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Abstract of the Dissertation

Fractional Time Series Applications in Political Science

by

Taylor Grant

Doctor of Philosophy

in

Political Science

Stony Brook University

2015

This dissertation is focused on the estimation of time series models with the main area of
interest being the use of fractional methods in political science. Since the work of Granger
(1980), Granger and Joyeux (1980) and Hosking (1981) initially introduced the concept of
fractional integration the area of study has continued to grow in economics. In political
science however, research into fractional integration has failed to advance beyond an initial
flurry of study that began in the late 1990s and early 2000s. This dissertation contains three
stand alone chapters that are focused on the use of fractional methods with political time
series. Each attempts to address concerns that have previously dissuaded broader usage of
fractional techniques.

Chapter 2 attempts to move beyond the aggregation work of Granger (1980) by offering
a second justification for the presence of fractionally integrated political series - the error du-
ration process of Parke (1999). Using the error duration model to investigate the survival of
federal policies, survival probabilities of American federal programs are found to be fraction-
ally integrated. Chapter 3 provides the results of a Monte Carlo study of various parametric
and semiparametric estimators of long-memory with smaller sample sizes commonly found
in political science. This is the first comprehensive simulation of multiple estimators with
samples of less than 100. The results indicate that fractional integration can be reliably
estimated with data of smaller samples, however the proper frequency domain estimators
must be used depending on the data type. Chapter 4 is co-authored with Matthew Lebo. All
model estimates, Monte Carlo simulations, figures, and all material found in the appendix
for this chapter were solely my own work product. The chapter discusses the single-equation
error correction model that is now common in political time series, and diagnoses several
problems with the way the method has been employed up to this point. Alternative models
are offered in place of the general error correction model.
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Chapter 1

Introduction

The process by which political scientists use new statistical methods is predominately one of

assimilation rather than pure development. Methodological and theoretical advancements

are made - most often in the field of econometrics - and following a lag of several years,

some intrepid researcher integrates the new method into the field of political science. And

nowhere is the borrowing of methods more apparent than in political time series where almost

all methods were first developed by econometricians. For example, Box and Jenkins (1970)

developed and popularized ARMA and ARIMA modeling (see also, Box and Pierce 1970;

Anderson 1971), and several years later one first encountered these models in the American

Journal of Political Science (Li 1976). The same holds for other methodological advances

such as Kalman filtering,1 autoregressive conditional heteroscedastic (ARCH) models,2 the

single-equation error correction model,3 and cointegration4 to name just a few.

These methods are now widely accepted within political science, with the result being that

political time series research has grown increasingly sophisticated. And such sophistication

has undoubtedly yielded positive results, not only in terms of research quality, but also by

expanding the range and scope of testable hypotheses. It is not uncommon for newer time

series research to move beyond the simple estimation of means and delve into the dynamics

1Possibly developed by Kalman and Bucy (1961) and popularized by Jones (1980), the method found its
way to political science with Beck (1989) and Kellstedt, McAvoy, and Stimson (1993).

2Established by Engle (1982), and first recognized by Beck (1983), but not applied to political data until
a working paper by Brehm and Gronke (1994)

3First developed in econometrics by Davidson, Hendry, Srba, and Yeo (1978) and Hendry and Mizon
(1978) it was introduced to political science, like so many other time series methods, by Beck (1992).

4Formalized by Granger (1986) and Engle and Granger (1987), and first discussed in a special edition of
Political Analysis (1992).
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and volatilities of a series. Questions previously out of reach are now being addressed thanks

in part to the adoption of advanced econometrics. And yet, from this methodological toolbox

which political scientists may now draw from, one method is conspicuously absent - the

estimation of the long-memory, or fractionally integrated process.5

Initially, the adoption and integration of fractional methods into political science followed

a trajectory similar to those methods outlined above. The first influential contributions came

from Granger (1980), which justified the presence of fractionally integrated series through

an aggregate process, as well as the work of Granger and Joyeux (1980) on long-memory

series. Hosking (1981) simultaneously made advances in ARFIMA modeling from the field

of hydrology. By 1996 the concept of fractional integration was sufficiently well-known

in economics to justify a special edition of the Journal of Econometrics devoted to the

subject. That same year, the benefits of fractional methods were first recognized in the

political science literature. As an alternative to the I(0)/I(1) dichotomy, it was argued that

fractional integration offered a more accurate method of estimating and accounting for the

degree of persistence in time series data such as macropartisanship (Box-Steffensmeier and

Smith 1996, (BSS)).

Prior to BSS, theories of macropartisanship were predicated on the strength of political

identification at the individual level; if individual identification was strong and enduring

then aggregate partisanship would be steady as well, whereas if individuals were more fickle

in their affiliations then mass partisanship was potentially fluid. BSS built their theory

on an expectation that individual partisan identification was heterogeneous and that, as a

consequence, exogenous events would not elicit a uniform response across all voters. Not

only would voters differ in their perception of which events were important, voters would

also differ in the strength of their partisan identification. Based on Granger’s (1980) work

on micro-aggregation, BSS argued that this variance in the strength and persistence of

individual partisanship would lead to fractionally integrated series in the aggregate. Their

5I use the terms long-memory and fractionally integrated interchangeably throughout this dissertation.
An in-depth primer on fractional integration and its properties is provided in Appendix A.
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estimates of the level of memory of macropartisanship told a story in which the political

allegiances of the population were neither permanent nor transitory. Instead, the public’s

partisan identification was persistent, but given a long enough time horizon, still considered

mean reverting.

Independent of BSS, Byers, Davidson, and Peel (1997) pursued the same line of reasoning

for their work on political popularity in the United Kingdom.6 Identifying voters as either

“committed” or “floating,” Byers et al., hypothesized that voters would not react uniformly

to changes in political circumstances and that when the opinions of these various voters

were aggregated, the series would fit within Granger’s theroem. Byers et al., estimated the

popularity of the Conservative and Labour parties and found that each was a fractionally

integrated process, and the estimated persistence of their series were strikingly similar to

those of BSS. Thus, in very short order political scientists had evidence of several long

memory time series, and they also had a valid theoretical process justifying their generation.

Spurred on by this research, others began investigating the fractional dynamics of various

commonly used political time series. Lebo, Walker, and Clarke (2000) demonstrated that

series such as presidential approval, macropartisanship, Supreme Court ideology, and con-

sumer sentiment were all fractionally integrated; Box-Steffensmeier and Tomlinson (2000)

estimated that congressional approval and economic expectations were potentially fraction-

ally integrated; and Byers, Davidson, and Peel (2000) went on to investigate the political

popularity series of 26 parties in 8 different countries, finding that many of those series

were fractional processes. By the end of the decade, research into fractional integration was

becoming commonplace.

This line of research also focused a good deal of attention on best practices and the em-

pirical and inferential consequences of failing to account for long memory. Box-Steffensmeier

and Smith (1998) demonstrated the significance of modeling choices; ignoring the presence

of fractional integration in favor of ARMA or ARIMA models produced drastically differ-

6What Byers, Davidson, and Peel (1997) refer to as “popularity” is measured as the individual response
to a question of voting intention, a binary choice of voting for either the Labour or Conservative Party.
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ent estimates for the independent variables, and it also opened the researcher up to issues

caused by over-differencing. Lebo, Walker, and Clarke (2000) used Monte Carlo simulations

to show the increased rate of spurious regressions when series are fractionally integrated.

And a consistent theme throughout all of this research was the importance of using multiple

methods when testing hypotheses - either in using multiple stationarity tests on series, dif-

ferent estimators when estimating the level of memory, or various information criteria when

investigating the presence of higher order approximations.

Despite this promising beginning however, fractional methods failed to gain widespread

acceptance with political scientists. Indeed, many at the time were concerned that the

small sample properties of fractional methods were unknown, a particularly relevant concern

considering the limited number of observations often found in political time series. Others

questioned whether fractional methods provided any new insights (Maddala 1998). Lacking a

sufficient buy-in from researchers further development of fractional methods within political

science largely stagnated. It has since become a niche field of study within political time

series; researchers are generally aware of the concept of fractional integration, but few apply

it to their own empirical work.7

The same is not true in econometrics where research into fractional methods continues

apace. Empirical work on fractional integration and cointegration can be found on foreign

exchange markets, inflation rates, income and consumption, volatilities, commodities pricing,

and internet traffic flows among others (see Gil-Alana and Hualde 2009, for a comprehensive

survey of applied research), and as the properties of fractional integration have become

better understood the methods have evolved. Best practices are more well defined, pitfalls

of estimation - and their possible solutions - have been identified, and researchers, once

limited in their options, now have a suite of estimators to choose from.

In spite of these advancements, fractional methods have been relegated to the metaphori-

cal back bench of political science, but it is worth reconsidering their utility. There are strong

7Or, in the worst case, researchers misapply fractional methods and draw faulty conclusions from their
results (see e.g., Volscho and Kelly 2012).
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theoretical justifications for the expectation that (some) political time series are fractionally

integrated, and these theories are strongly supported by empirical research. Further, re-

searchers face the threat of inferential errors and spurious results should they fail to account

for the presence of fractional integration. Turning a blind eye to the potential for fractional

integration needlessly invites problems in modeling. Finally, the persistence of a series is a

question that is inherently interesting on its own, and an ability to describe and quantify

its properties provides valuable and useful information (e.g., Box-Steffensmeier and Smith

1996).

What follows is a series of papers, in chapter format, focused on the use of fractional

methods with political time series. Each attempts to address concerns that have previously

dissuaded broader usage of fractional techniques. Chapter 2 attempts to move beyond the

aggregation work of Granger (1980) by offering a second justification for the presence of

fractionally integrated political series - the error duration process of Parke (1999). The

error duration model assumes a process that generates a series of stochastic shocks within

a particular activity or area of focus. These shocks are of varying duration and strength

and the variable of interest is the sum of all shocks that survive to time t. If some shocks

survive for long durations, it is possible that the process contains long memory, i.e., the

autocovariances are nonsummable. If this stochastic process contains long memory it is

expected to have downstream effects within the system, imparting long memory into other

series reliant on the original process. Using the error duration model to investigate the

survival of federal policies, survival probabilities of American federal programs are found

to be fractionally integrated. Based on this finding and the expectation that reliant series

inherit the fractional properties of the underlying process, the persistence of quarterly non-

defense federal consumption expenditures is tested next and it is also found to be fractionally

integrated with a similar level of memory as our EDM estimates.

Chapter 3 provides the results of a Monte Carlo study of various parametric and semi-

parametric estimators of long-memory with smaller sample sizes commonly found in political
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science. This is the first comprehensive simulation of multiple estimators with samples of

less than 100. The results indicate that pure fractional series can be reliably estimated by

multiple estimators. Such a finding is substantively important given the findings of Lebo,

Walker, and Clarke (2000) and Byers, Davidson, and Peel (2000) that the vast majority of

political time series are accurately approximated as (0,d,0) fractional processes. The sim-

ulation results urge caution for estimation in the the presence of higher frequencies as the

semiparametric and exact maximum likelihood of Sowell (1992) are negatively biased and

unreliable. However, in the presence of higher frequencies the frequency-domain Whittle

maximum likelihood estimator is generally unbiased and outperforms all other estimators.

Chapter 4 discusses the single-equation error correction model that is now common in

political time series. As we demonstrate, this model is severely limited in its applicability,

however political scientists have assumed it can be fit to any type of time series data. The

chapter discusses the misuse of the GECM, the common misunderstanding of its underlying

assumptions in political science, and we test the model in a variety of circumstances using

Monte Carlo simulations. We also provide alternative model specifications to test for the

presence of error correction. The first is the fractional ECM (FECM), which relaxes the

assumption of I(1) to I(0) cointegration and allows for fractional cointegration. Second is

the autoregressive distributed lag model (ARDL) bounds test of Pesaran, Shin, and Smith

(2001) which offers the researcher more flexibility in terms of the stationarity properties of

the IVs used on the right hand side of the model.

Chapter 5 offers concluding remarks.
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Chapter 2

Error Duration Models: A New Justification
for Fractional Integration in Political Time Se-
ries

Abstract

The primary justification for the expectation that political time series may be frac-
tionally integrated is based upon the aggregation theorem of Granger (1980), which
has been demonstrated empirically with public opinion data by Box-Steffensmeier and
Smith (1996) as well as Byers, Davidson, and Peel (1997). This chapter investigates
a secondary justification for the presence of fractional integration - the error duration
model (EDM) of Parke (1999). The variable of interest in such a model is the sum
of shocks which survive to a specific time point, T . Given a process that generates a
sequence of stochastic shocks, which are themselves stochastic in terms of duration and
magnitude, a process can exhibit long-memory if a small percentage of shocks survive
for long durations. Such a representation potentially explains the presence of fraction-
ally integrated political time series that are not the product of aggregation. If events
generate shocks of varying duration, it is possible for these shocks to then transmit
long-memory to other political variables. The EDM representation is applied to a data
set capturing the post-enactment history of federal domestic spending programs from
1971 to 2004. The survival rates of federal policies are demonstrated to be fractionally
integrated.
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2.1 Introduction

What sort of process generates fractionally integrated (FI) data? The most common mech-

anism is based upon the aggregation theorem of Granger (1980), in which heterogeneous

AR(1) series are aggregated and the aggregate that is formed is then long-memoried.1 Based

upon this theorem a number of aggregated political opinion series have been tested, and

many have been found to be fractionally integrated (Box-Steffensmeier and Smith 1996; By-

ers, Davidson, and Peel 1997, 2000; Lebo, Walker, and Clarke 2000; Lebo and Cassino 2007).

The aggregation theorem is useful in explaining series such as macropartisanship and party

popularity, but other series within political science, which are not the product of aggrega-

tion, have also been found to be fractionally integrated. For instance, Dickinson and Lebo

(2007) argue that the time series capturing the size of the Executive Office of the Presidency

is a fractionally integrated series. But the EOP series is not an aggregate in the traditional

sense of unemployment or public opinion, which indicates that there may be some other

underlying process generating its long memory.2

One particularly promising answer comes from Parke (1999), who introduced the error-

duration representation for fractionally integrated processes. In this model, sequences of

stochastic shocks of varying magnitude and duration can generate a fractionally integrated

series if a certain percentage of of the shocks survive over long durations. If the survival

probabilities decay slower than an AR(1) series (the rate is given more specifically below),

the series is a candidate to be fractionally integrated. The difference in survival probabili-

ties between the FI and AR series is due to the conditional survival probabilities for those

I(d) shocks that survive the first few periods. If the series is FI, the conditional survival

probabilities will increase towards unity as the length of time increases. Parke (1999) ap-

plies the error-duration representation to the survival rate of United States businesses as a

demonstration of how aggregate employment can be fractionally integrated.

1For an explanation of Granger’s aggregation theorem see Appendix A.2.2.
2Dickinson and Lebo (2007) argue that the EOP series is an aggregate series, however the error duration

representation is a much more plausible process for the generation of fractional integration.
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This chapter uses the error-duration model to estimate the persistence of federal pro-

grams created or already in existence between the years of 1971 and 2004 (Berry, Burden,

and Howell 2010, (BBH)). BBH note previous research within the field of American Policy

Development that policy change is “sticky,” and that the inherent inertia and path depen-

dence of government programs make policy resilient to change (Jones, Sulkin, and Larsen

2003; Pierson 2004). The authors employ a survival analysis and find the conventional wis-

dom that policies, once enacted, are “immortal” is overblown, and that a substantial number

of programs do in fact face substantive changes. However, BBH also find that following an

introductory period of approximately five congresses, programs are increasingly likely to en-

dure without alteration. BBH are effectively describing an increasing conditional survival

probability, which strongly indicates that the survival rates of federal policy are fractionally

integrated.

The rest of this chapter proceeds with a brief discussion of policy development and

survival followed by a description of the error-duration model of Parke (1999). I then evaluate

the BBH data and provide evidence that the “stickiness” of policy development is evidence

of a long memory process.3

2.2 Policy and Program Survival

To what extent do federal policies and programs survive once enacted? It is a question

that until recently had not received much rigorous attention. In the past, when the topic

of survival was taken up the focus often tended towards agency lifespans as opposed to

those of programs. The work was largely atheoretical and based on a limited number of

case studies, and the common wisdom that prevailed was one of agency immortality. One

of the first analytical reviews of the life cycle of executive departments found that over a

fifty-year period, of 175 organizations under review only 27 had been terminated (Kaufman

1976). Kaufman argued that the survival rates of governmental agencies were the product

of incrementalism, whereby limitations implicit in the governmental decision-making process

3An in depth primer on fractional integration is provided in Appendix A.
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served to insulate organizations from termination and that any deaths that did occur were

more likely due to bad luck than any systemic factor. Kaufman’s work was instrumental in

creating the common perception of stasis within governmental organizations.

Incrementalism assumes that governmental durability is a product of the inertia of the

status quo, in which varying interests align to make change difficult. At any time, legislators

face considerable political and informational uncertainty over their decisions, meaning that

the consequences of disruption are often in doubt. This uncertainty limits the range of

decision options (Simon 1985; Jones 1999). As strategic actors, politicians may therefore

be dissuaded from any attempt to deviate too far from the current equilibrium (Wildavsky

1964; Knight 1992).

We should also expect that additional contextual factors will determine programmatic

stability. Details such as the direction that the potential disruption comes from, the type

of programs in question, and the constituency affected by the disruption are each relevant

considerations (Corder 2004; Maltzman and Shipan 2008). Thus, the status quo at the

heart of incrementalism is not the sole determinant; additional procedural requirements

and roadblocks such as super-majority requirements or multiple veto points throughout the

system will also influence the extent of overall stability of government (Binder 1997; Baron

and Ferejohn 1989).

The field of American Political Development (APD), which itself borrows from evolution-

ary biology, provides additional explanations for governmental stability.4 In a system with

a large number of organizations and/or policies fighting for a finite supply of resources, it is

those programs that can demonstrate early successes or raise support from broad or powerful

constituencies that benefit. In such a system, there is a stability to government, but it does

not apply to all institutions or programs uniformly. Nascent programs and agencies face

tighter competition, and those that become better established also become more difficult to

alter as they age. Furthermore, the political environment in which institutions and policies

4APD is focused primarily on institutions, as opposed to policy, but the theories are informative.
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survive is complex and multi-layered. A multiplicity of jurisdictions and motivations serve

to insulate institutions from change, and over time institutions and policies become more

secure (Baumgartner and Jones 1993). As a result, policy is “sticky” and generally resistant

to change (Jones, Sulkin, and Larsen 2003).

From the original conception of “immortality,” theories of institutional and policy de-

velopment have eventually shifted to one characterized by an initial hazard followed by

increasing durability over time. Such a theory has generally found support in empirical

studies. Corder (2004) applies survival analysis to federal credit programs and finds that

the hazard of program termination spikes early and then decreases after an initial period of

program immaturity. Maltzman and Shipan (2008) study the evolution and amendment of

major laws, and while their models do not explicitly model the age of the laws in question,

their Figure 1 demonstrates that laws are more likely to be amended in the years immedi-

ately following passage with diminishing probability of amendment as age increases. And

in the most comprehensive study to date, Berry, Burden, and Howell (2010) investigate the

survival of all federal programs in existence from 1971 to 2003 and find that the probability

of survival increases over the lifetime of the program. After surviving an initial period of 10

to 12 years, federal programs become increasingly resilient to modification or termination.

Figure 2.1: Smoothed Hazard Function

.0
1

.0
2

.0
3

.0
4

.0
5

Enactment 10 20 30 32
Lifespan Measured in Years

Mutation & Death

Figure represents the smoothed hazard function of all programmatic mutations and deaths since enactment. Data and code
for figure from Berry, Burden, and Howell (2010).
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These theories underlying institutional and policy development as well as their empirical

findings raise the distinct possibility that policy development, as measured by program sur-

vival, is a fractionally integrated process. First, as recognized by the BBH study, at any point

in a congressional term members of Congress are working in a policy environment that comes

pre-stocked with programs. BBH’s findings, evidenced in Figure 2.1, indicate that after an

initial period during which programs face the greatest threat to their survival, the hazard

rate declines as programs and policies age. Considering that the policy environment varies

greatly in programmatic age, this means that at any given time there are certain programs

that are virtually guaranteed survival, while others that were more recently enacted are un-

der greater threat. This finding suggests a conditional survival probability that is increasing

over time; every additional year that a program survives it becomes more secure and less

likely to undergo alteration or death. An increase in the conditional survival probabilities of

programs as time periods increase will in turn affect the autocorrelation function by building

persistence into the memory of the process. Second, these findings support the evolutionary

theories of APD, which recognizes the importance of temporal ordering in the development

of policy. The more entrenched programs, or those with the time to build constituencies

are the best positioned to survive. This indicates that policy and institutional development

are well described by the concept of path dependence (Pierson 2000, 2004; Kay 2005). As

noted by Freeman (2012), the presence of fractional integration implies path dependence. If

the data on policy survival are fractionally integrated, we have an interesting opportunity

to quantify the “stickiness” of federal policy development.

2.3 Error Duration Model

Parke (1999, p. 632) lays out the error duration model as follows. Assume a series of iid

shocks {εt, t = 1, 2, ...} with mean zero and finite variance σ2. Each shock has a stochastic

survival duration, surviving from period s to period s+ns. Let gs,t be an indicator function

for whether a shock that originates in time s survives to time t. Thus gs,t = 1 if t ≤ s + ns
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and gs,t = 0 if t ≥ s+ns. Shocks and their probability of survival are considered independent

and the probability pk that the shock survives to period s + k is pk = P (gs,s+k = 1). All

shocks are assumed to survive their initial inception, p0 = 1, and the sequence of survival

probabilities (pk) for k > 0 is monotonic non-increasing. The realization yt is the sum of all

errors that survive until period t:

yt =
t∑

s=−∞

gs,tεs. (2.1)

The link between the error duration model and other fractional representations is through

the autocovariances. As discussed in Appendix A, a fractionally integrated process is one

in which the autocorrelations and autocovariances decline slowly enough that they will not

sum to a finite value. In the case of the error duration model, Parke demonstrates that the

summation of the autocovariances is the sum of the survival probabilities.5 If the survival

probabilities decline slowly enough, defined as pk = k−2+2d, then the autocovariances are

nonsummable, meaning that the process is fractionally integrated in the range 0 < d < 1.

More specifically, if the probabilities decline to zero more slowly than k−2 the process is long

memory and stationary (0 < d < 1/2); if they decline more slowly than k−1, then yt is long

memory and non-stationary (1/2 ≤ d < 1).

Additionally, if the process is fractionally integrated this also means the conditional

survival probabilities (pk+1/pk) will eventually converge to unity given enough time.6 If a

5The process is long memory if the summation of the survival probabilities
∑n
k=1 kpk is not finite. See

Appendix A, Section, A.3 for more details on the summation.
6Parke derives the survival probabilities of this representation as

pk =
Γ(k + d)Γ(2− d)

Γ(k + 2− d)Γ(d)
. (2.2)

and the autocovariances

γk =
Γ(k + d)Γ(1− 2d)

Γ(k + 1− d)Γ(1− d)Γ(d)
σ2
0 (2.3)

which generate an I(d) process precisely.
Key to the conditional survival probabilities, Parke offers the following recursion beginning at p0 = 1:

pk+1 =
k + d

k + 2− d
pk (2.4)
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shock survives through time period t, it’s chances of surviving period t+ 1 will increase, and

the survival probability increases again in t + 2 if it survives t + 1, and on and on. This is

clearly seen in the recursion provided by Parke highlighted in footnote 6; as k increases, the

ratio of each successive probability will increase as well. This is representative of the fact

that those shocks that survive for long periods tend to continue to survive, and in the case

of federal programs, is indicative of the declining hazard faced by programs as they age.

The increasing chance of survival found in a fractionally integrated process can be con-

trasted with the conditional survival probabilities of an AR process, which are expected to

be constant at φ. For comparison, the survival and conditional survival probabilities of an

I(d) and an AR series are presented in Figure 2.2. The fractional process is d = .33 and the

AR, φ = 0.5, thus both series have the same first-order autocorrelation of 0.5.

Figure 2.2: Survival Probabilities of Error Duration Model

Solid line is the survival and conditional survival probabilities of FI series, I(d) = .33. Dotted line is of an AR process
φ = 0.50. Note that the conditional survival of the FI series converges towards one whereas the conditional survival
probabilities for the AR process remain constant.

The survival probabilities for the AR(1) model are pk = 1
2

k
and as is clear from the left

hand panel, the probabilities for the AR(1) process are initially much greater than those of

the fractionally integrated process. Despite beginning lower, the FI series exhibits a much
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slower decline, and by the fifth time period the probability of survival for the FI series is

greater than that for the AR series. By the tenth period, the probability of survival for the

AR process p10 = 0.001, whereas the FI series is p10 = 0.015.

The effect of the survival probabilities is also apparent in the autocorrelation functions

of the two series. For the AR(1) process, the values [ρ1, ρ10, ρ20, ρ100] are expected to be

[0.50, 10−3, 10−6, 10−30]. For the FI series, the same values are estimated [0.50, 0.234, 0.186,

0.109]. This disparity in the higher-order autocorrelations is due to the the high conditional

probabilities following the survival of the first few periods.

2.3.1 Error Duration and Fractional Integration

Before applying Parke’s error duration model to the federal program data, it is useful to

consider how such a process generates fractional integration in other series. As the source

of an example, consider the BBH data on the survival of federal domestic programs. At any

given time, the federal policies that are in existence are comprised of programs of different

ages. Some were enacted several decades ago and have survived to this point, while others

were only recently enacted. Still other programs were either substantially modified or were

not reauthorized. Members of Congress do not take over each successive Congress with a

blank slate, but must legislate within the constraints of the programs already in place.

Now assume that we are interested in a time series capturing some level of governmental

outlays, such as the level of non-defense spending on government consumption expenditures.

The level of consumption expenditures at time point t is partially dictated by the sum of

all of the past and present grant programs (“shocks”) to have survived to that time.7 If

the survival probabilities of federal programs decay at a fractional rate, then we might also

expect that the level of consumption expenditures are fractionally integrated as well. These

7Federal consumption expenditures (non-defense) is estimated by the Department of Commerce through
its Bureau of Economic Analysis. Government consumption expenditures accounts for the services produced
by government and provided without charge to the public-at large. Services include public schools, uni-
versities, job training, transportation infrastructure, public health and a legal and judicial system among
others. The expenditures are accounted for in the National Income and Product Accounts (NIPAs) which
are quarterly measures of dollars spent.
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downstream effects are potentially found in any political time series that is dependent on

the survival rates of federal programs.

2.4 Estimating the EDM

In order to test Parke’s error duration representation, I use the data set of Berry, Burden, and

Howell (2010), which captures the survival of all federal programs from 1971 to 2004 at the

yearly level. The BBH data come from the Catalog of Federal Domestic Assistance (CFDA),

an annually updated compendium of federal programs. The CFDA is comprehensive and

accounts for nearly all domestic programs of the federal government.8

Rather than use year-by-year survival rates, the data is aggregated by Congress (97th -

107th). The data set represents 2,038 unique federal programs. Despite BBH’s finding of a

significant amount of change occurring within the federal programs, actual program deaths

are far less likely to occur. Because of the paucity of actual program deaths, I estimate

the empirical survival rates of the number of programs that survive to time point t without

undergoing either death, or what BBH refer to as a “mutation.” Mutations are defined and

coded by BBH as substantive programmatic changes such as consolodations, splits and/or

transfers. Simple renumberings or renamings are not counted.

Specifically, our dependent variable is the fraction of federal programs starting in Congress

1 that survive without substantial mutations to Congress k. The survival rates are found

in Table 2.1. In this case, our first Congress is the 107th and the empirical survival rate

Sk of the federal programs created in the 107th Congress surviving through the 108th is

0.954. Upon investigation, the survival rates are declining slower than if it were a simple AR

process. If the program survival rates were to fit an AR(1) model, then we could take the

five-Congress survival rate S103 = 0.555 and square it in order to obtain an approximation

8The CFDA tracks “any function of a a Federal agency that provides assistance or benefits for a State or
States, territorial possession, county, city, other political subdivision, grouping, or instrumentality thereof;
any domestic profit or nonprofit corporation, institution, or individual other than an agency of the federal
government.” And “assistance” refers to the transfer of value from the federal government to a domestic
beneficiary. Military spending and defense procurement are not included. (CFDA 2005, 1; excerpted from
Berry, Burden, and Howell (2010, p.5).
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Table 2.1: Survival Rates and Conditional Survival Rates for Federal Programs

(1) (2) (3) (4) (5) (6) (7) (8)

Congress k 107th 106th 105th 104th 103rd 102nd 101st 100th

Survival Sk 0.954 0.804 0.743 0.600 0.555 0.534 0.512 0.436

Sk/Sk−1 0.954 0.843 0.923 0.808 0.925 0.962 0.960 0.851

(9) (10) (11) (12) (13) (14) (15) (16)

Congress k 99th 98th 97th 96th 95th 94th 93rd 92nd

Survival Sk 0.417 0.406 0.390 0.373 0.329 0.320 0.293 0.280

Sk/Sk−1 0.957 0.974 0.960 0.957 0.882 0.974 0.915 0.953

Survival Sk indicates the empirical survival rate of the fraction of federal programs
created in each respective Congress to survive through the 108th Congress. Sk/Sk−1

indicates the conditional survival rates.

of the ten-Congress survival rate. The squared estimate is 0.308 while the actual survival

rate is 0.406, 25% larger than the AR(1) expectation. The disparity in expected decay grows

larger as lags increase, were we to do the same thing for the 100th and 92nd Congresses -

0.4362 = 0.190, or 30% below the actual survival rate of the 92nd Congress: S92 = 0.280.9

The conditional survival rate is not as clean in its approach to unity as would be pre-

ferred, however this might be expected provided research finding that political and economic

considerations both at the time of, and subsequent to enactment, will affect whether laws

are amended and programs altered (Maltzman and Shipan 2008; Berry, Burden, and Howell

2010). Considering that this data covers a wide period of time encompassing the Vietnam

War, Watergate, the energy crisis and oil embargo, periods of stagflation, and a stock bubble

it is not entirely inconsistent to find that the conditional survival rate is not monotonically

increasing. That said, the trend is clearly one of increasing conditional probability, as is

evidenced in Figure 2.3. Two trend lines, a linear and quadratic, are included, and each in-

dicates a moderate, yet steady slope in the positive direction. The trends appear consistent

with the hypotheses of Parke; if a survival process is fractionally integrated, the conditional

survival probabilities will asymptotically tend towards unity.

Based on the comparatively slow decay of the survival rates and the upward trend of the

conditional survival rates, it appears that that there is some evidence of long memory in

9In applying the EDM representation, the use of only 16 time points is not an issue. In fact, Parke (1999)
provides an example of this process using only 10 time points.
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Figure 2.3: Conditional Survival Rate of Federal Program by Congress

Solid line is the actual conditional survival rate of programs in the 108th Congress dependent on the Congress in which the
programs were originally were created. Dotted line is the linear trend line. Dashed line is the quadratic trend line.

the survival rates of federal domestic programs. The next step is to fit the modeled survival

rates to the approximation of fractional decay, pk = cpk
−2+2d. Parke provides us with a way

to estimate d by inverting the relation pn/pm = (n/m)−2+2d in order to obtain10

d = 1 +
1

2

log(pn/pm)

log(n/m)
(2.5)

By substituting the empirical survival rates S100 and S92 in place of p8 and p16 in Equation

2.5 we estimate the order of fractional integration as d = 0.68.11 From this estimate, it is

then possible to predict the survival probabilities of federal programs, the results of which

can be found in Figure 2.4. With constants greater than 1.0 there is an issue in the estimated

survival rates of the first two congresses, but the fitted values settle pretty quickly thereafter.

From the fifth lag, S103 through to the end of the series S92, the estimated function fits

10Parke notes that Equation 2.5 also reflects an important point about scaling. Were the scaling to change,
for example from congressional terms to sessions of Congress, the ratios would remain the same. The result
is a consistent and scaling invariant estimate of d, which is a prerequisite for fractionally integrated series.
(see Chambers 1998, for more details).

11If we do this for a longer window, estimating over the range of all data, p2 to p16, our estimate of d is
slightly higher, I(d) = 0.77.
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the actual survival rate to 0.01, indicating that the survival rates of federal programs are

consistent, and fit well within the error duration model’s estimation of long memory. These

findings also fit nicely with the BBH results where programs enjoyed increasing safety after

a period of 10 to 12 years of existence.

Figure 2.4: Fitted Survival Rates

Solid line is the actual survival rate of programs created in each Congress surviving through 108th Congress without
substantial change. Dotted line is the predicted survival rate based on estimate of d.

Based on this model and its results, the survival rate of federal programs appears to

be a fractionally integrated process. The survival probabilities decline at a rate sufficiently

slow to be considered fractional, and the conditional survival probabilities tend towards

unity, which indicates that the autocovariances (the sum of survival probabilities) are non-

summable. This finding is theoretically consistent with recent analyses describing a declining

hazard rate as federal programs age, becoming more entrenched within the system. That

the process is fractionally integrated is also in line with the descriptions found in the field of

American Policy Development. However, whereas most descriptions of APD are qualitative,

the EDM representation provides an empirically grounded model that fits the expectation

of government policy development as “sticky.”
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2.5 Downstream Effects

With evidence of an underlying process that is fractionally integrated, we can now test the

expectation of downstream effects - series that are reliant on the rates of program survival

should inherit the same fractional persistence. In this case, the series of interest is real federal

non-defense consumption expenditures over the same duration of time as the BBH data set

(1971-2004).12

Non-defense government consumption expenditures (FNDCEX) consist of spending as

well as services produced or provided by the federal government to the general public without

charge; see footnote 7 for examples. Recall that the BBH data set captures any federal

programs that are providing assistance in the form of non-defense spending. Thus, the level

of federal outlays in the form of non-defense consumption expenditures are partially a result

of the survival rates of federal programs. If the estimate of the EDM representation is proper

then there is an expectation of finding that the expenditures series is fractionally integrated

with roughly the same level of memory as estimated above. Note that this series is not an

aggregate in the traditional sense as described by Granger (1980), but based upon our use

of the EDM representation we have a strong theoretical justification for our expectations.

The visual presentation of the FNDCEX series is provided in Figure 2.5. The left panel

is the series in levels. A linear time trend is evident, which can cause estimation problems if

left unaddressed when using semiparametric estimators.13 Because Robinson’s (1995) local

Whittle estimator is used as a robustness check of the results, the detrended series is used for

the semiparametric estimates. The parametric estimates are the same regardless of which

12The series is calculated in a chain-type quantity index, chained to 2009. For more information on
calculation of the series see here (http://www.bea.gov/national/pdf/mp5.pdf). For information on chain-
indexing see here (http://www.bea.gov/scb/pdf/2003/11November/1103%20Chain-dollar.pdf.) The data
can be downloaded from the Federal Reserve Bank of St. Louis here (https://research.stlouisfed.org/fred2/
series/A542RA3Q086SBEA.)

13The problem with a trend comes about because semiparametric estimators are inconsistent and exhibit
non-normal behavior if the series possesses a fractional order of integration, d > 3

4 . This is why the common
method of estimation is to take the first difference and then add one back to the estimate. If a series is trend
stationary however, such that 0 < d < 1/2, taking the first difference puts the series’ order I(d) ∈ [−1,−1/2),
at which point the estimates will be biased towards zero (Shimotsu and Phillips 2006; Shimotsu 2010).
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Figure 2.5: Real Federal Expenditures, Non-Defense

Left plot real federal government consumption expenditures (non-defense 1971-2004 (chained to 2009 level). Right side is
detrended series - the linear trend has been removed and the series forced to a mean of zero.

series, level or detrended, is used. The detrended series can be seen in the panel on the right

of Figure 2.5.

The autocorrelation function of the level series is found in Figure 2.6. The series demon-

strates a remarkable degree of memory, which is also consistent with our theory that the se-

ries is fractionally integrated.14 Additionally, note that the autocorrelations are consistently

positive as opposed to oscillating or sawtoothed. This indicates that if higher frequencies

are present in the series, a (1, d, 0) model is likely sufficient. It also leads us to expect

that, if present, the AR parameter is positive. The sawtooth pattern is found with negative

autocorrelations.

2.5.1 Testing Stationarity

At first glance, it appears that the FNDCEX might be trend stationary. A Dickey-Fuller

test accounting for a linear trend rejects the null hypothesis of a unit root at the .05 level,

however an augmented Dickey-Fuller fails to reject the null for any of the ten lags tested.

The more powerful DF-GLS test (see Baum and Sperling 2000) is unable to reject the null

of trend or mean stationarity.15

14For a demonstration in the difference in the ACF of an FI process versus an AR process see Figure A.2
in Appendix A.1.1.

15Test statistic (Crtitical Value) - DF notrend: -0.60 (-2.89); DF trend: -3.75 (-3.45); ADF notrend (1,5,10
lags): -0.18, 0.69, 0.53 (-2.89); ADF trend (1,5,10 lags): -2.92, -1.45, -2.01 (-3.45); DF-GLS notrend (SC
chosen lag 2): 2.64 (-2.07); DF-GLS trend (SC chosen lag 1): -2.70 (-2.98).
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Figure 2.6: Autocorrelations of FNDCEX Series

Autocorrelation plot of the FNDCEX series.

The stationarity of the series is next tested with the KPSS test of Kwiatkowski, Phillips,

Schmidt, and Shin (1992). The null hypothesis that the FNDCEX series is trend stationary

can be rejected at the .05 level for up to 4 lags. The null hypothesis that our series is level

stationary is rejected for all lags. Lastly, the series is subjected to the variance-ratio test

of Lo and MacKinlay (1988) for varying differencing parameters, k. Similar to the Dickey-

Fuller, the variance ratio test has a null hypothesis of a unit root. The results of the KPSS

and variance ratio tests are found in Tables 2.2 and 2.3 respectively.

Table 2.2: KPSS Test for Strong Mixing

Lags

(0) (2) (4) (6) (8)

FNDCEX† 0.561? 0.232? 0.156? 0.123 0.105

FNDCEX‡ 12.5? 4.32? 2.66? 1.95? 1.56?

† Null hypothesis is series is trend stationary.
‡ Null hypothesis is series is level stationary.
? indicates significant at .05 level.

Because stationarity tests suffer from a lack of power when applied to fractionally inte-
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grated series, it is not surprising that we have contradictory findings for our series.16 To

summarize: the DF-GLS can’t reject the null of a unit root when compared to the alter-

natives of either mean or trend stationarity, the DF test rejects the null in favor of trend

stationarity; the KPSS test rejects the null hypothesis that our series is stationary at the

fourth lag, which is the recommended lag given the number of observations (Kwiatkowski

et al. 1992); and the variance ratio test rejects the null of a unit root at the fourth and eighth

differencing interval, but not at the second or sixteenth. With the results of our stationarity

tests inconclusive, it is a fair assumption that our series might be fractionally integrated.

Table 2.3: Variance Ratio Test

k

VR(2) VR(4) VR(8) VR(16)

FNDCEX† 0.832 0.556? 0.458? 0.479

† Null hypothesis is series is a unit root.
? indicates significant at .05 level.

2.5.2 Estimating Fractional Integration

We next estimate the order of fractional integration of the FNDCEX series using a variety

of estimators - the time domain exact maximum likelihood estimator (EML), the frequency

domain whittle likelihood estimator (FML), and the semiparametric local whittle estimator

(LW). The main estimator of interest is the FML with the EML and LW estimates used as

robustness checks. The Akaike Criterion (AIC) and Bayesian Information Criterion (BIC)

from the FML were employed to determine model choice and the results are presented in

Table 2.4. The AIC and BIC were both written following the conventions of Davidson (2014)

and are coded such that “Larger = Better.”17

16For more information on stationarity tests and their power in Monte Carlo simulations with fractionally
integrated series, see Appendix A.1.3.

17All models were estimated in Matlab. I wrote both the EML and FML estimators and checked them
versus estimators available in other programs. The EML is identical to Stata’s “arfima” EML estimator.
The FML provides almost identical estimates to the Whittle likelihood estimator used by Davidson (2014) in
his proprietary statistics package “Time Series Modeling,” which is an add on of OxMetrics (Doornik 2014).
The semiparametric Whittle estimator is written by Katsumi Shimotsu and available on his home page at
http://shimotsu.web.fc2.com/Site/Home.html
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Table 2.4: Whittle Likelihood Estimation: AIC and BIC values

ARFIMA(p, d, q) Model

0,d,0 1,d,0 2,d,0 0,d,1 0,d,2 1,d,1

FNDCEX (AIC) -20.62? -21.53 -21.18 -21.42 -20.63 -20.95

FNDCEX (BIC) -22.08? -24.43 -25.52 -24.32 -24.96 -25.29

Computed from differenced data with 1 added back. ? indicates the
maximum value.

The AIC selects the (0, d, 0) model by just .01 over the (0, d, 2) model, however the BIC

for the former is closer to zero than the BIC for the latter. Based on these criteria, we

select the more parsimonious (0, d, 0) model. That the best fitting model is the simplest,

as opposed to requiring a higher-order is consistent with previous work finding that many

political time series are well approximated as pure fractional noise (Byers, Davidson, and

Peel 2000; Lebo, Walker, and Clarke 2000).18

Table 2.5: Estimation of Long Memory: ARFIMA (0,d,0) Model

Series FML EML LW

FNDCEX 0.748? 0.692? 0.76?

(0.066) (0.072) (0.09)

? indicates significantly different from 1.0. Standard
errors in parentheses. Power of LW estimator is 0.70

The results of the three estimators are provided in Table 2.5. The FML estimates the

FNDCEX series as fractionally integrated of order I(d) = 0.75, meaning that the series is

considered non-stationary. Despite being non-stationary (or non-persistent), the process is

still mean reverting over a long enough time horizon. The MA coefficients, which approxi-

mate the impulse response function of a unit shock in εt, will eventually decline to 0. Figure

2.7 depicts the impulse response function of an ARFIMA (0, d, 0) model with same level of

persistence as estimated in the FNDCEX series. The gradual decay of the impulse response

function is apparent. A one unit shock to the series at time point 0 is integrated into the

process at time point 1, but even after 120 additional periods, the effects of the shock are

still present in the series.

18For more information on pure fractional noise models versus higher order approximations as well as
further evidence that many political time series are well estimated as (0,d,0) models, see Appendix C.8.1.
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Figure 2.7: Impulse Response Function

Impulse Response Function of a one unit shock to a stylized series I(d) = .75.

Returning to the estimates in Table 2.5, the use of additional estimators as a type of

robustness check indicates that our model is well approximated - the estimates across the

three models are consistent and the values are as expected. As noted in Chapter 3, the

EML estimator has a negative bias when estimating a (0, d, 0) model, and an estimate that

is approximately .05 points lower than the FML falls into the demonstrated range of the

EML in Monte Carlo simulations.

The same Monte Carlo simulations indicated that the LW estimator is unbiased when

estimating pure fractional series, and this is apparent with this estimation - the LW and

FML are in almost perfect agreement. The appeal of semiparametric estimators such as

the LW comes from the fact that the models are agnostic as to the short-run dynamics of

the process, meaning that the estimators are robust to researcher misspecification. This

holds true for (0, d, 0) models, however the semiparametric estimators are biased to varying

degrees in the presence of short-run dynamics. In this case, the LW estimator acted as a

secondary check on the AIC and BIC criteria. If higher-frequencies were present in the form

of a significant and positive AR parameter, the LW estimator would most likely be biased

upwards, producing an estimate of d far greater than both parametric estimators. The fact
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that the LW estimator is in agreement with the FML supports the BIC model selection.

A second slight drawback to semiparametric estimators is that despite their ease of use

and estimation, the LW estimator suffers from an inability to estimate model specific stan-

dard errors. Instead, we can only estimate an asymptotic standard error that is based on the

bandwidth (number of frequencies) used in estimation. With only 135 usable observations,

the LW standard errors are a little larger than the parametric estimators, but the estimate

is still significant.

Figure 2.8: ACF after Fractional Differencing

Autocorrelation function of FNDCEX residuals after fractional differencing by d = 0.75

As a final check on whether our FNDCEX series is long memory, the autocorrelation plot

of the residuals after fractional differencing serves as a useful tool. If the (0, d, 0) model is

appropriate then differencing the FNDCEX series by its order of fractional integration will

be sufficient to significantly reduce the memory of the series. If fractional differencing was

either inappropriate, or insufficient on its own, then we should find significant spikes in the

ACF plot early and often. Figure 2.8 indicates that our initial hypothesis - the series tracking

the government’s federal consumption expenditures is a fractionally integrated process - is
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correct and that the parsimonious (0, d, 0) model has adequately addressed the persistence

in the series that was so evident in Figure 2.6.

2.6 Conclusion

This chapter began with a new theoretical justification for the expectation of finding frac-

tional integration in political science. The error duration model of Parke (1999) offers a

concise, empirically grounded theory that is easy to estimate and intellectually intuitive.

The EDM process can apply to aggregate data, but unlike Granger’s model, it is not a pre-

requisite. As a result, there is increased potential for finding and justifying the presence of

fractionally integrated series.

This paper provides an example of how the EDM can be applied to political science

data, but there are many other questions to which it can be applied. For instance, it has

long been noted that the reelection rates of politicians follows a pattern similar to those of

programs and policies, after an initial threat of electoral defeat, the incumbent grows more

secure after the third term (Finocchiaro and Lin 2000). Unfortunately, the turnover rates

in the House are low enough to where finding an appropriate election is difficult, however

Ansolabehere and Snyder Jr (2002) demonstrated that state legislative offices also provide

the same incumbent protections. Pooling statehouse elections together, one could form a

larger data set allowing for the estimation of the error duration model in order to determine

if the reelection of legislators is a fractionally integrated process.

To extend the use of the EDM further, one could also think of duration and survival in

terms of the response to major shifts in policy. How long do individuals hold a policy position

after their party has changed its position? Past work has focused on the idea of “conflict

extension,” the process by which strong party identifiers and party activists accept the party

position and alter their own views in order to bring them into ideological alignment (Layman

and Carsey 2002a,b; Layman, Carsey, Green, Herrera, and Cooperman 2010). That strong

party identifiers and party activists shift their stances on issues ranging from social welfare,
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race relations, and abortion indicates that these positions are not permanent, integrated

processes. But it is also true that these changes are not immediate. A recent example where

we could expect to see this process occurred when President Obama shifted his views, and

therefore the Democratic party’s position, in favor of gay marriage. This process is currently

ongoing with our newly open relations with Cuba, and will occur again in June assuming an

agreement with Iran is reached over their nuclear program. While this type of public opinion

could be considered an aggregate appropriate for Granger’s theorem, applying the EDM to

panel data on respondent positions allows one to estimate the diffusion process for a specific

policy.19

This same idea of policy diffusion would likewise offer a much more detailed view of

the public response to Supreme Court decision making. Ura (2014) argues that the public

responds slowly to the ideological positions taken by the Supreme Court, with a response

initially characterized by a short-term backlash before widespread acceptance. This is an

interesting hypothesis that has ramifications for theories of Court legitimacy, however the

conclusions are based on the variable Public Mood and the improper use of the general error

correction model.20 But questions of legitimacy and public response could be estimated

with the EDM, and the data could focus much more specifically on the response to the

issue decided. As an example, Brown v. Board of Education was handed down in 1954, but

meaningful de-segregation in schools didn’t occur until the mid-to-late 1960’s. If one were

to focus on school districts in the south, one could estimate the survival rate of segregated

schools following the Court’s decision. Compare this to the rate at which the states or

19I’m aware that this data likely does not exist. Parke’s applied example used only 10 data points, so this
process can be estimated with 10 waves of panel data, which I understand is a tall order.

20The Public Mood series is a bit of a black box - it is based on approximately 400 different policy
questions and is assumed to capture the left-right spectrum of the policy debate in America. It is debatable
whether this measure is a good approximation of the public’s response to the Supreme Court decision-making,
which theoretically occurs without regard for the current policy environment. Furthermore, considering that
membership change on the bench plays such a large part in the ideological disposition of Supreme Court
cases, and that membership change does not temporally match election results, one should expect that the
Court’s ideology lags behind that of mood considerably. For a discussion of the ways in which the GECM is
commonly misused, see Chapter 4. The paper by Ura (2014) is not immune from the problems highlighted
therein.
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legislative districts in the south changed their voting rules following the Court’s decision in

Shelby County v. Holder (2013), which struck down the pre-clearance formula of the Voting

Rights Act. By using the EDM, one should be able to achieve a much more nuanced view

of the public’s response to Supreme Court as well as how the Court’s legitimacy may vary

depending on the topic decided.

There are also political changes that sporadically occur that do not allow for immediate

analysis, but will at some point in the future. Oregon just switched to automatic voter reg-

istration, California recently switched to a “top-two” primary, Citizen’s United significantly

altered campaign finance rules for corporations, voter ID laws have been proposed or enacted

in a number of states. All of these changes represent innovations in the political world with

consequences that can be tested, and the diffusion rate of those consequences can be tested

via the EDM.

Moving beyond the estimation of the EDM, this paper also highlights the importance

of downstream effects. If fractional series can impart persistence into other series, then the

chances of encountering a FI series are increased further. In our estimation of the EDM

representation, our initial series capturing the survival probabilities of federal programs was

estimated as having an order of fractional integration of I(d) = 0.68. Similar to the idea

that a shock to the price of some interconnected commodity such as oil will eventually

affect prices in other sectors, it was hypothesized that series that are reliant on the original

process will inherit its fractional characteristics. This is the case for the federal consumption

expenditures series. Accounting for the standard error in the empirical estimates of the

downstream series, the 95% confidence interval for the FNDCEX series is [0.61, 0.88]. The

EDM estimation of federal program survival fits nicely within these bounds.

The concept of a fractionally integrated process fits well with current theories in a num-

ber of fields. This paper attempted to quantify the extent of path dependence that has been

described theoretically in the field of American Political Development. For over a decade

APD had described the development of government policies, programs, and institutions as
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“sticky.” That term is sufficiently descriptive to provide the reader with a general under-

standing of the concept, but it is difficult to translate empirically. The concept of fractional

integration allows us to bridge this gap. The term “sticky” implies a type of rigidity, or high

viscosity, but it does not imply permanence. The current paradigm within time series - the

I(0)/I(1) dichotomy - cannot account for “sticky.” And while political scientists have delved

into the concept of near-integration, the memory process of policy development is simply

too slow for an AR process to account for the rate of change. With a fractional process, we

can quantify the concept of stickiness and move beyond a descriptive term to one that has

empirical meaning.
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Fractional Integration in Short Samples: Para-
metric versus Semiparametric Methods

Abstract

The finite sample properties of various parametric and semiparametric estimators
of fractional integration are determined using Monte Carlo simulations. Previous work
investigating the performance of fractional estimators relied on large sample sizes typ-
ical of economic and finance data sets. Here, the simulations are run with sample
sizes representative of data sets commonly found in political science - between 40 and
100. Simulations are run on three different data generating processes (0, d, 0), (1, d, 0),
and (0, d, 1), with the AR and MA parameters and the order of fractional integra-
tion, d, varying with the order of fractional integration. The results indicate that
semiparametric methods and the parametric frequency domain Whittle estimator are
consistent across all ranges of observations with a purely fractional, (0, d, 0) process,
while the parametric time domain estimator exhibits a negative bias in its estimates.
In the presence of a higher-order process the time domain estimator suffers dramati-
cally and the semiparamteric estimators also exhibit bias that is potentially alleviated
with proper choice of bandwidth. Throughout, the frequency domain maximum likeli-
hood estimator outperforms other estimators, even in the presence of significant higher
frequencies. The results indicate that fractional integration can be reliably estimated
with lag lengths of 80 observations, but caution is still urged, particularly with the
time domain estimator.
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3.1 Introduction

Within the field of economics the ability to estimate the fractional integration (FI) of a series

is an increasingly important tool for researchers. Empirical evidence of fractional integration

is found in many economic series and FI methods are commonly found in macroeconomics

and finance (for surveys of recent work, see Henry and Zaffaroni 2002; Gil-Alana and Hualde

2009). The same cannot be said for the use of fractional methods in political science research.

After an initial foray into the concept of fractional integration and its estimation (Box-

Steffensmeier and Smith 1996; Byers, Davidson, and Peel 1997; Box-Steffensmeier, Knight,

and Sigelman 1998; Box-Steffensmeier and Tomlinson 2000; Byers, Davidson, and Peel 2000;

Lebo, Walker, and Clarke 2000), this area of research has, for the most part, stalled. A

few practitioners still rely on fractional methods, but for many the concept of fractional

integration is either ignored entirely or simply deemed as a non-fruitful path for practitioners

to head down.

The failure of fractional methods to gain wider acceptance stems from two primary con-

cerns over the method. First, it is argued that political time series are too short to reliably

estimate their degree of persistence. Unless and until we have more observations, fractional

methods will have to wait. Second, it is argued that the estimators of fractional integration

are significantly biased by the presence of short-memory dynamics. For instance, in the

presence of persistent ARMA processes, semiparametric estimators are unable to differen-

tiate between short-run autoregressive dynamics and the long-memory of a series (Baillie

and Kapetanios 2009). As demonstrated below, the same problems also arise with the exact

maximum-likelihood (EML) estimator (see also, Keele and Linn 2015).

Addressing the second argument first, concerns over biased estimators in the presence

of persistent short-term memory are indeed valid. However, and without disregarding this

concern entirely, one must ask how often we expect to find higher-order processes in political

time series. For example, Byers, Davidson, and Peel (2000) examine 26 aggregated political

opinion series from eight countries and finds that 22 of them are well approximated by a
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(0,d,0) model.1 Lebo, Walker, and Clarke (2000) find that of the four political time series

they estimate to be fractionally integrated, three are best approximated by the simplest

(0, d, 0) model. Grant and Lebo (2015) estimate the order of fractional integration of 13

additional political time series and find that all 13 are best modeled as pure fractional

processes (0,d,0). Whether short-memory dynamics are present is a question that must be

addressed on a case by case basis, but their possible existence should not be enough to

discount a method entirely.

Answering the first question of estimator reliability with smaller samples is the purpose of

this paper. Many Monte Carlo studies of fractional integration estimators have been written,

but none have investigated the estimators with smaller samples. The smallest sample size

used in a Monte Carlo study was 64 by Robinson (1995a), however only one semiparametric

estimator was studied in that case. The smallest number in a comprehensive study of multiple

estimators was 128 (Nielsen and Frederiksen 2005).

In political science, part of the stated aim of a recent article by Keele and Linn (2015) is

testing the reliability of FI estimates for series with a limited number of observations, with

the authors ultimately concluding that estimates of fractional integration are too biased to be

useful. There are two points worth noting about these simulations. First, they are conducted

using only the time domain maximum likelihood estimator (EML) of Sowell (1992a), which

as will be discussed, has a prominent and well-known negative bias in its estimates. Second,

the results of this one estimator are then extrapolated to all other FI estimators in order

to discount the possible existence of any consistent and unbiased fractional estimators. In

reference to the bias of the EML estimator, even with greater than 100 observations, Keele

and Linn (2015, p. 20) argue against the meaningful use of fractional methods stating, “[i]t

is clearly inconsistent with the statement in [Grant and Lebo (2015)] that one needs at least

64 observations to reliably estimate the d parameter.” The interpretation of Grant and

1For those models in which a higher-order model was deemed appropriate, the authors note the difference
in likelihood was minimal with a sizable increase the size of the standard errors. Byers, Davidson, and Peel
(2000) were left to question whether the trade-off of efficiency for bias was worth it.
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Lebo’s claim is incorrect, and the conclusions Keele and Linn draw from it in relation to

their own simulations are also wrong. Grant and Lebo (2015) reference the work of Robinson

(1995a), which evaluated the semiparametric local Whittle estimator, not that of the EML.

And as demonstrated below, Robinson was correct in finding the estimator unbiased. In

fact, Robinson was quite cautious in his review, under the same circumstances tested by

Robinson, the local Whittle estimator is unbiased with as few as 40 observations.

This paper considers several popular FI estimation techniques, two semiparametric and

two parametric methods. These methods are compared via Monte Carlo simulations us-

ing multiple data generating processes with varying degrees of short-run dynamics and the

performance of each is measured by estimator bias and root mean squared error (RMSE).

Sample sizes were chosen to represent the size of data sets common to political science,

ranging between 40 and 100 observations.

The results indicate that there is reason to be bullish as to the capability to reliably

estimate fractional integration in shorter series. In the absence of short-run dynamics, both

semiparametric estimators are unbiased with the local Whittle (LW) estimator of Robinson

(1995a) outperforming the log periodogram regression (LPR) model of Geweke and Porter-

Hudak (1983) in terms of RMSE. Using parametric methods under these circumstances, the

frequency domain maximum likelihood (FML) estimator dominates the time domain exact

maximum likelihood (EML) estimator of Sowell (1992a). In these smaller sample simulations

the EML exhibits a negative bias that is prominent even when the series are simulated as

pure fractional processes.

In the presence of short-run dynamics, particularly positive AR noise, the semiparametric

estimators exhibit a positive bias that is alleviated somewhat by reducing the bandwidth

used, however when the dynamics are especially persistent (for example, AR(1) with the

autoregressive parameter equal to 0.80) estimates are severely biased upwards. When using

parametric methods, the time-domain EML suffers from bias and a bloated RMSE in almost

all circumstances. An increase in observations alleviates these problems somewhat, however
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not to the extent that EML can be recommended on its own. On the other hand, the

frequency domain FML estimator does not suffer from the same problems to the same extent.

With the exception of a few specific instances, the FML estimator performs admirably in

the presence of short-run dynamics, generally returning unbiased estimates, particularly with

series of at least 80 observations.

Another important concern is whether we can accurately and consistently estimate the

short run dynamics when present. An inability to estimate the AR or MA parameters while

also accounting for fractional integration severely limits the potential benefits and jeopardizes

all inferences. This problem is well known with semiparametric estimators, and the bias

in two step estimation has been demonstrated previously (Baillie and Kapetanios 2009).

The results find that the EML performs terribly when estimating (1, d, 0) series, drastically

overestimating the extent of autoregression. The estimator performs better when confronted

with moving average parameters and anti-persistent series, however bias increases with the

level of memory of the process. In contrast, the FML (again, with limited exceptions)

accurately estimates both the AR and MA parameters while simultaneously estimating the

order of fractional integration.

In general, the conclusion of this paper stands in stark contrast to that of Keele and

Linn (2015), and this disparity is due to their singular reliance on the EML estimator. Their

estimator choice is particularly troubling for several reasons. First, the negative bias in the

EML has been well documented for over 20 years (see, e.g., Li and McLeod 1986; Cheung and

Diebold 1994; Hauser 1999).2 Considering the very public recognition of bias in the EML,

as well as the presence and use of other fractional estimators, any generalizations made as

to the robustness of fractional methods based only on the performance of this one estimator

are short-sighted. More problematic is the reason why Keele and Linn (2015) chose to use

the EML in their simulations - it is the prepackaged fractional estimator in Stata, the most

widely used software program in political science.

2Keele and Linn (2015) even note that the bias found in the EML is consistent with Hauser (1999).
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Stata is presenting researchers with an estimator that is known to be biased and inef-

ficient, meaning that practitioners using the program have no way of reliably estimating

fractional integration. The result is a general assumption that FI methods are inappropriate

or can’t be reliably estimated. As a consequence, practitioners are pushed back into the

I(0)/I(1) dichotomy and proceed in general ignorance to the possibility that their series are

fractionally integrated. As has been demonstrated, this ignorance can harm inferences and

estimation results - assumptions as to the order of integration of series can lead to drasti-

cally different estimates, rates of spurious regressions can increase if FI is not accounted for,

and short-run dynamics can be built into series through over differencing (Box-Steffensmeier

and Smith 1998; Byers, Davidson, and Peel 2000; Lebo, Walker, and Clarke 2000; Tsay

and Chung 2000). The inability of researchers to reliably and effectively estimate a series’

order of fractional integration seriously precludes further development of fractional meth-

ods in political science, and potentially jeopardizes inferences as well. But as demonstrated

by the findings herein, there are more reliable options that can be estimated just as easily

as the EML. There is no reason why the EML should be the go-to estimator of fractional

integration.

The rest of the paper proceeds as follows. The next section briefly discusses the concept

of fractional integration and the Autoregressive Fractionally Integrated Moving Average

(ARFIMA) model. The estimators and their underlying assumptions are then described,

followed by the results of the Monte Carlo simulations with finite sample bias and RMSE for

each estimator. A brief discussion of the results follows. An appendix provides additional

information on the frequency domain, estimates of AR and MA parameters when fractional

integration is present and estimated, as well as Monte Carlo results indicating the cost of

ignoring the presence of fractional integration in favor of a more simplistic ARMA represen-

tation. If a series is fractionally integrated and ignored, the ARMA estimates are biased,

with the severity of the bias determined by the strength of the unaccounted for fractional

memory.
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3.2 What is Fractional Integration?

Assume a process that generates a series integrated of order d, in which d is the number of

differences that must be applied to the series for it to be stationary. In the standard case,

in which d is an integer, we have the I(1)/I(0) distinction: if a series is an I(1) unit root, it

has perfect memory, meaning that a shock is fully integrated into the series. On the other

hand, an I(0) series has only short memory; it is weakly stationary with constant mean,

finite variance, and constant covariance (see Enders 2004, p.54).

But if the assumption that d must be an integer is relaxed and it is instead allowed to fall

anywhere on the real number line, then the level of integration is considered fractional. The

ARFIMA process, introduced by Granger and Joyeux (1980) and Hosking (1981) is labeled

(p, d, q) if its d’th difference yields a stationary and invertible ARMA (p, q) process.

Assuming that −1/2 < d < 1/2 in order to ensure stationarity and invertibility, the

properties of yt can be defined as an ARFIMA (p, d, q) if

φ(L)(1− L)d(yt − µ) = θ(L)εt, (3.1)

where φ(z) = 1− φ1z − ...− φpzp and θ(z) = 1 + θ1z + ...+ θqz
q are lag polynomials in the

lag operator L(Lxt = xt−1) with roots strictly outside the unit circle, εt is iid N(0, σ2) and

(1− L)d is defined by its binomial expansion such that

(1− L)d =
∞∑
j=0

ψj(d)Lj, ψj(d) =
Γ(j − d)

Γ(j + 1)Γ(−d)
, j = 0, 1, ..., (3.2)

where Γ(z) =
∫∞

0
xz−1e−xdx is the gamma function.

The estimated d parameter determines the memory of the series in question. If −1/2 <

d < 1/2 the process is weakly stationary and invertible. If d < 0, the process is considered

anti-persistent, in which case the autocorrelations are mostly negative and summable (sum

to a finite constant). For 0 < d < 1/2 the process is considered stationary but possesses
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“long memory;” it is characterized by a hyperbolically declining autocorrelation function,

and the autocorrelations and autocovariances are nonsummable. Finally, for 1/2 ≤ d < 1,

the series is no longer covariance stationary and is characterized as non-persistent. Even

though the series is non-stationary, the MA coefficients, which approximate the impulse

response function of a unit shock in εt, will eventually decline to 0.

3.2.1 Equivalence of Time and Frequency Domain

All time series processes can be analyzed in either the time domain or in the frequency

domain. Time domain analysis measures the variable and its evolution against time while

the frequency domain approach is less concerned with how the series evolves over time and is

instead concerned with the variance of the time series at certain frequencies. From the time

domain, a series can be transformed via the Discrete Fourier Transform into the frequency

domain. This transformation decomposes the original series into an infinite sum of periodic

functions, each with a different frequency, λ, which ranges between 0 and π. In the frequency

domain, it is the spectral density that is of primary concern, and it is the summation of this

density across all possible frequencies that represent the total variance of the process.

Of course, a process in the frequency domain can be transformed into the time domain

using the Inverse Discrete Fourier Transform, and any representation in the time domain

has a mathematically equivalent representation in the frequency domain (Box and Pierce

1970). Despite the equivalency, the frequency domain does have several characteristics that

lend itself to analysis of fractional time series. First, the visualization of the spectral density,

through the sample periodogram, allows the researcher a visual inspection of the process and

the frequencies which are the greatest overall contributors to its variance. As Granger (1966)

demonstrated, most macroeconomic series tend to exhibit a typical spectral shape charac-

terized by a concentration of the highest powers in the low frequencies.3 This concentration

indicates a persistence in the memory of a series that is consistent even after a series has

3Appendix B.1 provides figures and descriptions of the spectral density and how the frequency domain
can serve as an excellent diagnostic tool if the researcher believes a series may be fractionally integrated.
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been detrended, and remains the same regardless of the rate at which the series is sampled,

both of which are characteristics now recognized as necessary prerequisites for the presence

of fractional integration. Thus, a finding that the variance of the process is driven by the low

frequencies is a strong indication that the series in question is fractionally integrated. Sec-

ond, the concentration of power at the low frequencies is due to the the dramatic increase in

the power of the spectral density at the zero frequency, which as will be discussed below, can

dramatically bias estimates in the negative direction if left unaccounted for in estimation.

Because estimators in the frequency domain explicitly exclude the zero frequency, this po-

tential for bias is alleviated, which produces much more efficient and consistent estimates of

long memory persistence. As a result, the frequency domain provides researchers a relatively

easy and consistent method of estimating fractional integration. The equivalancy between

the two domains is demonstrated below.

The autocorrelation function of a process in the time domain, such as in Equation (3.1),

can be approximated as

ρk ∼ cρk
2d−1, 0 < cρ <∞, as k →∞ (3.3)

in which cp is a constant and ρk decays at a hyperbolic rate.4

The autocorrelations can also be described in the frequency domain. To do so, we first

define the spectral density function of yt, fy(λ), as

γk =

∫ π

−π
fy(λ)eiλkdλ (3.4)

in which γk is the k’th autocovariance of yt with λ representing the known frequency spectrum

[0, π].

4The process of obtaining the autocorrelation function from the autocovariances is outlined more specif-
ically in Appendix A.1.1.
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The spectral density of the ARFIMA (p, d, q) process of Equation 3.1 can be given by

fy(λ) =
σ2

2π

∣∣1− eiλ∣∣−2d |θ(eiλ)|2

|φ(eiλ)|2
(3.5)

=
σ2

2π
(2 sinλ/2)−2d |θ(eiλ)|2

|φ(eiλ)|2
(3.6)

in which the ARMA (p, q) parameters are represented as

fu(λ) =
|θ(eiλ)|2

|φ(eiλ)|2
σ2

2π
(3.7)

and the transfer function of the fractional filter (1− L)d is approximated as

|1− eiλ|−2d = (2 sinλ/2)−2d ∼ |λ|−2d as λ→ 0, (3.8)

Thus, if we assume that fu(λ) is a constant as the frequencies, λ → 0, then fu(λ) → g.

Which means that the approximation of the autocorrelation function in Equation 3.3 can

be restated in the frequency domain as the approximation of the spectral density function

(Granger and Joyeux 1980; Beran 1994)

fy(λ) ∼ g|λ|−2d, 0 < g <∞, as λ→ 0. (3.9)

The next sections describes the estimators used in the simulations. The parametric

ARFIMA (p, d, q) estimators are the EML - which is estimated in the time domain - and the

FML which operates in the frequency domain. Our semiparametric estimators - the LPR

and the LW - are both in the frequency domain.

3.3 Parametric Estimators

We use two different generic maximum likelihood procedures for our estimations: the fre-

quency domain (Whittle) maximum likelihood and the exact Gaussian maximum likelihood
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procedures. Both methods have the same asymptotic properties, i.e., they are each
√
T -

consistent and asymptotically normal.

3.3.1 Time Domain - Exact Maximum Likelihood (EML)

Assuming a process that is stationary and invertible, i.e., −1/2 < d < 1/2, the exact

Gaussian log-likelihood is given by the objective function

log LE(d, φ, θ, σ2, µ) = −1

2
[T log(2π) + log det(Σ) + (Y − µl)′Σ−1(Y − µl) (3.10)

where Σ is the covariance matrix of Y , Y = (y1, . . . , yn)’ and l = (1, . . . , 1)′, φ and θ are the

parameters φ(L) and θ(L), and µ is the mean of Y .

The EML investigates the reduced profile likelihood where µ is replaced with the sample

mean y and the solution of the maximization with respect to σ2 is obtained. Gathering the

parameters in the vector γ = (d, φ′, θ′, σ2, µ)′, the concentrated likelihood is then given as

log L∗E(γ) = −1

2
[T log(2π) + T log(σ2∗

u ) + log det(Σ) + T ] (3.11)

with σ2 = σ2∗
u and σ2∗

u = 1
T

(Y − µl)′Σ−1(Y − µl) (Hauser 1999).

Sowell (1992a) demonstrated that the EML estimator of d is asymptotically equivalent to

the FML estimator, they are each asymptotically normal and
√
T -consistent. When using the

estimator with finite samples in which the mean is known, the EML has better finite sample

properties than the FML (Sowell 1992b). However, in most instances the mean is unknown

and must be estimated instead. Under circumstances when the mean must first be estimated,

the efficiency gains of the EML are lost (Cheung and Diebold 1994). Additionally, when the

mean is unknown, the EML is known to bias the d parameter in the negative direction (Li

and McLeod 1986). This inherent negative bias inherent in estimation was demonstrated

most recently within political science by Keele and Linn (2015) and is also evident in the

results presented herein.
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3.3.2 Frequency Domain - Whittle Approximate Maximum Likelihood (FML)

We can also approximate the ARFIMA(p, d, q,) model in the frequency domain. Assuming

Gaussian errors, the Whittle likelihood function is

LF (d, φ, θ, σ2) = T

log(2π)− 1− log
1

T

[T/2]∑
j=1

I(λj)

fy(λj)

− [T/2]∑
j=1

log fy(λj) (3.12)

where λj = 2πj/T are the Fourier frequencies, I(λj) = 1
2πT
|ΣT

t=1yte
itλ|2 is the periodogram

of yt, and fy(λ) is the spectral density of Equation (3.5).

The FML estimator has the same asymptotic properties as the EML, but when estimated

with finite samples its properties are far superior to that of the EML. This is due to the

way the two estimators treat the mean of the process, the zero frequency in the spectral

representation, j = 0. The FML is invariant to the presence of a non-zero mean since j = 0

is explicitly excluded from the summation. On the other hand, the mean is incorporated

into the EML estimation through the autocovariance function. In a zero-mean process, the

periodogram is zero at frequency zero, but when d > 0 the spectral density approaches

infinity as the frequency approaches zero. The d parameter is essentially describing the

slope of the spectrum as it nears the zero frequency, and the EML estimate of d is trying

to model this upward slope while still having to account for the null value of the mean at

frequency zero. This causes the EML to suffer from a negative bias, which is made worse

by the presence of additional ARMA parameters in ARFIMA(1, d, 0) and (0, d, 1) models

(Cheung and Diebold 1994; Hauser 1999).

3.4 Semiparametric Estimators

Frequency domain semiparametric estimators use the approximation in Equation (3.3) as a

semiparametric model for the spectral density at low frequencies. The low frequencies are
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characterized as the first m Fourier frequencies, λj = 2πj/T, j = 1, . . . ,m, where

1

m
+
m

T
→ 0 as T →∞ (3.13)

such that m increases with the sample size T , but at a slower rate. Only the spectrum

around λ = 0 is modeled in terms of the long memory parameter d, so these estimators are

referred to as local, or narrow band estimates.

In comparison to the parametric estimators, semiparametric estimators offer an easily

estimated model that is generally robust to short-run dynamics because the presence of

higher frequencies rarely contaminate the ordinates in the vicinity of the origin. These

estimators ignore the presence of ARMA polynomials, instead focusing exclusively on the

long memory parameter. While simpler to estimate, semiparametric estimators are less

efficient than parametric methods, achieving only
√
m consistency where m = m(T ) is the

number of Fourier frequencies to be used. Compare this to the
√
T consistency of both of

our parametric estimators.

When specifying the model, the selection of m (also known as the bandwidth) is impor-

tant. In making this decision, the user must balance an interest in reducing the variance

in the estimates with an increase in bias. Hurvich, Deo, and Brodsky (1998) and Henry

and Robinson (1996) investigated the optimal bandwidth choice in terms of reduction of

mean square error for the LPR and LW estimators respectively, and found that the ideal is

m = T 0.8 for each. While this is the optimal, such a large bandwidth is rarely used because

of the potential for contamination of short-run dynamics. The further out we move from the

origin, the greater the chance our estimates may be biased by unmodeled ARMA dynamics.

Semiparametric estimators attempt to measure only the low frequencies and the probability

of capturing the high frequencies of short-run dynamics increases with the bandwidth. Con-

sequently, when estimating the long memory of a series with no a priori information, it is

best to begin with a conservative bandwith, m = T 0.5 or T 0.65 before increasing.
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3.4.1 Log Periodogram Regression

The log periodogram regression (LPR) was introduced by Geweke and Porter-Hudak (1983)

who demonstrated that by taking logs of both sides of Equation (3.3), we obtain

log fy(λ) = log(g)− 2d log(λj), j = 1, . . . ,m (3.14)

If we substitute the periodogram of yt, I(λj) for fy(λ), then we get the linear regression

model on the log-periodogram

log I(λj) = a+ dzj + uj, j = 1, . . . ,m (3.15)

where a is a constant, zj = 2 log(λj) and uj is the error term. The LPR estimator is the OLS

regression estimate of d, where m is the bandwidth. Again, because we are working within

the frequency domain, note that the estimator is invariant to a non-zero mean. Robinson

(1995b) proved that the LPR has an asymptotically normal distribution for d ∈ (−1/2, 1/2)

and subsequent research has extended this such that the range of asymptotic normality is

d ∈ (−1/2, 3/4) and the estimator is consistent for all d ∈ (−1/2, 1] (Velasco 1999b).

3.4.2 Local Whittle Estimator

The other semiparametric estimator used in our simulations is the local Whittle (LW) ap-

proach, which was first proposed by Kuensch (1987), and Robinson (1995a) showed the

estimator’s consistency and asymptotic normality for d ∈ (−1/2, 1/2). Velasco (1999a) ex-

tended the results of Robinson to show that the LW estimator is consistent for d ∈ (−1/2, 1)

and asymptotically normally distributed for d ∈ (−1/2, 3/4). Thus, both the LW and the

LPR share the same asymptotic properties. The LW has been proven to have a smaller

asymptotic variance than the LPR however, meaning that it is a more efficient estimator

than the LPR. As a result, the LW estimator is expected to outperform the LPR.

The LW estimates d by minimizing the objective function, defined in terms of the pa-
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rameters d and G, where m is the chosen bandwidth

Qm(d,G) = − 1

m

m∑
j=1

[
logGλ−2d +

I(λj)

Gλ−2d
j

]
(3.16)

where λj = 2πj/T are the Fourier frequencies and I(λj) = 1
2πT
|ΣT

t=1yte
itλ|2 is the peri-

odogram. The LW estimates G and d by minimizing Qm(G, d), such that

(Ĝ, d̂) = arg min
G∈(0,∞),d∈[∇1,∇2]

Qm(G, d) (3.17)

where ∇1 and ∇2 are numbers such that −∞ < ∇1 < ∇2 < 1/2. Concentrating Equation

3.16 with respect to G, d̂ satisfies

d̂ = arg min
d∈[∇1,∇2]

R(d), (3.18)

where

R(d) = log Ĝ(d)− 2d
1

m

m∑
1

log λj, Ĝ(d) =
1

m

m∑
1

λ2d
j I(λj). (3.19)

It should be noted that despite their relative ease of estimation, the LW and LPR es-

timators are constrained by the bounds of d ∈ (−1/2, 3/4) and a researcher should be

cognizant of these limits. Outside of these bounds, when I(d) > 3/4 the estimators take on

non-normal limit distributions and achieve slower rates of convergence. When d > 1 the LW

estimator is no longer consistent and has been shown to converge to unity rather than the

true value of d (Phillips and Shimotsu 2004). This is why common practice when estimating

the order of fractional integration of a series is to first difference the data and then add one

back. This can be problematic however if the series in question is actually trend stationary,

d ∈ (0, 1/2), such that differencing puts the series into the range of d ∈ [−1, −1/2). When

this occurs the estimator’s behavior is again inconsistent and the estimates will converge,

either to the true value or to zero depending on the number of frequencies chosen. When m

increases slowly, the estimate will converge to 0, however if m increases quickly, the estimate
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will converge to the true value of d (Shimotsu and Phillips 2006).

3.5 Monte Carlo Models

The Monte Carlo simulations are based on 1,000 simulations per data generating process

(DGP) per time series of varying observations - 40 through 100 increasing by increments of

20. All simulations were generated in Matlab 2014a using the ‘fracdiff’ program of Shimotsu

(2003) to impart fractional memory, and Matlab’s own ’filter’ command to add short-run

dynamics in the form either AR or MA polynomials. The sample sizes are deliberately small,

chosen to simulate the number of observations of series commonly found in political science.5

The simulations consider three types of DGP. The first is the fractional noise ARFIMA

model

(1− L)d(yt − µ) = εt, εt ∼ N(0, 1) (3.20)

The main parameter of interest is d, and series are generated for the values of d {0, .25, .45, 0.75}.

In this instance, d = 0 can be considered a series that fits within the I(0)/I(1) paradigm and

is therefore not fractionally integrated. The value d = .75 is representative of a series that is

fractionally integrated and non-persistent, but that has been first differenced such that we

are estimating a series that is d = −.25 before adding 1 back. Because it is so common to

first difference the series before estimation, the ability to reliably estimate the d, φ, and θ

parameters in this range is particularly important.

Also considered are ARFIMA(1, d, 0) and ARFIMA(0, d, 1) models. These models are

represented as

(1− φL)(1− L)d(yt − µ) = εt, εt ∼ N(0, 1) (3.21)

(1− L)d(yt − µ) = (1 + θL)εt, εt ∼ N(0, 1) (3.22)

5For example, the following are sample sizes from publications using time series data in the top three
journals over the past several years: Keele (2007): 100; Jennings and John (2009): 41; Kelly and Enns (2010):
54; Layman, Carsey, Green, Herrera, and Cooperman (2010): 8; Casillas, Enns, and Wohlfarth (2011): 45;
Faricy (2011): 37; Sanchez Urribarri, Schorpp, Randazzo, and Songer (2011): 35; Ura and Ellis (2012): 35;
Enns (2014): 57; Enns, Kelly, Morgan, Volscho, and Witko (2014): 67; Ura (2014): 54
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and in each DGP we assume that µ = 0 and σ2 = 1.

The values of φ and θ vary individually by increments of 0.4 such that the values take

on one of {−0.40, 0, 0.40, 0.80} where φ = θ = 0 represents the case in which the model

is misspecified - no ARMA polynomials are present in the data, but the models have been

overfit in an attempt to estimate short-run dynamics. Overfitting potentially introduces bias

into the estimates, a serious concern not only for the estimates of d, but for the estimates of

φ and θ as well.6 Each model is estimated naively, meaning that no initial values are being

input into the model to help our estimations.

3.6 Monte Carlo Results

The results for our Monte Carlo simulations are presented below.7 We begin with the results

of the ARFIMA(0, d, 0) models; first the parametric results in Table 3.1, followed by the

semiparametric estimates in Table 3.2. Because so much information is presented in each

table the low values of bias and RMSE are bolded for each order of fractional integration

(d) and number of observations (T ).

3.6.1 Results - (0,d,0) Models

The first set of results to address are the parametric estimates of the (0, d, 0) DGP. Past work

in political science has found that a predominant number of fractionally integrated series are

well estimated as (0, d, 0) models, therefore the ability to estimate these series consistently

is of the utmost importance.

The results are found in Table 3.1 and as expected the far left hand column demon-

strates the negative bias of the EML estimator. Despite the fact that all of the DGPs are

assumed to have a zero mean, the EML still accounts for the mean of the process through

its autocovariance function, which introduces a negative bias in its estimates. The negative

6Note that one of the benefits of semiparametric estimators is that they are estimated without accounting
for the short-run dynamics. Because the ARMA polynomials need not be specified, misspecification is not a
concern. As a result, the φ = 0 and θ = 0 models are not presented for the semiparametric estimators.

7Results for the parametric estimates of the φ and θ parameters for the (1, d, 0) and (0, d, 1) models are
presented in Appendix B.2.
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bias increases as the level of persistence within the series increases, and while the bias is

minimized somewhat with the inclusion of additional observations, it is a serious concern.

That this negative bias is present even in the absence of short-run dynamics should give a

researcher pause when considering using the EML, and as seen from the later simulations,

the bias in the EML becomes more prominent with the increased complexity of the DGP.

The FML displays no such bias however. Again, this is due to the fact that all estimates

in the frequency domain explicitly exclude the zero frequency. The result is that the FML

estimator provides estimates of long memory that are unbiased and it does so with a low

RMSE. The FML estimates of long memory are as efficient as those of a simple ARMA

process.

Table 3.1: Parametric Estimators - ARFIMA (0,d,0)

EML FML

d T Bias RMSE Bias RMSE

0 40 −.1128 .2093 −.0202 .1838
60 −.0733 .1496 −.0198 .1352
80 −.0618 .1258 −.0111 .1133

100 −.0432 .1028 −.0094 .0995

0.25 40 −.1274 .1990 −.0279 .1804
60 −.0821 .1439 −.0145 .1331
80 −.0670 .1223 −.0139 .1108

100 −.0465 .1003 −.0056 .0962

0.45 40 −.1613 .2077 −.0552 .1462
60 −.1146 .1502 −.0345 .1048
80 −.0931 .1249 −.0198 .0840

100 −.0731 .1022 −.0149 .0732

0.75 40 −.1124 .2110 −.0034 .1597
60 −.0689 .1532 −.0052 .1228
80 −.0554 .1231 −.0094 .1097

100 −.0406 .1039 −.0080 .0960

Note: Results based on 1000 simulations for each model. Bolded
entries are the low value for each specified level of d and T . d = 0.75
indicates a series that was first differenced and then had 1 added back
to its estimates.

Table 3.2 provides the results of Monte Carlo simulations for the semiparametric estima-

tors. As a reminder, the semiparametric estimators will vary depending on the bandwidth

(number of Fourier frequencies) used in each model. For each (0, d, 0) model four different

bandwidths are utilized - {0.50, 0.65, 0.70, 0.75}. The higher the bandwidth the smaller the

RMSE, however this reduction comes at a general cost of an increase in bias. Furthermore,
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increased bandwidth potentially introduces bias into the estimates if short-run dynamics are

present in the underlying process.

In this instance, in which the estimates are of pure fractional series, induced bias isn’t

a particularly concerning problem and this is evident in the results for each estimator. The

LPR estimates are found in the upper rows and the LW in the lower rows, and for each the

estimates are consistently unbiased as the bandwidth increases. As expected, the increase in

bandwidth reduces the overall RMSE of the estimator, with the lowest RMSE found when

the highest number of Fourier frequencies are utilized in the estimation. Also as expected

considering its lower asymptotic variance, the LW estimator outperforms the LPR estimator

in terms of RMSE while the differences in bias amongst estimates are negligible.

Based on these results, it is clear that ARFIMA(0, d, 0) models can be consistently and

reliably estimated with a variety of estimators. Caution is needed when using the EML

estimator however due to its negative bias. This bias is mitigated somewhat with additional

observations, but it is still an issue. The fact that the bias is so prominent, even when esti-

mating the simplest model, is especially concerning considering that the stock FI estimator

in Stata, the most well known and widely used statistics program in political science (outside

of R, of course) is the EML.

3.6.2 Results - (1,d,0) Models

The estimates for the parametric estimates of the (1, d, 0) models are found in Table 3.3,

and their results again indicate the potential bias problems for the EML estimator as well

as the fact that the FML estimator is not perfect under all circumstances. Addressing the

EML estimator first, it suffers from a persistent and significant negative bias in the presence

of higher AR frequencies. This is expected given the treatment of the mean, however what

is interesting is that when the autoregression becomes highly persistent, i.e., φ ≥ 0.80, the

EML actually performs well to the point that it is consistent and more efficient than the

FML. The performance of the EML in this case is actually helpful to the researcher by

providing a larger coverage area than would otherwise be available due to the bias suffered
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Table 3.2: Semiparametric Estimators - ARFIMA (0,d,0)

LPR [m = T 0.50] LPR [m = T 0.65] LPR [m = T 0.70] LPR [m = T 0.75]

d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE

0 40 .0321 .4213 .0132 .2873 .0136 .2426 .0109 .2222
60 −.0071 .3768 .0017 .2394 −.0002 .2101 .0054 .1867
80 −.0069 .3601 −.0013 .2129 −.0015 .1832 −.0011 .1609

100 −.0072 .3055 −.0065 .1991 −.0002 .1666 .0011 .1498

0.25 40 .0066 .4380 .0120 .3063 .0043 .2548 .0067 .2398
60 −.0001 .3847 .0013 .2369 .0028 .2127 .0019 .1856
80 −.0084 .3593 .0066 .2146 .0082 .1869 .0037 .1651

100 .0023 .2894 .0202 .1916 .0155 .1646 .0140 .1418

0.45 40 .0188 .4402 .0211 .3113 .0144 .2612 .0157 .2407
60 .0268 .4042 −.0157 .2453 .0169 .2134 .0165 .1914
80 .0058 .3443 .0073 .2095 .0096 .0346 .0128 .1651

100 .0058 .2934 .0117 .1891 .0157 .1636 .0174 .1442

0.75 40 −.0101 .4413 −.0131 .3135 −.0054 .2546 −.0035 .2320
60 −.0083 .3977 −.0111 .2426 −.0094 .2101 −.0127 .1915
80 −.0035 .3505 .0055 .1998 .0048 .1798 .0089 .1609

100 .0232 .2849 .0159 .1908 .0136 .1589 .0118 .1441

LW [m = T 0.50] LW [m = T 0.65] LW [m = T 0.70] LW [m = T 0.75]

d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE

0 40 .0167 .3309 −.0135 .2278 −.0099 .1911 −.0094 .1707
60 −.0314 .2937 −.0232 .1941 −.0210 .1654 −.0136 .1416
80 −.0217 .2881 −.0141 .1624 −.0145 .1412 −.0117 .1249

100 −.0332 .2453 −.0205 .1579 −.0114 .1317 −.0078 .1155

0.25 40 −.0356 .3717 −.0243 .2512 −.0349 .2044 −.0359 .1858
60 −.0455 .3188 −.0337 .1934 −.0292 .1705 −.0320 .1475
80 −.0391 .3027 −.0172 .1746 −.0153 .1473 −.0202 .1262

100 −.0269 .2499 −.0072 .1552 −.0115 .1277 −.0165 .1104

0.45 40 −.0408 .3622 −.0281 .2580 −.0388 .2114 −.0441 .1911
60 −.0228 .3412 −.0232 .2058 −.0231 .1759 −.0315 .1521
80 −.0391 .3027 −.0205 .1716 −.0209 .1515 −.0238 .1308

100 −.0268 .2518 −.0199 .1591 −.0186 .1318 −.0219 .1147

0.75 40 .0204 .2867 −.0042 .2039 −.0003 .1738 .0053 .1626
60 .0165 .2501 −.0061 .1681 −.0037 .1513 −.0010 .1351
80 .0140 .2412 −.0002 .1533 .0010 .1354 .0090 .1198

100 .0153 .2077 .0032 .1501 .0036 .1243 .0087 .1122

Note: Results based on 1000 simulations for each model. Bolded entries are the low value for each order of fractional
integration (d) and number of observations (T ). d = 0.75 indicates a series that was first differenced and then had 1
added back to its estimates.
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by the FML in the presence of such persistent autoregression.

In general, the FML performs well, but it does break down in two notable circumstances.

First, in the presence of moderate autoregression (φ = 0.40), the FML is negatively biased

when the order of fractional integration is close to the border between stationary and non-

persistent, d = .45 (and also when d = 0.25, but not to the same exent). By undervaluing the

persistence of the series, the FML estimates will properly indicate the presence of fractional

integration, but some autocorrelation in the series will be left unaddressed. This problem

is alleviated somewhat by additional observations, but for this relatively small window, it

doesn’t appear that there is an easy fix, and extra caution is urged. A potential check of one’s

estimate is to fractionally difference the series by 0.50 and then re-estimate the series. By

fractionally differencing by this value, the series is placed into a range of d better estimated

by the FML. If the estimates match, then one can be confident in the performance of the

FML.

The FML also suffers when the series is non-persistent and faces severe autoregression

(d = .75, φ = 0.80). When a series is in this range and the extent of autoregression is

very high, the FML will over estimate the level of fractional integration, likely leading the

researcher to conclude that the series is a first-differenced unit root process. The estimate

of a unit root will lead the researcher to first difference the data, thereby overdifferencing

it. After integer differencing, the series will likely exhibit a significant MA parameter as a

result (Box-Steffensmeier and Smith 1998; Lebo, Walker, and Clarke 2000). Note that in

the same range, the the EML provides a reliable estimate of both the order of fractional

integration as well as a consistent estimate of the AR parameter itself. Interestingly, this is

the one instance where the EML is not biased in the negative direction.

The next question is how overfitting the model affects the estimates, which is an issue

only with the parametric estimators. The results of misspecifying the model can be found

in the lower left quadrant of Table 3.3, φ = 0. Consistent with past results the EML

generally suffers, providing negatively biased estimates as well as exhibiting an inflated
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Chapter 3

Table 3.4: Semiparametric Estimators - ARFIMA (1,d,0)

LPR [m = T 0.50] LPR [m = T 0.65] LW [m = T 0.50] LW [m = T 0.65]

φ d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE

−.40 0 40 −.0309 .4326 −.1069 .3149 −.0495 .3406 −.1306 .2648
60 −.0276 .3981 −.0835 .2577 −.0484 .3053 −.1031 .2117
80 .0087 .3459 −.0479 .2114 −.0310 .2731 −.0723 .1747

100 −.0053 .2988 −.0442 .1939 −.0303 .2469 −.0631 .1654

0.25 40 −.0296 .4393 −.0982 .3164 −.0790 .3681 −.1435 .2879
60 −.0282 .3897 −.0843 .2462 −.0676 .3267 −.1127 .2215
80 −.0316 .3588 −.0702 .2229 −.0660 .3138 −.0927 .1964

100 .0005 .3039 −.0407 .1964 −.0311 .2580 −.0624 .1688

0.45 40 −.0280 .4240 −.0879 .3115 −.0825 .3650 −.1382 .2846
60 −.0056 .3826 −.0650 .2452 −.0592 .3331 −.1100 .2208
80 −.0188 .3415 −.0554 .2089 −.0515 .3102 −.0870 .1882

100 −.0077 .3021 −.0301 .1994 −.0398 .2603 −.0538 .1697

0.75 40 −.0534 .4434 −.0954 .3245 .0014 .2722 −.0610 .1982
60 .0064 .3523 −.0482 .2371 .0097 .2402 −.0512 .1715
80 −.0202 .3624 −.0594 .2295 .0083 .2393 −.0514 .1618

100 .0094 .2953 −.0324 .1915 .0069 .2113 −.0394 .1432

.40 0 40 .1691 .4581 .2572 .3927 .1311 .3849 .2206 .3350
60 .1071 .4157 .2169 .3281 .0748 .3262 .1960 .2766
80 .1062 .3654 .1996 .2879 .0635 .2889 .1828 .2457

100 .0829 .3095 .1644 .2517 .0559 .2571 .1478 .2142

0.25 40 .1772 .4878 .2696 .4120 .1152 .3829 .2161 .3367
60 .1018 .4135 .2153 .3190 .0623 .3329 .1925 .2702
80 .0676 .3665 .1839 .2816 .0300 .3118 .1652 .2408

100 .0913 .3129 .1698 .2543 .0610 .2662 .1504 .2179

0.45 40 .1810 .4671 .2608 .3988 .1069 .3523 .2059 .3101
60 .1169 .4070 .2248 .3304 .0623 .3272 .1859 .2648
80 .0763 .3551 .1903 .2783 .0408 .3041 .1639 .2352

100 .0800 .3131 .1771 .2670 .0465 .2586 .1565 .2238

0.75 40 .1458 .4526 .2610 .3964 .1536 .3576 .2472 .3500
60 .1307 .3820 .2471 .3398 .1061 .2906 .2231 .3001
80 .0697 .3716 .1850 .2869 .0769 .2728 .1839 .2555

100 .0953 .3056 .1726 .2523 .0788 .2404 .1610 .2201

.80 0 40 .6608 .7852 .7475 .8055 .5795 .6740 .6860 .7245
60 .5595 .6885 .6907 .7301 .5091 .6042 .6678 .6942
80 .5046 .6126 .6642 .6962 .4685 .5534 .6561 .6778

100 .4697 .5533 .6100 .6396 .4486 .5173 .6096 .6304
0.25 40 .6540 .7866 .7336 .7967 .5103 .5853 .6068 .6350

60 .5501 .6743 .6801 .7180 .4679 .5433 .6173 .6334
80 .4621 .5961 .6359 .6723 .4143 .5006 .6010 .6174

100 .4783 .5619 .6109 .6386 .4439 .5032 .5904 .6060
0.45 40 .6258 .7604 .6780 .7423 .4221 .4750 .4868 .5011

60 .5300 .6581 .6408 .6869 .3862 .4501 .4991 .5089
80 .4574 .5716 .6112 .6449 .3638 .4299 .5017 .5098

100 .4391 .5362 .5861 .6200 .3708 .4226 .5001 .5079
0.75 40 .6425 .7788 .7504 .8108 .6047 .7083 .7183 .7617

60 .5778 .6810 .7217 .7595 .5321 .6180 .6969 .7264
80 .4702 .5933 .6482 .6824 .4582 .5533 .6548 .6806

100 .4805 .5618 .6218 .6495 .4636 .5303 .6262 .6459

Note: Results based on 1000 simulations for each model. Bolded entries are the low value for each specified level of φ, d, and
T . d = 0.75 indicates a series that was first differenced and then had 1 added back to its estimates.
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RMSE compared to properly specified models. The FML is also biased when attempting

to fit a misspecified model, however not to the same extent. These results should hopefully

push the researcher to rely on multiple information criteria to ensure model specification

before estimating higher-order models.

Table 3.4 provides the results of the semiparametric estimators with the same series.

Because the inclusion of a greater number of Fourier frequencies induces bias, the results

presented represent only two choices of bandwidth, m = T 0.50 and m = T 0.65. The contami-

nation caused by the presence of short-run dynamics is clearly evident when comparing the

same estimator across different bandwidths. With (0, d, 0) series, the researcher can gener-

ally increase bandwidth without penalty, but as seen here, the decrease in RMSE is paid

for with greater bias in the estimates. Comparing both estimators across levels of φ, the

semiparametric models generally handle negative autoregression, but problems arise with

positive AR noise, and the bias increases with the strength of autoregression. As expected,

the LW outperforms the LPR in terms of both bias and RMSE.

3.6.3 Results - (0,d,1) Models

Tables 3.5 and 3.6 present the estimation results for when short-run dynamics are introduced

in the form of a moving average parameter. For the parametric estimators, the EML is again

dominated by the FML, however it doesn’t appear that the presence of MA noise is nearly

the burden on estimation that was present when an AR process was introduced. This

holds true even when the models are misspecified - there is very little cost involved with

overfitting the model in search of an MA parameter. Both the EML and FML can generally

handle estimating the (0, d, 1) model, and the point estimates for each become more efficient

with the addition of observations. The EML does display some significant negative bias in

its estimates when the MA parameter is negative and the fractional integration is positive

however, and this bias should lead to Type II errors when the null is no fractional integration.

As a result, the EML cannot be recommended. On the other hand, the FML is consistent

and efficient and doesn’t present any significant issues with estimation of the long memory
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parameter.

The semiparametric estimates also support the view that the presence of MA noise is not

nearly as detrimental to the estimation of fractional integration as AR dynamics. The LPR

and LW are fairly consistent in their estimates - lower bandwidth reduces the contamination

from the high frequency MA parameter, and both the bias and RMSE decrease with an

increase in the usable observations. As before, the LW dominates the LPR in terms of

RMSE performance and when the MA parameter is positive also exhibits a lower overall

bias in estimates. All told, both estimators function fairly well, and with the bandwidth set

at m = T 0.5 both semiparametric estimators actually outperform the parametric EML when

the MA parameter is positive.

3.7 How to Estimate Fractional Integration

The simulation results indicate that fractional integration can be reliably estimated, but as is

made clear in the simulation roundup in Table 3.7 they also caution against simply treating

the estimations of all series as one size fits all. This section briefly provides a how-to guide

of best practices for the estimation of fractional integration.

1. Stop using Stata.

In general, Stata is a very powerful statistical program, but when it comes to the estimation

of FI, it has some serious drawbacks. First, the stock estimator in the ‘arfima’ package

is the EML, which is biased and unreliable. Unfortunately, the only efficient fractional

differencing command in the program is reliant on the EML estimates. Both the LW and

LPR estimators are available as .ado additions, but without the capacity for fractionally

differencing the series by those estimates, they are only descriptive. Second, because Stata

is proprietary, the program is a black-box. One types in a command, but often with very

little knowledge of the underlying statistical process generating the results. And should one

want to investigate what is happening under the hood, they are stuck, unless the program

is an .ado file at which point, Stata’s code is so clunky that divining what is happening is
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Table 3.6: Semiparametric Estimators - ARFIMA (0,d,1)

LPR [m = T 0.50] LPR [m = T 0.65] LW [m = T 0.50] LW [m = T 0.65]

θ d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE

−.40 0 40 −.1595 .4624 −.2438 .3934 −.1611 .3430 −.2638 .3314
60 −.1008 .3961 −.2194 .3262 −.1309 .3120 −.2267 .2881
80 −.0737 .3644 −.1930 .2864 −.0944 .2801 −.2016 .2572

100 −.0668 .2950 −.1470 .2429 −.0930 .2572 −.1722 .2301

0.25 40 −.1655 .4796 −.2534 .4012 −.2168 .4047 −.2856 .3722
60 −.1307 .4060 −.2182 .3211 −.1493 .3488 −.2548 .3186
80 −.0851 .3589 −.1863 .2828 −.1191 .3152 −.2082 .2678

100 −.0769 .2938 −.1544 .2430 −.1033 .2773 −.1822 .2412

0.45 40 −.1592 .4470 −.2363 .3800 −.2100 .4197 −.2785 .3733
60 −.0818 .3990 −.1957 .3099 −.1194 .3498 −.2468 .3155
80 −.0691 .3688 −.1655 .2634 −.0937 .3056 −.2115 .2724

100 −.0570 .3059 −.1525 .2505 −.0925 .2824 −.1700 .2284

0.75 40 −.1256 .4565 −.2356 .3961 −.0564 .2532 −.1541 .2065
60 −.0910 .3934 −.1894 .3027 −.0483 .2274 −.1472 .1930
80 −.0543 .3558 −.1696 .2687 −.0361 .2190 −.1455 .1851

100 −.0524 .3073 −.1394 .2374 −.0463 .1911 −.1281 .1726

.40 0 40 .0610 .4425 .1004 .3171 .0357 .3540 .0871 .2618
60 .0283 .3998 .0700 .2544 −.0025 .3060 .0620 .2041
80 .0125 .3411 .0658 .2138 −.0235 .2708 .0496 .1722

100 .0251 .2922 .0507 .1976 −.0153 .2384 .0370 .1677

0.25 40 .0517 .4411 .1273 .3233 −.0129 .3649 .0546 .2569
60 .0307 .3820 .0692 .2545 −.0319 .3317 .0559 .2065
80 .0446 .3389 .0647 .2117 −.0279 .2963 .0469 .1745

100 .0251 .3072 .0498 .1982 .0061 .2486 .0348 .1661

0.45 40 .0694 .4415 .1168 .3241 −.0038 .3494 .0675 .2527
60 .0466 .3803 .0902 .2547 −.0103 .3185 .0519 .1981
80 .0507 .3393 .0859 .2263 −.0026 .2892 .0432 .1835

100 .0322 .3048 .0626 .1958 −.0149 .2615 .0388 .1616

0.75 40 .0626 .4271 .1162 .3209 .0862 .3284 .1148 .2515
60 .0321 .3855 .0840 .2561 .0614 .2749 .0779 .2036
80 .0129 .3511 .0647 .2179 .0477 .2571 .0570 .1722

100 .0135 .2903 .0526 .2000 .0186 .2177 .0442 .1546

.80 0 40 .0546 .4503 .1309 .3355 .0326 .3432 .1007 .2713
60 .0351 .3772 .1000 .2595 −.0063 .3016 .0858 .2249
80 .0181 .3489 .0795 .2193 −.0086 .2776 .0668 .1852

100 .0114 .3155 .0608 .2012 −.0040 .2453 .0464 .1601

0.25 40 .0534 .4328 .1384 .3445 .0051 .3647 .0884 .2698
60 .0446 .3865 .1008 .2568 −.0145 .3201 .0720 .2244
80 .0258 .3373 .0890 .2273 −.0089 .2938 .0506 .1890

100 .0236 .2968 .0587 .2009 −.0094 .2456 .0476 .1663

0.45 40 .0673 .4641 .1376 .3426 −.0026 .3481 .0915 .2556
60 .0406 .3953 .1185 .2766 .0017 .3317 .0736 .2075
80 .0422 .3459 .0921 .2269 −.0160 .3032 .0738 .1831

100 .0409 .2979 .0798 .2079 .0115 .2475 .0486 .1634

0.75 40 .0647 .4486 .1591 .3490 .0799 .3132 .1293 .2638
60 .0660 .3847 .1038 .2649 .0415 .2608 .1031 .2090
80 .0231 .3402 .0764 .2249 .0247 .2406 .0682 .1821

100 .0351 .2963 .0744 .2039 .0251 .2114 .0577 .1590

Note: Results based on 1000 simulations for each model. Bolded entries are the low value for each specified level of d and φ.
d = 0.75 indicates a series that was first differenced and then had 1 added back to its estimates.
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Table 3.7: Simulation Roundup

EML FML LPR LW

(0, d, 0) Exhibits negative bias Unbiased & consistent. Unbiased & consistent. Unbiased & consistent.
across all observations. Outperforms all other Recommend ≥ 40 Outperforms the LPR.
Not recommended. estimators. Recommend observations Recommend ≥ 40

≥ 40 observations observations.

(1, d, 0) Negatively biased Generally unbiased. Unbiased estimates Minimal negative bias
estimates. Bias worsens Exceptions is φ = .40 with negative φ. with negative φ.
as order I(d) increases. and I(d) close to Positive bias as Positive bias as
Exception is strongly stationary border .50, φ increases. Lower φ increases. Lower
persistent φ = .80 and φ = .80, I(d) = .75. bandwidth, lower bias. bandwidth, lower bias.
Not recommended. Recommend ≥ 80 Ok if negative φ, LPR outperforms with

observations. not positive φ. negative φ.

(0, d, 1) Negatively biased Generally unbiased. Generally unbiased Generally unbiased
estimates. Bias worsens Exception of negative at lower bandwidths. at lower bandwidths.
as I(d) approaches θ and I(d) close Exception is negative Exception is negative
stationary border d = .50 to stationary border. θ & increasing I(d). θ & increasing I(d).
Not recommended. If positive θ If positive θ If positive θ

recommend ≥ 60 recommend ≥ 60 recommend ≥ 60
observations. observations. observations.

difficult. R and Matlab are both better programs and each have active user communities that

share and refine programs and code. Most economists appear to have switched to Matlab

and they are quite generous in sharing their code.

2. Get to know your data.

One should have a pretty good idea of whether their series are fractionally integrated before

they ever estimate the order of fractional integration. The first step is to visualize the data.

In the time domain this includes plotting the data as well as investigating the autocorrelation

function of the series. The persistence of the ACF is a good indicator as to the potential for

the long memory of a series. Visualizing the series in the frequency domain is also incredibly

helpful, as demonstrated in Appendix B.1. If the low frequencies are the greatest contributors

to the variance of the process and the higher frequencies have very little influence, the

probability of the series being fractionally integrated is increased. Stationarity tests are also

helpful despite their limited power when applied to fractionally integrated processes. If one

uses the Dickey-Fuller, Augmented Dickey-Fuller, DF-GLS, KPSS test, and Variance Ratio

tests and the estimators do not consistently find that the series is either stationary or a

unit-root, it is likely that it is fractionally integrated.
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3. Begin with semiparametric estimators.

Semiparametric estimators are simple and easy to estimate because they are agnostic as to

the short-run dynamics of the process. As noted above, both the LW and LPR estimators

are asymptotically normal for d ∈ (−1/2, 3/4). Economists have also developed an extended

local Whittle estimator (ELW) that is consistent and normally distributed for d ∈ (−1/2, 2)

and this estimator is freely available for use in Matlab (Shimotsu 2010). The capacity of the

ELW to take on greater values of d means that the researcher need not make assumptions

about the order of integration of the series in its level form by first differencing the data.

The estimator provides a nice first estimate of the fractional integration of the series. With

this estimate, the researcher can then determine whether to first difference their series and

can use the LW estimator, which generally outperforms the LPR. With all semiparametric

estimators the choice of bandwidth is crucial and the estimation with various bandwidths

can help diagnose the possible presence of short-run dynamics. Begin with a bandwidth

of T 0.50 and then increase by increments of 0.05 or 0.10 up to T 0.80. If the estimates are

consistent across bandwidths, higher frequencies are not contaminating the estimates, which

indicates that short-run ARMA dynamics are not present. The ELW of Shimotsu (2010)

automatically detrends the data, but don’t forget to detrend the series before using the LW

or LPR estimators.

4. Use the FML estimator.

As demonstrated, the FML is the best maximum likelihood estimator of fractional integra-

tion. It can reliably account for short-run ARMA dynamics and it is generally unbiased in

their presence. Further, unlike semiparametric estimators that can only generate an asymp-

totic standard error based on the length of the series and the bandwidth, the FML produces

series-specific standard errors. When using the FML, estimate the series as a (0, d, 0) series,

but also estimate for higher-order processes. Use the information criteria of the estimator

(AIC, BIC, and log-likelihood) to help diagnose the possibility of ARMA dynamics. In ad-

dition to the information criteria, pay attention to the significance of the ARMA estimates
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- higher-order estimations should only be made if the information criteria indicate a better

model fit and the estimates are statistically significant. Between the semiparametric esti-

mates made at varying bandwidths, the information criteria, and the estimates themselves,

one should have a very good idea of the order of the process.

5. Fractionally difference the data.

Assuming that the process is fractionally integrated, fractionally difference the data by the

estimated order of fractional integration, and then repeat step 2. In the time domain the

series should look like white noise - it should be bouncing around the mean and the ACF

should not indicate any significant spikes. In the frequency domain it should look like

white noise - the contribution to the variance should be constant across all frequencies. All

stationarity tests should indicate that it is a stationary process.

3.8 Conclusion

The purpose of this paper was to investigate whether fractional integration could reliably be

estimated for series with a limited number of observations. Four estimators were compared,

two parametric and two semiparametric, and each estimator’s performance was evaluated

in terms of bias and RMSE for three different DGPs. The results indicate that the answer

is a qualified yes, depending on the data generating process and the estimator used. When

the series is (0, d, 0) pure fractional process, the frequency domain maximum likelihood

(FML) and both semiparametric estimators render unbiased estimates of the d parameter.

The FML is clearly the most efficient estimator in this case, but the semiparametric local

Whittle (LW) estimator is not far behind. In the presence of AR noise, the semiparametric

estimators both suffer from contamination from the higher frequencies. As a result, their

estimates of d are biased, and the extent of the bias increases with the strength of the AR

parameter. A reduction in the bandwidth serves to reduce some of this bias, and both

the LW and LPR estimators are generally robust to short-run dynamics in the form of a

negative AR parameter. The parametric FML estimator acquits itself well when attempting

65



Chapter 3

to estimate (1, d, 0) series, exhibiting bias in only two instances - (φ = .80, d = .75) and

(φ = .40, d = .45). In each of these instances, the direction of the bias will increase the

probability of Type II errors.8 The problems created by AR processes are generally not

found when attempting to estimate fractional integration when MA noise is present. Both

the semiparametric estimators and the FML are generally robust, with the FML again

outperforming all other estimators.

The truly definitive take away from this exercise is to understand just how bad the time

domain maximum likelihood estimator is across the full ranges of data types. Because the

EML must account for the mean of the process, it exhibits a consistent and significant

negative bias, which is made worse when short-run dynamics are present. The EML fails

in almost all circumstances to the point that it is even outperformed by semiparametric

estimators when moving average dynamics are present. The EML has nothing to offer it,

and the FML should be the go to estimator for fractional integration. Unfortunately, the

default estimator in Stata is the EML, which means that if a researcher is interested in

fractional integration they are better served by using either R or Matlab.

8That the FML might produce Type II errors is the exact opposite conclusion reached by Keele and Linn
(2015) and their simulations of the EML. By estimating fractional integration with the FML, the researcher
will not find that all series are long memory.
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Chapter 4

Taking Auto-Correlation Seriously: Compar-
ing Error Correction Techniques with Political
Time Series

This chapter is an article that is co-authored with Matthew Lebo and is forthcoming in
Political Analysis. All model estimates, Monte Carlo simulations, figures, and all material

found in the appendix for this chapter were solely my own work product.

Abstract

While traditionally considered for non-stationary and cointegrated data, De Boef
and Keele (2008) suggest applying a General Error Correction Model to stationary
data with or without cointegration. The GECM has since become extremely popu-
lar in political science but practitioners have confused essential points. For one, the
model is treated as perfectly flexible when, in fact, the opposite is true. Time se-
ries of various orders of integration – stationary, non-stationary, explosive, near- and
fractionally-integrated – should not be analyzed together but researchers consistently
make this mistake. That is, without equation balance the model is misspecified and
hypothesis tests and long-run-multipliers are unreliable. Another problem is that the
error correction term’s sampling distribution moves dramatically depending upon the
order of integration, sample size, number of covariates, and the boundedness of Yt. This
means that practitioners are likely to overstate evidence of error correction, especially
when using a traditional t-test. We evaluate common GECM practices with six types
of data, 746 simulations, and five paper replications.
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4.1 Introduction

Nearly ninety years after Yule (1926) published “Why do we sometimes get nonsense cor-

relations between time-series?” political applications are still plagued by spurious findings.

Researchers often favor models that are easier to both implement and interpret and, when

data are scarce, the desire for simplicity grows. Nevertheless, some models are particularly

prone to give unreliable results.

Given the peculiarities of political data, one such model is the general (unrestricted)

error correction model (GECM), first developed in econometrics (Davidson, Hendry, Srba,

and Yeo 1978; Hendry and Mizon 1978) and introduced to political science over two decades

ago (Beck 1992; Ostrom, Jr., and Smith 1993; Durr 1993).1 More recently, De Boef and

Keele (2008, D&K) re-introduced the GECM as an equivalent model to the autoregressive

distributed lag (ADL) in an AJPS workshop piece, “Taking Time Seriously.” D&K describe

several promising aspects for stationary data: cointegration is unnecessary to look for error

correction and one can estimate both short- and long-term impacts of covariates. Among

political scientists, the method has since become extremely popular with D&K used as the

go-to source. Google Scholar shows the paper cited 68 times in 2013 with many applications

appearing in top journals.2

However, there are several problems with the GECM – some known and some explored

here. For one, there are many types of political time series – integrated, near-integrated,

fractionally-integrated, auto-regressive, and explosive – and researchers need to pay very

close attention to the properties of their series. Each presents its own challenges in the

GECM. Second, practitioners often fail to ensure that their equations are balanced. The

order of integration needs to be consistent across all series in a model. Mixing together

1See: Banerjee, Dolado, Galbraith, and Hendry (1993) for the clearest exposition on the topic.
2As of October 2014 various versions of the paper have been cited 335 times. Recent examples of applied

GECM papers include: Büthe and Milner (2014); Casillas, Enns, and Wohlfarth (2011); Enns (2014); Enns,
Kelly, Morgan, Volscho, and Witko (2014); Faricy (2011); Jennings and John (2009); Kayser (2009); Kelly
and Enns (2010); Kono (2008); Layman, Carsey, Green, Herrera, and Cooperman (2010); Ramirez (2009);
Rickard (2012); Sanchez Urribarri, Schorpp, Randazzo, and Songer (2011); Ura (2014); Ura and Ellis (2012);
Ura and Wohlfarth (2010); Volscho and Kelly (2012).
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series of various orders on integration will mean a model is misspecified. Third, although

the autoregressive distributed lag (ADL) model is algebraically equivalent to the GECM,

the reorganization of parameters is not benign and easily leads to misinterpretation. Fourth,

the interpretation of parameters should change across data types. With stationary data, the

ECM’s coefficient is misinterpreted so that mean reverting variables with little connection

to each other are claimed to be in equilibrium relationships. Fifth, with unit-root data, the

GECM’s key hypothesis test is misunderstood: political science applications have incorrectly

used a standard t-test for the ECM’s coefficient. Sixth, using bounded series in the GECM

has unexplored consequences. Given these and other issues, the GECM should only be used

in rare instances, yet it is applied frequently and haphazardly. As a result, serious errors

exist in the growing body of work that has relied upon the model.

We continue below with a time series primer, followed by a discussion of the GECM’s

performance with six types of dependent variables. Simulations demonstrate the issues with

each case – typically an alarming rate of Type I errors but sometimes nonsensical inferences

as well, e.g. error correction rates that can be misinterpreted to be above 100%. We also

outline the problems presented by bounded political time series. Last, we replicate two

recent GECM studies: Casillas, Enns, and Wohlfarth (2011) and Ura and Ellis (2012).3 In

each, standard practices greatly overstate the strength of relationships, especially concerning

error correction. Without an appreciation of the method’s limitations our understanding of

dynamic political relationships will continue to be undermined.

4.2 Unit-Roots, Stationarity, and Error Correction

The univariate properties of time series Yt can be described as:

(1−
p∑
i=1

φiL
i)(1− L)dYt = (1 +

q∑
i=1

θiL
i)εt (4.1)

3Three additional replications are in the Supplement: Sanchez Urribarri et al. (2011), Kelly and Enns
(2010), and Volscho and Kelly (2012). See Appendices C.5.1, C.5.2, and C.5.3 for respective details.
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where p refers to auto-regressive parameters, q refers to moving average parameters, and d

is the (fractional) integration parameter. These can be summarized in a (p, d, q) notation

where (0, 0, 0) is a white-noise, auto-correlation-free, process (Box and Jenkins 1970; Granger

and Joyeux 1980; Hosking 1981; Enders 2004). L is the lag operator such that LYt = Yt−1.

The parameter d represents the memory of the series. If d = 0 the series is weakly

stationary and has only short memory – it will tend towards a constant mean, has finite

variance and constant covariance.4 Autoregressive and moving average parameters may still

exist where shocks will persist for finite periods as the series reverts back to its mean.5 If

d = 1 the series contains a unit-root (also known as integrated, I(1), perfect-memoried, or a

random-walk) with a non-stationary mean, variance, and covariances. It can wander in any

direction with no expectation of returning to a long-term mean.

If we relax the assumption that the order of integration must be an integer, but can

instead fall anywhere on a real number line, a series is considered fractionally integrated. If

a series is −1/2 < d < 1/2 the process is invertible and possesses a linear representation. For

0 < d < 1 the process is said to have long memory - it holds a mix of characteristics with long

– not short or perfect – memory (Beran 1994; Box-Steffensmeier and Smith 1996; Granger

and Joyeux 1980). If 1/2 < d < 1 the series is variance and covariance non-stationary,

however it is still mean reverting. (Baillie 1996). Fractional integration is widespread in

political data (Box-Steffensmeier and Smith 1996; Box-Steffensmeier and Tomlinson 2000;

Lebo, Walker, and Clarke 2000).

As any of the (p, d, q) parameters deviate from zero, auto-correlation threatens hypoth-

esis tests. Extensive work has concentrated on identifying auto-correlation and filtering to

account for it (e.g.: Box and Jenkins 1970; Box-Steffensmeier and Smith 1996, 1998; Clarke

and Stewart 1994; Clarke and Lebo 2003; Granger and Newbold 1974; Granger and Joyeux

4Enders (2004, p.54) describes a weakly stationary series as: mean constant (E(Yt) = E(Yt−s) = µ),
variance constant (E[(Yt − µ)2] = E[(Yt-s − µ)2] = σ2

y) or (var(Yt) = var(Yt-s) = σ2
y), and covariance

constant (E[(Yt − µ)(Yt-s − µ)] = E[(Yt-j − µ)(Yt-j-s − µ)] = γs) or (cov(Yt, Yt-s) = cov(Yt-j, Yt-j-s) = γs).
5Near-integrated series have AR processes of almost 1 and are “long-memoried.” The effects of shocks

decrease at an exponential rate and the series are eventually stationary as well. (DeBoef and Granato 1997).
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1980; Lebo, Walker, and Clarke 2000; Tsay and Chung 2000). This “pre-whitening,” ap-

proach 1) identifies how a series depends upon its past values, then 2) models this behavior,

and 3) uses the “white-noise” residuals so that data are i.i.d. and inferences are trustworthy.

Pre-whitening approaches have developed from ARMA and ARIMA (Box and Pierce 1970;

Box and Jenkins 1970) to ARFIMA models (Granger and Joyeux 1980; Hosking 1981). Re-

searchers may be concerned about what is lost with pre-whitening – the common metaphor

asks if one throws out the baby (interesting variation) with the bathwater (auto-correlation).

But white noise does not mean that all useful information has been removed leaving only

random noise. Rather, it means that the series’ dependence on its own history has been

filtered out and what is left – seemingly white noise – might be explained by independent

variables. Thus, pre-whitening ensures that data hold the i.i.d. property.

The simplest example of pre-whitening begins with a unit-root, (0, 1, 0): Yt = 1∗Yt−1 +εt.

Figure 4.1, top-left, shows a unit-root series with its auto-correlation (ACF) and partial auto-

correlation (PACF) plots to the right – significant spikes beyond the 0th lag are deviations

from i.i.d. and will cause problems.6 First-differencing subtracts Yt−1 from each side to create

the white noise series, Y ∗t = εt with εt ∼ N(0, σ2) (bottom-left). As shown in Y ∗t ’s ACF and

PACF, it is free of auto-correlation. Regressions involving it will provide unbiased, efficient,

and consistent estimates. Other filters can make other types of data safe as well: Box and

Pierce (1970) use ARMA (p, q) filters for auto-regressive and moving average processes, Box-

Jenkins (1970) adapted it to unit-roots (ARIMA models), and Hosking (1981) introduced

fractional differencing (ARFIMA) to filter a (p, d, q) model into white noise, (0, 0, 0).

Whether (p, 0, q), (p, 1, q), or (p, d, q), the goal is the same: create white noise residuals for

all variables to protect inferences (Clarke and Lebo 2003; Clarke and Stewart 1994; Granger

and Newbold 1974; Tsay and Chung 2000). Granger and Newbold (1974) finds significant

6Techniques such as estimating and differencing by d lose some precision with smaller samples - bias
and RMSE will generally increase as the sample size decreases. The extent of the increase will depend on
the complexity of the process as well as the type of estimator used; see Chapter 3 for more information.
But with simple diagnostic tools like ACFs and PACFs, researchers can determine if they have properly
modeled out auto-correlation. Fractional integration filters can also be approximated using several AR and
MA parameters (Hosking 1981).
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Figure 4.1: An Integrated Series Pre- and Post-Differencing with ACF and
PACF
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Note: Spikes outside the solid lines on the auto-correlation and partial autocorrelation function indicate problematic
correlations (not including the first spike at t = 0).

(.05 level) relationships about 75% of the time between two randomly generated unit-roots;

Lebo, Walker, and Clarke (2000) finds similar problems with fractionally integrated data, and

DeBoef and Granato (1997) do so with near-integrated data. In every case, pre-whitening

solves these problems and minimizes Type I errors.

The inferential threats of auto-correlation are not debated, nor do researchers argue

about whether pre-whitening works. No effort that we know of has sought to explain why

under-differencing or over-differencing are not really problems. Yet, pre-whitening is often

skipped. One worry is that information is lost by filtering – the “babies and bathwater” ar-

gument. Also, studying a series in differences means we cannot study long-term relationships

(Banerjee et al. 1993; Beck 1992).

The desire to study both short- and long-term relationships motivates error correction

methods. Classic cointegration posits equilibrium relationships so that shocks that sep-

arate series are short-lived and error correction mechanisms (ECMs) measure the rate of
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re-equilibration (Engle and Granger 1987). The two-step ECM approach begins with I(1)

variables and tests whether they are cointegrated - that is, is a linear combination of them

I(0)? In the first step Yt is regressed on covariates and residuals are tested for stationar-

ity. If the residuals are I(0) then a second step uses the lagged residuals as the ECM in a

differenced model:

∆Yt = β0 + β1∆Xt + α1ECMt−1 + εt (4.2)

Both short- (β1) and long-run (α1) effects are captured. The separation of Yt−1 and Xt−1

(errors) are corrected at time t as the series return to equilibrium. Many Xs may affect Y

but few will prove to be in an equilibrium relationship.7

Many alternative models exist including one-step GECMs that skip testing specifically

for cointegration. Single equation GECMs have quickly become the most popular ECM

technique among political scientists who have seen it – correctly – as easier to implement

and – incorrectly – as more flexible than competitors. Next we discuss the GECM and review

it under various scenarios. We show that common practices among political scientists lead

to large problems with Type I errors for independent variables and a sometimes massive

tendency towards claiming error correction.

4.3 The General ECM - Origins and Explanation

A single equation general ECM was introduced to applied econometrics by Hendry and An-

derson (1977) and Davidson et al. (1978) who each included level-form lags in differenced

regressions to estimate equilibration.8 Despite modeling individual I(1) series, the rela-

tionship between them could take on a stationary equilibrium. With many economic and

financial time series fitting the I(0)/I(1) dichotomy – e.g. stock prices and exchange, interest,

unemployment, and inflation rates – the model’s assumptions were reasonable. Subsequent

research by Engle and Granger (1987) formalized the concept as cointegration.

7Stock and Watson (2011, p.650) study one-year and three-month interest rates as an example of coin-
tegration. Some political series may be fractionally cointegrated (e.g. Lebo and Young (2009) and Box-
Steffensmeier and Tomlinson (2000)) but political data as close as Stock and Watson’s are unlikely.

8Development of the method can be traced further back to Phillips (1954, 1957) and Sargan (1964).
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In one form the bivariate ECM can be written as:

∆Yt = β0∆Xt + α1(Yt−1 −Xt−1) + εt (4.3)

∆Xt = υt (4.4)

in which εt and υt ∼ N(0, σ2).

In Equation (4.3) current changes of ∆Yt can occur in response to ∆Xt or to correct dis-

equilibrium between Yt−1 and Xt−1. With I(1) series, testing whether α1 = 0 is equivalent to

a cointegration test such that when α1 < 0 cointegration exists, i.e. the series are in a long-

run equilibrium (Banerjee et al. 1993). Further, with I(1) data, ∆Yt and ∆Xt are stationary

and, if cointegration exists, then Yt−1−Xt−1 is as well.9 Thus, with cointegration, Equation

(4.3) is balanced – a critical property for correct specification – and is safe from spurious

regressions. Without cointegration, however, the model is unbalanced and the practitioner

should set aside the estimates and choose a different specification.

Applying Equation (4.3) is somewhat cumbersome, however, since post-estimation cal-

culations are needed to obtain the most useful parameters, including the error-correction

parameter. Consequently, B̊ardsen (1989) derived the reparamaterization that is now the

commonly used form:

∆Yt = α0 + α1Yt−1 + β0∆Xt + β1Xt−1 + εt (4.5)

In Equation (4.5), both the ECM parameter (α1) and the short-run effects ofXt are estimated

directly while long-run multipliers are readily calculable. De Boef and Keele (2008) highlight

these features and much of the second half of Taking Time Seriously is devoted to exploring

9Kremers et al. (1992) was the first to formally establish the relationship between the t-test on the
disequilibrium term Yt−1 − Xt−1 and Engle & Granger’s cointegration test-statistic; both are unit-root
tests, but the GECM is a more powerful test for cointegration because it does not impose common factor
restrictions. See Appendix C.1 in Supplementary Materials for further background on the links between the
GECM model, the Dickey-Fuller test, and the Engle and Granger two-step cointegration method.
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the potential of Equation (4.5) in political science.10 Long after its discussion in a 1992

special cointegration issue of Political Analysis’s, De Boef and Keele’s re-introduction drew

significant attention to the GECM. Equation (4.5) has since become extremely popular –

perhaps the most popular time series model in political science.11

Yet, the GECM is consistently misused. Whereas D&K highlight the GECM when all

series are stationary, researchers rarely pay close attention to the order of integration of their

time series and often skip important tests. This has had serious inferential consequences.

For example, political scientists have not recognized that if Yt is I(1) then the GECM is

effectively a cointegration test. With Yt as I(1), all series in the model must be I(1) and

cointegration must be present. Otherwise, the model is unbalanced and misspecified.

Also missed is that the distribution of the ECM parameter’s (α1) test-statistic is neither

standard-normal nor dimension invariant - it shifts systematically depending on sample size

as well as the number and stationarity properties of the variables (Ericsson and MacKinnon

2002; Hansen 1995; Kremers, Ericsson, and Dolado 1992). The usual practice erroneously

uses a standard one-tail t-test for hypothesis testing resulting in over-blown findings. Seem-

ingly, equilibrium relationships have been found everywhere.

With strictly I(1) data one can calculate new critical values, however, and Ericsson and

MacKinnon (2002) provide response surfaces for such calculations based upon the length of

T and the number of covariates. Table 4.1 provides our calculations of critical values for

lower values of T and up to five independent variables. Yet these values are only applicable

if every series is strictly I(1). Any diversion for any variable in the model alters the test

statistic’s sampling distribution and critical values – often dramatically. Additionally, any

loss of equation balance makes a cointegration test dubious so, again, if the dependent

variable is I(1) then the model should only include I(1) independent variables.

10The equivalence of the ADL and the B̊ardsen ECM is presented in De Boef and Keele (2008, pp.189-191).
11In economics the method has been largely supplanted by alternatives like the ARDL-bounds tests of

Pesaran, Shin, and Smith (PSS, 2001). As explained below, the PSS test allows flexibility for regressors’
orders of integration but the dependent variable must still be I(1). The PSS paper has been cited over
3,000 times since publication in 2001 whereas Ericsson and MacKinnon (2002) – the source for the GECM’s
correct critical values – has been cited 243 times.
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Table 4.1: 5% MacKinnon Critical Values of ECM t-statistic for I (1) Data†

T 1 IV 2 IVs 3 IVs 4 IVs 5 IVs

35 -3.316 -3.613 -3.867 -4.082 -4.268
40 -3.300 -3.598 -3.850 -4.066 -4.255
45 -3.290 -3.587 -3.838 -4.055 -4.246
50 -3.283 -3.578 -3.829 -4.047 -4.239
55 -3.277 -3.570 -3.822 -4.040 -4.233
60 -3.270 -3.565 -3.816 -4.035 -4.229
65 -3.267 -3.560 -3.811 -4.030 -4.226
70 -3.263 -3.556 -3.807 -4.027 -4.223
75 -3.259 -3.552 -3.803 -4.023 -4.220
80 -3.256 -3.549 -3.800 -4.021 -4.218

Note: Critical values for each T computed using response surfaces
provided by Ericsson and MacKinnon (2002)
† Estimates of critical values based on model with intercept and no
trend

Yet, recent research on near- and fractional integration demonstrates that true unit-roots

are rare in political data (DeBoef and Granato 1997; Box-Steffensmeier and Smith 1996,

1998; Lebo, Walker, and Clarke 2000; Byers, Davidson, and Peel 2000).12 Thus, although

Table 4.1’s values allow proper testing of the ECM with all I(1) series, the complications of

political data mean that it is rarely applicable.13

Below, we examine the accuracy of inferences using common practices and the GECM.

When α1 is unknown and researchers estimate the model, how accurate are the conclusions?

We study six types of dependent variables: 1) Yt as a unit-root (d = 1 in a (p, d, q)) model,

2) Yt as a bounded unit-root, 3) Yt as stationary (d = 0), 4) Yt as near-integrated, 5) Yt as

fractionally integrated, (0 < d < 1), and 6) Yt as explosive (d > 1).

For each type we simulate various covariate types – Xt as I(1), I(0), and fractionally

integrated – and use 1-5 Xs with T=60 and T=150. In all, 746 simulation exercises test

the GECM’s abilities to estimate error correction and make other inferences. Absent the

model being used as a cointegration test for purely I(1) series with proper critical values,

12There are fields in political science where one might find more unit root data, such as in international
political economy, e.g. Bernhard and Leblang (2002), Leblang and Bernhard (2006).

13One caveat worth noting is that the model’s estimates prove reliable if we specifically generate our data
so that α1 < 0 and the ECM is used as a cointegration test. That is, in these specialized circumstances
the ECM model does not make Type II errors, even with near-integrated data, and properly finds that
cointegration is present (De Boef and Granato 1999; Kremers, Ericsson, and Dolado 1992; Hansen 1995;
Zivot 2000). But in actual practice, we do not choose the value of α1 and, as Zivot (2000) shows with
a single-equation ECM, α1 is far better at detecting cointegration than it is at measuring the strength of
re-equilibration (i.e. as an ECM).
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the GECM poorly measures the error correction parameter and finds it to be significant far

too often – Type I errors occur at alarming rates. We begin with the case of Yt as I(1).

4.4 The General ECM Under Six Scenarios

4.4.1 Case 1: The Dependent Variable is a Unit-Root, I(1)

What problems arise with the GECM and a unit-root Yt? This scenario can work but there

are four points that political scientists have missed: 1) Xt must also be a unit-root to en-

sure equation balance (Banerjee et al. 1993, pp. 164-8), 2) Yt and Xt must be cointegrated

with each other (Banerjee, Dolado, and Mestre 1998; Ericsson and MacKinnon 2002), 3)

non-standard critical values must be used (Ericsson and MacKinnon 2002) to evaluate coin-

tegration, and 4) the ECM parameter is biased downwards as Xs are added to the model.

The value of the first two points is more easily seen in Equation (4.3)’s version of the

GECM: ∆Yt = β0∆Xt+α1(Yt−1−Xt−1)+εt. Here, if Yt and Xt are unit-roots, then ∆Yt and

∆Xt are stationary. And, if they are cointegrated, then (Yt−1−Xt−1) is stationary as well.14

OLS can be used here but it has been shown that the hypothesis test on α1 in Equation

(4.5) is non-standard (Ericsson and MacKinnon 2002). The correct values can be found in

common sources like Enders (2010, p. 493) or calculated for specific lengths of T as we do

in Table 4.1.

Unfortunately, practitioners are neither paying proper attention to their series’ station-

arity nor testing for cointegration.15 In particular, one often-quoted point in Taking Time

Seriously seems universally misinterpreted: “Alternately, as the ECM is useful for stationary

and integrated data alike, analysts need not enter debates about unit roots and cointegration

to discuss long-run equilibria and rates of reequilibration” (p.199). This statement must be

carefully interpreted: the GECM can work for all stationary or all integrated data. If all

14D&K allude to this in their Footnote 11 guideline: “When using an ECM with integrated data, analysts
must ensure that all terms on the right-hand side of the equation are stationary” (p. 190).

15The Granger Representation Theorem (Engle and Granger 1987) posits that if cointegration exists then
Granger causality must be present in at least one direction. Failing to explicitly test for cointegration or
Granger causality can lead to erroneous causal claims.
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data are stationary then one does not have to test for cointegration to estimate the GECM.

But researchers have assumed this means that they need never worry about stationarity

or cointegration – that plugging a mix of data into the GECM is fine and that the model

can always work with or without cointegration.16 But if the right-hand-side variables are

not truly I(1) the equation is not balanced and, even if balanced, if the series are not truly

cointegrated then problems arise.

Table 4.2: Results of GECM Model with I (1) Data, T=60†

Model 1 IV 2 IVs 3 IVs 4 IVs 5 IVs

% ECM Significant – one tail t-distribution 56.8 64.9 72.0 76.7 80.2
% ECM Significant – MacKinnon Values 5.3 5.5 5.3 5.0 5.1
Mean of α1 −0.12 −0.15 −0.18 −0.21 −0.24
Mean of α∗1 −0.32 −0.37 −0.42 −0.47 −0.52
% ECM & ≥ 1∆Xt Significant 3.8 8.6 13.3 18.4 24.3
% ECM & ≥ 1Xt−1 Significant 14.1 25.0 34.2 41.1 47.1

†Note: Percentage results in each cell based on 10,000 simulations per ECM model with null
hypothesis of no error correction. Finding of significant ECM and significant Xt−1 indicates
presence of error correction.
Mean of α∗1 when t−statistic exceeds MacKinnon critical value, i.e., cointegration is present.
∆Xt and Xt−1 significance (*p≤ 0.05, two-tail test). ECM significance (*p≤ 0.05, one-tail test)
DV and all IVs are unit-roots (I(1)). T = 60.
ECM Model: ∆Yt = α0 + α1Yt−1 + β0∆Xt + β1Xt−1 + εt.

In the absence of cointegration having unit-roots Yt−1 and Xt−1 on the right-hand-side

causes problems for hypothesis testing their coefficients. In common practice, a significant

α1 is used to confirm cointegration and its value is given as the speed with which a long-run

equilibrium between Yt and Xt is restored following a shock that separates them. Since α1

is also used to calculate long-run multipliers for the covariates, bias and/or a Type I error

gives a lot of false information.17

Table 4.2 shows GECM simulations using all I(1) data (T=60). All political science

applications of the GECM have used the t-distribution for α1’s hypothesis test. The first

row shows Type I error rates when this mistake is made.18 With a single I(1) X, 56.8 percent

16For example, Volscho and Kelly (2012) say: “...ECMs accommodate stationary and integrated variables,
which is useful because our analysis has a mix of both data types. In summary, the ECM is a very general
model that is easy to implement and estimate, does not impose assumptions about cointegration, and can
be applied to both stationary and nonstationary data (Banerjee et al. 1993; De Boef and Granato 1999; De
Boef and Keele 2008).” See Appendix C.6 in the Supplementary Materials for other misinterpretations.

17For an example of this in action see Table C.16 in Supplementary Materials
18Simulations were run in RATS 8.0. Series were specified to have no relationship to each other. I(1)
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of ECM coefficients are significant at the .05 level using a one-tailed t-test.19 With correctly

calculated critical values for α1 Type I errors on both the ECM parameter and the Xs can

be minimized. The second row shows just this – correct MacKinnon values put Type I errors

where they should be for α1, around 5% with 1-5 covariates.

But using incorrect critical values makes one likely to falsely conclude that cointegration

exists and that the equation is balanced. With Xt−1 as I(1), unresolved auto-correlation

leads to bias in the estimation of β1, shrunken standard errors, and higher Type I error rates

– β1 is significant (.05-level) 14.1% of the time in a bivariate model. Additional I(1) Xs

increase these problems and Type I errors creep higher. The row for ∆X shows that even

though appropriately filtered, auto-correlation elsewhere gives us Type I errors on β0 far too

often. A model can begin to look quite good with both a significant ECM parameter and a

long-run X. Using a standard distribution can lead one there far too easily.

Another issue is that additional I(1) Xs move the distribution of α1 further from zero.

Even when the proper MacKinnon values indicate the presence of cointegration, the expected

value of α1 decreases with each additional covariate. Ease of interpretability is a key selling

point of the GECM but this is one of several complications ignored by practitioners.

In all, Table 4.2 shows problems with the GECM with unrelated unit-root series. Testing

for cointegration and relying on MacKinnon values can address spuriousness but we might

still misstate the rate of error correction in a multivariate model. And, in practice, this ideal

scenario is exceedingly rare – not only would the data need to be truly I(1) (rare enough)

and actually cointegrated (rarer still), they would also need to be unbounded.

series were generated as Yt = Yt−1 + εt. I(0) series were generated as Yt = εt. I(d) series were generated to
a specified order of d using the RATS “arfsim” package. Near-integrated series were generated by specifying
ρ ∼ (0.9−1.0) in Yt = ρYt−1 + εt. Bounded series were created following Nicolau (2002). A brief explanation
of related versus unrelated series can be found in Appendix C.2.1. Details on procedures for bounded series
are in Appendix C.2.2 of the Supplementary Materials. Complete tables of results are in Appendix C.7.1
(near-integration, one table each for T=60 with 1,2,3,4, and 5 IVs and one table each for T=150 with 1,2,3,4,
and 5 IVs) and Appendix C.8.3 (fractional integration, one table each for T=60 with 1,2,3,4, and 5 IVs and
one table each for T=150 with 1,2,3,4, and 5 IVs).

19Of the GECM articles we surveyed all used a standard t-test and averaged roughly four IVs per regression:
Faricy (2011): 4, Jennings and John (2009): 2 plus interactions, Kayser (2009): 6-7 plus interactions (with
a larger N), Kelly and Enns (2010): 3-4, Kono (2008): 9 (with a very large N), Ramirez (2009): 9, Rickard
(2012): 5, Ura (2014): 4, Ura and Wohlfarth (2010): 4, and Ura and Ellis (2012): 5.
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4.4.2 Case 2: The Dependent Variable is a Bounded Unit-Root

Time series are often bounded (sometimes called “limited” or “regulated”) between an upper

and lower limit.20 Approval of leaders and parties, indices of economic evaluations like

the ICS, Policy Mood, and percentages of political and economic phenomenon all fluctuate

between upper and lower limits. Little is known about the consequences of bounded series

– especially regarding their effects on error correction models.

A bounded time series is an odd case. For one, it cannot meet the textbook definition

of a unit-root since its asymptotic properties include mean reversion and finite variance

(Williams 1992). Series like presidential approval and Stimson’s Mood (1991) cannot have

infinite variance or break their bounds and will oscillate around a long-term mean. Still,

over long periods a bounded series can exhibit the perfect-memory of integrated data or the

long-memory of near- and fractionally integrated data. Indeed, recent work has shown that

boundedness is compatible with unit-root properties and the idea of a bounded unit-root,

BI(1), exists in econometrics (Cavaliere 2005; Granger 2010).

Problems occur when the asymptotic properties of a bounded series are used to dismiss

the possibility of a unit-root and treat a series as stationary.21 Bounded series also over-reject

the Dickey-Fuller test (1979), increasing the tendency to treat them as stationary (Cavaliere

and Xu 2014). If one treats stationarity as a yes/no question and models a bounded series

as simply stationary then auto-correlation remains and inferences can be threatened.

Here we are interested in the problems bounded series present to the GECM. Bias comes

about simply: if Yt−1 was near the series’ bounds, ∆Yt will have a strong tendency in the

opposite direction. High (low) levels at Yt−1 will be followed by negative (positive) changes

at t, pushing α1 further into negative territory. This may tell us something about Yt but it

20Series bounded on one end are also problematic (Cavaliere 2005; Granger 2010).
21Durr (1992) pushes analysts to focus on the data in hand and rely on theory for whether series might be

integrated or not. Researchers who are unaware or dismissive of fractional integration techniques and who
also side with Williams’ (1992) argument will assume bounded series like Congressional Approval cannot
be I(1) and will routinely treat them as I(0). Keele (p.252 2007) is pragmatic on this point and tests for
stationarity and fractional integration while noting that asymptotically the series cannot be integrated.
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misinforms our inferences of re-equilibration between Yt and Xt. Movement away from the

bounds and towards the long-term mean will move α1 but this is bias, not error correction.

Table 4.3: GECM Estimation Problems with a Bounded Dependent Variable

Bivariate

DV Bounds (1− 100) (49− 71) (1− 100) (49− 71) (1− 100) (49− 71)

Model Type T=60, σ=1 T=60, σ=2 T=60, σ=3

% ECM Significant 80.0 65.3 61.4 75.3 62.6 86.6
% ECM Significant* 6.0 7.7 6.1 9.9 6.1 12.4
Mean of α1 -0.12 -0.14 -0.13 -0.17 -0.13 -0.20

T=100, σ=1 T=100, σ=2 T=100, σ=3

% ECM Significant 61.2 70.0 63.1 87.0 64.8 98.3
% ECM Significant* 7.0 10.5 7.6 14.8 8.1 23.1
Mean of α1 -0.08 -0.10 -0.08 -0.13 -0.09 -0.16

T=150, σ=1 T=150, σ=2 T=150, σ=3

% ECM Significant 61.5 74.3 64.3 97.3 67.0 99.9
% ECM Significant* 6.5 12.2 7.6 20.5 8.4 45.6
Mean of α1 -0.05 -0.07 -0.06 -0.10 -0.06 -0.14

Multivariate (2 IVs)

DV Bounds (1− 100) (49− 71) (1− 100) (49− 71) (1− 100) (49− 71)
Model Type T=60, σ=1 T=60, σ=2 T=60, σ=3

% ECM Significant 67.7 73.3 68.8 82.4 70.0 90.1
% ECM Significant* 6.2 7.8 6.4 10.6 6.6 12.6
Mean of α1 -0.16 -0.18 -0.16 -0.21 -0.17 -0.24

T=100, σ=1 T=100, σ=2 T=100, σ=3

% ECM Significant 69.7 78.0 71.6 91.0 73.3 98.6
% ECM Significant* 6.2 9.6 6.6 13.9 7.0 20.8
Mean of α1 -0.10 -0.12 -0.10 -0.15 -0.11 -0.18

T=150, σ=1 T=150, σ=2 T=150, σ=3

% ECM Significant 69.5 80.5 72.0 97.6 74.4 100
% ECM Significant* 6.8 11.5 7.7 18.5 8.4 38.5
Mean of α1 -0.07 -0.09 -0.07 -0.12 -0.07 -0.15

Note: Percentage results are of 10,000 simulations for each specified model and T . All independent
variables are integrated I(1). *Significant using MacKinnon Values.

This is shown in Table 4.3. Following Nicolau (2002) we simulate unit-roots that bounce

back as they near upper or lower thresholds.22 We explored the effects of tighter bounds,

longer series, series with more variance, and models with additional independent variables.

In all, BI(1) series are problematic for estimating the ECM coefficient: the average value

22The process is generated by: Xt = Xt−1 + ek(e−α1(Xt−1−τ) − eα2(Xt−1−τ)) + εt where α1 ≥ 0; α2 ≥ 0;
k < 0; and εt is assumed to be i.i.d. with a mean of 0 and variance of 1. Appendix C.2.2 in Supplementary
Materials provides additional detail and graphics on how these series were generated.
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jumps and Type I errors rise. Also, the more the bounds come into play – tighter bounds,

more variance, or a longer sample – the more Type I errors increase.

Next, we create series meant to mimic derivatives of Stimson’s Mood (e.g. Kelly and

Enns 2010) – BI(1) with σ = 3 and bounds of 49 and 71 – and regress them on an I(1) X

in the GECM. With T = 150 the ECM parameter is significant 99.9% of the time using a

one-tail t-distribution and 45.6% of the time with MacKinnon values.23 Boundedness does

not seem to affect estimation of β1 or β0 but, if we use α1 to discuss equilibrium relationships

or to calculate long-run multipliers, we will misstate the relationships between the variables.

Note that Table 4.3 represents the GECM’s best chance with a bounded Y . A bounded and

fractionally integrated DV will be even more problematic than the BI(1) series tested here.

And, if X were to deviate from I(1), further problems would occur.

This adds an important caveat to the GECM model. Even if we find series that are

strictly unit-roots and we use MacKinnon CVs, mistakes are still rampant if our dependent

variable is one of the vast majority of political times series that is bounded. Just how

prevalent are bounded series? For instance, we chose our five paper replications based on

their journal prominence but, as it happens, the papers use a total of 13 series as dependent

variables and all thirteen are bounded.

4.4.3 Case 3: The Dependent Variable and all Independent Variables are Sta-

tionary

Next we review the case where all series are stationary, precisely the type of data De Boef and

Keele (2008) had in mind; their points that researchers may investigate long-run dynamics

without worrying about cointegration is meant to apply to stationary data. Further, the

use of a standard t-test for the error correction hypothesis is based on the assumption of

stationarity. However, without adjusting how the GECM is interpreted with stationary data,

23Transformation of a bounded dependent variable does not seem to solve the Type I error problem. We
transformed our series into log odds as Y ∗

t = log Yt

1−Yt
which creates a series with an unbounded error process.

But the Type I error rate actually worsens – with T=150, bounds of 49 to 71, and σ=3, Type I errors with
MacKinnon values increase approximately 2%.
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a number of problems remain.

First, a stationary dependent variable can usually guarantee a significant ECM parame-

ter. Second, in many instances, neither the size of the ECM coefficient nor the strength of its

significance implies a close relationship between the dependent variable and other series in

the model. As a demonstration, Table 4.4 shows the simulated results of a bivariate GECM

in which the DV is stationary but with varying degrees of auto-regression, i.e. (ρ,0,0), and

the IV is a white noise process, i.e. (0,0,0).

Table 4.4: ECM Significance and Coefficient Size by degree of DV
Autoregression†

ρ 0 .1 .2 .3 .4 .5 .6 .7 .8 .9

% ECM Significant 100 100 100 100 100 100 100 99.8 97.7 79.1
Mean of α1 -1.03 -0.92 -0.83 -0.73 -0.64 -0.54 -0.45 -0.36 -0.26 -0.17

† Note: Cell entries are the result of 10,000 simulations for each bivariate model with the DV specified
at ρ. IV integrated I(0). ECM significance (*p≤ 0.05, one-tail test).

The prevalence of significant ECMs indicates that we should rethink the meaning of the

α1 coefficient when data are stationary. We are seeing reequilibration here, but it is the

natural reversion of the dependent variable to its mean. That is, α1 is capturing the speed

with which Y returns to its own equilibrium (its mean) following a shock or an effect from X.

What we see in Table 4.4 is not evidence of error correction – it is simply confirmation that

Y is stationary.24 When working with stationary data, the larger the absolute value of the

ECM, the less of a long-run relationship between X and Y . If Y has no long-run tendencies

except mean reversion, it is an odd choice to be looking for its long-run relationship with X.

This is problematic when common practice is to use α1 to speak to error correction

and re-equilibration between variables. This occurs frequently in practical applications – a

statistically significant and substantively large α1 coefficient is claimed to indicate strong

re-equilibrating behavior between Yt and some independent variables with weaker connec-

tions.25 Using the raw ECM value to compute long-run multipliers would further solidify a

24This is not surprising given that all stationary series are in equilibrium, as recognized by De Boef and
Keele (2008, p.189) and Banerjee et al. (1993, p.4).

25Casillas, Enns, and Wohlfarth (2011) investigate public opinion’s effect on salient Supreme Court deci-
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researcher’s faith in the (falsely strong) relationship.

Problems extend beyond mistaken inferences regarding α1. To explain, we return to the

linear transformation between the ADL and GECM. Despite the algebraic equivalence of

the two models, as D&K note, “differing quantities are directly estimated in each model”

(De Boef and Keele 2008, p.195). The autoregressive distributed lag (ADL) model is specified

as:

Yt = α0 + α1Yt−1 + β0Xt + β1Xt−1 + εt (4.6)

And the B̊ardsen GECM transforms this into:

∆Yt = α0 + α∗1Yt−1 + β∗0∆Xt + β∗1Xt−1 + εt (4.7)

D&K (p.190) note the equivalence between parameters in the ADL and the GECM, speci-

ficially: α∗1 = (α1 − 1), β∗0 = β0 and β∗1 = β0 + β1. Here we are interested in the long run

parameter, β∗1 . It is the sum of two quantities from the ADL (β0 + β1) but, critically, its

standard error is not.

For example, we estimate bivariate ADL and GECM models using data from Durr,

Martin, and Wolbrecht (2000): the DV is Supreme Court Support and the IV is Congressional

Approval, both of which are found to be stationary by the authors (fn.13, p.772). Our results

are in Table 4.5.

Equation (4.6)’s ADL has two dynamic parameters, α1 and β1. The short-term effect is

captured as β0 and the long-run effect can be calculated as (β0 + β1)/(1 − α1). What we

see in the first column of Table 4.5 is that the dynamic parameters fail to reject their null

hypotheses – neither the lag of the dependent variable (α1=0.27, s.e.=0.16) nor the lagged

sions. Finding an ECM of -1.27 (s.e.=0.15) they say: “The magnitude of the error correction rate in this
model suggests that, following just one term, the Court‘s behavior almost completely adjusts to changes in
ideology and social forces at term t.” And, (footnoted): “Because the error correction rate indicates the
proportion of the long-term effect that occurs in each subsequent time period, an absolute value greater than
1 seems surprising.” We find Salient Cases to be stationary (d = 0.3 (s.e.=0.08); DF=3.98?) in level-form
which explains how the ECM value is possible. A second example, Jennings and John (2009), uses agenda
items in Queen’s Speeches 1960-2001 – close to stationary – as dependent variables and estimates many
ECMs below -1.
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Table 4.5: The ADL vs. the GECM: Effects of Congressional Approval on
Supreme Court Approval†

Model ADL GECM

Supreme Court Approvalt−1 0.27 (0.16)
Error Correction(Supreme Court Approvalt-1) -0.73? (0.16)
Congressional Approval 0.49? (0.22)
Congressional Approvalt−1 -0.05 (0.24) 0.43? (0.15)
∆ Congressional Approval 0.49? (0.22)
Constant 41.83? (12.48) 41.83? (12.48)
N 41 41
R2 .41 .43
Adjusted R2 .36 .39

† Note: Data comes from Durr, Martin, and Wolbrecht (2000). ADL Model: DV Supreme
Court Approval represents the authors’ semi-annual measure of approval for the Court. ECM
Model: DV ∆ Supreme Court Approval represents changes to this measure of approval.
Significance of ECM (?p < .05, one-tail test) and coeffcients (?p < .05, two-tail test)

IV (β1=-0.05, s.e.=0.24) are significant. In short, there is no support for the use of a dynamic

model.

But looking at the GECM, we see that the error correction parameter – α∗1 calculated

as the ADL’s α1 minus 1 – is significant as we would expect from Table 4.4. Additionally,

because β∗1 consists of the ADL’s β0+β1 while the standard error is not additive, the long-run

effect of CongressionalApproval is now significant at the p < .05 level. Whereas the results

of the ADL conclude that we should estimate a static regression, the significant parameters

in the GECM encourage the researcher in the opposite direction. Given publication bias

towards significant findings, the GECM is again attractive. The ADL and the GECM may

be algebraically equivalent, but the reorganization of parameters is not benign.

4.4.4 Case 4: The Dependent Variable is Strongly Autoregressive / Near-

Intergrated

D&K argue that “the only situation where one would strongly prefer the ECM [as opposed

to the ADL] is if the data are strongly autoregressive” and “[because the] variables are

parameterized in terms of changes, helping us to avoid spurious findings if the stationarity

of the series is in question due to strongly autoregressive or near-integrated data.”(De Boef

and Keele 2008, p.195). We find, however, that the GECM runs into serious problems here

as well. In particular, rejection rates on the long-run parameter (β∗1) reach unacceptable
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levels with strongly autoregressive, or near-integrated series.

De Boef (2001) and De Boef and Granato (1999) discuss the GECM in the case of

near-integrated data and find it appropriate. Additionally, DeBoef and Granato (1997)

investigate rates of spurious regressions with near-integrated data and find that the ADL

solves the spurious regression problem. However, this is not the case for the GECM – spurious

regressions appear too frequently with either near-integrated or other stationary data. With

the DGP of Yt = ρYt−1 + εt, we find elevated rates of Type I errors on β∗1 far below the range

of ρ that is typically considered near-integrated, i.e. 0.90 to 0.99.

Our findings are different from the previously mentioned studies for a number of reasons.

First, the investigation of the power of the GECM in both De Boef (2001) and De Boef and

Granato (1999) use models in which the data are pre-specified to be (near-)cointegrated. As

we note above, the GECM is far more powerful at detecting cointegration (avoiding Type

II errors) than it is at estimating its presence (avoiding Type I errors)(Zivot 2000). Second,

as noted, the ADL and GECM do not estimate the same parameters and as a result, they

produce different rejection rates. Whereas the ADL is suitable for near-integrated series,

fitting the exact same data in a GECM produces spurious regressions. These problems are

persistent, even with dependent variables that are clearly stationary.

To investigate the disparity in rejection rates between the ADL and the GECM we gen-

erate series with varying degrees of autoregression. The upper section of Table 4.6 contains

the rejection rates of the null hypothesis that β1 of the ADL model is equal to zero.26 The

lower section contains the rejection rates for the null hypothesis with respect to the GECM:

that both the error correction parameter α∗1 and the long-run parameter β∗1 of the GECM

model are jointly equal to zero.27

Our findings for the ADL match those of DeBoef and Granato (1997) who find that the

26This is a recreation of Table 4 of DeBoef and Granato (1997), which tested the rejection rate of β0. In
our case, we are interested in the rejection rates of β1, the coefficient on Xt−1 in each model. Additionally,
we have expanded our criteria to include series with lesser degrees of autoregression. Neither of these changes
affect the ultimate conclusion with respect to the ADL: the model is proper for use with near-integrated
data.

27To reject the null hypothesis both α∗
1 and β∗

1 must be significant.
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Table 4.6: Rejection Rates for the Null Hypothesis of ADL (β1=0) and GECM
(α∗1=0 & β∗1=0) with Near-Integrated Data

ρx

ADL Model
ρy 0.75 0.80 0.85 0.90 0.95 0.99

0.75 5.7 5.8 5.6 5.6 5.9 6.0
0.80 5.7 5.9 5.7 5.7 5.9 6.0
0.85 5.7 5.9 5.8 5.8 6.0 6.0
0.90 5.7 5.9 5.8 5.8 6.0 6.1
0.95 5.7 5.9 6.0 5.8 6.1 6.3
0.99 6.0 5.9 6.0 5.8 5.9 6.2

GECM Model
ρy 0.75 0.80 0.85 0.90 0.95 0.99

0.75 7.6 8.1 8.3 8.8 9.1 9.3
0.80 7.9 8.4 8.9 9.4 9.9 10.2
0.85 8.2 8.8 9.2 10.2 10.7 11.4
0.90 8.1 8.7 9.6 10.8 11.8 13.0
0.95 7.3 8.0 9.2 10.6 12.3 14.3
0.99 6.4 7.1 8.1 9.7 11.4 13.7

Note: Percentage results based on 10,000 simulations.T=60. Each
model contains one IV.
ADL model: Yt = α0 + α1Yt−1 + β0Xt + β1Xt−1 + εt
GECM: ∆Yt = α0 + α∗1Yt−1 + β∗0∆Xt + β∗1Xt−1 + εt. Significance of
α∗1 (?p < .05, one-tail test)
Significance of β1, β∗1 (?p < .05, two-tail test)

model has acceptable spurious regression rates with near-integrated data. But we also find

that this does not translate for the same data in the GECM. Precisely the type of data

D&K claim we should favor with the GECM proves susceptible to Type I errors. Excessive

rejection rates are also found when data are less strongly autoregressive, e.g. ρ = .75.28

There are a number of important conclusions to draw here. First, despite being alge-

braically equivalent, the GECM and the ADL do not produce the same results. The GECM

does not perform as well with strongly autoregressive, or near-integrated data. In terms

of model preference, the ADL should be preferred over the GECM with either stationary,

strongly autoregressive, or near-integrated data. With a stationary DV the error correction

parameter is practically guaranteed significance and the substantive meaning of its coefficient

is inscrutable.

28Since these results are of a joint hypothesis test, two parameters must be significant. The rejection rates
of just the β∗

1 are higher with near-integrated data. Additionally, while these results are based on a bivariate
model, in practice the GECM is fit with more IVs. The probability of finding a significant β∗

1 parameter
increases with the inclusion of additional IVs. Further, the nature of the ECM with stationary data means
the significance of the α∗

1 parameter is not a sufficient gatekeeper.
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Second, although using MacKinnon CVs with near-integrated data would limit the rate

of spurious regressions (see: Section C.7.1 of Supplement), this cannot be recommended

since the decision of when to switch to MacKinnon values with stationary data will be

an arbitrary one. The MacKinnon values are recommended based on the unit-root or not

distinction. Researchers cannot simultaneously argue that data are stationary while using

unit-root critical values. Spurious regressions appear, for example, when ρ = 0.75 and the

correct critical values in that case are derived from neither the MacKinnon nor the normal

distribution – they are unique to the particular data being used. Of course, series that are

not unit-roots may not be simply autoregressive. Many political time series have been shown

to be fractionally integrated and these prove even more troublesome for the GECM.

4.4.5 Case 5: The Dependent Variable is Fractionally Integrated, (0,d,0), and

0<d<1

Fractional integration (FI) is common among political time series (Box-Steffensmeier and

Smith 1996, 1998; Byers, Davidson, and Peel 2000; Lebo, Walker, and Clarke 2000; Lebo

and Moore 2003) so finding problems here should make political researchers especially wary

of the GECM.29 Figure 4.2 shows a FI series and its ACF and PACF. Auto-correlations

persist for long periods and, without pre-whitening, cause problems in regression analyses

(Lebo, Walker, and Clarke 2000; Tsay and Chung 2000). What are the consequences of using

fractionally integrated series in the GECM?

Recall that the GECM model is ∆Yt = α0 + α1Yt−1 + β0∆Xt + β1Xt−1 + εt. We showed

that when Yt is a unit-root the left-hand-side of the equation is properly treated and ∆Yt

is clear of auto-correlation. We also showed that if Yt begins as stationary, applying the

differencing operator ∆ will over -difference it. In the FI case, with 0 < d < 1, the GECM

will again over-difference the series to varying degrees depending on the initial value of d.

29Aggregating individuals with heterogeneous AR processes creates a long-memory series with a mix of
stationary and non-stationary attributes (Granger 1980). Many political time series are created in this way.
Pickup (2009) is the only attempt we know of that argues that FI does not apply to aggregate political data
(but see Young and Lebo (2009) for a rebuttal).
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Figure 4.2: A Fractionally Integrated Series with ACF and PACF

Panel a: Fractionally Integrated Series
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Note: Significant spikes on the ACF and PACF are problematic correlations.

For example, a series that in levels is d=0.7 will become d=-0.3.30

Over-differencing builds a moving average process into the transformed series (Dickinson

and Lebo 2007). For example, if we (1) begin with a FI series: (1 − L)dYt = εt where

εt ∼ N(0, σ2), (2) isolate Yt, and (3) apply first differencing, we get: ∆Yt = εt
(1−L)d

− (εt−1)
(1−L)d

.

If d = 0 this leaves a non-invertible moving average process as discussed above. With

smaller degrees of over-differencing, an MA process of 1
(1−L)d

becomes a part of ∆Yt. Over-

differencing by just 0.4, for example, gives a 99.4% chance of creating a significant MA

parameter (Dickinson and Lebo 2007).

Figure 4.3 shows the consequences of first-differencing FI data in the GECM. The X-axis

shows Yt’s original order of integration. On the left panel’s Y-axis is the ECM’s t-statistic

and on the right panel’s Y-axis is the ECM coefficient.31 By chance, the probability of getting

30DeBoef and Granato (1997) discuss the near-integrated case and find that an over-differenced series will
contain negative auto-correlation in its error term and will produce non-credible inferences.

31Here T = 60 and X is I(1). See Appendix C.8.3 and Tables C.48-C.57 in Supplementary Materials for
detailed results where we vary sample size and the order of integration for both X and Y . See Figure C.9 in
Supplementary Materials for another view of bias in the ECM in this case.
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Figure 4.3: Significance and Size of ECM Parameter Based on Y’s Order of
Fractional Integration
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Note: Plots based on bivariate regressions with T = 60. Horizontal line on the right indicates the theoretical limit of an ECM.

a t-statistic of -4 or less is roughly 1 in 10,000 and -7 or less is roughly 1 in 100,000,000. But

such t values are routine when using unrelated FI data in the GECM. As Y gets further into

stationary territory, the coefficient for Yt−1 declines and Type I errors become the norm.

The right-hand panel of Figure 4.3 shows the size of the ECM coefficient. Read as the

(negative of the) proportion of the gap that is re-equilibrated in the next period, it should

never be below -1. Here we see that it often is – a fact that might lead a researcher to

conclude they have found an especially close relationship between Yt and the Xs.

For a different view, Figure 4.4 shows the density plots of the ECM parameter’s t-statistic

as Yt’s d value decreases from one. The sampling distribution for the test-statistic moves

along with the order of integration of Yt. Even if we could pin down the correct critical

values, the meaning of the ECM coefficient has been lost. We are basically sliding toward
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Figure 4.4: Sampling Distribution of the ECM t-statistic by Order of
Fractional Integration

Note: Density plots of t-distributions from simulations of bivariate GECMs when both DV and IV are FI, I(d). T = 60. ECM
Model: ∆dYt = α0 + α1Yt−1 + β0∆dXt + β1Xt−1 + εt.

the ECM story told above for a Yt that is stationary. Ultimately, the value of α1 tells us

more about the level of memory in Yt than about its relationship to independent variables.

4.4.6 Case 6: The Dependent Variable is Explosive, d>1

A time series where d > 1 is referred to as an explosive process so that increases (or de-

creases) are followed by larger increases (or decreases) (Fuller 2009). While not a common

trait, explosive processes can be found in political science.32 For our purposes here, the

explosive case presents its own set of problems to the GECM the most basic of which is

that the equation will not be balanced if one variable is explosive. When d > 1, using

first-differencing for Y will leave it under-differenced and some measure of auto-correlation

32For example, our estimate of d for the Policy Liberalism variable of Kelly and Enns (2010) is 1.35
(s.e.=0.10) (See Table C.31 of Appendix C.5.2). This might indicate that the ideological tone of legislation
passed by Congress shifts quickly following electoral gains and losses.
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will remain. Additionally, having Yt−1 on the right-hand side will introduce a great deal of

auto-correlation to the model. In short, explosive data are in need of pre-whitening and,

when possible, some fractional filter allowing d > 1 will be the best approach to remove

auto-correlation and allow reliable inferences (Hosking 1981).

4.4.7 What Models Should We Use Instead?

Our findings indicate that if one can establish that all series in the model are stationary,

the ADL model is preferable to the GECM. If all series contain unit-roots then one can

look for cointegration and, if it is present, estimate a GECM while thinking about the

consequences of bounds. Next, we discuss two more flexible ECM frameworks: the fractional

cointegration and 3-step fractional ECM model of Clarke and Lebo (2003) and the auto-

regressive distributive lag (ARDL) bounds approach of Pesaran, Shin, and Smith (2001,

PSS).33

While the Engle and Granger (1987) approach begins with two I(1) series combining

to create a series of I(0) residuals, fractional cointegration adds flexibility by relaxing the

assumptions that a) stationarity should be dealt with as a dichotomy, b) the parent series

need be I(1), and c) the residuals between Y and X need be I(0) (Baillie and Bollerslev 1994;

Box-Steffensmeier and Tomlinson 2000; Cheung and Lai 1993; Dueker and Startz 1998). To

find fractional cointegration, the researcher must first establish that the parent series are of

the same order of fractional integration, and second, that the ECM is of a lower order of

integration (d) than the parent series.

The first step follows Engle and Granger (1987) and regresses the level-form Y on the level

form X (or Xs) hypothesized to be error correcting with Y . The residual series is the ECM.

The d value is then identified for each series – Y , X, and the ECM – using an estimator such

as that of Robinson (1995).34 If the d value for the ECM is less than the d value for both Y

33This is not meant to be an exhaustive list of available techniques. For example, Brandt and Freeman
(2006) evaluates several Bayesian and multi-equation approaches to time series analyses in political science.
For a thorough evaluation of Bayesian approaches to time series see: Bauwens, Lubrano, and Richard (2000).

34Two concerns are commonly raised over the estimation of d - the power of estimators with smaller samples
and poor performance of estimators in the presence of significant short memory (Baillie and Kapetanios 2007).
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and X, then one can conclude that error correction is occurring. As with Engle and Granger

(1987), not finding any evidence of error correction should be enough evidence to drop an

ECM specification at this point. However, if one wishes, the approach is capable of following

D&K’s advice and estimating error correction in the absence of (fractional) cointegration.

As Clarke and Lebo (2003) shows, to avoid bias and Type I errors, the ECM cannot be

left as is – unlike Engle and Granger’s model with a strictly stationary ECM, here the ECM

may still have auto-correlation with d > 0. The next stage fractionally differences Y , X, and

the ECM by each one’s own d value, creating ∆dY Yt, ∆dXXt, and the FECM (∆dECMECMt)

before the final step. For example, if Y and X are both d = 0.8 and the cointegrating

residuals are d = 0.5 then Y and X need to be differenced by 0.8 and the ECM needs to be

differenced by 0.5. The last step estimates:

∆dY Yt = α0 + α1∆dECMECMt−1 + β1∆dXXt + εt. (4.8)

This follows the basic intuition of Engle and Granger’s ECM framework and the logic of

pre-whitening and balancing equations: both right- and left-hand-side variables must be free

of auto-correlation to get trustworthy estimates (Hosking 1981; Tsay and Chung 2000; Lebo,

Walker, and Clarke 2000; Clarke 2003). By transforming every component of the model to

be (0,0,0), the three-step method establishes equation balance and protects inferences while

being quite flexible.35 Simulation results from FECM models with randomly generated FI

Byers, Davidson, and Peel (2000) investigate a wide range of public opinion series and find that the vast
majority are well described as (0,d,0) models; political time series rarely demonstrate the need for higher-
order approximations (see also: Lebo, Walker, and Clarke 2000)). Estimates of the data sets we replicated
affirm the conclusion of Byers et. al, and we provide the Schwartz Bayesian criterion estimates for various
ARFIMA (p, d, q) models in Appendix C.8.1. Regarding shorter time series, Robinson (1995) finds that the
semi-parametric Whittle estimator is unbiased with as few as 64 observations. Grant (n.d.) investigates the
finite sample properties of various estimators and finds that both semi-parametric and parametric estimators
are unbiased with (0,d,0) series, even with N as small as 40. Further, when higher order approximations are
necessary, the negative bias found in semiparametric estimators and the parametric exact MLE is not present
in the frequency-domain approximate ML estimator. Appendix C.8.1 compares the long memory estimates
of replicated data series using three estimators: the semi-parametric Whittle, the exact ML estimator, and
the frequency-domain ML estimator. The estimates agree with each other closely.

35The FECM model can be used in a near-VAR framework so that one can measure how multiple endoge-
nous variables re-equilibrate to each other. See, for example: Lebo, McGlynn, and Koger (2007).
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series are shown in Table 4.7. The Type I error rate for error correction hypotheses stays

below the 5 percent threshold regardless of the memory of the original series.

Table 4.7: Results of FECM Model with FI Data, T=60†

Fractional Order
of Integration (d=) 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

% FECM Significant 4.5 4.0 3.9 3.7 3.7 3.4 3.8 4.0
% Significant X 5.9 5.8 5.9 5.9 5.9 5.6 5.9 5.8
% FECM Significant with 1.7 1.9 1.9 1.9 2.1 1.9 2.3 2.4
d < d(Y ) and d(X)

†Note: Percentage results in each cell based on 10,000 simulations per bivariate FECM model with null
hypothesis of no fractional cointegration. Significance of FECM based on one-tail test. Significance of X
based on two-tail test. DV and IV are fractionally integrated at the same level of d. T = 60.
FECM Model: ∆dY Yt = α0 + α1∆dECMECMt−1 + β1∆dXXt + εt..

One disadvantage of the three-step model is interpretability. Explaining that “a one-unit

change in fractionally differenced X leads to a β change in fractionally differenced Y ” is dif-

ficult. And, while the FECM’s α1 coefficient in Equation 4.8 has a similar interpretation to

an ECM in Engle and Granger’s two-step model – the speed of error correction – the coeffi-

cient will be slightly different from the value that relates to the level-form variables. In both

cases, however, the extra difficulty in interpretability is a good trade-off for a trustworthy

hypothesis test that avoids both Type I and Type II errors.

Pesaran et al.’s (2001) ARDL bounds test procedure falls between the GECM and frac-

tional cointegration techniques in terms of flexibility:

∆Yt = β0 + θ1Yt−1 + θ2Xt−1 +

p∑
i=1

$i∆Yt−i +

p∑
j=0

βj∆Xt−j + εt. (4.9)

The ARDL model uses the same ∆Yt as the GECM for the dependent variable and the

inclusion of the ∆Yt−i and ∆Xt−j terms on the right-hand side of the equation allow for serial

correlation and ensure the error term is white noise. With the bounds testing approach, the

regressors can be of mixed orders of integration – stationary, non-stationary, or fractionally

integrated - and the use of bounds allow the researcher to make inferences even when the

integration of the regressors is unknown or uncertain. The ARDL model allows greater

flexibility on the right hand side, but because it is a cointegration test, the dependent
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variable, Yt, must still be I(1). Further, the researcher must ensure that no series within the

model is I(2), the inclusion of which will invalidate the model’s results.

The ARDL is a two-step procedure and the first step, bounds testing, refers to hypothesis

testing the presence of a long-run relationship via an F -test, which tests the joint significance

of the coefficients on the lagged level-form variables in Equation 4.9, i.e., H0: θ1 = θ2 = 0.

The F -test has a non-standard distribution that depends on the number of regressors, the

presence of an intercept or trend, and the sample size. The critical values for the bounds

of the F -test were computed by PSS based upon sample sizes of 500 and 1000, however the

method is appropriate for use with smaller samples. For smaller samples between 30 and 80,

Narayan (2005) provides proper critical values.

Should the F -test exceed the upper bound, the researcher can reject the null of no

cointegration and conclude that a long-run relationship is present, irrespective of the order(s)

of integration of the regressors. If the F -statistic falls below the lower bound, the null

hypothesis cannot be rejected. Note that the presence of cointegration implies the presence

of Granger causality in at least one direction, however the ARDL does not indicate the

direction of causal ordering (See: Dickinson and Lebo 2007, for a short summary and example

of the method.). Among the model’s disadvantages is the loss of degrees of freedom with

longer lags. Additionally, the model’s flexibility in terms of its allowance of uncertainty as to

the regressors’ orders of integration is helpful should the F -test exceed the bounds, however

if the computed F -statistic fall within the critical value band, the order(s) of integration

must be determined before a correct conclusion can be made.

4.5 Applications

Next, we replicate five recent GECM studies. Two are presented below and three (Sanchez Ur-

ribarri et al. (2011), Kelly and Enns (2010), and Volscho and Kelly (2012)) can be found in

Appendices C.5.1, C.5.2, and C.5.3 of Supplementary Materials. In each study, key findings

change when using alternative methods.
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4.5.1 Example 1: Casillas, Enns, and Wohlfarth (AJPS, 2011)

Casillas, Enns, and Wohlfarth (2011, CEW) investigate the effect of public mood on the

Supreme Court’s reversal of cases in a liberal direction and find a strong positive relation-

ship for non-salient cases; for salient cases, public mood has no effect. These are compelling

findings given long debate on the relationship between public opinion and the Court’s behav-

ior. Using the GECM, CEW find Court responsiveness to be much stronger than previously

shown. ECM parameters of -0.83, -0.77, and -1.27 are described as powerful equilibrium

relationships where previous work had found tenuous ties at best.36

We first check the properties of the dependent variables.37 As seen above, the further a

series is from I(1), the more negative the ECM coefficient and its t-statistic will be. As shown

in Table 4.8, All Reviews, Non-Salient Reviews, and Salient Reviews test as fractionally

integrated with the d value for Salient Reviews noticeably lower. Error correction is very

likely to appear strong in a GECM of Salient Reviews, regardless of the covariates.

Table 4.8: Dickey-Fuller Results of CEW’s Dependent Variables†

Model All Reviews Non-Salient Reviews Salient Reviews

Dickey-Fuller Coefficient -0.18 -0.18 -0.51
Dickey-Fuller t-statistic -2.28 -2.32 -3.98?

MacKinnon DF Critical Value -2.94 -2.94 -2.94
Estimated d Value 0.62 (0.11) 0.62 (0.12) 0.36 (0.08)

† Note: Dickey-Fuller critical values are from MacKinnon (1994). d values estimated using Stata’s exact ML
estimator; Robinson’s semi-parameteric estimator in RATS provides similar estimates: All
Reviews(d = 0.63); Non-Salient Reviews (d = 0.65); Salient Reviews (d = 0.30).

To demonstrate, we use CEW’s DVs and simulate covariates to replicate their three

models.38 Table 4.9’s Model 1 is based on 10,000 simulations per DV with three randomly

generated (0,0,0) IVs. Following the authors’ use of standard t critical values, the models

have 66.3%, 66.5%, and 97.7% Type I error rates for error correction, respectively. Switching

36ECM parameters of All Review, Non-Salient Review, and Salient Review models, respectively. For Non-
Salient Reviews they report: “The error correction rate indicates that 77% of the long-run effect of mood
will occur at term t+ 1 (0.68) and an additional 77% of the remaining effect will influence the Court at term
t+ 2 (0.16). Therefore, 94% of the total long-run effect of public opinion at term t will be manifested in the
justices’ behavior after just two terms.”

37Replications of CEW’s models and further details are in Appendix C.3.
38We follow CEW’s use of 2SLS but our findings are roughly the same using OLS (see Appendix C.3.3).
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to MacKinnon values provides reasonable results for All Reviews and Non-Salient Reviews :

no errors at all. That ∆X and Xt−1 are significant far too often is still a problem considering

the IVs were specifically generated as approximations of white noise processes. The Salient

Reviews column highlights the problems of estimating the GECM with a DV with a low

order of fractional integration. The MacKinnon values find over 25% of ECMs significant

and the average size of the α1 parameter would be reported as strong re-equilibration.

Table 4.9: Simulations of Results for CEW’s Dependent Variables in Two
Scenarios

All Non-Salient Salient
Reviews Reviews Reviews

Model 1‡

% ECM Significant - one tail t-distribution 66.3 66.5 97.7
% ECM Significant - MacKinnon Values 0 0 26.7
Mean of α1 -0.16 -0.16 -0.51
Mean t-statistic of α1 -1.79 -1.79 -3.39
% ECM & ≥ 1∆Xt Significant 19.1 16.4 24.3
% ECM & ≥ 1Xt−1 Significant 15.4 12.1 23.7

Model 2‡‡

% ECM Significant - one tail t-distribution 94.7 95.2 99.9
% ECM Significant - MacKinnon Values 26.7 25.4 95.3
Mean of α1 -0.45 -0.44 -0.96
Mean t-statistic of α1 -3.23 -3.21 -5.87
% ECM & ≥ 1∆Xt Significant 26.6 23.5 31.3
% ECM & ≥ 1Xt−1 Significant 53.9 51.8 78.5

Note: 10,000 simulations per model per DV. ‡Model 1: IVs are level stationary I(0). ‡‡Model
2: IVs are unit-roots (I(1)). MacKinnon ECM critical values from Ericsson and MacKinnon
(2002) for T = 45 with 3 IVs: -3.838.

Model 2 of Table 4.9 presents simulations for more realistic data – unit-root IVs. Even

with MacKinnon values, we find a significant ECM over 25% of the time for All Reviews

(26.7%) and Non-Salient Reviews (25.4%). The ECM coefficients, averaging -0.45 and -0.44,

are far from zero and the hypothesis tests on ∆Xt and Xt−1 are much worse – at least one

of the three lagged level-form IVs is significant over 50% of the time. The Salient Reviews

model is as bad as we would expect: the average ECM coefficient is -0.96, what CEW would

call almost complete re-equilibration, with random data. Comparing the results of Model 1

and Model 2 shows that bias in α1 as well as β0 and β1 increases markedly in relation to the

memory of Xt, a reminder that pre-whitening is important for all variables in a model.

Model 2 also highlights inferential problems caused by the DV’s order of integration. The
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Dickey-Fuller test fails to reject the null of a unit-root for both All Reviews and Non-Salient

Reviews, but when regressing these DVs on simulated I(1) series we reject the null of no error

correction far too often, even with MacKinnon values. In this case, the fractional integration

of the dependent variables confounds the hypothesis test.

Next, Table 4.10 shows the results when we replace CEW’s three IVs with: yearly World-

wide Shark Attacks, U.S. Tornado Fatalities, and U.S. Beef Consumption.39 Using CEW’s

interpretation and favored t-value we find strong evidence of error correction in all three

models.40 With an ECM of -1.04 (s.e.=.16), even using MacKinnon’s critical values leads to

finding extremely strong error correction in the Salient Reviews model.

The ECM problems are compounded by spurious regressions – our nonsense IVs are

significant far too often. Across all three models, seven of our nine short-term variables and

six long-term variables – along with their respective LRMs – are significant.41

Because each of the three dependent variables used by CEW are estimated to be fraction-

ally integrated, we also re-estimate their data using fractional methods. We first pre-whiten

by fractionally differencing each series by its estimated order of fractional integration. The d

estimates, standard errors, and confidence intervals for each series can be found in Appendix

C.3, Table C.5. Each DV is fractionally integrated, however we cannot reject the null that

the three IVs are unit-roots. Because no DV / IV combination shares the same order of

fractional integration, no model is a candidate for fractional cointegration.

Table 4.11 presents the results of regression models after all variables have been fraction-

ally differenced, and what is immediately apparent is that the results are consistent with

39Beef Consumption (million tons) data from USDA, Production, Supply, and Distribution database (www.
fas.usda.gov/psdonline); Shark Attack data from Florida Museum of Natural History (http://www.flmnh.ufl.
edu/fish/sharks/statistics/Trends2.htm); Tornado Fatalities from NOAA (http://www.nws.noaa.gov/om/
hazstats/resources/weather fatalities.pdf).

40We have no evidence of endogeneity problems, but to match CEW we use a 2SLS model and instrument
for Beef Consumption with CEW’s excluded “social forces,” which are used as instruments of Martin-Quinn
scores. Social forces such as the homicide rate, policy liberalism, inequality, etc., may predict mood, but not
MQ scores. Instruments tests for proper inclusion in the first stage fail with both our data and CEW’s data.
See Appendix C.3.2 for CEW’s first-stage results and Appendix C.3.1 for the full replication of CEW.

41The long-run multiplier (LRM) is calculated as the ratio of coefficients: β1/α1. The formula for the
standard errors of the LRM is: ((1/b2)Var(a) + (a2/b4)Var(b)− 2(a/b3)Cov(a, b))1/2 See De Boef and Keele
(2008, pp.191-192).
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Table 4.10: Using the GECM to Explain the Court’s Liberal Reversal Rate
with Sharks, Tornadoes, and Beef Consumption

All Non-Salient Salient
Reviews Reviews Reviews

Long Run Multiplier
Shark Attacks 0.56? 0.53? 0.51?

(0.20) (0.18) (0.19)
Tornado Fatalities

Beef Consumption -1.79? -1.69? -2.04?

(0.32) (0.78) (0.31)
Long Run Effects

Shark Attackst-1 0.30? 0.29? 0.53?

(0.14) (0.13) (0.21)
Tornado Fatalitiest-1 0.05 0.04 0.10

(0.04) (0.04) (0.08)
Beef Consumption (IV)t-1 -0.95? -0.92? -2.12?

(0.36) (0.33) (0.46)
Short Run Effects

∆Shark Attacks 0.20? 0.18 0.39?

(0.12) (0.11) (0.22)
∆Tornado Fatalities 0.06? 0.04? 0.10?

(0.02) (0.02) (0.05)
∆Beef Consumption (IV) -7.10? -6.88? -2.90

(4.17) (3.86) (7.89)
Error Correction and Constant

Percent Liberalt-1 -0.53? -0.54? -1.04?

(0.17) (0.17) (0.16)
Constant 61.71? 61.52? 129.11?

(21.75) 20.44 (25.58)
Fit and Diagnostics
Centered R2 0.14 0.19 0.55
Sargan (χ2) 0.69 0.60 0.32
N 45 45 45

Note: Entries are two-stage least squares coefficients (s.e. in parentheses). ECM
significance one-tail t-test. Coefficient significance (*p≤ 0.05, one-tail test).

the short-term results reported by CEW. Pre-whitening caused no harm to the findings.

Changes in either public mood or the ideological makeup of the Court will affect reversal

rates. However, by ensuring equation balance, we avoided the spurious conclusions that an

equilibrium relationship exists between the Court’s reversal rate and public mood.

As a final step in our replication of this data, we also estimate the first step of the

ARDL bounds test of Pesaran, Shin, and Smith (2001) with CEW’s All Review and Non-

Salient Review models. After estimating an unrestricted model, the F -statistic of the lagged-

level variables was compared to the bounds computed by Narayan (2005). Recall from our

simulations in Table 4.9, Model 2 that the GECM was susceptible to Type I errors due to the

fact that both DVs are fractionally integrated. Despite this, we rely on the fact that neither
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Table 4.11: Re-estimation with Fractional Methods (Casillas et. al (2011))

Review ∆d All ∆d Non-Salient ∆d Salient
Type Reviews Reviews Reviews

Short Run Effects
∆d Public Mood 1.43? 1.61? 0.90

(0.73) (0.72) (1.76)
∆d Segal-Cover 9.61? 8.39? 14.51

(4.67) (4.58) (11.30)
∆d Martin-Quinn 0.11 -0.30 1.79

(2.30) (2.26) (5.56)
Constant -1.35 -1.39 59.68?

(1.25) (1.23) (3.02)
Fit and Diagnostics
Adjusted R2 0.10 0.10 -0.02
Breusch-Pagan Test (χ2) 0.06 0.47 0.93
Breusch-Godfrey LM Test (χ2) 1.93 1.01 2.11

Note: Entries are OLS coefficients (s.e. in parentheses). All variables have been
fractionally differenced by their estimate of d. Coefficient significance (*p≤ 0.05,
two-tail test).

Table 4.12: ARDL Bounds Test for Cointegration (Casillas et. al (2011))

5% Critical Bounds
I(0) I(1)
3.535 4.733

All Review Model F = 3.19

Non-Salient Review Model F = 2.54

Note: F -statistic of unrestricted ARDL model with
K + 1 lagged-level form variables. Critical values from
Narayan (2005) based on T = 45, K = 3, unrestricted
intercept and no trend. Neither model can reject null
of no cointegration.

DV can reject the null of a unit-root as justification for using the ARDL to test for a long-run

relationship. The results are found in Table 4.12, and neither model’s F -statistic exceeds

the bounds. We cannot reject the null hypothesis of no cointegration, which indicates that

the GECM is misspecified.

4.5.2 Example 2: Ura and Ellis (The Journal of Politics, 2012)

Our second replication, Ura and Ellis (2012, U&E), posits that macro-economic and political

variables have asymmetric effects on partisan groups’ responses and that this is at least

partially responsible for mass polarization. U&E use General Social Survey items to create

a measure of macro-policy sentiment among partisan groups. With T=35, a large number

of independent variables, and the use of the GECM, the paper’s strong findings are suspect.
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U&E’s main results (their Table 2, replicated in Appendix C.4.1 of Supplementary Ma-

terials) include error correction rates of -0.40 (s.e.=0.09, t=-4.54) for Republicans and -0.69

(s.e.=0.17, t=-4.11) for Democrats. Our Table 4.1 gives the appropriate critical value from

Ericsson and MacKinnon (2002) for T = 35 as -4.268 for I(1) series. Thus, there is some

evidence of error correction and the adjusted-R2 values of 0.39 indicate well specified models.

But are the strong findings simply due to use of the GECM? We first replace their DVs

– Republican and Democratic Mood – with randomly generated I(1) series. The tendency

to find significant error correction is strong – following U&E’s use of a standard t-test the

ECM parameter is significant (.05 level) in approximately 86% of the simulations.42 Type I

error rates on the other covariates are also troublesome. For example, in models where both

the ECM and an Xt−1 are significant, we observe equilibrating relationships in almost 62%

of all simulations. Using MacKinnon values we fare somewhat better but still make Type I

errors on the ECM at over four times the rate we should (21.9% and 22.6%).

As discussed, MacKinnon values assume data are strictly I(1) and become insufficient

as any series in the model deviates from that. The correct 5% rejection region can only be

found using the exact auto-correlation patterns of the data at hand.43 In this case, 5% of

the simulations have t-values below -5.81. Yet, even if it were feasible to ask researchers to

run simulations to calculate idiosyncratic critical values, the bias in the ECM values and the

Type I errors on the Xs make the GECM problematic with mixed orders of integration.44

Next, we try our Shark-Tornado-Beef data as predictors of U&E’s dependent variables.

Since U&E have five independent variables we add yearly values of U.S. Onion Acreage

and U.S. Coal Emissions.45 Table 4.13 shows the results: the ECMs in both equations are

42Full simulation results are in Appendix C.4.1 of the Supplement.
43Estimates of d using Stata’s exact ML estimator: DemMood (d=1.15, s.e.=0.15), RepMood (d=1.05,

s.e.=0.16), Domestic Spending (d=1.44, s.e.=0.08), Defense Spending (d=1.32, s.e.=0.11), Inflation (d=1.02,
s.e.=0.25), Unemployment (d=0.94, s.e.=0.21), Inequality (d=0.89, s.e.=0.19).

44Note that both Defense and Domestic Spending series are estimated as explosive processes, biasing the
ECM t-statistic in the negative direction making Type I errors more likely. See Appendix C.1 for further
explanation. Additionally, the original DVs are bounded so our simulations of unbounded unit root DVs are
not exactly equivalent.

45Onion Data (10,000s of acres) from USDA (http://usda.mannlib.cornell.edu/MannUsda/
viewDocumentInfo.do?documentID=1396); Coal Emission (million tons) data comes from DOE
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Table 4.13: What Else Moves Mood? (Re-estimating Ura and Ellis (2012))

Republican Mood Democrat Mood |Difference|

Long Run Multipliers
Onion Acreage -0.29? (0.04) -0.20? (0.05) 0.09
Coal Emissions -0.13? (0.02) -0.11? (0.02) 0.01
Beef Consumption -0.40 (0.26) -0.03 (0.05) 0.36
Shark Attacks 0.01? (0.00) 0.00 (0.00) 0.01
Tornado Fatalities -0.05? (0.01) -0.02? (0.01) 0.03

Long Run Effects
Onion Acreaget-1 -0.18? (0.03) -0.10? (0.02) 0.08?

Coal Emissionst-1 0.08? (0.01) 0.06? (0.01) 0.02
Beef Consumptiont-1 0.25 (0.18) 0.02 (0.17) 0.23
Shark Attackst-1 -0.01? (0.00) 0.00 (0.00) 0.01
Tornado Fatalitiest-1 0.03? (0.01) 0.01 (0.01) 0.02?

Short Run Effects
∆Onion Acreaget 0.01 (0.03) 0.03 (0.02) 0.02
∆Coal Emissionst 0.08? (0.02) 0.05? (0.02) 0.04
∆Beef Consumptiont 0.83? (0.33) 0.20 (0.20) 0.63
∆Shark Attackst 0.03? (0.02) -0.00 (0.01) 0.03
∆Tornado Fatalitiest 0.02? (0.00) 0.01 (0.01) 0.01?

Error Correction and Constant
Partisan Moodt-1 -0.62? (0.11) -0.52? (0.14) 0.11
Constant 12.08 (7.56) 20.52? (5.25)

Fit and Diagnostics
Adjusted R2 0.57 0.29
Breusch-Pagan Test (χ2) 0.00 1.86
Breusch-Godfrey LM Test (χ2) 1.29 0.11

Note: Entries are seemingly unrelated regression coefficients (s.e. in parentheses). ECM significance
one-tail t-test. Coefficient significance (*p≤ 0.05, two-tail test). The difference column reports the
absolute difference and t-test between coefficient estimates for the two models (*p≤ 0.05).

substantively large, and even with MacKinnon values we would claim that Republic Mood

is in equilibrium with four of our five nonsense series. Many of the short-term and long-run

independent variables are significant as well. With an R2 of 0.57 the model of Republican

Mood is noticeably better than U&E’s and the Democratic model is just a touch worse

(R2=0.29). The ECM values, hypothesis tests, model fit statistics, and long-run multipliers

all give us erroneous inferences.

Importantly, these are series with lots of memory – d varies between 0.89 and 1.44.

Inattention to stationarity could potentially lead one to conclude that they are all simply

I(1) and that MacKinnon values will make for valid inferences. In fact, Dickey-Fuller tests

on the Domestic Spending series indicates that it’s I(2), and inappropriate for use in either

the GECM or ARDL models in its level form.

Finally, we fractionally difference U&E’s variables and add a FECM between Partisan

(www.eia.gov/totalenergy/data/annual/showtext.cfm?t=ptb1101).
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Table 4.14: Re-estimation with Three-Step FECM (Ura and Ellis (2012))

Republican Mood Democrat Mood

Short Run Effects
∆d Domestic Spending $10b 0.02 (0.04) -0.00 (0.04)
∆d Defense Spending $10b 0.31? (0.13) 0.11 (0.12)
∆d Inflation -0.31 (0.20) -0.05 (0.18)
∆d Unemployment -0.47 (0.37) -0.06 (0.32)
∆d Top 1% Income Share 1.22? (0.42) 0.55 (0.37)

Error Correction and Constant
FECM 0.12 (0.17) -0.16 (0.19)
Constant -1.30 (0.68) -0.18 (0.59)

Fit and Diagnostics
R2 0.38 0.11
Breusch-Pagan Test (χ2) 1.51 0.07
Breusch-Godfrey LM Test (χ2) 1.62 0.00

Note: Entries are OLS coefficients (s.e. in parentheses). All variables have been
fractionally differenced by their estimate of d. FECM significance (*p≤ 0.05, one-tail
test). Coefficient significance (*p≤ 0.05, two-tail test).

Mood and Top 1% Income Share, the predictor with the smallest p-value in U&E’s models.46

The FECMs in both models are indistinguishable from zero as are the independent vari-

ables in the Democratic Partisan Mood model.47 Republicans on the other hand do appear

to shift in a liberal direction following increases to Defense Spending and Top 1% Income

Share. Thus, some of U&E’s findings stand, but many do not hold up to these alternative

specifications, and we find no evidence of error correction. As a final check, we run FECM

models on our Shark-Tornado-Beef and find none of the FECMs and only one of 48 hypoth-

esis tests on the independent variables to pass the .05-level of significance.48 With T=35

estimation of d and fractional differencing are somewhat under-powered and some wariness

is understandable. Still, the method is uncovering relationships we should expect (e.g. De-

fense Spending) and not setting off false alarms (e.g. Shark Attacks). With short series we

advocate the use of multiple modeling techniques as checks for robustness.

46We estimate FECMs between Partisan Mood and each of the other covariates and include those results
in Appendix C.4.3 of Supplementary Materials. All results are null.

47Running the model on first differences also returns null results.
48Table C.13 of Appendix C.4 uses the independent variable with the lowest p-value (Onion Acreage) in

the FECM. Each of the 4 other series takes a turn in the FECM in the models presented in Tables C.14
(Republican Mood) and C.15 (Democratic Mood).
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4.6 Replication Roundup

Table 4.15 summarizes the results of our replications. The general pattern is an overstate-

ment of significant relationships in the original papers. The body of work using the GECM

would make it seem that error correction is a common pattern among political time series

but our reanalyses show otherwise. Error correction between variables is a very close rela-

tionship that should be obvious in a simple glance at the data. Non-intuitive findings of

error correction should make political scientists highly suspicious.

One final lesson from these exercises is the value of using multiple approaches. Time

series analysts do not have the luxury of being able to replicate studies with new data but

robustness checks can come from finding similar results across diverse modeling choices.

Table 4.15: Findings and Replications

Authors Central Finding Replication Finding

Casillas, Enns, Public mood and Justice ideology Public mood significant in short-term only.
& Wohlfarth (2011) exhibit significant short- and long-run No evidence of cointegration for either

effects on Court decision making. As All Review or Non-Salient Review
public liberalism increases, so does the models. Salient Review model
Court’s rate of liberal decisions. inappropriate with mixed orders of integration.

Ura & Ellis (2012) Partisan mood varies with political stimuli. Short-term effects for defense spending
Changes in mood and increases in and top 1% income share only.
polarization are asymmetric between Three-step FECM better accounts for long-
parties with most movement coming from memoried series with no cointegration.
Republicans.

Sanchez Urribarri, Institutional conditions and changes in Change in judicial ideology only significant
et al. (2011) judicial ideology explain the rights agendas for UK model. Insignificant in US

of multiple high courts. No expected model. No significant institutional effects. No
support for theory of exogenous structural support for exogenous structural change
change hypothesis. hypothesis. GECM model either inappropriate

with mixed orders of integration or
unnecessary given stationarity of the data.

Kelly & Enns (2010) Income inequality exhibits both short- No support for short- or long-term
term and long-run effects on public mood. effect of income inequality on public mood.
Both high-income and low-income No support for either high or low income
populations exhibit increased conservatism conservatism with increasing inequality.
in response to inequality. No cointegration - GECM model inappropriate.

Volscho & Kelly (2012) Political, policy, and economic No support for politics or policy indicators
inputs all significantly affect income having significant effect on Top 1% Income.
distribution of top 1%. Political inequality Some economic indicators significant.
not only a result of market forces, but Significant FECM between Trade Openness
also a product of political change. and S&P Composite with Top 1% Income.

GECM model inappropriate with mixed orders
of integration.
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4.7 Conclusion

Political scientists’ troubles with the GECM are not surprising when the method is traced

back to the econometrics literature where its primary usage is as a cointegration test for I(1)

data (Banerjee et al. 1993; Ericsson and MacKinnon 2002). In that literature the GECM

is not a one-step model, it is the first step of a multi-step process. The first step ignores

the hypothesis tests on Xt-1 and ∆Xt and uses MacKinnon values to test whether α1 = 0.

Failing to reject that hypothesis means that cointegration is not present. Rejecting the null

means that cointegration is present. In either case, it is not a standard regression model.

If cointegration is not found, no ECM is specified. If it is found, additional steps follow.

Re-postulating the GECM as a single-equation regression puts too many conditions on the

model.

In fact, we recommend the GECM in only one rare situation: when all of the variables

are strictly unit-root series, Yt is unbounded, Yt and Xt are cointegrated, and the MacKinnon

critical values are used. We looked at many combinations of series’ characteristics and in

every case but that hypothetical one, the GECM ran into serious problems.

A careful look at the applied literature in political science will not find any examples that

meet all those criteria. When data are bounded or diverge from I(1) by being stationary,

auto-regressive, explosive, fractionally, or near-integrated the ECM parameter begins to move

dramatically. Adapting to MacKinnon critical values is not a sufficient fix and generating

idiosyncratic critical values is untenable as well. Bias in the ECM ruins its ability to do

what it should – tell us about equilibrium relationships. As for the GECM’s use with

stationary data, the ADL and GECM may be mathematically equivalent but the GECM

adds complications without adding useful insights. If Y ’s long-term tendency is simply to

revert to its mean, we should not prefer a model whose purpose it to find Y ’s long-run

relationship with X.

As every parent knows, the solution to the babies and bathwater dilemma is not to just

leave the baby sitting in the dirty water – the two can be carefully separated. With time
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series, the safe solution is to return to the logic of pre-whitening and use a multi-step process

that removes auto-correlation from each variable prior to including it in a multivariate model.

Time series data are complicated – too complicated to provide reliable results in a simple

single step.
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Conclusion

The intent of this dissertation was to address some of the concerns which seem to have

precluded the use of fractional methods within political time series. Initial work on fractional

integration in political science focused on the aggregation theorem of Granger (1980), and

this justification for the presence of long memory is useful considering how many series are

aggregates. But additional work in economics has focused on other ways in which series

may be fractionally integrated and these new justifications are varied and interesting. One

of these is the error duration model of Parke (1999). Chapter 2 works through the error

duration representation and finds that the survival of federal programs is a fractionally

integrated process, as are series that are dependent on the original series. These findings are

relevant because it opens up the possibility for a larger number of series to be long memory.

Further, that fractional integration can be inherited by series reliant on the original process

is a concept that is considered in economics, but it is rarely, if ever, tested in political

science. It is hoped that these new justifications behind the expectation that a series may

be fractionally integrated spurs researchers to test for fractional integration in more series,

and more seriously consider the possibility that time series do not fit into the I(0)/I(1)

dichotomy.

One of the more prevalent arguments against the use of fractional integration is that the

estimates are unreliable in small samples. One needs only look to Keele and Linn (2015) for

the latest iteration of this argument. But while this argument against the use of fractional

integration is common, the assumption has never actually been tested. Monte Carlo studies
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investigating the power of various estimators almost always involve larger sample sizes such as

those that are commonly found in economics and finance. But it is difficult to extrapolate the

results from these studies to performance with finite samples. Chapter 3 puts the unreliable

estimation assumption to the test and finds that concerns are largely overstated. The results

indicate that the frequency domain maximum likelihood is generally unbiased and efficient.

Semiparametric estimators are also valuable considering their ability to easily and accurately

estimate the memory parameter of (0, d, 0) models. While these estimators, and especially

the FML prove reliable, the exact maximum likelihood (EML) estimator is problematic.

If we return to the arguments levied against fractional integration in works like Keele

and Linn (2015) we find that only one estimator is tested, and it is the one that performs the

worst in our estimates: the EML. But the problems inherent in estimation with the EML

have been known since the work of Li and McLeod (1986) and Cheung and Diebold (1994).

Over the last 20 years, economists have developed a rapidly growing number of fractional

estimators, to use the one estimator previously proven to be biased and inconsistent in order

to argue against accounting for fractional integration is shortsighted. If we move away from

the time domain exact maximum likelihood estimator we find that our fractional estimates

are much improved.

A complementary argument that is used against the adoption of fractional methods is

that the models are too complicated. As methods have grown more complex over the last

two decades we have seen a growing desire for model simplicity. In turn, political scien-

tists have adopted the general error correction model (GECM), which was first introduced

by economists in the 1970s. Since being reintroduced to political scientists in 2008, the

GECM has since become one of the more popular models in the field. As demonstrated in

Chapter 4 however, the assumptions underlying this method have either been forgotten or

misinterpreted. A multitude of papers have been published claiming to find strong error cor-

rection and the interpretation of these results is often in the tone of a cointegration analysis

- referencing strong equilibrium relationships between variables. Yet as we demonstrate, if

118



Chapter 5

the model is not being used explicitly as a cointegration test between unit root series, the

interpretation of the model results must change. If the dependent variable is stationary, or

fractionally integrated, the error correction parameter is practically guaranteed significance

and is demonstrating the rate of return to its own mean, it is not indicative of a relationship

between variables. Furthermore, the current interpretation of the assumptions underlying

the GECM have led political scientists to assume that the stationarity of the time series do

not matter and therefore does not need to be tested. The empirical and theoretical conse-

quences of this have been dreadful. In addition to demonstrating the pitfalls of the current

use of the GECM and reviewing five separate articles using the method, it’s propose that

researchers consider fractional integration as an alternative specification. As argued in the

chapter, FI methods are flexible, are able to address the spurious regression problems found

in the GECM, and it also forces a consideration of stationarity, something that has been

sorely missing from political time series analysis for the last several years.
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Appendix: Chapter 2

A.1 What is Fractional Integration

Assume a process that generates a series integrated of order d, in which d is the number of
differences that must be applied to the series for it to be stationary. In the standard case,
in which d is an integer, we have the I(1)/I(0) distinction: if a series is an I(1) unit root, it
has perfect memory, meaning that a shock is fully integrated into the series. On the other
hand, an I(0) series has only short memory; it is weakly stationary with constant mean,
finite variance, and constant covariance (see Enders 2004, p.54).

But if we relax the assumption that d must be an integer and instead allow it to fall
anywhere on the real number line, then the level of integration is considered fractional.1 The
ARFIMA process, introduced by Granger and Joyeux (1980) and Hosking (1981) is labeled
(p, d, q) if its d’th difference yields a stationary and invertible ARMA (p, q) process.

Assuming that −1/2 < d < 1/2 in order to ensure stationarity and invertibility, the
properties of yt can be defined as an ARFIMA (p, d, q) if

φ(L)(1− L)d(yt − µ) = θ(L)εt, (A.1)

where φ(z) = 1− φ1z − ...− φpzp and θ(z) = 1 + θ1z + ...+ θqz
q are lag polynomials in the

lag operator L(Lxt = xt−1) with roots strictly outside the unit circle, εt is iid N(0, σ2) and
(1− L)d is defined by its binomial expansion such that

(1− L)d =
∞∑
j=0

ψj(d)Lj, ψj(d) =
Γ(j − d)

Γ(j + 1)Γ(−d)
, j = 0, 1, ..., (A.2)

where Γ(z) =
∫∞

0
xz−1e−xdx is the gamma function.

The estimated d parameter determines the memory of the series in question. If −1/2 <
d < 1/2 the process is weakly stationary and invertible. If d < 0, the process is considered
anti-persistent, in which case the autocorrelations are mostly negative and summable (sum
to a finite constant). For 0 < d < 1/2 the process is considered stationary but possesses
“long memory;” it is characterized by a hyperbolically declining autocorrelation function,
and the autocorrelations and autocovariances are nonsummable. Finally, for 1/2 ≤ d < 1,

1Fractionally integrated processes can be analyzed in either the time domain or the frequency domain;
this section focuses on the time domain, and the frequency domain is discussed in more depth in the following
section.
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the series is no longer covariance stationary and is characterized as non-persistent. Even
though the series is non-stationary, the MA coefficients, which approximate the impulse
response function of a unit shock in εt, will eventually decline to 0.

A.1.1 Autocovariance and Autocorrelation of a Stationary ARFIMA Process

To better describe these properties, we provide the autocovariances and autocorrelations of
an ARFIMA process (Hosking 1981). The autocovariance is given by

E(ytyt−k) = γk =
(−1)k(−2d)!

(k − d)!(−k − d)!
(A.3)

setting k = 0 allows us to obtain the variance

γ0 =
1(−2d)!

(−d)!(−d)!
=

(−2d)!

[(−d)!]2
(A.4)

We can then form the autocorrelation function ρk as

ρk =
γk
γ0

=
(−d)!(k + d− 1)!

(d− 1)!(k − d)!
(K = 0,±1, ...) (A.5)

=
d(1 + d)...(k − 1 + d)

(1− d)(2− d)...(k − d)
(K = 1, 2, ...) (A.6)

=
Γ(1− d)Γ(k + d)

Γ(d)Γ(k + 1− d)
(A.7)

As k → +∞ then Γ(k+d)
Γ(k+1−d)

→ k(d)−(1−d) = k2d−1 which leaves us with

ρk →
Γ(1− d)

Γ(d)
k2d−1 (A.8)

ρk ∼ cρk
2d−1, 0 < cρ <∞, as k →∞ (A.9)

in which cp is a constant and ρk decays at a hyperbolic rate. From Equation A.9 it is
apparent that the sum of the autocorrelations are driven by k2d−1. If d is greater than 1/2,
then the exponent on k is greater than 0 and the autocorrelations are not summable. Of
course, it is also true that d < 1/2 is not a sufficient condition for the summability of the
autocorrelations. In order for the autocorrelations to converge to a finite sum, d must be less
than 0. This is demonstrated with a p-series convergence test: if we set k2d−1 = 1/k−(2d−1),
then in order for convergence to occur, the exponent −(2d−1) must be greater than 1, which
means that d < 0 (Patterson 2012).

The nonsummable nature of long memory processes is more clearly demonstrated in
visual form. Below are a series of plots representing the autocorrelations of two long memory
processes (d = .25, .45) and two anti-persistent series, (d = −.25,−.45). The upper left plot
presents the autocorrelation functions for the two long-memory series and the slow decay
for each is evident. The anti-persistent series (upper right) do not exhibit the same process,
and as can be seen in the lower right panel, the autocorrelations for anti-persistent series are

134



Appendix A: Chapter 2

summable. The summed autocorrelations for long memory processes are in the lower left
panel. The autocorrelations do not sum to a finite quantity, and this is clearly seen with the
d = .45 series. As the value of d gets closer to 0.5, the slope of the summed series steepens.

Figure A.1: Autocorrelations of Stationary ARFIMA Model

Autocorrelations depending on level of memory, d. Upper left (d = .25, .45); upper right (d = −.25,−.45). Bottom panels are
the sums of each.

The slow decline of the autocorrelation function of the FI series is particularly noticeable
when compared to the autocorrelation function of a simple AR process. Figure A.2 presents
the autocorrelation functions of two series, each generated such that their first-order auto-
correlations are equal to .90. The solid line is a fractionally integrated series, the dashed
line is an AR(1) process sufficiently large to be considered near-integrated. Despite the sub-
stantial memory in the AR(1) process the disparity in the decay rates is obvious. It is not
uncommon for researchers to confuse near-integrated and fractionally integrated series, or to
assume that they are similar, but as we can see here, the two series have drastically different
levels of memory.2

A.1.2 AR and MA Coefficients of a Stationary ARFIMA Processes

The ARFIMA model separates the short-run and long-run dynamics by modeling the short-
run through the ARMA lag polynomials φ(L) and θ(L) while capturing the long-run char-
acteristics with the fractional differencing parameter. Referring back to Equation A.2, the

2Part of this confusion may stem from the rather loose usage of “long memory” in political science as a
descriptor of both near-integrated and fractionally integrated series (see, e.g. De Boef 2001).
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Figure A.2: Autocorrelation: Near Integrated and Fractionally Integrated
Series

Autocorrelations for FI series (solid) and near integrated series (dashed).

autoregressive coefficients of ψj(d) can be expressed as

Γ(j − d)

Γ(j + 1)Γ(−d)
(A.10)

Or, if using a moving average representation, in which case we are interested in (1 − L)−d,
the moving average coefficients are given by

Γ(j + d)

Γ(j + 1)Γ(d)
(A.11)

Using Stirling’s theorem, as j → ∞ the AR coefficients behave as Γ(−d)−1j−d−1 and the
MA coefficients as Γ(d)−1jd−1. Note that the MA coefficients for a given d are the same as
the AR coefficients for −d.

Plot A.3 presents the AR and MA coefficients for the same d series as used in the
demonstration of the autocorrelation function. The MA coefficients are positive and declining
when d is positive, and will eventually decline so long as 0 < d < 1. The AR coefficients are
the negative of the MA coefficients.

A.1.3 Hypothesis Testing and Fractionally Integrated Series

When working with series that may be fractionally integrated, it is important to recognize
the long memory process described above will generally confound unit root tests. Further,
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Figure A.3: AR & MA coefficients

given the already low power of these tests when used with small sample sizes, any test results
are best viewed with a critical eye. In best practice, multiple types of unit root tests with
different null hypotheses should be employed. If the Dickey-Fuller and the KPSS test both
reject the null, that information is useful as a first step in determining the memory properties
of a series (see Box-Steffensmeier and Smith 1996, for an example of this in practice).

Previous research has demonstrated that the power of the Dickey-Fuller test decreases
more quickly as the FI series moves away from one when compared to an AR process (Diebold
and Rudebusch 1991). The augmented Dickey-Fuller also suffers from a loss of power, partic-
ularly if the number of lags increases too quickly given the number of observations (Hassler
and Wolters 1994). And while the KPSS test of Kwiatkowski, Phillips, Schmidt, and Shin
(1992) performs better, it loses power as the value of d gets closer to the 0.5 threshold.

Figure A.4 provides results of Monte Carlo simulations for the classic and augmented
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Dickey-Fuller, KPSS with and without lags, and the variance ratio test. The critical values
used are for series with 100 observations and the results are based on 5,000 simulations for
each fractional order of d in increments of 0.05.

Beginning with the classic Dickey-Fuller test (dotted line), the test loses power as d
decreases, rejecting the null hypothesis of a unit root over 70% of the time when d = .65.
The ADF test with four lags is slower to reject the null, but this leads to underrejection
when the series is on the stationary side of 0.5. The range of .4 < d < .65 is particularly
troublesome for the ADF and DF tests. The augmented KPSS suffers from some of the
same issues - in the stationary, long memory region 0.3 < d < 0.5, the rejection rate of the
null hypothesis creeps upwards over 40% and is even higher were we to not include any lags.
Interestingly, the KPSS with four lags demonstrates an unwillingness to reject the null of
stationarity even when the fractional order of integration is higher. With an estimated I(d)
of 0.8, the KPSS will only reject the null of stationarity 70% of the time.3 The variance ratio
test performs similarly to the augmented Dickey-Fuller.

Figure A.4: Power Curve

Each panel illustrates the power function of the unit root test in terms of rejecting the null hypothesis, for each fractional
order of integration d. Null hypothesis of ADF and Variance Ratio is of unit root. Null hypothesis of KPSS is stationarity.
Solid lines for ADF and KPSS indicate tests with 4 lags; dotted lines indicate no lags used. Solid line in Variance Ratio is
differencing interval of 4; dotted line represents differencing interval of 8. T=100.

The lack of power of unit root tests when applied to fractional series is all the more
problematic because there are consequences on both sides of the outcome. With fractional
series, unit root tests demonstrate a propensity to both under- and over-reject. If we are
modeling a series that is fractional but we treat its level of integration as integer-valued only,

3The inclusion of four lags was an arbitrary decision, and is normally dictated by an information criterion.
But, one must be aware of the potential threat of too many lags. Hassler and Wolters (1994) use an ADF
on series of T = 100 with up to 12 lags and find that as the number of lags increase the power of the ADF
diminishes considerably. With a fractional order of integration of d = 0.3, the ADF with ten lags will only
reject the null of a unit root 22.9% of the time.
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then failing to reject the null of an ADF or variance ratio test means we must difference the
series. In so doing, we over-difference the series and build an MA parameter into the series
(Box-Steffensmeier and Smith 1998; Dickinson and Lebo 2007). If we instead reject the null
of the ADF or variance ratio test, especially when d > 0.5, then we leave a substantial amount
autocorrelation unaddressed. Failing to either recognize or account for this autocorrelation
invites spurious regressions (Lebo, Walker, and Clarke 2000; Tsay and Chung 2000). Given
these choices - a significant MA parameter built into the process on the one hand, or spurious
regressions on the other - it behooves the researcher to test for the fractional integration of
the series in question. Even if only to serve as an additional unit root test, the estimation
of the long memory parameter is useful and can assist in hypothesis testing.

A.2 Generating Fractionally Integrated Series

We next turn to the question of how fractional integration in time series comes about. We
discuss two processes which have been shown to generate fractionally integrated series. The
first is from Granger (1980) and covers the micro-aggregation of heterogeneous AR series.
The second is the error duration model of Parke (1999). Because Granger (1980) references
fractional integration in the frequency domain, rather than the time domain, we briefly
discuss their equivalence.

A.2.1 Equivalence of Time and Frequency Domain

Recall that Equation A.9 defined the autocorrelation function of an ARFIMA process in the
time domain. The autocorrelations can also be stated in the frequency domain. To do so,
we first define the spectral density function of yt, fy(λ), as

γk =

∫ π

−π
fy(λ)eiλkdλ (A.12)

in which γk is the k’th autocovariance of yt.
The spectral density of the ARFIMA (p, d, q) process of Equation A.1 can be given by

fy(λ) =
σ2

2π

∣∣1− eiλ∣∣−2d |θ(eiλ)|2

|φ(eiλ)|2
(A.13)

=
σ2

2π
(2 sinλ/2)−2d |θ(eiλ)|2

|φ(eiλ)|2
(A.14)

in which the ARMA (p, q) parameters are represented as

fu(λ) =
|θ(eiλ)|2

|φ(eiλ)|2
σ2

2π
(A.15)

and the transfer function of the fractional filter (1− L)d is approximated as

|1− eiλ|−2d = (2 sinλ/2)−2d ∼ |λ|−2d as λ→ 0, (A.16)

Thus, if we assume that fu(λ) is a constant as λ → 0, then fu(λ) → g. Which means that
the approximation of the autocorrelation function in Equation A.9 can be restated in the
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frequency domain as the approximation of the spectral density function (Granger and Joyeux
1980; Beran 1994)

fy(λ) ∼ g|λ|−2d, 0 < g <∞, as λ→ 0. (A.17)

A.2.2 Aggregation

As previously mentioned, there are a number of examples in political science in which time
series are generated as aggregates. Granger (1980) noted that the same was true of economics:
income, consumption, unemployment, and profits are all examples of micro-components
aggregated into macro series. From this observation, Granger (1980) proposed a model in
which the stationary AR(1) components series were drawn from a beta distribution and
aggregated into a series that exhibited long memory.

Granger offers an example of two time series

xjt = φjxj,t−1 + εjt, j = 1, 2, ... (A.18)

and εjt are zero-mean, independent white noise shocks so that the aggregated variable is the
sum of the two series

x̂ = x1t + x2t, (A.19)

which obeys an ARMA(2,1) process, the AR lag polynomial is (1 − φ1L)(1 − φ2L). As
Granger notes, if there are N independent AR(1) series, their sum will be ARMA(N,N−1),
however the order of the model could be reduced by cancellation of roots.

Assuming the component series forming the aggregate are independent of each other, the
component AR(1) xjt has a spectral density function that is approximated by

fj(λ) =
1

|(1− eiλ)|2
σ2
εj

2π
(A.20)

and the spectrum of x̂ is

f(λ) =
N∑
j−1

fj(λ) (A.21)

Granger assumes that the component series are randomly drawn from a population of the
form of a beta distribution on the range of (0,1). The distribution used by Granger is

dF (φ) =
2

B(u, v)
φ2u−1(1− φ2)v−1dφ, 0 < φ < 1, (A.22)

where u > 0, v > 0 and B(u,v) is the beta function, which is given as

2

B(u, v)

∫ 1

0

φ2u+k−1(1− φ)v−2dφ (A.23)

From this, the kth autocovariance, γk is drawn from the Fourier expansion of the spectrum.
Assuming v > 1 is

γk =
B(u+ k/2, v − 1)

B(u, v)
(A.24)
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=
Γ(v − 1)

B(u, v)

Γ(u+ k/2)

Γ(u+ k/2 + v − 1)
(A.25)

Granger then applies Sterling’s theorem such that as the number of lags, k, increase, we
obtain

γk = ck1−v (A.26)

where c is a constant.
If we compare this to our approximation in Equation A.9, we find that 1 − v = 2d − 1

and that d = 1 − (1/2)v. Thus, if the range of long memory falls between 0 < d < 1, then
0 < v < 2.

A few caveats and clarifications have been added to Granger’s aggregation theorem by
Chambers (1998), who demonstrates that aggregation of AR(1) processes is not sufficient
on its own to generate fractional integration. An aggregated series will only take on the
properties of long memory if long memory is also present in one of the underlying micro
series. Additionally, the estimated value of the long memory of the aggregate series will be
the maximum of the long memory parameters present in the underlying micro series.

A.3 Error Duration Model

A.3.1 Autocovariances of FI Error Duration Model

If the process yt is long memory, then its autocovariances are nonsummable. Parke (1999)
demonstrates that the summation of the autocovariances of the error duration model is the
sum of the survival probabilities. The k-th autocovariance of yt is

γk = σ2

∞∑
j=k

pj. (A.27)

After normalizing σ2 to equal 1, the autocovariances are then a partial summation of the
probabilities

γ(1) = p1 + p2 + p3 + ...

γ(2) = p2 + p3 + p4 + ...

...

γ(k) = pk + pk+1 + pk+1 + ...

(A.28)

The sum of the autocovariances is then
∑n

k=1 γ(k) = p1 + 2p2 + 3p3...

n∑
k=1

kpk (A.29)
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B.1 The Sample Periodogram as a Diagnostic Tool

When using the frequency domain to investigate fractional integration, the focus is on the
low-frequencies - those closest to the spectral pole at zero. Granger (1966) demonstrated
that all macroeconomic variables tended to exhibit a typical spectral shape. Considering
that the spectral density function, when summed across all frequencies, approximates the
variance of the series in question, Granger noted that macroeconomic series provided the
greatest contribution to the variance of the series in the frequency bands close to zero. If one
plots the spectral density of a fractionally integrated series, or its approximation through
a periodogram, the density will increase dramatically as the frequency approaches zero.
Granger’s finding suggested that most series in economics were persistent or long memory.

Figure B.1: Periodogram of ARFIMA (0,d,0) Series

Periodogram, approximation of the spectral density for series of various orders of fractional integration. Top: I(d) = 0.45;
Middle: I(d) = 0.65; Bottom: I(d) = 0.85. Frequencies (λ) range from 0 to π
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The typical spectral shape of fractionally integrated series can be found in Figure B.1,
which presents the sample periodograms, approximations of the spectral densities of the three
series, with varying degrees of fractional memory - I(d) = 0.45, 0.65, 0.85. The increasing
contribution to the variance as the spectral density approaches the pole is easy to see in each
plot, but one can also see from the y-axis that the spectral power increases much faster as the
order of fractional integration increases. All three plots indicate that the higher frequencies
exert very little influence over the variance of the series. Both the top and middle plots
exhibit a few spikes within the first few frequencies, but there is very little contribution in
the same range for the heavily persistent series at bottom.

Transforming a time series and visualizing an estimate of the spectral density through
the sample periodogram also provides a nice opportunity to evaluate the series’ order of
integration visually. Persistent memory in the form of fractional integration will exhibit
the strongly increasing density described by Granger (1966) as the frequencies approach the
poles, and assuming it’s a (0, d, 0) series, the periodogram should exhibit little contamination
from the higher frequencies. This is in contrast to a stationary AR series - the autoregression
in the series is a short-run dynamic that is evident in spikes in the higher frequencies of the
periodogram in Figure B.2.

Figure B.2: Periodogram of Stationary ARIMA (1,0,0) Series

Periodogram, approximation of the spectral density of a stationary AR series: yt = .7x+ εt, N(0, 1). Frequencies (λ) range
from 0 to π

The visual diagnostics can be taken a step further by viewing the series after they have
been first differenced. If the series are fractionally integrated, integer differencing will over
difference the series. The effects of this over differencing will be apparent visually in the
periodogram. For example, if the original series in its level form has a fractional order of
integration of I(d) = 0.65, then integer differencing will result in a series that is I(d) =
−0.35. The series is anti-persistent, which means that the the spectrum will exhibit zero
to low power at those lower frequencies while spiking in the higher. After differencing, the
variance is completely driven by short-run dynamics that have been built into the process.
A demonstration of the consequences of over differencing a fractionally integrated series can
be found in Figure B.3. For this example, the level form series were the same as those from
Figure B.1, from top to bottom I(d) = 0.45, 0.65, 0.85, respectively. The lack of power in
the spectrum at the lower frequencies is clearly evident in all three plots, however the effects
are most pronounced in the top and middle plots. For a fractionally integrated series that
is closer to a unit root (bottom panel, I(d) = 0.85), the overall effect is less severe, but still
clearly visible - the power of the spectrum is concentrated in the middle frequencies, with
the lower frequencies exhibiting a minimal contribution to the overall variance of the series.
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Figure B.3: Periodogram of First Differenced ARFIMA (0,d,0) Series

Periodogram, approximation of the spectral density for fractional series (Top-Bottom: d = 0.45, 0.65, 0.85) that have been
integer differenced.

One of the benefits of viewing a time series in the frequency domain is that one can
actually visualize the frequency at which the variance of the process is coming from. In
order to achieve an estimation with reliable results, the goal of any researcher with any time
series should be to pre-whiten the series such that it is a white-noise process - a process that
is uncorrelated, has a zero mean, and possesses the same finite variance. In the frequency
domain this means that the spectral density of the process is constant across all frequencies,
and all frequencies contribute equally to the variance. By plotting the periodogram, the
researcher can easily see if this goal has been achieved.

In the case of the fractionally integrated series however, the process of integer differencing
clearly does not work; the low frequencies contribute nothing to the variance of the process.
This is why the goal of fractional integration is to move away from integer differencing and
to instead difference the series by its own order of fractional integration. If this estimation
of fractional integration can be done consistently and efficiently, then the researcher is more
likely to approximate the ideal of a white noise process than by simply differencing the
series. Relying again on those three series above, the order of fractional integration for each
was estimated and each was fractionally differenced by its estimate. Figure B.4 presents
the spectral density approximations for the three fractionally differenced series. The overall
contribution across frequencies is somewhat uneven given the limited number of observations
used for these simulated series, but each exhibits a fairly consistent level of power across the
spectrum. This consistency is quite clear when compared to the spectra of the integer
differenced series in Figure B.3.
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Figure B.4: Periodogram of Fractionally Differenced ARFIMA (0,d,0) Series

Periodogram, approximation of the spectral density for fractional series (Top-Bottom: d = 0.45, 0.65, 0.85) that have been
differenced by their own order of fractional integration.

B.2 Estimating the ARMA Parameters

While the main text focused on the estimation of the long memory parameter, d, it is also
important for the parametric estimators to be able to estimate the ARMA (p, q) param-
eters accurately. If the estimation of the short run dynamics is biased, then one cannot
safely make inferences about the data generating process. Baillie and Kapetanios (2009)
has demonstrated that when using semiparametric methods that the two-step process to
first estimate d and then the ARMA parameters suffers from bias. The results below in
Tables B.1 and B.2 present the estimates of the EML and FML estimators, which estimate
all parameters (d, φ, θ) simultaneously.

As can be seen, the FML is a better estimate of φ, which is consistent with the overall
results in the main paper. The only time that the FML really struggles is when the AR
noise is incredibly persistent and the order of fractional integration is d = −.25. The EML
results are far better than those of its estimation of d, but the estimator still suffers in the
presence of moderate AR dynamics. The EML estimates of φ are also biased when the model
is misspecified. Overfitting the ARFIMA model will increase the probability of Type I errors
when attempting to fit an AR parameter.

The estimation of the MA parameter is far more accurate. The EML is inconsistent
when the number of observations is small, but the estimation is unbiased when at least 60
observations are in the series. The RMSE is wildly inconsistent in the EML estimations and
this has to do with the presence of outliers drastically inflating the overall RMSE. The FML
estimator is a consistent unbiased estimator of the MA parameter.

146



Appendix B: Chapter 3

T
a
b

le
B

.1
:

P
a
ra

m
e
tr

ic
E

st
im

a
ti

o
n

o
f

A
R

P
a
ra

m
e
te

r
-

A
R

F
IM

A
(1

,d
,0

)

E
M

L
F

M
L

E
M

L
F

M
L

φ
d

T
B

ia
s

R
M

S
E

B
ia

s
R

M
S

E
φ

d
T

B
ia

s
R

M
S

E
B

ia
s

R
M

S
E

−
.4

0
−

0
.2

5
4
0

.1
4
1
0

.3
1
5
7

.0
4
2
5

.2
0
8
9

.4
0
−

0
.2

5
4
0

.1
3
5
1

.2
8
7
4

−
.1

0
9
4

.2
9
8
2

6
0

.1
0
9
1

.2
5
8
6

.0
2
9
0

.1
6
5
1

6
0

.1
4
7
2

.2
8
6
6

−
.0

7
2
7

.2
7
0
8

8
0

.0
8
3
1

.2
0
4
4

.0
2
7
4

.1
4
5
3

8
0

.1
6
0
6

.2
8
0
7

−
.0

3
5
3

.2
3
8
7

1
0
0

.0
5
3
6

.1
6
4
3

.0
2
3
7

.1
2
6
3

1
0
0

.1
4
6
8

.2
1
5
3

−
.0

1
2
9

.2
1
1
4

0
4
0

.2
1
9
0

.4
1
9
5

.0
7
8
5

.2
5
0
8

0
4
0

.1
9
2
2

.3
0
7
3

−
.0

5
4
4

.2
8
8
7

6
0

.1
0
7
6

.2
6
0
1

.0
4
3
5

.1
9
1
6

6
0

.1
7
7
5

.3
0
2
6

−
.0

3
8
8

.2
7
5
8

8
0

.0
7
9
2

.2
0
1
4

.0
3
9
8

.1
5
3
2

8
0

.1
6
9
6

.2
8
9
6

.0
0
0
6

.2
4
8
0

1
0
0

.0
5
9
0

.1
7
4
1

.0
2
6
7

.1
3
9
7

1
0
0

.1
7
8
9

.2
8
8
0

.0
0
7
8

.2
4
2
0

0
.2

5
4
0

.2
7
3
5

.4
9
8
1

.1
1
4
5

.2
9
6
7

0
.2

5
4
0

.2
7
9
2

.3
3
1
8

.0
3
5
1

.2
5
9
5

6
0

.1
5
0
4

.3
1
5
2

.0
5
4
0

.2
0
1
8

6
0

.2
8
6
3

.3
3
4
1

.0
3
2
7

.2
5
4
6

8
0

.1
0
1
4

.2
2
1
4

.0
3
1
3

.1
6
4
2

8
0

.2
6
7
6

.3
2
7
9

.0
4
8
5

.2
4
6
0

1
0
0

.0
6
8
1

.1
6
9
9

.0
3
2
4

.1
3
9
4

1
0
0

.2
5
8
9

.3
2
2
7

.0
4
8
9

.2
3
9
5

0
.4

5
4
0

.3
4
2
6

.5
5
9
7

.1
1
8
2

.2
7
5
3

0
.4

5
4
0

.3
4
7
2

.3
6
9
1

.1
7
3
4

.3
0
3
2

6
0

.1
9
6
4

.3
5
8
8

.0
8
1
1

.2
2
4
5

6
0

.3
5
9
7

.3
8
2
0

.1
7
1
7

.2
8
7
5

8
0

.1
2
4
1

.2
4
9
8

.0
6
0
0

.1
5
7
6

8
0

.3
4
4
5

.3
7
2
0

.1
5
6
8

.2
6
7
1

1
0
0

.0
8
8
6

.1
8
2
1

.0
3
6
4

.1
2
9
9

1
0
0

.3
3
3
9

.3
6
4
9

.1
5
2
0

.2
6
5
2

0
−

0
.2

5
4
0

.2
7
4
5

.4
4
2
8

.0
0
8
4

.2
5
0
3

.8
0
−

0
.2

5
4
0

−
.1

1
4
4

.2
2
8
1

−
.3

9
2
4

.4
9
7
3

6
0

.2
4
1
9

.4
2
0
7

.0
1
2
1

.2
2
1
6

6
0

−
.0

9
7
9

.2
2
0
3

−
.3

6
6
8

.4
7
4
4

8
0

.2
0
6
4

.3
8
4
9

.0
2
1
3

.1
9
6
7

8
0

−
.0

9
3
3

.2
2
3
6

−
.3

3
9
4

.4
4
6
9

1
0
0

.1
5
4
2

.3
3
1
1

.0
2
1
4

.1
7
3
0

1
0
0

−
.0

2
6
8

.2
2
2
2

−
.3

1
9
8

.4
2
6
5

0
4
0

.3
5
7
1

.5
1
9
6

.0
6
8
6

.3
0
8
1

0
4
0

−
.0

4
0
0

.1
2
6
0

−
.1

2
2
8

.2
6
3
3

6
0

.2
9
3
8

.4
7
2
7

.0
5
3
6

.2
7
8
5

6
0

−
.0

2
2
6

.1
0
9
8

−
.0

7
6
7

.2
1
0
4

8
0

.2
4
1
4

.4
2
8
9

.0
6
7
0

.2
5
1
0

8
0

−
.0

2
3
5

.1
1
6
4

−
.0

7
4
7

.1
9
7
9

1
0
0

.1
8
2
9

.3
6
8
2

.0
4
4
4

.2
2
3
5

1
0
0

−
.0

2
6
1

.1
2
1
9

−
.0

5
6
7

.1
7
3
7

0
.2

5
4
0

.4
3
6
3

.5
7
3
0

.1
3
2
1

.3
5
5
4

0
.2

5
4
0

−
.0

0
8
0

.0
9
0
4

−
.0

5
8
1

.1
8
4
4

6
0

.3
5
1
6

.5
1
0
8

.0
9
5
3

.3
1
6
4

6
0

.0
1
4
5

.0
7
8
4

−
.0

3
1
7

.1
5
6
5

8
0

.2
6
9
7

.4
2
7
2

.0
6
3
3

.2
6
6
9

8
0

.0
1
0
5

.0
8
3
7

−
.0

3
1
8

.1
4
6
9

1
0
0

.2
1
3
2

.3
9
1
3

.0
6
9
8

.2
6
2
3

1
0
0

.0
1
7
2

.0
7
6
7

−
.0

3
6
3

.1
4
4
3

0
.4

5
4
0

.5
7
4
5

.6
6
6
6

.1
9
9
1

.1
4
6
5

0
.4

5
4
0

.0
2
8
5

.0
7
8
1

−
.0

0
6
4

.1
4
5
0

6
0

.5
3
7
7

.6
5
5
1

.1
5
8
1

.3
4
7
3

6
0

.0
4
1
9

.0
7
6
3

.0
0
8
5

.1
2
6
4

8
0

.4
3
6
2

.5
8
7
7

.1
4
3
2

.3
1
8
9

8
0

.0
5
0
4

.0
7
6
9

.0
1
2
9

.1
1
3
7

1
0
0

.3
4
8
5

.5
0
9
1

.0
9
7
4

.2
5
8
2

1
0
0

.0
4
8
6

.0
7
4
0

.0
1
9
0

.1
0
4
3

N
o
te

:
R

es
u

lt
s

b
a
se

d
o
n

1
0
0
0

si
m

u
la

ti
o
n

s
fo

r
ea

ch
m

o
d

el
.

147



Appendix B: Chapter 3

T
a
b

le
B

.2
:

P
a
ra

m
e
tr

ic
E

st
im

a
ti

o
n

o
f

M
A

P
a
ra

m
e
te

r
-

A
R

F
IM

A
(0

,d
,1

)

E
M

L
F

M
L

E
M

L
F

M
L

θ
d

T
B

ia
s

R
M

S
E

B
ia

s
R

M
S

E
θ

d
T

B
ia

s
R

M
S

E
B

ia
s

R
M

S
E

−
.4

0
−

0
.2

5
4
0

−
.3

0
4
9

2
.2

9
0
3

.0
4
2
4

.3
2
7
7

.4
0
−

0
.2

5
4
0

−
.0

2
0
2

1
.7

0
1
4

.0
2
0
7

.2
7
5
0

6
0

−
.0

8
8
5

.8
2
8
7

.0
2
0
2

.2
7
0
1

6
0

.0
4
5
0

.1
5
0
1

.0
1
0
2

.1
9
9
0

8
0

−
.0

5
2
2

.4
5
4
1

.0
1
8
8

.2
6
1
6

8
0

.0
3
8
7

.1
4
2
2

.0
0
5
6

.1
5
5
9

1
0
0

−
.0

3
2
8

.3
2
3
1

.0
1
2
5

.2
4
0
3

1
0
0

.0
3
2
5

.1
2
5
4

−
.0

0
1
2

.1
2
9
2

0
4
0

.0
2
4
4

1
.7

6
0
4

−
.1

1
7
9

.3
3
7
1

0
4
0

−
.2

0
6
9

3
.6

4
5
7

−
.0

0
5
6

.2
6
3
2

6
0

.1
3
2
0

.2
6
0
1

−
.0

8
8
1

.2
9
2
0

6
0

.0
6
6
4

.1
7
2
1

.0
0
5
5

.2
0
4
2

8
0

.1
8
1
9

.2
0
1
4

−
.0

6
2
9

.2
7
3
2

8
0

.0
4
3
1

.1
4
4
5

−
.0

0
4
6

.1
5
6
4

1
0
0

.1
3
2
7

.1
7
4
1

−
.0

4
0
3

..
2
5
4
1

1
0
0

.0
3
1
8

.1
2
4
2

.0
0
4
2

.1
3
3
9

0
.2

5
4
0

−
.2

4
4
6

3
.5

9
5
6

−
.1

9
8
9

.3
8
1
1

0
.2

5
4
0

−
.0

7
3
0

2
.9

9
2
7

−
.0

3
0
9

.2
4
4
6

6
0

.1
5
3
5

1
.2

5
6
8

−
.1

0
5
5

.2
9
5
6

6
0

.0
7
9
3

.2
5
5
5

−
.0

0
4
6

.1
8
4
3

8
0

.2
0
1
7

.4
6
0
2

−
.0

7
5
2

.2
6
4
0

8
0

.0
6
0
4

.1
3
8
6

.0
0
0
2

.1
5
4
4

1
0
0

.2
5
3
1

1
.5

5
2
6

−
.0

5
9
5

.2
4
4
8

1
0
0

.0
4
0
4

.1
2
1
6

−
.0

0
0
9

.1
2
9
9

0
.4

5
4
0

−
.3

9
0
5

4
.5

1
3
9

−
.2

2
0
6

.3
5
8
8

0
.4

5
4
0

−
.1

6
7
2

4
.8

6
8
9

−
.0

4
1
2

.1
9
9
8

6
0

.3
2
0
4

2
.7

3
7
7

−
.1

6
0
5

.2
8
7
8

6
0

.1
2
4
0

.3
6
2
7

−
.0

2
2
1

.1
6
1
7

8
0

.3
3
6
4

2
.6

1
4
6

−
.1

2
9
2

.2
4
4
7

8
0

.0
8
5
3

.2
2
3
5

−
.0

2
1
2

.1
2
9
3

1
0
0

.2
8
6
2

1
.8

1
0
4

−
.1

0
1
2

..
2
0
9
8

1
0
0

.0
6
9
4

.1
9
6
6

−
.0

0
9
7

.1
0
9
8

0
−

0
.2

5
4
0

−
.3

5
4
4

3
.3

4
1
3

.0
5
2
3

.3
5
1
2

.8
0
−

0
.2

5
4
0

−
.0

2
9
0

1
.9

6
4
1

−
.0

3
8
5

.1
9
1
3

6
0

.0
6
0
2

.2
9
7
1

.0
4
5
3

.2
9
8
8

6
0

.0
3
1
6

.1
1
1
3

−
.0

1
7
2

.1
3
2
1

8
0

.0
5
9
4

.2
3
3
5

.0
2
3
0

.2
5
1
4

8
0

.0
8
6
3

.0
8
9
9

−
.0

1
3
3

.1
0
4
5

1
0
0

.0
6
1
1

.2
0
8
0

.0
1
3
5

.2
1
5
5

1
0
0

.0
2
1
9

.0
7
8
9

−
.0

1
0
9

.0
8
8
2

0
4
0

.4
1
4
0

4
.0

1
5
7

−
.0

1
5
3

.3
2
7
5

0
4
0

.0
6
9
7

.1
5
3
6

−
.0

4
6
2

.1
8
8
3

6
0

.0
2
3
8

1
.2

9
1
0

.0
1
8
6

.2
8
2
4

6
0

.0
3
8
7

.1
1
5
6

−
.0

2
8
9

.1
4
3
2

8
0

.0
7
3
9

.3
3
4
1

.0
0
0
2

.2
3
9
1

8
0

.0
2
7
6

.0
9
5
6

−
.0

1
8
6

.1
0
9
8

1
0
0

.0
8
0
4

.1
8
6
4

.0
0
8
6

.2
1
1
2

1
0
0

.0
2
6
8

.0
8
4
4

−
.0

2
2
9

.0
9
2
9

0
.2

5
4
0

−
.3

2
9
4

5
.2

3
2
9

−
.0

7
2
3

.3
0
4
9

0
.2

5
4
0

.0
8
3
2

.1
7
3
3

−
.0

5
1
2

.1
9
4
5

6
0

.1
1
6
3

1
.9

1
0
0

−
.0

1
9
8

.2
3
8
3

6
0

.0
5
2
4

.1
3
2
8

−
.0

4
1
5

.1
4
9
7

8
0

.2
0
2
0

1
.7

5
9
8

−
.0

1
1
6

.2
0
7
5

8
0

.0
3
8
3

.1
0
3
1

−
.0

3
5
3

.1
2
2
2

1
0
0

.1
4
5
1

1
.3

4
0
0

−
.0

0
8
6

.1
8
4
2

1
0
0

.0
2
0
0

.0
7
7
6

−
.0

3
1
7

.1
0
5
3

0
.4

5
4
0

−
.2

8
1
8

5
.4

4
1
8

−
.1

0
6
0

.2
5
7
8

0
.4

5
4
0

.1
2
1
3

.2
0
1
6

−
.0

8
1
4

.1
9
3
2

6
0

.2
7
2
0

4
.2

9
1
6

−
.0

7
1
9

.2
0
4
8

6
0

.0
9
2
8

.1
6
8
5

−
.0

6
7
4

.1
6
3
6

8
0

.7
4
3
2

5
.5

8
9
0

−
.0

6
3
2

.1
6
9
7

8
0

.0
5
9
5

.1
3
7
9

−
.0

6
0
7

.1
3
5
1

1
0
0

.3
2
1
1

3
.4

4
7
5

−
.0

4
3
0

.1
4
5
9

1
0
0

.0
4
3
1

.1
0
6
5

−
.0

5
4
5

.1
1
8
1

N
o
te

:
R

es
u

lt
s

b
a
se

d
o
n

1
0
0
0

si
m

u
la

ti
o
n

s
fo

r
ea

ch
m

o
d

el
.

148



Appendix B: Chapter 3

B.3 Ignoring Fractional Integration - ARMA Estimation

Previous work by Box-Steffensmeier and Smith (1998) has demonstrated that assumptions
made as to the stationarity properties of the data, and ignoring fractional integration, can
have significant consequences on estimates as well as the conclusions drawn. In this instance,
we assume that a researcher is interested in pre-whitening their data before estimation. In
such a case, how reliable are the estimates of the AR and MA parameters if a series is, in fact,
fractionally integrated but the long memory is ignored? The results indicate a significant
bias in the estimates, determined by the level of memory in the series - upward bias if the
series exhibits positive memory, negative if the series is anti-persistent. The estimates can
be found in the Monte Carlo estimates for each model below. All results are based on 1000
simulations for each model. The orders of fractional integration present ranges between [-.25,
0, .25, .45] so all series are considered stationary despite being long memory.

Addressing Table B.3, which presents results of an autoregressive process, we find that
a failure to account for the fractional integration of the series leads to biased estimates
of the AR parameter. The greater the extent of fractional integration, the greater the
positive bias, while an anti-persistent series will negatively bias our estimates of φ. This
bias is apparent even in series that do not suffer from autoregression - the unaccounted for
fractional integration inflates the estimated AR parameter.
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Table B.3: ARMA Estimation - (1,d,0) Model

φ d T Bias RMSE φ d T Bias RMSE

−.40 −0.25 40 −.1144 .1635 .40 −0.25 40 −.2661 .3043
60 −.1251 .0254 60 −.2574 .2833
80 −.1180 .0216 80 −.2577 .2801

100 −.1265 .0218 100 −.2504 .2669
0 40 .0079 .1414 0 40 −.0595 .1611

60 .0033 .1139 60 −.0376 .1259
80 .0090 .0991 80 −.0250 .1035

100 .0055 .0917 100 −.0215 .0935
0.25 40 .1896 .2584 0.25 40 .1575 .2091

60 .2044 .2537 80 .1920 .2226
80 .2164 .2555 80 .2074 .2300

100 .2180 .2486 100 .2152 .2317
0.45 40 .4161 .4667 0.45 40 .3050 .3275

60 .4619 .4997 60 .3455 .3573
80 .4936 .5222 80 .3659 .3753

100 .5143 .5362 100 .3841 .3905
0 −0.25 40 −.2059 .2481 .80 −0.25 40 −.2807 .3164

60 −.1947 .2242 60 −.2538 .2777
80 −.1982 .2227 80 −.2482 .2674

100 −.1958 .2146 100 −.2353 .2512
0 40 −.0247 .1555 0 40 −.0899 .1563

60 −.0171 .1270 60 −.0611 .1126
80 −.0150 .1145 80 −.0498 .0964

100 −.0088 .0960 100 −.0319 .0744
0.25 40 .2009 .2634 0.25 40 .0411 .0983

60 .2316 .2696 60 .0717 .0980
80 .2468 .2766 80 .0869 .1005

100 .2629 .2874 100 .0923 .1021
0.45 40 .4220 .4582 0.45 40 .1099 .1303

60 .4682 .4893 60 .1316 .1393
80 .4964 .5116 80 .1416 .1458

100 .5149 .5285 100 .1498 .1524

Note: Results based on 1000 simulations for each model. Estimated bias and RMSE are of estimates of the AR parameter
in a (1, d, 0) model. Processes are generated such fractional integration of order d is present, but not estimated.

We find the exact same issues when attempting to estimate a series with an MA pa-
rameter. The persistence attributed to fractional integration will bias the MA parameter in
the expected direction. Note that the bias dissipates as the short-term dynamics increase
in strength. Positive values of fractional integration exert far less influence on the estimates
when the AR or MA parameters are .80. One additional point worth noting is that for series
with unaccounted for fractional memory, 0 < d < 1/2, the bias in our estimates actually
worsens with an increase in sample size.
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Table B.4: ARMA Estimation - (0,d,1) Model

θ d T Bias RMSE θ d T Bias RMSE

−.40 −0.25 40 −.3805 .5169 .40 −0.25 40 −.1979 .3254
60 −.2959 .3485 60 −.1932 .2610
80 −.2680 .2966 80 −.1929 .2414

100 −.2616 .2807 100 −.1887 .2252
0 40 .0079 .1414 0 40 −.0595 .1611

60 .0033 .1139 60 −.0376 .1259
80 .0090 .0991 80 −.0250 .1035

100 .0055 .0917 100 −.0215 .0935
0.25 40 .1878 .2718 0.25 40 .1491 .2241

60 .2191 .2609 80 .1567 .1930
80 .2407 .2682 80 .1575 .1831

100 .2376 .2590 100 .1602 .1804
0.45 40 .3906 .4448 0.45 40 .2587 .3027

60 .4298 .4524 60 .2649 .2823
80 .4479 .4622 80 .2724 .2851

100 .4573 .4692 100 .2781 .2876
0 −0.25 40 −.2852 .3860 .80 −0.25 40 −.0756 .2376

60 −.2776 .3317 60 −.0936 .1883
80 −.2621 .2981 80 −.0820 .1424

100 −.2617 .2892 100 −.0850 .1359
0 40 −.0247 .1555 0 40 −.0899 .1563

60 −.0171 .1270 60 −.0611 .1126
80 −.0150 .1145 80 −.0498 .0964

100 −.0088 .0960 100 −.0319 .0744
0.25 40 .1881 .2593 0.25 40 .2241 .2405

60 .2077 .2447 60 .1257 .1420
80 .2135 .2379 80 .0834 .0992

100 .2264 .2453 100 .0715 .0905
0.45 40 .3588 .3920 0.45 40 .2357 .2726

60 .3792 .3992 60 .1344 .1712
80 .3883 .4019 80 .0984 .1443

100 .4000 .4105 100 .0722 .1230

Note: Results based on 1000 simulations for each model. Estimated bias and RMSE are of estimates of the MA
parameter in a (0, d, 1) model. Processes are generated such fractional integration of order d is present, but not estimated.
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Appendix C

Appendix: Chapter 4

C.1 Additional Details on the Derivation of ECM Models

In this section we provide more information on the origins of the ECM model that DeBoef
and Keele (2008) adapt from the econometrics literature.

Kremers, Ericsson, and Dolado (1992) were the first to derive the asymptotic distribu-
tion of a conditional ECM t-test with a pre-specified cointegrating vector. Importantly,
they found that the distribution of the ECM was dynamic. Assuming an I(1) dependent
variable, it would shift based upon the properties of the covariate. The authors also noted
the relationship between the ECM and Engle-Granger procedures, which we briefly discuss
below.

If we assume a general ECM given as:

∆yt = γ′0∆zt + γ1(y − δ′z)t−1 + υ1t (C.1)

∆zt = εt (C.2)

where y−δ′z is the potential cointegrating relationship, then we can establish the relationship
between the ECM and the Engle Granger cointegration test. By subtracting δ′∆zt from both
sides of (C.1) we get:

∆(y − δ′z)t = γ1(y − δ′z)t−1 + {(γ′o − δ′)∆zt + υ1t} (C.3)

Next, redefine the Engle-Granger residual, (y − δ′zt) as ωt. From this point, (C.3) can be
rewritten as

∆ωt = γ1ωt−1 + et (C.4)

where et = (γ′0 − δ′)∆zt + υ1t.
Rewritten in this way, the t-test on γ1 in (C.4) is equivalent to the test statistic of

the Engle-Granger cointegration test. It is the Dickey-Fuller (DF) test of ωt, determining
whether the cointegrating relationship of y and z indicates cointegration (i.e., stationarity).

Note in (C.4) however that the Dickey-Fuller test imposes a common factor restriction
– (γ0 = δ) – the short and long run elasticities must be the same. In their work on the
general ECM Kremers, Ericsson, and Dolado (1992) argue that, more often than not, such
a restriction is invalid. In such instances the ECM t-test will be more powerful than the
Engle-Granger because it does not impose the same restrictions.

Kremers et al. (1992) derived the distribution of the ECM test under the null hypothesis
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of no cointegration and found the distribution to be dynamic – it is influenced by the covari-
ate. They found that when the covariate was both (1) stationary and (2) a strong predictor of
the dependent variable, the ECM distribution approached the standard normal. The extent
to which the distribution would shift away from the Dickey-Fuller distribution was dictated
by a nuisance parameter, which they referred to as the “signal-to-noise” ratio. This param-
eter, specified as q, captured the similarity of the error variances in (et = (γ0− δ)∆zt + υ1t).
The larger the value of γ0, the smaller the effect of et and the closer the distribution will be
to that of the Dickey-Fuller. Conversely, the more influential the stationary covariate, the
larger the value of et and the ECM distribution would approximate a normal distribution.

Kremers et al. (1992) gave their signal-to-noise ratio as:

q = −(γ0 − δ)s (C.5)

where s is the ratio σε/συ.

Figure C.1: Densities of ECM t-statistic With Valid Common Factor
Restrictions
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Note: Dashed line is the density of the Dickey-Fuller t-statistic of the DV. Tight dots are the densities of the ECMs’
t-statistics with up to 4 IVs included in the model. With I(0) IVs in which ∆Xt =0, the distributions follows that of the DF.
Solid line is the standard normal distribution. Each regression model contains a constant. DV is I(1). T = 60

Building off of this work, Hansen (1995) developed the Covariate Augmented Dickey-
Fuller (cADF) test which accounted for the information provided by additional stationary
covariates. By dropping the common factor restrictions of the standard DF test and instead
allowing the use of additional information, Hansen demonstrated a univariate unit-root test
with better precision in the estimates, shorter confidence intervals, and increased power of
the test statistic, sometimes substantially.1 With Monte Carlo simulations, Hansen demon-
strated that under the null hypothesis of a unit-root, δ = 0, the asymptotic distribution of
the cADF test statistic t(δ̂) = δ̂/s(δ̂) is a weighted combination of the standard normal and

1Caporale and Pittis (1999) investigate the power gains of the cADF and find that the nature of the
correlation between error terms of the series being tested and the covariates is determinant. Not only will
the addition of a covariate increase the precision of standard errors, but under certain circumstances the
coefficient on Yt−1 increases in absolute value.
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DF distributions, weighted by the included covariate’s contribution to the long-run corre-
lation in the error term. The covariate contribution is modeled as a nuisance parameter,
ρ2:

t(δ̂) = ρ(DF ) + (1− ρ2)1/2N(0, 1) (C.6)

which takes on values in the unit interval such that when when ρ = 1, the covariates are
uncorrelated and the cADF is equivalent to the Dickey Fuller; as ρ ⇒ 0 the distribution
approximates the standard normal. With the nuisance parameter set on a specific interval,
Hansen was able to calculate specific critical values for hypothesis testing.

The asymptotic distribution and critical values of Hansen’s cADF rely upon a very strong
assumption of stationarity, however, and it will not hold if the assumption is violated. With
an I(1) dependent variable and a non-stationary ∆Xt that is not cointegrated, Hansen finds
the distribution is biased away from the normal, approximating the distribution estimated
by Phillips and Ouliaris (1990) for the Engle-Granger cointegration test. This distribution
is even more biased away from the normal than the Dickey-Fuller distribution. The conse-
quences of violating these stationarity assumptions extend to under-differenced data as well.
If a covariate is I(d) where d > 1, differencing will not account for all of the auto-correlation
and the distribution will be biased away from the normal as a result.

The distribution derived by Hansen dealt with testing for univariate unit-roots, but
it was a generalization of Kremers, Ericsson, and Dolado (1992). Whereas the nuisance
parameter defined by Kremers et al. could take on any positive value making it difficult to
use, Hansen’s nuisance parameter was placed on a specific interval. In fact, Zivot (2000)
derived the asymptotic distribution of Kremers, Ericsson, and Dolado’s (1992) conditional
ECM t-test for pre-specified cointegrating vectors under more general conditions and found
the asymptotic distribution of Hansen’s cADF for a unit-root was identical to the asymptotic
distribution of the conditional ECM t-test.

C.1.1 Limitations to Estimating the ECM Distribution

The past research of Kremers, Ericsson, and Dolado (1992), Hansen (1995), and Zivot (2000)
determined the distributional properties of the ECM statistic in situations in which the
cointegrating coefficients were known, but importantly, these properties only hold under
situations of prior knowledge and proper pre-specification.

When the ECM model is used in applied research however, we often have no a priori
knowledge of the cointegrating vector. We cannot pre-specify the nuisance parameter, dictate
our covariate’s level of influence, or set the direction of correlation, and these limitations have
real consequences as to what assumptions we can make about the ECM t-statistic.

For instance, despite Kremers et al. (1992) proving the ECM distribution approximated
the normal under certain circumstances, they include a footnote in their paper urging caution
when using the ECM test in applied settings. Footnote 5 states that when a researcher
has no prior information of the influence of ∆Xt that it is advisable to use the DF test
statistics because they were substantively larger. In other words, meeting the assumption
of stationarity was not enough. Unable to specify the signal-to-noise ratio in real life, a
researcher cannot guarantee that the ECM’s distribution approaches the normal. As a
result, relying on the normal distribution for hypothesis testing potentially results in Type
I errors. Caution behooves the researcher to use the more conservative distribution.
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This distinction between the ability to pre-specify the cointegrating vector and having to
estimate the cointegration coefficent is worth considering in greater depth because it has real
consequences on how the ECM is used within the field of political science. With imperfect
knowledge we are left to test for cointegration by estimation, and in order for our hypothesis
tests to be valid we need a reliable set of test statistics. But from the work of multiple lines
of research we know that the distribution of the ECM t-statistic is non-standard and is not
dimension invariant. Kremers, Ericsson, and Dolado (1992) and Hansen (1995) established
that when influential, stationary covariates are added, the distribution will shift towards
the normal - however, in practice the extent of that shift is generally unknown. Hansen
also found that when non-stationary covariates that did not cointegrate were added, the
distribution was biased in the negative direction. Banerjee, Dolado, and Mestre (1998) and
Ericsson and MacKinnon (2002) used Monte Carlo simulations to compute critical values for
the ECM distribution and found that the distribution would shift in the negative with every
additional I(1) regressor. The MacKinnon values were computed for the widest number of
situations and are widely used today for hypothesis testing for the ECM cointegration test.

Figure C.2: Densities of ECM t-statistic by Number of Covariates

Note: Density plots of the ECM t-statistic for up to 5 IVs included. Each additional IV shifts the distribution further away
from the normal. DV and IVs all I(1). T = 60

But the MacKinnon critical values are only meaningful if we can also guarantee that all
series in the model are I(1). Thus, if we include a mix of stationary and I(1) regressors,
our ECM statistic will no longer fit the distribution, our critical values will be incorrect,
and we won’t know in which direction our test statistic is biased. As the examination of
Caporale and Pittis (1999) found, the reduction (and potential inflation) of standard errors
as well as the possibility of inflated test-statistics depend on a mix of factors, including the
direction of Granger causality as well as the contemporaneous correlation of the error terms.
Alternatively, if we use an IV that is I(d) > 1, we can expect that the ECM statistic will be
biased in the negative direction away from the MacKinnon critical values. The stationarity
assumptions of Hansen (1995) are valid, and failing to take them into account will cause
serious inferential problems.
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We demonstrate this with a simple bivariate regression using an independent variable
from Ura and Ellis (2012). We use their variable, Defense Spending, which captures all
federal defense spending in 2008 dollars. Estimates of its order of integration using Stata’s
ML estimator are: d = 1.36 (s.e.=0.11).

In its most commonly used form, the B̊ardsen transformation, the ECM is given as:

∆Yt = α0 + α1Yt−1 + β0∆Xt + β1Xt−1 + εt (C.7)

Recalling the stationarity concerns of Hansen - independent variables must be stationary,
and if in differenced form they should not be under-differenced - it is clear that by including
Defense Spending in the above model, we are going to bias our ECM t-statistic twice. The
order of integration of Defense Spending t-1, I(d), is much larger than I(1), and ∆Defense
Spending t will therefore be under-differenced. We should expect that the distribution of the
ECM t-statistic is biased away from the normal.

Figure C.3: Densities of ECM t-statistic with IV d > 1
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Note: Dashed line is density of ECM t-statistic of I(1) bivariate regression. Mean t-statistic = -1.78. Tight dot is t-statistic of
random I(1) DV regressed on Defense Spending. Mean t-statistic of α1 = -1.99. Normal density included for comparison.
T = 36

Figure C.3 presents the density plot of the ECM t-statistic after 10,000 simulations of
this model. The density plot of the ideal I(1) bivariate regression is included for comparison,
and the bias is clearly evident. And while this bias may appear minimal, were we to use
MacKinnon critical values we would reject the null of no cointegration in 7.1% of simulations,
compared to the 4.7% rejection rate of the ideal regression. This is just one of the many
ways the distribution of the test statistic is moved around.

C.1.2 Testing the Null of No Cointegration

Research has previously investigated the strength of the ECM as a cointegration test. Cru-
cially, these studies all evaluate the distributional properties of the ECM statistic when
the cointegrating vectors are already known (De Boef and Granato 1999; De Boef 2001;
Hansen 1995; Kremers, Ericsson, and Dolado 1992; Zivot 2000). Assuming that the known
cointegrating vector is properly specified, such conditional ECM t-tests testing the null of no-
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cointegration are often far more powerful than cointegration tests in which the cointegrating
vector must be estimated (Zivot 2000).

In the political science literature, studies that examines the ECM test under the null
of no cointegration also pre-specifiy the cointegrating vectors (De Boef and Granato 1999;
De Boef 2001). When the data do not contain a cointegrating relationship, the ECM test
consistently performs as expected, even with near-integrated data. Similarly, under the
alternative hypothesis of a cointegrating relationship, the ECM test performs admirably as
the amount of available information increases. Under circumstances such as those tested
by DeBoef and Granato, when the cointegrating vector is specifically set either to 0 (no
cointegration) or -0.05 (cointegration), the ECM test does not suffer from either Type I or II
errors. These findings are consistent with previous research (Kremers, Ericsson, and Dolado
1992; Zivot 2000).

But in actual practice, the cointegrating vector is unknown ahead of time and must be
estimated. What is the power of the ECM test under these less than ideal circumstances?
Were researchers simply using I(1) data series, the work of Banerjee, Dolado, and Mestre
(1998) and Ericsson and MacKinnon (2002) would be sufficient to show that the ECM
model performs as it should. But in actual practice we have seen a proliferation of studies
using the ECM model with series of all orders of integration, and these unbalanced models
have led to all sorts of inferential problems. Additionally, little thought has been paid to
the interpretations and conclusions when estimating an ECM equation using a stationary
series as the dependent variable. And the models often have other complications that make
interpretation even more difficult – e.g. interactions are sometimes included and the ECMs
of small T series have been estimated with up to 10 independent variables. And this has
all occurred while using the standard one-tail t-statistic of -1.645 as the hypothesis test for
error correction.

Given the large number of combinations of data series varying by length and order of
integration, we set out to broadly simulate data common to political science. Such series
tend to be short in duration and are rarely I(1). Based on the work of De Boef and Granato
(1999) and De Boef (2001) we also tested the ECM with near-integrated data under the
null of no cointegration. When the series were comprised solely of I(1) series, the ECM
statistic performs as expected. As we deviate from I(1) series, the power of the ECM model
deteriorates rapidly. Type I errors abound and spurious regressions are the norm.
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C.2 Generating Series

All simulations were run in RATS 8.0 although almost all replications were also estimated
in Stata to allow readers to more easily replicate our findings. Series were generated to fit a
specified order of integration or level of autoregression.

For all simulations we relied on the RATS random number generator and set a specific
seed value for replication. The starting value for each series was 0. For I(1) series, the
present values were computed as the series’ value in the previous period, plus a random
error term drawn from the normal distribution with mean of zero and a variance equal to 1:

Yt = Yt−1 + εt. (C.8)

I(0) series were generated simply as a white noise disturbance from a normal distribution
with a mean of zero and variance equal to 1:

Yt = εt. (C.9)

Stationary autoregressive series were generated with a value of ρ that varied by increments
of 0.01 between 0.90 and 0.99:

Yt = ρYt−1 + εt. (C.10)

Fractionally differenced series were generated using the ARFSIM package in RATS, which
generates (0, d, 0) series where one can specify d in the range −1 < d < 1.5. To ensure that
each series was generated properly, we used Robinson’s semi-parametric estimator (RGSE
package) to estimate each series’ order of d. If the mean d estimate of 10,000 simulations
was within 1% of our target integration level, we used the results of the simulation.2

C.2.1 Related vs. Unrelated Series

Just a brief note on related versus unrelated series. When related series are modeled, the
researcher is specifying that the two series share a common stochastic trend such that when
the two series are cointegrated, their linear combination is stationary.

For example, in a bivariate system, let Yt = (y1t, y2t)
′ ∼ I(1) and εt = (ε1t, ε2t)

′ ∼ I(0)
in which Yt is cointegrated with cointegrating vector β = (1,−β)′. The cointegration rela-
tionship can be represented by the following:

y1t = βµ1t + ε1t
y2t = µ2t + ε2t

In this case, if the linear combination of these two series is to be an I(0) process, then it must
be the case that the two series share a common stochastic trend: µ2t = βµ1t. Despite the
fact that both series are independently unit roots, the cointegrating relationship annihilates
the common trend and the equilibrium error term is stationary:

β′Yt = βµt + ε1t − β(µt + ε2t) = ε1t − βε2t ∼ I(0)

2RATS packages, as well as examples and supporting documentation can be downloaded from the Estima
website http://www.estima.com/procs perl/mainproclistwrapper.shtml. The ARFSIM package has been
updated so that its usage is more intuitive, however we found that it was creating a fatal error when
combined with the RGSE package. As a result, we used an earlier version of the ARFSIM package, and our
code is based on the old version. It is very easy to adapt our code to the new version of ARFSIM, however
it may not be possible to simultaneously estimate the d value of the series.
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It is fairly simple to simulate cointegrated systems. Using Phillips (1991) triangular repre-
sentation we can specify the relationship between y1t and y2t as:

y1t = βy2t + ut where ut ∼ I(0)
y2t = y2t−1 + υt where υt ∼ I(0)

In this representation, y1t captures the long-run equilibrium relationship and y2t describes
the common stochastic trend.

For example, Figure C.4 presents the plots of the series for y1t and y2t in which ut =
.50 ∗ ut−1 + εt, εt ∼ iid N(0, 1). As expected, y1t and y2t follow each other closely and the
plot of the cointegrating residual is clearly stationary.

Figure C.4: Two Related, Pre-Specified Series
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Note: Left plot is of two series in level form. Plot on the right is of the cointegrating residual of the two series. Note that the
residual series is stationary.

As we note in the main text, previous research has found that the GECM model ad-
equately detects cointegration when the cointegrating vector has been pre-specified. That
is, when two series have been created such that they share a common stochastic trend the
GECM model has sufficient power.

On the other hand, this paper focuses on the Type I errors that come from estimating the
cointegrating vector with the GECM model. In order to evaluate the model’s performance,
we randomly generate our data such that each series’ error term is uncorrelated with all
other series within the model. For example, if we simulate y1t and y2t as randomly generated
unit-root processes and plot them together, we could get two series that look like those
presented in Figure C.5.

In this case, y1t and y2t could potentially be related and an estimation of the GECM
model between these two series, with y1t as the dependent variable, yields what appears to
be a significant ECM parameter (t = −2.34). Such a conclusion would be in error however.
As can be seen in the right hand plot of Figure C.5, the residuals of the level form regression
of y1t on y2t is clearly not stationary. The two series do not share a common trend and there
is no cointegration.

For further information on power of the GECM when the cointegrating vector is pre-
specified, see Kremers, Ericsson, and Dolado (1992), De Boef and Granato (1999), and Zivot
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Figure C.5: Two Randomly Generated, Unrelated Series
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Note: Left plot is of two series in level form. Plot on the right is of the cointegrating residual of the two series. Note that the
residual series is not stationary.

(2000). For further information on the power of other cointegration tests when the series are
pre-specified as fractionally cointegrated, see Gil-Alana (2003) and Caporale and Gil-Alana
(2004).

C.2.2 Generating Bounded Series

We rely on the work of Nicolau (2002) and the author’s discrete-time process to generate
the bounded unit roots. The generated series approximate unit-roots when its values fall
within a specified interval. However, as the series nears its upper and lower thresholds it
tends towards mean reversion. The process is generated by:

Xt = Xt-1 + ek(e−α1(Xt-1−τ) − eα2(Xt-1−τ)) + εt (C.11)

where α1 ≥ 0; α2 ≥ 0; k < 0; and εt is assumed to be i.i.d. with a mean of 0 and variance
of 1.

Equation (C.11) adds an additional function to the basic unit-root. The function a(x) =
ek(e−α1(Xt-1−τ) − eα2(Xt-1−τ)) captures the mean reversion of the process. The range of the
process under which a(x) behaves as a unit-root is controlled by the k parameter; as |k|
increases, so too does the interval over which the series will behave as an I (1) process.
The τ parameter is the central tendency of the process. The final parameters, α1 and α2,
measure the reversion effect of the process as it approaches or exceeds the specified interval.
The larger the value of α the stronger the reversion towards the mean. When α1 = α2, the
parameter τ is the mean of the series and the interval is symmetric.

When Xt-1 = τ , then a(x) = 0 and the generated process will behave as a unit-root.
However we can widen the range over which the process varies by selecting the parameters
α1, α2, and k, such that a(x) ≈ 0 over a specific range of values surrounding τ . In our
case, we chose to create a series that approximates the range of Stimson’s (1991) “Mood,” a
commonly used variable within political science. Mood is not strictly bounded, however as
with many variables in the field, it has a rather limited range in practice. From 1952 to 2006
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Figure C.6: Value of a(x) Over Interval
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the low of Mood was 49 and its high was 69. Choosing parameter values of α1 = α2 = 1.5;
|k| = 16.5; and τ = 59, we created a variable of similar range. Figure C.6 plots the values
of the function a(x). When the series falls within the interval (49,70), the function a(x) is
near 0, but as the series shifts either above or below the interval, the strength of the mean
reverting process increases.

An example of this process is shown in Figure C.7. We created two identical unit-root
series, however the bounded series has been constrained by our chosen interval. As the two
series reach the interval, either above or below the mean, the value of a(x) increases and the
bounded series is pushed back towards its mean. The two series are equal for the first 50 or
so time points, but as they approach the upper threshold, the bounded unit-root is pushed
back while the original unit-root continues to meander without bounds. The two series have
diverged, however because their disturbance terms are equal, they still track each other over
the range of observations.

Table 3 in the main text provides results of Monte Carlo simulations with a bounded
dependent variable with various variances (σ =1, 2, 3). To visualize what such series may
look like, Figure B.3 shows plots of individual series with a T of 60 and a specific value of σ.
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Figure C.7: Bounded Unit-Root Compared to a Unit-Root
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Figure C.8: Series Plots as Variance Changes
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C.3 Additional Materials: Replication of Casillas, Enns, and Wohl-
farth (2011)

We replicate Casillas, Enns, and Wohlfarth’s (2011) Tables 1 and 2 in Table C.1. All results
are comparable, with the exception of the standard error of the LRM for Social Forces in
the Salient Review model.3 We find the standard error is somewhat lower, but this has no
effect on the substantive findings of the model.

C.3.1 Full Paper Replication

Table C.1: Replication of Casillas et al. (2011)

All Non-Salient Salient
Reviews Reviews Reviews

Long Run Multiplier
Public Mood 1.05? 1.15?

(0.51) (0.56)
Court Ideology 11.67? 10.90? 13.31?

(2.82) (3.11) (4.22)
Social Forces 7.28?

(3.83)
Long Run Effects

Public Moodt-1 0.87? 0.88? 0.71
(0.42) (2.15) (0.96)

Court Ideologyt-1 9.68? 8.37? 16.90?

(3.10) (3.09) (5.73)
Social Forces (IV)t-1 0.98 -0.01 9.20?

(2.14) (2.15) (5.09)
Short Run Effects

∆Public Mood 1.59? 1.68? 1.24
(0.78) (0.79) (1.81)

∆Court Ideology 12.48? 11.37? 10.47
(4.29) (4.41) (10.03)

∆Social Forces (IV) 2.78 2.56 7.49
(3.00) (2.98) (8.03)

Error Correction and Constant
Percent Liberalt-1 -0.83? -0.77? -1.27?

(0.15) (0.15) (0.15)
Constant -6.03 -11.05 31.02

(25.14) (25.42) (58.32)
Fit and Diagnostics
Centered R2 0.53 0.49 0.64
Sargan (χ2) 0.38 0.67 0.21
N 45 45 45

Note: Entries are two-stage least squares coefficients (standard errors in
parentheses). ECM significance one-tail t-test. Coefficient significance (*p≤ 0.05,
one-tail test).

3The long-run multiplier (LRM) is calculated as the ratio of coefficients: β1/α1. The formula for the
standard errors of the LRM is: ((1/b2)Var(a) + (a2/b4)Var(b)− 2(a/b3)Cov(a, b))1/2 See De Boef and Keele
(2008, pp.191-192).
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C.3.2 Replication of CEW - First Stage Results

Table C.2 presents the results of the first stage regressions in which Martin-Quinn scores were
regressed on the “social forces” that predict the public mood. CEW note that these social
forces are substantial predictors of the public mood, therefore when used as instruments for
Martin-Quinn scores, they will capture that portion of justice ideology influenced by the
same social forces that influence public mood.

Because the table is so large, the social forces which significantly predict our variables
to be instrumented are bolded. Fit diagnostics are provided. The null hypothesis of each
diagnostic is that the instrument is poor – thus we want to reject the null to show our instru-
ments are valid and that the second stage estimates are reliable. With weak instruments,
results of 2SLS are biased towards the results of OLS. This bias only gets worse as more
weak instruments are added. With instruments as weak as CEW’s, any inferences drawn
from the model should be taken with extreme caution.

Note: The weak identification test does not provide a p-value, but instead the Stock-Yogo
critical value to determine bias from weak identification of the instruments, the 5% critical
value is 19.40. With values of 1.52, 1.59, and 0.97, respectively, the three models fail to
reject the null of the Stock-Yogo. The instruments are not useful and the second stage is
nearly identical to the OLS estimates. If endogeneity is indeed a problem with this data-set,
it doesn’t appear that the specified model provides an adequate solution.
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Table C.2: First Stage Results from 2SLS

All Reviews Non-Salient Salient

1st Stage Variables ∆MQ MQt-1 ∆MQ MQt-1 ∆MQ MQt-1

Reviewst-1 0.04? -0.00 0.04? -0.01 0.01 0.00
(0.01) (0.04) (0.01) (0.02) (0.01) (0.01)

∆Moodt 0.25? -0.24? 0.25? -0.25? 0.20? -0.24?

(0.07) (0.10) (0.07) (0.09) (0.08) (0.09)
Moodt-1 0.13 -0.13 0.13 -0.13 0.15 -0.14

(0.07) (0.09) (0.07) (0.09) 0.08 (0.09)
∆Segal-Covert 0.65 0.95 0.65 0.94 0.66 0.96

(0.48) (0.65) (0.47) (0.65) (0.54) (0.65)
Segal-Covert-1 -0.52 1.48 -0.58 1.51 -0.22 1.47

(0.57) (0.77) (0.56) (0.77) 0.63 (0.75)

“Social Forces” Excluded in 2nd Stage

∆% Change Inflationt 6.41 0.60 4.49 1.15 10.95 0.55
(8.46) (11.44) (8.41) (11.56) (9.46) (11.36)

% Change Inflationt-1 13.67 12.16 13.47 12.28 14.73 12.10
(11.77) (15.91) (11.56) (15.89) (13.24) (15.90)

∆Unemploymentt -0.18 0.07 -0.16 0.09 -0.03 0.06
(0.18) (0.25) (0.18) (0.24) (0.20) (0.24)

Unemploymentt-1 0.21 0.19 0.20 0.19 0.23 0.19
(0.17) (0.23) (0.16) (0.23) (0.19) (0.23)

∆Defense Budgett -0.15? 0.09 -0.16? 0.10 -0.08 0.08
(0.06) (0.08) (0.06) (0.08) (0.06) (0.07)

Defense Budgett-1 -0.08 -0.04 -0.08 -0.04 -0.05 -0.04
(0.05) (0.07) (0.05) (0.07) (0.06) (0.07)

∆Policy Liberalismt -0.07 0.14? -0.06 0.14? -0.07 0.13?

(0.04) (0.05) (0.04) (0.37) (0.05) (0.06)
Policy Liberalismt-1 0.02 -0.03 0.02 -0.03 0.03 -0.03

(0.04) (0.05) (0.04) (0.05) (0.04) (0.05)
∆Homicide Ratet 0.18 0.14 0.18 0.12 0.04 0.16

(0.30) (0.41) (0.30) (0.41) (0.34) (0.41)
Homicide Ratet-1 -0.31 -0.02 -0.34 -0.03 -0.39 -0.01

(0.24) (0.33) (0.24) (0.33) (0.28) (0.33)
∆Ginit -27.94 -3.91 -34.11 -2.28 -15.22 -4.01

(17.73) (23.97) (17.85) (24.53) (19.74) (23.71)
Ginit-1 -8.21 3.39 -10.83 4.49 1.20 2.91

(16.76) (22.65) (16.60) (22.81) (18.51) (22.23)
Constant -4.08 6.59 -2.65 6.13 6.68 31.02

(9.72) (13.13) (9.60) (13.19) (13.05) (58.32)

Fit and Diagnostics

Underidentification Test‡ 0.08 0.07 0.26
Weak Identification Test† 1.52 1.59 0.97
Anderson-Rubin Weak Instrument‡ 0.71 0.57 0.38
Stock-Wright Weak Instrument‡ 0.53 0.88 0.24

Note: First stage regressions results of Casillas, Enns, and Wohlfarth (2011). †5% Maximal IV relative bias = 19.40;
30% Maximal IV relative bias = 4.59. ‡p-value (?p≤ 0.05, two-tail test)

165



Appendix C: Chapter 4

C.3.3 Replications with OLS

In replicating with our series, we chose to adhere to Casillas, Enns, and Wohlfarth’s (2011)
estimation methods of 2SLS. Their use of 2SLS was intended to control for the effects of
social forces on contemporaneous Justice ideology. As noted, we did not have concerns of
the endogeneity of beef consumption with the ideological direction of the Court’s decision
making, however we wanted our estimations to be comparable. Despite CEW’s concerns of
potential endogeneity, their first stage instruments are so weak that their results are very
strongly biased towards the results of OLS.

We also replicate their models, as well as ours, using OLS. With some very minor dif-
ferences - for instance, the long term effect of Martin-Quinn justice ideology is significant in
the All Review model, and Mood has a substantively larger effect - the results of the 2SLS
and OLS replications of Casillas et al. are equivalent. As expected, so too are the results
from our nonsense regression series.

Table C.3: Replication of Casillas et al. (2011) with OLS

All Non-Salient Salient
Reviews Reviews Reviews

Long Run Effects
Public Moodt-1 1.08? 1.13? 0.55

(0.41) (0.42) (0.95)
Court Ideologyt-1 8.07? 6.00? 18.16?

(2.97) (2.84) (5.43)
Martin-Quinnt-1 3.01? 2.27 7.24?

(1.57) (1.56) (3.73)
Short Run Effects

∆Public Mood 2.04? 2.25? 0.89
(0.74) (0.74) (1.71)

∆Court Ideology 10.91? 9.53? 12.33
(4.39) (4.44) (10.06)

∆Martin-Quinn 2.59 1.67 6.88
(3.00) (2.16) (4.95)

Error Correction and Constant
Percent Liberalt-1 -0.84? -0.75? -1.25?

(0.15) (0.15) (0.16)
Constant -17.78 -26.69 39.23

(24.65) (24.63) (57.84)
Fit and Diagnostics
Adjusted R2 0.47 0.44 0.57
Breusch-Pagan Test (χ2) 2.22 3.13 7.02?

Breusch-Godfrey LM Test (χ2) 0.16 1.50 0.04
N 45 45 45

Note: Entries are OLS regression coefficients (standard errors in parentheses).
ECM significance one-tail t-test. Coefficient significance (*p≤ 0.05, one-tail test).

As for the ECMs, the estimates of Casillas, Enns, and Wohlfarth (2011) are nearly
identical with OLS and their Salient Review model still has an estimated ECM of -1.25. The
results of our nonsense data series are also similar, however our Salient Review ECM has
shrunk to -0.96.

C.3.4 Estimating Fractional Order of Integration

Table 11 of the main text provides the results of each fractionally differenced regression.
Table C.5 presents the initial step in the process: investigating the order of integration of
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Table C.4: What Else Affects the Court’s Liberal Reversal Rate (Re-estimation
of Casillas et al. (2011)) Using OLS

All Non-Salient Salient
Reviews Reviews Reviews

Long Run Effects
Shark Attackst-1 0.30? 0.30? 0.48?

(0.12) (0.12) (0.21)
Tornado Fatalitiest-1 0.02 0.01 0.06

(0.03) (0.03) (0.06)
Beef Consumption (IV)t-1 -0.88? -0.91? -1.81?

(0.29) (0.29) (0.44)
Short Run Effects

∆Shark Attacks 0.20? 0.18? 0.37
(0.11) (0.10) (0.22)

∆Tornado Fatalities 0.04? 0.03 0.09?

(0.02) (0.02) (0.04)
∆Beef Consumption (IV) -0.80 -1.81 4.49

(1.49) (1.49) (3.21)
Error Correction and Constant

Percent Liberalt-1 -0.52? -0.56? -0.96?

(0.14) (0.15) (0.16)
Constant 56.62? 60.37? 110.90?

(27.56) (17.75) 23.95
Fit and Diagnostics
Adjusted R2 0.31 0.27 0.53
Breusch-Pagan Test (χ2) 0.01 0.01 3.89?

Breusch-Godfrey LM Test (χ2) 2.98 7.13? 1.46
N 45 45 45

Note: Entries are OLS regression coefficients (standard errors in parentheses).
ECM significance one-tail t-test. Coefficient significance (*p≤ 0.05, one-tail test).

each constituent series.4 Recall that in order to estimate a three-step FECM the order of
integration between a DV and IV must be equivalent. Absent this equivalence, the two (or
more) series cannot share a common stochastic trend, and therefore cannot be fractionally
cointegrated.

Our estimates of d are consistent and reaffirm our decision to not fit an FECM with the
data. The three DVs are fractionally integrated, which means that despite the fact that
Dickey-Fuller tests cannot reject the null of a unit root for either All Reviews or Non-Salient
Reviews, the two series are not integrated I(1). Shocks are not permanent, but decrease at
a hyperbolic rate. It is tempting to conclude that the DV Salient Reviews is long-memoried,
but stationary (d < 0.5), however without more observations this can’t be established with
95% confidence. While our results indicate the DVs are not pure unit roots, the confidence
intervals on the estimates of the three IVs all overlap 1.0, meaning we cannot reject the null
that the three IVs are all integrated.

4All estimates of d were estimated using Stata’s exact ML estimator. The exact ML estimator is consistent
and asymptotically normal for series -0.5 < d < 0.5, which generally requires first differencing a series and
then estimating d. The RATS Local Whittle estimator of Robinson (1995) is in general agreement with the
estimates of the Stata program: All Reviews (d = 0.62); Non-Salient Reviews (d = 0.63); Salient Reviews
(d = 0.36); Public Mood (d = 1.14); Segal-Cover Scores (d = 1.15); Martin-Quinn Score (d = 1.09). The
asymptotic standard error of the Local Whittle estimator is based on m, the bandwidth, or number of
Fourier frequencies used by the estimator. For all Local Whittle estimates, m is calculated as T 4/5 and the
asymptotic standard errors are calculated as (1/

√
4 ∗m): (s.e.=0.11).
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Table C.5: Fractional Order of Integration, Casillas et al (2011)

Individual 95% Confidence
Series Interval
d d

All Reviews 0.62 (0.11) [0.404, 0.836]
Non-Salient Reviews 0.62 (0.12) [0.385, 0.858]
Salient Reviews 0.36 (0.08) [0.200, 0.529]
Public Mood 1.09 (0.13) [0.835, 1.345]
Segal-Cover Score 1.07 (0.14) [0.796, 1.344]
Martin-Quinn Score 1.00 (0.15) [0.706, 1.294]

† Note: Entries are estimates of the order of integration of all
series used by Casillas, Enns, and Wohlfarth (2011). Standard
errors in parentheses. Estimates conducted in Stata using the
exact ML estimator.

We also provide the estimates of fractional integration of our nonsense data: Beef Con-
sumption: d = 1.14 (s.e.= 0.15); Shark Attacks : d = 0.56 (s.e.= 0.13); and Tornado Fatali-
ties : d = 0.05 (s.e.= 0.12). In the interests of completeness, we then estimate this data in
both fractionally differenced regression models as well as (potentially misspecified) FECMs.
As Tables C.6 C.7 demonstrate, when using fractional methods on our Beef-Shark-Tornado
data we find only null results – a good sign for the method.

Table C.6: FI Model of Nonsense Data and Supreme Court Reversals

Review Non-
Type All Salient Salient

Short Run Effects
∆d Shark Attacks 0.18 0.16 0.28

(0.11) (0.11) (0.24)
∆d Tornado Fatalities 0.03 0.02 0.07

(0.02) (0.02) (0.04)
∆d Beef Consumption -1.01 -1.96 4.37

(1.49) (1.46) (3.19)
Constant -2.10 -2.04 -12.42?

(1.69) (1.66) (3.62)
Fit and Diagnostics
Adjusted R2 0.04 0.03 0.09
Durbin-Watson 2.13 2.17 2.35
Breusch-Pagan Test (χ2) 3.69 4.63 0.38
Breusch-Godfrey LM Test (χ2) 0.32 0.62 1.65

Note: Entries are OLS coefficients (standard errors in
parentheses). All variables have been fractionally differenced by
their estimate of d. Coefficient significance (*p≤ 0.05, two-tail
test).
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Table C.7: FECM Model of Nonsense Data and Supreme Court Reversals

Review Non- Non- Non-
Type All All All Salient Salient Salient Salient

Short Run Effects
∆d Shark Attacks 0.16 0.17 0.16 0.15 0.15 0.14 0.28

(0.12) (0.12) (0.12) (0.11) (0.11) (0.11) (0.24)
∆d Tornado Fatalities 0.02 0.03 0.02 0.02 0.02 0.01 0.07

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.04)
∆d Beef Consumption -0.66 -0.72 -0.65 -1.58 -1.62 -1.56 4.37

(1.55) (1.55) (1.55) (1.53) (1.53) (1.52) (3.19)
Error Correction and Constant

FECMSharks -0.10 -0.10
(0.15) (0.15)

FECMTornados -0.07 -0.09
(0.16) (0.16)

FECMBeef -0.14 -0.14
(0.16) (0.16)

Constant -2.55 -2.34 -2.34 -2.45 -2.35 -2.28 -12.42?

(1.89) (1.87) (1.75) (1.86) (1.83) (1.73) (3.62)
Fit and Diagnostics
Adjusted R2 0.10 0.09 0.11 0.09 0.08 0.09 0.09
Durbin-Watson 1.97 2.02 1.93 2.03 2.04 1.98 2.35
Breusch-Pagan Test (χ2) 6.69 5.84 7.15 7.86 9.27 8.57 0.38
Breusch-Godfrey LM Test (χ2) 1.26 0.01 0.99 0.07 0.09 0.53 1.65

Note: Entries are OLS coefficients (s.e. in parentheses). All variables have been fractionally differenced by
their estimate of d. FECM significance (*p≤ 0.05, one-tail test). Coefficient significance (*p≤ 0.05, two-tail
test).
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C.4 Additional Materials: Replication of Ura and Ellis (2012)

C.4.1 Full Paper Replication

Below is the complete replication of Table 2 from Ura and Ellis (2012). Because the authors
used a Seemingly Unrelated Regression, all replications and Monte Carlo simulations were
conducted in Stata so that we could exactly replicate their findings.

Table C.8: Replication of Ura and Ellis - Table 2†

Republican Democrat |Difference|

Long Run Multipliers
Domestic Spending $10B -0.28? (0.08) -0.11? (0.05) 0.16?

Defense Spending $10B 0.52? (0.15) 0.29? (0.05) 0.23
Inflation -0.57? (0.28) -0.47? (0.19) 0.10
Unemployment -0.17 (0.83) 0.49 (0.37) 0.66
Top 1% Income Share 2.45? (0.94) 1.54? (0.27) 0.91

Long Run Effects
Domestic Spending $10Bt-1 -0.11? (0.02) -0.07? (0.02) 0.04
Defense Spending $10Bt-1 0.21? (0.05) 0.20? (0.06) 0.01
Inflationt-1 -0.23? (0.12) -0.33? (0.16) 0.10
Unemploymentt-1 -0.07 (0.33) 0.34 (0.24) 0.41
Top 1% Income Sharet-1 0.99? (0.35) 1.07? (0.29) 0.08

Short Run Effects
∆Domestic Spending $10Bt -0.04 (0.03) -0.07? (0.04) 0.03
∆Defense Spending $10Bt 0.43? (0.09) 0.14? (0.07) 0.29?

∆Inflationt -0.12 (0.20) -0.03 (0.14) 0.09
∆Unemploymentt 0.12 (0.29) 0.68? (0.41) 0.56
∆Top 1% Income Sharet 1.03? (0.23) 0.76? (0.23) 0.27

Error Correction and Constant
Partisan Moodt-1 -0.40? (0.09) -0.69? (0.17) 0.29
Constant 16.80? (6.65) 33.93? (9.50) 17.13

Fit and Diagnostics
Adjusted R2 0.39 0.39
Breusch-Pagan Test (χ2) 0.01 0.40
Breusch-Godfrey LM Test (χ2) 1.42 0.70

† Note: Entries are seemingly unrelated regression coefficients (standard errors in
parentheses). The Dickey-Fuller Test statistic was not included as we couldn’t replicate their
estimates. N=35

C.4.2 Full Monte Carlo Results

The result of 10,000 Monte Carlo simulations is presented in Table C.9. We have simulated
I(1) dependent variables and regressed them on the IVs used by Ura and Ellis (2012). In
keeping with the methodological choice of Ura and Ellis, each iteration was estimated as a
SUR, however because the set of independent variables is the same in the two equations,
the results of the simulations are essentially equal for both models. This does not affect the
conclusions that we draw from the results - the independent variables, two of which have
estimated orders of fractional integration significantly greater than I(1), are biasing the ECM
t−distribution well away from that used to derive the MacKinnon critical values. The result
is a finding that approximately 20% of all error correction parameters as significant. The
rate of cointegration is overstated.

C.4.3 Estimating FECM of Ura and Ellis (2012)

Because Ura and Ellis (2012) do not specify which of their variables they believe to be in
an equilibrium relationship with the dependent variable we estimate a three-step fractional
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Table C.9: Summary Statistics Monte Carlo Simulation of Ura and Ellis (2012)

Random DV 1 Random DV 2

% ECM Significant – one tail t-distribution 86.4 86.5
% ECM Significant – MacKinnon Values 22.4 22.5
Mean of α1 -0.40 -0.40
% ∆Xt Significant 57.2 57.5
% ≥ 1Xt−1 Significant 69.4 68.4
% ECM and ≥ 1∆Xt Significant 50.0 50.1
% ECM and ≥ 1∆Xt Significant* 15.4 14.9
% ECM and ≥ 1Xt−1 Significant 62.3 61.9
% ECM and ≥ 1Xt−1 Significant* 19.9 19.8

Note: Entries provide are the summary results of 10,000 simulations of a seemingly
unrelated regression in which randomly generated I(1) series are regressed upon the
independent variables from Ura and Ellis (2012).
∆Xt and Xt−1 significance (*p≤ 0.05, two-tail test).
MacKinnon Value: −4.268

ECM for each independent variable in each model. After each bivariate regression we then
estimated the order of integration of the residuals for comparison with the component series.
Even if the parent series are I(1), fractional cointegration may still exist if the fractional
integration of the regression residuals are less than I(1), but greater than I(0). The results
of these estimates, as well as estimates of the component series, can be found in Table C.10.
Only the residuals from the regression of Partisan Mood on Inflation indicate any decrease
in order of integration, however the reduction is marginal.

Table C.10: FECM Order of Integration

Individual Residuals Residuals
Series Rep Mood & IV Dem Mood & IV
d d d

Republican Mood 1.05 (0.16)
Democrat Mood 1.15 (0.16)
Domestic Spending $10B 1.44 (0.08) 1.04 (0.16) 1.14 (0.16)
Defense Spending $10B 1.32 (0.11) 1.03 (0.16) 1.09 (0.16)
Inflation 1.02 (0.24) 0.91 (0.18) 0.76 (0.21)
Unemployment 0.94 (0.21) 1.08 (0.17) 0.99 (0.18)
Top 1% Income Share 0.89 (0.19) 1.06 (0.16) 1.01 (0.16)

† Note: Entries are estimates of the order of integration of each individual series as well as
estimates of the residuals of bivariate regressions. Estimates based on results of the Stata
exact ML estimator.

The estimates in Table C.10 argue strongly against any finding of fractional cointegration.
To be sure, we estimate each individual FECM and present the results in Tables C.11 and
C.12 for Republican Mood and Democratic Mood, respectively.

Comparing the results from the FECM models we see that Republican Mood is affected
by both increases in Defense Spending and in the Top 1% Income Share. As each increases,
Republican Mood shifts in the liberal direction. These results hold across all models. Despite
the IVs’ significance, we don’t find any evidence of an equilibrium relationship between
the DV and any of the covariates. For the Democrat Mood model, no variables achieve
significance. These results are drastically different from those reported by Ura and Ellis
with the single equation GECM.
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Table C.11: Three-Step FECM Results - Republican Mood

(1) (2) (3) (4)

Short Run Effects
∆dDomestic Spending $10Bt 0.02 0.03 0.03 0.02

(0.04) (0.04) (0.04) (0.04)
∆dDefense Spending $10Bt 0.31? 0.31? 0.30? 0.30?

(0.13) (0.13) (0.13) (0.13)
∆dInflationt -0.31 -0.31 -0.33 -0.29

(0.20) (0.21) (0.20) (0.21)
∆dUnemploymentt -0.47 -0.47 -0.51 -0.47

(0.37) (0.37) (0.38) (0.37)
∆dTop 1% Income Sharet 1.21? 1.21? 1.19? 1.22?

(0.42) (0.42) (0.42) (0.42)
Error Correction and Constant

Partisan Moodt-1
† 0.11 0.09 0.06 0.13

(0.16) (0.16) (0.15) (0.17)
Constant -1.30 -1.31 -1.34 -1.30

(0.68) (0.68) (0.68) (0.68)
Fit and Diagnostics
R2 0.38 0.38 0.37 0.38
Durbin-Watson 2.22 2.18 2.09 2.23
Breusch-Pagan Test (χ2) 1.57 1.46 1.17 1.60
Breusch-Godfrey LM Test (χ2) 1.27 0.93 0.20 1.38

Note: Entries are OLS coefficients. FECM significance (*p≤ 0.05, one-tail test).
Coefficient significance (*p≤ 0.05, two-tail test).
† Model (1) - FECM of Mood & Domestic Spending; Model (2) - FECM of Mood &
Defense Spending; Model (3) - FECM of Mood & Inflation; Model (4) - FECM of Mood
& Unemployment

Table C.12: Three-Step FECM Results - Democrat Mood

(1) (2) (3) (4)

Short Run Effects
∆dDomestic Spending $10Bt 0.00 0.00 0.00 0.00

(0.04) (0.04) (0.04) (0.04)
∆dDefense Spending $10Bt 0.09 0.10 0.10 0.10

(0.12) (0.11) (0.11) (0.12)
∆dInflationt -0.04 -0.05 -0.01 -0.07

(0.18) (0.18) (0.17) (0.21)
∆dUnemploymentt -0.05 -0.07 0.13 -0.05

(0.33) (0.33) (0.32) (0.32)
∆dTop 1% Income Sharet 0.51 0.55 0.62 0.51

(0.37) (0.38) (0.36) (0.37)
Error Correction and Constant

Partisan Moodt-1
† -0.06 -0.13 -0.19 -0.08

(0.19) (0.20) (0.13) (0.17)
Constant -0.13 -0.16 -0.19 -0.12

(0.61) (0.60) (0.57) (0.59)
Fit and Diagnostics
R2 0.08 0.10 0.15 0.09
Durbin-Watson 2.15 2.08 1.99 2.14
Breusch-Pagan Test (χ2) 0.05 0.04 0.88 0.18
Breusch-Godfrey LM Test (χ2) 1.83 0.52 0.00 0.44

Note: Entries are OLS coefficients. FECM significance (*p≤ 0.05, one-tail test).
Coefficient significance (*p≤ 0.05, two-tail test).
† Model (1) - FECM of Mood & Domestic Spending; Model (2) - FECM of Mood &
Defense Spending; Model (3) - FECM of Mood & Inflation; Model (4) - FECM of Mood
& Unemployment
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We also estimate three-step fractional ECMs for each independent variable in our non-
sense model, beginning with onion acreage. The ECM results, presented in Tables C.13 -
C.15, are null across all model specifications.

Table C.13: Three-Step FECM Results - Partisan Mood & Onion Acreage

Republican Mood Democrat Mood

Short Run Effects
∆d Onion Acreage 0.02 (0.05) 0.02 (0.04)
∆d Coal Emissions 0.02 (0.03) -0.00 (0.02)
∆d Beef Consumption 0.58 (0.40) -0.23 (0.31)
∆d Shark Attacks 0.02 (0.03) 0.00 (0.02)
∆d Tornado Fatalities 0.02 (0.01) 0.00 (0.00)

Error Correction and Constant
FECM† -0.02 (0.19) 0.09 (0.20)
Constant -1.25 (1.34) 0.22 (1.02)

Fit and Diagnostics
Adjusted R2 0.02 -0.13
Durbin-Watson 2.04 2.08
Breusch-Pagan Test (χ2) 0.18 0.46
Breusch-Godfrey LM Test (χ2) 0.13 0.63

Note: Entries are OLS coefficients (s.e. in parentheses). All variables have been
fractionally differenced by their estimate of d.
† FECM of Mood & Onion Acreage; FECM significance (*p≤ 0.05, one-tail test).
Coefficient significance (*p≤ 0.05, two-tail test).

173



Appendix C: Chapter 4

Table C.14: Three-Step FECM Nonsense Results - Republican Mood

(1) (2) (3) (4)

Short Run Effects
∆dOnion Acreage 0.02 0.02 0.02 0.02

(0.05) (0.05) (0.05) (0.05)
∆dCoal Emissions 0.02 0.02 0.02 0.02

(0.03) (0.03) (0.03) (0.03)
∆dBeef Consumption 0.58 0.58 0.58 0.62

(0.39) (0.39) (0.39) (0.39)
∆dShark Attacks 0.02 0.02 0.02 0.01

(0.03) (0.03) (0.03) (0.03)
∆dTornado Fatalities 0.02 0.02 0.02 0.02?

(0.01) (0.01) (0.01) (0.01)
Error Correction and Constant

FECM† -0.04 -0.02 -0.03 -0.11
(0.18) (0.18) (0.18) (0.19)

Constant -1.24 -1.25 -1.24 -1.18
(1.32) (1.32) (1.33) (1.32)

Fit and Diagnostics
Adjusted R2 0.03 0.02 0.03 0.04
Durbin-Watson 2.00 2.03 2.01 1.82
Breusch-Pagan Test (χ2) 0.15 0.16 0.16 0.04
Breusch-Godfrey LM Test (χ2) 0.02 0.09 0.03 1.99

Note: Entries are OLS coefficients. FECM significance (*p≤ 0.05, one-tail test).
Coefficient significance (*p≤ 0.05, two-tail test).
† Model (1) - FECM of Mood & Coal Emissions; Model (2) - FECM of Mood & Beef
Consumption; Model (3) - FECM of Mood & Shark Attacks; Model (4) - FECM of
Mood & Tornado Fatalities

Table C.15: Three-Step FECM Nonsense Results - Democrat Mood

(1) (2) (3) (4)

Short Run Effects
∆dOnion Acreage 0.03 0.03 0.03 0.03

(0.04) (0.04) (0.04) (0.04)
∆dCoal Emissions -0.00 -0.00 -0.00 -0.00

(0.02) (0.02) (0.02) (0.02)
∆dBeef Consumption -0.19 -0.18 -0.19 -0.19

(0.32) (0.31) (0.31) (0.31)
∆dShark Attacks 0.00 0.00 0.00 0.00

(0.02) (0.02) (0.02) (0.02)
∆dTornado Fatalities 0.00 0.00 0.00 0.00

(0.01) (0.01) (0.01) (0.01)
Error Correction and Constant

FECM† -0.00 -0.05 -0.02 -0.02
(0.20) (0.18) (0.20) (0.20)

Constant 0.20 0.15 0.19 0.19
(1.04) (1.04) (1.03) (0.20)

Fit and Diagnostics
Adjusted R2 -0.14 -0.13 -0.14 -0.14
Durbin-Watson 1.91 1.80 1.88 1.87
Breusch-Pagan Test (χ2) 0.75 0.65 0.72 0.69
Breusch-Godfrey LM Test (χ2) 0.30 1.05 0.91 1.06

Note: Entries are OLS coefficients. FECM significance (*p≤ 0.05, one-tail test).
Coefficient significance (*p≤ 0.05, two-tail test).
† Model (1) - FECM of Mood & Coal Emissions; Model (2) - FECM of Mood & Beef
Consumption; Model (3) - FECM of Mood & Shark Attacks; Model (4) - FECM of
Mood & Tornado Fatalities
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C.4.4 An Iterative Example of the ECM - Data from Ura and Ellis (2012)

We have previously discussed the fact that the ECM t-ratio is not dimension invariant,
its distribution shifts with the number of regressors (Kremers, Ericsson, and Dolado 1992;
Banerjee, Dolado, and Mestre 1998; Ericsson and MacKinnon 2002). In addition to the t-
ratio however, the size of the α1 coefficient generally increases as covariates are added to the
ECM equation. Monte Carlo simulations with randomly generated I(1) data indicate that
moving from a bivariate to a multivariate (5IV) model will double the ECM coefficient.5 As
we have noted, this bias is especially problematic because conclusions as to the strength of
the equilibrium relationship are based in part on the size of the ECM coefficient.

To demonstrate this effect with real data, we use the Democrat Mood model from Ura
and Ellis (2012) and present the results of an iterated ECM model. Adding one IV at a time
helps to clarify the potential for inferential problems faced by researchers when using the
ECM model. For purposes of this discussion, we treat ECM significance as defined by the
standard t-test, which has been the common practice in political science.

Table C.16: Iterative Estimation - Democrat Mood (Ura and Ellis 2012)

(1) (2) (3) (4) (5) (6)

Long Run Effects
Unemploymentt-1 0.12 0.30 0.29 0.65 0.34

(0.22) (0.23) (0.30) (0.43) (0.37)
Domestic Spending $10Bt-1 0.01? 0.01 -0.01 -0.07?

(0.01) (0.01) (0.02) (0.02)
Inflationt-1 -0.20 -0.16 -0.32?

(0.17) (0.17) (0.15)
Top 1% Income Sharet-1 0.48 1.07?

(0.40) (0.38)
Defense Spending $10Bt-1 0.20?

(0.06)
Short Term Effects

∆ Unemploymentt -0.16 -0.05 0.21 0.53 0.68
(0.29) (0.29) (0.43) (0.47) (0.39)

∆ Domestic Spending $10Bt -0.01 -0.01 -0.01 -0.07
(0.04) (0.04) (0.04) (0.04)

∆ Inflationt -0.05 0.03 -0.03
(0.18) (0.20) (0.17)

∆ Top 1% Income Sharet 0.78? 0.76?

(0.38) (0.32)
∆ Defense Spending $10Bt 0.14

(0.11)
Error Correction and Constant

DemMoodt−1 -0.05 -0.03 -0.14 -0.23 -0.32? -0.69?

(0.06) (0.08) (0.09) (0.13) (0.14) (0.15)

Constant -3.26 1.12 6.36 13.62 12.59 33.93?

(4.23) (1.31) (6.20) (6.40) (9.12) (9.86)
Fit and Diagnostics
Adjusted R2 -0.01 -0.04 0.04 0.02 0.10 0.39
Breusch-Pagan Test (χ2) 7.03? 0.20 0.73 2.76 0.40
Breusch-Godfrey LM Test (χ2) 1.28 1.04 2.49 0.41 0.70

Note: Dependent Variable is the change in Democrat Mood. Entries are OLS coefficients
(standard errors in parentheses). ECM significance (*p≤ 0.05, one-tail test). Coefficient
significance (*p≤ 0.05, two-tail test). N=35

Column (1) is the result of a standard Dickey-Fuller test. Democrat Mood is not sta-

5See Table 2 of the main paper, or Appendices C.7&C.8 of the Supplement for simulation results.
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tionary and in fact has a very long memory. Unemployment is insignificant across both
models of Ura and Ellis (2012) and column (2) finds it insignificant as well when included
in a bivariate model. By adding Domestic Spending in (3), we find our first significant long
run variable, and we see that our ECM has now increased (in absolute terms) by 0.11, how-
ever it would still be considered insignificant were we using a standard t-test. Column (4)
adds Inflation to our model, which is now completely insignificant. With the inclusion of
Inflation our adjusted R2 has decreased - we have been punished for its addition - yet our
ECM has actually increased by an additional 0.09. We next add Top 1% Income and with
its inclusion our model boasts one significant short-term IV. But the inclusion of a fourth IV
has also increased the size of our ECM by yet another 0.09. The ECM coefficient has now
increased by over 600% from the bivariate regression despite a lack of any significant long
run variables. Finally, in column (6) the inclusion of Defense Spending has completely blown
apart the consistency of our model. We now have 4 significant long run IVs - of the three
that were previously insignificant in (5), their coefficients have more than doubled - and our
adjusted R2 has jumped substantially. More importantly, our ECM has also doubled in size
and now sits at an impressive -0.69.

What conclusions should we draw from this exercise? First, we see why the ECM’s t-
distribution shifts with each added regressor. The absolute value of the coefficient increases
- substantially with influential variables - but the standard errors increase much more slowly.
Considering that the ECM is simply the dependent variable at t − 1 predicting changes in
itself at time t, such small increases in its standard errors should not come as a surprise.
Second, the ECM’s role as an identifier of a close, equilibrating relationship between an IV
and DV has been rendered meaningless. The difference between columns (5) and (6) is the
inclusion of one influential variable. Were we to stop at (5) we would draw the conclusion
that our model was null. Only short-term changes in income inequality significantly affect
Democrat mood. But with the inclusion of Defense Spending we gain 4 significant long-run
variables, each of which supposedly share a close relationship with the dependent variable.
Notably, the equilibrium relationship that every significant regressor supposedly shares with
the DV has massively increased in strength. The inclusion of one influential variable has
increased the absolute value of the ECM coefficient by 0.37.6

6Were we to first test and confirm that all variables in the model were I(1), in practice we would then
use the MacKinnon critical values in order to determine if cointegration was present. In this specific case,
application of those values would lead to a finding that the ECM was insignificant. Without evidence of
cointegration the model is misspecified and it would have to be run first-differences. The use of the model
in this way would be just as Hendry and Mizon (1978) proposed. Running the regression in first differences
would yield null results for the Democrat Mood model.
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C.5 Additional Replications

C.5.1 Example 1: Sanchez Urribarri, Schorpp, Randazzo, and Songer (The
Journal of Politics, 2011), Rights Litigation

We next replicate a recent article by Sanchez Urribarri et al. (2011) in which the authors
attempt to model the causes behind an increased propensity of the high courts of Canada,
UK, and US to place “rights cases” on their dockets. We are agnostic as to causation, however
we choose to replicate this article because it very clearly demonstrates the potential for
inferential problems when using the ECM with a stationary, or short-memoried, dependent
variable. The article has three models, for which the ECMs and their respective standard
errors are: Canada (α1 = −0.88, s.e. = 0.18), UK (α1 = −1.13, s.e. = 0.17), and US
(α1 = −1.17, s.e. = 0.14). These values draw our attention because it should be impossible
to have an error correction rate that is greater than 100%. Our Monte Carlo simulations
demonstrate how such results occur.7

To begin, we replicate the full results from Sanchez Urribarri et al. (2011) below. As seen
in the results, a number of significant long-run effects are significant, but each model also
has at least one significant short-run effect as well. Interestingly, the models that are fit by
Sanchez Urribarri et al. include only one continuous independent variable, Judicial Ideology.
The rest are coded either as ordinal (Support Structure), or as permanent interventions.

The stationarity of the dependent variables is of interest and Table C.18 provides the
Dickey-Fuller test results for each of the three dependent variables used by the authors.
From the results, it’s clear that we have three different types of DV - Canada cannot reject
the null of a unit-root and appears strongly autoregressive, the UK is very stationary, and
the US is stationary, however it also indicates some level of autoregression.

We next regress the dependent variables from each model on randomly generated series of
white noise independent variables. Recall from Appendix C.1 that regressing the DV on non-
influential independent variables is equivalent to imposing the common factor restrictions of
the Dickey-Fuller test (Kremers, Ericsson, and Dolado 1992). The Canada DV is regressed
on four white noise series, the UK DV on three, and the US DV on five. The results are
found in Table C.19

This exercise raises several points worth discussing. First, note the similarities between
the α1 coefficient in Table C.19 and the Dickey-Fuller coefficient results in Table C.18. With
stationary series, the baseline for the α1 parameter is its DF coefficient - the more stationary
the DV, the larger the absolute size of error correction found. Second, our two stationary
series are guaranteed a significant ECM when applying a one-tail test, and even a non-
stationary series such as the Canada model finds over half of all ECM’s as significant when
applying a standard one-tail test. Do note the work that the MacKinnon values are doing
however. With I(0) covariates we should not expect to find evidence of cointegration, and in
both the Canada and US models, the MacKinnon values properly exclude that possibility.
On the other hand, because of the stationary properties of the dependent variable in the UK
model, the DV is automatically in equilibrium - the model is simply capturing its tendency
toward mean reversion. Third, even though we simulate white-noise independent variables,

7At 60 observations, the U.S. model is longer than our beef-shark-tornado data set. Rather than present
an incomplete re-estimation of only the Canadian and UK series, we limit the replication to Monte Carlo
simulations and FI estimations.
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Table C.17: Replication of Table 1 - Sanchez Urribarri et al. (2011)†

Model‡ Canada UK US

Long Run Effects
Support Structuret−1 -0.00 (0.01) 0.01 (0.01) 0.00 (0.00)
Judicial Ideologyt−1 -0.17 (0.18) -0.23? (0.12) .22? (0.09)
Docket Controlt−1 0.17? (0.06)
Chartert−1 0.21? (0.07)
Human Rights Actt−1 0.05 (0.04)
Brownt−1 0.03 (0.03)
Mappt−1 0.10? (0.05)
Civil Rights Actt−1 0.10? (.05)

Short Run Effects
∆ Support Structure 0.02 (0.03) -0.04 (0.03) 0.01 (0.02)
∆ Judicial Ideology -0.21 (0.14) -0.15? (.07) 0.20? (0.08)
∆ Docket Control -0.04 (0.10)
∆ Charter 0.16? (0.09)
∆ Human Rights Act -0.09 (0.08)
∆ Brown -0.06 (0.06)
∆ Mapp -0.05 (0.06)
∆ Civil Rights Act -0.05 (0.07)

Error Correction and Constant
Rights Agendat−1 -0.88? (0.18) -1.13? (0.17) -1.17? (0.14)
Constant 0.20? (0.06) 0.40? (0.08) 0.26? (0.05)

Fit and Diagnostics
Adjusted R2 0.43 0.55 0.54
Breusch-Pagan Test (χ2) 1.70 0.20 1.94
Breusch-Godfrey Test (χ2) 2.78 0.46 0.16
N 35 36 60

† Note: Dependent variable ∆Rights Agenda represents changes to the rights agenda on high court
dockets. Significance of ECM and coeffcients (?p < .10, two-tail test)

the UK and US models suffer from spurious regressions - approximately 13 percent of all
models produce at least one significant long-run covariate along with significant error cor-
rection. These rates are much too high for randomly generated data, and certainly too high
for data generated as white noise processes.

These results arise from the simplest models including only white-noise independent
variables. The use of unit-root independent variables complicates matters further, and the
results are found in Table C.20. As before, we replace the IVs used by Sanchez Urribarri
et al. (2011), this time with series generated as I(1).

The results from Table C.20 indicate the inferential risks from the GECM, even with
MacKinnon values. First, both the UK and US models are unbalanced - each DV is station-
ary, and the inclusion of unit-root IVs has compromised the results. The α1 parameter for
the UK model is below the theoretical limit of -1.00 and the US model is approaching it.
But according to our Dickey-Fuller test results, the DV in the Canada model is a unit-root.
This means that were we to apply a dichotomous I(1)/I(0) value to our DV, the results in
the first column would be considered as coming from a balanced model. Despite this fact,
the model performs terribly. First, were we to assume that a one-tail test was appropriate,
we’d be almost guaranteed a significant ECM, and a high rate of spurious regressions means
at least one long-run variable is significant in over 68% of our models. But even were we
to use MacKinnon values, a significance rate north of 35% for the ECM parameter means
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Table C.18: Dickey-Fuller Results of Three DVs†

Model Canada UK U.S.

Dickey-Fuller coefficient -0.18 -0.86 -0.34
Dickey-Fuller t-statistic -1.99 -5.07? -3.68?

MacKinnon DF Critical Value -2.97 -2.97 -2.92
Estimated d Value 0.53 (0.13) 0.13 (0.13) 0.45 (0.05)

† Note: Dickey-Fuller critical values are from MacKinnon (1994). d values estimated by
Stata’s exact ML estimator.

Table C.19: Monte Carlo Results with I(0) IVs and DVs of Sanchez Urribarri
et al. (2011)†

Model‡ Canada UK US

% ECM Significant - one tail t-distribution 55.9 100 100
% ECM Significant - MacKinnon Values 0 95.4 0.02
Mean of α1 -0.18 -0.84 -0.34
Mean t-statistic of α1 -1.71 -4.63 -3.39
% ECM & ≥ 1∆Xt Significant 10.3 15.2 23.4
% ECM & ≥ 1Xt−1 Significant 4.8 14.4 13.3

† Note: Results based on 10,000 simulations of each model. ‡ All IVs are level stationary
(integrated at I(0)). MacKinnon Values are the ECM critical values from Ericsson and
MacKinnon (2002) - for Canada (4 IVs, T=35 CV=-4.082); for UK (3IVs, T=36
CV=-3.867); for US (5IVs, T=60 CV=-4.229)

the critical values offer little assistance. It appears that the Canada DV is confounding the
model despite the Dickey-Fuller test results leading us to consider it a unit-root.

Tables C.19 and C.20 represent two extremes in that our IVs are generated as either
I(0) or I(1) series. To what extent are these results being driven by the models being
unbalanced?8 To find out, we next simulate stationary series to act as our IVs - the DGP is
a simple autoregressive process, Xt = ρXt−1 + εt with ρ set to 0.75. The results are in Table
C.21.

Table C.21, columns 2 and 3, indicates that regression balance may help somewhat, but
our issues are not completely solved. Because the US and UK DVs are both stationary, we
apply the standard one-tail t-test and each model finds that 100% of ECMs are significant.
As noted in the main text, this is to be expected with stationary dependent variables, but
spurious regressions are still an issue. At least one long-run IV significant in 25-35% of the
models.

As a final test in our replication, we re-estimate the three models after accounting for
the fractional integration of the data. The orders of fractional integration of the dependent
variables can be found in Table C.18. The estimated order of fractional integration of
Judicial Ideology is as follows: Canada (d = 0.32, s.e.= 0.11), UK (d = −0.13, s.e.= 0.16),
US (d = 0.62, s.e.= 0.12).

The results of the fractionally differenced models are drastically different from the original
ECM models. Of the three re-estimated models only one IV - Judicial Ideology in the United
Kingdom model - is significant. Its coefficient size is equivalent to that found in the ECM

8Recall that according to the DF results the Canada model in Table C.20 is balanced however.
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Table C.20: Monte Carlo Results with I(1) IVs and DVs of Sanchez Urribarri
et al. (2011)†

Model‡ Canada UK US

% ECM Significant - one tail t-distribution 97.9 100 100
% ECM Significant - MacKinnon Values 38.9 99.7 92.6
Mean of α1 -0.71 -1.01 -0.81
Mean t-statistic of α1 -3.82 -5.50 -5.78
% ECM & ≥ 1∆Xt Significant 32.3 17.4 34.6
% ECM & ≥ 1Xt−1 Significant 68.4 31.7 82.1

† Note: Results based on 10,000 simulations of each model.
‡ All IVs are unit-roots (integrated at I(1)). MacKinnon Values are the ECM critical
values from Ericsson and MacKinnon (2002) - for Canada (4 IVs, T=35 CV=-4.082); for
UK (3IVs, T=36 CV=-3.867); for US (5IVs, T=60 CV=-4.229)

Table C.21: Monte Carlo Results with Stationary IVs and DVs of
Sanchez Urribarri et al. (2011)†

Model‡ Canada UK US

% ECM Significant - one tail t-distribution 78.8 100 100
% ECM Significant - MacKinnon Values 0.3 99.0 33.1
Mean of α1 -0.29 -0.94 -0.47
Mean t-statistic of α1 -2.06 -5.15 -4.04
% ECM & ≥ 1∆Xt Significant 16.8 16.4 26.6
% ECM & ≥ 1Xt−1 Significant 10.8 26.0 35.8

† Note: Results based on 10,000 simulations of each model.
‡ All IVs are stationary AR processes with ρ = 0.75. MacKinnon Values are the ECM
critical values from Ericsson and MacKinnon (2002) - for Canada (4 IVs, T=35
CV=-4.082); for UK (3IVs, T=36 CV=-3.867); for US (5IVs, T=60 CV=-4.229)

model. Because the dependent variable in the UK model has an estimated order of fractional
integration of d = 0.13 and the estimate of Judicial Ideology is d = −0.13, neither of which are
statistically different from I(0), the two series are not candidates for fractional cointegration.
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Table C.22: FI Model Results - Sanchez Urribarri et al. (2011)†

Model‡ Canada UK US

∆d Judicial Ideology -0.22 (0.15) -0.14? (.068) 0.05 (0.08)
∆ Support Structure 0.05 (0.04) -0.04 (0.03) 0.01 (0.02)
∆ Docket Control -0.14 (0.09)
∆ Charter 0.13 (0.08)
∆Human Rights Act -0.10 (0.07)
∆Brown -0.10 (0.07)
∆Mapp -0.04 (0.07)
∆ Civil Rights Act -0.00 (0.07)
Constant 0.05 (0.02) 0.09 (0.02) 0.04 (0.07)
Fit and Diagnostics
Adjusted R2 0.17 0.21 0.05
Breusch-Godfrey Test (χ2) 2.69 0.74 1.27
Breusch-Pagan Test (χ2) 6.02 7.40 3.19
N 35 36 59

† Note: Entries are OLS coefficients (standard errors in parentheses). DV is ∆dRights
Agenda. All variables have been fractionally differenced by their estimate of d. Coefficient
significance (*p≤ 0.05, two-tail test).
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C.5.2 Example 2: Kelly and Enns (American Journal of Political Science,
2010), Inequality and Mood

This replication concerns the article by Kelly and Enns (2010), which uses the indicator
Public Mood to argue that economic inequality is self-reinforcing. Kelly and Enns (KE)
use the GECM model to estimate the effects of economic inequality on public mood while
controlling for both policy liberalism as well as a few objective economic indicators. In terms
of mass preferences, there is a negative response to shifts in economic inequality. The public
becomes less supportive of government intervention when income inequality rises.

Replication of their findings are found in Tables C.23 and C.24 below. The results from
their Table 1 (our C.23) indicate consistently significant effects of both Policy Liberalism
and Income Inequality. The ECM for Liberal Mood is consistently estimated with a value
of -0.25, and the ECM of their DV, Welfare Support, indicates a very strong connection
between the IVs.

Table C.23: Replication of Kelly & Enns - Table 1

(1) (2) (3) (4)
∆ Liberal ∆ Liberal ∆ Liberal ∆ Support

Independent Variables Mood Mood Mood Welfare

Long Run Effects
Policy Liberalismt-1 -0.07? -0.09? -0.07? -0.65?

(0.04) (0.02) (0.03) (0.22)
Income Inequalityt-1 -16.22? -18.00? -152.17?

(8.92) (9.44) (65.71)
Unemploymentt-1 0.04 0.10

(0.25) (0.26)
Inflationt-1 -0.08 -0.13

(0.18) (0.17)
Short Run Effects

∆ Policy Liberalismt 0.16 0.10 0.10 -0.24
(0.11) (0.10) (0.11) (0.42)

∆ Income Inequalityt 27.07 -29.56 -175.70
(34.61) (37.59) (122.56)

∆ Unemploymentt -0.00 0.01
(-0.38) (0.38)

∆ Inflationt -0.12 -0.13
(0.19) (0.19)

Error Correction and Constant
Liberal Moodt-1 -0.25? -0.25? -0.26?

(0.07) (0.07) (0.07)
Support Welfaret-1 -0.55?

(0.16)
Constant 15.41? 21.70? 22.99? 80.03?

(4.54) (5.57) (6.31) (29.92)
Fit and Diagnostics
Adjusted R2 0.20 0.28 0.24 0.26
Breusch-Godfrey LM Test (χ2) 0.88 0.71 0.60 0.24
Breusch-Pagan Test (χ2) 0.75 0.49 0.30 3.44
N 54 54 54 33

Note: Entries are OLS regression coefficients (standard errors in parentheses). Two-tailed significance levels:
?p<.10)

Replication of their second table (our C.24) provides the most interesting results of the
paper. KE disaggregate public mood by income group and find that regardless of the level
of income, the population responds in similar fashion to shifts in economic inequality. As
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income inequality rises, the public - whether rich or poor - responds in a conservative style.
As they note, these findings contradict the theoretical predictions of both Benabou (2000)
and Meltzer and Richard (1981).

Table C.24: Replication of Kelly & Enns - Table 2

∆ Liberal Mood

Independent Variables Low Income High Income Low Income High Income

Long Run Effects
Policy Liberalismt-1 -0.28? -0.24? -0.26? -0.23?

(0.08) (0.07) (0.08) (0.07)
Income Inequalityt-1 -48.65? -44.26? -64.57? -61.98?

(22.23) (21.09) (25.97) (24.38)
Unemploymentt-1 -0.33 -0.45

(0.47) (0.46)
Inflationt-1 -0.39 -0.33

(0.34) (0.31)
Short Run Effects

∆ Policy Liberalismt -0.16 0.07 -0.22 0.01
(0.15) (0.13) (0.17) (0.15)

∆ Income Inequalityt 19.43 -46.76 -22.56 -41.01
(53.05) (42.99) (55.18) (44.14)

∆ Unemploymentt 0.14 -0.13
(0.63) (0.53)

∆ Inflationt -0.46 -0.19
(0.32) (0.28)

Error Correction and Constant
Liberal Moodt-1 -0.48? -0.46? -0.58? -0.57?

(0.12) (0.11) (0.14) (0.13)
Constant 50.25? 44.18 66.00 61.54

(14.91) (12.93) (19.56) (17.03)
Fit and Diagnostics
Adjusted R2 0.20 0.25 0.18 .023
rho 0.19 0.32 0.17 0.33
N 50 50 50 50

Note: Entries are Prais-Winsten regression coefficients (standard errors in parentheses). Two-tailed significance levels:
?p<.10)

Before we begin our replication, we first check the order of integration of the dependent
variables. From their Table 1, we have Public Mood and Welfare Support. From their Table
2, we test Low Income Mood and High Income Mood. None of the four reject the null
hypothesis of a unit-root, although Mood is edging up to the 10% level of significance.

Table C.25: Dickey-Fuller Results of K&E DVs†

Liberal Welfare Low Income High Income
Model Mood Support Mood Mood

Dickey-Fuller Coefficient -0.18 -0.22 -0.11 -0.09
Dickey-Fuller T -statistic -2.56 -1.88 -2.02 -1.60
MacKinnon DF Critical Value -2.93 -2.98 -2.93 2.93
Estimated d Value 1.09 (0.11) 0.88 (0.18) 0.98 (0.13) 1.04 (0.13)

† Note: Dickey-Fuller critical values are from MacKinnon (1994). d values estimated by Stata’s
exact ML estimator. Standard errors in parentheses.

We next simulate our own independent variables in order to test the Type I error rates
generated by the GECM models with the dependent variables used by KE. With randomly
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generated I(1) series, we should find a 5% rejection rate on the significance of the error
correction parameter. The results in Table C.26 indicate higher than expected rejection
rates however. First, we clearly see the dangers of failing to account for (α1) t-statistic’s
non-standard distribution. Use of a one-tail test practically guarantees a significant ECM
in all four models of Table 1. Fortunately, applying the MacKinnon values cuts down on
the Type I errors, however with Liberal Mood as the DV, the model still tends towards
significance - approximately 10% of all models claim an ECM as significant. On the other
hand, Model 4, and its DV of Welfare Support, appears to understate the significance of the
ECM when MacKinnon critical values are applied.

In Table C.26 the coefficient of the ECM is fairly consistent in Models 1 through 3 which
is not unsurprising considering that the only variance between each model is the number
of unrelated, simulated regressors. Model 4 sees a fairly substantial jump in coefficient
size however. This is consistent with our simulations of an I(d) model when d = .9.9

Additional downward bias in Model 4’s (α1) parameter is likely due to the limited number of
observations. Finally, the ECM model suffers from substantial spurious regression problems.
In Models 1-3, over half of all simulated models find both a significant error correction
parameter and long-run regressor.

Table C.26: Monte Carlo Results - K&E Table 1 - DVs on I(1) IVs†

(1) (2) (3) (4)
∆ Liberal ∆ Liberal ∆ Liberal ∆ Support

Model Mood Mood Mood Welfare

% ECM Significant - one tail t-distribution 94.9 96.9 92.9 85.3
% ECM Significant - MacKinnon Values 10.6 11.7 9.2 1.3
Mean of α1 -0.19 -0.18 -0.21 -0.29
% ECM & ≥ 1∆Xt Significant 18.8 13.4 24.3 11.1
% ECM & ≥ 1Xt−1 Significant 57.1 49.0 59.4 17.8

† Note: Entries provide the summary results of 10,000 simulations of an OLS regression in which the Liberal
Mood and Welfare Support are regressed on randomly generated I(1) series. Number of IVs match those of
K&E. Models 1-3 regress Mood on IVs (T = 54). Model 4 DV is Welfare Support (T = 35). Significance of
IVs based on two-tail test. MacKinnon CV Model 1: -3.822; Model 2: -3.57; Model 3: -4.040; Model 4: -3.621

But as we have seen, the independent variables also affect the ECM estimates. Of par-
ticular interest in this case is any potential bias of the (α1) t-statistic when the independent
variables’ order of fractional integration, d, exceeds 1. With Policy Liberalism estimated at
d = 1.35 (s.e.= 0.10), the significance of error correction in these simulations is expected to
be inflated. In Table C.27 we simulate our dependent variables and regress them on the IVs
of Kelly and Enns. To better approximate a series such as Mood we use the bounded DGP
of Nicolau (2002) to generate one DV and use it in Models 1 through 3. Because Welfare
Support is less well defined in its boundaries, the DGP for the Model 4 dependent variable
is left as a unit-root process.

The results in Table C.27 are as expected. Even when applying the MacKinnon values
each model rejects the null of a significant ECM at a rate exceeding 5%. The potential for
outsized influence of a particular IV is also on display. Compare the results of Models 2
and 3 to Model 1. Despite the same randomly generated DV across all three models, the

9See Section C.8.3 for simulation results based on varying orders of fractional integration.
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Table C.27: Monte Carlo Results - K&E Table 1 - BI(1) DVs on IVs†

(1) (2) (3) (4)
Model BI(1) DV1 BI(1) DV1 BI(1) DV1 I(1) DV2

% ECM Significant - one tail t-distribution 65.6 86.8 89.4 75.8
% ECM Significant - MacKinnon Values 6.9 17.1 10.7 8.2
Mean of α1 -0.20 -0.27 -0.32 -0.32
% ECM & ≥ 1∆Xt Significant 13.5 13.2 23.7 12.3
% ECM & ≥ 1Xt−1 Significant 21.0 43.8 54.0 31.9

† Note: Entries provide the summary results of 10,000 simulations of an OLS regression in which randomly generated I(1) DVs
are regressed on the IVs from Table 1 of Kelly and Enns (2010). Significance of IVs based on two-tail test. MacKinnon CV
Model 1: -3.822; Model 2: -3.57; Model 3: -4.040; Model 4: -3.621

inclusion of Income Inequality in Models 2 and 3 substantially increases the number of Type
I errors and inflates the ECM coefficient of each model as well.

Replicating Table 2 of KE’s paper, we chose to randomly generate two I(1) variables for
use as dependent variables and to run our MC simulation with the Prais-Winsten estimator.10

The effect size due to estimator choice is striking. While not directly comparable, the number
of significant ECMs using the Prais-Winsten estimator in Table C.28 is twice the size of those
when using OLS.

Table C.28: Monte Carlo Results - K&E Table 2 - I(1) DVs on IVs†

Model 1 & 2 Model 3 & 4

% ECM Significant – one tail t-distribution 86.1 84.7
% ECM Significant – MacKinnon Values 31.1 21.8
Mean of α1 -0.37 -0.37
% ECM & ≥ ∆Xt Significant 18.2 28.8
% ≥ 1Xt−1 Significant 51.4 59.2

Note: Entries provide are the summary results of 10,000 simulations of a
Prais-Winsten regression in which randomly generated I(1) series are regressed upon
the independent variables from Table 2 of Kelly and Enns (2010). Coefficient
significance (*p≤ 0.05, two-tail test). MacKinnon CV Models 1&2: -3.578; Models
3&4: -4.047.

To put the ECM model’s susceptibility to Type I errors into context, we use our nonsense
data sets from the main paper in place of the IVs in the model. Unfortunately, because of
the length of the series, we are unable to use our Shark Attack series. Regardless, as with all
other replications, we find a high rate of significance. Fortunately, we finally find a model in
which Beef Consumption is not a significant predictor. In Model 4, our two nonsense series
do not predict Welfare Support, but note that had we been following standard practice in
political science and using the normal t-test, we would conclude there was significant ECM
despite no significant covariates.

For completeness, we also employ the same nonsense series with KE’s dependent variables
from their Table 2. Based on our past replications and simulations we expect spurious

10According to Engle and Granger (1987, p.264), the use of “serial correlation correction” such as a
Cochrane Orcutt or Prais-Winsten estimator in the cointegrating regression will produce inconsistent esti-
mates. Kelly and Enns use the Prais-Winsten estimator despite Breusch-Godfrey test p > χ2 values of .1748,
.0634, .1828, and .1032 for OLS estimation of Table 2, Models 1-4 respectively.
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Table C.29: What Else Moves Mood? (Re-estimation of Table 1)

(1) (2) (3) (4)
∆ Liberal ∆ Liberal ∆ Liberal ∆ Support

Independent Variables Mood Mood Mood Welfare

Long Run Effects
Beef Consumptiont-1 -0.10? -0.19? -0.36? -0.94

(0.04) (0.07) 0.09 0.80
Coal Emissionst-1 0.01? 0.04? 0.06

(0.01) 0.01 (0.04)
Tornado Fatalitiest-1 -0.00 -0.01

(0.00) 0.00
Onion Acreaget-1 0.17 -0.78?

(0.15) 0.32
Short Run Effects

∆ Beef Consumptiont 0.29 0.20 0.10 0.05
(0.30) (0.30) 0.29 1.01

∆ Coal Emissionst 0.01 0.01 -0.08
0.01 (0.02) (0.08)

∆ Tornado Fatalitiest 0.00 0.00
(0.00) 0.00

∆ Onion Acreaget 0.28 -0.12
(0.39) (0.38)

Error Correction and Constant
Liberal Moodt-1 -0.18? -0.17? -0.20?

(0.06) (0.06) (0.05)
Support Welfaret-1 -0.28?

(0.13)
Constant 12.99? 12.66? 20.91? 25.56

(4.49) (3.87) (4.77) (20.37)
Fit and Diagnostics
Adjusted R2 0.26 0.21 0.38 0.12
Breusch-Pagan Test (χ2) 0.74 0.15 1.07 3.40
Breusch-Godfrey LM Test (χ2) 1.25 0.00 0.27 0.11

Note: Entries are OLS regression coefficients (standard errors in parentheses). ECM significance (*p≤ 0.05,
one-tail test). Coefficient significance: two-tailed: ?p<.10).

regressions, and that is what we find.
Finally, we test the Kelly and Enns model for fractional cointegration and fractional error

correction. As with all other replications, we first provide the order of integration of the IVs
as well as the residuals of the static regressions in Table C.31. We do find some reduction
in the residual’s order of fractional integration, however a calculation of the confidence
intervals surrounding these estimates indicates overlap between the residual estimates and
the estimates of each constituent series.

In Tables C.32 and C.33 we report the results of the fractional ECM models. If two IVs
were significant in a model, we included them both in the cointegrating equation. Whether
we estimated the cointegration individually, or with both Policy Liberalism and Income
Inequality as a part of the cointegrating vector, the results are the same. We fail to find
any evidence of fractional cointegration in any model, and we also fail to find any significant
independent variables.
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Table C.30: What Else Moves Mood? (Re-estimation of Table 2)

(1) (2) (3) (4)
∆ Low Income ∆ High Income ∆ Low Income ∆ High Income

Variables Mood Mood Mood Mood

Long Run Effects
Beef Consumptiont-1 -0.51? -0.46? -0.53? -0.70?

(0.24) (0.18) 0.31 0.24
Coal Emissionst-1 0.04? 0.04? 0.05 0.07?

(0.02) (0.01) (0.03) (0.03)
Tornado Fatalitiest-1 -0.00 -0.00

0.01 (0.01)
Onion Acreaget-1 -0.49 -0.87

(0.58) (0.53)
Short Run Effects

∆ Beef Consumptiont -0.75 -0.34 -0.76 -0.49
(0.46) (0.41) 0.50 (0.45)

∆ Coal Emissionst -0.02 0.01 -0.02 0.02
(0.04) 0.03 (0.04) (0.03)

∆ Tornado Fatalitiest 0.01 0.00
(0.01) (0.00)

∆ Onion Acreaget -1.01 -0.36
(0.70) (0.64)

Error Correction and Constant
Liberal Moodt-1 -0.31? -0.25? -0.30? -0.30?

(0.11) (0.09) (0.12) (0.10)
Constant 27.10? 20.83? 28.82? 30.82?

(10.18) (7.85) (13.19) (10.54)
Fit and Diagnostics
Adjusted R2 0.15 0.21 0.16 0.09
Breusch-Pagan Test (χ2) 0.03 0.51 0.09 0.37
Breusch-Godfrey LM Test (χ2) 0.83 0.92 0.96 0.28

Note: Entries are OLS regression coefficients (standard errors in parentheses). ECM significance (*p≤ 0.05, one-tail
test). Coefficient significance: two-tailed: ?p<.10).

Table C.31: FECM Order of Integration - Kelly and Enns (2010)

Individual Residuals Residuals Residuals Residuals
Series Liberal Mood Welfare Low Inc. Mood High Inc. Mood
d d d d d

Liberal Mood 1.08 (0.11)
Welfare Support 0.88 (0.18)
Low Income Mood 0.98 (0.13)
High Income Mood 1.04 (0.13)
Policy Liberalism 1.35 (0.09) 1.06 (0.11) 0.74 (0.19) 0.65 (0.18) 0.80 (0.16)
Income Inequality 0.80 (0.10) 1.09 (0.11) 0.89 (0.18) 1.00 (0.13) 1.06 (0.13)
Unemployment 0.83 (0.14)
Inflation 0.95 (0.16)
Policy & Inequality 1.04 (0.11) 0.66 (0.20) 0.67 (0.18) 0.79 (0.15)

† Note: Entries are estimates of the order of integration of all significant long-run variables from Kelly and Enns (2010)
as well as estimates of the residuals of static bivariate regressions of the DV and each significant variable. Estimates
generated by Stata’s exact ML estimator. Standard errors in parentheses
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Table C.32: Three-Step FECM Results - Kelly and Enns (2010)†

Table 1 Liberal Liberal Liberal Welfare
Models Mood Mood Mood Support

Short Run Effects
∆d Policy Liberalism 0.09 0.09 0.09 0.10

(0.11) (0.11) (0.11) 0.14
∆d Income Inequality -29.58 -33.91 -58.80

(38.99) (39.97) (43.63)
∆d Unemployment -0.01 -0.01

(0.29) (0.29)
∆d Inflation -0.11 -0.14

(0.17) (0.18)
Error Correction and Constant

FECM - Policy Liberalismt-1 -0.14
(0.13)

FECM - Policy Liberalism & Inequalityt-1 -0.15 -0.16 -0.01
(0.13) (0.13) 0.06

Constant 0.02 0.05 0.07 0.25
(0.28) (0.28) (0.29) (0.35)

Fit and Diagnostics

Adjusted R2 -0.03 0.01 -0.02 -0.03
Durbin-Watson 1.78 1.72 1.76 1.77
Breusch-Pagan Test (χ2) 1.01 0.93 1.74 0.89
Breusch-Godfrey LM Test (χ2) 0.83 2.16 1.37 0.40

† Note: Entries are OLS coefficients. Standard errors in parentheses. Models 1-3: DV is ∆d

Liberal Mood. Model 4: DV is ∆d Welfare Support. FECM captures equilibrium relationship
between Policy Liberalism and/or Income Inequality with DV. FECM significance (*p≤ 0.05,
one-tail test). Coefficient significance (*p≤ 0.05, one-tail test).

Table C.33: Three-Step FECM Results - Kelly and Enns (2010)†

Table 2 Low Income High Income Low Income High Income
Models Mood Mood Mood Mood

Short Run Effects
∆d Policy Liberalism -0.10 0.10 -0.09 0.11

(0.17) (0.15) (0.17) 0.15
∆d Income Inequality 31.82 -24.84 17.70 -31.04

(67.45) (59.74) (67.62) (59.98)
∆d Unemployment -0.02 -0.24

(0.51) (0.44)
∆d Inflation -0.44 -0.23

(0.29) (0.25)
Error Correction and Constant

FECM - Policy Liberalism & Inequalityt-1 -0.14 -0.14 -0.17 -0.14
(0.14) (0.13) (0.15) 0.14

Constant -0.32 -0.03 -0.28 0.00
(0.49) (0.42) (0.49) (0.42)

Fit and Diagnostics

Adjusted R2 -0.03 -0.02 -0.02 -0.04
Durbin-Watson 1.79 1.72 1.86 1.77
Breusch-Pagan Test (χ2) 6.27 3.57 8.38 4.36
Breusch-Godfrey LM Test (χ2) 2.29 3.36 1.38 3.47

† Note: Entries are OLS coefficients. Standard errors in parentheses. Models 1& 3: DV is ∆d Low Income Mood. Model
2 & 4: DV is ∆d High Income Mood. FECM captures equilibrium relationship between Policy Liberalism and Income
Inequality with DV. FECM significance (*p≤ 0.05, one-tail test). Coefficient significance (*p≤ 0.05, one-tail test).
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C.5.3 Example 3: Volscho & Kelly (American Sociological Review, 2012) Top
1% Income Share

What accounts for the rise of the super-rich? This is the question that Volscho and Kelly
(2012) set out to answer in their recent paper, and they do so using the GECM model.
We take note of this paper due to the sheer number of independent variables used in their
models. Model 4 has 17 estimated IVs with a T of 60. In all of these models, VK rely on
the standard t-statistic distribution and use a two-tail test of significance for their ECMs.
Also, VK note in their Footnote 15 that they estimated the same models using a fractional
ECM and received results that were largely similar. The FECM models were included in
their supplement.

The ECM follows its own distribution, so the standard two-tail test is inappropriate for
use with the ECM models. Additionally, the ECM distribution is biased by the inclusion of
covariates that are not I(1). As VK note, their data is a mix of data types (stationary and
integrated), so any hypothesis tests will be based on unbalanced equations.

A main point of interest for this replication was the fractional ECM model that VK
estimated. If, as they claim, a fractional model gives results very similar to the GECM then
our arguments are significantly weakened. But VK’s use of fractional methods is incorrect
– they do not remove auto-correlation from each variable and from the ECM. Instead, what
they do is fractionally difference their IVs, and then include them in the general ECM
model with the level-form lags of all IVs and the lag of the dependent variable. With an
I(1) dependent variable, including non-stationary variables on the right hand side biases
the model estimates and defeats the purpose of fractional differencing. Just as spurious
regressions are prevalent in a static regression of non-stationary variables, the inclusion of
some differenced - or fractionally differenced - independent variables does not provide a
solution. Volscho and Kelly misapply fractional methods and should not be claiming to find
corroboration in them.

We re-estimate their models with a proper fractional ECM model and find drastically dif-
ferent results from what they report. We initially estimate the order of fractional integration
of all variables. As VK report, their variables are a mix of data types.

Note that we only estimate the residuals of two variables from Models 4 and 5. This is
because these are the only two variables to achieve significance for which a fractional ECM
could be estimated. With two significant variables, we included them in the same cointe-
grating regression. In this case the ECM captures the long-term equilibrium relationship of
both Trade Openness and Real S&P Composite Index with the Top 1% Income Share. We
find a significant ECM in Models 4 and 5.

With the exception of Dem President in Model 1, all other variables are insignificant
and failed to approach significance. The results of the fractionally differenced models are
provided below. Contrary to Volscho and Kelly’s supplement, when the data is run through a
proper fractional ECM model, the significance of the results are far different. Re-estimating
their power resources model (Model 1), policy model (Model 2) and their politics and policy
model (Model 3), we find no support for either politics or policy having significant effects
on the concentration of income among the Top 1%. Furthermore, a look at the R2 of these
models indicate a rather poor fit. It is not until Models 4 and 5, which account for economic
indicators, that we see an improvement. Within these fully specified models, we again fail to
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Table C.34: FECM Order of Integration, Volscho and Kelly (2012)

Individual Residuals Residuals Residuals Residuals Residuals
Series Model 1 Model 2 Model 3 Model 4 Model 5
d d d d

Top 1% Share 0.93
% Congressional Democrat 0.87
% Union Membership 1.33
Top Marginal Tax Rate 1.14
Cap. Gains Tax Rate 1.26
3 Month Treasury Bill Rate 1.00
Trade Openness 1.02 0.92 0.92
Unemployment Rate 0.95
Log Real GDP 0.96
Real S&P Composite Index 1.37 0.97 0.97
Shiller Home Price Index 1.58

† Note: Entries are estimates of the order of integration of all significant long-run variables from Volscho and Kelly (2012)
as well as estimates of the residuals of bivariate regressions of the DV and each significant variable. Dem President and
Divided Government are dichotomous variables and are used in first differences. Estimates conducted in RATS using
Robinson’s (1995) semi-parametric estimator. Because d was estimated using the Local Whittle, the asymptotic standard
errors are provided - using the following formula (1/

√
4 ∗m) with m = T 4/5. (s.e. = 0.10).

find any significant effects of either politics or policy. Our re-estimation of their data finds
that the only significant influences on the income share of the top 1% are market factors,
specifically levels of trade openness and the valuation of the stock market.
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Table C.35: Three-Step FECM Results - Volscho and Kelly (2012)†

Model Model Model Model Model
1 2 3 4 5

Short Run Effects
∆d Democrat President 1.30?

(0.55)
∆d % Congressional Democrat -0.02 -0.02 -0.00 -0.01

(0.04) (0.04) (0.04) (0.04)
∆d Divided Government 0.70 0.03 0.13 0.15

(0.48) (0.42) (0.36) (0.36)
∆d % Union Membership -0.05 0.01 -0.12 -0.06

(0.30) (0.32) (0.29) (0.26)
∆d Top Marginal Tax Rate -0.02 -0.02 -0.02 -0.02

(0.04) (0.04) (0.03) (0.03)
∆d Cap. Gains Tax Rate -0.07 -0.06 -0.08 -0.07

(0.06) (0.06) (0.05) (0.05)
∆d 3 Month Treasury Bill Rate 0.12 0.11 -0.15 -0.13

(0.11) (0.12) (0.15) (0.14)
∆d Trade Openness 0.36? 0.38?

(0.20) (0.19)
∆d Unemployment Rate -0.15

(0.33)
∆d Log Real GDP -1.67 3.45

(13.39) (6.89)
∆d Real S&P Composite Index 0.07? 0.07?

(0.01) (0.01)
∆d Shiller Home Price Index 0.32 0.32

(0.27) (0.27)

Error Correction and Constant

FECMt-1 -0.38? -0.35?

(0.15) (0.14)
Constant 0.18 0.15 0.15 0.10 0.01

(0.15) (0.15) (0.16) (0.26) (0.18)

Fit and Diagnostics

Adjusted R2 0.03 0.00 -0.06 0.35 0.36
Durbin-Watson 2.09 2.11 2.12 1.92 1.89
Breusch-Pagan Test (χ2) 2.85 8.33? 11.18 14.53 13.81
Breusch-Godfrey LM Test (χ2) 0.37 0.27 0.40 1.71 0.97

† Note: Entries are OLS coefficients.Standard errors in parentheses. DV is ∆d Top 1% Share.
FECM captures equilibrium relationship between Trade Openness and S&P Index with DV.
FECM significance (*p≤ 0.05, one-tail test). Coefficient significance (*p≤ 0.05, one-tail test).
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C.6 Additional Materials - Common Misinterpretation of De Boef
and Keele (2008)

As we note in the main text, while De Boef and Keele are discussing the use of the GECM
under the specific condition of stationarity, common practice is to assume that the model
can be used under any circumstances. Most papers do not check the stationarity properties
of their data and the reason for this oversight stems directly from a widespread belief that
any and all types of data are appropriate for use in the model. Below we highlight a sample
of this misunderstanding in practice.

• Volscho and Kelly (ASR 2012): “In summary, the ECM is a very general model that
is easy to implement and estimate, does not impose assumptions about cointegration,
and can be applied to both stationary and nonstationary data (Banerjee et a. 1993,
DeBoef and Keele 2008).”

• Buthe and Milner (WP 2014): “These powerful dynamic models, which are equivalent
to autoregressive distributed lag (ADL) models after a straightforward mathematical
transformation (fn to D&K), also provide a safeguard against spurious correlation that
might arise in time series analysis when variables are trending together.”

• Casillas, Enns, Wohlfarth (AJPS 2011): “The ECM provides a conservative empirical
test of our argument and a general model that is appropriate with both stationary and
nonstationary data (De Boef and Keele 2008).”

• Enns (AJPS 2014): “Finally, because the ECM estimates the change in the depen-
dent variable, we overcome the concern of estimating a spurious relationship among
nonstationary time series (De Boef and Granato 1997, De Boef and Keele 2008).”

• Faricy (JOP 2011): “ECMs are appropriate when using both stationary and non-
stationary data and offer a conservative test of the theory (DeBoef and Keele 2008).”

• Jennings and John (AJPS 2009): “While error-correction models tend to be isomorphic
with the concept of cointegration for political scientists (see DeBoef and Keele 2008),
this framework is appropriate for modeling feedback and equilibrium relationships in
stationary as well as nonstationary data (Banerjee, Dolado, Galbraith 1993, Davidson
and MacKinnon, DeBoef and Keele 2008).”

• Kayser (AJPS 2009): “I err on the side of caution and assume nonstationarity bearing
in mind that many ECMs offer the same benefits of capturing long- and short-term
dynamics in stationary data as in nonstationary but cointegrated data (DeBoef and
Keele 2008).”

• Kelly and Enns (AJPS 2010): “While the use of an ECM is often motivated by the
presence of a nonstationary time-series as a dependent variable, our application of this
model is based on the fact that it is among the most general time-series models that
imposes the fewest restrictions. (DeBoef and Keele 2008).”
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• Kono (JOP 2008): “I employ an error-correction model both to guard against inte-
gration problems....Because the error-correction model thus imposes fewer restrictive
assumptions than other time series models (DeBoef and Keele 2008), it is the most
general and conservative one I can estimate.”

• Rickard (JOP 2012): “Differencing the series also minimizes the potential for a spurious
correlation between two series exhibiting a time trend (DeBoef and Keele 2008).”

• Sanchez-Urribari (JOP 2011): “Following the suggestion of DeBoef and Keele, we
estimate an error correction model (ECM) to specifically control for the dynamic effect
of the covariates.”

• Ura (AJPS 2014): “Though ECMs were originally developed for investigating cointe-
grated time series, DeBoef and Keele (2008) note that they may also be applied in a
variety of time-series contexts in the absence of cointegration with either stationary or
nonstationary data.”

• Ura and Ellis (JOP 2012): “The error-correction model is often used with integrated
series, but is also appropriate for use with nonintegrated series as well (DeBoef and
Keele 2008).”

• Ura and Wohlfarth (JOP 2010): “Though the model specification was originally devel-
oped for investigating cointegrated time series, DeBoef and Keele (2008) note that it
may also be applied in a variety of time series contexts in the absence of cointegration
with either stationary or nonstationary data.”
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C.7 Additional Materials: Near-Integrated Data

C.7.1 Tables - Varying AR - Monte Carlo Results

The results in the following tables are meant to provide as much information as possible in
as little space as possible. Therefore, we have tried to include a wide a range of models.
The top row of each table contains models run in which the level of autoregression in the
DV varies, but the IV(s) all have unit roots. The middle row contain results of models in
which all series within each model share the same level of autoregression. These equations
are balanced. The bottom row also allows the DV to vary by levels of autoregression, but
the IV(s) are all generated as I(0) - the IV(s) contain very little, if any, information.
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Appendix C: Chapter 4
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Appendix C: Chapter 4

C.8 Additional Materials: Fractionally Integrated Series

C.8.1 Addressing Concerns as to Estimation of Long Memory

When estimating the long-memory of a series, semiparametric estimators such as Robinson’s
Local Whittle are appealing for a number of reasons. First, they are agnostic as to the short-
run dynamics of the process, and are therefore robust to misspecification. The practitioner
does not need to know the true DGP of the process to consistently estimate the long-memory
parameter. Additionally, the estimators are generally robust in the presence of short-run
dynamics. Semiparametric estimators require the practitioner to choose the bandwidth of the
estimator, a decision which involves a trade-off between minimization of bias and variance.
With a (0,d,0) series, increasing the number of frequencies (increasing the bandwidth) reduces
the variance of the estimate at the expense of a slight increase in bias. This increase in bias is
generally negligible with pure fractional processes. Should it become apparent that short-run
dynamics are present however, the practitioner can simply reduce the number of frequencies,
and focus more specifically on the low frequency components of the periodogram.

While this is generally true, semiparametric estimators are not perfect. In the presence of
significant short-run dynamics the low frequencies are contaminated by the higher frequencies
of the spectral density. Significant ARMA coefficients, especially positive AR noise, will bias
estimates, sometimes substantially so. Baillie and Kapetanios (2007) investigates the bias
of semiparametric estimators under these circumstances and find that the bias increases as
the short-run noise becomes more persistent. Thus, in the presence of short-run dynamics, a
practitioner is better served by reducing the bandwidth of the estimator, however the extent
of the reduction in bias is dependent upon the degree of AR persistence.

Short-run dynamics will also bias the estimates of the exact ML (EML) estimator (Nielsen
and Frederiksen 2005).11 This bias occurs even though the EML can simultaneously estimate
the short-run dynamics and the long-memory of a series. When ARMA dynamics are present,
the EML estimates are negatively biased, the variance of the estimates balloon, and the
estimator is generally unreliable. With persistent AR noise in the range of 0.40, the EML
actually performs worse than most semiparametric estimators even when the DGP is properly
specified. The problems associated with the EML are alleviated somewhat with longer
time series, but not to the point that using the EML in the presence of AR dynamics is
recommended.

The possibility of finite sample bias of semiparametric estimators and the outright failure
of the EML estimator when AR noise is present does not mean that long-memory can’t be
reliably estimated. First, in terms of estimators, the problems highlighted above are not
encountered with the approximate frequency domain ML (FML) estimator. Nielsen and
Frederiksen (2005) compares the performance of the FML in larger samples and finds that
the estimator is unbiased, robust to AR and MA noise, and doesn’t suffer from bias when
the true DGP is overfit. Grant (n.d.) compares the FML to various semiparametric and
parametric estimators in small samples and finds the FML dominates all other estimators in
terms of bias and RMSE, even when AR and MA noise is present. Thus, reliable estimates
are possible even when a series exhibits significant short-run dynamics.

Another important consideration when it comes to estimating the long-memory of a series

11The EML is the standard estimator in Stata’s ARFIMA package.
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is whether we should expect political time series to exhibit significant short-run dynamics. In
other words, do we routinely estimate political time series as higher-order processes? Byers,
Davidson, and Peel (2000) estimates the long-memory of a number of political opinion series
and finds that a large majority of the series were best approximated by (0,d,0) models. Of
those series for which the information criteria chose a higher-order model, the gains were
often minimal. This is expected to be the case for most political time series, which are gen-
erally shorter in duration and the product of an aggregation of heterogeneous autoregressive
processes (Granger and Joyeux 1980).12 To demonstrate that most series are fractional noise
- they are uncorrelated after differencing by only the d parameter - and that long-memory
estimates can be consistent, we provide Tables C.46 and C.47. Table C.46 shows the BIC
values after our fitting multiple (p, d, q) models - the BIC values are from the Stata EML
estimator.13 Table C.47 presents long-memory estimates of each series from three different
estimators - the semiparametric Local Whittle of Robinson (1995), the EML estimator used
in Stata’s ARFIMA package, and the FML estimator, which is estimated using the TSM
add-on of Davidson (2014) to Ox (Doornik 2014). A fourth column also reports the results
of the Box-Pierce test of the residuals of each series after fractional differencing. The results
are consistent across all three estimator types.

Table C.46: Exact Maximum-Likelihood Estimation - BIC Values

(0,d,0) (1,d,0) (0,d,1) (1,d,1)

CEW
All Reviews 334.19? 335.44 335.17 338.41
Non-Salient Reviews 332.48? 334.57 334.42 338.01
Salient Reviews 419.34? 420.89 421.54 424.71

UE
Democrat Mood 129.98? 136.59 146.85 140.01
Republican Mood 151.57? 156.15 155.04 158.00

SSRS
Canada Rights -65.85? -65.76 -65.80 -65.68
UK Rights -79.11? -75.51 -75.50 ***
US Rights -141.89? -138.59 -138.39 -134.52

KE
Liberal Mood 245.23? 257.14 247.51 250.86
Welfare Mood 215.18? 221.72 217.21 215.99
Low Income Mood 266.57? 269.10 268.78 272.69
High Income Mood 253.14? 260.67 255.88 264.00

VK
Top 1% Income 344.99? 348.41 348.26 352.80

Note: ? Marks the minimum value in each row. *** indicates the model did not
converge in Stata.

As seen in Table C.46 of the thirteen dependent variables estimated, the BIC chose
a (0,d,0) model for each. This is not to say that we will never encounter a higher-order
process, but quite often the simple model that estimates only the long memory will be
sufficient. Further, absent the presence of significant short-memory dynamics many of the

12Previous work on fractional integration of political time series has reported higher-order models after
relying on information criteria (see, e.g., Box-Steffensmeier and Tomlinson 2000). This is most certainly due
to an error in the formula used by Ox at the time. Re-estimating these series with both the EML and FML
estimators using Schwartz Information Criteria indicates that (0,d,0) models are preferred.

13Because the series are generally short, we only go so far as to estimate (1,d,1) models.
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estimation problems discussed above are not at issue with our estimates. The estimates do
not suffer from bias nor is the variance of our estimators inflated. In fact, our estimates are
remarkably consistent across the three different estimators and the Box-Pierce residual test
is insignificant for the residuals of each series. Fractionally differencing our series with its
estimate of d is sufficient to address any autocorrelation in the series. Additionally, note that
the 95% confidence intervals of many of the series would overlap with 1, indicating a unit-
root. Considering the low power of many unit-root tests, the ability to estimate the order
of fractional integration provides an additional tool when a variable’s order of integration
is in question. This can be seen in the disparity in results for All Reviews and Non-Salient
Reviews, both of which failed to reject the null of the Dickey-Fuller, but which all three of
our estimators found to be fractionally integrated.

Table C.47: Various Estimates of Long Memory - (0,d,0) Models

LW EML FML Box-Pierce (12 lags)

CEW
All Reviews 0.63 (0.11) 0.62 (0.11) 0.63 (0.11) 18.51
Non-Salient Reviews 0.65 (0.11) 0.62 (0.11) 0.65 (0.13) 15.32
Salient Reviews 0.30 (0.11) 0.36 (0.08) 0.31 (0.12) 11.24

UE
Democrat Mood 1.28 (0.12) 1.15 (0.15) 1.27 (0.18) 5.18
Republican Mood 1.17 (0.12) 1.04 (0.16) 1.17 (0.18) 6.34

SSRS
Canada Rights 0.62 (0.10) 0.52 (0.12) 0.57 (0.13) 9.38
UK Rights 0.08 (0.12) 0.13 (0.13) 0.08 (0.17) 4.98
US Rights 0.40 (0.10) 0.45 (0.05) 0.41 (0.10) 11.79

KE
Liberal Mood 1.12 (0.10) 1.08 (0.11) 1.14 (0.11) 12.92
Welfare Mood 1.01 (0.13) 0.88 (0.18) 1.00 (0.21) 8.09
Low Income Mood 1.03 (0.11) 0.98 (0.13) 1.05 (0.14) 11.33
High Income Mood 1.11 (0.11) 1.04 (0.13) 1.15 (0.14) 5.15

VK
Top 1% Income 0.93 (0.10) 0.95 (0.09) 0.91 (0.11) 7.30

Note: LW: semiparametric Local Whittle; EML: exact maximum likelihood; FML: frequency maximum
likelihood. All estimates based on the first-differenced series and then adding 1 back to the estimate.
Standard errors in parentheses. Standard errors for the LW are computed as (1/sqrt4 ∗m) with the
bandwidth m calculated as T 4/5. Box-Pierce test is of the residuals following fractional differencing
with the FML estimator.

C.8.2 Shifting ECM Coefficient

Any deviation from strictly I(1) series will lead to substantial issues for the interpretation
of the ECM coefficient and its t-statistic. Figures 3 and 4 in the main paper depict both the
increasing significance of the ECM as well as the increasing (absolute) size of the coefficient
as the fractional integration of the dependent variable moves further below 1. Figure C.9
presents another look at the size of the ECM coefficient. The bias in the ECM coefficient is
troubling. If our DV series is fractionally integrated, we are likely to overstate the strength of
whatever equilibrium relationship is being studied. Further, because the Long Run Multipli-
ers are are calculated as a ratio in which the denominator is the α1 coefficient, our estimation
and interpretation of the Long Run Multipliers will also be subject to this bias.
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Figure C.9: Mean ECM Coefficient by Order of Fractional Integration

Note: Density plots from 10,000 Monte Carlo simulations of bivariate ECM model. DV and IV both fractionally integrated of
order I(d). T = 60

208



Appendix C: Chapter 4

C.8.3 Tables - I(d) - Monte Carlo Simulations

The results in the following tables are meant to provide as much information as possible in
as little space as possible. Therefore, we have tried to include a wide a range of models.
The top row of each table contains models run in which the order of fractional integration
in the DV varies, but the IV(s) all have unit roots. The middle row contain results of
models in which all series within each model share the same order of fractional integration.
These equations are balanced. The bottom row also allows the DV to vary by its order of
fractional integration, but the IV(s) are all generated as I(0) - the IV(s) contain very little,
if any, information.
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Appendix C: Chapter 4
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