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Abstract of the Dissertation 

Energy Technology Allocation for Distributed Energy 

Resources: A Technology-Policy Framework 

by 
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in 
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2014 

 

Distributed energy resources (DER) are emerging rapidly.  New engineering technologies, 

materials, and designs improve the performance and extend the range of locations for DER.  In 

contrast, constructing new or modernizing existing high voltage transmission lines for 

centralized generation are expensive and challenging.  In addition, customer demand for 

reliability has increased and concerns about climate change have created a pull for swift 

renewable energy penetration.  In this context, DER policy makers, developers, and users are 

interested in determining which energy technologies to use to accommodate different end-use 

energy demands. 

We present a two-stage multi-objective strategic technology-policy framework for determining 

the optimal energy technology allocation for DER.  The framework simultaneously considers 

economic, technical, and environmental objectives.  The first stage utilizes a Data Envelopment 
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Analysis model for each end-use to evaluate the performance of each energy technology based 

on the three objectives.  The second stage incorporates factor efficiencies determined in the first 

stage, capacity limitations, dispatchability, and renewable penetration for each technology, and 

demand for each end-use into a bottleneck multi-criteria decision model which provides the 

Pareto-optimal energy resource allocation.  We conduct several case studies to understand the 

roles of various distributed energy technologies in different scenarios. We construct some policy 

implications based on the model results of set of case studies.  
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Chapter 1 

Introduction 

Distributed energy resources (DER) consist of small-scale energy generation and energy storage 

units located at or near the load site. DER can be operated in a controlled, coordinated way either 

while connected to the central electricity grid or in an islanded mode to supply energy to 

consumers [1] [2]. DER are typically less than 30MW in power capacity [3] [4]. However, this is 

not consistent in the literature. Cardell and Tabors [5] define that DER have a power capacity up 

to 1MW, whereas Sharma and Bartels [6] define the capacity up to 100MW. Some noticeable 

DER examples in the U.S. include: the Transamerica Pyramid building in California, the Cornell 

campus in New York, and the Food and Drug Administration’s research facility in Maryland. 

According to the International Energy Agency [7], DER are emerging rapidly for multiple 

reasons. New engineering technologies, materials, and designs improve the performance and 

extend the range of locations for DER.  Constructing new or modernizing existing high voltage 
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transmission lines for centralized generation are expensive and challenging. Customer demand 

for reliability has increased. Concerns for climate change have created a pull for swift renewable 

energy penetration. 

DER systems offer many benefits [8] [9]. First, DER systems enable cogeneration
1
 and 

trigeneration
2
, and avoid high voltage and long distance transmission losses, thus increasing 

overall efficiency [10] [11]. Second, DER expand the use of renewable sources and siting is 

easier as DER avoid the need of new high voltage transmission capacity [12] [13]. Third, DER 

can be built swiftly and capacity can be added easily based on the incremental demands of 

energy [14]. Finally, DER systems are capable of providing reliable and sustainable energy to 

consumers  [15] [16].  

DER provide a multitude of services to utilities and consumers [17] that include standby or 

primary generation, storage, peak shaving
3
, peak sharing

4
, base-load generation

5
, combined 

heating and power (CHP), or combined cooling, heating and power (CCHP) [3] [4]. Additional 

impetus was added to encourage DER because of climate change, manmade disasters (such as 

accidents or military attacks), and natural disasters (such as heat waves that increase energy 

loads or tropical and extra-tropical cyclones that down transmission lines) [18]. 

There are several energy generation and storage technologies that can be implemented into DER 

architecture and there are various end-uses that consume energy [19]. As DER adoption grows, a 

single energy technology such as diesel reciprocating engines and natural gas turbines can be 
                                                           
1
 Cogeneration or combined heat and power (CHP) refers to simultaneously generation of electric and useful thermal 

energy. 
2
 Trigeneration or combined cooling, heat and power (CCHP) refers to the simultaneously generation of electricity 

and useful thermal energy for heating or cooling. 
3
 Peak shaving is the process of avoiding the purchase of energy from a local utility grid during the peak hours due 

to high energy tariffs. 
4
 Peak sharing is the process of distributing energy loads among various energy sources during the peak hours. 

5
 Base load generation is the process of supplying a minimum amount of energy constantly at all times. 
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over utilized by the consumers due to economic advantages [3] [7]. In such cases, the 

consequences lead to externalities such as pollution and dependence on fossil fuels [20] [21] [16] 

[22]. Thus, to enhance the system efficiency, rate of return, and ease the environmental impact 

simultaneously, it is necessary to establish a balanced strategic framework of optimal energy 

technologies and specific end-use allocation for DER adopters [23].  

U.S. energy policy must look at DER energy technology allocation as a sub-system of the overall 

energy – economic – technical – environmental system rather than as an isolated system for the 

nation’s future energy planning and sustainability [24] [25]. This leads to the research question – 

What is an appropriate technology-policy framework that optimally allocates various energy 

technologies among different end-uses in a distributed energy resources system? A technology-

policy framework for a specific circumstance formulates a set of objectives for desired outcomes 

in that situation [26]. It will be used to inform decisions and set effective policies regarding the 

technologies relevant to that situation [26].  

To address this question, we develop a two-stage multi-objective strategic framework for 

determining the optimal energy technology allocation for DER.  The framework simultaneously 

considers economic, technical, and environmental objectives. The framework takes into account 

the needs of both the DER users and regulators. The proposed framework can be used for DER 

design decision-making and for the development of DER regulatory policy.  
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Chapter 2 

Background 

DER is a disruptive innovation, meaning that DER has potential to change the energy market by 

applying a different set of values (such as energy efficiency, renewable energy, power quality 

and reliability) [3] [27]. However, it may offer poor economic justification for early adopters [3] 

[27]. As commercialization continues, these technologies will be characterized by lower costs 

and improved performance [28]. Research and development in energy technologies such as solar 

photovoltaic, fuel cells and wind turbines in particular are dramatically changing the economic 

calculus in remote locations that lack a supply of cheap gas or where the transmission constraints 

limit power flows [4]. In addition, increasingly sophisticated automation and controls of the 

energy management systems allow DER to operate much more cost-effectively than mega-scale 

utilities [29] [30]. Thus, the DER paradigm becomes more acceptable to users and more 

economically feasible [31]. 



 

5 

 

As a consequence, extensive research has been done in the context of DER systems planning and 

management [32]. Researchers in the past have proposed a variety of approaches based on 

analytical optimization techniques, mathematical programming, evolutionary programming, 

multi-criteria decision analysis, heuristic models, and genetic algorithms to optimize, design, or 

operate of DER systems. Researchers such as Pohekar and Ramachandran [33], Figueria et al. 

[34], Loken [35],  Alarcon-Rodriguez et al. [36], Connolly et al. [37], and Fadaee and Radzi [38] 

review, study, and discuss the literature regarding DER. In particular, Loken [35] concludes that  

there is no one methodology that is generally better suited than others for energy planning 

problems. On the whole, these reviews broadly classify the DER systems modeling literature into 

two categories – single-objective and multi-objective models.  

2.1. Single-Objective DER research 

Most of the single-objective methods optimize technical parameters such as DER power sizing 

and siting in particular scenarios [36]. Celli et al. [39] identify which sizes and locations are 

beneficial for DER system operation. Harrison and Wallace [40] present an Optimal Power Flow 

(OPF) approach to obtain the maximum DER capacity in predefined locations. Harrison et al. 

[41]  upgrade the OPF to optimize both DER locations and size, using a hybrid genetic algorithm 

and OPF approach, where the genetic algorithm is used to solve the combinatorial problem, and 

the OPF solves the capacity allocation problem. Keane and O’Malley [42] explore a similar 

problem, and propose a linear programming technique to find the maximum capacity that can be 

installed using a rigid connection. Ooka and Komamura [43] propose an optimal design method 

that uses a genetic algorithm for managing a building’s energy system using the grid electricity 

and other conventional recourses such as electric or gas heat pumps, boilers, etc. The method 
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provides efficient equipment capacity and operation planning for cooling, heating, and power 

operations in a large building.  More recently, Voll et al. [44] propose a methodology that 

optimizes the structure and capacities of the DER supply systems such that the optimum 

operational efficiency is achieved. Ashouri et al. [45] present a design framework for the optimal 

selection and sizing of a smart building system. Their model uses mixed integer linear 

programming techniques to compute and compare various configurations and operating 

strategies for a building’s energy system.  

Furthermore,  researchers such as Kim et al. [46], Wang and Nehrir [47], Wang et al. [48], and 

Soroudi et al. [49] propose various single-objective approaches to minimize power losses in DER 

systems. Niknam et al. [50] propose a stochastic model for optimal energy management in a 

typical grid-connected micro grid. Menon et al. [51] study the optimal design of multi-node 

micro grids integrating heat pumps and cogeneration units by considering optimal predictive 

control strategies. Zhou et al. [52] provide a generic energy systems engineering framework for 

the optimal design of DER systems in a hotel. 

In addition, most of the single-objective models in the literature minimize cost parameters of 

DER systems [53]. For cost minimization single-objective DER planning approaches, cost is 

mainly examined from three perspectives [36]. The models are formulated either from a DER 

developer’s perspective [54], a DER user’s perspective who invests in DER [55] [56], or a DER 

operator’s perspective who tends to minimize the cost of network reinforcements [57].  Wright et 

al.  [58] describe exploratory analysis that examines the economics of on-site generation systems 

on local electricity networks. Kalantar et al. [59] accomplish optimal sizing and economic 

analysis of the wind turbine, solar photovoltaic, and battery hybrid system using a genetic 
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algorithm for minimizing the annualized cost of the system. Fumo et al. [60] present a 

mathematical analysis to demonstrate that CHP systems increase the site energy consumption 

and therefore fail to yield economical savings.   

The optimization of energy systems focusing on economic objectives for designing energy 

systems in the residential and commercial sectors dominates the majority of the cost optimization 

research. For instance, Van Schinjndel et al. [61] develop a mathematical model to evaluate the 

economic benefit of a newly installed  DER system at a hospital using simulation and 

optimization. Cardona et al. [62] use a single-objective linear programming method for energy 

cost saving at airports. Ziher et al. [63]  use a similar approach for analyzing the trigeneration 

system in a hospital. Arcuri et al. [64] and Casisi et al.[65] propose similar mixed integer 

programming models to optimize the operating cost for a distributed cogeneration system with a 

local district heating network. Houwing et al. [66] apply a comprehensive framework to address 

uncertainties in cost  that influence the design and operation of a residential DER system that 

consists of micro-CHP technologies. Lozano et al. [67] present a mixed integer linear 

programming model to optimize the cost of combined cooling, heat and power systems with 

thermal storage for commercial users. Wakui et al. [68] use  an optimization approach based on 

mixed integer linear programming to investigate a suitable operational strategy of solid oxide 

fuel cell cogeneration systems to save energy costs in a housing complex. 

More notably, Ernest Orlando Lawrence Berkeley National Laboratory developed an economic 

model (known as DER-CAM) for a consumer to adopt DER. The model uses the general 

algebraic modeling system optimization software to minimize the cost of operating on-site 

generation [69]. The primary focus of the model is economic [70]. However, Marnay et al. 
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(2013) imply that DER-CAM can have an objective function focusing on cost, CO2 emission, or 

a weighted combination of both [71] [72].   

Few researchers primarily focus on the environmental aspects of DER systems [73]. Strachan 

and Farrell [22] systematically analyze emissions from DER energy technologies and conclude 

that there is a need for a rigorous regulatory framework for DER CHP technologies. Pehnt [74] 

investigates the environmental impact of micro cogeneration DER systems by carrying out a 

detailed life cycle assessment. Allison et al. [75] advocate technology-forcing regulation which 

would require the reduction of emissions from the DER units. Mancarella et al. [21] formulate a 

comprehensive emission assessment framework for distributed cogeneration systems. Chicco and 

Mancarella [76] [77] in their two papers, perform an in-depth assessment of greenhouse gas 

emissions from cogeneration and trigeneration DER systems. They contend that possible 

emission reduction benefits in DER systems arise only from the interaction of energy 

technologies through combined production processes, optimal composition of energy 

technologies, and the development of new energy generation technologies.  

Due to the rise in climate change concerns, the environmental impact from energy systems 

cannot be ignored [78] [79] [80].  Thus, the DER allocation problem becomes more challenging 

when attempting to minimize both the cost and environmental impact objectives simultaneously. 

[81]. DER modeling becomes even more complex when technical objectives such as power 

quality and reliability are considered as well. The difficulty arises as economic, technical, and 

environmental objectives often conflict with one another [82] [81]. 

Based on the previously presented DER literature, the single-objective models usually optimize 

one objective – generally cost – while treating other objectives as constraints, or the objectives 
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are aggregated into a single-objective function through a weighted sum method that is optimized. 

The major drawback of the weighted-sum approach is the difficulty of determining appropriate 

values for the weights [36]. Furthermore, it is imprecise to obtain quantitative weights to 

evaluate the energy systems based on conflicting objectives such as economic, technical, and 

environmental functions [81] [43] [39]. In addition, weighted-sum solutions are sensitive to the 

set of parameters considered and inconsistencies in any of the specified weights will lead to 

biased and sometimes misleading results [36].  For this reason, few researchers aggregate various 

attributes into a single monetary parameter; this approach lacks accuracy and does not capture 

the true nature of multi-objective optimization [83]. While exemplifying cases, Alarcon et al. 

[36] state that when attributes cannot be converted to cost accurately or when a larger number of 

objectives are analyzed,  a multi-objective approach becomes essential. 

2.2. Multi-Objective DER research 

Haesen et al. [82] discuss the drawbacks of single-objective formulations and identify the 

advantages of multi-objective approaches. Celli et al. [84] contend that multi-objective 

approaches allow a better simulation of reality and assist the decision-making process.  

Moreover, multi-objective DER planning methods provide valuable information about the 

correlations between the benefits and impacts of DER systems [84].  From a high-level 

standpoint, a multi-objective analysis of DER planning can provide an insight about incentives 

and policies to encourage DER developments such that the benefits and impacts are balanced 

[36]. However in the DER literature, in most of the multi-objective models, the objectives are 

either weighted into a single objective or each objective is solved separately and one solution is 

chosen. 
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Heretofore, in multi-objective approaches, objectives are formulated from the DER users’ or the 

operators’ perspectives [85]. Researchers employed multi-objective techniques to optimize 

various aspects of DER systems. DER multi-objective models are broadly used for three 

purposes– 1) economic planning and operation optimization for a single DER technology, 2) 

technical design of DER power systems from both utility and DER operator standpoints, and 3) 

environmental impact optimization of DER systems. 

Most of the multi-objective research primarily focuses on economics while considering other 

attributes. Tsay [86] presents a multi-objective approach based on evolutionary programming to 

solve the economical operation problem of cogeneration systems under emission constraints. 

Celli et al. [39] present a multi-objective technique to minimize different costs of embedded 

generation in distributed networks. They investigate the cost of network upgradation, cost of 

power losses, cost of energy not supplied, and cost of power quality. Aki et al. [87] use a multi-

objective model of cost reduction and CO2 emission mitigation of fuel cells. Wang et al. [48] 

employ a genetic multi-objective algorithm to assist designers in green building design while 

considering both economical and environmental criteria. Zangeneh and Jadid [88] present a 

multi-objective optimization approach to generate a Pareto set of DER unit locations and sizes by 

minimizing three cost functions – total cost of installation and operation, cost of energy losses, 

and cost of energy not served. Ghopal and Khan [89] implement a multi-objective optimization 

procedure to find optimal design values by minimizing two objective functions – energy cost and 

material cost.  

More  recently, Celli at al. [90] propose a multi-objective genetic algorithm that simultaneously 

considers cost and CO2 emission to solve the optimal placement of different types of DER. 

Mavrotas et al. [91] present an integrated modeling and optimization framework to minimize 
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cost and maximize demand satisfaction for the CHP system planning in large service sector 

consumers. Sayyaadi et al. [92]  present an economic model to minimize the total levelized cost 

of a DER system. The objective functions are based on thermodynamic and thermoeconomic 

analysis. Gebreslassie et al. [93] propose a multi-objective formulation that accounts for 

minimizing cost and environmental impact at the DER design stage. Sayyaadi [94]  performs a 

multi-objective optimization for designing a benchmark cogeneration system by considering 

economic, exergetic, and environmental criteria. Kavvadias and Maroulis [95] develop a multi-

objective optimization method for the design of trigeneration plants based on economic, 

energetic, and environmental criteria. Ren et al. [81] develop a multi-objective linear 

optimization model to determine the optimal operating strategy of a district DER system while 

combining the pure minimization of energy cost with the pure minimization of CO2 emissions. 

They perform a tradeoff analysis between the independent environmental and economic 

optimizations. Soroudi et al. [49] present a long-term two-stage heuristic planning model for 

distributed energy network expansion. The multi-objective model determines the optimal 

schemes of investments, sizing, and placement of DER over the planning period. Similarly, 

Carvalho et al. [96] apply a multi-objective mixed integer linear programming model to a DER 

trigeneration system. They consider annual cost and CO2 emissions to obtain a set of solutions 

presenting optimal tradeoffs between the economic and environmental objectives. 

Much of the multi-objective research primarily focuses on technical and design aspects of DER 

technologies or systems along with other functions. Haesen et al. [82] propose a multi-objective 

evolutionary algorithm to optimize the long-term planning of DER placement, sizing, and 

tradeoffs. They use bi-objective plots to examine correlations or conflicts between multiple 

objectives. Haesen et al. [97] use iterative mixed integer quadratic programming  for planning 
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time-variant DER. The authors identify that some objectives such as voltage sags and losses 

cannot be formulated as a mathematical function of DER type, location, and size. Harrison et al. 

[98] develop a multi-objective Optimal Power Flow model and combine it with genetic 

algorithms to maximize the DER capacity in existing and future networks. They also simulate 

and identify compromise solutions that would benefit all DER stakeholders. Harrison et al. [99] 

state that DER capacity maximization will produce an increase in line losses, and cost 

minimization of network investments conflicts with capacity maximization and line loss 

minimization.  Becerra-López and Golding [100] promote a multi-objective model to optimize 

capacity expansion of regional power generation systems. Tang and Tang [101] use Analytical 

Hierarchy Process (AHP) [102] to perform  a weighted-sum of four objectives (investment cost, 

energy losses, voltage quality, and supply reliability) to optimize DER locations and sizes. 

Alarcon-Rodriguez et al. [103] present a flexible multi-objective planning framework for the 

integration of stochastic and controllable DER in the distribution grid. Later, this was extended 

by Haesen et al. [104] to compare network reinforcement of DER systems as an alternative 

planning option. They also examine the effects of different energy tariff schemes.  

Recently, Abdollahi and Meratizaman [105]  perform a multi-objective genetic algorithm 

optimization for designing a distributed CCHP system and find a set of Pareto-optimal solutions. 

Rubio-Maya et al. [106] develop a nonlinear design optimization model for the selection and 

sizing of energy technologies in a poly-generation design. Fazlollahi et al. [107] explain an 

energy system optimization model that optimizes the configuration and the operating conditions 

of an energy system and parametrically optimize CO2 emissions as a second objective function. 

Later, Fazlollahi et al. [108] present a multi-objective optimization model for the sizing and 

operation optimization of district heating systems with heat storage tanks. The model includes 
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process design and energy integration techniques for optimizing the temperature intervals, the 

volume, and the operation strategy of thermal storage tanks.  

Society's desire for less polluting energy sources conflicts with the users’ inclination towards an 

affordable and reliable energy supply. Few researchers principally focus on environmental 

aspects of DER systems along with other functions. Pelet et al. [109] use a multi-objective 

evolutionary algorithm to study the optimization of the design parameters of an integrated energy 

system for a remote community. They argue that separating and ranking the two objectives (total 

cost and CO2 emissions) enables more informed design decisions. Furthermore, they recognize 

the conflict between cost and environmental benefits and conclude that clean energy 

technologies are more expensive. Alarcon-Rodriguez et al. [110] propose a multi-criteria 

evaluation technique to explicitly formulate an environmental objective along with a flexible 

treatment of other relevant constraints. Moura et al. [111]  propose a multi-objective method to 

maximize the renewable energy contribution to the peak load, while minimizing the combined 

intermittence, at minimum cost. Their model considers the contribution of the large-scale 

demand-side management and demand response technologies. Fesanghary et al. [112] present a 

multi-objective optimization model based on the harmonic search algorithm to design low-

emissions and energy-efficient residential buildings with DER systems. 

2.3. Remarks on DER research 

Through the widespread literature search, we draw some implications about DER systems 

modeling research. It is evident that nearly all of DER systems modeling research (except [69]) 

originates from European and Asian nations and do not explicitly deal with the U.S. energy 

policy.  No research investigates a wide range of energy technologies simultaneously – 



 

14 

 

conventional (e.g. engines, boilers), new (e.g. different types of fuel cells, geothermal pumps), 

renewable (e.g. solar, wind), storage (e.g. batteries, pumped storage), CHP, and CCHP. The 

competitiveness and selection of DER energy technologies is not examined by developing a 

technology-policy framework.  DER system planning and modeling is mostly done from a user 

or operator perspective. DER system planning is not formulated with respect to specific energy 

end-use demands of a consumer and the allowable controllability of those demands. A small 

number of researchers study economic, technical, and environmental aspects together. However, 

they handle them either by weighting, aggregating into a single parameter, or solving 

independently and analyzing a tradeoff relation among them.  

This research fills this gap by introducing an innovative school of thought that aims to find a 

Pareto-optimal energy resource to end-use allocation in a DER system. We develop a hybrid 

multi-objective two-stage DER technology-policy framework. Unlike previous models, this 

model considers economic, technical, and environmental objectives simultaneously without the 

need of weights and thus eliminates the subjectivity that would otherwise arise. 

In addition, the model is useful to understand the competiveness of different energy technologies 

in optimally supplying energy to particular end-uses. Furthermore, the model regards 

controllable or sheddable loads
6
 for various end-uses by considering the minimum power 

dispatchability required for particular energy end-uses. On the whole, the proposed framework 

can be useful for DER design decision-making, for the development of DER regulatory policy, 

and for the determination of incentives and taxes to promote or oppose certain DER technologies 

for the welfare of both users and society. 

                                                           
6
  Load shedding is the process of disconnecting the energy supply to certain uses when the energy demand becomes 

higher than the supply capacity. 
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Chapter 3 

DER Technology-Policy Framework 

There are several types of DER technologies available ranging from conventional combustion 

engines to advanced fuel cells. DER technologies are capable of performing different tasks such 

as generating, supplying, and storing electric energy, thermal energy, or a combination of both 

(CHP and CCHP). El-Khattam et al. [113] and Chicco and Mancarella [114] provide detailed 

reviews of DER technologies and outline possible structures, characteristics, components, energy 

flows, and interactions of DER systems. On the other hand, there are various energy end-uses of 

a consumer that demand energy. Figure 1 shows a possible DER architecture with various fuels, 

energy technologies, and end-uses.  
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Figure 1. Fuels, energy technologies, end-uses 

3.1. Rationale  

Every unit (kWh) of energy transfer from each energy technology resource to an end-use has a 

corresponding system efficiency [115]. The system efficiency is a combination of fuel to output 

efficiency (or energy technology efficiency) of an energy resource and end-use device efficiency 

[116]. Tables 1 and 2 tabulate all energy technology efficiencies and end-use devices 

efficiencies, respectively.  A dash implies that the related energy technology does not produce 

that energy form. For example, a gas heater does not produce electrical energy and hence there is 

no corresponding effective electrical efficiency. A CHP or CCHP energy technology has two 

efficiencies as they produce both electric and thermal energy. Thus, in such cases the total fuel to 
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total output efficiency is the sum of effective electrical output and effective thermal output 

efficiencies [117]. Grid electricity efficiency is the product of the local utility power plant 

efficiency and transmission and distribution efficiency (~0.94). Storage device efficiency is the 

product of grid electricity and storage technology efficiency. The advantage of a storage 

technology is that its reliability is comparatively higher than the grid electricity alone. We collect 

efficiencies data for energy technologies and end-uses from multiple sources [3] [116] [117] 

[118] [119] [120]. 
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Table 1. Energy Technology Efficiencies 
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Table 2. End-Use Efficiencies 

System efficiency implies efficiency of energy (kWh) conversion from the fuel to the end-use 

[121]. For example, the fuel to electric energy output efficiency of a diesel reciprocating engine 

is about 0.42 and the end-use device efficiency of an electric motor pump which is used for water 

pumping is 0.61. The net system efficiency of every kWh of energy of diesel electricity used for 

water pumping is 0.42*0.61 = 0.26. In case of CHP and CCHP systems, the system efficiency is 

the product of the respective effective electric output efficiency (for electric energy end-uses) or 

effective thermal output efficiency (for thermal energy end-uses) and the end-use efficiency. For 

energy technologies with thermal output only, the system efficiency equals the energy 

technology alone. Table 3 shows the estimated system efficiencies for all the energy technology 

and end-use combinations. A dash implies that the respective combination is not feasible. High 

system efficiency leads to a lesser waste of energy and thus, a relatively lesser operating cost and 

environmental impact [122] [123]. Fuel to output efficiency data is used to proportionate the 

costs. The system efficiency data is used to calculate the emissions released by each technology 

and end-use combination.  
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Table 3. System Efficiencies 
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3.2. Metrics 

The DER technologies must be compared and evaluated relative to each other to select the 

optimal technology for specific energy uses  [122] [9] [113]. Thus, we evaluate the performance 

of each DER technology relative to an empirical production possibility frontier determined by all 

the DER technologies for a particular end-use under appropriate assumptions. We evaluate each 

energy technology and end-use combination using three objectives simultaneously – economic, 

technical, and environmental. 

For the economic objective, we consider levelized cost (LC). LC (cents per kWh) is the constant 

unit cost per every kWh of energy that is supplied. LC  summarizes the overall cost of the energy 

technology throughout its life [24]. LC accounts for turnkey, operating and maintenance (O&M), 

fuel, and financial costs throughout the life of the equipment. We consider LC in 2013 dollars 

with a 20 year economic life/duty cycle of a consistent 500kW power capacity for all 

technologies (except grid electricity), with a 40% tax rate, 30% debt, 1% degradation, 25% fuel 

escalation, and 8% interest rate. We obtain other necessary LC components such as turnkey 

costs, O&M costs, and capacity factors from Borbely and Kreider [3]. We assume a diesel price 

of $3.75 per gallon and a natural gas price of $8.00 per MMBtu (1 MMBtu = 293.3 kWh). We do 

not include government incentives or credits and operator profits. We adjust the LC for CHP and 

CCHP technologies proportional to the total electric and thermal energy that is output by the 

technology [124] [117]. The LC data is available through several sources such as [69], [125], 

[24], and [126]. 

For the technical objective, we consider the reliability factor (RF). RF (ratio) is a combined 

measure of the availability of a fuel source and the technical or mechanical reliability of the 
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technology to supply every kWh of energy for an end-use. Power reliability problems range from 

the occasional voltage variations (brown-out) to complete power loss (black-out) due to overload 

or external disturbances to the power system. RF for renewable technologies depends on the 

season and climate conditions [127]. For example, the RF of solar energy technology used for 

space heating (which usually has demand in cold weather) is higher than the RF of solar energy 

technology used for space cooling (which usually has demand in warm weather). We estimate 

the RF of different energy resources by compiling the performance and reliability data such as 

fuel sources availability (for solar, wind, biomass, etc.) from 2012 Renewable Energy Data Book 

[127], and typical technical failures for technologies (for grid, gas turbines, etc.) from multiple 

sources [119] [128]. The RF data varies by region due to local utility grid and weather 

conditions. The National Renewable Energy Laboratory (NREL) [127] and the National Energy 

Technologies Laboratory (NETL) [129] furnish data on the reliability of energy output by 

renewable energy technologies for different regions across the US. 

For the environmental objective, we consider three emissions (EM) – Carbon, Nitrogen, and 

Sulfur.  Carbon (C) emission is a major greenhouse gas (GHG)  [130]. The U.S. Environment 

and Protection Agency (EPA) emphasizes policies to reduce the carbon footprint from energy 

generation as it is more accessible to monitor and control from power generating stations than 

from millions of vehicles [131]. Nitrogen (N) and Sulfur (S) emissions contribute to rainfall 

acidity [132]. The Clean Air Act requires the EPA to set national air quality standards for six 

pollutants – carbon, nitrogen, sulfur, particulate matter, ozone, and lead [133]. This study does 

not include coal and oil power generating plants as they are not feasible for distributed energy 

generation [9]. Thus, we do not consider particulate matter, lead, and ozone pollutants as they are 
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of significant concern only for large scale coal and oil power plants [28]. We do not consider 

indirect emissions that are released during the design, manufacturing, or construction stages.  

We obtain the composition and enthalpy values (higher heating value) of the fuels from an 

engineering handbook and compute EM (grams per kWh) using stoichiometry equations, 

relevant system efficiencies, and other principles of combustion such as exergy [134] [135] [130] 

[119]. For example, Diesel fuel has 87% Carbon (C) content and the calorific value (higher 

heating value) is 43,820 kJ/kg (or 12.17 kWh/kg) [134]. The C emission for every kWh produced 

during the combustion process is 71.48g of C/kWh. To find the net C emission at the end-use, 

the calculated C emission is divided by the system efficiency of each combination. For example, 

the quantity of C emitted for water pumping using diesel electricity is (71.48 g of C/kWh)/ 0.26 

= 274.95 g of C/kWh. In the same fashion, we calculate the N and S emissions. Antipova et al. 

[136] propose to optimize the energy system with a reduced number of environmental objectives 

that fully describe the system’s performance but eliminate redundant criteria from the analysis. 

Thus, in order to remove the redundancy of objectives, we aggregate the three pollutants into one 

quantity (EM). We compute the EM for CHP and CCHP technologies proportional to the useful 

electric and thermal energy that is output by the technology using the effective system 

efficiencies data [76] [117]. EM data for the grid electricity is obtained from the local utility 

reports and varies by the region or the locality.  

The LC, RF, and EM data for all the energy technology and end-use combinations is shown in 

chapter 5 (actual values in tables 5a, 5b, 5c, 5d, 5e, 5f, 5g, and 5h) for a particular scenario.  Note 

that the emphasis of this dissertation lies in presenting and demonstrating the novel DER 

framework. Energy decision makers seek solutions that satisfy multiple objectives that are often 

conflicting  [137]. Particularly balancing energy costs and environmental attributes pose a major 
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dilemma in energy decision analysis [138] . In order to achieve the desired levels of these 

objectives, it is often important to allocate the energy resources efficiently [139]. This is the 

fundamental idea behind incorporating the three objectives discussed previously into a non-

parametric production frontier methodology. We obtain the three factor efficiency scores for 

each energy technology and end-use combination from this process. This constitutes the first 

stage of the framework. Figure 2 summarizes the description of the three objectives.  

 

Figure 2. The Three Objectives 

We incorporate the factor efficiency scores obtained from the first stage into a multi-criteria 

methodology. In particular, the factor efficiency scores appear as coefficients of the decision 

variables in a set of constraints designed to produce solutions that simultaneously consider the 

objectives in a balanced fashion by eliminating the subjectivity of weights [140]. In addition, 

supplementary operational criteria and constraints are incorporated in the multi-criteria 

methodology to obtain the optimal energy resource to end-use allocation. This constitutes the 

second stage of the framework.  
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Chapter 4 

Methodology 

In an energy planning models review paper, Loken [35] justifies that researchers should use 

more than one methodology, either in combination to make use of the strengths of both 

methodologies, or in parallel to attain a perceptible decision basis for an energy decision maker. 

Thus, we develop a hybrid two-method two-stage framework to study DER technology 

competitiveness and allocation while accounting for the three objectives simultaneously. This 

chapter describes the methodology of the framework comprehensively. 

4.1. Energy Technologies and End-Uses 

Table 4 shows the energy technology (t) and end-use (u) matrix. There are 46 (T) technologies 

and 8 (U) end-uses. The cells represent allowable energy capacities in kWh (Ctu) for the 

particular energy technology (t) and end-use (u) combination. The “M” signifies a big M value, 

meaning that there is a high capacity limit for the corresponding combination. The big M can be 
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substituted with a limit value (kWh) in case there is an actual capacity restriction, such as land 

available for wind or solar technologies, fuel supply limitations, or biomass availability, etc.  

Zero implies that the respective energy technology (t) cannot be used for the corresponding end-

use (u). For example, geothermal pump technology cannot be used for water pumping, and the 

solar thermal collector resource captures thermal energy from the sun rays that can be used for 

space heating and water heating only. We consider the energy technologies that are 

commercially available and are not in the development or the demonstration phase [3]. We 

consider the energy end-uses that are most common for a typical commercial user [141]. Energy 

technologies and end-uses can be added or removed according to the user, resource availability, 

etc. This makes the framework adaptable to any DER situation.  
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Table 4. Energy Technologies and End-Uses 
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Grid electricity (t=1) is the energy available from the local utility grid. There are four storage 

technologies (t=2,3,4,5) that can be used in conjunction with grid supply in order to increase 

reliability and/or to store energy during the off-peak hours to lower energy consumption costs 

[126]. These together will allow a DER system to be grid-integrated. 

There are ten Combined Heat and Power (CHP) technologies (t=7,10,12,16,19,22,25,27,29,31) 

and six Combined Cooling, Heating and Power (CCHP) technologies (t=8,11,14,17,20,23). CHP 

or CCHP are not specific energy technologies but are applications to energy technologies that 

increase the useful energy output and improve efficiency. In a CHP technology, when electric 

energy is generated, thermal energy (or heat) produced during the generation process is captured 

and used for space heating and water heating (u=2, 3). In CCHP, the heat captured is used for 

either space heating (on cold days) or for space cooling (on warm days) while being used 

constantly for water heating [142] [143]. Thus, CHP and CCHP technologies provide thermal 

energy (versus electric energy) for heating and cooling (u=2, 3, 5) [144]. In most cases, CCHP is 

not suitable for commercial refrigeration (u=6) as it requires heavy cooling loads which cannot 

be fulfilled with CCHP [145]. CCHP uses an adsorption chiller that utilizes thermal energy to 

cool the water [146]. Chilled water acts as a transfer medium for space cooling, whereas 

commercial refrigeration typically requires compressors with ammonia or Freon refrigerants to 

achieve high cooling power [147].   

Energy technologies (t=37 to 46) such as heaters, furnaces, thermal collectors, and heat pumps 

provide only thermal energy for heating and cooling end-uses (u=2, 3, 5).  Thus, they tend to 

have the lowest costs among all the technologies. 
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4.2. First Stage of the Framework 

In the first stage of the framework, we use unoriented Data Envelopment Analysis (DEA) to 

compute factor efficiencies of each energy technology (t = 1,…, T) for each end-use (u = 1,…, 

U). DEA is a linear programming based non-parametric methodology that measures the 

efficiency of each technology relative to an empirical production possibility frontier determined 

by all technologies under appropriate assumptions regarding model orientation and returns to 

scale. [148]. 

Typically, DEA models are either input oriented or output oriented [149]. An input oriented 

model reduces inputs as much as possible while maintaining output levels. An output oriented 

model increases outputs as much as possible while maintaining input levels. In addition, DEA 

models can be unoriented [150]. An unoriented DEA model can be used to measure efficiency in 

situations in which analysts seek to simultaneously reduce input quantities and increase output 

quantities. 

The production possibility frontier’s function depends on the type of returns to scale assumption 

the DEA model follows. See figure 3 for a simple one-input, one-output depiction. DEA models 

can be constant return to scale (CRS), non-decreasing returns to scale, non-increasing returns to 

scale, or variable returns to scale (VRS). In CRS models, technologies are able to linearly scale 

inputs and outputs without decreasing or increasing the technology’s efficiency. In non-

decreasing returns to scale models, proportionate increases in all of the inputs result in more than 

proportionate increases in its outputs, while in non-increasing returns to scale models, 

proportionate increases in inputs result in less than proportionate increases in outputs [151]. VRS 
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models are a combination of both non-decreasing and non-increasing returns to scale models. For 

thorough review of DEA, the reader can refer to Sexton [152] and Sexton and Silkman [153]. 

 

Figure 3. DEA CRS and VRS Frontiers 

DEA converts a specific level of each input into a specific level of each output. DEA is 

applicable in situations where the inputs and outputs are in different units and cannot be 

precisely converted to a common scale, as is the case here. LC (cents/kWh) is the input and RF 

(ratio) and EM (grams/kWh) are the outputs for the technologies. We use the unoriented DEA 

model as DER decision makers seek to decrease the input and increase the outputs concurrently 

[99]. EM is a reverse quantity output [154] i.e., though it is an output, less quantity is desired. To 

achieve meaningful results, the proposed DEA model follows the constant returns to scale (CRS) 

assumption. This assumption is justified as the inputs and outputs are constant values expressed 

per kWh of energy production. 

We perform the DEA model for each end-use separately. The DEA model for an energy 

technology k in an end-use u is formulated as follows: 
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Where, 

 λktu is the weight placed on the energy technology t for an end-use u by the energy 

technology k.  

 εku is the relative efficiency of the energy technology k for end-use u.  

 Ѳku is the approximate inverse efficiency of the energy technology k for end-use u.  

Equation 1 minimizes the relative efficiency of the energy technology k or equivalently 

maximizes its approximate inverse efficiency.  Equation 2 ensures the hypothetical target energy 

technology consumes no more of the input (LC) than the energy technology k.  Equation 3 

ensures the hypothetical target energy technology produces at least as much of the output (RF) as 

does the energy technology k. Equation 4 ensures the hypothetical target energy technology 

produces no more of the reverse quantity output (EM) than the energy technology k. Equation 5 

is a first-order linear approximation of εku* Ѳku  =1 [155].  Equations 6 and 7 ensure that the 

decision variables are non-negative.   
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The three factor efficiencies for energy technology k for end-use u are given by: 
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Equations 8, 9, and 10 estimate the factor efficiency scores for the three objectives LC, RF, and 

EM, respectively. At optimality: F1ku ≤ εku, F2ku ≤ 1/Ѳku, and F3ku ≤ εku. As shown in equation 8, 

the factor efficiency score for LC (for energy technology k and end-use u) is the ratio of its 

efficient target value to its actual value. As shown in equation 9, the factor efficiency score for 

RF (for energy technology k and end-use u) is the ratio of its actual value to its efficient target 

value. As shown in equation 10, the factor efficiency score for EM (for energy technology k and 

end-use u) is the ratio of its efficient target value to its actual value. The key idea in this stage is 

that the DER decision maker desires to choose energy technology k if it scores high factor 

efficiencies, and reject if it scores low factor efficiencies. We embody this concept in the second 

stage of the framework by incorporating the factor efficiencies scores into a multi-criteria 

decision methodology. 
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4.3. Second Stage of the Framework 

In the second stage, we use Goal Programming (GP) to obtain the optimal energy resource and 

end-use allocation while accounting for additional constraints. GP is a commonly used multi-

criteria decision methodology that is capable of handling multiple objectives (goals) within the 

general framework of linear programming [156]  [157]. However, GP requires target values and 

unit penalty weights associated with each goal. It is difficult to specify these values consistently 

as the objectives are contradictory and thus pose a problem of subjectivity [158] [159] [140].   

We mitigate this issue in the proposed framework by incorporating the factor efficiencies scores 

estimated by the DEA models into the GP-bottleneck model. We employ the GP-bottleneck 

model proposed by Lewis  [140]. The GP-bottleneck model includes constraints on the energy 

resources capacity restraints (Ctu) and constraints that ensure that the optimal energy technology 

to end-use allocation (Qtu) will not be less than the given end-use demands (Du) in a DER 

system. 

We apply the GP-bottleneck methodology for all energy technologies (t = 1,…, T) and end-uses 

(u = 1,…, U). The GP-bottleneck model is formulated as follows: 
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Where, 

 B is the bottleneck variable  

 Qtu is the energy allocation in kWh for energy technology t and end-use u.  

 Ctu is the allowable energy capacity in kWh for energy technology t and end-use u.  

 Du is the energy demand in kWh for end-use u.  

Equation 11 is the objective function that minimizes the bottleneck variable (B). Equations 12, 

13, and 14 ensure that all three objectives are considered simultaneously when selecting the 

energy technology allocation. This ensures that no one objective dominates the others. Equation 

15 ensures that the allocated energy capacity (Qtu) is no more than the allowable energy capacity 

(Ctu) for respective energy technology (t) and end-use (u). Equation 16 guarantees that the 

allocated energy capacity (Qtu) for an end-use is at least as much as the energy demand (Du) for 

that end-use. Equations 17 and 18 ensure that the decision variables are non-negative. 
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CHP technologies produce two forms of energy. Electric energy is used for end-uses (u=1, 4, 5, 

6, 7, 8) and thermal energy is used for end-uses (u=2,3). Thus, we embody this principle by 

integrating additional constraints for CHP technologies t =7, 10, 13, 16, 19, 22, 25, 27, 29, 31.   
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ht is the heat to power ratio for the CHP or CCHP energy technology t [117]. For illustration, say 

a CHP energy technology produces 30 units (kWhe) of electricity, and as a result 45 units (kWht) 

of thermal energy is captured and supplied. Thus the heat to power ratio (ht) of this CHP 

technology is computed as 45/30=1.5 (unitless) [117]. wt is the residual heat ratio that is 

available for water heating (u=2) through the CHP energy technology t [117]. The values of ht 

and wt vary for different CHP technologies. The data for ht and wt is provided in the catalog of 

CHP technologies document prepared by the EPA  [117].  

Equation 19 ensures that the thermal energy available for space heating (u=3) through the CHP 

energy technology t is equal to ht times the cumulative electric energy produced for other end-

uses (u=1, 4, 5, 6, 7, 8). After the captured heat passes through a heat exchanger for space 

heating (u=3), the residual heat that exits the heat exchanger is used for water heating (u=2). 

Thus, equation 20 ensures that the thermal energy available for water heating (u=2) through a 

CHP technology t is equal to wt times the thermal energy available for space heating end-use 

(u=3). In case of CHP technologies, space cooling end-use (u=5) is satisfied with electric energy. 

Similarly, CCHP technologies produce two forms of energy. Electric energy is used for end-uses 

(u=1,4,6,7,8) and thermal energy is used for end-uses (u=2,3,5). In the case of CCHP 
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technologies, space cooling (u=5) is satisfied with thermal energy. Thus, we embody this 

principle by integrating additional constraints for CCHP technologies t =8, 11, 14, 17, 20, 23. 
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In CCHP technologies, the heat captured ht is used for either space heating during cold days or 

for space cooling during warm days (u=3, 5). Space heating and space cooling end-uses are 

mutually exclusive (HVAC systems). Thus, equation 21 ensures that the thermal energy 

available for either space heating or space cooling (u=3, 5) through the CCHP energy technology 

t is equal to ht times the cumulative electric energy produced for other end-uses (u=1, 4, 6, 7, 8). 

The residual heat wt that exits either from the heat exchanger (in case of space heating) or 

adsorption chiller (in case of space cooling) is used for water heating (u=2). Hence, equation 22 

ensures that the thermal energy available for water heating (u=2) through a CCHP technology t is 

equal to wt times the thermal energy available for space heating or space cooling (u=3, 5).  

Finally, the constraints for geothermal pump technology are: 
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Geothermal pump technology (t=45) is used for space heating during winter and space cooling 

during summer. α is the heating (at 32⁰F) to cooling (at 77⁰F) ratio for geothermal pump 

technology [160]. A ground loop geothermal heat pump with an approximate cooling capacity of 

100 units will result in an approximate 74 units of heating capacity, thus α is = 0.74 (unitless) 
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[161]. w is the percent of thermal energy available for water heating (u=2) through geothermal 

pump technology in conjunction with the desuperheater technology (t=46) [162].  

Thus, equation 23 ensures that the energy available for space heating (u=3) through the 

geothermal energy technology (t=45) is equal to α times the energy available for space cooling 

(u=5). Equation 24 ensures that the thermal energy available for water heating (u=2) through the 

geothermal energy technology (t=46) is equal to w times the thermal energy available for space 

heating (u=3). 

Various end-uses have different levels of significance and requirements [163]. Thus, end-uses 

have various minimum energy requirements or dispatchability [164].  Dispatchability is a 

minimum end-use energy demand that should be available all the time. The minimum 

dispatchability differs for various end-uses [165]. An end-use u with a low minimum 

dispatchability reflects that there is a high portion of the energy demand of end-use u that can be 

rescheduled by load shedding or load controlling [166] [1]. End-uses such as water pumping and 

water heating tend to have low minimum dispatchability and critical end-uses such as space 

heating and refrigeration tend to have high minimum dispatchability [1]. The inclusion of 

dispatchability enhances the optimal allocation framework by interacting the dispatchability of 

various end-uses’ energy demands with the dispatchability of energy technologies [167]. 

Minimum dispatchability (du) for an end use u is the percent of total energy demand Du for end-

use u, thus 0≤du≤1. The following constraint accounts for minimum dispatchability (du) for each 

end-use. 
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Pt signifies whether the energy technology t is dispatchable (Pt =1) or not dispatchable (Pt =0). 

Equation 25 ensures that the target allocated dispatchable energy capacity for each end-use u is 

at least as much as the minimum dispatchable demand for respective end-use u. 

U.S. energy policy promotes renewable energy generation and targets that the renewable energy 

penetration should be about 29% in New York by 2015 and 33% in California by 2020 [24]. 

DER systems are one of the potential ways to increase renewable energy penetration swiftly 

[111] [9] [7]. Thus, we embody a “minimum renewable energy penetration” policy variable into 

the framework. The policy variable enables decision makers to examine the alteration of energy 

technology selection, optimal energy allocation, costs, and emissions by changing its value. This 

allows the regulatory bodies to determine policies that can encourage (or restrict) the DER 

developers, users, and operators to consider certain renewable energy technologies depending on 

the end-uses, related energy demands, and dispatchability.  

 Minimum renewable penetration (r) is the percent of total energy demand Du for all end-uses 

u=1,…,U,  thus 0≤r≤1. The following constraint accounts for cumulative minimum renewable 

penetration (r) for total energy demand by all end-uses. 
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Rt signifies whether the energy technology t is a renewable source (Rt =1) or non-renewable 

source (Rt =0). Equation 26 ensures that the target allocated renewable energy capacity for all the 

end-uses u is at least as much as the cumulative minimum renewable energy demand for all end-

uses. 
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Dispatchability and renewable energy penetration constraints accommodate DER end-use 

demand requirements and U.S. energy policy attempts to increase the penetration of renewable 

energy. However, renewable energy technologies (Rt=1) with the exception of biodiesel, 

biomass, and geothermal (heat  pump) are not dispatchable (Pt=0) [9]. This means that they are 

not capable of generating energy according to the end-user demand fluctuation. Thus, 

dispatchability and renewable penetration constraints often conflict. Figure 4 gives the schematic 

of the two-stage framework. 

 

Figure 4. The Two-Stage DER Technology-Policy Framework 
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Chapter 5 

Demonstration of the Framework 

We first apply the first stage DEA model to find factor efficiencies of energy technologies. We 

carry forward the first stage results to the second stage. The second stage consists of a goal 

programming model which considers various energy consumer inputs and finds the Pareto-

optimal energy technology and end-use allocation for that user. 

5.1. Data and Results for the First Stage 

In the first stage of the framework, we begin by calculating the efficiency scores of each energy 

technology within an end-use by applying the unoriented DEA model for each end-use 

individually. Next, we determine the factor efficiency scores by using actual and target levels of 

LC, RF, and EM for all energy technologies within all end-uses. Tables 5a to 5h show the 

technology efficiency scores, actual values, target values, and factor efficiencies for all the 

energy technologies used for all the end-uses.  
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Table 5a. First Stage Results for Water Pumping End-Use 
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Table 5b. First Stage Results for Water Heating End-Use 
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Table 5c. First Stage Results for Space Heating End-Use 
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Table 5d. First Stage Results for Ventilation End-Use 
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Table 5e. First Stage Results for Space Cooling End-Use 
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Table 5f. First Stage Results for Refrigeration End-Use 
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Table 5g. First Stage Results for Lighting End-Use 
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Table 5h. First Stage Results for Electronics and Electricals End-Use 

The factor efficiency scores indicate the competitiveness for energy technologies and provide 

policy implications. For illustration (refer to Table 2c), the use of biomass fired boiler 

technology for space heating will become optimal if the LC is decreased by ¢0.54/kWh 
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(11.39%), RF is improved by 9.68 (10.22%), and EM is reduced by 8.79gram/kWh (11.93%) 

while the values for other technologies remain constant. To achieve the target values, LC can be 

reduced through incentives, RF can be improved through engineering design, and EM can be 

reduced through retrofitting devices such as carbon capture or sequester, catalysts, electrostatic 

precipitators, etc. 

5.2. Data and Results for the Second Stage 

In the second stage, we find the optimal energy allocation of energy technologies for various 

end-uses by applying the GP model. Table 6 gives the input data for the second stage. We find an 

optimal energy allocation for a typical commercial DER adopter whose total energy demand is 

about 100,000kWh for a defined demand period in the New York region [168]. We split the total 

energy demand into various end-use demands using approximate end-use energy demand 

percentages given for a commercial consumer in the Building Energy Data Book [141]. The 

percentages tend to be nearly constant as the defined demand periods (usually one year) are 

cyclical, hence the optimal allocation determined for a defined demand period can be generalized 

[141]. The end-use energy demand percentages vary by type of users (e.g. hospital, university, 

federal building, etc.) [141] [169]. This framework can be calibrated to any user by inputting 

their total energy demand for a year and respective end-use energy demand percentages obtained 

from the Building Energy Data Book. We assume minimum dispatchability and minimum 

renewable penetration percentages based on the Building Energy Data Book and the Annual 

Energy Outlook Report [141, 164]. Energy capacity is assumed as big M for all energy 

technologies. Table 7 tabulates the optimal energy allocation and related results. 
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Table 6. Input Data for Second Stage 
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Table 7. Optimal Energy Allocation Results 
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5.3. Interpretation of the Results 

The optimal energy allocation in this scenario consists of seven technologies (highlighted), 

including one CHP technology. The electric energy from gas turbine with CHP technology 

(dispatchable) is used for water pumping, refrigeration, and a small amount for lighting. The 

dispatchable thermal energy that is captured through the cogeneration process is used for water 

heating and space heating.  

Energy demand for water heating is constantly fulfilled by the geothermal desuperheater 

technology (dispatchable). In warm weather (>68⁰F), the geothermal pump functions as a reverse 

heat pump and releases less energy for water heating [162]. However during warm weather, solar 

energy is abundant and results in the dispatchability increase of the solar water heater, thus it can 

be used to fulfill the additional water heating demand. In cold weather (<32⁰F), water heating 

demand increases while the solar and the geothermal energy is inadequate to meet the demand. 

Thus, the dispatchable heat from the gas turbine CHP process is used to satisfy the surplus 

demand for water heating.  

Energy demand for space heating increases in cold weather (<32⁰F) and geothermal pump 

technology cannot fulfill the demand. Hence the heat from the gas turbine CHP process is used 

to satisfy the surplus demand for space heating. Space heating is critical and hence all the energy 

supplied is dispatchable. 

Similarly, energy demand for space cooling is satisfied by both solar thermal and geothermal 

pump technologies. In hot weather (>77⁰F), energy demand for space cooling increases and 

geothermal pump technology cannot fulfill the excess demand. Although during hot days, solar 

energy is abundant and the dispatchability of solar thermal collector with adsorption chiller 
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technology increases, thus it can be used to satisfy the additional energy demand for space 

cooling. 

Solid oxide fuel cell electricity is constantly used for pure electric needs— ventilation, lighting, 

and electrical and electronic end-uses. Adding a CHP system to fuel cell technology is expensive 

[170]. Due to high electric efficiency and low heat to power ratios, fuel cells are mostly suitable 

for electric needs only [117]  [119]. The optimal energy allocation from the framework seems to 

reflect the same. 

Wind power is suitable for energy demands that are capable of reducing the energy consumption 

when necessary [171]. Wind turbine electricity is not dispatchable and is used to satisfy half of 

water pumping demand, and a small portion of ventilation, lighting, and electrical and electronic 

demands. These end-uses are pure electric needs that do not mandate 100% dispatchability [1].   

There are no slacks in the energy capacities and dispatchable energy. However, there is a 

positive slack of 5.5% for renewable energy penetration. The results suggest that the previously 

discussed technologies should be considered by the DER developer in this scenario. The grid 

electricity and storage technologies are not chosen for any end-use. The optimal energy 

allocation can alter when the cost, reliability, emissions, capacities for energy technologies, end-

use energy demands, dispatchability of demands, or renewable penetration change. Table 8 

shows the optimal energy percentages (both electric kWhe and thermal kWht) that should be 

planned through the selective energy technologies in this particular scenario. 
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Table 8. Optimal Energy Percentages 

5.4. Sensitivity Analysis 

The policy variable – minimum renewable energy penetration (r) enables decision makers to 

examine the alteration of energy technology selection, optimal energy allocation, costs, and 

emissions by changing its value. The policy variable aims to determine policies that can 

encourage or discourage the DER stakeholders to consider certain renewable energy 

technologies depending on the end-uses, related energy demands, and dispatchability. To 

demonstrate this policy variable, we perform a sensitivity analysis by varying the renewable 

percentage from 0 to 100% in increments of 10%, while keeping other variables constant. We 

present the variation in the energy technology choice for the previously presented example. 

Table 9 tabulates the results and figure 5 graphically shows the patterns. 
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Table 9. Energy Technologies and Percentages for Different r Percentages 

 

Figure 5. Energy Technologies trends 
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In this scenario, the optimal renewable energy percentage is 35.5%.   When r approaches 40%, 

the natural gas turbine CHP energy declines steadily and the geothermal heat pump technology is 

chosen to compensate the energy supply gap. Beyond r = 40%, the use of biodiesel energy 

increases and fuel cells energy decreases as r % increases. In the group of energy technologies, 

the biodiesel engine is the only electric energy technology that uses renewable fuel and is 

dispatchable. Though biodiesel is a renewable fuel, the C emissions through energy generation 

are higher when compared to natural gas that is used by fuel cells energy technology [172]. On 

the other side, the cost of the biodiesel engine is less than that of fuel cells  [173] . Thus, as r 

increases, the total emissions increase and the cost decrease while satisfying the minimum 

dispatchable energy demands. The highest cost and the lowest emissions happen at r =50%. 

Figure 6 shows the cost and emissions variation with respect to r %. 

 

Figure 6. Changes in emissions and cost 
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We carry out different case studies to see the changes in energy technologies and energy 

capacities due to variation of other variables such as grid electric tariffs, local utility reliability, 

fuel source of local central power plant, local weather conditions, end-use energy splits, and 

respective dispatchability. The case studies are structured into categories – 1) different nature of 

users in a same region, and 2) same nature of users in different regions. The former one helps us 

understand the selection of energy technologies for different kinds of energy consumers and the 

latter one reveals the impact of regional differences in the choice of technologies. The next two 

chapters present the case studies 
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Chapter 6 

Application to Large Energy Users in Different Regions 

This chapter presents the case studies of a single type large energy user located in different 

regions in the US. The purpose of the case studies is to observe the variation in the selection of 

energy technologies and corresponding energy capacities due to change in the weather conditions 

and regional factors related to cost and energy availability. We choose university campuses with 

existing DER setup as a type of large energy user in different regions in the US [174].  

University campuses are considered as mini cities because of their size, population, activities, 

buildings, and infrastructure network [175] . Universities are one of the major energy consumers 

in society [176]. Universities tend to have large floor spaces for classrooms, lecture halls, 

auditoriums, hallways, arenas, etc. that demand for large amounts of energy for heating, cooling, 

ventilation, and lighting needs [177]. The pollution caused by universities through energy 

generation and consumption could be reduced through a careful selection of energy technologies 

[169] by using a systematic and strategic framework [175].   
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We select four different regions in the US – Northeast, Midwest, South, and West which captures 

the diverse weather conditions of the US. The university campuses in these regions are selected 

upon availability of data from the respective institutions. We gather campus energy demands 

data from respective university campus operations and maintenance websites and personal 

communications. The following sub-sections present each case study. 

6.1. South Region 

The South region has a humid subtropical climate with hot summers and mild winters. The year-

round weather is relatively warm i.e. there are more warmer days than colder days in an year 

[178].  For the South region, we study the University of Texas (UT) in Austin, Texas. Table 10 

furnishes basic information of the campus along with the UT campus on-site primary energy 

resources. 

 

Table 10. UT Campus Information 
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UT uses three natural gas turbines to supply primary electric energy to the campus and six 

natural gas boilers to supply primary heat energy for water heating and space heating [179]. The 

campus uses electric energy from natural gas turbines and grid electricity for space cooling. 

Table 11 shows the energy demands for various campus end-uses in 2012 [180]. We calibrate the 

RF values of solar and wind, price of fuels, and local utility grid parameters for Austin, Texas 

and apply the model. Table 12 shows optimal DER allocation for UT.  

 

Table 11.  UT Campus Approximate Energy Demands (in 2012) 

 

Table 12. Energy Allocation Results from Model Framework for UT Campus  

The optimal energy allocation consists of eight technologies. There are no CHP technologies 

selected as the heating demands in Austin are relatively low. Solid oxide fuel cell electricity uses 

natural gas and can be constantly used for all electric end-uses. Solid oxide fuel cells posses the 

highest electric efficiency (60%) among all the energy technologies, making them ideal for 

electric needs only [117]  [119]. 
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Austin is suitable for generating solar and wind energy [164] [181]. In warm weather, solar 

energy is plentiful and thus solar water heaters can be used to fulfill the additional water heating 

demand. Primarily, energy demand for water heating can be fulfilled by the geothermal 

desuperheater technology. In cold weather (<32⁰F), water heating demand increases while the 

solar and the geothermal energy is inadequate to meet the demand. However in Austin, the 

average temperature in winter tends to stay above 40⁰F. Thus, only a small amount of 

dispatchable heat from the gas water heater is selected to satisfy the surplus demand for water 

heating in winter. Similarly, energy demand for space heating can be satisfied by the geothermal 

pump technology alone as the average winter temperatures usually stay around 40⁰F in Austin 

[178].  

The energy demand for space cooling can be satisfied by both solar thermal and geothermal 

pump technologies. In hot weather (>77⁰F), energy demand for space cooling increases and the 

geothermal pump technology cannot fulfill the excess demand. During hot days in Austin, solar 

energy is abundant and solar thermal collector with adsorption chiller technology can be used to 

satisfy the additional energy demand for space cooling. The dispatchable electric energy from 

gas micro turbine technology can be used for space cooling in case of excessive cooling loads 

during the peak summer days when geothermal pumps are unable to keep up with the increased 

demand. A small portion of wind turbine electricity is chosen to satisfy reschedulable water 

pumping and ventilation demands. As the UT campus is located in the downtown, allocating land 

area for large wind turbines is not feasible. 
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6.2.  Midwest Region 

The Midwest region has a humid continental climate with harsh winters and severe humid 

summers. The year-round weather consists of both extreme hot and cold temperatures. For the 

Midwest region, we study the University of Iowa (UI) in Iowa City, Iowa. Table 13 furnishes 

basic information of the campus along with the campus on-site primary energy resources. 

 

Table 13. UI Campus Information 

UI uses three coal powered steam turbine generators and grid electricity to supply primary 

electric energy to the campus. The UI campus is located near the Quaker Oats® factory and 

biomass is readily available in finite quantity from that facility for energy generation [182]. 

Thus, one of the three steam generators is retrofitted to use the available biomass as fuel.  The 

campus uses cogeneration heat from the coal powered steam turbines, two natural gas boilers, 
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one coal boiler, and one biomass boiler to supply heat energy for water heating and space 

heating. The campus uses electric energy from the steam turbines and grid electricity for space 

cooling. Table 14 shows the energy demands for various campus end-uses in 2012. We calibrate 

the RF values and cost of solar, wind, biomass, price of fuels, and local utility grid parameters 

for Iowa City, Iowa and apply the model. Table 15 shows optimal DER allocation for UI.  

 

Table 14.  UI Campus Approximate Energy Demands (in 2012) 

 

Table 15. Energy Allocation Results from Model Framework for UI Campus  

The optimal energy allocation consists of six technologies. There is a CCHP technology selected 

as both heating and cooling demands in Iowa City are relatively high. Heating, cooling and 

electricity from natural gas CCHP turbine technology is selected for heating, cooling, and 

electric energy demands, respectively. Solid oxide fuel cell electricity uses natural gas and is 

used for lighting demand.  
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Iowa City is highly suitable for generating wind energy [183] and biomass energy [184]. Thus, 

wind turbine electricity is selected to satisfy reschedulable water pumping, ventilation, and 

lighting demands.  Biomass is finitely available near Iowa City (lowering the cost) due to various 

food products industries that produce biomass as a waste product (e.g. Quaker Oats). Thus, 

biomass boiler technology is selected for satisfying surplus heating demands in winter (<32⁰F) 

whereas, primarily, heating can be fulfilled by geothermal pump technology and heat through 

gas turbine CCHP technology. Similarly, energy demand for water heating can be satisfied by 

geothermal desuperheater and residual heat from gas turbine CCHP technology. The energy 

demand for space cooling can be satisfied by both geothermal pump and chilled water from gas 

turbine CCHP technologies.  

6.3. Northeast Region 

The Northeast region has a combination of humid subtropical climate and humid continental 

climate with warm humid summers and long cold wet winters. The year-round weather is 

somewhat consists of a moderately sunny climate.  For the Northeast region, we study Stony 

Brook University (SB) in Stony Brook, New York. Table 16 furnishes basic information of the 

campus along with the campus on-site primary energy resources. 
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Table 16. SB Campus Information 

SB uses a natural gas CHP turbine and grid electricity to supply primary electric energy to the 

campus. The campus uses CHP heat from a natural gas turbine, and eight natural gas and fuel oil 

boilers to supply heat energy for water heating and space heating [185]. The campus uses 

cogeneration steam from the natural gas turbine, and electric energy from both the natural gas 

turbine and grid electricity for space cooling. Table 17 shows the energy demands for various 

campus end-uses in 2012. We calibrate the RF values and cost of solar and wind, price of fuels, 

and local utility grid parameters for Stony Brook, New York and apply the model. Table 18 

shows optimal DER allocation for SB. 

 

Table 17.  SB Campus Approximate Energy Demands (in 2012) 
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Table 18. Energy Allocation Results from Model Framework for SB Campus  

The optimal energy allocation consists of six technologies. There is one CHP technology 

selected as heating demand is relatively higher than cooling demand. The heat and electricity 

from natural gas CHP turbine technology can be used for heating and electric energy demands, 

respectively. Solid oxide fuel cell electricity can be used for pure electric needs such as 

ventilation, lighting, and electrical equipment.  

Long Island, New York is highly suitable for generating wind energy [186] and solar thermal 

energy [187]. Thus, wind turbine electricity is selected to satisfy small portion of reschedulable 

water pumping and ventilation demands.  Water heating can be primarily fulfilled by thermal 

energy from natural gas CHP turbine and geothermal desuperheater. Solar energy can be used for 

the reschedulable portion of water heating. Geothermal pump technology in conjunction with 

cogeneration heat from the gas turbine can be used to satisfy the heating needs. Geothermal 

pump technology can be used to satisfy the regular cooling needs and Solid oxide fuel cell 

electricity is used to satisfy the surplus cooling needs during the peak summer days. 
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6.4. West Region 

The West region has Mediterranean climate with mild dry summers and mild cold, rainy winters. 

The year-round weather consists of moderately sunny and foggy climate.  For the West region, 

we study Stanford University (SF) in Stanford, California. Table 19 furnishes basic information 

of the campus along with the campus on-site primary energy resources. 

 

Table 19. SF Campus Information 

SF uses a natural gas CHP turbine technology to supply primary electric energy to the campus. 

The campus uses CHP heat from the natural gas turbine, and four natural gas and fuel oil boilers 

to supply heat energy for water heating and space heating [188]. The campus uses cogeneration 

steam and electric energy from the natural gas turbine for space cooling [189]. Table 20 shows 

the energy demands for various campus end-uses in 2012. We calibrate the RF values and cost of 



 

68 

 

solar and wind, price of fuels, and local utility grid parameters for Stanford, California and apply 

the model. Table 21 shows optimal DER allocation for SF. 

 

Table 20.  SF Campus Approximate Energy Demands (in 2012) 

 

Table 21. Energy Allocation Results from Model Framework for SF Campus  

The optimal energy allocation consists of seven technologies. There is no CHP technology 

selected as heating demand is relatively lower than cooling demand. The electricity from natural 

gas turbine technology can be used for cooling needs in summer. The high efficiency solid oxide 

fuel cell technology can be used for pure electric needs – water pumping, ventilation, 

refrigeration, lighting, and electronics.  

Stanford, California is highly suitable for generating solar thermal energy [187]. Thus, solar 

electricity is selected to satisfy a small portion of the reschedulable water pumping.  Solar water 

heater technology can be used for the reschedulable portion of water heating. Water heating can 

be primarily fulfilled by both gas water heater and geothermal desuperheater technologies. 
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Geothermal pump technology can fulfill the heating needs as the temperatures in California tend 

to stay around 40⁰F in winter. Geothermal pump technology can satisfy the regular cooling needs 

and gas turbine electricity can satisfy the surplus cooling needs during the peak summer days. 

6.5. Summary 

The aforementioned campuses use on-site generation while connected to the local utility grid. 

They depend on the grid energy in case of interruptions in energy supply or shortage in energy 

supply by the on-site DER.  The results shown here are for on-site DER primary generation 

while connected to the grid for back-up electric energy. Table 22 shows the summary of energy 

technology allocations for the four universities. The table also shows the average weather 

temperatures for the respective regions in 2012 to provide insight on regional climatic 

conditions. 

 

Table 22. Model Framework Summary Results  
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The model accounts for the local grid electricity and fuel prices. The selection of energy 

technologies is based on the campus energy demands, minimum dispatachabilities of the energy 

demands, and regional climatic conditions. The results of the case studies reveal several 

appropriate energy technologies that are essential for future energy planning. The optimum 

energy technology allocation must be encouraged when the campuses plan to change their on-

site energy infrastructure. The regional policy makers and developers are encouraged to promote 

these technologies that obtained pareto-optimal solutions, offering the optimum combination of 

levelized costs and environment emissions.  

In general, natural gas turbines are selected for the majority of energy generation because of their 

low cost and moderate emissions. CHP technologies are not selected for warmer climates as 

heating requirements are low. In complement to natural gas turbines, fuel cells are favored for 

electric needs in any climate as they are most efficient for electricity generation and have low 

emissions. These results support the findings in a 2013 Energy Information Administration’s 

distributed generation analysis report [190].   

Geothermal heat pumps are preferred for base load heating and cooling in all climates as they are 

renewable as well as dispatchable. But in extremely hot and cold climates, additional secondary 

energy technologies (e.g. boilers, cogeneration heat, etc.) must be used in conjunction with 

geothermal heat pumps to satisfy the excessive heating and cooling demands. Wind turbine 

energy is favored in all climates and solar thermal energy generation is selected in warm and 

sunny climates. 
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Chapter 7 

Application to Different Large Energy Users on Long Island 

This chapter presents the case studies of different types of large energy users located in a same 

region in the US. The purpose of the case studies in this chapter is to observe the variation in the 

selection of energy technologies and corresponding energy capacities due to the types of energy 

users in the same region. We consider Long Island, New York as the region.  

Long Island, New York has warm, humid summers and cold, wet winters. Long Island climate is 

a combination of humid subtropical and humid continental climates [191]. Long Island has a 

moderately sunny climate throughout the year. Due to the coastal location, Long Island weather 

temperatures are somewhat mild because of the Atlantic Ocean and Long Island Sound. 

We study four types of large energy users – a medical center, an enclosed shopping mall, a hotel, 

and an office building. These are energy intense buildings, meaning that their energy 
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consumption is high when compared to residential or other buildings. Table 23 shows the 

approximate annual energy use intensity (EUI) values (kWh/SF) of the selected building types 

on Long Island [192] in 2012.  

 

Table 23. Various Major Buildings Energy End-Use Intensities
7
  

EUI represents a building’s energy use as a function of its space and end-uses [193]. The EUI is 

expressed as energy demand per square foot of building space per calendar year. It is calculated 

by dividing the total energy consumed by the building in one year by the total gross floor space 

of the building in a particular region. Some buildings are more energy intense than the others 

depending on their activities (e.g. medical centers). The EUI data is available from the Energy 

Information Administration and the Buildings Data book databases [192] [194]. We use this data 

and the corresponding building floor space data to estimate the energy demands for the various 

selected buildings on Long Island. The following sections present each of the four case studies. 

We calibrate the RF values and cost of solar and wind, price of fuels, and local utility grid 

parameters for Suffolk County, Long Island, New York and apply the framework. 

                                                           
7
 The units in the original dataset were presented in thousand BTUs per SF. We converted the values into kWh per 

SF to be consistent with the units that are used in this dissertation. 1BTU = 0.00027kWh  
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7.1. Medical Center 

The area of the Stony Brook University Medical Center (SBMC) in Stony Brook is 

approximately 541,000 square feet [195]. Table 24 shows the energy demands for various SBMC 

end-uses in 2012. Table 25 shows the optimal DER allocation for SBMC. 

 

Table 24.  SBMC Approximate Energy Demands 

 

Table 25. Energy Allocation Results from Model Framework for SBMC  

The optimal energy allocation consists of five technologies. There is one CHP technology 

selected as heating demand is relatively higher than the cooling demand. The heat and electricity 

from natural gas CHP turbine technology can be used for heating and electric energy demands, 

respectively. Solid oxide fuel cell electricity can be used for water pumping and electrical 

equipment when needed. Geothermal pump technology in conjunction with cogeneration heat 

from the gas turbine can be used to satisfy the space heating needs. In warm days, geothermal 
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pump technology can be used to satisfy the regular cooling needs and solid oxide fuel cell 

electricity is used to satisfy the surplus cooling needs during the peak summer days. Water 

heating can be fulfilled by thermal energy from the combination of natural gas CHP turbine, 

natural gas water heater, and geothermal desuperheater technologies. 

7.2. Enclosed Shopping Mall 

The area of the Smith Haven shopping mall (SHSM) in Lake Grove is approximately 1,082,000 

square feet [196]. Space cooling, heating, and lighting tends to be a large portion of energy 

demand in enclosed shopping malls [197]. Table 26 shows the energy demands for various 

SHSM end-uses in 2012. Table 27 shows optimal DER allocation for SHSM. 

 

Table 26.  SHSM Approximate Energy Demands 

 

Table 27. Energy Allocation Results from Model Framework for SHSM 
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The optimal energy allocation consists of five technologies. The heat and electricity from natural 

gas CHP turbine technology can be used for heating and electric energy demands, respectively. 

Solid oxide fuel cell electricity can be used for electric needs – ventilation, lighting, and 

electrical equipment. Geothermal pump technology in conjunction with cogeneration heat from 

the gas turbine can be used to satisfy the space heating needs. Geothermal pump technology can 

be used to satisfy the regular cooling needs and solid oxide fuel cell electricity is used to satisfy 

the surplus cooling needs during the peak summer days. Water heating can be fulfilled by 

thermal energy from natural gas CHP turbine, geothermal desuperheater, and natural gas water 

heater technologies. 

7.3. Lodging 

The area of the Long Island Marriot hotel (LIMH) in Uniondale is approximately 164,036 square 

feet [198]. Water heating, space heating, and lighting are major energy end-use demands in a 

hotel [199]. Table 28 shows the energy demands for various LIMH end-uses in 2012. Table 29 

shows optimal DER allocation for LIMH. 

 

Table 28.  LIMH Approximate Energy Demands 
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Table 29. Energy Allocation Results from Model Framework for LIMH  

The optimal energy allocation consists of five technologies. Natural gas microturbine CHP 

technology can provide electricity and heat energy for heating and electric energy demands, 

respectively. Solid oxide fuel cell electricity can be used for ventilation and lighting. Geothermal 

pump technology in conjunction with cogeneration heat from the gas microturbine can be used to 

satisfy the space heating needs. Geothermal pump technology can be used to satisfy the regular 

cooling needs and solid oxide fuel cell electricity is used to satisfy the surplus cooling needs 

during the peak summer days. The high water heating demand can be fulfilled by a combination 

of heat from natural gas microturbine CHP, geothermal desuperheater, and natural gas water 

heater technologies. 

7.4. Major Office Building 

The area of the Canon One Park office building (CAOP) in Melville is approximately 700,000 

square feet [200]. Space heating, ventilation, and space cooling are major energy end-use 

demands in office buildings [201].  Table 30 shows the energy demands for various CAOP end-

uses in 2012. Table 31 shows optimal DER allocation for CAOP. 



 

77 

 

 

Table 30.  CAOP Approximate Energy Demands 

 

Table 31. Energy Allocation Results from Model Framework for CAOP  

The optimal energy allocation consists of four energy technologies. Due to both the type of 

building and the weather conditions, the space heating demand is high but water heating demand 

is low when compared to the total energy use, thus, no CHP energy technologies are selected for 

optimal allocation. The gas furnace technology that is highly efficient for generating thermal 

energy is allocated for space heating.  Solid oxide fuel cell electricity is selected for all electric 

needs due to its high electric efficiency. Geothermal pump technology in conjunction with gas 

furnace technology can be used to satisfy the spacing heating needs. Space cooling demand is 

relatively less than the space heating demand, thus, geothermal pump technology alone can 

fulfill the space cooling demand. Water heating demand in office buildings is minimal and 

thermal energy from geothermal desuperheater is sufficient.  
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7.5. Summary 

In the previous chapter, technology allocation was presented for the same type of user in 

different regions. When compared to the previous chapter, the technology selection remains the 

same across the different types in a same region. The selection of the energy technologies is the 

same for the medical center, enclosed shopping mall, and hotel. Figure 7 shows the summary of 

energy technology allocations to meet the total energy demand for the four different users.  

 

Medical Center: SBMC Enclosed Shopping Mall: SHSM 

Lodging: LIMH Office Building: CAOP 
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Table 7. Summary of Energy Allocation Results  

In general, natural gas turbines with cogeneration are suitable for Long Island large energy users 

for energy generation because of their low cost and moderate emissions. Not surprisingly, natural 

gas turbine technology is common for small scale or large scale energy generation on Long 

Island. In complement to natural gas turbines, fuel cells are favored for electric needs as they are 

most efficient for electricity generation and have low emissions. Geothermal heat pumps are 

preferred for base load heating and cooling in all climates. However in the case of large heating 

and cooling demands, additional secondary energy technologies such as gas furnaces and boilers 

are selected to be used in conjunction with geothermal heat pumps in order to satisfy the 

excessive heating and cooling demands. Wind turbine energy and solar thermal energy 

generation were not selected for primary generation due to assumed minimum dispatchability of 

100% for the user types and lack of land space available for the considered buildings. 

The model accounts for the local grid electricity and fuel prices on Long Island, New York. The 

selection of energy technologies is based on the different type of users’ energy demands and 

regional climatic conditions. The results of the case studies reveal several appropriate energy 

technologies that are essential for future energy planning. The optimum energy technology 

allocation must be encouraged when the users plan to change their on-site energy infrastructure 

by opting to DER. The regional policy makers and developers are encouraged to promote these 

technologies that obtained pareto-optimal solutions, offering the optimum combination of 

levelized costs and environment emissions.  
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Chapter 8 

Implications for Public Policy 

8.1. Policy Significance of the Proposed Framework 

Technology philosophers claim that technologies tend to break down in size as time lapses [202] 

[203]. Technologies tend to atomize due to technological-push innovations by the inventors or 

demand-pull by the market [204] [205]. Main-frame computers were succeeded by personal 

computers.  Similarly, landline and public telephones were taken over by cell phones on the 

macro-level, and traditional cell phones are transformed into smart phones at the micro-level 

[206].   

In the US, the use of public transit systems was dominated by personal automobiles as the cost of 

automobiles decreased and reliability increased. As automobiles became affordable, the adoption 

of personal automobiles increased at a rapid pace. When Ford’s Model T emerged in the 

automobile market in 1909, it attracted many middle-class Americans as it was affordable and 
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convenient to operate [207]. These key attributes propelled the public’s choice of transportation 

towards owning and operating personal automobiles rather than depending on public transit, 

though it involved a relatively high turnkey cost.   

In a similar way, as DER are becoming cheaper and easier to operate, they are capturing the 

attention of the general public. Initially, DER were mainly used by critical energy users such as 

military bases, space agencies, national laboratories, etc. [1]. DER systems are disruptive 

innovation [3] and have a widespread potential. As small-scale energy technologies are 

improving and becoming more accessible, large energy users such as universities, medical 

centers, industries, businesses, etc. are transiting towards DER [208]. In addition, as small-scale 

energy technologies become cheaper, efficient, and reliable, DER adoption increases [209]. 

More importantly, with events such as Superstorm Sandy in 2012, DER adoption increases more 

swiftly [210].  

Several decades after the inception of the first affordable automobile, the EPA highlighted the 

significance of energy-inefficient automobiles. The US Congress enacted the Gas Guzzler Tax 

provision in the Energy Tax Act of 1978 to discourage the production and purchase of energy 

inefficient automobiles [211]. In the same fashion, though DER has several advantages as 

discussed in chapter 1, when DER systems are not systematically regulated, they can include 

more natural gas or diesel generators and can potentially shift the production of conventional 

pollutants from central power plants to more populated areas. This complicates the problem of 

controlling pollution from numerous DER locations. Environmental mitigation plans such as 

carbon capture or sequestration will become impossible as well.  
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Thus, it is critical to understand the significance of optimal DER systems and establish a 

strategic technology-policy framework to design appropriate DER-related energy policies. This 

act is necessary to control the societal and environmental harms that might arise due to energy-

inefficient DER systems caused by inappropriate selection of DER technologies. This research 

aims to assist in the preparation of necessary energy policies regarding the use of DER. This 

framework will help the federal, state, and local governments in regulating DER technologies for 

the welfare of the society and the DER users in setting their own in-house energy policies for 

energy management sustainability. For example, the framework provides direction to the DER 

developers whether it is appropriate to partially or fully depend on the local electric grid, 

integrate storage technologies, or have an optimum set of on-site energy generating technologies.  

The framework captures the local resources factor through cost and capacity constraints. For 

example, in the case of the University of Iowa in chapter 6, the user site was close to abundant 

biomass resources, thus lowering the cost of biomass due to surplus supply and negligible 

transportation costs. As a result, the framework selected biomass as one of the suitable energy 

resources available to satisfy the campus energy demand.   

The strength of this research lies in the simultaneous consideration of all the available energy 

technologies – grid supply, storage, conventional, advanced, cogeneration, trigeneration, and 

renewable, and simultaneous consideration of cost, reliability, and emission factors. As DER 

scales up in developed nations, this research offers several implications towards local, state, or 

national level energy policies for the DER sector.  

Firstly, this research can be used as a basis of a decision support system by the DER developers 

for planning and designing on-site DER infrastructure. Secondly, the proposed framework can be 

a useful tool for any large energy user that has the resources and desire to create its own local 
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energy infrastructure and develop in-house energy policies. Thirdly, the proposed framework is 

capable of pointing to ways in which regulatory policies can encourage large energy users to 

adopt certain energy technologies. Part of the benefits of selective adoption of DER is the 

creation of relationships between DER users and regional grid level energy suppliers for long 

term energy planning.  Such long term energy planning is beneficial in terms of coordinating 

energy generation and avoiding long distance transmission losses that would otherwise result in 

energy waste.  

Finally, to convert the local optimum behavior to a global optimum behavior, extrinsic 

motivation must be created through subsidies for the welfare of society [212]. Based on the 

users’ energy requirements and their regional resources, this research suggests potential target 

incentives and taxation policy design for implementing certain DER technologies. For example, 

when an incentive is provided and the cost is reduced for a technology, it reaches the efficient 

frontier in the first stage of the framework and becomes optimal. In this way, when users decide 

to adopt DER, it benefits them and their region in terms of energy sustainability and driving 

demand for certain technologies such as renewable technologies [213].  

Moreover, in developing nations, this research can be used for developing DER systems in the 

regions which do not have access to an electric grid. The framework suggests suitable 

technologies that should be considered for particular scenarios. The proposed framework can be 

used in such situations to plan DER for small towns or villages based on the local resources 

available, geographic conditions, and the anticipated energy demand.  
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8.2. Policy Recommendations 

There are some specific policy remarks that can be drawn towards the DER technologies based 

on the sensitivity analysis (chapter 5) and several case studies (chapter 6 and 7). The sensitivity 

analysis evaluated the sensitivity of the technology selection to the different values of the 

renewable percent penetration. The case studies evaluated the framework solutions to different 

values of the parameters of the model’s objectives such as costs, energy demands, space 

available, local electric grid factors, etc using real scenarios. Though the results depend on 

particular scenario inputs, the results in general of the simulated scenarios provide some 

interesting insights on the DER technologies. Table 32 highlights the selective technologies from 

each simulated scenario. As the simulated analyses capture diverse DER applications and 

regions, the results provide insights for policy implications in the DER context. 
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Table 32. Selective Technologies  
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Grid and Storage Technologies  

The grid electricity in all the scenarios is generated using natural gas (coal in the case of Iowa). 

Importantly, central power plants do not incorporate cogeneration or trigeneration setups, 

lowering their effective efficiency. However, grid electricity is optimum when the electricity is 

generated from a hydropower plant, nuclear power plant, or any other large scale renewable 

energy source. Thus, grid electricity should be encouraged if the energy is generated from large 

scale renewable (e.g. hydro) or nuclear sources. 

Storage technologies are developing and are not cost-effective at the current moment [214]. 

Additionally, the storage technologies require a significant amount of space due to their limited 

power density. The energy storage technologies must therefore accomplish drastic cost 

reductions and technological improvements in terms of energy storage efficiency [215]. Thus, 

research and development of storage technologies is necessary in order to make them 

competitive amongst the other energy technologies. However, ultimately the storage 

technologies’ operating economics and environmental advantages depend on the local electric 

grid tariff and fuel source. For example, the storage technologies will be crucial if the local 

power source is hydroelectric or any other renewable source [216].   

Diesel Fuel Technologies 

Diesel fuel is a conventional fossil fuel and diesel energy technologies are mature [3] [217]. The 

framework does not suggest the use of diesel technologies in any of the scenarios due to their 

high environmental impact and cost of diesel fuel (including transportation and storage). 

Compared to natural gas, diesel fuel has higher costs and emissions. In addition, diesel fuel (and 

also bio diesel) is more necessary for the transportation sector than for local energy generation 
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[218]. Thus, diesel fuel technologies must be discouraged as primary local energy generation; 

standby generation for temporary back-up in case of emergencies is acceptable. Similarly, fuel 

oil use for heating needs must be discouraged due to their high emissions and cost. 

Natural Gas Technologies 

Currently, natural gas is highly cost competitive due to its exploration through shale rock 

fracking [219]. As a result, the framework widely selected natural gas as a suitable energy 

technology, albeit through cogeneration or trigeneration due to enhanced efficiencies. Though 

natural gas energy generation is mature and is economically sound [217], it is a fossil fuel and 

involves some environmental impact (though lower than coal or diesel sources). Therefore, the 

choice of technologies through which the natural gas is used is critical. For example, when 

natural gas is combusted in a turbine, it generates heat in addition to electricity. The net 

efficiency of the process increases when the heat is utilized via cogeneration [117]. Thus, natural 

gas must be used wisely, and its use be encouraged in conjunction with a cogeneration or 

trigeneration setup to maximize its usage efficiency (thereby lowering the environmental impact 

of natural gas consumption). 

Fuel cells use natural gas for energy production and are highly efficient as no moving parts are 

involved [220].  As a result, the model widely selects natural gas as an appropriate energy 

technology choice through fuel cell technology in all the scenarios. Although the levelized costs 

of fuel cells are somewhat comparable to other technologies, fuel cell setup requires high turnkey 

costs [221]. As fuels cells are currently expensive, they are selected only for critical electric 

needs, not for heating through cogeneration. Thermal energy for heating can be produced 

efficiently and at a low cost by using natural gas boilers or heaters, whereas capturing and using 
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the heat from fuel cells through cogeneration is not economical due to the high cost [117]. Fuel 

cells offer many benefits such as high reliability, negligible noise, compact size, and most 

importantly their very efficient use of natural gas (or biogas) to provide electric energy [222]. 

They can be a potential direction to the future energy generation and can help us taper off our 

dependence on natural gas. Fuel cell research and development programs are essential for 

reducing capital costs by enabling mass production [221] [223].  Thus, fuel cell research should 

be highly encouraged to lower fuel cell costs and increase their commercial appeal. 

Natural gas boilers and heaters are highly efficient (~95%) when compared to electric heating. 

The framework suggests natural gas boilers or heaters be used as a secondary energy source to 

fulfill the additional heating demand during the peak wintertime months. Thus, natural gas is 

suitable for secondary heating needs when heating needs cannot be fulfilled by primary energy 

sources alone. The primary energy sources include cogeneration or trigeneration heat and 

geothermal heat pumps. 

Biofuel Technologies 

Biofuels (biodiesel and biomass) are considered renewable and produce energy non-

intermittently [9]. As a result, biodiesel technologies gain interest when the renewable percent 

increases and dispatchability of energy demand remains high, or when the biodiesel is readily 

locally available. Though biofuels are considered renewable fuels by definition, their emissions 

are relatively high when compared to natural gas [224]. The cost of biodiesel fuel and 

maintenance of biodiesel combustion engines makes the technology not competitive in general 

[225]. However, biofuels can become competitive when they are locally available due to local 

production or as byproducts from local food or wood-based industries [226]. For example, the 
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model selects biomass as an appropriate heating technology at the University of Iowa, as 

biomass is available near Iowa City (lowering the cost) due to various food product industries 

that produce biomass as a waste byproduct. Thus, biofuels must be encouraged only when they 

are locally available for cost-wise competitive advantages. As biofuel emissions are comparable 

to traditional fossil fuels, biofuel usage must be encouraged in conjunction with emissions 

mitigating technologies such as scrubbers, catalysts, sequesters, etc. to ease the environmental 

impact [227]. Biomass fuels tend to contain impurities that may pose complications when used in 

turbines or engines for electric energy generation rather than boilers or heaters (e.g. biomass 

fired boiler) for thermal energy generation [228] . This negatively impacts economic and 

technical aspects of energy generation [229]. Thus, the use of biofuels must be carefully accessed 

while selecting for electric needs versus for heating needs. 

Wind Technologies 

The framework suggests the use of wind turbine electricity for reschedulable energy demands. 

Wind turbines, when compared to solar, have the benefit of economies of scale and relatively 

less intermittent energy production (energy during nights is possible).  However, a large space 

with spacious surroundings is required for wind turbines. Thus, wind turbines must be strongly 

encouraged when there is enough space and unobstructed wind flow.  

Solar Technologies 

Based on the framework results, the solar photovoltaic’s (PV) cost must be further reduced to 

make them competitive with wind turbines for primary energy production on a large scale (e.g. 

for a university) [230]. This remark does not include incremental solar PV application to 

residential rooftops. Currently, solar PV technologies are used as an accessory source in 
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universities for applications (e.g. lighting the bus stops, parking pay stations, and etc.), but not as 

a significant source of energy (e.g. Cornell, Stony Brook, etc.). Based on the scenario results, 

wind turbines seem to be more suitable than solar panels as a significant energy source [231]. 

Thus, solar PV must be encouraged for incremental energy generation for the residential sector 

more than for the large energy users due to their limited economies of scale and limited power 

supply.  

On the other hand, solar thermal electricity technologies convert solar energy to steam that can 

be used to produce energy through steam turbines at any time [232].  As a result, solar thermal 

when compared to solar PV offers economies of scale and increased availability as they can 

provide energy on a large scale and during the night [233]. Solar thermal electricity is chosen in 

one scenario where there is abundant sunshine and space – Stanford University in California.  

Thus, solar thermal must be considered an option for significant energy generation when there is 

space available. 

Solar energy is widely suggested for water heating. Solar water heating technology is cost 

efficient and environmentally friendly when compared to conventional water heating 

technologies [234]. Thus, solar energy must be encouraged for water heating due to its cost and 

environmental advantages, but might be limited in extremely cold regions due to requiring 

protection of the pipes and the tanks from freezing. 

Solar energy is suggested as a secondary source for space cooling during peak summer days. 

Solar energy is abundant in summer, especially during peak summer days, and can be used to 

make chilled water for space cooling purposes. However, solar cooling is in the development 
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stage and is not yet commercially successful due to large space requirements and high 

maintenance [235].  There is a future research need in the solar cooling technologies area. 

Geothermal Pump Technologies  

Geothermal heat pumps are a sustainable energy technology as they use thermal energy from the 

earth’s surface [236]. Therefore, they can be used as a primary source to meet heating needs in 

winter and cooling needs in summer. Standby gas heaters or other secondary technologies can be 

used for excess peak demands.  Geothermal heat pump technology is highly suggested in all the 

scenarios due to its constant availability, high reliability, negligible operating cost, and emissions 

[237]. Currently, geothermal heat pumps are developing and involve high capital cost which is a 

major issue, but the levelized cost throughout the life of the system is less than the conventional 

heating and cooling systems, with environmental advantages. Thus, geothermal heat pumps must 

be highly encouraged for primary heating and cooling needs and more research is needed for 

further decrease in capital costs.  

The aforementioned recommendations are for primary energy generation for large energy users 

who wish to use DER. Table 33 summarizes the policy recommendations based on the simulated 

analyses. 
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Energy 

Resource 
Policy Implications 

Grid and 

Storage 

 Grid electricity should be highly encouraged if the energy is generated from 

large-scale renewable (e.g. hydro) or nuclear sources. 

 Research and development is necessary for the storage technologies in order to 

make them competitive amongst the other energy technologies. 

Diesel and 

Fuel Oil 

 Must be discouraged for primary local energy generation. 

 Standby generation for temporary back-up in case of emergencies can be 

permitted. 
 Fuel oil heating must be discouraged due to their high emissions and cost. 

Natural 

Gas 

 Gas turbines must be wisely encouraged in conjunction with a cogeneration or 

trigeneration setup to maximize usage efficiency and lower environmental 

impact of natural gas consumption. 

 Natural gas based fuel cells must be encouraged. 

 Fuel cell research should be highly encouraged to lower their cost and make 

them commercially appealing. 

 Natural gas is suitable for secondary heating needs when heating needs cannot be 

fulfilled by the primary energy sources alone.  

Biofuels 

 Must be encouraged only when they are locally available for cost-wise 

competitive advantages.  

 Must be encouraged in conjunction with emissions mitigating technologies such 

as scrubbers, catalysts, sequesters, etc. to ease the environmental impact of 

biofuel consumption. 
 Must be carefully accessed while selecting for electric needs versus heating 

needs. 

Wind  Must be strongly encouraged when there is enough space and unobstructed wind 

flow. 

Solar 

 Solar PV must be encouraged for incremental energy generation for the 

residential sector more than for large energy users due to limited economies of 

scale and limited power supply. 
 Solar thermal electricity must be considered to be a significant source of energy 

when there is space available. 
 Solar energy must be encouraged for water heating due to cost and 

environmental advantages, but might be limited in extremely cold regions due to 

required protection of the pipes and the tanks from freezing. 

 Solar cooling needs additional research and development. 

Geothermal  Must be highly encouraged for primary heating and cooling needs. 

 More research is needed to further decrease capital costs. 

Table 33. Summary of Policy Recommendations  
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Chapter 9 

Conclusion 

This dissertation presents a novel two-stage strategic DER technology-policy framework for 

determining the optimal energy technology allocation.  The methodology simultaneously 

considers economic, technical, and environmental objectives.  The first stage utilizes a data 

envelopment analysis model for each end-use to evaluate the performance of each technology 

based on the three objectives.  The second stage incorporates factor efficiencies determined by 

the DEA models, capacity limitations, dispatchability, and renewable penetration for each 

technology, and demand for each end-use into a bottleneck multi-criteria decision model which 

provides the optimal energy resource allocation. This framework accommodates both the needs 

of users and regulators. 
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The proposed framework avoids the need to subjectively specify weights and targets associated 

with the individual objectives.  Moving forward, the model framework will enable DER 

developers, users, and policy makers to better understand the competitiveness of individual DER 

energy technologies for different end-uses.  We anticipate these stakeholders will utilize the 

framework to determine optimal energy technology allocation and to develop regulatory policy 

driven by the model outputs. 

Chapter 1 introduces the nature of DER, potential concerns, and the research question and its 

significance. Chapter 2 presents the background literature, gaps in the literature, and the novelty 

of this dissertation. Chapter 3 describes the systems theory of the DER, and sets up the metrics. 

Chapter 4 sets up the research design and explains the mathematical model in detail. In chapter 5, 

the functionality of the framework was demonstrated using a typical commercial building 

scenario in the New York region. We discussed the results and performed sensitivity analysis by 

varying the renewable percentage to observe the shift in energy technologies and change in costs 

and emissions.  

We performed eight case studies to demonstrate the utility and robustness of the framework. In 

chapter 6, we performed four case studies where we treat the user type as a constant and 

collected data from universities from four different regions in the US. The purpose of the chapter 

is to understand the role of variation in the regions towards the selection of DER. In chapter 7, 

we performed four case studies where we treat the region of the users as constant and collected 

data for four different large energy users in the same region (Long Island). The purpose of the 

chapter is to understand how the energy technology selection varies for each user type. Chapter 8 

discusses the policy implications of this dissertation. 
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9.1. Limitations and Future Work 

This research does not intend to assist with tactical everyday energy usage; it is for assisting 

decision making at the planning stage of DER systems. However, it can be further developed 

into a dynamic tactical tool. Considering the static life cycle model used in this study and the 

long life span of a typical building, dynamic modeling can provide more insight. The current 

projections about variations in a building are extremely complex and cumbersome, and are 

beyond the scope of this dissertation. Further research is required to accommodate building 

characteristics into this framework [177].  

Similarly, the proposed framework is a deterministic model and is not set to consider any 

uncertainty in data. Examples of uncertainty in data include fluctuation in energy demand, 

change in climatic conditions, change in costs, etc. The framework requires cumbersome data 

forecasting and collection. The results of the model are sensitive to the input data. Thus, the 

precision of the data is critical. The proposed framework can be advanced to a stochastic model 

by incorporating simulation. This will allow the analyst to use a range of data points, for 

example: range of summer temperatures, range of natural gas prices, etc. However, this will add 

complexity to the existing framework and make it more data intense. This might limit the 

model’s functionality for high-level energy policy planning applications. 

In addition, the framework does not intend to perform life-cycle analysis of the energy 

technologies. Perhaps the framework feeds on the results of such prior analysis. The framework 

does not provide insights on the optimal power flow schemes between an on-site DER system 

and the local electric grid. The framework assumes the possibility of DER setup in conjunction 

with the local electric grid or in an islanded mode. The framework does not regard any 
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challenges that might complicate the connection of on-site DER to the local electric grid. Such 

challenges may include local utility policies, the age of the grid, voltage surges, and peak and 

off-peak demand patterns. 

In US transportation history, as more people acquired personal automobiles, public transit 

demand declined and public transit faced economic challenges. The public transit systems 

currently operate on heavy public subsidization [238].  Likewise, as DER evolves, the economics 

of the aging regional electric grids may be strained and might require public subsidies to 

function, and the users who depend on the regional grids may face increased costs. However, 

dealing with this issue is out of the scope of this dissertation.  Though the framework considers 

local grid reliability as a criterion, local grid reliability issues are not addressed in this research. 

All these issues together present a direction for future research. 
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