
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



Non-Equilibrium Physics from an Inference Perspective

A Thesis presented

by

Valentin Walther

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Master of Arts

in

Physics

Stony Brook University

August 2014



Stony Brook University

The Graduate School

Valentin Walther

We, the thesis committee for the above candidate for the

Master of Arts degree, hereby recommend

acceptance of this thesis

Ken A. Dill
Professor, Department of Physics and Astronomy, Department of Chemistry

Eden Figueroa
Professor, Department of Physics and Astronomy

Sergei Maslov
Professor, Department of Physics and Astronomy, Brookhaven National Laboratory

This thesis is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

ii



Abstract of the Thesis

Non-Equilibrium Physics from an Inference Perspective

by

Valentin Walther

Master of Arts

in

Physics

Stony Brook University

2014

This thesis describes implications of inference logic and information theory
on non-equilibrium physics. Inference logic prescribes a unique way of con-
verting information about mean-values into probability assignments, which
are applied to the physics of non-equilibrium systems. This thesis is struc-
tured in four chapters:

First, the central theorems of information theory are derived from the
basic requirements of any inference procedure. The theory, formulated to
apply to physical equilibrium systems with mean-value constraints, is called
Maximum Entropy (MaxEnt). This idea bridges the work of Shannon and
Boltzmann and sets difficult concepts from statistical physics, such as ergod-
icity and metric transitivity, into a new context.

Second, MaxEnt is extended to general time-dependent systems, giving
a concept named Maximum Caliber (MaxCal). In particular, we develop
a theoretical description of steady-state systems in the limit of small driv-
ing forces. We recover two important results from linear thermodynamics,
namely Onsager’s reciprocal relations and Prigogine’s theorem. This result
is important as it does not rely on the problematic assumption of local equi-
librium. Furthermore, higher-order symmetries are revealed, leading to pre-

iii



dictions beyond the linear regime. We show that the same expansion results
in corrections to Prigogine’s theorem. Both effects are exemplified in a toy
model. In this example, we find bifurcations which suggest a spontaneous
change in behavior as the system leaves the near-equilibrium regime. These
“phase transitions” are reminiscent of physical effects, such as the transition
from conductive to convective heat transfer in viscous fluids.

Third, we review the idea and application of Maximum Entropy Pro-
duction (Max-EP), a theory supposed to explain large-scale organization for
complex systems far from equilibrium. We present the theory’s success in
climate prediction, commenting on the underlying assumptions and prob-
lems in the application. Next, we discuss Dewar’s hypothesis that MaxEnt
and Max-EP could be equivalent. A detailed analysis of Dewar’s attempts
at proving his conjecture shows the connections to be evasive. We conclude
that Max-EP is loaded with ambiguity and that a convincing derivation from
inference science has not yet been brought forward.

Fourth, we move beyond the assumption of a steady state in considering
a diffusion system, which is arbitrarily far from equilibrium. We simulate
the diffusion system (in one dimension) and produce statistical distributions
over possible outcomes. Aiming at reproduction of the simulated results, we
develop a coarse-grained mathematical model, which can be analyzed using
MaxCal. We exploit symmetries to find a computationally efficient represen-
tation in terms of a transfer matrix. Our MaxCal analysis reveals a physical
constraint which was previously unconsidered. After the implementation of
this constraint, MaxCal predicts the simulated distributions at good accu-
racy. We conclude this chapter by pointing out how MaxCal provides a
unique means of including new physical effects.

In summary, the results of this thesis demonstrate the ideas of infer-
ence logic to be very useful in physics. Especially our findings about linear
thermodynamic steady states pose a novel approach to traditional thermo-
dynamic theorems. While neither MaxEnt nor MaxCal has, by itself, any
physical content, they can be used to great effect for the analysis of physical
observations as well as in model building. In this sense, MaxEnt and Max-
Cal provide a rigorous theoretical framework of converting observations into
probability assignments and show a remarkable potential for the approach to
fundamental questions in statistical physics from an inference perspective.

iv



Contents

1 Introduction: Inference Theory in Physics 1
1.1 Inference Problems . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Shannon’s Coding Theorem . . . . . . . . . . . . . . . . . . . 2
1.3 Equilibrium Statistical Physics: Boltzmann . . . . . . . . . . . 4
1.4 Maximum Entropy (MaxEnt) . . . . . . . . . . . . . . . . . . 8

1.4.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 MaxEnt: An Inference Method . . . . . . . . . . . . . 8

1.5 MaxEnt is a Unique Solution to the Inference Problem . . . . 10
1.5.1 Inference Axioms . . . . . . . . . . . . . . . . . . . . . 11
1.5.2 Sketch of the Proof . . . . . . . . . . . . . . . . . . . . 12

1.6 What it Means When MaxEnt is Wrong . . . . . . . . . . . . 15

2 Linear Non-Equilibrium Physics: Derivations from MaxCal 16
2.1 MaxCal: MaxEnt for Time-Dependent Systems . . . . . . . . 16
2.2 Linear Thermodynamics According to Onsager & Prigogine . . 17

2.2.1 Onsager’s Reciprocal Relations . . . . . . . . . . . . . 17
2.2.2 Entropy Production . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Prigogine’s Principle . . . . . . . . . . . . . . . . . . . 20

2.3 Statistical Linear Thermodynamics . . . . . . . . . . . . . . . 22
2.3.1 Linear Response and the Onsager Relations . . . . . . 22
2.3.2 Higher-order Expansions . . . . . . . . . . . . . . . . . 24
2.3.3 What’s Special About This? . . . . . . . . . . . . . . . 24
2.3.4 MaxCal Implies Prigogine’s Principle . . . . . . . . . . 26
2.3.5 Interpretation of λ . . . . . . . . . . . . . . . . . . . . 28

2.4 MaxCal Predictions of a General System . . . . . . . . . . . . 29
2.4.1 A Generic Model . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 Onsager’s Reciprocal Relations . . . . . . . . . . . . . 30
2.4.3 Deviations from the Linear Regime . . . . . . . . . . . 31
2.4.4 Prigogine’s Principle . . . . . . . . . . . . . . . . . . . 32
2.4.5 Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Far from Equilibrium: A Survey of Maximum Entropy Pro-
duction 37
3.1 Statement of Max-EP . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 The Simplest Example . . . . . . . . . . . . . . . . . . 39

v



3.2.2 Climate Prediction . . . . . . . . . . . . . . . . . . . . 42
3.3 Dewar’s Derivations . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Heuristic Derivations . . . . . . . . . . . . . . . . . . . 44
3.3.2 Quantitative Derivations . . . . . . . . . . . . . . . . . 47

3.4 What Is To Be Thought About This? . . . . . . . . . . . . . . 51

4 MaxCal: Evolution of a Model 54
4.1 Application of MaxCal to Diffusion . . . . . . . . . . . . . . . 54
4.2 Simulation of Diffusion . . . . . . . . . . . . . . . . . . . . . . 54
4.3 MaxCal Model of Diffusion . . . . . . . . . . . . . . . . . . . . 55
4.4 First Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Physical Constraint: Friction . . . . . . . . . . . . . . . . . . . 67
4.6 Discussion and Outlook . . . . . . . . . . . . . . . . . . . . . 68

Bibliography 71

5 Appendix 76
5.1 Onsager’s Derivation of the Reciprocal Relations . . . . . . . . 76

5.1.1 Example: Detailed Balance and Microscopic Reversibil-
ity Imply Onsager’s Relations . . . . . . . . . . . . . . 76

5.1.2 General Proof . . . . . . . . . . . . . . . . . . . . . . . 78
5.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Explicit MaxCal Solutions . . . . . . . . . . . . . . . . . . . . 80
5.3 Computer Algorithms . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.1 Integrating Langevin’s Stochastic Differential Equation 82
5.3.2 Calculating All States . . . . . . . . . . . . . . . . . . 83

vi



List of Figures

1 Several compatible probability distributions . . . . . . . . . . 2
2 Information entropy for a binary process . . . . . . . . . . . . 4
3 Entropy is additive . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Forces and flows in linear thermodynamics . . . . . . . . . . . 20
5 A very general model allowing MaxCal predictions . . . . . . . 29
6 MaxCal currents compared with linear approximation . . . . . 31
7 Current comparison between MaxCal and Prigogine . . . . . . 33
8 Force comparison between MaxCal and Prigogine . . . . . . . 33
9 At some point the currents jump . . . . . . . . . . . . . . . . 34
10 Transitions in the predicted current . . . . . . . . . . . . . . . 36
11 Max-EP can only be applied to some systems . . . . . . . . . 40
12 A maximum in entropy production appears . . . . . . . . . . . 40
13 Comparison between Max-EP and observations . . . . . . . . 43
14 Macroscopic reproducibility in phase space . . . . . . . . . . . 45
15 MaxCal converts constraints into a probability assignment . . 54
16 A typical trajectory of particles diffusing in the tube . . . . . 57
17 State classes of the system . . . . . . . . . . . . . . . . . . . . 58
18 States, classes and trajectories for Np = 2, Nb = 2 . . . . . . . 60
19 J(λ) for the case of the system starting in |Ci〉 = 1 at t = 2 . . 62
20 Current distribution for t = 2, |Ci〉 = 1 and λ = 1. . . . . . . . 63
21 Simulated particle distribution after the full simulation . . . . 64
22 J2 increases as a function of λ . . . . . . . . . . . . . . . . . . 65
23 J2: MaxCal and simulations compared (no friction) . . . . . . 66
24 J1, J3: MaxCal and simulations compared (no friction) . . . . 66
25 Onsager’s example: allowed and forbidden transitions . . . . . 76

vii



Acknowledgments

Foremost, I would like to express my gratitude to my advisor Professor Ken
A. Dill for the assignment of this exciting topic and his guidance during my
work on the thesis. Ken Dill took care that my time in his group was not
just intellectually rewarding, but also introduced me to the many members of
his group. Out of all the scientists I had the pleasure to meet at the Laufer
Center, I am particularly grateful to have had many inspiring discussions
with Michael Hazoglou and Purushottam Dixit.

My entire stay at Stony Brook would not have been possible without the
generous support through a Fulbright annual stipend. Additional thanks go
to Ken Dill for providing financial support throughout the summer.

Besides my advisor, I thank professors Sergei Maslov and Eden Figueroa
who went to the trouble of reading my thesis and of being part of my thesis
committee.

Last but not least, I would like to thank Kathrin Kelly for checking the
final document for orthographic correctness.

viii



1 Introduction: Inference Theory in Physics

1.1 Inference Problems

One of the fundamental and general problems of quantitative science is the
conversion of experimental data into theoretical models. Even the most triv-
ial examples like the rolling of a die pose a conceptual problem: If one assumes
a model in which each of the die’s sides occurs at probability p = 1/6, calcula-
tion becomes easy and a precise mathematical theorem about the probability
of m successful events in N trials is given by Laplace (Weak Law of Large
Numbers)

P (m|N, p) =

(
N

m

)
pm(1− p)N−m (1)

lim
N→∞

P (p− ε < f = m/N < p+ ε) = 1 ∀ε > 0, (2)

where f is the observed frequency of successful events. While this question is
mathematically easily tractable, a scientific problem usually requires the in-
verse: Some experimental data is available, and a theoretical model is sought.
To start calculation, one needs to make a prior assumption. In the case
of a die this might be considered trivial: If the probability assignments were
not equal, a simple permutation of the sides would give a different proba-
bility assignment and thus a contradiction. If, however, not all outcomes
are by symmetry equally likely we must still arrive at some assignment of
probabilities. Assume, for example, a loaded die, whose known average value
is x̄ = 2.9. Fig. 1 shows some alternative distributions, all of which are
compatible with the mean value constraint. Which distribution should be
chosen? A related question arises in the case of continuous variables. If no
information is available on a measurement, analogy with the discrete case
might suggest assigning a uniform prior to all outcomes. But continuous
variables pose an additional challenge. A uniform prior on a variable α is
non-uniform for equivalent reparametrizations, such as α5 or ln(α). Why
should the first line in Eq. 3 be preferred over the last two?

dP/dα = const.

dP (α5)/dα = 5α4 · dP/dα = const.

dP (lnα)/dα = 1/α · dP/dα = const.

(3)

In either case, a rigorous mathematical criterion for the probability assign-
ment is required. The key goal must be that the assigned probability dis-
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Figure 1: Several discrete probability distributions compatible with x̄ = 2.9.

tribution represents the information provided by the constraints1,
no more, no less, and that is does so in a mathematically well-defined
(unique) way. In the following, this theorem is developed by demonstrat-
ing how it naturally emerges from physics and information science. Its great
simplicity and explanatory success are illustrated and possible predictive fail-
ures of the theorem are interpreted. The chapter concludes with a sketch of
a formal proof based on axiomatic requirements to any inference procedure.

1.2 Shannon’s Coding Theorem

A key advance in the scientific progress of approaching a unique inference
algorithm was made outside physics, by Shannon [49]. He analyzes the po-
tential for data compression when sending messages over physical “channels”
and finds that it has a definite upper bound valid for any lossless compres-
sion algorithm. In other words, there is a minimum (average) length beyond
which loss of information is bound to occur. To evaluate just where this point
lies, Shannon uses the following simplified model. A message is a sequence of

1Any constraint used in this formalism must be quantitative. Even though complicated
constraints in the form of inequalities or functional relations are in theory admissible, the
constraints used in this thesis will be (mostly) on mean values.
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symbols Xi, all of which are taken from an “alphabet” A = (a1, ..., aN). Next,
Shannon assumes that the probabilities2 of each letter are known (p1, ..., pN)
and supposes that the symbols are statistically uncorrelated. The intuitive
requirement that the occurrence of two specific letters should increase “in-
formation” linearly while the probabilities multiply leads to

I(pi · pj)
!

= I(p1) + I(p2) (4)

⇒ I(pi) ∝ ln pi (5)

where I denotes information. To ensure that information increases with
decreasing probabilities, a negative sign is adopted. In the binary world
of computers, the typical choice of logarithm is log2, but to emphasize the
relation to the physical form of entropy ln = loge seems a good option here.
Averaging over all symbols in the alphabet gives the Shannon entropy

H(A) ≡ −
N∑
i=1

pi ln pi. (6)

I is an intuitive measure of information for a random source and thus H
can be interpreted as the average information content per symbol.
Since no lossless compression may alter the “information content” of a mes-
sage, the shortest conceivable compression of a message3 is N ·H(A) symbols
long4. Shannon entropy assumes its maximum if all N outcomes symbols
have the same probability p = 1/N . For the binary case, this is illustrated
in Fig. 2. A second desirable feature is additivity: Coarse-graining a prob-

2Actually, only the relative frequency of any letter in an alphabet is known. The iden-
tification of relative frequencies with probabilities is not always accurate (Cf. subjective
and frequentist interpretation of probabilities).

3The messages considered here are infinitely long.
4Shorter compressions with prefixes are not considered.
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Figure 2: Information entropy for a binary process has a maximum at p1 =
p2 = 1/2.

ability distribution does not change its information content (Fig. 3).

−
α∑
j=1

qj ln qq +
α∑
j=1

qjH

(
pmj−1+1

q1

, ...,
pmj
qj

)

=
α∑
j=1

−qj ln qi − qi
[
pmj−1+1

q1

ln
pmj−1+1

q1

+ ...+
pmj
qj

ln
pmj
qj

]

=
α∑
j=1

−qj ln qi +
(
pmj−1+1 + ...+ pmj

)︸ ︷︷ ︸
qj

ln qj

−
[
pmj−1+1 ln pmj−1+1 + ...+ pmj ln pmj

]
=H(p1, ..., pmα)

(7)

1.3 Equilibrium Statistical Physics: Boltzmann

The earliest problem of statistical physics was to describe the behavior of
gases used in the heat engines of the late 18th century. As these gases only
have very weak intermolecular forces, they can be approximated as ideal
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Figure 3: Entropy is additive, i.e. independent of coarse-graining in the
probability distribution.

gases, i.e. gases interacting only via elastic collisions. Combined with the
idea that gases consist of a great number of indivisible parts, Newton’s laws
in principle provide the means to evaluate each particle’s trajectory for all
times as functions of the initial position and velocity.

The number of atoms involved in a typical experiment being of the or-
der 1023 − 1025, direct integration of the equations of motion is unfeasible.
Boltzmann was first to consider the problem from an entirely different angle.
Using a statistical approach, he triumphantly calculates many important fea-
tures of ideal gases [2]: In his derivation, he exploits that total energy and
particle number in an isolated gas are conserved, without using Newton’s
equations of motion.

The total energy of N non-interacting5 particles in an external conserva-
tive potential Φ is

E =
N∑
i

[
1

2
miv

2
i + Φ(xi)

]
. (8)

Every particle can be characterized by a vector in position space X and one
in momentum space Y , whose product is phase space R = X ⊗ Y . The
system’s trajectory in phase space is, however, limited to the subspace in RN

satisfying Eq. 8. To count the number of available states, one can divide
phase space into discrete cells of volume h3 6. The boxes are assumed to be
sufficiently large to accommodate a great number particles (still Nk < MR),
while at the same time being small enough such that the system’s energy
within a cell is essentially constant. It is then possible to enumerate all cells

5i.e. no interaction besides elastic collisions
6 The uncertainty principle from quantum mechanics provides that h is Planck’s con-

stant. In any case, the absolute size of the cells drops out of the final expression for entropy
(cf. below).
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Rk, k ∈ {1, ...,MR} in accessible phase space. There is a vast number of
possible configurations, but not all sets of occupation numbers are equally
likely. For a particular set of {Nk} the multiplicity is given as

W =

(
MR

N1, ..., NMR

)
=

MR!

N1! · · ·NMR
!

(9)

because particles in one box are indistinguishable (cf. footnote 6). As
MR and N are macroscopic quantities, W is a very large number, so it makes
sense to use logarithms and the Stirling approximation N ! ≈ NNe−N

√
2πN

lnW = ln

(
MR!

N1! · · ·NMR
!

)
≈ ln

(
MMR

R e−MR
√

2πMR

MR∏
k=1

N−Nkk eNk√
2πNk

)

= MR (lnMR − 1)−
∑
k

Nk (lnNk − 1) +
1

2

(
lnMR −

∑
k

lnNk

)
+ c

≈ −
∑
k

Nk ln

(
Nk

MR

)
= −MR

∑
k

Nk

MR

ln

(
Nk

MR

)
(10)

In the second to last equation, only the excellent approximation N � lnN �
1 for large N was used. In the last expression, one can identify pk = Nk

MR
as

the probability of one particle being in phase space cell Rk. At this point, it
also becomes clear that the actual choice of cells is immaterial, since Eq. 10
has the same form as information entropy (Eq. 6) and therefore also satisfies
the additivity property. If phase space was re-divided as in Fig. 3, H would
remain invariant.

Assuming ergodicity7, Boltzmann predicts all physical properties to be
dominated by the most probable states. The most probable set {Nk} occurs
when pk = p = 1

MR
∀i because this set maximizes the multiplicity W (cf. Fig.

2). A slightly different situation arises when the system is in contact with a
heat bath and only its average energy is conserved. Still, Boltzmann reasons
that the most probable set of occupation numbers {Nk} should be

7i.e. one assumes that the system’s trajectory in phase space maps out every possi-
ble state. Time averages as occurring in a measurement process are then equivalent to
statistical averages.
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realized since this set outnumbers every other distribution by a very large
margin. Mathematically, the distribution can be found with the help of
Lagrange multipliers

δ

δpk

[
lnW − β

∑
k

Ekpk

]
!

= 0 (11)

⇒ pk =
1

Z
exp(−βEk), (12)

where Z =
∑

k exp(βEk) is the partition function. The solution of β is
determined from

E =
∑
k

NkEk (13)

with Nk = N · pk. From this remarkable result many familiar results can be
read-off. For example, the earth’s gravitational field Ek = mgz directly gives
rise to the barometric formula

ρ(z) = ρ(0) exp(−βmgz), (14)

where ρ(z) is the air density at height z. In this case, thermodynamic equi-
librium also requires for the pressure P = NkbT/V = kbT/m · ρ

−dP
dz

= −kbT/m · ρ′(z)
!

= gρ(z) (15)

⇒ ρ(z) = ρ(0) exp(−mgz
kbT

). (16)

The identification β = 1
kbT

is immediately obvious. But the distribution even
grants indirect statements about dynamics. Because Eq. 12 factorizes into
one part containing only space and one containing only momentum compo-
nents, one sums over one space to find distributions in the marginal space of
the other. For example, the distribution of velocities is

p(v) =
∑
x

p(v, x) ∝ exp(−βmv2/2). (17)

It is interesting to see that Eq. 17 (Maxwell distribution) holds irrespective of
position. Thus, one can conclude that in any conservative field the Maxwell
distribution is maintained automatically without the need for collisions.

7



1.4 Maximum Entropy (MaxEnt)

1.4.1 Analysis

Poincaré points out that with Boltzmann’s method one seems to “get some-
thing for nothing”. In fact, there is an intuitive gap between the assumptions
made and the scope of the results obtained. After all, Boltzmann employs a
two-step process to arrive at his predictions:

First, he develops a model for the system at consideration. In the case of
the ideal gas, this description includes splitting phase space into elementary
cells, followed by a simple counting argument to determine the states with
the greatest multiplicities. In a second step, he determines the distribution
that maximizes the total number of available states based on the imposed en-
ergy constraint. Under the assumption that all states are equally populated,
this allows all mentioned results. The derivation shows that Boltzmann’s
result is very stable against changes of the model. On the one hand, the
specific choice of cells in phase space is irrelevant and the assumed size h
drops out of the calculation. On the other hand, the used model of fixed
cells in phase space implies that phase space available to the system does not
change with time. This is the content of Liouville’s theorem, which holds
for all Hamiltonian systems, and it implements a great deal of the physical
nature of Hamiltonian dynamics. Boltzmann’s final results are correct and
have stood the test of experiment. It is interesting to note, however, that
Boltzmann counts the particles in each box as being indistinguishable. While
a central postulate of quantum mechanics, Boltzmann must have discovered
this a requirement necessary to produce correct results8. Boltzmann distilled
the central physical content of the gas problem (energy constraint, Liou-
ville dynamics) into his model and inferred an unknown physical constraint,
namely the indistinguishability of particles in a small box.

1.4.2 MaxEnt: An Inference Method

Boltzmann’s approach to the gas problem is borne from the overwhelming
complexity of an enormous many-body system. In practical terms, accurate
measurement of the initial conditions is just as impossible as integrating all
trajectories. However, it is worth noting that this plethora of microscopic
possibilities is equaled by the redundancy in the outcomes. Though predic-

8In the case of distinguishable particles the factors Nk! would not appear in Eq. 10
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tions concerning the system’s microstate are virtually impossible, statements
about its macroscopic state are very simple. Macroscopic reproducibility
suggests that a handful of measured macroscopic quantities must
be sufficient for a statistical treatment of the system. Microscopic de-
tails evade control in experimentation and can therefore not be relevant to
a reproducible result. Jaynes [23, 24, 25] points out that eliminating redun-
dant information at the outset might be one key to overcoming the complexity
barrier and revealing the physics underlying some problem. In the following,
Boltzmann’s method is generalized by using its mathematical relation with
Shannon entropy to reach a general inference algorithm.

The first step of Jaynes’ algorithm is devising a model. Next, one has
to implement all physical constraints known about the system. In a typical
situation, the number of constraints will be far smaller than the (N − 1)
degrees of freedom in the distribution (cf. die example in Sect. 1.1), such
that a vast number of distributions would be possible. While all of them
satisfy the constraints, some suggest tendencies which are not warranted
by the constraints. The idea is to select the distribution which contains
no information beyond that enforced by the constraints. At this point, a
connection to information entropy becomes apparent. If one identifies the
different outcomes of an experiment as the letters of an alphabet, information
entropy provides a means to quantify the information contained in probability
distribution. In other words, it becomes possible to measure just how much
bias is contained in any distribution satisfying the constraints. The
resulting information-based algorithm can be summarized as follows9:

Theorem 1 (Maximum Entropy (MaxEnt))

MaxEnt selects the probability distribution that is compatible with all
given constraints and maximizes Shannon’s entropy. The resulting distri-
bution is “the least biased” given all constraints because it contains the
least information.

Entropy is a positive quantity defined for all possible distributions, which
has an upper bound Hmax = −

∑
i p
∗
i ln p∗i = lnN . A solution is, therefore,

guaranteed to exist on the set of all compatible distributions. In the counting
approximations of Eq. 10 and also implicitly contained in Shannon’s deriva-
tion is the assumption of an infinite number of states and infinitely long

9For a derivation of thermodynamic ensembles from MaxEnt cf. [23, 12]. In MaxEnt,
strong assumptions such as ergodicity and metric transitivity are unnecessary.
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messages, respectively. Because Boltzmann’s search for the most probable
state only coincides with the MaxEnt result in the limit of large numbers,
Sect. 1.5 shows that MaxEnt is the uniquely correct way of inferring
a probability distribution, regardless of the number of states.

1.5 MaxEnt is a Unique Solution to the Inference Prob-
lem

The MaxEnt principle as described above has been criticized by prominent
physicists such as Uhlenbeck [25]. The key objection raised against the prin-
ciple is that it makes predictions that are based on some “state of knowledge”
or “ignorance” about the problem at hand. Because different observers may
have different information, they are bound to arrive at different predictions
based on MaxEnt. Since any system can only be in one state, MaxEnt
was dismissed by some as a non-physical theory. The theoretical connec-
tion between information and physics is not an entirely established subject.
Century-old paradoxes such as Maxwell’s Demon are still object of some con-
troversy [34, 13, 14]. Concepts like Landauer’s Principle [31] suggest a direct
relation between information entropy and thermodynamic entropy that is,
for example, supposed to underlie all processes in a computer. Experiments
are not yet at the state of settling the issue conclusively.

Regardless of whether or not Landauer’s Principle is true, I believe that
MaxEnt should be regarded as a sensible tool in physics. On the one hand,
physical predictions are, in fact, sometimes dependent on the amount of
ignorance an observer has. In the above example of the ideal gas there
clearly is a difference between knowing all positions and momenta at one time
and knowing only macroscopic (thermodynamic) observables. Concepts like
thermodynamic entropy arise from incomplete knowledge. It must be noted,
however, that thermodynamic entropy (and all other quantities derivable
from it) are still well-defined in a MaxEnt framework. Thermodynamic
entropy is the system’s information entropy if only the well-defined
thermodynamic constants are known. Because these macroscopic values
are not subjective, the MaxEnt formalism of thermodynamic equilibrium is
not, either. On the other hand, MaxEnt provides the mathematically
defined best resulting posterior distribution based on mean-value
constraints. Information entropy can be derived from desired properties of a
measure of information [21]. Considering the fundamental role MaxEnt plays
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in the results of this thesis, it is worthwhile to review the axiomatic proof
from inference principles, reformulated for the considered discrete processes.

1.5.1 Inference Axioms

Consider an experiment with N possible outcome states x ∈ D. There exists
a space D containing all possible probability distributions q, including the
“true” distribution q∗. Now, a new piece of information I is added that can
reduce the space of compatible distributions to R ⊆ D. I is allowed to take
the form of mean value constraints∑

i

q∗i ãik = āk ⇔
∑
i

q∗i aik = 0 or (18)∑
i

q∗i c̃ik ≥ c̄k ⇔
∑
i

q∗i cik ≥ 0 (19)

The inference procedure leading to a “best” distribution (posterior) should
satisfy a set of axioms suggested in [50].

1. Uniqueness: The posterior is unique: q = (◦I), where ◦ denotes the
operator incorporating a new piece of information.

2. Permutation Invariance: The choice of any particular coordinate
system should not alter the result. If Γ is the transformation of coor-
dinates, then ◦(ΓI) = Γ(◦I).

3. System Invariance: Two pieces of information about separate sys-
tems should influence probability assignments on the systems sepa-
rately: (◦(I1 ∧ I2)) = (◦I1)(◦I2).

4. Subset Independence: If the experiment decomposes into disjoint
subsets Si of outcomes whose union is D, information M that gives
the summed probabilities in each subset must satisfy: (◦(Ii ∧ ... ∧ In ∧
M)) ∗ Si = (◦Ii). ∗ denotes the conditional probability on a subspace
Si: q(x|x ∈ Si) = q(x)/

∫
Si
dx′q(x′)

H defines the correct probability distribution via

H(q) = max
q′∈D

H(q′). (20)

The following proof shows that these axioms determine the form of the en-
tropy functional H(q) entirely.
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1.5.2 Sketch of the Proof

Using the axioms, Shore and Johnson [50] prove that the function H(q) can
essentially be expressed as10

H(q) =
∑
j

f(qj) (21)

where f is an arbitrary function. This is already a major reduction in the
infinite set of conceivable functional forms. It indicates that the weight of
each outcome enters entropy additively. For simplicity, consider a continuous
random variable, denoted q. The functional form of Eq. 21 can still be nar-
rowed down. If one imposes the constraint

∫
D
dxq∗(x)a(x) = 0, variational

calculus gives∫
f(q(x))dx + λ

(∫
q(x)dx− 1

)
+ α

(∫
q(x)a(x)dx− 0

)
= 0 (22)

⇒ λ+ αa(x) + g(q(x)) = 0, (23)

where g ≡ ∂f(b)
∂b

. Using Axiom 2, one considers a general coordinate trans-
formation Γ : x → y. In the new coordinate system (whose quantities are
primed) one finds the analogue of Eq. 23

λ′ + α′a′(y) + g(q′(y)) = 0 (24)

However, Axiom 2 requires that probabilities of events are invariant with the
change of coordinates: q′(y) = J−1q(x).11

λ′ + α′a(x) + g(J−1q(x)) = 0 (25)

⇒ g(J−1q(x)) = g(q(x)) + (α− α′)a(x) + λ− λ′ (26)

Consider the special case where it is possible decompose the space of out-
comes into a set of disjoint subspaces {Si} whose union is D, such that that
the constraints are constant on each subset, q(x) = const. ∀x ∈ Si. So far,

10Shore and Johnson point out that H is only “equivalent” to the form given in Eq.
21, in the sense that any other function H∗ can satisfy Eq. 20 if and only if H is also a
solution to Eq. 20.

11This essentially means that probabilities are conserved p = q(x)dx
!
= q(y)dy = p,

dy = Jdx. For the same reason a′(y) = a(x).
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only the resulting distribution q was considered since MaxEnt always starts
with uniform priors. A arbitrary coordinate transformation, however, makes
the prior non-uniform. Letting u denote the uniform prior, which must be
included in g(q) → g(q, u) as a second argument, one obtains in place of
Eq. 26

g(J−1q(x),J−1u(x)) = g(q(x)) + (α− α′)a(x) + λ− λ′ (27)

This case lets the right-hand side remain constant, while the left-hand side
can vary arbitrarily. The necessity to satisfy Eq. 27 enforces

g(b, c) = g(b/c), (28)

whose general solution is found from integration

f(a, b) = a · h(a/b) + v(b) (29)

with arbitrary functions h and v. The variable b accounts for the prior and
can be set to unity for the uninformed case considered in MaxEnt, leaving

H(q) =

∫
q(x)h(q(x))dx. (30)

⇒ H(q) =
∑
i

qih(qi) (31)

The final major step is to exploit Axiom 3: Two independent systems can
be described separately or by a joint distribution. The outcomes should not
differ. Imposing constraints separately, one obtains for systems i ∈ {1, 2}

λ1 + αai + u(qi) = 0 (32)

λ2 + βbi + u(rk) = 0 (33)

where u(q) ≡ h(q) + q d
dq
h(q). Describing the systems as one large ensemble

gives

λ′ + α′ai + β′bk + u(qirk) = 0. (34)

In Eq. 34, Axiom 3 provides that the last argument factors because of
independence u(qi, rk) = u(qi · rk). In the discrete case, subtracting Eq.
34 from Eq. 32 gives

u(qirk) = u(qi) + u(rk) + (α− α′)ai + (β − β′)bk + λ1 + λ2 − λ′, (35)
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where u(x) = f ′(x). The remaining proof is mathematical manipulation to
reveal the final form of H. First, observe that the difference of two values of
the function u depends only on the uncommon factors of the arguments

u(qirk)− u(qirν) = u(qi) + u(rk) + (α− α′)ai + (β − β′)bk + λ1 + λ2 − λ′

− [u(qi) + u(rν) + (α− α′)ai + (β − β′)bν + λ1 + λ2 − λ′]
= u(qu) + u(rk) + (α− α′)au + (β − β′)bk + λ1 + λ2 − λ′

− [u(qu) + u(rν) + (α− α′)au + (β − β′)bν + λ1 + λ2 − λ′]
= u(qurk)− u(qurν)

= G(rk, rν)
(36)

From Eq. 36 one can immediately read off that G must satisfy

G(x, y) = s(x)− s(y) (37)

for an arbitrary functions s. Next, one observes

G(x, z)−G(w, y) = u( w · x)− u( w · z)

− [u( x · w)− u( x · y)] = u(xy)− u(wz)

⇔ u(wz) + s(x)− s(z) = u(xy) + s(w)− s(y)

⇔ u(wz)− s(w)− s(z) = u(xy)− s(x)− s(y)

(38)

The right-hand side only depends on x, y, the left-hand side only on w, z.
Both sides must therefore equal a constant, proving that

u(xy) = g(x) + g(y). (39)

The general solution to this equation is [54]

f ′(x) = u(x) = A ln(x) +B (40)

⇒ f(x) = Ax ln(x) +Bx+ C. (41)

Evaluating the functional H from Eq. 21 at the N possible outcomes gives

H(q) = A
N∑
i

qi ln(qi)−N · A+B. (42)
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Maximizing this function requires choosing a negative sign since qi < 0. The
prefactor’s magnitude is irrelevant.

H(q) = −
N∑
i=1

qi ln(qi). (43)

This concludes the proof that maximizing H(q) is the uniquely correct way
of making inferences about a prior based on the average constraints used in
this thesis 12 13.

1.6 What it Means When MaxEnt is Wrong

In summary, the above proof shows that MaxEnt is the uniquely defined
principle that can be used to infer probability distributions from mean value
constraints. Reminiscent of Boltzmann’s solution of the gas problem, the
algorithm consists of building a model and assigning a probability distribu-
tion to all states based on information entropy. The proof demonstrates that
MaxEnt gives the “best” distribution based on both the model and the con-
straints used. MaxEnt does not, however, provide a means of predicting new
physics. By itself, MaxEnt contains no physical information. This implies
that MaxEnt cannot be falsified and for this reason does not meet the criteria
of a scientific theory [25, 9]. In any case, MaxEnt is useful in two distinct
ways:

1. If its predictions are correct, there is strong indication that the used
constraints represent the “essential physics”.

2. If its predictions are wrong, it is sure that the system’s physical behav-
ior is not exhaustively described by the used constrains and/or enu-
meration of states.

Thus, MaxEnt provides a unique means of evaluating the validity of physical
assumptions one believes to lie at the heart of some problem. This thesis
will use MaxEnt and generalizations thereof to test the statistical content of
well-known results from non-equilibrium physics.

12So far, it has been shown that any functional other that H(q) is incompatible with
the axioms. Technically, it remains to show that H(q) actually satisfies them, which is
omitted for brevity.

13The result can be generalized to continuous distributions with non-uniform priors:
H(q, p) =

∫
dxq(x) ln(q(x)/p(x)).
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2 Linear Non-Equilibrium Physics: Deriva-

tions from MaxCal

Entropy is the most fundamental quantity in thermodynamics. While con-
servation of energy only limits the processes possible in a system, entropy
defines the Second Law and gives a direction to any physical process

S(tf )− S(tt) ≥ 0. (44)

Because Eq. 44 is the only law that provides an arrow of time, entropy
is intrinsically associated with non-equilibrium. However, most thermody-
namic quantities of equilibrium physics, in particular entropy, lack a clear
thermodynamic definition outside equilibrium. As indicated in Eq. 44, one
typically compares initial and final states of an isolated process, and can
predict that the system will evolve from a state with low entropy to a state
with high entropy. This perspective is unequivocal, but it does not grant de-
scription of experiments without equilibrium states, such as non-equilibrium
steady-state systems.

A standard approach is to approximate a thermodynamic system as being
in “local equilibrium” [30]: If the system is perturbed slightly away from
equilibrium, one splits it up into parts which can be assigned equilibrium
quantities, such as temperature. While molecular dynamics simulations offer
evidence that the approach to local equilibrium is rapid [33], assuming it has
weaknesses. Because the theory is formulated entirely in terms of local equi-
librium variables, it excludes effects due to (strong) gradients. More gravely,
a straight-forward microscopic interpretation of total entropy is rendered im-
possible.

2.1 MaxCal: MaxEnt for Time-Dependent Systems

Chapter 1 introduces MaxEnt as the fundamental inference algorithm used
in this thesis. Compared to traditional thermodynamics, it offers the advan-
tage that it is mathematically rigorously defined, both in and and outside
equilibrium. So far, the method was demonstrated only on state distribu-
tions, but expanding into non-equilibrium is straight-forward. The key point
criticized about local equilibrium is that a non-equilibrium system cannot be
described in terms of local states.

Instead, MaxEnt can be formulated in terms of microtrajectories
{Γ} (MaxCal). A microtrajectory is any path in phase space which the
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system can take between ti and tf . Unlike thermodynamic theories, MaxCal
defines each path without appealing to the notion of equilibrium. After
the enumeration of all possible paths, they are given weights {pΓ} which
maximize information entropy

H = −
∑

Γ

pΓ ln pΓ (45)

based on a set of mean value constraints. Naturally, these constraints take
the form of dynamical quantities, such as mean values of microcurrents14

J =
∑

Γ

jΓpΓ. (46)

2.2 Linear Thermodynamics According to Onsager &
Prigogine

2.2.1 Onsager’s Reciprocal Relations

It is a long-standing experimental result that there is cross-influence between
different thermodynamic forces and flows. For example, consider a system
reacting to both an electric and a gravitational force. The electric field
will drive an electric current, while the gravitational field will force a flow
of matter. In experiments, it is surprising that the electric field will also
influence the flow of matter and gravitation will affect the electric current.
Similar effects have been discovered in thermocouples (Peltier and Seebeck
[30]), diffusion [12] and many more [36]. The striking feature in these very
different systems is that the coupling is always symmetrical. In the example
given above, this means that the electric field’s effect on the flow of matter
equals the gravitational influence on the electric current. This principle was
derived from the assumption of microscopic reversibility by Onsager [38,
39]. His derivation from fluctuation theory is reviewed and commented in
Appendix 5.1. Onsager’s result can be summarized mathematically as

~J = L~F (47)

where L is a symmetric matrix.

14Again, these constraints to not require thermodynamic interpretation.
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2.2.2 Entropy Production

Pushing concerns about its conceptual validity aside, Prigogine derives en-
tropy production15 based on the assumption of local equilibrium [30]. Define
the local entropy s and consider (for simplicity) a system where no kinetic
energy is dissipated due to convection and diffusion and where there is no
external field. Invoke a conservation law with source term

∂s

∂t
+∇Js = σ (48)

Using the Gibb’s relation Tds = du −
∑

k µkdnk (the term pdV does not
appear as ds is a local quantity), the term ∂s

∂t
can be re-written as

∂s

∂t
=

1

T

∂u

∂t
−
∑
k

µk
T

∂nk
∂t

(49)

Next, the following conservation laws for energy and mole number nk for
each chemical species k are inserted

∂nk
∂t

= −∇Jk +
∑
j

νjkvj,
∂u

∂t
+∇Ju = 0, (50)

where the term
∑

j νjkvj accounts for the chemical reactions (source term in
the mole number equation) with vj being the reaction velocity and νjk the
stoichiometric coefficients.

∂s

∂t
= − 1

T
∇Ju +

∑
k

µk
T
∇Jk −

∑
k,j

µk
T
νjkvj (51)

Using an expression for the reaction affinities Aj = −
∑

k µkνjk
16 and ex-

ploiting the product rule from vector calculus ∇ · (g ~J) = ~J · (∇g) + g(∇ · ~J),
Eq. 51 is transformed into

∂s

∂t
+∇ ·

(
Ju
T
−
∑
k

µkJk
T

)
= Ju · ∇

1

T
−
∑
k

Jk · ∇
µk
T

+
∑
j

vj ·
Aj
T

(52)

15Entropy production σ is defined as a creation of entropy. Even though systems under
consideration need not be isolated, entropy production is always positive. Export to other
systems is considered separately.

16This is the definition of Aj .
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Comparing Eqs. 52 and 48 leads to the identification of thermodynamic
expressions for Js and σ

σ = Ju · ∇
1

T
−
∑
k

Jk · ∇
µk
T

+
∑
j

vj ·
Aj
T
≥ 0. (53)

Prigogine splits entropy into an ‘exchange component’ and an ‘irreversible
component’ ds = des + dis. As defined in the continuity equation Eq. 48,
σ is the entropy production (i.e. it represents the irreversible part), and by
the second law σ ≥ 0. Forces and fluxes can be read off Eq. 53 directly and
give pairs of the form

ṡ ≡ dis

dt
≡ σ =

∑
α

JαXα (54)

Conservative force fields (e.g. a static electric field or a gravitational field)
with potential ψ can now be easily incorporated: Eq. 49 is extended into

∂s

∂t
=

1

T

∂u

∂t
−
∑
k

µk + τkψ

T

∂nk
∂t

(55)

By the very same reasoning, one finds the extension to Eq. 52

∂s

∂t
+∇ ·

(
Ju
T
−
∑
k

(µk + τkψ)Jk
T

)

= Ju · ∇
1

T
−
∑
k

Jk · ∇
µk
T

+
I · (−∇ψ)

T
+
∑
j

vj ·
Aj
T

(56)

One may find this derivation straight-forward and based on very safe grounds
(conservation laws and local equilibrium). It must be noted, however, that
there is some arbitrariness in Eq. 52. For example, the second term on the
right-hand side could be split into two parts∑

k

Jk · ∇
µk
T

=
∑
k

Jk ·
∇µk
T

+
∑
k

Jk · µk∇
1

T
. (57)

This would lead to the identification of different flows and currents from a
changed expression of σ

⇒ σ = J ′u · ∇
1

T
−
∑
k

Jk ·
∇µk
T

+
∑
j

vj ·
Aj
T
≥ 0, with (58)

J ′u = Ju −
∑
k

Jk · µk. (59)
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This observation indicates that even in Prigogine’s theory, a fixed
set of ‘thermodynamic forces’ is non-existent. In the linear regime,
there are allowed transformations changing the basis vectors of the
force vector space.

Figure 4: Left: Exchange of entropy between the outside and the inside [44],
Right: Flows and forces which are thermodynamically coupled [30]

In summary, Prigogine finds certain couples of flows and forces. Also,
Prigogine can define a quantity ṡ = σ =

∑
i FiJi (Eq. 54) which is strictly

positive. Combined with the linear response theory assumed by Onsager (Eq.
47), this gives

P =

∫
ṡdV, (60)

ṡ =
∑
ij

FiLijFj ≥ 0. (61)

This implies that L needs to be positive definite. Mathematically, the On-
sager and Prigogine theory boils down to a linear response ansatz with a
symmetric and positive definite coefficient matrix.

2.2.3 Prigogine’s Principle

So far, the theory provides notation but has no predictive power beyond
the assumption of linear response. In many situations, a selection principle
would be very desirable. Consider, as a simple example of a non-equilibrium
steady state, the system coupling electric and gravitational fields from above.
Assume that the gravitational force is fixed but the experiment exerts no
control over the electric field. This is not to say that the applied voltage
has a fixed but unknown value. Rather, the system can autonomously evolve
towards a voltage through internal processes. Which value will the electrical
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field assume? In the tradition of physical extremal principles17, Prigogine
postulates as a selection principle:

Theorem 2 (Prigogine’s Principle, I )

In a steady-state system satisfying Eq. 47, ṡ will assume its minimal
possible value under the imposed constraints.

As explained above, ṡ is a conceptually evasive quantity without strictly
defined meaning. Prigogine’s principle can, however, be reformulated into a
completely unambiguous form.

Theorem 3 (Prigogine’s Principle, II )

In a steady-state system satisfying Eq. 47, all currents whose correspond-
ing forces are unconstrained will vanish.

Proof 1 (N = 2)

P =
diS

dt
=

∫
(F1J1 + F2J2)dV → Minimum (62)

Use linear response laws

J1 = L11F1 + L12F2, J2 = L21F1 + L22F2 (63)

Insert into Eq. 62, use L12 = L21 (Onsager) and minimize

P =

∫
(L11F

2
1 + 2L12F1F2 + L22F

2
2 )dV (64)

∂P

∂F2

=

∫
2(L12F1 + L22F2)

!
= 0 (65)

⇔ J2 = L21F1 + L22F2 = 0 (66)

This cannot be a maximum since Eq. 62 is unbounded above as a func-
tion of J2.

17Extremal principles, such as the Hamilton-Lagrange Principles, have enjoyed enormous
success in all fields of physics.
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Proof 2 (general N)

Let l be an unconstrained force

P =
diS

dt
=

∫
~F t ~JdV =

∑
ij

∫
FiLijFjdV (67)

⇒ ∂P

∂Fl
=
∑
lj

∫
2LljFjdV

!
= 0 (68)

⇒ Jl =

∫ ∑
j

LljFj = 0 (69)

This is a minimum since L is positive definite. In the following, the second
version of Prigogine’s theorem will be used.

2.3 Statistical Linear Thermodynamics

2.3.1 Linear Response and the Onsager Relations

Case N = 2: Starting from MaxCal, we want to obtain a linear response
theory and observe how it relates to Onsager’s reciprocal relations. Consider
a system with N = 2 average currents, which are implemented in the
maximization of entropy as constraints. The partition function then reads
(cf. Appendix 5.2)18

Z(λ1, λ2) =
∑

Γ

exp(λ1j1,Γ + λ2j2,Γ). (70)

The macroscopic currents are averages over all paths and therefore they are
functions only of λ1, λ2. In general, a constraint’s effect on the partition
function as well as on any physical quantities derived from it shrinks as
|λ| → 0. In the limit λi = 0, the constraint loses its effect altogether, i.e.
the PDF is independent of ji. Thus, it makes sense to expand the currents
J1, J2 about (λ1 = 0, λ2 = 0) for weak constraints. At (λ1 = 0, λ2 = 0), the
system has no constraints. In other words, we expect the system to have no
average currents J(0, 0) = 0. One can justify this because (λ1 = 0, λ2 = 0)
is the equilibrium point, where zero currents are guaranteed by detailed

18Note the mathematical correspondence to Z =
∑

i exp(−βEi), the MaxEnt solution
to Boltzmann’s equilibrium gas problem.
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balance. Another nice effect is that the theory is an expansion around
equilibrium, where all thermodynamic quantities are well-defined. Note
that as Eq. 70 is an analytic function by definition, all expansions are well-
defined and convergent.

J1(λ1, λ2) = J1(λ1, λ2)|(0,0)︸ ︷︷ ︸
=0

+
∂J1(λ1, λ2)

∂λ1

∣∣∣∣
(0,0)

λ1 +
∂J1(λ1, λ2)

∂λ2

∣∣∣∣
(0,0)

λ2 +O(λ2)

J2(λ1, λ2) = J2(λ1, λ2)|(0,0)︸ ︷︷ ︸
=0

+
∂J2(λ1, λ2)

∂λ1

∣∣∣∣
(0,0)

λ1 +
∂J2(λ1, λ2)

∂λ2

∣∣∣∣
(0,0)

λ2 +O(λ2)

(71)
This already gives a form that is reminiscent of linear response. To see that
the Onsager relations are satisfied, one needs to use an alternative expression
of the currents (from Eqs. 46 and 70)

∂ lnZ

∂λ
=
∑

Γ

jΓ
exp(λjΓ)

Z
=
∑

Γ

jΓpΓ = J. (72)

In the special case, this gives

J1 =
∂ ln(Z)

∂λ1

J2 =
∂ ln(Z)

∂λ2

. (73)

Now, the expansion simplifies formally into

J1(λ1, λ2) =
∂2 ln(Z(λ1, λ2))

∂λ1∂λ1

∣∣∣∣
(0,0)

λ1 +
∂2 ln(Z(λ1, λ2))

∂λ1∂λ2

∣∣∣∣
(0,0)

λ2 +O(λ2)

J2(λ1, λ2) =
∂2 ln(Z(λ1, λ2))

∂λ1∂λ2

∣∣∣∣
(0,0)

λ1 +
∂2 ln(Z(λ1, λ2))

∂λ2∂λ2

∣∣∣∣
(0,0)

λ2 +O(λ2),

(74)
which is nothing but the Hessian matrix H evaluated at the origin

~J(λ1, λ2) = H(lnZ(λ1, λ2))|(0,0) · ~λ+O(λ2). (75)
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Proof 3 (Case N arbitrary)

The above reasoning can immediately be generalized to an arbitrary num-
ber of constraints/currents

~J(~λ) = H(lnZ(~λ))
∣∣∣
~λ=0
· ~λ+O(λ2). (76)

This directly implies the Onsager relations in their full generality.

2.3.2 Higher-order Expansions

The currents being analytic functions of ~λ, they can be expressed exactly as
a Taylor series

Ji(~λ) =
∞∑

n1=0

∞∑
n2=0

· · ·
∞∑

nd=0

λn1
1 · · ·λndnd
n1! · · ·nd!

(
∂n1+···+ndJi(~λ)

∂λn1
1 · · · ∂λ

nd
d

)∣∣∣∣∣
~λ=0

=
∞∑

n1=0

∞∑
n2=0

· · ·
∞∑

nd=0

λn1
1 · · ·λndnd
n1! · · ·nd!

(
∂n1+···+(ni+1)+···+nd lnZ(~λ)

∂λn1
1 · · · ∂λ

ni+1
i · · · ∂λndd

)∣∣∣∣∣
~λ=0︸ ︷︷ ︸

≡Li
n1n2···nd

.

(77)
The d-dimensional tensors Li (there are d such tensors, one for each force λi)
have certain symmetries because of the interchangeability of second deriva-
tives (Schwarz’ theorem)

Li
n1···ni···(nj+1)···nd = Lj

n1···(ni+1)···nj ···nd . (78)

2.3.3 What’s Special About This?

Eq. 76 is a concise mathematical description of the expected currents as a
function of small ~λ according to MaxCal. It contains the Onsager relations
because the Hessian matrix H is symmetric. For the same reason, H is
diagonizable and invertible19, two very convenient properties.
Here are the essential conditions that led to this result

1. Z is an analytic function ⇒ ~J(~λ) has a convergent Taylor series.

19if none of its eigenvalues is zero
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2. Detailed balance at equilibrium⇒ the zeroth-order term in the expan-
sion vanishes, linear response.

3. The partition function acts as a “potential” to the current ~J(~λ) =

∇ lnZ(~λ)⇒ Onsager relations.

Which of these points is specific to MaxCal? To answer this question, con-
sider an arbitrary theory that predicts currents as functions of some set of
parameters ~κ. Points 1 and 2 can safely be postulated for any physical the-
ory close to equilibrium. This alone gives a linear response theory. In my
opinion, it makes sense to define the parameters ~λ as forces (cf. Sect.
2.3.4).

If Points 1 and 2 are given, the potential from Point 3 can be constructed
for an arbitrary theory in the linear approximation

V (~(κ)) = ~Jc · ~κ, (79)

where ~Jc is a vector of arbitrary coefficients. Eq. 73 holds exactly, though,
and this is specific to MaxCal (cf. Helmholtz theorem and [53]). Thus, the
Onsager relations are not a universal result but originate specifi-
cally from the MaxCal theory.

Furthermore, the Hessian matrix Hij ≡ H(lnZ(~λ))
∣∣∣
~λ=0

is positive def-

inite!

Proof 4

Hij is the correlation matrix (evaluation at ~λ = 0 implied, though the
statement is general)

Hij =
∂2 lnZ

∂λi∂λj
=

∂

∂λi

(
1

Z

∂Z

∂λj

)
=

(
1

Z

∂2Z

∂λi∂λj
− 1

Z2

∂Z

∂λi

∂Z

∂λj

)
= 〈jijj〉 − 〈ji〉 〈jj〉
= Cov(ji, jj)

(80)

Correlation matrices are positive (semi-) definite∑
i

∑
j

λiHijλj =
∑
i

∑
j

λiλj Cov(ji, jj)

=
∑
i

∑
j

Cov(λiji, λjjj) = Var(
∑
i

λiji) ≥ 0.
(81)
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Here, the response matrix’s positive definiteness is a mathematical necessity,
not a consequence of the (phenomenological) Second Law.

2.3.4 MaxCal Implies Prigogine’s Principle

It seems that we are now in the same position as Prigogine before postulating
what is today known as Prigogine’s Principle20. In fact, we could proceed

completely analogously by defining ˙̄S

˙̄S ≡ ~λT ~J = ~λTH~λ+O(λ3) (82)

⇒ ˙̄S ≥ 0, |~λ| � 1 (83)

because H is positive semi-definite. Like Prigogine, we might go on to assert
a minimum principle

δ{λi}
˙̄S = 0 ∀i unconstrained (84)

This gives rise to the prediction that currents corresponding to unconstrained
forces vanish (Box II in Sect. 2.2.3). Amazingly, MaxCal provides an
intrinsic selection principle that renders an additional postulate
obsolete (Proof 5)!

20In the literature, Prigogine’s Principle is also referred to as the “Minimum Entropy
Production Principle”.
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Proof 5

Assume that there are N forces/flows in the linear system, out of which
w.l.o.g the first (k − 1) are fixed. Eq. 76 makes no prediction about the
values of the unconstrained variable. As the guiding principle, use
the maximization of the caliber. This amounts to maximizing the
information entropy SI with respect to the the unconstrained forces.

H({λk, ..., λN}) = −
∑

Γ

pΓ ln(pΓ)

= −
∑

Γ

eλ1j1,Γ+...+λN jN,Γ

Z
· ln
(
eλ1j1,Γ+...+λN jN,Γ

Z

)
=

1

Z
· ln(Z)

∑
Γ

e
~λ· ~jΓ

︸ ︷︷ ︸
=Z

− 1

Z

∑
Γ

e
~λ· ~jΓ · (~λ · ~jΓ)

= lnZ − ~λ · ~J
= lnZ({λk, ..., λN})− ~λ · ~J(~λ)

(85)

As explained above, entropy inference methods demand that

∂H

∂λl
= 0 ∀l ∈ {k, (k + 1), ..., N} (86)

Using the linear expansion in Eqs. 76

⇔ Jl −
∑
i

Hilλi︸ ︷︷ ︸
Jl

−
∑
i

Hliλi︸ ︷︷ ︸
Jl

= 0

⇔ Jl = 0

(87)

This completes the proof since

Jl = 0⇔ ∂ ˙̄S

∂λl
= 0 (88)

Note: The solutions to Eq. 86 are general. They only give Pri-
gogine’s principle in linear approximation.
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2.3.5 Interpretation of λ

In all of statistical mechanics there is some difficulty in assigning thermody-
namic meaning to statistical quantities. Here, I will argue that this issue is
resolved for equilibrium systems by one key property of (almost all) forms of
matter and suggest by example that a similar interpretation might be viable
for non-equilibrium steady-state systems.

In equilibrium statistical mechanics, the Lagrange multiplier correspond-
ing to the energy is β. In entropy maximization procedures, the Lagrange
multiplier is always given as

β =
1

kB

∂S∗

∂ 〈E〉
, (89)

where S∗ is the maximum entropy under the energy constraints. Temperature
is then defined via β = 1

kBT
. This way, temperature is expressed as T = ∂E

∂S
,

but this is not a useful relation since absolute entropy cannot be measured
directly. It is an explicit formula (Sackur-Tetrode) which relates T with an
experimentally accessible quantity, namely the energy E:

S(E) = kBN

(
3

2
ln(E/N) + ln(V/N) + ln(c)

)
(90)

⇒ T ≡ ∂E

∂S
=

2

3

E

kBN
. (91)

I think it is important to realize that this relation is specific to the ideal
gas. Most other materials behave similarly, i.e. they also obey S(E) ∝ ln(E),
but exotic systems such as finite spins in a magnetic field do not satisfy this
relation [3]. In these systems, temperature is not proportional to the average
energy. In some cases temperature can even be negative!
In non-equilibrium statistical mechanics, the Lagrange multipliers have the
same function and mathematical definition. While in equilibrium the stan-
dard relation is T ∝ 1

E
, in non-equilibrium it is λ ∝ J . Since this is the

case, the expansion around λ = 0 makes sense. For illustration, consider
the simple dog-flea model with N fleas on each dog. Within one time unit
∆τ each flea can either jump or stay on the dog. The net number of fleas
jumping in one direction constitutes the current J . Initially devised by the
Ehrenfests [29], this model is described in detail in [43, 18]. In this case one
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finds analytically

Z = (1 + eλ)N · (1 + e−λ) (92)

J =
∂ lnZ

∂λ
= N

[
eλ

1 + eλ
− e−λ

1 + e−λ

]
= N tanh(λ/2) ≈ Nλ/2, |λ| < 1

(93)

λ = 2 arctanh(J/N) ≈ 2J/N. (94)

Thus, the experimental meaning is established: As β is determined by mea-
suring energy, ~λ is determined from measured currents.

2.4 MaxCal Predictions of a General System

In the following, I will demonstrate the analytical results for a simple and
still quite general system. Working with the Lagrange multipliers as inde-
pendent parameters, the striking relations to Onsager’s reciprocal relations
and Prigogine’s principle will be shown.

2.4.1 A Generic Model

The proofs reveal that MaxCal predictions share two fundamental properties
of linear non-equilibrium steady-state systems: They satisfy the Onsager
relations and Prigogine’s principle. In the following, I will refer to these
principles in terms of the system’s Lagrange multipliers, knowing that they
are really defined thermodynamically. The proofs from above are formulated

Figure 5: A very general model allowing MaxCal predictions

for any number of species M . For illustration I will use M = 2 as depicted
in Fig. 5. Assume the system is initially in equilibrium

Ji(λp = 0, λh = 0) = 0, (95)
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but two forces drive it into a non-equilibrium steady state. This system can
be interpreted in various ways; I will choose for concreteness (and in the
tradition of the hot-dog model [18]):

Jparticles = Net particle flow to the right = Jred + Jblue (96)

Jheat = Net heat flow to the right = Jred + a · Jblue, (97)

where the parameter a (set a = 0.3) determines to which extent the blue
particles contribute to heat transport. The same model can describe different
physics if the coupling is done differently.

2.4.2 Onsager’s Reciprocal Relations

For the described model, all quantities can be given analytically. The parti-
tion function reads

Z =(1 + eλp+a·λh)Nb · (1 + eλp+λh)Nr

·(1 + e−λp−a·λh)Nb · (1 + e−λp−λh)Nr .
(98)

The average currents can be found by taking derivatives

Jh = Nba tanh

(
λp + aλh

2

)
+Nr tanh

(
λp + λh

2

)
(99)

Jp = Nb tanh

(
λp + aλh

2

)
+Nr tanh

(
λp + λh

2

)
. (100)

To lowest order the currents can be expanded into(
Jh
Jp

)
≈

(
∂2 lnZ
∂λh∂λh

∂2 lnZ
∂λh∂λp

∂2 lnZ
∂λh∂λp

∂2 lnZ
∂λp∂λp

)
λh=λp=0

(
λh
λp

)

=
1

2

(
Nba

2 +Nr Nba+Nr

Nba+Nr Nb +Nr

)(
λh
λp

)
.

(101)

Note that this matrix is symmetric and positive definite. This corre-
sponds to the Onsager relations. Higher derivative can be easily calcu-
lated and will satisfy the generalized symmetry relations from Eq. 78. For
example, we find in the next non-vanishing order (using the notation from
Eq. 78):

L1
21 = L2

30 =
∂4 lnZ

∂λ3
h∂λp

∣∣∣∣
λh=λp=0

= −1

4

(
a3Nb +Nr

)
(102)
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2.4.3 Deviations from the Linear Regime

Fig. 6 shows a comparison between the currents as calculated exactly ac-
cording to Eqs. 99-100 with the linear approximation from Eq. 101. At first
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Figure 6: Comparison of the exact currents (solid lines) with the linear ap-
proximation (dashed lines), Top: Nblue = 50, Nred = 25, Bottom: Nblue =
100, Nred = 50. Left: heat current, Right: particle current.

glance, the linear approximation in the top row seems reasonably accurate for
λ < 1, for λ > 1 it quickly diverges from the true solution. These calculations
were performed setting Nblue = 50, Nred = 25. As can be anticipated from
a similar setup in Sect. 2.3.5, increasing the number of particles shifts the
linear approximation’s range of validity. For Nblue = 100, Nred = 50 (bottom
row) the linear approximation is feasible for a much greater range of the λ’s.
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2.4.4 Prigogine’s Principle

A general question to ask is: Given some set of Lagrange parameters
is fixed (say λp), what will the other Lagrange parameters (in this
case λh) adjust to? In MaxCal, this is determined by maximizing the
information entropy with respect to the “free” Lagrange multipliers. As was
shown in Eq. 86, this amounts to

H = lnZ −
∑
i

λiJi

⇒ ∂H

∂λl
= Jl −

∑
i

∂

∂λl
(λiJi) = −

∑
i

λi
∂Ji
∂λl

!
= 0.

(103)

I find it very interesting to observe that Eq. 103 in the linear approximation
gives Jl = 0. This is Prigogine’s principle! The true solution, however,
is only zero for small λ. This is depicted in Fig. 7, while Fig. 8 shows
the predicted values of the uncontrolled Lagrange multiplier. The larger λp
gets, the further will Jh deviate from zero. Thus, MaxCal gives Prigogine’s
principle as a first approximation and provides corrections outside the linear
regime. It is interesting to observe that the solutions to Eq. 103 only depend
on the ratio in the particle numbers (Fig. 8), while the predicted current Jh
deviates further from Prigogine’s linear behavior as there are more particles
(Fig. 7). This can be easily seen by writing out the explicit expression for
Eq. 103.
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Figure 7: Current comparison between linear approximation (Prigogine’s
principle) and the MaxCal prediction, Left: Nblue = 50, Nred = 25, Right:
Nblue = 100, Nred = 50
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Figure 8: Prediction for λh in linear approximation (Prigogine) and according
to MaxCal, Left: Nblue = 50, Nred = 25, Right: Nblue = 100, Nred = 50
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2.4.5 Bifurcations

Eq. 103 is the necessary condition for a local extreme point. From the
partition function the limiting behavior of H is clear for (very) small and
very large numbers of λh at fixed λp: H is diminished. Physically, this is due
to the fact that a great value of |λh| asks for great currents, which reduces
the number of possible microtrajectories available to the system. Since H
is a continuous function, we can conclude that there is an odd number
of maximum points and an even number of minimal points. For
relatively small λh, there is a sharply peaked maximum (the one that is also
represented in Fig. 8), as can be seen in Fig. 10. As λp gets bigger this

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

λp

30

20

10

0

10

20

30

40

Jp

Jh

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

λp

30

20

10

0

10

20

30

40

P
re

d
ic

te
d
 J
bl
u
e 

a
n
d
 J
re
d

Jblue

Jred

Figure 9: At some point the currents jump: indication of a phase transition.
Left: Representation of macroscopic currents, right: currents of the two par-
ticle species (The wobbling line is due to the maximum finding algorithm),
Nblue = 50, Nred = 25

changes drastically: A second maximum develops, which eventually becomes
the global maximum. Assuming that the system can freely adjust the sec-
ond Lagrange multipliers, it would jump to the value where the new global
maximum emerges, leading to what in dynamic systems theory is called a
first-order phase transition! One can get an idea about this observa-
tion by looking at the two particle species, rather than the coupled flows:
In this new “phase” all hot (red) particles flow from the right to the left,
while there is hardly any (net) current of cold (blue) particles. I suspect this
phenomenon is due to the rapid decline in the number of permutations as
the blue (cold) current increases. With blue outnumbering red particles by
a factor of 2, this overcompensates for the reduction in red pathways.
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Instabilities and semi-stable steady states are essential to the physics
beyond the linear regime. Prigogine developed a theoretical framework based
on bifurcations to explain failures the quantitative changes observed when
a system leaves the linear regime [30, 44]. Evidently, the given toy model
is a tremendous simplification of any natural system. However, we have
demonstrated that MaxCal provides a theoretical description that allows to
bridge the linear world of Prigogine’s theorem with his ad-hoc theory of
bifurcations. Applying MaxCal to more realistic systems will reveal if the
formalism is able to reproduce realistic phase transitions.
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Figure 10: Transitions in the predicted current, Nblue = 50, Nred = 25
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3 Far from Equilibrium: A Survey of Maxi-

mum Entropy Production

In the previous chapter, theorems from near-equilibrium thermodynamics are
analyzed from a unique inference perspective. Two of the central results are
demonstrated to appear as special cases from a MaxCal expansion in small
parameters {λi}, which measure distance from equilibrium. For the case of
a simple model system, Sect. 2.4.5 reveals the emergence of several peaks in
the entropy curve, each corresponding to a different macroscopic state of the
system. This already hints at the fact that non-equilibrium thermodynamics
becomes both much more complex and far less understood as one leaves the
direct vicinity of equilibrium.

One central and still unresolved conundrum from non-equilibrium thermo-
dynamics is nature’s tendency to form low entropy structures. Some small-
scale thermodynamic systems (e.g. the Rayleigh-Bénard convection cell),
global climate and all forms of life assume highly-ordered structures which
are associated with low entropy21. The Second Law predicts that a closed
thermodynamic system will increase its entropy when transitioning from one
equilibrium state to another. How and how fast this process occurs remains
unanswered. Still, the ubiquitous appearance of (open) ordered structures in
the real world has challenged researchers to come up with theories explaining
why the observed structures seem to be favored in nature.

Prigogine termed this observation dissipative structures because the
production of thermodynamic entropy in these systems increases rapidly,
while their internal entropy content drops. Trying to expand his theory of
minimum entropy production, Prigogine develops a phenomenological theory
based on bifurcations to explain the observed qualitative phase transitions
[44]. He also presented the beginnings of a non-unitary microscopic theory in-
corporating a microscopic meaning of entropy. Contrasting Prigogine’s
attempts to find a microscopic explanation for systems far from equilibrium,
a macroscopic analogue of Prigogine’s principle was brought forward: the
Principle of Maximum Entropy Production (Max-EP).

21Schrödinger even claims that the essence of life is exploiting free energy by exporting
entropy to the environment [47].
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3.1 Statement of Max-EP

Max-EP has been proposed by several researchers, both independently and in
various scientific fields, including formulations by Ziegler, Swenson, Dewar
and Kleidon. The latter two are the most general and appear to form a
kind of mainstream within the school of Max-EP. What is more, Dewar is
accepted as having come closest to a derivation of his Max-EP principle from
information theory. Alex Kleidon summarizes this principle as:

Theorem 4 (Maximum Entropy Production [28])

“The Max-EP principle states that non-equilibrium thermodynamic sys-
tems are organized in a steady state such that the rate of entropy pro-
duction is maximized.”

Thus, Max-EP is an extremal principle22. A simple argument shows, however,
that finding a universal extremum principle for non-equilibrium
thermodynamics is problematic. At first glance, there is an overt con-
traction between Max-EP and Prigogine’s Principle discussed in the last
chapter. Why should the same entropy production be minimized and maxi-
mized? The answer appears to be that Max-EP is only applicable in systems
that have many steady states compatible with the boundary conditions, a
situation usually associated with great “distance” from equilibrium. Because
some articles on Max-EP do not emphasize the limited range of the princi-
ple, consider a steady-state electrical circuit [26] as an illustrative example:
Because of charge conservation, no charge can accumulate

∇ · (σ∇Φ︸ ︷︷ ︸
− ~J

) = 0. (104)

Eq. 104, however, is equivalent to the minimum point of the functional L as
can been seen by using Euler-Lagrange equations:

L =

∫
V

σ (∇Φ)2 dV

⇒ δL
δΦ(x)

= 0⇔ ∇ ∂L
∂(∇Φ)

− ∂L
∂Φ

= 0

⇔ ∇ · (σ∇Φ) = 0.

(105)

22Physical theories based on the assumption that some quantity assumes an extreme
value have been most successful in all fields of physics. Classical mechanics, quantum
mechanics, quantum field theory and equilibrium statistical mechanics are all described
by finding the extreme points of some quantity.
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Physically, one finds L =
∫
V
~j ~EdV =

∫
V
q̇dV = Q̇, the heat production. This

means that Kirchhoff’s law is equivalent to a law of minimum heat dissipa-
tion. In isothermal systems, the minimum in heat production corresponds to
a minimum in entropy production

Q̇ = T
dS

dt
= 0⇔ dS

dt
=

1

T
Q̇ = 0. (106)

Thus, one can conclude that Max-EP cannot be valid near equilibrium,
which is the domain of validity of Prigogine’s Principle23. This example shows
that Max-EP can at best be applied to systems with a sufficiently large
number of degrees of freedom. In other words, Max-EP is only applicable
to systems that are under-constrained with respect to basic physical laws,
such as energy, charge and (in classical systems) mass conservation. The
notion of “sufficient complexity” has been the object of some controversy
[10, 40]. This is probably the reason why Max-EP is primarily used in climate
and vegetation models, which have a myriad of steady states compatible with
basic physical conservation laws.

3.2 Applications

3.2.1 The Simplest Example

In [27] Kleidon uses an example to illuminate the transition from applicability
to non-applicability of Max-EP. He uses the notation convention

dS

dt
= σ −NEE, (107)

where the net entropy exchange (NEE) is positive if entropy is exported
to the environment. By definition, the stationary state is then given as
σ = NEE. In Fig. 11, Kleidon compares two setups: In the first, heat is
transferred gradually through a closed system, permitting only heat conduc-
tion. In the second, heat can additionally be lost from the first bath. A

23Jaynes [25] points out the following subtlety: If the circuit is not at one temperature,
minimum entropy production is no longer equivalent to minimum heat production (cf.
Eq. 106). Maes and Netočný [32] explain that the additional thermal gradient does not
couple to the electric current, but still enters the entropy production formula. According
to their article, this effect is non-linear and therefore beyond the scope of Prigogine’s
Principle.
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Figure 11: Left: heat can only enter the system in compartment a and leave
it in compartment b, Right: heat can be dissipated in many ways (convection,
friction, radiation, etc.) [27].

state of maximum entropy production exists only in the second case, where
the dynamics are not fully dictated by heat conduction. Kleidon argues that
the introduction of the extra flows Fout,a and Fout,b is equivalent to having a
variable conductivity between the boxes. The system’s additional complexity
is thus absorbed into the effective conductivity, turning the constant κ into
a variable. The maximum of the entropy production rate σab coincides with

Figure 12: A maximum in entropy production appears. [27]

a state of minimum entropy relative to all other steady states. This might
not be the result of a fundamental general principle, even though Kleidon
ventures speculations along these lines.

Next, consider Kleidon’s derivation in more detail: Eq. 107 says that a
system’s “entropy budget” is influenced by its internal entropy production as
well as its exchange of entropy with the environment. The key aspect about
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his example is the existence of an uncontrolled parameter (the conductivity,
Fig. 11). Physically, this could account for convection between the boxes A
and B. The energy flow and corresponding temperature change are modeled
by (notation from Fig. 11 (right)):

c · dTa
dt

= Fin − Fab − Fout,a

c · dTb
dt

= Fab − Fout,b,
(108)

where Fout,a/b are fixed functions of the respective temperatures. Kleidon
assumes a linear dependency with constants taken from atmospheric mea-
surements

Fout = a+ bT, a = 12

[
W

m2

]
, b = 2.17

[
W

m2K

]
(109)

The system’s exchange of entropy with the environment (NEE) is then given
by

NEE =
Fout,a
Ta

+
Fout,b
Tb
− Fin
Tin

, (110)

where Tin is the assumed temperature of a heat bath from which the heat
flow Fin originates. Internally, there are two sources of entropy production:
a) heat exchange between A and B

σab = Fab ·
(

1

Tb
− 1

Ta

)
(111)

and b) the entropy of mixing the incoming heat flow with bath A

σa = Fin ·
(

1

Ta
− 1

Tin

)
(112)

Finally, it is the plain assertion of Max-EP that lets the system
choose the (existing) state of maximum entropy production. In other
words, Kleidon provides neither physical nor mathematical backing for the
theory. His example simply illustrates the key feature necessary, such that
a Max-EP state exists and the principle may be applied. However, Kleidon
does not address why σab is the entropy entropy production to which the Max-
EP principle is to be applied. Another (possibly more plausible) choice would
be σab + σa = NEE, the system’s total entropy production. This ambiguity
of the system’s boundary conditions is a well-known issue [52, 28, 40].
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3.2.2 Climate Prediction

Given the many problems and misconceptions connected to Max-EP, why is
any effort devoted to its application and theoretical development? It appears
to be tantalizing predictive success that has won Max-EP its many support-
ers. The principle was initiated by climatologist Garth Paltridge who sought
a thermodynamic principle showing the general features of earth’s climate
[41]. The example given above is a strongly simplified version of the model
he developed and the maximization principle he applied. I will present a more
detailed overview of this theory as given by Paltridge and Ozawa [41, 40],
which seems to be Max-EP’s first and most striking triumph.

In essence, earth’s global climate is characterized by turbulent flows which
are associated with some production of entropy. The exact derivation of
entropy production in turbulent flows is given in Landau and Lifshitz

Ṡturb =

∫
V

1

T

[
∂(ρcT )

∂t
+∇(ρcT~v) + p∇~v

]
dV +

∫
A

F

A
dA, (113)

where the first term describes the rate of internal entropy change, while the
second accounts for entropy transfer across the system’s boundaries. In a
steady state, only the boundary term is non-zero, giving Max-EP the specific
form

Ṡ =

∫
A

F

T
dA = maximum. (114)

Paltridge divides the earth up into ten boxes, each of which is character-
ized by three variables: surface temperature T , partial cloud cover θ and
meridional (i.e. north-south) heat flow Fm. T and θ determine the average
vertical transport of heat by radiation into space via empirical functions. Of
course, this system of 30 unknowns is highly under-determined. Paltridge
finds remarkably good agreement with experimental data (cf. Fig. 13) by
maximizing ∑

i∈{boxes}

F atm
long,i − F atm

short,i

T atmi

, (115)

where Fi are the emission (absorption) rate of long (short) wavelength radi-
ation at the top of the atmosphere and T atmi denote the average atmospheric
temperature of box i.
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Figure 13: Three important quantities from earth’s climate, comparison Max-
EP prediction (solid lines), observed values (dashed lines) [41]

Technically, there should be an atmospheric as well as a ground/oceanic con-
tribution to entropy production. The atmosphere receives energy flows both
from outer space as well as from the ground/ocean system, such that the
entire entropy production reads

Ṡ = Ṡatm + Ṡgo

=

∫
A

F atm
long − F atm

short − F
go
long + F go

short

T atm
dA+

∫
A

F go
long − F

go
short

T go
dA

=

∫
A

F atm
long − F atm

short

T atm
dA+

∫
A

[
F go
short − F

go
long

]( 1

T atm
− 1

T go

)
dA.

(116)

Eq. 115 contains only the first term from this last equation. It represents
the entropy production due to horizontal heat transfer24. The second term
represents vertical heat transport and is non-zero if T atm 6= T go. Noda and
Tokioka [37], however, derive quite similar results just from Ṡ = max. In
other words, the second term is negligible compared to the first.

A central objection to Paltridge’s approach raised by Essex [16] is that
the predominant part of total entropy production in the earth’s system is
due to the down-conversion of solar radiation in the atmosphere as well as

24The term describes the atmosphere’s change in entropy due to emission and absorption.
It only accounts for horizontal heat transfer indirectly, because horizontal fluxes maintain
temperature differences on earth.
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on the ground. The thermodynamic relationship dQ = TdS used above is
not valid for the entropy contained in a radiation field. Even if the same
amount of heat is absorbed and emitted by the earth, the particular spectral
composition determines an additional entropy contribution, which is too large
to be neglected in Paltridge’s climate model. This gives rise to a general
question. Which of the following forms of entropy should be considered:
entropy produced in turbulent flows, entropy changes of the radiation fields
or both? Quite similar to Kleidon’s simple example above, there is some
vagueness in the system’s boundaries. Paltridge only considers the earth,
but offers no argument why the sun should be excluded25 (cf. Sect. 3.2.1 for
references).

3.3 Dewar’s Derivations

Many attempts have been made to show the validity of Max-EP from a gen-
eral principle. The approach I most often encountered is to derive Max-EP
from Jaynes’ MaxEnt and MaxCal. Interpreting Jaynes, Virgo [52] simply
claims that entropy should be maximized and that this practically is equiv-
alent to maximizing entropy production. To this end, he equates thermo-
dynamic and information entropy, without offering any proof for this step.
As Virgo is primarily concerned with climate prediction, a lot of attention is
devoted to the system boundary question, i.e. which (sub-)system the prin-
ciple must to be applied to. Whereas correct predictions are obtained if the
sun is excluded, it is hard to argue that the climate system is in any sense
closed. I do not find Virgo’s argument convincing that the source of heat is
arbitrary and can therefore be excluded.

The most promising attempts to derive Max-EP from MaxEnt have -
according to [52] and [35] - been published by Dewar [9, 10, 6, 8, 7]. I will
outline his two fundamental approaches, providing comments and references
to criticizing articles along the way.

3.3.1 Heuristic Derivations

In two early papers [7, 10], Dewar attempts to portray non-equilibrium
physics as a search for the most probable state. Dewar argues heuristi-
cally that this state is given by Max-EP. In this context, he even describes
“dissipative structures” (life etc.) as the most probable states.

25Including the sun would give a more closed system.
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Fig. 14 illustrates the relation between macroscopic reversibility and
microscopic phase space conserving time evolution (Liouville equation). Each
box encompasses all microscopic configurations in phase space representative
of one macroscopic state A. If the transition A → B is reproducible, one
can conclude that the phase space volume TA ⊆ B26. Let W (X) denote the
phase space volume of X. Because of Liouville’s Theorem one knows

W (X) = W (TX). (117)

The second law can then be described intuitively from S(X) = kb ln |W (X)|

TA ⊆ B, W (TA) = W (A)

⇒ |W (A)| ≤ |W (B)|
⇒ S(A) ≤ S(B)

(118)

In this formalism, the (time-averaged) entropy production connected with
one path Γ is immediately given as

σΓ =
1

τ
(S(τ)− S(0)) =

kb
τ

ln
W (Γ(τ))

W (Γ(0))
(119)

where the notion of “phase space volume” is extended to all points along the
trajectory Γ. Dewar now considers a direct decomposition of a system into

Figure 14: Macroscopic reproducibility in phase space

an open system and the environment. The environment is vaguely defined as
“that part of the entire system detailed knowledge of which is assumed to be

26if the extremely small minority of non-reproducible phenomena is excluded
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irrelevant to the macroscopic state of the open system”. Consider now the
evolution of one entire macrostate A (system X(A) and environment E(A))
over an interval τ . Dewar focuses solely on steady-state systems, such that
X(A) cannot change over time. As a consequence, all states evolving into B
have the same open system X and the same entropy production rates σX ;
only their environments can change. Because the time evolution operator is
phase space conserving27, the number of possible “environmental histories”
is given by

NX =
W (B)

W (A)
= exp

(
τσX
kb

)
, (120)

where A is one of the possible states defined above and the last equality is a
direct result of Eq. 119.

In the end, Max-EP aims at selecting one state B. To find the most
probable state, compare any two states X and Y . Without further knowl-
edge about the environment, it seems reasonable to select the state with the
greater number of compatible histories. In the language of dynamical systems
theory, this would be the state representing the larger basin of attraction:

NX

NY

= exp

(
τ(σX − σY )

kb

)
. (121)

The distribution function of all possible macrostates is - in the limit of large
τ - very sharply peaked at the state of maximum entropy production.

There are two problems with this argumentation: First and foremost,
entropy production in Eq. 119 is defined between two equilibrium states, but
Dewar uses the expression for non-equilibrium systems. Outside equilibrium,
thermodynamic entropy lacks a clear definition and the elegant derivation of
Eq. 119 breaks down. Secondly, Dewar uses Liouville’s theorem and the
stationarity constraint to claim that two systems A and A′ must have the
same phase space volumes. However, only the open systems X are steady
states, while the environments necessarily evolve in time. There are two
logical alternatives: W (A) 6= W (A′) or Liouville’s theorem is applied to an
open system, each leading to a contradiction in Dewar’s derivation.

27i.e. it represents an injective map ∀(b, b′) : T (b) = T (b′)⇒ b = b′
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3.3.2 Quantitative Derivations

In contrast to the very general derivation in Sect. 3.3.1, Dewar also attempts
to formulate a precise mathematical framework for his theory. For that
purpose, he employs two very different ideas in his papers [6, 11], which
are sketched below.

A Derivation Based on the Entropy Production Along a Path [6]:
Consider a general open system ({V,Ω}) in the grand-canonical ensemble, i.e
one that can exchange mass and energy with its surroundings. If the system
consists of different chemical constituents, it is useful to define

d = (u, {ρi}) : energy density and mass densities

F = (fu, {fi}) : corresponding volume flows

Fn = (fnu , {fni }) : corresponding flows, normal to boundary Ω

(122)

Let 〈X〉 denote an ensemble average and X̄ a time average. In a first step,
Max-Ent is applied to incorporate some fixed average values 〈d(x, 0)〉 and〈
F̄n(x)

〉
. In physical terms, Dewar fixes the system’s initial state and the

average flows across its boundaries. By the usual method, this gives a Gibbs-
like distribution with spatially varying Lagrange multipliers

pΓ =
1

Z
exp

∫
V

λ(x)d(x, 0)Γ +

∫
Ω

η(x)F̄n(x)Γ︸ ︷︷ ︸
AΓ

 (123)

Imposing spatially inhomogeneous constraints generalizes the method from
taking derivatives to taking variations

δ lnZ

δλ(x)
= 〈d(x, 0)〉

δ lnZ

δη(x)
=
〈
F̄n(x)

〉
.

(124)

Dewar allows both for the interconversion of particle species as well as in-
cluding sources Q of particles and energy. Mathematically, this can easily be
implemented by a conservation (balance) law

∂d(x, t)Γ

∂t
= −∇FΓ + Q. (125)
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To incorporate these terms, Dewar uses the fundamental theorem of calculus

d(x, 0)Γ =
1

2
[(d(x, 0)Γ + d(x, τ)Γ)− (d(x, τ)Γ − d(x, 0)Γ)]

=
1

2

[
(d(x, 0)Γ + d(x, τ)Γ)− τ · 1

τ

∫ τ

0

dt
∂d(x, τ)Γ

∂t

]
=

1

2
(d(x, 0)Γ + d(x, τ)Γ)− τ

2
· ∂d(x, t)Γ

∂t

=
1

2
[d(x, 0)Γ + d(x, τ)Γ]− τ

2

(
−∇FΓ + Q

)
.

(126)

Substituting this into AΓ from Eq. 123 gives

AΓ =
1

2

∫
V

λ(x) [d(x, 0)Γ + d(x, τ)Γ]− τ

2

∫
V

λ(x)
(
−∇FΓ + Q

)
+

∫
Ω

η(x)Fn(x)Γ.

(127)

Integration by parts shifts derivatives in the second term, which can then (by
virtue of the divergence theorem) be absorbed into the boundary integral

AΓ =
1

2

∫
V

λ(x) [d(x, 0)Γ + d(x, τ)Γ]− τ

2

∫
V

(
FΓ∇λ(x) + λ(x)Q

)
+

∫
Ω

(
λτ

2
+ η(x)

)
Fn(x)Γ︸ ︷︷ ︸

neglected

(128)

Dewar continues by dropping the last term, arguing that the necessary “in-
formation” was also included in the second term. I cannot quite agree with
this, as this step completely throws η out of the derivation. In fact, neglect-
ing the term is equivalent to demanding λτ

2
= −η(x), which would eliminate

one of the Lagrange multipliers. These multipliers must be independent to
account for two constraints. The key step in Dewar’s derivation is to define
the remaining Lagrange multiplier λ as

λ(x) =
1

kbT (x)
(−1, {µi(x)}). (129)

This assumption is well-defined in the equilibrium limit FΓ = Q = 0. Outside
equilibrium, defining local temperatures and chemical potentials relies on
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the assumption of local equilibrium, which is feasible, but restricts the
claimed universality of the results. Using this definition in Eq. 128, one finds

AΓ =
1

2

∫
V

∑
i µi (ρi(0) + ρi(τ))− (u(0) + u(τ))

kbT
+

Airr︷ ︸︸ ︷
τ

2kb
σΓ, (130)

σΓ =

∫
V

[
fu∇

1

T
− 1

T
Qu −

∑
i

fi∇
µi
T

+
µi
T
Qi

]
. (131)

The expression σΓ is equivalent to Prigogine’s derivation of entropy produc-
tion. In some sense, Dewar’s derivation can be considered a paraphrase of
Prigogine’s work as both are based on conservation laws. The new aspect is
that Dewar takes a Gibbs-like distribution provided by Jaynes’ algorithm as
his starting point.

Dewar’s final step is to note that in Eq. 130, the first part is time-reversal
symmetric, while the second is anti-symmetric. Every symmetric contribu-
tion having an inverted contribution canceling it, only the anti-symmetric
part is assumed to contribute

Z =
∑

Γ

exp(AΓ) ≈ W (Airr) expAΓ (132)

S = −
∑

Γ

pΓ ln pΓ = lnZ − 〈A〉 (133)

⇒ S ≈ lnW (
〈
Airr

〉
), (134)

where W denotes the multiplicity of all paths with action AΓ and the second
line is demonstrated in detail in Chapter 228. Thus, the maximum of S
coincides with a maximum of σ if W is an monotonically increasing
function in Airr. A basis for this assumption is not given. In fact, Bruers
et. al [4] find a counter example to this assumption. In summary, the above
derivation is founded upon the problematic assertion of local equilibrium,
which is required to postulate Eq. 129. The same issue flaws a second and
very similar paper by Dewar [8]. Again, Dewar does not admit that proximity
to equilibrium is a premise to his derivation, but this deficiency is addressed
in [4, 20].

28Dewar makes no clear distinction between thermodynamic entropy S and information
entropy H. While S = kbH at equilibrium, the existence of a correspondence in non-
equilibrium is, in fact, not clear.
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A Derivation Based on Kullback-Leibler Divergence [11]: In this
derivation, Dewar assumes a system which is a) in a steady state, b) far from
equilibrium and c) has several states compatible with the constraints (“in-
stability condition”). Naturally, this derivation applies the general strategy
of finding the extreme point of the information entropy functional. Inter-
estingly, Dewar makes a statement about the distance from equilibrium his
central constraint. Distance in the space of probability distributions is typi-
cally measured by the Kullback-Leibler divergence29

I =

∫
p(f) ln

p(f)

p(−f)
df , (135)

where the notation is adopted from above. I is positive and vanishes only
if p(f) = p(−f). Because this is the case only in a state of equilibrium, I
measures the distance from equilibrium. With this definition, Dewar finds it
intuitive to demand that the distance from equilibrium should remain within
certain bounds

Imin(C) < I ≤ I0, (136)

where Imin(C) is the (close) distance from equilibrium, at which only one
compatible steady state exists. I0 is an arbitrary distance in the range Imin <
I0 ≤ Imax, introduced as an auxiliary variable in the proof. To highlight this
new constraint, I will leave out standard mean-value constraints as they are
used above.

In maximization problems, inequalities are implemented as equalities,
with the exception that the corresponding Lagrange multiplier is set to zero
if the constraint is satisfied as an inequality. In other words, the constraint
only applies if the solution is on the boundary of the “area” prescribed by
the inequality:∫

df
δ

δp(f ′)

[
−p(f) ln p(f) + µ

(
p(f) ln

pf

p(−f)
− I0

)]
= 0

⇒ ln p(f) ∝ µ ·
(

ln p(f)− ln p(−f)− p(f ′) 1

p(−f ′)
δ(f ′ − (−f))

)
= 0

⇒ ln p(f) ∝ µ (ln d− exp(−d)) ,

(137)

29Actually, the Kullback-Leibler divergence satisfies only one (semi-definiteness) out of
three properties (semi-definiteness, symmetry, triangle inequality) required of a norm. It
is still the generally accepted measure in the space of probability distributions.
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where d = ln p(f)/p(−f). For the constraint to take effect N 6= 0 and it is
reasonable to assume µ = ∂S/∂I0 > 030. The strict inequality chosen as the
constraint would otherwise be inactive. One can directly infer

µ = 0⇒ I = I0. (138)

The last step is to take the limit I0 → Imax. The hypothetical limiting
case I0 > Imax leads to µ = 0. Assuming that µ is continuous, µ → 0 as
I0 → Imax from below. As a result, µ drops from the MaxEnt solution,
which only contains the (omitted) standard terms originating from mean
value constraints. In a physical interpretation, this means that MaxEnt
predicts a system to “choose” the state corresponding to I0 = Imax. However,
the result is more or less directly contained in the assumptions that were
made:

• Distance from equilibrium is measured in terms of the Kullback-Leibler
divergence, i.e. it has no direct thermodynamic interpretation.

• µ > 0: Entropy grows as the system is moved further from equilibrium.

• I ≤ Imax: There is an upper bound to the distance from equilibrium.

Essentially, Dewar proves that MaxEnt selects the state with a maxi-
mum Kullback-Leibler divergence. This state must exist as he postulates
an upper postulates an upper bound Imax. In conclusion, the derivation is
self-contained, but it fails to connect to thermodynamic entropy production.
Therefore, this derivation cannot be considered a complete proof of the Max-
EP principle.

3.4 What Is To Be Thought About This?

The Principle of Maximum Entropy Production is a current research topic,
which, at this point, faces a number of significant issues that prevent it from
becoming an established theory.

First of all, the exact statement of Max-EP is not generally agreed upon.
Paltridge provides the most prominent example: His interpretation of the
theory can be used to successfully make predictions about the earth’s cli-
mate system. Paltridge uses his conjecture of Max-EP to infer a realized

30Greater distance from equilibrium is assumed to result in a larger amount of accessible
states and, thus, greater entropy.
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steady state from the set of all stationary states compatible with the con-
straints. However, several conceptual problems arise, which are discussed
above and in the references. Ambiguities include the arbitrariness of the sys-
tem’s boundaries, the considered part ofthermodynamic entropy production
(including or not including entropies of the radiation fields) and the neglect
of virtually all physical factors central to earth’s climate31.

Secondly, Dewar picks up on Paltridge’s central ideas in his heuristic at-
tempts to derive Max-EP from MaxEnt. These derivations are founded on
reversibility as the key property and try to infer Max-EP from very general
considerations in phase space. Though heuristics cannot be considered suffi-
cient in exact science, these approaches appear to capture some of Max-EP’s
very general nature. Dewar’s quantitative derivations, however, fall short of
that generality and contain technical weaknesses. Without stating it explic-
itly, the first derivation assumes local equilibrium and is therefore restricted
to the near-equilibrium regime. In this range, however, Max-EP cannot be
valid as Prigogine’s Principle is in effect. The second derivation fails to es-
tablish a sound connection to thermodynamic entropy production and also
appears to require very strong assumptions. Most gravely, Dewar derives
MaxEnt from an information theoretical quantity, thus presenting a kind of
circular reasoning failing to connect to the statement of Max-EP.

Dewar’s stated hope is to demonstrate a similarity in spirit between Max-
EP and Max-Ent in the sense that “[Max-EP] is the messenger, not the
message”. Assuming this conjecture holds, Max-EP would, on the one hand,
gain justification for its failures in some systems and its glorious success in
others, defying the huge amount of unknown information. MaxEnt, on the
other hand, would be equipped with the possibility of a useful application to
thermodynamic systems.

Dewar’s and other researchers’ many attempts have led to skepticism: De-
war sees that Max-EP’s “apparent successes remain something of a curiosity,
while the interpretation of its apparent failures is fraught with ambiguity”
[11], while even Max-EP’s initiator Paltridge no longer places much trust in
it [42]. Despite the great challenges of an exact formulation and a derivation
from a fundamental principle, Max-EP heralds great physical versatility. If
applicable, it is a strong principle which claims to be valid for very complex
systems and as well as being sufficiently general to cover an enormously broad

31This specific point is pointedly illustrated in [9], where Dewar discusses the predictions’
implausible invariance if “the seas were made of vinegar”.
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spectrum of phenomena. Future research will have to clarify if Max-EP is
a physical theory, an inference algorithm equivalent to MaxEnt or a lucky
coincidence.
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4 MaxCal: Evolution of a Model

4.1 Application of MaxCal to Diffusion

In the previous chapters, we discuss the connection between the inference the-
ories MaxEnt and MaxCal and non-equilibrium steady-state theories. The
relations are derived from MaxCal’s general mathematical structure as well
as an appropriate choice of constraints. Next, we move beyond these re-
strictions, by considering a problem that is a) far from equilibrium and b)
not in a steady state. In the following, the idea, application and particular
strengths of MaxCal are demonstrated for an example of a more complex
system, namely diffusion of particles in a tube.

First, the diffusion system under consideration is implemented in a com-
putational model. Results from this simulation will serve as “experimental
data” to be utilized as constraints in a MaxCal framework. Second, we
develop a coarse-grained mathematical model adequate for a MaxCal cal-
culation. Combining model and constraints, MaxCal is capable of making
predictions about other dynamical quantities or higher moments of proba-
bility distributions. Finally, predictions are compared with the simulated
results. Thus, we demonstrate the whole cycle of a typical application of
MaxCal (Fig. 15).

Probability 

Prediction

Figure 15: MaxCal is a theory that faithfully converts constraints into a
probability assignment.

4.2 Simulation of Diffusion

Consider a very general diffusive system, consisting of a one-dimensional tube
of length L filled with some solvent. Colloidal particles are inserted at the
left end of the tube at t = 0. Due to Brownian (thermal) motion, the colloids
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will diffuse across the tube. After some time, the particles have given rise to
currents J

J(x) ≡ N(x′ > x, tf )−N(x′ > x, ti). (139)

where we only consider x ∈ {1/4L, 1/2L, 3/4L}. A very similar setup is
studied experimentally by Seitaridou et al. [48]. Instead of performing ex-
periments in the laboratory, we simulate them on the computer. The main
advantage lies in great speed as well as flexibility regarding the parameters
under consideration. A standard mathematical approximation for colloidal
dynamics is the Langevin equation

ma(t) = F (t)− γmv(t) +R(t), (140)

where F (t) is the external (or inter-molecular) force on one molecule, γ is
a friction parameter and R(t) represents the stochastic motion of the water
molecules. Assuming that the thermal motion is uncorrelated, it is given by
a Gaussian distribution with µ = 0 and standard deviation [46]

σ =
√

2kBTγmδ(t− t′) ≈
√

2kBTγm

∆t
. (141)

Table 1 gives the set of parameters used in the simulations32.

Eq. 140 is solved numerically using the BKK integrator for stochastic dif-
ferential equations [5]. A detailed description of the implementation is given
in Appendix 5.3.1. Fig. 16 shows a typical set of trajectories in the system.
Because of the fixed boundaries, particles are reflected off the tube’s ends.

4.3 MaxCal Model of Diffusion

Instead of exploiting the entire information about all trajectories directly,
assume that the experiment (here replaced by a simulation) only provides
very limited information. Hypothetically speaking, the system might be too
small to make accurate measurements on J(1/4L) and J(3/4L), but give an

32Depending on the interpretation of these computational units, they can represent
various real-world experiments.
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Parameter Value

No. particles N 10
mA 1
Tube length l 100
Simulation time tf 300
kb 1
Temperature T 1
γ 1
Boundary conditions fixed
No. repetitions 1000

Table 1: List of parameters used in the simulations

average value 〈J(1/2L)〉. In the following, a model is formulated to treat the
physical problem of diffusion in mathematical terms, which can be solved
by MaxCal. As a first approximation, the system can be divided into two
parts, corresponding to the tube’s right and left half. Because the particles
are distinguishable33, a trajectory is defined as any combination of particles
“hopping” from left to right. This model is called the “dog-flea model”
[43, 18]. As demonstrated in Appendix 5.2, the partition function reads

Z = (1 + eλ)N . (142)

Due to the binomial coefficients occurring in the expansion of the partition
function the distribution underlying this partition function is identified as
the binomial distribution (cf. Appendix 5.2)

⇒ J = Bin(J, p,N) =

(
J

N

)
pJ(1− p)N−J , p =

〈J〉
N
, (143)

where the last equation converts the measured average current into a “hop-
ping probability” on the single-particle level. Based only on the mean value
constraint, this model provides a distribution function, i.e. it gives all higher
moments of the distribution. At this point, note that the model has no
means of accessing other valuable insights. For example, currents J(1/4L)
and J(3/4L), both non-existent in the model, may be physically relevant and
information about them could be desirable. Also, currents at other positions
or times as well as other physical observables could be asked from the model.

33in contrast to the notion of indistinguishability from quantum mechanics
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Figure 16: A typical trajectory of particles diffusing in the tube

Therefore, it is necessary to develop a new model which is sufficiently
comprehensive to predict currents J(1/4L) and J(3/4L). It will turn out
that this model also predicts other quantities, including some rather remote
ones.
The usual MaxCal procedure of enumerating all micro-trajectories and as-
signing weights to them is implemented in several steps:

1. List all states that the system can be in. Even though particles are
assumed to be independent, states which are identical upon permuta-
tion of the particles are not listed separately to reduce computational
effort.

2. For any two states si and sj calculate the number of transitions between
them. This accounts for the distinguishability of particles.

3. Assign MaxCal weights to each path. This is accomplished by inserting
factors exp(λ) for each mean-value constraint into the formalism.

4. Calculate the transfer matrix.

5. Determine the Lagrange multipliers by inversion of the mean-value con-
straint equations.
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6. Evaluate all desired quantities. A partition function is useful for collec-
tive properties, such as higher moments of the probability distribution
function. For other purposes, one can project out certain states.

To illustrate the procedure as well as to assure that the algorithm works cor-
rectly, consider first the case of Nb = 3 boxes and Np = 2 particles. This case
in non-trivial and can, unlike the case of the simulation Nb = 4, Np = 10,
still be easily counted by hand.
Step 1: The particles from the simulation are distinguishable. They repre-
sent large particles, such as colloids, whose wave functions do not overlap.
For Np particles and Nb boxes, there are N

Np
b states of the system. Even

though the particles are in principle distinguishable, all constrained quan-
tities (currents, numbers of particles per box, etc.) do not depend on the
identity of each particle. In the given example, there are only six such states.
They are represented pictorially in Fig. 17.

1 2 3 4 5 6

Figure 17: State classes of the system

Each symbol represents a class of

N !∏
i npi !

(144)

states, where npi is the number of particles in box i. In general, the number
of different classes is

NC =
(Nb − 1 +Np)!

(Nb − 1)!Np!
. (145)

The division into classes of states brings about an enormous simplification
in computational terms. Taking Np = 20 particles and Nb = 10, each class
represents on average

N
Np
b

(Nb − 1 +Np)!/((Nb − 1)!Np!)
≈ 1013 (146)
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states. Remember that the simplified notation is only possible due to the
kinds of physical constraints imposed, it is not a fundamental consequence
of quantum mechanics.
Step 2: The fundamental quantities are the distinguishable states, and the
trajectories connecting them. To see how the trajectories can be counted
from classes, observe the following:

• sk ∈ Ci: Each state sk belongs to one class Ci.

• i 6= j : Ci ∩Cj = ∅: The classes are disjoint. One state belongs to only
one class.

Also, transitions between states are reversible, i.e. if there is a tran-
sition sk → sl, the reverse sl → sk exists, too. Any permutation P ∈ SNp
can act on two elements sk, sf from Ci and Cj, respectively. It follows that
P (sk)↔ P (sl)⇔ sk ↔ sl. A direct consequence of this is that the degree of
every element in a class is identical. In summary

• sk → sl ⇔ sl → sk: reversibility

• P (sk)↔ P (sl)⇔ sk ↔ sl: permutation symmetry of classes

• deg(si) = deg(sj) ∀si, sj ∈ Ck: All elements in one class are essentially
identical.

All these properties can be visualized. As the number of states grows rapidly,
consider for illustration the overly simple case Np = 2, Nb = 2 (Fig. 18).
While the graph34 of this small example is fully connected, this is usually not
the case. Some states cannot be reached within one time interval τ . Each
arrow in Fig. 18 represents one microtrajectory that must be counted. The
colored circles indicate the classes. To count every arrow, one can consider
every pair of two classes Ci, Cj. Because of reversibility one concludes |Ci →
Cj| = |Ci → Cj|. The computer algorithm f described in Appendix 5.3.2
takes any two classes Ci, Cj and returns

f(Ci, Cj) = |{sj ∈ Cj : si ↔ sj}|. (147)

f can be regarded as the partial degree of each node in Ci, which is not
symmetric (cf. Fig. 18). For the more complex example above (Np = 2,

34Technically speaking, it is a pseudo-graph as it contains loops.
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Figure 18: States, classes and trajectories for Np = 2, Nb = 2

Nb = 3), the matrix for the classes reads

Dp =



1 2 3 4 5 6

1 1 1 0 1 0 0

2 1 1 1 1 1 1

3 0 1 1 0 0 1

4 2 2 0 2 1 1

5 0 2 0 1 1 1

6 0 2 2 1 1 2


. (148)

The total number of trajectories (arrows) Mij between classes Ci and Cj can
now be simply calculated:

Mij = f(Ci, Cj) · |Ci| = f(Cj, Ci) · |Cj|. (149)
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In the example system one finds

M =



1 2 3 4 5 6

1 1

2 1 1

3 0 1 1

4 2 2 0 4

5 0 2 0 2 2

6 0 2 2 2 2 4


, (150)

where the blank spots are symmetric to the upper triangle, Mij = Mji (cf.
Eq. 149). As far as computational implementation is concerned, Step 2 turns
out to be the most expensive. Because the matrix has to be evaluated only
once, this does not pose a problem.
Step 3: Assigning weights to the paths is the second important incorporation
of physics (after forming a model). For simplicity, assume that only an
average current across the border between boxes 1 and 2 (defined according
to Eq. 139) is imposed. Each transition from state i to state j is associated
with a microcurrent jkl

j =



1 2 3 4 5 6

1 0

2 2 0

3 2 0 0

4 1 −1 −1 0

5 1 −1 −1 0 0

6 2 0 0 1 1 0


, (151)

the blank spaces being anti-symmetric to the lower triangle jij = −jji. The
matrix of path weights is then given by Wkl = exp(λjkl).
Step 4: Now, the transfer matrix can be computed by componentwise mul-
tiplication

Tkl = Mkl ·Wkl. (152)

Step 5: Fig. 19 shows the functional relation between the current J and the
Lagrange multiplier λ. For reasonably small λ, this function can clearly be
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Figure 19: J(λ) for the case of the system starting in |Ci〉 = 1, after t = 2
time units. The current is clearly bounded: 0 ≤ J ≤ 2.

inverted. For simplicity, use λ as the independent variable in the following.
Step 6: All relevant quantities can now be calculated from the transfer
matrix, which maps the probabilities at time ti onto state probabilities at
ti + τ . Matrix powers reveal the system’s complete temporal evolution. For
t time steps

pf = 〈Cf |T t |Ci〉 , (153)

where |Ci〉 , |Cf〉 are projectors of the initial and final classes. Fig. 20 shows
the probability distribution for t = 2, |Ci〉 = 1 and λ = 1.

4.4 First Results

Having introduced the model for a simple case, it will now be used to treat
the simulation. Out of the 286 classes, the class representing all particles
on the tube’s left end is chosen as the initial configuration. As explained
above, the matrix power t gives the number of transitions in the MaxCal
model. It is assumed that the particles can only travel once across the tube,
such that t = 3. This corresponds well with the distribution of particles
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Figure 20: Current distribution for t = 2, |Ci〉 = 1 and λ = 1.

after the simulations (Fig. 21)35. In the following, the short-hand notation
J1 = J(1/4L), J2 = J(1/2L), J3 = J(3/4L) is used.

Again, one can calculate the function J2(λ) directly from the model (Fig.
22). As expected, the function increases from a minimum current J2 =
0 from no particles jumping to all ten particles crossing the central line.
From simulations one obtains 〈J2〉 = 0.547 after R = 1000 repetitions of
the experiment. Evidently, J2(λ) = 〈J2〉 can be solved numerically and the
calculation yields λ0 = −2.24.

Next, one can compare the simulated distribution with MaxCal’s predic-
tion (Fig. 23). Numerical comparison between two probability distributions
is challenging and can be done in various ways. From an information theo-
retical perspective, the decisive measure is the Kullback-Leibler divergence

DKL = R
∑
i

gi ln
gi
pi
, (154)

where i enumerates all possible outcomes, gi and pi are the relative fre-
quencies from the simulation and the MaxCal probabilities, respectively. In
statistics, a more common choice is the χ2-test, which is used to test if a

35If this information is not available, t is an additional (effective) parameter in the
optimization problem.

63



0 20 40 60 80 100

Final position

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
e
la
ti
v
e
 f
re
q
u
e
n
cy

Figure 21: Simulated particle distribution after the full simulation

hypothetical distribution is approximated by experiment. The test statistic

χ2 = R
∑
i

(gi − pi)2

pi
. (155)

is compared to a critical value36 depending on the number of degrees of
freedom f and the considered statistical significance α. In the problem of
diffusion, f = 11 − 1 − 1 = 9 since there are eleven possible outcomes,
reduced by the normalization constraint and one fit parameter λ. The χ2

test is applied here as a heuristic, disregarding details such as a minimum
number of events per bin as discussed in [22]. For completeness, the first
moments of the distributions, mean 〈·〉 and variance 〈(∆·)2〉, are also given.
While only a few central values are discussed in the text, Table 2 contains
all results. All measures show that MaxCal’s prediction is excellent. Most
intuitively, χ2 = 3.3 supports this conclusion.

Next, one calculates a prediction for J1 (Fig. 24). All observables indicate
that MaxCal’s prediction is wrong. In particular, predictions of 〈J1〉 and 〈J3〉
exceed simulations by a factor of up to 5! Does this mean that the model is
incorrect?

36The critical value can be obtained from standard tables.
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Figure 22: J2 increases as a function of λ within the bounds 0 ≤ J2 ≤ N

Referring back to the conceptual nature of MaxCal as depicted in Fig.
15, one recognizes that there is the possibility of a missed constraint lead-
ing to incorrect predictions. In fact, the overly large MaxCal values for the
unconstrained currents suggest that MaxCal does not take friction into suf-
ficient account. So far, a trajectory is weighted based on how many particles
cross the central separation. To emphasize this point, consider a tube filled
with only one particle. Any trajectory of 4 steps, for example, that starts
and ends in the same box would have the same weight, regardless of whether
the particles remained in the box four times or jumped four times. In other
words, friction is not considered in the model. In terms of simulations, the
limit γ → 0 reduces the Langevin dynamics to a random walk in one di-
mension. The effect of over-prediction is then eliminated. Jaynes phrased
the discovery of new constraints in the following words [25]: “Comparing
experimental observations with some existing theory, or calculation, one will
never find perfect agreement. Are the discrepancies so small that they might
reasonably be attributed to measurement errors, or are they so large that
they indicate, with high probability, the existence of some new systematic
cause?”
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Figure 23: Without friction: Comparison of simulated frequencies and Max-
Cal’s prediction for J2
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Figure 24: Without friction: Comparison of simulated frequencies and Max-
Cal’s prediction for J1 and J3
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4.5 Physical Constraint: Friction

Clearly, the next step is to include drag as a physical constraint into the
model. MaxCal prescribes a factor eγ for every jumping particle, where the
name of the Lagrange multipliers is chosen to remind of the friction term in
Eq. 140. However, the number of jumping particles can be different for two
transitions between the same classes Ci and Cj. To some extent, this breaks
the permutation symmetry of the groups: While the degree of each element in
a class must still be identical, the weights of the paths connecting them need
not be. In the calculation, the new constraint is implemented by changing
the matrix of multiplicities M to include weights eγ·n if n is the number of
particles jumping during the transition. Both Lagrange parameters can be
found by simultaneously solving the constraint equations

∂ lnZ

∂λ
= 〈J2〉

∂ lnZ

∂γ
= 〈n〉 . (156)

Instead of using the number of jumping particles as an immediate constraint,
one can work directly with the parameter γ37. A trial and error procedure is
now used to find as a first approximation γ = −3. This negative value sup-
presses trajectories with many jumps compared to those with few jumps by a
factor eγ∆n. Evaluating the partition function for γ = −3 and re-evaluating
λ by local optimization leads to good agreement with the simulation: Due
to this first estimate, prediction and simulation in J1 are very close as far as
the mean value is concerned. The predicted value of J3 is now of the correct
order of magnitude. In this case, the χ2 heuristic even indicates that the
predicted distribution is correct.

It may be objected that the MaxCal probability distribution for J2 be-
comes less accurate after the introduction of friction. Intuitively, this can be
understood by considering that the effective38 number of trajectories available
in the entropy maximization for J2 is reduced, imposing an effective addi-
tional constraint upon J2. In fact, the increased value of χ2

2 is still within a
plausible regime.

Having worked with the raw Lagrange multiplier γ, the essential con-
sistency requirement is to check if Eq. 156 holds. The derivative can be

37The cross check is calculated below.
38While, of course, no trajectory is excluded, suppressing those with many jumps has a

similar effect.

67



approximated as

∂ lnZ

∂γ

∣∣∣∣
λ′,γ=−3

≈ lnZ(−2.9, λ′)− lnZ(−3.1, λ′)

0.2
= 4.3. (157)

To cross-check this result, one can simulate diffusion without boundaries:
Extending the tube to a great length, particles are placed randomly into a
section of a box’s size L = 25 located very far from the boundaries. After t =
tf/3 = 100, the number of particles diffused out of the box is counted. One
thousand repetitions result in 〈n〉 = 4.3. This equivalence confirms that the
friction constraint is physically justified and that the numerical value chosen
is a good approximation. It might occur closer at hand to check the jumping
statistics in the original simulation, including boundary effects. However, the
jumping rate in the first third of the evolution is significantly lower than that
in the next two thirds, because all particles start out on the left end of the
tube. Related to this subtlety regarding the initial conditions, one can also
understand why predictions improve along the tube: After all, the model of
four boxes is too crude to resolve the particles’ initial positions on the far left.
This influences the statistics of J1 most gravely, while fluctuations weaken
the effect in J2 and J3.

4.6 Discussion and Outlook

In summary, the model developed above is capable of supporting a full Max-
Cal calculation. Through the MaxCal approach, the additional constraint
of friction was “discovered”, i.e. realized as relevant and then included in
the partition function. After the consideration of friction, predictions are in
reasonably good agreement with simulations.

One must take into account two aspects when assessing the quality of
the method. On the one hand, the physical system is quite simple, lacking
complicated interaction patterns which would have to be captured by the
model. On the other hand, only two constraints were used to make predic-
tions about all moments of three probability distributions. Also, the
model is very coarse, consisting of just four boxes. As mentioned above, de-
tails about the particles’ initial configurations (particularly position, but also
velocity) are not accounted for. Introducing more boxes would clearly im-
prove the results. Furthermore, the two Lagrange multipliers λ and γ should
be solved simultaneously. One could either use a numerical scheme or seek
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an iterative solution, by fixing one parameter and maximizing the other. For
well-behaved equations, this procedure will converge to the correct solution
if appropriate first values are chosen. Any systemic solution strategy would
surely improve the numerical calculation beyond the first approximation.

It might seem that the mathematical formalism needed to arrive at the-
ses results is rather cumbersome in the light of the model’s simplicity. Why
could one not assume a simple model, such as a fixed hopping probability
of each particle, to make predictions? The conceptual issue with simplistic
models is that they make ad hoc assumptions, which require a comprehen-
sive understanding of the underlying physics. For example, in a model of a
constant hopping probability p, one would have to assume a priori that the
particles move independently. Then, the parameter p can, in principle, be
calculated from the recursive relation

P (J2, t
′) =

∑
t<t′

∑
s2,s3

[s2(t)P (s2, t)− s3(t)P (s3, t)] p. (158)

where si is the occupation of box i at time t and P (si, t) is the corresponding
probability function. Hopping probability being the only parameter, the
model would be solved and allow predictions39.

However, there is a fundamental difficulty if predictions do not match the
simulation: There is no mathematically defined way of modifying the model
to incorporate new physics. Consider, for example, an interaction between
the particles in the form of repulsion. Eq. 158 loses it’s validity together with
the entire model. A next ad hoc model could be formulated, solved and com-
pared to experiment. The example of friction above already demonstrates
that MaxCal provides a means of improving a model in a mathematically
unique way. To add evidence that MaxCal is generally able to incorporate
new physics, here is how particle interaction can be implemented: Interac-
tions can be understood as a change in potential energy for a number of
particles in one region or box. As such, static interactions are best defined
as properties of the states and their corresponding classes, rather than tra-
jectories. Although MaxCal is founded upon the idea of trajectories, states
retain a clearly defined meaning: states are the configurations of the system
whose sequence forms a trajectory. If one assumes repulsion, one would, for
example, introduce a Lagrange multiplier κ corresponding to the number of
particles in one box. Mathematically, this would be easily implemented via

39Even this calculation is non-trivial without the use of computer methods.
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J1 J2 J3 〈(∆J1)2〉 〈(∆J2)2〉 〈(∆J3)2〉
Simulation 3.55 0.55 0.03 2.28 0.53 0.03

MaxCal, no fric. 6.08 (0.55) 0.17 2.01 0.5 0.16
MaxCal, fric. 3.4 (0.55) 0.02 1.24 0.44 0.02

λ γ χ2
1 DKL

1 χ2
2 DKL

2 χ2
3 DKL

3

MaxCal, no fric. -2.24 0 16455 1435 3.3 1.5 129 93
MaxCal, fric. 0.35 -3 479 120 28.9 11.2 7.95 3.35

Table 2: MaxCal indicates that friction is a relevant parameter in the system.

matrix multiplicatione
κV (C1)

. . .

eκV (CNC )

 · T no interaction, (159)

where V (Ci) denotes the potential energy of each state in class Ci. This
automatically assigns each class a correct weight based on its occupation
number.

In conclusion, we demonstrate the generality of MaxCal by developing a
mathematical model for the example of diffusion. The model is sufficiently
general to describe the system’s most relevant features. Most importantly,
the model can be extended to include new physics in a well-defined way.
The essence of an application of MaxCal is to detect the relevant physical
constraints at work and to distill them into a probability assignment in a
mathematically unique fashion.
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5 Appendix

5.1 Onsager’s Derivation of the Reciprocal Relations

The following presentation of Onsager’s reciprocal relations is based on On-
sager’s two articles on the topic [38, 39] and Prigogine’s book [30]. Onsager
was awarded the 1968 Nobel Prize in Chemistry for his proof of the reciprocal
relations.

Theorem 5 (Onsager’s Reciprocal Relations)

In thermodynamic transport processes, currents ~J can be expressed as
linear functions of the thermodynamic forces ~X

~J = L ~X (160)

The matrix L is positive semi-definite and symmetric for all t-even sys-
tems.

5.1.1 Example: Detailed Balance and Microscopic Reversibility
Imply Onsager’s Relations

Consider a system in which three different conformations A, B and C of
the same substance coexists. The transformation rates between the species

A

BC

A

BC
Figure 25: Left: Diagram of possible transitions, Right: Diagram of forbidden
(t-odd) transitions

can be described by a first-order differential equation, since the number of
transformed particles is proportional to the total number of particles of a
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species ni
dna
dt

= −(kba + kca)na + kabnb + kacnc

dnb
dt

= kbana − (kab + kcb)nb + kbcnc

dnc
dt

= kcana + kcbnb − (kac + kbc)nc.

(161)

While knowledge of all constants kij defines a unique equilibrium solution
via d~n

dt
= 0, the converse is not true. In fact, measuring the relative popu-

lations na : nb : nc together with a constraint arising from particle number
conservation N =

∑
i ni gives only 3 out of necessary 6 constraints.

It is possible (and common) to close the system by invoking detailed
balance. This is the assertion that after a sufficiently long time (typically
equilibrium) every elementary conversion occurs just as often as its reverse

kban̄a = kabn̄b

kcbn̄b = kbcn̄c

kacn̄c = kcan̄a.

(162)

This constraint is not necessary to achieve equilibrium, but it is sufficient
to find a unique solution for each kij. In the given example, detailed bal-
ance rules out cyclic transitions such as the one displayed in Fig. 25 (right).
Onsager argues that detailed balance is a direct consequence of time-
reversal invariance of all known (relevant) laws of nature. This
fundamental feature of nature thus dictates that at equilibrium every ele-
mentary transition must be balanced by its reverse transition as they are
equivalent if the direction of time is reversed.

Some further manipulation is necessary to reveal that the assumption of
detailed balance in Eq. 162 gives rise to Onsager’s reciprocal relations. As a
first step, define xi = ni − n̄i40 and subtract the equilibrium condition from
Eq. 161

dxa
dt

= −(kba + kca)xa + kabxb + kacxc

dxb
dt

= kbaxa − (kab + kcb)xb + kbcxc

dxc
dt

= kcaxa + kcbxb − (kac + kbc)xc

(163)

40xi measures distance from equilibrium.
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To make the response matrix symmetric it is clear that the forces must be
re-defined to include a factor 1/n̄i. This appears naturally when considering
the free energy F and its expansion in concentrations

F = Fmin +RT
∑
i=a,b,c

ni ln(ni/n̄i)

δF = RT
∑
i=a,b,c

ln(ni/n̄i)δni,
(164)

where the logarithm does not need to be expanded since its argument at equi-
librium is close to unity. Converting to a notation measuring small deviations
from equilibrium (xi � n̄i), one finds

−RT ln(ni/n̄i) = −RT ln [(xa + n̄i)/n̄i]

= −RT ln(1 + xi/n̄i) ≈ −
RT

n̄i
xi ≡ Xi.

(165)

With this definition of the forces, the final equations show the announced
symmetry relations if and only if Eq. 162 is true

dxa
dt

= (kba + kca)
n̄a
RT

Xa −
kabn̄b
RT

Xb −
kacn̄c
RT

xc

dxb
dt

= −kban̄a
RT

Xa + (kab + kcb)
n̄b
RT

Xb −
kbcn̄c
RT

Xc

dxc
dt

= −kcan̄a
RT

Xa −
kcbn̄b
RT

Xb + (kac + kbc)
n̄c
RT

Xc.

(166)

5.1.2 General Proof

Onsager proves the reciprocal relations’ general validity by considering fluc-
tuations around equilibrium. He defines the “asymmetry” αi (comparable to
a center of gravity) of the thermodynamic quantity i as

αi =

∫
ε · xldV, l ∈ {1, 2, 3}, (167)

where ε is the local density of i. For example, ε could be the local energy
density in the crystal. For each of the three coordinate directions l one would
obtain one value α. Commonly, the origin can be chosen such that

ᾱk = 0 ∀k (168)
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Detailed balance allows a very general statement about these fluctuations:
If a perturbation αj = α′j is on average followed by a perturbation αi =
α′i τ seconds later, then on average the perturbation in αi = α′i causes a
perturbation αj = α′j the same time τ later:

Aji(τ) ≡ αj(t)αi(t+ τ) = αi(t)αj(t+ τ) ≡ Aij(τ) (169)

Onsager assumes that deviations αi decay linearly according to

dᾱi
dt

= α̇i =
n∑
r=1

LirFr, where (170)

Fr =
∂S

∂αr
(171)

is defined to be the thermodynamic force. The temporal evolution of a decay
can thus be expressed as

ᾱi(∆t, α
′
i) ≈ ᾱi(0, α

′
i) + α̇i∆t = ᾱi(0, α

′
i) +

n∑
r=1

LirFr∆t (172)

This leads to the conclusion

Aji(∆t) = αj(t)αi(t+ τ) = α′jᾱi(0, α
′
i)︸ ︷︷ ︸

Aji(0)

+Lij∆tαjFj (173)

The first identification is true since αj(t) = α
′
j is a constant value, which can

be absorbed into the average. The correlation function can be evaluated by
exploiting the fluctuation theorem by Einstein [15]. It looks like an inversion
of Boltzmann’s formula, but the physical interpretation is different: Here,
entropy is the fundamental quantity that gives rise to a certain probability
distribution. In Boltzmann’s formula entropy is defined by the probabilities.

P (α1, ..., αn) ∝ e∆S/kb

⇒ kb lnP = S + const.

⇒ kb
dP

dαj
= P · dS

dαj
= P · Fj

(174)

79



Evaluate the correlation function using Eq. 174

αjFj = αj · dS/dαj =

∫ ∞
−∞

αj
dS

dαj
Pdαj = kb

∫ ∞
−∞

αj
dP

dαj
dαj

= kb [αjP ]∞−∞︸ ︷︷ ︸
=0 (boundedness)

−kb
∫ ∞
−∞

Pdαj︸ ︷︷ ︸
=1 (norm.)

,
(175)

where integration by parts is used to obtain the second line. Integration over
αl, l 6= j gives unity and is omitted for brevity. Evidently, one finds by the
same calculation αiFj = 0, i 6= j. Thus one is left with

Aji(∆t) = Aji(0)− kb∆tLij
Aij(∆t) = Aij(0)− kb∆tLji.

(176)

Because of the symmetry in Aij (Eq. 169) this directly implies Onsager’s
reciprocal relations

Lij = Lji (177)

5.1.3 Summary

In my opinion, Onsager justifies on safe grounds that detailed balance has
to hold near equilibrium. The key assumption, therefore, remains Eq. 170.
Onsager considers fluctuations in a system, but it is plausible that the fluc-
tuations’ origin should not change the physics of a problem (memoryless
process). As a result, reciprocal relations should be encountered close to
equilibrium for most physical systems, in particular in transport phenomena
(electrical, heat, diffusion). The Onsager relations cannot hold if micro-
scopic reversibility is not given (presence of magnetic fields, other velocity-
dependent t-odd force fields).

5.2 Explicit MaxCal Solutions

Consider first the simple system from Sect. 4.3 with N particles. Which
is the MaxCal solution for the jump dynamics? Following MaxCal, one
maximizes information entropy over possible microtrajectories with respect
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to the average (known) currents. His can be implemented with the help of
Lagrange multipliers

C = −
∑

Γ

pΓ ln pΓ + α

(∑
Γ

pΓ − 1

)
+ λ

(∑
Γ

pΓjΓ − J

)
δC

δpΓ′
= −1− ln pΓ′ + α + λjΓ′

!
= 0

⇒ pΓ′ = exp(α− 1 + λjΓ′) = 1/Z exp(λjΓ′).

(178)

Since factor exp(α−1) is constant, it can be absorbed into the normalization
constant Z, the partition function. The next important step is to determine
the set of all trajectories {Γ}. The particles being distinguishable, a current
involving j particles can be realized in

(
N
j

)
ways, such that the collective

weight of all microtrajectories with j is

W (j) =
∑

Γ:jΓ=j

exp(λjΓ′) =

(
N

j

)
exp(λj) (179)

This form can be simplified using the binomial expansion

Z =
∑

Γ

pΓ =
N∑
j=0

W (j) =
N∑
j=0

(
N

j

)
exp(λj) = (1 + eλ)N . (180)

The generalization to the system from Sect. 2.4 consisting of Nr red
and Nb blue particles in two reservoirs41 is straightforward: Just as above
both particles species contribute to particle currents. For the particle current
each jumping particle counts ±1, depending on the direction it jumps. Red
and blue particle might, however, carry different specific energies. In the
evaluated example, Jheat = Jr + a · Jblue with a = 0.3 < 1. This forms a new
constraint, which mathematically very similar to the one above. The very
same maximization and counting of trajectories with certain currents results
in

Z =(1 + eλp+a·λh)Nb · (1 + eλp+λh)Nr

·(1 + e−λp−a·λh)Nb · (1 + e−λp−λh)Nr .
(181)

41i.e. these numbers are constant in time
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5.3 Computer Algorithms

5.3.1 Integrating Langevin’s Stochastic Differential Equation

Simple diffusion systems can be modeled by Langevin’s differential equation

ma(t) = F (t)− γmv(t) +R(t). (182)

Compared to Newton’s equation of motion, it contains a friction term and
a random force term. The friction term accounts for the slowing down of
fast colloids in a solvent due to drag by the solvent molecules. The very
same solvent molecules, however, are subject to thermal motion, resulting in
occasional collisions with the colloids. Langevin assumes white noise, i.e.

〈R(t)〉 = 0

〈R(t)R(t′)〉 = 2kbTmδ(t− t′).
(183)

In a computer implementation, white noise is commonly represented by
a Gaussian distribution with zero mean µ = 0 and finite variance σ2 =
2kbTmδ(t − t′). The delta-distribution is approximated by 1

∆t
, where ∆t is

one time step in the integration algorithm [46].
There are several ways of discretizing the differential equation. I choose

the standard Verlet procedure. First, calculate a Taylor expansion of the
particle’s position in time

r(t+ ∆t) = r(t) + v(t)∆t+ a(t)∆t2/2 + ȧ(t)∆t3/6 +O(∆t4). (184)

The Taylor expansion of r(t−∆t) gives the same result, with all t-odd terms
having switched signs. As a result, adding gives

r(t+ ∆t) = 2r(t)− r(t−∆t)

+ ∆t2/m [F (t)− γmv(t) +R(t)] +O(∆t4).
(185)

Next, the function v(t) is replaced by a finite difference approximation

v(t) =
r(t+ ∆t)− r(t−∆t)

2
+O(∆t3). (186)

Finally, solving the equation for r(t+ ∆t) gives

r(t+ ∆t) =
1

1 + γ∆t
2

[
2r(t)− r(t−∆t) + γ

∆t

2
r(t−∆t)

+
∆t2

m
[F (t) +R(t)] +O(∆t4)

]
.

(187)

The resulting integrator is known as the BKK integrator [5].
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5.3.2 Calculating All States

The general procedure all of constructing the transfer matrix for arbitrary Np

and Nb is straightforward. However, some parts of the algorithm can consume
very different computational time, depending on the specific implementation.
For example, the enumeration of all states can be done very efficiently using
a recursive function. The following function in pseudo-code iterates only up
to the required depth.

Data: Number of boxes Nb, number of particles Np

Result: All states compatible with Nb and Np

RecursiveFunction(level)

if
∑Nb

j=0 cj equals Np then

save {cj} as a state
else

if
∑level

j=0 cj ≤ Np then

for ci = 0 to Np do
Set clevel = ci
Call RecursiveFunction at level + 1

end

end

end

end
Algorithm 1: Enumeration of all states with Nb boxes and Np particles

The remaining steps necessary to construct the transfer matrix are imple-
mented following the steps outlined in Sect. 4.3 directly.
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