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Abstract of the Thesis

Transverse Momentum Distribution for Drell Yan Process

by

Yikun Wang

Master of Arts

in

Physics

Stony Brook University

2015

The Drell-Yan process is the production of massive lepton pairs in hadronic
collisions. In this thesis, we investigate the transverse momentum distribu-
tion of the intermediate vector bosons for the Drell-Yan process. This distri-
bution can be predicted by perturbative QCD. However, one difficulty of the
calculation is large logarithms that occur in the calculation of the differential
cross section which come from the soft and collinear structure of the phase
space. The large logarithmic terms in the differential cross section spoil the
validity of perturbative expansion in the region of small transverse momen-
tum. Transverse momentum resummation can give convergent results and
reliable perturbative predictions by summing over the logarithmic contribu-
tions. In this thesis we review and calculate the resummed transverse mo-
mentum distribution for the Drell-Yan process up to leading and next leading
logarithmic level. Another approach to predicting the transverse momentum
distribution is the parton shower algorithm in Monte Carlo event generators.
Parton shower algorithms can simulate the soft and collinear emissions from
incoming and outgoing partons of the process. The logarithmic accuracy
of the parton shower algorithm is analyzed in this thesis. The numerical
comparison between the parton shower prediction and the resummation log-
arithmic accuracy is made accordingly.
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Chapter 1 Introduction

The Standard Model is the theory of elementary particles and their interac-
tions. There are two building blocks in the Standard Model, the electroweak
theory with spontaneous broken SU(2) × U(1) gauge group, and the non-
Abelian theory of quantum chromodynamics, or QCD, with unbroken SU(3)
gauge group. QCD describes the strong interactions between quarks and glu-
ons. It has been confirmed by various experimental tests ever since 1960’s.
One big success of QCD is the prediction of physics at colliders, which involve
various processes with strong interactions.

This chapter firstly gives a general description of the theory of QCD
in the Standard Model, including the QCD Lagrangian and one of its key
features, asymptotic freedom. The second part is an introduction to the
perturbative method of QCD, which is valid and responsible for the first
principle calculation of QCD at short distances.

1.1 QCD Symmetries and Lagrangian

The symmetry group of QCD is the non-Abelian SU(3) gauge group. The
group has eight generators, which correspond to the eight gauge bosons,
called gluons, of QCD. The gluon fields are octets under the SU(3) gauge
group.

QCD has an additional colour degree of freedom [1, 2], whose index is
denoted by i and carried by each of the six quarks. The quark fields with
colour indices are in fundamental representation of the local SU(3) group,
which is symmetry group of the colour degree of freedom. There are accord-
ingly three colors, say red, green, blue for i = 1, 2, 3. Quark fields are then
3-vectors under the local SU(3) group.

Another symmetry of QCD is the approximate symmetry of flavors, which
is however not exact. There are six flavors of quarks found till now, which
are called up (u), down (d), charm (c), strange (s), top (t) and bottom (b).
They are divided into three generations similar as the case of leptons. The
local symmetry of flavors is chiral and varies at different energy scales. It is
related to the number of massless flavors Nf at a certain scale.

The classical Lagrangian of QCD is

Lclassical = ψ̄iqi /Dijψ
j
q −mqψ̄

i
qψq,i −

1

4
F a
µνF

a,µν , (1)
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where ψiq is the quark field with colour index i, F a
µν is the gluon field strength

tensor with adjoint index a = 1, ..., 8 (the summation over a is understood),
and /Dij = γµD

µ
ij. The QCD covariant derivative Dµ is

Dµ = ∂µ − igst
aAaµ, (2)

where gs is the strong coupling, Aaµ is the gluon field, and the generators
ta = 1

2
λa with λa being the three-dimensional hermitian and traceless Gell-

Mann matrices of SU(3) (the summation over a is understood).
CF and CA are two important parameters in QCD originating from the

group structure. They are defined as∑
a

taijt
a
jk = CF δik, CF =

N2
c − 1

2Nc∑
ab

fabcfabd = CAδ
cd, CA = Nc.

(3)

where fabc is the structure constant of the adjoint representation of SU(3)
and Nc is the number of quark generations. They always show up as factors
in the colour summed matrix elements.

Since the gauge fields have an unphysical degree of freedom, to define
propagators of the gauge fields, one needs to add a gauge fixing term in the
QCD Lagrangian to eliminate the extra degree of freedom. The gauge fixing
term is of the general form

Lgauge fixing = − 1

2ξ
(∂µAaµ)2, (4)

where ξ is the gauge parameter. Physics is invariant under different choices
of ξ, even though the calculation can be quite different. The case of ξ = 1 is
known as Feynman gauge and the case of ξ = 0 is known as Laudau gauge.

Although physics is independent of ξ, this does not manifest itself in
a non-Abelian theory like QCD at the quantum level. To guarantee the
invariance, an additional so called ghost field and a corresponding ghost
term in the Lagrangian are introduced to the theory. The ghost term in the
QCD Lagrangian is

Lghost = c̄a(−∂2δac − gs∂
µfabcAbµ)cc, (5)

where ca is the ghost field and fabc is structure constant of the SU(3) adjoint
representation.
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Finally, the QCD Lagrangian is totally

LQCD = Lclassical + Lgauge fixing + Lghost. (6)

Having included all necessary ingredients, now the theory can be quantized
as usual and the Feynman rules are defined accordingly.

1.2 Asymptotic Freedom

Asymptotic freedom [3, 4] is one of the most important features of QCD. It
guarantees that QCD can be calculated perturbatively at high energy scales,
or equivalently short distances. This is because the energy scale dependent
running coupling of QCD is smaller and smaller when the energy scale goes
higher and higher, while the smallness of coupling ”constants” is the foun-
dation of perturbation theory.

To avoid ultraviolet divergences, QCD is renormalized according to the
renormalization theory. The renormalization group equations (RGE) are
given based on the variation of renormalization scales. They show explicitly
how physics changes with respect to the running of the energy scale. More
specifically, the differential equations of RGE are obtained by keeping the
bare couplings, i.e. couplings in the bare Lagrangian, or physical quantities
measured at the energy scale Q invariant under the arbitrarily chosen of
renormalization scale. The RGE of a physical quantity R is

[
µ2 ∂

∂µ2
+ β(αs)

∂

∂αs

− γm(αs)m
∂

∂m

]
R(
Q2

µ2
, αs,

m

Q
) = 0, (7)

where Q is the physical scale, µ is the renormalization scale, αs ≡ g2
s /4π,

γm(αs) is the anomalous dimension, and β(αs) is the beta function defined
as

β(αs) =
∂αs

∂lnµ2
. (8)

The β function illustrates how the coupling αs is dependent on the energy
scale µ. This is called the running behavior of αs. The beta function can be
expanded perturbatively

β(αs) = −αs

∞∑
n=0

βn
(αs

4π

)n+1
, (9)

3



where βn’s are computed order by order according to Feynman diagrams.
The first two terms of βn are

β0 =
1

3
(11CA − 2Nf ),

β1 =
2

3
(17C2

A − 5CANf − 3CFNf ),
(10)

which correspond to one-loop and two-loop diagrams respectively. Nf , CA
and CF in Eqs. (10) have been defined above as important coefficients of
QCD.

The minus sign in Eq. (8) is crucial. It gives the behavior of the coupling
decreasing as µ increasing. For example, the solution of Eq. (8) with only
the first order term β0 included is

αs(µ
2) =

αs(µ
2
0)

1 + (β0/4π)αs(µ2
0)ln(µ2/µ2

0)

=
4π

β0ln(µ2/Λ2
QCD)

,
(11)

where ΛQCD ≡ µ0e
−2π/(β0αs(µ20)) is the characteristic scale of QCD, at which

the coupling constant gs is of order one, say gs ∼ O(1). One can see clearly
the asymptotic free behavior of αs from this expression. Accordingly, the
non-perturbative region of QCD is Q . ΛQCD and the perturbative QCD
valid region is Q� ΛQCD.

Asymptotic freedom is unique for the non-Abelian theory. As an Abelian
gauge theory, for example, the coupling of QED is not asymptotic free. Fig.
1.2 shows running behaviors of interactions in the Standard Model.

1.3 Perturbative QCD

Although QCD is asymptotically free at high energy scales, its coupling is
stronger and stronger at low energy scales, which will invalidate the pertur-
bative argument. Due to the strong coupling strength at such scales, new
quarks and gluons will be easily created and all together form physically
observable particles, like hadrons. This phenomenon is called confinement,
which is another important feature of QCD.

Although confinement prevents us from calculating QCD processes using
solely the perturbative approach, the parton model [5, 6] can describe con-
finement of partons using parton distribution functions (PDF). Partons are
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Figure 1: Running couplings of the Standard Model: αs is the coupling of
QCD, α is the coupling of electromagnetic interaction, αw is the coupling of
weak interaction.

point-like particles in the parton model and are now interpreted as quarks
and gluons in the Standard Model. The PDF’s only depend on Bjorken
scaling variable [7, 8, 9], which is defined as

x ≡ −q
2

2p · q , (12)

where p is the momentum of hadrons and q is the transferred momentum
between hadrons and testing particles (for example lepton in deep inelastic
scattering (DIS)).

For hadron-hadron collisions, the total cross section of a process F can
be written in terms of the PDF’s and the so-called partonic or hard cross
section

σF
h1,h2

= Σa,b

∫ 1

0

dx1dx2fa/h1(x1)fb/h2(x2)σF
a,b, (13)

where h1 and h2 are incoming hadrons, a and b denote parton flavors, x1, x2

are Bjorken scaling variables, and σF
a,b is the partonic cross section for the

hard process F in ab channel. The parton distribution functions fa/h(x) are
universal for different processes. PDF’s can not be predicted perturbatively.
They are even difficult to be calculated using non-perturbative approaches

5



like lattice QCD. Thus the PDF’s are usually obtained directly from experi-
mental data.

Another difficulty of perturbative QCD is its infrared divergence. Most
of the QCD processes are IR divergent due to the zero mass of gluons. IR
divergences are not well defined even within the renormalized theory. How-
ever, certain methods of perturbative QCD can identify and regularize IR
safe quantities. For example, the theory of factorization [10] can systemati-
cally factorize short distance and long distance behaviors into different parts.
Then the IR safe quantities, which are independent of long distance behav-
iors, can be fully analyzed and calculated using perturbative approaches. The
factorization theory will be described in more detail for Drell Yan process in
the next chapter.
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Chapter 2 Drell Yan Process

Drell Yan process is the production of massive lepton pairs via the production
of electroweak vector bosons at hadronic colliders [11]. As the intermediate
vector bosons are timelike, they can also be produced as physical particles.
The process is important for the study of PDF and perturbative QCD. The
agreement between the experimental Drell Yan cross section and its parton
model prediction confirms the validity of parton model. The Drell Yan pro-
cess has large production rates and clear signatures at hadronic colliders.
Thus it can provide good experimental information on the PDF’s.

According to the parton model, the produced lepton pairs of Drell Yan
process are given by the annihilation of quark antiquark pairs coming from
hadrons at the collider. Fig. 2 shows the structure of such an interpretation.
The total cross section can be then written regarding the PDF

σV
h1h2

= Σab

∫ 1

0

dx1

∫ 1

0

dx2fa/h1(x1)fb/h2(x2)σ̂V
ab, (14)

where the superscript ’V’ denotes the vector boson production of Drell Yan
process, σ̂V

ab is partonic or hard process cross section, fa/h1(x) and fb/h2(x) are
the universal PDF’s, which can be extracted from the data of deep inelastic
scattering (DIS). The hard process of Drell Yan can be calculated using
perturbative QCD, although certain non-perturbative effects need to be taken
into consideration. The factorization theorem guarantees that the inclusive
partonic cross section is infrared safe.

The Born level cross section is purely electroweak, however, important
QCD corrections arise from higher order diagrams of the hard process. Up
to now, the QCD corrections have been calculated up to the next-to-next-
to-leading order (NNLO) accuracy [12, 13].

The transverse momentum differential cross section of the produced vec-
tor bosons for Drell Yan process is an important distribution. It reveals
collinear and soft structure of the semi-inclusive cross section.

This chapter firstly introduces the mechanism of Drell Yan process and its
kinematic structure. The second section is a description of the factorization
theorem for Drell Yan process. Then finally, we compute the NLO transverse
momentum differential cross section of Z the boson. The result will show
explicitly the appearance of logarithmic divergences in the semi-inclusive
cross section, which is the main problem to be solved in the next two chapters.

7



Figure 2: Drell Yan process in the parton model. The hard process in this
figure is at leading order (LO) with γ being the intermediate state.

2.1 Drell Yan Mechanism

The mechanism of Drell Yan process is denoted as

h1(pA) + h2(pB) → q(p1) + q̄(p2) +X1

→ γ∗/Z/W (q) +X2

→ l(k) + l′(k′) +X2,

(15)

where ll′ are l+l− for γ∗ and Z, while are lν for W . Momenta of the quark
anti-quark pair are related to the hadron momenta as p1 = x1pA, p2 =
x2pB. The decay of electroweak bosons into lepton pairs is purely electroweak
process and the momentum is conserved as q = k + k′. Invariant mass of
the lepton pair is defined as Q2 = (k + k′)2, which is an important variable
measured by experiments. Q2 is also the virtuality of the vector bosons as
Q2 = q2 and Q2 > 0 since the vector bosons are timelike.

A typical scaling factor for Drell Yan process is τ = Q2/s, where s =
(pA + pB)2 is the Mandelstam variable. Another important variable is called
rapidity and is defined as

y ≡ 1

2
ln
(q · pA

q · pB

)
. (16)

Then the Bjorken scaling variables can be written as x1 = Q√
s
ey, x2 = Q√

s
e−y.

8



Since the decay rates of vector bosons are fairly small, the Drell Yan
process can be regarded as the production of these effectively stable bosons
multiplied by their branching ratios to different lepton pair final states.

The diagram for the process at Born level has been shown in Fig. 2. The
total cross section of the Z production is [14]

σ
(0)
qq̄→Z =

π

3

√
2GFM

2
Z(V 2

q + A2
q)δ(ŝ−Q2), (17)

where ŝ ≡ (p1 + p2)2 = x1x2s.

2.2 Factorization of Drell Yan Process

Factorization theory of perturbative QCD is the field theory version and
generalization of parton model. It is firstly used in the deep elastic scattering
(DIS) process [10]. And it has been proved to be a general feature of the
hard processes in QCD [15]. The basic idea of factorization is to absorb all
the collinear and soft divergences arising in the QCD hard processes into the
PDF’s. One can do this since IR divergences will cancel with each other
when all the divergent diagrams have been added into the inclusive cross
section. The PDF’s derived in this way will depend on an energy scale µF,
which is called the factorization scale. The PDF will evolve with respect to
this scale and the evolution equations are derived from the convolution of
contributions from different divergent diagrams.

The next leading order contributions at O(αs) for the Drell Yan process
include all the diagrams shown in Fig. 3. Soft divergences are given by the
zero-mass of gluons in all the next-to-leading diagrams. Collinear divergences
are given by the splitting of initial states shown in Fig. 3(b) and Fig. 3(c).

According to the first order factorization theorem for Drell Yan process,
the collinear divergences will be cancelled when all the diagrams at this order
are added. The contributions all together give rise to the scale dependent
parton distributions fa/h(x, µ

2
F). The explicit formula of the scale dependent

PDF’s depend on different factorization schemes, in which singularities are
absorbed in different ways. Based on this, the inclusive cross section should
be written as

dσV
h1h2

= Σab

∫ 1

0

dx1

∫ 1

0

dx2fa/h1(x1, µ
2
F)fb/h2(x2, µ

2
F)σ̂V

ab, (18)

instead of the original parton model formula in Eq. (14).

9



Figure 3: Leading order and next leading order diagrams for Drell Yan pro-
cess [23].

Evolution equations of PDF’s with respect to the factorization scale are
called Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations (DGLAP)
[16, 17]. The differential equations are

µ2dfa/h(x, µ
2)

dµ2
=
∑
b

∫ 1

x

dξ

ξ
Pab
(x
ξ
, αs(µ

2)
)
fb/h(ξ, µ

2), (19)

where Pab(
x
ξ
, αs(µ

2)) is the evolution kernel and can be expanded and calcu-
lated perturbatively.

2.3 Transverse Momentum Distribution

There are two sources of vector bosons’ non-zero transverse momentum qT

for Drell Yan processes. Firstly, transverse momentum of partons confined
in the initial hadrons, which is called intrinsic transverse momentum, can
give non-zero qT to vector bosons. This effect is non-perturbative and thus
only manifested in the kinematic region of Q2 � q2

T ∼ Λ2
QCD. It can be easily

described by a Gaussian-type intrinsic qT distribution [14], or by a more com-
plex formalism called transverse momentum dependent (TMD) factorization
of QCD [23, 24], which is an updated version the factorization formula Eq.
(18).

Another source of qT is the QCD correction of hard processes, for ex-
ample the NLO diagrams shown in Fig. 4. Such corrections can give large

10
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Figure 4: NLO corrections to qq̄ → Z: real emission of gluons

qT to the produced vector bosons. However, fixed order calculation of these
corrections will give logarithmic dependence to the differential cross section.
The logarithmic dependence arises from the soft and collinear singularities of
the hard process kinematics and will ruin the perturbative expansion as qT

becomes small. This problem can be solved by the summation of logarithmic
contributions. Such a method is called transverse momentum resummation.

Fixed order QCD corrections to the transverse momentum distribution
for Drell Yan process have been known up to the next-next-to-leading order
(NNLO) accuracy [18, 19, 20]. We firstly calculate the NLO corrections to
the transverse momentum differential cross section in this section, which will
show the logarithmic dependence explicitly. And in the next chapter, discuss
the resummation method with more details.

The real emission of gluons at NLO with Z boson as the intermediate
state shown in Fig. 4 is a two-to-two scattering. In the center of mass (CM)
frame

dσqq̄→Zg =
1

2Eq2Eq̄|vq − vq̄|
1

(2π)2
|Mqq̄→Zg|2

d3pZd
3pg

2EpZ2Epg
δ(4)(pq + pq̄ − pZ − pg).

(20)

With the rapidity defined in Eq. (16), the four momentum of the Z boson
can be written as

q = (mTcoshy,qT,mTsinhy), (21)

11



where mT =
√
q2

T +Q2 is the transverse mass. Accordingly d3q = πq0dq2
Tdy.

Define new Mandelstam variables of the hard process:

ŝ = −(pq + pq̄)
2, û = −(pq − q)2, t̂ = −(pq̄ − q)2. (22)

According to Eq. (21) and Eq. (22),

d3pZ

2EpZ
· d

3pg

2Epg
δ(4)(pq + pq̄ − pZ − pg)

=
π2

4
dq2

Tdy · dûdt̂ · δ(ŝ+ û+ t̂−Q2)δ(ŝk2
T − ût̂)

=
π2

4
dq2

TdQ
2 dûdt̂

û− t̂ δ(ŝ+ û+ t̂−Q2)δ(ŝk2
T − ût̂).

(23)

Then the transverse momentum differential cross section reads

dσqq̄→Zg
dQ2dq2

T

=
1

32ŝ

∫
|Mqq̄→Zg|2δ(ŝ+ û+ t̂−Q2)δ(ŝq2

T − ût̂)
dûdt̂

û− t̂ .
(24)

Matrix elements of the real emissions are calculated according to the
Feynman diagrams in Fig. 4. |Mqq̄→Zg|2 is the unpolarized and spin summed
squared amplitude, say |Mqq̄→Zg|2 = |M|2/4 where

iM =
−iggW

2cosθW

ε∗µ(q)ε∗ν(kg)v̄(p2)

[
γν

1

/p1 − /q
γµ + γµ

1

/p1 − /kg
γν
]
(Vq − Aqγ5)u(p1),

(25)

in which Vu = 1
2
− 4

3
sin2θw, Au = 1

2
, Vd = −1

2
+ 2

3
sin2θw, Ad = −1

2
and

sin2θw = 0.23126 [21]. Then

1

4
|M|2 =

g2g2
W

2cos2θW

(V 2
q + A2

q)
{[

(1− µ2

û
)(
Q2

û
− 1)− ŝ

û

]
+
[
(1− µ2

t̂
)(
Q2

t̂
− 1)− ŝ

t̂

]
+ 2

ŝ

ût̂
(Q2 + µ2)

}
,

(26)

where µ is the virtuality of gluons. Take µ = 0,

1

4
|M|2 = 24σ

(0)
qq̄→Zαs

(Q4 + ŝ2

ût̂
− 2
)
, (27)

where σ
(0)
qq̄→Z = π

3

√
2GFm

2
Z(V 2

q + A2
q) is the Born level total cross section for

Drell Yan process.
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Now plug the matrix element in Eq. (27) into Eq. (24) and integral over
dQ2, the transverse momentum differential cross section reads

dσqq̄→Zg
dq2

T

=
3

4
σ

(0)
qq̄→Z · αs

∫
(ŝ+ û)2 + (ŝq2

T/û+ ŝ)2

ŝ2q2
T(û− ŝq2

T/û)
dû

≡3

4
σ

(0)
qq̄→Z · I(q2

T, αs).

(28)

In the limit of ŝq2
T � Q2,

I(q2
T, αs) ≈αs

2

ŝq2
T

∫ Q2

q2T

[
1 +

ŝ

û
+

1

2

û

ŝ

]
dû

=αs
2

ŝ

[
ŝ

q2
T

ln(
Q2

q2
T

) +
(
1 +

4ŝ

Q2

)Q2

q2
T

− 1− q2
T

4ŝ

]
.

(29)

Fig. 5 is the qT distribution prediction with leading QCD real emissions
at E = 14TeV hadron collider calculated according to the above formula.

The feynman diagram of the leading order virtual corrections is shown in
Fig. 6. The matrix element is accordingly

iMV =
αs

2π

∫ 1

0

dx

∫ 1−x

0

dz
[
log
( zµ2

zµ2 − x(1− x− z)q2

)
+

(1− x)(x+ z)q2

zµ2 − x(1− x− z)q2

]
(
−igW

2cosθW

)ε∗µ(q)v̄(p2)γµ(Vq − Aqγ5)u(p1)

(30)

where ∆ = zµ2−x(1−x−z)q2−z(1−z)p2
1. The amputation of the external

legs have been considered. Write

F (Q2,αs) =
αs

2π

∫ 1

0

dx

∫ 1−x

0

dz
[
log
( zµ2

zµ2 − x(1− x− z)q2

)
+

(1− x)(x+ z)q2

zµ2 − x(1− x− z)q2

]
,

(31)
then the function F (Q2, αs) can be regarded as QCD correction to the elec-
troweak coupling constant. Up to the first order of g2, i.e. αs, the unpolarized
and spin summed squared amplitude is

1

3
|MV|2 = F (Q2, αs) ·

4

π
ŝσ

(0)
qq̄→Z . (32)
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Figure 5: NLO qT distribution of qq̄ → Z at 14TeV
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Figure 6: NLO corrections to qq̄ → Z: virtual gluons

14



Using the relation d3q = πq0dq2
Tdy, where y is the rapidity of Z boson,

the differential cross section of the virtual correction is

dσV

dq2
T

=
π

4ŝ

∫
1

3
|MV|2δ(mTe

y − Ex1)δ(mTe
−y − Ex2)δ(q2

T)dy

=σ
(0)
qq̄→ZF (Q2, αs)δ(q

2
T)δ(Q2 − ŝ).

(33)

Divergence of the function F (Q2, αs) in the limit µ → 0 occurs when
z ≈ 1, x ≈ 0. Near such a divergent region, the dominant part of F (Q2, αs)
is then [22]

F (Q2,αs) ≈
αs

2π

∫ 1

0

dx

∫ 1−x

0

dz
q2

µ2 − x(1− x− z)q2

=
αs

2π

∫ 1

0

dx

∫ 1

0

dξ
(1− x)q2

µ2 − x(1− x)(1− ξ)q2

≈αs

2π

∫ 1

0

dx

∫ 1

0

dξ
q2

µ2 − x(1− ξ)q2

=− αs

2π

∫ 1

0

dx
[1

x
ln

1

x
+

1

x
ln
µ2

Q2

]
.

(34)

Summing over the real and virtual contributions, the total transverse
momentum distribution at NLO, i.e. up to the first order of αs, for Drell Yan
process is then

d(σV + σR)

dq2
T

= σ
(0)
qq̄→Z

[3
4
I(Q2, αs) + F (Q2, αs)δ(Q

2 − ŝ)δ(q2
T)
]
. (35)

In the region of q2
T ∼ Q2, the virtual correction gives no contribution due to

the delta function δ(q2
T). Thus in this region,

d(σV + σR)

dq2
T

∣∣∣∣
high qT

=
3

4
σ

(0)
qq̄→ZI(Q2, αs). (36)

However in the region of q2
T � Q2, the delta function contributes and then

15



the total contribution is approximately

d(σV + σR)

dq2
T

∣∣∣∣
low qT

≈ σ
(0)
qq̄→Z

3αs

2ŝ

[
ŝ

q2
T

ln(
Q2

k2
T

) +
(
1 +

4ŝ

Q2

)Q2

q2
T

− 1− q2
T

4ŝ

− ŝ

3π
δ(Q2 − ŝ)δ(q2

T)

∫ 1

0

dx
(1

x
ln

1

x
+

1

x
ln
µ2

Q2

)]
= σ

(0)
qq̄→Z

3αs

2Q2

[
Q2

q2
T

ln(
Q2

q2
T

) + 5
Q2

q2
T

− 1− q2
T

4Q2

− 1

3π
δ(
q2

T

Q2
)

∫ 1

0

dx
(1

x
ln

1

x
+

1

x
ln
µ2

Q2

)
δ(Q2 − ŝ)

]
= σ

(0)
qq̄→Z

3αs

2Q2

([Q2

q2
T

ln
Q2

q2
T

]
+

+ 5
[Q2

q2
T

]
+
− 1− q2

T

4Q2

)
,

(37)

where the plus distribution for a function f(x) with a singular point at 0 is
defined as

f(x)+ = f(x)− δ(x)

∫ 1

0

f(y)dy. (38)

Such a plus distribution will give a finite result when integral over q2
T.
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Chapter 3 Transverse Momentum Resummation

According to the fixed order calculation in the last chapter, logarithmic terms
arise in the transverse momentum differential cross section for Drell Yan
process. More explicitly, each perturbative term of the differential cross
section for DY process will always be proportional to αNs ln(Q2/q2

T)n with
n = N + 1, ..., 2N −1, which makes the perturbative expansion invalid in the
region of very small qT. This is a common problem shared by all QCD hard
processes with high Q. Transverse momentum resummation can solve the
problem by summing over logarithmic contributions into an exponentially
form factor, which is non-singular as qT → 0.

Resummation is firstly proposed in [25], where only the leading loga-
rithmic contribution, i.e. terms of the type αNs (lnM2/p2

T)2N−1 for a specific
perturbative order N , is summed over. Such an approximation is called
double-leading-logarithm approximation (DLLA) and the resummation for-
mula is called DDT formalism.

To sum over logarithms to higher levels, it is convenient to do the resum-
mation in b-space, which is the Fourier conjugate space of qT and called the
impact parameter space.

A complete resummation formalism, which can resum all orders of loga-
rithms, is given by [29]. The formalism used the back-to-back jets technique
developed earlier [30].

One problem with the formalism in [30] is that the Sudakov form factor is
not universal for different processes. The formalism proposed in [35, 36] sep-
arates the part which is universal for all processes and the process-dependent
part.

In this chapter, we firstly describe briefly the DDT’s formalism and the
approach used by Collins and Soper. Then we discuss the pros and cons of
resummation in qT-space and b-space. Finally, we give the formalism in [35],
which is the formula we are going to use in the calculation in Chapter 5.

3.1 DDT Formula

The leading logarithmic approximation (LLA) made in the DDT formulism
of transverse momentum resummation [25] is in the kinematic region of

αs(µ
2)

π
� 1,

αs(µ
2)

π
ln
q2

T

µ2
∼ 1, (39)
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Figure 7: Ladder structure of the soft and collinear emissions for Drell Yan
Process

where µ is the soft scale of the process. In this case, within all the logarithmic
terms (αs/π)N ln(Q2/q2

T)n with n = N+1, ..., 2N−1 for a fixed order N , only
the term (αs/π)N ln(Q2/q2

T)2N−1 will give large contributions at very small
qT. Accordingly, other terms can be neglected based on the perturbative
argument and only the leading logarithmic term needs to be resummed.

The planar gauge is used in the DDT’s formula. Under planar gauge, the
gluon propagator is

Gµν =
dµν(k)

k2 + iε
, dµν(k) = gµν −

kµcν + kνcµ
k · c , (40)

where
cµ = Aqµ +Bpµ, A/B ≈ 1, (41)

with p and q defined in Eq. (12). It is proved that using planar gauge,
leading logarithmic terms of the type (αs/π)N ln(Q2/q2

T)2N−1 originate from
the highly ordered kinematic structure of soft and collinear emissions.
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Introduce Sudakov variables αi and βi of the emission process

kiµ = αip1µ + βip2µ + kiTµ, (42)

where p1 and p2 are momenta of the colliding partons, ki is momentum of
the i’th emitted parton and kiT is its transverse component. Then the highly
ordered kinematic structure is parametrized as

1 ≥ ...α2n+1 ≥ ... ≥ α1 = x1,

1 ≥ ...β2m ≥ ... ≥ β2 = x2.
(43)

Such a phase space corresponds to the ladder structure of the Feynman di-
agrams for squared matrix elements. Fig. 7 is a typical ladder diagram for
Drell Yan process.

Based on the highly ordered structure, the integration over phase space
can be fully factorized. And the ladder diagrams can be calculated easily with
such factorized integration. Summing over contributions from these ladder
diagrams, the leading logarithmic terms are resummed into an exponential
Sudakov form factor. The partonic differential cross section given by DDT
formalism is finally

dσ

dq2
T

= σ(0)CF
αs
π

ln(ŝ/q2
T)

q2
T

exp
(
− CF

αs
2π

ln2 ŝ

q2
T

)
δ(ŝ−Q2). (44)

To fully factorize the highly ordered phase space, several other approxi-
mations are made in DDT formalism [26]. Firstly, the non-trivial energy con-
servation and transverse momentum conservation constraints on the phase
space are ignored. Secondly, although the upper limits of Sudakov variables
depend on ŝ and q2

T explicitly, they are all set to be 1 to simplify the calcula-
tion. To give higher accuracy of the resummation, these approximations need
to be released. The b-space resummation proposed in [27, 28] can solve the
problem of transverse momentum conservation and give better kinematics.
Also, because of the existence of a saddle point b? in b-space resummation
formalism, the behavior at the point of qT ' 0 is controlled by the saddle
point and thus is computable [27] for very large Q.

3.2 Resummation from Back-to-back Jets

The DDT formalism can only resum the leading logarithmic contributions.
Several modifications and developments are made afterwards. The most
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complete formalism, which can resum all orders of logarithms, is given by
[29]. The formalism is based on the the back-to-back jets technique developed
earlier [30].

Contributions from large and small qT are separated in [29]. The domi-
nant contribution at small qT region needs to be resummed while the other
part is only important when qT ∼ Q. The total differential cross section then
has the general formula as

dσ

dQ2dq2
Tdy
∼ 4π2α2

9Q2s

{
(2π)−2

∫
d2beiqT·bW̃ (b;Q, xA, xB)+Y (qT;Q, xA, xB)

}
,

(45)
where xA and xB are Bjorken variables of the colliding hadrons A and B. The
first term is the resummation part, which is calculated in the b-space. The
second term is the large qT part, which contains no logarithmic contribution
and can be neglected in the small qT region.

The large qT contribution Y (qT;Q, xA, xB) is extracted from regular part
of the the factorization formula

dσ

dQ2dq2
Tdy

=
4π2α2

9Q2s

∑
a,b

∫ 1

xA

dξA
ξA

∫ 1

xB

dξB
ξB

fa/A(ξA;µ2
F)fb/B(ξB;µ2

F)

Tab(qT, Q;xA/ξA, xB/ξB;αs(µ
2
F), µF),

(46)

which is valid with qT integrated or in the large qT region. One trick is that
the variable qT in the explicit expression of Y is replaced by [q2

T + (qmin
T )2]1/2

to cut off certain weak singularities as qT → 0. qmin
T is chosen to be a small

non-zero value.
Matching between small and large qT contributions is needed. The match-

ing is implemented as follows. Firstly in the large qT region, the resummed
part W̃ will have the ordinary factorization formula but only its singular
part. Then W̃ and Y together will give rise to the total factorization result.
While in the small qT region, contribution from Y is negligible compared to
W̃ and then the resummation formula of W̃ alone is required to be a good
approximation to the cross section.

The formula for W̃ is derived separately in the b-space region b � 1/Λ
and b ≥ 1/Λ. Then the two parts are joined together based on an evolution
equation of W̃ with respect to Q2.

When b� 1/Λ, which corresponds to the large qT region, W̃ is given by
singular part of the factorization formula (46). Moreover, W̃ obeys an evo-
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lution equation due to its convolution with PDF’s. The differential equation
is

∂

∂lnQ2
W̃ (b;Q, xA, xB) =−

[ ∫ C2
2Q

2

C2
1/b

2

dµ̄2

µ̄2
A(αs(µ̄);C1) +B(αs(C2Q);C1, C2)

]
× W̃ (b;Q, xA, xB),

(47)

where C1 and C2 are dimensionless variables. According to this evolution
equation and the singular part of the factorization formula, W̃ has a general
form

W̃ (b;Q, xA, xB) =
∑
a,b

∫ 1

xA

dξA
ξA

∫ 1

xB

dξB
ξB

fa/A(ξA;µ2
F)fb/B(ξB;µF)

× exp
{
−
∫ C2

2Q
2

C2
1/b

2

dµ̄2

µ̄2

[
ln(C2

2Q
2/µ̄2)A(αs(µ̄);C1) +B(αs(C2Q);C1, C2)

]}
×
∑
j

e2
jCja(xA/ξA, b;Qb, αs(µF), µF)Cjb(xB/ξB, b;Qb;αs(µF), µF),

(48)

where the exponential term is the Sudakov form factor and the Cia’s are
coefficient functions. Factors A(αs(µ̄);C1), B(αs(C2Q);C1, C2) and coeffi-
cients Cja(xA/ξA, b;Qb, αs(µF), µF) can all be expanded perturbatively over
αs. The inclusion of different perturbative orders corresponds to different
levels of logarithmic resummation.

In the region of b ≥ 1/Λ, W̃ obeys the same evolution equation. But
now the factors A and B also depend on quark masses. Moreover, extra
constants will arise when doing integration of the evolution equation. But
it has been prove that when Q is large enough, the integration over b in Eq.
(45) is dominated by contributions from small b. There is a saddle point b∗
for W̃ as the function of b. The integration is then dominated by such a
saddle point. For example, if only including leading term of the factors A
and B in Eq. (48), the saddle point is

b∗ =
1

Λ

(Q
Λ

)−A(1)/[A(1)+β1] ≈ 1

Λ

(Q
Λ

)−0.41
, (49)

where A(1) is the first order coefficient of A and β1 is the first order β-function.
Then if Q is large enough, b∗ will be much smaller than 1/Λ, in which case
the contribution from large b can be neglected.
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One advantage of performing resummation in b-space is the existence of
such a saddle point. In the qT resummation formula, the point qT = 0 is
singular and not calculable. However, in b-space, the point of qT = 0 corre-
sponds to large b region. Then the point of qT = 0 can be calculated based
on such a saddle point argument. Also, as is stated above, the Fourier trans-
formation naturally give the conservation of transverse momentum. Thus
the b-space resummation gives better kinematics.

However, there are also several disadvantages to perform resummation in
the b-space. Firstly, the differential cross section is separated into two parts,
which account for the behavior in low qT and high qT region respectively.
Thus one in fact needs to use the resummation formalism in low qT region,
the fixed order calculation in high qT region, and in the intermediate region,
perform a matching procedure between the fixed order and resummation to
give the exact result. On the other hand, some qT-space resummation can
give unified formula valid for the whole kinematic region [31]. Moreover, while
in the qT-space resummation, non-perturbative effects are only manifested
at very low qT, the b-space resummation formalism needs to include non-
perturbative effects in the whole b space, as it is the Fourier transformed
space of qT.

3.3 A formalism with Universal Form Factor

Both form factor and coefficient function of the resummation formalism in
Eq. (48) are in fact process dependent [33, 34], although the form factor
is usually supposed to be or regarded to be universal. A new formalism
proposed in [34, 35] separates the part which is universal for all processes
and the process-dependent part and finally give a more concrete way to do
the resummation.

As usual, the differential cross section is written in the factorization for-
mula Eq. (18) and the partonic cross section is divided into the resummation
part and finite part

dσ̂F
ab

dq2
T

=

[
dσ̂

F,(res.)
ab

dq2
T

]
l.a.

+

[
dσ̂

F,(fin.)
ab

dq2
T

]
f.o

, (50)

where the subscript l.a. and f.o. denotes that the resummation and finite
part calculation is done at fixed logarithmic accuracy (LL, NLL for example)
and fixed perturbative order respectively in practice.
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Since the finite part does not contain logarithmic divergent contributions,
the way used in [35] to obtain the finite part is by subtracting resummation
component from the total fixed order differential cross section. Then[

dσ̂
F,(fin.)
ab

dq2
T

]
f.o

=

[
dσ̂F

ab

dq2
T

]
f.o

−
[
dσ̂

F,(res.)
ab

dq2
T

]
f.o

, (51)

where the resummation component at a fixed order is given by identifying
terms of fixed order αs in the resummation results. Explicit expressions of
[dσ̂

F,(res.)
ab /dq2

T]f.o can be found in ref. [35]. There’s one more constraint set to
the finite part, say

lim
QT→0

∫ Q2
T

0

dq2
T

[
dσ̂F

ab

dq2
T

]
f.o

= 0. (52)

This constraint ensures that the perturbative contribution proportional to
δ(q2

T) has been excluded from the finite part. This is required to avoid double
counting since the resummation part includes the delta contribution.

The resummation is done in the impact parameter space and the re-
summation partonic cross section is accordingly written as (subscript l.a. is
understood)

dσ̂
F,(res.)
ab

dq2
T

(qT, Q, ŝ;αs, µ
2
R, µ

2
F) =

Q2

ŝ

∫ ∞
0

db
b

2
J0(bqT)WF

ab(b,Q, ŝ;αs, µ
2
R, µ

2
F),

(53)
where αs ≡ αs(µ

2
R), J0(x) is the zeroth order Bessel function. The µR de-

pendence of dσ̂
F,(res.)
ab /dqT comes from the running coupling while the µ2

F

dependence comes from the factorization.
Define a new scaling factor z = Q2/ŝ. Then it is convenient to perform

the Mellin transform to transfer WF
ab from z-space into its conjugate N -

space. Related factors are all written as functions of N later. The Mellin
transformation is

WF
ab,N(b,Q;αs, µ

2
R, µ

2
F) =

∫ 1

0

dzzN−1WF
ab(b,Q,Q

2/z;αs, µ
2
R, µ

2
F). (54)

The N -components WF
ab has a general formula as

WF
ab,N(b,Q;αs, µ

2
R, µ

2
F) =

∑
{I}

HF,{I}
ab,N (Q,αs;Q

2/µ2
R, Q

2/µ2
F, Q

2/M2)

exp
{
G{I}N (αs, L;Q2/µ2

R, Q
2/M2)

}
,

(55)
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where L ≡ lnM
2b2

b20
, b0 = 2e−γE and the sum over {I} denotes summation

over a series of indices. A new scale M is introduced to parametrize an
arbitrariness arising from the factorizing between constant and logarithmic
terms [40]. As is indicated by the superscript, function G{I}N is independent

of the specific process F and the partonic channel ab while HF,{I}
ab,N is process

dependent.
The form factor G{I}N in the general form (55) does the resummation of

large logarithms, which is reflected by it’s dependence on the variable L. It
can be expanded perturbatively as

G{I}N (αs, L;Q2/µ2
R, Q

2/M2) =Lg(1),{c}(αsL) + g
(2),{c}
N (αsL;Q2/µ2

R, Q
2/M2)

+
+∞∑
n=3

(αs

π

)n−2
g

(n),{I}
N (αsL;Q2/µ2

R, Q
2/M2).

(56)

This form factor also has a formula similar to the Sudakov form factor Sc

G{I}N (αs, L;Q2/µ2
R, Q

2/M2) = −
∫ M2

b20/b
2

q2

dq2

[
A{c}(αs(q

2))ln
Q2

q2
+B̃N,{I}(αs(q

2))
]
,

(57)
where A{c}(αs) is the same as the factor A(αs) of Sc in Eq. (48), however
the coefficient B̃N,{I}(αs) is different from B(αs) in the sense that it contains
extra information of the PDF convolution. Accordingly, the explicit forms of
B̃N,{I}(αs) can be derived from Sudakov form factors and parton anomalous

dimensions. The perturbative coefficients g
(n),{I}
N ’s in Eq. (56) are obtained

from the perturbative expansion of factors in Eq. (57).

The newly introduced coefficient functionHF,{I}
ab,N in Eq. (55) contains both

the information of PDF convolution and all the process dependence which is
extracted from the non-universal Sudakov form factor in the old form (48).
It does not contain logarithmic terms and is independent of L accordingly.
It is written perturbatively

HF,{I}
ab,N (Q,αs;Q

2/µ2
R, Q

2/µ2
F, Q

2/M2)

= σ
(0)
F←{cc̄}(αs, Q)

[
1 +

αs

π
H(1)
N,{cc̄}←ab(Q

2/µ2
R, Q

2/µ2
F, Q

2/M2)

+
+∞∑
n=2

(αs

π

)nHF,(n)
N,{I}←ab(Q

2/µ2
R, Q

2/µ2
F, Q

2/M2)

]
,

(58)
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where σ
(0)
F←{cc̄} is the Born level partonic cross section of process cc̄→ F .

To give kinematic corrections for large-qT, the variable L is replaced by
L̃, which is defined as

L̃ ≡ ln(
Q2b2

b2
0

+ 1). (59)

In the region Qb � 1, i.e. qT � Q, L̃ = L + O(1/(Qb))2 ≈ L. Thus the
replacement has no effect in this region. While when Qb� 1, i.e. the large qT

region, L̃→ 0 and then exp{G{I}N (αs, L)} → 1, which means the logarithmic
resummation effects are reduced.

There is a singularity in the resummation form factor G{I}N (αs, L), which
is at the point of λ ≡ β0αsL/π = 1, i.e. b2 = (b2

0/M
2)exp(π/(β0αs)). This

singularity originates from the divergence of running coupling αs(q
2) near the

Landau pole. It is also the onset point of non-perturbative effects, after which
the non-perturbative corrections need to be included. There are many pre-
scriptions to regularize such singularities, one of which is the b∗ prescription
described in the last section. One can also extend the Fourier transformation
of b into its complex plane and choose specific contour to avoid the pole. This
is called ’minimal prescription’ [38, 39]. We will describe this in more detail
in chapter 5.

25



Chapter 4 Parton Shower Algorithms

Transverse momentum resummation can solve the problem of logarithmic
divergence of semi-inclusive differential cross section for QCD processes. But
it can only be applied to the calculation of differential cross sections. Another
way to solve the problem is simulating a succession of soft and collinear QCD
emissions from the incoming and outgoing partons of a process using Monte
Carlo method. Such an algorithm is called a parton shower (PS).

A parton shower is mainly used in Monte Carlo event generators, like
Herwig++ [51], Pythia 8 [52] and SHERPA [53], which is a general-purpose
method to make QCD predictions for LHC. As is stated in the first chapter,
there are both perturbative effects at short distance and non-perturbative
effects at long distance of QCD. Thus the General Purpose Monte Carlo
(GPMC) event generators have both approaches to long distance physics
and short distance physics, for example the hadronization models and soft
hadron-hadron models dealing with long distance QCD [54]. Parton shower
is its main algorithm used for the short distance QCD.

This chapter is an introduction to basics of the parton shower algorithm.

4.1 Final State Radiation

As is stated in the resummation chapter, the leading contribution to the
logarithmic divergence arising from the soft and collinear QCD emissions
is the kinematic region where the hardness and/or angle of the radiation
are highly ordered. The final state radiation (FSR) of parton shower is the
simulation of such radiation from the final state partons.

Each splitting of FSR is labeled by the highly ordered measurable hard-
ness or angle, which is parametrized as the order variable. Order variables
can be either the virtuality of a parton, or the relative transverse momentum
or angle between partons before and after the splitting. The virtuality of a
parton is defined as

t = E2z(1− z)(1− cosθ) ≈ z(1− z)E2 θ
2

2
, (60)

where E is energy of the parton before splitting, z and 1 − z are energy
fractions carried by partons after splitting, θ is the relative angle. The relative
angle is fairly small in the dominant collinear region. The relative transverse
momentum is

q2
T ≈ z2(1− z)2E2θ2 (61)
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in the small angle limit. It is easy to see that the strong ordering in these
variables are all equivalent in the dominant region with small angle limit.
However, there is a significant difference between the virtuality and trans-
verse momentum being the ordering variable as z becoming small. Thus the
differences between choices of ordering variables arises when radiation is soft
but with large splitting angle, which is the next leading contribution to the
logarithmic divergence.

Each intermediate line of the succession of soft and collinear emissions is
associated with a factor. The final differential cross section for the process
is obtained by multiplying the leading order differential cross section by all
such factors. For example, use virtuality as the ordering variable, the factor
for each intermediate line is

∆i(t, t
′)
αs(t)

2π
Pi,jk(z)

dt

t
dz
dφ

2π
, (62)

where Pi,jk(z) is the Altarelli-Parisi splitting function, i and jk corresponds
to the incoming and outgoing partons respectively. ∆i(t, t

′) is the familiar
Sudakov form factor

∆i(t, t
′) = exp

{
−
∫ t′

t

dq2

q2

αs(q
2)

2π

∫ 1−t/q2

t/q2
dz
∑
jk

Pi,jk(z)

}
∼ exp

{
− CF

αs
2π

ln2 t
′

t

}
,

(63)

which corresponds to the DLLA or LL accuracy of the Sudakov form fac-
tor in resummation formalism. Thus the basic shower algorithm includes
all the leading logarithmic corrections. The factor dt/t in Eq. (62) is the
parametrization of phase space using order variable. If using the relative
angle or transverse momentum as order variable, dt/t needs to be replaced
by corresponding expressions according to the equivalent relation

dt

t
=
dq2

T

q2
T

=
dθ2

θ2
(64)

of ordering variables.
Throughout the evolution of FSR, the momentum, or the absolute value

of virtuality, is transferred down from the hard scale to low scales like the
factorization scale of partons. Ending of the splitting is also parametrized by
the ordering variable, for example the infrared cutoff of virtuality t0, which
is defined by the shower hadronization scale or the width of an unstable
particle.
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4.2 Initial State Evolution

Incoming partons can also radiate before entering the hard process. Simu-
lation of such QCD radiations is the initial state radiation (ISR) of parton
shower. ISR can also give non-zero transverse momentum to partons but the
corresponding virtuality is negative.

Different from FSR, ISR is base on a backwards-evolution algorithm [55].
The backward-evolution Sudakov form factor is

∆ISR
i (t, t′) = exp

{
−
∫ t′

t

dq2

q2

αs(q
2)

2π

∫ 1

x

dz

z

∑
jk

Pi,jk(z)
fj(q

2, x/z)

fi(q2, x)

}
. (65)

This is given by considering the ratio between PDF’s before and after a
splitting. Such evolution of PDF’s can be controlled by the DGLAP equation
introduced in chapter 2.

ISR also gives the leading logarithmic contribution, which is in the collinear
dominant region. However in contrast to the FSR, the absolute value of vir-
tuality is transferred from the low factorization scale up to the hard scale of
the process.

4.3 Large Quark Mass Effects

In a parton shower, all partons are regarded as massless. But the non-zero
quark masses can affect the shower algorithm by serving as cut off. When the
quark mass is above the typical scale ΛQCD, the splitting will end at quark
mass scale rather than the hadronization scale.

For a quark with energy E and mass m, define the ratio θ0 ≡ m/E. Then
using relative angle as ordering variable, parametrization of the phase space
should be replaced as

dθ2

θ2
→ θ2dθ2

(θ2 + θ2
0)2

. (66)

Accordingly, the large angle radiation with θ � θ0 won’t be affected, while
the collinear radiation with small angle will be largely suppressed. When
θ ≤ θ0 the splitting is regulated and θ0 becomes the cut-off of such radiations.
This may happen before the hadronization scale cuts the virtuality ordering.

Such a feature can be implemented using the matrix element correction
like in Pythia [56], or using a generalized Altarelli-Parisi splitting function
for massive quarks like in Herwig++ and SHERPA [57].
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Other aspects of parton showers are related to optimizing its logarithmic
accuracy, which will be stated in the next chapter.
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Chapter 5 Logarithmic Accuracy of Parton Shower Algorithms

According to the Sudakov form factor in Eq, (63), it is clear that FSR of
parton shower only resums the leading logarithmic contributions arising from
the soft and collinear emissions for hard processes of QCD. Also, the ISR is of
leading logarithmic accuracy. However, there are several corrections within
the parton shower algorithm or Monte Carlo event generator which can give
higher level logarithmic resummation results.

In this chapter, we firstly analyze different approaches used by parton
showers and Monte Carlo event generators to give higher resummation accu-
racy. Then the resummation prediction of transverse momentum distribution
of Z boson for Drell Yan process is calculated. We use Pythia8 event gen-
erator to obtain the transverse momentum distribution prediction given by
parton shower. Finally the numerical comparison between the parton shower
prediction and the resummation logarithmic accuracy is made accordingly.

5.1 Higher Accuracy Logarithmic Resummation Approaches of
Parton Shower

5.1.1 Soft Emissions and Coherence Effects

The first correction within the parton shower algorithm to give higher re-
summation accuracy is the inclusion of soft emissions. This approach treats
the coherence problem of QCD bremsstrahlung and thus is called coherence
effects. According to the analysis in [26], the LLA corresponds to soft and
collinear partonic emissions, while the inclusion of hard collinear radiations
and soft radiations with large transverse momentum will give the NLL ac-
curacy. Moreover, amplitudes from different diagrams with soft wide-angle
emissions have non-trivial phase structure and thus their interferences are
no longer negligible, which are however neglected in the ladder structure of
DLLA.

The coherence effects can be included in the parton shower algorithm
by changing the ordering variable from virtuality t to relative angle θ be-
tween partons, say angular-ordering parton shower, like in HERWIG and
HERWIG++ [41]. More specifically, the non-trivial coherence is the inter-
ference between wide range emission and collinear emissions. The contribu-
tion should be calculated as the amplitudes of diagrams with soft emissions
attached to the the external partons. It is proved that the sum of all these
kinds of diagrams equals to the configuration where the large angle emissions
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Figure 8: Rules of the color flow construction in parton shower

happen before the collinear ones. Thus the ordering in relative angles can
effectively approximate such interference.

Instead of using the relative angle as ordering variables, one can also
impose an angular veto in virtuality-ordering parton shower to include such
effects, like in the Pythia 6 [42] event generator.

5.1.2 Color Information and Dipole Approach

Another approach to parton shower, say the transverse-momentum-ordered
dipole approach [43], which is used by some recent MC event generators
like Pythia 8 [48], is equivalent to the coherence-improved parton showers
described above.

The approach is based on color flow of the parton shower. The par-
ton shower MC generators can track color information in the large-Nc limit,
where the complicated parton system is decomposed as a color flow. Rules
of the color flow construction are shown in Fig. 8. In the soft radiation and
large-Nc limit, each of the lines in color flow emits independently, which is
effectively an color-anticolor dipole. The collinear emissions can also be in-
cluded into the color flow or dipole approach to the parton shower [49, 43].
It is implemented by modifying the rapidity distribution of the emitted glu-
ons. Then either the collinear or soft radiations can be simulated. Thus the
parton shower based on such an approach is believed to be able to reach the
NLL accuracy.

5.1.3 Matching with ME and NLO

Another correction is made by matching between parton shower and fixed
order prediction of the hard process. Overall, it will give higher logarithmic
resummation accuracy to the MC event generator prediction.

Fixed order matrix elements can describe well-separated and hard partons
while parton showers can only simulate soft and collinear partons. The total
cross section given by the usual parton shower algorithm is only the Born
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Figure 9: Logarithmic resummation accuracy of parton shower with
ME/NLO corrections. (a) parton shower with ME matching. The blob is
half-filled because that only real emission corrections are included; (b) parton
shower with NLO matching (c) parton shower with multi-jets merging, where
the half-filled blobs is due to that only real emissions above the merging scale
are included.
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level value. Thus, matching up the parton shower results with higher order
matrix elements can optimize the simulation of the hard and large angle
radiations.

The method has been done in the direction of the matching between
PS and matrix elements, say PS+ME, and the matching between PS and
next leading order calculation, say PS+NLO. The matrix element or NLO
calculation gives inclusive quantities at a fixed perturbative order. While the
parton shower generates exclusive states.

The PS+ME matching approach was first formulated in [44]. In the
PS+ME method, the exact matrix elements with a certain number n of
partons for the hard process are generated at first. The number of partons
are below n and the relative transverse momentum of any pair of partons
is above a cut-off scale Qcut throughout the shower algorithm. Then the
generated configuration is tree-level accurate at large angle and fits parton
shower prediction at small angle radiations.

The PS+NLO method generates the process at NLO accuracy at first.
Both the real emission correction and virtual correction at NLO are included.
The NLO correction can be added simply by applying a constant K factor on
the ME method, which will yield better prediction for 2 → 1 processes like
the vector boson production if properly tuned. There are two main methods
of PS+NLO, say MC@NLO [45] and POWHEG [46, 47].

In summary, Fig. 9 [50] shows the different logarithmic resummation ac-
curacy to which different matching procedure can reach.

5.2 Transverse Momentum Distribution of Z Boson for Drell Yan
Process: Resummation

We used the resummation formalism in section 3.3 to calculate the transverse
momentum differential cross section of Z boson for Drell Yan process.

At the LL accuracy, there is no finite part correction. For the resumma-
tion part, the coefficient functionHF,{I}

ab,N in Eq. (55) is just the Born level cross

section and only the first order coefficient g(1),{c}(αsL) ≡ g
(1)
c (αsL) enters the

form factor. Then the partonic differential cross section reads

dσ̂Z,LL
ab

dq2
T

(qT, Q, ŝ;αs) =
Q2

ŝ

∑
q

δaqδbq̄σ
(0)
qq̄→Z

∫ ∞
0

db
b

2
J0(bqT)exp

{
Lg(1)

q (αsL)},

(67)
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where

g(1)
q (αsL) =

A
(1)
q

β0

λ+ ln(1− λ)

λ
(68)

with λ = 1
π
β0αsL, β0 = (11CA−2Nf )/12 being the zeroth order beta function

and A
(1)
q = CF . As is defined in chapter 3, αs ≡ αs(µ

2
R) and L ≡ lnM

2b2

b20
.

For the NLL accuracy, there will be finite part corrections. The finite
part is given by the leading order QCD correction (which is the order of α1

s ),
say totally as NLL+LO accuracy[

dσ̂
Z,(fin.)
ab

dq2
T

]
LO

=

[
dσ̂Z

ab

dq2
T

]
LO

−
[
dσ̂

Z,(res.)
ab

dq2
T

]
LO

. (69)

[
dσ̂Z

ab/dq
2
T

]
LO

is given by only the real emission correction in Eq. (28), since
the δ(q2

T) contribution from virtual correction has been removed. Explicit

forms of
[
dσ̂

Z,(res.)
ab /dq2

T

]
LO

can be found in [35].
The resummation part of NLL accuracy is

dσ̂
Z,(res.),NLL
ab

dq2
T

(qT, Q, ŝ;αs, µ
2
R, µ

2
F) =

Q2

ŝ

∫ ∞
0

db
b

2
J0(bqT)WZ,NLL

ab (b,Q, ŝ;αs, µ
2
R, µ

2
F),

(70)
where the N-moments function of WZ,NLL

ab is explicitly calculated as

WZ,NLL
ab,N (b,M ;αs, µ

2
R, µ

2
F) =

∑
q

HZ,NLL
ab,N,q(Q,αs;Q

2/µ2
R, Q

2/µ2
F, Q

2/M2)

exp
{
Lg(1)

q (αsL) + g
(2)
q,N(αsL;M2/µ2

R,M
2/Q2)

}
,

(71)

where

HZ,NLL
ab,N,q(Q,αs;Q

2/µ2
R, Q

2/µ2
F, Q

2/M2)

= σ
(0)
qq̄→Z(M)

{
1 +

αs
π

[
δaqδbq̄H(1)

qq̄←qq̄,N(Q2/µ2
F, Q

2/M2)

+ δaqδbgH(1)
qq̄←qg,N(Q2/µ2

F, Q
2/M2)

+ δagδbqH(1)
qq̄←gq,N(Q2/µ2

F, Q
2/M2)

]}
,

(72)
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g
(2)
q,N(αsL;Q2/µ2

R, Q
2/M2) = −A

(2)
q

β2
0

(
λ

1− λ + ln(1− λ)

)
+
A

(1)
q

β0

(
λ

1− λ + ln(1− λ)

)
ln
M2

µ2
R

+
A

(1)
q β1

β3
0

(
λ

1− λ +
ln(1− λ)

1− λ +
1

2
ln2(1− λ)

)
+
B̄

(1)
q,N

β0

ln(1− λ),

(73)

and the related perturbative coefficients are

A(2)
q =

1

2
CF

[(
67

18
− π2

6

)
CA −

5

9
Nf

]
,

B(1)
q = −3

2
CF ,

B̄
(1)
q,N = B̃

(1)
q,N + A(1)

q ln
Q2

M2
= B(1)

q + 2γ
(1)
qq,N + A(1)

q ln
Q2

M2
,

(74)

and the first order β-function is

β1 =
1

24
(17C2

A − 5CANf − 3CFNf ). (75)

According to [37], the perturbative coefficients in Eq. (72) are

H(1)
qq̄←qq̄,N(Q2/µ2

F, Q
2/M2) = CF

( 1

N(N + 1)
− 4 +

π2

2

)
−
(
B(1)
q +

1

2
A(1)
q ln

Q2

M2

)
ln
Q2

M2

+ 2γ
(1)
qq,N ln

Q2

µ2
F

,

H(1)
qq̄←gq(qg),N(Q2/µ2

F, Q
2/M2) =

1

2(N + 1)(N + 2)
+ γ

(1)
gq(qg),N ln

M2

µ2
F

,

(76)

where the LO parton anomalous dimensions are [14]

γ
(1)
qq,N = CF

[
− 1

2
+

1

N(N + 1)
− 2

N∑
k=2

1

k

]
,

γ
(1)
qg,N =

1

2

2 +N +N2

N(N + 1)(N + 2)
,

γ
(1)
gq,N = CF

2 +N +N2

N(N2 − 1)
.

(77)
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As is stated in chapter 3, to give kinematic corrections to the large qT

region, the variable L should be replaced by L̃ for all form factors above.
There is a singularity for the form factor near the Landau poles of QCD.

To regularize such singularities, the inverse Fourier transform from b-space
back to pT-space should be extend to the complex b-plane and choose special
integration contours. Such a strategy is called minimal prescription’. We
followed the explicit method proposed in [39] in our calculation. Firstly, the
Bessel function is splitted into two auxiliary functions

h1(z, v) ≡ − 1

π

∫ −π+ivπ

−ivπ
dθe−izsinθ

h2(z, v) ≡ − 1

π

∫ −ivπ
π+ivπ

dθe−izsinθ.

(78)

Then the Fourier transform in Eq. (53) becomes

dσ
(res.)
F,ab

dp2
T

(pT, Q, ŝ;αs(µ
2
R), µ2

R, µ
2
F) =

M2

ŝ

[ ∫
C1

db
b

4
h1(bqT) +

∫
C2

db
b

4
h2(bqT)

]
WF

ab(b,Q, ŝ;αs(µ
2
R), µ2

R, µ
2
F),

(79)

where

C1 : b = bc − tE−iφb(0 < b <∞)

C2 : b = bc − tEiφb(0 < b <∞).
(80)

The value of bc and φb are chosen to avoid the Laudau pole.
The inverse Mellin transform from theN -space to z-space is of the formula

WF
ab(b,Q,Q

2/z;αs(µ
2
R), µ2

R, µ
2
F) =

∫
C

dN

2πi
z−NWF

ab,N(b,Q;αs(µ
2
R), µ2

R, µ
2
F),

(81)
where C is the integration contour on the complex N -plane. To give better
numerical convergence, we choose the contour to be [58]

N = C + teiφ, (82)

with 0 ≤ t ≤ ∞. For arbitrary C > 0 and π > φ > π/2, the integration
is convergent for the dual parameter z = Qs/ŝ < 1. Moreover, there is
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a singularity at ρL = exp[1/(2b0αs)] in the resummed cross section, which
introduces a power-suppressed ambiguity in the transformation. To solve the
problem, it is in addition chosen to be C < ρL.

To further improve the numerical convergence, we used the method in
[59] to transform PDF functions into the N -space first. The function used
to fit the PDF’s is xα(1 − x)β, which corresponds to the beta functions
B(α +N, β − 1) in the N -space.

Finally in summary, the resummed part of the total differential cross
section is

dσ
Z,(res.)
hAhB

dq2
T

(qT, s) =

∫ 1

0

dzδ(z − Q2

s
)

∫
C

dN

2πi
z−(N−1)

dσ
Z,(res.)
hAhB,N

dq2
T

(qT), (83)

where

dσ
Z,(res.)
hAhB,(N+1)

dq2
T

(qT) =
∑
a,b

[ ∫
C1

db
b

4
h1(bqT) +

∫
C2

db
b

4
h2(bqT)

]
fa/hA,N(µ2

F)fb/hB ,N(µ2
F)WF

ab,N(b,Q;αs, µ
2
R, µ

2
F).

(84)

The same approach can be used to calculate the resummation contribution
of fixed order to extract finite part differential cross section.

In calculations, the factorization scale µF will affect the resummed result.
Fig. 10 is the resummed differential cross sections with different factorization
scales at NLL accuracy.

Different choices of PDF set can also affect the distributions. Fig. 11 is
the comparison between our NLL result, which used the CTEQ 6 PDF, and
the ResBos [60] result, which used the CT10 PDF. The small discrepancy
between two curves at very low qT region is due to non-perturbative effects.

5.3 Logarithmic Resummed Accuracy of Pythia8 Prediction for
Transverse Momentum Distribution

We used Pythia8 event generator to give the parton shower prediction of
Z boson transverse momentum distribution for Drell Yan process.

The FSR and ISR of Pythia8 are based on the qT-ordered dipole approach.
The approach has been introduced in section 5.1. It is supposed to reach the
NLL accuracy for logarithmic resummation. However, the splitting kernels
used in Pythia8 are first order DGLAP kernels. Using such kernels, the
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Figure 10: Resummation of Z boson transverse momentum distribution for
Drell Yan process at NLL accuracy with different factorization scales at
ECM = 14TeV.
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Figure 11: Comparison with the ResBos NLL resummation of the Z boson
transverse momentum distribution for Drell Yan process: ECM = 14TeV,
µF = mZ
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Figure 12: Numerical comparison between the Pythia8 prediction and the
resummation predictions at LL and NLL accuracy with ECM = 14TeV.

analytical expressions of qT distribution for FSR and ISR are still the leading
logarithm resummation formalism [61].

Pythia8 has also implemented a leading order ME correction to its PS
algorithm. An internal ME correction to the ISR has been performed to
2→ 1 processes like the Z boson production.

Fig. 12 is the numerical comparison between the Pythia8 prediction and
the resummation prediction at LL and NLL accuracy. It can be seen that
the Pythia8 prediction matches LL accuracy in low qT region better, while
in the large qT region, it fits the NLL result very well.
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Chapter 6 Conclusion

In this thesis, we focused on the transverse momentum distribution of Z boson
for Drell Yan process. The distribution can be predicted by perturbative
QCD. In the first chapter, we introduced the theoretical backgrounds of
quantum chromodynamics and its perturbative method. Then in the next
chapter, we gave a description of the Drell Yan process, its kinematics and
the factorization theory for the process.

We also calculated explicitly the first order QCD corrections to the trans-
verse momentum distribution for the process. The calculation shows that
logarithmic divergences emerge in such an semi-inclusive quantity at very
small qT. Such divergences are originated from the soft and collinear struc-
ture of QCD hard processes. For inclusive quantities, the soft and collinear
singularities can be factorized into the parton distribution functions, which is
the factorization theorem introduced before. However, as the qT distribution
is semi-inclusive, further methods need to be introduced to deal with the
logarithmic divergences in order to keep the perturbative argument valid.

Transverse momentum resummation can solve the problem by summing
over logarithmic terms systematically. In chapter 3, we introduced different
approaches and formalisms of resummation. The resummation can be done
either in qT-space or its Fourier conjugate b-space. It is easier to do higher
level logarithmic resummation in b-space however certain matching procedure
between high qT and low qT region are needed in this case.

Another approach usually used in Monte Carlo event generators is a par-
ton shower algorithm. PS simulate the soft and collinear radiations for the
hard process of QCD. We introduced the algorithm in chapter 4 and further
explored its logarithmic resummation accuracy in chapter 5.

According to the numerical result, the prediction made by Pythia8 event
generator matches the LL accuracy at low qT better. However, Pythia8
implemented ME corrections, which may have given the prediction better
high qT behavior. The numerical comparison shows that the high qT behavior
of Pythia8 prediction fits the NLL+LO resummation results very well.
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