12e
iω′tEp21)dt (1.12)

The momentum exchange for the ith laser takes place along the k vector of the ith laser.

Hence the above equation shall be rewritten as:

~∆pi = −2

c

e

m

∫ t1

t0

Re(ρ12e
iω′tEp21)k̂i (1.13)

where k̂i is the direction vector of the ith laser’s k vector.

Then the total momentum transfered to the atom is just the vector sum of all the lasers.

Here it reads:
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~∆p =
3∑
i=1

~∆pi (1.14)

For example, first let us look at a sample calculation of the one dimensional Doppler

Molasses by this method. A typical result is shown in Fig 1.3 for blue detuned optical

molasses.
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Figure 1.3: Sample calculation of momentum exchange to the 2 level atom from 1D blue
detuned optical molasses, with interaction time 10 micro seconds. The decay rate γ is 2π×1
MHz.

1.3.1 Coupling to the motion of the atom

The method of computing momentum exchange, described above, has a glaring point: the

atom is assumed to be sitting still at one site throughout the interaction. This is obviously

not the best approximation to the reality.
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In the semi-classical description of the atom-light interaction, we are facing a strange

combination when considering the light force on the atom. Namely, the center of mass

motion of the atom is described classically, while the source of the force is from the quan-

tum mechanical evolution of the ‘inner degree of freedom’ of the two level atom. It has

consequences in both the interpretation and the idea of computation.

The purpose here is to establish a set of ODE’s which couples the external and internal

degree of freedoms of the atom at the same time. Namely, the expectation value of the

quantum quantity, momentum exchange per unit time, is put in the Newton’s second law

for the trajectory of the two level atom.

For the momentum exchange equivalent to that of a quanta of the electricmagnetic field

~k, the relative velocity change of the atom is one unit of a recoil frequency ωr, namely,

ωr/k. So the exchange of momentum can be converted to the velocity change of the atom,

assuming this relation always holds.

Let us consider the one dimensional case for the moment, in which only two directions

have to be considered. Suppose the laser from one direction is described by ΩL = ΩL(x, t)

and the laser from the other direction is described by ΩR = ΩR(x, t), with x is the coordinate

in the lab frame. More explicitly, we have (1.15), (1.3.1) and (1.17).

dρ21

dt
= −(

γ

2
− iδ)ρ21 +

iw(ΩL + ΩR)

2
(1.15a)

dw

dt
= −γw − i((ΩL + ΩR)ρ∗21 − (Ω∗L + Ω∗R)ρ21) + γ (1.15b)

(1.15) looks no different from any optical Bloch equation. However, now the atoms have

both the internal motion (described by ρ21 and w) and the external motion (described by x

and t). Explicitly, we have ΩL = ΩL(x, t) and ΩR = ΩR(x, t) where x = x(t) is the position

of the atom in the lab frame. In (1.15), the atom is no longer pinned at the origin and
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the external motion of the atom would feed back to the internal motion via the position

dependence of the optical field.

NL = Re(ρ21) Im(ΩL)− Im(ρ21) Re(ΩL) (1.16a)

NR = Re(ρ21) Im(ΩR)− Im(ρ21) Re(ΩR) (1.16b)

NL∆t is the number of photons absorbed by the atom from the laser represented by ΩL

within a given time interval ∆t. The same interpretation holds for NR too. Therefore, NL

and NR can be viewed as the photon absorption rate. This concept is handy but in reality

nothing is going to absorb a half photon in a completed process. Therefore, is describing the

rate of absorption of light in the sense of expectation value.

dx

dt
= v (1.17a)

dv

dt
= (NR −NL)× ωr (1.17b)

In (1.17), x and v’s units are phase and frequency separately, namely kx and kv. Now

we have a system of linear first order ordinary differential equations after combining (1.15),

(1.3.1) and (1.17), whose solution will demonstrate the time evolution of the kinetic motion

and wave function of the atom at the same time.

1.3.2 Bichromatic force

After its invention, the bichromatic force has been used more and more widely in cases

where a large optical force not limited by γ is in need [24] [25] [26]. The bichromatic force is

not only very powerful in the sense of practical applications, but also brings an interesting

theoretical topic for us to understand its behavior. The intuitive π–pulse model and the
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profound dressed atom model are well known by now. Here, we want to present a third

method to explain the bichromatic force, from the point of view of the asymmetry of the

atom’s absorption of left-going and right-going laser beams.

Let us begin with the π–pulse model, which provides a basic and intuitive picture for the

underlying physics. This is summarized in the following Fig.1.4.

e-

e-

e-
ħk

ħk ħk

π-pulse

π-pulse train Mirror

Phase Delay

π-pulse

π/δ

(a)

(b)

Figure 1.4: The bichromatic force explained by the π–pulse model. The lasers interacting
with the atom can be viewed as π–pulse wave packets, coming from both the left and the
right. The momentum exchange, and hence the force is from the stimulated emission caused
by the second π–pulse. See also [27].

Based on the previous discussion about the atom’s absorption of light, we can switch our

18



mind a little to see why the birchromatic force arises. This is a one dimensional problem

and therefore we only have to consider the light from the left and the light from the right.

The setup of the lasers, namely, two frequencies from each direction, drives the atom in such

a way that the atom would strongly absorb the light from a particular direction, but not

the other. In the situation where no spontaneous emission is present, the atom is essentially

transferring energy/momentum from the light of one direction into the other. And this

observation has close ties to the π–pulse model discussed in Fig.1.4. The quantitative details

are shown in the following Fig.1.5.
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Figure 1.5: The internal motion of the atom and the atom’s absorption of light, in the
interaction between the atom and the bichromatic light. This shows the numerical results in
the semi–classical picture following the methods of section 1.2 and 1.3. The atom is fixed at
the origin and the bichromatic light from both the directions, left and right, are acting on
it. The two frequency components are detuned at +10 MHz and −10 MHz separately, and
are of Rabi frequency 8.5 MHz each. The light from the right has a phase delay of 2π

5
rad.

The initial phase difference between the two components are set to be π
2

rad. The atom is
at the ground state initially. The line width of the transition is set at 1 MHz.

Fig.1.5 shows the quantitative details backing the π–pulse model. Let’s try to make a
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Figure 1.6: Numerical simulations of the trajectory of an atom moving in a bichromatic
light field, for two different initial velocities (a) and (b). The change of velocity is due to the
bichromatic force. The bichromatic force’s feature of pushing the atom to a certain velocity
is clear. This simulation is based on the transition of 23S1 → 33P2 of helium–4, driven by
389 nm laser. The velocity and position are evaluated in terms of kv and kx, where k is the
wave vector of the 389 nm laser. The two frequency components of the bichromatic light
field is set at +/− 30 MHz separately, with the same Rabi frequency 25.5 MHz. The phases
of the two frequency components are chosen to be the optimum values.
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qualitative interpretation out of that. The sum of laser fields from both directions acting on

the atom makes the atom wave function always in phase with the lasers from one direction

while out of the phase with the lasers from other direction, therefore the atom always absorb

light from one set and then stimulated emit into the other. Of particular interest is the fact

that the bichromatic force does not rely upon the spontaneous emission. Even without the

spontaneous emission to scatter the power, this stimulated process can take place and the

atom will always experience a force.

According to section 1.3.1, we can numerically trace the trajectory of an atom in a

bichromatic light field. An example in given in Fig.1.6. From this example we clearly see the

atom receives a force much larger than the radiative force ~kγ. The fact that the bichromatic

force is not limited by ~kγ is exactly its advantage.

The bichromatic force will be a powerful tool for purposes to be discussed later (see

Chapter 5). However, before we close this brief introduction, we want to emphasize that the

bichromatic force is not as simple as it appears to be. Because it requires a high intensity of

light, many side effects like the Dopplerons can take place. Many parameters, like the optical

delay, can affect its performance. All those will be kept in mind in the implementation of

the bichromatic force.

1.4 Rydberg Atoms

The study of Rydberg atoms is a traditional old topic. Moreover, the study of Rydberg

atoms is a vigorous currently on–going hot topic. The fascinating aspect of Rydberg atoms

is that it repeatedly gives the community surprises in the form of amazing new physics. For

instance, half a century ago it’s hard for people to imagine one day the Rydberg atom is an

ideal candidate for quantum computing. Here we want to offer a very brief review of some
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general properties of the Rydberg atoms, mostly according to the discussions of [28], which

is one of the best, if not only, reference book on this topic.

Rydberg atoms are referring to those atoms in the states of high principle quantum

number n. Rydberg atoms can be produced by charge exchange, electron impact, and

photo–excitation. And all of the three production methods has a cross section that scales as

∼ n−3. The research in Rydberg atoms began long before the laser era, yet the invention of

laser provides the means to coherently address a single Rydberg level.

Property Formula n-dependence

Binding energy En − Ry
(n−δl)2 n−2

Energy spacing En − En−1 n−3

Orbital radius 〈r〉 ' 1
2
(3(n− δl)2 − l(l + 1)) n2

Geo. cross section π〈r〉2 n4

Dipole moment 〈nl|er|nl + 1〉 n2

Polarizability 2e2
∑

n=n′,l,m
|〈nlm|z|n′l′m′〉|2
Enlm−En′l′m′

n7

Radiative lifetime ( e2

3~c3πε0

∑l=l±1
n<n′

lmax
2l′+1

ω3|〈n′l′|r|nl〉|2)−1 n−3

Blackbody transition 1
τbbnl

= 4α3kT
3n2 n−2

Fine Structure n−3

Table 1.1: The dependence of selected Rydberg atom properties on the principal quantum
number [28]. The radiative life time here is considered at temperature 0 K. The blackbody
transition rate does not take the photon thermal distribution into account.

Despite of the seemingly simple definition, the Rydberg atom has some very exaggerated

properties compared to the low–lying excited states of the atoms. A summary of selected

atomic properties of Rydberg atoms is shown in Table 1.1. The Rydberg atom is an ideal
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example for the Bohr atom model. The Bohr radius scales as n2 therefore the Rydberg

atom can easily become very large. This has aroused a lot of research on the collisional

cross sections. Rydberg atoms are useful even for the radio astronomers because they are

naturally formed among the interstellar space in the universe and output a signature 2.4

GHz radiation (from n = 109→ n = 108 transition).

Moreover, because the Rydberg levels’ energies are close to each other, many of the tran-

sition frequencies are in the microwave range. This property allows the manipulation of the

Rydberg states by microwave radiation. More profoundly, it allows the research into the

interaction between the Rydberg atom and the engineered vacuum, to strengthen our under-

standing of QED. Rydberg atoms have very large electric dipole moments which naturally

leads to pronounced Stark effect [29] and van der Waals interaction between pairs of Rydberg

atoms [30][31]. Rydberg atoms can be easily ionized, and the ionization of Rydberg atoms is

a standard research topic, with well–know techniques as the state–selective field ionization.

Rydberg atoms are very sensitive to the black body radiation at room temperature, and this

topic is to be discussed further in Chapter 4. By producing cold Rydberg atoms, people

are pursuing the research interest in low temperature Rydberg systems for applications such

as studies of collective effects [32] and formation and recombination of ultracold Rydberg

plasmas [33] and quantum computing [34]. In the rest of this section we are going to discuss

two more topics specifically, which are related to our experiments: the quantum defect and

Stark effect of helium Rydberg states.

The helium Rydberg atom and the hydrogen Rydberg have one slight difference: the

core of the hydrogen atom is merely a proton while the core of the helium atom is a nucleus

carrying +2 electron unit of positive charge plus an inner electron, from the excited valence

electron’s point of view. This results in an energy shift in the Helium Rydberg atom energy

levels, which is very well described by the quantum defect theory.
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The energy levels of the hydrogen atoms are En = −Ry
n2 where different l states are

degenerate, without considering higher order corrections. In non-hydrogen atoms, such as

the helium in our case, for highly elliptical low l states the radial wave function of the excited

valence electron has a significant non-vanishing part penetrating into the core area which is

made up of not only the nucleus but also the inner electron. This type of core penetration

and polarization leads to an energy shift. At the kernel of the quantum defect theory is that

the shifted energies can be written as in (1.19) (see also [35]):

En = − Ry

(n− δl)2
(1.18)

where the quantum defect term δl is a function of n, l and can be described effectively by

the Rydberg-Ritz formula [36]

δl = a+ bEn + cE2
n + dE3

n + ... (1.19)

where a, b, c, d,... are the Rydberg-Ritz coefficients and they also depend on the angular

momentum l. The corresponding values of triplet helium atoms are listed in Table 1.2.

l - value a b c d

0 0.296609 -0.038840 0.004960 0.000000

1 0.068320 0.017870 -0.017190 0.000000

2 0.002869 0.006220 0.000000 0.000000

3 0.000240 -0.002090 0.000000 0.000000

Table 1.2: Rydberg-Ritz coefficients for the calculation of quantum defect of triplet Helium
without considering spin-orbit splitting [37]
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The shielding is almost perfect for states of high orbital angular momentum, for example

the circular Bohr orbits, since the electron in those states do not come to the core close

enough to see anything different from a point charge. However, states of low l are depressed

in energy. For helium, the S state has relatively larger quantum defect than the P state,

and the P state has relatively larger quantum defect than the D state, etc.

The Stark effect, as the effect of an electric field on Rydberg atoms, provides an interesting

example of how the Coulomb potential can be changed over the size of the radius of the atom.

The potential difference |e ~E ·~r| is particularly significant for Rydberg atoms due to its large

radius. For the hydrogen atom, an analytical solution is available because the Hamiltonian

and wave function are still separable under the parabolic coordinates. The helium atom is a

bit more complicated and is not separable, yet we can numerically evaluate the radial matrix

elements of the Stark operator as described by Zimmerman et al.[29].

As an example, Fig. 1.7 shows a sample Stark effect calculation of the energy levels for

He triplet state n = 26. This figure demonstrates several important features: (1) the strong

energy suppression of the S, P , D states due to the quantum defect; (2) the degeneracy of

the |nl〉, l > 3 states is lifted, which is a typical phenomena in the first order perturbation of

degenerate states; (3) avoided crossings arise from the fact that a non-hydrogen core breaks

the Coulomb symmetry and couples to the Stark levels. The size of an avoided crossing is

given by the strength of the coupling.

Now we want to consider what happens to the transitions to those Stark shifted levels.

Therefore we are to look into the oscillator strengths. The oscillator strength from level nlm

to level n′l′m′ is defined by

fn′l′m′,nlm = 2
m

~
ωn′l′,nl|〈n′l′m′|z|nlm〉|2 (1.20)

25



Figure 1.7: Stark map of Helium atom for n = 26 (without considering the fine structure)
[37]

These oscillator strengths can be evaluated by numerical integration for He Rydberg Stark

states. A sample calculation of transitions to n = 25 Stark states from the 33P2 state is shown

in Fig. 1.8 [37]. The qualitative feature of the results of n = 25 is shared by others states

with different principle quantum states. There are dramatic changes in the distribution of

the oscillator strengths across the Stark manifold as the electric field changes. These different

transition strengths will lead to different Rabi frequencies for the same intensity of driving

laser, which shall be kept in mind for the interest on the experimental aspect.
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Figure 1.8: Relative Transition strength to n = 25 Stark map from 33P2 for triplet Helium
atom, which is given by the width of each line [37].

1.5 Overview of the Helium Rydberg Atom Excitation

The helium atom has one more electron than the hydrogen atom, and this extra electron–

electron interaction makes it quite different. Even before the days of a thorough understand-

ing of the electron spin, people know there are two kind of helium: the para–helium (states

of symmetric eigenfunctions) and the ortho–helium (states of antisymmetric eigenfunctions).

The interaction between the two electrons is basically their Coulomb interaction and spin–
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spin interaction, if we neglect the spin–orbit interaction and the relativistic corrections. The

total spin of the two electrons can be 1 (triplet states) or 0 (singlet state), which then spec-

ifies the spin degree of freedom. One advantage of helium–4 is that there is no hyperfine

structure. A simple energy diagram of helium–4 triplet states is shown in Fig. 1.9, where

some of the transitions associated with later experiments are also included.

Figure 1.9: (a) Energy levels of the helium triplet states and (b) the transitions. ΩS and ΩP

are referring to the Stokes and the Pump lasers, respectively. ∆S and ∆P are their detunings.
Further discussion are presented in Chapter 3.

The decay from an excited triplet or singlet S state to the ground state 11S0 is forbidden

by the selection rule of the electric dipole transition. Consequently the singlet and triplet S

states of low principle quantum number have the possibility to become metastable, and the

21S0 state has a lifetime of ∼ 19 ms. Moreover, decay from the 23S1 state to the ground
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state is doubly forbidden not only by the electric dipole transition but also a spin triplet to

singlet transition. This gives rise to the extremely long metastable lifetime, predicted to be

8000 s [38] (a recent experimental measurement actually indicates an even longer lifetime),

so that the metastable state can essentially be regarded as the effective ground state. The

He* 23S1 state is the longest lived of any atomic or molecular species and decays via a

single-photon magnetic dipole transition at 62.5 nm rather than via a two-photon process

[38] [39]. Meanwhile, the stored metastable energy (19.82 eV) is the highest among all

the metastable species, enabling detection of single atoms using charged particle detectors,

electron multipliers, or microchannel plates (MCPs) with near unity detection efficiency [40].

Moreover, the large stored energy in He* allows for efficient damage of photoresist-coated

surfaces for possible applications in atom lithography.

The Rabi frequencies for the relevant transitions have been defined in (3.4). Suppose the

laser polarization is linear and is driving the ∆m = 0 transition, then the Rabi frequency

is related to the laser intensity by the formula Ω = µ
~

√
2I
ε0c

, where µ is the transition dipole

moment e〈e|r|g〉 with |e〉 and |g〉 the two states associated with the transition. A numerical

conversion table is given in Table 1.3.

Transitions 23S1 → 33P2 33P2 → 243S1

m = 0 Ωp(x, t) = 14.9×
√
Ip(x, t)MHz ΩS(x, t) = 1.67×

√
IS(x, t)MHz

m = ±1 Ωp(x, t) = 12.9×
√
Ip(x, t)MHz ΩS(x, t) = 1.45×

√
IS(x, t)MHz

Table 1.3: Conversion relations between the intensities (unit: W/cm2) and the Rabi fre-
quencies for transitions of interest. (x, t) specifies the space–time coordinate of the atom
interacting with the laser. Ip and IS are referring to the intensities of the pump and Stokes
beams, separately. From the table we see that to make the Rabi frequencies of the two
transition relatively comparable the power of the Stokes laser beam needs to be 50× that of
the pump laser beam.
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Table 1.3 does not cover the situations of transitions to different j’s or other than ∆m = 0.

A detailed relative strength of these transitions are given in Fig. 1.10.

Figure 1.10: Relative transition strength for j = 1 → j = 0, 1, 2, with all the possible m’s
considered.

We need to start from the metastable ground state for any practical laser–atom interac-

tion of the helium. Therefore we rely upon a constant metastable helium flow to perform the

experiment that follows. A reverse flow dc discharge source is employed for this purpose. We

also need various detection schemes for the metastable helium for the flux or spacial distribu-

tion. To drive the three different transitions 23S → 23P , 23S → 33P and 33P → Rydberg as

illustrated in Fig. 1.9, we need three lasers working in different wavelengths. The discussion

of all those experimental setup is included in Chapter 2.

We research the stimulated Raman adiabatic passage (STIRAP) of a three level ladder

system and apply this technology to excite the metastable helium into the Rydberg states.

A theoretical discussion of STIRAP’s principle is provided in Chapter 3.

The Rydberg atom has a strong and non–trivial interaction with the black body radiation

at room temperature. The black body radiation will induce the transitions to neighboring

Rydberg states and ionization. This topic is discussed in Chapter 4.

To establish the count of the Rydberg atom’s flux, we set up a scheme to physically
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separate the Rydberg atoms and the metastable atoms. Based on this scheme we are able to

establish the absolute efficiency measurement of STIRAP. Some inherent properties of our

atomic beam has some interesting effects on this efficiency measurement. Those contents are

provided in Chapter 5.

The helium energy levels have magnetic sub–levels and those sub–levels have well–defined

mj’s. Then the simple three level transition diagram will have interesting structures, which

depends on the driving lasers’ polarizations. Chapter 6 studies some of this effect and the

associated interferences.

There are quite a few interesting spectroscopic topics related to STIRAP, for example,

the Autler–Townes effect of a three level system. Also, we want to know the effect of the

laser noise on STIRAP. These discussions are included in Chapter 7.
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Chapter 2

Experimental Design and Setup

2.1 Vacuum System

The vacuum system for the experiment is sketched in Fig. 2.1. It is made up of mostly

stainless steel parts and conflat flanges sealed with copper gaskets. It contains three major

parts: the source chamber where the metastable helium is generated, the interaction chamber

where the laser–atom interaction takes place and the detection chamber.

The source chamber is pumped by a Pfeiffer TPH 330 turbo pump backed by a Welch

mechanical pump model 1397, and the interaction chamber is pumped by a Pfeiffer TPH 270

turbo pump backed by a Welch mechanical pump model 1376. The backflow outlet of the

source chamber is connected to a Welch mechanical pump model 1402. Since the detection

chamber and the interaction chamber are separated by a long beamline, we have installed an

ion pump on the detection chamber to keep the low pressure there. With no atomic beam

running, typical pressure in this vacuum system is ∼ 3.2× 10−7 Torr in the source chamber,

∼ 3.6 × 10−7 Torr in the interaction chamber and ∼ 2.5 × 10−7 in the detection chamber.

When the atomic beam is running down the system, the pressure in the interaction chamber
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is on the scale of 10−6 Torr.

Vacuum system

slits

26cm

roughing line

foreline

foreline

roughing line

Welch Duo 1397 Welch Duo 1376

Interaction
chamber

Detection

chamber

Gate valve

Gate valve

Gate
valve

RS valve

FS valve

RI valve

RI valve

Safety
valve Safety

valve

Welch Duo 1402

140cm

Vibration damper

Vibration damper

TPH 270

MCP+
Phosphor ScreenSSD

Ion Detector

Figure 2.1: Schematics of the vacuum system. The atomic beam from the source chamber
is traveling through the interaction chamber, between the metal field plates, and arrives at
the detection chamber.

It takes very special design to produce the metastable ground state 23S1 helium atoms.

The reason is that, 23S1 is ∼ 19.8 eV above the true ground state 11S0, and the transition

is doubly forbidden (triplet → singlet, S → S). Our source was built at Utrecht University

in the Netherlands, according to the reverse flow design developed by Kawanaka et al. [41]

with minor modifications by Mastwijk et al. [42]. The schematics is shown in the following
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Fig. 2.2.

Figure 2.2: Schematics of the metastable helium source chamber. This helium gas is designed
to go through a backflow. The helium is guided to be in good thermal contact with the wall
of the jacket which is cryogenically cooled by the liquid nitrogen. The metastable helium is
generated from an electric discharge process, with −2200 V supplied to the tungsten needle
while the nozzle plate is grounded.

The voltage difference between the tungsten needle and the nozzle plate induces a high
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electric field. This electric field ionized the helium gas and forms a plasma. Metastable

helium atoms are thereafter generated as a result of the re–combination process. The pro-

duction efficiency is usually on the order of 10−5 → 10−4 compared to the total numbers of

the helium atoms involved. A skimmer plate with 3 mm aperture is immediately after the

nozzle plate. The output of the source contains the metastable helium atoms, stray uv light

from the plasma, and other charged particles. Many parameters affect this process and they

have to be optimized. Under steady operational conditions, our source outputs ∼ 0.5× 1014

He* atoms/(sr·s) with a average longitudinal velocity about 1070 m/s and full width at half

maximum of about 480 m/s, as verified by the time of flight measurement [43].

2.2 Detectors

Various detection schemes for the atoms have been installed in our system. In this section,

we are going to briefly discuss three types of the detectors: the ion detector, the phosphor

screen detector and the stainless steel detector.

A crucial element in all of the three detectors is the microchannel plate (MCP). A micro-

channel plate is a slab made from highly resistive material of typically 2 mm thickness with

a regular array of tiny tubes or slots (microchannels) leading from one face to the opposite,

densely distributed over the whole surface. The microchannels are typically approximately

10 micrometers in diameter (6 micrometer in high resolution MCPs) and spaced apart by

approximately 15 micrometers; they are parallel to each other and often enter the plate at a

small angle to the surface (∼ 8◦ from normal) [44] [45].

The ion detector we use is sketched in Fig. 2.3. It consists of two MCPs with angled

channels rotated from each other producing a v–like shape. Ions incident on the channel

walls will bring secondary electron emissions which are then collected by the anode. The
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Figure 2.3: Schematics of the ion detector. It is mounted above the field plates. A portion
of the heliums ions in the interaction region will be directed upwards and collected by the
detector. Its detailed mission is mostly associated with the discussions in Chapter 4.

MCPs in use have a channel diameter of 10 microns with a center–to–center spacing of 12

microns, a bias angle of ∼ 12◦ and a length–to–diameter ratio 40 : 1, and the gain is ∼ 103

at 750 V bias voltage and ∼ 2× 103 at 800 V.

The MCP+phosphor screen detector is shown in Fig. 2.4, whose target is to image the

spatial profile of the metastable helium atoms. A metastable helium atom carries 19.8 eV

of internal energy, and when it is incident on the MCP it can easily generate a cascade

of electrons. Because of the ‘channel’ nature of the MCP, it will have a spatial resolution

determined by the channel diameter. The electrons will subsequently hit the phosphor screen

and the phosphor excited by the electrons will emit light. A CCD camera is used to image

the phosphor screen.

Our phosphor screen is from the Lexel Imaging System, which is basically a glass substrate

coated with Indium Tin Oxide (ITO), covered by P43 phosphor. The light emitted from
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Figure 2.4: Schematics of the MCP+phosphor screen detector.

P43 is in the region from yellow to green which peaks around 545 nm. Though the phosphor

screen is a convenient device to image the metastable helium, it is generally not true that

the emitted light intensity is proportional to the atom numbers.

If we need a good quantitative measurement of the metastable helium flux instead of the

spatial resolution, the stainless steel detector (SSD) is an appropriate choice which is shown

in Fig. 2.5. The advantage of SSD is that it outputs a current proportional to the incident

numbers of the metastable helium atoms.

The work function of the stainless steel is about 4.7 → 5.6 eV. One metastable helium

atom is supposed to liberate one electron during its impact with a probability ∼ 70% [46].

The electrons ejected from the surface of the stainless steel is accelerated to the MCPs by

the applied high voltage electric potential. This conversion from He∗ into electrons (of the
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Figure 2.5: Schematic of the stainless steel detector. This detector is mounted on a 2 inch
linear feedthrough (Huntington Mechanical Laboratories, Inc.) and therefore its transverse
position with respect to the atomic beam can be adjusted. During daily operations we have
the choice to either use the phosphor screen the monitor the spatial profile or use the SSD
to monitor the absolute flux.

same kinetic energy) makes the electric current signal from the anode proportional to the

total He∗ flux through the aperture.

2.3 Laser Systems

Three laser systems are used in this experiment. They are the 389 nm laser system driving

the 23S1 → 33P2 transition, the 760–800 nm laser system driving the 33P2 → Rydberg

transition, and the 1083 nm laser system driving the 23S1 → 23P2 transition. They are all

frequency stabilized by various mechanisms.
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2.3.1 389 nm Laser System

The 389 nm laser light is generated by frequency doubling the output of a Ti:Sapphire

laser. The sketch of the system is shown in Fig. 2.6. We use an SEO Ti:Sapphire laser

pumped by a Sprout–G laser of Lighthouse Photonics (it replaces the older version of Co-

herent Verdi V–10 which is aging). During daily operations, the Sprout–G laser outputs

10 W multi–wavelength light at 532 nm (green light) in single TEM00 mode, to pump

the Ti:Sapphire laser. With this 10 W pumping light, the Ti:Sapphire laser is produc-

ing ∼ 1.7 − 2 W of single longitudinal mode TEM00 at ∼ 777.951 nm. This ir laser is

subsequently frequency doubled by the Coherent MBD–200 commercial frequency doubling

system to generate ∼ 389 nm light for the 23S1 → 33P2 transition.

The SEO Ti:Sapphire laser has a ring configuration with an optical diode installed to

ensure uni–directional propagation of the light in the cavity. A birefringent filter provides a

coarse wavelength adjustment while an etalon provides a fine frequency adjustment. A PZT

is attached to one of the cavity mirrors to allow fine frequency control.

The ‘active’ element of MBD–200 is a Lithium Triborate (LBO) crystal, whose nonlinear

effect allows the generation of the second harmonic light. However, a single pass through the

nonlinear crystal is not enough to generate enough power in the second harmonic; therefore,

an external resonant enhancement cavity is used in MBD–200. The Hänsch-Couillaud (HC)

technique is used to lock the external cavity on resonance.

The schematics of the MBD–200 frequency doubling cavity is shown in Fig. 2.7. The

Hänsch-Couillaud (HC) locking technique was first developed by Hänsch and Couillaud based

on polarization spectroscopy [47]. Briefly speaking, this mechanism is based on the birefrin-

gence property of the LBO crystal, to use the one polarization component irrelevant of the

frequency doubling process to serve as the reference in order to detect the phase of the
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Sprout

Figure 2.6: A sketch of the 389 nm laser system.

polarization component of interest. Detailed discussions can also be found at [43] and [22].

The SEO Ti:Sapphire laser is frequency stabilized by the Pound–Drever–Hall (PDH)

locking technique [48] [49], and further locked to the atomic transition by saturation absorp-
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Figure 2.7: Optical setup of the MBD–200 frequency doubling cavity .

tion spectroscopy (SAS). The PDH mechanism has numerous applications nowadays, and

its idea is deep and fundamental. If some system has a frequency–dependent response (in

this particular case, a Fabry–Perot cavity), then the detuning of the carrier frequency off

the resonance can be detected by interfering with sidebands (of course, a lock–in with the

modulation frequency that generates the sidebands is necessary). The purpose of the PDH

locking system here is to stabilize the Ti:Sapphire laser against environmental noise. SAS is

the standard technique that is widely used to lock the laser frequency precisely to the atomic

transitions [50][51] (for the performance details of our SAS system, see also the discussions

in [43]).

2.3.2 796 nm Laser System

The 760–800 nm ir laser system for the 33P2 → Rydberg transition is relatively simpler.

The diagram of the system is shown in Fig. 2.8. It is also a Ti:Sapphire laser system.

A Coherent Verdi V–10 laser is pumping the Tekhnoscan Model TIS-SF-07e Ti:Sapphire
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Verdi-V10

Figure 2.8: The optical scheme of ir laser system for STIRAP experiment.

laser. During daily operations, the Coherent Verdi V–10 typically outputs 10 W while the

Tekhnoscan outputs ∼ 1 W.
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Since there is no stable atomic transition to lock to, no SAS locking system is set up for

the ir laser system, although it has a same PDH locking system as the 389 nm laser system.

The Tekhnoscan laser has a internal frequency stabilization scheme to lock the laser to the

transmission of an internal etalon. Since the performance of the internal locking is adequate

and since we usually scan the ir laser frequency, its PDH system is used less frequently.

The internal frequency stabilization scheme is very similar to that of PDH locking. A small

AC dithering voltage of 1 kHz is first applied to PZT on the thick etalon. This leads to a

minor modulation in the output power which is monitored by a photo-detector. Later on,

the signal from the photo-detector goes through a 1 kHz filter to get synchronously detected

and integrated as the error signal. Then the error signal is fed into a high-voltage amplifier,

which drives the PZT on the thick etalon [52].

2.3.3 1083 nm Laser System

The λ = 1083.33 nm laser for the 23S1 → 23P2 transition is from a Spectra Diode Labs

(SDL) model SDL-6702-H1 distributed Bragg reflector (DBR) diode laser. The diode is

packaged in an 8 pin TO–3 window mount equipped with a thermistor and a thermoelectric

cooler. The temperature of the diode is kept stable to ±0.1◦C by an ILX Lightwave LDT-590

temperature controller. A Thorlabs LDC 500 laser diode controller is used for the current

regulation. The laser diode wavelength and output power depends on the current of the

diode, and this relation has been extensively examined in previous theses [53][54][27].

The direct laser output of the SDL-6702-H1 diode laser has a linewidth about 3 MHz,

which is larger than the 1.6 MHz natural linewidth of the transition 23S1 → 23P2. To narrow

down the linewidth and stabilize the frequency, an extended cavity is used, as shown in Fig.

2.9. To shield the laser against external temperature fluctuations and mechanical vibrations,
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Figure 2.9: The optical scheme of the 1083 nm diode laser system [27]. A beam splitter picks
30% of the diode output towards the retro–reflecting mirror which has a PZT attached to
it to allow for frequency control. With the extended cavity, the laser linewidth is reduced
to ∼ 125 kHz [55]. In the design there is an optical isolator in the 21% leakage beam, yet
in the setup no optical isolator is installed in that line. Therefore, a great care is in need to
avoid any optical feed–back in that line or the laser would be disturbed.

the diode and the extended cavity are placed on a 305 mm x 710 mm x 76 mm Aluminum

slab, and covered by a box made of polystyrene foam insulation. Although there are long-

term temperature drifts during the course of a day, the temperature inside the box is stable

to better than 0.5 ◦C/hr in a short term [27].

There are two output beams from the design in Fig. 2.9: The main beam (∼ 70% of the

total power) used for the experiment, and the leakage beam (∼ 21% of the total power) used

for the SAS to lock the laser to the atomic transition. The SAS locking setup is shown in

Fig. 2.10.

To check the performance of the SAS locking system, we monitor and record the real

time error signal and feedback signal by a digital data acquisition card, which are shown in
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(a) Optical setup.
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Figure 4.6 Schematics of the locking electronics. Details about the components
can be found in the text.

4.2.3 Off-Resonance Locking

For locking the laser to atomic resonance, i.e. ω = ωa, the secondary output

of the extended cavity of the laser (see figure 4.3) is used for the SAS (see

figure 4.7 for the SAS signal and the error signal). In this case the +kv

beam contains a component of ωa and a push of atoms can be detected on the

MCP/Phosphor Screen. Therefore that locking scheme is used for aligning the

+kv beams to which all other beams are aligned afterwards.

For bichromatic collimation on the other hand it is necessary to lock the
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(b) Electronic setup.

Figure 2.10: SAS locking scheme for the 1083 nm diode laser [27].

Figure 2.11: 1083 nm diode laser SAS locking signal.

Fig. 2.11. The Fourier transform of the time signal is shown on the right. When the laser

is locked, we see that the error signal (PID input) stays constant at zero (the fluctuations

are due to the smallest step in the digitization of the voltage), while the feedback changes

slowly to offset whatever is causing the laser frequency to shift. The Fourier transform does

not show any suspicious components in higher frequencies.
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We need two–frequency component light for the bichromatic force, and the mechanism

to generate the two–frequency component light is shown in Fig. 2.12 [27].

𝜔 + 𝛿, 𝜔 − 𝛿 

𝜔 + 2𝛿,𝜔 

For bichromatic 
force 

For optical 
molasses 

Figure 2.12: Two–frequency light generation by double passing an AOM [27]. The translation
stage controls the π–pulse phase delay between the ω + δ, ω − δ and ω + 2δ, ω components.

We see from Fig. 2.12 that by double passing the AOM, we acquire one beam containing

ω ± δ frequencies and the other beam containing ω and ω + 2δ frequencies. We drive the

AOM at δ = 2π×60MHz b rf signal from HP 3200B (amplified by a MiniCircuits ZHL-1-2W

RF amplifier). The light containing ω± δ frequencies are then amplified by fiber amplifiers,

to be used for the bichromatic force and optical molasses.
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Chapter 3

Three Level STIRAP and

Complications beyond the Simple

Picture

3.1 A Brief Introduction to STIRAP

STIRAP stands for Stimulated Raman Adiabatic Passage, which is a particular process

to transfer population between different quantum levels. The concept of this process was

first brought about by Hioe and Eberly [56] [57]. The first experimental realization was

achieved by Klaas Bergmann et al. in 1988 [58], and in a subsequent paper in 1990 [59] they

assigned the name STIRAP which is now widely accepted.

Here I want to give a quick tour of the three level STIRAP process based on our experi-

ment. Two typical three level systems are shown in Fig. 3.1. A more detailed discussion of

STIRAP can be found at a series of papers published by Bruce Shore and Klaas Bergmann

et al. [60] [61] [62] [63]. The original goal of the current experiment was to excite metastable
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3

Pump Laser

Stokes Laser

detuning of pump laser

detuning of stokes laser

Figure 3.1: Two typical three-level systems: the ladder system and the lambda system.
There is a tiny subtle difference between those two systems with regard to STIRAP, which
is not usually brought up. The STIRAP of lambda system whose excited level can decay
down to both the ground levels is in some sense easier to implement. The reason is that,
even when the pump laser and Stokes laser are cw in time, as long as the ratio of their Rabi
frequency is proper, the optical pumping process like that in EIT will put the wavefunction
of the atom in the correct dark state which makes atom transparent to the lasers. This dark
is exactly the STIRAP workhorse state that will be discussed a lot in the following.

Helium atoms from their metastable ground state into the n=24 Rydberg state by a 2-

photon process via an intermediate state. The states involved are: 23S1−→33P2−→ n=24

Rydberg state. This is a typical 3 level system with excitations by two lasers whose frequen-

cies correspond to the energy intervals separately. The first laser (uv laser) is at 389 nm,

corresponding to 23S1−→33P2 transition, while the second laser (ir laser) is at around 796

nm, corresponding to 33P2−→n=24 Rydberg state transition. This is a ladder system. But

the Hamiltonian is essentially the same for a lambda system as well.

Take the 23S1 state to be |1〉, take the 33P2 state to be |2〉, and take one of the n=24

Rydberg states (it is highly degenerate) to be |3〉.

Let’s start the discussion by writing down the 3 by 3 Hamiltonian (3.1) for this 3 level

system. We neglect the effect of spontaneous emission for the moment. Then the equation

of motion for a wavefunction ϕ (which is a time-dependent 3 by 1 column vector) is (3.2).
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Ĥ = ~


0 1

2
Ωp(t) 0

1
2
Ωp(t) ∆p

1
2
ΩS(t)

0 1
2
ΩS(t) ∆p + ∆S

 (3.1)

i~
d

dt
ϕ = Ĥϕ (3.2)

Here the subscript ‘p’ stands for the pump laser, while the subscript ‘S’ stands for the

Stokes laser. Despite the simple appearance, it takes a little caution to derive this Hamilto-

nian.

Let us first describe the electric field of the laser as a ‘plane wave at a fixed space point’.

~E = E(t)ε̂ cos(ωt) (3.3)

E(t) is the slow-varying envelope of the pulse, ε̂ is the unit complex polarization vector.

Now we can give the definition of the Rabi frequency.

~Ωp(t) = |Ep(t)e〈1|~r|2〉 · ε̂p∗|

~ΩS(t) = |ES(t)e〈2|~r|3〉 · ε̂S∗|
(3.4)

In this simple three level system, Ω(t) can be always chosen to be a real number, through

a process which absorbs the phase into the base kets in the rotating wave frame. Since, the

Hamiltonian in (3.1) is written in the rotating wave frame, which means, its base kets are not

|n〉, n = 1, 2, 3; rather, the actual base kets have a phase difference between them. These

phases are time-dependent. Say, the base kets in the rotating wave frame are |n′〉, n = 1, 2, 3,

and En stands for the energy eigenvalue of |n〉.
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|n′〉 = e−iζn(t)|n〉, n = 1, 2, 3; (3.5)

ζ1(t) = t
~E1

ζ2(t) = t
~(E1 + ~ωp)

ζ2(t) = t
~(E1 + ~ωp + ~ωS)

(3.6)

And accordingly we have the detunings between the laser and the exact atomic transition

energy.

~∆p = E2 − E1 − ~ωp

~∆S = E3 − E2 − ~ωS
(3.7)

Then after the rotating wave approximation which neglects the fast oscillating terms, we

end up with the Hamiltonian in (3.1). To simplify the discussion, we consider the STIRAP

when the two photon resonance condition is satisfied, i.e. ∆p+ ∆S = 0. We soon notice that

this matrix of (3.1) is now singular, i.e. its rank is only 2 though it is a 3 by 3 matrix. Let

us try to find the null vector of this matrix at any time.


0 Ωp(t)/2 0

Ωp(t)/2 ∆p ΩS(t)/2

0 ΩS(t)/2 0



α(t)

0

β(t)

 = 0 (3.8)

To satisfy (3.8), we have α(t)Ωp(t) + β(t)ΩS(t) = 0. Further if we want this null vector

to be normalized, we may define θ(t) as:

tan θ(t) =
Ωp(t)

ΩS(t)
(3.9)
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Figure 3.2: Smooth pulse shapes to achieve population transfer

And then this null vector can be written as |0〉 = (cos θ, 0,− sin θ)T . From an eigenvector

point of view, this null vector is an instantaneous energy eigenstate of the Hamiltonian in

(3.8), which is the so called adiabatic state. More interesting is that the instantaneous energy

eigenvalue of this adiabatic state does not change – it always stay at 0.

The idea of adiabatic following asserts that, then the quantum state of the system would

always follow an adiabatic state as long as some adiabatic condition is satisfied.

Assume for now that the adiabatic condition is fulfilled and the system is following

the adiabatic state (cos θ, 0,− sin θ)T . Let us see how we can make use of this to achieve a

complete population transfer from |1〉 to |3〉. Basically we want |0〉 to be |1〉 at the beginning

and |3〉 in the end. For this, we need θ to go from 0 to π/2. Of course θ had better change

smoothly to avoid abrupt interruption of the adiabatic following. Then ΩS(t) and Ωp(t), as

functions of time, ought to look like Fig. 3.2(a).

This is the so called “counter-intuitive pulse pairs” and is the essence of three level

STIRAP. The system starts to evolve, i.e. start on the adiabatic state |0〉 which is just the

ground state |1〉 at the beginning, as soon as Ωp goes up from zero; and the system ends, i.e.

finish the adiabatic state |0〉 as |3〉, as soon as ΩS decreases to zero. A numerical simulation
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of such a process using the abrupt pulses shown in Fig. 3.2(a) has been provided in Fig.

3.3. The Rabi frequency and time evolution of lasers have been chosen close to experimental

values.
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Figure 3.3: Numerical simulation of STIRAP by abrupt pulses. The top subplot shows how
the population in each individual level evolves with time. The center subplot shows how the
population in the intermediate level evolves with time. The scale is different for the center
subplot. The bottom subplot shows the Rabi frequency of the laser pulses. The decay of
state |2〉 and |3〉 have been taken into consideration.

Yet practically it is hard and unnecessary to use abrupt pulses such as in Fig. 3.2(a) and

Fig. 3.3. Instead, we may use a complete nice pulse, such as a Gaussian pulse. A typical
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practically used counter-intuitive STIRAP pulse pairs are shown in Fig. 3.2(b). This does

not change the nature of the system since at the beginning tan θ is always zero before the

pump pulse is turned on, and in the end tan θ is always infinity when the Stokes pulse is

turned off. Further discussions along this line can be found at [64].

All these are very nice except for one glaring question: how come the atom does not even

see the intermediate level? Put in another way, what is ‘adiabatic following’? Moreover,

we may wonder that why the value of ∆p seems irrelevant in (3.8), though we already knew

that one photon detuning is a crucial factor in STIRAP?

Let us go back to the Schrödinger equation and take a closer look at the time evolution of

a state vector strictly conciding with |0〉. According to (3.8) and (3.10), the time derivative

of |0〉 is 0 at all times, which leads to this apparent contradiction: how could this state

change with time if its time derivative is 0?

i
d

dt
|0〉 =


0 Ωp(t)/2 0

Ωp(t)/2 ∆p ΩS(t)/2

0 ΩS(t)/2 0




cos θ

0

− sin θ

 = 0 (3.10)

The answer to the above glaring question is that, during the process of STIRAP, there

is a small population in level |2〉. Actually we can see a hint of this point in Fig. 3.3, where

the time evolution of the population of the intermediate level is shown. The advertisement

of STIRAP claims the intermediate level never gets populated, but we know what it comes

to when advertisement vs. reality. The physics determines it is a two step process and the

intermediate level is required to have footprints. Let us see why and how.

To see the reason that intermediate states get population after the interaction starts, we

are going to use the important method in ordinary differential equations, namely, iteration,

also know as the Dyson expansion in quantum perturbation theory. First we rewrite the
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target differential equation (3.2) into the integral form (3.11). Here, as in (3.8), we assume

∆p + ∆S = 0 for Ĥ. The integral for the vector is regarded as taking integral of each

individual component.

ϕ(t) =

t∫
0

1

i~
Ĥϕdt+ ϕ(0) (3.11)

The iteration process is described as in (3.12), where we get ϕ′(t) as the next order

solution based on the solution ϕ(t) from the previous order. The range of the integral is a

small period of time immediately after the interaction is turned on, i.e. t < δt for a fixed

small value of time δt. The choice of a short time interval is to address our interest to see

how probability amplitude gets into |2〉 in the first place, and to ensure convergence for the

iteration process.

ϕ′(t) =

t∫
0

1

i~
Ĥ(t′)ϕ(t′)dt′ + ϕ(0) (3.12)

We already know that |0〉 is at most an approximate solution. Let us rename |0〉 as

φ0 and iterate once to get a ‘better’ solution φ′0 (as the 1st order solution). Then we get

φ′0 = (1, 0, 0)T and this basically tells us that nothing is going on at the lowest order. We

carry on the iteration to get φ′′0 (as the 2nd order solution) and φ′′′0 (as the 3rd order solution)

according to (3.12).

φ′′0(t′) =

t′∫
0

1

i~
Ĥ(t)φ′0(t)dt+ φ′0(0) (3.13)

and therefore:
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= −i
t′∫

0


0 Ωp(t)/2 0

Ωp(t)/2 ∆p ΩS(t)/2

0 ΩS(t)/2 0




1

0

0

 dt+


1

0

0

 =


1

−i
t′∫
0

Ωp(t)

2
dt

0



φ′′′0 (t′′) =

t′′∫
0

1

i~
Ĥ(t′)φ′′0(t′)dt′ + φ′′0(0)

= −i
t′′∫

0


0 Ωp(t

′)/2 0

Ωp(t
′)/2 ∆p ΩS(t′)/2

0 ΩS(t′)/2 0




1

−i
t′∫
0

Ωp(t)

2
dt

0

 dt′ +


1

0

0



=


1−

t′′∫
0

Ωp(t′)
2
dt′

−i
t′′∫
0

Ωp(t′)
2
dt′ −∆p

t′′∫
0

t′∫
0

Ωp(t)

2
dtdt′

−
t′′∫
0

ΩS(t′)
2

t′∫
0

Ωp(t)

2
dtdt′


(3.14)

During this iteration process, it is understood that all the time variables are within the

δt interval, i.e. t′, t′′ < δt. This iteration process can be continued, yet the result of φ′′′0 is

enough for some preliminary observations. As seen in (3.13) and (3.14), when the interaction

begins, a little tiny population is moved into the state |2〉 with a correct phase. Then this

small probability amplitude in |2〉 helps to transfer a lot of the population from |1〉 into |3〉.

The population in |3〉 would grow significantly and continuously if the pulse shape of the

Stokes and pump lasers are chosen right, while the population in |2〉 shall always stay tiny.

This is an alternative way of explaining STIRAP to the mysterious adiabatic following of a

three level system. We will come back to this point later.
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The effect of one photon detuning is also revealed by the term −∆p

t′′∫
0

t′∫
0

Ωp(t)

2
dtdt′ in (3.14).

But we also observe that it only affects the intermediate level through a higher order, which

means its overall effect on STIRAP can not be too significant for small ∆p values.

However, the method of iteration in (3.12) is cumbersome and can only address the

problem locally in the time domain, i.e. it only tells us the evolution of the system within a

short period of time. Now that we qualitatively know that there is indeed a small population

is in |2〉 during STIRAP, we can cheat a bit to get a global solution. Namely, a ‘better’

wavefunction can be constructed as |0′〉 = (cos θ, η,− sin θ)T where η = η(t) is small, and

then its time evolution can be examined.

i
d

dt


cos θ

η

− sin θ

 = i


−θ̇ sin θ

η̇

−θ̇ cos θ

 (3.15)

1

~
Ĥ


cos θ

η

− sin θ

 =


0 Ωp(t)/2 0

Ωp(t)/2 ∆p ΩS(t)/2

0 ΩS(t)/2 0




cos θ

η

− sin θ

 =


ηΩp

2

η∆p

ηΩS
2

 (3.16)

The equality of (3.2) shall be maintained by (3.15) and (3.16), which leads to (3.17).

−iθ̇ sin θ = ηΩp
2

iη̇ = η∆p

−iθ̇ cos θ = ηΩS
2

(3.17)

The first and third equation of (3.17) is compatible and essentially redundant, since if we

divide one by the other then we have sin θ
cos θ

= Ωp
Ωs

, which is essentially (3.9). Since |00〉 is again
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a approximate solution and η is small, though the second equation of (3.17) is not exactly

compatible with the others we can safely neglect it for now. Therefore, (3.17) indicates

the requirement on the population of the intermediate level which is simply summarized in

(3.18).

η =
−2iθ̇√
Ω2
p + Ω2

S

(3.18)

3.2 Adiabatic Conditions of STIRAP

K. Bergmann et al [60] discussed the robustness of the STIRAP process from the point of

view of how good the adiabatic following to |0〉 is. Basically the idea is, during the evolution

in time, to maintain a small overlapping between |0〉 and the other two adiabatic states of

Ĥ in (3.1), hence the conditions are given the name ‘adiabatic conditions’. Yet the ideas of

‘adiabatic’ is a bit of ad hoc such that I won’t quite follow that line of argument, though I

still borrow the name adiabatic conditions.

Let us gather what we have so far. In order to make STIRAP via |0〉 happen, we want

|0′〉 to behave very similar to |0〉, i.e. |η(t)| has to be small all the time. Then according to

(3.18) the criteria for STIRAP can be written as:

|η| = 2| θ̇√
Ω2
p + Ω2

S

| � 1 (3.19)

(3.19) has to be satisfied at all times during the interaction. We can simplify it bit. Set

Ωeff =
√

Ω2
p + Ω2

S, then (3.19) is saying that 2|θ̇| � Ωeff . We can integrate both sides

over the interaction time τ , which can be viewed as the time interval θ changes from 0 to

π/2 or the pulses’ overlapping time. The value of Ωeff does not change much during the
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overlapping time. In summary, we have (3.20):

Ωeff · τ � π (3.20)

A further analysis of |0′〉 is due here. Any time dependent vector (A(t), B(t), C(t))T is a

linear superposition 1 of |0〉 = (cos θ, 0,− sin θ)T , |2〉 = (0, 1, 0)T and |2′〉 = (sin θ, 0, cos θ)T .

Here |2〉 and |2′〉 are just names and shall not be confused with other adiabatic states. |0〉,

|2〉 and |2′〉 are unimodular and orthogonal to one another hence at any time t they form an

orthonormal basis. Say the exact wave function for the STIRAP process is |ς〉. From previous

discussions we know that |ς〉 is composed of mostly |0〉 together with a small contribution of

|2〉 which we named as η in (3.15). Yet there is no reason why |ς〉 does not contain anything

from |2′〉. Formally, we have (3.21) in first order perturbation, where η and ξ are small

compared to 1.

|ς〉 = |0〉+ η|2〉+ ξ|2′〉 (3.21)

By this definition, |ς〉 is not normalized. I am going to carry out an analogous discussion

of |0′〉 for |ς〉. First, the time derivative part.

i
d

dt
|ς〉 = i


−θ̇ sin θ + ξθ̇ cos θ

η̇

−θ̇ cos θ − ξθ̇ sin θ

 (3.22)

Then, the Hamiltonian part.

1Essentially this is a projection onto the orthonormal basis. Of course this projection is time-dependent
via θ(t)
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1

~
Ĥ|ς〉 =


ηΩp

2

η∆p + ξΩp
2

sin θ + ξΩS
2

cos Θ

ηΩS
2

 (3.23)

As before, we require that (3.22) and (3.23) are equal according the schrödinger equation.

Up to the 1st order, the equations about the wavefunction components in level 1 and level

3 of |ς〉 are the same as (3.17). We are interested in what happens in the equation for level

2 component of |ς〉 since now it is compatible with the other two equations.

iη̇ = η∆p + ξ
Ωp

2
sin θ + ξ

ΩS

2
cos θ (3.24)

An assumption can be added here that the magnitude of η̇
η

and η̇
ξ

is small compared to

Ωeff and ∆p. Then we can drop the term iη̇ in (3.24).

0 = η∆p + ξ
Ωp

2
sin θ + ξ

ΩS

2
cos θ (3.25)

Immediately we can solve for ξ. Because of the assumption we made, this is a ‘stable’

solution such that the value of ξ does not change a lot during the entire time of interaction.

ξ = − η∆p

Ωp
2

sin θ + ΩS
2

cos θ
(3.26)

From (3.21) and the definition of |2′〉 we see that ξ basically describes how much popula-

tion is left in the level 1 in the end. (3.26) tells us that ξ is proportional to ∆p. Based on (3.18)

and (3.20), we can use π
τ

1
Ωeff

as η approximately in (3.26). Also Ωp
2

sin θ+ ΩS
2

cos θ = Ωeff/2.

Combine all these observations:

ξ ≈ 2π
∆p

Ω2
effτ

(3.27)
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Arguments following (3.14) show that ∆p does affect the STIRAP process. Here we have

quantified its effect. As long as ∆p deviates from zero, some population is going to stay in

level 1 after STIRAP, up to 1st order. The larger |∆p| is, the more population gets put back

in level 1. If we want to keep ξ at the same order as 1
Ωeff τ

, the criteria is Ωeff > ∆p. We also

see that STIRAP is tolerant to ∆p provided the two-photon resonance condition is satisfied.

Say experimentally Ωeffτ is about 20 and ∆p ≈ Ωeff/2, then ξ ≈ 0.15. ξ is probability

amplitude and the population shall be ξ2, which is 0.02 – only 2% population is lost.

3.3 Feynman’s Path Integral for Discrete States and

STIRAP

To begin, we need a little setup for notations and conventions. We will keep using what

is in the previous sections, namely, Ωeff = Ωeff (t) =
√

Ω2
p + Ω2

S. The Hamiltonian we are

dealing with is still:

H = ~


0 Ωp(t)/2 0

Ωp(t)/2 ∆ ΩS(t)/2

0 ΩS(t)/2 0

 (3.28)

The adiabatic states (i.e. the instantaneous energy eigen-states) are:

|+̂1, t〉 = sin θ sinφ|1〉+ cosφ|2〉+ cos θ sinφ|3〉 (3.29a)

|0̂, t〉 = cos θ|1〉 − sin θ|3〉 (3.29b)

|−̂1, t〉 = sin θ cosφ|1〉 − sinφ|2〉+ cos θ cosφ|3〉 (3.29c)
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Here θ = θ(t) and φ = φ(t) are time-dependent and are defined as following:

tan θ =
Ωp(t)

ΩS(t)
(3.30a)

tan(2φ) =
Ωeff

∆
(3.30b)

The instantaneous energy eigen-values of those adiabatic states are:

E(+̂1, t) =
1

2
(∆ +

√
Ω2
eff + ∆2) (3.31a)

E(0̂, t) = 0 (3.31b)

E(−̂1, t) =
1

2
(∆−

√
Ω2
eff + ∆2) (3.31c)

We need some more relations about the adiabatic states.

Identity and Projection: 1 = |+̂1〉〈+̂1|+ |0̂〉〈0̂|+ |−̂1〉〈−̂1| (3.32)

Energy Eigenstates: H(t)|̂j, t〉 = E(ĵ, t)|̂j, t〉, j = −1, 0,+1. (3.33)

Orthogonality and normality: 〈ĵ, t|k̂, t〉 = δjk, j = −1, 0,+1. (3.34)

With all these preparations now let us look at the problem. We are trying to solve

the time evolution of such a system: i~ d
dt
|ϕ〉 = H(t)|ϕ〉. Suppose the interaction starts at

time t = 0 and we are looking at t = T . Now we are trying to evaluate the propagator

Θ(T ) = 〈3| exp− i
∫ T
0 Hdt

~ |1〉. We are going to evaluate that by the Feynman’s Path Integral.

By the methods we are going to explain next, all propagators of this type can be acquired

hence it would become a satisfying solution of the time evolution problem.

First, we need to ‘split’ the time, which is the typical first step of the Feynman’s Path
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Integral.

Θ(T ) = 〈3| exp−
i
∫ T

0
H(t)dt

~
|1〉 = lim

∆t→0
〈3|(1− iH(tn−1)∆t

~
) · · · (1− iH(t0)∆t

~
)|1〉 (3.35)

Here, ∆t = T/n hence ∆t → 0 is the same as n → ∞. t0 is when the interaction starts

and tn = T is when the interaction ends. In the next step, we insert the identity operator

as in (3.32) for each tn in (3.35).

lim
∆t→0
〈3|

∑
jn=−1,0,1

|ĵn, tn〉〈ĵn, tn|(1− i
H(tn−1)∆t

~
)

∑
jn−1=−1,0,1

|ĵn−1, tn−1〉〈ĵn−1, tn−1| · · ·

∑
j1=−1,0,1

|ĵ1, t1〉〈ĵ1, t1|(1− i
H(t0)∆t

~
)
∑

j0=−1,0,1

|ĵ0, t0〉〈ĵ0, t0|1〉 (3.36)

To proceed further from (3.36), we are going to evaluate one type of inner product as

in the following definition (3.37), and then multiply them all together in the time–ordered

manner as specified in (3.36).

gmlk =〈l̂, tm + ∆t|(1− iH(tm)∆t

~
)|k̂, tm〉 (3.37)

m = 0, · · · , n− 1; l, k = −1, 0,+1.

In order to evaluate (3.37), we would need to work out the infinitesimal time translation

of the adiabatic states. To make the life easier at the beginning, we shall assume that the

one-photon detuning ∆ is 0. Henceforth φ is a constant π
4
. With all these in mind, we are

able to get the following relations, under the condition that ∆t is small and → 0.
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|+̂1, t+ ∆t〉 − |+̂1, t〉 = ∆t
d

dt
|+̂1, t〉 =

θ̇√
2

∆t|0̂, t〉 (3.38)

|0̂, t+ ∆t〉 − |0̂, t〉 = ∆t
d

dt
|0̂, t〉 = − θ̇√

2
∆t(|+̂1, t〉+ |−̂1, t〉) (3.39)

|−̂1, t+ ∆t〉 − |−̂1, t〉 = ∆t
d

dt
|−̂1, t〉 =

θ̇√
2

∆t|0̂, t〉 (3.40)

Since now |̂j, t + ∆t〉 is expressed in terms of |̂j, t〉 we are able to compute gmlk in (3.37).

The following equation (3.41) is the result written in the matrix format. Note that the time

in (3.41) is t = tm = m ·∆t and that θ̇ = θ̇(t).

gm =


1− iE(+̂1,t)∆t

~
θ̇√
2
∆t 0

− θ̇√
2
∆t 1 − θ̇√

2
∆t

0 θ̇√
2
∆t 1− iE(−̂1,t)∆t

~

 (3.41)

If we want to continue to work the propagator out we will have to inevitably evaluate a

product of the type gn · · · g2g1. Before the discussion of the general case, let us look at what

happens in the adiabatic limit, i.e. θ̇ → 0. Then gm in (3.41) becomes:

gm =


1− iE(+̂1,t)∆t

~ 0 0

0 1 0

0 0 1− iE(−̂1,t)∆t
~

 (3.42)

As defined in (3.42), gl and gm commute with each other since they are all diagonal.

Then it is legitimate to take the ln and convert the product into a sum. Yet we have to

know how to take this ln. The formula I am going to use is ln(I−T ) = −
∑∞

k=1
Tk

k
(provided

‖T‖ < 1) and here essentially I only need the 1st order: ln(I − T ) = −T .
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ln gm =


−iE(+̂1,t)∆t

~ 0 0

0 0 0

0 0 −iE(−̂1,t)∆t
~

 (3.43)

In the limit of ∆t → 0 or equivalently n → ∞, the sum is just like doing an integral.

With all those information at hand, we may compute the propagator g.

ln g = lim
n→∞

ln(gn · · · g2g1) = lim
n→∞

n∑
1

ln gm =


−i
∫ E(+̂1,t)

~ dt 0 0

0 0 0

0 0 −i
∫ E(−̂1,t)

~

 (3.44)

g =


exp(−i

∫ E(+̂1,t)
~ dt) 0 0

0 1 0

0 0 exp(−i
∫ E(−̂1,t)

~ dt)

 (3.45)

(3.44) and (3.45) are precisely telling us the idea of the adiabatic following (of course,

in the adiabatic limit/approximation). The system would honestly follow those adiabatic

states, and the time evolution is merely a phase accumulation on these adiabatic states. No

cross talk is possible between different adiabatic states. From the path integral’s point of

view, the paths are just straight lines in time, as can be seen from Fig. 3.4.

Now let us come back to the general problem as in (3.41). The method to evaluate this

is again to take the ln and convert that product into a sum. However a subtle problem

is in the sense that different gm’s do not commute with each other. The crucial step of

(3.44) is essentially a special case of the Baker–Campbell–Hausdorff formula, which requires

commutativity to be valid in (3.44). Nevertheless, we can still first formally compute ln gm
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time

adiabatic states0 +1-1

allowed paths

Figure 3.4: A schematic for paths in the pure adiabatic situation

for the infinitesimal time:

Up to 1st order: ln gm =


−iE(+̂1,t)∆t

~
θ̇√
2
∆t 0

− θ̇√
2
∆t 0 − θ̇√

2
∆t

0 θ̇√
2
∆t −iE(−̂1,t)∆t

~

 (3.46)

By the virtue of (3.18), we observe that θ̇ in (3.46) is smaller by one order of magnitude

than the diagonal terms −iE(+̂1,t)∆t
~ and −iE(−̂1,t)∆t

~ . Therefore we can treat θ̇ as a ‘small

parameter’ and look for solutions up to certain orders of this parameter, like a perturbative

approach. According to the Baker–Campbell–Hausdorff formula, all the terms that result

from the non–commuting nature of ln gm’s are those with higher orders in θ̇. Therefore

for a first order result in θ̇ we can copy exactly what we did in (3.44). Another argument

can be made according to a condition we experimentalists love: to assume that during the

interaction E(+̂1, t), E(−̂1, t) and θ̇ stay as constants, and then the commuting criteria

is satisfied. If the deviation from the constants are small along the time, then the non–

commuting part is also small and can be neglected for a first order result. We can always
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check in the end if the final result satisfies the Schrödinger equation or not. Then, in the

limit of ∆t→ 0 or equivalently n→∞, the sum is just like doing an integral:

g = lim
n→∞

ln(gn · · · g2g1) = lim
n→∞

n∑
1

ln gm =


−i
∫ E(+̂1,t)

~ dt θ√
2

0

− θ√
2

0 − θ√
2

0 θ√
2
−i
∫ E(−̂1,t)

~

 (3.47)

With (3.47) at our hand, we are finally able to treat the propagator Θ(T ) we want,

combining all the information we have so far.

Θ(T ) =
∑

jn=−1,0,1

∑
j0=−1,0,1

〈3|ĵn, T 〉 lim
n→∞

(gn · · · g2g1)〈ĵ0, t0|1〉

=
∑

jn=−1,0,1

∑
j0=−1,0,1

〈3|ĵn, T 〉 exp{ lim
n→∞

ln(gn · · · g2g1)}〈ĵ0, t0|1〉

=

(
〈3|+̂1, T 〉 〈3|0̂, T 〉 〈3|−̂1, T 〉

)
exp


−i
∫ E(+̂1,t)

~ dt θ√
2

0

− θ√
2

0 − θ√
2

0 θ√
2
−i
∫ E(−̂1,t)

~



〈+̂1, t0|1〉

〈0̂, t0|1〉

〈−̂1, t0|1〉


(3.48)

As mentioned earlier, we need to do a sanity check on this Θ(T ), since in the crucial

step of (3.47), which leads to (3.48), we are actually performing an (seemingly) unjustifiable

approximation. We would verify whether a wavefunction corresponding to this Θ(T ) satisfies

the Schrödinger equation or not. Let us proceed as follows.

First, it is helpful to explicitly write down the wavefunction |φ〉 = |φ(T )〉 corresponding

to Θ(T ).
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
〈1|φ〉

〈2|φ〉

〈3|φ〉

 =


〈1|+̂1, T 〉 〈1|0̂, T 〉 〈1|−̂1, T 〉

〈2|+̂1, T 〉 〈2|0̂, T 〉 〈2|−̂1, T 〉

〈3|+̂1, T 〉 〈3|0̂, T 〉 〈3|−̂1, T 〉

 exp


−i
∫ E(+̂1,t)

~ dt θ√
2

0

− θ√
2

0 − θ√
2

0 θ√
2
−i
∫ E(−̂1,t)

~



〈+̂1, t0|1〉

〈0̂, t0|1〉

〈−̂1, t0|1〉


(3.49)

The next step is to put |φ〉 into the Schrödinger equation i~ d
dT
|φ〉 = H|φ〉 for H as defined

in (3.28), to check if the LHS and RHS are equal. For this purpose we need to take the time

derivative of (3.49).

From the three equations following (3.38), we know that:

d

dT


〈1|+̂1, T 〉 〈1|0̂, T 〉 〈1|−̂1, T 〉

〈2|+̂1, T 〉 〈2|0̂, T 〉 〈2|−̂1, T 〉

〈3|+̂1, T 〉 〈3|0̂, T 〉 〈3|−̂1, T 〉

 =


〈1|+̂1, T 〉 〈1|0̂, T 〉 〈1|−̂1, T 〉

〈2|+̂1, T 〉 〈2|0̂, T 〉 〈2|−̂1, T 〉

〈3|+̂1, T 〉 〈3|0̂, T 〉 〈3|−̂1, T 〉

·


0 − θ̇√
2

0

θ̇√
2

0 θ̇√
2

0 − θ̇√
2

0


(3.50)

The next step is to differentiate eX(t), the method of which is described in the following

formula, a natural proposition of the Hadamard lemma.

(
d

dt
eX(t))e−X(t) =

d

dt
X(t) +

1

2!
[X(t),

d

dt
X(t)] +

1

3!
[X(t), [X(t),

d

dt
X(t)]] + · · · (3.51)

If we only keep the 1st order in (3.51), then d
dt
eX(t) = d

dt
X(t)eX(t). That approximation

leads to:
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d

dT
exp


−i
∫ T E(+̂1,t)

~ dt θ√
2

0

− θ√
2

0 − θ√
2

0 θ√
2
−i
∫ T E(−̂1,t)

~



=


−iE(+̂1,T )

~
θ̇√
2

0

− θ̇√
2

0 − θ̇√
2

0 θ̇√
2
−iE(−̂1,T )

~

 exp


−i
∫ T E(+̂1,t)

~ dt θ√
2

0

− θ√
2

0 − θ√
2

0 θ√
2
−i
∫ T E(−̂1,t)

~

 (3.52)

By combining all the information contained in (3.49), (3.50) and (3.52), we can finally

evaluate d
dT
|φ〉, to the 1st order in the sense of (3.51).

d

dT


〈1|φ〉

〈2|φ〉

〈3|φ〉

 =


〈1|+̂1, T 〉 〈1|0̂, T 〉 〈1|−̂1, T 〉

〈2|+̂1, T 〉 〈2|0̂, T 〉 〈2|−̂1, T 〉

〈3|+̂1, T 〉 〈3|0̂, T 〉 〈3|−̂1, T 〉

 · (


0 − θ̇√
2

0

θ̇√
2

0 θ̇√
2

0 − θ̇√
2

0

+


−iE(+̂1,t)

~
θ̇√
2

0

− θ̇√
2

0 − θ̇√
2

0 θ̇√
2
−iE(−̂1,t)

~

) · exp


−i
∫ E(+̂1,t)

~ dt θ√
2

0

− θ√
2

0 − θ√
2

0 θ√
2
−i
∫ E(−̂1,t)

~

 ·

〈+̂1, t0|1〉

〈0̂, t0|1〉

〈−̂1, t0|1〉



=


〈1|+̂1, T 〉 〈1|0̂, T 〉 〈1|−̂1, T 〉

〈2|+̂1, T 〉 〈2|0̂, T 〉 〈2|−̂1, T 〉

〈3|+̂1, T 〉 〈3|0̂, T 〉 〈3|−̂1, T 〉

 ·

−iE(+̂1,t)

~ 0 0

0 0 0

0 0 −iE(−̂1,t)
~

 ·

exp


−i
∫ E(+̂1,t)

~ dt θ√
2

0

− θ√
2

0 − θ√
2

0 θ√
2
−i
∫ E(−̂1,t)

~

 ·

〈+̂1, t0|1〉

〈0̂, t0|1〉

〈−̂1, t0|1〉


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=
H(T )

i~


〈1|+̂1, T 〉 〈1|0̂, T 〉 〈1|−̂1, T 〉

〈2|+̂1, T 〉 〈2|0̂, T 〉 〈2|−̂1, T 〉

〈3|+̂1, T 〉 〈3|0̂, T 〉 〈3|−̂1, T 〉

 exp


−i
∫ E(+̂1,t)

~ dt θ√
2

0

− θ√
2

0 − θ√
2

0 θ√
2
−i
∫ E(−̂1,t)

~



〈+̂1, t0|1〉

〈0̂, t0|1〉

〈−̂1, t0|1〉


(3.53)

In the last step of (3.53), we have used the following fact, which is a natural consequence

of the definition of the adiabatic states for H as defined in (3.28).


〈1|+̂1, T 〉 〈1|0̂, T 〉 〈1|−̂1, T 〉

〈2|+̂1, T 〉 〈2|0̂, T 〉 〈2|−̂1, T 〉

〈3|+̂1, T 〉 〈3|0̂, T 〉 〈3|−̂1, T 〉

 ·

−iE(+̂1,t)

~ 0 0

0 0 0

0 0 −iE(−̂1,t)
~



=
H(T )

i~


〈1|+̂1, T 〉 〈1|0̂, T 〉 〈1|−̂1, T 〉

〈2|+̂1, T 〉 〈2|0̂, T 〉 〈2|−̂1, T 〉

〈3|+̂1, T 〉 〈3|0̂, T 〉 〈3|−̂1, T 〉

 (3.54)

Up to this point, we have verified that the propagator derived in (3.48) does lead to a

wavefunction that satisfies the time-dependent Schrödinger equation. However, an approx-

imation is involved, namely, we have only taken into consideration the 1st order term in

(3.51). We have yet to explain what we mean by this approximation.

In (3.51), if X(t) commutes with d
dt
X(t), then it would reduce to d

dt
eX(t) = d

dt
[X(t)]eX(t),

and all our verification of the time-dependent Schrödinger equation would then become

precise. To be explicit, if we want the approximation made to (3.51) to be lifted, we would

like to require:
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
−iE(+̂1,t)

~
θ̇√
2

0

− θ̇√
2

0 − θ̇√
2

0 θ̇√
2
−iE(−̂1,t)

~

 commutes with


−i
∫ E(+̂1,t)

~ dt θ√
2

0

− θ√
2

0 − θ√
2

0 θ√
2
−i
∫ E(−̂1,t)

~

 (3.55)

(3.55) would be true if the following simple condition is satisfied.

θ̇

θ
=

E(+̂1, t)∫ T
0
E(+̂1, t)dt

=
E(−̂1, t)∫ T

0
E(−̂1, t)dt

(3.56)

In a real experiment of STIRAP, we are always trying to keep Ωeff and θ̇ constant over the

course of the laser-atom interaction. Therefore the condition of (3.56) is well approximated

in a situation of real interest. An offense against (3.56) would lead to higher order corrections

to this problem, but the 1st order situation would satisfy us for the moment.

Of course for a real problem the quantities of 〈3|ĵn, T 〉 and 〈ĵ0, t0|1〉 are known or given,

and they contain parts of the information of the time evolution of the system. Therefore the

secrets (including the myth of adiabatic following) are actually contained in this matrix:

exp


−i
∫ E(+̂1,t)

~ dt θ√
2

0

− θ√
2

0 − θ√
2

0 θ√
2
−i
∫ E(−̂1,t)

~

 (3.57)

The STIRAP condition expressed in terms of E(+̂1, t), E(−̂1, t) and θ is that:

| − i
∫ T

0

E(+̂1, t)

~
dt| � |θ|, | − i

∫ T

0

E(−̂1, t)

~
dt| � |θ| (3.58)

This condition would yield:
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Up to 0th order: exp


−i
∫ E(+̂1,t)

~ dt θ√
2

0

− θ√
2

0 − θ√
2

0 θ√
2
−i
∫ E(−̂1,t)

~

→

exp


−i
∫ E(+̂1,t)

~ dt θ√
2

0

− θ√
2

0 − θ√
2

0 θ√
2
−i
∫ E(−̂1,t)

~

 =


exp(−i

∫ E(+̂1,t)
~ dt) 0 0

0 1 0

0 0 exp(−i
∫ E(−̂1,t)

~ dt)


(3.59)

(3.59) would again give us the propagator of the usual STIRAP picture, i.e. no population

in the intermediate level, the state vector follows the adiabatic state all the time.

Yet, it does not take too much effort to fully work out (3.57) and realize that the state

vector is following a path ‘jiggling’ around the adiabatic state. I will give a rough picture

here just for entertainment.

Suppose β � 1. Then up to 1st order in β, we have:

expα


1 β 0

−β 0 −β

0 β −1

 =


1 β 0

−β 0 −β

0 β −1




exp(iα) 0 0

0 1 0

0 0 exp(−iα)




1 β 0

−β 0 −β

0 β −1

 (3.60)

From the above equation it can be seen that during the interaction time the intermediate

level has to be populated a little in order for things to work.
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In summary, the time evolution of STIRAP can be described by the propagator as in

(3.48), with reasonable approximation to the 1st order in the sense of (3.51). And the

discussion here provides support and fundamental reasons to what we were doing in section

3.1.

3.4 An Extra Nearby Intermediate Level

For Helium-4, the atomic state 33P1 is not that far away from our intermediate state 33P2

of the STIRAP interaction. Actually, 33P2 is only 650 MHz below 33P1. If we forget about

the complexity of polarizations and magnetic sublevels for a moment, a laser coupling 23S1

and 33P2 right on resonance are also coupling 23S1 and 33P2 with -650 MHz detuning.

1

2

3

Laser

Figure 3.5: A nearby energy level

A possible concern is that this extra intermediate level

would cause an ac Stark shift of some kind to the ground

level. And this indeed has been pointed out, such as in

the recent work of Marsman et al., [65]. Here we are

going to show a relatively complete argument to clarify

and lift this concern.

The first model we will look at is composed of the

ground level, the excited level and the extra nearby ex-

cited level. A single laser is coupling the ground level

and the excited level right on resonance. The system is briefly shown in Fig. 3.5.

0 Ω

Ω 0

 Adding the extra excited level−−−−−−−−−−−−−−−−−→
as the 3rd level


0 Ω Ω

Ω 0 0

Ω 0 ∆

 (3.61)
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The above Hamiltonian is acquired after the rotating wave approximation. We assume

here the laser induces the same Rabi frequency for both the on and off resonance excited

levels. Also, the Rabi frequency Ω is regarded as small compared to the detuning ∆.

We will apply a first order perturbation treatment to compute the energy eigenstates for

this three level Hamiltonian. We start from the unperturbed state (1, 1, 0)T , and keep track

of the order by Ω/∆. Then we would get, up to order of O(Ω/∆):


0 Ω Ω

Ω 0 0

Ω 0 ∆




1− Ω
∆

1− 1
2

Ω
∆

−Ω
∆

 = (Ω− 1

2

Ω2

∆
)


1− Ω

∆

1− 1
2

Ω
∆

−Ω
∆

 (3.62)

Similarly, for (1,−1, 0)T , we have:


0 Ω Ω

Ω 0 0

Ω 0 ∆




1 + Ω
∆

−1− 1
2

Ω
∆

−Ω
∆

 = −(Ω +
1

2

Ω2

∆
)


1 + Ω

∆

−1− 1
2

Ω
∆

−Ω
∆

 (3.63)

The existence of the off-resonance nearby extra level would lead to a small population into

itself, and hence change the adiabatic states by a little. As a consequence, the magnitude

of the ac Stark shift changes, which is the energy difference between those adiabatic states.

This change of the adiabatic energy is certainly observable, and will be revealed in related

experiments such as the frequency of Rabi oscillation and Autler-Townes effect (Section 7.1).

Yet, some care is in need to describe it. The ac Stark shift is always in place, and the

existence of the extra level changes this ac Stark shift from Ω to Ω − 1
2

Ω2

∆
, for one of the

adiabatic states. It is not correct to view this change as a shift in the energy of the level

when talking about energy conservation of the laser excitation.

Then, would this extra intermediate level affect the STIRAP process? The answer is no.
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For this, we need to look into the whether the essence of the STIRAP process changes, with

this extra level’s presence.

Assume again that the lasers are on the two photon STIRAP resonance of the atom.

Moreover for the moment assume that the coupling of the extra intermediate level to the

other states are the same as the original intermediate state. First we examine whether

the adiabatic state |0〉 of (3.8) still persists. Set |0〉4 = (cos θ, 0, 0,− sin θ)T and name the

Hamiltonian for this 4 level system to be Ĥ4.

1

~
Ĥ4|0〉4 =



0 Ωp(t)/2 Ωp(t)/2 0

Ωp(t)/2 ∆p 0 ΩS(t)/2

Ωp(t)/2 0 ∆p + ∆ ΩS(t)/2

0 ΩS(t)/2 ΩS(t)/2 0





cos θ

0

0

− sin θ


= 0 (3.64)

(3.64) shows |0〉4 is an (null) adiabatic state of Ĥ4, which is completely analogous to the

situation of |0〉 and Ĥ as in section 3.1. Hence we have reasons to trust STIRAP could

work well for Ĥ4 too. Yet (3.64) does not provide an insight to the role of the intermediate

levels. We believe the population transfer is achieved via the ‘on resonance’ intermediate

level instead of the extra nearby level. Now I am going to show the analogue to (3.15),

(3.16) and (3.17), in order to prove the claim. Set |0′〉4 = (cos θ, η, 0,− sin θ)T , and then let’s

examine i d
dt
|0′〉4 and 1

~Ĥ|0
′〉4.

i
d

dt



cos θ

η

0

− sin θ


= i



−θ̇ sin θ

η̇

0

−θ̇ cos θ


(3.65)
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1

~
Ĥ



cos θ

η

0

− sin θ


=



0 Ωp(t)/2 Ωp(t)/2 0

Ωp(t)/2 ∆p 0 ΩS(t)/2

Ωp(t)/2 0 ∆p + ∆ ΩS(t)/2

0 ΩS(t)/2 ΩS(t)/2 0





cos θ

η

0

− sin θ


=



ηΩp
2

η∆p

0

ηΩS
2


(3.66)

(3.65) shall be equal to (3.66), then we arrive at exactly the same expression of (3.17). The

population transfer between the initial and final states are through one single intermediate

state only, and the situation is the same as the simple three level STIRAP. In other words,

during STIRAP process, the atom is steered in such a way that it does not see the extra

intermediate level.

Yet, the above nice results are relying upon the assumption that the coupling to the extra

intermediate level is the same. In reality, no reason requires this assumption to be true. And

this difference in the couplings will finally lead to the disruption of the three level STIRAP

from this fourth level. The extent of this disrupt, according to the brief discussion at the

beginning of this section, is on the order of Ω/∆, where ∆ is the energy difference between

the target level and the extra nearby level.
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Chapter 4

Black Body Radiation Interaction

with Rydberg Atoms

4.1 Why do we bring it up again now?

More than thirty years ago, Gallagher and Cooke [66] [67] discovered that blackbody

radiation at room temperature has a significant impact on Rydberg atoms and that discovery

solved many puzzles associated with strange behavior of ion signals from Rydberg atoms.

I would like to quote this remark from Ref. [67]: “While the effect of blackbody radiation

of the radiative lifetimes can be very dramatic, it is the rapid diffusion of population from

an initially excited Rydberg state to other nearby states which is of general importance for

experiments with Rydberg atoms. We can get a feeling for the magnitude of the effect by

considering a specific example, the Na 18s state. The thermal bath of photons transfers

population from the 18s state to the two neighboring p states at a rate of 4× 104sec−1, while

the radiative decay rate is only 1.6×105sec−1. Thus roughly a quarter of the initial population

can become redistributed over nearby Rydberg states!”
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Around that time many detailed investigations were carried out, both experimental and

theoretical. Strong proofs come from experimental work of P. R. Koch et al. [68] and William

P. Spencer et al. [69] where the ambient temperature is varied. John Farley and William

Wing published a long theory paper [70] in 1981 discussing the interaction of blackbody radi-

ation with Rydberg atoms in great detail. In that paper, the authors were concerned mostly

with the ac Stark shift and the diffusion to other states, which they called the depopulation

of the original Rydberg state. Exact numbers were calculated for the depopulation rates for

several atoms, including Helium.

A more recent calculation on the same subject has been done by Glukhov et al. [71] [72].

Their work focused on the ionization rate and transition rate induced by the blackbody radi-

ation. Through private communications Glukhov provided very specific blackbody radiation

induced transition rates related to our experiment to our research group.

Since all these results seem so nice and complete, the the question is, why do we bring it

up again now? It would be boring and dull to repeat what had been done over 30 years ago.

The truth is, of course, we are NOT repeating old recipes. As described in [73], all

the related experimental work around that time is utilizing the field ionization technique

to detect the Rydberg atoms. Here we do not use field ionization because we have ample

number of atoms and we are exciting them to the Rydberg state via highly efficient STIRAP

which is described in Chapter 3. The ions in our experiment are coming from blackbody

radiation induced ionization of Rydberg atoms, and usually on the order of a few percent

of the total population, which is enough to be detected with a high signal to noise ratio,

thanks to our ion detector based on MCP’s. This actually provides us with an easy method

to detect Rydberg atoms.

We can do even more. Blackbody radiation induced ionization of Rydberg atoms is fast

and can be regarded as ‘instantaneous’ for a microsecond time scale experiment. Therefore it
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provides a convenient tool for spectroscopic study of Rydberg atoms. We can experimentally

measure the relation between the ionization rate and the temperature of the blackbody

radiation, to further prepare for the possible application of detecting ir radiation by Rydberg

atoms, etc.

4.2 Background blackbody radiation induced ioniza-

tion

A macroscopic object emits electromagnetic radiation when it is hot, which is famously

known as black body radiation or thermal light. The characteristics of the spectrum of such

radiation is solely related to the temperature of the blackbody, as can be seen from the

famous Planck’s law Eq. (4.1).

ρ(ω, T )dω =
~ω3

π2c3

1

exp(~ω/kBT )− 1
dω (4.1)

The apparatus of our experiment is filled with the black body radiation at room tem-

perature, including the part where the STIRAP interaction happens. Intuitively we would

imagine such thermal radiation has little effects on Rydberg atoms for many reasons, for

example, the population of the Rydberg state by STIRAP is highly non-thermal in nature,

and the blackbody radiation is very broad band light which should not have any coherent

effects. However, it turns out the interaction between Rydberg atoms and the black body

radiation at room temperature is highly non–trivial with significant experimental signatures.

We must see why and how.

It is convenient to re–express (4.1) in terms of the photon occupation number n̄ per mode

Eq. (4.2). When the photon energy ~ω of the associated transition is very much larger than
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kBT , the photon occupation number is low and can hardly cause any results. However, at

room temperature T = 300K, kBT � ~ω for typical energy separations between adjacent

Rydberg states. For example, n̄ ≈ kBT
~ω , which is about 10, for a Rydberg transition of 0.6

THz at room temperature. Compared to the photon occupation number that causes the

spontaneous emission which is 1 (or 1
2

depending on your taste of quantum optics), black

body radiation would induce a much more significant transition rate.

n̄ =
1

exp(~ω/kBT )− 1
(4.2)

Since black body radiation is broadband and the Rydberg states are close to each other,

it can cause excitation, decay, and ionization into the continuum. The transition rate (ab-

sorption or stimulated emission) between two definite Rydberg states can be given in terms

of oscillator strength as in Eq. (4.3), which is essentially stating Kn′l′,nl = n̄An′l′,nl: the

black body radiation induced transition rate is n̄ times that of the spontaneous decay rate

since the black body radiation contains n̄ photons per mode while the vacuum fluctuations

populate only one photon per mode.

Kn′l′,nl = 2n̄α3ω2
n′l′,nl|f̄n′l′,nl| (4.3)

Here f̄n′l′,nl is the oscillator strength of the transition given by:

f̄n′l′,nl =
2

3
ωn′l′,nl

max(l′, l)

2l + 1
|〈n′l′|r|nl〉|2 (4.4)

Besides driving transitions into other discrete states, the black body radiation can also

excite the Rydberg atoms into the ionization continuum. The ionization rate 1/τPnl is given

by Eq. (4.5), see reference [28]. The matrix elements in (4.5) are the radial matrix elements
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Figure 4.1: The calculated black body radiation induced transition rates for hydrogen at
room temperature T = 300K. (a) shows the decay (thin solid curve), excitation (dashed
curve) and ionization (thick solid) rates for the nP–series of hydrogen at T = 300k. (b)
shows the relative rates of decay (thin solid line), excitation (thick solid line) and ionization
(dashed line) for nD–series of hydrogen atoms. Figures are cited from reference [72].

of r between the initial nl state and continuum l − 1 and l + 1 waves which are normalized

per unit energy.

1

τPnl
=

2π

3

∫ ∞
1/2n2

{ l

2l + 1
|〈nl|r|εl − 1〉|2 +

l + 1

2l + 1
|〈nl|r|εl + 1〉|2}ρ(ω)dω (4.5)

Fig. 4.1 gives a sense of those rates for the hydrogen atoms at room temperature. The

basic idea is that the black body radiation induced transition rate is large compared to the

spontaneous emission. Moreover, the ionization rate is small. We will come back to this

later in this chapter.
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4.2.1 Ion Detection

We set up an ion detector close to the interaction region. Basically it is composed of

two MCP’s supplied with negative high voltage. Experimentally any ions produced will be

attacted to the ion detector and hence be detected. The electric field of the ion detector is

well shielded in the interaction region such that it can not field ionize the Rydberg atoms.

Metastable atoms have no way of arriving at the ion detector, since an atom does not have

a permanent electric dipole moment, though if an electric dipole is put in an non-uniform

electric field, it would move to the regions of higher fields.

High Voltage Supplier 

Current 
Amplifier 

Pre Amp 
Amp 

1234 

Pulse 
Counter 

Figure 4.2: The schematic of the experimental setup to detect ions from Rydberg atoms. In
earlier experiments the upper plate was solid and the ion detector was at position A just
downstream, at the end of the plates. Later the upper plate had an array of 30 holes 0.5 mm
diam spaced by ∼ 4mm arranged in a triangular array near its center, and the ion detector
was mounted at position B just above these holes.

The basic setup to detect the ion signal is shown in Fig. 4.2. The metastable helium atoms

are excited into the Rydberg states by a uv laser and an ir laser in STIRAP configuration.

The excitation region is between two well–polished parallel aluminum field plates which are
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about 7× 17 cm and separated by ∼ 6 mm and a electric voltage difference can be applied

to the plates.

The output signal from the anode of the ion detector can be fed to either a display

circuit (the current amplifier and the oscilloscope) or a counting circuit (basically the pulse

counter). We first utilize them to establish the ion counts.

In the display circuit, we can skip the current amplifier and directly feed the output of

the ion detector to the oscilloscope with 50 Ω coupling. Then we can see individual pulses of

∼ 5 ns width and ∼ 3.5 mV height, and this also allows the gain of the MCP to be estimated.

Therefore, we can set up the counting circuit to count those pulses.

In the counting circuit, we basically have connected in series a pre–amp (ORTEC 113),

a multi–mode amplifier (ORTEC 410) and a 50 MHz pulse counter (HP 5302A). The total

MCP gain of the ion detector is ∼ 2.2 × 106 (see also reference [43]), hence we can convert

the counted pulses’ numbers into the actual ion counts from the Rydberg atoms. For the

state 24S of helium, when the lasers are on resonance, the ion count rate is ∼ 105/s.

From the above data of the counted ions, we can estimate the ionization rate. This count

is performed with the ion detector at position A which is downstream, hence this count rate

is only 15% of the total ions at the interaction point since the Rydberg atoms decay during

their travel. Then the ion production rate at the interaction point is ∼ 6.7× 105. Compare

this to the total metastable helium flux ∼ 3× 108 atoms/s 1 which has a STIRAP efficiency

of ∼ 30%, we know the ionization rate is ∼ 0.5%. This agrees with the reference [72] and

the authors’ private communications with us.

In the following experiments we only connect the ion detector’s output to the display

circuit. The current amplifier (KEITHLEY 427) is essentially a current to voltage converter

1The helium flux is deduced from the specifications of our source which has an output of ∼ 0.5 ×
1014 He* atoms/(sr · s), and this is verified by the counts recorded by the SSD in the detection chamber
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Figure 4.3: Typical ion signals from Helium Rydberg atoms, in the case of scanning the
electric field. The dc voltage offset between the field plates is ∼ 6 V while the scan voltage
is on the order of 2V. The ir laser frequency is tuned around the resonance of a Stark state
of n = 24 Stark manifold. The double peak structure here is a result of the Stark splitting
for non–zero angular momentum l 6= 0. If it is an S state then only a single peak will show
up at the low electric fields. The ion detector for these measurements is located at position
A at the end of the field plates.

with amplification and integration time constant, which is lager than the individual pulse

widths from MCP but much smaller than the time scale of the scanning. A typical current

to voltage conversion rate for the current amplifier is 107 V/A. Therefore when we scan

either the electric field or the ir laser frequency across the resonance of the Rydberg state,

we typically see Fig. 4.3. An ion signal peak in Fig. 4.3 shows the strength of the ion signal

and the exact spectroscopic position at the same time, which is superior than the counting

circuit, and this is the exact reason why we stick to it. This ion peak can be intuitively
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regarded as if we are summing up all the individual ∼ 5 ns pulses for each time interval of

∼ 1 µs (the time constant of the current amplifier).

We can move the laser beams’ positions upstream or downstream. It means that, the

time delay between the Rydberg production and detection is flexible and this serves as a

basic tool for many investigations. One of such measurements is shown in Fig. 4.4. The

interpretations will be discussed later.
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Figure 4.4: A typical time delay measurement of ion signals from Rydberg atoms. The lasers
are moved further away from the ion detector. Since the Rydberg atoms spontaneously decay
to the metastable ground state, the ion signal is smaller when the time delay is larger. The
ion detector for these measurements is located at position A at the end of the field plates.

Most of this section’s content is also summarized in reference [74].
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4.3 Time Delay measurement and Population Redis-

tribution

In this section we are going to take a closer look at the time delay measurement and see

what information we can extract. For the purpose of controlling more precisely the delay, in

terms of the distance between the lasers and the position of the ion detector, we move the

ion detector to the position B shown in Fig. 4.2.

Figure 4.5: The measurement for the ion signal strength of 243S as a function of the distance
between the interaction point (STIRAP laser beams’ position) and the ion detector region
(position B). This type of time delay experiment measures the ions generated by the Rydberg
atoms left over in the beam, a certain time interval after they were initially excited at 243S.
The absolute number of the Rydberg atoms of all states decreases over time because of
spontaneous emission to the metastable ground state. This set of data is taken at room
temperature of 300K. The data points have been fitted to an exponential curve and the
result of fitting is shown.
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Figure 4.6: The measurement for the ion signal strength of 303S as a function of the distance
between the interaction point (STIRAP lasers’ position) and the ion detector region (position
B). This is the same type of measurement as in Fig. 4.5. An exponential fitting is also
performed.

For this series of experiments, the ir laser frequency is scanned over the resonance of

the corresponding S states and all the field plates have been grounded to ensure no Stark

effect. The result for 243S is shown in Fig. 4.5 and the result for 303S is shown in Fig.

4.6. Those points fit well to an exponential decay. Since the peak of the atomic beam

velocity distribution is ∼ 1070 m/s, we can convert distance into average time and acquire

the ‘lifetime’ of the phenomenological ‘ion signal decay’. They are 16.4 µs for 243S and

33.4 µs for 303S.

Compared to the radiative lifetime of 243S (10.4 µs) and 303S (20.1 µs) separately,

those numbers differ a lot. We also have other methods to establish the absolute counts

of metastable ground state helium (which will be discussed in details later), and those abso-
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n 24S − nP transition rates (1/s) nP ionization rates (1/s)

20 1127.8 1386.5

21 1726.2 1410.7

22 3135.2 1420.6

23 9337.3 1419.0

24 3762.4 1408.3

25 142.6 1390.3

26 133.4 1366.8

27 101.7 1339.2

28 78.1 1308.5

29 61.4 1275.7

Table 4.1: Transition rates for 24S → nP and ionization rate for np states at T = 300 K
(from Glukhov et al. through private communications).

lute counts show that the total number of Rydberg atoms left in the atomic beam decay at

a lifetime agreeing well with that of 243S and 303S correspondingly. If we are to insist that

the Rydberg atoms are at the state of 243S or 303S all the way throughout this time delay

experiment, we would find it impossible to explain this time-varying ionization rate.

The answer to this conflict is that the Rydberg atoms do not stay in their initially

excited states when black body radiation is present. As explained previously, the black body

radiation at room temperature is a broad–band radiation, which covers a wide spectrum

including those corresponding to the transitions between adjacent Rydberg states of different

principle quantum numbers. It turns out [72], the transition to the neighboring Rydberg

states with +/− 1 principle quantum number is usually stronger. It is the time for a closer

look at those rates for helium.

The direct ionization rate at T = 300K for 243S is 299.41/s, which corresponds to an

ionization of 0.45% of the atoms over a time interval of 15 µs. From the above table we see

that the direct ionization rate is much smaller than the transition rates to a nearby P state,

as also shown in Fig. 4.1. In this sense, the population of the Rydberg atoms is diffused into
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many nearby states.

The population diffusion caused by the black body radiation takes place immediately

after the Rydberg atoms are produced in the 243S state. Once some population is diffused

into other states, say, 233P , it will be subject to a higher ionization rate. This process can

be described as 243S → n3P → ion, and is the reason why the ‘lifetime of the ion signal

decay’ is so different from the corresponding radiative lifetime of the Rydberg state.

Since the transition rates are strong, it does not take too much time for the black body

radiation to diffuse the population in the single initial state to many other states (see also

Fig. 4.1 for an idea of this). At the same time, the ions are from all those states which get the

diffused population.We want to go one more step further from a conceptual understanding

of the result of the ion signal time delay measurement, to an effective model.

The basic time evolution of this effective model is summarized in Eq’s. (4.6). At t = 0,

the atom is excited to a definite Rydberg state e. All the states with longer radiative lifetime

are summarized as a single state s (stands for slow), while those states with shorter lifetime

are summarized as a single state f (stands for fast). Their population are Ne, Ns and

Nf separately. γ represents the population loss due to spontaneous emission back to the

metastable ground state, σs stands for the transition rate from e to s caused by the black

body radiation, and σf stands for the transition rate from e to f . Since the ionization rate

is so small its presence in the depopulation process is neglected here; or its effect can be

incorporated into the term γ. See also [74].
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d

dt
Ne = −γeNe − σfNe − σsNe (4.6a)

d

dt
Nf = −γfNf + σfNe (4.6b)

d

dt
Ns = −γsNs + σsNe (4.6c)

Let us see how Eq’s. (4.6) explain the experiment of ion signal delay of atoms initially

excited to the 243S state. According to Table 4.1, both Nf and Ns can be regarded as having

a higher ionization rate than Ne. Therefore, as more and more population is transfered to

Nf and Ns, the population going to the metastable ground state won’t be too much different

from the case of e state only, but the ionization rate will become higher.

The characteristics of the black body radiation are determined by the temperature. Gen-

erally when the temperature is higher the population diffusion among Rydberg states caused

by the black body radiation is stronger. We have set up an experiment to heat up the field

plates to 380 K and perform the same experiment of ion signal time delay measurement for

303S, the result of which is shown in Fig. 4.7. More details of the experiment to heat up

the field plates can be find in Section 4.4 and reference [43].

The ‘lifetime’ of the ‘ion signal exponential decay curve’ at 380K (Fig. 4.7) is even longer

than that of 300K (Fig. 4.6), which implies that the overall ionization rate changes more

dramatically over time. In other words, at 380K, the population is diffused more quickly

among the Rydberg states. In terms of Eq’s. (4.6), σs and σf are larger at higher temperature

for blackbody radiation at 380K, hence Ns and Nf will occupy more proportion of the total

Rydberg population, and then lead to more deviation between the ion signal time delay

measurement and the expected radiative decay of only state e (in this case it is 303S).

Moreover, the temperature dependence of the ion signal time delay measurement provides
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Equation y = A1*exp(-x/t1) + y0

Adj. R-Square 0.90024
Value Standard Error

B y0 0.40294 0.17854
B A1 0.17728 0.17536
B t1 60.91983 77.7746

Figure 4.7: The measurement for the ion signal strength of 303S as a function of the distance
between the interaction point (STIRAP lasers’ position) and the ion detector region (position
B). This is the same type of measurement as in Fig. 4.6. However, here the temperature is
very different: 380K.

an extra hard evidence that it is the black body radiation that is causing the ionization.

4.4 Verification of the Ionization Mechanism, Lineshape

and Fano Interference

In order to verify the assertion that the ions we detect are from the black body radiation

induced ionization, we heat up the metal field plates surrounding the STIRAP interaction

region. The dimension of the interaction region, namely laser width × atomic beam height

× atomic beam width, which is typically on the order of 0.5 mm × 0.5 mm × 0.5 mm, is
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very much smaller than the dimension of the region contained within the two field plates.

Therefore the full solid angle of the interaction region can be safely regarded as all covered by

the plates, hence the characteristics of the black body radiation at the point where interaction

really happens is solely determined by the temperature of the plates.

The aluminum field plates are heated by four attached 1 Ω power resistors (up to 25 W)

in good thermal contact. The temperature of the resistors is controlled by the electric current

flowing through them and a thermocouple is physically touching the surface of one of the

resistors to measure the actual temperature.

3 0 0 3 3 0 3 6 0
0 . 0

0 . 5

1 . 0

1 . 5

 2 4 S  @  z e r o  f i e l d
 3 0 S  @  z e r o  f i e l d

T e p e r a t u r e  o f  F i e l d  P l a t e s  [ K ]

24
S I

on
 Si

gn
al 

Str
en

gth
 [V

]

0

1

2

3

4

30S Ion Signal Strength [V]

Figure 4.8: The relation of the ion signal strength and the temperature for 243S and 303S.
Both measurements are at zero electric field, hence there is no concern about the electric
field messing up the states or participating in the ionization process. The error bar of the
ion signal is smaller than the size of the scatter and therefore is not shown.

According to the the previous sections’ discussions, when the temperature is moderately
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increased from room temperature, the direct ionization rates and population diffusion rates

increase. Therefore the observed ion signal, which can be regarded as representing the

total ionization rate, will simply be enhanced for higher temperature. This is exactly the

information presented in Fig. 4.8. Moreover, it serves as evidence supporting the argument

that the ionization is caused by the black body radiation, because hardly anything else

depends on the temperature of the environment.

Also, when the field plates were heated, we have observed a line shape of the ion signal

that could possibly be a signature of Fano interference as illustrated in Fig. 4.9.

In his famous 1961 paper [75], U. Fano introduced a phenomena now known as ‘Fano

interference’, which he described as configuration interaction in the generality. Basically

speaking, when the Hamiltonian allows both a continuum and a set of discrete states, with

possibly degenerate energy and there is a coupling between them, Fano interference takes

place. As a result of the coupling between the discrete states and the continuum, the

new ‘diagonalized’ energy eigenstates would become a superposition of both discrete and

continuum bare states. The experimental signature is usually the asymmetric lineshape.

An atom’s Hamiltonian allows both discrete states (when it is technically an atom) and

continuum states (when an atom becomes an ion). The black body radiation at room

temperature provides the coupling between the discrete states of the Helium Rydberg series

and the ionization continuum. Therefore it is not surprising to observe similar experimental

signatures as Fano interference. Similar results on the Fano profile of ionization peaks have

been observed long ago, see [76], which provides an in-depth discussion.
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Figure 4.9: The ion signal of 303S at temperature 330K and 370K separately. For both
traces the ir laser frequency is scanned, the electric field is set at zero, and the detector is at
position B while the interaction point is directly under one set of holes of the upper plate.
The amplitude of the ion signal is bigger when the temperature is higher, as is shown in Fig.
4.8, which is the evidence that the ionization is induced by the blackbody radiation. The
ion signal has a clear asymmetric line shape, and is more asymmetric when the temperature
is higher. Also, the signal is broadened at the higher temperature. The smaller peak is
always occurring on a higher ir laser frequency, namely the smaller peak corresponds to
a higher energy resonance. We think this is a clear experimental signature of a Fano line
shape. Other possibilities are possible, such as the splitting of magnetic sub–levels or Autler–
Townes splitting, but they could not explain the temperature dependence. In summary, this
lineshape is the result of the configuration interaction between the Rydberg state 30S and
the blackbody radiation induced ionization continuum.
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Figure 4.10: The experimental signature of STIRAP.The relation between the ion signal
strength and the relative position of the ir and uv lasers is shown, which makes it clear that
the ion signal is higher when the lasers are in STIRAP configuration, namely ir ahead of uv.
The ion detector is at position A for these measurements.

4.5 Rydberg Atom Spectroscopy Enabled by Black-

body Radiation Ionization

Isn’t it a free lunch when the black body radiation ionizes the helium atom when it is in

some Rydberg state? No extra effort is in need and all left to do is to detect ions.

The first obvious observation is that the strength of the ion signal is proportional to the

amount of Rydberg atoms produced. Therefore we can use the ion signal as a counting tool.
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A direct application is to verify that counter–intuitive order of the Stokes and pump laser

pulses make more Rydberg atoms, which is the evidence that we do have STIRAP realized

in our experiment. The result is shown in Fig. 4.10.
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Figure 4.11: The experimental measurement of the n = 24 Stark map. See also discussions
in reference [43].

Another application is to spectroscopically resolve the Stark map. Since STIRAP is

sensitive to the two–photon detuning, the width of the ion signal peak is on the order of

several MHz, which serves as a tool to determine where the resonance occurs. When the

interaction region is subject to a uniform electric field, the Stark effect would cause the
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resonant energy to shift, which can be theoretically calculated as in a Stark map. The

experimental spectroscopic data can be fitted to the calculation, as shown in Fig. 4.11.

4.5.1 Direct Ionization by High Electric Fields

To make the story complete, we set up an experiment to directly excite the metastable

Helium atom into the ionization continuum, and thereafter compare its ionization behavior

with that of blackbody radiation induced ionization, which we have been discussing so far.

A typical way is to pass the Rydberg atoms through high electric fields which will ionize

them. Yet, for convenience, what we actually do is to scan either the ir laser frequency or

the ac electric field across a Stark resonance when there is already a high dc electric field

applied. That Stark state, usually above the classical ionization limit, then auto ionizes. This

phenomena is named as the ionizing Stark resonance, which is also discussed extensively in

[76]. The experimental setup is shown in Fig. 4.12.

High Voltage Supplier

Field Plates

Scanning Electric Field

Figure 4.12: The schematics of the experimental setup of direct ionization with high fields.
The electric

The ion detector for the field ionization experiment is at position B as shown in Fig.

4.2. When the helium atom goes through the ionizing Stark resonance, all the atom excited
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Figure 4.13: With a setup shown in Fig. 4.12, the ion signal when scanning the small ac
electric field across a ionizing Stark resonance. The principle quantum number is 24, and
this is at the highly crossed region of Stark map of l 6= 0, with the ir laser wavelength at
≈ 796.4611nm. The black body radiation (at 300K) induced ionization signal (from a Stark
state of 24 l 6= 0 at a very low electric field at several volts per centimeter) is also included
as a comparison.

will turn into ions and be gone in the electric field, in contrast to the case of ionization by

black body radiation in which most of the helium atoms are still ‘alive’ in certain Rydberg

states. For the case of the field ionization via ionizing Stark resonance, if the interaction

point is not directly under some holes of the upper field plate, then at the instant when the

resonance is scanned across, all the ions generated would be swept to the plate by the electric

97



field and can no longer be detected. Therefore, by moving the STIRAP lasers to change the

interaction position we can readily map out the position of the holes on the upper field plate.

The result of such field ionization via ionizing Stark resonance is shown in Fig. 4.13.
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Chapter 5

STIRAP Efficiency Measurement

We have analyzed the ion signal generated by the Rydberg atoms induced by the thermal

radiation in Chapter 4, which is the unique signature of the Rydberg atom. We can also

argue that the strength of the ion signal is proportional to the population of the Rydberg

atoms. Yet, we still need to establish the absolute count of the Rydberg population, if we

want to investigate further into the dynamics of the STIRAP process.

5.1 Absolute STIRAP Efficiency Measurement

We set up an experiment to measure the exact population excited in to the Rydberg state,

whose mechanism is shown in Fig. 5.1. The basic idea to physically separate the Rydberg

atoms and the metastable atoms immediately after the STIRAP interaction, by applying a

force only acting on the metastable atoms. We choose the bichromatic force (see discussions

in Section 1.3.2), for the reason that it is strong, robust and can push the metastable atoms

to a large final transverse velocity which would result in a better separation.

As Fig. 5.1 illustrates, the STIRAP interaction region in between the metal field plates.
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The 1083 nm bichromatic laser beam is applied immediately downstream of the STIRAP

lasers, driving the 23S1 → 23P2 transition of the metastable ground state atoms while doing

nothing to the Rydberg atoms. The metastable atoms acquire a large transverse velocity

when they leave the bichromatic force interaction region. When the Rydberg atoms and the

metastable atoms both arrive at the detection region, they are physically apart transversely,

and the population count is performed by using the SSD.

SSD can 
scan in this 
direction 

with a 0.3mm slit(a 
narrower transverse 
velocity distribution to 
begin with) 

Figure 5.1: Experimental setup of the absolute efficiency measurement of STIRAP by physi-
cally separating the Rydberg atoms from the metastable ground state atoms. The the optical
molasses laser beam applied before the STIRAP interaction will be discussed in Section 5.3,
and it can also serve as the optical pumping laser as discussed in Section 6.3.1.

We set the detuning ∆ = 2π× 60 MHz for our bichromatic laser beam, with the π–pulse

length to be 250 cm. According the numerical simulations of the same type discussed in

Section 1.3.2, to reach to optimum π–pulse condition for the force, we need the laser to have

an intensity ∼ 4000Isat, where Isat is the saturation intensity for this transition. The two

frequency light ω ± δ (∼ mW) out from the four frequency generation mechanism shown in

Fig. 2.12 does not have high enough intensity. Therefore, it is fed to a 1 W fiber amplifier
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for preamp and subsequently fed to a 5 W fiber amplifier.

Figure 5.2: The atom profile measured by the SSD, which is scanned transversely in the de-
tection chamber. With the 1083 nm bichromatic laser on, the atoms receive the bichromatic
force and get deflected, resulting in a physical separation between the pushed metastable
atoms and the center. What’s left in the center is mostly the stray uv light from the source
discharge. The wide spread of the final velocities of the atoms is an inherent signature of
the bichromatic force, however, by optimizing the parameters of the bichromatic laser, even
better separation between the deflected atoms and the center can be achieved.

The amplified two frequency light passes through a telescope and a beam defining slit of

∼ 0.5 mm to form a rectangular beam shape of uniform intensity. A quarter–wave plate is put

in the line to make circular polarization to induce optical pumping effects into the stronger

transition of ∆m = ±1. A retro–reflection is set up to serve as the counter–propagating

light and allows for the control of the optical delay. The metastable atoms pass through

the bichromatic light interaction region are deflected and we measure them in the detection

chamber after a long beam path, with a typical result shown in Fig. 5.2.
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By the mechanism demonstrated by Fig. 5.1 and Fig. 5.2, we are able to perform the

measurement for the absolute efficiency of the STIRAP interaction. A typical experimental

data recorded by the oscilloscope is shown in Fig. 5.3.

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

-6

-4

-2

0

2

 

S
S

D
 s

ig
n

a
l 
(V

)

Time (s)

STIRAP efficiency ~50%

without 1083 light

with 1083 light

 
S

c
a

n
 s

ig
n

a
l 
(V

)

A

B

C

D

Figure 5.3: Sample data of absolute efficiency measurement of STIRAP. The resonance
shown in this graph is a Stark shifted state with non–zero orbital angular momentum of
n = 24. The ir laser wavelength is ∼ 796.4414 nm while the frequency of the ir and uv lasers
are all kept constant. The voltage on the top field plate is 115.2 V while the voltage of the
lower plate is scanned across the resonance.

This type of data as in Fig. 5.3 reveals the quantity of the ‘missing metastable heliums’,

which are the atoms excited into the Rydberg state. We can scan across the resonance either

by scanning the ir laser frequency or scanning the electric field. More discussions on the data

acquisition and processing can be found at [43].

According to the theoretical understandings of the principles of STIRAP (see Chapter

3), an efficiency of close to ∼ 100% is intuitively expected. However, surprisingly enough,

the best out of all the efficiency measurement data we gathered shows only a raw efficiency

of ∼ 50% [43]. We were puzzled by this fact and conducted a series of tests trying to identify

102



the possible causes.

We have chosen different source parameters to change the metastable helium density

significantly in the atomic beam, and we have observed no change in efficiency hence ruling

out the possibility of the collisional effects. We have also measured the efficiency of STIRAP

excitation to different Rydberg states (different principle quantum number n, or different

Stark states); after compensating for the corresponding decays, those measurements yield the

same efficiency value. We are also concerned about the possibility that the Rabi frequency

of the ir laser driving the transition from the 33P state to the Rydberg state is not enough,

therefore we have measured the efficiency as a function of the ir laser intensity. We have

seen a pattern indicating the saturation of the efficiency as the the ir laser Rabi frequency

goes up, especially for the smaller n’s. More details of the exclusion of all these factors are

provided in [43].

5.2 Detunings Caused by Transverse Velocity Spread

As we have already discussed, STIRAP is tolerant to one-photon detuning if the two-

photon detuning is zero, namely, energy conservation is satisfied. In the experiment, since

the laser beams cross the atomic beam at nearly a right angle, in the ideal case there would

be no relative movement between the atom and the laser, henceforth causing no detuning at

all.

However, as first suggested by Dr. Peter Anisimov, realistically, the atomic beam would

have a transverse velocity spread, and the angle at which the laser crosses the atomic beam

might be slightly different from 90 degrees. Both of those could lead to a Doppler shift of

the pump and Stokes laser frequencies, in the frame of the atom. The annoying fact is that,

since the ir and uv lasers are co-propagating, the Doppler shift for both of the lasers are of
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the same sign, namely, both of the frequencies will be shifted up or down depending on the

atom’s motion. This shift could not only cause one-photon detuning but also two-photon

detuning. Fig. 5.4 provides an illustrative explanation.

He* 

ir laser uv laser 

STIRAP lasers 

Transverse velocity −𝑣 

Transverse velocity 𝑣 

Figure 5.4: The effect of the transverse velocity spread. Suppose the STIRAP lasers are
on-resonance for the zero transverse velocity atoms, then for atoms with different transverse
velocities, the lasers are not on resonance any more. Here the Hamiltonians in the atoms’
own reference frames are shown pictorially.

Let us first estimate the associated effects for different transverse velocity groups through

numerical calculations by the method of time-dependent Schödinger equation. In the nu-

merical simulation, we set the ir and uv lasers to be on–resonance with the zero transverse

velocity group, and then in the eyes of the other velocity groups they see both the one–photon

and two–photon detunings as illustrated in Fig. 5.4. The result is shown in the following

Fig. 5.5.

From Fig. 5.5, we see that STIRAP efficiency is very sensitive to the two–photon detuning
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Figure 5.5: The numerical simulation of the STIRAP efficiency (as how much population
ends up in the final state) for different transverse velocity groups. The ir and uv laser pulses
are in STIRAP configuration, whose Rabi frequencies are shown in red and blue respectively
(ir is ahead of uv). We use the Hamiltonian as in Fig. 5.4 and no polarization effect is
considered. The effect of spontaneous emission is not included either.

caused by the transverse velocity spread’s Doppler shift, the discussions of which can also

be found in Figure 4.6 of [43]. As mentioned in Chapter 2, we scan the ir laser frequency

to measure the efficiency as a function of the ir laser frequency detuning. The recorded

efficiency is the collective response of the atoms of all the transverse velocity groups. A

direct numerical simulation of this scenario is shown in Fig. 5.6.

Ideally, STIRAP will result in 100% efficiency in population transfer. However, as re-

vealed by Fig. 5.5 and Fig. 5.6, the experimentally measured efficiency in a atom beam

type experiment would be compromised at a significant level due to the transverse velocity

spread. Therefore we have to be careful when comparing the data with the theory and shall

not simply take the peak value of the efficiency curve as the ultimate measured STIRAP

efficiency.

There is yet another purely mechanical side effect that will reduce the measured STIRAP

efficiency, which is the longitudinal velocity spread. We first determine the longitudinal
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(a) A relatively wide transverse velocity spread.
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(b) A relatively narrow transverse velocity spread.

Figure 5.6: Numerical simulation of STIRAP efficiency for different transverse velocities.
The ir and uv pulses are in STIRAP configuration, whose Rabi frequencies are shown in
red and blue respectively (ir is ahead of uv). The transverse velocity profile is assumed to
be a uniform distribution within the specified spread. This is a direct simulation of the
experimental scenario where the frequency of the ir laser is scanned and the efficiency is
recorded as a function of the ir laser frequency.

velocity by a time of flight measurement whose result is shown in Fig. 5.7 (see also Chapter

2 of [43]).

In the sense of what’s been done to the atomic beam, our STIRAP efficiency measurement
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Figure 5.7: Time of flight measurement for the longitudinal velocity distribution. The source
outputs both uv stray light and He∗. A chopper selects a portion in the beam line and lets
it travel downstream. The SSD in the detection chamber collects the signal as a function
of time. The first narrow peak is the SSD’s response to the uv light and shows the time
resolution of the system. The second wide peak demonstrates the longitudinal velocity
distribution.

by scanning the ir laser frequency is very similar to the time of flight measurement by a

chopper. During the ir laser on–resonance time, a little bulk of Rydberg atoms is produced.

When this bulk of Rydberg atoms is traveling down the beam line, it spreads because it

contains many longitudinal velocity groups, as sketched in Fig. 5.8.

The practical experimental scenario is a bit more complicated than described in Fig. 5.8.

We are detecting the ‘missing’ Rydberg atoms after separating them from the metastable

heliums by the bichromatic force. Therefore the profile in Fig. 5.8 should be viewed as

the ‘missing’ profile. More directly, we are constantly monitoring the pushed metastable

heliums, and the ‘gap’ corresponding to the Rydberg atoms is going to be partially impinged

by different longitudinal velocity groups of the metastable heliums surrounding the ‘gap’.
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Figure 5.8: An illustration of the effects on the STIRAP efficiency measurement due to the
longitudinal velocity distribution.

5.3 Observing Effects Associated with Transverse Ve-

locity Spread of the Atomic Beam

The transverse velocity spread can first be roughly estimated from the size of the spot

on the MCP + phosphor screen. An illustration is shown in Fig. 5.9.

Horizontal and Vertical
Beam Defining Slits

Field Plates
in the Interaction Chamber

Metastable Helium Beam

Spot on 
Phosphor Screen

26 cm 140 cm
Transverse Width

Figure 5.9: Estimating the transverse velocity spread from the transverse atomic beam size
of the spot in the phosphor screen.

According to the geometry of Fig. 5.9, plus our knowledge of the longitudinal velocity

of the atomic beam, the transverse velocity spread ±vtrans can be estimated by w/2
vtrans

=
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140cm+26cm
1070m/s

, where w is is width of the atom spot shown on the phosphor screen and 1070

m/s is the longitudinal velocity of the. As already demonstrated in Fig. 5.1, the width of

the beam defining slit can be changed. We have used two different sizes, the narrower one

with ∼ 0.3 mm and the wider one with ∼ 0.8 mm. When the slit size is set at ∼ 0.8 mm, the

spot shown on the phosphor screen has a width of ∼ 8 mm. This corresponds to a transverse

velocity spread of ±2.6 m/s. According to the discussions and numerical simulations in

Section 5.2, the wider beam defining slit will immediately introduce a significant drop in the

measured efficiency of Rydberg production.

To further identify the transverse velocity spread of the atom beam and study the effects,

we set up a one dimensional optical molasses laser in the transverse direction before the

STIRAP interaction lasers as shown in Fig. 5.1. The optical molasses laser [9] allows us to

transversely cool or heat the atom beam, and henceforth to change the transverse velocity

spread. The optical molasses laser is at 1083 nm driving the 23S1 → 23P2 transition, whose

frequency can be detuned by the AOM.

The interesting thing to do, however, is to use the optical molasses to heat up the atomic

beam in the transverse direction. If there is a drop in the Rydberg atom production due to

the heating, then this fact will serve as the experimental signature for our propositions that

the efficiency measurement is compromised by the transverse velocity spread.

We want to establish this verification without using the efficiency measurement method

we have discussed so far, to provide an independent check. Therefore we choose the ion

signal from the Rydberg atoms (ionization by blackbody radiation at room temperature, see

discussions in Chapter 4) as the measure of the Rydberg atom population. The result is

presented in Fig. 5.10. According to the analysis of Section 5.2, we ought to look for two

types of features in the data: the peak Rydberg production rate is to be lower, and the width

of the signal during ir laser frequency scan is to be larger. A close look at Fig. 5.10 assures
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both of the two observations.
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Figure 5.10: Ion signals from the Rydberg atoms produced by STIRAP, via the blackbody
radiation induced ionization. The ir laser frequency is scanned across the resonance, as
represented by the horizontal axis. The ion detector is put right above the interaction region
for this data. This is the data with the atomic beam defined by the narrower slit. The optical
molasses laser beam is blue detuned at 2 MHz to heat the atomic beam in the transverse
dimension. This diagrams shows the ion signals when the heating optical molasses laser is on
and off, respectively. It clearly indicates that when the transverse velocity spread is larger,
the peak Rydberg atom production rate is lower, as we are expecting. Since the ion signal is
proportional to the Rydberg atom population and is physically separated from the efficiency
measurement mechanism, this is an independent verification of the argument of the atomic
beam transverse velocity spread’s role in STIRAP interaction.

The next step is to adjust the optical molasses to cool the atomic beam transversely and

see if the cooling could enhance the measured STIRAP efficiency. First we establish the

one dimensional cooling in the transverse direction again as shown in Fig. 5.1, with the red

detuned 1083 nm laser driving the 23S1 → 23P2 transition. We measure the atomic profile
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to verify the cooling power with the result given in Fig. 5.11.

Figure 5.11: Atomic profile of transverse cooling by one dimensional optical molasses. The
one dimensional optical molasses laser is red detuned by 3 MHz for large capture range.
This diagram is the one dimensional layout from the subtracting the background out of the
cooled atoms, based on the pixel values recorded by the CCD from the phosphor screen. The
horizontal axis is the pixel position, while the vertical axis represents the subtracted pixel
value. Basically, the negative value means that the atoms are pushed out from that region,
while the positive value means that the atoms accumulate there. The atomic beam has a
significant transverse spread to begin with because it comes from the wider beam defining
slit. As for the scale, it corresponds to ∼ 1.5 cm from 0 to 700 pixel values.

We then apply the optical molasses laser to transversely cool the atomic beam immedi-

ately before the STIRAP interaction in the configuration shown in Fig. 5.1. The efficiency

measurement data, without compensating for the decay from the Rydberg level, is presented

in Fig. 5.12. The first observation is that the efficiency is overall lower than what’s in Fig.

5.3, which is a direct consequence of beginning with a larger transverse velocity. Accord-

ing to our estimates, the condition of the transverse velocity spread is very close to that

described in Fig. 5.6a, and therefore we are expecting the peak efficiency to be around

∼ 30%. The second observation is that the transverse cooling increases the peak efficiency,
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which is the consequence of all our discussions so far in this chapter: the one–photon and

two–photon detunings caused by the transverse velocity spread manifest themselves in the

STIRAP interaction.
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Figure 5.12: The absolute efficiency measurement data with the transverse cooling on/off.
The transverse velocity spread of the atomic beam is significant to begin with, where the
wider beam defining slit is used.

However, Fig. 5.12 does not solve all the puzzles. Namely, why the cooling only enhances

the peak efficiency by a limited amount instead of close to ∼ 100%. There can be several

possible causes to this. The first one is that the the optical molasses laser and the STIRAP

lasers may not be aligned perfectly parallel to each other. The second one is that the optimal

condition for STIRAP may not be easily satisfied with a large transverse velocity spread.

The third one is that there might be other factors impeding the peak efficiency, for example,

the longitudinal velocity spread whose properties are discussed in the end of Section 5.2.
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To further explore the direct evidence for the transverse velocity’s role in the STIRAP

efficiency (or possibly other spectroscopically detectable effects influencing the STIRAP effi-

ciency) and to corroborate the measurement of Autler–Townes effect (Section 7.1), we carry

out a STIRAP experiment with the uv laser containing two frequency components. We fix

the frequency difference of the two components of the uv laser, and the Rydberg resonance

corresponding to these two components will be separated by the same amount. Therefore,

we acquire a frequency scale in the STIRAP signal automatically.
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Figure 5.13: The SSD signal recording the pushed metastable heliums for the efficiency
measurement experiment where the uv laser contains two frequency components ±25 MHz.
The intensities of the two frequency components of the uv laser are a little different due to
fluctuations and that is the reason why the widths of the two dips are different. This data
is taken with the narrower beam defining slit.

The two dips of Fig. 5.13 represent the Rydberg atoms, or the ‘missing’ metastable

atoms. The peak Rabi frequencies for the ir laser is ∼ 2π × 7 MHz, and the peak Rabi

frequencies for the two components of the uv laser are ∼ 2π×5 MHz when they are equal in

intensity. According to numerical calculations, the lineshape of the dips in Fig. 5.13 roughly
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correspond to a transverse velocity spread ∼ 2.5− 3 m/s, even thought the atomic beam is

through the narrower defining slit.
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Chapter 6

Polarization Induced Path

Interference

People have already extensively researched the magnetic sub–levels’ effects on STIRAP

[77] [78] [79] [80] [81], with different focuses and motivations, mostly concerned with the

robustness of STIRAP. The general consensus is that the magnetic sub–levels add to the

complexities by a lot since they create complicated linkage patterns [82], and that STIRAP

does not populate the intermediate levels so that in favorable situations STIRAP is still

robust against this complication. Here we are going to present another point of view under

a special setting in this category of problems.

In atomic physics, the study of various kinds of dark states is always an interesting topic.

In the STIRAP experiment we are conducting, because of all the magnetic sub–levels in

the seemingly simple three level system, particular combinations of the polarizations of the

pump and Stokes laser beams would induce non–trivial dark states and even interferences of

different excitation paths, in the classical sense. In this chapter, we hope to provide a brief

and preliminary discussion on this topic.
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6.1 An Analysis of the Diamond Structure

Throughout this chapter, we establish a Cartesian coordinate system whose z–direction

is along the k vector of the co–linear laser beams, as shown in Fig. 6.1. And we choose this

z–direction to be the quantization axis. The polarizations of both the laser beams are in the

x− y plane, and therefore can be regarded as a linear combination of σ+ and σ− light. The

atomic level scheme of associated transitions is sketched in Fig. 6.2.

Y 

Z 

X 

Y 

Z 

X 

Metastable Helium Beam ir laser k-vector 

uv laser k-vector 

Figure 6.1: The coordinate system with the z direction along the k-vectors of the STIRAP
laser beam.

We choose to first analyze the linkage pattern of a diamond shape whose level scheme is

shown in Fig. 6.2 as the starting point of the discussion of the path interference phenomena.

Before delving into the details, it shall be noted that this effect is purely semi-classical, and

the quantum nature of the light does not have a role here. Moreover, we are going to stick to

two major simplifications to begin with: 1) the atomic system is driven by steady light, i.e.
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Figure 6.2: The level scheme of a diamond shape connection.

no pulse is involved; 2) we leave out the spontaneous emission. Then an analytical discussion

with a clear picture is allowed.

To be more specific in the case of the helium atom, in Fig. 6.2, the ground level is the

m = 0 sub–level of the metastable ground state 23S1, the intermediate level now contains

two sub–levels: the m = −1 and m = +1 sub–levels of the state 33P2, and the final level

is the m = 0 sub–level of a Rydberg S state, for example 303S. The lower transitions out

of |1〉 are driven by the uv laser and the upper transitions going to |4〉 are driven by the ir

laser.

We discuss the situation where the ir and uv lasers driving those transitions have linear

polarizations, and re–express the polarizations in the circular basis P+ and P− as in the

following equation, where |α| = |β| = 1. There should be a factor of 1√
2

in (6.1), but for

simplicity we do not write it out. The constants can always be viewed as absorbed into the

definition of the Rabi frequencies Ωuv and Ωir, which are chosen to be real.

Puv = P+ + αP− (6.1a)

Pir = P+ + βP− (6.1b)

117



And now we can write down the Hamiltonian and solve for the time evolution of the four

sub–level total system’s wavefunction, which is (c1, c2, c3, c4)T if expressed in the bare states

basis.

i
d

dt



c1

c2

c3

c4


=



0 Ωuv αΩuv 0

Ωuv 0 0 βΩir

α∗Ωuv 0 0 Ωir

0 β∗Ωir Ωir 0





c1

c2

c3

c4


(6.2)

In the situation when the uv and ir lasers’ polarizations are parallel, namely, α = β,

the linkage pattern would reduce to the trivial case as shown in Fig. 6.3. This reduction

is acquired by linearly transforming the states in a process (known as the Morris–Shore

transformation) described by [83] whose method is intended for a two–level system (see

also an extension at [82]). Explicitly, instead of the two original intermediate sub–levels |2〉

and |3〉, we describe the system by two newly transformed states |+〉 = 1√
2
(|2〉 + |3〉) and

|−〉 = 1√
2
(|2〉− |3〉). In this situation, the time evolution described by (6.2) has no difference

whether there are two or one sub–levels in the intermediate state. This is equivalent to a

rotation of the coordinate system in Hilbert space.

However, if the uv and ir lasers’ polarizations are orthogonal to each other, namely, α = 1

but β = −1, the situation becomes quite different. A numerical simulation of this situation

is shown in Fig. 6.4, based on (6.2). The population is oscillating back and forth between

the ground level and the two intermediate sub–levels during the time evolution, but never

gets transfered to the final level. In other words, the population is trapped and the level |4〉

becomes dark.

If we apply the same Morris–Shore transformation which leads to Fig. 6.3, we will have
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Equivalent

Morris-Shore transformation

23 + -

Figure 6.3: The reduction of the linkage pattern in the case when the lasers’ polarizations
are parallel to each other.

a linkage pattern shown in Fig. 6.5. We see that the final level |4〉 together with one of

the intermediate states |−〉 becomes dark, if all the population were to start from |1〉. They

stay dark no matter whether the lasers are pulsed or cw. This is solely a consequence of the

polarizations’ differences between the uv and ir lasers.

From the linkage reduction mechanisms shown in Fig. 6.3 and Fig. 6.5, it is clear

that the one–photon detuning won’t change the nature of the linkage pattern in these two

extreme situations. Namely, when the polarizations are parallel to each other, the one–

photon detuning is acting like it normally does on a three level system; when the polarizations

are orthogonal to each other, the one–photon detuning does nothing because no population

can be excited to level |4〉.

When the two intermediate levels receive probability amplitude pumped by the uv laser

from the ground state, they have a phase difference printed onto them by the polarization

of the uv laser. If the polarization of the ir laser is perpendicular to that of the uv laser,

then this particular phases of the two intermediate levels make them dark to the transition

corresponding to the ir laser. The linkage pattern described in Fig. 6.2 says nothing dictating
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Figure 6.4: The numerical simulation of the time evolution of the total four level system with
diamond linkage pattern, when the lasers’ polarizations are orthogonal to each other. It is
simulating (6.2) with cw lasers, where both Ωuv and Ωir are set as constants to be 2π × 1.6
MHz in time.

that |4〉 shall be trivially dark; the excitation to the final level |4〉 is made dark by the phase

differences induced by the polarizations of the ir and uv lasers.

What’s the consequence of this one more sub–level to STIRAP? The adiabatic state that

STIRAP relies on exists only when det

 Ωuv βΩir

α∗Ωuv Ωir

 = 0 (i.e. the Hamiltonian allows

a null adiabatic state, see also discussions in Chapter 3) or explicitly α = β, namely, the

polarizations of the two linearly polarized lasers are parallel to each other. When the two

lasers’ polarizations deviate from the parallel situation, the usual STIRAP fails to occur.

6.1.1 An Interferometer Built inside an Atom

For the general case of different polarizations, let us first consider the situation where Ωir

and Ωuv are real constants, namely, the lasers are cw. Rewrite (6.2) in a slightly different
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Figure 6.5: The reduction of the linkage pattern in the case when the lasers’ polarizations
are orthogonal to each other.

form to begin:

i
d

dt



c1

c4

c2

c3


=



0 0 Ωuv αΩuv

0 0 β∗Ωir Ωir

Ωuv βΩir 0 0

α∗Ωuv Ωir 0 0


︸ ︷︷ ︸

H4



c1

c4

c2

c3


(6.3)

λ

c1

c4

 =

 Ωuv αΩuv

β∗Ωir Ωir


︸ ︷︷ ︸

M

c2

c3

 (6.4a)

λ

c2

c3

 =

 Ωuv βΩir

α∗Ωuv Ωir


︸ ︷︷ ︸

M†

c1

c4

 (6.4b)
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To examine the time evolution described by (6.3), we look for the eigenstates and eigenvalues

of H4. Then the eigenvalue problem of (6.3) reduces to find a λ to make sure the eigen–

equation described in (6.4) holds.

A little observation of the symmetry between (c1, c4) and (c2, c3) of (6.4) would lead to

a simplified eigenvalue problem for 2 by 2 matrices:

λ2

c1

c4

 = MM †

c1

c4

 (6.5a)

λ2

c2

c3

 = M †M

c2

c3

 (6.5b)

where MM † and M †M are explicitly given in the following:

MM † =

 2Ω2
uv (α + β)ΩuvΩir

(α∗ + β∗)ΩuvΩir 2Ω2
ir

 (6.6a)

M †M =

 Ω2
uv + Ω2

ir αΩ2
uv + βΩ2

ir

α∗Ω2
uv + β∗Ω2

ir Ω2
uv + Ω2

ir

 (6.6b)

Clearly MM † and M †M have the same eigenvalues and they are all positive. From the

form of MM † we see that the value of α + β determines how much c1 and c4 are mixed in

the adiabatic states. Let us revisit the two extreme conditions. When α and β are π out of

phase: α+ β = 0, there is no mixing at all between c1 and c4 components, and this case can

be viewed as total destructive interference. When α and β are in phase α = β, the mixing

is maximum, and the population transfer rate to the final level |4〉 is the highest during the

time evolution. This can be viewed as constructive interference.
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Generally, we can set the criteria for judging how good the excitation is to be the time

averaged value of the population in the final level |4〉, if we assume at the beginning all

population is in the ground state |1〉. Then we ought to look into the time evolution described

by (6.3). Like in the case of a simple two level atom, the time evolution can be found from

the adiabatic states of the Hamiltonian in (6.3). Different adiabatic states’ time evolutions

are different in the sense that they oscillate at different frequencies corresponding to their

separate adiabatic energies. As a consequence of taking the time average, those detailed

frequencies of the adiabatic states average out. The time averaged value of the population

in the final level |4〉 is determined by how much population is in the c4 component of the

adiabatic states when the light is turned on when the initial wave function (all population in

the ground state |1〉, bare state) is projected onto the adiabatic states. Roughly speaking,

we are to evaluate how much mixing the lasers induce between |1〉 and |4〉 in the adiabatic

states.

Let us denote the two eigenvalues of MM † as λMM†,1 and λMM†,2. The mixing depends

on the difference |λMM†,1 − λMM†,2| as in the following equation. The closer λMM†,1 and

λMM†,2 comes together, the larger the mixing is.

(λMM†,1 − λMM†,2)2 = 4(Ω2
uv + Ω2

ir)
2 − 8(1− Re(α∗β))Ω2

uvΩ
2
ir (6.7)

Pictorially, the phase differences in the transition amplitudes (in terms of the Rabi fre-

quencies) induced by the different linear polarizations manifest themselves in the excitation

process which very much looks like an interference pattern. From this point of view Fig.6.2

is just a two slit interferometer experiment, whose paths’ phases are determined by the ‘total

sum’ of the two lasers’ polarizations. Therefore, this effect, non-rigorously speaking, is one

example of an interferometer built inside an atom.
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The discussion above does not include the effect of spontaneous emission. If the inter-

mediate levels |2〉 and |3〉 have spontaneous emission channels to decay back to the ground

level |1〉, the basic properties of the above analysis still hold. The reason is that the more

chance the atom has at lying at the final excited state |4〉, the less chance it stays at the

intermediate levels and makes a decay. For the general cases including the spontaneous

emission, the density matrix approach is needed. The overall observation is that the picture

of the interference holds.

6.1.2 Time Dependent Rabi Frequencies

Now consider the case where the uv and ir lasers are pulsed and in the STIRAP config-

uration. The result of a numerical study is shown in Fig. 6.6.

As explained previously, when the polarizations of the two lasers are not parallel to each

other, the STIRAP adiabatic state of the usual sense, which establishes a direct connection

between the ground state and the final state, ceases to exist. However, each adiabatic state

of H4 in (6.3) is still going to evolve adiabatically in time, provided the laser pulses satisfy

the STIRAP condition as we have assumed.

There are some differences. All four adiabatic states will inevitably have populations in

the intermediate levels |2〉 and |3〉 during the adiabatic evolution. There is no null adiabatic

state whose adiabatic light shift is zero all the time, as can be seen from the fact that the

determinant of H4 is not zero if Ωuv,Ωir 6= 0. This is different from the three level case

that produces CPT and EIT. Therefore, during the course of the adiabatic evolution, those

adiabatic states will develop a non-zero phase different from each other. When in the end

those two adiabatic states recombine their wave function at |4〉, the accumulated phases

result in interference.
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Figure 6.6: The numerical simulation for the diamond system of Fig. 6.2 when the two
laser pulses are in the STIRAP configuration. Both the lasers are set to be on resonance,
the ir laser pulse is ahead of the uv laser pulse with pulse width 2 µs, and the peak Rabi
frequencies are 3.4 MHz. The unit of the angle is in terms of rad. This simulation shows how
the population of the final state |4〉 changes as the relative directions of the polarizations of
the lasers and the relative pulse delay time vary. Spontaneous emission is not considered in
this simulation.

More specifically, according to the analysis given by (6.4) and (6.6), the four adiabatic

states that H4 allows have adiabatic energies ±λ1 and ±λ2, where λ1 =
√
λMM†,1 and

λ2 =
√
λMM†,2. And when subject to a pair of pulses in the STIRAP configuration, the time

evolution of the adiabatic states can be summarized as in Fig. 6.7.
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Figure 6.7: A pictorial demonstration of the time evolution of the adiabatic states, labeled
by their adiabatic energies, when a diamond system whose linkage pattern is given by Fig.
6.2 is subject to laser pulses Ωuv and Ωir in STIRAP configuration. Adiabatic states are
represented by their adiabatic energies which are changing with time. Here the interference
is taking place between the two intermediate adiabatic states.

The adiabatic states carrying population in the final level |4〉 are the two with adiabatic

energies +λ1(t) and −λ1(t) as shown in Fig. 6.7. At the beginning and in the end, they are

degenerate at the adiabatic state with adiabatic energy 0. Everything seems to be just as

usual, except for the fact that during the time evolution they accumulate different phases.

These two adiabatic states all end up as a pure |4〉 in the end of the time evolution. When

the two adiabatic states finally recombine their wave function at |4〉, this phase difference

results in interference, namely, exp(+i
∫
dtλ1) + exp(−i

∫
dtλ1) = 2 cos(

∫
dtλ1). The phase

difference
∫
dtλ1 is the reason of the strip pattern in Fig. 6.6. Loosely speaking, the change

of the pulse delay time is equivalent to the change of effective Rabi frequency, and the

change of the polarizations affect how much of the effective Rabi frequency is directed to λ1.

Numerical study is capable of revealing the details so we won’t go further in the analytical

aspect for now.
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6.2 The 11 State System

The transition we drive in our STIRAP experiment is 23S1 → 33P2 → n3S1, and hence

its linkage pattern contains more than a diamond structure. Without spontaneous emission,

the linkage pattern can be summarized as in Fig. 6.8.

J=1

J=2

J=1

1

23

4

+_

+ _

Diamond structure Double-diamond structure

Figure 6.8: The level scheme and detailed linkage pattern of the 11 state system of the
STIRAP transition 23S1 → 33P2 → n3S1. It contains two independent subsystems, one
diamond structure and one double-diamond structure.

We have already discussed how the lasers’ polarizations affect the diamond structure in

the previous section. Similar path interference effects also exist in the double-diamond struc-

ture in Fig. 6.8, induced again by the polarizations. Because the number of the intermediate
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states is more than that of the ground and the final, there is no Morris-Shore transformation

capable of separating the double-diamond structure into independent uncoupled pure three

level subsystems.

The result of a numerical study on the transition 23S1 → 33P2 → n3S1 including all of

the magnetic sublevels is shown in Fig. 6.9.

Figure 6.9: The numerical simulation for the transition 23S1 → 33P2 → n3S1 of Fig. 6.8
when the two laser pulses are in the STIRAP configuration. Both the lasers are set to be
on resonance, the ir laser pulse is ahead of the uv laser pulse with pulse width 2µs, and the
peak Rabi frequencies are 5 MHz. This simulation shows how the population of the final
state |4〉 changes as the relative directions of the polarizations of the lasers and the relative
pulse delay time vary. Spontaneous emission is not considered in this simulation.
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The interference pattern in Fig. 6.9 is a direct result of the path interference induced by

the different phases accumulated through paths, induced by the polarization differences in

the excitation lasers. It is obvious that the different polarizations lead to different excited

state population. It might seem a little confusing that why the pattern has to do with the

pulse delay time. The different pulse delay times lead to different effective Rabi frequencies

during the given time period of interaction, which in the end change the total accumulated

phases of the paths, as illustrated in Fig. 6.7.

6.2.1 Detuning and Spontaneous Emission

The interference patterns in Fig. 6.6 and Fig. 6.9 require that all the quantum levels

in the system remain highly coherent all the time during the interaction. However, in the

experiment, these conditions could not be satisfied because of the existence of the sponta-

neous emission of the intermediate state(s), the one photon detuning, and the two photon

detuning, as a result of the transverse velocity spread (which is also discussed in Chapter 5).

Effectively, the consequence of the spontaneous emission is to wash out the details of

the interference patterns, because the adiabatic states containing the intermediate state(s)

are subject to decay and can no longer faithfully remember the phase of the path. The

experimental parameters we have for the Rabi frequencies and the interaction time are not

capable of resisting the spontaneous emission of the intermediate state(s).

Therefore, the experimental results we are expecting is sketched in Fig. 6.10, for the case

of one–photon detuning (i.e. the energy conservation criteria is still fulfilled). This implies

that it is hard to pursue the very interesting interference patterns in Fig. 6.9 by varying the

pulse delay. Therefore the experimental effort would only be put towards the direction to

manifest the path interference induced by the polarizations, in some sense as a conceptual
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Figure 6.10: The numerical simulation for the transition 23S1 → 33P2 → n3S1 of Fig.6.8 when
the two laser pulses are in the STIRAP configuration, but have one–photon detuning. This
simulation shows how the population of the final state |4〉 changes as the relative directions of
the polarizations of the lasers and the relative pulse delay time vary. Spontaneous emission
is not considered in this simulation, however the effect of the spontaneous emission on the
path interference of STIRAP is similar.

test.
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Figure 6.11: Result of the polarization induced path interference corresponding to the scheme
shown in Fig. 6.8. The associated transitions are 23S1 → 33P2 → n3S1. The uv and ir lasers
are kept in STIRAP configuration, the uv laser frequency is locked to the 23S1 → 33P2

transition, while the ir laser frequency is scanned. The polarizations of both of the lasers are
kept linear. This is the raw efficiency data directly from the absolute measurement, which
has not been modified for the decay and other compromising effects, including the transverse
velocity spread. The position of the uv half wave plate is expressed in terms of the angle
between its fast axis and the vertical direction.

6.3 Preliminary Experimental Results

For an optical interferometer, we usually measure the light intensity as the signal. Here,

the consequence of the interference is how much of the atom wave function ends up in the

final excited state (the Rydberg level). Therefore we are going to detect the population in

the Rydberg state(s) as the signal. We have two methods of doing this, the first one is to

detect the ion signal induced by the black body radiation from the Rydberg atoms (see also
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Figure 6.12: The SSD efficiency measurement signals for the most constructive and most
destructive cases in Fig. 6.11. The traces are both directly recorded from the oscilloscope
when the ir laser frequency is scanned, with a time triggering signal. This signal represents
the metastable atoms that get pushed over to the SSD. The fact that less atoms pushed
means that more atoms are staying in the Rydberg state. Therefore the deeper the dip is,
the more Rydberg atoms are produced.

Chapter 4), and the second one is to physically separate the metastable ground state atoms

and the Rydberg atoms by applying the bichromatic force via the 1083 nm laser to establish

an absolute measurement for the efficiency (see also Chapter 5).

In the ideal scenario the signals of the two different methods shall be proportional to

each other, so we regard the difference between those two methods only as technical. We

have experimentally observed repeatedly that within a good error margin the ion signal and

the efficiency signal are proportional. However, the proportionality constant is different for

different Rydberg states, since it is mostly determined by the ionization rates.
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Figure 6.13: Result of the STIRAP efficiency vs. uv laser polarization indicating polarization
induced path interference, corresponding to the scheme shown in Fig. 6.8. The associated
transitions are 23S1 → 33P2 → n3S1. The uv and ir lasers are kept in STIRAP configuration,
the uv laser frequency is locked to the 23S1 → 33P2 transition, while the ir laser frequency
is scanned. The polarizations of both of the lasers are kept linear. This is the raw efficiency
data directly from the absolute measurement.

The result of a typical STIRAP experiment with polarization induced path interference

is shown in Fig. 6.11, which corresponds to the situation of Fig. 6.8. The polarization of

the ir laser is fixed, while the angle of the linear polarization of the uv laser is gradually

scanned. It shows that the interference takes place as the population in the final Rydberg

state (in this case, 30S) varies while the angle of the uv polarization changes.

Another interesting interpretation (and a possible application) of Fig. 6.11 is that with

the help of this interferometer built inside an atom, we can find the angle of some unknown

linear polarization of the ir laser by scanning the uv laser polarization to find the constructive
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Figure 6.14: Result of the STIRAP’s Rydberg ion signal vs. uv laser polarization indicating
polarization induced path interference, corresponding to the scheme shown in Fig. 6.8. The
associated transitions are 23S1 → 33P2 → n3S1. The uv and ir lasers are kept in STIRAP
configuration, the uv laser frequency is locked to the 23S1 → 33P2 transition, while the ir
laser frequency is scanned. The ion signal is collected with no external electric field, by the
ion detector right above the interaction region through the holes in the upper field plate.
The source of the ionization is the black body radiation at room temperature. The error bar
is smaller than the marker hence omitted.

interfering point. In Fig. 6.11 we can claim that the polarization of the ir laser is along the

direction of the uv laser with the half wave plate turned at 56 degrees.

To clearly demonstrate the difference between the constructive interference and the de-

structive interference cases, we put the SSD signals of these two cases from Fig. 6.11 together

into Fig. 6.12.

Next we can fix the polarization of the ir laser and perform a finer scan of the uv laser

polarization to reveal the details in the interference pattern. The outcome is summarized in
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Fig.6.13.

As discussed in the beginning of this section, we can also measure this interference effect

with the ion signal. The advantage of the ion signal is that the signal to noise ratio is better

than that of the absolute efficiency measurement. The result is shown in Fig. 6.14.

6.3.1 Change the Path Structure by Optical Pumping

In the efforts towards determining the effect of transverse velocity spread on the STIRAP

efficiency, we put a one dimensional optical molasses laser beam of 1083 nm driving the

23S1 → 23P2 transition immediately before the STIRAP lasers. This 1083 nm laser beam is

parallel to the STIRAP laser beams and has a waist more than 5 mm. If we set the 1083

nm laser to be circularly polarized, then we can optically pump all the population of the

atoms to one of the magnetic sublevels. This will change the structure the path interference

induced by the polarizations. Details of the linkage pattern are shown in Fig. 6.15.

To explore the polarization induced path interference effects in this setting, we perform

the same measurement of STIRAP efficiency as a function of the uv laser polarization when

the linear polarization of the ir laser is fixed, similar to what we have done in Fig. 6.13. The

result of this measurement is also shown in Fig. 6.15.

According to the linkage pattern shown in Fig. 6.15, ideally the population difference

between the constructive and destructive interference cases shall be half of the total. This

can be seen from the following simple reasoning. Half of the population of |1〉 goes to |2〉

and the other half goes to |3〉. Among the population in |2〉, half goes to |5〉 and the other

half goes to |4〉 and participates in the interference. In the end, a quarter of the population

in the path through |2〉 and another quarter through |3〉 interfere – namely, half of the total

population is subject to interference while the other half stays there forever. The fact that
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Figure 6.15: Top: the linkage pattern of the magnetic sublevels when the atom is suject to
optical pumping of the 1083 nm laser first. Bottom: the measured efficiency vs. uv laser
half wave plate angle.

STIRAP is taking place certainly complicates this simple reasoning a bit. Yet, the maximum

and minimum efficiency of Fig. 6.15 are 0.178 and 0.096 separately, fairly close to this naive

analysis.
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6.4 Another Type of EIT?

EIT (Electromagnetically induced transparency) usually occurs in a pure three level

system, with the experimental signature that a medium’s absorption of light drops to zero

over a narrow spectral range within an absorption line (see also the discussions in the end

of section 7.1).

Of particular interest in EIT is the dispersion relation in the range of the transparency

window, which has important consequences such as the slow light. The question we want to

ask here is, whether we have an analogue of EIT in the case of the path interferences?

Therefore let us switch gears for now and check what happens to the light after it drives

the path interference in the atom. We start with the situation of cw light.

Once the polarizations of the uv and ir lasers are not parallel, the EIT of the traditional

sense ceases to exist because there is no longer such a dark state, which is in essence the same

situation as the non-existence of the usual STIRAP adiabatic state, as is in the discussion

following Fig. 6.5.

When the polarizations of the uv and ir lasers are orthogonal to each other, the atom

becomes transparent to the ir laser, although the ir laser’s frequency is on resonance of the

transition. This certainly reminds us of EIT, however, the transparency window here by the

polarization path interference bears no dispersion for the propagation of the ir light, which

is very different from EIT.

What happens to the ir light if its polarization is at some angle of the polarization of the

uv light, which is not necessarily orthogonal? One such situation is shown in Fig. 6.16.

If the spontaneous decay rates of the intermediate levels |2〉 and |3〉, and the final level |4〉

are high compared to the Rabi frequencies of the lasers driving them, within the time that

the atomic wave function is still coherent, we may regard the atomic wave function |ϕ〉 in |2〉
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Figure 6.16: An illustration of lasers’ polarizations.

and |3〉 as in (6.8) up to the lowest order. In the situation of (6.8), the component of the ir

laser whose polarization is orthogonal to that of the uv laser drives no dipole transition at all

hence it won’t be absorbed by the atom. On the other hand, the component of the ir laser

whose polarization is parallel to that of the uv laser does drive a transition and therefore

will get absorbed. This very intuitive discussion does not consider the effect of EIT for the

moment.

〈2|ϕ〉
〈3|ϕ〉

 = −i

 Ωuvt

α∗Ωuvt

 (6.8)

Therefore, an ensemble of atoms with the diamond energy structure can act as a polarizer

for the ir laser. Even more interesting, which polarization component of the ir laser gets

transmitted is controlled by the polarization of the uv laser. This is a highly non-linear

interaction between the two lasers via the atom medium, and can serve as an optically

controlled polarizer and/or all optical transistor.

Let us look a little bit further into the details, and check the induced dipole moment

by the orthogonal and parallel component (with respect to the polarization of the uv laser,
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the x-axis in Fig. 6.16) of the ir laser separately: 〈ϕ|D̂⊥|ϕ〉 and 〈ϕ|D̂‖|ϕ〉. For the current

purpose, it is enough to investigate 〈ϕ(|2〉〈2|+|3〉〈3|)D̂⊥|4〉〈4|ϕ〉 for 〈ϕ|D̂⊥|ϕ〉 and the similar

for 〈ϕ|D̂‖|ϕ〉.

Without loss of generality, suppose α = 1. The four adiabatic states have the adiabatic

energies ±λ1 and ±λ2 separately. The adiabatic states are listed in the following (6.9).

+ λ1 ∼



x1

z1

w1

y1


,−λ1 ∼



x1

−z1

−w1

y1


,+λ2 ∼



x2

z2

w2

y2


,−λ2 ∼



x2

−z2

−w2

y2


(6.9)

And further assume that at the beginning the atomic wave function all lies in |1〉, and

its projection onto the adiabatic states associated with ±λ1 is a1 while its projection onto

the adiabatic states associated with ±λ2 is a2. The initial conditions also impose a relation

specified in (6.10). It is now enough to investigate 〈2|ϕ〉 − 〈3|ϕ〉, 〈2|ϕ〉+ 〈3|ϕ〉 and 〈4|ϕ〉.

a1x1 + a2x2 =
1

2
(6.10a)

a1y1 + a2y2 = 0 (6.10b)

〈2|ϕ〉 − 〈3|ϕ〉 corresponds to the contribution of the orthogonal polarization component

of the ir light, while 〈2|ϕ〉+ 〈3|ϕ〉 corresponds to the contribution of the parallel polarization

component of the ir light. Now it is the time to write them down. 〈2|ϕ〉 − 〈3|ϕ〉 is:

a1(β − 1)Ωir
y1

λ1

· 2i sinλ1t+ a2(β − 1)Ωir
y2

λ2

· 2i sinλ2t (6.11)
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〈2|ϕ〉+ 〈3|ϕ〉 is:

a1{2Ωuv
x1

λ1

+ (β + 1)Ωir
y1

λ1

} · 2i sinλ1t+ a2{2Ωuv
x2

λ2

+ (β + 1)Ωir
y2

λ2

} · 2i sinλ2t (6.12)

And the wave function in the level |4〉, 〈4|ϕ〉 is:

a1y1 · 2 cosλ1t+ a2y2 · 2 cosλ2t (6.13)

To simply the discussion, we assume that Ωir � Ωuv. Then λ2 ≈
√

2Ωuv while λ1 ≈
√

2Ωir. An immediate observation is that ‖〈2|ϕ〉 − 〈3|ϕ〉‖ � ‖〈2|ϕ〉 + 〈3|ϕ〉‖. Namely, the

absorption of the orthogonal polarization component of the ir laser is much smaller than

that of the parallel component.

Imagine a scenario where the ir laser is propagating in the medium of such atoms while the

strong uv laser is pumping. Then |a1y1| and |a2y2| terms are all approximately Ω2

2Ω1
(1 + β∗).

As the light travels further and further, the parallel polarization component gets absorbed

so much more that β is closer to 1, and this in turn makes the absorption in the orthogonal

polarization component even smaller. Therefore, this medium is then a good absorber or

scatter for the ir laser’s polarization component which is parallel to that of the uv laser, but

transparent to the ir laser’s polarization component which is orthogonal to that of the uv

laser.

If the ir laser is pulsed, then its parallel polarization component will be in the transparency

window opened up by the EIT hence becomes slow. Its orthogonal polarization component,

on the other hand, doe not have to do with EIT therefore remains propagation at the speed

of light while keeping its transparency for path interference reasons. Then the medium,

pumped by the uv laser, effectively acts as a polarization beam splitter.
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Chapter 7

Other Spectroscopic Effects

Associated with STIRAP

7.1 Autler Townes Effect

The Autler Townes effect was named the AC Stark effect [84] when it was first observed

in 1955, since the experiment was conducted by an rf field, before the laser era. Later when

people had the ability to address each single quantum level of atoms precisely, thanks to the

laser, the concept of the Autler Townes effect has been brought up again and again. The

Autler Townes effect typically appears as a splitting in the spectrum of the probe, hence it

is sometimes called Autler Townes splitting as well.

The basic picture consists of 3 quantum levels: |1〉, |2〉 and |3〉 and two laser fields, with

the transition |1〉 to |2〉 driven by the pump field, and the transition |2〉 to |3〉 driven by the

Stokes field. Usually the transition strength induced by the Stokes field is weaker than that

of the pump field.

Suppose that both of the laser fields are cw in time, and that the pump field is exactly
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on resonance, let us write down the equation of motion for this three level system, under the

commonly used rotating wave approximation:

i
d

dt


C1(t)

C2(t)

C3(t)

 =


0 1

2
Ωp 0

1
2
Ωp 0 1

2
ΩS

0 1
2
ΩS ∆

 ·

C1(t)

C2(t)

C3(t)

 (7.1)

where Cj(t), j = 1, 2, 3 denotes the probability wavefunction of the three levels, Ω’s denote

the Rabi frequency of the laser fields, and ∆ denotes the detuning of the Stokes laser field.

The pump laser is set to be on resonance of the corresponding transition all the time.

Let us treat this problem by perturbation theory. Decompose the Hamiltonian in (7.1)

like the following:


0 1

2
Ωp 0

1
2
Ωp 0 1

2
ΩS

0 1
2
ΩS ∆

 =


0 1

2
Ωp 0

1
2
Ωp 0 0

0 0 ∆


︸ ︷︷ ︸

H0

+


0 0 0

0 0 1
2
ΩS

0 1
2
ΩS 0


︸ ︷︷ ︸

H1

(7.2)

where H0 is the unperturbed part and H1 is the perturbation.

For H0, the three unnormalized eigenstates are:

a1 =


1

1

0

 , a2 =


1

−1

0

 , a3 =


0

0

1

 (7.3)

with eigenvalues 1
2
Ωp, −1

2
Ωp and ∆ respectively.

Let us first try time-independent perturbation theory and find the perturbed energy

eigenstates. By adding a perturbation term to the eigenstates and the eigenvalues, we can
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get the solutions on the order of O(ΩS
Ωp

), with eigenstates being:


1

1
1
2

ΩS
1
2

Ωp−∆

 ,


1

−1
1
2

ΩS
1
2

Ωp+∆

 , and


1
2

Ωp· 12 ΩS

∆2−( 1
2

Ωp)2

∆· 1
2

ΩS

∆2−( 1
2

Ωp)2

1

 (7.4)

and their energy eigenvalues being 1
2
Ωp, −1

2
Ωp and ∆ respectively (the energy eigenvalues

do not have any O(ΩS
Ωp

) order perturbation).

Suppose that at the very beginning the atom is sitting at the ground level |1〉. From the

3 eigenstates of (7.4) we can deduce the behavior of the time evolution of the system defined

by (7.1). We simply project this very initial wavefunction, |1〉, onto the three eigenstates

and consider what happens as a function time. Even from a glance, we can see that the

system behaves very differently when ∆ is near +/ − 1
2
Ωp while other values of ∆ yield

trivial outcomes.

When ∆ is around 0, i.e. the lasers appear to be ‘on resonance’, up to order of O(ΩS
Ωp

)

the three eigenstates are the same as those in (7.3); the initial wavefunction can only project

onto the first two adiabatic states hence the system would only allow the Rabi oscillations

between |1〉 and |2〉 with very little population, if ever, excited into |3〉. Instead, when ∆ is

close to 1
2
Ωp,

1
2
ΩS is comparable with |1

2
Ωp −∆|, the initial wavefunction |1〉 would project

onto all the 3 adiabatic states. The consequence is that, the time evolution of the system

includes the level |3〉 for this case and the atom wavefunction has a finite chance of entering

that level |3〉.

Finally, when ∆ precisely equals ±1
2
Ωp, the perturbation method leading to (7.4) breaks

down, so we need to use degenerate perturbation theory instead. Namely, we choose the

energy eigenstates of H0 that diagonalize the perturbation H1. The three normalized energy

eigenstates are:
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
1
2

1
2

1√
2

 ,


1
2

1
2

− 1√
2

 , and


1√
2

− 1√
2

0

 (7.5)

with energy eigenvalues 1
2
Ωp + 1

2
ΩS, 1

2
Ωp − 1

2
ΩS and −1

2
Ωp.

Say again we start with |1〉. Then half of the population goes to


1√
2

− 1√
2

0

 and is trapped

there. Another half of the population goes to the mixture of


1
2

1
2

1√
2

 and


1
2

1
2

− 1√
2

, where

it actually goes through a Rabi oscillation between


1√
2

1√
2

0

 and


0

0

1

, with an oscillation

Rabi frequency 1
2
ΩS. This Rabi oscillation is stronger than the case when ∆ is close but not

equal to 1
2
Ωp, if evaluated by how much of the initial population is involved. The case of

∆ = −1
2
Ωp is the same.

There is yet another more concise way to look at this problem, via time-dependent

perturbation method.

Again we decompose as in (7.2), view H0, H1 as principle and perturbation respectively,

and have the unperturbed eigenstates as in (7.3). We are interested in the transition proba-

bilities between those eigenstates, especially those transition probabilities into a3: c13 from

a1 to a3, c23 from a2 to a3. We compute c13 as an example.

According to formula 5.6.22 on page 329 from [85], for the first order perturbation we

have:
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|c(1)
13 |2 =

Ω2
probe

|∆− 1
2
Ωpump|2

sin2[
(∆− 1

2
Ωpump)t

2
] (7.6)

It is clear from (7.6) that when ∆ varies from 0 to 1
2
Ωp the transition described by |c(1)

13 |2

would be stronger and stronger. When ∆ = 0 this transition is weakest and close to 0. Yet

when ∆ = 1
2
Ωp, this transition is strongest, yielding that for t small enough, |c(1)

13 | = ΩSt/2.

The situation of c23 is analogous.

If we are detecting either the population in |3〉 or the absorption of the probe beam, what

we get would be a splitting of two peaks, occuring at ±1
2
Ωp detunings, over the probe beam

spectrum. Hence follows the name Autler Townes splitting.

Figure 7.1: Numerical results of Autler-Townes splitting.

To demonstrate this, we put Ωp = 10 MHz, ΩS = 1 MHz and then numerically solve

(7.1). Then the population in level 3, which is the square of the absolute value of C3(t),

oscillates with time. If we plot the highest value which the population in level 3 ever reaches
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versus different values of ∆, which is the probe laser detuning, we get Fig. 7.1.

The width of a single peak in Fig. 7.1 is another point of interest. Roughly speaking,

the width or shape reflects the range of ∆ which populates level |3〉 in a non-negligible

way. According to the discussion following (7.4), and (7.6), we know that for a non-trivial

population in level |3〉, |∆− 1
2
Ωp| needs to be comparable with ΩS. This is the same as saying

the single peak width is approximately 2ΩS. More precisely, depending on your definition of

’width’, the width of a single peak here is proportional to ΩS. This also can be easily shown

by numerical methods.

The Autler Townes effect can cause a spectral splitting when the laser pulses are in

STIRAP configuration under special conditions, the details, both computational and exper-

imental, would be discussed in the following section.

Spontaneous emission is not necessary for the Autler Townes effect, neither does it have a

lot to do with the physics of Autler Townes effect. However, to make the story complete, we

will introduce the spontaneous emission into the three level system. In the absorption spec-

trum the Autler Townes effect can still be observed, as revealed by the numerical simulations

in Fig. 7.2, according to the level scheme of Fig. 7.3.

When spontaneous emission is present, other interesting coherent effect can occur, namely,

EIT: Electromagnetically Induced Transparency. A careful discussion on this topic can be

found in Petr’s recent article [86]. EIT is quite different from the Autler Townes effect. It

mostly focus on the absorption of the probe light with or without the coupling light. And

typically the roles of the probe and the pump in EIT are exchanged from that of the Autler

Townes effect. For EIT to be observed experimentally, spontaneous emission is necessary in

the sense that during the interaction the laser has to be scattered to cause an absorption.

Yet, to include the effect of spontaneous emission, the setup of a wavefunction approach

such as (7.1) is incomplete. We are forced to adopt the density matrix approach.
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Figure 7.2: Numerical simulation of the absorption of laser in the Autler Townes effect. It
shows the absorption of the Stokes beam under the conditions with and without the pump
beam. In the condition where the pump beam is off, the atom is assumed to have a initial
state with all population concentrated in the level 3. The corresponding level scheme of this
simulation is presented in (7.8). However, to simplify the situation, instead of the density
matrix, the time-dependent Schrödinger equation (TDSE) is used, with the spontaneous
decay built in. The absorption is calculated by the method discussed in section 1.2.

We will write down the equation of motion for the density matrix of such a system step

by step. First, let us write down the version without spontaneous emission.

d

dt
ρ11 =

i

2
(Ω∗probeρ21 − Ωprobeρ12) (7.7a)

d

dt
ρ22 =

i

2
(Ωprobeρ12 − Ω∗probeρ21) +

i

2
(Ωpumpρ32 − Ω∗pumpρ23) (7.7b)

d

dt
ρ33 =

i

2
(Ω∗pumpρ23 − Ωpumpρ32) (7.7c)

d

dt
ρ12 = −iδρ12 +

i

2
Ωprobe(ρ22 − ρ11) (7.7d)

d

dt
ρ32 = −iδρ32 +

i

2
Ωpump(ρ22 − ρ33) (7.7e)

Phenomenologically spontaneous emission would reduce the population of the excited
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states, in the familiar form d
dt
N = −γN . The spontaneous emission can reduce not only

the population in the excited states, but also the coherence terms with them. The reason

could be seen from the expression of the coherence term for a pure state wavefunction φ:

ρab = 〈a|φ〉〈φ|b〉. Say b is an excited state with decay, then 〈φ|b〉 has to decay too since

population is the square of the absolute value of 〈φ|b〉. Therefore now we can safely put the

spontaneous emission into the equations, though this is not the strict approach.

d

dt
ρ11 =

i

2
(Ω∗probeρ21 − Ωprobeρ12) + γ21ρ22 + γ31ρ33 (7.8a)

d

dt
ρ22 =

i

2
(Ωprobeρ12 − Ω∗probeρ21) +

i

2
(Ωpumpρ32 − Ω∗pumpρ23)− γ21ρ22 (7.8b)

d

dt
ρ33 =

i

2
(Ω∗pumpρ23 − Ωpumpρ32)− γ31ρ33 (7.8c)

d

dt
ρ12 = −iδρ12 +

i

2
Ωprobe(ρ22 − ρ11)− 1

2
γ21ρ12 (7.8d)

d

dt
ρ32 = −iδρ32 +

i

2
Ωpump(ρ22 − ρ33)− 1

2
γ31ρ32 −

1

2
γ21ρ32 (7.8e)

Probe Beam Pump Beam
(on resonance)

Decay Channel 1

Decay Channel 2

1

2

3

Figure 7.3: Level scheme of a lambda system with decay. The spontaneous emission is
included in such a way that in this configuration EIT is allowed.

For EIT, we need a different configuration of levels, as given in the following Fig. 7.3.

In EIT, the status of the pump and probe beams are in some sense ‘reversed’ compared to
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that of the Autler Townes effect. And the EIT probe beam absorption lineshape will be very

different from that of the Autler Townes effect.

7.2 Autler Townes Effect and STIRAP

Generally when the Rabi frequencies of the Stokes beam and the pump beam are com-

parable, there is no such observable effect as Autler Townes effect if the interaction is in

STIRAP configuration. The reason is that STIRAP is tolerant to one–photon detuning and

will always coherently transfer the population which is in the dark state |0〉 no matter what,

as also can been obviously seen from the discussions in the first two sections of Chapter 3.

However, in some extreme cases, Autler Townes effects can take place during a seemingly

STIRAP experiment. For example, when the two lasers are in counter–intuitive order while

the Stokes beam’s Rabi frequency is much weaker than that of the pump beam at the

overlapping region, the STIRAP process is very much damaged and effectively the situation

belongs to the Autler Townes effect. The extreme conditions of this type do not concern us

for our purpose therefore we are not going to the details here.

7.2.1 Autler Townes Effect and Laser Parameters

We have been describing the atom’s interaction with the laser mainly by the Rabi fre-

quency. Yet in the lab we only directly measure the intensity profiles of the lasers. Rabi

frequency can be viewed as the laser’s strength when driving a highly coherent process, where

intensity can be viewed as the laser’s strength (to be precise, square of the ‘strength’) in a

non–coherent process.

We overlap the uv and ir laser beams, with the ir laser beam much narrower than the uv.

In this configuration the Autler–Townes effect is expected, and is experimentally observed
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as in Fig. 7.4. The splitting is caused by the transition 23S1 → 33P2 driven by the uv laser.

Non–strictly speaking, the splitting is approximately the Rabi frequency of the uv laser,

according to the discussions in section 7.1.
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Figure 7.4: The experimentally measured Autler–Townes effect, showing the splitting caused
by the uv laser Rabi frequency.

In Fig. 7.4, ir laser is driving the transition 33P2 → 243S1 at zero electric field, and the

ion signal from 243S1 is measured. As the power of the uv laser is increased, the splitting

becomes wider. The relation between the uv laser power and the splitting is further explored

in Fig. 7.5.

Fig. 7.5 is essentially verifying the linear relations between the Rabi frequency and the

square root of the intensity provided in Table 1.3, since for fixed beam profile, the total power

is proportional to the intensity at given points. According to the measured uv laser beam
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Figure 7.5: The measured Autler–Townes splitting and the square root of the power of the
uv laser.

profile, the Rabi frequency is Ωp ≈ 2.89
√
Puv where Ωp is in MHz and Puv is in mW. The

reason for this to be approximate relation is that transitions with different m have slightly

conversion relations as shown in Table 1.3, and for comparison purpose we are taking an

average here. In Fig. 7.5, we know from the slope of the fitted line that Ωp = 2.79(.22)
√
Puv.

Those number agree well and serve as the test of the laser parameters for the experiment.

Fig. 7.4 contains rich information more than the Rabi frequency of the uv laser. The

individual peaks have a FWHM of ∼ 12 MHz, which may arise from the power broadening

from the ir probe laser (Rabi frequency ∼ 4 MHz), residual uv laser intensity variation in

the ir probe region (∼ 4 MHz), and possibly the transverse velocity spread.
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7.3 A Two Level Atom Driven by a Noisy Laser

The time evolution of a two level atom in a monochromatic radiation field is a standard

part of the atomic textbooks. However, ‘monochromatic radiation’ is merely an idealization

of what is actually used in experiments. Lasers have line width and fluctuations which can

not just be ignored.

The study of the interaction between a two level atom and a laser with fluctuations began

very early, almost immediately after the invention of laser. The stochastic nature of practical

lasers (especially for the multi-mode lasers) has been carefully examined and the effect on

the atoms has been carefully calculated by reasonable stochastic and statistical methods.

The literature on this subject is rich, some good references can be found at [87] and [88]. C.

W. Gardiner and P. Zoller even published a very good book on this topic [89].

Recently there are quite some interest in this problem of the noise effect on an effective

two level system, for example [90].

In this section I will try to explore this issue with simple methods compared to those

thorough calculations mentioned above. I would like to show the consequences of inherent

randomness associated with actual lasers on the time evolution of a two level atom. Hence,

pictorially, the content to be discussed is ‘driving a two level atom with a fluctuating laser’.

7.3.1 Intensity Fluctuations

The first instability to be discussed is the fluctuations in the laser intensity. Suppose

within a time period t0, the Rabi frequency Ω of the laser is a random variable X. For all

the time within this interval of t0, X would stay a constant, but the value of this constant is

probabilistic, and the detailed distribution of X can be anything prescribed. And suppose

that the laser is on resonance all the time.
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Now we shine such a laser on a two level atom without spontaneous emission. The time

evolution can be described by the following equation:

i
d

dt

c1

c2

 =
1

2

0 Ω

Ω 0


c1

c2

 (7.9)

If instead, we consider this problem under the dressed atom picture, i.e., we take the

base kets to be 1√
2
(1, 1)T and 1√

2
(1,−1)T , then the time evolution of the coefficients a+ and

a− can be written as:

i
d

dt

a+

a−

 =
1

2

Ω 0

0 −Ω


a+

a−

 (7.10)

with a+ =

(
c1 c2

)
· 1√

2

(
1 1

)
and a− =

(
c1 c2

)
· 1√

2

(
1 −1

)
(7.11)

Let’s say, at the first time interval t0, the Rabi frequency is a random variable Ω1, at

the second time interval t0, the Rabi frequency is a random variable Ω2, and so on. An

extra important assumption is independence. Namely, Ω1, Ω2, · · · , Ωn are assumed all to be

independent of each other. Then the solution, after n time intervals, of (7.10) can be worked

out explicitly.

a+ = a+(0) exp(− i
2

n∑
1

Ωj · t0) (7.12)

a− = a−(0) exp(
i

2

n∑
1

Ωj · t0) (7.13)

For the condition when n is large, we can resort to the central limit theorem to evaluate
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∑n
1 Ωj. Given the expectation value of Ωj is Ωavg and the variance is Ωvar, we know that∑n
1 Ωj ≈ nΩavg +

√
nN(0,Ωvar). Here N(0,Ωvar) stands for a normal distribution with

average 0 and variance Ωvar. Then, when n is large the above solutions could be reduced to:

a+ = a+(0) exp(− i
2

Ωavgnt0 −
i

2

√
nN(0,Ωvar)t0) (7.14)

a− = a−(0) exp(
i

2
Ωavgnt0 +

i

2

√
nN(0,Ωvar)t0) (7.15)

While, without the intensity fluctuations, the dressed states evolve deterministically with

time:

a+ = a+(0) exp(− i
2

Ωavgnt0) (7.16)

a− = a−(0) exp(
i

2
Ωavgnt0) (7.17)

The consequence of the intensity fluctuation is contained in the phase term i
2

√
nN(0,Ωvar)t0

of the dressed states. Compared to the no-noise perfect scenario, the phase of the dressed

states now are no longer deterministic. Rather, they become random. The worse the fluc-

tuation is (i.e. a larger Ωvar), the more random the final phase will be (i.e.
√
nN(0,Ωvar)t0

becomes more spread out).

P. Zoller uses density matrix a lot in his discussions for this and other related problems.

The density matrix is good and proper in the sense that it predicts observables. The essence

of the density matrix approach is to ‘take the average value’. While, in comparison, the

probability method I am using here is to reveal the the detailed probabilistic nature of the

problem. If the average value or expectation is taken, the result here would reduce to that
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of the density matrix approach.

This problem can also be treated by the Fokker-Planck equation. However, it is beyond

the scope here.

7.3.2 Frequency Fluctuations

Another source of laser instability is the fluctuations in frequency. We can continue this

discussion by borrowing the same picture we previously used for the intensity instability. To

begin with, I want to simply assume that for each time interval t0 the frequency of the laser

is a random variable. The random variables of different time intervals are independent with

each other.

Now, within the jth interval t0, the time evolution is described by the following (familiar)

equation. Here I am going to follow the dressed states picture, similar to the previous section.

i
d

dt

c1

c2

 =
1

2

0 Ω

Ω ∆j


c1

c2

 (7.18)

An exact treatment to get the final result by tracing all the time intervals might be hard.

However, a preliminary result is possible, under one suitable approximation that the dressed

states are adiabatically followed all the time. Namely, there is no transition or cross between

the two dressed states. Then analogous to (7.10) we can establish the time evolution for the

dressed states. Of particular interest is the phase as a function of time.
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i
d

dt

a+

a−

 =
1

2

∆+
√

∆2+Ω2

2
0

0 ∆−
√

∆2+Ω2

2


a+

a−

 (7.19)

with a+ =

(
c1 c2

)
· 1√

2

(
1 1

)
and a− =

(
c1 c2

)
· 1√

2

(
1 −1

)
(7.20)

Let us model the details of the frequency fluctuation in the following simple way, again

similar to the intensity fluctuation case. Assume ∆j’s of the jth interval t0 are all independent

with each other, and have expectation 0 and variance ∆var. Henceforth the results of (7.19)

are:

a+ = a+(0) exp(
i

2

n∑
1

(∆j +
√

∆2
j + Ω2) · t0) (7.21)

a− = a−(0) exp(
i

2

n∑
1

(∆j −
√

∆2
j + Ω2) · t0) (7.22)

Let’s say the laser is not fluctuating so much that ∆var is small compared to Ω. Then√
∆2
j + Ω2 is approximately Ω. With the help of the central limit theorem we know that∑n

1 ∆j ≈
√
nN(0,∆var). With all those information, the time evolution of the dressed states

are summarized in the following, when n is large.

a+ = a+(0) exp(− i
2

Ωnt0 +
i

2

√
nN(0,∆var)t0) (7.23)

a− = a−(0) exp(
i

2
Ωnt0 +

i

2

√
nN(0,∆var)t0) (7.24)

The randomness in the frequency induces randomness in the phases of the the dressed
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states, whose effect is summarized in the term i
2

√
nN(0,∆var)t0.

All these terminologies such as ‘frequency noise’, ‘frequency instability’, ‘phase noise’...

are actually describing the same thing if the discussion is limited to the context of (7.19).

After all, we know that phase is merely frequency integrated over time. The simple and

direct discussion within this section is enough to model the consequences.

7.3.3 SDE and Feymann’s Path Integral Approach

The discussion in the previous two sections is straightforward and mostly shows the

nature of the problem. However, the assumptions and methods are still a bit artificial. A

more natural way is to use stochastic differential equation (SDE) to study the details of the

time evolution.

Generally speaking, this problem falls in the category of a two or three level atomic system

interacting with lasers having classical noise. This topic has been extensively explored in

the 70’s and 80’s, both experimentally and theoretically. Many people pioneered in this

area, including S. J. Smith and P. Zoller. Numerous work has been published. Two good

experimental references can be found at [91] and [92]. Different theoretical methods can be

found at [93] [94] [95] [96] [97] [98] [99] [100]. This phase noise in the SDE is multiplicative in

nature and therefore is naturally hard to tackle. Yet, as mentioned in those references above,

a combination of density matrix approach [101] (which usually includes the effect of the

spontaneous emission) and SDE could yield satisfying results and lineshapes corresponding

to experimental data.

Here I want to use the Schrödinger equation combined with SDE to deal with this prob-

lem. The reason for this choice of the Schrödinger equation over the density matrix approach

is that, in the two possible applications of this calculation, spontaneous emission does not
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have an important role and can be regarded as never happening in the ideal case, which are

STIRAP and light force on atom at a time scale shorter than one lifetime.

Another difference from the referenced works is that I am going to use a method similar

to that of the Feymann’s path integral approach to reveal the nature of the stochastic process

in terms of time evolution, though approximations would be used to get a result.

Suppose the laser has both frequency fluctuations and intensity fluctuations. We can

regard them as white noise, and therefore use Brownian motion to model them. Namely,

instead of the usual Ω cos(ω0t) as the transition term induced by the laser, we now have

(Ω + dWΩ

dt
) cos(ω0t + Wδ). WΩ and Wδ are scaled Brownian motions, and are independent

with each other, with the implication that the noise in the intensity has nothing to do with

the noise in the frequency. Sometimes this fluctuation in frequency is also called ‘phase

diffusion’ [92]. The involved stochastic calculus here is in the sense of Itô calculus.

The starting point is the Schrödinger equation for a two level atom after the rotating

wave approximation, in the rotating wave frame of the atomic resonance frequency. For ease

of notation, let Ω′ = Ω + dWΩ

dt
.

i
d

dt

c1

c2

 =
1

2

 0 Ω′eiWδ

Ω′e−iWδ 0


c1

c2

 where H =
1

2

 0 Ω′eiWδ

Ω′e−iWδ 0

 (7.25)

The instantaneous energy eigenvalue, or dressed states, are:

|+〉 =
1√
2

 1

e−iWδ

with energy
1

2
Ω′ ; |−〉 =

1√
2

 1

−e−iWδ

with energy − 1

2
Ω′ (7.26)
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Now we go on to construct the propagator that connects the future tn = T to the past

t0 with time intervals ∆t = T−t0
n

:

Θ = (1− iH(tn−1)∆t) · · · (1− iH(t0)∆t) (7.27)

And then:

Propagator = lim
∆t→0

Θ = lim
∆t→0

(1− iH(tn−1)∆t) · · · (1− iH(t0)∆t) (7.28)

To evaluate (7.27), we need to look into:

gtj = (|+, tj+1〉〈+, tj+1|+ |−, tj+1〉〈−, tj+1|)(1− iH(tj)∆t)(|+, tj〉〈+, tj|+ |−, tj〉〈−, tj|)

(7.29)

A little calculation shows, up to first order:

〈+, tj+1|+, tj〉 =
1

2

(
1 eiWδ(tj+1)

) 1

e−iWδ(tj)

 ≈ 1 +
1

2
i∆Wδ (7.30)

The sense of ‘first order’ in (7.30) needs a careful justification. As mentioned above,

Wδ = sδW0 is a scaled Brownian motion with scaling factor sδ. Here we regard sδ as small

and perform a perturbative calculation up to the first order of sδ. Then we apply Itô’s lemma

to e−iWδ(∆t) − 1, keep up to the first order, and then arrive at (7.30). By the same virtue,

we have all 3 other terms in (7.31). And therefore gtj in matrix format is given in (7.32).
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〈+, tj+1|−, tj〉 = −1

2
i∆Wδ (7.31a)

〈−, tj+1|+, tj〉 = −1

2
i∆Wδ (7.31b)

〈−, tj+1|−, tj〉 = 1 +
1

2
i∆Wδ (7.31c)

gtj =

1 + 1
2
i∆Wδ − 1

2
iΩ′∆t −1

2
i∆Wδ

−1
2
i∆Wδ 1 + 1

2
i∆Wδ + 1

2
iΩ′∆t

 (7.32)

In order to evaluate g = gtn−1 · · · g0, we take the logarithm ln g = ln(gtn−1 · · · g0). For ∆t

sufficiently small ln g is as in (7.33) up to the first order.

ln gtj =

1
2
i∆Wδ − 1

2
iΩ′∆t −1

2
i∆Wδ

−1
2
i∆Wδ

1
2
i∆Wδ + 1

2
iΩ′∆t

 (7.33)

If ln(gtj−1 · · · g0) = ln gtj−1 + · · ·+ ln g0 holds, then in the process of letting ∆t→ 0, it is

essentially taking the integral of the building blocks of (7.33). And in the end, suppose the

time starts at t0 = 0, we arrive at (7.34), in matrix format:

g = exp

1
2
iWδ − 1

2
iΩT − 1

2
iWΩ −1

2
iWδ

−1
2
iWδ

1
2
iWδ + 1

2
iΩT + 1

2
iWΩ

 (7.34)

Before delving into the physical meaning of (7.34), let us figure out the validity of the

condition ln(gtj−1 · · · g0) = ln gtj−1 + · · ·+ ln g0. At a glance of (7.33), it seems that ln gtj for

different j’s all look the same and hence shall be commutative with each other. Yet, thanks

to the Markovian property of the Brownian motion, the truth is that ∆Wδ’s at different
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times are independent, hence the above commutativity argument fails.

By the virtue of Baker–Campbell–Hausdorff formula, the expansion of ln(gtj−1 · · · g0)

contains infinite numbers of higher order terms besides ln gtj−1 + · · ·+ ln g0. Here I want to

make an argument that up to first order ln gtj−1 + · · · + ln g0 is what we have. The sense

of this ‘first order’ can be understood from two aspects. The first point is that, only terms

in the first order of the scaling factor is kept, which is consistent with what we begin with:

a purturbative computation up to 1st order in the scaling factor, for both Wδ and WΩ.

The second point is a bit subtle. If we take the expectation values of ln gtj , we see that

E(ln gtj) all commutes with each other; moreover, because of the independence, we have

E(gtj−1 · · · g0) = E(gtj−1) · · ·E(g0). Put into words, the expectation value always evolve

adiabatically as expected.

Now it is time to see what (7.34) tells us. It qualitatively verifies the discussions of 7.3.1

and 7.3.2, and provides further details, which could be regarded as the non–adiabaticity

part, i.e. the probability that a transition between the dressed states occur.

7.4 Measuring the Laser Linewidth

I guess most often we wish to quantitatively measure the linewidth of a laser before

shinning it onto the atoms. In this section, I wish to establish the connection between

the laser linewidth and the laser noise. Especially, I want to show how the experimental

measure of laser linewidth shall be interpreted, even if the measure is performed without an

rf spectrum analyzer.

Laser linewidth is a repeatedly discussed topic in literature. Ever since the very early

days, insightful discussions have been around. Good theoretical references can be found at

[102] and [103]. For the early experimental effort to measure the linewidth and a thorough
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Figure 7.6: The schematics of the experimental setup to measure the linewidth of the two
Ti:Sapphire lasers by recording their beat signal

understanding of the nature of this kind of measurements, [104] is a good starting point.

Here I want to avoid diving into the physics nature and origin of the laser noise. Rather,

I plan to use probability methods as a tool to show how simple and direct model of laser

noise can lead to experimentally observed laser linewidth. From the point of view of the

narrow interest on interpreting the data, laser noise is ‘God given’ such that what’s left is

to give an efficient description and study phenomenology.

In order to have an idea of the linewidth of the lasers for the STIRAP, we set up an

experiment to beat the two Ti:Sapphire lasers, as shown in Fig 7.6. In the actual experiment

we have used a fiber coupled beam combiner to overlap the light. We tune the two lasers to

about a couple of hundreds of MHz apart, and then record the trace from the oscilloscope.

The the question is: how to interpret the recorded data? Moreover, what is the link

between the measurement and its effect on the atoms?

Let us first see how the phase noise could result in laser linewidth. We regard the phase

noise phenomenologically as a Brownian motion, and write the electric field of the two lasers

separately as: cos(ω1t+W1(t)) and cos(ω2t+W2(t)), where W1(t) and W2(t) are independent
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Figure 7.7: The beat signal of the two Ti:Sapphire lasers. Here for illustration purpose only
showing a part of the time interval of the total recorded data.

scaled 1 dimensional Brownian motions.

(cos(ω1t+W1(t)) + cos(ω2t+W2(t)))2

=2 + 2 cos(ω1t+W1(t)) cos(ω2t+W2(t)) + 2ω1.&2ω2.terms

=2 + cos((ω1 − ω2)t+ (W1 −W2)) + cos((ω1 + ω2)t+ (W1 +W2)) + 2ω1.&2ω2.terms

(7.35)

The intensity of the electric field at the photo detector is shown at (7.35). Due to

the frequency response of the photo diode, except for a dc term, the photo detector ‘sees’:

cos((ω1 − ω2)t + (W1 − W2)). Say the beat frequency δ = ω1 − ω2, therefore the actual

detected signal is of the form cos(δt + W ), where W is a scaled Brownian motion. We set

the scaling factor to be s and have that W = sW0, where W0 is a standard Brownian motion

or the so-called Wiener process.
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Since cos(δt+W ) is a random process, it is not the same as the signal we see on the scope.

Suppose we have recorded the signal from time 0 to time T , with a typical trace shown in Fig

7.7. And then we are to take the Fourier transform of it, following the standard procedure.

The question is how to understand the recorded signal. We can always say the exper-

imental data is some sort of average, yet, we have two ways to establish this ‘average’:

E(cos(δt+W )) and E(
∫ T

0
exp(iωt) cos(δt+W )dt).

The Fourier transform of the trace shall be very close or the same as E(
∫ T

0
exp(iωt) cos(δt+

W )dt). A simple but not strict argument could be, by abusing the central limit theorem a

bit, after long enough time, the measured value is the expectation with very little fluctua-

tion, no matter what the underlying distribution is. Yet the details will become clear once

E(
∫ T

0
exp(iωt) cos(δt+W )dt) is computed.

Let f(W0(t), t) = exp(iωt) exp(isW0(t)), and apply Itô’s lemma to f :

eiωT eisW0(T ) = 1 +

∫ T

0

iseiωteisW0(t)W0(dt) +

∫ T

0

{−1

2
s2eiωteisW0(t) + iωeiωteisW0(t)}dt (7.36)

Take the expectation on both sides of (7.36), and note that the expectation of an Itô

integral is zero:

E(eiωT eisW0(T )) = 1 + 0 + (iω − 1

2
s2)E(

∫ T

0

eiωteisW0(t)dt) (7.37)

W0(T ) is a Gaussian random variable with variance T , hence E(eisW0(T )) = e−
s2T

2 . Then:

E(

∫ T

0

eiωteisW0(t)dt) =
eiωT e−

s2T
2 − 1

iω − 1
2
s2

(7.38)

And henceforth the long expected result could be calculated:
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E(

∫ T

0

exp(iωt) cos(δt+ sW0)dt) =
1

2
{e

i(ω+δ)T e−
s2T

2 − 1

i(ω + δ)− 1
2
s2

+
ei(ω−δ)T e−

s2T
2 − 1

i(ω − δ)− 1
2
s2
} (7.39)

From (7.39) it is clearly a double-peak structure with some line shape. But what is this

line shape? Let us take one branch from (7.39) and clean the form a bit.

ei(ω+δ)T e−
s2T

2 − 1

i(ω + δ)− 1
2
s2

=
(ei(ω+δ)T e−

s2T
2 − 1)(1

2
s2 + i(ω + δ))

(ω + δ)2 + (1
2
s2)2

(7.40)
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Figure 7.8: The Fourier spectrum of the beat signal of the two Ti:Sapphire lasers, as the
result of the linewidth measurement.

A technical point about the Fourier transform is that, since the computer is actually

performing FFT, for all the discrete ω values in the outcome, ωT is always multiples of 2π.

Therefore, eiωT is always 1. Take the absolute value:
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|e
i(ω+δ)T e−

s2T
2 − 1

i(ω + δ)− 1
2
s2
| = |eiδT e−

s2T
2 − 1| 1√

(ω + δ)2 + (1
2
s2)2

(7.41)

It would be entertaining to rephrase (7.41) in terms of plain English: the intensity of

the Fourier transform spectrum of the beat signal is of the line shape of Lorentzian. The

linewidth is then 1
2
s2, and this would establish the relation between measured data and the

parameter of laser noise behavior.

The Fourier spectrum of the recorded beat signal is shown in Fig 7.8. To be more precise,

it is the absolute value of the Fourier spectrum. Since it is from FFT hence black markers are

used to indicate the real FFT output points. We are experimentally beating two Ti:Sapphire

lasers, therefore the linewidth from Fig 7.8 shall be regarded as the sum of the linewidth of

the two lasers, as explained previously in this section.
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Eyler, and P. L. Gould. Local blockade of rydberg excitation in an ultracold gas.
Phys. Rev. Lett., 93:063001, Aug 2004. doi: 10.1103/PhysRevLett.93.063001. URL
http://link.aps.org/doi/10.1103/PhysRevLett.93.063001.

[4] Y. O. Dudin and A. Kuzmich. Strongly interacting rydberg excitations of a cold
atomic gas. Science, 336(6083):887–889, 2012. doi: 10.1126/science.1217901. URL
http://www.sciencemag.org/content/336/6083/887.abstract.

[5] Otto Stern. Bending a molecular ray by crystal lattice face. Naturwissenschaften, 17:
391–391, 1929. ISSN 0028-1042. 10.1007/BF01506798.

[6] B. Friedrich and D. Herschbach. Stern and Gerlach: How a bad cigar helped reorient
atomic physics. Physics Today, 56:53–59, 2003.

[7] I. Estermann. History of molecular beam research: Personal reminiscences of the
important evolutionary period 1919-1933. Am. J. Phys, 43:661–671, 1975.
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