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Abstract of the Dissertation

A Hydrodynamic Analysis of Collective Flow
in Heavy-Ion Collisions

by

Li Yan

Doctor of Philosophy

in

Physics

Stony Brook University

2013

Recent progress in the hydrodynamic simulation of heavy-ion colli-
sions have characterized the fluctuating initial state and the viscous
corrections to the corresponding collective flow. These fluctuations
naturally explain the “ridge” and “shoulder” structure of the mea-
sured two-particle correlation functions at RHIC and the LHC.

We introduce a cumulant expansion for analyzing the azimuthal
fluctuations in the initial state. The cumulant definitions sys-
tematically describe the azimuthal anisotropy order by order. In
particular, the dipole asymmetry ε1 appears at third order in the
expansion, and the response to this initial fluctuation produces
a radipity even dipole flow v1, which has been subsequently con-
firmed by experiment.

In addition, the cumulant expansion organizes the study of the
nonlinear response to the initial conditions. The linear and non-
linear response coefficients to a given initial state were calculated
with ideal and viscous hydrodynamic simulations. The collective
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flow is generated either linearly or nonlinearly, and the relative con-
tribution of these two mechanisms to the observed flow pattern is
calculated as a function of harmonic order, collision centrality, and
the shear viscosity. For non-central collisions and high harmonic
orders n ≥ 4, the nonlinear response is the dominant mechanism.
This result is also seen in event-by-event hydrodynamic simula-
tions. Using the cumulant expansion and the corresponding linear
and nonlinear response coefficients, we determine the event plane
correlations and compare to first measurements of this type. The
observed event plane correlations are rooted in the initial state
participant plane correlations, but a large fraction of the observed
correlations are determined by harmonic mixing during the bulk
expansion.

Viscous corrections to the hydrodynamic formulation of collec-
tive flow are reflected in hydrodynamic equations of motion, as
well as the correction to the distribution function at freeze-out,
δf(x,p). Taking into consideration of the connection between ki-
netic theory and hydrodynamics, the consistent form of δf(x,p)
is determined through second order in the gradient expansion,
δf(x,p) = δf(1)(x,p) + δf(2)(x,p) + . . . . The effect of δf(2)(x,p)
is found to be small for lower order harmonic flows n ≤ 3, but is
significant for the higher harmonics, n ≥ 4. In addition, the effect
of δf(2)(x,p) is small for nucleus-nucleus collisions at the LHC, but
is more pronounced at RHIC and in small collision systems such as
proton-nucleus collisions. δf(2)(x,p) delineates the domain of ap-
plicability of viscous hydrodynamics, and systematically improves
the hydrodynamic description of heavy ion collisions.

iv



Contents

List of Figures vii

List of Tables x

Acknowledgements xi

1 Introduction 1
1.1 QCD under extreme conditions . . . . . . . . . . . . . . . . . 1
1.2 QGP in heavy-ion collisions . . . . . . . . . . . . . . . . . . . 2
1.3 Hydrodynamics and QGP . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Initial condition . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Hydrodynamic description of the hot medium . . . . . 11
1.3.3 Freeze-out and resonance decay . . . . . . . . . . . . . 18

1.4 Outline of this work . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Fluctuations in the initial state 21
2.1 Cumulant expansion . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Application of cumulant expansion . . . . . . . . . . . . . . . 29
2.3 Monte Carlo simulations of the initial state . . . . . . . . . . . 32

3 Flow response 43
3.1 Linear flow response . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 Flow development during the medium expansion . . . . 45
3.1.2 Linear flow response coefficients . . . . . . . . . . . . . 49
3.1.3 Application of linear flow response . . . . . . . . . . . 53

3.2 Nonlinear flow response . . . . . . . . . . . . . . . . . . . . . . 57
3.2.1 Nonlinear flow response coefficients . . . . . . . . . . . 59
3.2.2 Origins of the nonlinear flow generation . . . . . . . . . 63
3.2.3 Application of the nonlinear flow generation . . . . . . 67

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

v



4 Event plane correlations 75
4.1 Formulation of event plane correlations . . . . . . . . . . . . . 76
4.2 Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Second order viscous corrections, δf(2) 86
5.1 2nd order corrections to f(x,p) . . . . . . . . . . . . . . . . . 88

5.1.1 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . 88
5.1.2 Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Implementation in simulations of heavy ion collisions . . . . . 94
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Conclusions and outlook 103

A Notations and conventions 106

B 3-dimensional cumulant analysis 108

C Tensor decomposition of δf(2) 110

D Convergence check of viscous hydrodynamic simulations 113

Bibliography 115

vi



List of Figures

1.1 A schematic QCD phase diagram taken from [1]. . . . . . . . . 2
1.2 Space-time evolution of a heavy-ion collision with QGP phase 3
1.3 A summary of the measured nuclear modification factor RAA of

charged hadrons from LHC Pb-Pb. [2] . . . . . . . . . . . . . 5
1.4 Initial geometric configuration of heavy-ion collisions. . . . . . 6
1.5 A comparison of the observed harmonic flow of mid-central

heavy-ion collisions from different collaborations [3]. . . . . . . 7
1.6 A summary of the theoretical estimates of η/s. Figures taken

from [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 A fit of charged particle multiplicity from viscous hydrodynamic

simulations with the initial parameter Cs taken in Table 1.1,
with respect the ALICE measurement [5]. . . . . . . . . . . . 12

1.8 A summary of lattice EoS. Figures taken from [6]. . . . . . . . 14

2.1 The fluctuating initial state of one typical collision event, for
the event-by-event hydrodynamic simulations. The blue arrows
indicate the direction and magnitude of gradients. . . . . . . . 22

2.2 Decomposition of the fluctuating initial state into Gaussian
background plus perturbations. . . . . . . . . . . . . . . . . . 24

2.3 A schematic picture of the dipole asymmetry. . . . . . . . . . 28
2.4 (a) Spectra in the smooth (optical) Glauber model compared

to the cumulant expansion. The coefficients of the Gaussian
and fourth-order cumulant expansions have been adjusted to
reproduce {r2} , {r2 cos 2φr} and {r4 cos 2φr}, {r4 cos 4φr} , re-
spectively. The total entropy of the cumulant expansion is also
matched to the total entropy of the Glauber distribution. (b)
Elliptic flow in the Glauber model compared to the cumulant
expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vii



2.5 Eccentricities from Monte Carlo Glauber simulations for LHC
Pb-Pb collisions. The momentum based (the left figure) and the
cumulant based (the right figure) definitions result in differences
that grows with centrality, for the higher order eccentricities. . 33

2.6 Distribution of the angles Φ1 and Φ3 with respect to the reac-
tion plane for three different impact parameters . . . . . . . . 34

2.7 Initial participant plane correlation functions, from MC-Glaber
simulations for RHIC Au-Au collisions. . . . . . . . . . . . . . 35

2.8 Geometric alignment of triangularity, dipole and ellipticity . . 36
2.9 The conditional probability distribution P (Φ3|Φ1,ΨR) for im-

pact parameter b = 10.5 fm. The dashed curves are fit with
parameter C2 = −0.53. . . . . . . . . . . . . . . . . . . . . . 38

2.10 Initial state two-plane correlations of LHC Pb-Pb collisions . . 39
2.11 Initial state three-plane correlations of LHC Pb-Pb. . . . . . . 40

3.1 (a) The spatial anisotropy of the entropy distribution ε1x , ε2x ,
and ε3x (see text) as a function of time for b = 7.6 fm. (b) The
momentum anisotropy ε1p, ε2p , and ε3p (see text) as a function
of time. The time scale in these figures should be compared to√
{r2}/cs ' 5.4 fm. . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Flow profile evolution . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 pT dependence of linear response coefficients. . . . . . . . . . . 50
3.4 Centrality dependence of linear response coefficients . . . . . . 51
3.5 Linear flow response dependence on η/s . . . . . . . . . . . . 52
3.6 V3∆/V2∆ and V1∆/V2∆ as a function of Npart. . . . . . . . . . . 54
3.7 〈〈cos(φa + φb − 2ΨR)〉〉 from hydrodynamic simulation. . . . . . 55
3.8 Differential 〈cos(φa − 3φb + 2ΨR)〉 of mid-central collisions. . . 56
3.9 Angle dependence of nonlinear flow response coefficients. . . . 60
3.10 pT dependence of nonlinear flow response coefficients. . . . . . 61
3.11 Centrality dependence of nonlinear flow response coefficients . 62
3.12 Nonlinear flow response dependence on η/s . . . . . . . . . . . 63
3.13 Participant plane angle time evolution . . . . . . . . . . . . . 64
3.14 vn{2} as a function of centrality. . . . . . . . . . . . . . . . . . 69
3.15 v1{2}(pT ) of mid-central collisions of LHC Pb-Pb experiments 71
3.16 Scaling behavior of v4 and v5 . . . . . . . . . . . . . . . . . . . 72

4.1 Two-plane event plane correlations. The solid curves are the
predictions based on a high resolution assumption. The dashed
curves are obtained in the low resolution limit. Data points are
taken from the ATLAS measurements [7]. . . . . . . . . . . . . 79

viii



4.2 Three-plane event plane correlations. The solid curves are the
predictions based on a high resolution assumption. The dashed
curves are obtained in the low resolution limit. Data points are
taken from the ATLAS measurements [7]. . . . . . . . . . . . . 80

4.3 Decomposition of the event-plane correlations into the ‘linear
limit’ and ‘nonlinear limit’, corresponding to the formation of
event-plane correlations from initial geometry and medium ex-
pansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Two-plane event plane correlations based on PHOBOS Glauber
[8] and Glissando Glauber [9] models. The solid curves corre-
spond to the ‘non-cut’ calculations, while the dashed curves
correspond to the ‘cut’ calculations. (See text) . . . . . . . . 83

4.5 Three-plane event plane correlations based on PHOBOS Glauber
[8] and Glissando Glauber [9] models. The solid curves corre-
spond to the ‘non-cut’ calculations, while the dashed curves
correspond to the ‘cut’ calculations. (See text) . . . . . . . . . 84

5.1 w4(pT ) and w4(22)(pT ) from hydrodynamics with different η/s. 87
5.2 Differential v2(pT )/ε2 at RHIC and LHC, with CEOS and LEOS 100
5.3 Differential vn/εn at RHIC and LHC . . . . . . . . . . . . . . 101
5.4 Differential vn/εn at RHIC and LHC . . . . . . . . . . . . . . 102

D.1 Convergence of harmonic flow v5 and v6 in our numerical calcu-
lations. The grid sizes are set to be 0.1 fm, 0.075 fm and 0.05
fm for these three simulations. While vcn tends to converge (the
left figure), the vsn approaches zero (the right figure). . . . . . 113

ix



List of Tables

1.1 Parameter Cs used in our work for LHC Pb-Pb collisions. . . . 11

3.1 Nonlinear terms considered in this work . . . . . . . . . . . . 59
3.2 Geometrical ratios in Eq. (3.34) as a function of centrality. . . 73

5.1 Second order transport coefficients . . . . . . . . . . . . . . . 96

x



Acknowledgements

First and foremost I would like to express my sincere gratitude to my advisor
Prof. Derek Teaney, for his thoughtful guidance during my Ph.D study and
research. My research work with him during the past several years was a great
experience. Without his patience, encouragement and continuous support this
dissertation would not have been possible. I have greatly benefited from his
enthusiasm for physics and lightening ideas. I also want to thank him for
providing me with all these opportunities to broaden my horizons in the area
of heavy-ion collisions.

I am also indebted to all the rest of members in the nuclear theory group.
The instructive discussions during lunch time, group seminars and under many
other circumstances, with Edward Shuryak, Ismail Zahed, Dmitri Kharzeev Ja-
cobus Verbaarschot and Thomas Kuo enriched my knowledge and sharpened
my understanding on physics in general. In particular, I would like to thank
Edward Shuryak and Dmitri Kharzeev for their help for writing me the refer-
ence letters. I am also grateful to the interesting and helpful discussions with
Gokce Basar and Ho-Ung Yee. I also want to thank the other graduate stu-
dents Alexander Stoffers, Savvas Zafeiropoulos, Pilar Staig and Frasher Loshaj
for the enjoyable working atmosphere in the office. I also want to thank the
former graduate students Huan Dong, Shu Lin and especially Jinfeng Liao for
their warm-hearted help.

For the work covered in this thesis, I gratefully acknowledge the fruitful
and enlightening discussions with J. Jia, S. Mohapatra, U. Heinz, Z. Qiu, J.
Ollitrault, P. Sorensen and K. Dusling.

I also want to take this chance to thank Nu Xu and my M. S. thesis advisors
Prof. Pengfei Zhuang, who gave me the early scientific training and advices.

Finally and most importantly, I would like to thank my family, my wife
Ruhan Jia and my parents for their unconditional love and support.



Chapter 1

Introduction

1.1 QCD under extreme conditions

Quantum Chromodynamics(QCD), which is responsible for the description of
strong interaction in standard model, has particular properties regarding the
associated energy scale Λ. In contrast to the electroweak theory, the coupling
constant of the strong interaction αs monotonically decreases as the momen-
tum scale of the measurement, Λ increase. Especially, when the momentum
scale of the measurement is large, Λ � ΛQCD, QCD exhibits asymptotic free-
dom [10, 11], and the dynamics of QCD is conveniently described with weakly
coupled color degrees of freedom, quark and gluons. Asymptotic freedom has
been extensively tested and analyzed in collisions of elementary particles [12].
For instance, asymptotic freedom can be confirmed with the Bjorken scal-
ing observed in the deep inelastic scattering [13]. In the opposite low energy
limit, QCD exhibits infrared slavery which states that color degrees of freedom
must be confined in low energy processes. Despite the apparent consistency
of QCD with high energy experiments, isolated colored particles have never
been found experimentally, and the theoretical treatment of color confinement
is difficult. The problem is that the running coupling constant becomes of
order one, deteriorating the applicability of perturbative calculations. Con-
sequently, many effective theoretical models and non-perturbative techniques
have been developed, such as chiral perturbation theory [14] and Lattice QCD
(LQCD) [15]. Nevertheless, the existence of these two distinct limits in QCD
dynamics implies a complex transition region at some intermediate energy
scale Λc, in which color degrees of freedom are excited and begin to dominate
the constituents of a system. This transition, commonly known as the color
deconfinement phase transition, is one of the central interests in the present
studies of nuclear physics.
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Figure 1.1: A schematic QCD phase diagram taken from [1].

In Fig. 1.1, the appropriate energy scale is set by the temperature T or
baryon chemical potential µb. An overall review of the recent theoretical work
on the QCD phase diagram can be found, for example in [16]. Starting from the
ordinary hadronic matter, increasing either temperature or baryon chemical
potential will eventually lead the system to phases with pure color degrees of
freedom, e. g. color superconductor [17] and Quark-Gluon Plasma(QGP) [18].
The former phase is expected when baryon chemical potential µb exceeds a
critical value µcb. The latter phase prevails in systems with extremely high
temperature. In particular, with negligible baryon chemical potential µb ∼ 0,
LQCD simulations have confirmed the existence of a rapid crossover instead
of a first phase transition, between QGP and the hadron gas at Tc ' 170MeV
[19]. This high temperature existed in nature in the first second of the early
universe [20], during which the temperature of QGP cooled down to Tc and
colorless matter was originated through hadronization.

1.2 QGP in heavy-ion collisions

High energy nucleus-nucleus(AA) collisions carried out at Relativistic Heavy-
Ion Collider (RHIC) at Brookhaven National Laboratory [21–24], and Large
Hadron Collider (LHC) at CERN [25], provide an opportunity to create QGP
in the laboratory. In heavy-ion collisions, highly accelerated heavy nucleus

2
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Figure 1.2: Space-time evolution of a heavy-ion collision with QGP phase

deposit a large fraction of their energy in a small volume, generating a system
with pronounced energy density. Although there is no direct measurement
associated to the initial stage of such a system, evidences from experimental
observations strongly indicate that an approximately thermal QGP is formed
in heavy ion events with an estimated initial temperature To ' 320 MeV.
Since To > Tc, the first several fm/c of the created fireball is in the QGP
phase. During subsequent expansion of the fireball the plasma cools and passes
through the color confinement transition. Since this expansion resembles in
many ways the evolution of the early universe (see for example Chapter 19 in
[26]), the nucleus-nucleus collision is commonly referred to as the ‘little bang’.

Fig. 1.2 illustrates the collision process for one typical event in space and
time. Note that in this figure, Bjorken boost invariance [27] of the high energy
collision is assumed. As a convenient and reliable approximation for heavy-ion
collisions, Bjorken boost invariance simplifies the relativistic transformation
along the longitudinal direction, leading to a trivial dependence on the spatial
rapidity,

ηs =
1

2
ln

(
t+ z

t− z

)
. (1.1)
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Correspondingly the proper time is defined as

τ =
√
t2 − z2 , (1.2)

which separates the stages of the space-time evolution in Fig. 1.2. In this
figure τo indicates when the pre-equilibrium state ends (i. e. when the thermo-
dynamic variables are well defined). The temperature of the system decreases
as a result of the medium expansion. When T reaches the critical tempera-
ture around τc, the hot medium experiences color confinement phase transition
and hadronizes, changing from the QGP phase to a hadron gas (HG). In the
HG, the collectivity of the medium can be sustained due to the interactions
between the stable and unstable hadrons, and hadron resonances. However,
as the expansion overwhelms the hadron-hadron correlations around τf , the
dilute HG system starts to decouple. This so-called kinetic freeze-out is gen-
erally recognized as the end of the collective expansion. In general, the whole
evolution of the collision event in heavy-ion collisions is expected to take from
several fm/c to about 10 fm/c.

Many observables of have been proposed to understand the evolution of the
QGP and the HG discussed in the previous paragraph. The most successful
observables can roughly be divided into hard probes and soft probes, both of
which have particular connections to the dynamics of the QGP medium.

Hard probes

Hard probes, including jets [28] and heavy flavor production [29], are modified
by their strong interactions with the QGP medium.

For instance, since jets are generated in the initial hard processes of heavy-
ion collisions, energetic jets undergo energy loss in QGP before they are mea-
sured. As a result, the interactions between jets and the QGP can be studied
by comparing jet yields in AA collisions and the corresponding PP collisions.
The nuclear modification factor RAA is formally defined as

RAA(pT ) ∼ Spectrum of AA

Spectrum of PP
,

with proper normalizations. RAA < 1 indicates that the jets lost energy to the
QGP medium. Shown in Fig. 1.3 is a summary of the nuclear modification
factor RAA of inclusive charged hadrons observed from LHC Pb-Pb collisions.
In central collisions, from which QGP is formed with high probability, the
spectra of the observed hadrons are found to be strongly suppressed. Especially
the energy loss of particles with high transverse momentum (& 6 GeV) implies
the dynamics of jets penetrating the QGP.
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Figure 1.3: A summary of the measured nuclear modification factor RAA of
charged hadrons from LHC Pb-Pb. [2]

Soft probes

Soft probes such as the collective flow [30, 31] which is the major subject of
this dissertation, characterizes the bulk collective expansion, with respect to
a specified initial geometry.

Fig. 1.4 illustrates the initial state geometric configuration generally seen
in heavy-ion collisions. The beam axis, along which the two nuclei move and
collide, is conventionally set as the z-direction. The plane perpendicular to the
beam axis is known as the transverse plane. Viewed along the beam axis, the
collision of two nuclei in the transverse plane is referred as the overlap region.

The size of the overlap region is crucial for the analysis of heavy-ion col-
lision. First, since more initial energy is deposited in the collision event with
a larger overlap region, a higher initial temperature To and a larger measured
multiplicity are expected. In addition, the size of the overlap region is related
to the AA collision probability. To describe the collision geometry the impact
parameter b is commonly introduced. Set as the x-direction as in Fig. 1.4, b
is a vector that measures the displacement of the centers of the two colliding
nuclei in the transverse plane, pointing from one to the other. Then the dif-
ferential collision cross-section can be roughly estimated as dσ = 2π|b|d|b|. In
experiment, accounting for a distribution of the observed multiplicity produc-
tion of different collision events, a quantity called centrality can be introduced
instead. There is an one-to-one, and monotonic correspondence between b and

5



b

x

y

z

b

(b)(a)

Figure 1.4: Initial geometric configuration of heavy-ion collisions.
The smooth initial geometry (a) and the initial geometry with fluctuations (b). In

(b), the nucleons from the target and projectile are distinguished in different colors.

the centrality, that b = 0 is related to centrality = 0% and |b| → ∞ is related
to centrality= 100%.

The beam axis and b span the reaction plane ΨR, 1 The reflection symmetry
of a smooth initial geometry as in Fig. 1.4 (a), with respect to x-axis and y-
axis as a result of the almond shape, is broken due to fluctuations in a random
event as in Fig. 1.4 (b). The azimuthally asymmetric distribution leads to
initial spatial gradients. During bulk expansion, information of initial spatial
distribution is translated into momentum space due to these gradients, and
collective correlations are developed. In particular, the azimuthal anisotropies
of initial state generate anisotropic flow, vn. Formally the definition of vn is
from the harmonic decomposition of the observed particle spectrum,

d3N

pTdpTdφpdy
=

dN

2πpTdpTdy

[
1 +

∞∑
n=1

vn(y, pT )ein(φp−Ψn(y,pT )) + c.c.

]
, (1.3)

where here and below c.c. denotes complex conjugate. pT =
√
p2
x + p2

y is
the transverse momentum. For the convenience of considering Bjorken boost
invariance, the rapidity

y =
1

2
ln

(
E + pz
E − pz

)
, (1.4)

1Without considering initial state fluctuations, i. e. for the event averaged smooth initial
density, only even order harmonics in the particle spectrum can be expected. In particular,
the observed elliptic flow v2 defines the reaction plane ΨR, which reflects the almond shape
of initial geometry.
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Figure 1.5: A comparison of the observed harmonic flow of mid-central heavy-
ion collisions from different collaborations [3].

is often used instead of pz. In Eq. (1.3), vn can be experimentally measured as
the expectation vn = 〈cos(nφp − nΨn)〉, with respect to the associated event
plane angle Ψn of n-th order harmonics. The angle brackets around a scalar
indicates the averaged value with respect to the particle spectrum. vn charac-
terizes the azimuthal anisotropy of particle spectrum in the momentum space.
For instance, elliptic flow, v2(y, pT ) estimates the differences of particle yields
between in-plane direction (φp − Ψ2(y, pT ) = 0) and out-of-plane direction
(φp−Ψ2(y, pT ) = π/2). When reflection symmetry of the system is strict, the
odd order harmonics in Eq. (1.3) are zero by symmetry, and the event plane
angles are aligned trivially with Ψn(y, pT ) = 0. However, on an event-by-event
basis the initial geometry is perturbed by fluctuations, resulting in an actual
entropy initial distribution as shown in Fig. 1.4 (b). As a result, in Eq. (1.3)
all of the harmonic orders should be expected. Fig. 1.5 exhibits the measured
elliptic flow v2, triangular flow v3 and quadrapole flow v4 from several collabo-
rations from a set of selected collision events at RHIC and LHC [3]. Note that
the observed flow in the low pT region (pT . 3GeV) in Fig. 1.5 is expected to
be dominated by the collective behavior of the bulk expansion.

There are several aspects related to harmonic flow vn that supports the
existence of QGP phase in heavy-ion collisions. First, the QGP phase plays an
essential role in the establishment of harmonic flow. Based on the analyses of
theoretical models, such as relativistic hydrodynamics and transport theory, to

7



obtain harmonic flow predictions comparable to the experimental observations,
especially for higher order harmonic flow v3, v4, etc., a strong QGP expansion
is indispensable [32, 33]. In addition, the observed long range correlations
in AA from RHIC Au-Au [34–36] and LHC Pb-Pb [37, 38], and even some
pA collisions with high multiplicity yields [39, 40], can be naturally explained
in terms of harmonic flow. As sketched in Fig. 1.2, the harmonic flow is
the medium response to the initial geometry and is generated during the bulk
expansion. Since the initial correlation is long range in rapidity, this correlation
is maintained from the earliest stages of the event to the final observation.

1.3 Hydrodynamics and QGP

The relative success of relativistic hydrodynamics with vanishing shear viscos-
ity in predicting the elliptic flow [41–45] indicates that the mean free path of
the QGP is small compared to the expansion time scales of the nuclear colli-
sion. An estimate of the expansion rate and the temperature [46] shows that
unless the mean free path is comparable to a thermal wavelength ∼ ~c/T then
expansion will be to rapid to support a strong hydrodynamic response.

The qualitative success of ideal hydrodynamics motivates further experi-
mental and theoretical study of the transport properties of QCD. In particular,
the determination of shear viscosity to entropy density ratio η/s of the color
deconfined medium in heavy-ion collisions, supplies a direct measurement of
the fundamental property of QCD at high temperature. In hydrodynamics,
dissipation is characterized via a number of transport coefficients. Most im-
portantly, shear viscosity η is associated with the shear tensor of the first
viscous correction. As input parameters of hydrodynamics, these transport
coefficients are constrained by the underlying fundamental theory [46]. For a
strongly coupled colorful system, like QGP, there is no analytical solution in
QCD, but it is possible to estimate the corresponding transport coefficients
using lattice QCD [47], and other model theories. For instance, the shear vis-
cosity of N = 4 SYM at strong coupling was calculated using gauge gravity
duality [48],

η

s
=

1

4π

~
kB
. (1.5)

Kovtun, Son and Starinets suggest that Eq. (1.5) is a lower bound of η/s for
a variety of theories, including QCD, and thus Eq. (1.5) is often referred as
the KSS bound [49]. A summary of the possible values of η/s as a function
of temperature for a variety of different models is shown in Fig. 1.6. To get
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Figure 1.6: A summary of the theoretical estimates of η/s. Figures taken
from [4].

a further understanding of QCD dynamics, and a quantitative estimate η/s
of QGP, one needs serious viscous hydrodynamic simulations of heavy-ion
collisions.

Examining the stages of a heavy ion collision shown in Fig. 1.2, we see that
a complete hydrodynamic simulation for a collision event consists the following
three ingredients: initial condition, hydrodynamic equations of motion, and
freeze-out. The conventions and notations used in this following section are
summarized in Appendix A.

1.3.1 Initial condition

To initialize the hydrodynamic equations of motion, the energy density and
flow velocities must be specified at an initial time τo. However, due to the
lack of knowledge of the bulk thermalization, detailed information, such as
the initial energy density ε(τo, x, y) and entropy density s(τo, x, y), has to be
deduced from effective models. Two models which are commonly used to
estimate the initial energy density are the Glauber model [8] and the KLN
model [50–52]. We will briefly review the Glauber model in this section.

The Glauber model takes into account the nuclear geometry and the straight
line propagation of nucleons in high energy collisions. Since the nucleons are
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distributed in the nucleus according to the Woods-Saxon profile,

ρ(x) =
ρo

1 + exp[(r −R)/a]
, (1.6)

the collision probability and total cross section can be inferred by geometry.
In Eq. (1.6) the parameters ρo, R, and a characterize the normalization, the
size of the nucleus, and the stiffness of the edge of nucleon distribution profile
respectively. The probability density of finding a nucleon in a nucleus in the
transverse plane at s = (x, y) is known as the thickness function

T̂A(s) =

∫ +∞

−∞
dzρ(s, z) . (1.7)

Given the thickness function we obtain

σNN
in TAB(x, y|b) = σNN

in T̂A(s)T̂B(s− b) , (1.8)

which is the probability per area of finding a nucleon-nucleon collision at
the transverse position s of the overlap region for a nucleus-nucleus colli-
sion with impact parameter b. For hard collision process, the number of
collisions, Ncoll(x, y), which counts the number of nucleon-nucleon collisions
in each AA collision event, is introduced. By contrast, the number of par-
ticipants Npart(x, y), records the number of nucleons that are involved in the
collisions, characterizes the soft processes. It is also known as the number
of wounded nucleons. Both Ncoll and Npart can be used to characterize the
collision centrality. Then in the Glauber model, with the inclusive nucleon-
nucleon cross-section σNN

in , we obtain for a collision between two nuclei with
mass number A and B,

Ncoll(x, y|b) = σNN

in ABTAB(x, y|b) (1.9)

and

Npart(x, y|b) =AT̂A(s)

{
1−

[
1− σNN

in T̂B(s− b)
]B}

+BT̂B(s− b)

{
1−

[
1− σNN

in T̂A(s)
]A}

. (1.10)

In our calculations, for the RHIC and LHC collision energy, σNN
in is taken to be

40mb and 64mb respectively.
For the thermalized system at τo, entropy density in the transverse plane
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Table 1.1: Parameter Cs used in our work for LHC Pb-Pb collisions.

bimp(fm) 1.65 4.00 5.25 6.25 7.45 8.80 10.00 11.10
Cs/Npart 34.97 33.84 32.88 32.15 31.75 31.72 31.59 31.30

can be emperically assumed as

s(τo, x, y) =
Cs
τo

[αNcoll(x, y) + (1− α)Npart(x, y)] , (1.11)

in which the free parameter α is taken to constrain the faction of contribu-
tions from hard and soft processes, and Cs is a normalization constant. To
fit the observed data from experiment, both α and Cs can be adjusted. In
our work, we take α = 0 to consider only soft process initial contribution,
and vary Cs for different centralities. With Cs taken according to the values
in Table 1.1, the charged multiplicity dNch/dη/(Npart/2) of LHC Pb-Pb col-
lision with

√
sNN = 2.76TeV [5] is reproduced by our viscous hydrodynamic

simulations, in combination with with a resonance decay description.
As one recent progress in heavy-ion collisions, and also one subject in our

work, fluctuations in initial state are found to play a significant role in explain-
ing many of the observed phenomena in experiment [53–55]. In each collision
event, the position of nucleons in a nucleus fluctuates, leading to event-by-
event initial state fluctuations. To capture these fluctuations, randomness in
models needs to be considered. For example, optical Glauber model and KLN
model can be extended to their Monte Carlo versions, by introducing the fluc-
tuations of nucleon positions with respect to the distribution profile, Eq. (1.6).
On an event-by-event basis, fluctuating initial geometry breaks the rotational
and reflection symmetry of the averaged distributions. A detailed discussion
on this will be given in Chapter 2.

1.3.2 Hydrodynamic description of the hot medium

For recent reviews of the viscous hydrodynamics and its applications to heavy-
ion collisions, see [56, 57].

Hydrodynamic equations of motion

The essential concept of hydrodynamics consists of the conservation of energy-
momentum and conserved charges, which leads to the following equations of
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Figure 1.7: A fit of charged particle multiplicity from viscous hydrodynamic
simulations with the initial parameter Cs taken in Table 1.1, with respect the
ALICE measurement [5].

motion (EOM),

dµT
µν = 0 , (1.12a)

dµJ
µa = 0 , a = 1, 2, . . . , N (1.12b)

where the index a runs from 1 to N, labelling the types of conserved charge.
Here dµ denotes covariant derivative, which is introduced to treat the Bjorken
coordinate system, τ and ηs. Given the forms of stress tensor T µν and con-
served current Jµa of type a, Eq. (1.12) give rise to 4 + N coupled equations
of motion.

For a full characterization of the fluid system, with respect to the physics of
conservation laws, a set of hydrodynamic variables containing flow 4-velocity
uµ, charge density of type a na (or its canonical conjugate chemical potential
µa), energy density ε (or its canonical conjugate temperature T ) and pres-
sure P must be determined according to the space-time evolution. Following
the basic properties in relativity, the components of the flow velocity can be
parameterized as

uµ = γ(1,v⊥, v‖), γ =
1√

1− v2
. (1.13)
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The normalization of flow velocity

uµuµ = −1, (1.14)

reduces the number of independent hydrodynamic variables from 6 + N to
5 +N . In the relativistic version of hydrodynamics, just as its classical coun-
terpart, there is a freedom in the definition of the flow 4-velocity uµ. For
example, in the Eckart frame uµ is associated to the flow of conserved charge
current. On the other hand, when uµ denotes the energy flow, we obtained
the hydrodynamics in the Landau-Lifshitz frame. In the previous case, it is
expected that

uµJaµ = na , (1.15)

while in the latter case we have

uµT
µνuν = ε . (1.16)

The choice of frames to define the flow 4-velocity in hydrodynamics leads to
no physical difference in the applications, but it simplifies the analysis for
particular problems. Throughout this work, we stick to the Landau-Lifshitz
definition in which the general forms of the stress tensor and the conserved
current are constructed in terms of these hydrodynamic variables as [58],

T µν = (ε+ P)uµuν + Pgµν + Πµν , (1.17a)

Jµa = nauµ + Iµa . (1.17b)

Πµν and Iµa in Eq. (1.17) stand for dissipative corrections, satisfying

uµΠµν = 0 , and uµIaµ = 0 . (1.18)

Equation of State

The apparent excessive one degree of freedom of the hydrodynamic system is
fixed by the equation of state (EoS), relating the thermodynamic variables, e. g.
ε and P . Corresponding to the bulk system created in heavy-ion collisions, the
equation of state which mirrors the dynamical properties of the QCD medium,
needs to be taken from the underlying theory. For instance, considering the
system in a simplified picture, that the expanding medium is a pure conformal
quark-gluon gas without phase transition, we have the typical conformal EoS,
ε = 3P . And it is not difficult to generalize this result for all the rest of
thermodynamic variables.
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Figure 1.8: A summary of lattice EoS. Figures taken from [6].

More realistically, since color confinement phase transition as well as the
hadron gas need to be characterized at low temperature, i. e. the later time
of medium evolution, EoS from lattice QCD simulations are considered [6]. In
Fig. 1.8, a number of parameterizations are shown from different lattice QCD
results. In our work, the ’Laine’ curve [59] which was first used by Luzum and
Romatschke [45] is applied and found very limited difference comparing to the
latest s95p-v1 parametrization [6], which is the solid black line in Fig. 1.8.
Parameterizations of lattice EoS cover a sufficiently wide range for the appli-
cation of hydrodynamics, with Tc ∼ 200MeV commonly taken into account
despite the detailed difference in these lattice simulations, as seen in Fig. 1.8.

There are two prominent properties of the lattice EoS, as well as the QCD
medium that hydrodynamics is to be applied to in heavy-ion collisions. First
is the negligible conserved charges. In the bulk medium in heavy-ion collision
of QGP phase, the baryon number which is the potential conserved charge
is expected to be small. On the other hand, fluidity of the bulk medium,
even in hadron gas phase, demands a strong interaction between constituents,
which prevents the whole system from chemical equilibrium. It is only at very
low temperature, i. e. T . 120 MeV, fluid system kinetically decouples and
conservations of, e. g. strangeness, become significant. This property of the
medium introduces a strong constraint and also simplification to the hydro-
dynamic equations of motion, rendering the equation of motion in Eq. (1.12b)
trivial. Thereby, in our work we neglect the constraint from the conservation
of conserved charges in hydrodynamics, which is also one general consideration
taken in present hydrodynamic simulations.

Second, the conformality of a medium is one of the fundamental symme-
tries, which constrains the dynamics dramatically. Especially, conformality
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strongly bounds the value of bulk viscosity ζ. Seen in Fig. 1.8, the trace
anomaly ε− 3P which measures the magnitude of deviations from conformal-
ity is scaled by T 4, rises only around Tc. This expectation is to some extent
consistent with the analyses on bulk viscosity in predicting harmonic flow in
heavy-ion collisions [60]. Nonetheless, as the study on bulk viscous correction
is beyond the scope of this work, we will focus on the shear tensor by taking
ζ = 0, thus Πµν = πµν .

Solving hydrodynamic equations of motion

It is very convenient to decompose 4-vector in hydrodynamics with respect
to the flow 4-velocity in Eq. (1.13), which in the local rest frame (LRF) is
time-like, (1,0). For instance, by defining the following projection operator,

∆µν = uµuν + ηµν , (1.19)

any vector V µ can be decomposed as

V µ
⊥ = ∆µνVν , (1.20)

and

V µ
‖ = V µ − V µ

⊥ . (1.21)

Since ∆µν reduces to (0, 1, 1, 1) in the LRF, it is not difficult to see that V µ
‖

is time-like, V µ
⊥ is space-like and V⊥ · u = 0. In particular, for the covariant

derivatives we define

∇µ = ∆µνdν
LRF−−−→ di (1.22a)

D = uµdµ
LRF−−−→ d0 (1.22b)

With these decompositions, and Πµν = 0, the ideal hydrodynamic equations
of motion can be re-expressed as

Dε = −(ε+ P)∇ · u , (1.23a)

Duν = − ∇
νP

ε+ P = −∇ν lnT , (1.23b)

which are the relativistic version of the constituent relation and Euler equation
in the classical hydrodynamics. In obtaining the second equality in Eq. (1.23b),
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we have used the thermodynamic relation,

N∑
a=1

na

ε+ P d
(µa
T

)
=

dP
T (ε+ P)

+ d

(
1

T

)
= 0 . (1.24)

The form of Eq. (1.23) has particular implications, that the time derivative of
a quantity can always be expressed in terms of spatial gradients. Writing all
time derivatives into spatial gradients is sometimes referred as the solubility
condition in kinetic theory [61], which has significant application in the theory
of hydrodynamics, and will be discussed in details in Chapter 5.

Generally there is no analytical solution to the coupled hydrodynamic equa-
tions of motion, Eq. (1.12) and EoS, especially when dissipative effects are
involved. The more approachable way is the computation on a computer. In
doing so, some further simplifications can be practically introduced, based on
the approximations and symmetries. For example, with Bjorken boost in-
variance, with respect to the space-time configuration in heavy-ion collisions,
the ηs dependence is trivial which reduces the hydrodynamics to 2+1 dimen-
sions. This simplification, leads to the basic form of hydrodynamic equations
of motion in the (τ, x, y, ηs) coordinate system,

∂τT
ττ + ∂xT

xτ + ∂yT
yτ = −1

τ
T ττ − τT ηsηs ,

∂τT
τx + ∂xT

xx + ∂yT
yx = −1

τ
T xτ ,

∂τT
τy + ∂xT

xy + ∂yT
yy = −1

τ
T τy . (1.25)

In the extreme case of 1+1 dimension, with the translational invariance along
ηs we have the ideal hydrodynamic equation of motion

∂ε

∂τ
= −ε+ P

τ
, (1.26)

which has an analytical solution for a conformal fluid, ε ∼ τ−4/3.
The construction of shear tensor πµν , which contains all of the dissipative

effects in hydrodynamics in our work, has no particular constraints except
the second thermodynamic law, i. e. ∆s ≥ 0 [58]. To the first order in the
gradient expansion, we have the well-known Navier-Stokes hydrodynamics, in
which the shear tensor is uniquely formed as

πµν = −ησµν , (1.27)
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where

σµν = 2〈∇µuν〉 . (1.28)

Throughout this work, the tensor indices inside the angle brackets 〈. . .〉, as
in Eq. (1.28), stand for being symmetric, traceless and orthogonal to the flow
4-velocity. More details of the definition and decomposition of tensor indices
can be found in Appendix A.

However, this first order viscous hydrodynamics in Eq. (1.27) has defects for
realistic hydrodynamic simulations, for two reasons. First, only including first
order in gradient in hydrodynamics breaks causality, which is reflected from the
existence of the superluminal mode [56]. Second, the algorithm of solving first
order viscous hydrodynamics on a computer in not stable. Although either of
these two issues devastates the application of hydrodynamics, it is necessary
to have rigorous treatment in physical study. The remedy to both of these
problems is to go beyond first viscous corrections in hydrodynamics, to include
as well second order terms. Following the rule of second thermodynamic law,
a great number of second order viscous corrections to hydrodynamics can
be deduced. In particular, adapting specifically some of these second order
terms results in a variety of types of second order viscous hydrodynamics, such
as the widely used Israel-Stewart hydrodynamics [62]. Taking into account
of conformal symmetry, Baier, Romatschke, Son, Starinets, and Stephanov
developed the BRSSS hydrodynamics [63], in which only those second order
terms obeying conformal symmetry are selected in the formulation,

πµν = −ησµν + ητπ

[
〈Dσµν〉+

1

d− 1
σµν∇ · u

]
+ λ1〈σµλσνλ〉+ λ2〈σµλΩνλ〉+ λ3〈Ωµ

λΩ
νλ〉+O(∇3) . (1.29)

In Eq. (1.29), the tensor structure called vorticity Ωµν is defined as anti-
symmetric, and orthogonal to flow 4-velocity,

Ωµν =
1

2
∆µα∆νβ (∇αuβ −∇βuα) . (1.30)

In analogus to the shear viscosity η, second order transport coefficients τπ,
λ1, λ2 and λ3 need to be determined from the underlying theory, as the input
parameters for hydrodynamic simulations. Considering the relation

πµν = −ησµν +O(∇2) , (1.31)

it is legal to iteratively substitute the σ’s with π on the right hand side of
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Eq. (1.29), with the cost of errors of third order in the gradient expansion. We
obtain the following equations of motion with πµν as a dynamical variable,

πµν = −ησµν − τπ
[
〈Dπµν〉+

4

3
πµν∇ · u

]
+
λ1

η2
〈π µ

λ π
λν〉 − λ2

η
〈π µ

λ Ωλν〉+ λ3〈Ωµ
λΩ

νλ〉+O(∇3) . (1.32)

Solving BRSSS equations of motion Eq. (1.32), in combination with Eq. (1.25),
give rise to a causual description of the hydrodynamic evolution of bulk medium
in heavy-ion collisions. This 2+1 dimensional, viscous hydrodynamics is the
baseline of our work.

1.3.3 Freeze-out and resonance decay

The fluid system created in heavy-ion collisions will eventually decouple and
all sorts of observables in experiment are supposed to be the consequence after
decoupling. The potential mechanism of sustaining the collectivity of medium
is microscopic dynamical interactions, such as elastic and inelastic collisions of
partons in QGP phase and hadrons in HG phase. As the temperature of the
system decreases along with system expansion, which weakens the scattering
processes accordingly, a series of (phase) transitions take place. As is roughly
stated in the following line,

T0 −→ Tc −→︸ ︷︷ ︸
elastic+inelastic+radiative

Tchem −→︸︷︷︸
elastic+radiative

Tfo −→︸︷︷︸
radiative

there are two major decoupling processes need to be considered: chemical
freeze-out at Tchem[64] and kinetic freeze-out at Tfo. Chemical freeze-out means
that the species composition of the hadronic matter is fixed in equilibrium,
though this equilibrium is approximated by neglecting inelastic collisions be-
tween hadrons. After kinetic freeze-out the system size becomes much larger
than the mean free path λmfp, thereby kinetic behavior of particles is stabi-
lized.Kinetic freeze-out is generally regarded as the end of the hydrodynamic
description, and incorporated by Cooper-Frye formula [65],

E
d3Ni

dp3
=

gi
(2π)3

∫
Σ

p · dσfi(x,p,Mi, µi), (1.33)

in which i is particularly used to indicate the particle species, e. g. gi stands
for the degeneracy factor of particle i. Eq. (1.33) is a Lorentz invariant form,
with the integral element pdσ defined on a specified hyper-surface Σ. Σ is
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determined by the kinetic freeze-out creterian. Generally, this creterian can be
selected as a specified freeze-out entropy density sfo or a freeze-out temperature
Tfo. In our simulations, we take a constant freeze-out temperature, so that the
following equation

T (t,x) = Tfo , (1.34)

defines a hyper-surface in the 3+1 dimensional space-time.
The basic function of Cooper-Frye formula Eq. (1.33) is to transform the

space-time dependence of the hydrodynamic fields into the momentum depen-
dence of particle spectrum, as long as the phase space distribution function
fi(x,p,Mi, µi) is entirely known. As the major subject to be discussed in de-
tails in Chapter 5, the form of fi(x,p,Mi, µi) needs to be consistently consid-
ered with respect to the corresponding hydrodynamics, in parallel with kinetic
theory. For ideal hydrodynamics, local equilibrium requires the equilibrated
distribution function nip(x,p), which can be Fermi-Dirac, Bose-Einstein, or
classical Boltzmann distributions, with respect to the specified case under con-
sideration. Similarly, dissipative effects in hydrodynamics leads to corrections
to the distribution function δf . The form [66]

δfπ =
np(1± np)
2(e+ P)T 2

pµpνπµν , (1.35)

which was originally proposed based on a kinetic theory approach, is presently
used a lot for viscous hydrodynamic simulations.

Before the ‘ultimate’ stabilized particle spectrum in experiment is reached,
unstable particles like resonances will decay and change the particles produc-
tion. Therefore, in a strict manner, Cooper-Frye formula should be applied
by including all possible particle species listed in the PDG table [26], fol-
lowed by resonance decay processes. However in practice it is sufficient to cut
the particle list to some massive particle (e. g., let MR ≤ 2GeV) to simplify
the calculation. Taking the scheme based on the analyses in [67, 68], predic-
tions comparable to experiment, such as charged particle multiplicity, can be
achieved, as shown in Fig. 1.7.

1.4 Outline of this work

Based on our work published in [69–72], this thesis is organized as follows. For
initial state fluctuations in heavy-ion collisions, in Chapter 2 we discuss the
cumulant expansion formalism. In our work, cumulants are used to classify and
characterize the azimuthal anisotropies induced by these fluctuations, so that
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eccentricities and the participant plane angles are defined systematically. With
Monte-Carlo simulations of PHOBOS Glauber model, effects of fluctuations
in the initial state are reflected in the centrality dependent eccentricities, as
well as participant plane correlations.

With the initial state fluctuations characterized with cumulants, in Chap-
ter 3 the medium response to initial anisotropies is investigated in terms of
the linear flow response and the nonlinear flow response. Flow response coeffi-
cients are analyzed as a function of the transverse momentum, centrality and
especially shear viscosity to entropy ratio. pT and centrality dependence of the
flow response coefficients determines the behavior of the observed harmonic
flow signatures, such as vn{2}. η/s dependence reveals the medium trans-
port property. When the flow response formalism is applied to the realistic
heavy-ion collisions, the predictions can be analytically understandable.

In Chapter 4, we analyze event plane correlations based on the flow re-
sponse formalism, with respect to the recent measurements by ATLAS col-
laboration [7]. Although the rigorous formulation of these plane correlations
relies on the resolution of the measurement, it is possible in our work to cal-
culate either in the high resolution limit or in the low resolution limit. We
also examine the contributions to the obtained event plane correlations from
linear flow response and nonlinear flow response separately, which we refer as
the ‘linear limit’ and ‘nonlinear limit’ respectively.

The inconsistency of the viscous hydrodynamics framework is studied in
Chapter 5. Viscous hydrodynamic simulations provide an indispensable tool
for the analysis of the medium property in heavy-ion collisions. However, as
we will detail in Chapter 5, regarding the widely used second order viscous
hydrodynamics, the viscous corrections to the phase space distribution is just
consistent at first order. By kinetic theory, second order correction δf(2) is
obtained in this work, with respect to the BRSSS hydrodynamics. The effect
of δf(2) is investigated for the linear flow response coefficients.

As mentioned earlier, notations and conventions we take throughout this
work are summarized in Appendix A.
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Chapter 2

Fluctuations in the initial state

In the past several years, the significance of initial state fluctuations was grad-
ually realized [53–55]. In particular, Alver and Roland [54] proposed initial
state fluctuations as the generic origin of the “ridge” and “shoulder” struc-
tures in the two-particle correlation functions in nucleus-nucleus collisions. In
their analysis, odd order harmonics of the collective flow, such as triangular
flow v3 [73], arise due to the medium response to a fluctuating initial state. In
the Fourier decomposition of the observed two-particle correlation spectrum, a
large fraction of the contribution was found from v3, which naturally explains
the general features of long-range two-particle correlations.

The realization of initial state fluctuations generalizes the investigation of
harmonic flow. First, accounting for the medium response to a initial geometry
with no particular symmetry, harmonics of all possible orders are expected.
In addition to the triangular flow, in recent years, extensive endeavors on har-
monic flows have been devoted experimentally and theoretically. From RHIC
Au-Au [74, 75] and LHC Pb-Pb [76–78] collisions, dipole flow v1, quadrapole
flow v4, and pentagonal flow v5, etc. were measured. Correspondingly, theo-
retical analyses based on hydrodynamics [69, 73, 79, 80] and transport theory
[73, 81] calculations were applied. Second, the fluctuating initial state has a
complex geometry, which leads to non-trivial event plane correlations of the
final state [7, 82–84]. The combined investigation of harmonic flows and event
plane correlations provide new constraints on properties of the medium pro-
duced in heavy-ion collisions.

The fluctuations in the initial stage of heavy-ion collisions, alters the the-
oretical modeling of the initial state. A bumpy profile, instead of a smooth
and symmetric initial density distribution, controls the initial geometry on an
event-by-event basis. As discussed in Section 1.3, to initialize the dynamical
description of the medium expansion with respect to a fluctuating initial state,
we should generalize the effective models of initial state with randomness. The
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Figure 2.1: The fluctuating initial state of one typical collision event, for
the event-by-event hydrodynamic simulations. The blue arrows indicate the
direction and magnitude of gradients.

Monte Carlo version of Glauber model, for instance, is constructed by sampling
the nucleon distribution inside a nucleus. With respect to a fluctuating initial
condition, there are two types of hydrodynamic simulations can be applied for
realistic calculations – event-by-event hydrodynamics[79, 85] and single-shot
hydrodynamics.

In the event-by-event hydrodynamics, the initial conditions are sampled on
an event-by-event basis. For each particular event a bumpy distribution like
the one shown in Fig. 2.1 is generated and is evolved. Solving hydrodynamic
equations of motion for this particular initial profile, leads to a particle spec-
trum containing all harmonics. In analogy to the data analysis carried out
in experiment, final state observables from the event-by-event hydrodynam-
ics are subsequently extracted from event averages of the accumulated particle
spectra. To a large extent, event-by-event hydrodynamic calculations resemble
realistic heavy-ion events. With parameters of the hydrodynamic simulations
appropriately selected (i. e. with η/s . 2/4π), a number of predictions have
been made. For example, the harmonic flow vn [86] and event-plane correla-
tions [87] have been calculated in the event-by-event hydrodynamic framework
and are comparable to the experimental observations

In linearized single-shot hydrodynamics (or the linear response), the fluctu-
ations in the initial state are treated as perturbations of the average geometry,
and the response to a given perturbation is studied. Thus, In the single-
shot hydrodynamic simulations, the harmonic flow of final state is assumed
to be proportional to its corresponding initial state anisotropy. Therefore, the
treatment of the initial state fluctuations is simplified. The initial stage of
heavy-ion collisions can be studied by these initial state Monte Carlo simula-
tions, which is independent of the hydrodynamic description of the medium
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expansion. Single-shot hydrodynamics separates initial stage and the medium
evolution afterwards, and thus has the advantage of theoretically analyzing
initial state fluctuations, the flow generation during the medium expansion,
and their mutual relations. As will be stated in details in Chapter 3 and
Chapter 4, these direct investigations on initial state, and flow generations are
crucial for theoretical analyses, especially the extraction of η/s.

The first step in developing the response formalism is to characterize the
initial perturbations of the average geometry. Subsequently the response the
these perturbations can be determined. The n-th order azimuthal anisotropy,
εn, is defined as

εne
inΦn = −{r

meinφr}
{rm} , (2.1)

where

{. . .} =

∫
ds . . . ρ(s)∫
dsρ(s)

(2.2)

indicates the average over the transverse plane with the fluctuation. The mi-
nus sign in Eq. (2.1) is conventionally taken so that the associated participant
angle Φn points to the shorter axis, along the direction with the largest spatial
gradient and therefore the direction of the associated event plane angle Ψn

of n-th order harmonic flow in a linear response approximation. εn basically
describes a n-th regular polygon, which can be abstracted from a bumpy dis-
tribution and originates a n-th order anisotropic flow in analogous to v2, as
illustrated in Fig. 2.1. Note that Eq. (2.1) is a empirical formula, in which the
power of r in both the denominator and numerator is left arbitrary. A widely
accepted definition of εn is to take m = n in Eq. (2.1), which we refer as the
moment definition.

In this chapter, on the other hand, we introduce the cumulant expansion
formalism for the classification and definition of these anisotropies. The cu-
mulant expansion for a fluctuating initial state and its implementation to the
hydrodynamic calculations is formulated in Section 2.1 and Section 2.2. The
systematic characterization of the initial anisotropies with cumulants, leads to
distinct results. Especially, in Section 2.3 the difference between the moment
and the cumulant definitions are discussed based on the averaged eccentricities
and participant plane correlations from the Monte Carlo simulations.
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= + fluctuations

Figure 2.2: Decomposition of the fluctuating initial state into Gaussian back-
ground plus perturbations.

2.1 Cumulant expansion

In this section, we present the basic concepts of the cumulant expansion for-
malism. The idea of applying cumulant expansion to a fluctuating initial state
stems from an approximated decomposition. As illustrated in Fig. 2.2, fluctua-
tions in a bumpy initial density profile of heavy-ion collisions can be separately
recognized as perturbations on top of a smooth Gaussian background. This
decomposition into background and fluctuations corresponds to the order-by-
order cumulant expansion.

Formulation of the cumulant expansion formalism

Let us start with a normalized initial entropy density ρ(x⊥) in the 2-dimensional
transverse plane, i. e., ρ(x⊥) = τos(τo,x⊥)/

∫
τod

2x⊥s(τo,x⊥) 1. The Fourier
transformation of the spatial distribution is,

ρ(x⊥) =
∫
d2k⊥e

ik⊥·x⊥ ρ̂(k⊥) . (2.3)

From the Fourier transformation, we define Ŵ (k⊥) as the generating functional
of cumulants,

ρ̂(k⊥) = eŴ (k⊥) =
∫
d2x⊥e

−ik⊥·x⊥ρ(x⊥) . (2.4)

The spatial fluctuations in ρ(x⊥) are related to the k⊥ dependence of Ŵ (k⊥).
We will expand Ŵ (k⊥) at small k⊥. This is because we wish to determine the
long distance perturbations to the Gaussian background. For the sake of of

1We have used the entropy density distribution to define ρ(x⊥). Alternative formulation
with energy density is straightforward.
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convenience, we introduce the following complex notations

k̄ = keiφk , r̄ = reiφr , (2.5)

so that,

k⊥ · x⊥ = Re(k̄r̄∗) =
1

2
(k̄r̄∗ + k̄∗r̄) = kr cos(φk − φr) . (2.6)

In the long wavelength limit, we expand the exponential factor with respect
to |k⊥|,

e−ik⊥·x⊥ = 1 +
∞∑
n=1

(−i)n
n!2n

(k̄r̄∗ + k̄∗r̄)n

=
∞∑
n=0

n∑
l=0

(−i)nC l
n

n!2n
(k̄r̄∗)l(k̄∗r̄)n−l , (2.7)

from which and the original Fourier transformations we obtain the expansion
of ρ̂(k⊥)

ρ̂(k⊥) =
∞∑
n=0

n∑
l=0

(−i)nC l
n

n!2n
k̄l(k̄∗)n−l{(r̄∗)lrn−l} . (2.8)

Note that {. . .} appears in the above equation as a result of the weighted
integral by ρ(x⊥) in the transverse plane. The geometric information of the
original spatial distribution is contained in these averages. Correspondingly
the cumulant expansion is formulated in the expansion of Ŵ (k⊥),

Ŵ (k⊥) =
∑
n,m

(−i)nŴn,m(k⊥) = lnρ̂(k⊥)

=
∞∑
j=1

(−1)j−1

j

(
∞∑
n=0

n∑
l=0

(−i)nC l
n

n!2n
k̄l(k̄∗)n−l{(r̄∗)lrn−l}

)j

. (2.9)

In Eq. (2.9) the pair of indices (n,m) in Ŵn,m(k⊥) denote the order of long
wavelength expansion kn (the order of perturbavie corrections) and the order
of azimuthal angle mφk respectively. Correspondingly, in the configuration
space they denote the deformations along radial (rn) and azimuthal (mφr)
directions. Considering the combination in Eq. (2.9)

k̄l(k̄∗)n−l = kne−i(n−2l)φk ←→ (r̄∗)lrn−l = rnei(n−2l)φr , (2.10)
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we recognize the relation m = |n− 2l|, which implies that for a m-th order az-
imuthal deformation, there exist in principle a series of higher order cumulant
terms weighted by rn with n = m,m + 2, etc.. By imposing 〈r̄〉 = 〈r̄∗〉 = 0,
so that the system center is redefined to be the center of mass, we rewrite the
terms in the cumulant expansion,

Ŵn,m(k⊥) =
1

n!2n
C(n−m)/2
n

[
kne−imφkWn,m + c.c.

]
. (2.11)

In Eq. (2.11) the factors with spatial averages are absorbed in the so-called
cumulant Wn,m. Our goal of cumulant expansion is to systematize the detailed
structure of Wn,m, from which the anisotropy of a fluctuating initial state can
be defined. A simple rule of writing the forms of Eq. (2.11) and the cumulants
Wn,m is as follows.

1. There is an overall constant coefficient, 1
n!2n

C
(n−m)/2
n .

2. Wn,m is formed in terms of the averages of powers of r̄ and r̄∗:

{ r̄ . . . r̄︸ ︷︷ ︸
(n+m)/2

r̄∗ . . . r̄∗︸ ︷︷ ︸
|n−m|/2

}+
∑
α

(−1)N−1Cα {r̄ . . .} . . . {. . . r̄∗}︸ ︷︷ ︸
N sets of brackets

+c.c., (2.12)

• In each term the total number of r̄ is (n + m)/2, and the number
of r̄∗ is |n−m|/2.

• For each term with N sets of average brackets, there is an extra
factor (−1)N−1.

• The coefficient Cα is determined by the combinatorial counting of
the average brackets in the term.

As a simple summary, we list some of these lowest order cumulants which we
will encounter in this work frequently,

W2,2 = {r̄2}+ c.c. , (2.13a)

W3,1 = {r̄2r̄∗}+ c.c. , (2.13b)

W3,3 = {r̄3}+ c.c. , (2.13c)

W4,4 =
[
{r̄4}−3{r̄2}2

]
+ c.c. , (2.13d)

W5,5 =
[
{r̄5}−C3

5{r̄3}{r̄2}
]

+ c.c. , (2.13e)

W6,6 =

[
{r̄6}−C2

6{r̄4}{r̄2} − C3
6

2
{r̄3}2 +

C2
6C

2
4

3!
{r̄2}3

]
+ c.c. . (2.13f)
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Note that these underlined nonlinear terms in Eq. (2.13) appear when n ≥ 4.

Classification of anisotropies and the dipole asymmetry

From the complex form of cumulant, we define eccentricities and the associated
participant plane angles for a fluctuating initial state,

Cn,meimΦcn,m = −Wn,m

{rn} , (2.14)

or equivalently

Cc,m =
|Wn,m|
{rn} , (2.15a)

Φc
n,m =

arg(Wn,m)

m
+
π

m
. (2.15b)

In additional to the index m which characterizes the azimuthal deformation,
in the cumulant definition with Wn,m, the index n is also included for the
description of fluctuations along the radial direction. In the cumulant ex-
pansion, higher order perturbation terms (which characterize short distance
fluctuations) are assumed to be damped. This expansion is supported by the
observed suppression of higher order harmonic modes. In particular, as we will
show in the discussion on the viscous effect in hydrodynamics, the medium re-
sponse to higher order cumulant is significantly damped. As a consequence,
it is natural to stick to the lowest order terms in the cumulant expansion,
and consider only the n = m case, for the m-th order azimuthal asymme-
try. The cumulant definition differs from the moment definition, except when
n = m = 2 and 3. Therefore, in our work the notations Cn and Φc

n are taken to
specify the cumulant defined eccentricities and participant angles in Eq. (2.14)
and Eq. (2.15). However, in general εn and Φn are still used for discussions,
even in the n ≥ 4 case when no confusion can arise.

In Eq. (2.13), W3,1 is obtained from the third order in the cumulant expan-
sion, which defines a novel description of the azimuthal anisotropy, the dipole
asymmetry,

C3,1e
iΦ3,1 = −W3,1

{r3} . (2.16)

Dipole asymmetry describes a higher order deformation breaking the reflec-
tion symmetry of the average background, which appears in a distribution
with fluctuations even though the system center is redefined. The distortion
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xy

Figure 2.3: A schematic picture of the dipole asymmetry.
The schematic view from z-direction and y-direction of a distribution with only
dipole asymmetry. The blue arrows indicate the direction and magnitude of
gradients as usual. Note the circled part at large radius where the distribution
becomes negative.

of the distribution, leaving the geometric center unaltered, results in a gradient
asymmetry along the direction Φ3,1. Fig. 2.3 shows an initial condition with
a net dipole asymmetry. In this case the maximum of the entropy distribu-
tion sits to the right of the center of entropy (see Fig. 2.3). This maximum
is balanced by the left-of-center entropy so that {r cosφ} = 0. Due to the
asymmetry in the initial distribution, the matter to the right of the maximum
flows to the east with larger velocity, while the matter to the left of the max-
imum flows to the west with smaller velocity. Since there is more entropy to
the left than to the right (relative to the maximum) the total momentum in
the x direction is zero. This flow pattern leads to a v1(pT ) that satisfies a
momentum conservation sum rule,∫ ∞

0

dN

dpT
v1(pT )pT = 0 . (2.17)

At high pT v1(pT ) is positive reflecting the fast matter to the right of the
maximum, while at low pT v1(pT ) is negative reflecting the slow (but abundant)
matter to the left of the maximum. These qualitative features of the dipole
flow are corroborated by numerical works [69, 88] and what has been observed
in experiments [78, 89, 90], e. g., seen in Fig. 3.3. Since the primary order
of m = 1 asymmetry is eliminated, in our work the notation ε1 = C3,1 and
Φ1 = Φ3,1 are used commonly for the dipole asymmetry.
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2.2 Application of cumulant expansion

In the previous section we introduced a cumulant expansion to characterize the
response of the system to a set of perturbations. In this section we will show
the implementation of the cumulant formalism to initialize hydrodynamics,
and study as well the convergence of the cumulant expansion.

Characterizing the initial energy density with cumulants

Rewriting Eq. (2.3) with cumulant expansion gives rises to the re-expression
of a distribution with fluctuations, in terms of cumulants order by order.

ρ(x⊥) =

∫
d2k⊥e

ik⊥·x⊥eŴ2,0+Ŵ2,2exp

[ ∑
n>2,m

Ŵn,m(k⊥)

]
= ρ2(x⊥) +

∑
n,m

ρn,m(x⊥) + . . . . (2.18)

In addition to the two lowest order terms ρ2,0 and ρ2,2, forming a background
Gaussian distribution as expected,

ρ2(x⊥) =
1

2π
√
{x2}{y2}

exp

[
− x2

{x2} −
y2

{y2}

]
, (2.19)

the terms with n > 2 introduce perturbations. The second equation in
Eq. (2.18) is obtained by a further expansion of the exponential factor, followed
by the Fourier transformation of each term. The background is determined by
the quantities {x2} and {y2} or equivalently the rms radius {r2} and eccen-
tricity, ε2 = ({x2} − {y2})/({x2}+ {y2}) . Each additional term in Eq. (2.18)
perturbs the background and the magnitude and type of perturbation is de-
termined by the cumulants, i.e. εn and {rn}. For instance, for a distribution
with only dipole asymmetry with Φ1 = 0, we have

ρ(x⊥) ∝
{

1 +
{r3}ε1

8

[(
∂

∂x

)3

+

(
∂

∂y

)2(
∂

∂x

)]}
e
− r2

{r2} , (2.20)

and a distribution with only triangularity with Φ3 = 0,

ρ(x⊥) ∝
{

1 +
{r3}ε3

24

[(
∂

∂x

)3

− 3

(
∂

∂y

)2(
∂

∂x

)]}
e
− r2

{r2} , (2.21)
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with an overall constant adjusted to reproduce the total initial entropy (for
approximating initial entropy density) or energy (for approximating initial
energy density). The trick of obtaining the differential operators in Eq. (2.20)
and Eq. (2.21) is to write the spatial partial derivatives in accordance with
the corresponding cumulant expansion form. Notice that each ikx or iky in
the cumulant expansion in Eq. (2.18) is related to a partial derivative of x or
y on eik⊥·x⊥ , so that after integration by parts fluctuations of a distribution in
coordinate space are expressed in terms of derivative operators on the Gaussian
with a specified form.

To analyze the hydrodynamic response to a distribution with single or
multiple perturbations, as we will detail in Chapter 3 for linear and nonlinear
flow response, one problem encountered is that the distribution in Eq. (2.20)
and (2.21) are negative for large radius. Take Eq. (2.20) as an example, the
partial derivatives of a Gaussian for dipole asymmetry overwhelm the leading
term when radius r grows large, resulting in a region with negative distribution,
as shown schematically in Fig. 2.3. This is an unavoidable consequence of
truncating a cumulant expansion at any finite order. As a result, a regulation
scheme is necessary in our calculations for these fluctuation terms. Denoting
the ratio of fluctuation terms in the distribution function to the background
Gaussian as X, then the regulated form

X → C tanh(X/C) (2.22)

is actually used in applications, with the constant C = 0.95. We have checked
that the results are independent of the precise value of the constant C. The
regulator here is not perfect as it (weakly) mixes different terms in the Fourier
expansion, and modifies to a slight extent the input value of eccentricity and
the “true” value the initial distribution actually has. However we have found
this mixing to be unimportant from a practical perspective, that is, as long as
the input value of eccentricity is sufficiently small. For instance if ε3 = 0.05
the generated flow for different orders is negligible. Meanwhile, the relative
difference of the input and the “true” value of eccentricity can be constrained
as small as a few percents.

Convergence of cumulant expansion for smooth Glauber

The convergence of the cumulant expansion, in particular from the point of
view of applications to the fluctuating initial state and hydrodynamics, is
in principle a problem beyond the scope of this work. However, in a sim-
plified manner, a test can be carried out for one specified initial condition.
For a smooth (optical) Glauber profile we replace the initial entropy distribu-

30



10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 0  1  2  3  4  5

1
/2

π
p

T
 d

N
/d

p
T

pT (GeV)

(a)

Glauber

Gaussian

with 4th cumulant

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  1  2  3  4  5

 v
n
(p

T
) 

pT (GeV)

(b)

Glauber

Gaussian

with 4th cumulant

Figure 2.4: (a) Spectra in the smooth (optical) Glauber model compared to
the cumulant expansion. The coefficients of the Gaussian and fourth-order
cumulant expansions have been adjusted to reproduce {r2} , {r2 cos 2φr} and
{r4 cos 2φr}, {r4 cos 4φr} , respectively. The total entropy of the cumulant
expansion is also matched to the total entropy of the Glauber distribution.
(b) Elliptic flow in the Glauber model compared to the cumulant expansion.

tion with an approximately Gaussian profile and cumulant corrections through
fourth order, n = 4. The distribution of entropy in the optical Glauber model
is first used to calculate {r2} and ε2, which consequently determine the two
coefficients in the Gaussian, {x2} and {y2}. Also the normalization (i. e., the
total entropy) is the same between the Gaussian and the Glauber distribution.
Taking the impact parameter to be b = 7.6 fm, with ideal hydrodynamics
Fig. 2.4 compares the spectra and the elliptic flow for these two distributions.
In the next approximation, the fourth cumulants to the Gaussian are adjusted
as described in the previous section, so that the quantities {r4}, {r4 cos 2φr}
and {r4 cos 4φr} are identified to the results of the optical Glauber.

An obvious trend of convergence is presented in Fig. 2.4 as the distribu-
tion with fourth order cumulants already reproduces the flow response to the
corresponding Glauber. Since ideal hydrodynamics generates the most sensi-
tive flow response to the initial state geometry, the test here demonstrates the
applicability of cumulant expansion formalism. Future test can be carried out
with respect to more realistic initial density profile with random fluctuations.
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2.3 Monte Carlo simulations of the initial state

Since the essence of the single-shot hydrodynamics is the assumed one to one
mapping, from the initial state profile to the observed spectrum, in this section
we estimate the initial state eccentricities and their correlations based on our
cumulant definitions, using the PHOBOS Monte Carlo Glauber code[8].

Eccentricity

With respect to the way in which harmonic flow is measured in experiment,
there are a handful of definitions of averaged initial eccentricities. For instance,
corresponding to the measured harmonic flow vn{2} by two-particle correlation
method, εn{2} is defined as

εn{2} =
√
〈〈ε2n〉〉 , (2.23)

where 〈〈. . .〉〉 denotes the events average. In Fig. 2.5, with Monte Carlo simula-
tions, εn{2} of harmonic order n ≤ 5 are calculated, as a function of number of
participants for LHC Pb-Pb collisions. To obtain a satisfactory convergence,
2 million events are accumulated in these PHOBOS MC-Glauber simulations.

The first observation of these simulations is the monotonic increase of all
these eccentricities with respect to collision centrality. For ellipticity this is
intuitively understandable since the overlap region becomes narrower when
centrality grows, and therefore a larger ellipticity generated from the almond-
shape background. However, for these very central collisions, where the back-
ground is roughly spherically symmetric, a non-zero ε2{2} is dominantly gen-
erated from fluctuations. This non-zero ε2{2} of central collisions results in
the observed non-zero elliptic flow v2{2} [91, 92]. For the other eccentricities,
background shape contributions to the formation of azimuthal deformations
are relatively small, the rise of εn towards peripheral collisions reflects the in-
creasing influence of fluctuations. In particular, we see that the dipole asym-
metry is about a factor of 2 smaller than the triangularity but is not negligibly
small. For the harmonic order n ≥ 4, the extra underlined terms in Eq. (2.13)
in the cumulant definition bring in corrections of quadratic nonlinear mixing of
lower order eccentricities, leading to modifications to the simulated results. As
shown in Fig. 2.5, the difference between the moment defined 4-th order and
5-th order eccentricities, and the corresponding cumulant defined ones, grows
with centrality as expected. Though it is noticeable in peripheral collisions,
the effect of taking cumulant definitions for the eccentricities is not significant.
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Figure 2.5: Eccentricities from Monte Carlo Glauber simulations for LHC Pb-
Pb collisions. The momentum based (the left figure) and the cumulant based
(the right figure) definitions result in differences that grows with centrality, for
the higher order eccentricities.

Initial state participant plane correlation

In addition to the magnitude of these anisotropies, the corresponding partici-
pant angles Φn and their correlations, reveal another aspect of the initial state
geometry with fluctuations.

As defined in Eq. (2.14), except that the associated participant angle Φ2 of
ε2 are dominated by the almond shape, Φn are entirely determined by fluctu-
ations. Therefore, on an event-by-event basis, the orientations of Φn depend
on specifically the details of the initial distribution in each heavy-ion collision
event. However on an event-by-event basis, as has been discussed in [93], in
which initial state fluctuations are modelized as hot spots, fluctuations in the
initial geometry lead to non-trivial correlations among different types of par-
ticipant plane angles. Generally, to characterize the correlations among Φn

of initial state (and Ψn of final state as will be stated in later sections), we
analyze the event averaged cosine function 〈〈cos(c1Φ1 + c2Φ2 + . . . + clΦl)〉〉.
Due to the n-fold rotational symmetry of n-th order of anisotropy, and the
reflection symmetry, the integer coefficients cl modes l, satisfying

c1 + 2c2 + . . .+ lcl = 0 . (2.24)

Obviously, non-zero value of the event averaged 〈〈cos(c1Φ1 +c2Φ2 + . . .+clΦl)〉〉
indicates non-trivial correlations, and the closer the value to 1 (or -1 for anti-
correlation), the stronger the correlation is. Note taking different convention
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Figure 2.6: Distribution of the angles Φ1 and Φ3 with respect to the reaction
plane for three different impact parameters

for the angle Φn definition, i. e., taking the shorter or longer axis as the defined
angle direction, leads to a minus sign for odd number plane correlations.

Without specifying an effective model as [93], in this section we try to
detail the origin of these initial plane correlations by the two particular ex-
amples, two-plane correlation 〈〈cos 2(Φ1 − ΨR)〉〉 and three-plane correlation
〈〈cos(Φ1−3Φ3 + 2ΨR)〉〉. As mentioned in Section 1.3, ΨR defines the so-called
reaction plane of collision, which precisely coincides with the participant plane
of ellipticity Φ2 for a smooth initial state. On an event-by-event basis, how-
ever, Φ2 fluctuates around ΨR with finite deviations. Since the deviations are
actually negligible for most of the centralities, in this work we take Φ2 ≡ ΨR.

In Fig. 2.6 the correlations between Φ1 and ΨR, and Φ3 and ΨR are exhib-
ited in terms of the probability distribution function, at various impact param-
eters. The angle range is selected by taking into account the corresponding
periodicity. There is a pronounced trend of increasing correlation between Φ1

and ΨR, from central to non-central collisions, peaking at Φ2−ΨR = π/2 and
3π/2. As a consequence of the (Φ1,ΨR) correlation, on an event-by-event basis
relative to the orientation of Φ2, the dipole asymmetry is preferred to be out-
of reaction plane. If expressing the correlation in terms of a cosine function
form, i. e. studying 〈〈cos 2(Φ1 − Φ2)〉〉, we should expect a negative result, as
shown in Fig. 2.7. Naively, we can think of the non-trivial (Φ1,ΨR) correlation
as a pure geometric effect, since there is a larger chance for the imbalance to
be induced by fluctuations on top of a smaller and narrower almond shape,
along the long axis than the shorter one. For (Φ3,ΨR), although the direct
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Figure 2.7: Initial participant plane correlation functions, from MC-Glaber
simulations for RHIC Au-Au collisions.

two-plane correlation is mostly negligible2, as can be seen in Fig. 2.6, through
Φ1 a strong three-plane correlation 〈〈cos(Φ1−3Φ3 +2Φ2)〉〉 is formed, as shown
in Fig. 2.7. The strong correlation may be explained physically as follows.
When the dipole asymmetry is in plane then the triangular axis is at π/3, i.e.
the point of the triangle is aligned with the dipole asymmetry as exhibited in
Fig. 2.8(a). However, when the dipole axis is out of plane then the triangular
axis is also out of plane as exhibited in Fig. 2.8(b). Note that in these special
configurations, cos(Φ1 − 3Φ3 + 2Φ2) = −1.

Fit and simple interpretations

These correlations are a reflection of the almond shape geometry and the
general form can be established by symmetry arguments. First since the prob-
ability of finding a dipole asymmetry in a given quadrant of the ellipse is the
same for every quadrant, the probability distributions dP/d(Φ1 − ΨR) must
only involve even cosine terms

dP

dΦ1

=
1

2π
[1− 2A cos 2(Φ1 −ΨR) + . . .] (2.25)

2In fact, for very peripheral collisions a slight peak of the probability distribution at
Φ3 −ΨR = π/6 and π/2 can be observed. However, ignoring this weak correlation will not
alter the analysis in this section.
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Figure 2.8: Geometric alignment of triangularity, dipole and ellipticity
When the dipole asymmetry is in plane (Position A), then the tip of triangularity

is aligned with dipole asymmetry. When the dipole asymmetry is out of plane

(Position B), the tip of the triangle is anti-aligned with the dipole asymmetry.

The sign has been chosen so that a positive A coefficient describes the out of
plane preference seen in Fig. 2.6. The coefficient A must vanish in a cylindri-
cally symmetric collision, and for small anisotropy we expect

A ∝ 〈〈ε2〉〉 . (2.26)

Similarly dP/d(Φ3 − ΨR) must involve even cossine terms and must be 2π/3
periodic

dP

d(Φ3 −ΨR)
=

1

2π
[1 + 2A6 cos 6(Φ3 −ΨR) + . . .] (2.27)

The relatively high Fourier number n = 6 explains the smallness of the observed
asymmetry, and to the lowest order A6 can be ignored.

For the analysis of the three-plane correlation between Φ1, Φ3 and ΨR, we
need to introduce the conditional probability distribution,

P (Φ3|Φ1,ΨR) ≡ The probability of Φ3 given Φ1 and ΨR . (2.28)

For any fixed value of Φ1, the periodicity of Eq. (2.28) must follow Φ3 to be
2π/3. Thus measuring all angles with respect to the reaction plane ΨR, and
keeping only the first nontrivial term in the Fourier series we have

P (Φ3|Φ1,ΨR) =
1

2π

{
1 + 2B cos[3(Φ̄3 −ΨR)− (φ∗ −ΨR)]

}
(2.29)

The amplitude B and the phase φ∗ are functions of Φ1 − ΨR, so we can have
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further expansion of B and the phase derivatives ,

B = B0 + 2B2 cos(2Φ̄1) , (2.30a)

dφ∗

dΦ̄1

= C0 + 2C2 cos(2Φ̄1) , (2.30b)

where Φ̄1 = Φ1 − ΨR. As the Φ1 increases by 2π , the phase φ∗ must change
by a multiple of 2π to leave the conditional probability distribution invariant.
The simplest possibility which qualitatively describes the trends illustrated in
Fig. 2.8 and Fig. 2.9 is to take C0 = 1. In a general Fourier series of two
variables other possibilities would be allowed, for example, C0 = 3. However,
such correlations turn out to be small in the Glauber model. Integrating
Eq. (2.30b) we find

φ∗ = Φ1 + C2 sin(2Φ̄1) + constant (2.31)

The constant required to reproduce Fig. 2.8 is π. The combination of Eq. (2.29),
(2.30a), and (2.31) leads to the following parametrization,

P (Φ3|Φ1,ΨR) =
1

2π
{1− 2[B0 − 2B2 cos 2(Φ2 −ΨR) cos(3Φ3 − φ∗ − 2ΨR)} ,

(2.32)

in which the angle combination Φ1 + 2Φ2− 3Φ3 indeed appears. In Eq. (2.32)
we absorbed the constant phase π in φ∗ into the leading minus sign of B0 and
B2 and changed the sign of C2 so that all coefficients are positive in the final
fit. Fig. 2.9 shows a fit to the Monte Carlo Glauber at b = 7.6 fm using this
parametrization. The fit does capture most of the essential features, but fails
to reproduce the sharpness of the correlation band.

Finally, we can estimate the scaling of these coefficients with the average
elliptic eccentricity 〈〈ε2〉〉. In a central collision P (Φ1,ΨR) must vanish. This
can be understood by examining Fig. 2.8 and recognizing that in a central
collision there is no distinguishable difference between position A and position
B. The coefficient of cos(3Φ3−φ∗−2ΨR) (i. e., B) describes how phase between
the triangular and the dipole planes changes from position A to position B.
This coefficient must vanish in central collisions where position A and position
B are identical. Finally the coefficients B2 and C2 reflect the almond shape
and must involve an additional power of 〈〈ε2〉〉 relative to C0 and B0. With
these remarks we arrive at the scalings,

B0 ∝ 〈〈ε2〉〉, B2 ∝ 〈〈ε2〉〉2, C2 ∝ 〈〈ε2〉〉, . (2.33)
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Figure 2.9: The conditional probability distribution P (Φ3|Φ1,ΨR) for impact
parameter b = 10.5 fm. The dashed curves are fit with parameter C2 = −0.53.

Some results of initial two-plane and three-plane correlations

More systematically, as a generalization of the discussion above, we investigate
the initial two-plane and three-plane correlations, with respect to the recent
results of event plane correlations measured by ATLAS collaboration for Pb-Pb
collisions [7]. The simulations in this section are done using PHOBOS Glauber
model. Other effective models, such as MC-KLN [94] and MC-Glissando [9],
can also be taken into account, but does not change our conclusions.

Shown in Fig. 2.10 and Fig. 2.11, strong correlations, such as the cor-
relations between (Φ4,Φ2), are obtained from PHOBOS Glauber simulations.
Except the correlation 〈〈cos 6(Φ3−Φ2)〉〉, in which higher order anisotropies are
not involved, the cumulant defined and moment defined participant plane cor-
relations are different. For example, the negative 〈〈cos(4Φ4 − 4Φ2)〉〉 reflects a
strong anti-correlation, while the corresponding correlations 〈〈cos(4Φc

4−4Φ2)〉〉
is positive. Similarly, a sign difference can also be found in the two-plane cor-
relation (Φ2,Φ6) and three-plane correlation (Φ2,Φ3,Φ5) etc..

To understand the difference between the cumulant and moment definitions
in terms of the angle correlations, we take (Φ4,Φ2) as an example. In the mo-
ment definition, this negative result can be expected because the fourth order
eccentricity ε4 is trivially anti-correlated with the second order eccentricity ε2.
These trivial geometric correlations are removed with the cumulant definition
by the subtraction of the nonlinear terms. Recall the cumulant definition of
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Figure 2.10: Initial state two-plane correlations of LHC Pb-Pb collisions
Initial state two-plane participant plane correlations from PHOBOS MC-
Glauber model. The corresponding event plane correlations measured by AT-
LAS collaboration [7] are shown for comparisons.
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Figure 2.11: Initial state three-plane correlations of LHC Pb-Pb.
Initial state three-plane participant plane correlations from PHOBOS MC-
Glauber model. The corresponding event plane correlations measured by AT-
LAS collaboration [7] are shown for comparisons.
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4-th order anisotropy,

C4e
i4Φc4 = − [{r̄4} − 3{r̄2}2]

{r4} = ε4e
i4Φ4 + 3

[
ε2e

i2Φ2
]2

(1 + δ) , (2.34)

where δ characterizes the deviation from a pure Gaussian background. In the
limit of a pure Gaussian without any perturbations, Eq. (2.34) leads to C4 = 0
and ε4 = 3ε22, and a perfect anti-correlation Φ4−Φ2 = π. When non-Gaussian
effects are taken into account from the realistic Glauber background, we should
expect the correction leads to a positive δ. As a result, non-trivial positive
correlations between (Φc

4,Φ2) are deduced, i. e.,

cos 4(Φc
4 − Φ2) ∼ ε4 cos 4(Φ4 − Φ2) + 3ε22(1 + δ)

∼ 3ε22 [cos 4(Φ4 − Φ2) + 1 + δ] . (2.35)

This crude geometric analysis explains the correlation of 〈〈cos 4(Φ2 − Φc
4)〉〉

and the anti-correlation of 〈〈cos 4(Φ2 − Φ4)〉〉. Furthermore, the sign flipping
from 〈〈cos 4(Φ2−Φ4)〉〉 to 〈〈cos 8(Φ2−Φ4)〉〉 and 〈〈cos 12(Φ2−Φ4)〉〉 can also be
understandable in the similar way.

Nevertheless, these initial participant plane correlations are not compatible
to the ATLAS measurements.

Discussion

We hope that the cumulant expansion presented in this chapter organizes and
formalizes the study of initial state fluctuations in heavy-ion collisions. The
convergence of the cumulant expansion is sufficiently good as illustrated in
Fig. 2.4 for a smooth Glauber, test with respect to a fluctuating initial profile
is left for future studies. In the cumulant expansion formalism, the anisotropies
are systematically defined. In particular, we found in the third cumulant, W3,1

describes the rapidity-even dipole asymmetry. The formulation of the cumu-
lant expansion in Section 2.1 is constrained in the 2-dimensional transverse
plane. A generalized discussion in the 3-dimensional space, containing also
the ηs dependence, can be found in Appendix B.

Initial state participant plane correlations were analyzed using Monte Carlo
Glauber simulations. In particular, We find that in non-central collisions the
dipole asymmetry is preferentially out of plane leading to a v1 out of plane. We
also noted the strong correlation between the dipole asymmetry, ellipticity and
the triangularity. A pure geometric explanation for the 〈〈cos(Φ1 + Φ2− 3Φ3)〉〉
was proposed. Although the simulated magnitude of these eccentricities from
the cumulant definitions are found not quite different from the moment defi-
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nitions, effects of cumulant definition on initial participant plane correlations
are significant. In Fig. 2.10 and Fig. 2.11, with cumulant and moment defini-
tions, even a sign difference can be found, e. g. the correlation (Φ4,Φ2). On
a geometric ground, the obtained results of these initial plane correlation can
be understood. In our work, other effective models, such MC-KLN [94] and
MC-Glissando [9] can also be applied for initial participant plane correlations,
but still fail to explain the experiment results in Fig. 2.10 and Fig. 2.11.
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Chapter 3

Flow response

In the previous chapter we discussed the initial state fluctuations. In particular
we analyzed the initial state participant plane correlations using the cumulant
expansion. comparing the final state correlations [7] to the initial state corre-
lations in Fig. 2.10 and Fig. 2.11 have shown significant differences, suggesting
that the medium response to the initial perturbations is nontrivial. To im-
prove these theoretical predications, and to approach a better understanding
of flow generation in heavy-ion collisions, in this chapter we will analyze the
medium response in details.

The medium response to the initial state anisotropy can be characterized
by flow response coefficients. As will be clarified later, the flow response coef-
ficient,

flow response coefficient =
observed flow

initial state information
(3.1)

quantifies the mapping from the initial state to the final state observations.
Thus in the flow response formalism, the predicted observables, such as har-
monic flow vn{2}, can be factorized in terms of flow response coefficients (which
are studied in this chapter) and initial state anisotropies (which were studied
in the previous chapter). There is strong experimental and theoretical evi-
dence that the harmonic flow, v2 and v3, are to a good approximation linearly
proportional to the corresponding deformations in the initial entropy density
in the transverse plane. In general, flow response coefficients, and thus the
mapping from the initial state and the final state, can be analyzed as a func-
tion of the medium properties. In Section 3.1 we review and investigate the
linear flow response formalism. The dependence of the linear flow response
coefficient on collision centrality, transverse momentum and η/s are analyzed
based on ideal and viscous hydrodynamic simulations of heavy-ion collisions.
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In an insightful paper Gardim et al [95] studied the correlation between
higher harmonics, v4 and v5, and the initial spatial deformations within ideal
hydrodynamics. This work explained and quantified the extent to which the
higher harmonics such as v4 and v5 arise predominantly from the nonlinearities
of the medium response. For example, for mid-central collisions the observed v5

is predominantly a result of the interactions between v2 and v3. In [85], Heinz
and Qiu investigated the linear relation between harmonic flow vn and initial
eccentricity εn, using event-by-event ideal hydrodynamics. They find that the
elliptic flow v2 and triangular flow v3 are linearly proportional to ε2 and ε3 from
very central (b = 0 fm) to very peripheral collisions 1. However, for v4 and ε4
, and v5 and ε5, a simple linear relation is not found. In addition, it is also
confirmed from the comparison of the linear flow response coefficients between
their event-by-event hydrodynamic and single-shot hydrodynamic calculations.
These analyses suggest the necessity of considering the nonlinearities in the
medium expansion.

Thereby, as an extension to the linear flow response, by considering non-
linear mode mixing of the harmonics, we construct the nonlinear flow response
formalism. The nonlinear generation of harmonics can thus be described in
the nonlinear flow response formalism, with the formulation shown in Sec-
tion 3.2. With the nonlinear response coefficients systematized, as a function
of transverse momentum, centrality and η/s, the medium response formalism
is applied for realistic predictions. A simple discussion is made in Section 3.3.

3.1 Linear flow response

In this section, we briefly review the concept of linear flow response in heavy-
ion collisions, and test its applicability. In linear response, a linear relation
between the observed harmonic flow and the initial azimuthal anisotropy is
assumed

vne
inΨn =

wn
εn
×
(
εne

inΦn
)
. (3.2)

In Eq. (3.2), the associated observables of order n, i. e. harmonic flow vn
and event plane angle Ψn, are written compactly in a complex form, which
parallels the description of initial state fluctuation in the bracket on the right
hand side (r.h.s.) of the equation. The linear relation in Eq. (3.2) defines a
linear response coefficient, wn/εn. Note we have specified the notation wn for

1For the very peripheral bins, there is a slight deviation from the linearity between v3
and ε3.
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the linearly generated n-th order harmonic flow, instead of vn. Accordingly
wn/εn is used to symbolize the linear flow response coefficient.

Following the strategy in Section 2.2, the initial geometric deformation is
characterized by the cumulant expansion form Eq. (2.18). For calculating the
linear response of harmonic order n, we introduce the corresponding deforma-
tion by the input eccentricities εn = 0.05 and εm = 0 if m 6= n, on a spherically
symmetric Gaussian background. Hydrodynamics describes the medium ex-
pansion with respect to the specified initial condition, and the linearly gener-
ated flow vn is calculated. To quantify the linear flow response coefficient pre-
cisely, the output initial eccentricity εoutputn is taken so that wn/εn = vn/ε

output
n .

In our calculations, the participant plane angle Φn of the initial profile is taken
to be aligned with the reaction plane ΨR for simplicity.

3.1.1 Flow development during the medium expansion

The medium expansion in heavy-ion collisions is a process that transform the
initial state spatial anisotropy to the observed anisotropic flow in final state
momentum space. The generation of the momentum anisotropy can be seen by
investigating the evolution of the medium profile, especially the flow velocity
profile.

Evolution of eccentricities

Driven by the gradient anisotropy, the bulk evolves with respect to a speci-
fied initial state geometry. Accordingly, the spatial anisotropy is transformed
into momentum space and the harmonic flow develops. As a result, in the
linear flow response formalism, for each harmonic order n, we should expect
the decreasing of spatial eccentricities εnx and the increasing of momentum
anisotropy εnp, as a function of evolution time during the bulk expansion. In
this section, we will explicitly label x in the subscript of the spatial eccentricity
to distinguish it from the momentum anisotropy. Corresponding to ellipticity,
the second order momentum anisotropy is traditionally defined as

ε2p =

∫
d2x (T xx − T yy)∫
d2x (T xx + T yy)

=

∫
d2x(ε+ P)u2

r cos 2φu∫
d2x [(ε+ P)u2

r + 2P ]
, (3.3)

where ur =
√
u2
x + u2

y and φu = tan−1(uy/ux) define the geometric profile
in the flow velocity space. However, the numerators and denominators in
Eq. (3.3) do not have manifest covariance under transverse boosts. To remedy
this flaw, we first write the measure in these integrals as the fluid three volume
in the local rest frame dΣµu

µ = d2xdητu0. Then projecting to the transverse
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plane, we introduce the new definition

ε2p ≡
∫
d2xτu0(ε+ P)u2

r cos 2φu∫
d2xτu0 [(ε+ P)u2

r + ε]
=

∫
d2xτ

[
T 0(ux) − traces

]∫
d2xτ [T 00u0]

. (3.4)

which is slightly different from Eq. (3.3). Note in the second equation of
Eq. (3.4), the numerator has been re-expressed in terms of an irreducible rank
two tensor out of momentum density T 0j and flow velocity uj,

T 0(iuj) − traces ≡ 1

2

(
T 0iuj + T 0jui − δijT 0lul

)
. (3.5)

Eq. (3.4) and the relation Eq. (3.5) for second order anisotropy can be ex-
tended, to define any order of anisotropy in the momentum space. For exam-
ple, corresponding to dipole asymmetry ε1x and triangularity ε3x, we have the
third order tensor,

T (0iujul) =
1

3!
(T 0iujul − perms) , (3.6)

The irreducible form of this tensor is used to define triangular anisotropy in
momentum space,

ε3p ≡
∫
d2xτ

[
T 0(xuxux)− traces

]∫
d2xτ [T 00u0u0]

=

∫
d2xτu0 [(ε+ p)u3

r cos 3φu]∫
d2xτT 00u0u0

, (3.7)

The trace is used to define the dipole asymmetry in momentum space,

ε1p ≡
∫
d2xδijT

0(xuiuj)∫
d2xτT 00u0u0

=

∫
d2xτu0 [(ε+ p)u3

r cosφu]∫
d2xτT 00u0u0

. (3.8)

Armed with these definitions, Fig. 3.1 illustrates the development of the trian-
gular flow and the dipole asymmetry as a function of time. As is familiar from
studies of the elliptic flow [30, 33], the spatial anisotropy decreases leading to
a growth of the momentum space anisotropy. When the spatial anisotropy
crosses zero, the growth of the momentum space anisotropy stalls. The figures
also indicate that the elliptic flow, the dipole asymmetry, and the triangular-
ity all develop on approximately the same time scale τ '

√
〈r2〉/cs, where

cs is the speed of sound. It is interesting to note the major contribution to
the harmonic flow is from the QGP phase of the expanding medium (the first
several fm/c in Fig. 3.1).
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Figure 3.1: (a) The spatial anisotropy of the entropy distribution ε1x , ε2x ,
and ε3x (see text) as a function of time for b = 7.6 fm. (b) The momentum
anisotropy ε1p, ε2p , and ε3p (see text) as a function of time. The time scale in

these figures should be compared to
√
{r2}/cs ' 5.4 fm.

Evolution of flow velocity profile

Another important aspect of the flow is the radial flow profiles. To illustrate
this we decompose the transverse flow velocity into harmonics 2

ur(r, φr) = u0
r(r) + u(1)

r (r) cos(φr) + u(2)
r (r) cos(2φr) + u(3)

r (r) cos(3φr) + . . .
(3.9)

For a radially symmetric Gaussian distribution only the transverse flow u
(0)
r is

present and shows a characteristic linearly rising flow profile. When an elliptic
deformation is added, the second harmonic also shows a linearly rising profile.
Close to the origin, this behaviour can be understood with a linearized analysis
of acoustic waves in a flowing background. The flow velocity in an acoustic
analysis is the gradient of a scalar function Φ which can also be expanded in
harmonics

Φ(r, φr) = Φ(0)(r) + Φ(2)(r) cos 2φr + . . . . (3.10)

2For a initial state with random fluctuations, the corresponding flow velocity profile has
non-trivial dependence on the participant plane angles Φn, which should be included in the
decomposition as in Eq. (3.22) in a more serious manner. In this section, regarding the
analysis of the development of flow velocity, neglecting the Φn dependence does not affect
the conclusions.
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Figure 3.2: Flow profile evolution
(a) The zeroth harmonic of the flow profile (see Eq. 3.9) for the radially symmetric

Gaussian adopted in this work. The root mean square radius of the Gaussian is

adjusted to reproduce an impact parameter of 7.6 fm. (b) The first harmonic of the

flow profile for a distribution with a net dipole asymmetry. (c) The second harmonic

of the flow profile for an elliptic perturbation. (d) The third harmonic of the flow

profile for a triangular perturbation
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If Φ(r, φ) is an analytic function of x and y, then Φ(2) must be quadratic for
small r. Consequently, the gradient of this function u(2)(r) will rise linearly at
small r. Similarly, the triangular deformation Φ(3)(r) should be cubic at small
r and the flow profile u(3)(r) should be quadratic. These features are borne out
by our numerical work as exhibited in Fig. 3.2. The first harmonic is negative
at small r followed by a quadratically rising profile at larger r. This structure
can be qualitatively understood using momentum conservation as discussed in
the previous section for the dipole asymmetry.

As seen from Fig. 3.2, the dipole and triangular flows are biased toward
the edge of the nucleus, which can be attributed to the harmonic response to
the anisotropy proportional to {rn}. Due to this bias, the more sensitivity of
higher order harmonic flow is expected to the freeze-out prescription.

3.1.2 Linear flow response coefficients

To have a fully determined prediction for the final state observables,in addi-
tion to the knowledge of the initial state from Monte Carlo simulations, we
require linear flow response coefficients wn/εn. The linear response coefficients
are a function of collision centrality, the properties of the medium, and the
transverse momentum of the observed particles. These dependencies must
reproduce the analogous dependencies observed in the data. In this work,
ideal and viscous hydrodynamic calculations are used with a lattice EoS. The
freeze-out is taken with respect to a constant freeze-out temperature Tfo = 150
MeV.

pT dependence

In Fig. 3.3, the transverse momentum dependence of linear flow response co-
efficients of harmonic order n ≤ 5 are obtained from ideal hydrodynamic
calculations for a RHIC Au-Au collision event with b = 7.45 fm.

As was explained in [96] based on a saddle point approximation for the
freeze-out integral for ideal hydrodynamics, and implied from flow profile in
the previous section, in the regime of large enough pT , the pT dependence of
the generated flow is, vn(pT ) ∝ pT

3. For the small pT range, in a very similar
manner the analysis leads to the result vn(pT ) ∝ (pT )n. These two extreme pT
regions are apparent in Fig. 3.3, and especially we should note the transition
region from (pT )n to the linear pT dependence of these flows.

Since dipole flow v1 is constrained by the conservation of transverse mo-
mentum, as discussed in Section 2.1, correspondingly the pT dependence of

3The original analysis was proposed for elliptic flow v2, but the conclusion can be nat-
urally extended to any harmonic order.
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Figure 3.3: pT dependence of linear response coefficients.
wn/εn(pT ) from ideal hydrodynamic simulations for RHIC Au-Au collisions, with

the impact parameter b = 7.45 fm.

linear flow response coefficient w1/ε1 is not monotonic, and w1/ε1 crosses zero
at pT = p0

T . Based on the conservation of transverse momentum, and an
approximated particle spectrum, it can be argued that the crossing point is
related to the radial flow of the expanding medium, i. e. p0

T ∼ 〈p2
T 〉/〈pT 〉.

When viscous effect of hydrodynamics is considered, the high pT regime
linear dependence is broken as a result of the viscous corrections to the freeze-
out integral. We leave the detailed discussion on this issue in Chapter 5.

Centrality dependence

In Fig. 3.4, the integrated results of wn/εn,

wn
εn

(b) =

∫
dpT

dN

dpT
vn(pT , b)

are plotted as a function of impact parameter b, from ideal and viscous hy-
drodynamic calculations. Note since the integral is dominated by the low pT
region, linear dipole flow response coefficient is negative. From very central to
very peripheral collisions, the primary change of the expanding system is the
decrease of the fireball life-time, which is the direct result of the decreasing
entropy density as well as the system size. Therefore, towards a larger colli-
sion centrality a smaller radial flow is excepted to be developed, as well as the
linear flow response. As is confirmed in Fig. 3.4 from both ideal and viscous

50



-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 1  2  3  4  5  6  7  8  9  10  11  12

lin
e

a
r:

 w
n
/ε

n

bimp(fm)

ideal hydro.

× 3

× 5

n=1
n=2

n=3
n=4

n=5

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 1  2  3  4  5  6  7  8  9  10  11  12

lin
e

a
r:

 w
n
/ε

n

bimp(fm)

η/s=1/4π

× 3

× 5

n=1
n=2

n=3
n=4

n=5

Figure 3.4: Centrality dependence of linear response coefficients
wn/εn as a function of impact parameter, from the ideal and viscous hydrodynamic

simulations for RHIC Au-Au collisions. To make the response coefficients visible, a

factor of 3 and 5 are multiplied for w4/C4 and w5/C5 respectively.

hydrodynamics, the magnitude of the flow response coefficients has a slight
monotonic decrease when b increases.

Another salient feature we note in Fig. 3.4 is the systematic decrease of
these linear response coefficients with the growth of harmonic order, which
can also be seen in the differential spectrum in Fig. 3.3. In fact, to make
w4/C4 and w5/C5 visible, a factor of 3 and 5 have been multiplied respectively.
Viscous effect which damps these linear flow response coefficients tends to
substantiate the decrease, in particular w4/C4 and w5/C5 become negative at
larger centrality in the viscous hydrodynamics results. The viscous w4/C4 and
w5/C5 curves in Fig. 3.4 stop abruptly as a function of centrality, since we
have truncated the curves when response falls below zero to avoid physical
inconsistency.

Dependence on shear viscosity

The linear flow response is damped by the viscous effects of medium, as indi-
cated in viscous hydrodynamic calculations. Intuitively, the viscous damping
of the flow response can be understandable as follows. The sensitivity of a
medium response to the geometric deformation depends on the mean free path
λmfp, which can be roughly estimated as λmfp ∝ η/s. Therefore for a medium
system with larger shear viscosity, the expected sensitivity of the medium re-
sponse is reduced. In addition, a characteristic length λnch of harmonic order
n can be assigned to the anisotropy εn, quantifying the length scale of the
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Figure 3.5: Linear flow response dependence on η/s
Linear response coefficients wn as a function of viscosity relative to the ideal re-

sponse.

spatial azimuthal deformation. Geometrically λnch decreases with respect to
the growth of n for a system with finite size. As a result, qualitatively describ-
ing the ability of medium response to the initial state azimuthal deformation
as the ratio λnch/λmfp, it is not difficult to expect higher order harmonic flow
suffering more from viscous damping, as seen in Fig. 3.5.

For a pure conformal theory, hydrodynamics with analytical solution has
been developed by Gubser and Yarom [97]. It was realized in their analysis
that a coordinate transformation with respect to conformal symmetry can be
applied to the Bjoken boost invariant 2+1 dimensional hydrodynamics, so
that the manifold of the hydrodynamics is simplified with a SO(1, 1) × Z2 ×
SO(3) symmetry. Each linearized perturbation labeled by (n,m)-th cumulant
is damped by a factor ∼ exp(−Γn,m tf) relative to ideal hydrodynamics, where
tf is an estimate for the duration of the event. Gubser and Yarom’s solution
shows that the damping coefficients Γn,m scale as

Γn,m tf ∼
`mfp

L

(
n−m

2
+m

)2

, (3.11)

for a conformal equation of state and a particular background flow [97]. Our
numerical work (Fig. 3.5) is not limited to the conformal equation of state
or the particular background flow of Ref. [97], and shows that this scaling is
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reasonably generic [73, 88]. Specifically, the formal estimate given in Eq. (3.11)
implies a definite pattern among the viscous corrections to vn:

− ∆w1

wid
1

' −∆w2

wid
2

∝ 4
η

s
, −∆w3

wid
3

∝ 9
η

s
,

− ∆w4

wid
4

∝ 16
η

s
, −∆w5

wid
5

∝ 25
η

s
. (3.12)

where ∆w = wviscous − wideal, and wid is the ideal hydro response coefficient.
Note, in particular that the viscous corrections v1 and v2 are similar since
v1 and v2 respond to the dipole asymmetry, W3,1, and the ellipticity, W2,2,
respectively [88]. Since the slopes of the v1 : v2 : v3 : v4 : v5 curves in Fig. 3.5
have approximately the expected ratios 4 : 4 : 9 : 16 : 25, our numerical work
qualitatively confirms this pattern of viscous corrections.

When viscous effects become remarkable in hydrodynamic simulations, e. g.
the calculation of w4/C4 and w5/C5 in Fig. 3.4 at very peripheral collision
bins from viscous hydrodynamics, and in Fig. 3.5 with large enough η/s, a
negative linear flow response is achieved. However, except the negative result
of dipole flow which is natural, the flow response of medium should always be
non-negative. The obtained inconsistency reflects the incompleteness of our
viscous hydrodynamic simulations, which we will detail in Chapter 5.

3.1.3 Application of linear flow response

Based on the simple assumption of linear flow response, Eq. (3.2) gives rise to a
direct one-to-one mapping between initial state and final state. For example,
it is straightforward to estimate the magnitude of the predicted harmonic
flow as linearly proportional to εn, and the angles are identified, Ψn = Φn.
In this spirit, considering only linear flow generation in hydrodynamics, the
predicted event plane correlations are identical to their corresponding initial
state participant plane correlations, see in Fig. 2.10 and Fig. 2.11, which case
we refer as the ‘linear limit’ in our work.

As a result of linear flow response assumption, we obtain the particle spec-
trum from one heavy-ion collision,

dN

dφp
=
N

2π

[
1 +

∞∑
n=1

einφp
(
wn
εn
εne
−inΦn

)
+ c.c.

]
, (3.13)

from which, regarding the realistic experiment measurements with specified
event average process, the multi-particle correlation functions can be formu-
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lated. For example, the two-particle correlation function is〈〈
dNadN b

dφadφb

〉〉
'N

aN b

(2π)2

[
1 +

∑
n

(
wanw

b
n

ε2n

)
〈〈ε2n〉〉ein(φa−φb)

+
wa2
ε2
〈〈ε2〉〉ei(2φa−2Φ2) +

wa2w
b
2

ε22
〈〈ε22〉〉ei(2φa+2φb−4Φ2)

+
wa1w

b
1

ε21
〈〈ε21ei2(Φ1−Φ2)〉〉ei(φa+φb−2Φ2)

+
wa1w

b
3

ε1ε3
〈〈ε1ε3ei(Φ1−3Φ3+2Φ2)〉〉ei(φa−3φb+2Φ2)

+ . . .+ a↔ b

]
+ c.c. , (3.14)

where a and b label the particle type, and the symmetrization of a and b
is applied to all terms that is not symmetric with respect to the exchange of
indices (a, b). The first line in Eq. (3.14) represents the contribution from diag-
onal correlations, which defines the generally observed harmonic flow vn{2} =
(wn/εn)× εn{2}, as well as the Fourier component in a two-particle spectrum
Vn∆ = (vn{2})2. In Fig. 3.6 the linear flow response from ideal hydrodynamics
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makes a definite prediction for the different Vn∆. The elliptic flow is too large
in the ideal massless gas model considered here. We will therefore simply plot
the ratios of the different Fourier components as was done in the Alver and
Roland paper. Using just the linear response coefficients, and the Glauber
estimates for 〈〈ε23〉〉/〈〈ε22〉〉, Fig. 3.6(a) compares the strength of the triangular
component to the quadrapole component.

The ideal hydrodynamic prediction (with a massless ideal gas EoS) is gen-
erally too large and fairly sensitive to the freeze-out temperature. This sensi-
tivity reflects the fact that the triangular flow develops further toward the edge
of the nucleus. Fig. 3.6(b) compares the dipole component to the quadrapole
component. The dipole component is a factor of 8 smaller than the quadrapole
component. This is a reflection of the fact that ε1 is small, and the fact that
w1(pT )/ε1 is positive and negative. The dipolar flow is also sensitive to the
details of the freeze-out.

All of the survived contributions of the non-diagonal correlations from the
event average are rooted in the initial state almond shape geometry, e. g. 〈〈ε2〉〉,
or correlations e. g. 〈〈cos 2(Φ1 − Φ2)〉〉. In Eq. (3.14), only a few terms of
importance and relevant to the present discussions are displayed. However it
should be emphasized that there are in principle infinite number of non-trivial
observables implied in the ellipsis.
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Based on Eq. (3.14), the predictions can be made for many of the observed
two-particle correlations, given the information from Monte Carlo simulation
of fluctuating initial state and the linear flow response efficients from hydro-
dynamics. For example, the measured 〈cos(φa+φb−2ΨR)〉 4 is determined by
the initial state plane correlation and the linear dipole flow response w1/ε1,

〈cos(φa + φb − 2ΨR)〉 = 2

(
wa1
ε1

)(
wb1
ε1

)
〈〈ε21 cos 2(Φ1 − Φ2)〉〉 . (3.15)

As discussed in the previous chapter, the preference of dipole angle pointing
out-of reaction leads to a centrality dependent correlation between Φ1 and
Φ2. Reflected in the expectation value of 〈cos(φa + φb − 2ΨR)〉, as a function
of centrality the prediction from ideal hydrodynamics is shown in the left
panel in Fig. 3.7. Lower freeze-out temperature means a longer period of
medium response, so that a larger magnitude of response value w1/ε1. In
order to investigate the possibility of local parity violation in the initial stage
of heavy-ion collisions, as proposed in [101] as the chiral magnetic effect, the
expectation value 〈cos(φa+φb−2ΨR)〉, and in particular the imbalance between
the detailed charge components (same and opposite) was measured by STAR
collaboration[99, 100]. Although was carried out for a conformal equation
of state, our calculation predict the same order of magnitude, providing a
background neutral correlation.

4The single angle brackets 〈. . .〉 in this work is often used to notate an average with
respect to the particle spectrum.
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Comparing to the STAR measurement, 〈cos(φa + φb − 2ΨR)〉 was an in-
sightful beginning of analyzing initial state geometric information from final
state particle spectrum. Focusing on the 6-th term in the bracket in Eq. (3.14),
in a very similar manner, the expectation value of 〈cos(φa − 3φb + 2ΨR)〉 is
connected to the initial state correlation between Φ1, Φ2 and Φ3,

〈cos(φa − 3φb + 2ΨR)〉 =
wa1w

b
3

ε1ε3
〈〈ε1ε3 cos(Φ1 + 2Φ2 − 3Φ3)〉〉 . (3.16)

Since the combined contribution in the r.h.s. of Eq. (3.8) is of the similar order
of magnitude, the expected final state correlation should also be measurable
in experiment. Taking the integrated flow response for the b labeled particles,
and taking a to label particles of pT , we have the prediction of a differential
correlation in the left of Fig. 3.8. As the application of Eq. (3.16), it is not
difficult to realize that the differential structure of the predicted correlation is
controlled by the pT dependence of dipole flow v1, and the magnitude partly
relies on initial plane correlation 〈〈cos(Φ1 + 2Φ2 − 3Φ3)〉〉. Indeed, for the
prediction of the mid-central collision, the correlation curve crosses zero from
low pT region to high pT region at the same pT value of dipole flow v1.

Nonetheless, in spite of the comparable pattern of the correlation at low pT
from ALICE experiment, in the right panel in Fig. 3.8 a significantly different
pT dependence is observed. This inconsistency, together with the general mis-
prediction of the ‘linear limit’ for the event-plane correlations, implies the
unavoidable contribution beyond linear order of flow response.

3.2 Nonlinear flow response

As has been noticed in the application of linear flow response in Section 3.2,
the simple factorization of the generated harmonic flow as the product of initial
state eccentricity and linear flow response is problematic, in reproducing some
of the observables in experiment, in particular when higher order (n ≥ 4)
harmonics is involved.

In order to go beyond the leading order flow generation from the linear
response assumption, we extend the formulation Eq. (3.2) with higher order
nonlinearities. For the generation of harmonic flow vn, due to the rotational
symmetry and reflection symmetry, the effective nonlinear contributions are
constrained. Let us take the pentagonal flow v5 as an example. In additional
to linear response to C5, there exists the allowed nonlinear contribution from
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the response to the coupling of ellipticity ε2 and triangularity ε3, i. e.

v5e
−i5Ψ5 =

w5

C5

(
C5e
−i5Φ5

)
+
w5(23)

ε2ε3

(
ε2ε3e

−i(2Φ2+3Φ3)
)
. (3.17)

It is easy to check the rotational symmetry of the above expression, since the
combination 2Φ2 + 3Φ3 is also periodic in 2π/5. As a result, to form this type
of nonlinear mode mixing we expect an ellipticity and a triangularity simulta-
neously in the initial state. With respect to the initial deformation from the
combined effect of ε2ε3, we defined the flow response coefficient as w5(23)/(ε2ε3).
Besides w which notates the flow response in analogous to the linear flow re-
sponse, the sub-indices demonstrate the formation of a 5-th order flow from the
nonlinear coupling of the second and third order anisotropies. Also, it should
be noticed that the nonlinear flow response coefficient w5(23)/(ε2ε3) roughly
scales as ∼ (w2/ε2)× (w3/ε3).

A generalization of this analysis leads to the description of flow generation
from nonlinear mode mixing of any harmonic order. For example, considering
nonlinear flow response to ε2ε3 and ε22, we have of quadratic coupling order for
dipole flow,

v1e
−iΨ1 =

w1

ε1

(
ε1e
−iΦ1

)
+
w1(23)

ε2ε3

(
ε2ε3e

−i(3Φ3−2Φ2)
)
, (3.18)

and quadrapole flow v4

v4e
−i4Ψ4 =

w4

C4

(
ε4e
−iΦ4

)
+
w4(22)

ε22

(
ε22e
−i4Φ2

)
. (3.19)

In principle to completely capture the flow generations, in the formulations
Eq. (3.17), (3.18) and (3.19) we should have infinite number of nonlinear terms
that satisfying symmetry constraints. For instance, there exists a cubic order
mode mixing for the quadrapole flow w4(112) that responses to ε21ε2. However,
since higher order nonlinear couplings decrease dramatically, we expect the
flow generation to be dominated by the lowest order anisotropies and their
mixing. In Table 3.1, the nonlinear terms contributing to the flow generation
included in this work are listed.

In this section, we focus on the medium response to ε22 and ε2ε3, from
which the nonlinear flow generation of w4(22), w5(23) and w1(23) are analyzed.
In our single-shot hydrodynamic simulations, to obtain w4(22) it is sufficient
to deform the initial Gaussian background with only ellipticity ε2 = 0.05.
However for w5(23) and w1(23) we have a more complicated initial profile with
5 ε2 = ε3 = 0.05. In analogous to the calculation of linear response coeffi-

5From time to time, for the specific problem we are considering, ε2 of larger value is
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Table 3.1: Nonlinear terms considered in this work

v1 w1(23)/(ε2ε3) . . . . . . . . .
v3 w3(25)/(ε2C5) . . . . . . . . .
v4 w4(22)/(ε

2
2) w4(13)/(ε1ε3) . . . . . .

v5 w5(23)/(ε2ε3) . . . . . . . . .
v6 w6(24)/(ε2C4) w6(33)/(ε

2
3) w6(222)/(ε

3
2) . . .

cients, rescaled by the output value of eccentricities εoutputn , v4, v5 and v1 from
the corresponding hydrodynamic calculations give rise to the nonlinear re-
sponse coefficients w4(22)/ε

2
2, w5(23)/(ε2ε3) and w1(23)/(ε2ε3). In particular, for

the calculation of w5(23)/(ε2ε3) (and w1(23)/(ε2ε3)), because two different types
of deformations are simultaneously introduced in the initial state with the cor-
responding participant angles Φ2 and Φ3, there is an extra factor expected in
the denominator,

w5(23)

ε2ε3
=

vc5
εoutput2 εoutput3 cos(2Φ2 + 3Φ3)

, (3.20)

where vc5 is the x-component of the obtained flow v5. For this case, the relative
angle Φ3−Φ2 breaks the rotational symmetry, resulting in a potential Φ3−Φ2

dependence of the nonlinear flow response coefficients.
For these particular examples, in parallel to the discussions in Section 3.1.2,

we investigate the dependence of transverse momentum pT , centrality and
viscous effect η/s of nonlinear flow response coefficients. Given the properties
of these coefficients, predictions on an event-by-event basis can be made.

3.2.1 Nonlinear flow response coefficients

When multiple eccentricities are considered in the initial state simultaneously,
e. g. ε2 and ε3 for nonlinear v5 generation, the dependence on the relative angles
needs to be examined. In Fig. 3.9, the nonlinear flow response coefficients
w5(23)/(ε2ε3) and w1(23)/(ε2ε3) from one very peripheral collision event are plotted
as a function of the initial relative angle Φ3 − Φ2. The ellipticity ε2 and
Φ2 in these calculations are taken naturally from the asymmetric Gaussian
background. For this extreme example, although the geometry of rotational

taken from an asymmetric Gaussian background. For realistic hydrodynamic simulations,
taking ε2 to be a small value or generically from the Gaussian does not alter the conclusion
of the obtained nonlinear flow response coefficients.
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Figure 3.9: Angle dependence of nonlinear flow response coefficients.
Nonlinear flow response coefficients w5(23)/(ε2ε3) and w1(23)/(ε2ε3) are calculated for

a very peripheral collision event with impact paramter b = 11.1 fm for RHIC Au-Au,

with ideal and viscous (η/s = 1/4π) hydrodynamics, as a function of the relative

angle Φ3 − Φ2.

symmetry is broken apparently, negligible dependence of the relative angles
of the obtained nonlinear flow response coefficients are found. As a result, in
the following calculations for simplicity we can keep the relative angle Φ3−Φ2

zero.

pT dependence

The transverse momentum dependence of the nonlinear flow response is illus-
trated in Fig. 3.10, for n = 4 and n = 5 for one mid-central collision event
of RHIC Au-Au from ideal hydrodynamic calculation. At low pT region, non-
linear flow response coefficients present very similar pT dependence, to the
corresponding linear flow response w4/C4 and w5/C5. However, dramatically
distinguished from the behavior of ∝ pT of linear flow response coefficient
in large pT region, the obtained nonlinear flow response coefficients of the
quadratic order rise as ∝ p2

T . This p2
T dependence of nonlinear flow response

coefficients can be generally found in all of the quadratic couplings of flow
generations, which, together with the linear pT dependence of linear flow re-
sponse coefficient, can be interpreted quantitatively by analyzing the high pT
fraction of the freeze-out integral. Viscous effects are not considered in these
calculations, which we leave to the discussion in Chapter 5.
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Figure 3.10: pT dependence of nonlinear flow response coefficients.
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dent linear flow response coefficients w2/ε2, w4/C4 and w5/C5 are plotted as well for

comparisons.

Centrality dependence

In analogous to the analysis for the centrality dependence of linear flow re-
sponse, when the system size decreases with the increases of centrality, insuf-
ficient flow development during medium expansion also leads to a reduction of
nonlinear flow response. As been confirmed in Fig. 3.11, a monotonic drop of
the nonlinear flow response coefficients with respect to the growth of centrality
is seen, in both of the results from ideal and viscous hydrodynamics.

Comparing to the linear flow response of dipole flow, nonlinear response
to initial ε2ε3 gives rise to a slightly smaller value of response coefficient
w1(23)/(ε2ε3). However, the magnitudes of nonlinear flow response coefficients
w4(22)/ε

2
2 and w5(23)/(ε2ε3) are significantly larger than the coefficients w4/C4

and w5/C5 in Fig. 3.4. Especially from viscous hydrodynamic calculations
this effect is even stronger. Note since the obtained coefficients w4(22)/ε

2
2 and

w5(23)/(ε2ε3) for peripheral collisions from viscous hydrodynamics are over-
suppressed, a similar cut is applied as what has been done for the linear re-
sponse coefficients.

Dependence on shear viscosity

When the quantitative analysis Eq. (3.11) of viscous damping is applied to non-
linear flow response, considering the nonlinear flow generation as the product
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Figure 3.11: Centrality dependence of nonlinear flow response coefficients
Nonlinear flow response coefficients, w4(22)/ε

2
2, w5(23)/(ε2ε3) and w1(23)/(ε2ε3) are

plotted as a function of centrality. The results are obtained from ideal and viscous

hydrodynamic simulations for RHIC Au-Au collisions.

of linear flow response, the damping rate of nonlinear flow response coefficients
can be estimated. For example, w5(23) is effectively the product of w2 and w3.
As a result, we expect the viscous damping of w5(23)/(ε2ε3) to be described as
∼ e−Γ2,2τf e−Γ3,3τf , so that the damping rate

Γ5(23)τf = (Γ2,2 + Γ3,3)τf ∼ −
∆w5(23)

wideal

5(23)

∝ (4 + 9)
η

s
. (3.21)

Eq. (3.21), and the generalized formulas of this type for the nonlinear flow
response coefficients, quantifies the viscous damping effect. In particular, the
inequality (a+b)2 > a2+b2 and the decomposition of the nonlinear flow viscous
damping rate have an significant deduction: The effect of viscous damping on
the n-th order harmonic is weaker for the nonlinear flow response than its
corresponding linear flow response.

In Fig. 3.12 the damping rates of w4(22)/ε
2
2, w5(23)/(ε2ε3) and w1(23)/(ε2ε3)

are plotted as a function of η/s, for a mid-central event of RHIC Au-Au colli-
sions. Comparing to their corresponding linear flow response coefficients, the
above analysis is found to be semi-quantitatively consistent, with the excep-
tion of w1(23). In addition to the correct prediction of the slopes of the curves
by the equations like Eq. (3.21) , a relatively stronger viscous damping of
linear flow response is obtained as expected. However, as a special case, the
obtained viscous effect of w1(23) contradicts our reasoning, e. g. Γ1(23) > Γ1.
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Figure 3.12: Nonlinear flow response dependence on η/s
Viscous damping rate of w1(23), w4(22) and w5(23) as a function of η/s. The corre-

sponding linear flow response coefficients are plotted as well for comparisons.

The interpretation is possibly due to the extra constraint from the momentum
conservation, which will have to be investigated in future studies.

In Fig. 3.12, for sufficiently large η/s the negative value of w4, w5 and
w5(23) are spurious as a result of the inconsistency of viscous hydrodynamic
calculations. A more systematic treatment of this issue will be discussed in
Chapter 5.

3.2.2 Origins of the nonlinear flow generation

The nonlinear flow generation is confirmed from the simulations of ideal and
viscous hydrodynamics, with a specified formulation the corresponding non-
linear flow response coefficients are extracted in the previous section. In this
section, for the purpose of a better understanding of the flow generation mech-
anism, we give a tentative discussion on the origins of these nonlinear mode
mixing. Taking into account the whole evolution of medium in the framework
of hydrodynamic calculation, the mode mixing can exist in the fluctuating
initial state, the medium expansion and the freeze-out.
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Initial state

As detailed in Chapter 2, the initial state with fluctuations in our work is
characterized by the cumulant expansion formalism. Comparing to the tra-
ditionally used momentum definition, in cumulant definition there are extra
nonlinear terms coming from lower order anisotropies. For instance, in the
definition of quadrapole anisotropy, the nonlinear part which is proportional
to ε22 is subtracted. This sort of subtraction ensures a essential feature of
cumulant definition, that the interference between different cumulant orders
is prevented, i. e. the omission of one term in the cumulant expansion series
cannot be supplemented by the others. As a consequence, as long as cumulant
expansion formalism is applied for the fluctuating initial state, and consider-
ing the medium response with respect to the cumulant defined eccentricities,
initial nonlinear mode mixing can be ignored.

In medium expansion

The medium expansion is characterized by hydrodynamics, thereby the mode
mixing during medium evolution can be in principle investigated based on the
analysis of hydrodynamic theory, e. g. the Gubser-Yarom solution of confor-
mal hydrodynamics. However, with respect to the realistic medium system
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and flow generation in heavy-ion collisions, analytical description of nonlinear
mode mixing in medium at present is not approachable. Alternatively, with
numerical simulations of the system evolution, the mode mixing in medium
can be examined.

In Fig. 3.13, selecting one particular event with initial state spatial fluctu-
ations, we track the time evolution of the cumulant defined participant plane
angle Φn. As a typical example on an event-by-event basis, the initial profile
in the left figure in Fig. 3.13 is azimuthally deformed of all harmonic orders.
Driven by this bumpy structure, the system expansion leads to a time evolving
medium spatial distribution ρ(x, τ), based on which the time evolving partici-
pant plane angle Φn(τ) is calculated. As shown in the right panel of Fig. 3.13,
despite the natural switch of the geometric shape of each harmonic order at a
certain time, resulting in a dramatic change of ∆Φn = π/n, these angles de-
velop independently on time. Note the non-analytical drop or rise in the change
of Φ3, Φ4 and Φ5 is due to an artificial effect in the numerical calculation. It
is not difficult to deduce the corresponding time evolution in the momentum
space, that the development of the generated momentum anisotropies does
not depend on time either, indicating the absence of harmonic mode mixing
during medium expansion. Since the spatial correlation, as well as the possible
mode mixing, is diminished by dissipative effect of medium, the result in this
example from ideal hydrodynamics strongly constraints in medium nonlinear
flow coupling.

Mode mixing from freeze-out

The freeze-out process of hydrodynamic calculation transforms the space-time
dependent medium distribution f(x,p) into momentum anisotropy – the har-
monic flow. Generally it is realized by the Cooper-Frye formula Eq. (1.33).
Although the integral in Eq. (1.33) needs to be solved numerically for realistic
calculations, for ideal hydrodynamics and in the large pT region the saddle-
point approximation can be applied for an analytical analysis, as proposed by
Borghini and Ollitrault [96].

First let us recall the harmonic decomposition of the radial flow velocity in
the transverse plane. The transverse flow vector is a function of the velocity
azimuthal angle relative to the reaction plane, uT = (ur cosφu, ur sinφu), in
which the angle dependence of the radial flow ur can be expressed as

ur(r, φu) ' u0
r(r) + 2u(1)

r (r) cos(φu − Φ1) + 2u(2)
r (r) cos 3(φu − Φ2) + . . . .(3.22)

Note the participant plane angles are introduced in the decomposition, since
Φn are conserved during the medium expansion for the spatial geometry. Then
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in the large pT region, approximated by the classical Boltzmann distribution,
the commonly considered constant temperature freeze-out process relies on the
integrand 6,

eP ·u/T = e−Epu
τ

epT /Tur(r,φu) cos(φp−φu) , (3.23)

where Ep is the energy. Adopting the non-relativistic approximation U τ ' 1,
and assuming the flow is approximately radial, so that φu ' φr,

eP ·u/T 'e−Ep/T epT /Tu(0)r cos(φp−φr)

[
1 +

(
2pT
T

∑
n=1

u(n)
r cosn(φr − Φn) cos(φp − φr)

)

+
1

2

(
2pT
T

∑
n=1

u(n)
r cosn(φr − Φn) cos(φp − φr)

)2

+ . . .

]
. (3.24)

In the Cooper-Frye formula, and for sufficiently large pT/T , the φr integral
under saddle point approximation is dominated around φr ' φp. As a result, in
the harmonic decomposition of the particle spectrum, we arrive at the following
form

dN

dφp
∼ 1 +

(
2pT
T

∑
n=1

u(n)
r cosn(φp − Φn)

)
+

1

2

(
2pT
T

∑
n=1

u(n)
r cosn(φp − Φn)

)2

+ . . . (3.25)

Read from Eq. (3.25), the terms in the first bracket are easily recognized

as the result of linear flow response wn(pT ) ∼ u
(n)
r pT/T , which explains the

linear dependence of pT of linear flow response coefficients. When calculating
vn from the angle average of the spectrum, the integral

∫
dφp cosnφpdN/dφp

obtain extra contributions from the terms in the second bracket of Eq. (3.25),
all of which grow quadratically with pT . For example, for the quadrapole flow

v4 =
1

2π

∫
dφp cos 4φp

dN

dφp
∼ pT

T
u(4)
r +

1

2

(pT
T
u(2)
r

)2

+ . . . , (3.26)

despite the linearly generated w4 ∼ pT/Tu
(4)
r , the (pT )2 dependent term can

be identified as the nonlinear flow response w4(22). The relation w4(22) = 1
2
w2

2

leads to the characteristic relation v4 = 1
2
v2

2 in Borghini-Ollitrault argument.
Similar reasoning gives rise to the nonlinear flow generation w5(23) = w2w3,
which leads to v5 = v2v3. Identifying these higher order terms as the nonlinear

6The rapidity dependence is neglected, since it does not affect the analysis here.
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couplings in the formation of harmonic flow, Eq. (3.25) suggests the freeze-out
process as the origin of the nonlinear mode mixing, and quantitative relations
between these linear and nonlinear response are effectively described.

3.2.3 Application of the nonlinear flow generation

Nonlinear flow response formalism extends the applicability of single-shot hy-
drodynamics. With respect to the realistic heavy-ion collisions, quantify-
ing the initial state fluctuations on an event-by-event basis with azimuthal
anisotropies, the single-shot hydrodynamics framework with both linear and
nonlinear flow response can make reliable predictions, for the observed har-
monic flow and event plane correlations etc.. Furthermore, as discussed in the
previous sections, there exist particular parameter domains in which nonlinear
flow response actually dominates the flow generation of higher order harmon-
ics: large transverse momentum, large centrality and large η/s, based on which
the physical behavior of the observables can be explained. To complete the
single-shot hydrodynamics framework with also nonlinear flow response, in
this section we present the basic formulations.

Integrated harmonic flow

In realistic heavy-ion collision experiments, the measurements of harmonic flow
needs to be designed in specified means so that the effects of event-by-event
fluctuations are naturally contained in a events average process. For instance,
as has been emphasized in the previous chapters, for the measured harmonic
flow vn{2} from two-particle azimuthal correlations, the events average is im-
plied in the definition, vn{2} = 〈〈v2

n〉〉1/2. In our work, since the generated
flow is formed in terms of linear and nonlinear flow response, as shown in the
formulae Eq. (3.17), Eq. (3.18) and Eq. (3.19), the straightforward application
leads to,

v1{2} = 〈〈|w1e
−iΦ1 + w1(23)e

−i(3Φ3−2Φ2)|2〉〉1/2 , (3.27a)

v4{2} = 〈〈|w4e
−i4Φ4 + w4(22)e

−i4Φ2|2〉〉1/2 , (3.27b)

v5{2} = 〈〈|w5e
−i5Φ5 + w5(23)e

−i(3Φ3+2Φ2)|2〉〉1/2 . (3.27c)

In writing these equations, although only one type of nonlinear flow response is
included for each of the harmonics, higher order corrections with more nonlin-
ear contributions can be taken into account for better predictions. The flow re-
sponse w’s in Eq. (3.27) are proportional to their associated initial anisotropies,
with the response coefficients extracted from hydrodynamics separately. With
these analytical expressions, the detailed dependence of the predicted flow on
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the transverse momentum, centrality and η/s through flow response coeffi-
cients, can be analyzed. Taking v4{2} for an example, squaring Eq. (3.27b) it
is clear there are three terms in the average,

(v4{2})2 =

(
w4

C4

)2

〈〈C2
4〉〉+

(
w4(22)

ε22

)2

〈〈ε42〉〉+
w4

C4

w4(22)

ε22
〈〈C4ε2 cos 4(Φ4 − Φ2)〉〉 .

(3.28)

Note besides the contributions from pure linear and nonlinear flow response,
there is a positive cross-term depending on the initial plane correlation. In gen-
eral, the above form of the generated flow is expected for all of the harmonic
orders, with pure linear and nonlinear contributions, together with cross-terms.
Accordingly, the predicted behavior of the harmonic flow relies on a competi-
tion of these terms.

In Fig. 3.14, the predicted vn{2} for the LHC Pb-Pb collisions of harmonic
order n = 3, 4, 5 and 6 are plotted as a function of centrality. Based on vis-
cous hydrodynamic calculations, with respect to the lattice EOS, these curves
roughly describe the behavior of harmonic flow of the observed pions. The
separate contributions from linear and nonlinear terms are shown as well for
comparisons.

First of all, we should notice the increasing relative contribution of nonlin-
ear to linear flow response in the flow generation with the growth of centrality.
This trend is more obvious for the higher harmonic flow. For ultra-central
collisions, linear flow response is the dominant effect for v3, v4 and v5, but
not for v6. As a result, for sufficiently large centrality, nonlinear flow response
becomes the dominant mechanism for flow generation, as expected. When the
associated initial plane correlation is negative, such as 〈〈cos(Φ1 + 2Φ2− 3Φ3)〉〉
for v3{2}, the cross-term has a negative contribution, as exhibited in Fig. 3.14.
In calculating v4{2} and v6{2}, we also include some higher order nonlinear
terms. For n = 4, we take into account the contribution from w4(13). Shown in
Fig. 3.14, the negligibly small w4(13) comparing to w4(22) makes the truncation
of nonlinear flow flow generation to w4(22) reasonable. For n = 6, however,
as illustrated in Fig. 3.14, in addition to the comparable nonlinear response
of w6(24) and w6(33), in very peripheral collisions the cubic order contribution
w6(222) is of considerably significance. More nonlinear terms in the calcula-
tion lead to a more complicated v6 prediction, which will be seen later in the
discussion on event plane correlations.
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Figure 3.14: vn{2} as a function of centrality.
Harmonic flow vn{2} from two-particle correlations as a function of centrality, for

n = 3, 4, 5, 6 for LHC Pb-Pb collisions, from viscous hydrodynamics. The contribu-

tions from linear and nonlinear terms are plotted separately. As expected, a trend

of increasing contribution from nonlinear flow generation towards larger centrality

is seen.
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Differential harmonic flow

Let us discuss how this formalism can be used to study the pT dependence of
the flow. The particle spectra is expanded in harmonics

dN

dpTdφp

≡ dN

dpT

(
1 +

∞∑
n=1

vn(pT )ein(φp−Ψn(pT )) + c.c.

)
, (3.29)

where the phase, Ψn(pT ), is in general a function of pT . Then vn(pT ){2} in
the Ψn plane is normally defined as

vn(pT ){2} ≡
{
〈〈vn(pT )vn cos(n(Ψn(pT )−Ψn))〉〉

vn{2} n > 1

− 〈〈v1(pT )v1 cos(Ψ1(pT )−Ψ1)〉〉
v1{2} n = 1

, (3.30)

where we have inserted an extra minus sign for v1(pT ), since the integrated v1

is negative. The phase angle Ψn(pT ) is often assumed to equal Ψn. Using the
formalism outlined above we write v1(pT ) as a sum of the linear and nonlinear
response

v1(pT )e−iΨ1(pT ) = w1(pT )e−iΦ1 + w1(23)(pT )e−i3Φ3+i2Φ2 . (3.31)

Then the numerator of v1(pT ){2} is given by

〈〈v1(pT )v1 cos(Ψ1(pT )−Ψ1)〉〉 =

〈〈w1(pT )w1+w1(23)(pT )w1(23)+
[
w1(pT )w1(23) + w1(23)(pT )w1

]
cos(Φ1−3Φ3+2Φ2)〉〉 ,

(3.32)

and the denominator is given by the integrated expression for v1{2}, Eq. (3.27a).
The corresponding result of v1{2}(pt) is shown in Fig. 3.15. Similar expressions
follow for v4{2}(pT ) and v5{2}(pT ).

Armed with the formulation of differential spectrum of harmonic flow, the
asymptotic behavior of vn, and in particular the Borghini-Ollitrault argument
that v4 = 1

2
v2

2 and v5 = v2v3 can be testified. Based on the analytical approxi-
mation of freeze-out Eq. (3.25), in ideal hydrodynamic calculations we expect
the asymptotic relations between the linear and nonlinear flow response coef-
ficients

w4(22)/ε
2
2

(w2/ε2)2
−−−−→
pT→∞

1

2
,

w5(23)/(ε2ε3)

(w2/ε2)(w3/ε3)
−−−−→
pT→∞

1 . (3.33)

When initial state fluctuations are considered for realistic heavy-ion collisions,
corresponding to the measured harmonic flow vn{2}, these asymptotic rela-
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Figure 3.15: v1{2}(pT ) of mid-central collisions of LHC Pb-Pb experiments
v1{2}(pT ) in ideal and viscous hydrodynamics from the linear response to ε1, the

nonlinear response to ε2ε3, and total response, as formulated in Eq. (3.30).

tions are modified [102],

v4{2}
v2{2}2

−−−−→
pT→∞

1

2

( 〈〈ε42〉〉
〈〈ε22〉〉2

)1/2

,
v5{2}

v2{2}v3{2}
−−−−→
pT→∞

( 〈〈(ε2ε3)2〉〉
〈〈ε22〉〉〈〈ε23〉〉

)1/2

. (3.34)

The value of these geometrical ratios are recorded as a function of centrality in
Table 3.2. We have found that rather large pT is needed to see the nonlinear
limit given by Eq. (3.34). In the current framework, the linear and nonlinear
response terms, and their interference, determine the full result. Fig. 3.16
shows the complete result for v4{2}/v2{2}2 (scaled by 〈〈ε42〉〉/〈〈ε22〉〉2) for ideal
and viscous hydrodynamics. Focusing on the ideal results, we see that full
results (the solid lines) approach the nonlinear expectation of Borghini and
Ollitrault (the dashed line) only very slowly. This is in large part because
w4(pT ) is only qualitatively linear at sub-asymptotic pT and increases almost
quadratically at intermediate pT ∼ 1.5 GeV, momentarily keeping up with
the nonlinear response. When viscous corrections are included, the nonlinear
results become dominant in peripheral collisions. Similar results for v5 in ideal
and viscous hydrodynamics are also shown in Fig. 3.16. In the viscous case,
the nonlinear result gives almost the full v5{2} for all centrality classes shown.

It is worth noting that the magnitude of the viscous corrections as a func-
tion of pT for v4 and v5 are sensitive to ansatz used for the viscous distri-
bution function, δf [60]. In particular, the quadratic ansatz used in this
work assumes that the quasi-particle energy loss is independent of momen-
tum, dp/dt ∝ const. A linear ansatz for δf is better motivated for QCD like
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Table 3.2: Geometrical ratios in Eq. (3.34) as a function of centrality.

Centrality % 2.5 7.5 12.5 17.5 25.0 35.0 45.0 55.5√
〈〈ε42〉〉/〈〈ε22〉〉2 1.40 1.33 1.26 1.22 1.20 1.18 1.17 1.16√
〈〈(ε2ε3)2〉〉/(〈〈ε22〉〉〈〈ε23〉〉) 0.99 0.97 0.96 0.95 0.94 0.93 0.930 0.92√
〈〈ε22〉〉/〈〈ε21〉〉 2.12 2.78 3.22 3.46 3.56 3.40 3.04 2.64

theories and results in smaller viscous corrections for v4 and v5 as a function
of pT [103]. A complete discussion on this point is reserved in Chapter 5.

3.3 Discussion

We have presented a framework of medium response to understand the higher
harmonics generated in heavy ion collisions. Then we extracted the linear
and nonlinear response coefficients using ideal and viscous hydrodynamics and
studied the dependence on the transverse momentum, centrality and shear
viscosity. The pattern of viscous corrections is further analyzed in Fig. 3.5
and Fig. 3.12 and explained. Generally, when the harmonic order is large,
the nonlinear response is less damped than the corresponding linear response.
Thus, when viscosity is included in hydrodynamic simulations, the nonlinear
response becomes increasingly important for higher harmonics. This qualita-
tive reasoning is confirmed in Fig. 3.14. In these calculations with respect to
the LHC energy, We see that the nonlinear response is essential for v4, v5 and
v6, and constitutes an important correction for v3.

As long as higher order harmonics are not involved in the analyses, lin-
ear flow response formalism can be applied for realistic calculations. For in-
stance, in Fig. 3.6 with ideal hydrodynamics and conformal EoS, the predicted
V3∆/V2∆ is consistent with experiment. Since a simple one-to-one mapping is
expected in the linear flow response formalism, the nont-trivial initial corre-
lation between the dipole asymmetry and the ellipticity is found responsible
for the measured correlator 〈cos(φa + φb − 2ΨR)〉 by STAR collaboration, as
shown in Fig. 3.7. In addition, We noted that the strong correlation between
the dipole asymmetry, ellipticity and the triangularity can be measured experi-
mentally by measuring two-particle correlations with respect to reaction plane.
The final result is a linear hydrodynamic prediction for a curious correlator
〈cos(φa − 3φb + 2ΨR)〉, which is shown in Fig. 3.8.

The nonlinear response can be studied by analyzing the pT dependence
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of the flow harmonics. Fig. 3.16 exhibits scaling of v4{2}(pT ) and v5{2}(pT ).
Fig. 3.15 shows the differential dipole flow v1{2}(pT ). In ideal hydrodynamics
at large pT we expect to find v4 = 1

2
v2

2 on an event by event basis. Our
nonlinear response coefficients corroborate this nonlinear expectation for v4

and an analogous relation for v5, v5 = v2v3. However, since what is normally
measured is v4{2}/(v2{2})2 and not 〈〈v4/v

2
2〉〉, this ideal nonlinear expectation

must be multiplied by (〈〈ε42〉〉/〈〈ε22〉〉2)1/2 when comparing to the experimental
data [102]. In addition, this expectation of ideal hydrodynamics is broken by
viscous corrections, and by the linear response to the fourth order cumulant
C4 (i.e. ε4). When all of these corrections are taken into account, we find that
relations such as v4 = 1

2
v2

2 and v5 = v2v3 provide only a rough guide to the full
result.

Throughout we have assumed perfect correlation between Ψ2 and Φ2 from
linear flow response. This strict correlation is only approximately true. For
instance the combination of a v1 and a v3 can yield a v2,

v2e
−i2Ψ2 = w2e

−i2Φ2 + w2(13)e
−i3Φ3+Φ1 . (3.35)

This naturally provides a correlation between the Ψ2 and Ψ3 plane, although
the geometric correlation between Φ2 and Φ3 is negligibly small. Indeed the
(Ψ2,Ψ3) correlation, which was very recently observed by the ATLAS collabo-
ration [104], is too large to be easily explained with the geometric correlations
of the Glauber model. For the 6-th order harmonic flow, as illustrated in
Fig. 3.14, there are more nonlinear terms that have comparable contributions
to the generated flow. Therefore, in the flow response formalism to describe
the v6 flow generation with sufficient precision, we expect

v6e
−i6Ψ6 = w6e

−i6Φ6 + w6(24)e
−i(4Φ4+2Φ2) + w6(33)e

−i6Φ3 + w6(222)e
−i6Φ2 . (3.36)

In particular, we note that the cubic coupling term is dominant for the very
peripheral collisions.
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Chapter 4

Event plane correlations

As one particular example of applying the nonlinear flow response formalism
in realistic calculations, in this chapter we focus on the final state event plane
correlation. Comparing to the harmonic flow vn, which characterizes the mag-
nitude of the azimuthal asymmetry of the expanding medium in heavy-ion
collisions, final state plane correlations are related to the orientations of these
asymmetries.

There are two reasons that event plane correlations demand a thorough
analysis, especially theoretically. First, the non-trivial correlations of Ψn are
essential for many of the observed signatures associated with the collective
behavior of the medium. For instance, as we discussed in Section 3.1.3, the
correlation 〈〈cos(Ψ1 − 3Ψ3 + 2Ψ2)〉〉 plays a significant role in the expectation
value of the measured two-particle correlation 〈cos(φa+φb−2ΨR)〉. In addition,
event plane correlations affect the measurement of the harmonic flow vn in
the event plane method. Taking the quadrapole flow v4 for an example, one
commonly applied measurements is to measure v4 in the reaction plane of the
second harmonic Ψ2, which actually gives rise to a result ∝ 〈〈cos 4(Ψ2−Ψ4)〉〉.
Second, as will be clarified later, the formation of these event plane correlations
relies on the combined effect of initial state fluctuations and the flow response
in medium. Therefore, not only the geometric information of the fluctuating
initial state, e. g. the participant plane correlations in initial state, but also
the properties of the medium, can be revealed by studying the event plane
correlations.

With respect to the recent measurements by the ATLAS collaboration of
a series of two-plane and three-plane event plane correlations [7], in this chap-
ter, we present our predictions in the flow response formalism. A formulation
of these event plane correlations in a single-shot hydrodynamics framework,
based on linear and nonlinear flow response formalism is shown in Section 4.1.
Comparing to the experiment data, and the results from event-by-event hydro-
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dynamic simulations [87], the predicted event plane correlations for the LHC√
s = 2.76 TeV Pb-Pb collisions are shown and analyzed in Section 4.2. In

particular, from our formulation, the formation of these event plane correla-
tions can be interpreted as the competing contributions from the ‘linear limit’
and ‘nonlinear limit’.

4.1 Formulation of event plane correlations

The plane correlations in experiments are measured by event-plane method and
multi-particle correlation method. We will focus on the event plane method
which was used by the ATLAS collaboration. The details of this method were
clarified by Luzum and Ollitrault [105] who showed that if the event plane
method is used, the quantity that is measured depends on the reaction plane
resolution.

For simplicity in the formulations, we make a further abbreviation for the
complex form of the anisotropic flow in the particle spectrum Vn = vne

−inΨn .
We are interested in describing the correlations involving two and three event
plane angles. For definiteness we will present formulas for a specific correlation,
〈〈cos(4Ψ4 − 2(2Ψ2))〉〉, which can be easily generalized to other harmonics (To
aid the reader we have written 4Ψ2 = 2(2Ψ2) to expose the general pattern.)
The 4-2 plane correlation is related to V4 and V2 through

〈〈cos(4Ψ4 − 2(2Ψ2))〉〉 =
〈〈 Re (V4V

∗
2

2)√
(V4V ∗4 )(V2V ∗2 )2

〉〉
=
〈〈w4 cos 4(Φ4 −Ψ2) + w4(22)

|w4e−i4Φ4 + w4(22)e−i4Φ2|
〉〉
.

(4.1)

Note that both linear and nonlinear response enter this formula for the event
plane correlation.

The ATLAS collaboration quantified the event plane correlations by mea-
suring related correlations between the experimental planes, Ψ̂n, as determined
by the Qn-vectors, Qn = |Qn|e−inΨ̂n (See the review: [106]). Further investi-
gation showed that the measured quantity can not be directly interpreted as
an event plane correlation in the form Eq. (4.1). The measured correlations
correspond to Eq. (4.1) only if the event plane resolution approaches unity,

〈〈cos(4Ψ̂2 − 2(2Ψ̂2))〉〉{EP} →
〈〈 Re (V4V

∗
2

2)√
(V4V ∗4 )(V2V ∗2 )2

〉〉
(high resolution limit).

(4.2)

Here and below we have notated the experimental quantity with {EP} [7],
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and the precise definition is carefully examined in [105]. We also note that
the notation is misleading since the actual definition does not correspond to
the average of a cosine, and can be greater than one. In the limit of low event
plane resolution the measured quantities corresponds to

〈〈cos(4Ψ̂2−2(2Ψ̂2))〉〉{EP} → 〈〈Re (V4V
∗

2
2)〉〉√

〈〈V4V ∗4 〉〉〈〈(V2V ∗2 )2〉〉
(low resolution limit)

(4.3)
Clearly Eq. (4.3) differs from Eq. (4.2) by the order of event average in these
calculations. More generally the event plane measurements by ATLAS inter-
polate between these two limits.

As the actual resolution depends on the harmonic order and the detector
acceptance, we will compute both the high resolution and low resolution limits
and compare to the experimental data. In the future most of ambiguities in
the measurement definition can be avoided by measuring

〈〈v4v
2
2 cos(4Ψ̂2 − 2(2Ψ̂2))〉〉√
〈〈v2

2〉〉2〈〈v2
4〉〉

=
〈〈Re (V4V

∗
2

2)〉〉√
〈〈V4V ∗4 〉〉〈〈(V2V ∗2 )〉〉2

(4.4)

as originally suggested in Ref. [107], and more recently in Ref. [105]. Such
angular correlations have already been measured by the ALICE collaboration
[108], but we will not address this preliminary data here. Certainly Eq. (4.4)
is the most natural from the perspective of the response formalism developed
in this work.

Finally, we give one additional example, −8Ψ2 + 3Ψ3 + 5Ψ5 of how a three
plane correlation function is calculated in the high and low resolution limits
in order to avoid confusiion

〈〈cos(−4(2Ψ̂2) + 3Ψ̂3 + 5Ψ̂5)〉〉{EP} →
〈〈 Re (V ∗2

4V3V5)√
(V2V ∗2 )4(V5V ∗5 )(V3V ∗3 )

〉〉
(high resolution)

(4.5)

〈〈cos(−4(2Ψ̂2) + 3Ψ̂3 + 5Ψ̂5)〉〉{EP} → 〈〈Re (V ∗2
4V3V5)〉〉√

〈〈(V2V ∗2 )4〉〉〈〈V3V ∗3 〉〉〈〈V5V ∗5 〉〉
(low resolution)

(4.6)

In the future the quantity which is most easily compared to theoretical calcu-
lations is

〈〈v4
2v3v5 cos(−4(2Ψ̂2) + 3Ψ̂3 − 5Ψ̂5)〉〉√

〈〈v2
2〉〉4〈〈v2

3〉〉〈〈v2
5〉〉

=
〈〈Re (V ∗2

4V3V5)〉〉√
〈〈V2V ∗2 〉〉4〈〈V3V ∗3 〉〉〈〈V5V ∗5 〉〉

(4.7)
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4.2 Predictions

Fig. 4.1 and Fig. 4.2 show a comparison of the measured two and three plane
correlation functions with the response formalism. From the inspection of
these correlations we make the following observations. First, many of the
most important correlation functions are nicely reproduced at least if the high
resolution limit is used. The agreement with the low resolution limit is not as
good. The ambiguities in the measurement can be avoided by taking definite
moments as in Eq. (4.4) [107]. Examining the definitions of the high and low
resolution limits (Eqs. 4.2 and 4.3), we see that the difference between the two
measurements can be best quantified by measuring the probability distribution
P (vn) [109] or the moments of this distribution, e.g. for v2

(v2{2})4 ≡ 〈〈v2
2〉〉 and (v2{4})4 ≡ −

[
〈〈v4

2〉〉 − 2〈〈v2
2〉〉
]
. (4.8)

It is then a separate and important question wether the response formalism
outlined here can reproduce these probability distributions. This will be ad-
dressed in future work.

There are a few correlations which are seemingly not well reproduced even
for in the high resolution limit. First, one could hope for better agreement
between correlations involving Ψ6, such as 〈〈cos(6Ψ3− 6Ψ6)〉〉 and 〈〈cos(6Ψ2−
6Ψ6)〉〉. In Fig. 4.4 and (4.5), we have replaced the PHOBOS calculation with
Glissando [9] and the agreement with the Ψ6 correlations is somewhat better,
though not markedly so. The most troubling correlation function which is
not qualitatively reproduced by the response formulation is 〈〈cos(2Ψ2− 6Ψ3 +
4Ψ4)〉〉. This correlation is not independent from the other correlations that
are not reproduced.

Origin of these correlations

It is important and instructive to understand the hydrodynamic origin of the
correlations presented in these figures. This is best understood by examining
the linear and nonlinear contributions separately. Fig. 4.3(a) and (b) illustrate
this decomposition of the correlations 〈〈cos(4Ψ2−4Ψ4)〉〉 and 〈〈cos(2Ψ2 +3Ψ3−
5Ψ5)〉〉 respectively. The naive (moment based) expectation of the Glauber
model is shown in Fig. 4.3 by the dotted line and has the wrong sign. As was
explained in Section 2.3, in this approach the correlation is assumed to arise
from the initial state participant fluctuations and the angles associated with
these moments.

In a more strict manner, the cumulant defined initial anisotropies should
be taken. Then with only linear flow response formalism in hydrodynamic
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Figure 4.1: Two-plane event plane correlations. The solid curves are the
predictions based on a high resolution assumption. The dashed curves are
obtained in the low resolution limit. Data points are taken from the ATLAS
measurements [7].
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Figure 4.2: Three-plane event plane correlations. The solid curves are the
predictions based on a high resolution assumption. The dashed curves are
obtained in the low resolution limit. Data points are taken from the ATLAS
measurements [7].
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Figure 4.3: Decomposition of the event-plane correlations into the ‘linear limit’
and ‘nonlinear limit’, corresponding to the formation of event-plane correla-
tions from initial geometry and medium expansion.

simulations, these initial participant correlations are identically transformed
into event plane correlations, giving rise to these dash-dotted curves in Fig. 4.3.
In the flow response formalism, this linear one-to-one mapping between the
initial and final state plane correlations, which we refer as the ‘linear limit’,
can be recognized as a result of neglecting the nonlinear response in these
formulations. For example, the following results

〈〈cos 4(Ψ4 −Ψ2)〉〉
w4

w4(22)
→∞

−−−−−−→ 〈〈cos 4(Φ4 − Φ2)〉〉 , (4.9a)

〈〈cos(2Ψ2 + 3Ψ3 − 5Ψ5)〉〉
w5

w5(23)
→∞

−−−−−−→ 〈〈cos(2Φ2 + 3Φ3 − 5Φ5)〉〉 , (4.9b)

can be achieved in both high resolution limit Eq. (4.2) and low resolution
limit Eq. (4.3). The ‘linear limit’ of these correlations reflects the original
initial state plane correlations. On the other hand, if in these formulations the
linear flow response are neglected, the ‘nonlinear limit’ results which entirely
rely on nonlinear flow response contributions are obtained. The ‘nonlinear
limit’ reflects the formation of event plane correlation from medium evolution.
For the 4-2 and 2-3-5 event plane correlations in Fig. 4.3, it is not difficult
to see that the pure nonlinear flow response generates perfect correlations,
i. e. 1. Since the two distinguished effects contribute simultaneously, the ob-
served correlations should lie somewhere between these two limits. As known
from the systematic analyses on the flow response in Chapter 3, the relative
contributions to the flow generation from nonlinear flow response grows with
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centrality. Consequently, starting from a correlation close to the ‘linear limit’
prediction, the event plane correlation is expected to approach the ‘nonlinear
limit’ with respect to the increase of collision centrality, which explains the
curves in Fig. 4.3.

Error estimate in our simulations

In reproducing these event plane correlation functions, there exists a practical
issue related to the linear and nonlinear flow response coefficients from our
viscous hydrodynamics. For some of the peripheral collisions we have the spu-
rious negative flow response coefficients, as discussed in Section 3.1.2. One way
of avoiding this physical inconsistency is to truncate abruptly these coefficients
as a function of centrality when they cross zero. Although introducing the cut
in these flow response is not a perfect solution to the problem, it is instructive
to check the extent to which our hydrodynamics (also hydrodynamic simula-
tions of most other groups) overestimates the viscous effect in these peripheral
collisions.

In Fig. 4.4 and Fig. 4.5, besides our prediction with a non-cut flow response
coefficients shown in the solid lines, the results with a cut on the flow response
coefficients are plotted as these dashed lines. For these correlations in the
LHC Pb-Pb collisions, when 〈Npart〉 is less 200 or so, corresponds to a central-
ity of & 20%, the effects are noticeable. And this is the region in which our
predictions miss the experimental observations. Comparing the non-cut and
cut predictions, we have a rough estimate of the errors in the our viscous hy-
drodynamic framework. Since viscous damping effects are more significant for
higher order harmonic flow, it is not surprise to expect the large uncertainties
in correlations, such as 〈〈cos(6Φ2 − 6Φ6)〉〉 and 〈〈cos(6Φ3 − 6Φ6)〉〉.

4.3 Discussion

With PHOBOS MC-Glauber model, and η/s = 1/4π in viscous hydrodynamics
with the freeze-out temperature Tfo = 150MeV, our predictions for the event-
plane correlations qualitatively match the experiment, except 〈〈cos(2Ψ2−6Ψ3+
4Ψ4)〉〉 at non-central bins. Considering we only have nonlinear flow genera-
tions from some of the primary nonlinear terms, and for the calculations which
aim mainly at interpretations, the results are acceptable. The comparison of
our predictions to the event-by-event hydrodynamics as well [87] show some
consistency, in particular the dependence on the medium shear viscosity. All
of these verify the applicability of the nonlinear flow response formalism in
heavy-ion collisions on an event-by-event basis.

82



 0

 0.2

 0.4

 0.6

 0.8

 1
〈〈cos4(Ψ4-Ψ2)〉〉

ATLAS
Glissando
PHOBOS

 0

 0.2

 0.4

 0.6

 0.8

 1 〈〈cos8(Ψ4-Ψ2)〉〉

 0

 0.2

 0.4

 0.6

 0.8
〈〈cos12(Ψ4-Ψ2)〉〉

-0.4

-0.2

 0

 0.2

 0.4

 0.6

  0  50 100 150 200 250 300 350 400

〈Npart〉

〈〈cos6(Ψ3-Ψ2)〉〉×10

 0

 0.2

 0.4

 0.6

 0.8

 1
〈〈cos6(Ψ2-Ψ6)〉〉

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8
〈〈cos6(Ψ3-Ψ6)〉〉

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3
〈〈cos12(Ψ3-Ψ4)〉〉

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

  0  50 100 150 200 250 300 350 400

〈Npart〉

〈〈cos10(Ψ2-Ψ5)〉〉×10

Figure 4.4: Two-plane event plane correlations based on PHOBOS Glauber [8]
and Glissando Glauber [9] models. The solid curves correspond to the ‘non-
cut’ calculations, while the dashed curves correspond to the ‘cut’ calculations.
(See text)
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(See text)

84



The advantage of the flow response formalism is demonstrated in the anal-
ysis in Section 4.2. As the dependence on the medium property of the flow
response is systematically studied in Chapter 3, the influence of the medium
expansion on the observed event plane correlations can be understandable.
For instance, the enhancement of the correlation 〈〈cos(4Ψ4 − 4Ψ2)〉〉 is well
interpreted as the increase of nonlinear flow response effect. With the sim-
ilar ‘linear limit’ and ‘nonlinear limit’ arguments, the patterns of the plane
correlations can be related to the medium properties. Especially, since the
η/s dependence of flow response is well established theoretically, extraction of
shear viscosity from these plane correlations can be expected.

The viscous effect from hydrodynamics for the peripheral collisions is ques-
tionable. Since the viscous hydrodynamics framework is not consistent, which
we will address in Chapter 5, there exists uncertainty of our predictions for
the peripheral collision bins.
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Chapter 5

Second order viscous
corrections, δf(2)

One of the primary goals of viscous hydrodynamic simulations with respect to
the realistic heavy-ion collisions is the extraction of the transport coefficients
of the QGP medium, in particular the shear viscosity to entropy ratio η/s.
Progresses towards this direction have been made based on the realization of
initial state fluctuations, since the observed harmonics in experiment have ob-
tained an substantial extension, with not only elliptic flow v2, but also v1, v3,
up to v6 measured quantitatively. These new signatures, e. g. vn{2} and event
plane correlations, supply more constraints and thus a better determination
of η/s. However, as noticed in the viscous hydrodynamic calculations, also
discussed in the previous chapters, the predicted flow response of higher har-
monic orders is negative as long as the viscous effects are sufficiently large, e. g.
with large input η/s or small system size. These unphysical results reflect the
over-estimates of viscous damping effect of present hydrodynamic framework.

In hydrodynamics, dissipative effects are included in two aspects: the vis-
cous hydrodynamic equations of motion and the viscous corrections to the
phase space distribution function at freeze-out δf(x,p). Although both of the
two aspects are responsible for viscous damping in hydrodynamics, the effect
of δf(x,p) is generally the dominant one [103]. In Fig. 5.1, a series of vis-
cous hydrodynamic simulations give rise to the 4-th order linear and nonlinear
flow response coefficients, as a function of transverse momentum. The formal
calculations, i. e. considering viscous equations of motion and δf(x,p) simul-
taneously, with respect to a increase of input η/s, demonstrate a substantial
viscous damping. In particular, when η/s = 2/4π the flow response coefficients
cross zero at large pT . Comparing to the moderate viscous suppression when
effects of δf(x,p) is neglected, the grey curves in Fig. 5.1, it is reasonable to

86



-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.5  1  1.5  2  2.5  3

w
4
/C

4

pT(GeV)

(f0 only)

(a)

ideal

1/8π

1/4π

2/4π

1/4π

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

w
4
(2

2
)/

ε
2
2

pT(GeV)

(f0 only)

(b)

ideal

1/8π

1/4π

2/4π

1/4π

Figure 5.1: w4(pT ) and w4(22)(pT ) from hydrodynamics with different η/s.
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color.

attribute the obtained negative flow response to the inappropriate formulation
of δf(x,p).

The treatment of the viscous corrections to the phase space distribution
function at freeze-out in current hydrodynamic simulations is truncated at first
order, δfπ(x,p), in which viscous corrections of the order of only first spatial
gradient are consistently considered, in the form of Eq. (1.35). On the other
hand, due to the causality problem of hydrodynamic theory, the equations of
motion with viscous corrections of up to second order in gradients are used
practically. For instance, the BRSSS hydrodynamics Eq. (1.32) has been found
in realistic calculations with convergence, and especially to the measured har-
monic flow. The inconsistency between the equations of motion and δfπ, and
the consequent over-estimate of viscous damping in the calculations of higher
order harmonic flow, consist the major motivation of this part of our work.

To compute the viscous corrections to the phase space distribution we will
analyze kinetic theory of a conformal gas close to equilibrium in a relaxation
time approximation. This extreme idealization is still useful for several rea-
sons. First, a similar equilibrium analysis of QCD kinetic theory was used to
determine the second order transport coefficients to leading order in αs [110].
This analysis (which will be discussed further below) makes clear that the
details of the collision integral hardly matter in determining the second order
transport coefficients. Indeed, we will see that the structure of the second
order viscous correction δf(2) is largely determined by the kinematics of free
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streaming, rather than the details of the collision integral. Thus, an analysis
based on a relaxation time approximation is an easy way to reliably estimate
the size of such second order corrections in heavy ion collisions. Second, the
overall normalization of δf(2) is constrained by the second order transport co-
efficients τπ and λ1, in much the same way that the shear viscosity constrains
the normalization of δf(1). These constraints allow us to make a good estimate
of the form of viscous corrections at second order for a realistic non-conformal
fluid.

With this functional form we study the effect of δf(2) on the harmonic spec-
trum in heavy ion collisions. In Section 5.1 we outline how δf(2) is computed
in kinetic theory. Then, in Section 5.2 we discuss the practical implementation
of this formula in a hydrodynamic code used to simulate heavy ion collisions.
These results are used to simulate the linear response to a given deformation,
εn. The linear response is largely responsible for determining the vn in cen-
tral collisions. In non-central collisions the linear response and the quadratic
response determine the harmonic flow and its correlations [57, 70, 71, 85, 95],
but the quadratic response will not be discussed in this initial study. Finally,
we will summarize the effects of δf(2) in Section 5.3.

5.1 2nd order corrections to f (x,p)

5.1.1 Hydrodynamics

In evaluating δf(2) to second order we will need the hydrodynamic equations of
motion. Throughout this analysis we are working with a conformal fluid and
consequently the bulk viscosity is set zero, ζ = 0. For a conformal fluid the
possible tensor forms of the gradient expansion for πµν through second order
were established by BRSSS

πµν = πµν(1) + πµν(2) + . . . = −ησµν + ητπ

[
〈Dσµν〉+

1

d− 1
σµν∂ · u

]
+ λ1

〈
σµλσ

νλ
〉

+ λ2

〈
σµλΩ

νλ
〉

+ λ3

〈
Ωµ

λΩ
νλ
〉

+ . . . , (5.1)

Rewriting hydrodynamic equations of motion, to express the time derivatives
of energy density and flow velocity in terms of the spatial gradients of these
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fields

Dε =− (ε+ P)∇ · u+
η

2
σµνσ

µν + . . . , (5.2a)

Duµ =− ∆µP
ε+ P −

∆µλ2 ∂λ1π
λ1λ2

ε+ P (5.2b)

=− ∇αP
ε+ P +

η

ε+ P
[
(d− 2)

〈
σµλ∇λlnT

〉
+
〈
∇λσ

λ
µ

〉]
+ . . . . (5.2c)

is crucial for the following derivations. The ellipses in Eq. (5.2) denote terms
third order in the gradients. In passing from Eq. (5.2b) to Eq. (5.2c) we have
used the first order expression for πµν = −ησµν , the conformal temperature
dependence of η ∝ T d−1, and the lowest order equations of motion Eq. (1.23).

In hydrodynamic simulations of heavy ion collisions the static form of the
constituent relation Eq. (5.1) is not used. Rather, this equation is rewritten
as a dynamical equation for πµν which is evolved numerically [111]

πµν =− ησµν − τπ
[
〈Dπµν〉+

d

d− 1
πµν∇ · u

]
+
λ1

η2

〈
πµλπ

νλ
〉

− λ2

η

〈
πµλΩ

νλ
〉

+ λ3

〈
Ωµ

λΩ
νλ
〉
. (5.3)

Similarly, when constructing δf at first and second order we will systematically
replace σµν with −πµν/η. For fluids with an underlying kinetic description,
the transport coefficients are additionally constrained, with λ3 = 0 and λ2 =
−2ητπ [110], and these relations used in the simulation. The appropriate values
for λ1 and ητπ will be discussed below.

5.1.2 Kinetics

To determine the viscous corrections to the distribution function we will solve
the kinetic equations in a relaxation time approximation through second order
in the gradient expansion

fp ≡ np + δfp = np + δf(1) + δf(2) + . . . . (5.4)

In a relaxation time approximation the Boltzmann equation reads

pµ∂µfp(x) = −T
2

Cp
[fp(x)− n(−p · u∗(x)/T∗(x))] , (5.5)
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where the dimensionless coefficient Cp is related to the canonically defined
momentum dependent relaxation time

Cp = T 2 τR(Ep)

Ep
. (5.6)

Following Ref. [103], we will parametrize the momentum dependence of the
relaxation time as a simple power law

τR ∝ E1−α
p , (5.7)

with α between zero and one. As we will see below, α = 0 gives a first
order a viscous correction which grows quadratically with momentum (which
is known as the quadratic ansatz), while α = 1 gives a first order viscous
correction which grows linearly with momentum (and is known as the linear
ansatz).

At leading order, the parameters T∗ and Uµ
∗ which appear in the kinetic

equation are equal to the Landau matched temperature and flow velocity, T
and uµ. However, starting at second order T∗ and Uµ

∗ will differ from T and
uµ by squares of gradients:

T∗(x) ≡T (x) + δT∗(x) , (5.8a)

uµ∗(x) ≡uµ(x) + δuµ∗(x) . (5.8b)

δT∗ and δUµ
∗ will be determined at each order by the Landau matching condi-

tion:
T µνuν = euµ .

Expanding n(−p · u∗/T∗) we have

n∗p ≡ np + δn∗p δn∗p = n′p

[
−p · δu∗

T
− Ep

δT∗
T 2

]
+ . . . , (5.9)

where we have used an obvious notation, n∗p ≡ n(−p · u∗/T∗) and np ≡ n(−p ·
u/T ).

Then to determine δf we substitute the expansion (Eq. (5.4)) into the
relaxation time equation and equate orders. In doing so we use the hydrody-
namic equations of motion through second order to write time derivatives of
T (X) and Uµ(X) in terms of spatial gradients of these fields. For instance,
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using the equations of motion Eq. (5.2) and the thermodynamic identities

cv =
dε

dT
,

1

T (ε+ P)
dP + d

(
1

T

)
=0 , c2

s =
ε+ P
Tcv

, (5.10)

and the relations |p|2 = E2
p and c2

s = 1/(d− 1) of a conformal gas, we have

pµ∂µnp = −n′p
pµpν

2T
σµν−

n′p
(ε+ P)T

[
−Eppµ1∆µ1µ2∂λπ

λµ2+ 1
2
E2

pc
2
s ησ

2
]
+. . . .

(5.11)

The term linearly proportional to σµν is ultimately responsible for the shear
viscosity, while the nonlinear terms contribute to δf(2).

With this discussion, we find that the δf is determined by the hierarchy of
equations:

δfσ(1) =Cpn′p
pµpνσµν

2T 3
, (5.12)

and

δfσ(2) = δn∗p+
Cpn′p

(ε+ P)T 3

[
−Eppµ1∆µ1µ2∂λπ

λµ2+ 1
2
E2

pc
2
s ησ

2
]
−Cp
T 2

pµ∂µδf
σ
(1) .

(5.13)

Straightforward algebra uses the equations of motion to decompose δf(2) into
irreducible tensors, and determines the final form of δfσ(1) and δfσ(2) (see Ap-

pendix C).
We have put a superscript σ in δfσ(1) and δfσ(2) to indicate that that we are

using σµν rather than πµν in these equations. In realistic hydrodynamic simu-
lations of heavy ion collisions πµν is treated as a dynamic variable, and −ησµν
is systematically replaced by πµν . This yields the following reparameterization
of δf

δf(1) =− 1
2
Cpn′p

pµpν

ηT 3
πµν , (5.14a)

δf(2) =δfσ(2) + 1
2
Cpn′p

pµpν

ηT 3
[πµν + ησµν ] , (5.14b)

where we have replaced σµν with −πµν/η in the first order result, and appended
the difference between these two tensors to the second order result so that,
δf(1) + δf(2) = δfσ(1) + δfσ(2) up to third order terms.
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To record the result for δf(2), we first review the familiar first order case.
At first order, δf(1) is described by a dimensionless scalar function χ0p(Ep/T )

δf1 = χ0p
pµ1pµ2

ηT 3
πµ1µ2 , (5.15)

which has been extensively studied in the literature, and determines the shear
viscosity [103]. In the relaxation time approximation this function is related
to the relaxation time

χ0p = −1
2
Cpn′p . (5.16)

One moment of this function is constrained by the shear viscosity. Indeed,
from the defining relation

πµν =

∫
p

P µP ν

P 0
δfp , (5.17)

we determine the shear viscosity

η =
2

(d− 1)(d+ 1)T 3

∫
p

p4

Ep
χ0p , (5.18)

and a constraint on δf(2)

0 =

∫
p

P µP ν

P 0
δf(2) . (5.19)

This constraint reflects the reparameterization of σµν in the first order δf(1)

with πµν . For later use and comparison, we note that the enthalpy is

(ε+ P) =
−1

(d− 1)T

∫
p

n′p p
2 , (5.20)

which can be obtained by comparing the stress tensor from kinetic theory for
small fluid velocities (i.e. uµ ' (1,v) with v � 1) to ideal hydrodynamics,
T 0i ' (e+ P)vi [112].

At second order the function δf(2) is described by two dimensionless scalar
functions χ1p and χ2p

χ1p =− 1
2
Cp χ′0p , (5.21)

χ2p =Cp χ0p . (5.22)

Two moments of these scalar functions are constrained by the second order
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transport coefficients ητπ and λ1

λ1 + ητπ =
8

(d− 1)(d+ 1)(d+ 3)T 6

∫
p

χ1p
p6

Ep
, (5.23)

ητπ =
2

(d− 1)(d+ 1)T 5

∫
p

χ2p p
4 . (5.24)

Then the functional form of δf(2) is

δf(2) =
χ1p

η2

pµ1pµ2pµ3pµ4

T 6
〈πµ1µ2πµ3µ4〉+

χ2p

η

pµ1pµ2pµ3

T 5
[(d+ 2) 〈πµ1µ2∇µ3 lnT 〉 − 〈∇µ1πµ2µ3〉]

+
ξ1p

η2

pµ2pµ1

T 4

〈
πλµ2πµ1λ

〉
+
ξ2p

η

pµ2pµ1

T 3
[πµ2µ1 + ησµ2µ1 ] +

ξ3p

η

pµ2

T 3

[
∆µ2λ2∂λ1π

λ1λ2
]

+
ξ4p

T 2η2
π2 , (5.25)

where the four scalar functions ξ1p, ξ2p, ξ3p, ξ4p are linearly related to χ0p, χ1p, χ2p

ξ1p = χ1p
4p̄2

(d+ 3)
− χ2p Ēp

ητπ
(ητπ + λ1) , (5.26a)

ξ2p =
χ2p

Tτπ
Ēp − χ0p , (5.26b)

ξ3p = −χ2p
2p̄2

(d+ 1)
+ 2χ0p

η

s
Ēp + aP∗n

′
p , (5.26c)

ξ4p = χ1p
2p̄4

(d− 1)(d+ 1)
− χ2p

Ēpp̄
2

(d− 1)
− χ0p

η

s
Ē2
pc

2
s + aE∗n

′
pĒp , (5.26d)

with p̄ = |p|/T and Ēp = Ep/T .
The coefficients aE∗ and ap∗ come from Eq. (5.9) and are adjusted so that

the Landau matching conditions are satisfied. More specifically, we choose δU∗
and δT∗ in Eq. (5.9) so that

−p · δU∗
T

=aP∗
pµ1

ηT 3

[
∆µ1λ2∂λ1π

λ1λ2
]
, (5.27a)

−Ep
δT∗
T 2

=aE∗ Ēp
π2

T 2η2
. (5.27b)

Then integrating over fp(X) to determine the stress tensor and demanding
that Eq. (5.19) (which is a restatement of the Landau matching condition),
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we conclude that

aP∗ =
Tητπ
s
− (1 + d)

(η
s

)2

, (5.28a)

aE∗ =
Tητπ

4s
− d+ 3

d− 1

Tλ1

4s
+

d+ 1

2(d− 1)

(η
s

)2

. (5.28b)

Despite being somewhat complicated, the functional form of δf(2) is severely
constrained, and is bounded by the transport coefficients η, λ1 and ητπ through
Eqs. (5.18), (5.23), and (5.24). For a single component classical gas with the
quadratic ansatz α = 0, Eq. (5.18) shows that Cp = η

s
, and the three scalar

functions which determine δf(2) can be simplified to

χ0p =
η

2s
np , χ1p =

1

4

(η
s

)2

np , χ2p =
1

2

(η
s

)2

np . (5.29)

We will discuss the implementation of δf(2) in the next section.

5.2 Implementation in simulations of heavy ion

collisions

In this section we will implement the δf(2) corrections in a 2+1 boost invariant
hydrodynamic code. A full event-by-event simulation of heavy ion collisions
with δf(2), together with a comparison to data, goes beyond the scope of
this initial study. Nevertheless, the effect of δf(2) in larger simulations can
be anticipated by understanding how the linear response is modified by δf(2).
Indeed, the qualitative features of event-by-event hydrodynamic simulations
of heavy ion collisions (including the correlations between the harmonics of
different order) are reproduced by linear and quadratic response [70, 85, 95].
In central collisions the linear response is sufficient, and was recently used to
produce one of the best estimates of the shear viscosity and its uncertainty to
date [113]. We will calculate the linear response to a given deformation εn in
order to estimate the influence of δf(2) on vn.

The linear response of harmonic order n relies on the initial azimuthal
deformation introduced by n-th order cumulant, in the way discussed in Sec-
tion 2.2. We will focus on a typical mid-central event with the impact param-
eter b = 7.45 fm. For LHC

√
s = 2.76 TeV Pb-Pb collision and RHIC Au-Au√

s = 200 GeV collision, the total initial entropy is adjusted by taking the
constant Cs = 28.04 and 15.9 respectively.

After initializing the Gaussian, we evolve the system with second order
hydrodynamics, Eq. (1.25) and Eq. (5.3), using a variant of the central scheme
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developed previously [43, 114]. Then for a given n-th order harmonic pertur-
bation εn we compute vn/εn by performing the freeze-out integral at a constant
temperature. This evolution requires an equation of state and specified hydro-
dynamic parameters at first and second order. In what follows we will consider
a conformal equation of state for a single component classical gas, and a lattice
motivated equation of state previously used by Romatschke and Luzum [45].

Since it is only for the conformal equation of state p = 1
3
ε that the analysis

of Section 5.1 is strictly valid we will discuss this case first, and then discuss
the necessary modifications for a lattice based equation of state. To keep the
final freezeout volume of the conformal equation of state approximately equal
to the much more realistic lattice based equation of state, we choose the final
freezeout temperature (Tfo = 96 MeV) so that the entropy density at freezeout
sfrz = 1.87 fm−3 equals the entropy density of a hadron resonance gas at a
temperature of T = 150 MeV. The relation between the temperature and
energy density for the conformal equation of state is e/T 4 = 12.2, which is
the value for a two flavor ideal quark-gluon plasma. The motivation for these
choices, the parameters of the conformal equation of state, and further details
about the initial conditions and freezeout we refer to our previous work – see
especially Appendix B of Ref. [69].

The second order transport coefficients ητπ and λ1 are all constrained by the
momentum dependence of the relaxation time and the shear viscosity through
Eqs. (5.18), (5.23), (5.24). As discussed in Ref. [103], there are two limits for
this momentum dependence which span the gamut of reasonable possibilities.
In the first limit the relaxation time grows linearly with momentum, and α = 0
in Eq. (5.7). This is known as the quadratic ansatz, and is most often used to
simulate heavy ion collisions. In a similarly extreme limit the relaxation time is
independent of momentum, and α = 1 in Eq. (5.7). This is known as the linear
ansatz, and this limit provides a useful foil to the more commonly adopted
quadratic ansatz. Once the shear viscosity and the momentum dependence of
the relaxation time are given, the collision kernel is completely specified in the
relaxation time approximation, and all transport coefficients are fixed. For a
linear and quadratic ansatz we record the appropriate second order transport
coefficients in Table 5.1.

So far this section has detailed the initial and freezeout conditions, as well
as the second order parameters which are used in the conformal equation of
state. Fig. 5.2 shows the resulting elliptic flow for the quadratic and linear
ansätze for a conformal equation of state including the first and second order
δf . A conformal equation of state has a strong expansion, and, as a result,
generally over estimates the magnitude of the δf correction. Thus the confor-
mal analysis provides a schematic upper bound on the magnitude of the δf(2)
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Momentum Dependence ητπ λ1

Linear Ansatz (α = 1) (d+ 1) = 5 (d+ 1)2/(d+ 3) = 25/7

Quadratic Ansatz (α = 0) (d+ 2) = 6 (d+ 2) = 6

Table 5.1: Second order transport coefficients
A compilation of rescaled second order transport coefficients for a linear and

quadratic ansatz in a relaxation time approximation for classical statistics [110].

All numbers in this table should be multiplied by η2/(e + P). In a relaxation time

approximation λ2 = −2ητπ and λ3 = 0 [110].

correction. Further discussions on these results is reserved for Section 5.3
Strictly speaking the analysis of Section 5.1 is useful only for a single com-

ponent conformal gas. Nevertheless, we believe the usefulness of the analysis
extends beyond this limited regime [110]. Indeed, examining the steps in the
derivation one finds that only very-few non conformal terms appear at each
order. For instance, if non-conformal corrections are kept in Eq. (5.12) one
finds

δfσ(1)−non−conf(p) = Cpn′p

[
pµpνσµν

2T 3
+

(
−E

2
p − |p|2
3T 3

+
(1

3
− c2

s)E
2
p

T 3

)
∇µu

µ

]
,

(5.30)
which shows that non-conformal terms (the second term in Eq. (5.30)) are
either suppressed by 1

3
− c2

s, or are suppressed at high momentum relative to
the conformal terms.

To extend our analysis to a multi-component non-conformal equation of
state we have followed the simplified treatment that is used in almost all
simulations of heavy ion collisions. First, we will treat all species independently

pµ∂µf
a
p(x) = −T

2

Cap
[
fap(x)− na(−p · u∗(x)/T∗(x))

]
, (5.31)

where a = π,K, ρ, . . . is a species label1. We will also adopt the quadratic
ansatz α = 0, so that Cap is independent of momentum. Then for every species

1There have been several efforts to go beyond this extreme species independent approx-
imation [103, 115].
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we define the partial entropy and shear viscosity as in Eqs. 5.18 and 5.20

ηa =
−Cap

(d− 1)(d+ 1)

[
ga
T 3

∫
p

nap
′ p

4

Ep

]
, (5.32a)

sa =
−1

(d− 1)

[
ga
T 2

∫
p

nap
′ p2

]
, (5.32b)

where ga is the spin-isospin degeneracy factor. The full shear viscosity and
entropy density is a sum of the partial results, η =

∑
a ηa and s =

∑
a sa.

We require that ηa/sa is equal to η/s for each species, and thus the relaxation
time parameter Cap is, in principle, different for each species. However, for a
classical gas the two integrals in square brackets are equal upon integrating
by parts, and thus Cap = ηa/sa = η/s is independent of the mass and species
label. For fermi-dirac and bose statistics these integrals are very nearly equal
(to 4% accuracy) for all values of the mass, and Cap is approximately equal to
η/s for all species independent of mass and statistics.

Now that the relaxation time parameter Cap is fixed for each species, the
corresponding second order δf for each species is found by appending a species
label, np → nap and Cp → Cap , to previous results. For a multi-component gas
with a quadratic ansatz we find

ητπ + λ1 =
∑
a

(Cap )2

[
2ga

(d− 1)(d+ 1)(d+ 3)T 6

∫
p

nap
′′ p

6

Ep

]
, (5.33a)

ητπ =
∑
a

(Cap )2

[ −ga
(d− 1)(d+ 1)T 5

∫
p

nap
′ p4

]
. (5.33b)

For classical statistics Cap = η/s, and integrating the first integral in square
brackets by parts yields a simple relation noted previously [110]

λ1 = ητπ (for α = 0) . (5.34)

The remaining thermodynamic integrals are most easily done numerically;
summing over all hadronic species with mass less than 1.5 GeV we find

λ1 = ητπ =
η2

(ε+ P)
8.9 . (5.35)

Thus, Tτπ/(η/s) = 8.9 would seem to be the most consistent value for the
2nd order transport coefficients during the hydrodynamic evolution of the
hadronic phase. However, this value for Tτπ is somewhat too large to be used
comfortably in the simulation (see for example, [44]). Further, Tτπ decreases as
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temperature increases, and Tτπ/(η/s) ' 5 is good approximation in the QGP
phase [110]. We have therefore taken λ1 = ητπ = 5η2/(ε+ P) throughout the
evolution. This means that there is a small inconsistency between the second
order δf at freezeout, and the second order parameters used to simulate the
bulk of the hydrodynamic evolution. Similar inconsistencies are found in all
attempts to consistently couple hydrodynamic codes with hadronic cascades
[116].

To summarize, in this section we have specified precisely the initial con-
ditions, the equation of state, the transport coefficients at first and second
order, and the first and second order corrections to the distribution functions.
We have used this setup to compute the linear response coefficients vn/εn for
RHIC and LHC initial conditions for the first six harmonics. Our results are
displayed in Fig. 5.3 and Fig. 5.4. We will discuss the physics of these curves
in the next section.

5.3 Discussion

This work computed the second order viscous correction to the thermal dis-
tribution function, δf(2), and used this result to estimate the effect of second
order corrections on the harmonic spectrum. Our principle results are shown
in Fig. 5.2 for a conformal equation of state, and Fig. 5.3, and Fig. 5.4 for a
lattice based equation of state. First, examine the v2 curves for the confor-
mal EOS shown in Fig. 5.2. The most important remark is that even for a
conformal equation of state, where the expansion is most violent, the deriva-
tive expansion converges acceptably for pT <∼ 1.5 GeV, i.e. the second order
correction is small compared to the first order correction. Not surprisingly,
when a linear ansatz is used for δf (rather than the more popular quadratic
ansatz) the convergence of the derivative expansion is improved at high pT .
Typically in hydrodynamic simulations of heavy ion collisions, the strictly first
order δfσ(1) is replaced by the δf(1) which incorporates some, but not all, sec-

ond order terms2. Examining Fig. 5.2, and also Fig. 5.3 and Fig. 5.4, we see
that, while the sign of the second order correction is correctly reproduced by
this incomplete treatment, the magnitude of the correction is generally signif-
icantly underestimated, and the pT dependence of the second order correction
is qualitatively wrong.

Most of these observations remain true for the more realistic lattice equa-
tion of state shown in Fig. 5.3 and Fig. 5.4. Generally, second order corrections
are quite small for the first three harmonics, v1 to v3, and become increasingly

2As discussed above, δf(1) uses πµν in place of −ησµν when calculating the first order
correction.
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important as the harmonic number increases. Indeed, for v6 at RHIC and the
LHC, the second order viscous correction is of order one, and the hydrody-
namic estimate can no longer be trusted. It is also instructive to note that
the sign of the second order viscous correction for pT <∼ 1.5 GeV is positive,
i.e. second order corrections bring the vn(pT ) curves closer to the ideal re-
sults. Generally, when the first order correction, becomes so large as to make
vn(pT ) negative at first order, the second order correction conspires to keep vn
positive. When constraining η/s with hydrodynamic simulations, the second
order corrections are most important for v4 and v5. Indeed, at RHIC these
corrections are quite important for v5 even in central collisions.

For a practical perspective, using δf(2) in a hydrodynamic simulation is not
particularly more difficult than using δf(1), and Eq. 5.13 can be readily imple-
mented in most hydro codes. The functional form of δf(2) and its magnitude
is about as well constrained as δf(1), and consistency with the second order
hydrodynamic evolution would seem to mandate its use. At very least δf(2)

should be taken into consideration when estimating the uncertainty in the η/s
extracted from heavy ion collisions. Finally, when trying to use hydrodynam-
ics in very small systems such as proton-nucleus collisions at RHIC and the
LHC [40, 117–122], second order corrections to δf should be used in order to
monitor the convergence of the gradient expansion.
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Figure 5.2: Differential v2(pT )/ε2 at RHIC and LHC, with CEOS and LEOS
Differential v2(pT )/ε2 for RHIC and LHC initial conditions, for a linear and

quadratic ansatz, and a conformal equation equation of state (CEOS). The np curves

shows the flow from second order hydrodynamics without the viscous correction to

the distribution function; δf(1) and δf(1) + δf(2) show the flow with the viscous cor-

rection at first and second order; and finally, the δfσ(1) result uses −ησµν instead of

πµν in the first order result (see Eq. (5.12)). The freezeout temperature is chosen

so that the freezeout entropy density of the conformal gas equals that of a hadronic

resonance gas at a temperature of T = 150 MeV.
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Figure 5.3: Differential vn/εn at RHIC and LHC
Differential vn/εn from various viscous hydrodynamic simulations at b = 7.45 fm

for RHIC and LHC initial conditions, and a lattice equation of state (LEOS) with

Tfo = 150 MeV. Here the np curve shows the flow from second order hydrodynamics

without the viscous correction to the distribution function; δf(1) and δf(1) + δf(2)

show the flow with the viscous correction at first and second order respectively; and

finally, the δfσ(1) curve uses −ησµν instead of πµν in the first order viscous correction

(see Eq. (5.12)).
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Figure 5.4: Differential vn/εn at RHIC and LHC
Differential vn/εn from various viscous hydrodynamic simulations at b = 7.45 fm

for RHIC and LHC initial conditions, and a lattice equation of state (LEOS) with

Tfo = 150 MeV. Here the np curve shows the flow from second order hydrodynamics

without the viscous correction to the distribution function; δf(1) and δf(1) + δf(2)

show the flow with the viscous correction at first and second order respectively; and

finally, the δfσ(1) curve uses −ησµν instead of πµν in the first order viscous correction

(see Eq. (5.12)).
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Chapter 6

Conclusions and outlook

In this dissertation work, we have developed a linear and nonlinear response
formalism to describe the correlations observed in heavy ion collisions. This
serves as an alternative to event-by-event calculations for the observed har-
monic flows and plane correlations. Accordingly, with respect to the initial
state fluctuations in heavy-ion collisions, several improvements for the hydro-
dynamic description of the medium expansion have been discussed.

First of all, we introduced the cumulant expansion formalism to analyze
the fluctuating initial state. Regarding initial state fluctuations as perturba-
tions on top of a smooth background, the azimuthal anisotropies are defined in
terms of a series of cumulants. Cumulant defined initial anisotropies are distin-
guished from the traditionally used moments definitions in several ways. First,
for each harmonic order n, we found that there exists an extra index that nat-
urally takes into account of the fluctuations along the radial direction. Second,
in the cumulant definition for the higher order azimuthal deformations a sub-
traction of nonlinearities is implied. Although the cumulant definition is more
complex, the initial state anisotropies are characterized more systematically.
In particular, we described the dipole asymmetry, a rapidity-even asymmetry
in the initial state of heavy-ion collisions on an event-by-event basis. From
Monte Carlo simulations of the initial state, we found that the magnitude of
the dipole asymmetry is relatively small compared to the other eccentricities.
However, the dipole asymmetry induces a noticeable rapidity-even dipole flow
v1, whose unique pT dependence has been confirmed in experiments from both
RHIC Au-Au collisions and LHC Pb-Pb collisions.

In addition, based on the cumulant formalism, we noticed the significance of
initial state participant plane correlations. For example, the 〈〈cos 2(Φ1−Φ2)〉〉
provides a background for the observed 〈cos(φa + φb− 2ΨR)〉 of inclusive two-
particle correlations. Since these initial state participant plane correlations
are dominated by the initial geometry, studying the corresponding event plane
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correlations is expected to be the best way to understand these initial geomet-
ric effects. Therefore, we proposed signatures in the observables, such as the
〈cos(φa−3φb+2ΨR)〉 to test the initial anti-correlation 〈〈cos(Φ1−3Φ3 +2Φ2)〉〉.
We also examined a number of two-plane and three-plane correlations, with
respect to the recent ATLAS measurement. From Monte Carlo simulations,
these initial plane correlations are found different with the cumulant based
definitions or the moment based definitions. Nevertheless, the disagreement
of the initial simulations with experimental data suggest the insufficiency of
the linear flow response of medium expansion, which inspired us the work on
nonlinear flow response formalism.

We investigated the linear flow generation, with the cumulant description
of initial state anisotropy. We found the normal process of flow development,
with respect to the fluctuating initial state, that all of the initial spatial ec-
centricities are transformed into momentum space in a similar manner. And
the linearly generated harmonic flows rise linearly in pT in the large transverse
momentum region, from ideal hydrodynamic calculations. The viscous effects
on the linear flow response are found crucial for higher order harmonics, as we
expected. The viscous damping follows a semi-quantitative pattern that the
damping rate is proportional to the square of harmonic order. And as long
as higher order harmonic flow is not involved in the problem, the predicted
results are consistent with experimental observations to a large extent. For
example, even with ideal hydrodynamics and conformal EoS for a massless
gas, the predicted V3∆/V2∆ is consistent with experimental data on this ratio.

However, for higher order harmonic flow we need to go beyond the leading
order of flow response. The nonlinear flow response formalism is formulated in
analogous to the linear flow response, with nonlinear flow response coefficients
proposed to relate nonlinearly coupled initial anisotropies and the nonlinearly
generated flow. We systematically investigated some typical nonlinear flow re-
sponse coefficients, as a function of transverse momentum, centrality and the
shear viscosity to entropy ratio. The nonlinear response gives vn(pT ) a char-
acteristic quadatic dependence on pT for large pT . Further the nonlinear flow
response is found to significantly affect the harmonic flow for large harmonic
order, large centrality, and large input η/s. These properties of nonlinear flow
generation play a crucial role in our further predictions, in particular the final
state event plane correlations.

The ATLAS collaboration systematically measured the two-plane and three-
plane event plane correlations, using the so-called event-plane method. With
our linear and nonlinear flow response formalism, the single-shot hydrody-
namic framework reproduced most of the observed correlation patterns. In
particular, by separately calculating the correlation in the ‘linear limit’ and
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the ’nonlinear limit’, we can give analytical interpretation for the formation
of these correlations, and understand the dependence of these correlations
on centrality, and also η/s. Since in non-central collisions viscous effects are
important, the flow generation is dominated by the nonlinear response, and
the observed event plane correlations consequently approaches the ‘nonlinear
limit’. Since the analysis on event plane correlations relies on the medium
property, the knowledge of their dependence on η/s is useful for future en-
deavors of extracting of the transport coefficients of the QCD medium.

Finally, we developed the consistent description of freeze-out with second
viscous corrections to the phase space distribution function. It is well known
that second order viscous hydrodynamic equations of motion are indispensable
in applications to avoid causality problem, and to take into account dissipa-
tions in the expanding medium. However, the widely used freeze-out phase
space distribution function is only self-consistent to first order in viscous cor-
rections. This inconsistency theoretical framework used to describe heavy-ion
collisions needs to be remedied. Relying on the kinetic theory, in which hydro-
dynamics at freeze-out is constrained with certain forms, we solve the Boltz-
mann equation in a relaxation time approximation, and determine the second
order viscous correction, δf(2). Although the theory is strict in a conformal
system, we applied the obtained δf(2) for more realistic calculations with lat-
tice EoS. For RHIC and LHC energies, the effects of δf(2) is seen as corrections
to the differential harmonic flow, and are important for higher harmonic flow
at high pT .

This research can be extended in several directions. First, the initial
anisotropies have been studied in the transverse plane, with cumulant ex-
pansion. This should be generalized to a full 3+1 dimensional system. The
extended version of the cumulant expansion, and the characterization of fluc-
tuations in such 3+1 dimensional systems is briefed in Appendix B. In the
longitudinal correlations of harmonic flows can be expected. For example, the
new cumulant termW2,2,1 implies a rapidity-odd elliptic flow, which should be
studied and measured.

Second, the second order viscous corrections are expected to be more sig-
nificant for systems with stronger dissipative effects. In particular systems
with much smaller system size, such as the recent pA collision at LHC. Con-
sidering the higher sensitivity of viscous hydrodynamic calculations with δf(2),
the applicability of hydrodynamics can be examined in these small systems.
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Appendix A

Notations and conventions

We take the natural units throughout this thesis work, so that ~ = c = 1 is
ignored in these formulas unless necessary. As a result, the unit of energy, mass
and momentum are taken to be GeV, while length and time are characterized
in fm.

The matrix ηµν = (−1, 1, 1, 1) is used for the general coordinate systme
(t, x, y, z) with the Greek indices running over 0, 1, 2, 3. When Bjorken boost
invariance is taken into account, it is convenient to work in the coordinate
system (τ, x, y, ηs), so that the ηs dependence of the system is trivial and
hydrodynamics is simplified accordingly to a 2+1 dimensional problem. Note
the matrix in this coordinate system is not trivial. Four-vectors, such as flow
four-velocity uµ, are denoted by the ordinary type of lower case letters, while
the boldface type is used for three-vectors, e. g. x and p.

Brackets around a scalar are used in this work to denote several different
types of averages. The script brackets {. . .} =

∫
ρ(τ0,x⊥) . . . is defined with

respect to the initial normalized entropy density, reflecting the geometric infor-
mation of the initial state. Single angle brackets 〈. . .〉 is the average regarding
the final state (multi-)particle spectrum. Double angle brackets 〈〈. . .〉〉 notates
results from the event average.

Brackets around indices of a tensor structure, especially seen in Chapter 5,
are introduced for the convenience of theoretical derivations, with particular
meanings. For example, with the help of the projection operator, ∆µν =
uµuν + ηµν ,

〈Aµν〉 =
1

2
∆µ

ρ∆
ν
σ (Aρσ + Aσρ)− 1

(d− 1)
∆µν∆ρσA

ρσ , (A.1)
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is constructed as symmetric-traceless and orthogonal to uµ, i. e.,

〈Aµν〉 = 〈Aνµ〉, 〈Aµν〉∆µν = 0, 〈Aµν〉uµ = 0 . (A.2)

Such tensors transform irreducibly under rotation in the local rest frame. If
without imposing the traceless condition, we have

{Aµν}sym =
1

2
∆µ

ρ∆
ν
σ (Aρσ + Aσρ) = ∆µ

ρ∆
ν
σ(Aµν) , (A.3)

denoting a symmetric tensor structure that is orthogonal to uµ. In Eq. (A.3)
the bracketed (Aµν) is just the general symmetric tensor. A more elaborate
example using σµν = 2 〈∇µuν〉 which appears in Appendix C is

{σµ1µ2σµ3µ4}sym = 〈σµ1µ2σµ3µ4〉+
4

d+ 3

{
∆µ1µ2

〈
σλµ3σµ4λ

〉}
sym

+
2

(d− 1)(d+ 1)
{∆µ1µ2∆µ3µ4}sym σ

2 , (A.4)

where the symmetrized spatial tensor is denoted with curly brackets:

{σµ1µ2σµ3µ4}sym =
1

3
[σµ1µ2σµ3µ4 + σµ1µ3σµ3µ4 + σµ1µ4σµ2µ3 ] . (A.5)

These structures defined here are helpful for the decomposition of the tensors
in δf(2), which is detailed in Appendix C.

The equilibrium distribution function is np ≡ n(−P · u(x)/T (x)) where
n(z) = 1/(ez ∓ 1), and fp(x) denotes the full non-equilibrium distribution.
The rest frame integrals are abbreviated

∫
p
≡
∫

dd−1p/(2π)d−1, with d = 4

denotes the space-time dimension. Primes (such as n′p) denote derivatives
with respect to −p · u/T , so that n′p = −np(1± np). The energy and squared
three momentum in the rest frame are, Ep = −p · u and |p|2 = pµpν∆µν ,
respectively.
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Appendix B

3-dimensional cumulant analysis

Due to the approximated Bjorken boost invariance of the medium system
in heavy-ion collisions, it is convenient to work in the coordinate system
(τ, r, φr, ηs). Note the space-time rapidity is denoted with ηs, however, we
will drop the ‘s’ in the sub-indices when confusion can not arise. For a given
3-dimensional distribution ρ(x⊥, ηs), we extend the aforementioned cumulant
expansion,

ρ(τ0,x⊥, ηs) =

∫
d2k⊥dkηe

i(k⊥·x⊥+kηηs)ρ̂(τ0,k⊥, kη) (B.1)

ρ̂(τ0,k⊥, kη) =

∫
d2x⊥dηse

−i(k⊥·x⊥+kηηs)ρ(τ0,x⊥, ηs). (B.2)

The exponential factor now becomes

e−i(k⊥·x⊥+kηηs) =

[
∞∑
n=0

n∑
l=0

(−i)nC l
n

n!2n
(k̄r̄∗)l(k̄∗r̄)n−l

]
e−ikηηs , (B.3)

so to the lowest order in kη, we obtain a trivial extension of the 2-dimensional
transverse plane case Eq. (2.8), while the average is now defined as

{r̄n(r̄∗)n−l} =

∫
d2x⊥dηsr̄

n(r̄∗)n−lρ(τ0,x⊥, ηs) =

∫
dη{r̄n(r̄∗)n−l}⊥(ηs)(B.4)

To be consistent, we impose

{r̄}⊥(η = 0) = {r̄∗}⊥(η = 0) = 0 , (B.5)
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so that the system center is not changed from the 2-dimensional case to the
3-dimensional system. To the first order in kη, we have

ρ̂(τ0,k⊥, kη) =ρ̂(τ0,k⊥, kη = 0) + kη

∞∑
n=0

n∑
l=0

(−i)n+1C l
n

n!2n
k̄l(k̄∗)n−l{(r̄∗)lrn−lηs}

+O(k2
η) (B.6)

The expansion in kη reflects the similar argument of long-wavelength expansion
in the longitudinal direction. Generally we have

ρ̂(τ0,k⊥, kη) =
∞∑
j=0

∞∑
n=0

n∑
l=0

(−i)n+jC l
n

n!2n
k̄l(k̄∗)n−lkjη{(r̄∗)lrn−lηjs} . (B.7)

If we adhere to the strategy and conventions used before, the 3-dimensional
cumulant W(k⊥, kη) can be introduced,

W(k⊥, kη) =
∑
n,m,j

(−i)n+jWn,m,j(k⊥, kη) = lnρ(τ0,k⊥, kη)

= Ŵ (k⊥)︸ ︷︷ ︸∑
n,mWn,m,j=0

−kη
∞∑
n=0

n∑
l=0

(−i)n+1C l
n

n!2n
k̄l(k̄∗)n−l{(r̄∗)lrn−lηs}e−Ŵ (k⊥)

︸ ︷︷ ︸∑
n,mWn,m,j=1

+O(k2
η).

(B.8)

The 3-dimensional cumulant Wn,m,j is used to characterize the deformations
of the whole 3-dimensional system. We note the non-trivial mode mixing of
deformations between the longitudinal direction and transverse direction, due
to the non-zero value of Wn,m,j 6=0. The lowest order cumulants, i.e., those
with n ≤ 3 and j = 1 will generate the dominant initial state mixing between
the longitudinal deformation and the azimuthal anisotropies. For instance, we
find the rapidity-odd correlation of ε1, ε3,1 ε2,2 and ε3,3, through

W1,1,1 = −1

2
kηk̄{r̄∗ηs}+ c.c. (B.9)

W3,1,1 = − 1

3!23
kηk̄(k̄∗)2

[
{r̄∗r̄2ηs} − 3{r̄2}{r̄∗ηs}

]
+ c.c. (B.10)

W2,2,1 = − 1

2!22
kη(k̄

∗)2{r̄2ηs}+ c.c. (B.11)

W3,3,1 = − 1

3!23
kη(k̄

∗)3
[
{r̄3ηs} − 3{r̄ηs}{r̄2}

]
+ c.c. (B.12)
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Appendix C

Tensor decomposition of δf(2)

The goal of this appendix is to compute δf(2) and to record how this re-
sults transforms under rotations in the local rest frame. Our starting point is
Eqs. (5.13) which we rewrite in terms of irreducible tensors under rotations in
the local rest frame.

A systematic strategy decomposes all derivatives into temporal and spatial
components

∂µ = −uµD +∇µ , (C.1)

where the spatial component ∇µ is orthogonal to uµ. When differentiating
a quantity that is already first order (i.e. P µ∂µδf

σ
(1)), we can use the lowest

order conformal equations of motion to rewrite time derivatives in terms of
spatial derivatives

DlnT =− c2
s∇ · u , (C.2)

Duµ =−∇µlnT , (C.3)

where c2
s = (ε+P)/(Tcv) = 1/(d−1). Finally, the resulting tensors can be de-

composed into symmetric, traceless, and spatial tensors as in Eq. (A.4), which
transform irreducibly under rotations in the local rest frame. To illustrate the
procedure, we record the decomposition of Dσαβ

Dσαβ = D(σµν∆µα∆νβ) =∆µα∆νβDσ
µν + σµνD(∆µα∆νβ) , (C.4)

= 〈Dσαβ〉 − (σµβuα∇µlnT + uβσ
ν
α∇ν lnT ) . (C.5)

Similarly, the symmetrized spatial tensor {∇µσαβ}sym that arises when differ-
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entiating δfσ(1) is decomposed as

{∇µσαβ}sym = 〈∇µσαβ〉+
{ 2

d+ 1
∆µα∇γσ

γ
β + uα

〈
σρβσµρ

〉
+ uα

∆µβ

d− 1
σ2 + 2uα

〈
σρβΩµρ

〉
+ 2uα

σµβ
d− 1

∇ · u
}

sym
, (C.6)

where we have used

∇µuρ =
1

2
σµρ + Ωµρ +

∆µρ

d− 1
∇ · u . (C.7)

Finally, we note that〈
∂λπ

λ
µ

〉
= ∆µλ2 ∂λ1π

λ1λ2 = −η
[
(d− 2)

〈
σµλ∇λlnT

〉
+
〈
∇λσ

λ
µ

〉]
, (C.8)

where we have used the first order expression, πµν = −ησµν , the conformal
temperature dependence of η ∝ T d−1, and the lowest order equations of mo-
tion.

With this automated set of steps, we start with Eq. (5.13) and place δfσ(2)

into its canonical form

δfσ(2) =χ1p
pµ1pµ2pµ3pµ4

T 6
〈σµ1µ2σµ3µ4〉+ χ2p

pµ1pµ2pµ3

T 5
[〈∇µ1σµ2µ3〉 − 3 〈σµ1µ2∇µ3 lnT 〉]

+

(
χ1p

4p̄2

d+ 3
− χ2pĒp

)
pµ2pµ1

T 4

〈
σλµ2σµ1λ

〉
+ χ2pĒp

pµ2pµ1

T 4

[
〈Dσµ2µ1〉+

σµ2µ1
d− 1

∇ · u− 2
〈
σλµ2Ωµ1λ

〉 ]
+ ξ3p

pµ2

T 3

[
−
〈
∇λσ

λ
µ2

〉
− (d− 2)

〈
σµ2λ∇λlnT

〉]
+
ξ4p

T 2
σ2 ,

(C.9)

where the functions χ0p, χ1p, χ2p and ξ3p and ξ4p are recorded in the text,
Eq. (5.26).

In this form it is easy to integrate over the phase space to determine the
viscous stress

πµν = πµν(1) + πµν(2) =

∫
p

pµpν

p0

(
δfσ(1) + δfσ(2)

)
, (C.10)

where πµν(1) and πµν(2) are given by static form of the constituent relation Eq. (5.1).
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Rotational invariance in the rest frame reduces these tensor integrals, e.g.∫
p

χ0p
pµ1pµ2pµ3pµ4

p0
〈Oµ3µ3〉 =

[
2

(d− 1)(d+ 1)

∫
p

χ0p
p4

Ep

]
〈Oµ1µ2〉 , (C.11)

yielding the equations for the transport coefficients written in the text, Eqs. (5.18),
(5.23), and (5.24). In addition, we see that independent of the collision integral
one finds the kinetic theory expectations identified in Ref. [110]

λ2 = −2ητπ , and λ3 = 0 . (C.12)

Finally, in presenting these results in the text, and in implementing the re-
sults in a realistic hydrodynamic simulation, we have used the dynamic form
of second order hydrodynamics, where πµν is treated as a dynamic variable.
This choice amounts to using −πµν/η in place of σµν . In δfσ(2) this reparame-
terization yields the replacements:

〈Dσµ1µ2〉+
σµ1µ2
d− 1

∇ · u− 2
〈
σλµ1Ωµ2λ

〉
→ 1

ητπ
[πµ1µ2 + ησµ1µ2 ]−

λ1

ητπ

1

η2

〈
πλµ1πµ2λ

〉
,

(C.13)

〈∇µ1σµ2µ3〉 − 3 〈σµ1µ2∇µ3 lnT 〉 →
1

η
[(d+ 2) 〈πµ1µ2∇µ3 lnT 〉 − 〈∇µ1πµ2µ3〉] ,

(C.14)

and Eq. (C.8). In addition, when replacing σµν with −πµν/η in the first order
result, the difference 1

η
(πµν + ησµν) must be appended to the second order

result – see Eq. (5.14). The full result for δf(1) and δf(2) is given in Eqs. (5.15)
and (5.25) respectively.
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Appendix D

Convergence check of viscous
hydrodynamic simulations
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Figure D.1: Convergence of harmonic flow v5 and v6 in our numerical calcula-
tions. The grid sizes are set to be 0.1 fm, 0.075 fm and 0.05 fm for these three
simulations. While vcn tends to converge (the left figure), the vsn approaches
zero (the right figure).

To numerically solve the viscous hydrodynamic equations of motion Eq. (1.25)
and (1.32), the medium system is simulated on grids, with xni,j referring the
value of field x at discrete time tn and grid point (x, y) = (xi, yj). With a
variant of central scheme discussed in [43, 114], the evolution of the hydrody-
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namic system is reflected as the space-time description of hydrodynamic fields
on these grids. In evaluating δf(2), unlike πµν is determined as the dynamic
variable from the direct solutions, σµν needs to be calculated as the derivatives
of flow velocity. Consequently, the grid size ∆x in our simulations largely af-
fects the effect of δf(2) in the obtained harmonic flows, and the errors of our
predictions.

In Fig. D.1, we carried out three different hydrodynamic simulations, with
∆x varying from 0.1 fm, 0.075 fm to 0.05 fm, for the linear response of harmonic
order n = 5 and n = 6. vcn = 〈cosn(φp − Ψn)〉 and vsn = 〈sinn(φp − Ψn)〉 are
the generated flow projections into x-axis and y-axis. For these linear flow
response, our initial state is deformed by cumulant with participant angle
Φn = 0. It is thus expect idealistically the generated flow is trivially aligned
with Ψn = 0, i. e. vsn = 0. However, in Fig. D.1, only when ∆x is reduced to
0.05 fm, the calculations are reliable in the sense that vs5 and vs6 approach zero.
Also, this can be seen from the convergence of vc5 and vc6 as ∆x decreases.

For a certain system size considered in the analysis, e. g. {r2}1/2 ∼ 5 fm for
a mid-central Pb-Pb collision at LHC, the smaller grid size means more grid
point involved in the simulation, which demands a much longer calculation
time.
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