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Abstract of the Dissertation

Conflict and Cooperation as Social Responses to Ecological Change

by

Nicholas A. Seltzer

Doctor of Philosophy

in

Political Science

Stony Brook University

2014

This dissertation examines ways the environment conditions individual incentives to par-
ticipate in collective action. I hypothesize that as resources become scarce, individuals
are more willing to participate in individually-costly collective action, including intragroup
cooperation and intergroup hostility. The first and second of three studies establish a unit-of-
selection based, game-theoretic foundation for intergroup conflict. The final study explores
macro-level implications for the relationship between climate change and violence in Africa.
For human beings and other highly social creatures, cooperation is the key adaptation with
which we respond to environmental challenges. Faced with resource scarcity, group liv-
ing becomes increasingly vital for individual survival. The logic of markets dictates that
demand benefits of group living increase, so does the price. Hence, groups may demand
greater contributions from individuals, which enhances the strength and cohesion of the
group, enabling it to take on more ambitious collective action efforts. Changing ecological
circumstances should result in shifting selective pressures on individuals, disposing them to
pursue alternative social strategies. Accordingly, we should observe indirect effects on pat-
terns of intergroup-level. If true, this dissertation could have implications for social responses
to global climate change. I test this hypothesis using climate and event data from Africa
1989-2006. In order to overcome methodological problems challenging previous studies, I use
a disaggregated, time-series data structure better suited to dynamic analysis.
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Frontispiece

“A tribe including many members who, from possessing in high degree the spirit
of patriotism, fidelity, obedience, courage, and sympathy, were always ready to aid
one another, and to sacrifice themselves for the common good, would be victorious
over most other tribes, and this would be natural selection.”

- Charles Darwin, Descent of Man (1871)

v



Table of Contents

Table of Contents

Contents

1 Introduction 1
1.1 Cooperation and ‘Us’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Evolutionary origins of sociality . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 A Critical Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Research Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Coevolution of Cooperation and Social Networks 18
2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Cooperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.3 Structure of Cooperation . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Multilevel Selection Model of Pastoralist Conflict 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.2 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.3 Tribes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.4 Other modeling factors . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.5.1 Three Stage Least Squares Model . . . . . . . . . . . . . . . . . . . . 70
3.5.2 Assessing the impact of heterogenous land quality . . . . . . . . . . . 82

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Climate Change and Social Conflict 95
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3 The GECAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3.1 Dependent Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.4 Using GECAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.4.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

vi



Table of Contents

5 Conclusion 134
5.1 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2 Implications for political understanding . . . . . . . . . . . . . . . . . . . . . 136

6 Appendix 140
6.1 Computer codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.1.1 Co-evolution of Cooperation and Social Networks . . . . . . . . . . . 140
6.1.2 Multilevel Selection Model of Pastoralist Conflict . . . . . . . . . . . 155

7 Bibliography 202

vii



List of Figures/Tables

List of Figures/Tables

List of Figures

1 Structural Equation Model of Network Topology and Cooperation, including
exogenous ecological variables (dark grey), network metrics (light grey), and
other outcomes of interest (white) . . . . . . . . . . . . . . . . . . . . . . . . 36

2 A “typical” run of the simulation with all parameters at their mean with MIN
degrees of interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 A “typical” run of the simulation with all parameters at their mean with MAX
degrees of interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Spatial distribution of land quality: Uniform (top-left), linearly decreasing
gradient (top-right), quadral categories (bottom-left), and radially decreasing
(bottom-right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Percent of an agent’s flocks surviving by average of flock health and thirst . 61
6 When agents are unable to organize their violence, increased water resources

reduce cooperation and increase independence. However, when the ability
to engage in concerted, or structured action enables groups to assault and
control precious clusters of resources. This, in turn, promotes cooperation in
the group and enables even lower fitness agents within that group to reproduce
faster than those whose access to these resources are blocked. . . . . . . . . . 76

7 Looking at the same relationship as the previous figure from a different angle.
More spot-located resources create more opportunities for organized violence. 76

8 Concerted action is particularly important when wells contain fewer resources.
This increases the strategic value of wells, rendering total control of them more
important for survival. Though the Lanchester coefficient is positive through-
out the entire range of the well water accumulation ratio, it is decreasing
and non significantly different from zero at the higher end of the well water
accumulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9 While the ability to cooperatively take and hold clustered resources is increas-
ingly vital when such resources are scarce, there does appear to be a limit on
how much individuals are willing to cooperate if the payoff ultimately is not
there. Across most of the water consumption rate spectrum (u), the effect of
the Lachester exponent is positive and significant, but the marginal effects are
decreasing. At 0.1, the amount of water available, even when shared, may ren-
der survival sufficiently precarious that agents will prefer not to gamble their
own precious shares on cooperative endeavors, but instead resort to defection
against their own tribesmen. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

10 Homogenous land quality distribution . . . . . . . . . . . . . . . . . . . . . . 84
11 Radial land quality distribution . . . . . . . . . . . . . . . . . . . . . . . . . 86

viii



List of Figures/Tables

12 Radial land quality distribution . . . . . . . . . . . . . . . . . . . . . . . . . 87
13 Striped land quality distribution . . . . . . . . . . . . . . . . . . . . . . . . . 87
14 Striped land quality distribution . . . . . . . . . . . . . . . . . . . . . . . . . 88
15 Quadral land quality distribution . . . . . . . . . . . . . . . . . . . . . . . . 88
16 (Strictly) Higher quality land in the bottom hemisphere is associated with

greater cooperation. This relationship, however, is not apparent in the (weakly)
higher quality land in the right hemisphere. . . . . . . . . . . . . . . . . . . 89

17 While the link between land quality and cooperation is muddied in the quan-
dral land quality scenario, the link between war frequency and cooperation is
sustained across all four hemispheric partitions of the map. . . . . . . . . . . 89

18 Although the bottom right quadrant contains richer lands, the link between
land quality and cooperation is not apparent. . . . . . . . . . . . . . . . . . 90

19 Although the bottom right quadrant contains richer lands, the link between
land quality and war frequency is not apparent. . . . . . . . . . . . . . . . . 90

20 Minimally distorted, relative size of the contiguous United States, Ethiopia,
and the DR Congo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

21 GECAD cells by nation state (left) and by precipitation (right) . . . . . . . 108
22 GDELT events by location . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
23 One month snapshot of Palmer Drought Index color coded heatmap. Red

circles indicate ongoing conflict. . . . . . . . . . . . . . . . . . . . . . . . . . 112
24 Normalized Difference Vegetative Index is a remotely sensed measure of the

intensity of plant life. Yellow circles are ongoing conflicts. These satellite
images are recorded at intervals of 15 days. . . . . . . . . . . . . . . . . . . . 114

25 SEDAC’s population density raster dataset uses satellite and other data to
create precise measures of population distribution without the need for state-
collected statistics. Each “pixel” is a unique, continuous value representing
the population within a 2.5 arc-minute square unit. . . . . . . . . . . . . . . 115

26 Using the Weidmann et al Georeferencing of Ethnic Groups (GREG) dataset,
investigators may calculate a more accurate, locally driven ethnic fractional-
ization index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

27 World Bank ADI data may be imported into a GIS database. Country color
is coded by political stability. Once imported, the fishnetted 2.5 x 2.5 degree
units may inherit political stability or other state-level variables from the
states they fall within. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

28 Spatially lagged values of conflict as a function of conflict logged . . . . . . . 121
29 Kriging is a method of geostatistical interpolation. Redder colors indicate

higher rate of conflict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
30 Calculated semivariogram: Flattening indicates semivariance no longer a func-

tion of distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
31 Calculating spatially lagged dependent variables based on eight nearest cells 124
32 The effect of temperature with no ethnic fractionalization is not significantly

different from zero. However, the relationship is significant as fractionalization
increases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

33 The effect of ethnic fractionalization is not significantly different from zero
when soils are heavily degraded. . . . . . . . . . . . . . . . . . . . . . . . . . 130

ix



List of Figures/Tables

34 The effect of ethnic fractionalization is highest in locations that are best suited
for agriculture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

35 Predicted risk of conflict and instability: Climate-only model (left) and fully-
specified model (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

x



Preface

Preface

The details and processes of human sociality lie at the heart of political science and the

social sciences generally. It might be said that the study of politics has never existed outside

of some conception of human nature. The Greek philosopher and great teacher Plato held

that most individuals were haplessly enthralled by corporeal desire, and cannot bear to spend

the time necessary to reflect and seek knowledge of Justice and The Good. Accordingly, in his

opus The Republic (∼ 380 B.C.E) he presented a model of government and society centered

on the dominion of the philosopher-kings, who would be removed from society at birth

and trained as philosophers, for only a true philosopher could manage to escape the realm of

belief and apprehend knowledge, as symbolized in the Allegory of the Cave. In 1651, Thomas

Hobbes, who might be described as the first of the moderns, explained in The Leviathan

that human beings were driven essentially mad by constant, never-ending agony, which he

ascribed to the “pain of privation”. That is, human beings, while not inherently good or

evil, are helplessly driven to do evil in a fit of blind desperation to assuage the suffering of

constant want for food, shelter, sex, and status. On this basis, Hobbes famously advocated

that society’s only chance for peace was to establish a Leviathan, or a paramount sovereign

who is imbued with all the requisite authority and power to enforce civil, cooperative behavior

on a populace incapable of doing so by their own designs.

From Hobbes’ conception of human nature, he established the political-philosophical

foundation underlying an ultimately normative conception of government, as well as a de-

scription of the consequences of anarchy that is, to this day, at the heart of the realist school

of thought in domestic and international politics. Contrasting with Hobbes, rationalist in-

tellectual John Locke agreed that while anarchy means a state of constant war, humans

possessed a faculty for reason and were, in fact, capable of coming together and establishing

a basis for cooperation in the form of a social contract. For Jean-Jacque Rousseau, human
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nature was inherently good, but could be corrupted by a poorly constructed social contract,

or an unjust society; from inequality, arises negative feelings such as jealously and moti-

vations for conspiracy. Within these perspectives, we find the political-philosophical bases

for the Anglo-American and continental liberal traditions. Similarly, unique conceptions of

human nature may be found at the intellectual foundations of Marxism, constructivism,1

and rational-choice theory.2

As brilliant as these great minds’ insights into the heart of human nature were, they

were like most theories confined to the greater body of knowledge and ideas of their time.

They were largely conceived prior to the discovery of biological evolution by natural selection

(or at least during its infancy), at a time when it was comparatively easier to believe that

humans were somehow apart, exceptional, from the rest of the animal kingdom. After the

disastrous adventures in Social Darwinism of the late 19th and early 20th centuries, it was

a long while before scholars would begin to revisit human nature from a post-Darwinian,

biological perspective.

In 1985, 20th century intellectual giant Herbert Simon criticized the then-prevalent the

tenets of the rational actor model of human decision-making as incompatible with the “char-

acteristics of the choosing organism” (Simon 1985). Alternatively, he introduced the concept

of bounded-rationality in order to anchor the rational actor model more firmly in plausible

assumptions of human physical and mental architecture.

In 1994 at the annual meeting of the American Economic Association, evolutionary psy-

1Influenced by Rousseau, the 19th century giant Karl Marx agreed that humanity’s manifest nature
was generated in context, though not politico-institutional, but economic. In his Economic and Political
Manuscripts of 1844, Marx describes the features of humanity’s species-being, or gattungswesen. His concep-
tion was significant because it introduced to western thought the notion that human nature is not constant,
but plastic and flexible, and is determined by the totality of all social and economic relations. During the
20th century, the Soviet Union and the People’s Republic of China attempted to alter the condition of hu-
manity by fundamentally restructuring the social and economic relationships between all members of their
societies. As well, the contemporary school of thought known as constructivism can be described as having
its roots in Marxian human nature (Paul et al. 1998).

2Even the “rational choice” model human decision-making is based on a certain understanding of human
nature, at least by assumption. Principally, the rational choice model assumes a kind of godlike purity
of thought, in way that is unconstrained by what Herbert Simon (1985) called the “characteristics of the
choosing organism” (Simon 1985).
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chologists Leda Cosmides and John Tooby introduced the economics world to the notion of

“rationality in design” (Cosmides and Tooby 1994). This is the idea that economic behavior

is discharged by specific, physical mechanisms in the brain shaped by natural selection in a

way that maximizes utility across a broad array of adaptive problems for our early human

ancestors. Among these adaptive problems were the opportunities and perils of social living.

Political psychologist Marilynn Brewer sought to rethink human social behavior from the

ground up, starting with the explicit premise that “human beings are adapted for group

living” (Brewer and Caporael 2006). In support of this premise, she writes:

“Even a cursory review of the physical endowments of our species—weak, hairless,

and extended infancy—makes it clear that we are not suited for survival as lone

individuals, or even as small family units. Many of the evolved characteristics

that have permitted humans to adapt to a wide range of physical environments,

such as omnivorousness and toolmaking, create dependence on collective knowl-

edge and cooperative information sharing. As a consequence, human beings are

characterized by obligatory interdependence, and our evolutionary history is a

story of coevolution of genetic endowment, social structure, and culture.”

Accordingly, she reasons that with coordinated group living as a primary survival strat-

egy of the human species, it is principally through, or as a part of, the social group that

individuals respond to the exigencies of the physical environment.

It is from this point that this dissertation began its voyage, on a mission to press further

and deeper into humanity’s social nature. I believe this effort is worthwhile, for a fully elab-

orated theory connecting strategic, or intergroup-level behavior to individual-level motives

stands to generate powerful new insights on politics and the world. Equipped with a more

accurate conception of human nature, both in terms of our capacities and our limitations,

we are in that much greater of a position to resolve the daunting challenges that lie in store

for us this century.
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And I believe this research was profitable. Brewer describes the default condition of

human being as as “obligatory interdependence.” We gleamed new insight into a possible

explanation why our evolutionary history has lead us here, and importantly how we go about

building the social structures. That is, we have begun to theorize about the organizing

protocol of human sociality encoded that may be encoded in our genetic make up.

Equipped with this insight, we might resolve one of the long lasting paradoxes of human

nature: While we praise as “humanistic” or “humane” behaviors associated with cooperation

like love, altruism, forgiveness, sacrifice, loyalty, and empathy, we are time and time again

forced to reconcile these “virtues” with an apparent dark side. In the year 2014, war is

still a fact of life. Politics divides us at the same time it unites us. So-called “vicious”

dispositions such as racism, hate, denigrative othering and intolerance characterize shape

our mental landscapes of our social environments arguably as much as do the aforementioned

virtues. Naturally, we would tend not to acknowledge these aspects of our souls as openly.

Certainly, no one is likely to claim them ‘humanistic’. In fact, it seems common that we

externalize these sentiments, attributing them to devils and beasts; ironically, our penchant

for disproportionately seeing such inhuman influences acting upon our enemies may make

it easier for us to exterminate them (Smith 2011).3 Yet these moral judgments—virtue and

vice—may very well correspond to the two sides of the very same coin; both may correspond

to fundamental dynamics of human cooperation. Indeed, the present research would suggest

that intergroup conflict is not only enabled by cooperation, but may in fact be its purpose.

3Philosopher and evolutionary theorist David Livingstone Smith has written extensively on the role
of denigrating and demeaning others as a psychological mechanism for suppressing empathic concern and
enabling violence. Also see Smith (2007, 2009).
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Chapter 1 Introduction

1 Introduction

1.1 Cooperation and ‘Us’

On November 23, 2013 in New Haven, Connecticut, bleachers were filled to capacity for the

annual Harvard-Yale football game. On each side of the gridiron a crimson or blue sea of

feverous loyalists flying the colors of their alma mater. Between them their champions meet

in a dramatic, yet unscripted reenactment of primitive tribal struggles for strategic domi-

nance over ancient adversaries. “Spirit leaders”—costumed caricatures of forebears (John

Harvard) and sacred animals (the Yale Bulldog)—lead their constituencies in revelatory

songs glorifying the virtue of their respective tribes, as evident in past victories and superior

creeds. At no time of the year do these two populations feel more distinct from one another

than on this chill day in the late, New England Fall.

But demographically, one would be hard pressed to find two groups with more in common

than these two. In terms of virtually any salient socioeconomic category, these populations

are essentially indiscernible from one other. That is, these two groups of people are the

same people. They are the cream of America’s Ivy League, centers of America’s intellectual,

political, and economic elite. Indeed, the demographic breakdown of those attending these

institutions in 2014 are mirror images of the other, as if they were randomly assigned from

the same population (see Table 1).

Red or blue? Sidanius and Pratto describe this seemingly imagined social distinction,

which seem so intense during that November game—as arbitrary sets. No doubt many

people are likely to take offense at the notion that such essentially elements of our identities

are somehow “arbitrary”. Why are such arbitrarily defined categories so important to us

personally? Why should we yield such incredible power to influence our feelings, or actions,

and our ideas? The shorter, more proximate answer to this question might be that we just

love to do it. It feels great. We literally revel in our identities. They fill us with the joy and

comfort that comes with a sense of belonging, of having unloaded the great, but unspoken
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Table 1: Racial and ethnic demographics of among undergraduate at Harvard and Yale
Universities.

Harvard Yale

American Indian or Alaskan native 0.29% 0.5%
Asian/Native Hawaiian/Pacific Islander 15.24% 15.27%
Black or African American 6.13% 6.28%
Hispanic/Latino 8.26% 9.74%
White 48.58% 47.3%
Two or More Races 4.3% 5.18%
Race/Ethnicity Unknown 6.82% 5.18%
Non-Resident Alien 10.38% 10.15%

Source: Forbes (2014)

burden of self, of knowing that you are not alone. Attachment to others is a fundamental

psychological need for humans. Tellingly, it is often our habit to regard those who are either

unable or unwilling to entangle themselves in the tendrils of social connections as “ill”, having

a “disability”, or worse.4 Whether it is through attachment to sports teams, schools, brands,

religions, music styles, lifestyles, or even lettuce preferences5, we are constantly (and largely

unconsciously creating), seeking-out symbols with which we may signify to the world who we

are. Not as individuals, but rather in terms of the social categories to which we appertain.

Such symbols are a broadcasting of individual identity through group identification, a call

out into the wilderness like minded persons will recognize us and invite us to join them.6

Such symbols are the tangible objects to which we fix all of the intangible but critically

important elements of our identities. They suggest connections based on shared sets of

myths, beliefs, origins, or practices, which may in part substitute, and provide the context

4This is most directly a reference to diagnoses such as autism or Asperger’s syndrome, which are purported
to inhibit individuals from forming “ordinary” social ties. However, the connotation of mental illness may
also be read from a Foucaultian perspective on “madness”.

5According to the scholarly sociological text the Encyclopedia of Food & Culture (Katz and Weaver 2003),
“Food as symbol can represent differences between groups, with foods considered inedible or unsavory by
one group used to show the other as less civilized or even less human.” Though possibly apocryphal, non-
academic studies (Kelly Ford), journalists (National Public Radio), political commentators (Rush Limbaugh),
and numerous other popular web sources have suggested that liberals prefer bitter lettuces like arugula while
conservatives prefer the more bland iceberg variety. Other food preferences correlating to ideology such as
dining-out preferences have been noted in the Wall Street Journal (Epstein 2014)

6For a thorough discussion on the evolution of ethnic markers, see Boyd and Richerson (1987).
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for, actual rapport.

The longer, more complete answer to the above question, “Why do we so value, and so

devote ourselves to these associations,” is as astrophysicist Neil deGrasse Tyson eloquently

put it “the greatest story science ever told”; the evolutionary history of us.

1.2 Evolutionary origins of sociality

Why are humans the tribe-minded, massive-brained socializing wizards of the animal king-

dom? This is one of the most ancient, unanswered questions in social science. It has central

implications for virtually all that we study. In the simplest explanation, we can be reason-

ably certain that cooperation was advantageous for our ancestors. This behavior—and all

the genes encoding for the neural and physiological hardware supporting it—enabled those

individuals with the capacity to join forces with other individuals to multiply faster and

be more fruitful than those who could not. Those genes are our inheritance, passed on,

added to, and passed on again and again from generation to generation over millions of

years. But if cooperation is such a powerful tool, why is it not the rule of nature? In fact,

it is more accurate to say that it is the exception that breaks the rule. In the traditional

Darwinian sense, the manifestation of any cooperation whatsoever constitutes a conundrum.

Why should essentially egoistic, self-serving agents ever contribute some of their precious

resources (food, time, protection) toward the well-being of another? Any conferral of assis-

tance to another individual, especially a conspecific, should equate to a detrimental change

to the relative fitness of the provider. Thus, we would expect any individual displaying this

behavior to die out along with whichever genes may underly it, never to be heard from again.

Sure, a mutually cooperative relationship could be beneficial to both parties, assuming they

each keep up their own end of the bargain. But how can I, as a prospective cooperator,

know that my act of good will will not be met with betrayal? This, in the jargon of those

who study the mystery of cooperation, is the problem of defection. An act of individually

costly benevolence met with betrayal can potentially be—and presumably often was to our

distant ancestors—extremely hazardous when survival is already challenging due to limited
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resources and harsh environments.

A prevailing perspective is that certain external conditions can help to mitigate the risk

of defection for would-be cooperators. Given the opportunities inherent in cooperation, the-

orists suppose certain circumstances can increases individuals’ confidence that their partner

will cooperate back if they do. This in turn diminishes the risk of defection and opens the

evolutionary door to cooperation, society, and eventually cities and counties. One such con-

dition is the notion of repeated encounters. Given some rudimentary faculties of memory

and individual recognition, Trivers (1971) demonstrated that cooperation can evolve on the

principle of direct reciprocity7, i.e., “if I cooperate now, you may cooperate later.” Epstein

(2006) and Ohtsuki, Hauert, Lieberman and Nowak (2006) have described how population

structures may achieve a similar effect. Where repeated interaction is infrequent or unlikely,

a number of mechanisms have been proposed that accomplish the same result. For exam-

ple, Nowak and Sigmund (2005) describes the evolution of cooperation on the condition of

individual-level reputation building, or so-called indirect reciprocity mechanisms; that is, “if

you see me cooperate with others right now, you may cooperate with me later”.8 Elinor Os-

trom (1990) reasoned that cultural institutions serve to increase certainty over others’ future

behavior, thereby assuaging others individuals’ concerns they will be put at a disadvantage

by cooperating. In particular, institutions which provide a routine and reliable means of

punishment can dramatically affect expectations of behavior (Fehr and Gächter 2000, 2002;

Bowles and Gintis 2002; Fowler 2005; Smirnov 2007; Rustagi et al. 2010). Other conditional

explanations include fitness-based cues (Johnson and Smirnov 2012), spatial conditionality

(Seltzer and Smirnov 2013), and cooperation based on arbitrary tags such as observable traits

(e.g. a “green beard”) which serve to distinguish cooperators from defectors (Hamilton 1964,

1975).

It is not difficult to see these mechanisms at work in the respective crowds at the Harvard-

Yale game. The loud proclamations (Go Crimson!) and garish display of colors, emblems,

7Also see Axelrod and Hamilton (1981).
8Also see Riolo, Cohen and Axelrod (2001).
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and banners communicate to others an individual’s allegiance, what they believe, and even

how they may be expected to act. All of these symbols carry information about reputations,

associations, and shared values. In a glance, they tell others who they are—not as individuals,

of course, but socially. And from their social linkages, individual behavior may be inferred. In

this sea of individuals largely unknown to each other individually, there is not one “stranger”

among them.

But there are no strangers to be found in the opposition’s bleachers either. They are

also known quantities. Previous literature on the evolution of cooperation has frequently

neglected this darker side of cooperation: within group cooperation to facilitate intergroup

conflict. By their colors and their songs, our two groups are recognized as “rivals”. Human

cooperation is not universal. Cooperation is necessarily bounded. Each of the above mech-

anisms for the evolution of cooperation imply a finite, knowable social space. Individuals

must be recognizable either individually or by category. Relatively stable structures of rela-

tionships must exist. Cultural markers must be recognized and traceable to known identities.

The jurisdiction of institutions, whether or social or political, are confined in space and time

and are therefore inherently exclusive.

Thus, the emergence of cooperation does not occur uniformly. Rather, it emerges in

largely independent clusters within which rules, mores, and customs are commonly known,

and where individuals or the social positions they occupy are recognized. Social connective

pathways must be apprehensible for reputational mechanisms to operate when direct ob-

servation is not possible. If only direct observation is possible, then interactions must be

confined spatially and temporally. Without such prerequisites, it is impossible to convey

new information about a given individual’s propensity to cooperate, and therefore cannot

increase assurance of mutual cooperation. This is an important insight because it while

internally cooperative clusters may emerge, there is no reason to expect them to be cooper-

ative with each other, since it is impossible for information about each group’s behavior to

be communicated to the other group without a common language of norms, symbols, and so
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on.9

Political psychologist and conflict theorist Marilynn Brewer argues that within group

attachment does not necessarily imply outgroup denigration or antagonism (Brewer 2000;

Brewer and Caporael 2006). This is reasonable since antagonism will carry an inherent cost,

as does benevolence. However, the existence of multiple clusters of internally cooperating

individuals establishes the groundwork for intergroup conflict or cooperation. Even if within

group cooperation is robust, this does not mean that a group consists of peaceful beings;

it only means that they are cooperative with each other, internally bound by some set of

social-behavioral obligations. This primitive “morality” is inherently parochial, governing

interactions within the tribe only. Whether some “universal morality”, or universal protocol

for interpersonal obligation is established, defection as cheating or violence is only oppor-

tunistically determined. In other words, when the collective interests of groups are at odds,

there is no reason to assume that their successful mastery of internal cooperation extends to

other groups or individuals from other groups. On the contrary, when internal cooperation

can be brought to bear to advance one group’s collective interests at the expense of other

internally cooperating groups, we can expect them to do so. It stands to reason that the

presence of such competition could act as a “trigger”, amplifying ingroup attachment while

simultaneously motivating outgroup denigration.

The Harvard-Yale game describes two populations of individuals who are as alike as any

two populations of comparable size can be. They may very well work at the same places

and have very similar lifestyles and daily experiences. The situation before them, however,

casts the blue and crimson as adversaries in competition for an indivisible prize. And for one

cold day in November whatever imagined, ideational differences have bound them together

9Often due to their simplicity, previous models of cooperation have tended to assume that cooperators
cooperate with all other cooperators equally. As a practical matter, this is usually implicit because agents
(as modeled) only possess the ability to discriminate cooperators from defectors. The clustered nature of
cooperation implies that this ability has a limited range in terms of space and social distance. As distance
increases, their ability to recognize other cooperators atrophies. Consequently, little is known about how
disparate groups of cooperators are disposed toward one another. If human socio-cultural history is to
be relied upon, we would reasonably expect groups of cooperators to regard other groups as hostile until
otherwise revealed.
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in their struggles for victory are all encompassing.

1.3 A Critical Gap

That in one context a given group attachment can be suddenly elevated in salience, but

dismissed in others reveals a critical gap exists in our understanding of cooperation. Politics

may be defined as the set of formal or informal institutions, processes, and relationships

that determine the course of collective action and the division of the outcomes. Even in

small-scale societies, this is rarely a game of individuals; it is characteristically a game of

factions. Factions may be comprised of individuals bound by virtually any unifying principle,

whether it be moral-philosophical, doctrinal, attachment to ethnic, religious, or linguistic

kin, regionality, statehood or even arbitrary assignment.10 In virtually all but the most

controlled interactions within an experimental laboratory, the unit of analysis of a political

scientific question is a group of some relevant level of social aggregation or another. To

treat a group as a single, discrete unit is to necessarily assume that groups are primary and

irreducible; they are so-called “unitary actors”. In fact, thinking about or discussing politics

can be extremely unwieldy without this assumption. For example, we would not be able to

issue assessments of global strategic concerns as “America wants an Internet ‘kill switch’ ”,

“Russia wants to occupy Eastern Ukraine as a strategic buffer separating it from NATO.”

or “Shiites want to marginalize Sunnis in Iraq.” Without this assumption, we would not be

able to talk about “What the Tea Party wants”, or for that matter the rich, the liberals,

the conservatives, the Christians or the millenials. Treating such categories of individuals as

unitary actors often produces sound, actionable predictions about how events are likely to

play out and illuminating explanations of past events. This is, of course, is not in small part

because these assumptions often hold. In other words, it is often the case that collectives

10Experiments by Henri Tajfel in the 1960s and 70s determined that individuals randomly assigned to
groups would exhibit discriminatory behavior between ingroup and outgroup members if told their groups
were defined according to meaningless, arbitrary rules. For example, groups (randomly assigned) would
exhibit discriminatory behavior if told their groups were based shirt-color, guessing over or under the number
of dots on a screen, or having received similar scores on a trivial computer task (Tajfel 1970; Tajfel, Billig,
Bundy and Flament 1971).
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of individuals really do begin to behave like unitary actors, and may in a real sense be

considered as such.

But while the unitary actor assumption is often productive, it has not proved equally

accurate in all situations. In other words, the ‘unitariness’ of a group is subject to variation.

Further, this variation has remained unexplained in the political science literature. The

level of ‘unitariness’ clearly exists on a graded scale. Some individuals, like the cells within a

multi-celled organism, are so unitary that they are, for virtually all intents and purposes, a

single individual. On the opposite end of the spectrum you might have very loose, ephemeral

coalitions of individuals momentarily engaging in some kind of concerted action and then

returning to disparate modes of behavior. Where do nation-states lie on this spectrum?

How about labor unions? Political parties? What sorts of pressures cause individuals to

sacrifice ever greater amounts of their own autonomy and submit to more group-centric

decision-making processes, and why?

As groups become more cohesive and integrated, they become ‘individuals’ themselves;

they act more like a unitary actor. The default relationship between individuals in nature,

of course, is competition. The evolution of cooperation literature more broadly attempts

to explain how we go from this default state of competition to cooperation and mutualism.

Human groups are not perfectly unitary. There is a great deal of variation from group to

group and for reasons that are not well-explored. This dissertation investigates the dynamics

of group formation, the incentives that bring disparate individuals together to think and act

as a unitary actor, and the factors that influence the degree to which indvidiuals behave

uniformly within those groups. But to truly answer this question would require an individual-

level theory of intergroup relations—not based on the interests of groups, but on the interests

of the individuals who constitute them. Only then will we really understand the nature of

groups as categories and as agents of change themselves.

In the next section I will outline the basis for a market-based theory of individual invest-

ment in group attachment.
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1.4 Theory

Ecology is the economics of nature. Like the modern industrial economy, ecosystems are

composed of countless actors—organisms and the communities they make up—dynamically

interacting with each other and with the non-living elements of their environment. Ecosys-

tems are defined by hierarchical processes, with organisms engaged in the extraction of

minerals, salts, and sunlight, and the primary production of photosynthetic and chemosyn-

thetic organic compounds to be consumed for every unimaginable purpose, but with the

same goal in mind. Like firms, life forms are inherently economical. They seek to maximize

their outputs relative to their inputs—breathing, building, moving, hardening, expanding,

wasting—and so goods and services are exchanged and circulated through a vast network of

interconnected beings. Just like firms, they do all this in the hopes of earning a little bit of

profit, but not in the form of dollars, but in the ultimate currency of all life—evolutionary

fitness. Firms are born into the marketplace, the crucible wherein they are tried and tested,

where only those most responsive to the realities of the marketplace are allowed to survive.

And so the ecological circumstances in which organisms find themselves test them, compel

them to adapt, to become more efficient, to be more productive than their competitors. This

is evolution.

Like market success, evolutionary success is not only about scraping by for the day; it is

also about what competitors are doing. Organisms must struggle to stay ahead of the innova-

tion curve. Investment in cooperative structures is investment in a kind of infrastructure; it

is a capital good. In economics and sociology this is called “social capital”, and is considered

a productive factor. In biology, this is called sociality. As with traditional economic factors,

returns on cooperation are subject to fluctuations of supply and demand relative to other

factors. Neither the supply nor demand for cooperation is constant. It must be traded for

at a momentary price that maximizes the expected utilities of interacting in consideration of

forgone opportunities. Consequently, cooperative structures exist heterogeneously in nature

over time and space.
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What are the determinants of biological spending on cooperative structures, or social

capital? Traditional economic thinking argues firms trade in goods that rely heavily upon

their relatively abundant, or cheapest factor (Heckscher 1919; Ohlin 1933; Ethier 1974). In

the simplest, two-factor model of production, there exists only capital and labor. Either

factor may be substituted for the other in the production of a good or service for a price.

What is the price of cooperation? The price of cooperation is paid in units of its alterna-

tive, which in philosophy and biology, is conceived variously as autonomy, individualism,

or liberty (henceforth ‘individualism’). Thus, the price of cooperation may be thought of

as a negotiated set of constraints on an actor’s choices; it is a penalty, or cost, in terms of

an agent’s liberty to pursue any behavior it deems to be favorable without regard to any

external influences or outcomes.

Investing in individualism may carry its own costs, as well. This essential trade-off is a

central precept in even very divergent Western political philosophy. The thought of Thomas

Hobbes, John Locke, and Jean-Jacques Rousseau begin at the State of Nature, or the putative

primordial condition in which human beings existed prior to the advent of society. In the

State of Nature, humans are born existentially free of any moral or legal imperatives. For each

of these philosophers, it is assumed that they conditions of such an existence were horrifically

intolerable.11 And in all cases they argued that a certain amount of every individual’s innate

liberty be forfeited to a common power vested with the authority to impose regulation on

the most egregious consequences of unrestrained individualism. From this point of view,

the most relevant disagreements among these thinkers pertain to the terms of the sale, as

codified (figuratively) in the social contract. Hobbes appeared to advocate for the wholesale

usurpation of all individual liberty by the state, much in the same way some manifestations

of communism sought to usurp all wealth (and in some cases liberty as well). Locke, on the

other hand, might be more aptly described as a proponent of less restrictive “regulations”

on individualism in the form of institutions.

11Rousseau’s views on the state of nature differ most here, but the subtleties of his views are not relevant
for our purposes.
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We may postulate that organisms invest an amount of their fitness assets in a portfolio of

individualism and cooperative structures that maximizes their expected evolutionary returns.

In traditional theoretical models of the evolution of cooperation, the returns to cooperation

are known, exogenous variables. Typically, they are highly abstract catch-all parameters that

summarize the entirety of an ecological marketplace for cooperation as a ratio of the benefits

of cooperation to the behavior’s associated costs, or b
c
. But how is this value determined in

the real world? A second postulate is that the demand for cooperation is situational; i.e.,

the price will depend on both the supply of and demand for cooperation in the marketplace

of actors. From this perspective, the ratio b
c

only makes sense as a spot estimate of the rate

of exchange, since increasing returns to cooperation will correspond to higher demand and

thus higher costs commensurate with supply.

The major theoretical goal of this dissertation is to begin to develop a framework for

describing this cooperation marketplace. At the core of this project is the goal to move away

from the catch-all benefit-to-cost ratio model of cooperation and start thinking about the

ecological conditions that determine the supply of and demand for cooperation. Concepts

this dissertation investigates include the potential influence of ecological energy density, how

the resources individuals need to survive are distributed in a space, and the presence of a

common external threat. Critically, a truly individual-centric, “market-oriented” model of

cooperation must also endogenize, or take into account, what an individual’s competitors are

doing. All evolutionary models do this in some sense through imitation, replicator dynamics,

or other hereditary trait replication procedures. However, I argue that ecosystems delivering

large returns on cooperation do not result in uniform distributions of cooperation. Rather,

cooperation will emerge in structures. To be sure, numerous models have described the

positive effects of cooperative clustering, but what they tend to assume is that all cooperators

are indiscriminately cooperating with other cooperators (Ohtsuki et al. 2006). In other words,

they make the assumption that such clusters of cooperators individuals are not competing

with each other, and further that the state of competition that exists between those clusters
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is not driving the high rates of cooperation within them. This potentiality may only be

taken into account in the context of a true, multi-level selection model of cooperation. The

implication of this is that such clusters may represent primitive “groups”, in the sociological

sense. Competition between them for resources might render prospects for survival on one’s

own increasingly precarious. Thus, individuals may be compelled by their impoverishment

into accepting significantly higher costs of cooperation, in terms of their liberty, in order to

secure the precious benefits of cooperation and social living.

The central motivation of the present research is to establish a basis for a theory of inter-

group conflict that is reducible to individual-level, evolutionarily adaptive processes. Such

a theory would facilitate further study of cooperation as it manifests in the real world in

all of its diverse applications more rigorously, and to generate more accurate predictions

political outcomes. The principles of such a theory should be scalable to virtually any level

of biological or social aggregation. Such a tool would also enable better understanding of

the complex dynamics of pressing political and social responses to major ecological changes,

whether environmental (e.g., climate change) or institutional like new constitutions or cam-

paign finance reforms. Such a theory could be used to illuminate the dynamics of global

politics and diplomacy, subnational dynammics such as ethnic and religious conflict, as well

as domestic political contests between interest groups competing for shares of government

resources, or even political parties competing for votes.

1.5 Research Outline

This dissertation tackles this question on multiple levels of analysis with three distinct, but

related studies. While each study addresses this central theme, they are sufficiently distinct

to warrant their own in-depth literature reviews. With each study, we progress from a strictly

individual-level analysis (chapter 2) to the group-level (chapter 4). These studies and their

inter-connections are discussed next.
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Chapter 2: Coevolution of Cooperation and Social Networks

This study is the continuation of a pilot study initially conducted by Oleg Smirnov explor-

ing the evolution of social preferences in a multi-agent based computational model. His

preliminary results suggested that agents may evolve altruistic propensities to contribute re-

sources to others even when the agent needs those resources for personal survival. Smirnov’s

explanation was based on the notion that under circumstances where individuals are mutu-

ally dependent on each other for survival, there is an evolutionary payoff for helping others

survive in order to overcome environmental challenges together. This chapter expands on a

growing literature exploring the evolution of cooperation on social network models that more

accurately reflect the structures of human social relations. In particular, it aims to resolve a

limitation of existing models of the evolution of cooperation is that they tend to treat net-

work graph topology as exogenous. This assumption is problematic because the structures

of relationships that define a society are themselves a product of cooperation. Alterna-

tively, I advance the hypothesis that cooperation and network structure are co-evolved, such

that network structure will reflect the particular set of natural selective pressures favoring

cooperation.

To test this hypothesis, I evaluate an evolutionary model that endogenizes network topol-

ogy and exogenizes factors of the environment. I find that network topology and the evo-

lution of cooperation are indeed highly endogenous, shaped in conversation with each other

in response to continually changing environmental circumstances. Further, I find that the

management of the risk of defection for cooperators appeared to be a fundamental design

principle of social network architecture. These findings suggests the broader notion that

every social network is a unique, socially-generated solution to a complex ecological problem

space. The apparent “default” individual logic in forming social ties appeared to lean toward

participation in smaller networks constituted of fewer, but more trusted relationships. As

ecological hardship increased, however, agents became increasingly willing to expand the

number of their connections even if as it increased their exposure to risk. Interestingly, the
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richest environments tended to produce the largest, yet least cooperative populations.

Chapter 3: A Multi-level Selection and Malthusian Conflict Among Pastoralist

Societies

The second study uses multi-agent simulation to evaluate cooperation and conflict between

groups rooted in individual-level decision-making processes. But where Study 1 looked at

individual behavior and migration to cooperative behavior, Study 2 models cooperation and

conflict between communities as a function of individual-level interests. To summarize the

computational model, I simulate the lives of and interactions between n individuals from k

tribes. A simple climate and soil model inspired by Kuznar and Sedlmeyer (2005) determines

the productivity of the environment and water availability. Scarce resources compel agents

to make choices between selfishness and tribe-based altruism. The tribes benefiting from

the preponderance of patriotism, camaraderie, obedience, courage, and mutual sympathy

are better equipped to engage in collective action against other tribes. Thus, the frequency

of intergroup conflict is a key dependent variable in this study. The theoretical focus of

this study is to evaluate whether cooperation with discrete groups is a successful human

adaptation for overcoming ecological challenges, including resource scarcity and competition

from other groups. In other words, this model evaluates how the presence of intergroup

competition shifts evolutionary rewards to individuals who engage in individually costly,

but group-beneficial behavior. Design elements are abstracted from the arid and semi-arid

regions of east Africa.

This study reveals new insight into the emergence of primitive social identities and their

curious entanglement with intergroup conflict. These data affirm the hypothesis that co-

operation within groups does not imply cooperation between groups. Far from it. The

presence of other internally cooperating groups constituted a revolutionary new weapon in

the battle for access to limited resources. Agents in this simulation were often compelled

to either adopted social living themselves or perished alone. But this was not always the
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case. In fact, it appeared to significantly depend on how the resources individuals needed to

survive and prosper were distributed spatially. Individuals were likely to fight over resources

that were clustered together rather than widely distributed. Further, social conflict emerged

when land quality was unequal. In sum, these to results emphasize the finding that when

the successful progress of violent conflict can afford a group premium access to the highest

quality resources at the exclusion of others, its members are more willing to submit their

autonomy to the group in order to enhance its combat potential.

Chapter 4:Using Time-Series Analysis and Geographic Information Systems to

Study the Relationship between Climate Change and Violent Conflict in Africa

Combining recently developed techniques in time-series analysis and Geographic Information

Systems (GIS), I connect the theoretical insights developed in the previous studies to a small,

but rapidly growing literature on the relationship between climate change and violent conflict

in Africa (Burke and Miguel 2009; Lobell and Burke 2010; Dell, Jones and Olken 2008). This

study establishes the most comprehensive and sophisticated dataset of its kind, capable of

offering greater insight into the macro-level, socioeconomic and geographic moderators of

the effects of climate change on violent conflict.

Following Buhaug and Lujala (2005), I disaggregate data from the state-level and re-

aggregate based on new, arbitrary geographical units. These units house variables from di-

verse datasets including georeferenced event data (Uppsala University Department of Peace

and Conflict Research Georeferenced Event Dataset; GED), gridded precipitation and tem-

perature data (Matsuura and Willmott 2009), satellite imagery (vegetative index and pop-

ulation density), ethnographic maps, land characteristics and the distribution of strategic

resources. The disaggregation algorithm allows me to incorporate data collected at the

nation-state level, such as World Bank African Development Indicators, and distribute it

over more finely measured covariates. Consequently, I am not only able to test hypotheses

concerning links between climate change and conflict, but I can also explore the moderating

15



Chapter 1 Introduction

effects of governmental responses and the impact of aid. Each data point is located in a

3-dimensional data matrix by X and Y coordinates corresponding to 1 degree by 1 degree

land surfaces on the continent of Africa, and Z coordinate corresponding to one month in-

tervals from January 1989 to December 2008. Values represent monthly averages. This data

structure enables me to use specialized statistical methods for modeling dynamic trends and

modeling individual-specific effects.

Whereas thee studies presented in Chapters 2 and 3 sought to establish a theoretical basis

for understanding groups, qua unitary actors, as emergent phenomena arising from the many

countless decisions of individuals interacting with each other and with their environment. If

true, this would lead us to hypothesize that a significant role of group identity as a moderator

of realistic conflict. As a chief explanatory variable, temperature extremity showed to be

a significant driver of conflict. Consistent with expectations, this effect appeared to be

substantially moderated by ethnic fractionalization. While the mechanism at work could not

be ascertained, this finding does demonstrate the fundamental premise that ethnic identities

are flexibly salient in response to environmental variables. These data also affirm previous

findings that extreme precipitation is associated with conflict, as well as reveal significant

effects for a wide variety of environmental variables.

Thus, this dissertation examines the ways in which ecological conditions alter individual

incentives to participate in groups; i.e., to rely upon collective action such as cooperation and

intergroup conflict in order to resolve individual adaptive challenges. It describes a theory of

how the behavior of groups, as actors, change as a function of ecological challenges facing the

individuals who constitute them. In the simplest conception, as individuals become more

committed to group-based strategies, submitting individual decision sovereignty to social

processes, groups themselves become more like decision-making units of analysis: groups exist

to the extent they are cohesive, and they are cohesive to the extent that we submit to their

rules and maintain our commitments. To flesh this out in greater detail, this research begins

with a basic supposition of evolutionary theory: ecological circumstances shape natural
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selective pressures on individuals. For human beings and other highly social creatures,

cooperation is the key adaptation with which we respond to environmental challenges. It

follows thus, that changing ecological circumstances result in shifting selective pressures on

individuals, disposing them to pursue alternative social strategies with indirect effects on

patterns of behavior and interaction at the intergroup-level. For example, a population

facing acute resource scarcity might find that cooperation yields productive efficiencies yield

greater stability in the resources individuals need to survive. The logic of markets dictates

that as the benefits of group living increase, so does the price. Hence, groups may demand

greater contributions from individuals, which enhances the strength and cohesion of the

group, enabling it to take on more ambitious collective action efforts. Changing ecological

circumstances should result in shifting selective pressures on individuals, disposing them

to pursue alternative social strategies. Accordingly, we should observe indirect effects on

patterns of intergroup-level.
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2 Coevolution of Cooperation and Social Networks

This study is the continuation of a pilot study initially conducted by Oleg Smirnov ex-

ploring the evolution of social preferences in a multi-agent based computational model. His

preliminary results suggested that agents may evolve altruistic propensities to contribute re-

sources to others even when the agent needs those resources for personal survival. Smirnov’s

explanation was based on the notion that under circumstances where individuals are mutu-

ally dependent on each other for survival, there is an evolutionary payoff for helping others

survive in order to overcome environmental challenges together. The present research also

contributes to the growing literature exploring the evolution of cooperation on social network

models that more accurately reflect the structures of human social relations. One potential

limitation of existing models of the evolution of cooperation is that they tend to treat net-

work graph topology as exogenous. I argue that this assumption is problematic because the

structures of relationships that define a society are themselves a product of cooperation. Al-

ternatively, I advance the hypothesis that cooperation and network structure are co-evolved,

such that network structure will reflect the particular set of natural selective pressures fa-

voring cooperation. In this chapter, I develop an evolutionary simulation that endogenizes

network topology and exogenizes factors of the environment in which the simulation takes

place. I find that network topology and the evolution of cooperation are indeed highly en-

dogenous. Finally, I will discuss implications for how we think about the role of population

and population structure in the context of collective action.

Since Charles Darwin first proposed his revolutionary theory of evolution by natural se-

lection, scholars (including Darwin himself) have speculated on implications for our own

human nature. One of the most challenging puzzles embedded in this question is the evolu-

tionary origin of cooperation. West, Griffin and Gardner (2007a,b) defines cooperation as “A

behaviour which provides a benefit to another individual (recipient), and which is selected

for because of its beneficial effect on the recipient”. The evolutionary problem, of course, is
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why should an individual fundamentally preoccupied with its own adaptive success perform

a costly behavior benefiting other individuals? In other words how can a behavior that ap-

pears to reduce an individual’s fitness relative to others possibly be selected for? Contrary

to this intuition, cooperation is a recurring pattern at every level of biological organization.

Biologists, zoologists, and social scientists have described and cataloged the structures of

relations in which cooperation takes place in exquisite detail. Genes, as the molecular unit

of selection, cooperate in the form of a genome. Once free-living prokaryotic organisms en-

gulfed others—an act which had in extremely rare cases proved so prodigiously successful for

both organisms that this endosymbiotic relationship would in time evolve into the first eu-

karyotic cells (Margulis 1970). Free-living cells would cooperate in the form of multicellular

life. Within multicellular organisms, the work of life is divided up among such specialized

cellular divisions that we may say the entirety of them constitute a logical unit, or vehicle of

selection. Many animals are organized into herds, flocks, and schools for cooperative defense

and mobility. Packs, prides, families, and bands help each other hunt, forage, and breed.

Eusocial beings such as ants, termites, wasps, and humans build societies. Human societies

are themselves constituted from myriad intersecting structures embedded within formal and

informal institutions, such as markets, polities, economies, languages, religions, and cultures.

Until recently, the structures of cooperation have generally been of only secondary inter-

ests to theorists of the evolution of cooperation. Structure is treated like any other exogenous

variable in the model. This is a different question than asking why relationships are struc-

tured in such a way. For example, Trivers (1971) discovered that the so-called tit-for-tat

cooperative strategy was remarkably successful in the repeated prisoner’s dilemma game.

Even this simple model makes some primitive demands on the structure of the population;

specifically, the model assumes a population is situated with regard to one another such

that any two individuals at all times are equally likely to interact. Reputational mechanisms

similarly assume a population of individuals is distributed such that it is possible to observe

interactions between others (Wedekind and Milinski 2000).
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Models with structure explicitly defined include models based on kin selection (Hamilton

1964) and social networks. In kin selection, probabilities of interaction are relatively unim-

portant compared to the probability of shared genetic profiles. As implied in JBS Haldane’s

famous proclamation that he would happily “jump into the river to save two brothers or

eight cousins”, kin selection assumes individuals receive some kind of direct genetic payoff

by helping others who probabilistically share their genes. In terms of the underlying math-

ematics, kin selection models are similar to network models, only substituting proportions

of genetic relatedness for probabilities of interaction. Network models explicitly do away

with the assumption of well-mixed populations, imposing strict order on who interacts with

whom, and how often. In the simplest conception of a homogenous network is the 2-lattice

spatial grid, individuals interact only with those who they are directly “connected” to, or

neighbors.

More recently, scholars have sought to model the evolution of cooperation on more com-

plex, realistic random graphs such as the Watts-Strogatz small-world, and the Barabási-

Albert scale-free network . Abramson and Kuperman (2001) were the first authors (to this

author’s knowledge) to explore this concept. Being first they enjoyed the opportunity to

test the most parsimonious model, consisting simply of a repeated prisoner’s dilemma with

imitation played on a basic Small-World random graph. They find that changes in both

of the Small-World’s parameters (rewiring probability and number of connections per node)

significantly impacted behavioral outcomes. Deng, Liu and Chen (2010) later on showed that

using a modified form of the small-world random graph allowing for nodes to have different

numbers of connections (Newman-Watts network), degree heterogeneity positively affected

the amount of cooperation in the system (Newman and Watts 1999). Santos and Pacheco

(2005); Santos, Rodrigues and Pacheco (2006) execute prisoner’s dilemma and snowdrift

games on a scale-free network. They find that in both cases when an individuals’ network

of contacts, or the set of neighbors with which they interact, are generated via growth and

preferential attachment, early cooperators are able to connect and cooperatively endure the
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periodic arrival of defectors. Du, Cao, Zhao and Hu (2009) replicated this finding in a similar

model.

While these research efforts have produced profound new insights into the dynamics

of cooperation on realistically modeled social networks, the network models employed are

themselves static. This may be problematic because, insofar as the social networks represent

real human networks, they are themselves likely to be a consequence of cooperation, as

well as a cause. Does it make sense that a small-world network would accurately reflect the

organizations of species before the advent of cooperation altogether? It is not surprising that

network models should promote cooperation because the structure might itself be a form of

cooperation, or at least coevolved with cooperation? This places considerable limitations on

what we may infer from these results about the emergence of cooperation from a primordial

state wherein no such structure existed.

In an innovative study comparing the relative covariances of traits within monozygotic

and dizygotic twins, Fowler, Dawes and Christakis (2009) conclude that behavioral traits

associated with network in-degree, transitivity, and centrality have a genetic basis. It follows

then that key traits determining an individual’s social network activity are heritable with

potential consequences for human evolution. As Nature selected for cooperation within

humans, was she simultaneously selecting on individuals who managed to situate themselves

the most advantageously within their network of contacts? If so, then the evolutionary

histories of cooperation and social network topology are likely endogenous.

Few studies have sought to investigate this directly. This is likely in part because the

implementation can be rather tricky. In a pioneering effort, Zimmermann and Egúıluz (2005)

advance a model where individuals playing an iterated prisoner’s dilemma with a network

of contacts are allowed to sever poorly performing relationships. Dismissed contacts are re-

placed randomly with new ones, allowing the network to evolve over time in sync with player

decisions. Unfortunately, the authors’ research goals were mainly to do with the evolution of

cooperation, and so stopped short of providing comprehensive descriptions of the resulting
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networks in terms of standard social network metrics. Two years later, Fu, Chen, Liu and

Wang (2007) run a very similar model and do supply some basic descriptions of the resultant

networks. They find that cooperation was linked to heterogeneity in degree distributions, as

well as average degree. Tanimoto (2009) also adopts the same basic model configuration but

substitute the random attachment for a preferential attachment rule for new connections.

He finds behavioral strategies in the prisoner’s dilemma to be strongly influenced by the

amount of the degree of preference bias, clustering, assortivity. Qin, Zhang and Chen (2009)

presents a model which may be described as the first major departure from the approach

pioneered by Zimmermann and Egúıluz. The authors start with a ring network with four

connections (k = 4) per node that cannot be severed or reassigned. In addition to these basic

connections, however, each node is granted an additional “adjustable link”, which it may

sever and probabilistically reassign according to a preferential attachment rule. They find

that a disproportionate number of outlinks go to the richest individuals, which appeared to

have the counter-intuitive effect of promoting the overall prevalence of cooperation. Lastly,

in a handsome demonstration of what is possible with actual human subjects in a controlled

laboratory, Fehl, van der Post and Semmann (2011) compare sets of multiple repeated pris-

oner’s dilemma games between participants in static and dynamic networks. In the dynamic

condition, players may break connections with players if they dislike their outcome and re-

ceive a new partner. After 10 rounds, cooperation was substantially higher in the dynamic

condition. The authors attributed this outcome to clustering among cooperators.

2.1 Theory

In the four or so decades since biologists and social scientist have taken up the question of the

evolution of cooperation, we have identified numerous possible pathways. This research has

treated cooperation primarily as a decontextualized behavioral propensity, but cooperation

is also context. Cooperation occurs within structures of relations, or social structures. Such

structures are found in nature in many diverse forms, but we do not really know why. In sum,

we now have good ideas about how cooperation emerges in a general sense, but comparatively
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little about how it may emerge in a specific sense. Why is cooperation structured this way

and not that way? Previous efforts to explain cooperation have for the most part sought to

exclude as many extraneous influences from the model for the sake of parsimony. Now we

are increasingly confident that the cooperation is, as Fu et al. (2007) put it, “attributed to

the entangled evolution of individual strategy and network structure”.

West et al (2007) formally defines cooperation as “a behaviour which provides a benefit

to another individual (recipient), and which is selected for because of its beneficial effect on

the recipient”. In terms of formal modeling, this is an excellent definition and has led to

remarkable theoretical progress. However, to move forward it may be worthwhile to step

back for a moment and rethink about what cooperation is—not in a definitional sense—but

in a broader functional sense. By analogy, the anatomical jaw is from a technical standpoint

a simple Class-3 lever that concentrates force through mechanical advantage. But what does

that mean to a wolf? For it, a jaw is a means of survival: a tool that disables prey, severs flesh,

and crushes bone. So what then is the function of cooperation to a cooperating organism?

I argue that cooperation is, like powerful jaws, an adaptation with which social organisms

respond to challenges and opportunities in its environment. And just as the particular form

of a jaw will vary from species to species depending on the particular adaptive challenges it

faces, so will the structure of cooperation. Accordingly, an evolutionary explanation for the

emergence of cooperation must ultimately have strong theoretical links to the environment.

Fitness does not make sense otherwise. Often confused with health, or physical fitness, fitness

describes an organism’s adaptive “fit” to the particular set of conditions it happens to find

itself in. Previous models removed the environment from the equation in order to show that,

under the right conditions, cooperation could evolve. These models are limited, however, in

that they cannot tell us what those conditions might be, or what form cooperation might

take.
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2.2 Model

In this section, I present an agent-based coevolutionary model of cooperation and network

topology in a simple environmental context. This model does not rely on any particular

random graph algorithm, but rather is designed to allow agents the greatest freedom to

flexility respond to environmental challenges. One key difference between this research and

prior efforts is that social network metrics are the primary model outputs, or dependent

variables, rather than inputs. The explanatory variables, in turn, are primarily parameters

of the environment. I expect that characteristics of the environment will shape whether, and

importantly how, cooperation emerges as an evolutionary stable strategy.

The initial state of the model is a non-spatial social network of N nodes with 0 edges. In

each of T generations, agents, or nodes, probabilistically form non-directional edges to other

agents. The global, base probability of any agenti forming a connection to any agentj in time

period t is P . However, agents differ individually degree they favor establishing connections

to more popular, highly connected agents. This preference bias e is initially distributed

uniformly in [0, 1]. Agent popularity is calculated according to the Barabási-Albert formula

kj∑
j kj

, where kj is j’s degree, and scaled by P . Therefore, in each round agenti forms a

connection to agentj with probability:

P +
Pkj∑
j kj

(1)

It is necessary to include the additive P term because the probability of linking to an agent

must never be 0.

Survival is the core principle of the ecological model. In order to survive, agents must

satisfy their metabolic needs, mcost, which must be paid out of their endowment SF . SF is

a global parameter, assumed to be equal to the total quantity of resources an agent “gathers”

in a time period. The ratio of SF to mcost characterizes the notional nutritional, or energy,

density of the resources. When the ratio is low, agents must consume more resources to
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satisfy their metabolic requirements, and therefore live a more precarious existence.

Agents who are not connected to any other nodes, or have a degree of 0, “go it alone”.

Meaning they must survive on what resources they must survive on their endowment alone.

This is not initially a problem for agents, but could pose as challenge if the population

increases and the available resources become increasingly picked over. While cooperation

may result in a more efficient usage of resources, the final resource volume of the environment

is fixed at maxR. Agents who are connected to other agents engage in up to R games of a

2-player prisoner’s dilemma (PD) per time period with other agents in their social network,

such that:

Cooperate Defect

Cooperate B-C, B-C -C, B
Defect B, -C 0, 0

where C is the cost of cooperation and B is the benefit of cooperation. The ratios of C to

SF and B to C characterize the possibility space for cooperation in a given environment.

When the cost of cooperation is high relative to SF cooperation carries with it substantially

greater risk because a response of defection is potentially debilitating. At lower relative costs,

outcomes are more like the less harsh “Snowdrift” game, which some research has suggested

is more characteristic of the social situations humans commonly face (Kümmerli, Colliard,

Fiechter, Petitpierre, Russier and Keller 2007). The ratio of B to C characterizes the rate

at which cooperation between individuals generates social value. The possibility space for

cooperation in an environment is also characterized by R, which corresponds to the velocity

of interaction. In low R environments, cooperation with others is relatively time consuming

giving agents less time to interact with a wider society of partners or to “bet it all” on a

single partner. Accordingly, in any given game cooperators wager C
R

to potentially receive

B
R

, since their investments are spread across multiple games with up to R individuals.

This model innovates upon previous social network models of cooperation by allowing

agents to interact not only with agents they are directly connected to, but also those they
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are indirectly connected to at up to D degrees of separation. For example, if D = 2 agents

may interact with agents they know personally as well as agents their personal relations

know personally. Further, agents are able to make categorical distinctions between agents at

each order of social distance and need not regard them the same. An individual A’s strategy

profile is [A1, A2, ..., AD, where Ad ∈ [0, 1] is the probability A cooperates with others of

social distance d and D is the total number of types. Agents’ strategy profiles, therefore,

may be said to be heterogenous.

In each time period agents initiate interactions with other agents in their social network,

choosing on average R
D

partners (at random) from each order of social distance. It is a

characteristic of heterogenous social networks that the number of individuals is increasing

in social distance. Thus, agents interact on average more often with those who are socially

closer to them since there are fewer of them.12 Since no agent may interact more than R

times in a single time period, some may have an opportunity to interact with others more

times per time period if they move first. In order to account for serial dependence, the order

in which agents initiate interactions is randomized every time period. The system is also

smart enough to disallow any agents from interacting greater than R times per time period,

even if they have had an opportunity to initiate an interaction themselves (i.e., other agents

chose them R times).

After all interactions are complete, agents must assess which connections are advanta-

geous to them. Since they cannot sever indirect connections, they can only take into account

their utility as consequences of their direct connection, which they do have control over.

Accordingly, agents calculate their net payoffs by direct connection, taking into account in-

teractions with higher order connections. For example, if A is directly connected to B, and

B is connected to C, and C is connected to D, then

12If there are 2 neighbors in distance 1, 3 neighbors at distance 2 and 4 neighbors at distance 4, the prob-
abilities of an agent interacting with any neighbor at those distances will be 1/2, 1/3, and 1/4 respectively,
the probabilities of choosing any category are equal.
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Π(connectiontoB) = Π(B) + Π(C) + Π(D) (2)

If Π(connectiontoB), including whatever value is generated or lost through interactions with

B’s social network, is positive then the edge is maintained. If it is negative, then A dissolves

the edge.

As mentioned above, the requirement that every time period agents are compelled to

pay an additional metabolic cost mcost in order to stay alive is the link that ties individual

behavior to the realities of their environment. It is the core of the ecological model. If at the

end of the time period agents possess insufficient resources to pay their metabolic cost, they

will begin to “starve”. When starving agents to not necessarily die immediately. Rather,

they die probabilistically, where the probability of death is increasing in time. This function

is given by,

Pr(Deathi) = 1− 1

StarvedSR
(3)

where,

Starved is the number of time periods Agenti is starving and SR is a global, exogenous

parameter representing a “rate of exhaustion”. At higher values of SR, they are less robust

to temporary privation.

Death and birth are the engines of the evolutionary subroutine. The evolutionary mech-

anism is entirely based on deaths, births (with heredity), and mutation. All agents surviving

at the end of a time period have a chance to reproduce, where each agent’s probability of

reproducing is a function of its relative fitness. The probability of reproduction is given by,

Pr(Reproductioni) =
FitnessRskew

i∑n
i=0 Fitnessi

(4)

where,

Reproductive skew (rskew) is a global parameter describing the rate at which adaptive

27



Chapter 2 Coevolution of Cooperation and Social Networks

advantage is conferred upon higher fitness agents. This is analogous to the intensity of mate

selection. At high levels of rskew, only the highest fitness agents are likely to reproduce. One

advantage of carrying out reproduction in this way is that it implies the rate of population

growth remains level even as the population increases. Ordinarily, arbitrary limitations

on population size, how many connections, or any other exogenous constraint on network

topology would bias results. However this mechanism should be able to limit population

sizes to computationally feasible sizes without doing so. Offspring, of course, inherit their

strategy profiles and preferential attachment biases from the parent. Lastly, in order to

ensure evolutionary dynamism agents are subject to random mutation of their behavioral

attributes with probability mut.

In sum, this model tests the responsiveness of social network and cooperation metrics

to a wide variety of exogenous parameters characterizing the environment. Flexible terms

in the prisoner’s dilemma allow a greater representation of the possible ways cooperation

may or may not be suited to the particular environmental challenges individual agents face.

Inputs and outputs are enumerated below.

1. Model inputs

(a) Initial population size

(b) Base probability of connecting

(c) Interactions per/time period

(d) Starting fitness

(e) Metabolic cost

(f) Resource volume

(g) Degrees of interaction

(h) Energy density

(i) Cost of cooperation
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(j) Benefit of cooperation

(k) Mutation rate

(l) Rate of exhaustion exponent

(m) Intensity of mate competition2

2. Model outputs

(a) Cooperation, degree 1

(b) Cooperation, degree 2

(c) Cooperation, degree 3

(d) Avg. fitness

(e) Preference bias (Barabási-Albert parameter)

(f) Connected graph (0/1)

(g) Num. of connected components

(h) Size of giant component

(i) Average connected component size

(j) Gini-coefficient (on fitness)

(k) Population size

(l) Eigenvector centrality

(m) Closeness centrality

(n) Betweenness centrality

(o) Degree centrality

(p) Degree distribution

(q) Avg. degree

(r) Avg. clustering
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(s) Avg. transitivity

(t) Avg. starvation

(u) Avg. age

2.3 Data

2.3.1 Monte Carlo Simulation

The first set of data is generated using Monte Carlo simulation. Monte Carlo simulation

allows the exploration of the parameter space across many observations of the simulation. As

Randal Olson points out, “evolution isn’t over until you click stop” (Olson 2013). Stopping

the simulation too soon can lead to false conclusions. The death-birth cycle of heredity is slow

and may take many more generations to converge than other replication algorithms, such as

social learning. It was therefore important to run the simulation for as many “generations”,

or time periods, as possible. In simulation pre-tests, I run simulations out to 10,000 time

periods and find that for all tested parameter configurations output parameter means have

stabilized in about 2000 time periods. While parameters are mean-stable, there still appeared

to be considerable homoskedastic variance (with respect to time). In order to account for

this, model outputs are averaged over the final 200 generations. Values for input variables

are selected at the start of each simulation with equal probability from a range of possible

values. These values are depicted in Table 2. To maximize the number of simulations given

computational and time limitations, the simulation was run 415 times for 2000 time periods

(N = 415).13 Summary statistics of output variables are depicted in Table 3.

Based on the summary statistics in Table 3 there was substantial variation in the model

outputs across the 415 simulations. Table 4 depicts correlations matrices for each of the

major network metrics variables with model inputs and outputs. While this results cannot

suggest causal relationships, they show that the model “worked” in the sense that outcomes

are functionally related to inputs and can provide a useful guide for subsequent analysis. The

13415 was the maximum number of simulations I was able to conduct in the time available.
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Table 2: Means and ranges of model input parameters, N = 415

Input Mean Minimum Maximum

Initial size (n) 32.176 25.000 39.000
Base prob of connection (p) 0.002 0.001 0.004
Interactions per period (r) 4.836 1.000 9.000
Maximum resources (res) 176.819 120.000 240.000
Nutrition density (sf/mcost) 1.375 1.001 2.600
Degrees of interaction (d) 1.010 0.000 2.000
Benefit of cooperation (c/b) 1.300 1.101 1.498
Mutation rate (mu) 0.00249 0.00002 0.00495
Rate of exhaustion (sr) 1.762 1.007 2.498
Reproductive skew (rskew) 1.738 1.008 2.496

highlighted values in this table indicate which pairs of network metrics and model parameters

bear substantial correlation, given that no significant correlation exists for cooperation and

the same model parameters.

To recapitulate the major supposition of this research, I argue social network topology and

cooperation are co-evolved in the context of a particular constellation of ecological variables.

This notion extends ongoing research efforts to understand the emergence of the structures

of cooperation we observe in nature by divesting the assumption that structures are static.

While this idea may be simple enough to describe in prose, describing it quantitatively with

sufficient nuance to test an empirical model is challenging. This analysis relies on three key

quantitative descriptions of the social network structures which emerged as a result of agent

interactions during the simulation: Average node degree, network size, and the size of the

networks largest connected component (giant component) relative to the size of the network.

Other standard descriptive measures of social networks include the clustering coefficient and

transitivity. However, both of these measures are both (very) highly correlated to average

node degree (see Table 5).

From a theoretical standpoint each of these three measures represent distinct concepts. I

choose to focus on the average node degree because it tends to imply clustering and transi-

tivity, but is also typically taken to be an input parameter for several random network gen-
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Table 3: Average values of model outputs over last 200 of total 2,000 generations, N = 415

Output Mean Std. Dev. Minimum Maximum

Propensity to cooperate 0.065 0.034 0.016 0.217
Fitness 0.669 0.473 0.032 2.550
Preference bias 0.479 0.263 0.009 0.953
Age 38.663 14.654 15.308 89.656
Starvation 0.991 0.010 0.962 1.029
Avg. degree 1.884 2.874 0.052 22.895
Clustering Coef. 0.038 0.061 0.000 0.334
Transitivity 0.060 0.071 0.000 0.380
Connected graph (0/1) 0.003 0.014 0.000 0.125
Gini coefficient 0.380 1.347 -0.554 27.059
Network size 44.779 15.063 20.905 96.880
Giant component 18.833 20.451 1.645 93.200
Giant Comp. (norm) 0.374 0.325 0.040 0.962
Num. of components 21.741 12.853 3.445 70.010
Num. of comps. (norm) 0.528 0.275 0.038 0.947

eration models, such as the Watts-Strogatz and in some sense the Barabási-Albert scale-free

network. Whereas the other two are purely descriptions of network outcomes, information

about average node degree resulting from the present research may then offer some additional

usefulness as a model input in subsequent research.

Importantly, the present research proposes that these network measures are likely to be

endogenously related to a measure of cooperation, which I hypothesize may be a function

of any of these metrics, as well as other exogenous ecological variables. To assess whether

this is the case, I employ Durbin-Wu-Hausman augmented regression tests for endogeneity

(Davidson and MacKinnon 1993). This consists of four separate regressions on cooperation,

including models with each individually instrumented endogenous variable and a combined

model with corresponding F-tests. The highlighted relationships in Table 4 are used for in-

strumentation. Table 6 depicts these results in detail. The Durbin-Wu-Hausman test statis-

tics in each case and the joint test are significant, affirming the hypothesis of bidirectional

effects. Still, we should be careful not to jump to conclusions since these network metrics

often load on the same truly exogenous model parameters. This implies that substantial
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Table 4: Correlations for cooperation and major network metrics and model parameters.
Relationships for which a substantial correlation between model parameters and network
metrics, but not cooperation, are highlighted.

Covariate Coop 1 Avg. Degree Giant Comp Net. Size

Initial pop -0.02 0.02 0.08 0.00
Base pr(conn) 0.11 0.22 0.17 -0.15
Pace of interaction -0.06 -0.10 -0.19 0.15
Carrying cap 0.05 0.23 0.14 0.52
Nut. Density -0.01 0.44 0.27 0.74
Degs. Of interation 0.32 -0.44 -0.66 -0.22
Mutation rate -0.07 0.19 0.14 0.12
Exhaustion rate 0.04 0.02 -0.04 -0.01
Repro. Skew -0.10 0.03 0.02 0.02
Gini coef. -0.01 -0.04 -0.06 -0.07
Coop benefit 0.06 -0.10 -0.05 -0.09
Simulation time -0.25 0.83 0.40 0.56
Fitness 0.18 0.07 0.06 0.42
Pref. bias -0.04 -0.04 -0.02 -0.02
Age -0.18 0.48 0.34 0.95
Starvation -0.08 0.10 0.09 0.41
Clustering -0.45 0.95 0.84 0.50
Transitivity -0.48 0.91 0.86 0.46

correlation exists between the network metrics as instrumented and it is therefore difficult

to ascertain the size of each variables unique relationship to cooperation. In other words,

since the three network metrics often load on the same exogenous ecological parameters, it

can be difficult to ascertain how each network attribute uniquely structures cooperation in

response to the environment.

Table 5: Correlation matrix of three like network descriptions

Avg. node degree Transitivity Clust coef.

Avg. node degree 1
Transitivity 0.9107 1
Clustering coefficient 0.9465 0.9811 1

To get a better handle on this question, it is useful to adopt analytical tools better

suited to describing the broader structure of relationships between exogenous ecological
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Table 6: Augmented regressions on cooperation (first degree) with major endogenous network
metrics

DV = Cooperation Avg. Degree Net. Size Giant Comp. Combined

Base pr(conn) 10.98*** 11.11*** 10.97*** 11.14***
(1.840) (1.826) (1.839) (1.828)

Pace of interaction -0.00235*** -0.00238*** -0.00233*** -0.00238***
(0.000515) (0.000515) (0.000517) (0.000518)

Degs. Of interation -0.00704** -0.00701** -0.00678** -0.00688**
(0.00305) (0.00307) (0.00308) (0.00306)

Exhaustion rate 0.0145*** 0.0175*** 0.0161*** 0.0191***
(0.00538) (0.00556) (0.00555) (0.00634)

Mutation rate 1.749 1.767 1.651 1.726
(1.131) (1.135) (1.139) (1.136)

Repro. Skew -0.00571* -0.00560* -0.00592* -0.00567*
(0.00331) (0.00327) (0.00332) (0.00328)

Fitness 0.00465 -0.00402 0.00795 -0.00486
(0.00598) (0.00767) (0.00518) (0.00796)

Cooperation benefit 0.00198 0.00260 0.00288 0.00317
(0.0122) (0.0122) (0.0122) (0.0124)

Starvation 0.554** 0.620** 0.518** 0.623**
(0.254) (0.255) (0.257) (0.257)

Avg. node degree 0.00258 -0.00374*** -0.00300*** -0.00806
(0.00237) (0.000909) (0.000796) (0.00642)

Giant component (norm) -0.0509*** -0.0482*** -0.0522*** -0.0481***
(0.0100) (0.0102) (0.00982) (0.0101)

Network size -0.000255 0.000731* -0.000172 0.00101
(0.000233) (0.000377) (0.000231) (0.000692)

Node deg. (instrum.) -0.00586** 0.00433
(0.00276) (0.00638)

Net size (instrum.) -0.00116*** -0.00145**
(0.000391) (0.000685)

Giant comp. (instrum.) 0.0533* 0.0284
(0.0293) (0.0476)

Constant -0.493* -0.592** -0.476* -0.613**
(0.258) (0.261) (0.263) (0.268)

DWH test stats 4.6* 8.88*** 3.34** 3.14**
(0.0684) (0.0031) (0.0325) (0.0253)

Observations 415 415 415 415
R-squared 0.371 0.377 0.368 0.377
Robust SEs in parentheses
*** p<.01, ** p<.05, * p<.1
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variables, network features, and cooperation. Structural Equation Modeling (SEM) allows

for a highly flexible specification of simultaneous equations based upon theoretical insight.

Since these equations are estimated simultaneously, SEM is able to mathematically account

for the complex web of interrelationships that are at the heart of ecological modeling. As a

starting point in specifying each relationship, I regress each major endogenous variable on

model exogenous parameters and include each significant result. I then specify bidirectional

relationships between each network metric as controls to isolate their unique relationships

to the environment. Now I “close the circuit” one-by-one between each exogenous variable

and the interconnected core of endogenous variables in a sub-model. Paths determined to

be clearly insignificant (p-value > 0.1) are then severed one at a time and the sub-models

re-estimated. This technique allows me to incrementally eliminate pathways that do not

significantly transmit influence.

Lastly, I add bivariate regressions of several other substantively interesting model outputs

on cooperation, including starvation, average fitness, and inequality (as the Gini coefficient).

In each of the bivariate sub-models, the dependent variable is assumed to be a thematic

summary of “ecological problems” established entirely from within the ecological and social

network models (within the context of this simulation this is true, save for some stochasitc

variability). In other words, they constitute the substantively important survival challenges

cooperation may play a role in resolving.

In total, the SEM consists of a system of 7 simultaneous equations with four endogenous

variables as depicted in Figure 1). Tables 7, 8, 9, and 10 present the parameter estimates

of the structural model. According to the Rank Test for Identification, the cooperation,

average node degree, and giant component equations are over identified, while the network

size equation is just identified.

2.3.2 Cooperation

Cooperation with first degree neighbors is the first key endogenous variable (see Table 7). It

represents not only not the closest and most intimate relations, but also serves as a gateway
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Figure 1: Structural Equation Model of Network Topology and Cooperation, including ex-
ogenous ecological variables (dark grey), network metrics (light grey), and other outcomes
of interest (white)
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to additional relationships. When applying less traditional research methods, it is encour-

aging to see the coefficients of a constellation of comparatively well-understood variables in

the right direction. According to these data, the direct effect of population size, or net-

work size, is negative and significant. Since Olson (1965) the traditional “structure-free”

models of collective action have frequently focused on the negative impacts of population

size on achieving cooperation in the social dilemma, i.e., the provision of public goods. In

some cases structured network models can sometimes produce different effects. For exam-

ple, Seltzer and Smirnov (2013) find that larger populations can increases the likelihood of

cooperative clusters emerging by chance. Mutation rate was marginally significant but in

the “right” direction. Mutation rate is generally believed to negatively impact cooperation

since a random mutation can disrupt cooperative clusters. Benefit of cooperation was pos-

itive, though also only marginally significant. This suggests that while greater returns to

cooperation do make a difference, overtime the magnitude is less important.

Table 7: Results of Structural Equation Model (1/4)

Variable Coefficient (Std. Err.)

Equation 1 : Cooperation (D1) (as propensity)
Avg. node degree 0.0122∗∗ (0.0032)
Giant component -0.1083∗∗ (0.0211)
Network size -0.0008∗∗ (0.0003)
Pace of interaction -0.0012 (0.0008)
Benefit of cooperation 0.0246 (0.0166)
Reproductive skew -0.0077† (0.0042)
Resource volume 0.0001∗ (0.0001)
Mutation rate -2.2379 (1.3860)
Intercept 0.0922∗∗ (0.0251)

More surprisingly, the effect of average node degree is highly significant and positive.

At first glance this result appears to run counter to expectations. According to Ohtsuki’s

“simple rule for the evolution of cooperation on graphs”, cooperation may evolve if the ratio

of cooperation benefits to cost is greater than the number of neighbors k (Ohtsuki et al. 2006),

or if b/c > k. As average node degree increases we would expect a decrease in cooperation.
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Yet average node degree exhibits positive significant direct effects in these data. One key

factor potentially explaining the apparent discrepancy is that Ohtsuki’s model assumes a

homogenous node degree distribution. ‘Average node degree’ is therefore not equivalent to

k. What is likely happening is that cooperation is increasing in average node degree with

highly heterogenous degree distributions, as in a scale-free network. Another factor may

be that correlation average node degree and clustering is extremely high, such that they

are virtually the same variable (r = 0.94). Thus, the benefits to cooperation appear to be

increasing in the context of tighter communities which are more robust against defection. If

this is the case, it would explain why we observe as an outcome of some structured network

models that effect of population size is positive.

As mentioned previously, this has been attributed to increased likelihood of the emergence

of cooperative clusters. In these data, however, average node degree may be soaking up these

effects since it corresponds far more directly to clustering. Controlling for this, in turn, means

that the coefficient on network size is a purer representation of population size effects and

should be more in line with what is typically found in the context of structure-free models.

Indeed, when average node degree is removed from cooperation equation the coefficient on

network size is reduced to virtually nil (coef. = 0.0001, sd = .0001, p-value = 0.47). There

may very well be something else going on, but it is still nonetheless interesting that the

omission of average node degree, as a proxy for clustering, should have moved the coefficient

in a positive direction.

Another interesting and potentially illuminating finding is that the relative size of the

giant component is highly significant, negative, and large. The decrease in the mean value

of cooperation when the relative size of the giant component goes from its maximum to its

maximum accounts for roughly half of the total observed range in cooperation. In other

words, cooperation seems to thrive in relatively small, isolated communities. Cooperation

also appears to be benefited from lower levels of reproductive skew. Meaning, not only

does cooperation seem favored in small communities, but such communities appear to be
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characterized by less severe competition for mates.

2.3.3 Structure of Cooperation

These analyses rely on three key social metrics to describe the effects of environment and

cooperation on network topology: average node degree (Table 8), the size of the giant com-

ponent relative to the size of the network (Table 9), and the size of the network itself. All

three of these variables appear in each of the relevant simultaneous equations—one on the

left-hand side and the other two on the right as controls (Table 10). In terms of average node

degree, several interesting patterns emerge. Strikingly, cooperation has a strong and highly

significant negative impact on average node degree. This is particularly fascinating because

it implies that in terms of broader social outcomes, cooperation inhibits the formation of

more strongly connected networks, even though it itself benefits.

How can this be? If high degree networks were advantageous for cooperation, should

not cooperators seek to maximize their degrees? One potential explanation could be that

cooperation makes connections costly. At low levels of cooperation, the cost of maintaining

a connection is virtually nothing. Agents may encounter each other but largely leave each

other alone. Nothing is “gambled” on the interaction. They bet nothing, get nothing, and

come out of the experience indifferent to the relationship. Consequently, agents are likely

to tolerate relationships. Cooperators, on the other hand, need to know that the other

individuals they are dealing with will cooperate back, or they may as well be rid of them

permanently. At the same time, given that those relationships are cooperative, more of them

will be better. Hence, node degree may benefit cooperation while cooperation simultaneously

works against average degree.

Another factor is that average node degree appears to heavily mediate the effects of

maximum interaction distance and rate of exhaustion on cooperation. Maximum interaction

distance enables agents to interact with agents they are indirectly connected to, which im-

pacts the value of those direct connections that grant such access. Effectively, this means

risks of maintaining connections with occasional defectors may be partially mitigated if the
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Table 8: Results of Structural Equation Model (2/4)

Variable Coefficient (Std. Err.)

Equation 2 : Avg. node degree
Cooperation (D1) -43.1738∗∗ (10.1630)
Giant component 7.9783∗∗ (1.1893)
Network size 0.0514∗∗ (0.0115)
Degrees of interaction 1.3315∗∗ (0.3551)
Base prob. of connection 456.3711∗∗ (172.3552)
Rate of exhaustion 0.5050† (0.2688)
Intercept -3.9706∗∗ (0.9222)

Table 9: Results of Structural Equation Model (3/4)

Variable Coefficient (Std. Err.)

Equation 3 : Giant component
Cooperation (D1) -5.0278∗∗ (1.1062)
Avg. node degree -0.0823∗∗ (0.0226)
Network size -0.0012 (0.0048)
Degrees of interaction -0.3420∗∗ (0.0366)
Nutrition density 0.4930∗∗ (0.1747)
Base prob. of connection 166.3971∗∗ (27.7861)
Pace of interaction -0.0353∗∗ (0.0075)
Mutation rate 59.0538∗∗ (13.8057)
Intercept 0.1887† (0.0999)
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Table 10: Results of Structural Equation Model (4/4)

Variable Coefficient (Std. Err.)

Equation 4 : Network size
Cooperation (D1) -2.3605 (24.3640)
avgdegreeb 0.6554† (0.3715)
Giant component 19.2052∗∗ (4.2945)
Degrees of interaction 2.9373∗ (1.2405)
Nutrition density 20.5579∗∗ (1.8987)
Base prob. of connection -4587.7813∗∗ (697.2556)
Pace of interaction 1.6352∗∗ (0.1945)
Resource volume 0.0493∗∗ (0.0092)
Rate of exhaustion -2.1742∗ (0.9105)
Intercept 3.8115 (3.1975)

Equation 5 : Starvation
Cooperation (D1) -0.0250† (0.0146)
Intercept 0.9922∗∗ (0.0011)

Equation 6 : Inequality (as Gini)
Cooperation (D1) -0.5821 (1.9557)
Intercept 0.4172∗∗ (0.1426)

Equation 7 : Fitness
Cooperation (D1) 2.5482∗∗ (0.6752)
Intercept 0.5048∗∗ (0.0492)
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downstream relationships help to compensate for losses. Interestingly, the ability to interact

with “friends of friends” has no direct impact on cooperation with first neighbors, but it does

lower the cost of having more direct connections. Average node degree also appears to me-

diate the effect of rate of exhaustion. In other words, when agents deprived of resources they

need to survive expire faster due to starvation, average node degree significantly increases,

which in turn increases cooperation. This suggests that when survival is more precarious,

increased connections enable agents to survive more, perhaps by spreading risk of defection

over a larger number of partners and also potentially enhancing the effects of cooperative

clusters.

Looking at the giant component size equation, it appears that networks become sig-

nificantly more connected in nutrient dense environments. At the same time, they are

considerably less cooperative. More puzzling is the very large, negative effect of degrees of

interaction. One possibility is that extended network interactions simultaneously raise the

cost of maintaining poorly performing connections (from a cooperator’s perspective), but

those which are sustainable provide more stable benefits. In sum, they give agents more

reasons to sever bad connections, more reasons to maintain good ones, which are inevitably

fewer.

The negative effect of pace of interaction is also consistent with this understanding. Pace

of interaction allows agents to interact with the same agents many more times—when you

interact with someone a dozen times and observe that they cheat you, say, 9 of the 12

times you are much more confident they will cheat you in the future about 75% of the time

that if you only interacted with them once. If they happened to cooperate with you in

that one instance, your assessment of the situation could be dangerously inaccurate. More

interactions means agents will be better be faster to ascertain net beneficial relationships

from costly ones, and those which are beneficial will be more stable.

Figures 2 and 3 represent the degree distributions and social network graphs of “typical”

runs of the simulation with all parameters at their mean, save maximum and minimum
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Figure 2: A “typical” run of the simulation with all parameters at their mean with MIN
degrees of interaction

values of maximum interaction distance. While the network in Figure 2 appears to be highly

connected with a high average node degree, high clustering, etc. Also note that keeping

all parameters constant, save for interaction distance, appears to have little or no affect on

the proportion of cooperators (cooperators in green, defectors in red). What is troubling,

however, is the idea that these relationships may be totally different if cooperation the norm.

In these data, cooperation, even when it was stable, did not exceed a propensity of 0.2. If

the above reasoning on the determinants of component size are correct, then a prevalence of

cooperation over 0.5 might reverse the sizes on those coefficients.

While network size, or population size, exhibits a negative impact on cooperation, coop-

eration appears to exert no effect on network size. This is contrary to my expectations, since

cooperation should in theory allow for a more efficient use of available resources. Rather,

population size is most directly impacted by the quantity and quality of resources, even if it

results in a less efficient use of them. In particular, higher nutrition densities and resource

volume have large direct effects on population size. Population size is also not surprisingly

impacted by the rate of exhaustion—when agents are more robust to starvation and expire

more slowly, the population increases. In general, variables that result in agents living longer
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Figure 3: A “typical” run of the simulation with all parameters at their mean with MAX
degrees of interaction

and dying less are associated with higher population.

What is more interesting is that larger networks are possible when agents may interact

with other agents at greater social distances. This is apparent in the contrast between Figures

2 and 3. Why this might be could be difficult to tease out without appealing to indirect

affects of component size, since the SEM model should assign these effects elsewhere. What

is it about interaction distance, in and of itself, that cause population sizes to grow? One

possibility is that high interaction distance allows agents to diversify their and leverage risk

and opportunities for defection. Agents connected to other agents, and indirectly to yet more

agents, may just be more stable. Cheating against neighbors may not kill the neighbor or

even cause him to sever the connection, since he may have done well in an interaction with

one your neighbors. Similarly, agents will be less reliant on close relationships, which could

prevent tragedy in the event of sudden defection. This is consistent with positive, significant

result of the pace of interaction, also suggesting that when risk is spread out over multiple

interactions with more partners agents can endure longer. The positive coefficient on pace

of interaction in conjunction with a negative impact of the base probability of connection

further suggests that populations are largest when they grow more slowly and with greater
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information, or interaction history between agents.

Network metrics and cooperation measures are abstract and do not meaningfully rep-

resent something we humans would consider a policy goal, at least in and of themselves.

Rather, they are adaptations—or technologies—that enable us to resolve individual survival

and social challenges. So what are the net effects of cooperation, taking into account its

structures, in real-life terms? Equations 5, 6, and 7 suggest that then net effect of coopera-

tion are a significant reduction in starvation and an improvement in average fitness (Table

10). Somewhat disappointingly, cooperation appears to have no significant impact on in-

equality, neither exacerbating it nor ameliorating it. In other words, while cooperation does

not necessarily imply an increase in overall fairness, it does help us all live better in the face

of harsh ecological challenges to survival.

2.4 Discussion

This study presents strong evidence that social network topology should not be considered

an exogenous variable in the evolution of cooperation. Rather, these variables are very likely

endogenous. A complete picture of their bidirectional effects, as well as spurious correlation

that are each independent, direct effects from truly exogenous factors of the environment

will require much more research. These data suggest a number of potentially useful starting

points.

Broadly speaking, I find that cooperation is favored in the context of small, but more

densely networked communities. There were, however, a number of dynamic factors that

play into this. In particular, the demand to mitigate the risks of cooperation appear to play

a significant role in shaping social structures. The present model is advantageous because it

allows agents to structure their social relationships in ways that minimizes their exposure,

while maximizing opportunities for reciprocity. Clustering is a primitive and well-studied

form of this. Cooperation in smaller networks with fewer, but more trusted connections

makes sense since the risk to cooperators increases in proportion to the number of connections

they maintain to other agents. In sum, closer relations with fewer individuals appeared to
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be in most cases preferable to larger numbers of less valuable connections.

Interestingly, as survival becomes more precarious (i.e., agents consume resources faster

and are as such at greater risk of starvation), agents were the most willing to expand their

number of direct connections even if as it increases their exposure to risk. There are at least

a couple reasons why this could be the case: 1) Because their partners are more likely to

die, it may pay off to maintain a larger number of relationships, even if they are not quite

as cooperative; and 2) A more precarious existence makes defection in the context of a close

relationship much more consequential. Agents, therefore, choose to spread risk of defection

over a larger number of partners. The ability to interact with socially distant individuals

and adopt categorically discriminating behaviors allows seems to mitigate some of the risk

associated with additional relationships. Though this ability produced networks that were

dramatically more segmented, overall populations were larger and the individuals within

each segment were more connected.

Contrary to expectations, the overall volume of resources directly exerts a weak, but

positive and significant effect on cooperation. However, the size of this effect seems to pale

in comparison to the negative indirect effect from the influence of resource abundance on

network structure. Resource abundance is broken down into two variables analogous to vol-

ume and density. Both resource volume and density massively increase network population

as well as the relative size of connected components within it, each bearing a substantively

large negative effect on cooperation.

The richest environments tended to produce larger and less cooperative populations.

This is not surprising, as the increasing difficulty of collective action with population size is

not new. However, traditional approaches have treated population as an exogenous variable

and we have neglected to think about it in an ecological, or economic context. In wealthy

countries, particularly the United States, the long-standing trend is for people to move to

suburbs where they arguably become less cooperative. They occupy single-family homes that

are designed to allow them to enter and depart the home with minimal interaction with even
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their own neighbors. Relevant architectural features include the replacement of front porches

with outsized garages with internal access to living spaces. Such suburbs in the United States

may feel themselves increasingly disassociated with other communities, insofar as such places

might be described as “communities”, seeing them as increasingly different, parasitic, and

outside the legitimate sphere of redistribution. This perception of greater social distance, or

othering, can in turn negatively impact political will for the provision of public goods. The

modern suburban home is a model of self-sufficiency–each fitted with own internal durable

goods like heavy appliances and machinery, telecommunications systems, and vehicles. Why

share when you do not have to? Even individuals within the homes tend to share less,

with individual telecommunications systems, computers, vehicles, and televisions. All that

pertains commonly to the nuclear family unit is the dinner table, though even this is shared

with declining frequency.

One convenient opportunity to study this phenomenon in an ethnographic approach could

be the natural dichotomy that exists at public universities in the United States, where the

graduate student population is split between comparatively wealthy American nationals and

poorer foreign students from South Asia and China. Though family money can often muddy

the waters, one major difference in the graduate school experience for these two groups is

that the American nationals have the ability to take federal loans to supplement their living

stipends that are not available to foreign students. Consequently, American students are able

to maintain a lifestyle beyond their means. Based upon my own informal observations as a

graduate student at Stony Brook University in Brookhaven, NY, American nationals are far

more likely to live alone or with fewer housemates, eat out at restaurants more frequently,

own personal vehicles, and describe vehicle ownership as something “essential” to life on

Long Island. In contrast, South Asian students are likely to share households, cooperatively

cook and share meals, and rely on public transportation or a single vehicle. From a dis-

tance, these habits can strike those who abundance for granted as quaint aspects of cultural

diversity. However, there are in fact hard economic necessities motivating this behavior.
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Scarcity is unavoidable and in their case may only be dealt with through cooperation—and

this is a “pay to play” publics goods problem in such a household as in any game theoretic

model. Contributions are expected and free-riding is monitored. While communal meals are

relatively open to new participants (typically friends of friends), there is a subtly commu-

nicated but prevailing norm of “bringing something to the table”. Newcomers who may be

unaware are initially afforded leniency, but a reputation for just “coming for the food” will

limit opportunities for longer term relationships within individuals in the household.14

Individualism is often believed to be a fundamental characteristic of Western civiliza-

tion, but this may simply be because the west industrialized first. Now in the late 20th

and 21st centuries, Eastern and South Asian societies long described as somehow inherently

“collectivist,” or “communitarian” in nature are also said to be growing increasingly indi-

vidualistic. Marxists have long suggested the Western individualism is a capitalist social

structural adaptation, establishing a necessary precept to private property and atomizing

labor. These analyses do not contradict this, but suggest that individualism may also be in

part a reorganization of the structure of cooperation as an economy moves from scarcity to

abundance.

In the present model, the concept of ‘scarcity’ is generally defined but most in consistent

the materials individuals need to survive. Scarcities of other sorts exist. In the next chapter,

I will present another computational model that retains some aspects of material scarcity,

but will also incorporate new features that take into account needs for physical security,

which may also be obtained in insufficient or superfluous quantities. In particular, I will

consider threats to individual security posed by the collective actions of others.

14My observations were informally collected from 2009 to 2013, during which time I had the privilege
of calling the inhabitants of such a household close friends, wistfully sharing our lives in good food, good
company, and warmish beers from a box on the table.
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3 Multilevel Selection Model of Pastoralist Conflict

3.1 Introduction

My dissertation examines the ways in which ecological conditions alter individual incentives

to participate in groups. It is, in essence, a contribution to the literature on the evolution

of cooperation. This second of three distinct, but related studies employs multi-agent based

simulation in order to establish a theoretical basis for linking individual level challenges from

the environment to group behavior. The key theoretical insight is that cooperation in groups

is a primary adaptation humans evolved in order to overcome environmental challenges,

including competition from other groups. In other words, this model suggests that the

presence of intergroup competition may shift the evolutionary rewards to individuals with a

certain propensity to engage in individually-costly, but group-strengthening behavior.

In the Descent of Man (1871), Charles Darwin famously proclaimed,

“A tribe including many members who, from possessing in high degree the spirit

of patriotism, fidelity, obedience, courage, and sympathy, were always ready to aid

one another, and to sacrifice themselves for the common good, would be victorious

over most other tribes, and this would be natural selection.”

This model tests his hypothesis and explores the group processes mediating individuals’ in-

teractions with their environment. We do not assume any genetic relatedness between agents.

Thus, we may more purely examine individual motives and interests in engaging in altruistic

behavior since there is no indirect genetic benefit of helping kin with whom he shares some

proportion of genes. If cooperation evolves, it will have done so through multilevel selective

mechanisms rather than kin selection. Since Nowak, Tarnita, and Wilson’s (2010) publica-

tion in Nature suggesting that kin selection was not needed to explain eusociality, biologists

of diverse stripes have come out in defense of kin selection (Abbot, Abe, Alcock, Alizon,

Alpedrinha, Andersson, Andre, van Baalen, Balloux, Balshine et al. 2011). Fortunately, I

am not obligated to take a position on this debate. Kin selection and multilevel selection are
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not mutually exclusive, and it stands to reason that in some cases multilevel selection may be

to explain phenomena kin selection cannot (and vice-versa). A likely such case is large-scale

human cooperation. Humans frequently cooperate in large groups including extended-kin as

well as non-kin. This is the kind of cooperation we observe in everything from intertribal

warfare in eastern Africa to the modern corporation.

The substantive context of the simulation design is abstracted from the arid and semi-arid

regions of east Africa, generally encompassing the Great Rift Valley region of northern Kenya

in the west and the Mandera triangle on the east, where the borders of Kenya, Ethiopia,

and Somalia meet. While constituting relatively small portions of national populations,

they occupy large swatches of their countries marginally hospitable territories, including

70% of Kenya (Fratkin 2001). Pastoralists make their living moving herds of animals in

search of pasture and water, subsisting on the products of their animals. Though they may

occasionally supplement their diets by trading with farmers and fishing, their diets generally

consist of milk, meat, and blood tapped from their living animals. Tribesmen of the Boran

and Turkana tribes—fairly representative of others in the region—have on average 3.5 to 3.7

tropical livestock units (a TLU equals 1 cow, 0.8 camels, and 11 goats and sheep).

Studying this region offers several advantages. Of the world’s total population of pas-

toralist and agro-pastoralists, Africa is home for roughly one-half, or some 23 million people

(Galaty, Johnson et al. 1990). Substantial evidence suggests that degradation of the en-

vironment from various sources, including climate change, has already contributed to an

increase in violence (Parenti 2011; Hendrix and Salehyan 2012; Suliman 1993; Raleigh and

Kniveton 2012; Buhaug and Rød 2006; Kuznar and Sedlmeyer 2005). Over the last three

decades, both temperatures and the frequency of droughts have increased, with prolonged

drought occurring every 5-6 years (Fratkin 2001). Moreover, the economies of east Africa

tend to be heavily agrarian and poorly irrigated. According the United Nations Economic

Commission for Africa (2009), only 3.7 percent of agricultural land in sub-Saharan Africa

is irrigated. Livestock raiding has existed since at least the 19th century when it was first
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observed by the British (Fukui and Turton 1979; Parenti 2011). Raiding is done in order to

replenish stocks following the dry season when a tribe can lose half of their herds. Young

men seeking to marry must sometimes rely on raiding in order to amass a dowry. Though

this practice is deeply rooted in the cultures and pasts of these peoples, the combination of

a changing climate, land fragmentation, degradation and competing farmers appears to be

driving increased frequency and severity of raiding (Parenti 2011; Suliman 1996).

At the same time regional governments lack the capacity or reach to adequately mitigate

these challenges, or at least to ensure security in the fall out. To the extent that government

policy has reached the arid regions of northern Kenya, northern Uganda, and southern

Ethiopia, it has largely done so with the support of western international organizations.

Such efforts, however well-intentioned, have in too many cases made an already bad situation

worse (Parenti 2011; Fratkin 2001). In 1968, ecologist Garrett Hardin published his seminal

piece in Science The Tragedy of the Commons, in which he argues that commonly shared

resources are inevitably depleted by rational individuals; thus, natural resources should be

either regulated or privatized in order to ensure good stewardship. With this in mind,

well-intentioned western aid organizations made grim predictions of the sustainability of

pastoralist societies and encouraged local governments to implement land use reforms. East

African pastoralists found their large, communally shared lands increasingly fragmented by

expanding farming operations, private ranches, wheat estates and game parks (Fratkin 2001).

One of the advantages of the pastoral economy is that it is viable on marginal land which is

too dry for permanent cultivation. The introduction of more intensive agricultural practices

has in many cases produced only short-term gains in productivity that are cut short by

soil exhaustion (Parenti 2011). According to Swift (1991), land degradation has not been

halted and has sometimes increased, livestock productivity has not grown although economic

inequality has, and vulnerability to food insecurity and loss of tenure rights has increased.

Moreover, since Hardin’s seminal paper, anthropologists and others, including Nobel Prize

laureate Elinor Ostrom (1990), have documented the rich array of customary institutions
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regulating resource use in African pastoral societies.

Traditionally, these groups have relied upon kinship ties to cooperatively breed their

animals and defend them. The institution of “livestock raiding”, in which large groups of

pastoralist tribesmen gather in order to conduct raids on other tribes for the purpose of

stealing livestock, has existed since at least the 19th century when it was first observed by

the British (Fukui and Turton 1979; Parenti 2011). East Africa is highly diverse ethnically,

with an ethnic fractionalization Index score of 72 out of 100, making it one of the most

highly fractionalized places in the world (Elbadawi and Sambanis 2000). Raiding is done in

order to replenish stocks following the dry season when they are likely to lose half of their

herds. In general, herders find that the optimal strategy is to maximize the size of their

herds, which are typically large and sickly (Fratkin 2001). Maximizing numbers is favored

over concentrating resources on fewer animals. Stolen livestock can also make an impressive

dowry and be invaluable for a young man seeking marriage. The combination of increasingly

frequent and severe drought, land fragmentation, degradation and competing farmers has

caused a dramatic uptick in raiding (Parenti 2011; Suliman 1996). Complicating matters

further, the legacy of the Cold War has left the region awash in small arms, rendering raids

not only more frequent, but substantially more deadly.

3.2 Theory

To recapitulate, global climate change and decreased living space is making violent conflict

both a way and a means of life for the tribes of the arid and semi-arid regions of east Africa.

The main supposition of my dissertation is that human beings were endowed by evolution

with faculties that facilitate collective action in response to environmental challenges. In

other words, our ancestors who possessed such faculties to submit a portion of their individ-

ual sovereignty to a group processes (implying personally costly behavior), enjoyed greater

prospects for reproductive success than those who were not.

The model I propose is designed to explore the process by which this could plausibly

have occurred. Specifically, I employ a version of group selection called multilevel selection.
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Sidanius and Kurzban (2003) define a “group” as “any set of individuals that have a fitness

impact on one another”. Importantly, a degree of relatedness is not part of this definition.

According to multilevel group selection theory, nature can be said to select for an entire

group if, despite some relative fitness inequality between internal phenotypes, members of

all phenotypes are on the whole more successful in passing on their genes than individuals

belonging to other groups. As the authors explained, this is not “an alternative to the genetic

view of ... selection,” but rather is “simply another way of keeping track of genes’ success

by looking at their relative replication rates within and between groups”. Modeling how

the frequency of these ‘genes’ changes in response to inputs is the basis of an evolutionary

model. Such a model allows us to derive two hypotheses.

Hypothesis 1: Under some environmental circumstances, the evolutionary pay offs individuals

enjoy by dint of successful collective action efforts will outweigh the investments they made

to ensure their groups’ capacity for collective action.

Hypothesis 2: When resources are relatively plentiful, intergroup cooperation will increase

and intragroup cooperation will decrease.

3.3 Methods

The main challenge associated with hypotheses concerning evolutionary processes is that

evolution can be virtually impossible to observe in the world. One of the most powerful

tools available to us is multi-agent simulation (MAS). Strictly speaking, MAS is an empirical

methodology. The reader must, however, acknowledge that the empirical data generated in

a simulation are “collected” from a virtual world which operates precisely according to the

physics (or rules) we specify. Simulations allow us to view the world that would exist if

our models were correct and complete. In other words, they allow us a glimpse at what the

world would look like if it worked like we think it does. Simulation can play an important

role in the scientific process because it allows us to rigorously examine the implications of
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our assumptions in ways that, for reasons of inherent complexity and our susceptibility to

biased reasoning, would just be too much to expect from a human brain. Quoting Epstein

(1999), the canonical agent-based experiment is as follows:

“Situate an initial population of autonomous heterogeneous agents in a relevant

spatial environment; allow them to interact according to simple local rules and

thereby generateor ’grow’the macroscopic regularity from the bottom up.”

Several studies have productively applied agent simulation to the question of pastoralist con-

flict. Motivated by genocide in Darfur, Kuznar and Sedlmeyer (2005) model how individuals

respond to environmental and material challenges, and in turn attempt to describe a process

by which collective action (i.e., intergroup violence) can emerge from individual motives.

The authors create an intricate model, including detailed and realistically defined geogra-

phy, agriculture, agent and livestock metabolisms, demography, and a rudimentary trading

economy. They find that drought can lead to sustained violent conflict and a breakdown

of intertribal relations in terms of mutually beneficial activities, such as trade. Kennedy,

Hailegiorgis, Rouleau, Bassett, Coletti, Balan and Gulden (2010) use the MASON agent-

based modeling environment to test a conflict model of nomadic herding with data-driven

seasonal cycles. They find greater scarcity favors a strategy of domination by a single group.

(Hailegiorgis, Kennedy, Balan, Bassett and Gulden 2010) more richly model Mandera tri-

angle region of east Africa, focusing on the tensions that can emerge between groups over

utilization of common grazing land. MacOpiyo, Stuth and Wu (2006) develop the Pastoral

Livestock Model (PLMMO), which simulates pastoralist foraging and movement patterns

across geographic information systems (GIS) based raster landscapes.

It is important to note these are “thick” models, conceived of in a “bottom up” way to

mirror reality as closely as possible, given computational constraints and the state of knowl-

edge. In this regard, they are a different animal than the sort of “top down” reductionist

models often employed to understand the evolution of cooperation. With a price paid in

parsimony, they buy space for the inclusion of expert knowledge provided that it can be
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expressed quantitatively. This encourages scholars to think through the mechanics of theory

that are easily taken for granted. In a circumspect evaluation of these interdisciplinary, com-

putational approaches to modeling complex systems, anthropologists Skoggard and Kennedy

(2013) conclude that such models promote a “deeper appreciation of the multi-layered scalar

relationships between culture, agency, and the environment.”

3.4 Model

This model is a computational, multi-agent based simulation of the evolution of tribalism,

or intra-group cooperation/inter-group conflict. The design is based on two core design

principles: 1) multi-level selection, and 2) realistic competition for scarce resources agents

need to survive. It is a ‘thick’ model. In this, I mean that it incorporates a more richly

textured environment and more cognitively sophisticated agents than conventional models

of the evolution of cooperation. This feature carries with it both risks and opportunities: it’s

risky in the sense that it creates for a substantially more complex model that is more error

prone and more difficult to analyze. The model is highly parameterized and computationally

intensive, limiting the potential for Monte Carlo methods of exploring the parameter space.

The advantages of a ‘thick’ model, however, include the opportunity to observe the evolu-

tion of cooperation in a more realistic environment with greater external validity at the cost

of construct validity. One such feature is a highly tunable ecosystem including seasonality,

base averages, and variances, spatial distribution of resources, extreme weather patterns,

as well as tunable metabolic and behavioral characteristics of the agents themselves. This

allows for more nuanced descriptions of the relationships between agents, the environment,

and the moderation effect of cooperation between them. This level of control enabled me

to characterize the major features of the arid and semi-arid regions of East Africa, where

tribally organized pastoralism has long remained the dominant economic modality.

In sum, this simulation is designed to test the hypothesis that realistic conflict over

resources could have played a role in the evolution of tribalism as an organizing principle

of human cooperation. Like the previous simulation, the key independent variables describe
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ecological conditions, allowing for cyclical and non-cyclical fluctuation of relative scarcity

and abundance. The key dependent variable is the distribution of cooperative propensities

in an evolutionary stable population.

3.4.1 Environment

Space

The simulation takes place on a two-dimensional spatial grid of dimension S x S. Each grid

cell has a host of properties including an amount of grass and water. For the amount of

water to be greater than 0, there must be a well, which occur randomly at some frequency

wf at the onset of the simulation. Precipitation causes grass to grow and wells to fill with

water. Since both grass and well water are determined by rainfall, it might seem like a good

idea to simplify the model and reduce to only a single resource. Research from biology and

behavior ecology suggests the way in which resources are distributed over a foraging area

(e.g., uniformly or clustered) could potentially impact the dynamics of cooperation (Senft,

Coughenour, Bailey, Rittenhouse, Sala and Swift 1987; Waser 1988; Sterck, Watts and van

Schaik 1997; Koenig 2002; King, Douglas, Huchard, Isaac and Cowlishaw 2008; Wittig and

Boesch 2003). For example, social animals like buffalo and gelada baboons who graze off of

uniformly distributed resources of comparatively low-nutritive value may live in very large

communities consisting of hundreds of animals. The level of coordination between them,

however, is limited. This particular form of cooperation, however, might be less suited in

a situation where resources are distributed in clumps, or clusters of comparatively high-

nutritive value. Clustered resources may favor a kind of sociality that enables a number of

individuals to cooperatively defend or assault a location. This is a model of the evolution of

tribalism under pastoralism—an economic modality demanding both widely distributed and

clustered resources. A two resource system, therefore, allows modeling of the distribution of

resources, without sacrificing the pastoralist character of the model.

Both the maximum amount of grass in a tile as well as rate of growth are determined

by the cell’s land quality. The distribution of land quality is determined at the start of
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Figure 4: Spatial distribution of land quality: Uniform (top-left), linearly decreasing gradient
(top-right), quadral categories (bottom-left), and radially decreasing (bottom-right)

the simulation according to user selection from four possible conditions. 1) Uniform: The

default setting is for all land to be of equal quality; 2) Striped: Land quality is greatest at

the left of the grid and decreases in quality gradually in a linear fashion to the right; 3)

Radial gradient: Land quality is greatest at the center of the grid and decreases with the

radial distance from the center point; 4) Quadral: At is highest in one corner, lowest in one

corner, medium-high in one corner, and medium-low in one corner. Quality converges at

the center point according to a Gaussian smoothing algorithm. Well depth (well capacity)

is affected by land quality, but not rate of fill (see Figure 4).
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Precipitation and Climate

The amount of precipitation is determined by a climate model. The basic climate model is

determined by a sine wave function establishing four “seasons” defined by the peak (sum-

mer), trough (winter), and the inflection points (equinoxes). Seasonality acts as a periodic

deviation from a base rate br of precipitation. At peak, precipitation is equal to the base rate

plus br
ex

, where ex is a seasonal extremity parameter. When ex = 2, peak precipitation is 1.5br

and .5br at the trough. The actual amount of precipitation will also be affected by exoge-

nously determined “anomalous” weather patterns including extended periods of drought or

excess. The frequency, severity, and duration of weather anomalies are parameter controlled.

3.4.2 Agents

Attributes

Agents may be thematically thought of as pastoralist nomads, wandering (prospecting) the

grid in search of grass and water to sustain their flocks. Ensuring their flocks are neither

too hungry nor too thirsty, agents maximize their flocks’ health and in turn the rate at

which their flock grows. At any given time a flock’s hunger is f is in [0, 1], where a value

of 0 indicates that the animal is perfectly starved and a value of 1 indicates it is perfectly

satisfied nutritionally. Similarly, thirst w is in [0, 1] where 0 is perfect dehydration. The

quantity of food or water an agent’s flocks demand is equal to the number of animals in the

flock multiplied by f and w, respectively.

Flock hunger: f ∈ [0, 1]

Flock thirst: w ∈ [0, 1]

Flock health: Flockhunger+Flockthirst
2

Demanded food: f ∗ Flocksize

Demanded water: w ∗ Flocksize
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For agents, the size of their flock is of critical importance because it affects their likelihood

of reproductive success, as well as the size of the “dowry”, or the endowment flock with

which their offspring begin their own journeys. Importantly, agents are also characterized

by a tribal affiliation. While the agents think and act on their own, their actions have an

impact on their tribe, the cumulative effects of which can indirectly affect them. This will

be explained in greater detail below.

Prospecting

In each time period t, agents survey the environment of the cell they currently occupy as

well as the 8 surrounding cells. A multinomial probability distribution is then assigned over

the set of tiles based on the expected utilities associated with each. Utilities are in terms of

expected health outcomes for an agents’ flocks, as determined by each cell’s ability to satisfy

the nutrition and hydration its animals require. In order to generate the set of expected

utilities, the agent imagines itself moving to (or staying in) each of the 9 cells and how

any interactions with other agents located there are likely to go. They take into account

the tribal affiliation of the occupants, whether interactions are likely to be cooperative or

conflictual, and if conflictual how well off they are likely to emerge from the conflict. There

are three possible cases:

Agent will occupy cell alone: They will be free to consume whatever resources their

flocks demand, and leave what remains (if any).

Agent will occupy cell with fellow tribesmen only: Resources within the cell are ini-

tially distributed equally among all fellow tribesmen, with which tribesmen play a

standard public goods game. After the game is complete and each agent has received

their payoff, they each individually feed their flocks. An agent’s strategy in the Pub-

lic Goods Game (PGG) is an agent-level parameter, cooperation, initially distributed

random uniform [0, 1].
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Agent will occupy cell with at least one out-tribesmen When agents from multiple

tribes are present, the agent imagines two scenarios: A) peaceful coexistence or B)

conflict. In the case of peaceful existence, all available resources are distributed equally

to all tribesmen from all tribesmen. All agents participate in PGGs with their own

tribesmen, but not with members from other tribes. However, if the agent determines

that his tribe (or another tribe) is likely to fight for the entire share of the available

resources, they will generate an expected payout, which is the product of their possible

payoff if their tribe hoarded all of the resources available and the tribe’s probability of

victory in battle. More on this probability below in the Tribes section.

In so doing, agents generate a vector of expected utilities V U from the 9 cells. However,

the actual value of the cell will also be affected by its proximity to water, and agents must

take this into account. Accordingly, the agent also generates a corresponding vector of

weights VW based on each cell’s “water value”. The formula for water value is as follows:

VWcell = Thirst
∑
well

(qwell/nwell)

d2well

(5)

Where q is quantity of water available, n is number agents present, and d is the distance

to the well. It is assumed that the utility of a well decreases with the inverse square of the

distance since the water value of a cell should be disproportionately determined by water

resources close by. The journey to reach distant wells will require substantial energy, as

well as time during which the availability of the resource could change. The agent’s thirst

value is included because water increases in value with thirst, potentially making distant,

but unoccupied, wells more attractive. This formula looks unnecessarily complicated but

all it is a weighted average between how much water the agent is likely to receive if it is

only split with his tribe versus if it is split with everyone, where the weights are the relative

proportions of cohesiveness between the two tribes. The values are also standardized so that

weights are in [0, 1].
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Figure 5: Percent of an agent’s flocks surviving by average of flock health and thirst

The vector defining the multinomial probability distribution over each of the 9 cells is

therefore,

V Ncell =
V UcellV Ncell∑
V UcellV Ncell

(6)

A random draw from this distribution determines an agent’s location in each subsequent

time period.

Metabolism

Every time period, the hunger of an agent’s flocks increases by u and their thirst increases

by h. The longer they go without food or water, the more likely it will be that they die.

The rate of flock exhaustion is calculated according to a survivor function of the form:

%Survivingagent′sflock = 1 + tolerance− e−[1.5−(uihi)
3] (7)

Where tolerance is a global variable determining how long an agent’s flocks may go without

food or water before it begins to incur losses. The figure below depicts the functional form

with tolerance = .1.
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3.4.3 Tribes

Like the real world, agents are independent actors nested inside higher-order units of aggre-

gation. The attributes of tribes are constituted from aggregations of actions their members

take. A tribe’s attributes, however, may have an indirect impact on what its members are

able to do in the future. A key tribal attribute is its cohesion. Cohesion is calculated as the

average proportion of resources agents contribute in public games with their fellows. The

cohesion of an agent’s tribe can impact them in several ways.

Fighting

Strong, cohesive tribes have an advantage over other tribes in that where resources might

have to be shared globally, they may “fight” for the right to harvest a resource exclusively.

This means that the resource shares per agent within the tile will be larger since they are

only shared amongst the members of the victories tribes. This may result in weaker, less

cohesive tribes actually avoiding coming into contact with cohesive tribes.

When there are members of two or more tribes located on a single cell, they may either

“share” the resources or “fight” for them. Sharing resources means that they all just take

their share, which they will use as their endowment to play with in a public goods game if

any fellow tribesmen are present. This decision to fight or share is made “collectively” by

the tribesmen of each tribe. If the “average tribesmen” is better off fighting, then the tribe

fights. If one tribe in any dyad of tribes decides to fight, then they will fight. A tribe decides

to fight when:

EU(fight) > EU(share) (8)

such that
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EU(fight) = Allresourcesgained∗Pr(victory)+Noresourcesgained∗[1−Pr(victory)] (9)

where Pr(victory) is determined by each sides’ relative fighting power pow, or

Pr(victoryA) =
pow(TribeA)

pow(TribeA) + pow(TribeB)
(10)

A tribes fighting power pow is determined by

pow(TribeA) = (
CASA

DAxy

)L (11)

where

CA = TribeA’s cohesion SA = TribeA’s size DAxy = Average distance of TribeA’s

members to cell (x, y). L = Lanchester law of combat (linear or square law)

The L parameter, or the Lanchester Law, comes from World War I era military theorist

Frederick Lanchester’s Law’s of Combat. Among these are the Linear Law for ancient combat

and the Square Law of modern combat. For ancient combatin particular phalanx formations

of soldiers with spears or swords were pressed into one another and essentially only able to

fight one man to a man. Thus, a side’s fighting potential may be said to increase linearly

with the number of soldiers. However, under so-called “modern” conditions with ranged

weapons or in other cases where targeting may be concentrated power is said to increase

with the square of the number of units. Dominic Johnson has published articles and a book

detailing how human ancestral warfare may be best be characterized according to the square

law. In practical usage, it is common for analysts to use an intermediary exponent like 1.5

because it is assumed that combat will be a mixed bag of linear and square elements.

Death in combat
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While agents do not directly figure into their cost-benefit calculations in whether or not to

go to war, i.e., to fight for a larger portion of a cell’s resources, this decision could come back

to haunt them—win or lose. An agent’s (per time period) probability of meeting a violent

death is determined according to the function:

Pr(violentdeathi) = 1− Y bi,tribevi,tribeci (12)

where Y is a global parameter defining a base lethality, or probability of surviving a battle.

This base probability is compounded with every battle the agent participates in, however,

it is necessary to take into account that not every battle is the same and not every agent

fights with the same level of commitment. Accordingly the number of battles an agent

participates in b is weighted by his tribe’s average probability of victory v and the agent’s

level of cooperation c. Thus, an agent is more likely to die when is tribe fights with generally

poorer odds of victory and if he fights with greater heroism.

Reproduction and cooperative breeding

A basic premise of multi-level selection is that while some inter-group competition exists,

mate selection is primarily an intra-group process. In this model agents’ likelihood of repro-

ducing is a function of their standing within their own tribe, as determined by the size of

their flocks. The probability of reproduction in time t is given by:

Pr(Reproducei) = MateScorei ∗ (BirthRatebase + CooperativeBreedingbonus) (13)

where

MateScorei = (
ni,tribe − ranki

ni,tribe

)MateCompetitionSeverity (14)

and

CooperativeBreedingbonus = BirthRatebase ∗ Cohesioni,tribe ∗ EffectSizebase (15)
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In plain language, within each tribe all tribesmen are arranged in reverse order according

to the size of their flocks. This is their raw rank which is normalized by the total number

of tribesmen in order to get their percentile rank score. I include one additional parameter,

the mate competition severity factor (MSF), which allows me to control the “intensity” of

mate competition. When MSF is 1, then mate score decreases linearly with rank. At MSF

= 2, mating potential decreases exponentially with rank. This value is compounded by the

global parameter, natural birth rate. However, cooperative breeding practices may actually

enable a tribe to achieve a birth rate greater than the “natural rate”. Thus, this rate is

increased by the cooperative breeding bonus, which is equal to the natural birth rate times

the level of a tribe’s cohesion, multiplied by an additional global parameter moderating this

bonus effect. If the bonus effect is 0, then there is no cooperative breeding bonus. When the

bonus effect is 1, the effective birth rate of a perfectly cohesive tribe (cohesion = 1) will be

exactly 2 times the natural rate.

The final result is a value bounded [0, 1] unique to every agent, which is treated as a

probability of reproduction. All agents in all tribes have a chance to reproduce, but the size

of probability is determined only in comparison to fellow tribesmen. The most cooperative

tribes get a bonus to birth rate because we assume that cooperative breeding practices enable

them to have more babies.

When an agent reproduces, it transfers a number of its flock to the offspring equal to the

endowment factor e times flock size. Therefore, the size of the endowment is proportional

to the economic success of the parent. This ensures that even though poorer tribes, ceteris

parabis, are equally likely to produce offspring as wealthier ones, the offspring of wealthier

tribes are going to have a better chance at survival since they are able to provide their

offspring with larger number of flocks.

3.4.4 Other modeling factors

Migration

In order to account for “gene transfer” between groups, every round agent’s probabilistically
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migrate to another tribe (change tribal affiliation) according to a probability m. This is a

global variable, with a default value of 5% chance of migrating within a 20 time step period,

or 0.025% per time period.

Mutation

Every round agents will ‘mutate’ (i.e,. adopt entirely new behavioral strategies) with prob-

ability mu.

Tribe splitting and dissolution

If a tribe’s membership exceeds Kmax, a tribe will fission into two tribes. Kmax
2

agents will

be selected at random to form a new tribe. If a tribe’s membership drops to 0 it is considered

dissolved and removed from the simulation.

3.5 Data

In order to examine the implications of this model I will once again begin the analysis with

Monte Carlo simulation. This model takes a relatively large number of input parameters,

though not all of these are subject to random draws from probability distributions. Table 11

presents the totality of input parameters in their observed distributions across 673 unique

runs of the simulation. Note that these data are, indeed, as observed in the simulation,

as distinct from the probability distributions from which they are drawn. This distinction

is important because of all simulations initiated only around 10% of them completed. In

all other cases, the population was unable to cope with the environment, as determined

by an ecologically unstable or otherwise inhospitable set of parameters, and subsequently

perished. These runs of the simulation are eliminated from the dataset, leaving an n of 673

observations over 2000 time periods. Though the number of input parameters is relatively

high, the number of output variables are relatively few. These data are summarized in Table

12.

Looking at the summary statistics of model outputs, it is clear that the 673 unique worlds
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resulted in an incredibly diverse array of outcomes. In some worlds, cooperation was virtually

non-existent (mean = 0.01), while in others it was highly prevalent (mean = 0.79) from a

possibility space in [0, 1]. Some worlds were diverse, multi-ethnic mosaics of tribal cultures,

while others produced ethnically homogenous populations. War was highly frequent in some

worlds, while in others it was non-existent. These results in and of themselves are quite

fascinating. Ultimately, the goal of this research is to ascertain what are the environmental

factors driving individuals to engage with their co-ethics in campaigns of violent conflict

against other human groups.
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Table 11: Complete exogenous parameter descriptive statistics. Not all parameters varied
in Monte Carlo simulation. Table depicts only values from simulation runs in which agents
survived.

Variable Mean Std. Dev. Min Max

Initial pop. 100 0 100 100
Migration period 635.25 295.32 2 1502
Migration rate 0.001 0.001 0.0005 0.0025
Mutation rate 0.005 0 0.005 0.005
Initial flock size 7.21 1.34 5 9
Benefit of cooperation 1.51 0.28 1.00 2.00
Initial tribe count 3.10 1.42 1 5
Max members per tribe 105.32 26.59 60 150
Well frequency 0.14 0.04 0.05 0.20
Base resource level 12.34 4.24 5 19
Seasonal extremity 2.45 0.86 1.01 4.00
Acute weather extremity 0.15 0.08 0.00 0.30
Season length 10.00 3.11 5 15
Min. weather duration 2.48 1.10 1 4
Max. weather duration 7.52 1.10 6 9
Min. well depth 31.46 18.11 5 76
Max. well depth 91.98 35.07 30 171
Water accumulation ratio 3.52 0.86 2.01 4.99
Land quality water boost 0.49 0.28 0.00 1.00
Deprivation tolerance 0.02 0.02 -0.06 0.05
Lanchester Law 1.50 0.30 1.00 2.00
War lethality (survivability) 0.89 0.05 0.80 0.97
Food consumption rate 0.23 0.04 0.15 0.30
Water consumption rate 0.07 0.03 0.03 0.15
Calf birth rate 0.17 0.03 0.07 0.20
Mate competition severity 1.51 0.29 1.00 2.00
Birth rate 0.12 0.04 0.05 0.20
Cooperative breeding bonus 1.48 0.29 1.00 2.00
Bride price (dowry) 0.28 0.12 0.10 0.50
Offspring radius 5.98 2.70 2 10
Well distance exponent 1.25 0.14 1.00 1.50
Maximum age 100 0 100 100
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Table 12: Descriptive statistics of main outcome variables from Monte Carlo simulation

Variable Mean Std. Dev. Min Max

Cooperation 0.18 0.13 0.01 0.79
Num. tribes 21.67 11.85 1 72
Avg. tribe size 31.27 10.18 2 65.11
War frequency 93.72 91.61 0 864
Avg. flock size 50.47 31.80 3 233.72

As I argued in the previous chapter, endogeneity between major outcome variables is

common in multi-agent based simulation. This is in part because the virtual universes in

which they take place are highly simplified worlds where the entirety of the possibility space

is defined with relatively few degrees of freedom. With the exception of what we, as modelers,

have determined to be the most salient forces and mechanisms at play in the context of the

particular phenomenon we are studying, the inestimable complexity of the real universe is

largely modeled in the form of random noise.

With so few moving parts, it is therefore common within these virtual universes that

just about everything is in some way related to everything else. Maybe this is also in some

sense true of the real world, but because these virtual worlds are so much smaller, its a

much bigger deal here. This fact, of course, is one of the major motivations for pursuing

multi-agent simulation in the first place; they are an open acknowledgment of the many

complex interactions that exist within nature and constitute are attempts to account for

this complexity. Accordingly, I strongly favor the adoption of statistical methods capable of

handling substantively significant endogeneity between major outcome variables.

Table 13: Durbin-Wu-Hausman tests for endogeneity between major outcome variables.

Endogenous variables Durbin-Wu-Hausman tests (p-values)

Cooperation/War frequency 0.035
War frequency/Average tribe size 0.392
Cooperation/Average tribe size 0.738

For the present study, the three outcomes I am most interested in are the prevalence of
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cooperation, the frequency of conflict, and the average size of tribes. In order to assess their

respective relationships to the environment and to each other I model them together in a

three equation system, which I estimate using a Three-stage Least Squares (3SLS) estimator.

Like a Two-stage Least Square estimator, the 3SLS allows flexible instrumentation to deal

with endogeneity, but has the additional advantage of taking into account covariances in the

disturbances across all equations in the system. The latter advantage is in my assessment

critical in conducting statistical models of simulated worlds. However, for robustness I con-

duct a battery of Durbin-Wu-Hausman tests for endogeneity between the major outcome

variables (see Table 13). These tests strongly suggest the relationships between coopera-

tion and war frequency (p-value = 0.035) contains bidirectional effects. A Sargan test for

overidentifying restrictions suggests the instrumentation is valid (p = 0.39, null hypothesis

of valid instrumentation holds). Using the traditional 0.05 level of significance, the null

hypotheses that the cooperation-tribe size and war frequency-tribe size relationships are

exogenous cannot be rejected (p = 0.74 and p = 0.39, respectively).

However, the arbitrary 0.05 cutoff-point is typically employed based on the assumption

that the greatest risk to inference is posed by a so-called “Type 1” error, or rejecting a null

hypothesis which is objectively true. In this case, however, the risk associated with failing to

account for endogeneity that does exist (a “Type 2” error) is considerably greater than that

of over-specifying a model. This is particularly true since at least one relationship is already

confidently determined as endogenous. Furthermore, sufficient restrictions are available to

ensure that each equation is over-identified according to the Rank test. If endogeneity

exists in the latter two relationships, the 3SLS estimator will yield asymptotically consistent

estimates with a tolerable penalty in terms of efficiency. Tables 14, 16, and 17 present the

results of the 3SLS estimation.

3.5.1 Three Stage Least Squares Model

Cooperation

Contrary to expectations, the frequency of war did not result in a corresponding increase
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in cooperation (see Table 14). To recall, it was my contention that individuals nested in

groups, which are themselves situated in a condition of mutual threat or hostility, are likely

to be more cooperative. We should be interpreting this result, however, because there is a lot

of information to unpack. Due to careful model specification, we should keep in mind that

the coefficient on war frequency pertains narrowly to the direct effects of war itself—not its

fruits. Fighting more, ceteris parabis, implies dying more. The most patriotic, altruistically

self-sacrificing warriors will in turn die with the greatest frequency. Accordingly, it makes

sense that war frequency should negatively impact cooperation, assuming cooperation is a

heritable trait. Consistent with this interpretation, the coefficient on war lethality (higher

is more survivable) is statistically significant and positive. Previous research by Smirnov,

Arrow, Kennett and Orbell (2007) and Bowles (2006) have explored the fitness offsetting

effects of reproductive leveling to compensate warriors who risk meeting an untimely end

in battle, however this model contains no such provision for assigning individual specific

rewards based on demonstrated altruism.

To understand the emergence of cooperation in the context of warring societies, we need

to take a more nuanced approach that takes into account not just whether fighting and

death occur, but where and for what reasons does such conflict occur, and how does cooper-

ation moderate successful outcomes. Interestingly, conflict does significantly—and dramati-

cally—impact how cooperation is realized. In traditional models of cooperation, the benefits

of cooperation are typically modeled as an abstraction of fitness gains owing to, perhaps

gains in efficiency in resource usage. At a sufficiently high level of abstraction, this effect

includes the totality of possible gains to cooperation from any context. However, in this

model we expressly distinguish between gains from resources sharing and gains due to other

cooperative behaviors, such as organized violence and cooperative breeding practices. While

these data do not suggest a significant link between cooperative breeding and cooperation,

I find a substantively large and highly significant link between gains to cooperation from

the ability to organize fighting power. This ability, as represented by the Lanchester Law
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Table 14: 3SLS estimation results (1/3)

Variable Coefficient (Std. Err.)

Equation 1 : Cooperation
Average flock size 0.0004∗ (0.0002)
Average tribe size -0.0062∗∗ (0.0008)
Benefit of cooperation 0.0133 (0.0119)
Base precipitation rate -0.0032∗ (0.0013)
Cost of reproduction (dowry) -0.0897∗ (0.0376)
Food consumption rate 0.1861† (0.0987)
Maximum group size 0.0002 (0.0002)
Lanchester Law exponent 0.0613∗∗ (0.0154)
War survivability rate 0.9025∗∗ (0.0878)
Population size 0.0001∗∗ (0.0000)
Quadral LQ dumm -0.0325∗∗ (0.0096)
Radial LQ dummy -0.0100 (0.0091)
Striped LQ dummy -0.0138 (0.0096)
War frequency -0.0009∗∗ (0.0002)
Water consumption rate 0.5000∗ (0.2278)
Well frequency -0.5601∗∗ (0.1524)
Well minimum depth -0.0004 (0.0002)
Intercept -0.4838∗∗ (0.0848)

exponent, isolates the inherent advantage of concerted action in combat. The advantage

conferred upon individuals belonging to cohesive groups was so strong, in fact, that this

condition alone appears sufficient to evolve cooperation. This effect even dwarfs that of the

direct benefit to cooperation achieved through joint resource utilization, which while positive

falls short of statistical significance.

Not surprisingly, the coefficient on average group size is negative. This is consistent with

the general rule that collective action becomes increasingly difficult to maintain as group

size increases dating back to Olson (1965). Cooperation also becomes less feasible as dowry

size increases. At first glance it might seem contrary to the intuition that parents wish to

endow their offspring with the greatest opportunity to survive, prosper, and ultimately bear

offspring of their own. However, larger dowries will result in more ‘near peers’ within a

tribe, potentially increasing incentives for them to risk cheating each other in order to gain

superior status and increased relative fitness.
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The relationship between cooperation and resources, in terms of both abundance and

distribution, was nuanced as expected. As evinced by the negative, significant coefficient

on the base rate of precipitation, there is a general trend for fewer resources to result in

less cooperation. At the same time, the rate at which those resources are consumed tend to

increase cooperation. In this model the quantity of resources and the rate at which they are

consumed are not equivalent, since the base rate implies a hard upper limit on land carrying

capacity, while consumption rate describes a behavior. So while lower carrying capacity tends

to inhibit cooperation, independent non-cooperative strategies are still feasible since agents

may readily move to surrounding areas where resources remain. Increasing consumption

rates, however, make cooperation at a specific time and place much more important in order

to ensure that one’s flocks survive. Hence, we observe significant and positive coefficients on

both water and food consumption rates, as well as average flock size.

Widely dispersed resources, such as grass or pasture, seem to promote cooperation when

they are abundant and inhibit it when they are in short supply. At first glance, this also

appears true of “clumpy” resources like water sources, or wells. On average, fewer available

resources tended to favor solitary, non-cooperative strategies. Achieving maximal population

would entail a more widely distributed population where encounters between agents were

less frequent. Consistent with this interpretation, the frequency of wells had on average a

negative impact on cooperation. This, I conclude, is because the more frequent occurrence

of wells allows for a more widely distributed population able to subsist with relatively less

interaction.

But does this pattern always hold? Keep in mind that in this model gains from cooper-

ation may be realized in multiple ways—not just resource sharing. The main supposition of

this research is that scarcity in the resources individuals need to survive can inspire agents

to cooperate, which under certain external conditions can yield expected (relative) fitness

gains. In particular, the ability to cooperate in the form of concerted action creates an

opportunity for a group of individuals to expand the amount of resources available to them
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individually in a zero-sum fashion at the expense of others. This is the central principle of

multi-level selection. Accordingly, I hypothesize that this ability (modeled as the Lanchester

Law), will condition the effect of resource scarcity on cooperation.

To test this hypothesis, I implement an Ordinary Least Squares (OLS) regression of

cooperation on a set of variables representing such interactions between resource character-

istics and the capacity for concerted action. In total there are for interaction terms, two

characterizing the water-based, “clumpy” resource and two characterizing the widely dis-

tributed pasture-type resource. The water resource variables include the well accumulation

ratio, which describes the relative rate at which precipitation accumulates into underground

aquifers to be made available for agent usage at wells. Also included are the water consump-

tion rate (h) and well frequency. The pasture variables are base rate of precipitation, which

is the largest determining factor of pasture growth, and the pasture consumption rate(u).

These results are presented in Table 15.

Tellingly, all three interaction terms related to the clustered water resource were signif-

icant, while neither of the terms related to the homogenously distributed pasture resources

were significant. This strongly affirms previous findings that the spatial distribution of re-

sources plays a key role in the evolution of cooperation. In this case, it appears closely

linked to the ability to coordinate self-sacrificing action in violent conflict. These interac-

tion relationships are more easily interpreted visually. Figures 6 through 9 depict them in

a series of marginal effects plots. Figure 6 depicts the marginal effects of well frequency on

cooperation as Lanchester Law exponent value varies across its from from 1.0 to 2.0. When

the Lanchester Law exponent is 1.0, agents are entirely unable to coordinate their attacks.

At Lanchester Law equal to 2.0 they are able to coordinate their attacks completely. At

the lower end of the Lanchester spectrum, the coefficient on well frequency is negative with

the 95% confidence interval well below zero. This implies that when agents are unable to

organize their violent potential, increasing the number of wells across the simulation ter-

rain reduces cooperation. This enables individuals to live in greater dispersion, more easily
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avoiding contact with others from within or without their respective tribes. This fundamen-

tally centripetal social dynamic, however, is reversed at the upper end of the Lanchester

spectrum. The ability to engage in concerted, or structured action enables groups to assault

and control precious clusters of resources, which can overcome such centripetal forces and

shift greater selection pressure to cooperation. Figure 7 depicts the same relationship from

a different perspective, focusing on the marginal effects of the Lanchester Law exponent at

levels of well frequency. Once established, the increased number of wells seems to merely

accelerate this effect by creating more opportunities for organized violence.

Table 15: Results of OLS interaction model of cooperation

Variable Coefficient (Std. Err.)
Well frequency -1.6926∗∗ (0.4812)
Lanchester Law exponent 0.0845 (0.0910)
Well freq. X Lanchester Law exponent 1.0850∗∗ (0.3014)
Water accumulation rate 0.0343† (0.0206)
Water accumulation rate X Lanchester Law exponent -0.0213 (0.0137)
Water consumption rate 1.5816∗ (0.6941)
Water consumption rate X Lanchester Law exponent -0.9779∗ (0.4332)
Base precipitation rate -0.0040 (0.0048)
Base precipitation rate X Lanchester Law exponent 0.0019 (0.0030)
Food consumption rate 0.6375 (0.4001)
Lanchester Law exponent 0.0000 (0.0000)
Base precipitation rate X Lanchester Law exponent -0.2163 (0.2632)
Average flock size 0.0000 (0.0002)
Average tribe size -0.0044∗∗ (0.0007)
Benefit of cooperation 0.0168 (0.0160)
Cost of reproduction (dowry) -0.1474∗∗ (0.0341)
Maximum group size -0.0003 (0.0002)
War survivability 0.9808∗∗ (0.0801)
Population size 0.0000 (0.0000)
Quadral LQ dummy -0.0275∗∗ (0.0098)
Radial LQ dummy -0.0118 (0.0098)
Striped LQ dummy -0.0130 (0.0110)
War frequency (instrumented) -0.0004∗∗ (0.0001)
Well minimum depth -0.0002 (0.0002)
Intercept -0.6578∗∗ (0.1588)

Now we may state confidently that the clustering of resources tends to produce more

cooperation. Given that greater well frequency increases the amount of cooperation, this
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Figure 6: When agents are unable to organize their violence, increased water resources reduce
cooperation and increase independence. However, when the ability to engage in concerted, or
structured action enables groups to assault and control precious clusters of resources. This,
in turn, promotes cooperation in the group and enables even lower fitness agents within that
group to reproduce faster than those whose access to these resources are blocked.

Figure 7: Looking at the same relationship as the previous figure from a different angle.
More spot-located resources create more opportunities for organized violence.
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finding appears to affirm the general trend that more resources translate into greater coop-

eration and fewer resources translate into less. The negative, significant coefficient on the

interaction term characterizing the relationship between well water accumulation rate and

the Lanchester Law exponent suggests this is not always the case. While well frequency

describes the number of such clustered resources over a terrain, the measure contains no

information about each well’s resource value, or the quantity of resources at that location.

Well water accumulation rate does. Figure 8 depicts the marginal effects of the Lanchester

Law exponent at levels of accumulation. The Lanchester coefficient is highly significant and

positive at the lower band of the accumulation ratio, while steadily decreasing to the point

of insignificance at the higher band. In this case, scarcity rather than abundance seems to

be driving the evolution of cooperation. Specifically, concerted action appears to be vitally

important when wells contain fewer resources. The relative scarcity of water increases their

strategic value, rendering total control of a well a crucial strategic goal for agent groups. As

more and more water at these sites is available, it appears that groups are more tolerant of

each others’ presence and the diminished threat of violent conflict between groups is giving

individuals less incentive to invest their precious resources in cooperation.

Again, we must be careful to draw unconditional conclusions. The major advantage of

a “thick” model is that it allows a richer, more nuanced model of the universe, and so the

best conclusions are likely to be more nuanced as well. While the ability to cooperatively

take and hold clustered resources is increasingly vital when such resources are scarce, there

does appear to be a limit on how much individuals are willing to cooperate if the payoff

ultimately is not there. Across most of the water consumption rate spectrum (u), the effect

of the Lachester exponent is positive and significant, but the marginal effects are decreasing.

At 0.1, the amount of water available, even when shared, may render survival sufficiently

precarious that agents will prefer not to gamble their own precious shares on cooperative

endeavors, but instead resort to defection against their own tribesmen.

In sum, clustered resources (water wells in this case) seem to cause greater cooperation
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Figure 8: Concerted action is particularly important when wells contain fewer resources.
This increases the strategic value of wells, rendering total control of them more important
for survival. Though the Lanchester coefficient is positive throughout the entire range of the
well water accumulation ratio, it is decreasing and non significantly different from zero at
the higher end of the well water accumulation.

if such cooperation can be organized in such a way to enable groups of individuals to col-

lectively control them. This effect gets stronger as such clusters become more common and

increases yet further as the strategic value of each resources is diminished. That being said,

individuals’ willingness to cooperate with their respective groups in order to secure them

is not absolute—if insufficient resources are there for them to ensure that their flocks can

survive, even if their group dominates the location, cooperation tends to break down.

War frequency

Turning to the war frequency equation, we see additional evidence of the effects of resource

clustering on conflict. The coefficient on well frequency is negative and highly significant,

suggesting that when such resources are clustered in fewer locations they are more bitterly

fought over. The water consumption rate is also significant and positive, suggesting that

warfare is increasing with desperation. Also on the “demand side” of the equation is the flock

birthing rate. At higher rates of reproduction agents’ demand for new resources increases and
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Figure 9: While the ability to cooperatively take and hold clustered resources is increas-
ingly vital when such resources are scarce, there does appear to be a limit on how much
individuals are willing to cooperate if the payoff ultimately is not there. Across most of the
water consumption rate spectrum (u), the effect of the Lachester exponent is positive and
significant, but the marginal effects are decreasing. At 0.1, the amount of water available,
even when shared, may render survival sufficiently precarious that agents will prefer not to
gamble their own precious shares on cooperative endeavors, but instead resort to defection
against their own tribesmen.
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appears to stir demand for new conquests. These three results are some of clearest evidence

so far affirming the hypothesis that agents are motivated to cooperate with their peers in

order to secure precious resources from other groups when survival is on the line. This

finding, however, comes with the new qualification that the resources be clustered rather

than homogenously distributed.

Table 16: 3SLS estimation results (2/3)

Variable Coefficient (Std. Err.)

Equation 2 : War frequency
Average flock size 0.0100 (0.0888)
Flock reproduction rate 681.5029∗∗ (98.0462)
Cost of reproduction (dowry) 63.1651∗∗ (19.7006)
Cooperation -51.9388 (39.8730)
Average tribe size -3.3299∗ (1.4481)
Agent birth rate -503.3715∗∗ (62.7681)
Deprivation tolerance 755.6206∗∗ (116.1634)
Food consumption rate -388.6403∗∗ (53.8876)
Season length -0.9659 (0.6099)
Lanchester Law exponent 21.3588∗∗ (7.7782)
Migration rate 8248.7498∗ (3491.4119)
Mate competition severity 16.0895∗ (6.6704)
Max. Birthing distance 0.9796 (0.7140)
Striped LQ dummy 7.8382 (4.9235)
Population size 0.3958∗∗ (0.0692)
Tribes count -4.2655∗ (1.8490)
Water consumption rate 317.5670∗∗ (98.2175)
Well frequency -353.4883∗∗ (58.3641)
Water accumulation ratio -2.5429 (2.2110)
Intercept 16.1032 (47.9630)

These results also suggest a number of other interesting relationships affecting the fre-

quency of conflict. Surprisingly, the food consumption rate is not only not positive (as is

the clustered, water resource consumption rate), but it is negative and highly significant.

One possible explanation is that this is related to the “attrition”. Slower food consumption

rates imply that individuals and groups will be able to carry out the fight longer over wa-

ter resources, exhausting local food supplies more slowly. Consistent with this view, higher

levels of exhaustion tolerance appeared to allow agents to range farther, deeper into foreign
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territory and fight longer before they expire.

The effect of the Lanchester Law exponent is positive and highly significant. This is not

surprising since it would tend to make warfare a considerably more viable strategy for groups

when they find themselves in a situation where they enjoy local numerical superiority. Inter-

estingly, while the Lanchester Law exponent does channel a latent capacity for cooperation

into a specific form of collective action, the direct effect of cooperation is negative. The

coefficient on cooperation is substantively large with equally large standard errors, such that

statistical significance is only marginal. However, assuming the null is rejected one possible

explanation is that higher levels of cooperation result in the emergence of local pockets of

territory where potential invaders are successfully “deterred” by a cluster of highly coopera-

tive tribesmen. Rather than pursuing the resource they occupy, the would-be invaders may

turn elsewhere.

One surprising finding that was contrary to expectations was a negative, significant im-

pact of mate competition severity. In the context of a multi-level selection model, one would

expect that within groups defectors are “doing better”, enjoying much of the benefits of high

levels of aggregate cooperation, or cohesion, such as more land and weaker adversaries. As

those defectors are increasingly advantaged in terms of opportunities for reproduction over

cooperators within their group, you would expect that cooperation would decrease and the

frequency of warfare along with it. These results, however, suggest that warfare decreases

with mate competition severity. This would imply mate competition’s effect on coopera-

tion is not operative here. Indeed, mate competition severity showed no direct effect on

cooperation. Whatever is the nature of the relationship, it must therefore be direct.

In separate analyses, I have tested for interactive effects with the Lanchester Law ex-

ponent, migration rate, war survivability, and resource availability and found nothing. One

possibility is that greater internal competition simply translates into more intergroup com-

petition. The precise mechanism for this remains unclear to this author, however it would

appear that greater external competition influences both cooperators and defectors to be in-
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creasingly bellicose, even if cooperators end up paying the lion’s share of the costs of battle.

What could be the motivation? Aside from increased access to resources, these data suggest

a couple other motivations for conflict. The dowry size variable is positive and significant,

which could point to one possible explanation. When it costs a larger proportion of one’s

individual resources to reproduce, warfare is increasingly important. The coefficient on av-

erage flock size is not significant, so while warfare may not, on average, lead to greater flock

sizes it might enable rapidly growing tribes to replenish their stocks faster by eliminating

competition for a time.

Average tribe size

There is not a whole lot surprising in the average tribe size equation. Controlling for overall

population size maximum group size, we still find some significant coefficients. Cooperation

is negative and significant and war frequency falls just shy of statistical significance at the

0.01 level (2-tailed test). These results affirm the decision to incorporate a model of average

tribe size in the system of equations, even if it primarily of interest as an explanatory variable

in the other two equations. War survivability is not surprisingly positive since tribes are less

likely to incur casualties. One interesting result is that negative and significant coefficient on

the Lanchester Law exponent. This is likely because higher values of the Lanchester exponent

disproportionately impart strategic advantage on the larger groups. In other words, when

the Lanchester expononent is high there there appears to be selection pressures on group

size at the group-level of the multi-level selection model.

3.5.2 Assessing the impact of heterogenous land quality

Not yet discussed, the above 3SLS analysis identified significant effects of land quality distri-

bution on the evolution of cooperation. Specifically, the reader should draw their attention

to three variables in the cooperation equation labeled Quadral, Radial, and Striped. These

three dummy variables and the omitted variable Homogenous defined static, spatial inequity

in terms of the lands overall quality, as described in the modeling section. Notably, all three
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Table 17: 3SLS estimation results (3/3)

Variable Coefficient (Std. Err.)

Equation 3 : Average tribe size
War frequency -0.0097 (0.0063)
Cooperation -16.5323∗ (6.6320)
Population size 0.0342∗∗ (0.0026)
Maximum group size 0.0666∗∗ (0.0099)
Lanchester Law exponent -1.5520† (0.8102)
War survivability rate 25.8055∗∗ (7.4237)
Migration rate -280.4570 (339.4528)
Cooperative breeding bonus -0.9636 (0.6067)
Seasonal extremity 0.2699 (0.2049)
Tribes count -0.8878∗∗ (0.0613)
Max. Birthing distance -0.0837 (0.0658)
Agent birth rate 8.1209 (5.2668)
Intercept 5.7555 (5.9999)

conditions suggest that, on average, heterogenous land quality results in less cooperation.

Though the effects were considerably less pronounced on war frequency, the striped condi-

tion does appear to be associated with a net increase in conflict at the 0.1 level of statistical

significance. These averaged effects, however, cannot tell us if such heterogeneity resulted

also corresponded to heterogeneity in the distribution of cooperation. In other words, while

cooperation may decrease overall, it may very well increase on a local basis. This kind

of spatial “interaction” cannot be assessed with the Monte Carlo dataset. To do so, it is

necessary to assess individual runs of the simulation.

The Figures 10 through 15 are a series of heatmaps which can be used to view spatial

variation on the relevant variables intuitively. Each were examples of “typical” runs of the

simulation, where all parameters are set to their (observed) means, with the exception of

the Lanchester Law exponent and war lethality. The latter two parameters were set at their

maximum in order to ensure robust cooperation. Figure 10 (left) represents a “geo-strategic

map” of the simulated world with a homogenous distribution of land quality after 2000 time

periods. Area is color coded according to a unique identification number corresponding

to the dominating the area. Since not every cellular location on the map is occupied it is
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Figure 10: Homogenous land quality distribution

impossible to directly ascertain control of every area. However, in order to get a sense of how

far each tribe’s dominion extends some interpolation was applied. The lightest blue color

indicates that no tribe exerts meaningful influence in that area. Some colors may not actually

correspond to a specific tribe, but rather indicate a transitional “border zone” between two

or more tribes. Figure 10 (right) is a heatmap distribution of cooperation. Again, since not

all cells are occupied some interpolation was necessary. Prior to interpolation empty cells

were set at the global mean. While this may result in some inaccuracies, it is still sufficient to

get an idea of how cooperation is distributed spatial with respect to land quality. In order to

help ensure correct interpretation, the each of the heterogenous land quality configurations

are also represented with a basic map of land quality with some smaller sections cut out for

statistical summary (see Figure 11, right).

In Figure 10 (left), clear demarcation of rudimentary “borders” between unique tribal

entities have emerged. This alone is interesting since the computational model did not

expressly provide for the emergence of boundaries, but rather they emerged organically as a

result of many agents independent decisions. In the distribution of cooperation (right), we
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can see the contours along which clusters of relatively high (green) and low (red) cooperating

agents correspond to tribal boundaries. This suggests the possibility of group-level variation

in terms of cooperation—some tribes are more cooperative than others. Still, the apparent

clustering (spatial auto-correlation) of like-types does not appear to follow any particular

pattern. Like-types appear next to one another, but there does not appear to be any pattern

in where those clusters emerge. Based upon the above regression analysis, our best guess

would be that the cooperative clusters are occurring around wells, but the wells themselves

are randomly occurring so it would not make this map appear any less random.

Now compare these results to those of the radially distributed land quality simulation in

Figure 11. In the strategic map (left) we can see that tribal boundaries are clearly associated

with land quality variation. To get an idea of how land quality is conditioning behavior,

I isolate a 10 x 10 cell patch at the center of the map (highest land quality) and four 5 x

5 cell patches at the corners (worst land quality) and collect summary statistics. The two

numbers in dashed boxes indicate the average level of cooperation (top) and the average

number of fights in the 2000th time period standardized by local population count. Though

the differences are not massive, it seems clear that the high quality areas are associated with

both greater cooperation and more frequent conflict. These differences are visible in the

cooperation map (see Figure 12).

One apparent limitation of the radially distributed land quality configuration is that

land quality decreases from maximum to minimum in a distance of only half of the map. In

comparison, the striped land quality configuration decreases from left to right along the entire

length of the map’s X-axis (see Figures 13 and 14). This has apparently allowed for more fine

grained discrimination of the effects of land quality on cooperation and war frequency, though

arguably at the expense of more realistic tribal borders. Here we see much stronger evidence

of a positive links between relative land quality and both war frequency and cooperation.

I emphasize ‘relative’ land quality because as the above regression analysis demonstrated

these links do not appear to exist when land quality is distributed homogenously. In other
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words, whether we are all on good land or bad does not matter, but if one of us has better

land than the other we will fight over it. Further, those who appear to be winning these

fights appear to be the best cooperators.

Figure 11: Radial land quality distribution

The case of quadral land quality distribution is arguably the most intriguing. Measured

cooperation and war frequency were subject to considerably more variance and it was nec-

essary to repeat the simulation many times in order to reach a stable pattern. The values

in each of the four 10 x 10 patches within Figure 15 are averages over 194 simulation runs

with identical parameter configuration. For complete summary statistics see Table 18. Box

plots of relevant contrasts are presented in Figures 16 through 19. Here an interesting in-

consistency turns up depending on how you summarize the data. In the broadest sense we

observe the same pattern of increased cooperation and violent conflict in the most sought

after territories. In an absolute sense, the bottom portion of the map is higher quality than

the top and we observe both more cooperation (t = 6.24, p-value < 0.001) and more conflict

(t = 10.91, p-value < 0.001).

At the same time, the right side of the map is only on average higher quality than the left
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Figure 12: Radial land quality distribution

Figure 13: Striped land quality distribution
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Figure 14: Striped land quality distribution

Figure 15: Quadral land quality distribution
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Figure 16: (Strictly) Higher quality land in the bottom hemisphere is associated with greater
cooperation. This relationship, however, is not apparent in the (weakly) higher quality land
in the right hemisphere.

Figure 17: While the link between land quality and cooperation is muddied in the quandral
land quality scenario, the link between war frequency and cooperation is sustained across all
four hemispheric partitions of the map.
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Figure 18: Although the bottom right quadrant contains richer lands, the link between land
quality and cooperation is not apparent.

Figure 19: Although the bottom right quadrant contains richer lands, the link between land
quality and war frequency is not apparent.
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Table 18: Summary statistics of quadral land quality simulations with identical parameter
specification

Variable Obs Mean Std. Dev. Min Max

Land quality 4 cooperation (best) 194 .3485174 .1220114 .0083368 .8851862
Land quality 3 cooperation 194 .3502337 .0920462 .1078692 .6353916
Land quality 2 cooperation 194 .2693762 .1718228 0 .8130406
Land quality 1 cooperation 194 .3088337 .1530886 0 .9129829
Bottom half cooperation (best) 194 .3493756 .0827713 .172698 .6325235
Top half cooperation 194 .289105 .12125 .0323109 .6383979
Left side cooperation 194 .3295337 .0975421 .0994738 .6502725
Right side cooperation (best) 194 .3089468 .1153891 .0545775 .6135449
Global average cooperation 194 .3192403 .0790974 .1429368 .5123076
Land quality 4 war frequency (best) 194 2.134794 1.194191 0 7.52585
Land quality 3 war frequency 194 2.448339 1.378004 .375 7.859284
Land quality 2 war frequency 194 1.436202 .9544159 0 4.508333
Land quality 1 war frequency 194 1.613632 .9029058 0 4.531548
Bottom half war frequency (best) 194 2.291567 1.113575 .4688198 6.294787
Top half war frequency 194 1.524917 .760679 .1291666 3.492843
Left side war frequency 194 2.030986 .9984808 .3140966 5.155641
Right side war frequency (best) 194 1.785498 .9222744 .0375 5.764369
Global average war frequency 194 1.908242 .8185406 .6970298 4.673974

side and the pattern is reversed; i.e., the lesser quality left has both more cooperation (t =

3.39, p-value < 0.001) and more conflict (t = 3.39, p-value < 0.001) than the superior quality

right side. How is this possible? If we look only at the best two quadrants of land we see that

even though the lesser quality territory (bottom-left) has significantly more conflict (t = 2.00,

p-value = 0.024), there tends to be less cooperation. While the differences in cooperation

were too small to be statistically significant in a sample of 194, this alone is significant because

every other pairwise comparison held up, even with Bonferroni adjustment for multiple

hypothesis testing. In sum, the high levels of fighting on the left appear to be are driving

higher levels of cooperation. However, the highest levels of cooperation are still occur on the

highest quality land, while fighting decreases. One intriguing explanation is that the higher

levels of cooperation are affording the most powerful tribes on the best land a rudimentary

level of strategic deterrence. With more resources, their numbers are larger, which combined

with higher levels of cohesion are able to deter enemies from encroaching on their territory.
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3.6 Discussion

The computational model presented in this research yielded considerable insight into the

emergence of primitive social identities and intergroup conflict. Previous research on coop-

eration has focused on high-level, game theoretic abstractions. “Thick” models always bear

the risks that come with complexity; there is more to go wrong, more to be wrong about,

and the challenge of interpreting results can grow to be as inherently artistic as the task of

interpreting real-world data. To paraphrase Albert Einstein, scientific models should be “as

simple as possible, but not simpler”. Even in its relatively simplicity, the present research

gives some hint at how immensely complex the evolutionary history of human sociality likely

was. Parsimonious models of cooperation accomplished the already monumental achieve-

ment of showing us that this trait, arguably the quintessence of human nature could have

evolved by natural selection. This realization has forever changed our sense of who we are

and liberated us from the presumption that something as complex as humanity could have

only been the work of a creator. What these models cannot do, however, is tell us how it

happened. It is unlikely such knowledge will ever truly be secured. However, thick models

allow us to gain a deeper understanding by building small universes of our own.

The present research suggests a more nuanced picture of how social dynamics, both

cooperative and conflictual, are heavily conditioned by the environment. Somewhat disap-

pointingly, the dynamic components of the climate model underlying this simulation did not

appear to influence outcomes of the simulation. Still, much could be gleaned about the roles

of relative scarcity, abundance, and resource distributions, from which we may make useful

inferences about social responses to ecological change. Scarcity in a broad sense did appear

to reduce cooperation, though agents will cooperate more if resources are clustered. Fur-

ther, scarcity of such resources will actually increase cooperation rather than inhibit it. At

some point, however, scarcity may be so severe that cooperation will once again break down.

Clustered resources were also significantly associated with conflict. Agents in this simula-

tion were inclined to fight for clustered resources but not those which are homogenously
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distributed. Interestingly, faster metabolisms were also associated with more cooperation.

Larger consumption rates relative to the speed at which resources are replenished probably

entail larger ranging areas, increasing the payoff to members whose groups control larger

territories.

One of the strongest confirmatory evidences of the hypothesis that intergroup conflict

was a driver of the evolution of cooperation is the massive influence of the Lanchester Law

exponent. The Lanchester Law is a key variable that directly translates within-group coop-

eration into a group’s effectiveness at advancing their collective interests through warfare.

In sum, the better agents are able to coordinate their tactics in battle the greater demand

there was for a cooperative ‘gene’. This finding is especially interesting from the perspective

of human evolution because it also entails a selection pressure on certain cognitive faculties

that facilitate more complex coordination. In other words, these data suggest that realistic

conflict between groups could have been simultaneously a driver of human intelligence and

cooperation, and by extension underly all social complexity.

These three variables—cooperation, coordination, and intergroup conflict—are tied to-

gether. Some latent capacity for coordination gives an advantage to those groups who can

muster it, while opening up the possibility of organized warfare. Warfare, in turn, drives

even further selection on cooperation than can enhance coordination and altruistic sacrifice

that may enable a group to gain not only adaptive advantage in the evolutionary sense, but

strategic advantage in the jargon of peace and conflict theory. Dominance ensures primary

access to the best resources and at sufficiently high levels of efficiency may facilitate strategic

deterrence. The Lanchester Law exponent not only promoted cooperation, but also belli-

cosity. This ability makes warfare a viable group-based strategy for individuals. This was

especially true when resources were clustered.

Good land was also shown to be worth fighting for. This finding was fascinating because

the concept of ‘good’ appears to be strictly relative. If all land is good, we get along.

If all land is bad, we get along. If only one of us has good land, we will fight for it.
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This observation strongly supports the argument that intragroup cooperation is linked to

intergroup competition via a multi-level section mechanism. The group that controls the

superior territory will be grow faster, and those groups constituted of members “possessing

in high degree the spirit of patriotism, fidelity, obedience, courage, and sympathy... always

ready to aid one another, and to sacrifice themselves for the common good” would be able

to take it.
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4 Climate Change and Social Conflict

4.1 Introduction

In the preceding (two) studies, I used agent simulation to investigate how environment may

influence the evolution of social dynamics. A key premise of the second simulation was

that once human groups begin to emerge, the presence of “outgroups” becomes an aspect

of the environment. These models establish the micro-foundations of what could be the

basis of an individual-level theory of intergroup conflict. Such a theory would hold that

insofar as individual’s are reliant upon collective action for access to resources, competition

for the same resources from other groups will motivate individuals to further increase their

investment in social living. It follows then that changes in the characteristics of resources

such as energy density and dispersion should impact should impact this decision. In more

traditional sociological terms, I theorize that changes in the distribution of resources will

affect the salience of social identities around which collective action (for the attainment of

those resources) is organized. This theory leads to the prediction that as resources fluctuate,

conflict is likely to occur along ethnic lines, especially in parts of the world where ethnic ties

are the dominant community organizing principle.

In this chapter, I test this hypothesis the Gridded Environmental Conflict in Africa

Dataset (GECAD), a new dataset for the investigation of potential impact of climate change

on political instability and conflict. Climate scientists warn that as the planet warms, ex-

treme weather is likely to increase, including longer and deeper droughts and stronger storms

(IPCC, 2014). According to the US National Intelligence Council Global Trends 2030, this

is likely to result in degraded agricultural productivity, tightened global food supply and

ultimately undermining food security, especially in already impoverished regions. While

leading national and international institutions have expressed concern over a possible nexus

between climate change and political instability15, scholarship has struggled to demonstrate

15Also see the US Department of Defense Quadrennial Defense Reviews 2010 and 2014, EU Council (2008),
and the National Intelligence Council (2012).

95



Chapter 4 Climate Change and Social Conflict

such a connection empirically. While it appears we are moving towards a consensus that

the relationship exists, relatively little is understood about the mechanisms through which

climate is causing conflict. One reason for this is that this is a exceptionally difficult question

that strains existing datasets and statistical tools to their limits (and arguably beyond). In

addition to testing a novel explanation for the moderating role of ethnic identity in material

conflict, this study using GECAD may also contribute to the ongoing debate whether—and

importantly how—, climate change has implications for peace and conflict.

4.2 Background

Despite some holdouts of anthropogenic climate change denialism, there exists a near-

universal consensus within scientific circles that the Earth is undergoing warming effects

inexplicable by naturally occurring, cyclical climatic processes (IPCC 2007; U.S. Climate

Change Science Program 2008). Specifically, greenhouse gas emissions associated with hu-

man activity are enhancing the atmosphere’s greenhouse effect, causing the planet to retain

more of the sun’s energy in the form of heat. Consequently, scientists do not expect a re-

gression to the mean of past global temperatures. In the Spring of 2014, a draft report of

the Intergovernmental Panel on Climate Change expressed deep concern that rising temper-

atures pose substantial challenges for human and geopolitical security this century (IPCC,

2014). Thus far, impacts on the more temperate zones of the northern hemisphere have

been sufficiently minimal that those properly motivated may ignore them or write them off

to normal, cyclical climate patterns. At the same time, scientists show that the impacts

of global warming have been more pronounced in the warmer, sub-tropical and equatorial

regions—regions which also have a tendency to be the most dependent on agriculture and

possess the least governmental capacity to ameliorate the worst impacts disturbances (IPCC

2007). Therefore, if security implications of climate change exist it seems likely that such

effects would be observed first in the third world.

The hypothesized relationship between resource scarcity and conflict has a long, well-

credentialed intellectual history. In the Leviathan, Thomas Hobbes reasoned that the sear-
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ing “pain of privation” was an inevitable fact in a world where appetites always exceeded

supply. Humans desperate to assuage the pain are driven to all manner of gruesome atrocity,

rendering society impossible. Such a life was so “nasty, brutish, and short”, that tyranny

became an attractive alternative if it meant some semblance of security. In 1798, the English

cleric Thomas Robert Malthus published An Essay on the Principle of Population. In what

would later be called the Malthusian Principle, he observed that while population tends to

grow geometrically, the means of subsistence grows arithmetically. Since population cannot

exceed the means of subsistence, population is necessarily repressed “by misery and vice.”

By implication, the Malthusian Principle predicts that when resources are plenty, popula-

tion will grow until scarcity, brutality in tow, re-emerge. According to the same reasoning,

conflict would accompany a sudden drop in the availability of resources.

More recently, concern over the relationship between resource scarcity and violent conflict

was renewed with Gardin Hardin’s seminal paper The Tragedy of the Commons (1968), and

the emergence of neo-Malthusianism. Since the 1970s, it has since grown to become a

vigorously debated topic in the field of security literature. More recently, fears the world will

struggle to adapt to anthropogenic climate change have focused speculation on future global

security challenges. Yet despite prolonged interest, the academic jury remains unsettled

whether there is a connection.

Concern for the rising security implications of climate change have not remained confined

to academia. For the first time, the US Department of Defense in its 2010 Quadrennial De-

fense Review declared that climate change could have significant geopolitical impacts around

the world, contributing to poverty, environmental degradation, and the further weakening

of fragile environments (Department of Defense 2010). This concern was again emphasized

in the just released 2014 review. The US Navy linked CNA Corporation commisioned a

panel of generals and admirals to assess security implications of climate change. They con-

cluded that climate change will act as a threat multiplier, exacerbating existing conflicts over

water and material security, destabilizing already fragile regimes and leading to large-scale
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human migrations (CNA Corporation 2006). The European Commission reached similar

conclusions (EC 2008) and a 2008 report by the US National Intelligence Council warned

that perceptions of a rapidly changing environment could dispose nations to take unilateral

actions in order to secure resources, territory, and their interests (NIC 2008). Such resources

may include fresh water resources, arable land, or newly opened regions of the Arctic Circle.

Within political science, the debate has generally run along two concerns. First, it

is argued that increasing temperatures and changing patterns of precipitation could upset

agriculture (Homer-Dixon and Blitt 1998; Purvis and Busby 2004). Empirical evidence to

support these fears is mixed. For example, Hendrix and Glaser (2007) find that conflict is

more likely in climates already ill-suited for agriculture. Just such a location is the African

Sahel. Using a fascinating combination of climate data and court cases from the Mopti region

of Mali, Benjaminsen, Alinon, Buhaug and Buseth (2012) find no connection. Meier, Bond

and Bond (2007) find no relationship between precipitation and conflict among the pastoralist

peoples of the Horn of Africa, but also find a positive effect of increased vegetation. This

discrepancy could be a result of problematic data and is in any case difficult to interpret.

It does, however, implicate a relationship between the productivity of the environment and

conflict.

Hendrix and Salehyan (2012) looked at rainfall deviations over 20 years in Africa and

find that extreme weather years, in either direction, are strongly associated with violent

conflict. This implies that the connection between climate change and conflict not necessarily

a response to drought, but to the economic disruption which can follow any kind of extreme

weather. Koubi, Bernauer, Kalbhenn and Spilker (2012) are unable to discern a climate

connection, but do find that poorer countries are more likely to turn violent in response

to economic shocks. Raleigh and Kniveton (2012) offer a compelling insight into why we

are likely to observe these kinds of conflicting results. They point to the problem of data

over-aggregation (which I discuss in greater detail below). Quite reasonably, they argue that

the large units of analysis the more state-driven political dynamics of large—scale conflicts
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drown out the more nuanced causes of small-small scale conflict, where social linkages with

the physical environment are far more immediate and direct.

The second major concern is that shifting agricultural patterns and rising sea levels could

create hundreds of millions of environmental refugees. Some two-thirds of the population lives

within 100 km of a coastline. Lower-lying regions are vulnerable to seasonal, event related

flooding and even total submersion. One particularly troubling hotspot is the low-lying,

riverine country of Bangladesh. The highly fertile alluvial soil has historically supported

a disproportionately large population; today, Bangladesh is the most densely populated

country in the world. More intense seasonal monsoons and even modest sea level increases

could cause its hundreds of rivers to burst their banks, pushing tens of millions of people off

their lands. Environmentally induced migration can then, in turn, increase competition for

resources at destinations. In the case of Bangladesh, the most likely destination would be

the already impoverished east of India. Because we have yet to definitively witness many

such climate change-induced migrations, these claims are difficult to assess empirically. It is

hardly contested that migration is a major source of conflict. From Exodus to the “Zoot Suit

Riots” of 20th century United States, migration and conflict have gone hand-in-hand. The

resultant conflict following large-scale migrations of the last century on the sub-continent are

well studied (see Rajan 2011 for comprehensive examination). These ethno-religious fires still

burn, particularly in the northeastern Indian states of Gujarat. In a bold attempt to catch

a glimpse of the future impacts of climate change, Reuveny (2007) finds that the migration-

induced conflict is most likely to occur in developing countries who lack the capacity to

absorb the new population, giving some credence to the view.

Outside of political science, a steadily growing body of research is discovering how climate

change has contributed to social, political, and military instability in the past (Hodell, Curtis

and Brenner 1995; Zhang and Brecke 2007). These studies generally present a Malthus-

inspired argument that temperature variation causes instability in land-carrying capacity

(as measured by agricultural production). Decreases in agricultural output compounded

99



Chapter 4 Climate Change and Social Conflict

by growing populations, in turn, can make warfare an adaptive ecological choice. There

is a long, empirical record of climate-induced instability with consequences for civilization.

Using high-resolution, reconstructed paleo-climate data, Polyak and Asmerom (2001) and

others have identified correlations between prehistoric cultural collapses and agricultural

failure (Weiss and Bradley 2001). Zhang and Brecke used a set of global climate proxies and

showed that the war has historically correlated with cyclical climate change since 1400 C.E.

Some more recent studies have focused more directly on the link between global temperature

and agricultural yields in key regions of concern, such as Africa Lobell and Burke (2010);

Dell, Jones and Olken (2008). Following the argument to its logical conclusion, Hendrix and

Salehyan (2011) and Burke et al. Burke, Miguel, Satyanath, Dykema and Lobell (2009) look

beyond intermediary outcomes and examine directly the relationship between climate change

and increasingly socio-political unrest in a modern context. They predict that anthropogenic

climate change is likely to result in a dramatic increase in violent conflict and political

instability over the course of this century.

Despite such deep intellectual roots and the attention of the world’s most powerful po-

litical and security institutions, the reality of what lies beneath them has remained a vexing

question. Optimists are no doubt encouraged by a general trend away from conflict globally,

despite steady warming. Conflict in Africa reached its pinnacle in the early 1990s in the wake

of the so-called “Third Wave” of democratization and disruption associated with the Wash-

ington Consensus reforms (Human Security Report 2012; Buhaug 2010; Theisen et al 2011).

The reasoning seems sound, so perhaps the problem lies in the data? Measurement chal-

lenges have long plagued the empirical conflict literature. An analyst must inevitably make

decisions over what, precisely, constitutes a conflict. There is no naturally correct answer;

it is an informed judgment based largely on what the analyst is interested in. For example,

Buhaug’s 2010 study focuses on the frequency of new onsets of national-scale conflicts—in

particular civil wars in African states. As pointed out my Raleigh and Kniveton (2012) ,

however, conflicts of that magnitude tend to be complex and are not readily attributable to
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acute causes. Rather, these authors hypothesize that if a nexus between climate change and

conflict exists, it is more likely to be discovered at the level of localities, where the relation-

ship between communities and their environment is most “intimate and direct”. Within a

dataset aggregated at the level of nation-state, this category of localized conflict is likely to

fall below to threshold of detection.

There is a growing chorus of voices from both academia and journalistic circles that this

precisely what is happening. One such case involves changing patterns in the customary

practice of cattle raiding among the pastoralist tribes of the African horn. This practice

has deep cultural roots in the region and has been observed at least since the 19th century

when anthropologists began to take an interest in such behaviors (Gray et al, 2003). Local

cultures have historically viewed participation in cattle raids as a rite of passage for young

men entering adulthood. It provides an opportunity for them to distinguish themselves as

being courageous, bring honor to their clans and families, and to secure a dowry allowing

them to marry (Richardson, 2011). While violence has always been an integral feature of this

practice, first hand reports claim that these low-scale conflicts are intensifying and becoming

increasingly deadly (Parenti 2011; Leff 2009; IRIN, 2009). These authors point to several

interacting factors, including ill-suited land-use policies rapidly exhausting soils, which is

further exacerbated by unprecedented drought. The result is extensive desertification and

the diminution of the vast territories that make a pastoralist economic modality viable in

this arid region. Herders have become reliant on raiding to replenish dwindling flocks and

secure bride prices and are ranging beyond their traditional lands, placing them at odds

with sedentary agriculturalists. When two distinct sub-national groups come into conflict

the risk of escalation to wider scale instability increases. For example, the ongoing civil

war in Sudan (and South Sudan post-2011) pitting its predominantly Arab north against its

sub-saharan Black south is believed to have roots in drought-induced land disputes between

semi-nomadic herders and sedentary agriculturalists (?Bechtold 2009).

The concern that climate change may lead to increased conflict does not exist in a vac-
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uum. By this I mean that we have observed a variety of situations where environmental

degradation has beget political instability and sometimes violence. The recent film Captain

Phillips, which depicted the pirate hijacking of a commercial shipping vessel off the coast

of Somalia, offered some insight into the desperate economic conditions that drive this be-

havior. In particular, international fishing fleets have depleted Somali fisheries leaving its

own fishermen in a state of desperation (Daxecker and Prins, 2013; Sone, 2010). Two other

examples from the African continent include the oil-dilapidated south of Nigeria, where the

dense mangrove forests have long provided a living to the inhabitants there. Oil industrial

pollution has dramatically affected the viability of communities and led to the formation of

localist insurgent groups, such as the Movement for the Emancipation of the Niger Delta,

or MEND (Ibeanu 2000; Onduku 2001; Opukri and Ibaba 2008). As well, booming demand

for rare-earth metals and minerals has precipitated so-called “land grabs” by large interna-

tional firms. These land grabs are large-scale acquisitions of metal and mineral rich land

and account for more than 2/3rds of foreign direct investment in Africa (Chatham House).

Such acquisitions frequently involve the uprooting of entire communities and firms have a

mixed record of following through on promises to offer compensation (Peters and Kambewa

2007; Peters 2013). The result are large numbers of environmental refugees who often end

up migrating to already congested cities with few prospects for employment and stressing

delicate infrastructure.

These concerns have motivated a growing number of more nuanced datasets and special-

ized methods within the empirical conflict literature. Raleigh and Kniveton (2012) attempt

to circumvent the problem of overaggregation by focusing on small-scale conflict within a

more confined area in East Africa. Rather than expanding the scope of the study over

time, the authors observe this one area over time. Their evidence suggests that not only do

conflicting forcefully compete for dwindling resources, but an abundance of resources may

spur violent opportunism. Hendrix and Salehyan (2011; 2012) affirm this result. Too much

rain can be as detrimental as drought. Employing two distinct research designs, the authors
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find violent conflict in sub-Saharan Africa is associated with especially wet years as well as

dry years. Flooding can be highly destructive to infrastructure, transportation, goods and

service flows and crops. Floods can contaminate existing water supplies with deadly and de-

bilitating waterborne diseases. On the whole, almost all countries in the region lack the basic

economic and political capacities to effectively develop and manage their fluctuating water

resources. Hendrix and Salehyan further speculate combatants may be more likely to make

trouble if dense foliage is available to provide cover, or if mudslides wipe out infrastructure

preventing the government from responding to outbreaks of violence in remote areas.

Most recently, Hsiang, Burke and Miguel (2013) published an impressively scoped meta-

analysis of 60 individual studies on environmental change and human aggression in the

journal Science. The breadth of the study ranged from the rise and fall of civilizations

to interpersonal interactions, such as the likelihood of a Major League Baseball pitcher

throwing at a batter. According to their findings, temperature was significantly associated

with violence at any level of analysis, from interpersonal to intersocietal. It is worthwhile to

point out that these authors are econometricians, not conflict scholars. While their findings

are difficult to challenge on empirical grounds, conflict scholars such as John Busby and

Idean Salehyan have critiqued the study as overbroad, sacrificing too much detail to get a

handle on potential causal mechanism. As Salehyan pointed out, “It’s hard to see how the

same causal mechanism that would lead to wild pitches would be linked to war and state

collapse” (Morello 2013).

In this Spring of 2014 the IPCC released the AR5 Working Group II report, which for

the first time includes a chapter on human security. The authors of the report were careful

to emphasize they could state the existence of a relationship between climate change and

conflict only with medium confidence (IPCC 2014). Now does not mean we should ignore

the remarkable headway into what is truly a challenging empirical question. One obstacle to

progress is the problem of aggregation. It seems no matter how we slice the data, we leave

ourselves vulnerable to the ecological fallacy. When data is overaggregated, as what I argue
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is the case when data is aggregated at the level of nation-state, we run the risk of assuming

what is true of the whole is also true of the part. Small-scale environmental conflict we

function differently than large-scale ones—and as Raleigh and Kniveton emphasize, there

is good reason to suppose they do. On the other hand, by focusing on a single locality we

are obliged to make the unreasonable assumption that conflict here is unrelated to events

occurring elsewhere. For example, if we are supposing that food shortages lead to instability,

it is reasonable that a food shortage may be a consequence of events occurring in other parts

of the same country or even the world.

4.3 The GECAD

Studying the relationship between climate change and violent conflict empirically, partic-

ularly in sub-Saharan Africa, is a challenging endeavor. Data is plagued with issues of

measurement, definition, zero-inflation, small samples, and unreliable data reporting mech-

anisms. Major data sources for studying war currently available to political scientists, such

as the Correlates of War (CoW), Penn World Tables and the World Banks African Devel-

opment Indicators, store data points at the state-level of analysis. Information at this level

may be suitable for economically and politically advanced states, but this may not hold

for developing states which frequently lack adequate capacities for regular, objective data

collection and management.

The assumption of reliable data collection in undeveloped countries seems highly suspect.

As one illustrative example, former Sudan (now Sudan and South Sudan) occupied a territory

roughly a third the size of the contiguous United States, with a national budget a third the

size of that of the state of New Jersey. How are we to assume that a regime based in

Khartoum which only meaningfully exerted power beyond its hinterlands is able to collect

reliable data from the Darfur? Measurement error is not the only threat to inference in

state-level data; we are also susceptible to ecological fallacy. Continuing with the preceding

example, it is unclear what the sovereign dominion of Khartoum means in practical terms

in Darfur, or what the dominion of Kinshasa, Congo (a country with a GDP of roughly 15.3
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Figure 20: Minimally distorted, relative size of the contiguous United States, Ethiopia, and
the DR Congo

billion USD in 2010) means nearly 1000 miles distant from the capital at its border with

Uganda (US State Department of African Affairs).

If the national government does not meaningfully exert any governing influence in a re-

gion, then nationally aggregated statistics seem inappropriate for explaining events there.

As Buhaug and Lujala (2005) point out, this problem plagues scholars of ethnic and civil

conflict. Many of the most commonly proposed variables explaining civil war, such as po-

litical, economic, cultural, and demographic attributes are measured at the state level. Yet

these aggregated measures may, in fact, provide little information about the facts in specific

regions. In explaining ethnic and civil conflict, the information we lose at such locations

beneath the country level is likely to be important, leaving our conclusions subject to the

ecological fallacy.

Data disaggregation using geographic information systems (GIS) has emerged as a pow-

erful alternative approach to studying civil war. The first study to my knowledge was con-

ducted by Buhaug and Rød (2006), wherein they arbitrarily broke apart Africa into 100km

by 100km cells. Using georeferenced conflict data, they overlaid the map with polygon-
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shapes demarcating regions of peace and conflict. They added additional layers of shapes

representing spatial distributions of key variables, such as population density, distance from

the capital, roughness of terrain, and the presence of gemstone or mineral rich fields, and

found that conflict-ridden areas covaried with them.

In regard to methodology they write,

“Our central contention is that whenever we investigate theories of civil war that

have an element of geography, we should seriously consider abandoning the ha-

bitual country level of analysis in favor of a disggregated approach. Otherwise,

we are likely to fall prey to the ecological fallacy by explaining local phenomena

from aggregated data”.

Yet despite strong methodological justification for data disaggregation, a Google Scholar

search produces only a single study in which the approach to study the relationship between

climate change and conflict. Raleigh and Urdal’s (2007) monumental study examines the

effects of land degradation and water scarcity, which are presumed to be the result of climate

change. Contrary to expectations, they find these variables had no direct effect on violent

conflict, but established a firmer basis for explanations based upon political and economic

causes.

While an undoubtedly innovative study, the research design had several limitations that

could have resulted in underestimation of the effects of environmental variables. First, while

the data structure successfully captured geographic variance across the several included en-

vironmental variables, it is not strictly speaking the geographic variance of these parameters

we are most interested in. Local economies have ways of adapting to whatever the local ecol-

ogy supports. For example, pastoralism is an economic system evolved to thrive on already

marginal environments. Rather, what we are most interested in is variance in the environ-

ment over time (not space). It is the nature of climate change to upset economic systems

adapted over time to prior conditions. Political instability is most likely to occur following

a disruption of this delicate balance between human society and nature. The Raleigh and
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Urdal data, however, is not optimized to capture these [delta] changes.

Building off of these pioneering efforts, I have constructed the Gridded Environmental

Conflict in Africa Dataset (GECAD). The principle goal of GECAD is to create an event

dataset allowing researchers to test hypotheses concerning environmental drivers of conflict

and instability in a way that is robust to many of the above challenges to inference. To achieve

this, GECAD expands on the gridding technique pioneered by Buhaug and Rød and Raleigh

and Urdal. The process begins by overlaying a 1 decimal degree by 1 decimal degree grid, or

“fishnet” in GIS jargon over the continent of Africa. These cells are serve as an arbitrary unit

of aggregation, allowing for summary of virtually any dataset with a geographical reference.

While technically arbitrary, it should be noted that I adopt this valley in keeping with

Buhaug and Rød (2006). Further, like states these units are persistent in time. This allows

for observations to be collected repeatedly and summarized over any arbitrary unit of time,

as in a longitudinal panel. In building GECAD I sought to use the highest quality, validated

climate data publically available. Within the earth and atmospheric sciences, much of this

data is kept at monthly intervals, which the GECAD inherits. Therefore, the units of analysis

in GECAD is a 1 degree X 1 degree cell-month. In total, there are 2853 cells, or panels,

observed over a duration of 216 months. This amounts to 624,672 unique observations.

Figure 21 depicts the resultant map of Africa colored according to nation state (left) and

precipitation (right).

4.3.1 Dependent Variables

GECAD’s gridded structure creates a flexible platform for combining diverse datasets in

virtually any format, so long as some special reference exists that can locate the data on

a map. The principle dependent variables are taken from several popular event datasets.

These include the Uppsala Conflict Data Program’s Georeferenced Event Dataset and the

Global Database of Language and Tone (GDELT). While not used in the present study,

GECAD also includes events from the Strauss Centers Social Conflict in Africa Database
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Figure 21: GECAD cells by nation state (left) and by precipitation (right)

(SCAD), and the Armed Conflict Location and Event Data Project (ACLED).

Global Database of Language and Tone (GDELT)

GDELT is a machine-coded dataset maintained by the tireless Kalev Leetaru of George-

town University, which in its entirety, consists of upwards of a quarter billion events. These

data are generated using the Textual Analysis by Augmented Replacement Instructions

(TABARI) system, an automated system for encoding large amounts of text (Schrodt 2009).

One complicating factor associated with the use of GDELT is that the number of reports per

year has increased at an exponential rate since the early 1990s. This is a global phenomenon

linked to the proliferation of digital communications. GECAD includes a subset of GDELT

limited to events taking place within the African continent, where both the actor and target

of an action are actors native to Africa. In 1989 (the first year in GECAD), GDELT con-

tains just over 200,000 unique events meeting these criteria. The most common approach to

handling the exponential increase in reports is to simply normalize counts of events meeting

particular selection criteria by the total number of records within a given (e.g., by year). In
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Figure 22: GDELT events by location

building GECAD, however, I hesitate to make the assumption that the relative proportions

of events of any particular category is solely affected by the total number of events. Alter-

natively, GECAD takes a random sample of 200,000 records from all years. This approach

maintains relative proportions of event categories and has the added advantage of greatly

reducing the volume of data which must be stored and processed. Figure 22 depicts the

spatial coordinate plot of the GDELT events included in GECAD. In GECAD, these data

are represented as counts on a per cell basis.
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UCDP Georeferenced Event Dataset

This new dataset has several distinct advantages over datasets previously available. First,

conflicts are located with the highest level of precision to date. A violent event is represented

spatially as a X-Y coordinate (point feature) and may be represented on a digital map.

Secondly, previous datasets have generally only included cases of violent conflict which met

comparatively narrow criteria (e.g., at least one of the belligerents was a state or at there were

at least 1000 battle deaths). The new DPCR data contains information inter-state conflicts,

conflicts in which one party was a state, and conflicts in which no party was a state. Further,

it includes events with as few as a single casualty. Events are not only georeferenced, but

time-referenced in two attributes: a start-date and an end-date, from 1989-2010. This allows

the modeler flexibly to determine whether to focus on new conflict onsets, probabilities of

continuation, or to assume no distinction between the two. In GECAD, these data are

represented as counts on a per cell basis.

Temperature and Precipitation

Temperature and precipitation are the principle independent variables representing the ef-

fects of climate change. I will employ the ? Gridded Precipitation and Temperature data.

The curators took combined data from the Global Historical Climatology Network and Global

Surface Summary of Day, and interpolate down to a resolution of 30 arc-seconds by 30 arc-

seconds, making these data the most precise available. In addition to temperature, Hendrix

and Salehyan (2011) offer three justifications for taking into account the direct effects of

rainfall. First, rainfall is a reliable measure of rural income and food security. This is partic-

ularly true for sub-Saharan Africa given the poor condition of irrigation systems throughout

Africa and reliance upon rainfall for agriculture and consumption. Secondly, unlike other

environmental variables such as soil erosion and water quality, rainfall is not directly affected
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by human behavior. Thus, the validity of causal arguments about climate change and con-

flict are enhanced. Lastly, while climate projections are inherently error prone, rainfall is

one aspect in which they are generally the most accurate. This will not affect the quality

of estimates, but still nonetheless increase their usefulness as estimators of future conflict

in applied settings. In keeping with the findings of Hendrix and Saleyhan and Raleigh and

Kniveton, I construct this variable so as to capture temperature and precipitation extremity,

which is an absolute deviation from what is “normal” for a given location. Per Hendrix and

Salehyan (2010), I take the absolute value of the monthly deviation from the mean (for that

cell, or panel), divided by the standard deviation of the panel:

X ′i, t = abs[
Xi,t − ¯Xi,m

sd(Xi,m)
] (16)

Palmer Drought Severity Index

The PDSI is a combined measurement of climatic dryness taking into account both precip-

itation and temperature. I apply the Dai, Trenberth and Qian (2004, updated for 2010)

Global Dataset of Palmer Drought Severity Index for 1870-2010. These are annual data.

The PDSI is calculated based on a supply-and-demand model of moisture in soil, taking

into account not only how much precipitation has occurred, but how much is lost due to

evapotransporation, averages, need, and other factors. Figure 23 depicts one month vio-

lent conflict interval over a one time period on Dai’s PDSI. Red areas indicate areas under

unusually dry conditions.

Normalized Difference Vegetation Index

The NDVI is a graphical raster dataset generated through remote sensing, in this case a

space platform, describing the spatial distribution of live green vegetation. This is advanta-

geous because it does not rely upon human measurements. The intuition is that live, green

plants absorb solar radiation in certain wavelengths useful satisfying their energy require-

ments via photosynthesis, but must reflect other wavelengths (especially the near infra-red)

111



Chapter 4 Climate Change and Social Conflict

Figure 23: One month snapshot of Palmer Drought Index color coded heatmap. Red circles
indicate ongoing conflict.
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in order to prevent overheating. Thus, green plants appear dark in certain wavelengths and

bright in others. By comparing the relative brightnesses in these wavelengths, it is possible

to generate an accurate estimate of the overall vibrancy of plant life in a given location.

The figure below depicts a NDVI raster dataset overlaid with violent conflict in November

of 1990. More dense vegetation is darker. I use NDVI datasets from the Global Inventory

Modeling and Mapping Studies program (GIMMS), which is derived by Tucker, Pinzon,

Brown and Molly (2004, updated for 2006) from imagery obtained from the Advanced Very

High Resolution Radiometer (AVHRR) onboard US National Oceanic and Atmospheric Ad-

ministration (NOAA) satellites (see Figure 24). I use these data as measure of agriculture

production, which while may only be considered an approximation, circumvents the need to

rely on self-reports from unreliable local government agencies. Like temperature and precip-

itation, with this value I am also interested in monthly deviations from what is normal for

that space. However, here I am interested in the effects as precipitation and plant density

move from minimum to maximum. Accordingly, I do not take the absolute value.

X ′i, t =
Xi,t − ¯Xi,m

sd(Xi,m)
(17)

Population Density

I apply the Socioeconomic Data and Application Center’s (SEDAC) Gridded Population of

the World, version 3 (GPWv3) collection of raster datasets. These raster datasets render

global population at a scale and extent useful for the demonstration of spatial relationships

between human populations and other geo-referenced data features. The grid resolution is

2.5 arc-minutes by 2.5 arc-minutes, or roughly 5km at the equator. Population estimates

are available for 1990, 1995, 2000, and 2005. In the time series, I use the temporally most

proximate reference. See Figure 25.

Ethnographic composition/ Ethnic Fractionalization Index
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Figure 24: Normalized Difference Vegetative Index is a remotely sensed measure of the
intensity of plant life. Yellow circles are ongoing conflicts. These satellite images are recorded
at intervals of 15 days.
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Figure 25: SEDAC’s population density raster dataset uses satellite and other data to create
precise measures of population distribution without the need for state-collected statistics.
Each “pixel” is a unique, continuous value representing the population within a 2.5 arc-
minute square unit.
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Figure 26: Using the Weidmann et al Georeferencing of Ethnic Groups (GREG) dataset,
investigators may calculate a more accurate, locally driven ethnic fractionalization index.

In order to model the effects of ethnographic composition, I begin with the Weidmann, Rø d

and Cederman (2010) Georeferencing of Ethnic Groups (GREG) dataset. Scholars of African

civil war, the creators sought to build a data set specifically addressing the problem of over-

aggregation of empirical data, typically to the state-level. In order to open the “black box

of the state”, the creators generated a polygon dataset representing the spatial distributions

of ethno-linguistic groups. The number of polygons intersecting offers a practical measure

of the number of different ethnic groups interacting in the specified area. See Figure 26.

Mineral Resources

Following Collier and Hoeffler (2001, 2004), which linked resources to conflict, I incorporate a

variable taking into account the presence, proximity, and estimated value of mineral and fos-

sil resources. The Mineral Resources Data System (MRDS) is a collection of point-referenced

reports describing metallic and nonmetallic mineral resources, including gemstones, through-
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out the world. These data are captured in GECAD as resource densities; i.e., the number of

known resources within a given cell.

Cities/Urban Centers

GIS allows me to generate a new variable defined as the distance (in kilometers) between the

centroid of a tile and the capital of the state in which the majority of the tile falls within.

Similar variables are easily generated describing the distance to other major urban centers.

Other Geo-referenced Data

In total there are more than 150 variables included in GECAD. A complete codebook is

currently in the works. A notable subset of them include the following:

• Soil degradation from the Global Assessment of Human Induced Soil Degradation

(GLASOD) Digital Database.

• Soil suitability for agriculture from Ramankutty, Foley, and McSweeney (2002).

• Terrain gradation from ESRI Corporation.

State-level variable desegregations Disaggregated State-level Variables. The above data sources

are not based on national boundaries. One useful tool in GIS is the ability to take data from

the state-level and disaggregate it to smaller units of analysis. In order to incorporate some

of the more traditional variables from civil war research, I draw data from the World Bank’s

African Development Indicators (Mundial 2012). Using country reference codes, I can asso-

ciate these national level data to nation-state polygons, and in turn, disaggregate into tiles.

Selected independent variables include:

• Proportion of GDP from export of commodities

• GDP/capita (excluding product associated with the export of commodities)

• Political stability index
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Figure 27: World Bank ADI data may be imported into a GIS database. Country color is
coded by political stability. Once imported, the fishnetted 2.5 x 2.5 degree units may inherit
political stability or other state-level variables from the states they fall within.

• Gini index

• Combined polity index

• Regulatory quality

Figure 27 depicts the political stability as reported in the ADI for 2010 in the form of a

graduated color map.
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4.4 Using GECAD

In this section I use to GECAD to test the hypothesis that climate change is causing conflict,

and as well to elucidate potential mechanisms, or influence pathways. One such potential

pathway concerns the role of ethnic fractionalization. Scholars have long suspected a mod-

erating role, however the empirical literature is mixed. Fearon and Laitin (2003) find that it

makes no difference at all, whereas Collier and Hoeffler (2000; 2001) find just the opposite.

Blimes (2006) argues that ethnic fractionalization is a significant cause of war, and the reason

why previous studies had been mixed is because they were inappropriately looking for direct

effects. Using a heteroskedastic probit model, they contend that in countries with low levels

of ethnic fractionalization, variables with known direct effects on civil war will have greater

error variance than countries with higher levels. In other words, the effect of variables such

as GDP per capita, prior war, and political instability are significantly more pronounced

in ethnically heterogeneous countries. A previously supported explanation Homer-Dixon

(1999) is that fractionalization establishes an abundance of convenient lines of division along

which a society may organize itself during desperate times.

4.4.1 Hypotheses

There is good reason to suspect ethnic identity could play a moderating role between acute

resource instability and conflict. Over the last half century a perspective of human nature

that emphasizes innate sociality has been gradually gaining steam. Drawing from fields

as diverse as evolutionary theory, anthropology, psychology, political, and now increasingly

computer science, this perspective holds that human sociality is a core adaptation with

which individuals of our species respond to adaptive challenges. In other words, whereas

another species might rely upon its powerful jaws, lightning speed, or biological camouflage,

we humans meet our environments with cooperation.

A full review of this literature is forthcoming as part of my dissertation. However, I

will at least note several relevant, recent studies offering empirical support for the theory.
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Gibson (2008) conducted an admirably large survey in South Africa, asking respondents to

react to an experimental vignette in which a black squatter is evicted from land on which

she is squatting. He finds that black South Africans who identify strongly with their ethnic

group are far less likely to believe that justice has been adequately performed. Typically,

procedural justice (which is manipulated in the study) increases the perceived fairness of

the eviction but this is less true for the majority of black South Africans who identify

with either their racial or ethnic group (e.g., Zulu, Xhosa) as opposed to the nation as

a whole. The clear implication of these findings is that principles of justice are applied

more broadly by those who identify with the nation. Without a sense of national identity,

black South Africans question the fairness of government actions. Riek, Mania, Gaertner,

McDonald and Lamoreaux (2010) find that making salient a shared identity as an American

can reduce perceived partisan threat among both Democrats and Republicans. Eifert, Miguel

and Posner (2010) find that exposure to political competition significantly impacts whether

individuals identify themselves ethnic terms. The finding is of particular importance to

the present research because it demonstrates that ones understanding of ethnicity is not

constant. Rather, the salience of any particular identity is situationally determined.

In sum, I theorize that when faced with acute economic hardship in the aftermath of

severe climatic anomaly, individuals look toward coordinate with their ethnic kin in order

to secure larger shares of dwindling resources through collective action. This establishes an

influence pathway from severe weather to ethnic identity to intergroup conflict. Accordingly,

I derive the following hypotheses to be tested with GECAD.

Hypothesis 1: Severe weather, in either direction, will be associated with increased conflict.

Hypothesis 2: Ethnic fractionalization will moderate this effect.
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Figure 28: Spatially lagged values of conflict as a function of conflict logged

4.4.2 Model

The gridding technique allows transformation of spatially referenced data (maps) to a more

traditional data matrix suitable for the standard suite of statistical tools political scientists

and econometricians are accustomed to. One must keep in mind, however, that since cases are

(cells) drawn from a map at a particular time and place the observations are not independent,

since cells will be related to nearby cells spatially and temporally. This violates the G-M

assumption of a spherical error distribution. As well, observations are nested within clusters

of observations, such as nations or climate classification (desert, forest, arid plains, etc).

Accordingly, our choice of models and specification must take these factors into account.

Spatial Autocorrelation

In order to diagnose spatial autocorrelation I conduct a Moran test using the count of conflict

events in the GDELT dataset in a cell-month. Moran’s I is calculated at 50.78 (p < 0.0001).

We reject the null hypothesis that there is no spatial autocorrelation. Figure 28 plots spatially

lagged variable (conflict) against the log. A positive linear pattern is clear, implying that in

line with intuition conflict is likely to spill over to surrounding areas.
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Figure 29: Kriging is a method of geostatistical interpolation. Redder colors indicate higher
rate of conflict

Still, to properly account for the autocorrelation in a statistical model we need to measure

the magnitude of the effects in more useful units. I employ a three step process to accomplish

this. First, I apply a method of geostatistical interpolation called kriging. Figure 29 depicts

the distribution of conflict over the Africa. Conflict appears visibly “clumpy”, but what is

more important are the gradients as we move from high conflict zones to low.

Kriging allows us to calculate a useful curve called a semi-variogram (Figure 30). A

semi-variogram is essentially a plot of the covariance (semi-variance) between all points in a

field at some distance h. When a slope exists, it may be stated that the covariance between

any two points is a function of the distance between them. The approximate area along the

curve where the slope begins to approach zero, therefore, indicates that beyond this area the

relationship is no longer a function of distance. In the figure below the red line over the value
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Figure 30: Calculated semivariogram: Flattening indicates semivariance no longer a function
of distance

of 1 on the X-axis encounters the curve as it is nearly flat. Keep in mind that the cellular

nature of the data demands that spatial lag only be measured with integer-level precision.

According to this result, generating a spatially lag of the dependent variable (conflict) based

upon surrounding cells at one unit of distance (or 1 degree) should suffice. Two units of

distance would offer little additional power, but be far more computationally intensive to

calculate.

For added robustness, I create two spatially lagged variables based, respectively, on the

mean and maximum values of the eight nearest cells (see Figure 31). Note that cells along

the coast will include tiles at greater than 1 unit, since they are not surrounded on all sides.

This method of generating spatial lags on a gridded dataset is consistent with Tollefsen et al

2012. Using several cross-validation techniques, they determined that this method was able

to produce low mean-square error estimates in the face of spatial autocorrelation.
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Figure 31: Calculating spatially lagged dependent variables based on eight nearest cells

Temporal autocorrelation

Diagnosing temporal autocorrelation is more conventional. Several unit-root tests for panel

data exist. I employ the Levin-Lin-Chu and the Im-Pearson-Shin tests (Levin, Lin and

James Chu 2002; Im, Pesaran and Shin 2003). These two make a useful pairing because the

formulation of the test hypotheses are contrary. In both case we reject the null (P−values <

0.0001), which allows us to conclude neither all of the panels are stationary, nor are all of the

panels unit-roots. These data, therefore, are likely to be fractionally integrated. At the time

of this writing, no established estimator exists for fitting models with fractionally integrated

panel data. Lebo and Weber will propose an ARFIMA-MLM model in a forthcoming issue

of the American Journal of Political Science. However, for the present iteration I will rely

upon temporal lags of the independent variable to pick up dependencies on past histories.

Lagged independent variables are also useful because I do not necessarily suspect that conflict

arises from contemporaneous fluctuations in weather. Rather, the effects are likely to be

disjointed in time since it may take a while for, say, foodstocks to deplete or for foliage to

densify. In consideration of all of the above challenges, I estimate a pooled time-series mixed-

effects regression model. Mixed-effects regression is commonly used with panel data where
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unobserved heterogeneity is likely. As well, I may allow for national and climate categorical

fixed effects.

4.5 Results

In testing this model, I am primarily interested in the effects of extreme weather or climate

change patterns in Africa on conflict in Africa. Therefore, it is necessary to include some

kind of control for global trends. To do this, I include the Food and Agriculture Organization

Global Food Price Index. This would, for example, allow me to account for the effects of a

below average wheat yield in Russia. The table below depicts the results of the mixed-effects

regression.

One useful feature of GDELT is that it classifies every event according to the Conflict

and Mediation Event Observations (CAMEO) coding scheme. This allows all events to be

further summarized in a nominal-level variable as either material cooperation, verbal coop-

eration, verbal conflict, or material conflict (in GDELT this is the quadclass variable). The

three sets of columns report the results of the regression with three constructions of the

dependent variable (conflict), using verbal and material conflict individually and combined.

These variables are each broad aggregations of conflict events ranging from leaders’ issuance

of fiery statements regarding the opposition to mass violence. Therefore, these variables are

best understood as measures of generalized instability. The narrower verbal and material

conflict variables are still high-level aggregations. For example, material conflict may include

anything from a riot to genocide. Both verbal and material conflict are still generalizations

of instability. The key distinction lies in the notion that in the case of material conflict

the implication that, at least in some degree, life and limb are on the line. It may there-

fore capture reactions to circumstances which are a scale upward in terms of severity and

desperation. In three constructions of the DV, we observe global trends in food prices to

yield a significant, positive affect on generalized social conflict and instability in Africa. A

contemporaneous effect exists in all three cases. Interestingly, I find a significant effect of

global food prices in the preceding month. This suggests some pace of escalation, or tension
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Table 19: Results of Mixed-effects Regression Model

Log(Combined) Log(Mat. conf) Log(Verb. Conf.)

Variable Coef. Std. err. Coef Std. Err. Coef. Std. err

Temporal lag 37.42*** 0.1 33.48*** 0.129 35.252*** 0.128
Avg. 8 nearest
Contemporaneous 6.64*** 0.09 26.106*** 0.366 21.604*** 0.354
Lag 1 0.12*** 0.09 2.688*** 0.368 4.531*** 0.356
Max. 8 nearest
Contemporaneous -0.69*** 0.01 -4.68*** 0.163 -3.85*** 0.156
Lag 1 0.12*** 0.01 -0.47*** 0.163 -0.73*** 0.156
FAO Index
Contemporaneous -0.08*** 0.02 -0.04*** 0.017 -0.083*** 0.015
Lag 1 0.01 0.02 0.009 0.017 0.031** 0.015
Temp. extremity
Contemporaneous 0.14* 0.08 0.113* 0.068 0.142** 0.061
Lag 1 -0.02 0.08 -0.03 0.068 0.008 0.062
Lag 2 0.14 0.08* 0.067 0.068 0.101* 0.061
Precip. extremityˆ
Contemporaneous -0.11* 0.07 0.095* 0.057 -0.089* 0.051
Lag 1 -0.01 0.07 0.031 0.057 -0.039 0.051
Lag 2 0.14** 0.07 0.083 0.057 0.091* 0.051
Ethnic fract.ˆ 0.94*** 0.27 0.651 0.215 0.783 0.229
Temp X EF. 0.13*** 0.04 0.053* 0.034 0.112*** 0.031
Precip X EF. 0.02 0.03 0.013 0.029 0.070* 0.039
NDVI
Contemporaneous 0.02* 0.05 0.013 0.042 0.092*** 0.038
Lag 1 0.17*** 0.02 0.073* 0.044 0.103*** 0.039
Lag 2 0.09* 0.05 0.056 0.042 0.003 0.038
PDSI 0.04* 0.02 0.02 0.018 -0.008 0.017
Cluster res. 1.54*** 0.5 1.21*** 0.375 0.562 0.398

All coefficients and std. errs multiplied by a factor of 100
ˆCond. coeffs for contemporaneous Precip x EF not shown.
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building, as food prices increase. In other words, populations raise their voices before their

fists.

Now turning attention to the climate variables, we see mixed evidence of direct effects

of temperature and precipitation on conflict. Extreme precipitation (in either direction)

two months prior yields crosses the threshold of significance at the 0.05 level. Note: Since

the interaction term between precipitation and ethnic fractionalization was not significant,

I only report the coefficient of precipitation at its mean, rather than zero. This lagged effect

is consistent with hypothesized mechanisms of climate-related conflict based on abundance

or scarcity (as crops/foliage takes time to grow if nourished). In the case of the deluge hy-

potheses (flooding, infrastructure destruction, etc), we would expect to see the preeminence

of contemporaneous effects. The positive, highly significant effects of vegetative density

(NDVI) further reinforces the abundance argument. As you recall, the precipitation mea-

sure is a measure of extreme deviation from normal levels, whereas NDVI only captures

vegetative density. This should not be interpreted as implying that scarcity does not cause

conflict (in fact, the weakly significant coefficient on the Palmer Drought Severity Index sug-

gests that scarcity does). However, the effects of NDVI offer clear evidence that abundance

can as well. Specifically, this finding is consistent with proposed mechanisms suggesting that

greater abundance increases the value of spoils (i.e, makes land or cattle more worth tak-

ing). It is also consistent with suggestions that denser foliage offers potential rebels greater

opportunities for cover and is conducive to guerrilla-style warfare.

Since precipitation has the more obvious effect on the landscape and crops, it is not

surprisingly the relationship between temperature and conflict appears to be more nuanced

than that of precipitation. I hypothesized that ethnic fractionalization will moderate the

effect of climate change, or at least extreme weather. I tested both temperature and precipi-

tation for such interactive effects. Interestingly, these data suggest such an interaction exists

for temperature but not precipitation. The moderating effect is also quite large. Figure

32 depicts the marginal effects of temperature extremity as a linear function of ethnic frac-
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tionalization. When ethnic fractionalization is 1 (i.e., only a single ethno-linguistic group

occupies the area), the effect of temperature extremity is not significantly different from

zero. However, as the number of groups collocated within a cell increases so does the effect

of temperature extremity. With two groups the effect is marginally significant and highly

significant at three groups. Why would this be? One perhaps less than satisfying explana-

tion is that human societies are simply that sensitive to changes in the environments they

are adapted to. Extreme temperature may not have a direct or obvious link to the things

societies engage in conflict to secure, but it may result in some kind of psychological stress.

Extreme temperature may fuel a vague sense that somehow things are not as they should be.

Change from habituated contexts is a known psychological stressor, as it makes the future

less certain. Moreover, they might be right. While extreme temperature itself is not likely

to cause the kind of acute resource shortages that might be attributed to extreme precipi-

tation, these two variables are likely to be correlated. In GECAD the correlation coefficient

between temperature and precipitation, by cell and normalized, is - 0.12 (p-value ¡ 0.001).

This may not sound like a lot, but predicting precipitation is a complex mess and it would

be quite surprising if temperature alone accounted for the lions share of its variance. In

short, extreme temperature may make people less comfortable, and at the social level this

can manifest as greater tension between social cleavages.

Though not a part of the climate model, these data offer other potentially useful insights

into the environmental causes of conflict. In particular, soil suitability for agriculture is

negatively associated with conflict. Further, the mixed-effects regression technique allows us

to conclude that this is unlikely to be an artifact the relatively large portion of the dataset

falling into the sparsely populated Sahara desert. Importantly, these data suggest that this

relationship is exacerbated by soil degradation. The effect of soil degradation is negative and

highly significant, suggesting that conflict tends to move away from areas that are no longer

producing as efficiently as in the past. Rather, conflict appears to be moving toward more

productive areas. This is consistent with witness reports that soil degradation is forcing
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Figure 32: The effect of temperature with no ethnic fractionalization is not significantly
different from zero. However, the relationship is significant as fractionalization increases
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Figure 33: The effect of ethnic fractionalization is not significantly different from zero when
soils are heavily degraded.

more groups into contact with one another, as in the case of Sudan. Soil degradation, of

course, may be due to a variety of causes unrelated to climate change. Notably, evolving

land use policies (often at the behest of international bodies) is known to be associated

with degradation. Some such mechanisms include intensive monocropping (Parenti, 2011)

and mining operations (Peters, 2014). Particularly in the transitional zones of the Sahel

(striding the boundary of the Sahara and the heavily forested central African regions) ethnic

lines are frequently coextensive with economic modalities. Accordingly, I suspected such

conflict would inevitably run along ethnic lines and thought to test for the same hypothesized

interactive effects of ethnic fractionalization with soil degradation and soil suitability (see

Figures 33 and 34). I find both interaction terms significant with a common story to tell:

ethnic fractionalization is most associated with conflict when such land based resources are

plentiful. In other words, groups conflict with each other over good land, rather than bad

land. Unfortunately, since these variables are not dynamically captured over time, I am

unable to determine the effect of /emphdwindling land quality. These findings also suggest

conflict over the best land could be a result of environmental refugees moving into areas

historicaldwindlly occupied by other groups. Again, dynamic measures would offer a more

definitive answer.
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Figure 34: The effect of ethnic fractionalization is highest in locations that are best suited
for agriculture

Of more peripheral importance to the present research, these data affirm much of previous

research on the correlates of conflict, including a number of the geographic factors argued

by Buhaug and Rod. The relative density of controllable resources appears to cause conflict.

That these resources are fixed, bounded areas means they can be controlled by force. The

digital elevation model (DEM) is highly significant and positive. DEM, as a measure of how

mountainous a location is, reinforces arguments about the role of geography and insurgency.

Using GIS software, I incorporated the above parameter estimates into a geo-statistical

model of climate conflict vulnerability (see Figure 35). The first image (left) presents pre-

dicted risk areas strictly as a function of the climate model, accounting for the interactive

effects of ethnic fractionalization. Areas within the transitional zones of the Sahel appear

to be particularly at risk. This stands out in sharp contrast to the predictions of the fully

specified model (right), which leans more toward the historically more unstable sub-Saharan,

central regions. This contrast suggests that, overall, extreme weather potentially as a re-

sult of climate change does not appear to be the principle driving force of conflict in Africa

broadly. However, such effects are most strongly pronounced in the transitional areas where

climate change is likely to have the greatest impact on local economic modalities; i.e., where

the need to transition from one economic modality to another is more acute.
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Figure 35: Predicted risk of conflict and instability: Climate-only model (left) and fully-
specified model (right)

4.6 Discussion

GECAD is a new dataset for the study of social responses to climate change and the role

of the environment in conflict more broadly. In this initial study, I used GECAD to assess

competing findings that extreme weather, potentially as a result of climate change, is caus-

ing instability in Africa. I affirm findings that extreme precipitation—in either direction—is

associated with conflict. Moreover, these data suggest the mechanism lies in precipitations

determining role of scarcity and abundance of resources and vegetation, rather than expla-

nations based on infrastructural damage. In hindsight, GECAD in its current form lacks key

variables that would elucidate such a mechanism (the latter), and therefore I cannot conclude

that infrastructural damage does not cause conflict. Temperature is a significant driver of

conflict, but this effect is substantially moderated by ethnic fractionalization. The mecha-

nism here is unclear and more research is needed. However, this finding does demonstrate the

fundamental premise that ethnic identities are flexibly salient in response to environmental

variables. What is puzzling is that this moderating effect did not exist for precipitation. In
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other words, while extreme precipitation does appear to be linked with conflict, the lines

between the actors do not appear to be drawn along ethnic cleavages. Alternatively, it may

be the case that to the extent extreme precipitation may threaten populations, the anxiety

it generates is directed at governments rather than other sub-national groups. This is specu-

lation, of course, however it is consistent with previous (and replicated) findings that denser

foliage is can be more conducive to types of conflict commonly directed at governments, such

as guerrilla warfare. In GECAD’s current revision it cannot adequately test this hypothe-

sis. However, a long-awaited update to the GDELT is planned for this summer which, once

incorporated into GECAD should yield this capability.

Though not strictly climate change related, these data provide strong evidence of the

role of environment in conflict. Replicating Hendrix and Glaser (2007), I find a clear signal

in these data suggesting soil degradation is leading to conflict and instability. Further, the

moderating relationship of ethnic identity which I have put forth appears to in part explain

the dynamics of the conflict. There are numerous causes of soil and environmental degra-

dation in Africa, climate change included. Unfortunately, the current revision of GECAD

lacks a dynamic measure of soil degradation or adequate controls to demonstrate this as a

possible causal pathway.

Some qualifications that come with the above findings include an inherent problem of

trying to explain relatively fast-moving dependent variables (conflict) with relatively slow

moving independent variables (climate change). This is perhaps why so much of the current

literature (including this paper) is focused on anomalous weather, which is of course more

mercurial. Also, while we struggle to tease out a causal relationship between climate change

and conflict, it is important to note that we have yet to see the kind of rapid, dramatic

change that could occur this century. Up until now, climate change has paced sufficiently

slowly that many people continue to doubt its existence. Should we eventually cross so-called

“tipping points”, as scientists fear, we could see a pace and scale of change that are really

quite a different beast.
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5 Conclusion

This dissertation examined ways in which ecological conditions alter individual incentives

to participate in groups; i.e., to rely upon collective action such as cooperation and inter-

group conflict in order to resolve individual adaptive challenges. It describes a mechanism

connecting ecological challenges individuals face to emergence and subsequent behavior of

groups as unitary actors. In the simplest conception, as circumstances compel individuals to

pursue more group-centric strategies, groups may negotiate higher levels of commitment in

terms of submission of individual decision sovereignty to social processes. The result is that

groups become more like decision-making units of analysis as their constituents deindividu-

ate. Thus, the individual-group dichotomy is called into question. Rather, these two states

exist at opposite ends of a spectrum: Groups are “unitary” to the extent they are cohesive,

and they are cohesive to the extent that we submit to their rules and maintain our commit-

ments. The incentives individuals face in this negotiation are circumstantial, determined in

a dynamic ecological marketplace where neither the supply nor demand for cooperation are

constant.

5.1 Findings

The three studies presented in this dissertation explored this question from distinct perspec-

tives. In Chapter 2, a coevolutionary model of network topology and cooperation demon-

strated that these two concepts are bound together, shaped in conversation with each other

in response to continually changing environmental circumstances. Every social network is

a unique, socially-generated solution to a complex ecological problem space, dynamically

reached as a result of many thousands of interactions between selfish actors each looking

out for their own interests. Generally speaking, the management of the risk of defection for

cooperators appeared to be a fundamental design principle of social network architecture.

The model determined that cooperation is favored in the context of small, but more densely

networked communities. Agents maintained relationships that minimizes their exposure to
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defection, while maximizing opportunities for reciprocity. Primitive clustering emerged out

of tendencies for agents to maintain connections with a smaller, but more carefully chosen

number of individuals.

As survival becomes more precarious, however, agents were the most willing to expand

the number of their connections even if as it increases their exposure to risk. There are at

least a couple reasons why this could be the case: 1) Because their partners are more likely

to die, it may pay off to maintain a larger number of relationships, even if they are not quite

as cooperative; and 2) A more precarious existence makes defection in the context of a close

relationship much more consequential. Agents, therefore, choose to spread risk of defection

over a larger number of partners. The ability to interact with socially distant individuals

and adopt categorically discriminating behaviors also seems to mitigate some of the risk

associated with additional relationships. Though this ability produced networks that were

dramatically more segmented, overall populations were larger and the individuals within

each segment were more connected. Indeed, the richest environments tended to produce

larger and less cooperative populations.

In chapter 3 we gained insight into the emergence of primitive social identities and their

curious entanglement with intergroup conflict. This study offered preliminary, but robust

evidence that the presence of internally cooperating groups does not imply cooperation

between groups. On the contrary, the present of this new, more potent form of competition

for limited resources appeared to compel others to invest in groups of their own. But this

was not always the case. In fact, it appeared to significantly depend on how the resources

individuals needed to survive and prosper were distributed spatially. Individuals were likely

to fight over resources that were clustered together rather than widely distributed. Further,

social conflict emerged when land quality was unequal. In sum, these two results emphasize

the finding that when the successful progress of violent conflict can afford a group premium

access to the highest quality resources at the exclusion of others, its members are more willing

to submit their autonomy to the group in order to enhance its combat potential. Moreover,
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when individuals’ environments were dominated by the pervasive presence of violent conflict,

how they cooperated mattered as much as if they cooperated. The Lanchester Law is a

key variable that directly translates within-group cooperation into a group’s effectiveness at

advancing their collective interests through warfare. The better agents are able to coordinate

their tactics in battle the greater demand there was for a cooperative ‘gene’.

The studies presented in Chapters 2 and 3 sought to establish a theoretical basis for

understanding groups, qua unitary actors, as emergent phenomena arising from the many

countless decisions of individuals interacting with each other and with their environment.

If true, this would lead us to hypothesize that a significant role of group identity as a

moderator of realistic conflict. Chapter 4 introduced a massive new dataset to test this

hypothesis at an aggregate level using event data from Africa and climate data from the years

1989 to 2006. These data affirm temperature extremity to be a significant driver of conflict.

However, this effect appeared to be substantially moderated by ethnic fractionalization in line

with predictions. While the mechanism at work could not be ascertained, this finding does

demonstrate the fundamental premise that ethnic identities are flexibly salient in response to

environmental variables. These data affirm previous findings that extreme precipitation—in

either direction—is associated with conflict, as well as significant effects on violent conflict

for a wide variety of environmental variables. In particular, soil degradation appears to

be an indirect cause of conflict as it creates environmental refugees, forced off their land to

complicate the economic livelihoods of groups living elsewhere. Additionally, these data offer

corroborating support for the conclusion conflict is most strongly associated with clustered

resources.

5.2 Implications for political understanding

Thinking of cooperation as a kind of currency individuals may judiciously invest in social

living establishes a theoretical link between the emergence of groups and adaptive problems

they assist individuals in responding to. Both the supply of cooperation and the demand for

the adaptive benefits it yields determine price. These variables are in constant approach to
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an ever-shifting equilibrium, dynamically responding to the evolving realities of a complex

ecological marketplace. Accordingly, the prevalence of cooperation is not constant; it ebbs

and flows like a tide in response to forces we are now only beginning to identify, much less

understand.

In the summer of 2014, the number of human beings on planet Earth is roughly 7.2

billion in 193 countries16, themselves comprised of between 5 and 6 thousand distinct ethnic

groups (Doyle 1998; The Joshua Project 2014).17 Wealth and the means of production are

distributed highly unequally.18 In the past, such inequities may have mattered less, but

early 21st century society is global. With only very few (and still dwindling) exceptions,

no populations exist in blissful ignorance of the immense disparities that exist. As the

global warming and resultant climate disruption advance, these inequities are likely to be

exacerbated in the decades ahead (IPCC 2014). Added to this, of course, are non-climate

related resource depletion and degradation.

Therefore, I do not believe it would be controversial to assert that some of the most press-

ing challenges we—as a global society—face today are linked to the environment. Equipped

with a solid understanding of the connections between individuals, groups, the environment,

and conflict, political science and ultimately policymakers will be on far better footing to

meet them effectively.

Climate change and conflict

As demonstrated in Chapter 4, a potentially critical application of such a theory is to better

understand and predict social responses to climate disruption, extreme weather disasters, and

other forms of rapid ecological change. This would enable smarter and faster policy responses

on the part of governments, intergovernmental organisations (IGOs) non-governmental actors

16United Nations recognition
17Estimates vary depending on opinions over who constitutes a unique ethnic group. Estimates in the

range of 5 to 6 thousand count all ethnic groups once, regardless of how many countries they appear in. If
each ethnic group is counted once for every country it appears The Joshua Project estimates the total to be
around 16,000.

18The Economist estimated the global Gini coefficient as 0.65 in 2008 (Economist 2012).
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(NGOs) in order to mitigate the threat to political instability and violent conflict. Using

GECAD, the present research identified such regions in Africa where destabilizing effects

are already being realized. In addition to more targeted delivery of mitigation efforts, such

knowledge may point the way to better management of environmental refugees and economic

and land-use reforms that may assuage conflict risk.

Moreover, it should not be too much to hope that accurate predictive models of ecological

conflict should serve to reinforce the consequences of inaction in the minds of leaders. Climate

change is a fact and it is happening presently. Its ultimate severity, however, is undecided.

The choices we make in the near-term about how our economies continue to rely on fossil fuel

energy sources and other carbon-emitting practices will determine the extent of the threat

we face. With a clearer picture of what is at at stake, this line of research could stimulate

policy action that could prevent the worst case scenarios.

Deconstructing conflict

One of the greatest challenges in conflict resolution is how to get past the often overwhelming

power of sectarian differences that emerge in the narrative perspectives of the causes of the

conflict. During the dismantling of South African apartheid, progressive leaders including

Archbishop Desmond Tutu established the Truth and Reconciliation Commission (TRC) in

order to arrive at a universally agreed upon historical narrative. Counter-intuitively, the

purpose of such commissions is not necessarily to find the truth, but to find some narrative

that all interested parties can agree to and thus serve as a basis for moving forward with

the peace process. One of the major conclusions of this research is that social identities

are dynamically responsive to material conflict. Cultural histories, like symbols, can act

as centripetal forces rendering communities more cohesive, reinforce solidarity, and better

equipped to carry out collective action. The substance of such histories need not reflect

underlying material conflict, but may persist as unifying elements. Thus, they may in some

cases actually distract from the true causes of the conflict and hinder resolution. Under-
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standing the ways underlying material realities can either increase or decrease demand for

collective action can potentially point to methods for deescalating conflicts through targeted

development or public works projects that relieve such demand.

Foreign aid and relief

The multiple findings in this dissertation linking conflict to clustering of resources has direct

implications for the foreign aid and relief community. Clustered resources creates ecological

incentives for groups to monopolize resources through collective action. Particularly in re-

gions where security and governance are weak, this could lead to warlordism and other forms

of sectarian strife as groups battle for control of the distribution sites.

As well, these findings suggest the foreign aid community should exercise extreme care

when providing aid directly to governments lacking a robust democratic tradition or where

government is historically dominated by a single ethnic group. This kind of direct aid

establishes capture of the government as an immensely valuable prize, and would encourage

widespread activation of ethnic identities to fuel a protracted conflict.

Interest group politics

From a standpoint of interest group politics, it might help to illuminate how individual firms

cooperate in the form of industrial lobbies for a clustered, finite resources in the form of

legislative influence, trying to steer public policy in a direction favorable to that industry

at the expense of other industries. Alternatively, we might illuminate the circumstances in

which firms choose to engage in their own lobbying efforts to promote policies that benefit

them individually against not only other industries, but also their peer competitors.
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6 Appendix

6.1 Computer codes

6.1.1 Co-evolution of Cooperation and Social Networks

This model was programmed in Python 2.7 and executed on a cluster of four computers

including an 8-core AMD FX-8150 CPU, two dual Intel Core i5-4320m CPUs, and a dual

core Intel T2200 CPU. Code begins on next page.
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import random as rd 

import networkx as nx 

import matplotlib.pyplot as plt 

import numpy as np 

import time 

from random import choice 

import uuid 

import math 

import pylab 

 

''' Also consider adding the additional constraint that strategyD1 = strategyD2 

    = strategyD3 ''' 

#------------------------------------------ 

# Declare Parameters 

#------------------------------------------ 

# Type 

SingleShot = False 

max_res_model = True 

maxD = 3 

MC = 10 

maxN = 40 

maxR = 60 

T = 2000 

 

# Monte Carlo variables 

 

# Single shot parameters 

if SingleShot == True: 

    MC = 1       # Single shot 

    N = 40      # Initial network size 

    P = .0025     # Base probability of forming connection 

    R = 5        # Number of games/rounds per time period 

    SF = 10       # Starting fitness, fixed SF=0 

    Res = SF*maxR # Total resources in the world 

    Mcost = 2    # Metabolic cost of survival 

    D = 3        # Maximum number of degrees between i and j may interact 

    C = 1        # Cost of cooperation 

    B = 1.3 * C  # Benefit of cooperation 

    mut = 0.005  # Mutatation rate, random uniform 0 - 0.005 

    SR = 1.5     # Starvatation rate exponent. 

    rskew = 1.5    # Reproductive skew. High values incease adv. to hi fit agents. 
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Num_parameters = 12 

Num_outputs = 31 

#------------------------------------------- 

# Create custom functions 

#------------------------------------------- 

def strategy_profile(): 

    return np.random.uniform(0, 1, D + 1) 

 

def create_edges(W, agents, P): 

    for i in agents: 

        for j in agents: 

            if i != j: 

                barabasi = j.popul 

                denominator = float(max(len(W.edges()),1)) 

                pr_connection = P  + (barabasi * i.pref_bias * P) 

                if rd.uniform(0,1) < pr_connection: 

                    W.add_edge(i, j) 

 

def get_detailed_map(agent, D): 

    ''' Generate a list of lists, like a list of bins. 

        go through ext_network and sort each j into bin according to distance 

        return list of lists ''' 

 

    neighborhood = [[] for deg in range(D)] 

    ext_network = nx.single_source_shortest_path(W,agent,cutoff = D) 

    for d in range(D +1): 

        for e in ext_network: 

            if len(ext_network[e]) == d + 2: 

                neighborhood[d].append(e) 

    return neighborhood 

 

def giant_comp(W): 

    comps = nx.connected_components(W) 

    list_comps = [len(i) for i in comps] 

    largest = max(list_comps) 

    return largest 

 

def gini(agents): 

    fitnesses = [] 

 

    for agent in agents: 

        fitnesses.append(agent.fitness) 
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    n = len(fitnesses) 

    fitnesses.sort()  # increasing order 

    G = sum( xi * (n-i) for i, xi in enumerate(fitnesses)) 

    G = 2.0*G/(n*sum(fitnesses)) 

    return 1 + (1./n) - G 

 

def plot_all(W, agents, T, data, D): 

    duration = T 

    outfile = "singleshot.png" 

    outfile2 = "hist_graph.png" 

    x = range(duration) 

    fig = pylab.figure(figsize = (18, 6)) 

    ax = fig.add_subplot(231) 

    ax.grid(True) 

    ax.set_title("Number of Agents Living (Network Size)") 

    ax.set_ylabel("Total Surviving") 

    ax2 = fig.add_subplot(232) 

    ax2.grid(True) 

    ax2.set_title("Bias to connect with popular agents") 

    ax2.set_ylabel("Level of Bias") 

    ax3 = fig.add_subplot(233) 

    ax3.grid(True) 

    ax3.set_title("Average Strategy Profiles by Type") 

    ax3.set_ylabel("Propensity to Cooperate") 

    ax4 = fig.add_subplot(234) 

    ax4.grid(True) 

    ax4.set_title("Average Node Degreee") 

    ax4.set_ylabel("Degree") 

    ax5 = fig.add_subplot(235) 

    ax5.grid(True) 

    ax5.set_title("Fitness Inequality") 

    ax5.set_ylabel("GINI Coefficient") 

    ax6 = fig.add_subplot(236) 

    ax6.grid(True) 

    ax6.set_title("Average Clustering") 

    ax6.set_ylabel("Clustering Coefficient") 

    population = [] 

    pref_bias = [] 

    degree_avg = [] 

    gini = [] 

    clustering = [] 

    for time in x: 
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        population.append(data.Sdata[time][24]) 

        pref_bias.append(data.Sdata[time][15]) 

        degree_avg.append(data.Sdata[time][18]) 

        gini.append(data.Sdata[time][23]) 

        clustering.append(data.Sdata[time][19]) 

 

    ax.plot(x, population) 

 

    z = [[data.Sdata[time][12 + d] for time in x] for d in range(D)] 

 

    ax2.plot(x, degree_avg) 

 

    line1c,  = ax3.plot(x,  z[0]) 

    try: 

        line2c,  = ax3.plot(x,  z[1]) 

    except: 

        pass 

    try: 

        line3c,  = ax3.plot(x,  z[2]) 

    except: 

        pass 

    ax4.plot(x, pref_bias) 

    ax5.plot(x, gini) 

    ax6.plot(x, clustering) 

    fig.savefig(outfile) 

 

    fig2 = pylab.figure(figsize = (15, 6)) 

    ax2_1 = fig2.add_subplot(121) 

    ax2_2 = fig2.add_subplot(122) 

    ax2_1.set_title("Degree distribution") 

    ax2_1.set_ylabel("Counts") 

    ax2_2.set_title("Network by Degree Centrality") 

    hist_vector = [] 

    centrality_vector = [] 

    degree_dict = W.degree() 

    for agent in W.nodes() : 

        hist_vector.append(degree_dict[agent]) 

        centrality_vector.append(agent.strategy[0]) 

    cvect = np.asarray(centrality_vector) 

    ax2_1.hist(hist_vector) 

    nx.draw_networkx(W, with_labels = False, node_color = cvect, ax = ax2_2) 

    fig2.savefig(outfile2) 
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    return pylab.show() 

 

#------------------------------------------- 

# Create classes 

#------------------------------------------- 

# Agent class 

 

class Agent: 

    counter = 0 

 

    def __init__(self, SF): 

        self.uid = Agent.counter 

        self.strategy = strategy_profile() 

        self.pref_bias = rd.uniform(0,1) 

        self.fitness = SF 

        self.degree = 0 

        self.ledger = {} 

        self.age = 0 

        self.rcounter = 0 

        self.popul = 0 

        self.starving = 1 

        self.neighbors = None 

        self.neighborhood = None 

        self.ev_centrality = None 

        self.deg_centrality = None 

        self.bet_centrality = None 

        self.close_centrality = None 

        Agent.counter += 1 

 

# Data class 

 

class Data: 

    def __init__(self, Num_parameters, Num_outputs, MC, N, T): 

        self.Sdata = np.zeros((T, Num_parameters + Num_outputs)) 

        self.MCdata = np.zeros((MC, Num_parameters + Num_outputs)) 

 

#------------------------------------------- 

# Build data frames 

#------------------------------------------- 

 

data = Data(Num_parameters, Num_outputs, MC, maxN, T) 
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#------------------------------------------- 

# Start MC loop 

#------------------------------------------- 

 

mcloop_start = time.time() 

for mc in range(MC): 

    if SingleShot == False: 

        # Parameters 

        N = np.random.randint(25, maxN)      # Initial network size 

        P = rd.uniform(0.001, 0.004)         # Base probability of forming connection 

        R = np.random.randint(1, 10)          # Number of games/rounds per time period 

        SF = np.random.randint(2, 5)         # Starting fitness 

        Res = SF*maxR                        # Total resources in the world 

        Mcost = rd.uniform(1.5, SF)            # Metabolic cost of survival 

        D = np.random.randint(0, 3)          # Max degrees for interaction 

        C = rd.uniform(1, SF+1)              # Cost of cooperation 

        B = (1 + rd.uniform(.1, .5)) * C     # Benefit of cooperation 

        mut = rd.uniform(0, 0.005)           # Mutatation rate, random uniform 0 - 0.005 

        SR = rd.uniform(1, 2.5)            # Starvatation rate exponent. 

        rskew = rd.uniform(1, 2.5)           # Reproductive skew. High values incease adv 

    #------------------------------------------- 

    # Game matrices and data arrays 

    #------------------------------------------- 

 

    gm = np.zeros((2,2)) 

    gm[0,0] = B-C 

    gm[0,1] = -C 

    gm[1,0] = B 

    gm[1,1] = 0 

 

    #------------------------------------------- 

    # Generate initial network and conditions (Genesis) 

    #------------------------------------------- 

    W = nx.Graph() 

    for i in range(N): 

        W.add_node(Agent(SF)) 

 

    #------------------------------------------- 

    # Start main simulation loop 

    #------------------------------------------- 

    simloop_start = time.time() 
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    data.Sdata = np.zeros((T, Num_parameters + Num_outputs)) 

    for t in range(T): 

        t_time = time.time() 

 

        # Update network (create edges) and reset values 

        old_edges = len(W.edges()) 

        broken_edges = 0 

        create_edges(W, W.nodes(), P) 

        new_edges = len(W.edges()) - old_edges 

        degrees = W.degree() 

        if max_res_model == True: 

            if len(W.nodes()) > maxR: 

                for agent in W.nodes(): 

                    agent.fitness = Res / len(W.nodes()) 

                    agent.degree = degrees[agent] 

                    agent.rcounter = 0 

 

            else: 

                for agent in W.nodes(): 

                    agent.fitness = SF 

                    agent.degree = degrees[agent] 

                    agent.rcounter = 0 

 

        else: 

            for agent in W.nodes(): 

                agent.fitness = SF 

                agent.degree = degrees[agent] 

                agent.rcounter = 0 

 

        # Do trades (currently they may sometimes interaction more than once/per 

        trades_time_start = time.time() 

 

        for agent in W.nodes(): 

            if agent.degree > 0: 

                agent.neighborhood = get_detailed_map(agent, D + 1) 

                agent.neighbors = agent.neighborhood[0] 

                agent.ledger = {}  # Keeps current account of profit by connec 

                for neighbor in agent.neighbors: 

                    agent.ledger[neighbor] = 0 

 

        agent_queue = rd.sample(list(W.nodes()), len(W.nodes())) 
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        for agent in agent_queue: 

            if agent.degree > 0: 

                if agent.rcounter < R: 

                    interactions_needed = R - agent.rcounter 

                    available_peeps = get_detailed_map(agent, D + 1) 

                    for d in range(D + 1): 

                        for neighbor in available_peeps[d]: 

                            if neighbor.rcounter < R: 

                                pass 

                            else: 

                                available_peeps[d].remove(neighbor) 

 

                    num_partners = 0 

                    partners = [] 

                    while num_partners < interactions_needed: 

                        bins = [] 

                        for d in range(D + 1): 

                            bins.append(available_peeps[d]) 

                            bin_choices = [] 

                            for dist in range(len(bins)): 

                                if len(bins[dist]) > 0: 

                                    bin_choices.append(dist) 

 

                        if len(bin_choices) > 0: 

                            bin_choice = choice(bin_choices) 

                            chosen = choice(available_peeps[bin_choice]) 

                            chosen.rcounter += 1 

                            partners.append(chosen) 

                            num_partners += 1 

                            if chosen.rcounter >= R: 

                                available_peeps[bin_choice].remove(chosen) 

                        else: 

                            num_partners = interactions_needed 

 

                    if len(partners) == 0: 

                        pass 

                    else: 

                        for partner in partners: 

                            agent.rcounter += 1 

                            j = partner 

                            path = nx.shortest_path(W, agent, j) 

                            path_j = nx.shortest_path(W, j, agent) 
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                            neighbor_type = len(path) - 2 # indexing/remove agnt 

                            i_strat = np.random.binomial(1, 

                                    agent.strategy[neighbor_type], 1)[0] 

                            j_strat = np.random.binomial(1, 

                                    j.strategy[neighbor_type],1)[0] 

                            agent.fitness += gm[i_strat, j_strat]/float(R) 

                            j.fitness += gm[j_strat, i_strat]/float(R) 

                            connecting_agent = path[1] 

                            connecting_agent_j = path_j[1] 

                            agent.ledger[connecting_agent] += gm[i_strat, 

                                    j_strat]/float(R) 

                            j.ledger[connecting_agent_j] += gm[j_strat, 

                                    i_strat]/float(R) 

 

            # Sever losing connections 

            if len(agent.ledger) > 0: 

                for connecting_agent in agent.ledger: 

                    if agent.ledger[connecting_agent] < 0: 

                        try: 

                            W.remove_edge(agent, connecting_agent) 

                            broken_edges += 1 

                        except: 

                            W.add_edge(agent, connecting_agent) 

                            W.remove_edge(agent, connecting_agent) 

 

        # Grim Reaper cometh, taketh the dead away 

 

        bodycount = 0 

        for agent in W.nodes(): 

            agent.fitness -= Mcost 

            if agent.fitness < 0: 

                agent.starving += 1 

                if rd.uniform(0, 1) > 1/math.pow(agent.starving, SR): 

                    W.remove_node(agent) 

                    bodycount +=1 

            else: 

                agent.starving = 1 

 

 

        trades_time_end = time.time() 

        #print "Total trades time: " + str(trades_time_end - trades_time_start) 

##        print "Dead agents: " + str(bodycount) 
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##        print "New edges: " + str(new_edges) 

##        print "Broken edges: " + str(broken_edges) 

##        print "Num nodes: " + str(len(W.nodes())) 

##        print "Time period: ", t 

##        print "Simulation run: ", mc 

 

        # Replication (births)/ aging / mutation / reset SF / Centrality 

        total_fitness_to_power = sum(math.pow(max(agent.fitness,0), 

                                    rskew) for agent in W.nodes()) 

        if total_fitness_to_power == 0: total_fitness_to_power = 1 

 

        nursury = 0 

        for agent in W.nodes(): 

            agent.age += 1 

            if rd.uniform(0, 1) < math.pow(max(agent.fitness,0), 

                                    rskew)/total_fitness_to_power: 

                baby_agent = Agent(SF) 

                baby_agent.strategy = agent.strategy 

                baby_agent.pref_bias = agent.pref_bias 

                W.add_node(baby_agent) 

                nursury += 1 

 

            if rd.uniform(0,1) < mut: 

                agent.strategy = strategy_profile() 

                agent.pref_bias = rd.uniform(0, 1) 

 

        #print "Baby agents: " + str(nursury) 

        #------------------------------------------- 

        # Value totals 

        #------------------------------------------- 

        N_at_t = float(len(W.nodes()) + 1) 

        total_fitness = sum(agent.fitness for agent in W.nodes()) 

        total_pref_bias = sum(agent.pref_bias for agent in W.nodes()) 

        total_age = sum(agent.age for agent in W.nodes()) 

        total_starving = sum(agent.starving for agent in W.nodes()) 

        total_coop_degs1 = sum(agent.strategy[0] for agent in W.nodes()) 

        total_coop_degs2 = 0 

        total_coop_degs3 = 0 

        if D > 0: 

            total_coop_degs2 = sum(agent.strategy[1] for agent in W.nodes()) 

        if D > 1: 

            total_coop_degs3 = sum(agent.strategy[2] for agent in W.nodes()) 
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        degree_dict = W.degree() 

 

        for agent in W.nodes(): 

            agent.degree = degree_dict[agent] 

            agent.popul = agent.degree/float(len(W.nodes())) 

 

        degree_total = sum(agent.degree for agent in W.nodes()) 

 

        #------------------------------------------- 

        # Record Single-run data 

        #------------------------------------------- 

        data.Sdata[t, 0] = N 

        data.Sdata[t, 1] = P 

        data.Sdata[t, 2] = R 

        data.Sdata[t, 3] = SF 

        data.Sdata[t, 4] = Res 

        data.Sdata[t, 5] = Mcost 

        data.Sdata[t, 6] = D 

        data.Sdata[t, 7] = C 

        data.Sdata[t, 8] = B 

        data.Sdata[t, 9] = mut 

        data.Sdata[t, 10] = SR 

        data.Sdata[t, 11] = rskew 

        data.Sdata[t, 12] = 1 - (total_coop_degs1/N_at_t)  # Avg. Cooperation d1 

        data.Sdata[t, 13] = 1 - (total_coop_degs2/N_at_t)  # Avg. Cooperation d2 

        data.Sdata[t, 14] = 1 - (total_coop_degs3/N_at_t)  # Avg. Cooperation d3 

        data.Sdata[t, 15] = total_fitness/N_at_t           # Avg. fitness 

        data.Sdata[t, 16] = total_pref_bias/N_at_t         # Avg. pref bias 

        data.Sdata[t, 17] = total_age/N_at_t               # Avg. age 

        data.Sdata[t, 18] = total_starving/N_at_t          # Avg. starvation 

        data.Sdata[t, 19] = degree_total/N_at_t             # Avg. degree 

        if len(W.nodes()) > 0: 

            data.Sdata[t, 20] = nx.average_clustering(W)       # Avg. Clustering 

            data.Sdata[t, 21] = nx.transitivity(W)             # Avg. Transitivity 

            data.Sdata[t, 22] = nx.is_connected(W)             # Graph is connected? 

            data.Sdata[t, 23] = nx.number_connected_components(W) # Num of conn. com 

            data.Sdata[t, 24] = gini(W.nodes())                   # Gini-coefficient 

            data.Sdata[t, 25] = len(W.nodes()) + 1                # Population size 

            data.Sdata[t, 27] = giant_comp(W) 

        else: 

            data.Sdata[t, 20] = 6666      # Avg. Clustering 
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            data.Sdata[t, 21] = 6666             # Avg. Transitivity 

            data.Sdata[t, 22] = 6666             # Graph is connected? 

            data.Sdata[t, 23] = 6666 # Num of conn. com 

            data.Sdata[t, 24] = 6666                   # Gini-coefficient 

            data.Sdata[t, 25] = 0                # Population size 

        data.Sdata[t, 26] = 6666 

 

 

 

        # Generating eigenvalues and centrality measures only after last t period 

        # Have to do a try/except because nx.eigenvector_centrality doesn't always 

        # converge. 

 

 

        #------------------------------------------- 

        # Single-shot Analysis 

        #------------------------------------------- 

 

        try: 

            eigen_centrality = nx.eigenvector_centrality(W) 

        except Exception: 

            eigen_centrality = {} 

            for agent in W.nodes(): 

                eigen_centrality[agent] = 9999 

 

        betweenness_centrality = nx.betweenness_centrality(W) 

        degree_centrality = nx.degree_centrality(W) 

        closeness_centrality = nx.closeness_centrality(W) 

        for agent in W.nodes(): 

            agent.ev_centrality = eigen_centrality[agent] 

            agent.deg_centrality = degree_centrality[agent] 

            agent.bet_centrality = betweenness_centrality[agent] 

            agent.close_centrality = closeness_centrality[agent] 

 

        t_time_end = time.time() 

        #print "Time period duration: ", t_time_end - t_time 

    #------------------------------------------ 

    # End main simulation loop 

    #------------------------------------------ 

    simloop_end = time.time() 

    print "Single-shot runtime", simloop_end - simloop_start 

    print "Simulation run: ", mc 
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    if SingleShot == True: 

        plot_all(W, W.nodes(), T, data, D) 

 

 

    #------------------------------------------- 

    # End Monte Carlo loop; save MC data 

    #------------------------------------------- 

    data.MCdata[mc, 0] = N 

    data.MCdata[mc, 1] = P 

    data.MCdata[mc, 2] = R 

    data.MCdata[mc, 3] = SF 

    data.MCdata[mc, 4] = Res 

    data.MCdata[mc, 5] = Mcost 

    data.MCdata[mc, 6] = D 

    data.MCdata[mc, 7] = C 

    data.MCdata[mc, 8] = B 

    data.MCdata[mc, 9] = mut 

    data.MCdata[mc, 10] = SR 

    data.MCdata[mc, 11] = rskew 

    data.MCdata[mc, 12] = data.Sdata[T-1, 12]  # Avg. Cooperation d1 

    data.MCdata[mc, 13] = data.Sdata[T-1, 13] # Avg. Cooperation d2 

    data.MCdata[mc, 14] = data.Sdata[T-1, 14]  # Avg. Cooperation d3 

    data.MCdata[mc, 15] = data.Sdata[T-1, 15]  # Avg. fitness 

    data.MCdata[mc, 16] = data.Sdata[T-1, 16]  # Avg. pref bias 

    data.MCdata[mc, 17] = data.Sdata[T-1, 17]  # Avg. age 

    data.MCdata[mc, 18] = data.Sdata[T-1, 18]  # Avg. starvation 

    data.MCdata[mc, 19] = data.Sdata[T-1, 19]  # Avg. Degree 

    data.MCdata[mc, 20] = data.Sdata[T-1, 20]  # Avg. Clustering 

    data.MCdata[mc, 21] = data.Sdata[T-1, 21]  # Avg. Transitivity 

    data.MCdata[mc, 22] = data.Sdata[T-1, 22]  # Graph is connected? 

    data.MCdata[mc, 23] = data.Sdata[T-1, 23]  # Num of conn. com 

    data.MCdata[mc, 24] = data.Sdata[T-1, 24]  # Gini-coefficient 

    data.MCdata[mc, 25] = data.Sdata[T-1, 25]  # Population size 

    data.MCdata[mc, 26] = simloop_end - simloop_start 

    data.MCdata[mc, 27] = data.Sdata[T-1, 27] 

    # averager over last 200 time periods 

    if T > 1000: 

        data.MCdata[mc, 28] = sum(data.Sdata[T-201:T-1, 12])/200.0  # Avg. Cooperation d1 

        data.MCdata[mc, 29] = sum(data.Sdata[T-201:T-1, 13])/200.0 # Avg. Cooperation d2 

        data.MCdata[mc, 30] = sum(data.Sdata[T-201:T-1, 14])/200.0  # Avg. Cooperation d3 

        data.MCdata[mc, 31] = sum(data.Sdata[T-201:T-1, 15])/200.0  # Avg. fitness 

        data.MCdata[mc, 32] = sum(data.Sdata[T-201:T-1, 16])/200.0  # Avg. pref bias 
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        data.MCdata[mc, 33] = sum(data.Sdata[T-201:T-1, 17])/200.0  # Avg. age 

        data.MCdata[mc, 34] = sum(data.Sdata[T-201:T-1, 18])/200.0  # Avg. starvation 

        data.MCdata[mc, 35] = sum(data.Sdata[T-201:T-1, 19])/200.0  # Avg. Degree 

        data.MCdata[mc, 36] = sum(data.Sdata[T-201:T-1, 20])/200.0  # Avg. Clustering 

        data.MCdata[mc, 37] = sum(data.Sdata[T-201:T-1, 21])/200.0  # Avg. Transitivity 

        data.MCdata[mc, 38] = sum(data.Sdata[T-201:T-1, 22])/200.0  # Graph is connected? 

        data.MCdata[mc, 39] = sum(data.Sdata[T-201:T-1, 23])/200.0  # Num of conn. com 

        data.MCdata[mc, 40] = sum(data.Sdata[T-201:T-1, 24])/200.0  # Gini-coefficient 

        data.MCdata[mc, 41] = sum(data.Sdata[T-201:T-1, 25])/200.0  # Population size 

        data.MCdata[mc, 42] = sum(data.Sdata[T-201:T-1, 27])/200.0 

 

#------------------------------------------- 

# Close datafile and analysis 

#------------------------------------------- 

np.savetxt("MCdata_endogenous_network.csv", data.MCdata, 

                delimiter =',', fmt = '%1.7f') 

 

 

#------------------------------------------ 

# End all simulations; close up shop! 

#------------------------------------------ 

mcloop_end = time.time() 

print "Monte Carlo runtime", mcloop_end - mcloop_start 

 

done = 1; 
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Chapter 5 Appendix

6.1.2 Multilevel Selection Model of Pastoralist Conflict

This model was programmed in Python 2.7 and executed on a cluster of four computers

including an 8-core AMD FX-8150 CPU, two dual Intel Core i5-4320m CPUs, and a dual

core Intel T2200 CPU. Code begins on next page.
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import random as rd 

import matplotlib.pyplot as plt 

import numpy as np 

import time 

import math 

import uuid 

from scipy import ndimage as nd 

import sys 

#plt.ion() 

np.set_printoptions(threshold = 10000) 

#------------------------------------------ 

# Declare Parameters 

#------------------------------------------ 

# Type 

SingleShot = False 

show = False    # Change this year to turn the viewer on and off 

printStuff = False 

timeLimit1 = 10 

timeLimit2 = 15 

timeLimit3 = 20 

timeLimit4 = 25 

timeLimit5 = 30 

tcut1 = 0.05 

tcut2 = 0.05 

tcut3 = 0.05 

tcut4 = 0.1 

tcut5 = 0.1 

 

# Static parameters 

MC = 250 

N = 100 

T = 2000 

S = 30 

mp = 20      # Migration period 

mu = 0.005   # Mutation rate 

wfill = 0.5  # Well initial fill level 

gfill = 0.5  # Grass initial fill level 

cap = 2      # Land carrying capacity (max res. is multiple of growth at t) 

max_age = 5*mp                  # Max age 

 

if SingleShot == True: 

    LQ_selector = 0 # 0-mono, 1-radial, 2-quads, 3-stripes 
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    MC = 1       # Single shot 

    T = 50    # Number of periods 

    N = 100      # Initial population size 

    S = 40       # World size (SxS) 

    mp = 20      # Migration period 

    m = 0.05/float(mp) # Migration rate 

    mu = 0.005   # Mutation rate 

    f = 10       # Initial flock size 

    b = 1.0      # Benefit of cooperation (contribution multiplier) 

    Kt = 2       # Initial tribe count 

    kmax = 70   # Maximum number of members per tribe 

    wf = .05     # Well frequency 

    wfill = 0.5  # Well initial fill level 

    gfill = 0.5  # Grass initial fill level 

    ba = 2      # Base grass per tile. 

    ex = 2.0     # Seasonal extremity (Higher is LOWER extremity), float 

    A = ba/float(ex)    # Seasonal extremity (Higher is LOWER extremity) 

    V = .01      # Drought/Rain extremity, range [0,.5] 

    k = 5        # Season length parameter 

    L4 = .5 * ba # High-quality land bonus 

    L3 = .33 *ba # Good-quality land bonus 

    L2 = .16 *ba # Low-quality land bonus 

    L1 = 0 * ba  # inferior-quality land bonus 

    wd = 5       # Persistant weather pattern duration 

    cap = 2     # Land carrying capacity (max res. is multiple of growth at t) 

    wdmin = 3    # Minimum weather duration in time periods 

    wdmax = 5    # Maximum weather duration in time periods 

    wmin = 4 * ba   # Minimum well depth 

    wmax = 5 * ba  # Maximum well depth 

    wg_ratio = 3    # Ratio of water accummulation to grass growth at given precip 

    lq_boost = .1   # How much land quality affects well depth, [0, 1] 

    dtoler = .1     # Deprivation tolerance. [-.2, .5] roughly. lower die faster. 

    lan_law = 1.5     # Lanchester's Laws of Combat: Linear (1) or Square (2) 

    lethal = .9     # Base probability of surviving a battle 

    fc_rate = .3    # Food consumper rate. (hunger increase per turn) 

    wc_rate = .1    # Water consumption rate. (water consumption per turn) 

    calf_rate = .1  # Reproduction probability of animals (per flock, per period) 

    mate_comp = 2   # Mating competition factor. 1-linear, >1 - increasing rate 

    birth_rate = .1 # Reproduction probability of tribesmen per time period. 

    cbb = 1         # Cooperative breeding bonus factor 

    bprice = .25    # "Bride price," percent of flocks given to offspring. 

    of_rad = 3      # radius offspring birth around parenting agent. 
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    well_dist_exp = 1.5 # Well distance value atrophy exponent 

    max_age = 5*mp  # Maximum age 

 

Num_parameters = 46 

Num_outputs = 5 

report_depth = 7 

''' Depth: 

    0 - grasslands 

    1 - wells 

    2 - well depth 

    3 - dominion 

    4 - conflict 

    5 - cooperation 

    6 - populated (numerical category, by tribe) 

    ''' 

precip_depth = 8 

''' Precip_depth: 

    0 - Growth in cell at t 

    1 - Land quality 

    2 - PDSI 

    3 - Well depth 

    4 - Well level 

    5 - Well present (0,1) 

    6 - Grass level 

    7 - Max grass level (grass depth) 

    ''' 

#------------------------------------------- 

# Create custom functions 

#------------------------------------------- 

 

def smooth_grid(landgrid): 

    new_grid = nd.gaussian_filter(landgrid, 3, mode='nearest') 

    return new_grid 

 

def pr_victory(x, y, a_tribe, b_tribe, lanchester_law): 

    # Get average euclidean distances of members for each tribe 

    a_coordinates = [] 

    a_total_distance = 0 

    b_coordinates = [] 

    b_total_distance = 0 

    a_size = float(len(a_tribe.members)) 

    b_size = float(len(b_tribe.members)) 

158



 

    for a in a_tribe.members: 

        a_coordinates.append(a.location) 

 

    for coord_pair in a_coordinates: 

        x2, y2 = coord_pair 

        a_total_distance += math.sqrt((x - x2)**2 + (y - y2)**2) 

 

    a_avg_dist = (a_total_distance / a_size) + 1 

 

    for b in b_tribe.members: 

        b_coordinates.append(b.location) 

 

    for coord_pair in b_coordinates: 

        x2, y2 = coord_pair 

        b_total_distance += math.sqrt((x - x2)**2 + (y - y2)**2) 

 

    b_avg_dist = (b_total_distance / b_size) + 1 

 

    a_strength = (a_tribe.cohesion*a_size/float(a_avg_dist))**lanchester_law 

    b_strength = (b_tribe.cohesion*b_size/float(b_avg_dist))**lanchester_law 

 

    pr_vic_a = a_strength / float(a_strength + b_strength) 

 

    return pr_vic_a 

 

def PGG_tribes_list(fight_pairs, tribes_list): 

    fight_tribes = [] 

    for pair in fight_pairs: 

        trA, trB = list(pair) 

        fight_tribes.append(trA) 

        fight_tribes.append(trB) 

 

    fight_tribes = set(fight_tribes) 

    PGG_tribes = list(set(tribes_list) - fight_tribes) 

    return PGG_tribes 

 

#------------------------------------------- 

# Create classes 

#------------------------------------------- 

 

# Agent class 
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class Agent: 

    counter = 0 

    def __init__(self, x_coord, y_coord, tribe, flocks, coop_in, coop_out): 

        self.uid = Agent.counter 

        self.location = (x_coord, y_coord) 

        self.old_loc = (x_coord, y_coord) 

        self.next_loc = None 

        self.tribe = tribe 

        self.cooperation_in = coop_in 

        self.cooperation_out = coop_out 

        self.risk_aversion = rd.uniform(0, 1) 

        self.flocks = flocks 

        self.thirst = 0.0 

        self.hunger = 0.0 

        self.appetite = 0.0 * flocks 

        self.thirstiness = 0.0 * flocks 

        self.current_water = None 

        self.current_food = None 

        self.rank = None 

        self.age = 0 

        self.mate_score = None 

        Agent.counter += 1 

 

    def _del__(self): 

        return 

 

    def get_expectation(self, x, y, b, world, precipgrid, lan_law): 

        agent = self 

        available_food = precipgrid[x, y, 6] 

        available_water = precipgrid[x, y, 4] 

        ''' Agent's hunger is how hungry his animals are. Appetite is how 

            much the agent wants to consume, given the number of animals.''' 

        appetite = agent.hunger * agent.flocks 

        thirstiness = agent.thirst * agent.flocks 

        agents = [] 

        if len(world[x][y]) > 0: 

            agents.extend(world[x][y]) 

            if agent.location == (x, y): 

                agents.remove(agent) 

            if len(agents) == 1: 

                j = agents[0] 

                H2Oshare = available_water/2.0 
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                foodshare = available_food/2.0 

                if agent.tribe == j.tribe: # check if they're the same tribe 

                    # Play PGG only 

                    '''Use J's cooperation_in instead of average cooperation_in 

                        (cohesion) because agents are of the same tribe and 

                        can be assumed to recognize each other.''' 

                    sm_pot = b * foodshare * (j.cooperation_in + \ 

                        agent.cooperation_in) 

                    sm_kettle = b * H2Oshare * (j.cooperation_in + \ 

                        agent.cooperation_in) 

 

                    agent_food = foodshare * (1 - agent.cooperation_in) 

                    agent_water = H2Oshare * (1 - agent.cooperation_in) 

 

                    agent_food += (sm_pot/2.0) 

                    agent_water += (sm_kettle/2.0) 

 

                    if agent_food > appetite: 

                        hunger = 0.0 

                    else: 

                        appetite -= agent_food 

                        hunger = appetite / float(agent.flocks) 

                    ''' Same with water/third ''' 

                    if available_water > thirstiness: 

                        thirst = 0.0 

                    else: 

                        thirstiness -= agent_water 

                        thirst = thirstiness / float(agent.flocks) 

 

                    happiness = 1 - ((hunger + thirst)/2.0) 

 

                else: 

                    # Play FPGG and PGG. Compare outcomes. 

                    # Play PGG only 

                    '''Use out-tribe average cooperation_out instead of j's 

                        cooperation_out because agent's will only know what 

                        tribe to expect at a new location, not the individual, 

                        who they will not know or recognize individually.''' 

                    # solo_happiness 

                    if available_food > appetite: 

                        hunger = 0.0 

                    else: 
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                        appetite -= precipgrid[x][y][6] 

                        hunger = appetite / float(agent.flocks) 

                    ''' Same with water/third ''' 

                    if available_water > thirstiness: 

                        thirst = 0.0 

                    else: 

                        thirstiness -= precipgrid[x][y][4] 

                        thirst = thirstiness / float(agent.flocks) 

 

                    solo_happiness = 1 - ((hunger + thirst)/2.0) 

 

                    # FPGG happiness 

                    agent_water = H2Oshare 

                    agent_food = foodshare 

                    if agent_food > appetite: 

                        hunger = 0.0 

                    else: 

                        appetite -= agent_food 

                        hunger = appetite / float(agent.flocks) 

                    ''' Same with water/third ''' 

                    if agent_water > thirstiness: 

                        thirst = 0.0 

                    else: 

                        thirstiness -= agent_water 

                        thirst = thirstiness / float(agent.flocks) 

 

                    split_happiness  = 1 - ((hunger + thirst)/2.0) 

                    # Determine probabilty of victory in battle 

                    pr_vic_a = pr_victory(x, y, agent.tribe, j.tribe, lan_law) 

 

                    loss_happiness = 1 - ((agent.hunger + agent.thirst)/2.0) 

                    FPGG_happiness = (pr_vic_a * solo_happiness) + \ 

                                                 (1-pr_vic_a)*(loss_happiness) 

 

                    happiness = max(split_happiness, FPGG_happiness) 

 

            # Greater than 2 agents 

            else: 

                # Determine how many tribes 

                num_agents = len(agents) + 1 

                tribes_list = [] 

                for ag in agents: 
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                    tribes_list.append(ag.tribe) 

                tribes_list.append(agent.tribe) 

                '''Converting to set and back removes duplicates''' 

                tribes_list_set = list(set(tribes_list)) 

                tribe_count = len(tribes_list_set) 

 

                if tribe_count == 1: # If all same tribe 

                    H2Oshare = available_water/float(num_agents) 

                    foodshare = available_food/float(num_agents) 

                    collective_plate = 0 

                    collective_kettle = 0 

                    for ag in agents: 

                        collective_plate += b * ag.cooperation_in * foodshare 

                        collective_kettle += b * ag.cooperation_in * H2Oshare 

 

                    agent_food = foodshare * (1- agent.cooperation_in) 

                    agent_water = H2Oshare * (1- agent.cooperation_in) 

 

                    agent_food += (collective_plate / float(num_agents)) 

                    agent_water += (collective_kettle / float(num_agents)) 

 

                    if agent_food > appetite: 

                        hunger = 0.0 

                    else: 

                        appetite -= agent_food 

                        hunger = appetite / float(agent.flocks) 

                    ''' Same with water/third ''' 

                    if available_water > thirstiness: 

                        thirst = 0.0 

                    else: 

                        thirstiness -= agent_water 

                        thirst = thirstiness / float(agent.flocks) 

 

                    happiness = 1-((hunger + thirst)/2.0) 

 

                else: # If two tribes or more 

                    # Get how many agents in each out-tribe 

                    agents_i = [] 

                    agents_i.extend(agents) 

                    agents_i.append(agent) 

                    tribes_census = {} 

                    tribes_strategy_book = {} 
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                    tribes_list_no_agent = [] 

                    tribes_list_no_agent.extend(tribes_list_set) 

                    tribes_list_no_agent.remove(agent.tribe) 

 

                    for tribe in tribes_list_no_agent: 

                        tribes_census[tribe] = 0 

                        for ag in agents_i: 

                            if ag.tribe == tribe: 

                                tribes_census[tribe] += 1 

                                tribes_strategy_book[tribe] = 0 

 

                    # First get in-tribe PGG payoffs and adj. resource shrs. 

                    ingroup = list(set(agent.tribe.members) & set(agents_i)) 

                    ingroup_size = len(ingroup) 

                    # Resource sharing with competition eliminated 

                    ag_food = available_food / float(ingroup_size) 

                    ag_water = available_water / float(ingroup_size) 

 

                    ingroup_foodplate_nc = b*sum(ag_food* 

                            tribesman.cooperation_in for tribesman in ingroup) 

                    ingroup_waterkettle_nc = b*sum(ag_water* 

                            tribesman.cooperation_in for tribesman in ingroup) 

 

                    agent_foodshare_nc = ag_food * (1 - agent.cooperation_in) 

                    agent_H2Oshare_nc = ag_water * (1 - agent.cooperation_in) 

 

                    agent_foodshare_nc += (ingroup_foodplate_nc/float( 

                                ingroup_size)) 

                    agent_H2Oshare_nc += (ingroup_waterkettle_nc/float( 

                                ingroup_size)) 

 

                    if agent_foodshare_nc > appetite: 

                        hunger = 0.0 

                    else: 

                        appetite -= agent_foodshare_nc 

                        hunger = appetite / float(agent.flocks) 

                    ''' Same with water/third ''' 

                    if agent_H2Oshare_nc > thirstiness: 

                        thirst = 0.0 

                    else: 

                        thirstiness -= agent_H2Oshare_nc 

                        thirst = thirstiness / float(agent.flocks) 
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                    happiness_nc = 1 - ((hunger + thirst)/2.0) 

 

                    # Determine which other tribes agent's tribe will fight 

                    for tribe_out in tribes_list_no_agent: 

                        '''Iterate thru each out-tribe to figure out calculate 

                           outcome with each other tribe individually''' 

                        outgroup = list(set(tribe_out.members) & set(agents_i)) 

                        all_agents = list(set(ingroup) | set(outgroup)) 

                        outgroup_size = len(outgroup) 

                        net_num_agents = ingroup_size + outgroup_size 

                        # Ingroup PGG based on proportion of resources. 

                        # In-group/out-group PGG: 

                        ag_food_comp = available_food/float(net_num_agents) 

                        ag_water_comp = available_water/float(net_num_agents) 

 

                        ingroup_contr_f = b * ag_food_comp * sum( 

                            tribesman.cooperation_in for tribesman in ingroup) 

 

                        ingroup_contr_w = b *ag_water_comp * sum( 

                            tribesman.cooperation_in for tribesman in ingroup) 

 

                        total_pot_f = ingroup_contr_f 

                        total_pot_w = ingroup_contr_w 

 

                        agent_share_f = ag_food_comp * (1-agent.cooperation_in) 

                        agent_share_w = ag_water_comp * (1-agent.cooperation_in) 

                        agent_share_f += (total_pot_f /float(ingroup_size)) 

                        agent_share_w += (total_pot_w /float(ingroup_size)) 

 

                        if agent_share_f > appetite: 

                            hunger = 0.0 

                        else: 

                            appetite -= agent_share_f 

                            hunger = appetite / float(agent.flocks) 

                        ''' Same with water/third ''' 

                        if agent_share_w > thirstiness: 

                            thirst = 0.0 

                        else: 

                            thirstiness -= agent_share_w 

                            thirst = thirstiness / float(agent.flocks) 

 

165



                        peace_happiness = 1 - ((hunger + thirst)/2.0) 

 

                        # Generate Pr_vict and weight expected outcomes 

                        pr_vic_a = pr_victory(x, y, agent.tribe, tribe_out, 

                            lan_law) 

 

                        win_happiness = happiness_nc 

                        loss_happiness = 1 - ((agent.hunger + agent.thirst)/2.0) 

 

                        fight_happiness = (pr_vic_a * win_happiness)+ \ 

                            (1-pr_vic_a)*(loss_happiness) 

 

                        if fight_happiness > peace_happiness: 

                            tribes_strategy_book[tribe_out] = 1 # will fight 

 

                    # calculate total expected payoffs given strategy book 

                    for tribe_out in tribes_strategy_book: 

                        # Find out how many: 

                        # 1. Fellows 

                        # 2. Outgroup cooperators. 

                        # 3. Outgroup fighters. 

                        coop_tribes = [] 

                        fight_tribes = [] 

                        num_fellows = ingroup_size 

                        num_out_coops = 0 

                        num_out_fight = 0 

 

                        if tribes_strategy_book[tribe_out] == 1: 

                            ''' distribute resources based on unilateral expectat- 

                            ations of battle outcomes.''' 

                            fight_tribes.append(tribe_out) 

                            num_out_fight += len(list(set(tribe_out.members) & 

                                set(agents_i))) 

                        else: 

                            coop_tribes.append(tribe_out) 

                            num_out_coops += len(list(set(tribe_out.members) & 

                                set(agents_i))) 

 

                        # Get compounded PR_victory (surviving against all Ts) 

                        pr_vic_comp = [] 

                        for enemy in fight_tribes: 

                            pr_vic_comp.append(pr_victory(x, y, agent.tribe, 
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                                enemy, lan_law)) 

 

                        if len(pr_vic_comp) == 0: 

                            win_all_prob = 1 

                        else: 

                            win_all_prob = reduce(lambda x, y: x*y, pr_vic_comp) 

 

                        # Distribute resources accordingly 

                        num_coops_ttl = num_fellows + num_out_coops 

                        f_per_coop = available_food / float(num_coops_ttl) 

                        w_per_coop = available_water / float(num_coops_ttl) 

 

                        # Get in-group contributions 

                        in_contribs_f = b * f_per_coop*sum( 

                            tribesman.cooperation_in for tribesman in ingroup) 

 

                        in_contribs_w = b * w_per_coop*sum( 

                            tribesman.cooperation_in for tribesman in ingroup) 

 

                        # Calculate payoff 

                        ttl_pot_f = in_contribs_f 

                        ttl_pot_w = in_contribs_w 

 

                        ag_food = f_per_coop * (1 - agent.cooperation_in) 

                        ag_water = w_per_coop * (1 - agent.cooperation_in) 

 

                        ag_food += (ttl_pot_f/float(num_fellows)) 

                        ag_water += (ttl_pot_w/float(num_fellows)) 

 

                        if ag_food > appetite: 

                            hunger = 0.0 

                        else: 

                            appetite -= ag_food 

                            hunger = appetite / float(agent.flocks) 

                        ''' Same with water/third ''' 

                        if ag_water > thirstiness: 

                            thirst = 0.0 

                        else: 

                            thirstiness -= ag_water 

                            thirst = thirstiness / float(agent.flocks) 

 

                        pos_happiness = 1 - ((hunger + thirst)/2.0) 
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                        los_happiness = 1 - ((agent.hunger + agent.thirst)/2.0) 

 

                        happiness = win_all_prob * pos_happiness + \ 

                                    (1 - win_all_prob) * los_happiness 

 

        else:  #Agent will occupy the cell alone 

            if available_food > appetite: 

                hunger = 0.0 

            else: 

                appetite -= precipgrid[x][y][6] 

                hunger = appetite / float(agent.flocks) 

            ''' Same with water/third ''' 

            if available_water > thirstiness: 

                thirst = 0.0 

            else: 

                thirstiness -= precipgrid[x][y][4] 

                thirst = thirstiness / float(agent.flocks) 

 

            happiness = 1 - ((hunger + thirst)/2.0) 

 

        return happiness 

 

    def well_weight(self, x, y, wells, world, precipgrid): 

        weights = [] 

        th = self.thirst 

        for x_well,y_well in wells: 

            agents = world[x][y] 

            c = precipgrid[x_well][y_well][4] 

            d = wells[(x_well,y_well)] + 1 # add 1 so d can't equal 0. 

            value = (c/float((len(agents) + 1)))/float(d**well_dist_exp) 

            weights.append(value) 

 

        weight = th * sum(weights) 

 

        return weight 

 

    def wander(self, x_coord, y_coord, b, world, precipgrid, wells, lan_law): 

        ''' Look at the 9 possible moves (including move 0). Find the move that 

            maximizes the utility function. 

 

            |m1|m2|m3| 

            ---------- 
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            |m4|m0|m5| 

            ---------- 

            |m6|m7|m8| 

 

 

            Outcomes * weights 

 

            # Don't forget to tally victories_this_period, make list of pr_victs 

                for later incorporation into battle death likelihoods. Could 

                possibly do this without an additional parameter. 

 

        ''' 

        ## Generate well weights 

        ## Possible moves:' 

        possible_moves = {} 

        possible_moves[(x_coord, y_coord)] = 0      # m0 

        possible_moves[(x_coord-1, y_coord-1)] = 0  # m1 

        possible_moves[(x_coord-1, y_coord)] = 0    # m2 

        possible_moves[(x_coord-1, y_coord+1)] = 0  # m3 

        possible_moves[(x_coord, y_coord-1)] = 0    # m4 

        possible_moves[(x_coord, y_coord+1)] = 0    # m5 

        possible_moves[(x_coord+1, y_coord-1)] = 0  # m6 

        possible_moves[(x_coord+1, y_coord)] = 0    # m7 

        possible_moves[(x_coord+1, y_coord+1)] = 0  # m8 

 

        # Generated expected utilities of each possible move and well weights 

        for move in possible_moves: 

            x,y = move 

            if x == S: x = S-1 # edge detection 

            if x == -1: x = 0 

            if y == S: y = S-1 

            if y == -1: y = 0 

            exp_value = agent.get_expectation(x, y, b, world, precipgrid,lan_law) 

            weight = agent.well_weight(x, y, wells, world, precipgrid) 

            possible_moves[(x,y)] = exp_value * weight 

 

        # Here I need to take the dictionary of moves with weighted values and 

        # assign a probability distribution over each one. Then draw one at 

        # random. 

        moves = possible_moves 

        min_val_key = min(moves, key = moves.get) 

        min_val = moves[min_val_key] 
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        for move in moves: 

            if moves[move] != 0.0: 

                moves[move] += abs(min_val) 

 

        total_payoffs = sum(moves.itervalues()) 

 

        for move in moves: 

            moves[move] = (moves[move]/float(total_payoffs)) 

 

        pairs = moves.items() 

        probabilities = np.random.multinomial(1, zip(*pairs)[1]) 

 

        result = zip(probabilities, zip(*pairs)[0]) 

        for res in result: 

            if res[0] == 1: 

                next_loc = res[1] 

 

        return next_loc 

 

# Tribe class 

class Tribe: 

    counter = 0 

 

    def __init__(self, N, kt, starting): 

        if starting == 1: 

            KT = N/kt 

        if starting == 0: 

            KT = N 

        self.uid = Tribe.counter 

        self.members = [] 

        self.cohesion = None 

        self.cooperation_out = None 

        self.risk_aversion = None 

        self.current_food = 0 

        self.current_water = 0 

        self.war_count = 0 

        self.war_food = 0 

        self.war_water = 0 

        self.pr_vic_record = [] 

        self.avg_pr_vic = None 

        self.population_old = 1 

        self.population_new = 1 
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        self.growth_rate = 0 

        Tribe.counter += 1 

 

    def _del__(self): 

        return 

 

 

# Climate 

class Climate: 

    def __init__(self, S, precip_depth): 

        shape = (S, S, precip_depth) 

        self.precipgrid = np.zeros(S * S * precip_depth).reshape(*shape) 

 

    def climate_vector(self, A, k, T): 

        x = np.arange(1,T,.1) 

        A = 1 

        k = 5 

 

        y=[] 

        for period in x: 

            y.append(A*math.sin(k*period)) 

 

        return y 

 

    def pdsi(self, ba, V): 

        drought = np.random.randint(0,3) 

        if drought == 0: 

            pdsi = -1 

        if drought == 1: 

            pdsi = 0 

        if drought == 2: 

            pdsi = 1 

 

        pdsi = pdsi * ba * V 

        pdsi_matrix = np.tile(pdsi, (S, S)) 

        return pdsi_matrix 

 

    def distribute_wells(self): 

        shape = (S, S, 3) 

        well_matrix = np.zeros(S * S * 3).reshape(*shape) 

        for x in xrange(S): 

            for y in xrange(S): 
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                if rd.uniform(0, 1) < wf: 

                    well_matrix[x, y, 0] = np.random.randint(wmin, wmax) 

                    well_matrix[x, y, 1] = well_matrix[x, y, 0] * wfill 

                    well_matrix[x, y, 2] = 1 

        return well_matrix 

 

    def land_quality_mono(self): 

        landgrid = np.ones(shape = (S, S)) 

        return landgrid 

 

    def land_quality_stripes(self): 

        S = len(self.precipgrid) 

        strip_size = S / 4 

        landgrid = np.zeros((S, S)) 

        landgrid[:, 0:strip_size]= L4 

        landgrid[:, strip_size:2*strip_size] = L3 

        landgrid[:, 2*strip_size:3*strip_size] = L2 

        landgrid[:, 3*strip_size:] = L1 

        return landgrid 

 

    def land_quality_radial(self): 

        S = len(self.precipgrid) 

        step = S / 8 

        origin = (S / 2) 

        landgrid = np.zeros((S, S)) 

        landgrid[origin-4*step:origin+4*step, origin-4*step:origin+4*step] = L1 

        landgrid[origin-3*step:origin+3*step, origin-3*step:origin+3*step] = L2 

        landgrid[origin-2*step:origin+2*step, origin-2*step:origin+2*step] = L3 

        landgrid[origin-step:origin+step, origin-step:origin+step] = L4 

        return landgrid 

 

    def land_quality_quads(self): 

        S = len(self.precipgrid) 

        origin = (S / 2) 

        landgrid = np.zeros((S, S)) 

        landgrid[0:origin, 0:origin] = L3    # Upper-left 

        landgrid[0:origin, origin:S] = L4    # Upper-right 

        landgrid[origin:S, 0:origin] = L1    # Bottom-left 

        landgrid[origin:S, origin:S] = L2    # Bottom-right 

        return landgrid 

 

    def calculate_climate_t(self, t, climate_vector, precipgrid): 
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        pg = climate.precipgrid 

        climate_t = np.zeros((S, S)) 

        climate_t = ba + climate_vector[t] + pg[:,:,1] + (V*pg[:,:,2]) 

        return climate_t 

 

 

# World 

class World: 

    def __init__(self, size, report_depth, climate): 

        self.grid = [[[] for s in range(S)] for s in range(S)] 

        self.well_distance_grid = [[[] for s in range(S)] for s in range(S)] 

        shape = (S, S, report_depth) 

        self.status_grid = np.zeros(S * S * report_depth).reshape(*shape) 

 

    def __getitem__(self): 

        pass 

 

    def well_distances(self, x_coord, y_coord, well_locations): 

        well_dictionary = {} 

        for well in well_locations: 

            well_x = well[0] 

            well_y = well[1] 

            distance = math.sqrt((x_coord - well_x)**2 + (y_coord - well_y)**2) 

            well_dictionary[well] = distance 

        return well_dictionary 

 

# Data 

class Data: 

    def __init__(self, Num_parameters, Num_outputs, MC, T): 

        self.Sdata = np.zeros((T, Num_parameters + Num_outputs)) 

        self.MCdata = np.zeros((MC, Num_parameters + Num_outputs)) 

 

#------------------------------------------- 

# Build data frames 

#------------------------------------------- 

 

data = Data(Num_parameters, Num_outputs, MC, T) 

 

 

#------------------------------------------- 

# Start MC loop 

#------------------------------------------- 
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mcloop_start = time.time() 

for mc in range(MC): 

    all_dead = False 

    if SingleShot == False: 

        LQ_selector = np.random.randint(0, 5) 

        m = rd.uniform(0.01/float(mp), 0.05/float(mp)) # Migration rate 

        f = np.random.randint(5, 10)     # Initial flock size 

        b = rd.uniform(1, 2)             # Benefit of cooperation (contribution multiplier) 

        Kt = np.random.randint(1, 6)     # Initial tribe count 

        kmax = np.random.randint(60, 151)# Maximum number of members per tribe 

        wf = rd.uniform(.05, .2)         # Well frequency 

        ba = np.random.randint(5, 20)    # Base grass per tile. 

        L4 = .5 * ba # High-quality land bonus 

        L3 = .33 *ba # Good-quality land bonus 

        L2 = .16 *ba # Low-quality land bonus 

        L1 = 0 * ba  # inferior-quality land bonus 

        ex = rd.uniform(1, 4)            # Seasonal extremity (Higher is LOWER extremity), float 

        A = ba/float(ex)                        # Seasonal extremity (Higher is LOWER extremity) 

        V = rd.uniform(0, .3)            # Drought/Rain extremity, range [0,.5] 

        k = np.random.randint(5, 16)     # Season length parameter 

        wd = np.random.randint(3, 16)    # Persistant weather pattern duration 

        wd_range = np.random.randint(1, 5) 

        wdmin = 5 - wd_range          # Minimum weather duration in time periods 

        wdmax = 5 + wd_range          # Maximum weather duration in time periods 

        w_range = np.random.randint(1, 5) 

        wmin = (5 - w_range) * ba        # Minimum well depth 

        wmax = (5 + w_range) * ba        # Maximum well depth 

        wg_ratio = rd.uniform(2, 5)      # Ratio of water accummulation to grass growth at given precip 

        lq_boost = rd.uniform(0, 1)      # How much land quality affects well depth, [0, 1] 

        dtoler = rd.uniform(-.2, .05)     # Deprivation tolerance. [-.2, .5] roughly. lower die faster. 

        lan_law = rd.uniform(1, 2)       # Lanchester's Laws of Combat: Linear (1) or Square (2) 

        lethal = rd.uniform(.8, .97)       # Base probability of surviving a battle 

        fc_rate = rd.uniform(.15, .3)    # Food consumper rate. (hunger increase per turn) 

        wc_rate = rd.uniform(.03, .15)   # Water consumption rate. (water consumption per turn) 

        calf_rate = rd.uniform(.05, .2)  # Reproduction probability of animals (per flock, per period) 

        mate_comp = rd.uniform(1, 2)   # Mating competition factor. 1-linear, >1 - increasing rate 

        birth_rate = rd.uniform(.05, .2) # Reproduction probability of tribesmen per time period. 

        cbb = rd.uniform(1, 2.0)         # Cooperative breeding bonus factor 

        bprice = rd.uniform(.1, .5)    # "Bride price," percent of flocks given to offspring. 

        of_rad = np.random.randint(2, 11) # radius offspring birth around parenting agent. 

        well_dist_exp = rd.uniform(1, 1.5) # Well distance value atrophy exponentif SingleShot == False: 
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        data.MCdata[mc, 0] = MC 

        data.MCdata[mc, 1] = T 

        data.MCdata[mc, 2] = N 

        data.MCdata[mc, 3] = S 

        data.MCdata[mc, 4] = mp 

        data.MCdata[mc, 5] = m 

        data.MCdata[mc, 6] = mu 

        data.MCdata[mc, 7] = f 

        data.MCdata[mc, 8] = b 

        data.MCdata[mc, 9] = Kt 

        data.MCdata[mc, 10] = kmax 

        data.MCdata[mc, 11] = wf 

        data.MCdata[mc, 12] = wfill 

        data.MCdata[mc, 13] = gfill 

        data.MCdata[mc, 14] = ba 

        data.MCdata[mc, 15] = ex 

        data.MCdata[mc, 16] = A 

        data.MCdata[mc, 17] = V 

        data.MCdata[mc, 18] = k 

        data.MCdata[mc, 19] = L4 

        data.MCdata[mc, 20] = L3 

        data.MCdata[mc, 21] = L2 

        data.MCdata[mc, 22] = L1 

        data.MCdata[mc, 23] = wd 

        data.MCdata[mc, 24] = cap 

        data.MCdata[mc, 25] = wdmin 

        data.MCdata[mc, 26] = wdmax 

        data.MCdata[mc, 27] = wmin 

        data.MCdata[mc, 28] = wmax 

        data.MCdata[mc, 29] = wg_ratio 

        data.MCdata[mc, 30] = lq_boost 

        data.MCdata[mc, 31] = dtoler 

        data.MCdata[mc, 32] = lan_law 

        data.MCdata[mc, 33] = lethal 

        data.MCdata[mc, 34] = fc_rate 

        data.MCdata[mc, 35] = wc_rate 

        data.MCdata[mc, 36] = calf_rate 

        data.MCdata[mc, 37] = mate_comp 

        data.MCdata[mc, 38] = birth_rate 

        data.MCdata[mc, 39] = cbb 

        data.MCdata[mc, 40] = bprice 
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        data.MCdata[mc, 41] = of_rad 

        data.MCdata[mc, 42] = LQ_selector 

        data.MCdata[mc, 43] = well_dist_exp 

        data.MCdata[mc, 44] = max_age 

 

    #------------------------------------------- 

    # Generate world and populate (Genesis) 

    #------------------------------------------- 

    climate = Climate(S, precip_depth) 

    climate_vector = climate.climate_vector(A, k, T) 

    climate.precipgrid[:,:,3:6] = climate.distribute_wells() 

 

    if LQ_selector == 0: 

        climate.precipgrid[:,:, 1] = smooth_grid(climate.land_quality_mono()) 

    if LQ_selector == 1: 

        climate.precipgrid[:,:, 1] = smooth_grid(climate.land_quality_radial()) 

    if LQ_selector == 2: 

        climate.precipgrid[:,:, 1] = smooth_grid(climate.land_quality_quads()) 

    if LQ_selector == 3: 

        climate.precipgrid[:,:, 1] = smooth_grid(climate.land_quality_stripes()) 

 

    climate.precipgrid[:,:, 3] += climate.precipgrid[:,:, 3] *lq_boost * \ 

        climate.precipgrid[:,:, 1] 

    ''' Set initial grass levels ''' 

    climate.precipgrid[:,:, 6] = ba * cap * gfill 

 

    wells_locations = [] 

    for x in xrange(S): 

        for y in xrange(S): 

            ''' Record well locations ''' 

            if climate.precipgrid[x, y, 5] > 0: 

                wells_locations.append((x, y)) 

 

    world = World(S, report_depth, climate) 

    for x in xrange(S): 

        for y in xrange(S): 

            # For each cell, dict of wells (keys), with distances (values) 

            world.well_distance_grid[x][y].append(world.well_distances( 

                            x, y, wells_locations)) 

 

    tribes = [Tribe(N, Kt, starting = 1) for tr in xrange(Kt)] 

    for tribe in tribes: 
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        tribesmen = [] 

        for individual in xrange(N/Kt): 

            x_coord = np.random.randint(0,S) 

            y_coord = np.random.randint(0,S) 

            c_in = rd.uniform(0, 1) 

            c_out = rd.uniform(0, 1) 

            tribesmen.append(Agent(x_coord, y_coord, tribe, f, c_in, c_out)) 

        tribe.members.extend(tribesmen) 

        tribe_size = len(tribe.members) 

        tribe.cohesion = sum(tribesman.cooperation_in for tribesman 

                                in tribe.members)/float(tribe_size) 

        tribe.cooperation_out = sum(tribesman.cooperation_out for tribesman 

                                in tribe.members)/float(tribe_size) 

        tribe.risk_aversion = sum(tribesman.risk_aversion for tribesman 

                                in tribe.members)/float(tribe_size) 

 

        for individual in tribe.members: 

            world.grid[individual.location[0]][individual.location[1]].append( 

                                                                    individual) 

        tribe.population_old = len(tribe.members) 

        tribe.population_new = len(tribe.members) 

        tribe.growth_rate = 0 

 

    big_board = np.zeros((S, S)) 

    #------------------------------------------- 

    # Start main simulation loop 

    #------------------------------------------- 

    data.Sdata = np.zeros((T, Num_parameters + Num_outputs)) 

    simloop_start = time.time() 

    wd_counter = wd = 4         # This value doesn't matter. 

    for t in range(T): 

        tloop_start = time.time() 

        all_agents = [] 

        for tribe in tribes: 

            all_agents.extend(tribe.members) 

            tribe.war_count = 0 

            tribe.current_food = 0 

            tribe.current_water = 0 

            tribe.pr_vic_record = [] 

 

        # Eat food and drink water 

        for agent in all_agents: 
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            agent.hunger += fc_rate 

            agent.thirst += wc_rate 

 

        #------------------------------------------ 

        # Run precipitation and ecological models 

        #------------------------------------------ 

        if wd_counter == wd: 

            climate.precipgrid[:,:,2] = climate.pdsi(ba, V) 

            wd = rd.uniform(wdmin, wdmax) 

            wd_counter = 0 

 

        ''' Make it rain! ''' 

        climate.precipgrid[:, :, 0] = climate.calculate_climate_t(t, 

                            climate_vector, climate.precipgrid) 

 

        '''Watch the grass grow''' 

        climate.precipgrid[:, :, 6] += climate.calculate_climate_t(t, 

                            climate_vector, climate.precipgrid) 

        climate.precipgrid[:, :, 7] = climate.precipgrid[:, :, 0] * cap 

 

        '''Fill the wells''' 

        climate.precipgrid[:, :, 4] = climate.precipgrid[:,:,5] * ( 

                            climate.precipgrid[:,:,4] + 

                            climate.precipgrid[:,:,0] * wg_ratio) 

 

        ''' Make sure more grass and water doesn't go beyond capacities ''' 

        for x in xrange(S): 

            for y in xrange(S): 

                if climate.precipgrid[x, y, 4] > climate.precipgrid[x,y,3]: 

                    climate.precipgrid[x, y, 4] = climate.precipgrid[x,y,3] 

 

                if climate.precipgrid[x, y, 6] > climate.precipgrid[x, y, 7]: 

                    climate.precipgrid[x, y, 6] = climate.precipgrid[x, y, 7] 

 

                big_board[x, y] = len(world.grid[x][y]) 

 

        #------------------------------------------ 

        # Agents wander, looking for food and water 

        #------------------------------------------ 

 

        ##------------------ 

        # Move determination 
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        ##------------------ 

        for x in xrange(S): 

            for y in xrange(S): 

                agents = [] 

                if len(world.grid[x][y]) > 0: 

                    agents.extend(world.grid[x][y]) 

                    wells = world.well_distance_grid[x][y][0] 

                    for agent in agents: 

                        agent.next_loc = agent.wander(x, y, b, world.grid, 

                            climate.precipgrid, wells, lan_law) 

 

        # Go to new locations 

        # 1. get list of all agents. 

        travel_queue = [] 

        for tribe in tribes: 

            for tribesman in tribe.members: 

                travel_queue.append(tribesman) 

 

        # 2. Go 

        for agent in travel_queue: 

            x,y = agent.old_loc 

            x2,y2 = agent.next_loc 

            agent.old_loc = (x2, y2) 

            agent.location = (x2, y2) 

            world.grid[x][y].remove(agent) 

            world.grid[x2][y2].append(agent) 

 

        #------------------------------------------ 

        # Resolve encounters 

        #------------------------------------------ 

        for x in xrange(S): 

            for y in xrange(S): 

                agents = [] 

                if len(world.grid[x][y]) > 0: 

                    agents.extend(world.grid[x][y]) 

                    available_food = climate.precipgrid[x][y][6] 

                    available_water = climate.precipgrid[x][y][4] 

                    #--------------------------------------------- 

                    # If only one agent is present at location x,y 

                    #--------------------------------------------- 

                    ''' Determine if more than one agent is present. If only 

                        one, just take the resources. No bonuses, no 

179



                        penalties.''' 

                    if len(agents) == 1: 

                        ''' Agent's hunger is how hungry his animals are. 

                            Appetite is how much the agent wants to consume, 

                            given the number of animals.''' 

                        appetite = agents[0].hunger * agents[0].flocks 

                        thirstiness = agents[0].thirst * agents[0].flocks 

 

                        if available_food > appetite: 

                            agents[0].hunger = 0.0 

                            climate.precipgrid[x][y][6] -= appetite 

                        else: 

                            appetite -= climate.precipgrid[x][y][6] 

                            agents[0].hunger= appetite / float(agents[0].flocks) 

                            climate.precipgrid[x][y][6] = 0.0 

                        ''' Same with water/third ''' 

                        if available_water > thirstiness: 

                            agents[0].thirst = 0.0 

                            climate.precipgrid[x][y][4] -= thirstiness 

                        else: 

                            thirstiness -= climate.precipgrid[x][y][4] 

                            agents[0].thirst=thirstiness/float(agents[0].flocks) 

                            climate.precipgrid[x][y][4] = 0.0 

 

                        agents[0].happiness = 1 - ((agents[0].hunger + agents[0].thirst)/2.0) 

 

                    #-------------------------------------------------- 

                    # If two or more agents are present at location x,y 

                    #-------------------------------------------------- 

                    if len(agents) > 1: 

                        tribes_list = [] 

                        tribes_census = {} 

                        all_strategies = {} 

                        for ag in agents: 

                            tribes_list.append(ag.tribe) 

                        '''Converting to set and back removes duplicates''' 

                        tribes_list_set = list(set(tribes_list)) 

                        tribe_count = len(tribes_list_set) 

                        #-------------------------- 

                        # If only one tribe present 

                        #-------------------------- 

                        if len(tribes_list_set)==1: 
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                            portion_food = available_food/float(len(agents)) 

                            portion_water = available_water/float(len(agents)) 

 

                            intribe_contr_f = sum(agent.cooperation_in for agent 

                                in agents) * b * portion_food 

                            intribe_contr_w = sum(agent.cooperation_in for agent 

                                in agents) * b * portion_water 

 

                            ag_food = intribe_contr_f / len(agents) 

                            ag_water = intribe_contr_w / len(agents) 

 

                            leftover_f = 0 

                            leftover_w = 0 

 

                            for agent in agents: 

                                fd = portion_food * (1 - agent.cooperation_in) 

                                wt = portion_water * (1 - agent.cooperation_in) 

                                fd += ag_food 

                                wt += ag_water 

 

                                leftover_f_i = 0 

                                leftover_w_i = 0 

 

                                appetite = agent.hunger * agent.flocks 

                                thirstiness = agent.thirst * agent.flocks 

 

                                if fd > appetite: 

                                    agent.hunger = 0.0 

                                    leftover_f_i += fd - appetite 

                                else: 

                                    appetite -= fd 

                                    agent.hunger= appetite / float( 

                                        agent.flocks) 

                                    leftover_f_i = 0 

 

                                ''' Same with water/third ''' 

                                if wt > thirstiness: 

                                    agent.thirst = 0.0 

                                    leftover_w_i += wt - thirstiness 

                                else: 

                                    thirstiness -= wt 

                                    agent.thirst=thirstiness/float(agent.flocks) 
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                                    leftover_w_i = 0 

 

                                leftover_f += leftover_f_i 

                                leftover_w += leftover_w_i 

 

                                agent.happiness = 1-((agent.hunger+agent.thirst)/2.0) 

 

                            # Eat and drink the leftovers: 

                            needy_agents = [] 

                            food_left = leftover_f 

                            water_left = leftover_w 

 

                            if leftover_f > 0: 

                                hungry_tribesmen = [] 

                                for agent in agents: 

                                    if agent.hunger > 0: 

                                        hungry_tribesmen.append(agent) 

                                        needy_agents.append(agent) 

 

                                if len(hungry_tribesmen) > 0: 

                                    hungry = 1 

                                    extra_helping = leftover_f / float(len( 

                                        hungry_tribesmen)) 

 

                                    for hungry_guy in hungry_tribesmen: 

                                        appetite = hungry_guy.hunger * \ 

                                            hungry_guy.flocks 

 

                                        if extra_helping > appetite: 

                                            hungry_guy.hunger = 0.0 

                                            food_left  -= appetite 

 

                                        else: 

                                            appetite -= extra_helping 

                                            hungry_guy.hunger= appetite / float( 

                                                hungry_guy.flocks) 

                                            food_left -= extra_helping 

 

                            if leftover_w > 0: 

                                thirsty_tribesmen = [] 

                                for agent in agents: 

                                    if agent.thirst > 0: 
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                                        thirsty_tribesmen.append(agent) 

                                        needy_agents.append(agent) 

 

                                if len(thirsty_tribesmen) > 0: 

                                    extra_cup = leftover_w / float(len( 

                                        thirsty_tribesmen)) 

 

                                    for thirsty_guy in thirsty_tribesmen: 

                                        thirstiness = thirsty_guy.thirst * \ 

                                            thirsty_guy.flocks 

                                        if extra_cup > thirstiness: 

                                            thirsty_guy.thirst = 0.0 

                                            water_left -= thirstiness 

 

                                        else: 

                                            thirstiness -= extra_cup 

                                            thirsty_guy.thirst= thirstiness / \ 

                                                float(thirsty_guy.flocks) 

                                            water_left -= extra_cup 

 

 

                            if len(needy_agents) > 0: 

                                for needy_guy in needy_agents: 

                                    needy_guy.happiness = 1 -((needy_guy.hunger + needy_guy.thirst)/2.0) 

 

                            # Update precipgrid with remaining resources. 

                            climate.precipgrid[x][y][6] = food_left / b 

                            climate.precipgrid[x][y][4] = water_left / b 

 

                        #------------------------------------- 

                        # If two or greater tribes are present 

                        #------------------------------------- 

                        else: 

                            for tribe in tribes_list_set: 

                                other_tribes = [] 

                                other_tribes.extend(tribes_list_set) 

                                other_tribes.remove(tribe) 

                                tribes_census[tribe] = 0 

                                all_strategies[tribe] = {} 

                                for ag in agents: 

                                    if ag.tribe == tribe: 

                                        tribes_census[tribe] += 1 
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                                # for tribe in other_tribes, decide if PGG or Fight 

                                for other in other_tribes: 

                                    ingroup = list(set(tribe.members) & 

                                        set(agents)) 

                                    outgroup =list(set(other.members) & 

                                        set(agents)) 

                                    in_size = len(ingroup) 

                                    out_size = len(outgroup) 

                                    ttl_size = in_size + out_size 

                                    in_prop = in_size / float(ttl_size) 

                                    out_prop = 1 - in_prop 

                                    foodshare = available_food / float(ttl_size) 

                                    watershare = available_water / float( 

                                        ttl_size) 

                                    tfood = foodshare * in_size 

                                    twater = watershare * in_size 

 

                                    # In group PGG 

                                    in_contrib = sum(member.cooperation_in for \ 

                                        member in ingroup) 

 

                                    avg_contrib = in_contrib / float(in_size) 

 

                                    commonfood = b * avg_contrib * tfood 

 

                                    commonwater = b * avg_contrib * twater 

 

                                    PGG_food = commonfood / float(in_size) 

                                    PGG_water = commonwater / float(in_size) 

 

                                    in_payoff_f = PGG_food * (1 - avg_contrib) 

                                    in_payoff_w = PGG_water * (1 - avg_contrib) 

 

                                    in_payoff_f += PGG_food 

                                    in_payoff_w += PGG_water 

 

                                    avg_appetite = sum(member.appetite for \ 

                                        member in ingroup) / float(in_size) 

 

                                    avg_thirstiness = sum(member.thirstiness for 

                                        member in ingroup) / float(in_size) 
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                                    avg_hunger = sum(member.hunger for member \ 

                                        in ingroup) / float(in_size) 

 

                                    avg_thirst = sum(member.thirst for member \ 

                                        in ingroup) / float(in_size) 

 

                                    loss_hunger = avg_hunger 

                                    loss_thirst = avg_thirst 

 

                                    avg_flocks = sum(member.flocks for member \ 

                                        in ingroup) / float(in_size) 

 

                                    if in_payoff_f > avg_appetite: 

                                        avg_hunger = 0.0 

                                    else: 

                                        avg_appetite -= in_payoff_f 

                                        avg_hunger = avg_appetite / \ 

                                            float(avg_flocks) 

 

                                    ''' Same with water/third ''' 

                                    if in_payoff_w > avg_thirstiness: 

                                        avg_thirst = 0.0 

                                    else: 

                                        avg_thirstiness -= in_payoff_w 

                                        avg_thirst = avg_thirstiness / float( 

                                            avg_flocks) 

 

                                    p_happiness = 1 - ((avg_hunger + avg_thirst)/2.0) 

 

                                    # Fight PGG (in group only) 

                                    foodfight = available_food / float(in_size) 

                                    waterfight = available_water /float(in_size) 

 

                                    in_contrib = sum(member.cooperation_in \ 

                                        for member in ingroup) 

 

                                    avg_contrib = in_contrib / float(in_size) 

 

                                    commonfood = b*available_food* avg_contrib 

 

                                    commonwater = b*available_water* avg_contrib 
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                                    FPGG_food = commonfood / float(in_size) 

                                    FPGG_water = commonwater / float(in_size) 

 

                                    avg_appetite = sum(member.appetite for \ 

                                        member in ingroup) / float(in_size) 

 

                                    avg_thirstiness = sum(member.thirstiness for 

                                        member in ingroup) / float(in_size) 

 

                                    avg_hunger = sum(member.hunger for member \ 

                                        in ingroup) / float(in_size) 

 

                                    avg_thirst = sum(member.thirst for member \ 

                                        in ingroup) / float(in_size) 

 

                                    in_payoff_f = FPGG_food * (1 - avg_contrib) 

                                    in_payoff_w = FPGG_water * (1 - avg_contrib) 

                                    in_payoff_f += FPGG_food 

                                    in_payoff_w += FPGG_water 

 

                                    if in_payoff_f > avg_appetite: 

                                        avg_hunger = 0.0 

                                    else: 

                                        avg_appetite -= in_payoff_f 

                                        avg_hunger= avg_appetite / float( 

                                            avg_flocks) 

 

                                    ''' Same with water/third ''' 

                                    if in_payoff_w > avg_thirstiness: 

                                        avg_thirst = 0.0 

                                    else: 

                                        avg_thirstiness -= in_payoff_w 

                                        avg_thirst = avg_thirstiness / float( 

                                            avg_flocks) 

 

 

                                    win_happiness = 1 - ((avg_hunger + avg_thirst)/2.0) 

 

                                    loss_happiness = 1 - ((loss_hunger + loss_thirst)/2.0) 

 

                                    # Determine probabilty of victory in battle 
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                                    pr_vic = pr_victory(x, y, tribe, other, 

                                        lan_law) 

 

                                    f_happiness = (pr_vic * win_happiness) +\ 

                                                     ((1-pr_vic)*loss_happiness) 

 

                                    if f_happiness > p_happiness: 

                                        all_strategies[tribe][other] = 1 

                                    else: 

                                        all_strategies[tribe][other] = 0 

 

                            # determine final payoffs to each group 

                            # See who is fighting whether they like it or not. 

                            fight_pairs = set() 

                            for tribe in tribes_list_set: 

                                for other in all_strategies[tribe]: 

                                    if all_strategies[tribe][other] == 1: 

                                        fight_pairs.add(frozenset((tribe, 

                                            other))) 

 

                            # Determine which tribes don't fight at all. 

                            PGG_tribes = PGG_tribes_list(fight_pairs, 

                                            tribes_list) 

 

                            # Distribute Resources to tribes. 

                            portion_food = available_food/float(len(agents)) 

                            portion_water = available_water/float(len(agents)) 

                            for tribe in tribes_list_set: 

                                tribe.current_food = portion_food * \ 

                                    tribes_census[tribe] 

                                tribe.current_water = portion_water * \ 

                                    tribes_census[tribe] 

 

                            for pair in fight_pairs: 

                                tribeA, tribeB = list(pair) 

                                tribeA.war_count += 1 

                                tribeB.war_count += 1 

                                pr_vic = pr_victory(x, y,tribeA,tribeB, lan_law) 

                                tribeA.pr_vic_record.append(pr_vic) 

                                tribeB.pr_vic_record.append(1 - pr_vic) 

 

                                if rd.uniform(0, 1) < pr_vic: 
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                                    tribeA.current_food += tribeB.current_food 

                                    tribeA.current_water += tribeB.current_water 

                                    tribeB.current_food = 0 

                                    tribeB.current_water = 0 

                                    PGG_tribes.append(tribeA) 

                                else: 

                                    tribeB.current_food += tribeA.current_food 

                                    tribeB.current_water += tribeA.current_water 

                                    tribeA.current_food = 0 

                                    tribeA.current_water = 0 

                                    PGG_tribes.append(tribeB) 

 

                            # Remove possible duplicates, finallize PGG teams 

                            PGG_tribes = list(set(PGG_tribes)) 

 

                            # Play final PGG 

                            # find out how many teams 

                            if len(PGG_tribes) == 1: # play ingroup PGG 

                                ingroup=list(set(PGG_tribes[0].members) & set( 

                                    agents)) 

                                ig_size = len(ingroup) 

                                food = available_food / float(ig_size) 

                                water = available_water / float(ig_size) 

 

                                sharefood = b*food*sum(member.cooperation_in for 

                                    member in ingroup) 

                                sharewater = b*water*sum(member.cooperation_in \ 

                                    for member in ingroup) 

 

                                ag_food = sharefood / float(ig_size) 

                                ag_water = sharewater / float(ig_size) 

 

                                leftover_f = 0 

                                leftover_w = 0 

 

                                for agent in ingroup: 

                                    fd = ag_food * (1 - agent.cooperation_in) 

                                    wt = ag_water * (1 - agent.cooperation_in) 

                                    fd += ag_food 

                                    wt += ag_water 

 

                                    leftover_f_i = 0 
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                                    leftover_w_i = 0 

 

                                    appetite = agent.hunger * agent.flocks 

                                    thirstiness = agent.thirst * agent.flocks 

 

                                    if fd > appetite: 

                                        agent.hunger = 0.0 

                                        leftover_f_i += fd - appetite 

                                    else: 

                                        appetite -= fd 

                                        agent.hunger = appetite / float( 

                                            agent.flocks) 

 

                                    ''' Same with water/third ''' 

                                    if wt > thirstiness: 

                                        agent.thirst = 0.0 

                                        leftover_w_i += wt - thirstiness 

                                    else: 

                                        thirstiness -= wt 

                                        agent.thirst = thirstiness/float( 

                                            agent.flocks) 

 

                                    leftover_f += leftover_f_i 

                                    leftover_w += leftover_w_i 

 

                                    agent.happiness = 1 - ((agent.hunger + agent.thirst)/2.0) 

 

                                # Eat and drink the leftovers: 

                                needy_agents = [] 

                                food_left = leftover_f 

                                water_left = leftover_w 

 

                                if leftover_f > 0: 

                                    hungry_tribesmen = [] 

                                    for agent in agents: 

                                        if agent.hunger > 0: 

                                            hungry_tribesmen.append(agent) 

                                            needy_agents.append(agent) 

 

                                    if len(hungry_tribesmen) > 0: 

                                        hungry = 1 

                                        extra_helping = leftover_f / float(len( 
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                                            hungry_tribesmen)) 

 

                                        for hungry_guy in hungry_tribesmen: 

                                            appetite = hungry_guy.hunger * \ 

                                                hungry_guy.flocks 

 

                                            if extra_helping > appetite: 

                                                hungry_guy.hunger = 0.0 

                                                food_left  -= appetite 

 

                                            else: 

                                                appetite -= extra_helping 

                                                hungry_guy.hunger= appetite / \ 

                                                    float(hungry_guy.flocks) 

                                                food_left -= extra_helping 

 

                                if leftover_w > 0: 

                                    thirsty_tribesmen = [] 

                                    for agent in agents: 

                                        if agent.thirst > 0: 

                                            thirsty_tribesmen.append(agent) 

                                            needy_agents.append(agent) 

 

                                    if len(thirsty_tribesmen) > 0: 

                                        extra_cup = leftover_w / float(len( 

                                            thirsty_tribesmen)) 

 

                                        for thirsty_guy in thirsty_tribesmen: 

                                            thirstiness = thirsty_guy.thirst * \ 

                                                thirsty_guy.flocks 

                                            if extra_cup > thirstiness: 

                                                thirsty_guy.thirst = 0.0 

                                                water_left -= thirstiness 

 

                                            else: 

                                                thirstiness -= extra_cup 

                                                thirsty_guy.thirst= thirstiness/ float(thirsty_guy.flocks) 

                                                water_left -= extra_cup 

 

                                if len(needy_agents) > 0: 

                                    for needy_guy in needy_agents: 

                                        needy_guy.happiness = 1 - ((needy_guy.hunger + needy_guy.thirst)/2.0) 
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                                # Update precipgrid with remaining resources. 

                                climate.precipgrid[x][y][6] = food_left / float(b) 

                                climate.precipgrid[x][y][4] = water_left / float(b) 

 

 

                            if len(PGG_tribes) > 1: # play multigroup PGG 

                                ttl_players = sum(tribes_census[tribe] for \ 

                                    tribe in PGG_tribes) 

                                remain_food = 0 

                                remain_water = 0 

 

                                for tribe in PGG_tribes: 

                                    ingroup = list(set(tribe.members) & set( 

                                        agents)) 

                                    ig_size = tribes_census[tribe] 

                                    avail_food = tribe.current_food 

                                    avail_water = tribe.current_water 

                                    agt_food = avail_food / float(ig_size) 

                                    agt_water = avail_water / float(ig_size) 

 

                                    tr_food = b * sum(member.cooperation_in * \ 

                                        agt_food for member in tribe.members) 

                                    tr_water = b * sum(member.cooperation_in * \ 

                                        agt_water for member in tribe.members) 

 

                                    unit_f = tr_food / float(ig_size) 

                                    unit_w = tr_water / float(ig_size) 

 

                                    leftover_f = 0 

                                    leftover_w = 0 

 

                                    for agent in ingroup: 

                                        fd = agt_food * (1 - agent.cooperation_in) 

                                        wt = agt_water * (1 - agent.cooperation_in) 

                                        fd += unit_f 

                                        wt += unit_w 

 

                                        appetite = agent.hunger * agent.flocks 

                                        thirstiness = agent.thirst * agent.flocks 

 

                                        if fd > appetite: 
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                                            agent.hunger = 0.0 

                                            leftover_f += fd - appetite 

                                        else: 

                                            appetite -= fd 

                                            agent.hunger= appetite / float( 

                                                agent.flocks) 

 

                                        ''' Same with water/third ''' 

                                        if wt > thirstiness: 

                                            agent.thirst = 0.0 

                                            leftover_w += wt - thirstiness 

                                        else: 

                                            thirstiness -= wt 

                                            agent.thirst=thirstiness / float(agent.flocks) 

 

                                        agent.happiness = 1 - ((agent.hunger + agent.thirst)/2.0) 

 

                                    # Eat and drink the leftovers: 

                                    food_left = leftover_f 

                                    water_left = leftover_w 

                                    needy_agents = [] 

                                    if leftover_f > 0: 

                                        hungry_tribesmen = [] 

                                        for agent in ingroup: 

                                            if agent.hunger > 0: 

                                                hungry_tribesmen.append(agent) 

                                                needy_agents.append(agent) 

 

                                        if len(hungry_tribesmen) > 0: 

                                            hungry = 1 

                                            extra_helping = leftover_f / float(len( 

                                                hungry_tribesmen)) 

 

                                            for hungry_guy in hungry_tribesmen: 

                                                appetite = hungry_guy.hunger * \ 

                                                    hungry_guy.flocks 

 

                                                if extra_helping > appetite: 

                                                    hungry_guy.hunger = 0.0 

                                                    food_left  -= appetite 

 

                                                else: 
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                                                    appetite -= extra_helping 

                                                    hungry_guy.hunger= appetite \ 

                                                        / float(hungry_guy.flocks) 

                                                    food_left -= extra_helping 

 

                                    if leftover_w > 0: 

                                        thirsty_tribesmen = [] 

                                        for agent in ingroup: 

                                            if agent.thirst > 0: 

                                                thirsty_tribesmen.append(agent) 

                                                needy_agents.append(agent) 

 

                                        if len(thirsty_tribesmen) > 0: 

                                            extra_cup = leftover_w / float(len( 

                                                thirsty_tribesmen)) 

 

                                            for thirsty_guy in thirsty_tribesmen: 

                                                thirstiness = thirsty_guy.thirst * \ 

                                                    thirsty_guy.flocks 

                                                if extra_cup > thirstiness: 

                                                    thirsty_guy.thirst = 0.0 

                                                    water_left -= thirstiness 

 

                                                else: 

                                                    thirstiness -= extra_cup 

                                                    thirsty_guy.thirst= thirstiness\ 

                                                        / float(thirsty_guy.flocks) 

                                                    water_left -= extra_cup 

 

                                    if len(needy_agents) > 0: 

                                        for needy_guy in needy_agents: 

                                            needy_guy.happiness = 1 - ((needy_guy.hunger + needy_guy.thirst)/2.0) 

 

                                    # Update precipgrid with remaining resources. 

                                    remain_food += food_left  / float(b) 

                                    remain_water += water_left  / float(b) 

 

                                climate.precipgrid[x][y][6] = remain_food 

                                climate.precipgrid[x][y][4] = remain_water 

 

        for tribe in tribes: 

            if tribe.war_count == 0: 
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                tribe.avg_pr_vic = 1 

            else: 

                tribe.avg_pr_vic=sum(tribe.pr_vic_record)/float(tribe.war_count) 

        #--------------------------------------------- 

        # Calculate flock changes and resets 

        #--------------------------------------------- 

        for agent in all_agents: 

            agent.current_food = 0 

            agent.current_water = 0 

            agent.appetite = agent.hunger * agent.flocks 

            if agent.thirst > 1: agent.thirst = 1.0 

            agent.thirstiness = agent.thirst * agent.flocks 

            health = (agent.hunger + agent.thirst) / 2.0 

            survival_rate = (1 + dtoler)-(math.exp(-(math.pow(1.5-health, 3)))) 

            agent.flocks = int(agent.flocks * survival_rate) 

            if agent.flocks > 0: 

                agent.flocks += np.random.binomial(agent.flocks, calf_rate) 

 

            #--------------------------------------------- 

            # Death, aging, migration, and mutation 

            #--------------------------------------------- 

            death = 0 

            if agent.flocks <= 0: 

                death = 1 

 

            if agent.age > max_age: 

                death = 1 

 

            battles = agent.tribe.war_count 

            prv = 1 - agent.tribe.avg_pr_vic 

            pr_violent_death = 1 - (lethal**(battles*prv*agent.cooperation_in)) 

 

            if rd.uniform(0, 1) < pr_violent_death: 

                death = 1 

 

            if death == 1: 

                agent.tribe.members.remove(agent) 

                x, y = agent.location 

                world.grid[x][y].remove(agent) 

                all_agents.remove(agent) 

 

            else: 
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                agent.age += 1 

                # Migration 

                if len(tribes) > 1: 

                    if rd.uniform(0, 1) < m: 

                        tribes_out = [] 

                        tribes_out.extend(tribes) 

                        tribes_out.remove(agent.tribe) 

                        new_tribe = rd.choice(tribes_out) 

                        agent.tribe.members.remove(agent) 

                        agent.tribe = new_tribe 

                        agent.tribe.members.append(agent) 

 

                # Mutation 

                if rd.uniform(0, 1) < mu: 

                    agent.cooperation_in = rd.uniform(0, 1) 

 

 

        #------------------------------------------ 

        # Reproduction 

        #------------------------------------------ 

        for tribe in tribes: 

            if len(tribe.members) == 0: 

                tribes.remove(tribe) 

 

            cb = birth_rate * cbb * tribe.cohesion #Cooperative breeding bonus 

            # sort tribes.members on flock size, calculate mate_score 

            tribe.members.sort(key=lambda x: x.flocks) 

            ranker = 1 

            top_dog = len(tribe.members) 

            agent_nursury = [] 

            for member in tribe.members: 

                member.rank = ranker 

                ranker += 1 

                member.mate_score = (member.rank / float(top_dog))**mate_comp 

 

                # baby appears in random location near parent 

                if member.flocks > 5: 

                    if rd.uniform(0, 1) < (birth_rate + cb) * member.mate_score: 

                        c_in = member.cooperation_in 

                        c_out = member.cooperation_out 

                        dowry = int(member.flocks * bprice) - 1 

                        member.flocks -= dowry 
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                        tri = member.tribe 

                        x,y = member.location 

##                        x2 = np.random.randint(0, S) 

##                        y2 = np.random.randint(0, S) 

 

                        x2 = x + np.random.randint(-of_rad, of_rad) 

                        y2 = y + np.random.randint(-of_rad, of_rad) 

                        if x2 < 0: x2 = 0 

                        if x2 > S-1: x2 = S-1 

                        if y2 < 0: y2 = 0 

                        if y2 > S-1: y2 = S-1 

 

                        agent_nursury.append(Agent(x2,y2,tri, dowry,c_in,c_out)) 

 

            for baby in agent_nursury: 

                if baby.flocks <= 3: baby.flocks = 4 

                x, y = baby.location 

                baby.new_loc = (x, y) 

                baby.old_loc = (x, y) 

                baby.tribe.members.append(baby) 

                world.grid[x][y].append(baby) 

 

            tribe.population_old = tribe.population_new 

            tribe.population_new = len(tribe.members) 

            tribe.growth_rate = (tribe.population_new - tribe.population_old)/ \ 

                float(tribe.population_old) 

 

 

        #------------------------------------------ 

        # Tribe splitting and dissolution 

        #------------------------------------------ 

        if len(all_agents) > 0: 

            for tribe in tribes: 

                if len(tribe.members) <= 0: 

                    tribes.remove(tribe) 

 

            nu_tribes = [] 

            for tribe in tribes: 

                if len(tribe.members) > kmax: 

                    splitnum = len(tribe.members) / 2 

                    splitters = rd.sample(tribe.members, splitnum) 

                    nu_tribe = Tribe(N, Kt, starting = 0) 
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                    print "Tribe split" 

                    nu_tribes.append(nu_tribe) 

                    for splitter in splitters: 

                        tribe.members.remove(splitter) 

                        nu_tribe.members.append(splitter) 

                        splitter.tribe = nu_tribe 

 

            if len(nu_tribes) > 0: 

                tribes.extend(nu_tribes) 

 

 

            for tribe in tribes: 

                tribe_size = len(tribe.members) 

                tribe.cohesion = sum(tribesman.cooperation_in for tribesman 

                                        in tribe.members)/float(tribe_size) 

                tribe.cooperation_out = sum(tribesman.cooperation_out for tribesman 

                                        in tribe.members)/float(tribe_size) 

                tribe.risk_aversion = sum(tribesman.risk_aversion for tribesman 

                                        in tribe.members)/float(tribe_size) 

        else: 

            all_dead = True 

 

        if all_dead == True: 

            break 

 

        teloop_end = time.time() 

        if teloop_end - tloop_start > timeLimit1: 

            unlucky = rd.sample(all_agents, int(round(tcut1*len(all_agents)))) 

            for badluck_brian in unlucky: 

                badluck_brian.tribe.members.remove(badluck_brian) 

                x, y = badluck_brian.location 

                world.grid[x][y].remove(badluck_brian) 

                all_agents.remove(badluck_brian) 

 

        if teloop_end - tloop_start > timeLimit2: 

            unlucky = rd.sample(all_agents, int(round(tcut2*len(all_agents)))) 

            for badluck_brian in unlucky: 

                badluck_brian.tribe.members.remove(badluck_brian) 

                x, y = badluck_brian.location 

                world.grid[x][y].remove(badluck_brian) 

                all_agents.remove(badluck_brian) 
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        if teloop_end - tloop_start > timeLimit3: 

            unlucky = rd.sample(all_agents, int(round(tcut3*len(all_agents)))) 

            for badluck_brian in unlucky: 

                badluck_brian.tribe.members.remove(badluck_brian) 

                x, y = badluck_brian.location 

                world.grid[x][y].remove(badluck_brian) 

                all_agents.remove(badluck_brian) 

 

        if teloop_end - tloop_start > timeLimit4: 

            unlucky = rd.sample(all_agents, int(round(tcut4*len(all_agents)))) 

            for badluck_brian in unlucky: 

                badluck_brian.tribe.members.remove(badluck_brian) 

                x, y = badluck_brian.location 

                world.grid[x][y].remove(badluck_brian) 

                all_agents.remove(badluck_brian) 

 

        if teloop_end - tloop_start > timeLimit5: 

            unlucky = rd.sample(all_agents, int(round(tcut5*len(all_agents)))) 

            for badluck_brian in unlucky: 

                badluck_brian.tribe.members.remove(badluck_brian) 

                x, y = badluck_brian.location 

                world.grid[x][y].remove(badluck_brian) 

                all_agents.remove(badluck_brian) 

 

        avg_cooperation = sum(agt.cooperation_in for agt in all_agents)/float(len(all_agents)) 

        avg_flock = sum(agt.flocks for agt in all_agents)/float(len(all_agents)) 

        war_freq = sum(trb.war_count for trb in tribes) 

 

        #------------------------------------------ 

        # End main simulation loop; record data 

        #------------------------------------------ 

        tloop_end = time.time() 

        print "Single time period runtime", tloop_end - tloop_start 

        print "Time period", t 

        print "Simulation run", mc 

        print "Total agents = ", len(all_agents) 

 

        if printStuff == True: 

            counttribe = 0 

            for tribe in tribes: 

                counttribe += 1 

                print "--------------------------------" 
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                print "-----Tribe ", counttribe, "-----" 

                print "--------------------------------" 

                print "Cohesion = ", tribe.cohesion 

                print "Population = ", len(tribe.members) 

                print "Growth Rate = ", tribe.growth_rate 

 

        if show == True: 

            heatmap = plt.pcolor(big_board, cmap = plt.cm.Blues) 

            plt.draw() 

 

        data.Sdata[t, 0] = MC 

        data.Sdata[t, 1] = T 

        data.Sdata[t, 2] = N 

        data.Sdata[t, 3] = S 

        data.Sdata[t, 4] = mp 

        data.Sdata[t, 5] = m 

        data.Sdata[t, 6] = mu 

        data.Sdata[t, 7] = f 

        data.Sdata[t, 8] = b 

        data.Sdata[t, 9] = Kt 

        data.Sdata[t, 10] = kmax 

        data.Sdata[t, 11] = wf 

        data.Sdata[t, 12] = wfill 

        data.Sdata[t, 13] = gfill 

        data.Sdata[t, 14] = ba 

        data.Sdata[t, 15] = ex 

        data.Sdata[t, 16] = A 

        data.Sdata[t, 17] = V 

        data.Sdata[t, 18] = k 

        data.Sdata[t, 19] = L4 

        data.Sdata[t, 20] = L3 

        data.Sdata[t, 21] = L2 

        data.Sdata[t, 22] = L1 

        data.Sdata[t, 23] = wd 

        data.Sdata[t, 24] = cap 

        data.Sdata[t, 25] = wdmin 

        data.Sdata[t, 26] = wdmax 

        data.Sdata[t, 27] = wmin 

        data.Sdata[t, 28] = wmax 

        data.Sdata[t, 29] = wg_ratio 

        data.Sdata[t, 30] = lq_boost 

        data.Sdata[t, 31] = dtoler 
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        data.Sdata[t, 32] = lan_law 

        data.Sdata[t, 33] = lethal 

        data.Sdata[t, 34] = fc_rate 

        data.Sdata[t, 35] = wc_rate 

        data.Sdata[t, 36] = calf_rate 

        data.Sdata[t, 37] = mate_comp 

        data.Sdata[t, 38] = birth_rate 

        data.Sdata[t, 39] = cbb 

        data.Sdata[t, 40] = bprice 

        data.Sdata[t, 41] = of_rad 

        data.Sdata[t, 42] = 9999 

        data.Sdata[t, 43] = well_dist_exp 

        data.Sdata[t, 44] = LQ_selector 

        data.Sdata[t, 45] = max_age 

        data.Sdata[t, 46] = len(all_agents) 

        data.Sdata[t, 47] = avg_cooperation 

        data.Sdata[t, 48] = len(tribes) 

        data.Sdata[t, 49] = war_freq 

        data.Sdata[t, 50] = avg_flock 

 

    simloop_end = time.time() 

    print "Single-shot simulation runtime", simloop_end - simloop_start 

 

#------------------------------------------- 

# End Monte Carlo loop; save MC data 

#------------------------------------------- 

    data.MCdata[mc, 45] = simloop_end - simloop_start 

    data.MCdata[mc, 46] = len(all_agents) 

    data.MCdata[mc, 47] = avg_cooperation 

    data.MCdata[mc, 48] = len(tribes) 

    data.MCdata[mc, 49] = war_freq 

    data.MCdata[mc, 50] = avg_flock 

#------------------------------------------- 

# Close datafile and analysis 

#------------------------------------------- 

np.savetxt("MCdata_africa_sim.csv", data.MCdata, delimiter =',', fmt = '%1.7f') 

 

#------------------------------------------ 

# End all simulations; close up shop! 

#------------------------------------------ 

mcloop_end = time.time() 

print "Monte Carlo runtime", mcloop_end - mcloop_start 
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#plt.plot(range(T),data.Sdata[:,47]) 

#plt.show() 

done = 1; 
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Kümmerli, Rolf, Caroline Colliard, Nicolas Fiechter, Blaise Petitpierre, Flavien Russier and
Laurent Keller. 2007. “Human cooperation in social dilemmas: comparing the Snowdrift
game with the Prisoner’s Dilemma.” Proceedings of the Royal Society B: Biological Sciences
274(1628):2965–2970.

Kuznar, L.A. and R. Sedlmeyer. 2005. “Collective violence in darfur: An agent-based model
of pastoral nomad/sedentary peasant interaction.”.

Leetaru, Kalev and Philip A Schrodt. 2013. GDELT: Global data on events, location, and
tone, 1979–2012. In Paper presented at the ISA Annual Convention. Vol. 2 p. 4.

Leff, Jonah. 2009. “Pastoralists at War: Violence and security in the Kenya-Sudan-Uganda
border region.” International Journal of Conflict and Violence 3(2):188–203.

Levin, Andrew, Chien-Fu Lin and Chia-Shang James Chu. 2002. “Unit root tests in panel
data: asymptotic and finite-sample properties.” Journal of econometrics 108(1):1–24.

Lobell, David B. and Marshall B. Burke. 2010. “On the use of statistical models to predict
crop yield responses to climate change.” Agricultural and Forest Meteorology 150(11):1443–
1452.
URL: http://linkinghub.elsevier.com/retrieve/pii/S0168192310001978

MacOpiyo, Laban, Jerry Stuth and Jianjia Wu. 2006. Use of GIS and Agent-Based Modeling
to Simulate Pastoralist Mobility in the Rangelands of East Africa. In GSDI-9 Conference
Proceedings.

206



Margulis, Lynn. 1970. Origin of eukaryotic cells: Evidence and research implications for a
theory of the origin and evolution of microbial, plant, and animal cells on the Precambrian
earth. Yale University Press New Haven.

Matsuura, K. and C. Willmott. 2009. “Terrestrial Temperature and Precipitation: 1900-2008
Gridded Monthly Time series, version 2.1.” University of Delaware .

Meier, P., D. Bond and J. Bond. 2007. “Environmental influences on pastoral conflict in the
Horn of Africa.” Political Geography 26(6):716–735.

Morello, Lauren. 2013. “Warming climate drives human conflict.”.

Mundial, B. 2012. African Development Indicators. Wold Bank, Africa Technical Depart-
ment.

Newman, Mark EJ and Duncan J Watts. 1999. “Renormalization group analysis of the
small-world network model.” Physics Letters A 263(4):341–346.

Nowak, Martin A, Corina E Tarnita and Edward O Wilson. 2010. “The evolution of euso-
ciality.” Nature 466(7310):1057–1062.

Nowak, Martin A and Karl Sigmund. 2005. “Evolution of indirect reciprocity.” Nature
437(7063):1291–1298.

Ohlin, Bertil Gotthard. 1933. “Interregional and international trade.”.

Ohtsuki, Hisashi, Christoph Hauert, Erez Lieberman and Martin A Nowak. 2006. “A simple
rule for the evolution of cooperation on graphs and social networks.” Nature 441(7092):502–
505.

Olson, Mancur. 1965. The logic of collective action: Public goods and the theory of group.
Harvard University Press Cambridge.

Olson, Randal. 2013.

Onduku, Akpobibibo. 2001. “Environmental Conflicts: the case of the Niger Delta.” A paper
presented at the One World Fortnight Programme, University of Bradford, UK .

Opukri, CO and Ibaba S Ibaba. 2008. “Oil induced environmental degradation and internal
population displacement in the Nigerias Niger Delta.” Journal of Sustainable Development
in Africa 10(1):173–193.

Ostrom, Elinor. 1990. Governing the commons: The evolution of institutions for collective
action. Cambridge university press.

Parenti, C. 2011. Tropic of chaos: climate change and the new geography of violence. Nation
Books.

Paul, V Kubálková Nicholas Greenwood Onuf et al. 1998. International relations in a con-
structed world. ME Sharpe.

207



Peters, Pauline E. 2013. “Conflicts over land and threats to customary tenure in Africa.”
African Affairs 112(449):543–562.

Peters, Pauline E and Daimon Kambewa. 2007. “Whose security? Deepening social conflict
over customaryland in the shadow of land tenure reform in Malawi.”.

Polyak, V.J. and Y. Asmerom. 2001. “Late Holocene climate and cultural changes in the
southwestern United States.” Science 294(5540):148–151.

Purvis, N. and J. Busby. 2004. “The security implications of climate change for the UN
system.” ECSP Report 10:67–73.

Qin, Shao-Meng, Guo-Yong Zhang and Yong Chen. 2009. “Coevolution of game and network
structure with adjustable linking.” Physica A: Statistical Mechanics and its Applications
388(23):4893–4900.

Rajan, S.I. 2011. Migration, Identity and Conflict: India Migration Report 2011. Routledge
India.

Raleigh, C and H Urdal. 2007. “Climate change, environmental degradation and armed
conflict.” Political Geography .
URL: http://www.sciencedirect.com/science/article/pii/S096262980700087X

Raleigh, Clionadh, Andrew Linke, H̊avard Hegre and Joakim Karlsen. 2010. “Introducing
acled: An armed conflict location and event dataset special data feature.” Journal of peace
Research 47(5):651–660.

Raleigh, Clionadh and Dominic Kniveton. 2012. “Come rain or shine: An analysis of conflict
and climate variability in East Africa.” Journal of Peace Research 49(1):51–64.

Reuveny, R. 2007. “Climate change-induced migration and violent conflict.” Political Geog-
raphy 26(6):656–673.

Riek, Blake M, Eric W Mania, Samuel L Gaertner, Stacy A McDonald and Marika J Lamore-
aux. 2010. “Does a common ingroup identity reduce intergroup threat?” Group Processes
& Intergroup Relations 13(4):403–423.

Riolo, Rick L, Michael D Cohen and Robert Axelrod. 2001. “Evolution of cooperation
without reciprocity.” Nature 414(6862):441–443.

Rustagi, Devesh, Stefanie Engel and Michael Kosfeld. 2010. “Conditional cooperation and
costly monitoring explain success in forest commons management.” Science 330(6006):961–
965.

Santos, FC, JF Rodrigues and JM Pacheco. 2006. “Graph topology plays a determinant role
in the evolution of cooperation.” Proceedings of the Royal Society B: Biological Sciences
273(1582):51–55.

Santos, Francisco C and Jorge M Pacheco. 2005. “Scale-free networks provide a unifying
framework for the emergence of cooperation.” Physical Review Letters 95(9):98104.

208



Schrodt, Philip A. 2009. “TABARI: Textual Analysis by Augmented Replacement Instruc-
tions, Version 0.7.”.

Seltzer, Nicholas and Oleg Smirnov. 2013. “Degrees of separation, social learning, and the
evolution of cooperation in modern society.” Presented at the 2013 Annual Meeting of the
Midwest Political Science Association.

Senft, RL, MB Coughenour, DW Bailey, LR Rittenhouse, OE Sala and DM Swift. 1987.
“Large herbivore foraging and ecological hierarchies.” BioScience 37(11):789–795.

Simon, Herbert A. 1985. “Human nature in politics: The dialogue of psychology with
political science.” The American Political Science Review pp. 293–304.

Skoggard, Ian and William G Kennedy. 2013. “An interdisciplinary approach to agent-based
modeling of conflict in Eastern Africa.” Practicing Anthropology 35(1):14–18.

Smirnov, Oleg, Holly Arrow, Douglas Kennett and John Orbell. 2007. “Ancestral war and
the evolutionary origins of heroism.” Journal of Politics 69(4):927–940.

Smith, David Livingstone. 2007. Why we lie: The evolutionary roots of deception and the
unconscious mind. Macmillan.

Smith, David Livingstone. 2009. The most dangerous animal: Human nature and the origins
of war. Macmillan.

Smith, David Livingstone. 2011. Less than human: Why we demean, enslave, and extermi-
nate others. Macmillan.

Sone, Emmanuel N. 2010. Piracy in the Horn of Africa the role of Somalia’s fishermen PhD
thesis Monterey, California. Naval Postgraduate School.

Sterck, Elisabeth HM, David P Watts and Carel P van Schaik. 1997. “The evolution of
female social relationships in nonhuman primates.” Behavioral ecology and sociobiology
41(5):291–309.

Suliman, M. 1993. “Civil war in the Sudan. From ethnic to ecological conflict.” Ecologist
23(3):104–109.

Sundberg, Ralph and Erik Melander. 2013. “Introducing the UCDP georeferenced event
dataset.” Journal of Peace Research 50(4):523–532.

Sundberg, Ralph, Mathilda Lindgren and Ausra Padskocimaite. 2010. “UCDP Geo-
referenced Event Dataset (GED) Codebook.”.

Tajfel, Henri. 1970. “Experiments in intergroup discrimination.” Scientific American
223(5):96–102.

Tajfel, Henri, Michael G Billig, Robert P Bundy and Claude Flament. 1971. “Social catego-
rization and intergroup behaviour.” European journal of social psychology 1(2):149–178.

209



Tanimoto, Jun. 2009. “Promotion of cooperation through co-evolution of networks and strat-
egy in a 2× 2 game.” Physica A: Statistical Mechanics and its Applications 388(6):953–960.

The Joshua Project. 2014.

Theisen, Ole Magnus, Helge Holtermann and Halvard Buhaug. 2011. “Climate wars? As-
sessing the claim that drought breeds conflict.”.

Trivers, Robert L. 1971. “The evolution of reciprocal altruism.” Quarterly review of biology
pp. 35–57.

Tucker, CJ, JE Pinzon, ME Brown and E. Molly. 2004. “Global inventory modeling and
mapping studies (GIMMS) satellite drift corrected and NOAA-16 incorporated normalized
difference vegetation index (NDVI), monthly 1981-2002.” University of Maryland .

Waser, Peter M. 1988. “Resources, philopatry, and social interactions among mammals.”
The ecology of social behavior pp. 109–130.

Watts, Duncan and S Strogatz. 1998. “The small world problem.” Collective Dynamics of
Small-World Networks 393:440–442.

Wedekind, Claus and Manfred Milinski. 2000. “Cooperation through image scoring in hu-
mans.” Science 288(5467):850–852.

Weidmann, NB, Jan Ketil Rø d and Lars-Erik Cederman. 2010. “Representing ethnic groups
in space: A new dataset.” Journal of Peace . . . .
URL: http://jpr.sagepub.com/content/47/4/491.short

Weiss, H. and R.S. Bradley. 2001. “What drives societal collapse?” Science(Washington)
291(5504):609–610.

West, Stuart A, Ashleigh S Griffin and Andy Gardner. 2007a. “Evolutionary explanations
for cooperation.” Current Biology 17(16):R661–R672.

West, Stuart A, Ashleigh S Griffin and Andy Gardner. 2007b. “Social semantics: altruism,
cooperation, mutualism, strong reciprocity and group selection.” Journal of evolutionary
biology 20(2):415–432.

Wittig, Roman M and Christophe Boesch. 2003. “Food competition and linear dominance
hierarchy among female chimpanzees of the Tai National Park.” International Journal of
Primatology 24(4):847–867.

Zhang, DD and Peter Brecke. 2007. “Global climate change, war, and population decline in
recent human history.” Proceedings of the . . . .
URL: http://www.pnas.org/content/104/49/19214.short
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