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Abstract of the Dissertation 

On Using Risk-Benefit Analysis to Assess and Manage Controversial Research 

by 

Daniel James Rozell 

Doctor of Philosophy 

in 

Technology, Policy and Innovation 

Stony Brook University 

2015 

Science research in the twenty-first century increasingly results in powerful and rapidly 

disseminated technologies that raise concerns over technological risk and public safety. A 

common recommendation for assessing and managing controversial research is to perform a 

quantitative risk-benefit analysis (RBA) in order to help determine an appropriate course of 

action. However, these recommendations lack guidelines on how to perform such an assessment. 

This dissertation lays out a detailed argument why a quantitative RBA should not be used as a 

basis for making complex policy decisions. Rather, RBA should be regarded as a tool for 

exploring the impacts of technology on society. This argument is made in four parts: (1) a 

comparison of the various legitimate, but incomparable ways that research benefits are assessed; 

(2) a guide to the many value-laden assumptions made in risk assessments that undermine 

unqualified claims of objectivity and neutrality; (3) a clarifying discussion of the technological 

risk attitudes that underlie research controversies; and (4) a discussion of how this inherent 

subjectivity favors particular risk management techniques. In applying these arguments to the 

use of RBA for controversial research, the concern is that RBA is unlikely to build consensus 
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because the results of even the most mathematically sophisticated assessments tend to be too 

epistemically narrow or ethically controversial to resolve science policy disputes. These 

arguments are applied to a contemporary case study – controversial “gain-of-function” research 

involving highly pathogenic avian influenza. My analysis argues that the debate should place less 

emphasis on attempts to quantify current risks and benefits which are, in themselves, 

controversial. Rather, the least problematic resolution requires shifting away from traditional 

biosafety and biosecurity measures and towards more inherently safe research techniques that 

accomplish the same goals. This analysis is applicable to other contemporary research 

controversies such as those surrounding synthetic biology and geoengineering. 
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1 INTRODUCTION 

The media coverage of the latest scientific discoveries and technological innovations 

often optimistically describes research that satisfies our curiosity, improves our health, increases 

our productivity, and raises our standard of living. However, sometimes the results of research 

also inspire critical public reactions over ethical concerns or fears of unintended consequences, 

accidents, or intentional misuse. Let us consider a recent example in the popular media. 

1.1 The H5N1 Debate 

In September of 2011, Dutch virologist Ron Fouchier announced that his research team 

had recently engineered a version of the H5N11 avian influenza virus that appeared to have high 

mammalian transmissibility while retaining its original lethality (Herfst et al., 2012). A similar 

study headed by Yoshihiro Kawaoka of the University of Wisconsin-Madison was announced 

shortly thereafter (Imai et al., 2012) and the subsequent media coverage raised concerns among 

the general public and politicians and set off a renewed discussion and policy review of how 

dual-use2 research is assessed, funded, and managed. 

The initial response to the H5N1 research debate demonstrates the difficulty of assessing 

and managing controversial R&D. The two engineered avian influenza virus studies (Herfst et 

                                                 
1 The formal naming convention for influenza viruses includes: the antigenic type (A, B, or C); 

the originating host (e.g., swine); the geographical origin; year of identification; strain number; 

and for type A viruses, the specific subtypes of two surface proteins, hemagglutinin (H) and 

neuraminidase (N) (e.g., H5N1) (Assaad et al., 1980). Given the complexity of formal names, 

popular shorthand names, such as Spanish flu, Swine flu, and H1N1 can potentially be referring 

to the same influenza virus. The World Health Organization (WHO) is attempting to improve 

shorthand names to make them less stigmatizing and more informative (Kupferschmidt, 2015).   
2 References to the term “dual-use” prior to the twenty-first century commonly denoted a 

technology with both military and civilian uses (e.g., Molas-Gallart, 1997). However, in this 

century, U.S. security policy has partially shifted from international conflict towards non-state 

threats. Dual-use policy discussions have likewise refocused on technologies that have both 

societal benefits and potential malicious uses by terrorists (van der Bruggen, 2012). 
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al., 2012; Imai et al., 2012), both funded by the National Institute of Health (NIH), intended to 

investigate the ease and potential mechanism by which the H5N1 virus would naturally become a 

more serious public health threat. However, many scientists and security experts became 

concerned that the papers detailing the experiments could be a blueprint for skilled bioterrorists. 

In an initial assessment of the papers, the U.S. National Science Advisory Board for Biosecurity 

(NSABB) recommended redacting sections describing the methodology of each paper to limit 

reproducibility. This was the first recommendation of publication restriction since the board’s 

formation in 2005. A subsequent review by a panel of experts at the World Health Organization 

recommended full publication (WHO, 2012). After a second review four months later, the 

NSABB reversed its position and recommended full publication (NSABB, 2012b) and the U.S. 

government simultaneously released a new policy clarifying what was dual-use research of 

concern (Malakoff, 2012). Critics claimed this reversal was based on the unpopularity and 

impracticality of redaction rather than legitimate public safety considerations (Maher, 2012a, 

2012b). 

Following this appearance of inconsistency in the review process, a voluntary H5N1 

research moratorium was agreed upon by prominent influenza research laboratories (Fouchier et 

al., 2012) until new guidelines could be put in place. After almost a year, new guidelines were 

released by the U.S. Department of Health and Human Services (HHS) (Malakoff and Enserink, 

2013). The HHS policy for funding H5N1 “gain-of-function”3 research proposals required that: 

(1) the engineered virus could have naturally evolved; (2) the research addressed an important 

public health concern; (3) there were no less risky alternative methods to accomplish the same 

                                                 
3 Gain-of-function research purposefully induces mutations in an organism or disease agent to 

add new functions or amplify existing functions (e.g., increasing transmissibility or virulence). 
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goal; (4) biosafety issues for laboratory workers and the public were addressed; (5) biosecurity 

issues were addressed; (6) the research results were intended to be widely available, i.e., not 

classified; and (7) the funding would have risk reduction oversight mechanisms (Patterson et al., 

2013). The review process was later extended to avian influenza H7N9 research (Jaffe et al., 

2013). Like the various policies before it, the HHS policy did not address the method by which 

the risks and benefits of a particular research proposal were to be assessed or how mitigating 

actions were to be selected. In 2006, the NSABB made a similar move when it asked authors, 

institutional review boards, and journal editors to perform a risk-benefit analysis (RBA) before 

publishing dual-use research, but did not provide detailed guidance on how to perform such an 

analysis (Bhattacharjee, 2006; Rappert, 2014).4 Likewise, when the Dutch government required 

Fouchier to apply for an export license before publishing his research (Enserink, 2013), the 

application was granted within days and determination was based on an unspecified risk-benefit 

criterion (Butler, 2013). 

The range of expert opinion regarding gain-of-function research on highly pathogenic 

influenza virus is substantial. Some scientists claim the work is critical to public health and 

relatively low-risk (Morens et al., 2012, 2013; Palese and Wang, 2012; e.g., Fouchier et al., 

2013) while others claim the approach has no predictive ability useful to pandemic preparedness 

and presents an unnecessary public health risk (e.g., Mahmoud, 2013; Rey et al., 2013).  

While useful as a tool for discussion, given the considerable uncertainty and subjectivity 

surrounding the risks and benefits of gain-of-function influenza research, there is considerable 

doubt that the various stakeholders can agree on a formal risk-benefit analysis (Chubin, 2013; 

                                                 
4 Five years later, an NIH random survey of 155 life science journals found that less than ten 

percent had a written dual-use policy or reported reviewing dual-use manuscripts in the previous 

five years (Resnik et al., 2011). 
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Uhlenhaut et al., 2013; Casadevall and Imperiale, 2014b). Even the NSABB, when first 

recommending an RBA informed by scientific expertise, acknowledged that the final evaluation 

would be subjective (NSABB, 2007).5 A review of biosecurity risk assessments (Rappert, 2014) 

also raises suspicion about the efficacy of risk assessments. For example, a three-year sample of 

74,000 biological research manuscripts submitted to Nature Publishing Group resulted in only 28 

flagged and no rejected manuscripts for biosecurity concerns (Boulton, 2012). In light of 

previous publications, such as the papers detailing the recreation of the polio virus (Cello et al., 

2002) and the 1918 Spanish flu virus (Tumpey et al., 2005), the H5N1 papers are most notable in 

that they actually instigated a public debate and government action on biosecurity policy (Faden 

and Karron, 2012; Rappert, 2014).6  

So, it is not surprising that the new HHS policy did not resolve the controversy and three 

papers published in 2014 renewed the debate surrounding gain-of-function flu research. One 

study (Sutton et al., 2014) made the H7N1 flu strain, which was not covered by the new HHS 

rules, transmissible in ferrets. A second study by Fouchier’s lab (Linster et al., 2014) expanded 

on earlier H5N1 work. The third paper, published by Kawaoka’s lab (Watanabe et al., 2014), 

detailed the engineering of a virus similar to the strain responsible for the 1918 flu pandemic in 

order to argue that another major pandemic could arise from the existing reservoir of wild avian 

flu viruses. Many critics were particularly disturbed by this paper because the University of 

Wisconsin-Madison biosafety review of the proposal failed to classify the work as dual-use 

                                                 
5 More recent NSABB documents associated with the H5N1 controversy have partially reframed 

the issue by using the terms “qualitative” and “quantitative” rather than “subjective” and 

“objective.” 
6 The insensitivity of the review process suggests that either very little dual-use research is being 

proposed or, more likely, there are fundamental problems with defining and recognizing dual-use 

research of concern (Wolinetz, 2012). 
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research of concern despite a consensus among biosecurity experts that it clearly was (Butler and 

Maher, 2014). Collectively, these results again raised concerns that an intentional or accidental 

release of an engineered virus from gain-of-function influenza research could be the source of a 

future pandemic (Kaiser, 2014c) – an ironic and deadly self-fulfilling prophesy.7  

1.2 The Changing Face of Technological Risk 

The H5N1 engineered virus research is representative of a new and growing category of 

R&D – relatively accessible, yet very powerful technologies. Whereas chemical technology was 

the main focus of dual-use concerns in the first half of the twentieth century and nuclear 

technology in the last half, biotechnology arguably constitutes the most significant challenge to 

dual-use research policy in the twenty-first century. The primary reason was recognized decades 

ago; many hurdles in the biosciences are more theoretical than practical (Cairns-Smith, 1978). 

That is, material resources are rarely the limiting factor. Laboratories around the world (cf. Kant 

and Mourya, 2010), including an increasing number of small unaffiliated labs (Gewin, 2013), 

can now create or order with relative ease what was only possible in a handful of state-of-the-art 

research facilities a few years before (Suk et al., 2011; Trevan, 2012; Adleman, 2014). The 

critical component is knowledge. Once the information is publicly available, the ability to create 

both immensely beneficial and harmful biotechnology becomes almost ubiquitous. Even 

practical difficulties caused by limited tacit knowledge (e.g., assumed professional knowledge, 

ignored or hidden details, and essential laboratory skills) are decreasing over time as the number 

                                                 
7 It should be noted that the debate over research on potentially pandemic pathogens has taken 

place during a time of falling federal support for biodefense research. From 2010 to 2013, 

funding specifically for pandemic influenza and emerging infectious disease programs dropped 

from $953 to $585 million. For comparison, proposed funding for pandemics research in 2015 

was less than half of the requested funding for radiological/nuclear preparedness (Boddie et al., 

2014). More generic health security preparedness funding is relatively robust (Reardon, 2014b). 



 

6 

 

of experienced biotechnologists increase and modern electronic communication lowers the cost 

of detailed knowledge transfer (cf. Engel-Glatter, 2013; Revill and Jefferson, 2013). For this 

reason, managing potentially harmful biotechnology requires a fundamental shift in thinking 

because traditional nuclear weapons nonproliferation policy has focused on controlling materials 

as much as knowledge (Moodie, 2012; Tucker, 2012).  

The H5N1 research example also hints at the difficulty of reactively managing 

controversial research. After research has been conducted and technologies developed, responses 

tend to be ad hoc and difficult to implement. This raises important questions of how to 

proactively manage technologies that have a high potential for negative consequences, but are 

difficult to govern because the technologies are already widespread (e.g., Miller et al., 2009) and 

knowledge, rather than materials, is the limiting factor. Suggested approaches for these cases 

concentrate on informal governance measures that rely on moral suasion such as codes of 

conduct, educational outreach, transparency, and whistle-blowing (Tucker, 2012). However, self-

regulation appears to be an inadequate response to threats of intentional misuse (Kaiser and 

Moreno, 2012) as it requires virtuous behavior from scientists and engineers who, by definition, 

have less than virtuous intentions.8 Given that there are few viable options for managing low-

governability technologies, involuntary monitoring of R&D activities (e.g., electronic spying) by 

government intelligence agencies is a more likely scenario (Rozell, 2013). For example, Italian 

police have already investigated one potential case of scientists illegally selling bird flu virus to 

animal vaccine makers for personal profit (Margottini, 2014). 

 

                                                 
8 For example, the deadly 2001 anthrax letters originated from an experienced research scientist 

(DOJ, 2010). 
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1.3 Biosafety Concerns 

Despite the difficulties of addressing biosecurity concerns, self-regulation has an 

important role in reducing risk from emerging low-governability technologies by reducing 

unintentional harm. While dual-use security experts concentrate on intentional malevolent 

misuses of technology, the risk of harmful effects caused by accidents and other unintended 

consequences may be even greater (Berg, 2012; Hulme, 2013). For example, the 1977 Russian 

influenza outbreak was an H1N1 strain genetically identical to a virus that caused a 1950 

epidemic (Rozo and Gronvall, 2015). The lack of mutations in the intervening 27 years suggests 

a frozen virus source – presumably an unintended laboratory release (Webster et al., 1992; 

Lipsitch and Galvani, 2014).9  

Research accidents continue to occur even in the most modern and technologically 

advanced research facilities. A series of accidents at the U.S. Center for Disease Control and 

Prevention (CDC) in Atlanta led to the temporary closure of the anthrax and influenza research 

labs in July 2014 (McNeil Jr, 2014a) and the resignation of the head of a bioterrorism lab 

(McNeil Jr, 2014b). Incidents included: accidental exposure of researchers to the anthrax-causing 

B. anthracis (Biosafety, 2014; Tavernise and McNeil Jr, 2014), accidental contamination of a 

weak flu sample with a dangerous flu strain (Butler, 2014a), and the discovery of six vials of live 

smallpox virus in storage at a U.S. Food and Drug Administration (FDA) lab in Bethesda, MD 

(Fountain, 2014).10 A review of U.S. reports of theft, loss, or release of select agents and toxins 

                                                 
9 Another Russian accident occurred in April of 1979 when approximately 100 unintentional 

deaths from anthrax occurred in Sverdlovsk. In this case, the accidental release, caused by 

human error and a failed ventilation system, came from a facility secretly producing weaponized 

Bacillus anthracis in clear violation of the 1972 Biological and Toxin Weapons Convention 

(Leitenberg et al., 2012). It would appear that casualties (so far) from the massive bioweapons 

program of the former Soviet Union have been largely accidental rather than intentional. 
10 After smallpox was globally eradicated in 1980, only two secure labs (the CDC and 

Novosibirsk, Russia) were supposed to have Variola samples (Butler, 2014a). Proponents of 
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compiled by the CDC between 2004 and 2010 found no reports of theft, 88 reports of loss (of 

which only one was never resolved)11, and 639 cases of accidental release (Henkel et al., 2012). 

The releases, fourteen of which occurred at biosafety level 4 facilities,12 resulted in eleven 

laboratory acquired infections, but no fatalities or secondary transmissions. 

These mishaps at the CDC led to the U.S. Office of Science and Technology Policy and 

the HHS to impose another temporary moratorium on NIH-funded gain-of-function research for 

influenza and two coronaviruses in October of 2014 (Kaiser, 2014d). The moratorium was 

intended to last until the NSABB13 and National Research Council could assess the risks and 

benefits of these lines of research and make recommendations (Reardon, 2014c). The accidents 

also increased public attention to scientists calling for more deliberation regarding gain-of-

function research on potentially pandemic pathogens (PPP) – most notably the Cambridge 

Working Group led by Harvard epidemiologist Marc Lipsitch (Kaiser, 2014c). The accidents 

even prompted the CDC Director, Thomas Frieden, to propose closing many BSL-3 and BSL-4 

labs. There is no definitive list of these labs for public review or government oversight (Young 

and Penzenstadler, 2015). However, since the anthrax attacks of 2001, it is estimated that the 

number of labs working with PPPs has tripled and the number of workers with access or 

                                                 

delaying the eventual planned destruction of these official samples argue that other unknown 

samples or even intentional synthesis (Adleman, 2014) warrant preservation to test vaccines and 

antivirals in the future (Arita and Francis, 2014; c.f. Damon et al., 2014; Henderson and Arita, 

2014; Reardon, 2015). 
11 A case of Coccidioides immitis, a pathogenic fungus that causes Valley fever, appears to have 

been destroyed during shipment. 
12 Biosafety levels (BSL), as defined by the CDC, range from BSL-1 to BSL-4 with the latter 

having the strictest protocols and equipment for handling potentially fatal infectious agents for 

which there is no vaccine or treatment. 
13 The first NSABB meeting occurred the same week after the moratorium announcement. It was 

the board’s first meeting in two years and was preceded by the replacement of the remaining 

inaugural board members  half of the 23-member panel (Cohen, 2014). 
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exposure risk has increased by at least an order of magnitude  as did the number of reported lab 

accidents. According to a 2013 Government Accountability Office assessment, the increased 

number of labs and workers unintentionally increased rather than decreased national risk (Begley 

and Steenhuysen, 2014).  

Subsequent events suggest that appropriate laboratory safeguards for reducing human 

error had yet to be implemented. In December of 2014, it was discovered that live Ebola virus 

was sent to the wrong lab within the CDC (Grady and McNeil Jr, 2014). In May of 2015, it was 

discovered that a U.S. Army lab in Utah may have shipped live, rather than inactivated, B. 

anthracis samples to approximately 30 U.S. and foreign labs over several years (Mcleary, 2015). 

1.4 The Role of Self-Regulation 

Because intentional harms are within the purview of security agencies, security 

specialists are trained to focus on signs of malicious intent. Conversely, it is in the area of 

unintended harm where self-regulation appears to be most appropriate. Signs of impending 

accidents and other unintentionally harmful R&D activities may best be detected by those fully 

immersed in the field who understand the formal procedures and tacit knowledge associated with 

the research (i.e., the members of the research community). This may be one reason that the 

NSABB, whose members are primarily science research experts, has been increasingly 

concerned with biosafety risk issues in the H5N1 debate even though the board was created to 

deal with biosecurity concerns (Fink, 2004).  

1.5 Problem Statement 

The HHS policy on gain-of-function influenza research is a typical response to an R&D 

controversy – an ad hoc directive to assess and monitor research in its early stages without 

specifics on just how to assess the risks and benefits of a R&D activity (cf. Renn, 2008). 
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Strangely, the lack of clear methods for conducting a risk-benefit analysis extends to even 

relatively narrow and uncontroversial research questions that commonly come before regulatory 

agencies, such as medical drug efficacy comparisons (Holden, 2003). This suggests many, if not 

most, risk-benefit assessments are in key respects incomparable (Ernst and Resch, 1996) because 

the scientists and engineers performing them are dealing with methodological vagueness by 

folding in the past experience, education, and R&D culture particular to their field and region. 

Risk-benefit analysis clearly has value insofar as it focuses attention on the public impact of 

research and discerns risk scenarios that may not have been studied or even thought of. However, 

it is not obvious that merely asking scientists to consider the risks and benefits of their work will 

result in due consideration and communication of risks in ways that satisfy policy makers and the 

general public (Slovic, 1987; Fischhoff, 1995; Slovic et al., 2004). RBA is often recommended 

as a policy mechanism for mitigating technological risk, but it is still unclear what its practical 

value is to science policy. This leads to the fundamental question of this work. What role does 

risk-benefit analysis have in resolving research controversies? 

1.6 Purpose 

This dissertation has several objectives. The primary purpose is to argue that the reason 

that no detailed RBA methodology exists is because no consensus can be found regarding 

exactly how to categorize and quantify the risks and benefits of any controversial research 

program. This objective is accomplished by analyzing the many legitimate, but incomparable 

ways in which benefits and risks can be measured and the various value judgments inherent in 

the process which render any claim of objectivity or neutrality for a controversial research 

assessment contentious itself. That is, disagreements over technological risk are compounded by 

disagreements over how to assess technological risk  making consensus even more elusive. 
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The practical aim of this work is to provide the most comprehensive and detailed 

argument so far as to why expectations of RBA as a quantitative decision tool should be 

tempered; it is better viewed as a tool for exploring and communicating the social impact of 

research and technology, providing insight, uncovering potential problems, and suggesting 

solutions previously unnoticed. Likewise, the discussion of the practical and philosophical 

difficulties underlying RBA should also help scientists and engineers perform assessments that 

better show specific areas of consensus and disagreement among researchers, the general public, 

and policymakers.14  

Second, I argue that, in the absence of a convincing assessment, pre-existing 

technological risk attitudes guide technological risk management decisions. I note a general trend 

of permissive management of controversial research and suggest that, when possible, redesigning 

research to avoid controversy is the most viable way forward. Lastly, as a practical application, I 

apply this policy analysis to the highly pathogenic avian influenza virus research debate. 

It should be noted that I apply the term “controversial” to any research that may have 

substantial ethical or physical risk concerns. While there are some important distinctions within 

this broad use of the term, which will be discussed in the last chapter, I use an umbrella 

classification because, from a policy perspective, it is not important whether public objections 

are based on the perception of immorality or danger. Regardless of the source, public objections 

require that important policy decisions be made in order to proceed with science research or 

technology development. 

 

                                                 
14 While consensus within science can be detrimental to the process of science (cf. Feyerabend, 

1978), some degree of consensus within democratic societies is necessary in order to implement 

science and technology policy. 



 

12 

 

1.7 Overview of Chapters 

The second chapter reviews the popular methods of gauging the societal benefits of 

publicly funded R&D. Public funding is the primary source of recent controversial research and 

is the area where questions of social risks and benefits are most likely to arise. Also, the majority 

of discussions regarding the benefits of research have been in the context of research funding 

allocation. Discussing the strengths and weaknesses of each assessment approach, I argue that 

there is currently no reliable or universally acceptable way of valuing research. In the third 

chapter, the important epistemic and ethical value judgments inherent in assessing technological 

risk are detailed as they arise in the process. I argue that open acknowledgment of the value 

judgments (of both types) made in any assessment increases its usefulness as a risk 

communication tool. In the fourth chapter, underlying technological risk attitudes are discussed. 

The implications of the previous chapters for managing controversial research are discussed in 

the fifth chapter. The sixth chapter analyzes the avian influenza gain-of-function debate as an 

example of controversial research. I draw some general lessons from the analysis, discuss 

implications and qualifications, and suggest future work. 

  



 

13 

 

2 ASSESSING THE BENEFITS OF RESEARCH 

Hard times invariably lead to tough questions. The global economic downturn that began 

in 2008 strained national budgets and increased scrutiny on how governments spend their limited 

revenues. Government funding of research and development (R&D)15 is one category of 

discretionary spending that has received considerable attention. For example, in the United States 

(US), federal R&D spending dropped over 16 percent from 2010 to 2013 (Morello, 2013) and 

there were congressional efforts to limit funding for basic research without immediate potential 

economic returns (Lymn and Houston, 2013). The response from the scientific community was a 

call for renewed investment in basic research (Augustine and Lane, 2014; Mervis, 2014d) with 

congressional science proponents claiming an “innovation deficit” (Mervis, 2014b). However, 

without any clear justification of what constitutes optimal R&D support, proposed funding goals 

can appear arbitrary (Goldston, 2012) and claims of shortages or impending crises are met with 

skepticism (Teitelbaum, 2014). A number of recent US administrative initiatives (e.g. the 

National Center for Advancing Translational Sciences) are intended to improve the rate at which 

basic research becomes innovation (Sarewitz, 2013). However, in order to tell whether any of 

these efforts are successful, we must first agree upon some way to estimate R&D public benefit. 

The common goal of these efforts is to fund worthwhile research, but “worthwhile” is a 

subjective term that leads back to the fundamental question. How do we value R&D? 

Trying to measure the value of R&D in some qualitative or quantitative fashion is a long-

standing and contentious activity among science policy analysts. Ideally, our method of 

measurement reflects our values. For example, we perform economic analyses because we value 

                                                 
15 According to the U.S. Office of Management and Budget, “Research and development (R&D) 

activities comprise creative work undertaken on a systematic basis in order to increase the stock 

of knowledge, including knowledge of man, culture and society, and the use of this stock of 

knowledge to devise new applications” (OMB, 2014). 
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economic efficiency. However, it is not always clear what all our values are or their priorities 

and if there are specific, practical ways to quantify either. Privately funded R&D undertaken by 

an organization such as a corporation can have highly uncertain outcomes with potential benefits 

and costs that are difficult to quantify. Government funded R&D is even more difficult as the 

benefits and costs to society can be even more diffuse. Yet, pursuit of these questions is a 

worthwhile endeavor. Government funded R&D constitutes less than one third of total R&D 

spending in the US, yet public funding of R&D does not merely augment or even displace 

private investment in R&D (Czarnitzki and Lopes-Bento, 2013). Rather, case studies suggest that 

public funding is critical to early-stage, high-risk research that the private sector is unwilling to 

fund; the result is a disproportionate contribution of government funding to subsequent 

technological innovation (Mazzucato, 2011). For example, while the private sector funds the 

majority of clinical trials in the U.S., public funding accounts for most pharmaceutical basic 

research (Stevens et al., 2011). Government involvement is widely accepted as necessary 

because the public benefit of research greatly exceeds its private value (Jones and Williams, 

1998). The inability of private enterprise to profit from the full value of R&D has strengthened 

the case for direct government funding as well as subsidies for R&D in order to mitigate 

potential private underfunding. 

This chapter reviews some common ways in which policymakers can assess the value of 

R&D: as a simple source of employment, as an engine for economic growth assessed through 

complex econometric methods, as knowledge and technology output, and even as an endeavor 

with social implications requiring assessment by ethical standards (Figure 1). The strengths and 

weaknesses of each approach are discussed and compared. Finally, some implications of the 
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various R&D valuation methods are presented to argue that there is no universally acceptable 

method for assessing the benefits of research.  

 

Figure 1: Ways of assessing the benefits of research ordered by increasing range of benefits that 

can be considered and also by the increasing uncertainty and subjectivity of estimates. 

 

2.1 Methods of R&D Valuation 

2.1.1 R&D as a jobs program 

In a simple input-output model of R&D, spending on salaries, equipment, and facilities 

associated with research has an analogous output of research jobs, manufacturing jobs, 

construction jobs, etc., but the long-term impact of the actual research output is neglected (Lane, 

2009). While this is a very simplistic way to view R&D, it is popular for two reasons. First, it is 

relatively quantifiable and predictable compared to other methods, to be discussed later, which 

assess the value of research output. For example, the STAR METRICS16 program started in 2009 

was intended to replace anecdotes and case studies of individual success stories with data that 

could be analyzed to inform the “science of science policy” (Largent and Lane, 2012). However, 

the first phase of STAR METRICS only attempted to measure job creation from federal spending 

(Lane and Bertuzzi, 2011; Weinberg et al., 2014). The jobs-only approach is also popular 

                                                 
16 Science and Technology for America’s Reinvestment  Measuring the EffecTs of Research on 

Innovation, Competitiveness, and Science 
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because job creation and retention is a primary interest of government policymakers. Even 

though the many long-term implications of R&D spending are frequently discussed by elected 

officials, the short-term impacts on jobs for their constituents are a more immediate concern. As 

US Representative George E. Brown Jr. (1999) said, “we hear how Congress needs to develop a 

rational priority-setting process for science and technology funding. Congress does have a 

rational priority-setting system. Unfortunately it is largely ZIP-code based: Anything close to my 

district or state is better than something farther away.” 

One outcome of viewing R&D in terms of immediate job creation is that any R&D 

program may be seen as a benefit to society because all R&D creates jobs. However, this 

neglects the economic efficiencies created by some R&D which, through innovation in 

automation and productivity improvements, eventually eliminates jobs. Likewise, when R&D 

funding is heavily influenced by the desire to retain science and engineering jobs in a particular 

electoral district, it can diminish the perceived legitimacy of an R&D program – for example, the 

cynical perception that the U.S. National Aeronautics and Space Administration (NASA) is a 

southern states jobs program (Berger, 2013; Clark, 2013). 

2.1.2 Econometric valuation 

Because the jobs perspective is very narrow, many analyses of R&D outcomes attempt to 

measure benefits using broader economic indicators. Econometric methods have attempted to 

measure the value of R&D by either a microeconomic or macroeconomic approach. The 

microeconomic approach attempts to estimate the direct and indirect benefits of a particular 

innovation by historical case study to generate a benefit-cost ratio (Hertzfeld, 1985). The 

historical case study approach has been very useful in assessing the value of particular 

technologies, but it is time- and resource-intensive. While the depth of insight available from a 
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case study approach is often underappreciated (Flyvbjerg, 2006), its detailed qualitative nature 

does not lend itself to decontextualized quantification.17 Furthermore, actual benefit-cost ratios 

or rates of return for case studies tend to be valid only for the industry and the time period 

studied; as a result, they can be a poor source for forming generalizations about R&D activities 

(Griliches, 1979). Additionally, past innovations have often been based on serendipitous research 

(Ban, 2006) from unrelated fields with unforeseen benefits which further complicates attempts to 

directly correlate specific R&D directly with economic productivity (OTA, 1986). 

The macroeconomic approach attempts to relate past R&D investments to a future 

economic indicator, such as gross domestic product (GDP). This approach is more useful for 

evaluating a broader range of research activities. In the macroeconomic approach, the value of 

research is the total output or productivity of an organization or economy attributed to past 

research investments. There are two primary weaknesses of this method. First, an organization’s 

output is influenced by many factors other than prior research (e.g., macroeconomic conditions 

or political decisions). Due to the many potential confounding factors, it is difficult to 

demonstrate a causal relationship for any correlation of productivity or profit with R&D. Second, 

econometric methods are less effective when analyzing research intensive organizations (e.g., 

research universities) that have a poor delineation between research and output, poorly defined 

output, or output that is not directly valued in the market (Hertzfeld, 1985).  

Unfortunately, some advocacy groups have issued reports that imply a simple direct 

relationship between scientific investment and economic growth that is not supported by 

                                                 
17 However, this has not stopped big-data enthusiasts from trying. For example, keyword text-

mining was performed on a 7,000-case-study audit of research impact in the United Kingdom. 

Ironically, the point of the audit was to add complementary context to a quantitative assessment 

(Van Noorden, 2015). 
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historical data (Lane, 2009). For example, Japan spends a higher percentage of GDP on R&D 

than most countries, but has not experienced the expected commensurate economic growth for 

the past two decades (Goldston, 2012). Likewise, in the year 2000, R&D spending in the US was 

more than ten times higher than China which resulted in the US contributing 27 percent of the 

global scientific literature and China contributing three percent; however, in the subsequent 

decade, China’s economy expanded ten times faster than the US economy (Macilwain, 2013b).18 

While the exact relationship between R&D spending and economic growth remains unclear, the 

strong consensus is that R&D is beneficial. For that reason, the Bureau of Economic Analysis 

finally recognized the economic impact of R&D in 2013 by changing accounting procedures for 

GDP such that R&D is now considered an investment rather than an expense (Mcculla et al., 

2013). This accounting change increased the GDP growth rate for the period 1995-2007 by about 

seven percent and the GDP in 2007 by almost $400 billion (Aizcorbe et al., 2009; Lee and 

Schmidt, 2010). 

Three important factors have been noted when attempting an economic analysis of the 

value of R&D (Griliches, 1979): 

1. The time lag between when research is conducted and when its results become useful to the 

organization defines the timeframe of the analysis. Depending on the research, the time lag 

from investment to implementation may take years or decades (Lane, 2009).  

2. The rate at which older research becomes obsolete as it is replaced by newer technology and 

processes should be considered. Until recently, economic analyses often assumed an R&D 

depreciation rate of 15 percent (Li, 2012) - a gross simplification. The knowledge 

                                                 
18 This has led to speculation that a robust research community is a result rather than a cause of 

national wealth (Macilwain, 2013b). 
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depreciation rate should be higher for a rapidly changing technology than for basic science 

research. For example, expertise in vacuum tubes became substantially less valuable after the 

invention of the transistor. Conversely, the value of a mathematical method commonly used 

in computer science might never decrease.  

3. Since there is a “spillover” effect in research, the amount of similar R&D being conducted by 

competing organizations has an impact on the value of an organization’s own research. This 

effect might be small for unique research that is unlikely to be used elsewhere. The spillover 

effect can vary in size and be positive or negative based on an organization’s size, the current 

pace of innovation within the field, or the amount of competition within the field (Kafouros 

and Buckley, 2008). One reason for the complexity of the spillover effect is the influence of 

an organization’s “absorptive capacity” or ability to make use of R&D output that was 

developed elsewhere (Cohen and Levinthal, 1989). Even without performing substantial 

research on its own, by keeping at least a minimum level of research capability, an 

organization can reap the benefits of the publicly available research output in its field. Using 

this theory, R&D is likely to yield much more for an organization than the direct output of its 

R&D activities. Presumably, this is a non-linear relationship. Increased R&D funding in a 

country with many well-trained researchers should cause a smaller relative increase in its 

absorptive capacity than one with a negligible R&D system. 

In general, quantifying any of the above factors is easier for applied research than for 

basic research. Likewise, it is easier to quantify private benefit to a particular organization than 

social benefit (Hertzfeld, 1985). Another factor that prevents easy identification of the economic 

value of R&D is the general lack of data variation. Research funding rarely changes abruptly 

over time so it is difficult to measure the lag between research investments and results (Lach and 
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Schankerman, 1989). Taken collectively, these factors suggest that attempting an econometric 

assessment of R&D is indeed difficult.  

A comprehensive review of attempts to determine the economic rate of return for R&D 

(Hall et al., 2009) finds a variety of methods being employed. The most common is growth 

accounting where R&D is assumed to produce all economic growth not accounted for by other 

inputs such as labor and capital. This unaccounted-for growth is often referred to by economists 

as the Solow residual (Solow, 1957). Hall et al. (2009) review 147 prior R&D studies that used 

either an individual business (59 studies), an industry (57 studies), or a region or country (31 

studies) and found most rates of return ranging from 0 to 100 percent19 – a wide interval which 

portrays the difficulty in quantifying the value of R&D. Not surprisingly, Hall et al. (2009) 

observe that R&D return is not constant across fields, countries, or time, so any estimates from 

one study should be used cautiously elsewhere. Likewise, it is important to distinguish 

technological progress from R&D. While technological progress may account for most of the 

Solow residual, a non-negligible amount of innovation occurs outside of formal public and 

private R&D programs. 

2.1.3 Valuation by knowledge output 

Given the difficulties of econometric valuation of R&D, economists have also explored 

alternative methods of assessing research investments that avoid the difficulty of monetizing 

research benefits and the private versus social benefit distinction. Instead of using monetary 

value, the assessment tool is academic publications in a particular field over a given time period, 

lagging the research investment in question, and weighted by the number of researchers working 

                                                 
19 One outlier study conservatively (and perhaps humbly) estimated rates between -606 and 734 

percent. 
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in the field (Adams, 1990). Despite the relative simplicity and ease of assessment compared to 

economic growth, there are still many difficulties with this approach. First, comparisons are 

complicated because scientific publication is not equally valued among all fields and 

organizations. Second, the method does not assess the relative value or visibility of individual 

publications although this issue is partially addressed by using the number of citations rather than 

the number of publications. However, citations are not a clear sign of quality research; citations 

are commonly made to reference methods, provide basic background information, or even 

criticize prior work (Werner, 2015). Furthermore, despite the personal advantage of publishing in 

prestigious journals, an ever increasing portion of research is being disseminated outside 

standard academic journals via the internet (Reich, 2013). It is unclear how non-traditional open 

source information sharing should be measured. Additional shortcomings are similar to 

traditional econometric approaches: what is the appropriate lag time for which to consider 

publications and what time window should be considered for counting publications based on the 

depreciation rate of scientific knowledge (Adams and Sveikauskas, 1993)?  

A study of over 2800 academic and professional journals finds that the time it takes for 

half of an article’s lifetime downloads (half-life) ranges from two to five years with health 

sciences having the shortest half-life and humanities and mathematics having the longest (Davis, 

2013). Less than three percent of journals have average article half-lives of less than one year, 

while 17 percent are more than six years. In a separate model (Wang et al., 2013) of the ultimate 

number of citations for a particular article, influencing factors included: citations accruing faster 

to papers that already have many citations, a log-normal decay rate for future citations, and a 

general factor that accounts for the novelty and importance of a paper. However, the model 

requires 5 to 10 years of citation history to make projections and the difficulty of properly 
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calibrating the model limits its utility (Wang et al., 2014a, 2014b). Conversely, an extensive 

study (Ke et al., 2015) that looked at 22 million papers published over the timespan of a century 

in the natural and social sciences found that citations histories are heterogeneous and 

unpredictable. Some extreme papers, labeled “sleeping beauties” would accumulate very few 

citations for decades and then suddenly peak suggesting that using short-term citations as a 

metric for assessing research is problematic.  

A similar non-monetary approach for measuring R&D benefits is to measure the number 

of patent citations in a particular field (Griliches, 1979; Jaffe et al., 1993). This method has the 

benefit of better assessing the practical value of R&D activities and capturing the technological 

innovation component of research that is likely to have high social benefit. However, this method 

also shares some of the drawbacks of the publication approach as well as a few unique 

drawbacks of its own. Griliches (1994) observes that a US productivity peak in the late 1960s 

was followed by a decline in patents granted in the early 1970s and that both events were 

preceded by a decline in the proportion of GDP devoted to industrial R&D spending in the mid-

1960s. Whether productivity and patents followed a five-to-ten-year lag behind R&D spending is 

difficult to determine given that among other factors: the number of patents per research dollar 

also declined during the same time period, an energy crisis occurred during that time period, and 

other countries suffered similar productivity losses without the drop in R&D funding.  

Likewise, fluctuations in patent generation may be due to the national patent office itself. 

For example, the 2011 Leahy-Smith America Invents Act, which took effect in 2013, changed 

the unique US “first to invent” patent system to a more standard “first to file” system. This 

makes comparisons before and after the new system more difficult. Similarly, stagnant or 

declining funding of a patent office could limit the throughput of the department or prevent it 
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from keeping up with growing patent application submissions (Griliches, 1994). This very 

phenomenon appears to have occurred in the US since the innovation boom of the Internet age 

(Wyatt, 2011). These various influences on the patent system can be partially accounted for by 

looking at a particular sub-field as a percentage of all patents (Popp, 2002), using patent 

applications rather than patents awarded (Ernst, 2001), or performing international patent count 

comparisons (de Rassenfosse and van Pottelsberghe de la Potterie, 2009). However, the 

increasing globalization of research efforts (Wagner, 2014) may limit international comparisons 

in the future as international research teams complicate the clear delineation of R&D spending 

and knowledge output within individual countries.  

In the end, patents remain a very limited and non-representative measure of R&D 

benefits. There is poor correlation between patents and public benefit because most benefits 

come from a small subset of all patents and only about half of all patents are ever used and fewer 

are ever renewed (Scotchmer, 2004). Not all organizations patent their inventions at the same 

rate because the value of a patent is distinct from the value of the invention (Bessen, 2008). 

Nonetheless, patents are still widely used as a measure of R&D value for lack of a better 

alternative. 

While economists view the measurement of R&D to be problematic, but possible, other 

academic traditions suggest that the problem is intractable or at least not quantifiable in any 

honest way. Feyerabend (2011) argues that a careful study of the history of science shows that 

the truth or usefulness of any particular scientific theory or line of research may not be 

appreciated for decades or even centuries. An extreme example is the theory proposed by the 

ancient Greek philosopher Parmenides of Elea (fifth century BCE) that all matter has the same 

fundamental nature. The theory was abandoned for over two thousand years before being revived 
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by particle physicists in the twentieth century (Feyerabend, 2011). Another more recent example 

is the theory of continental drift, first proposed in 1596 by Flemish cartographer Abraham 

Ortelius. The theory was revived in 1912 by meteorologist Alfred Wegener who championed the 

idea for two decades, but was met with ridicule and dismissal by a near-unanimous consensus of 

scientists. The idea was eventually incorporated into the theory of plate tectonics in the 1960s 

and is now a cornerstone of modern geoscience (Frisch et al., 2010).  

Of course, economists are generally trying to measure the societal benefits of more 

tangible and immediate R&D. However, efforts to select an appropriate lag time for measuring 

practical R&D value will still likely miss truly important findings. There were decades between 

the development of quantum physics and technologies based on quantum mechanics (e.g., 

transistors, lasers, and magnetic resonance imaging (MRI)) and new technologies based on 

quantum theory are still in development (e.g., quantum computers). Even a field of research that 

has yet to yield useful results should not be dismissed as long as it still has intellectually 

inspirational value, for one never knows what is yet to transpire. Selecting a lag time by a cutoff 

function that is designed to capture most of the citations, patents, or economic growth based on 

past research is based on the questionable assumption that only the intended outcome of applied 

research is of interest. However, the history of technology suggests that secondary unintended 

discoveries, both good and bad, are very important.20 Thus, selecting a time period for the 

evaluation of R&D investments may capture the intended primary applied research to some 

degree, but will likely miss the secondary serendipitous discoveries. More importantly, these 

                                                 
20 In the pharmaceutical industry, drugs are commonly repurposed when they are found to treat a 

disease other than their intended target. For example, while aspirin has been used for centuries as 

an analgesic, only in the past few decades has it also been found to benefit cardiovascular disease 

treatment.  
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secondary factors are frequently large enough to substantially change or even reverse the primary 

assessment. Thus, any claim that an assessment is mostly complete or representative of the true 

social benefit is difficult to justify.  

2.1.4 Valuation by multiple metrics 

The various econometric and knowledge-output metrics discussed here appear to be poor 

measures of the social benefits of R&D. They are popular primarily because they make use of 

the available data, not because they are ideal. Furthermore, using a single metric or narrow set of 

metrics can lead to researchers changing their behaviors in potentially non-productive ways in 

order to improve their “scores” under those very metrics. These “reactive effects” of 

measurement are widely recognized in the social sciences and are difficult to avoid (Stone, 

2002). For example, if patents become a preferred metric of research productivity, many 

researchers will knowingly generate patents that are of questionable licensing value in order to 

improve their likelihood of securing future funding. Likewise, the frequent practice of using the 

number of publications as a metric has led to academic complaints and jokes about “salami-

slicing” research and the ”least publishable unit.” There are already indications that quantitative 

assessments of research output in the United Kingdom, Australia and New Zealand are having 

various unintended consequences such as pushing researchers away from high-risk basic 

research and towards more conventional, short-term, applied projects to improve their rankings 

(Owens, 2013; McGilvray, 2014). Likewise, increasing the pressure on academics to publish 

(which was already substantial) may account for some of the discovered intentional fraud (Labbé 

and Labbé, 2013) in journals and conference proceedings. While quantitative ranking is intended 

to act as an objective merit-based system, the competition may also be selecting undesirable 
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traits, such as self-promotion, rather than creativity and collaboration (Polka and Krukenberg, 

2014). 

Despite these critiques of individual approaches to R&D valuation, there has been some 

hope that using a family of complementary metrics would yield an improved estimate. For 

example, a combination of publication citations to capture basic research and patents to capture 

technology development would appear to be complementary measurements. Likewise, a multi-

metric approach is intended to have fewer unintended consequences in the sense that it is more 

difficult for those being measured to game the system. At the urging of John Marburger (2005), 

then Director of the Office of Science and Technology Policy and presidential Science Advisor, 

the STAR METRICS program was created to measure the impact of US federally funded R&D 

using a multi-dimensional approach (Cragin et al., 2012). Phase II of the STAR METRICS 

program was intended to expand measurement to a comprehensive set of metrics. Suggested 

indicators were grouped into four domains and included: economic (e.g., number of patents, 

number of start-up companies, economic value of start-up companies over time, future 

employment of student researchers, and impacts on industry from research); workforce (e.g., the 

number of researchers employed); knowledge creation (e.g., publications and citations); and 

social outcomes (e.g., long-term health and environmental impacts) (Federal Demonstration 

Partnership, 2013). While the STAR METRICS proposed comprehensive approach avoids some 

of the limitations of individual metrics previously discussed, it is questionable how many of the 

proposed metrics could be measured in practice or how representative the final set of metrics 

would be. In particular, accounting for the total social benefit of R&D is a daunting task and 

separating the public benefits attributed to R&D from other factors is still problematic. In 2015, 

it was announced that the STAR METRICS program would end and researchers could perform 
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their own multi-metric analyses using an open access database, Federal RePORTER (Rockey, 

2015).  

A more successful program, the Innovation Union Scoreboard (IUS) (Hollanders and Es-

Sadki, 2014) has been evaluating European Union member states since 2007. The IUS 

encompasses twenty-five R&D metrics including multiple indicators for: educational outcomes, 

scientific publications, patents, public R&D investments, private R&D investments, 

employment, and other economic indicators. As with similar programs, the IUS is by necessity 

restricted to indicators for which there are data. Unquantifiable benefits are necessarily missed. 

Even where data are available, it is difficult to describe and account for all the possible facets of 

social benefit. 

Despite the difficulties of quantitatively valuing R&D, the era of big-data has inspired an 

entire alphabet soup of research assessment systems, none of which can be easily compared. 

Besides STAR METRICS and IUS, the United Kingdom has the Research Excellence 

Framework (REF) (cf. Atkinson, 2014) which replaced the previous Research Assessment 

Exercise (RAE), New Zealand has the Performance-Based Research Fund (PBRF), and Australia 

has the Excellence in Research (ERA) program to name a few (Sheil, 2014). Detractors have 

argued that these broad quantitative measurement tools are just as non-representative and easily 

gamed as the many popular, but widely derided college ranking schemes (Macilwain, 2013a). It 

has yet to be seen if any of these multi-metric systems will improve research or how (outside of 

their own definition) success will be determined. The rush to quantitative assessment is not 

universal. Since 2011, the Chinese Academy of Sciences has been moving away from an existing 

multi-metric national research ranking system that used 24 indicators to a qualitative system 
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based on peer review (Kun, 2015). The motivation is a desire to place emphasis on the real social 

value of research rather than on easily measured surrogates.  

2.1.5 Value-of-Information analysis 

When performing a cost benefit analysis of any research program, econometric methods 

can appear to be an obvious choice based on convenience and methodological familiarity. 

However, as discussed above, this is a difficult task even for research that has already been 

conducted. Estimating the value of future research is even more uncertain as it requires the 

questionable assumption that the future will be much like the past. This is a difficult assumption 

to defend because history suggests that the progress of technology is inconsistent and 

unpredictable. For example, computer technology has exceeded most predictions made in the 

twentieth century while nuclear fusion power plants have stubbornly remained a promise of the 

future. 

For future research decisions, an alternative to the econometric or knowledge output 

approach is to use value-of-information (VOI) analysis where the value of the research is 

measured by estimating its expected value to a particular decision and weighing it against the 

cost of obtaining that information (Morgan et al., 1990; Pratt et al., 1995; Hammitt and 

Shlyakhtel, 1999; Fischhoff, 2000).21 For example, knowing the transmissibility of a particular 

pathogen has value for public health officials in their decision of how to prepare for a potential 

future pandemic. This value can be measured in any agreeable units  money, lives saved, 

                                                 
21 VOI literature often uses the term “expected value of perfect information” which is simply the 

difference between the value of the decision made with complete information and with existing 

information. Restated, this is the value of removing uncertainty from the decision process. 
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response time, etc.22 The primary strength of this approach is that it deals directly with the value 

of R&D to the decision maker (Claxton and Sculpher, 2006). By comparison, high quality 

research, as measured by knowledge output methods, has no clear correlation to societal benefit 

– only an assumed link (Bornmann, 2012).  

Likewise, because VOI is a forward-looking predictive method of valuation rather than a 

backward-looking reflective method, it sidesteps the issue of making direct comparisons between 

past and future research. VOI does not require the assumption that the benefits of past research 

will be equivalent to similar future research. However, it does not entirely escape the past. VOI 

must place a value on proposed research and that valuation is at least implicitly informed by how 

valuable past research was to decision-makers.  

Another strength is that VOI analysis is a more theoretically complete and consistent 

method of R&D valuation. Performing a cost benefit analysis using a family of economic, 

knowledge, and social metrics can use collected data, but that data will generally be an 

incomplete measure of the total value of R&D and will often consist of proxies for the 

characteristics that we would prefer to measure. Conversely, a VOI approach can place a value 

on factors that are difficult to monetize: aesthetic, intellectual, or even the cultural significance of 

a scientific discovery23. Thus, VOI is comprehensive in the sense that any recognized benefit can 

be included in the analysis. The thoroughness of the VOI approach comes at the price of 

subjective estimates and value judgments – especially for estimating the value of highly 

uncertain basic research. That is, VOI is a productive decision tool when one can reasonably 

                                                 
22 Important ethical assumptions regarding what is worth optimizing are embedded within the 

choice of units (cf. Robberstad, 2005) 
23 Consider the social implications of world-view changing theories such as evolution or the Big 

Bang. 
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estimate the value that obtaining information will have to a decision. For that reason, VOI is 

often applied to business, engineering, and applied science decisions (Keisler et al., 2013). For 

example, VOI could more or less objectively estimate whether a particular medical test has value 

to decisions about patient treatment or patient outcomes. However, it is harder to justify using 

VOI, as suggested by Fischhoff (2000), to determine the value of more basic research, such as 

the discovery of the Higgs boson. VOI is most subjective when it is measuring the most 

subjective things. Like all decision methods, it cannot spin straw into gold. 

The thoroughness of the VOI approach also makes analysis difficult due to the richer 

array of potential social benefits that might be considered. While VOI is simple in concept, it can 

be quite complex in practice (e.g., Yokota and Thompson, 2004). For this reason, the VOI 

approach is often used in conjunction with an influence diagram – a visual representation of a 

decision process that represents variables as nodes and interactions between variables as arrows 

(Clemen, 1991; Howard and Matheson, 2005). The influence diagram serves as an aid to 

elucidate and organize the often complex interaction of factors that can affect the value of basic 

research. 

For example, organizing the various ways in which R&D can be valued in an influence 

diagram, Figure 2, shows how they are related. Each form of valuation is represented as a node 

with arrows indicating if the method informs another method. For example, job creation is often 

concurrent with economic growth (but not always) so we would expect these two R&D valuation 

methods to be closely related. Likewise, both jobs and economic growth can be used in a 

multiple metrics approach or in an expert opinion approach. Knowledge output, in the form of 

citations and patents, can also be used in a multiple metrics approach and is similar to the VOI 

approach in that both are non-monetary and can more easily characterize the value of basic 
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research with no immediate practical applications. Expert opinion, discussed in the next section, 

is the most comprehensive approach in that it can make use of all the other methods of valuation. 

However, in practice, expert opinion and managerial review can range from superficial to 

comprehensive. 

Expert 

Opinion

Value of 

Information

Knowledge 

Output

Multiple 

Metrics

Jobs

Econometrics

 

Figure 2: Ways of valuing R&D 

 

Although less formal than the VOI approach, Sarewitz and Pielke Jr. (2007) outline a 

similar process by which the supply of research and the demand for research are separately 

assessed and compared. This is done by detailing the information required by policymakers for 

policy formulation (the demand) through regular communication between researchers and 

policymakers in the form of workshops, surveys, interviews and committees. Using the same 

process, regular assessments are made regarding whether the R&D output is actually being used. 

Rather than placing a common value on the information, the intent is only to re-align R&D 

priorities such that funded research is focused on producing social benefit. This process is much 

less subjective than VOI in the sense that it does not attempt to quantitatively compare R&D 
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programs. However, it is also time consuming in that it seeks input from all stakeholder groups, 

with their own disparate research agendas, and can be difficult to achieve when contentious 

issues preclude a consensus on the “demand” for science. Furthermore, it is difficult to predict 

what research will actually yield the most social benefit; focusing only on immediate applied 

research would miss important basic research that eventually yields important technology. 

2.1.5.1 Extending the value of information approach for R&D assessment 

In standard VOI literature, benefit is derived from additional perfect or imperfect 

knowledge and it is assumed that the value of information can never be negative because a 

decision maker can always choose to ignore low value information (Blackwell, 1951; Marschak, 

1954, 1959). However, experiments suggest that decision makers are often unable to ignore 

unhelpful information once it is known resulting from a “curse of knowledge”24 (Camerer et al., 

1989). Furthermore, decision makers are often unaware when information is unhelpful based on 

their willingness to pay for unhelpful information (Loewenstein et al., 2003). This questions the 

basic assumption that the value of information is never negative because it can be ignored 

without cost.  

We can extend this concept of negative value of information to include R&D that may 

yield knowledge that has potential for public harm as well as public benefit. The idea that 

publicly funded R&D should serve society is a reasonable and widespread belief (Sarewitz and 

Pielke Jr, 2007; Sarewitz, 2013). However, there is much less discussion regarding the potential 

public harm of R&D. Some notable exceptions are the discussions surrounding “dual-use” 

                                                 
24 For example, the curse of knowledge is frequently experienced in teaching. It is extremely 

difficult to imagine one’s own state of mind before a concept was understood. This leads to 

teachers often overestimating the clarity of their instruction and the comprehension in their 

students (Weiman, 2007). 
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research (i.e., research that also has obvious use by military, terrorists, or criminals). Without the 

negative VOI concept, the worst R&D is only wasted effort. With the idea of negative VOI, 

some R&D programs may yield information we might prefer not to know. This introduces the 

potential to account for important ethical considerations into the R&D valuation process.  

Additionally, there is research that yields harm to the public because it is erroneous. It 

can be difficult to assess the benefits of research that has implications for public policy because 

some research may be of low quality and may inappropriately influence public behavior (Boyd, 

2013). For example, the 1998 Lancet paper linking the MMR vaccine with autism, although later 

discredited and retracted, fueled a wave of suspicion regarding the safety of childhood 

vaccination; subsequent outbreaks of preventable diseases and multiple fatalities have been seen 

in the U.S. that appear to be linked to this anti-vaccination movement (Gross, 2009). 

2.1.6 Qualitative assessment by expert opinion 

A 1986 Office of Technology Assessment (OTA) report (OTA, 1986) reviewed a variety 

of quantitative methods for determining the value of R&D and the prevalence of such methods in 

industry and government. The OTA found that the majority of government and industrial 

managers perceived quantitative methods to be simplistic and misleading and preferred 

traditional peer review as the best method of assessing the value of research. “Any effort to 

substitute formalistic quantitative models for the judgment of mature, experienced managers can 

reduce rather than improve the quality of R&D decision making. The resistance of R&D 

managers to the use of quantitative decision tools is, to some degree, a rational response to the 

complexity and uncertainty of the process” (OTA, 1986). 

Given the issues described above with various quantitative methods, it is unsurprising 

that expert opinion is still the standard in estimating the value of R&D. However, qualitative 
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peer review is also problematic, especially for evaluations that require the comparison of expert 

opinions across a wide range of research specialties such as during R&D funding discussions. 

One problem encountered with using subject experts in peer review is the inherent appearance of 

conflict of interest. Specialists often have a financial or emotional stake in their field of expertise 

which leads to bias. The value people attach to an activity is increased by the effort they expend. 

This phenomenon, referred to as "effort justification" (Festinger, 1957) or the "IKEA effect" 

(Norton et al., 2012) can lead experts to unintentionally overestimate the value of the research 

with which they have been most involved. Even the appearance of conflict between what is in 

the best interest for the general public and what is in the best interest for the experts themselves 

decreases credibility and can reframe budgeting discussions as special interest political lobbying.  

Making science policy in this fashion can be undesirable as the political process may not 

lead to an optimal research agenda as defined by “well-ordered science” (Kitcher, 2001) (c.f. 

Keren, 2013). For example, the 2014 NASA budget request included funding for a project that 

would ultimately capture a small asteroid from deep space and put it in a near-earth orbit. 

However, many planetary scientists expressed doubts that the purported benefits of the project, 

asteroid mining and planetary defense research, had any reality or utility beyond attracting 

attention from politicians (Kerr, 2013). 

One way to partially compensate for potential expert bias is to actively seek competing 

views. Kitcher (2001) recommends an “enlightened democracy” where well-informed 

individuals widely representing society set science research agendas. This ideal is set as a middle 

ground between a “vulgar democracy”, where science suffers from the “tyranny of the ignorant”, 

and the existing system where a struggle for control over the research agenda is waged between 

scientists (“internal elitism”) and a privileged group of research funders (“external elitism”). 



 

35 

 

Some influences on science research agenda, such as the focused lobbying by well-informed 

advocates for rare diseases (Reardon, 2014a), defy this idealized distinction between a scientific 

elite and the uninformed public. Nonetheless, the struggle to maintain a balanced and 

representative set of R&D policymakers is real. An example of this struggle, US President 

Eisenhower created the President’s Science Advisory Committee (PSAC) to provide cautious 

science policy analysis during the American pro-science panic that occurred after the launch of 

Sputnik in October, 1957. PSAC’s criticism of President Kennedy’s manned space program and 

President Johnson’s and President Nixon’s military programs led to PSAC’s ultimate demise 

(Wang, 2008) which suggests that balanced counsel from technological optimists and skeptics 

can be difficult to maintain.  

Furthermore, expert opinion is time-consuming (Arns, 2014),25 expensive (Mervis, 

2014a) and has a poor historical record of predicting R&D outcomes. For example, the current 

National Science Foundation (NSF) method of using peer review panels to assess research 

proposals based on significance of goals, feasibility, the investigator’s track record, etc., may not 

be capable of reliably making even relative rankings of future research impact. For a study of 41 

NSF projects funded a decade prior, using the number of publications and citations as a measure 

of research success, panelists’ predictions of future research success were found to have no 

significant correlation with actual research success (Scheiner and Bouchie, 2013). Similar larger 

studies of the NIH peer review processes have found that there is no appreciable difference 

between high and low ranked grant proposals in their eventual number of publications per grant, 

number of citations adjusted for grant size, or time to publication (Mervis, 2014c). However, a 

                                                 
25 There is also a concern that the peer-review process, as it currently operates, is being 

overwhelmed by data – an explosion of journals with increasingly data-rich papers (Siebert et al., 

2015). 



 

36 

 

more recent study of 137,215 NIH grants awarded between 1980 and 2008 found the highest 

rated grant proposals yielded the most publications, citations, and patents (Li and Agha, 2015). 

For example, a proposal with a review score one standard deviation above another generated 8% 

more publications on average. Critics have questioned the cause of this correlation considering 

that journal publications are also based on peer-review; any correlation may be indicative of 

measuring the same reputational system.  

The journal peer-review system was the subject of another study that followed the 

publication history of 1,008 submissions to three top medical journals (Siler et al., 2014). Of the 

808 manuscripts that were eventually published, the lowest rated submissions tended to receive 

the least eventual citations. However, the top fourteen papers were all rejected at least once 

which suggests that the most innovative, high-impact work is often unappreciated by the peer-

review process. 26  

Additionally, the history of science is littered with examples of substantial scientific 

research that went unappreciated by expert opinion to an extent that is almost comical in 

hindsight. For example, Lynn Margulis’ paper proposing that mitochondria and chloroplasts in 

eukaryotic cells evolved from bacteria (Sagan, 1967) was originally rejected by over a dozen 

journals (Lake, 2011). Over a decade later, DNA evidence confirmed the theory and Margulis 

was eventually elected to the National Academy of Sciences and given various awards including 

the National Medal of Science.  

In another example, Dan Shechtman, the first to identify the existence of quasicrystals 

(Shechtman et al., 1984), needed two years to get his paper published, was asked to leave a 

                                                 
26 While most rejections were desk rejections (i.e., rejections by the journal editors), this is, in 

practice, part of the peer-review process. This conservatism may be a sign of “normal science” 

(Kuhn, 1962) in action.  
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research group, and was met with considerable opposition from the scientific community 

including Nobel laureate Linus Pauling (Jha, 2013). Ironically, for this work, Shechtman was 

eventually awarded the Nobel Prize in Chemistry in 2011. Perhaps for these reasons, there has 

been discussion at the NIH to skip the standard peer review which appears to be less effective at 

selecting and promoting innovative high-impact research than funding based solely on a 

researcher's reputation (i.e., funding people rather than projects)27 (Kaiser, 2014b). 

2.2 Implications of Multiple R&D Valuation Methods 

The optimal funding levels of R&D and the types of research that should be publicly 

funded are perhaps unresolvable questions. However, a comparison of the various R&D 

valuation methods provides some insight into science policy. For example, Figure 1 shows the 

various methods ordered from the narrowest to the broadest conception of benefits. This is also 

the same ordering of the most objective to the most subjective approach. R&D policy decisions 

based on job creation or economic growth are the most data-driven, while VOI and expert 

opinion approaches require more personal judgment. The choice of approach requires a 

compromise between being objective and being comprehensive.  

                                                 
27 The purported weakness of this approach is that it may make it harder for younger researchers 

to obtain funding. This is a concern for the biomedical science community given that the median 

age of first NIH grant increased by six years between 1980 and 2014 (Kaiser, 2014a). However, 

during the same time the median age of the total U.S. population increased by over seven years. 

This demographic trend coupled with the widely discussed glut of biomedical researchers 

(Meredith, 2012) relative to funding opportunities likely explains the increase in age of first NIH 

grants. There is also no convincing evidence that this is hurting science. The association of youth 

with innovation appears to be a cultural myth (Agan, 2013). Over the past century, the average 

age of the Nobel Prize winner has increased (Jones, 2010) likely indicating that scientists are 

both living longer (the Nobel is not awarded posthumously) and major innovative ideas in 

science increasingly require more training. Even in the supposed innovation youth paradise of 

high-tech startups, twice as many founding entrepreneurs are over 50 than under 25 (Wadhwa et 

al., 2008). Without further justification, attempting to lower the age of the first award of research 

grants is simply ageism (cf. Wray, 2014).  
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One attempt to bridge the differences between objective and more subjective ways of 

R&D valuation calls for expanded econometrics. The limitations of GDP and similar measures of 

economic growth are widely known and even expanded measures (e.g., Muller, 2014) that use 

monetary valuation schemes are problematic (Adams, 2014). Alternatives, such as the “Genuine 

Progress Indicator” or “World Values Survey,” have been proposed to account for factors 

important to well-being that are ignored by GDP (Costanza et al., 2014). Expanded econometric 

approaches can incorporate factors relevant to R&D valuation, but this requires general 

acceptance of a new more complex system of metrics and agreement that the new system is 

actually measuring the desired characteristic (cf. Krueger and Stone, 2014). Ultimately, any 

attempts to capture the more intangible benefits of research and broaden a benefits assessment 

necessarily increases its uncertainty and subjectivity.  

One basic observation regarding the different approaches is that some types of research 

are more amenable to a particular form of assessment. This suggests that scientists and engineers 

involved in “blue skies” basic research, that has only job creation as an immediate quantifiable 

benefit, should avoid getting locked into econometric valuation debates. When science is treated 

as a mere economic engine, the weaknesses rather than the strengths of curiosity-driven research 

are emphasized resulting in weak justifications such as the previously mentioned NASA proposal 

to capture an asteroid. Rather, curiosity science should be honestly argued on intellectual, 

aesthetic, and even moral grounds if support from the general public is expected.  

Staying with examples from NASA, in 1970, Ernst Stuhlinger, a scientist and NASA 

administrator, responded to a letter from Sister Mary Jucunda questioning the expenditure of 

billions of dollars for manned space flight given the plight of starving children in Africa. 

Stuhlinger’s response (Usher, 2013) is an eloquent defense of the value of R&D generally, but a 
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rather weak defense of space exploration programs based on several proposed practical benefits 

(none of which are actually dependent on manned space flight): satellite data to improve 

agricultural output, encouraging science careers, increasing international cooperation, and 

serving as a more benign outlet for Cold War competition. However, Stuhlinger wisely closes the 

letter with a reference to an enclosed photograph of the Earth from the Moon and hints at its 

worldview changing implications. The 1968 picture now referred to as “Earthrise” was later 

described by nature photographer Galen Rowell as “the most influential environmental 

photograph ever taken” (Henry and Taylor, 2009).  

2.3 From R&D Valuation to Allocation 

Most of the discussion so far has focused on assessing the benefits of past research. 

Because R&D explores the unknown, estimating the benefits of future research is, by its nature, 

extremely difficult. Reviews of academic studies by economists have found that there is no 

consistent set of criteria that will predict whether a particular R&D project will succeed. The list 

of contributing factors is extensive and there is even disagreement among studies regarding the 

magnitude and direction of influence of each contributing factor (Balachandra and Friar, 1997). 

Thus, it would appear to be ill-advised to set R&D budgets based on the perceived viability of 

individual projects. This does not imply that policymakers must treat and fund all R&D requests 

equally. Rather, they should fund a broad range of individual projects based on best current 

science and the intended goals for funding. Given the serendipity inherent in R&D and the 

potential for “black swans,” the optimal investment strategy appears to be relatively stable 

investment over time (Press, 2013). 28 

                                                 
28 Stability has an additional benefit. The rapid doubling and subsequent stagnation of the NIH 

budget between 1998 and 2003 created a painful market instability among biomedical scientists 
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It is also unwise to abandon basic research in favor of seemingly more predictable short-

term applied R&D. How could one have predicted that the germ theory of disease, widely 

accepted by the end of the nineteenth century, would be the impetus for drinking water 

disinfection techniques responsible for much of the increase in average life expectancy in the 

twentieth century? While our inability to predict the future may seem obvious, predicting the 

future is a natural, if unintended, assumption of many attempts to improve societal benefit of 

publicly funded R&D. For example, the US High Quality Research Act proposed in 2013 

attempted to guarantee economic benefit from R&D by requiring the NSF Director to certify that 

any funded research would be ground-breaking and “advance the national health, prosperity, or 

welfare” (Lymn and Houston, 2013). Likewise, the bill required certification that any funded 

proposal “is the finest quality, is ground breaking, and answers questions or solves problems that 

are of utmost importance to society at large.” The failed bill would have been less disquieting if 

it were the only inelegant attempt by Congress to “improve” science research or if it had not 

been proposed by the head of the House Committee on Science, Space and Technology. While 

well-intentioned, predicting the outcome of a specific research proposal is logically not possible; 

otherwise, there would be no reason to perform the research in the first place. In this limited 

sense, the benefits of R&D are unmeasurable.  

2.3.1 Ethics of allocation 

 Although we cannot predict the future, this does not mean that no assessment is possible 

and no setting of research priorities is desirable. The general public and science policymakers 

clearly do have R&D priorities. The argument that the 2013 discovery of the Higgs boson will 

                                                 

that may have ultimately dissuaded potential future scientists from careers in research (Freeman 

and Van Reenen, 2009; Shen, 2014). 
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someday be useful outside the field of particle physics (Prewitt, 2013) is likely true, but the 

public does not value all basic research equally. According to a directory29 of over 7,000 

charities operating in the US, in the beginning of 2014 there were over 100 charities that 

included cancer research as part of their mission, but none for particle physics. While the 

intellectual pleasures of verifying the Standard Model of particle physics are real, medical 

science, with its more immediate application to quality of life issues, attracts considerably more 

public attention. This precise allocation issue was recognized fifty years ago by philosopher 

Stephen Toulmin who wrote that “the choice between particle physics and cancer research 

becomes a decision whether to allocate more funds (a) to the patronage of the intellect or (b) to 

improving the nation’s health. This is not a technical choice, but a political one” (Toulmin, 

1964). My purpose here is not to argue over whether medical research is more worthy than 

particle physics. Rather, it is to highlight how different methods of valuing R&D have ethical 

and pragmatic dimensions that affect science policy. A jobs-only valuation might prefer funding 

particle physics research for the immediate construction and engineering jobs it supports, an 

econometric approach might prefer medical research based on historical growth rates in the 

pharmaceutical sector, and a knowledge output approach might be ambivalent between the two 

options. 

Clearly, even with their explicit consideration, the expression of public values30 in 

science policy is not assured in the near term. For example, if a nation chose to scale back on 

curiosity science, it is not clear that displaced scientists and engineers would necessarily start 

                                                 
29 http://www.charitynavigator.org/ 
30 Bozeman (2007) defined “public values” as  the ethical consensus of society on what 

constitutes the rights, freedoms, and duties of individuals, organizations, and society. His 

definition also acknowledges that public values are not necessarily fixed, monolithic, or entirely 

compatible with each other (e.g., valuing both liberty and security). 
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working on applied projects that would more directly minimize human suffering. Scientists and 

engineers are not fungible commodities nor are they devoid of personal preferences. There is no 

reason to assume that R&D is a zero sum game. Likewise, public R&D funding is generally 

small compared to many other government expenditures which may have more or less societal 

benefit. For example, in 2014, the NSF budget was $7.6 billion and the NIH budget was $30.2 

billion. In the same year, according to the US Office of Management and Budget, spending on 

national defense was $620.5 billion. 

2.4 Conclusion 

William H. Press (2013), then president of the American Association for the 

Advancement of Science, stated that ”[a] skeptical and stressed Congress is entitled to wonder 

whether scientists are the geese that lay golden eggs or just another group of pigs at the trough.” 

This is a return to questioning the social value of science (Bernal, 1939) – an attitude about US 

science policy that fell out of favor for several decades when Vannevar Bush (1945) rather 

successfully argued that science funding should be insulated from the political process. R&D 

allocation decisions have always been predicated on an expectation of societal benefit (Sarewitz 

and Pielke Jr, 2007), and the standard belief has been that R&D funding directly translates into 

knowledge, innovation, services, and jobs (e.g., Leshner, 2013; Porter, 2014).  

When attempting to value R&D, it is important to consider the various approaches to 

assessing benefits and how they relate to each other. A federal report on the “science of science 

policy” (NSTC, 2008) categorized three broad methods by which research benefits and 

effectiveness could be evaluated: peer review, output metrics, and case studies. The distinction 

among methods was framed as quantitative versus qualitative. However, as illustrated in Figure 

1, there are (at least) six distinctive common ways to assess the benefits of research. 
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Furthermore, there is an unavoidable tradeoff when using any of these approaches. The most 

“objective” methods use the narrowest and most tangible conception of benefits. In order to 

include more types of benefits requires the use of imperfect surrogates (e.g., counting registered 

patents rather than the utility of new technologies). Using the broadest conception of benefits 

requires considerable use of subjective estimates and the incorporation of ethical value-

judgments. That is, one can use these various methods to obtain answers that are either precise 

and incomplete, or comprehensive and subjective. 

In summary, the consensus among economists is that R&D activities are valuable (Salter 

and Martin, 2001), but difficult to quantify. Given the uncertainty, it is unwise to only use 

traditional econometric techniques to assess the benefits of R&D because they constitute only a 

portion of the total benefits of research. Other benefits, such as intellectual, social, and aesthetic 

value are poorly measured or ignored by econometric analyses. 

Each of the previously discussed methods of assessing the value of publicly funded R&D 

has its own particular utility and shortcomings. A jobs-only perspective is immediate and 

understandable, but simplistic. Econometric and knowledge output metrics are more 

comprehensive, but they are also more data-intensive and can only attempt to project the value of 

future R&D based on similar past R&D. A value of information approach is a more 

comprehensive method, capable of valuing even the most intangible social benefits, but it is also 

difficult to perform and suffers from even more subjectivity than data-driven methods. Finally, 

the expert opinion and managerial review approach has the benefit of familiarity and the 

potential to incorporate all the other methods of R&D valuation, but due to the vagaries of the 

political process, has an unconvincing historical record of wisely allocating public R&D funding.  
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While only the VOI and expert opinion methods are capable of including ethical issues 

related to R&D funding, this does not imply that ethical considerations are always taken into 

account when using VOI or traditional expert opinion methods.  

A primary intent of this discussion of R&D valuation is to help policymakers understand 

that there is no objective and comprehensive method for measuring the benefits of research. 

However, while the various methods are imperfect, they are reasonable to deploy when used with 

their limitations in mind. Failure to consider the characteristics of each assessment approach 

risks letting the method shape the goal of the assessment  the reverse of what constitutes good 

policy making. 
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3 VALUES IN RISK ASSESSMENT 

The field of risk analysis, which emerged in the latter half of the twentieth century (cf. 

Otway, 1987), can be categorized into three main components: risk assessment, risk 

management, and risk communication (Paté-Cornell and Cox, 2014). Risk management (i.e., 

how to respond to risk) is widely recognized to include the most value judgments (Aven and 

Renn, 2010; Aven and Zio, 2014; Doorn, 2015). Conversely, there is a general assumption that 

good risk assessments are relatively free of individual biases and value judgments (Hansson, 

2010b; cf. Hansson and Aven, 2014). However, despite quantitative rigor, the outcomes of risk 

assessments typically reflect the many value judgments implicit in the assumptions of the 

analysis – even the supposedly value-free components of a risk assessment (Ruckelshaus, 1984; 

Thompson, 1985; MacLean, 1986; Shrader-Frechette, 1986, 1991; Cranor, 1997; Hansson and 

Rudén, 2006; Duckett et al., 2015). Such misconceptions of objectivity in risk assessments raise 

the concern that unrecognized but pervasive value judgments will transform seemingly value-

neutral risk assessments into unintentional stealth policy advocacy (Pielke Jr, 2007; Calow, 

2014). This is particularly troublesome given an increasing trend, in the view of many, of 

intentional politicization in science (Macilwain, 2014). 

In their description of the “ten commandments” of good policy analysis, Morgen et al. 

(1990) require the identification of all significant assumptions. This may be harder than most 

analysts realize, as a systematic discussion of the many value assumptions inherent in risk 

analysis has yet to be completed (Hansson, 2009a). Another “commandment” of good policy 

analysis (Morgan et al., 1990) is to perform a sensitivity analysis where input values and 

assumptions are varied to see the effect on the output. Clearly, a full sensitivity analysis is not 

possible if many of the assumptions go unrecognized. Likewise, delineating the assumptions may 
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lead to insight by the analyst on how to minimize unnecessary assumptions and appropriately 

account for the remaining assumptions in a more transparent manner.  

Rather than attempt the Sisyphean task of an exhaustive accounting of all possible value 

assumptions, the intent here is to organize and discuss a number of the most common and 

contentious value judgments for illustrative purposes. The primary goal is to help guide subject 

experts attempting a risk assessment and policymakers using the results. The field of risk 

analysis is broadly multidisciplinary (Aven and Zio, 2014) with contributions coming from many 

academic disciplines across the sciences and humanities. Creating a general roadmap of value 

assumptions benefits those accustomed to working within the practices of one academic 

tradition. In addition to providing a tool for analysts, this chapter tries to make a convincing 

argument that all risk assessment involves unavoidable and important value assumptions that, if 

ignored, decrease the credibility of a risk assessment and its utility in informing public policy.  

3.1 Categorizing Risk Assumptions 

Value judgments in risk assessment can be categorized in multiple ways. One popular 

distinction is between two general classes of values: epistemic and non-epistemic (e.g., ethical or 

aesthetic values) (Rudner, 1953; Jeffrey, 1956; Colglazier et al., 1987; Reaven, 1989a; Rooney, 

1992; Douglas, 2000; Hansson, 2012). Normative value assumptions in an assessment 

presuppose what ought to be and ethical distinctions can be made regarding the acceptability of 

risks (Slovic, 1987; Gillette and Krier, 1990; Cranor, 2009). Epistemic value assumptions 

presuppose what can be known and how best to know it. Epistemological assumptions, while 

within the purview of the philosophy of science, are nonetheless values (Hempel, 1960; Feleppa, 
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1981) in that they embody judgments of relative merit.31 While the epistemic/ethical distinction 

has philosophical importance, it is less critical for risk analysis practitioners since, as discussed 

later, some assumptions can be justified by either epistemic or ethical reasons. Rather, organizing 

value assumptions by where they arise in the analysis process (e.g., methodological choices, 

collection and treatment of data, etc.) is more instructive to risk analysts. Momentarily ignoring 

that the process is iterative, the following is a discussion of the value assumptions that arise in 

each step of a risk assessment. 

3.2 Selection of Topic 

Perhaps the first value judgment made in any risk assessment is the choice of topic if it 

has not already been predetermined for the analyst. Similarly, when tasked with evaluating risk 

within a large pool of potential hazards, a screening mechanism or set of criteria is needed (e.g., 

MacGillivray, 2014) which involves some epistemic and/or ethical value judgments to prioritize 

efforts. Assessments are generally performed for situations that are perceived to be dangerous 

rather than benign. Thus, risk perception gives rise to important judgments on topic choice.32  

Like many everyday activities, human risk assessment employs heuristics (i.e., mental 

shortcuts) that lead to biases33 (Tversky and Kahneman, 1974). For example, technological 

hazards are perceived as more controllable than natural hazards, but also more dangerous and 

                                                 
31 Epistemic value judgments (often uncontroversial) exist even at the most fundamental level. 

Scientific inductive reasoning, typically in the form of hypothesis construction, requires some 

basic beliefs about what is knowable, such as: correlations being potential indicators of cause 

and effect or that the world is predictable enough for that observable phenomena to be 

generalized into theory or law. 
32 Risk perception is frequently discussed in terms of how the public reacts to hazards, but less 

often in terms of how analysts and experts are affected. 
33 The term “bias” is widely used in risk perception literature, but the negative connotation of 

“bias” may obscure some of the positive qualities of heuristics to be discussed later. Montibeller 

and von Winterfeldt (2015) provide a detailed list of the many biases in risk analysis along with 

recommended “debiasing” techniques. 
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more likely (Xie et al., 2011). If the public perceive anthropogenic risks to be more threatening 

than natural risks of the same magnitude (Baum et al., 1983; Brun, 1992; Williams and Hammitt, 

2001), the result should be a general propensity to make technological hazards the subject of risk 

assessments while overlooking equally or more risky natural hazards.34  

Likewise, the timing of a risk assessment is often influenced by how easily we can 

imagine a risk, i.e., the “availability heuristic” (Tversky and Kahneman, 1973). Funding for risk 

assessment appears when a threat is fresh in the minds of a funding organization rather than 

when the risk may be greatest (assuming actual risk is even knowable). Thus, assessments tend 

to follow recent events such as a natural disaster, attack, or even a well-timed visit by an 

advocate lobbying for a particular issue. For example, newsworthy meteorite impacts or near-

misses periodically renew interest in assessing the risk of major impacts from near earth objects 

(e.g., Broad, 2013). However, given the rarity of catastrophic impacts compared to other serious 

natural and anthropogenic threats, such risks tends to feel theoretical and unreal. As a result, 

funding for surveillance and mitigation research is inconsistent (Watson, 2015). The value 

judgments involved are both epistemic and ethical. Epistemic in the sense that there is an 

assumption that the hazard is now more “real” and knowable after an event and ethical in the 

sense that the hazard is now viewed as more worthy of analysis than other hazards. 

3.3 Defining System Boundaries 

For any assessment, the boundaries of the analysis must be selected. This includes time 

frame, spatial scale, and relevant populations. While the boundaries are primarily determined by 

the topic, some pragmatic epistemic value judgments are involved. First, the analyst must believe 

                                                 
34 This phenomenon may be partially responsible for inadequate natural disaster preparedness. A 

related question is whether many nations allocate too many resources to traditional national 

defense compared to natural disaster mitigation. 
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that it is possible to distinguish what factors can be left out of an assessment without appreciably 

affecting the results. Likewise, the analyst must believe that meaningful boundaries can be 

defined for a system.35 Ideally, expanding an assessment to add secondary factors will make 

incrementally smaller changes to the results thereby showing the assessment to be convergent 

(Wilson and Crouch, 2001), but this is not always the case (cf. Reaven, 1984, 1985a, 1985b).  

The analyst’s educational background and experience may also have an important 

influence on choices of time scale. Moser et al. (2012) argues that training in the natural sciences 

tend to increase the perception of predictability for long-range risk assessments. That is, in a 

survey, scientists, such as physicists and geologists, were more likely to believe that performing 

a risk assessment of a long-term nuclear waste repository was a reasonable task, while those in 

the social sciences and humanities, such as anthropologists and philosophers, were considerably 

more skeptical.36  

3.4 Method and Units of Assessment 

3.4.1 Unit of assessment 

A standard assessment in modern37 risk analysis entails maximizing expected utility via 

probabilistic risk analysis (Hermansson and Hansson, 2007). An analyst using this approach 

must decide whether the risks will be expressed in monetary units or another unit, such as 

                                                 
35 The idea of inherent interconnectedness has long existed in the philosophical traditions of 

Buddhism and Taoism, but was an uncommon idea in western thinking until the 20th century 

when the emerging field of ecology led to sentiments such as, “When we try to pick out anything 

by itself, we find it hitched to everything else in the Universe,” (Muir, 1911) and, “Everything is 

connected to everything else” (Commoner, 1971). 
36 Conversely, one could also argue that thoughtful scientists make the best skeptics in the sense 

that their training helps them to perceive flaws in analyses rather than treat technical complexity 

with deference. 
37 The 1975 Reactor Safety Study, WASH-1400, a.k.a. the Rasmussen Report, was an influential 

work in quantitative risk methodology and perhaps best marks the start of modern formal risk 

analysis (cf. Reaven, 1988). 
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injuries/year or quality adjusted life years. The units are important in that a different unit can 

change the perception of the risk (Wilson and Crouch, 2001). Depending on the situation, a 

relative risk can appear to be much larger than an absolute risk or vice versa. For example, a 

WHO (2013) report regarding the 2011 Fukushima nuclear accident estimated that the lifetime 

risk of thyroid cancer for nearby infant females increased from about 0.75 to 1.25 percent. 

Depending on the desired effect, media reported the findings as a 70 percent relative rate 

increase or a 0.5 percent absolute rate increase.  

Selection of a unit involves an epistemic value judgment regarding the measurability of a 

characteristic; presumably, an analyst would not pick an unmeasurable unit. The choice of units 

is also accompanied by important, and often unwitting, ethical assumptions. For example, the 

units of lives saved, life years gained (LYs), quality adjusted life years (QALYs), and disability 

adjusted life years (DALYs) all differ in the populations that preferentially benefit from the use 

of the unit (cf. Robberstad, 2005). Likewise, the disparate nature of various risks and benefits 

often requires the use of assumption-laden conversion factors and equivalencies to make 

comparisons.  

3.4.2 Value of life 

The primary benefit of a monetary unit is the ability to integrate the results into a larger 

economic analysis. However, the conversion to monetary units requires some important value 

assumptions. The most controversial is the frequent need to monetize the value of life. Attempts 

to quantify the value of life often use willingness-to-pay measurements or expert opinion (e.g., 

Roman et al., 2012). A defense of value of life estimates is that the number does not represent 

the worth of a life, but rather the rational amount society should be willing to pay to save a life. 

However, measurement techniques can confuse willingness-to-pay with ability-to-pay – a much 
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less ethical measure in that it would seem to undervalue the lives of the poor. Likewise, even 

individual behavior is inconsistent because it has been found that the amount an individual will 

pay to avoid a risk is not the same as the amount the same individual must be paid to take a risk 

(Wilson and Crouch, 2001). Furthermore, an individual’s willingness-to-pay to save a life 

appears to vary depending upon whether the choice is made directly or through an open market 

(i.e., market interactions may degrade moral values) (Falk and Szech, 2013). 

The valuation issue extends to other elements in an assessment that are frequently 

quantified via willingness-to-pay methods. MacLean (2009) suggests two essential difficulties. 

First, public well-being and willingness-to-pay are not always equivalent as some individuals 

have preferences that are counter to society’s, and even their own, well-being. Second, economic 

valuation is an incorrect way to measure many abstract and essential values (e.g., duties 

associated with religion or community). Evidence suggests that individual behavior is 

inconsistent when asked to put a price on deeply held values and such requests are frequently 

met with moral outrage (Tetlock, 2003). 

Using a non-monetary unit of risks and benefits is particularly useful in assessments 

focused on public health. Measures such as number-needed-to-treat and number-needed-to-harm 

(Holden, 2003) are commonly used in pharmaceutical, healthcare, and epidemiological risk 

assessments. However, it becomes more difficult to compare these assessments with non-medical 

priorities and to make policy recommendations that consider limited financial resources. 

3.4.3 Discount rate 

Another contentious issue regarding the use of monetary units is the choice of 

discounting rate. The time range of the assessment determines how much the discount rate will 
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affect the assessment. For example, the long range of climate change assessments38 has raised 

concerns regarding intergenerational fairness: accounting for unrepresented future generations 

and assumptions regarding their values, technology, and wealth. Selecting lower discount rates 

gives more weight to future costs and future generations. Whether to use a constant or variable 

discount rate and its precise value reflect individual ethical value judgments (Revesz et al., 

2014). Even the basic idea that future generations deserve ethical consideration is not universally 

accepted (cf. Visser’t Hooft, 1999). However, Davidson (2009) notes that international laws 

increasingly acknowledge that physical distance is no longer an excuse for exclusion from risk 

considerations; eventually, separation in time may no longer be an acceptable reason for 

“empathic remoteness.”  

3.4.4 Other methodological considerations 

One of the first methodological decisions is whether to perform a qualitative or 

quantitative risk assessment. Selecting a qualitative (i.e., non-numerical) assessment may 

indicate deep uncertainty, lack of confidence in available data, or even mistrust of available 

quantitative methods (cf. Pilkey and Pilkey-Jarvis, 2007). For example, the FDA issued new 

guidelines in 2013 that rejected a purely quantitative approach for performing comprehensive 

risk-benefit assessments for new drug approvals (FDA, 2013). Likewise, a quantitative 

assessment may be selected for good reasons, such as strong past performance (cf. Armstrong, 

2001), or bad ones, such as to use numbers to imbue an assessment with an air of authority.39 

                                                 
38 The Stern Review on the Economics of Climate Change (Stern, 2006) is one example that has 

been controversial (Nordhaus, 2007; Stern and Taylor, 2007). 
39 The non-intuitive nature of even relatively simple mathematics can be exploited by savvy 

advocates. A classic example of non-intuitive simple math is the potato paradox where a sack of 

impossibly soggy potatoes is 99% water by weight. If the potatoes are left in the sun to dry until 

they are only 98% water, the sack will lose half its weight! Much of the non-intuitiveness of 
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Hall (1988) notes “a frequent confusion of mathematical rigor with scientific rigor” which is 

partly based on the academic prestige associated with mathematical analysis. 

The form of assessment will also depend on the exact definition and treatment of risk 

used (Hansson, 2005; Aven, 2012; Andretta, 2014; Aven and Zio, 2014). Möller (2012) outlines 

five common meanings of the term “risk”: an undesirable event, the cause of an undesirable 

event, the probability of an undesirable event, the expectation value of an undesirable event, or a 

decision made with known probability outcome (i.e. Knightian risk). These definitions of “risk” 

range from broad and vague to narrow and precise. The use of any particular definition generally 

depends on the discipline in which it is used (Althaus, 2005). Decision theorists and economists 

are more likely to use the last two definitions, but even those academic fields do not use “risk” 

consistently.40 In the relatively young field of risk analysis, the expectation value interpretation 

of risk has become widespread along with the use of probabilistic risk analysis (Rechard, 1999). 

The expectation value interpretation has been criticized (Hansson, 2012) for failing to 

account for the seriousness of a particular risk. That is, the expectation value for a low 

probability, high consequence event can be the same as the expectation value for a high 

probability, low consequence event. For example, the expectation value for a 1-in-200,000 

chance of losing $1 million is the same as for a 1-in-2 chance of losing $10. 

A related concern is with the criterion of economic efficiency – an assumption that 

accompanies the use of expectation values. The economic goal of optimization assumed in most 

analyses can come at the cost of missing less efficient, but more robust options (Ben-Haim, 

                                                 

math may be a function of how concepts are presented. When posed visually, there appears to be 

an innate understanding of probabilistic questions regardless of education (Fontanari et al., 2014) 
40 This inconsistency contributes to unwitting public confusion and exacerbates the gap created 

by formal and common definitions of risk (Hansson, 2012). 
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2012). The idea is illustrated in Figure 3 where option A may be more efficient, but option B is 

more robust. There is an ethical component involved in selecting an assessment criterion; is it 

better to favor efficiency to avoid waste or is it better to favor robustness to increase safety (e.g., 

in building codes)? 

 

Figure 3: In this idealized scenario, option A is optimal for the most probable risk, but option B 

is more robust having a better design score for a wider range of outcomes.  

 

3.4.5 Treatment of error 

In any scientific statement or statistical test, there are two errors that can be made (cf. 

Kanji, 2006). A Type I error is finding an effect or phenomenon where it does not exist (i.e., 

incorrectly rejecting a null hypothesis). A Type II error is failing to find an existing effect (i.e., 

accepting a false null hypothesis). Traditionally, scientists have focused on Type I errors (false 

positives) because the emphasis is on avoiding the addition of false theories to the corpus of 

science or prematurely closing out a scientific debate (Hansson, 2012). However, in risk 

assessment and public policy, Type II errors (false negatives) may become more important 

(Douglas, 2000). For example, emergency managers will usually prefer to err on the side of 
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caution when making a decision regarding evacuation during a natural disaster. In these cases, it 

becomes questionable whether the epistemological values of traditional scientific inquiry are 

appropriate. In other words, for academic questions and questions regarding benefits, it seems 

appropriate to minimize false positives, while for questions of harm it may be more appropriate 

to be precautionary and err on the side of minimizing false negatives. For example, we would 

like our analyses to reject medical treatments that do not offer any benefit, but we would also 

like them to find any carcinogenic effects of synthetic chemicals used in consumer products. 

Accomplishing both goals effectively may involve selecting different criteria of what constitutes 

acceptable evidence.41 It is not always as simple as reanalyzing data although that is sometimes 

an option. Detractors believe that an emphasis on Type II errors strays too far from defensible 

science (Sunstein, 2005). 

From a policymaker’s perspective, overly optimistic underestimates of potential harm 

(Type I error) may be worse than overly conservative estimates (Type II error). Overly 

conservative estimates of potential harm can lead to avoidance of potential benefits, over-

preparing for harm, and less than optimal allocation of resources. However, underestimating risk 

is potentially much worse as it could lead to catastrophic loss of life. This is commonly referred 

to as an “asymmetric loss function” (e.g., Bijak, 2010). 

3.5 Model Selection 

Selection of the risk model can be the most contentious component of a risk assessment. 

Even simple models require a variety of value judgments. For example, if using a standard dose-

response curve, how should data be fit to the curve: maximum likelihood, non-linear least 

                                                 
41 The precautionary principle is a qualitative attempt at minimizing Type II errors within a body 

of science that was generated using Type I error minimization criteria. 
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squares, or even piecewise linear interpolation (MacGillivray, 2014)? While some decisions are 

purely epistemic, some are a mix of epistemic and ethical. For example, when selecting a low-

dose cancer risk model, an analyst might choose a linear no-threshold model, a non-linear model, 

or even a hormesis (i.e., beneficial effects at low dose) model (Calabrese and Baldwin, 2003; 

Feinendegen, 2005) based on an epistemic value judgment. However, the selection process and 

whether the model accounts for susceptible populations (Bogen, 2014a, 2014b; Finkel, 2014) are 

also ethical value judgments reflecting the analyst’s inclinations regarding whether a model 

should strive to be as scientifically “accurate” as possible or should err on the side of being 

conservatively protective (Nichols and Zeckhauser, 1988; MacGillivray, 2014). 

As another example, epidemiologists may choose to use a continuous or discrete 

mathematical model to represent the behavior of a single-outbreak avian flu epidemic. A discrete 

model is useful in that it is easier to compare to epidemiological data (which is usually collected 

at discrete times) and is easier for non-mathematicians to use (Brauer et al., 2010). However, 

discrete models sometimes exhibit very different dynamics than the continuous models they are 

intended to duplicate when used outside of a narrow set of parameters (Mollison and Din, 1993; 

Glass et al., 2003). Researchers must make judgments regarding the relative value of 

“correctness” versus tractability when modeling a potential flu pandemic. Some of the same 

concerns arise when selecting between an analytical model and an approximated numerical 

model. 

3.5.1 Theoretical versus empirical choices 

The basis of a risk assessment model may be primarily theoretical or empirical.42 Any 

distinction between the two types is somewhat artificial as most models are somewhere on the 

                                                 
42 In the era of Big Data, empirical models are becoming increasingly popular. 
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spectrum between the two extremes. Because risk estimates involve projections into the future, 

they all have a theoretical component – even empirical trend extrapolations rely on the basic 

theory that future behavior will mimic past behavior (Wilson and Crouch, 2001). Nonetheless, 

there are special considerations for models that are more empirical or theoretical in nature. For 

example, defining and characterizing uncertainty can be difficult for theoretical models, while 

empirical models must assume that the data available is representative of the full range of 

possibilities and will not miss the “tail risks.” 

Opinions on empiricism constitute an important value assumption that rests on the 

perceived relationship between data and theory. Data are interpreted through theory; that is, facts 

and observations are “theory-laden” (cf. Feyerabend, 1975). Lyttleton (1978) summarizes the 

point well: “And it is here that one comes up against the strangely paradoxical nature of science, 

for the observations of phenomena are first needed to inspire someone to imagine an appropriate 

theory, yet they (the observations) cannot be claimed to be properly understood until a formal 

theory of them is available […] There can be no ‘facts’, no reliable ‘evidence’, until there are 

hypotheses and theories to test out.” Data and theory are intertwined. Misinterpreting a lot of 

data with the wrong model only improves the precision of the error. Likewise, data mining is 

helpful only if the appropriate data are analyzed.43 Data are important, but not a panacea to all 

risk assessments. As Einstein’s conceptual thought experiments (Gedankenexperiment), used in 

the creation of relativity theory, demonstrated, empiricism is not always the best method for 

generating scientific knowledge. 

                                                 
43 We try to measure only what we believe is valuable, but then we tend to value only what 

we’ve measured. 
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3.5.2 Level of complexity 

Selecting the level of model complexity in a risk assessment is an epistemic value 

judgment similar to the selection of the assessment’s boundaries. Complexity of analysis is often 

equated with thoroughness and appropriate representation of reality. Meanwhile, proponents of 

simplicity often invoke Occam’s razor – the principle that simpler explanations are preferred. 

Additionally, analysts face the often completing goals of representativeness and usefulness. A 

broad, comprehensive assessment that accounts for the many complex consequences of a new 

technology may appropriately describe the risks and benefits, but may also not lend itself to the 

clear comparisons needed for a policy decision. Thus, the choice of complexity can be a tradeoff. 

While a simple assessment may be easier to explore and explain, it runs a higher risk of missing 

critical relationships. Likewise, a complex assessment might have a better chance of capturing all 

the salient components of a system, but also is harder to check, evaluate, understand, and 

compare to competing assessments (cf. von Winterfeldt and Edwards, 2007). 

One might presume that complex systems generally require more complex analysis. 

However, there are often reasons to perform simple modeling of complex systems such as, lack 

of theory or known lack of predictive ability of complex models. For example, the time between 

certain catastrophic events (e.g., large earthquakes) follows an exponential distribution 

(Abaimov et al., 2007) which is “memoryless” – the time between events is independent of 

previous events (Solow, 2005). In this case, simple average time between events is as useful as a 

complex model (Cox, 2012a). 

Pilkey and Pilkey-Jarvis (2007) make the further distinction that complex quantitative 

modeling, which has a successful history in the engineering sciences, has been frequently 
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misapplied to poorly-understood complex systems (e.g., ecosystem modeling).44 These 

applications often have little predictive value due to uncertain input parameters and ordering 

complexity (i.e., there is often inherent uncertainty regarding the order, strength, and timeframe 

in which various model parameters will interact (Pilkey and Pilkey-Jarvis, 2007)). 

Although the goals of the assessment and the subject investigated should dictate the level 

of complexity, the preferences of the analyst are influential. Mathematical sophistication tends to 

imbue an air of legitimacy to an analysis (Wachs, 1989; Stone, 2002) even when the rational 

basis for the numerical valuation is weak or intangible factors that are difficult to estimate and 

publicly defend are excluded from the analysis. Choosing complexity can be a conscious or 

unconscious consideration for models that will be used as “fig leaves, shields, and clubs” (Pilkey 

and Pilkey-Jarvis, 2007). Likewise, while simplicity has some practical appeal, it can also be an 

aesthetic value judgment. For example, Bondi (1978) notes that an aesthetic bias exists in the 

field of physics such that physicists prefer comprehensive or unified theories over theories that 

well describe a more limited range of phenomena. Explanations for this preference for 

“complete” theories rather than collections of “incomplete” theories, such as claims of 

mathematical elegance, are in themselves also aesthetic criteria.  

3.6 Data Collection 

There are many value judgments inherent in the process of data collection and selection. 

Some of the value judgments happen beyond the control of the risk analyst. For example, there is 

often considerable bias in available data due to widespread publication bias (Dickersin, 1990; 

Young et al., 2008) caused by the common value judgment that null results are not valuable 

                                                 
44 The overuse is attributed to the ubiquity of computers and policies requiring cost-benefit 

ratios. 
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information (Rosenthal, 1979; Franco et al., 2014). For example, randomized clinical trials 

testing the efficacy of medications and psychological treatments for depression are more 

frequently published when a larger effect is found – leading to an overestimation of the efficacy 

of both treatment options (Turner et al., 2008; Driessen et al., 2015). This preference for positive 

effects45 extends to the over-reporting of false positive findings (Ioannidis, 2005; Sarewitz, 2012; 

Nuzzo, 2015). For example, an effort to reproduce 100 psychology experiments found that the 

mean effect size of the reproduced studies was half of the original and the studies with 

significant results dropped from 97% to 36% (Open Science Collaboration, 2015). Likewise, 

developing regions appear to suffer from a publication bias that limits data availability 

(Sumathipala et al., 2004; Singh, 2006). However, many value decisions are made by the analyst. 

3.6.1 Data screening 

In situations where there are copious data or data of variable quality, a screening process 

may be used. For small studies where data are evaluated by hand, epistemic judgments are made 

regarding whether each datum should be incorporated into the risk assessment. In larger studies 

that use an automated screening mechanism, judgments must be made regarding the appropriate 

cutoff criteria. Criteria might include: adherence to good laboratory practices, findings with a 

certain statistical significance,46 or similarity of surrogate data to the risk in question 

(MacGillivray, 2014). While criteria such as statistical significance are epistemic value 

decisions, they can have substantial ethical implications regarding the level of precaution in a 

risk analysis (cf. Douglas, 2000). For example, harmful effects below the current detection limit 

are often assumed to be acceptable risks (Hansson, 1999). While this practice may be pragmatic, 

                                                 
45 This bias was first discussed by Francis Bacon in the Novum Organon, 1620. 
46 See Nuzzo (2014) for a discussion of the common misuse of P-values and Leek and Peng 

(2015) regarding the epistemic assumptions throughout statistical analysis. 
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it can affirm the implicit assumption that the low-dose threshold is well-established and 

uncontroversial. 

3.6.2 Data for rare events  

Some risk events are so rare that little to no data may be available as a basis for 

estimating risk. Several limited methods have been used to address rare event risks including: 

statistical methods, such as bootstrapping; expert opinion and variations, such as the Delphi 

method; using analogous situations; and bounding with scenarios (Goodwin and Wright, 2010).47 

Sometimes assumptions are used to simplify rare data analysis. For example, Gallucci (2012) 

uses a (questionable) zero-failure-rate approximation for the likelihood of an internally-caused 

nuclear power plant core meltdown accident. This approximation is based on no such events in 

recent decades48 and assumed process improvements since the 1980s. Statistical methods for 

estimating the probability of events which have not yet occurred exist (e.g., Winkler et al., 2002; 

Quigley and Revie, 2011), but are far from being universally accepted. 

One interesting subset of rare events is the low probability, high consequence risk (e.g., 

Baum, 2014). This includes known low probability events as well as improbable, but unrefuted, 

theories that suggest catastrophic risk (Cirković, 2012). These risks tend to get considerable 

attention in the media. One interpretation of the “social amplification of risk” theory (Kasperson 

et al., 1988) is that the public often overreacts to these risks. However, Coeckelbergh (2009) 

argues that inflated concern for these risks is actually a moral judgment by the public that 

catastrophic risks should not be reduced to a probabilistic expectation value.  

                                                 
47 Historical records (e.g., old Tsunami markers in Japan) are an excellent source for scenario 

bounding of natural risk events. Even many anthropogenic risks (e.g., in bioengineering and 

geoengineering) have analogous natural correlates. 
48 The most recent were Three Mile Island in 1979, Saint Laurent Des Eaux in 1980, and 

Chernobyl in 1986. 
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From an epistemic perspective, Ort et al. (2010) argue that in these low probability, high 

consequence cases, any probability of occurrence is actually the probability of the event 

conditioned on the theory being correct. Thus, if the model is wrong, the rare event might not be 

as rare as experts estimate. It is important to note that the very idea of attempting to predict rare 

catastrophic events is controversial (e.g., Taleb et al., 2009). However, there remains 

considerable interest in quantifying the likelihood of catastrophic events and human extinction 

(Rees, 2013; e.g., Tonn and Stiefel, 2014) 

3.6.3 Expert opinion 

If the assessment is to use expert opinion, the method by which the expert opinions are 

used must be selected. For example, there is no consensus on the best method for pooling 

opinions (Hammitt and Zhang, 2013; Bolger and Rowe, 2015a; Cooke, 2015; Winkler, 2015) or 

whether expert opinions should be pooled at all (Reaven, 1987b; Keith, 1996; Bolger and Rowe, 

2015b; Morgan, 2015). Recommendations for combining expert opinion range from complex 

weighting schemes to simple averages (cf. Clemen and Winkler, 1999). Critiques of pooling 

have pointed out the difficulty of determining the “best” experts and have even argued that 

pooling is no better than randomly selecting one expert’s judgement (Reaven, 1987b).  It is 

widely acknowledged in academic literature that experts are subject to a variety of biases, but 

attempts to address these biases are less common in practice (Sutherland and Burgman, 2015). 

Furthermore, some forms of cognitive bias (e.g., insensitivity to sample size) are more amenable 

to “debiasing” than others (e.g., overconfidence), while most forms of motivational bias (e.g., 

confirmation bias and preference for positive outcomes) can be particularly obstinate 

(Montibeller and von Winterfeldt, 2015). 
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3.7 Accounting for Uncertainty 

The treatment of uncertainty in a risk assessment is a fundamental issue. Uncertainty 

exists in all measurements, models, and assessments. Whether deliberately or accidentally, 

analysts make epistemic value choices on how to handle the various forms of uncertainty. 

Parameter uncertainty will be discussed first followed by model uncertainty. Cox (2012b) 

provides the most complete summary to date of the various approaches for dealing with extreme 

uncertainty in risk assessments. 

3.7.1 Deterministic versus probabilistic 

The simplest choice is to ignore uncertainty and use a deterministic model to perform the 

risk assessment. The fully deterministic approach has been popular in computer modeling (Cipra, 

2000) but it limits the uses of a quantitative risk assessment. In cases where there are no 

defensible estimates of uncertainty, a qualitative assessment may be more appropriate. This can 

be a reasonable approach with relatively new threats, such as those found in cybersecurity (e.g., 

Coull and Kenneally, 2012). However, even a deterministic model can explore uncertainty by 

varying the model parameters and building a range of scenarios. This is commonly done in 

climate modeling. This at least gives the analyst a range of potential outcomes albeit with no 

associated likelihoods.  

3.7.2 Objective versus subjective probabilities 

The most popular technique in risk analysis is to use a probabilistic model where 

parameters are represented as distributions and the output is likewise a distribution. Using the 

popular definition of risk as a probabilistic expectation value, even the simplest risk estimate 

requires a hazard and a probability. When using probabilities, the analyst must decide if the 

probability will be based solely on data or if it will also include subjective probabilities (i.e., a 



 

64 

 

frequentist versus a Bayesian interpretation of probability) (cf. Hansson, 2010b). The subjectivist 

approach is increasingly preferred (Flage et al., 2014) and often necessary when we consider 

trans-science – questions that are technically answerable by research, but will not be answered 

because of practical limitations (Weinberg, 1972, 1981). For example, a calculated failure risk of 

10-6 per year may not be empirically verifiable if the risk applies to something large and 

expensive like nuclear power plants.49 These types of low-probability events are unlikely to be 

testable or known with much confidence. Given the difference in confidence one might place on 

a probability computed from empirical data versus expert opinion, differentiating between 

empirical and subjective interpretations of uncertainty may be important (Reaven, 1988; Doorn 

and Hansson, 2011)50 – especially if these various sources of data are being combined within the 

same analysis (e.g., a fault-tree). In some models, second-order uncertainty (i.e., uncertainty 

regarding the uncertainty) is included (Hansson, 2008). 

3.7.3 Hybrid probabilistic methods 

A third approach is to distinguish between two types of uncertainty: aleatory (normal 

variability within a population or process) and epistemic (lack of knowledge or incertitude). 51 

Some risk analysts account for aleatory uncertainty with standard probability distributions and 

epistemic uncertainty with alternate techniques. One alternative is to represent epistemic 

uncertainty with intervals that represent upper and lower bounds on possible values. This is done 

in probability bounds analysis (Ferson and Ginzburg, 1996; Ferson and Hajagos, 2004) or the 

                                                 
49 With approximately 500 nuclear power plants worldwide, a 1 in a million per year risk should, 

on average, occur once in 2000 years.  
50 This comparison is a simplification in that all empirical data have some subjective components 

and expert opinions have some empirical basis. 
51 Epistemic uncertainty can take several forms such as: data uncertainty, lack of data, unknown 

model/theory, conflicting models, general ignorance, etc. 
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more generalized method of imprecise probabilities (Walley, 1991; Weichselberger, 2000). 

Incorporating alternatives to probabilistic risk is not common for two potential reasons. First, the 

mathematical techniques may be less familiar to analysts. Second, and more importantly, there is 

a tendency for decision-theoretic analyses to assume that simple probabilistic analysis is always 

possible. Hansson (2009b) uses the term “tuxedo fallacy” to describe the error of treating real-

world uncertainty as known probabilities (e.g., those commonly found in casino games).  

3.7.4 Non-probabilistic methods 

A fourth approach is to use alternatives to probability theory or extensions of probability 

theory such as evidence theory, also known as Dempster–Shafer theory (Dempster, 1967; Shafer, 

1976, 1990), or possibility theory (Dubois and Prade, 1988; Dubois, 2006). Likewise, related 

issues of vagueness or ambiguity can be addressed by fuzzy set theory (Zadeh, 1965; Unwin, 

1986). Newer risk analytic methods with novel treatments of uncertainty include info-gap 

analysis (Ben-Haim, 2006) and confidence structures (Balch, 2012). There are even semi-

quantitative approaches (e.g., Aven, 2008a, 2008b) that take into account the varying degrees of 

confidence we have in knowledge (Mosleh and Bier, 1996; cf. Renn and Graham, 2005; Flage 

and Aven, 2009).52 These approaches generally make fewer epistemic assumptions. That is, they 

use a broader, more conservative conception of uncertainty which may be useful when data is 

sparse or unreliable. 

                                                 
52 These methods can be used in risk assessments with alternative conceptions of risk. A 

traditional risk definition is hazard multiplied by probability. The alternative (C,U) risk 

perspective defines risk as consequence combined with uncertainty (Rosa, 1998; Aven and Renn, 

2009; Aven, 2010). 
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3.7.5 Selecting an uncertainty representation 

There is no current consensus on the best way to represent uncertainty or when to use one 

form over another (Flage et al., 2014). Furthermore, there is no consensus on the number of 

forms of uncertainty. Methods of representing uncertainty reflect an analyst’s epistemological 

philosophy.53 Bayesians (e.g., Apostolakis, 1990; Winkler, 1996) generally argue that there is 

only one type of uncertainty in that it is always a measure of belief irrespective of its source and 

that probability is the best way to express this uncertainty (O’Hagan and Oakley, 2004). At the 

other extreme, van Asselt and Rotmans (2002) propose an uncertainty typology that describes 

five sources of variability and seven types of incertitude, but without methods for treating each 

distinct form of uncertainty. Likewise, Walker et al. (2003) construct an uncertainty typology 

organized by location, nature, and level with multiple subtypes. The resulting uncertainty matrix 

has thirty-five unique forms of uncertainty. The utility of this level of detail is debated (Krayer 

von Krauss et al., 2006; Norton et al., 2006). 

Distinguishing between incertitude and natural variability does have known advantages 

over a single treatment methodology. For example, when an analyst has no knowledge of the 

value of a parameter within a bounded range, it is common to use a uniform distribution (a 

frequently used “uninformed prior” in Bayesian inference). However, treating interval data as 

uniform distributions requires the equidistribution hypothesis (Bertrand and Goupil, 2000)54. 

Under this assumption, each possible value is considered to be equally likely and the interval is 

represented by the interval’s midpoint which represents the mean and median of a uniform 

                                                 
53 Tannert et al. (2007) categorize uncertainty across a spectrum that ranges from certainty to 

nescience (i.e., unresolvable ignorance). They also distinguish epistemological uncertainty from 

moral uncertainty which applies to decision-making.  
54 The ultimate source of this idea is Bernoulli’s and Laplace’s principle of insufficient reason 

and more recently the principle of indifference (Keynes, 1921).  
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distribution. While the uniform distribution approach is computationally expedient and easy to 

understand, it can also disguise uncertainty. One result of the Central Limit Theory is that any 

distribution with finite variance (e.g., a uniform distribution) will converge to a normal 

distribution approximation when repeatedly convolved (e.g., Grinstead and Snell, 1997). As 

shown in Figure 4, adding two uniform distributions results in a triangle distribution that would 

appear to have more certainty than the original uniform distributions. As the number of 

distributions increases, the resulting normal approximation does spread, but the assumed central 

tendency is maintained. By comparison, the addition of two intervals of [0, 1] yields the even 

wider interval [0, 2]. Repeating the process yields ever wider and more uncertain intervals 

without an artifact of precision. 

 

Figure 4: Convolution of n uniform distributions with bounds (0,1)  
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The practical implication of this phenomenon is that standard Bayesian and Monte Carlo 

techniques have an important limitation.55 These approaches will yield valid results when the 

model inputs represent normally distributed natural variability. However, when the uncertainty 

due to lack of knowledge is large compared to the natural variability, the uncertainty in the 

model output will be understated. 

In practice, uncertainty representation may be based on extraneous factors such as 

familiarity, academic tradition, or lack of knowledge of alternatives. Likewise, risk 

communication concerns (cf. Tucker and Ferson, 2008) might trump epistemic concerns. That is, 

an analyst might prefer mathematical simplicity over a slightly more informative, but less 

understandable method of treating uncertainty. 

3.7.6 Treatment of variable dependence 

Regardless of how uncertainty within a variable is treated, epistemic assumptions must 

also be made regarding the dependence among variables within the model unless the relationship 

is already well-known. A common occurrence in risk assessment is to ignore any potential 

dependence and to assume that all model variables are independent. However, this can cause the 

model to substantially misrepresent the potential range of outcomes. Ferson et al. (2004) provide 

a detailed discussion of inter-variable dependence in risk models including methods that allow an 

analyst to quantitatively account for limited knowledge about dependence between variables.  

                                                 
55 Second-order Monte Carlo techniques are designed to addresses these concerns. Likewise, 

robust Bayesian or Bayesian sensitivity analysis (Berger, 1985; Berger et al., 1994) is a 

particularly useful technique in that is allows for the recognition of incertitude within Bayesian 

inference (Walley, 1991). 
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3.7.7 Model uncertainty 

While parameter variability is often well-characterized in risk assessments, many forms 

of epistemic uncertainly are underestimated or ignored due to lack of appropriate methodology. 

Model uncertainty, also referred to as model form uncertainty or model structure uncertainty 

(Walker et al., 2003), is rarely acknowledged and the few methods for quantitatively addressing 

this form of uncertainty are not universally accepted (cf. Ferson, 2014). The analyst must make 

the epistemic value judgment of whether and how to account for model structure uncertainty. 

In some cases, model structure may be the most important source of uncertainty. For 

example, Refsgaard et al. (2006) gives an example of five well-respected Danish consulting 

firms each generating a groundwater pollution risk model based on the same field data. 

Variations in methodological approach among the models resulted in conceptually unique 

models with unique structures and no common predictive capability.  

Draper (1995) describes the general assumptions of a model, M, as M = (S, θ) where S 

represents the structural assumptions of the model and θ represents the parameter assumptions of 

the model. The uncertainty related to the parameter assumptions are often explicitly and 

quantitatively addressed in stochastic models as previously discussed. Meanwhile, structural 

uncertainty is rarely explicitly addressed. Often, a model structure is selected from a range of 

possibilities based on available data and then the modeler proceeds to account for parameter 

uncertainty while treating the model structure as a given (Draper, 1995). Uncertainty related to 

model structure is more difficult to characterize than parameter uncertainty primarily because it 

is not based on natural variability, but rather on a lack of knowledge that may not be amenable to 

probabilistic representation. The following reviews the few existing strategies for dealing with 

model structure uncertainty. 
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3.7.7.1 Lumped uncertainty 

Where copious data exists, the modeler can use a split data set to first select the 

parameters during the model calibration phase and then evaluate the entire model during the 

validation56 phase (cf. Klemes, 1986). Model structure uncertainty can be inferred from 

deviations found during the validation phase. The structural uncertainty can then be accounted 

for by either increasing parameter uncertainty until it is assumed to account for structural 

uncertainty (this occurs in inverse modeling methods) or by quantifying an explicit structural 

uncertainty term (Refsgaard et al., 2006). Using this approach has shortcomings. It relies on data 

that may itself be very uncertain or non-representative of the potential range of inputs. Likewise, 

separating model uncertainty from parameter uncertainty can be difficult (Vrugt et al., 2005). For 

models that are primarily predictive or have known non-stationary underlying processes (e.g., 

changes in precipitation patterns due to climate change), data often does not exist that can be 

used to directly assess structural uncertainty.  

3.7.7.2 Sensitivity analysis with multiple models 

One of the mathematically simplest methods of addressing model structure uncertainty is 

to create multiple models that address the range of possible model structures. Each model is 

evaluated separately and the output of all the models is summarized as a set of results. An 

example of this approach is climate modeling projections (e.g., Visser et al., 2000). This 

approach is simple to understand, but it can become arduous to perform a full analysis if there 

                                                 
56 Validation is commonly defined as proving something to be true, but model validation is a 

much more modest process. The petroleum industry has historically used the term “history 

matching” instead of “validation” (Bredehoeft, 2003). This practice should be more widely used 

in other fields because it more accurately represents what is actually happening. Oreskes et al. 

(1994) use the term “evaluation” instead of “validation” for the same reason.  
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are many models. Likewise, summarizing the many results and guessing the likelihood of 

individual model outcomes can be difficult. Most importantly, there is a completeness problem 

because the analyst must describe the set of all possible models (Reaven, 1988). 

3.7.7.3 Monte Carlo model averaging 

A Monte Carlo probabilistic model (cf. Morgan et al., 1990) can account for multiple 

model forms by sampling each possible model. The sampling can even be weighted if some 

models are more probable. Expert elicitation is commonly used to estimate the probabilities of 

individual models although there are objections to averaging theoretically incompatible models 

(Reaven, 1988; Keith, 1996). This method also requires that all possible model structures be 

identified by the analyst. However, instead of evaluating each model independently, the output is 

a single probability distribution. Another concern is that averaged distributions will very likely 

underestimate worst-case tail risks which may be an issue for some risk assessments. If decision-

makers are most concerned about catastrophic losses, then averaging models will obscure the 

range of modeled outcomes – some of which will predict that the extreme tail risks are more 

likely than the averaged model (cf. Ferson and Tucker, 2006).  

3.7.7.4 Bayesian model averaging 

Bayesian model averaging (cf. Hoeting et al., 1999) is similar to Monte Carlo averaging 

in that it combines all the identified potential model structures into an aggregated output. In this 

case, the model uncertainty, both parameter and structural, are evaluated together (Draper, 1995). 

Bayesian averaging has the same limitations as the Monte Carlo approach: completeness 

concerns, averaging incompatible theories, and underestimating tail risks. 
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3.7.7.5 Bounding analysis 

Unlike averaging methods, a bounding approach does not combine the output of each 

model structure into a single output distribution. Using bounding analysis, the results for all the 

potential models are compared and an envelope is drawn around the entire set of results. The 

final product is a single bounded region that presumably will contain the correct model output. A 

benefit of this method is that all possible models structures need not be identified – only those 

that would yield the most extreme outcomes. While there is no guarantee that the analyst will be 

able to identify the extreme model structures, it is a lower epistemic hurdle to clear than 

identifying all possible models which should result in fewer surprises. Bounding analysis also 

avoids the issues of underestimating tail risks and averaging incompatible theories. It propagates 

rather than erases uncertainty (Ferson, 2014). Weaknesses include the inability to weight the 

credibility of individual model structures and the inability to distinguish likelihoods within the 

bounded region. 

3.7.8 Unknown unknowns 

Donald Rumsfeld (2002) brought the phrase “unknown unknowns” into common usage, 

but the concept has been recognized for a very long time. In Plato’s Meno, Socrates proposes that 

one cannot inquire into a thing about which one is wholly ignorant. By definition, we are 

ignorant of unknown unknowns and therefore we almost universally exclude them from risk 

assessments.57 Nonetheless, approaches for considering ignorance have been proposed. Jonas 

                                                 
57 However, after events occurs, claims of events being unpredictable are often overused as a 

way to deflect blame for poor risk management (Paté-Cornell, 2012; Paté-Cornell and Cox, 

2014). 
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(1984) suggests analysts expand their conception of possibilities through  imaginative thinking  

and Attenberg et al. (2015) suggest expanding public discourse.  

An easier approach is to merely increase uncertainty estimates. Taylor (2012) notes that 

unknown unknowns are often lumped into a single “catch-all probability” along with other 

unquantifiable factors.58 While this type of uncertainty is unquantifiable, it is at least a display of 

Socratic wisdom to acknowledge that we are often uncertain of our own level of ignorance (cf. 

Elahi, 2011; Sahlin, 2012). 

 In summary, while there is uncertainty inherent in all knowledge, formal risk 

assessments tend to make specific, often quantitative, claims regarding the level of certainty in 

an analysis. Thus, special attention is warranted regarding the caveats placed in an assessment 

which reflect the analyst’s value judgments regarding what is known and knowable. An analyst 

may believe that an assessment has captured all the salient points worthy of consideration to a 

degree of accuracy and precision that conclusively answers the question posed by the decision-

maker. This analyst is likely to present the findings with few caveats. A more skeptical and 

humble analyst will qualify the assessment in hopes that readers do not over-interpret the results. 

3.8 Comparing Risks 

One reason to create a risk estimate is so it can be compared to other risks or risk 

management options. However, the comparison process is full of value assumptions. For 

example, one of the most common comparisons is to naturally occurring levels of a potential 

harm (e.g., background radiation levels) (Hansson, 2003). However, it is a value judgment to 

adopt this natural-level as the standard for comparison as there is often scant reason to assume 

that this level constitutes no-harm or an acceptable level of harm merely because it’s natural or 

                                                 
58 This is sometimes pejoratively termed a “fudge factor.” 
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unavoidable. The widespread advocacy and use of sunscreen suggests that public health experts 

and the general public do not find all natural risks acceptable – especially when they can be 

avoided. Experiencing a level of harm by default does not imply that technologies that subject us 

to similar levels of risk are acceptable (Fischhoff et al., 1978; Slovic, 2000). 

Along the same lines, public concerns regarding various technologies (e.g., synthetic 

food additives or genetically modified foods) are sometimes based on the “unnaturalness” of the 

technology (Viscusi and Hakes, 1998; Hansson, 2012). However, this assessment is based on a 

belief that naturally occurring substances are safer. This is a reasonable assumption in the sense 

that humans have evolved and co-existed with naturally occurring materials for a very long time. 

Compared to a synthetic material that may have existed for only a few years, this extensive 

experience is helpful for judging safety. However, given the vast range of naturally occurring 

substances, it’s a naïve generalization to assume natural equates to safe. For example, arsenic is 

often naturally occurring in groundwater but is considerably more dangerous to human health 

than many anthropogenic risks. This basic assumption is even ensconced in US regulations; the 

FDA has far fewer requirements for botanical medicines (sold to the public as “nutritional 

supplements”) than for synthetic drugs (Marcus and Grollman, 2002). Even equivalent harms 

caused by natural sources are perceived to be less scary than human-caused harms (Rudski et al., 

2011).59 

3.8.1 Incommensurability 

One of the most basic assumptions in risk assessment is the belief that risks can be 

compared. Whether a risk assessment is part of a risk-benefit analysis, risk-cost-benefit analysis, 

                                                 
59 The source of this distinction appears to be the “risk as feeling” model (Loewenstein et al., 

2001) and affect heuristic (Slovic et al., 2007) which argue that perceptions of risk are very 

dependent upon an individual’s positive or negative emotions associated with a risk. 
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or multi-criteria decision analysis (Edwards and von Winterfeldt, 1987), the basic assumption is 

that all options are comparable.60  It may seem obvious that risks that are different in nature (e.g., 

health risks and risk of habitat loss) are difficult to compare due to the need for a controversial 

common unit of measurement (e.g., economic value) or equally controversial subjective ranking 

(Espinoza, 2009). However, even risks that appear to be of the same kind (e.g., all risks that can 

shorten a human life) can still be incommensurable due to important ethical distinctions. 

Hansson (2005) argues that public rejection of quantitative risk assessments in the past are due 

not to risk communication failures, but rather the failure of these formal assessments to account 

for ethical distinctions important to the public, such as justice and consent (e.g., Kuzma and 

Besley, 2008). Some distinctions frequently ignored in quantitative risk assessments that do not 

share normative equivalency include (Slovic, 1987; Gillette and Krier, 1990; Cranor, 2009; 

Espinoza, 2009): 

 natural versus anthropogenic risks; 

 detectable versus undetectable (without special instrumentation) risks; 

 controllable versus uncontrollable risks; 

 voluntary versus imposed risks; 

 risks with benefits versus uncompensated risks; 

 low incertitude versus high incertitude risks;61  

 risks central to people’s everyday lives versus uncommon risks;62 

                                                 
60 The precautionary principle is a less comparative decision tool in that it only implies a 

comparison between the potential risk and doing nothing.  
61 This is due to ambiguity aversion – the preference for known risks over unknown risks (cf. 

Fox and Tversky, 1995) commonly phrased as, "Better the devil you know than the devil you 

don't." 
62 This may be one reasons that virologists often underestimate the biosafety risks of the 

pathogens they work with compared to scientists who have less working experience with 
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 future versus immediate risks; and 

 equitable distribution of risks and benefits (in both space and time).63  

In each pair above, the first risk type is generally more acceptable than the second risk 

type. In practice, risks often fit multiple categories and can be ranked accordingly. For example, 

common, self-controlled, voluntary risks, such as driving, generate the least public apprehension 

whereas uncommon, imposed risks without benefits, such as terrorism, inspire the most public 

concern. Ignoring these distinctions can lead to a simplification of risk that renders a risk 

assessment unusable for building public consensus. It is for this reason that risk governance 

guidelines stress the importance of providing social context for risk assessments (Renn and 

Graham, 2005). While the importance of these distinctions has been understood for some time in 

theory (Jasanoff, 1993), there remains limited evidence of this occurring in practice (Pohjola et 

al., 2012).  

3.8.2 Risk ranking 

If an assessment compares risk, a risk ranking method may be used. The ranking may be 

quantitative or qualitative and it can take many forms: letter grades, number grades, cumulative 

probability distributions, exceedance probability or F-N curves (cf. Evans and Verlander, 1997), 

color or word categories, etc. The ranking method selection is an epistemic value judgment with 

important communication implications (MacKenzie, 2014). 

Some ranking methods are incomparable to other methods (Cox et al., 2005; Cox, 2008; 

Rozell, 2015). A simple example demonstrates that even seemingly comparable ranking systems 

                                                 

dangerous pathogens. This is one of many factors to be considered in the Chapter 6 analysis of 

the GOF research controversy. 
63 Similar justice issues arise when the exposed, the beneficiaries, and the decision-makers are 

non-overlapping groups (Hermansson and Hansson, 2007). 
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can give rise to mathematical inconsistencies. Let us rank the risk of two events, A and B, and 

define the risk, R, associated with each event as being the product of both the probability, P, of 

the event occurring and the cost, C, of the event, such that R = PC. If we have detailed 

information for the probability and cost of events A and B, such that A = (0.4, $400) and B = (0.1, 

$900), we would say that RA = $160 is riskier than RB = $90.  

However, if we had less confidence in this information or were adding this assessment 

into a larger assessment with different parameters, we might decide to use qualitative methods. 

Using two equal-sized categories of low (L) and high (H), it would be reasonable to assign the 

probabilities as L = (0, 0.5) and H = (>0.5, 1). Likewise, costs could be categorized as L = ($0, 

$500), and H = (>$500, $1000). Using these qualitative labels, then RA = (L, L) is less risky than 

RB = (L, H). In this case, switching from quantitative to qualitative ranking and using a 

seemingly logical categorization caused the risk rankings to reverse. This issue is commonplace 

in qualitative risk ranking. 

Most risk rankings are based on consequences and probabilities, but rankings involving 

ethical dimensions, such as source of risk (e.g., Gardoni and Murphy, 2014), have been 

proposed. This form of ranking is more inclusive, but also extremely subjective. For example, 

what is the most concerning: 1,000 deaths caused by heart disease, 100 smoking-related lung 

cancer deaths or one homicide? The question is almost meaningless when stripped of its context 

as can occur in a ranking exercise.  

3.9 A Value Assumption Roadmap 

Given the variety of value assumptions made during a typical risk assessment, an aid in 

the process is useful. Rather than organize the assumptions thematically, a chronological 

approach is used here so it can serve as a checklist for risk analysts. The list, detailed in Table 1, 
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is not exhaustive in its coverage of potential value judgments, but it is intended to cover the most 

common and contentious assumptions that, left unexamined and unaddressed, decrease the utility 

of a risk assessment.  

Table 1: A process map of value judgments in risk assessment. Details for each question are 

discussed in the previous sections. 

Step Fundamental Value Questions 

Selecting a topic   How are hazards screened? 

 What heuristics are influencing choice? 

Defining the assessment 

boundaries  
 What is an appropriate time, space, and population? 

 Holistic or component analysis? 

Choosing the form of the 

assessment 
 What unit will be used? 

 What is a life worth? 

 What are deeply held values worth? 

 What discount rate should be used? 

 Qualitative or quantitative? 

 Which definition of risk? 

 Maximizing efficiency or resiliency? 

 Focus on preventing false positives or false negatives? 

Model selection  Accuracy or precaution? 

 Theoretical or empirical? 

 Simple or complex model? 

Data selection  How are data screened? 

 How are rare events treated? 

 How is expert opinion used? 

Accounting for 

uncertainty 
 Deterministic or probabilistic? 

 Objective or subjective probabilities? 

 How is incertitude addressed? 

 Dependence between model variables? 

 Model structure uncertainty? 

 Deep uncertainty and unknown unknowns? 

Comparing risks  Can the risks be compared? 

 Qualitative ethical distinctions? 

 Risk ranking? 

 

3.9.1 Example: risk analysis of farmed salmon 

To see the utility of the map, it helps to apply it to a real risk assessment debate. A past 

risk assessment with a series of conflicting assessments demonstrates the importance of the value 

judgments in risk assessment. In this example, the original study (Hites et al., 2004) found high 
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concentrations of carcinogenic organochlorine contaminants in farm-raised salmon and 

suggested that the risk of consumption outweighed the benefits. The analysis prompted a series 

of strong response letters. One letter (Rembold, 2004) pointed out that, even using the 

conservatively protective EPA linear cancer risk model, the expected number of cancer cases 

from consuming farmed salmon was a fraction of the number of cardiovascular mortalities that 

would be avoided by eating salmon. Furthermore, the quality of the data was not the same; the 

cardiovascular benefits data was based on randomized clinical trials while the cancer risk data 

was based on less reliable observational studies and nonhuman dose-response models. The 

response by Hites et al. raised the possibility of other non-cancer harms (e.g., neurological) from 

contaminated fish consumption as well as a reminder that the beneficial omega-3 fatty acids 

found in salmon were available from other non-contaminated dietary sources.  

A second letter (Tuomisto et al., 2004) also compared the cardiovascular benefits of 

salmon consumption to cancer risks and additionally included a value-of-information analysis to 

argue that any uncertainty in the risk and benefit data did not affect the assessment that salmon 

consumption had net health benefits. For this reason, the letter went so far as to state that any 

suggestion to limit salmon consumption was nonscientific because it ignored the data. Again, the 

response pointed out that fish were not the sole source of dietary cardiovascular benefits. 

 A third letter (Lund et al., 2004) questioned the EPA’s linear dose-response model citing 

additional data that suggested there were no effects at low exposures. The response by Hites et 

al. argued that the Lund et al. study used a sample size too small to detect the estimated cancer 

risk. Furthermore, they pointed out that the potential neurological and cancer risk is larger for 

young people due to bioaccumulation while the cardiovascular effects primarily benefit older 

individuals which suggested the need to distinguish subpopulations. A fourth letter (Weaver, 



 

80 

 

2004) questioned the mechanism by which fish become contaminated in order to argue that 

farmed salmon are no riskier than wild salmon.  

Looking at the various critiques and responses, value assumptions are made that 

correspond to each step of the risk assessment process. Boundary value assumptions are made 

regarding what can be counted as a risk (cancer and neurological impairment) or a benefit 

(cardiovascular health) and whether sensitive populations (e.g., children) should be considered. 

Likewise, there are debates regarding what is the appropriate risk model (the EPA linear model 

or a no-effects threshold model), what data are worthy of including in the assessment (e.g., 

observational studies, animal studies, and small sample size studies), and how important it is to 

account for uncertainty. Finally, there is an important value judgment regarding risk comparison: 

will people who potentially stop eating salmon substitute other foods rich in omega 3 fatty acids 

(e.g., can salmon be compared to walnuts)? 

3.10 Discussion 

The map of values ignores some of the more uncontroversial values inherent in risk 

assessment as well as broader value discussions within science. For example, the general 

conception of what constitutes quality science is itself value-based (e.g., Merton, 1942)64 – and 

much debated (Kuhn, 1962; Feyerabend, 1970; Lakatos, 1970). However, it is not always clear 

what epistemic, ethical or aesthetic values are considered to be uncontroversial or for how long 

they will remain uncontested (Hansson and Aven, 2014). For example, maximizing happiness is 

a value common in contemporary economic analyses. However, this is not a universal goal; 

different eras and cultures have valued duty over self-interest (cf. Kant, 1785) 

                                                 
64 “The ethos of science is that affectively toned complex of values and norms which is held to 

be binding on the man of science” (Merton, 1942). 
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The emphasis placed here on subjective values in risk assessment is intended to help risk 

analysts improve their work. It is important to dispel any notions that “subjective” is a 

derogatory term or that it is necessarily arbitrary. Subjective values can be deeply-held 

convictions with rational supporting arguments. Past neglect of value judgments, especially 

ethical considerations, has ignored the importance of emotional content in decision-making or 

treated it as adventitious (Roeser, 2011). Appreciation of these value-laden assumptions 

improves both the process and the final assessment.  

3.10.1 Choice of ethical framework 

The following is a brief review of some popular ethical frameworks proposed in moral 

philosophy as they pertain to risk assessment. The purpose is to point out that no normative 

theory is perfect and that the ethical underpinnings of any risk assessment can be a potential 

source of controversy. While an ethical framework must eventually be chosen as a basis for 

assessment, recognition of the weaknesses of any particular approach is necessary if an analyst is 

to address these weaknesses or at least openly communicate them. 

Quantitative risk-benefit analysis uses utilitarian or consequentialist ethics (Hansson, 

2005); that is, an action is good if the consequences are more beneficial than harmful. In the 

most simplistic form of consequentialism, the simplest way to incorporate probability is to judge 

the consequences in retrospect considering only what actually happened (Bergstrom, 1996). 

Using this simplistic approach, speeding down a busy road would only be unethical if someone 

was injured. However, this approach leads to irresponsible risk-taking behavior (i.e., actions that 

lead to unlikely, but easily avoidable harm) that is contrary to typical conceptions of moral 

behavior.  
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Instead, the common method for accounting for uncertainty in a utilitarian framework is 

to use expected utility. While this addresses the risk-taking issue, it creates an aggregation 

problem (Hansson, 2012). All the risks and benefits to all parties involved are combined and 

compared; the individual is ignored. Even if we can legitimately compare the risks and benefits 

of different individuals, it is not clear that we can say that the benefits to one individual 

compensates for the risks to another (Kelman, 1981).  

Alternative frameworks to utilitarian ethics include: deontology (duty-based or rights-

based ethics), virtue ethics (which focuses on moral character and moral wisdom), and social 

contract ethics (which focuses on process).65 Using rights-based ethics resolves the aggregation 

problem of utilitarian ethics, however, it is still problematic because there are no recognized 

probabilistic limits to rights (Nozick, 1974; Hansson, 2004). For example, an innocent person's 

right to live is generally considered to be absolute. That is, various declarations of human rights 

(e.g., Article 3 of the 1948 UN Universal Declaration of Human Rights, “Everyone has the right 

to life, liberty and security of person.”) do not make conditional statements about the right to life.  

Yet, we do not prohibit a wide range of activities (e.g., driving) that create a very small 

probability of killing an innocent person or even some activities that have an appreciable 

probability of killing an innocent person (e.g., targeted drone strikes against terrorists).  

While virtue ethics avoids the issues associated with consequentialist and deontological 

ethics, it is perhaps the least practical framework for risk assessment because ethical criteria 

under conditions of uncertainty are left to the moral wisdom of the analyst. This is a rather vague 

                                                 
65 One way to organize different ethical frameworks is by their emphasis on different parts of an 

ethical act (Koehn, 1995). Virtue ethicists focus on the character of the actor, deontologists focus 

on the act itself, social contract ethicists focus on the decision process, and utilitarians focus on 

the consequences.  
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solution (cf. Nussbaum, 1999) because we don’t know how variable moral wisdom is among risk 

analysts nor do we know if differing conceptions of moral wisdom renders risk assessments 

incomparable. 

Social contract ethics can have aggregation issues similar to utilitarian ethics (Hansson, 

2004), but with consent rather than expected utility. Actual consent is too difficult to obtain in a 

large and interconnected society so we must instead use hypothetical consent.66 However, this 

may involve forming a majority consensus that still ignores the individual. Rawls’ (1971) social 

contract version of equity envisions a procedure where a system of rules is constructed before 

individuals know their place in the system. Ideally, rational self-interest then generates a 

maximally equitable system because decision makers would employ a “maximin” criterion 

which, in the face of uncertainty, selects the option that maximizes the benefits of the worst 

outcome (cf. Harsanyi, 1975; Rozell, 2014). However, as Harsanyi argued, the maximin criterion 

can also result in some rather unrealistic choices. For example, the criterion might lead one to 

avoid travel that only slightly increased the risk of accidental death, but would also substantially 

increase personal wealth and happiness (e.g., driving across country to take a dream job). 

The contrast between the utilitarian and social contract approaches is similar to two 

competing economic policy decision goals: Kaldor-Hicks efficiency and Pareto optimality (cf. 

Stokey and Zeckhauser, 1978). The Kaldor-Hicks criterion requires maximizing net social 

                                                 
66 Zandvoort (2009) argues that actual consent is necessary for an ethical society and that the 

only alternative is unlimited liability when consent is not granted. That is, those harmed by a 

technology should be able to seek full redress from the creators or users of the technology. 

Because this level of legal liability may be unbearable in cases of irreparable damages (e.g., 

species extinction), the implication is that certain technological activities are not economically 

feasible whenever actual consent is not possible.  
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benefit while the Pareto criterion prefers actions that improve at least one individual without 

making any other individual worse off. 

The aggregation problem seen in utilitarian ethics and the Kaldor-Hicks criterion, which 

forms the basis of cost-benefit analysis, artificially obscures legitimate problems, such as the 

natural rationality of “not in my backyard” issues. When an unpleasant, but necessary, project is 

sited, the local residents are rationally self-interested to oppose the project because they 

comprehend the concentrated harms and dispersed benefits that will occur. Treating individuals 

as moral units can avoid this issue. For example, biomedical ethics uses a principle of 

beneficence or individual-centered risk assessment (Hansson, 2012). That is, the benefits to 

future patients cannot be considered in a risk-benefit analysis for a patient to participate in a drug 

trial – only personal benefits and risks.  

3.10.2 Ignoring the normative 

One potential reason for the common lack of normative considerations in formal risk 

assessment is the somewhat artificial and prejudiced distinction between risk assessment and risk 

perception (Coeckelbergh, 2009). This distinction is often paternalistically interpreted as risk 

assessment being the domain of experts where “real” risks are calculated and risk perception as 

the domain of the public where risks are imagined (e.g., Choi, 2013). This is not to suggest that 

the distinction is false. The training, experience, and considerable effort of risk experts is 

beneficial and informative to risk decisions. However, the formal methods in the field of risk 

analysis have traditionally idealized objective and quantitative analysis at the expense of 

difficult-to-quantify, but important risk characteristics. Objective, but narrow assessments are not 

clearly superior to subjective, but broad assessments. 
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Another reason may be the relative paucity of normative work in risk analysis. The 

inherent ethical value judgments that pervade risk analysis have led to claims that the field is a 

branch of ethics and that risk analysts need as much training in ethics as in economics or 

decision theory (MacLean, 2009). Given the proposed level of value judgments inherent in risk 

assessments, it seems reasonable that more philosophers should be involved in risk assessments – 

both epistemologists and ethicists. While the concept of moral experts has been rejected in the 

past, it is only if one defines a moral expert as someone who is an arbiter of what is right and 

wrong (cf. Gesang, 2010). Rather, moral experts exist if we regard them as individuals who act 

as knowledgeable guides familiar with the various moral concepts that frequently arise in 

decision-making (Singer, 1972; Nussbaum, 2002). 

3.11 Conclusion 

Risk assessment has become increasingly difficult for two reasons. First, for most of 

human history, the management of risk was simply trial and error (Wilson and Crouch, 2001). 

New technologies were adjusted or abandoned as evidence of harm was discovered. However, as 

the twentieth century unfolded, the power and scale of technology grew and it became evident 

that society needed to manage risks proactively. Second, science and technology also allowed us 

to recognize and measure new subtle hazards that required assessment. The result was a new 

multidisciplinary field with new and considerable challenges.  

Where risks and benefits are clear and certain, formal risk assessment is unnecessary; it is 

intended for contentious issues where the correct policy decision is not obvious (Wilson and 

Crouch, 2001). However, it is in these very situations where the many inherent epistemological 

and ethical judgments that the analyst (maybe unknowingly) makes can influence the outcome of 

a risk assessment.  
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The purpose here is not to criticize formal risk analysis except, perhaps, in the way in 

which it is employed. If an analyst (or the funding source) believes that risk assessments will 

produce objective answers, there may be a subtle influence on all steps in the risk assessment 

process and a general understatement of subjectivity and incertitude. While the purpose of risk 

assessment is understood in theory, it may be less so in practice (cf. Apostolakis, 2004). This is 

peculiar considering that the contingent nature of risk analysis has been known for decades; 

“Risk assessment cannot be intensive nor selective in the way traditional science is. It must deal 

with questions as they arise without regard to their disciplinary assignment or to the quality and 

completeness of data that are obtainable or at hand” (Cumming, 1981). As methods and 

techniques within the field of risk analysis improve over time, it is necessary to remind ourselves 

frequently that risk assessment depends on science, but encompasses more than science. 

Acknowledging risk in the decision-making process is always a wise endeavor and the 

various approaches developed in the field of risk analysis help guide the process of considering 

risk. Rather, a review of the value assumptions in risk assessment is used to emphasize that the 

process is inherently rife with assumptions that hinder unqualified claims of objectivity and 

neutrality. Narrow risk analyses of well-understood phenomena with ample data might be 

uncontested, but we must be realistic in our expectations of formal risk assessment to resolve 

public debates regarding controversial research, environmental contaminants, and emerging 

technologies. The various forms of value assumptions made in any risk assessment are a primary 

reason for the common inability of scientific studies to resolve disputes over the risks of new 

technologies (Sarewitz, 2004; Small et al., 2014). If astute stakeholders and policymakers 

intuitively understand the limitations of risk analysis, an assessment that is overly conclusive 

may be dismissed under the assumption that the analyst was deeply biased or naïve.  
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We still do not understand how risk analysis can be used to build consensus and reach 

decisions (Aven and Zio, 2014). However, the explication of uncertainty can aid rather than 

hinder public trust in formal risk analysis (Rabinovich and Morton, 2012). When assumptions 

are hidden or not obvious, policymakers may feel intuitively distrustful of an assessment without 

being able to pinpoint their misgivings. Ultimately, the reason to perform a risk assessment is to 

provide insightful or actionable information. Considering and clearly discussing the value-laden 

assumptions in a risk assessment improves trust in the provided information by allaying concerns 

of hidden agendas.  
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4 TECHNOLOGICAL RISK ATTITUDES  

A common theme of policy debates over controversial research and technology is a call 

for risk-benefit analysis that is based on “sound” science. But which science studies have value 

or credibility is a contentious issue in its own right (Yamamoto, 2012; Sarewitz, 2015a). There is 

some consensus over what good science should look like in theory, but much less regarding what 

it looks like in practice or in individual cases (Small et al., 2014). Additionally, as argued in 

Chapter 2, there are many methods of valuing the benefits of research. While particular methods 

periodically rise and fall in popularity, none of them are universally accepted and often yield 

disparate results. Likewise, as argued in Chapter 3, risk assessment is a process inherently full of 

value-laden assumptions that can substantially affect the assessment outcome. The outcome of 

these two lines of argument is that risk-benefit analysis usually fails to resolve debates over 

controversial research. 

Jasanoff (2007) critiques the modern attitude that difficult technological decisions are 

resolvable if only further research is conducted. She argues that not only is some uncertainty 

unavoidable, but often the most difficult parts of the decision process are not scientific, but rather 

ethical and political. Thus, delaying decisions for more fact-finding is often a form of wishful 

thinking. Calls to perform risk-benefit analysis for emerging technologies often fall into this 

category. 

For example, as of early 2015, research on the health effects of e-cigarettes is sparse and 

inconclusive. Little is known of the various chemical hazards of the non-nicotine constituents of 

e-cigarette products (Henkler and Luch, 2015). Nonetheless, competing groups of public health 

scientists are taking strong positions on e-cigarette regulation based primarily on whether they 

see the technology as a replacement for or gateway to traditional tobacco use (Fairchild and 

Bayer, 2015). Further research should help resolve the question or at least clarify its dimensions. 
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However, regulatory decisions will ultimately be based on non-scientific issues over acceptable 

harm and the limits of freedom. Even reasonable individuals with the same public health goals 

and appreciation of science-based policy can arrive at very different conclusions. This leads to a 

fundamental question underlying the subjective dimensions of risk-benefit analysis. Why do 

reasonable individuals arrive at very different conclusions? 

One possible answer comes from individual attitudes regarding risk and technology. 

Individuals tend first to evaluate novel information using mental shortcuts (heuristics) that are 

replaced by more systematic reasoned thinking as familiarity increases (Chaiken, 1980). The 

process of evaluating research and new technologies is no different (Scheufele, 2006). The 

heuristic-to-systematic thinking model also applies to interpreting risk assessments (Kahlor et al., 

2003). New information can influence an individual’s attitude, but the pre-existing attitude also 

influences how new information will be interpreted (cf. Eagly and Chaiken, 1993). That is, 

individuals with positive attitudes about technology will tend to expect more benefits from new 

technologies (Kim et al., 2014). 

Many factors can influence attitudes towards technology. In this chapter, I first discuss 

the nature and potential origins of attitudes about technological risk that may account for why 

well-informed and reasonable people disagree on such matters. I then summarize the effects of 

these disagreements as a general “principle of controversial research.”  

4.1 Technological Optimism and Skepticism 

It is natural to wonder what causes an individual to see a particular technology as 

primarily benign or dangerous. For example, the Haber-Bosch process converts atmospheric 

nitrogen to ammonia in the presence of natural gas, heat, and pressure. What causes one person 

to view this method of artificial nitrogen fixation as a dangerous innovation that has killed 
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countless people by providing crucial feedstock for the instrumentality of war, while another 

person seizes upon the countless people fed because the process provides crucial feedstock for 

the fertilizer industry?  

Although attitudes regarding technological risk exist along a broad continuum, for our 

purposes it is helpful to define two general categories: technological optimism and technological 

skepticism. This simplification is appropriate because we are primarily concerned with public 

policy formulation and the binary outcome of whether an individual endorses or opposes a 

particular line of research. It has also been used by other academic and popular writers. For 

example, ecological economist Robert Costanza outlines four future scenarios that hinge on 

collective technological optimism or skepticism (Costanza, 1999, 2000). He further differentiates 

futures based on whether these technological attitudes are right or wrong. If the prevailing 

worldview of technological optimism is supported by future technological wonders that solve all 

our problems, Costanza describes the future as “Star Trek” and, if incorrect, “Mad Max”. 

Likewise, a world following more technologically skeptical policies would result in “Ecotopia” 

if proved correct or needlessly oppressive “Big Government” if wrong. However, these scenarios 

don’t address why individuals believe in the likelihood of various future scenarios. But, first, let 

us start by defining what we mean by a technological optimist or skeptic. 

4.1.1 Technological optimism 

Technological optimists believe in the liberating power of technology – modern medicine 

liberates us from disease and space exploration literally liberates us from this planet. This 

attitude is captured in the modernist67 movement (cf. Reaven, 1989b) and is still a common 

                                                 
67 Modernism, with its various incarnations in Western philosophy, architecture, art, literature, 

etc., is embodied in Ezra Pound’s famous command, “Make it new!” 
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American attitude (e.g., Ridley, 2010; Tierney, 2010) with good reason. Over the past 160 years, 

life expectancy has increased linearly in the most developed nations (Oeppen and Vaupel, 2002) 

and trends suggest there may be no foreseeable limit to the average human lifespan (Cohen and 

Oppenheim, 2012). The technological optimist has a basic faith in technology and requires proof 

of harm to abandon a specific technology. An extreme version of technological optimism might 

be better labeled “technophilia” or the unquestioning embrace of new technology for its own 

sake.  

This attitude is prevalent in Silicon Valley where, for example, there is often effusive 

praise for all things related to the internet and mobile communications technology. A common 

assumption is that social media has and will fundamentally restructure human communications to 

everyone’s benefit. Many of these perceived benefits are as yet unimagined based on (the 

correct) assumption that technology is often repurposed by its users. Technological optimists see 

future repurposing of technology as empowering and creative rather than harmful or 

disenfranchising. 

4.1.2 Technological skepticism 

Technological skeptics reject the technology-as-panacea paradigm. This attitude is 

common in postmodernists (along with small enduring enclaves of pre-modernists, such as the 

Amish) and is linked to some of the failings of modern industrialization (e.g., nuclear accidents). 

In particular, within the environmental movement, there has been an ongoing critique of modern 

Western society that includes a general aversion to technology. Seminal examples include: Aldo 

Leopold’s “land ethic” (1949), Rachel Carson’s Silent Spring (1962), and Arne Naess’s “deep 

ecology” (1973). However, the roots of technological skepticism date back at least to the early 

nineteenth century when the Industrial Revolution was underway in Great Britain. The Luddite 
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rebellion, a brief spasm of violence between 1811 and 1813, was a reaction to the social 

upheaval and suffering caused as the steam engine and power loom rapidly shifted the wool 

industry in central England from family cottage weavers to coal-powered mills run by a few 

adults and cheap child labor (Sale, 1995).68 The full history and tradition of technological 

skepticism is too rich to cover here, but some notable works include writings of Freud (1930), 

Ellul (1964), Dreyfus (1972), Abbey (1975), Heidegger (1977), Mander (1978), Jonas (1984), 

Postman (1992), Rifkin (1995) and Jones (2006). 

Technological skeptics are more likely to question and critique the work of scientists and 

engineers (e.g., Watts, 2014). An extreme version of skepticism could be labeled “technophobia” 

– a knee-jerk reaction to new technology. Technological skeptics are often pejoratively labeled 

“neo-Luddites”, but the attitude is not associated only with those who eschew technology. The 

ranks of technological skeptics include engineers (e.g., Joy, 2000) who recognize that our 

present-day society is privileged and powerful primarily due to technology, yet warn that this 

technology hangs over our heads like the sword of Damocles.  

4.1.3 Explaining the differences 

If we accept that there are differences in technological risk attitudes that can be roughly 

categorized, we invite questions regarding the nature and measurement of these difference. The 

following is a summary of notable attempts, with varying degrees of success, to explain the 

differences in risk attitudes that are relevant to technology. 

                                                 
68 It is not coincidental that Mary Shelley’s Frankenstein, a seminal piece of technologically 

skeptical literature, was published in London five years later in 1818. 
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4.1.3.1 Cultural theory 

The cultural theory of risk (Douglas and Wildavsky, 1982) proposes that risk attitudes 

originate from cultural influences. Individuals filter information through cultural world views 

that determine their perception of risk. The theory categorizes four risk ideologies: laissez-faire 

individualists, social justice egalitarians, utilitarian hierarchists, and apathetic fatalists. 

Individualists view human ingenuity as boundless and nature as robust which roughly 

corresponds to technological optimism. Conversely, egalitarians, who roughly correspond to 

technological skepticism, view nature as fragile and have a more precautionary view of 

technology. In the comparison between technological skeptics and optimists, it should be noted 

that there is a considerable middle ground in the general public consisting of ambivalent and 

indifferent individuals (Seidl et al., 2013). The last two groups in the cultural theory of risk fall 

into this category. The hierarchists do not have strong attitudes regarding technology, but they do 

value authority, expertise, and the status quo (van Asselt and Rotmans, 2002). Because formal 

analysis is conducted by “experts”, the hierarchists should be the most influenced by the 

traditional economic analysis approach to risk assessment. Lastly, the fatalists correspond to 

those who have little faith in the predictability of nature or humanity or in our ability to learn 

from past mistakes. Because fatalists doubt their capacity for control and self-determination, they 

often opt out of the policy making process and see hubris in those who do not.  

One implication of this classification is that many analysts might best be described as 

hierarchists whose analyses may tend to ignore the other cultural world-views. Open public 

debate and more democratic decision-making processes are particularly useful given such 

substantial differences in risk attitudes (Davidson, 2009). 
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These risk attitudes can make policy-making even more difficult. For example, 

individualists view government intervention in technology policy as a form of risk (i.e., policy 

makers may abruptly change policies) that can discourage investment (Chassot et al., 2014). 

4.1.3.2 Psychometric measures  

Despite its theoretical elegance, cultural theory has had less predictive success than 

psychometric approaches, such as risk-as-feeling concepts (Slovic et al., 2004), which still have 

limited explanatory power in empirical studies (Sjöberg, 2000). For example, cultural world 

view accounted for only 3% of the variance in surveys measuring the perception of risks and 

benefits of childhood vaccinations (Song, 2014). Psychometric studies have been found to be 

more useful for explaining why the public perception of risks has substantially deviated from 

calculated risks for particular hazards. Psychometric studies of risk perception also provide 

insight into attitudes about technology because attitudes about technology are dependent on risk 

perception. Sjöberg  (2002) applies psychometric techniques to directly investigate attitudes 

about technology and finds that the acceptability of a technology is explained by its perceived 

utility and risk, and by whether the technology could be substituted with something else. 

Technologies that tamper with nature and may have unknown effects (e.g., genetically modified 

food) are perceived to be riskiest. Most importantly, even an expanded set of psychometric 

characteristics accounts for only about half of the variance, indicating that the basis of attitudes 

about technology is still not well understood. For example, in Yeosu, South Korea, which is 

home to a large petrochemical complex, a survey of 1446 residents regarding the perceived risk 

from the chemical industry found that less than 10% of the variance was explained by cultural 

theory or psychometric measures (Choi, 2013). In the study, demographic factors, such as 

education level or gender, were more strongly correlated. 
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4.1.3.3 Cultural cognition of risk 

Cultural cognition theory (Kahan et al., 2006) is a hybrid of cultural theory and 

psychometric models which has been applied to risk perception topics ranging from vaccines 

(Kahan et al., 2010) to geoengineering (Kahan et al., 2015). Cultural cognition recognizes a set 

of psychological mechanisms that allow individuals to preferentially select evidence that 

comports with the values of the cultural group with which they identify (Kahan et al., 2011). For 

example, actions perceived to be culturally immoral are more likely to be seen as harmful even 

when given evidence to the contrary (Gutierrez and Giner-Sorolla, 2007). Likewise, evidence 

from experts that are perceived to share the same values are viewed as more credible. However, 

in general, cultural cognition has similar explanatory power to its parent theories.  This 

hybridization may be the best of both worlds, but is still insufficient to adequately explain the 

source of risk attitudes.69 

4.1.3.4 Other theories 

Other theories embracing or eschewing technology have been proposed. One alternative 

conception of attitudes about technology comes from philosophers of technology. Framed in 

terms of trust, technological optimism and skepticism can be viewed as trusting or distrusting the 

reliability of technology as well as trusting or distrusting our ability to use technology 

appropriately (Ellul, 1964; Heidegger, 1977; Kiran and Verbeek, 2010).  

Sociologist Daniel Fox ascribed technological optimism to fatigue with the political 

process and a misguided desire to advance seemingly intractable social problems: “The rejection 

                                                 
69 One valuable outcome of cultural cognition is the clear recommendation to use identity 

affirmation in risk communication. That is, information is more likely to be accepted if it can be 

presented in such a way as to be consistent with cultural values (Kahan, 2010). 
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of politics among intellectuals often takes the subtler form of what I call technocratic 

solutionism. Experts who practice solutionism insist that problems have technical solutions even 

if they are the result of conflicts about ideas, values and interests” (Fox, 1995).70 Understanding 

which problems require or are amenable to technological solutions is not obvious. For example, 

conventional wisdom has attributed famines to food production failures. However, (Nobel 

economist) Amartya Sen (1981) argued that famines in the past century occurred during times of 

adequate food production; the real culprits were hoarding and high prices brought about by bad 

governance and corruption. 

None of the ideas presented here make for convincing explanations for attitudes about 

technological risk (cf. Renn and Benighaus, 2013). However, they do give us a general idea of 

the range of factors at play in the formation of these attitudes. Given our inability to explain the 

origins of these attitudes, it may be more helpful to shift our focus from why these attitudes exist 

to the question of how flexible and variable these technological risk attitudes are.  

4.1.4 Variability in technology attitudes 

How static are the attitudes of technological optimism and skepticism? This question is 

important if we are to ascertain whether an event or additional information, such as a risk-benefit 

analysis, is likely to have a substantial policy impact.71 

First, it appears that cultural attitudes regarding technology change over time. The early 

and mid-twentieth century saw technological wonders culminating with a man walking on the 

moon. Subsequent generations have failed to witness such technological spectacles leading to a 

                                                 
70 Clearly, he was a technological skeptic. 
71 Influencing attitudes about technology is not as easy as simply presenting new information. 

Even risk communication meant to reduce concerns can have the unintended effect of raising 

fears about related risks among skeptics (Nakayachi, 2013). 



 

97 

 

concern by some that society can no longer solve big technical challenges (Pontin, 2012) and 

now amuses itself with gadgetry. Nonetheless, the internet age has reignited technological 

optimism in certain segments of society.72  

Trends in technological optimism and skepticism can also be traced through science 

fiction literature. The romantic era of early science fiction, which encompassed the second half 

of the nineteenth century, envisioned the utopian potential of technology,73 while the first few 

decades of the twentieth century, dubbed science fiction’s “radium age” (Glenn, 2012), saw the 

first signs of skepticism that technology was a solution to social ills. Aldous Huxley’s Brave New 

World, 1932, is the epitome of the era. More recent trends in dystopian science fiction clearly 

represent an increase in technological skepticism (and perhaps contribute to it).74 

While prevailing attitudes about technology have changed over time, they also vary 

geographically. In a comparison of U.S. and British attitudes regarding analog computing 

technology prior to World War II, Bowles (1996) argues that U.S. computing technology 

surpassed British efforts partially due to cultural differences regarding resistance to change and 

general enthusiasm for technological innovation. Likewise, emerging nations (e.g., South Africa) 

are considered more optimistic regarding the ability of technology to solve problems than 

developed nations with strong environmentalist movements (e.g., Germany) (Gruner, 2008). 

                                                 
72 Ray Kurzweil, a famed futurist who predicts that artificial intelligence will exceed any human 

intelligence by 2030, was hired as Director of Engineering at Google in 2012. His predictions 

were considered unrealistic 20 years ago, but his track record of success has made him 

mainstream in Silicon Valley. 
73 For example, Jules Vernes’ submarine Nautilus, in 20,000 Leagues Under the Sea, is a 

technological marvel used to explore and catalogue nature, aid the oppressed, and oppose 

militarism. 
74 Some notable technology-induced apocalyptic novels include: Walter Miller’s A Canticle for 

Leibowitz, 1959; Kurt Vonnegut’s Cat’s Cradle, 1963; Stephen King’s The Stand, 1978; and 

Margaret Attwood’s Oryx and Crake, 2003. 
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The variability of technology attitudes within an individual may be just as complex as 

temporal and geographical trends in society. Unlike the cultural theory of risk, the risk-as-feeling 

framework allows for variable attitudes about technology within a person. This agrees with our 

personal experiences where we may encounter individuals who are technological optimists in 

some fields of science (e.g., the potential for medical technology to improve people’s lives) 

while being technological skeptic in others (e.g., blaming modern telecommunications for loss of 

privacy).  

It also seems reasonable that dramatic personal experience could substantially change an 

individual’s technological risk attitude. Medical technologies, such as deep brain stimulation and 

artificial joints have become commonplace and can substantially improve quality of life. This not 

only makes invasive technology more familiar, it can also greatly increase the technological 

enthusiasm of the person benefiting from the medical device. This appears to be the case for the 

technology theorist and transhumanism advocate Michael Chorost (2005, 2011) whose hearing 

was restored by a cochlear implant. 

Conversely, technological optimists may evolve into skeptics when their jobs are made 

obsolete through technology. For example, an online educational system, created by educational 

technologists, could be used to increase access to education, but also to teach more students with 

fewer teachers. In this way, educators might innovate their way out of a job. Technology-induced 

obsolescence of this nature is common (e.g., travel agents, typists, mail carriers, video store and 

photo lab employees) and the trend is now reaching many of the skilled professions (cf. Rifkin, 

1995; Rotman, 2013). That said, policy regarding controversial research is generally made by 

individuals who have not been substantially displaced by disruptive technology. Furthermore, 
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many decisions regarding controversial research pertain to low-probability, high-consequence 

risks that tend to seem more theoretical than real.  

4.2 Principle of Controversial Research 

So far, we have discussed the origins and flexibility of technological risk attitudes. 

Despite the lack of a comprehensive theory, we do know that these attitudes appear to be 

influenced by a variety of factors including: culture, feelings, and personal circumstances. We 

also know that they are malleable and do change over time at both the individual and societal 

level. So does this have any implications for how controversial research decisions are made? 

Based on the complexity of technological risk attitudes, can any general statements be made?  

Let us start with the observation that very few lines of research have been banned or 

abandoned in the past for reasons not related to science or practicality. Many controversial lines 

of research and technologies, such as the practice of lobotomies, have been abandoned for lack 

of scientific value and better alternatives.75 However, the list of scientifically valid research 

stopped for moral reasons is relatively short and consists primarily of weapons technology (e.g., 

biological and chemical weapons research (cf. Tucker, 2012) or weather modification for 

military purposes76). Likewise, the list of highly restricted lines of research (e.g., embryonic stem 

cell research in the U.S.) is also short. Despite substantial ethical concerns or general public 

opposition, a wide range of controversial research activities are currently legal in the U.S. 

including: human cloning, cosmetics testing on animals, genetically modifying food, and medical 

testing on chimpanzees.  

                                                 
75 The inventors of the procedure were awarded the 1949 Nobel Prize in Physiology or Medicine 

which speaks to our inability to predict the long-term value of research. 
76 This is banned under the international 1978 Convention on the Prohibition of Military or Any 

Other Hostile Use of Environmental Modification Techniques, a.k.a., Environmental 

Modification Convention (ENMOD). 
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In general, the number of technologies and lines of research banned for moral or risk 

perception reasons is small enough to suggest a general principle of controversial research. 

Counterexamples, such as bioweapons research, serve as the few exceptions to the general rule.77  

Principle of Controversial Research 

No line of research or technology will be forbidden until it has been 

scientifically discredited, deemed impractical, or a viable alternative has been 

accepted. That is, research is rarely banned for moral reasons. 

 

A precursor to this principle is the premise that if something can be done, someone will 

view it as a legitimate project and try it. This then leads to the principle which posits that we 

generally do not stop research just because it is ethically controversial. The result is that 

controversial research generally proceeds until something eliminates the controversy. The 

controversy can be eliminated in one of several ways: new information or extensive experience 

reduces the perceived danger, a shift in cultural acceptance decreases opposition to the research, 

or an alternative technology eliminates the need for the research. 

A basis for this principle is a general attitude of inevitability attached to technology. The 

sense that technology controls us as much as we control technology is describe by social 

scientists as “technological determinism” (cf. Bimber, 1994).78 Likewise, recent popular books 

on the philosophy of technology, such as What Technology Wants (Kelly, 2010) and The Nature 

of Technology (Arthur, 2009), describe the “evolution” of technology. Even after specifically 

                                                 
77 Even bioweapons conforms to the rule to some degree because research continued in secret – 

on a massive scale in the Soviet Union – even after the research was banned (Leitenberg et al., 

2012). 
78 The term is associated with debates regarding the degree to which technology steers social 

change and how much of it is good or bad. 
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defining evolution as the development of a system over time, the authors occasionally use the 

term in ways that connote the theory of biological evolution. By using multiple meanings of 

evolution, these technologists reveal a mental metaphor of technology as independent and alive 

and perhaps uncontrollable.  

This biological paradigm also provides some insight into attitudes about technology. 

While technological skeptics might think of “living” technology as ominously virus-like and 

relentless, technological optimists would see it as benignly natural and inevitable. Although 

technological optimists embrace the concept of technological inevitability, even technological 

skeptics see an inexorable pull of technological progress; “we are free at the first step but slaves 

at the second and all further ones” (Jonas, 1984). The emphasis on describing the trajectory of 

technological progress also has implications for policy making. With an assumption of 

inevitability, technological discussions will tend towards predicting what will come next rather 

than discussing what should come next (i.e. technology ethics).79  

The principle of controversial research appears to be particularly true for emerging 

technologies. Emerging technologies are noted for rapid change. When the time between basic 

research and usable technology is very short, the process of societal reaction, evaluation, and 

public policy formulation is slower, cannot keep pace, and lags behind. Likewise, because the 

research and technology are often nearly concurrent, available empirical evidence may be of 

limited value in estimating the future trajectory of the technology (Chameau et al., 2014). In the 

absence of convincing data or tractable theoretical frameworks, policy makers may revert to 

                                                 
79 While there are academic communities working in specific subfields of technology ethics (e.g., 

biomedical ethics), the broader technology ethics community is surprisingly small considering 

the centrality of technology in modern society. Likewise, the primary focus on innovation 

literature is how to encourage innovation rather than normative discussions of where innovation 

should lead.  
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cautious permissiveness until more compelling evidence is available. That is, there is a pervasive 

fear of limiting technology development – especially in the face of marketplace competition and 

international military rivalry. Given the variety in technological risk attitudes, normative 

arguments rarely count as compelling reasons. The limitations of cultural theory in explaining 

the nature of technological risk attitudes suggests that these attitudes are distinct from political 

ideologies. However, the lack of shared values is a feature that opposing technological risk 

attitudes and opposing political ideologies have in common – appeals to values are largely 

unsuccessful in resolving debate. To further explore this idea, I next discuss the principle of 

controversial research in the context of three examples of emerging technologies. 

4.3 The principle in action 

4.3.1.1 Womb transplants  

While organ donation is a well-established lifesaving procedure, a recent example of 

controversial research is the transplantation of a uterus from a post-menopausal woman to a 

woman of child-bearing age without a functional uterus. In October of 2014, the first of a dozen 

successful transplant cases resulted in the birth of a premature, but otherwise healthy child 

(Brännström et al., 2014). Several bioethicists have noted that this procedure is not medically 

necessary and is rather dangerous: it requires transplanting not only the womb, but much of the 

surrounding uterine vasculature during a lengthy surgery; both donor and recipient have a 

substantial risk for thrombosis and infection; and the recipient is at risk for all the standard 

concerns of organ transplant rejection (Farrell and Falcone, 2015). While the surgeons involved 

appeared to be deeply concerned for the safety and mental well-being of their patients who were 

desperate to experience pregnancy, there was also the unsavory appearance of a race for personal 

scientific glory to be the first to successfully perform this procedure (Orange, 2014).  
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The principle of controversial research suggests that this line of research will continue – 

especially now that it has proven successful. The United Kingdom’s Health Research Authority 

has already granted ethical approval for ten transplants (Johnston, 2015).80 However, given the 

expense and availability of less dangerous alternatives (e.g., surrogacy or adoption)81, it is likely 

that this procedure will remain uncommon. The procedure is unlikely to be banned on account of 

ethical concerns, but it may be eventually abandoned due to its impracticality. The true end of 

the procedure will likely come when scientists are able to grow a new functional uterus from a 

woman’s own stem cells – a technically (and perhaps ethically) superior alternative. 

4.3.1.2 Embryo editing 

While gene manipulation using recombinant DNA techniques is decades old technology, 

new techniques82 have led to proposals to make genetic changes in embryos that are inheritable 

(i.e., germ line editing). This has raised concerns over potential multi-generational harm as well 

as a public backlash against “designer babies” (Carmen, 2014). In early 2015, the British 

parliament approved three-person in vitro fertilization (IVF) where a third person provides 

mitochondrial DNA to correct mitochondrial diseases (cf. Callaway, 2014; Wade, 2015). Some 

see this as a reasonable small first step, but caution that larger scale genome editing must await 

confirmation that it is safe (Baltimore et al., 2015). However, even mitochondrial editing is not 

without controversy. Research suggests that, rather than serving only as cellular power sources, 

mitochondria influence a range of cellular processes and are involved in multiple diseases 

                                                 
80 The approved UK clinical trials will use deceased donors to minimize potential patient harm.  
81 It is interesting the note that Swedish surgeons are world leaders in uterine transplant research 

partially due to the ban on the use of surrogate mothers in Sweden which, ironically, is deemed 

unethical. 
82 Genome editing, and synthetic biology in general, has been revolutionized since the discovery 

of the editing technique CRISPR-Cas9 (Ledford, 2015; Marraffini, 2015). Improvements in 

CRISPR editing systems are progressing rapidly (Ran et al., 2015; Zetsche et al., 2015). 
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(Hamilton, 2015). Proponents of mitochondrial replacement argue that the long history of inter-

racial marriages suggests that there are minimal concerns of mitochondrial mismatch for even 

the most genetically distant parents. Critics argue that the poorly understood role of mitochondria 

runs the risk of inadvertently introducing new genetic disease through mitochondrial replacement 

therapy. 

Hesitancy on germ line editing has been compared to the initial concerns regarding IVF 

(Cyranoski, 2015). This comparison is apt. IVF was initially controversial, and while its safety is 

still not universally accepted (Servick, 2014), it is a widely used and now standard medical 

technology. Stronger critics argue that we may be crossing a more fundamental ethical line and 

that a safer alternative is to use screening, rather than editing, to ensure that parents do not pass 

genetic diseases to their offspring (Lanphier et al., 2015). In a call for a complete ban on this 

research, Robert Pollack (2015) represents the strongest critics; “This opening to germline 

modification is, simply put, the opening of a return to the agenda of eugenics: the positive 

selection of ‘good’ versions of the human genome and the weeding out of ‘bad’ versions, not just 

for the health of an individual, but for the future of the species.”  

Some researchers are concerned that germ line editing will cause the public to restrict all 

gene editing activities. However, history and the principle of controversial research suggests 

otherwise. There have been very few calls in the U.S. for moratoriums in the biological sciences: 

recombinant DNA research in 1974, human reproductive cloning in 1997, and influenza gain-of-

function research in 2012 (Vogel, 2015). Of these three moratoria over the past 40 years, the 

recombinant DNA moratorium was lifted within a year (Berg and Singer, 1995). The human 

cloning moratorium is still unofficially in effect for federally funded research, however, human 

cloning was never banned despite legislative attempts in 1997, 2001, 2003, and 2005. The 
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moratorium was originally inspired by a spate of large animal cloning successes (e.g., Dolly the 

sheep). However, once there was proof of concept, scientific interest led elsewhere. More 

importantly, once it was found that defect rates were high in the cloned animals, commercial 

reasons to clone large animals disappeared.83 Thus, the U.S. moratorium applies to a largely 

abandoned line of research. The third moratorium is ongoing and will be discussed in more detail 

in Chapter 6. In summary, as long as there are realizable benefits, research on and use of a new 

biotechnology will continue.  

Current events appear to support this prediction. Chinese scientists have already 

attempted germ line editing with non-viable embryos obtained from fertility clinics in order to 

test the potential for curing a fatal genetic blood disorder  (Liang et al., 2015). While the study 

had a low success rate with more unintended mutations than expected, others believe the 

technology can be quickly improved. Despite divisions, the majority of the scientific community 

appears to be cautiously supportive of this work (Hinxton Group, 2015; Kaiser and Normile, 

2015; Martikainen and Pedersen, 2015; Miller, 2015; Savulescu et al., 2015). Other Chinese 

teams have already started similar work (Cyranoski and Reardon, 2015). 

4.3.1.3 Autonomous Weapons 

Perhaps the best counterexample to the principle of controversial research is in the field 

of autonomous weapons. In the last century, autonomous weapons essentially consisted of 

pressure-sensitive mines.84 However, there now are a number of robots and drones equipped with 

                                                 
83 One notable exception is a Korean laboratory that clones pet dogs. The success rate is low and 

the use of many donor and surrogate dogs has been called unethical (Stein, 2015). However, the 

price of $100,000 per dog has created a lucrative niche market that supports the principle of 

controversial research. 
84 The use of landmines was banned by most nations in the 1997 Ottawa Treaty (Anti-Personnel 

Mine Ban Convention). 
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lethal weapons in various stages of development that include fully autonomous operation (cf. 

Chameau et al., 2014). Proponents argue that autonomous weapons can minimize civilian 

casualties, while critics are concerned that these systems will lower the social cost of choosing 

war and will eventually be used universally by both police forces and terrorists (Russell, 2015). 

Led by computer scientist Noel Sharkey,85 there has been considerable effort to ban autonomous 

weapons through the Convention on Certain Conventional Weapons (Stone, 2013). 

Autonomous weapons systems may have the best chance of being banned on normative 

grounds for two reasons. First, a history of international weapons treaties (e.g., the 1968 Non-

Proliferation Treaty, the 1972 Biological Weapons Convention, and the 1993 Chemical Weapons 

Convention) suggest that weapons technologies are unique – there is some consensus that their 

potential harm clearly outweighs their potential benefits.86 Second, the 1997 Ottawa Treaty, 

which bans landmines, creates a specific precedent for banning (albeit simple) autonomous 

weapons.87 Nonetheless, countries leading the rapid development of this technology, including 

the U.S., the United Kingdom, and Israel, have argued against any new restrictions (Russell, 

2015). 

 

                                                 
85 Sharkey chairs the nongovernmental International Committee for Robot Arms Control. Its 

mission statement includes the normative premise that “machines should not be allowed to make 

the decision to kill people” (Stone, 2013). 
86 Along the same lines, the reprocessing of nuclear fuel has been banned in the U.S. since 1976 

due to concerns over nuclear proliferation. While the ban pertains to the use of a technology, it 

has had a chilling effect on related research (including breeder reactors) such that the functional 

outcome is the same. This suggests that fears of military/terrorist use of a technology are the 

most effective moral reason for banning a technology. However, it should be noted that calls to 

lift the reprocessing ban arise every few years and that reprocessing continues in other nuclear 

countries. 
87 A potential third reason is that every mention of autonomous weapons in the media at some 

point rather evocatively refers to them as “killer robots.” 
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4.4 Conclusion 

 In this chapter, we discussed how, in the absence of convincing evidence, technological 

risk attitudes often guide decision making. Furthermore, because these attitudes are often 

independent of particular technologies, any single analysis of a controversial technology is 

unlikely to change risk attitudes and thereby resolve a policy debate. History suggests that there 

is a general underlying trend in research that can be summarized as a principle of controversial 

research: questionable research is rarely abandoned for normative reasons. However, when 

stakeholders attempt to resolve a research controversy with a formal risk analysis, they run into 

the many epistemic and ethical value assumptions inherent to risk-benefit analysis. The irony is 

that formal analysis is usually reserved for the most important and controversial technological 

risk decisions – the very situation in which it is least likely to provide conclusive “answers.” In 

terms of management, this means that controversial research is likely to continue until it has been 

discredited or a better alternative has been found. 
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5 MANAGING CONTROVERSIAL RESEARCH 

So how might the inherent subjectivities of risk-benefit assessment and the principle of 

controversial research guide the management of R&D controversies? This chapter will first 

briefly review some ways of managing research that have been proposed in the past and then 

evaluate their effectiveness in consideration of the previous discussions. Finally, I propose a 

series of recommendations for improving the assessment and management of controversial 

research. 

5.1 Common risk management strategies 

There are a few general criteria that can be used in risk management (Wilson and Crouch, 

2001). First, one can attempt to maximize utility (i.e., seek maximum benefits for the minimum 

risk) which, ipso facto, lends itself to assessment by risk-benefit analysis. Second, one can 

attempt to solely minimize risk (zero risk being ideal) which leads to adopting a precautionary 

approach to technology management which can lead to technology bans. This is a common 

choice for extreme risks with deep incertitude. It is also a popular approach in Europe (e.g., 

Rabesandratana, 2015). Lastly, one can take a pragmatic technology-based risk minimization 

approach. This is often used in pollution control where regulations call for “as low as reasonably 

achievable” (ALARA) or “best available control technology” (BACT). This approach is often 

complemented by safety processes and training (e.g., CEN, 2012).  

The first and third approaches are useful when data is plentiful. However, these 

approaches are of limited value for emerging technologies and controversial research. The 

precautionary approach is more easily applied to these situations, but the fear is that it stifles 

innovation. 
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Predicting the future is a popular pastime with generally limited success. Detecting and 

responding to early signs of risk remains a fundamental issue in risk analysis (Aven and Zio, 

2014). More progress has been made regarding how to respond to risk events, but this is less 

helpful in situations where the consequences are potentially catastrophic. Additionally, even post 

hoc risk reduction is riddled with its own set of biases that prevent realistic reflection and 

improvement (Paté-Cornell and Cox, 2014). Furthermore, risk management is made more 

complex by the need to use different strategies for different risks (Renn and Klinke, 2004); 

science-based strategies (e.g., risk-benefit analysis and emergency management) are appropriate 

for risks that are well characterized, precautionary management is better for highly uncertain 

risks, and discursive strategies are best for risks that are well known, but the public consistently 

underestimates or overestimates.  

5.1.1 Engaging multiple perspectives 

A common prescription for high uncertainty risk management is to encourage substantial 

public involvement (Weinberg, 1972). Coeckelbergh (2009) posits that the public is critical to 

risk analysis because it serves as a source of “moral imagination” (Johnson, 1993) which lets us 

explore the consequences of our actions and imagine the plight of others. To this end, the U.S. 

Freedom of Information Act has helped open the process of public review of research (Jasanoff, 

2003). However, like all processes, idealized public participation, which includes a well-

informed, representative, and heterogeneous opinion, is difficult to achieve (Rossi, 1997). 

Likewise, increasing the number of stakeholders in a decision process can lead to increased 

confusion and general intransigence. Thus, public engagement, while widely considered a 

prerequisite to good risk management, is not guaranteed to be beneficial or sufficient itself.  
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Reaven (1987a) notes that citizen participation in technical policy decisions is often 

disappointing in practice because the participants start off overwhelmed by technical information 

and end up overwhelmed by their inability to judge conflicting expert assessments. Given the 

variety of epistemic and ethical value assumptions that are inherent to the risk assessment 

process, evaluating disputes in technological risk assessments is difficult enough for scientists, 

let alone the general public. One way to mitigate these issues is to provide “science literacy mini-

courses” to public participants that discuss the types of scientific disputes and the contingent 

nature of science and scientific consensus (Reaven, 1987a).  

As Reaven notes, one could also argue that the need for scientific literacy training 

extends to the scientists involved in research controversies. While most working scientists have 

formal training in methods and conduct of science, very few are educated as to the main schools 

of thoughts about its philosophical underpinnings. This may be why many scientists are 

ambivalent on questions about the nature of their work and why some scientists are even 

dismissive when these issues arise (e.g., Meyer, 2011). The roadmap of value assumptions 

detailed in Chapter 3 provides one potential framework for discussing the important assumptions 

in technological risk assessments with both scientists and the general public.  

It is also important to engage the internal scientific community (Yarborough, 2014). That 

is, to ensure accountable science, dissenting scientists must have open channels for voicing 

concerns where they need not fear retribution. Likewise, scientists should be encouraged to 

reflect on their work rather than assuming that the existing regulatory process (e.g., institutional 

review boards) will catch any ethical or safety issues. However, as discussed in the second 

chapter, the attention of experts tends to be concentrated on their area of expertise. Scientists will 

have a natural tendency to permissively promote science while security experts will tend to 
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conservatively restrict perceived risks (Selgelid, 2009). Because the science research community 

is largely self-regulated (with notable exceptions in nuclear research), this tends to reinforce the 

general principle of controversial research. Although a robust dialogue within the scientific 

community is healthy, Sarewitz (2015b) argues that “risk is more a political and cultural 

phenomenon than it is a technical one.” Thus, he cautions against letting unelected “privileged 

experts” (i.e., scientists, social scientists and ethicists) dictate the terms of technological risk 

debates. 

The sphere of dialogue in risk management can also be expanded by consulting literature. 

The value of literature to improve empathy and moral imagination has long been argued (e.g., 

Nussbaum, 1990) and more recently supported by research (Bal and Veltkamp, 2013; Kidd and 

Castano, 2013). Philosopher Hans Jonas (1984)88 called for “a science of hypothetical 

prediction” while still recognizing the impossibility of “preinventing” technology and the 

realization that the reach of modern technology often exceeds the reach of our of foresight. He 

argued that one of the best options is to cultivate an imaginative technological skepticism and 

suggested science fiction89 as a valuable source of inspiration for exploring the possible and 

laying the groundwork for risk management. In the case of technological risk analysis, science 

fiction may provide fertile ground for moral imagination – that is, a way to play out various 

future technological scenarios and explore their ethical implications. Likewise, this mode of 

exploration may also suggest risk management options. 

                                                 
88 Jonas (1984) suggested one of the earliest forms of the precautionary principle, “It is the rule, 

stated primitively, that the prophecy of doom is to be given greater heed than the prophecy of 

bliss.” 
89 Experts who might take umbrage at the idea of consulting science fiction regarding future 

uses, misuses, and unintentional consequences of technology might be more at ease if the works 

were rebranded as “technological eschatology” or something equally pretentious. 
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5.1.2 Critique of traditional risk management 

Despite our best efforts, history suggests that humans tend to be overconfident in their 

assessment of risk and good at rationalizing inadequate risk management after the fact (Paté-

Cornell and Cox, 2014). Some of these excuses for poor risk management include: 

uncontrollable forces (“acts of God”), unimaginable events (“black swans”), rare confluences of 

events (“perfect storms”), lack of precedent, excusable ignorance, conformance to standard 

practice, someone else’s responsibility, lack of legal liability, or even operator error. Although 

risk assessments are useful, unanticipated events with no historical precedent occur with such 

frequency that taking unrecoverable risks90 should be avoided (Taleb et al., 2009). Aven and 

Krohn (2014) suggest adopting a “mindfulness” approach to risk management which includes the 

following characteristics: learning from past failures and anticipating future failure; avoiding 

simplification of complex systems; being sensitive to operations; fostering resilience, and 

deferring to expertise (not necessarily authority). This approach does not differ appreciably from 

a more traditional risk analytic approach (e.g., Wilson and Crouch, 2001) except in that it 

emphasizes the incompleteness of any formal risk assessment and promotes a general skepticism 

to quantitatively bounding the certainty of our knowledge. 

A common theme in modern risk management is to increase the resiliency of a system in 

the face of deep uncertainty (Linkov et al., 2014). Physical systems can be made more resilient 

by increasing the redundancy or independence of functions. But how do we make a line of 

research or technology more resilient when the potential risk is in the outcome rather than the 

                                                 
90 The idea of avoiding unrecoverable risks is common in our personal lives. The insurance 

industry depends on the natural preference to avoid extreme losses if given the opportunity. For 

example, most people do not calculate the risk of their house burning down before buying 

homeowners insurance (Taleb et al., 2009). 
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system itself? We could try to make society more resilient to the effects of research and 

emerging technologies, but it is not clear that this is possible. It is also a rather unsettling 

approach if the outcome may be catastrophic. A more acceptable and practical response to a 

potentially fatal technology is to attempt to reduce the risk rather than make society more 

resilient (e.g., by increasing population or by geophysical barriers such as underground bunkers 

or space colonies). However, in light of the essential inevitability of technological progress as 

proposed in the general principle of controversial research, it would seem that technological risk 

can only increase. What are we to do? 

5.2 Inherent safety 

Even if we accept the idea that controversial research will usually continue until it is 

discredited or something better comes along, we need not accept that research must be inevitable 

and unfettered. Between the extreme positions in risk management of outright banning 

technologies via the precautionary principle and complete permissiveness due to technophilia or 

fatalism, lie the traditional methods of risk management which fail to resolve controversy. This 

section describes the concept of “inherent safety” as a more satisfying, moderate risk 

management strategy.  

The principles of inherent safety were first developed in the chemical industry (Kletz, 

1978). If we define an accident as bad effects resulting from the combination of a material 

hazard and an instigating event (Srinivasan and Natarajan, 2012), then inherently safe design 

attempts to reduce the bad effects by reducing or eliminating the hazard. In contrast, 

conventional risk management generally focuses on reducing the likelihood of the instigating 

event that causes an accident through risk-reducing procedures added to an existing or near-

complete process. The distinction between reducing the hazard versus reducing the likelihood of 
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the bad event has also been termed primary and secondary prevention, respectively (Hansson, 

2010a). By selecting safer materials during the early design phase, overall risk is reduced far 

more than by merely adding on safety systems or safety procedures as an afterthought (Kletz, 

1978). The basic principles of inherent safety consist of (1) minimizing the total amount of 

materials used, (2) substituting hazardous materials with alternatives that do not have the 

hazardous quality, (3) using materials under less hazardous conditions, and (4) simplifying 

processes to reduce errors (Kletz, 1985; Khan and Amyotte, 2003; Edwards, 2005). The formal 

inherent safety concept is frequently used in the chemical (cf. Khan and Amyotte, 2003; 

Zimmerman and Anastas, 2015) and nuclear engineering communities,91 but has not been widely 

adopted by scientists and engineers in other areas (Srinivasan and Natarajan, 2012). Inherent 

safety has been described as common sense, but not common knowledge (Khan and Amyotte, 

2003). 

Inherent safety is one of many techniques within the field of safety engineering, but it is 

fundamentally different from the others in that they focus on secondary prevention (Hansson, 

2010a). These other approaches include (Möller and Hansson, 2008): safety reserves, where 

reserve capacity is included in the design (e.g., safety margins and safety factors); fail-safe 

design, where a system is designed to fail in a way that minimizes damage (e.g., self-shutdown 

and safety barriers that isolate failure); and procedural safeguards (e.g., warning systems, safety 

audits, and safety training). These traditional approaches are applied to a variety of situations 

ranging from the mundane to existential threats (e.g., Jebari, 2014).  

                                                 
91 In the nuclear engineering community, there is a different emphasis on the basic inherent 

safety principles due to the difficulty of reducing the hazardous material which is fundamental to 

the nuclear power process. Rather than reducing the material, the emphasis is on reducing 

hazardous conditions (e.g., designing systems that are incapable of reactor core meltdowns). 



 

115 

 

Another quality that sets the inherent safety concept apart from other risk management 

methods is its ability to address security concerns (Hansson, 2010a). For example, a secondary 

prevention measure, such as removing all ignition sources from proximity to an explosive agent, 

is of little security value; malevolent actors will bring their own ignition source. Likewise, 

terrorists are attracted to hazards that already instill public dread. Inherently safe design makes 

terrorism more difficult by removing or minimizing the exploitable hazard. 

Because safety has traditionally been the concern of engineers at the production level, the 

R&D community often fails to consider these principles in the early stages of research when the 

most impact can be made (Edwards, 2005). However, inherent safety in research is sometimes 

recognized in hindsight. A Centers for Disease Control and Prevention report (CDC, 2014) 

summarizing an internal review of the June, 2014 exposure of laboratory workers to potentially 

viable B. anthracis at a CDC bioterrorism response lab, noted that a low-risk non-pathogenic 

strain could have been substituted in the experiment.92 It is also interesting to note that in its list 

of responses, the report focuses on secondary prevention – primarily in the form of revised 

biosafety protocols and procedures. A reference to reducing the hazard (i.e., inherent safety) is 

made only within the fifth of eight recommendations. It appears that the philosophy of inherent 

safety has yet to be embraced in the biological sciences.  

The findings of the report also reinforce two previous arguments. First, even at facilities 

with multiple safety barriers and extensive training, unanticipated errors do occur. This suggests 

that traditional risk management solutions will not allay public concerns regarding potentially 

                                                 
92 The experiment was testing whether a new mass spectrometer could quickly detect B. 

anthracis. However, the instrument manufacturer stated that the instrument could not distinguish 

between virulent and avirulent strains of the same species. Thus, using a non-pathogenic strain 

would have yielded the same results. 
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dangerous research. Second, considering safety in the research design phase can often 

accomplish the same scientific goals while sidestepping controversy.  

Edwards (2005) outlines several reasons why inherent safety has been slow to catch on in 

industry. Ironically, the main reason for the slow adoption is risk aversion. Businesses are 

hesitant to fix things that do not appear to be broken93 and do not want to incur the potential risks 

of deviating from tradition and known practices. Costs may be incurred by redesigning processes 

or efficiencies may decrease. Speed-to-market and market share may be jeopardized by 

introducing new ideas.  

These concerns also constitute potential roadblocks to using inherent safety principles in 

controversial research. By its nature, research is full of new ideas, but researchers often use well-

established (and peer-reviewed) techniques in the race to new scientific findings and innovation. 

Thus, scientists may be just as hesitant to incur the extra expense and lost time needed to institute 

inherent safety principles. Researchers who are focused on work efficiency may view safeguards 

that are already in place as onerous and may see any additional requests as superfluous. 

However, public pressure and threats to funding may lead scientists engaged in controversial 

research to view inherent safety as a reasonable compromise. 

 Inherent safety, like all human endeavors, is limited by knowledge and creativity. That 

is, in order to invoke inherent safety, one must realize that a planned course of action is 

potentially unsafe. Likewise, inherently safe alternatives are not always obvious and may require 

considerable innovation. However, engaging multiple perspectives can help offset limitations of 

imagination.  Ultimately, the primary value of inherent safety is that it provides a complementary 

                                                 
93 This is a common attitude in risk management (and most human activities). Even systems with 

many “near misses” are considered to be safe until something too egregious to ignore occurs 

(Paté-Cornell and Cox, 2014). 
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philosophical approach to standard probabilistic risk analytic thinking which often treats the 

hazard as a given (Johnson, 2000).  

An inherently safe design has a specific aim; to reduce a perceived risk. Yet, a design 

change can create a new unforeseen risk that did not previously exist. To avoid trading one 

potential risk for another, unrecognized risk, efforts to create more inherently safe research 

benefit from thorough risk exploration using the many tools of risk analysis.  

5.3 Recommendations 

In Chapter 2, I reviewed several approaches to valuing research and technology 

development activities. These approaches are interrelated, yet can yield disparate assessments. 

Likewise, in Chapter 3, I reviewed some of the many value assumptions inherent in risk 

assessments that hinder claims of objectivity and neutrality. These lines of argument detail why 

risk-benefit analysis is more appropriate for evaluating well-defined problems with copious data 

(e.g., many business and engineering decisions), but has limited utility for resolving debates over 

controversial research where uncertainty is high and data are sparse. Does this mean that risk-

benefit analysis (RBA) has no place in assessing and managing controversial research? No, it 

means that, RBA, as commonly used, is ineffective as a primary decision criterion. However, by 

following a few heuristic recommendations, we can considerably improve the usefulness of RBA 

in assessing and managing controversial research. 

Recommendation 1: Change expectations. 

Expecting all RBA to yield clear-cut, consensus-building answers is unrealistic. The 

controversies surrounding some lines of research are based on fundamental disagreements over 

ethics and public risk that will not change due to the findings of a few assessments. Certain 

issues are more amenable to RBA than others for reasons already noted. For example, we would 
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expect that an RBA dealing with automotive safety would be far less controversial than one for 

euthanasia techniques. 

Furthermore, any request to conduct an RBA will not be accompanied by a well-defined 

procedure because there is no consensus regarding what constitutes the proper accounting of 

benefits or what underlying value assumptions should be used to estimate risk. By focusing on 

the “correctness” of an assessment, stakeholders lose an opportunity to use the assessment 

productively as a risk exploration tool. The simple solution is to make sure that all stakeholders 

(i.e., policymakers, analysts, scientists, and the general public) understand that formal 

assessments are part of the decision process, not the entirety (or even the largest factor) of the 

decision process.  

Recommendation 2: If a quantitative assessment is desired, ask narrow questions. 

Although it may be inappropriate for stakeholders to expect definitive “answers,” we 

must be realistic. The effort of generating a time-consuming and costly RBA carries an 

expectation that the results will translate into a decision. Another way to avoid disappointments, 

besides by moderating expectations, would be for assessments to address narrower questions that 

are more likely to be “answerable.” Narrower questions are also more comprehensible and 

comparable.  

As discussed in Chapter 3, there is a considerable tradeoff between broad, comprehensive 

assessments and narrow ones. However, if we follow the previous recommendation, a narrow 

assessment need not address all concerns, but rather becomes one more piece of evidence within 

the broader scientific and political debate. In this sense, an RBA can successfully generate an 

answer to part of the debate rather than fail to provide the answer to the entire debate. 
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Recommendation 3: Use broad uncertainty assumptions. 

Even for RBAs that address narrow questions, it is important that the assessments have a 

broad conception of the uncertainty inherent in the work. This includes acknowledging that: not 

all uncertainty can be represented probabilistically without making important assumptions; 

dependencies among parameters are not always well characterized; and the correctness or 

completeness of the model is often uncertain. The value assumptions roadmap outlined in 

Chapter 3 can be used as a guide. Even in a highly quantitative assessment, broader notions of 

uncertainty can still generate informative results (e.g., Rozell and Reaven, 2012). 

Recommendation 4: Use multiple methods. 

When resources allow it, an RBA will benefit from using multiple techniques developed 

from risk analysis (e.g., using both a Monte Carlo simulation and probability bounds analysis). 

The work in Chapter 2 and Chapter 3 provide guidance on the range of methods available. The 

value of this approach is to give proponents of various statistical techniques (based on their 

epistemic preferences) a chance to feel confident about the results of the assessment. Likewise, 

individuals without any methodological preference will be comforted by the thoroughness of the 

analysis and the range of analytical frameworks.  

Recommendation 5: Use the RBA to design better research. 

In addition to any narrow quantitative assessments performed, a broad qualitative 

assessment should also be performed. Used in conjunction with the previous recommendations, 

the RBA should be useful for exploring risk. This can also lead to rethinking the purpose of the 

research and seeing if the same ends can be accomplished by inherently safer or more ethical 

means. By and large, the best opportunity to resolve a debate over controversial research is to 

apply the “inherent safety” design framework when possible. 
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5.3.1 Example: Gene drive risk assessment 

The following example applies these recommendations to a recent risk assessment for 

controversial research. The research involves the proposal to eliminate some species of mosquito 

using a “gene drive.” The general concept is that a species of mosquito can be driven to 

extinction by releasing genetically engineered males into a wild population. The engineered 

males are encoded with homing endonuclease genes (HEGs) – genetic elements that copy 

themselves into chromosomes in which they do not already appear (Burt and Koufopanou, 

2004). In this case, the HEG generates a version of an enzyme, I-Ppol, (originally found in a 

slime mold) which has been engineered to only be expressed during sperm development and to 

cut and destroy X chromosomes (Galizi et al., 2014). The result is that male mosquitoes only 

pass on Y chromosomes and the offspring of these engineered males are entirely male. This 

male-dominant trait is passed on to subsequent generations and eventually the species is driven 

to extinction when there are no more females. 

The benefit to humans of eliminating the primary vector for a multitude of diseases (e.g., 

malaria, yellow fever, and dengue fever) is obvious. According to WHO estimates, malaria alone 

results in approximately half a million deaths (mostly children) each year. However, any 

proposal to drive a species to extinction is inherently controversial. While many biologists 

believe that the ecological niche occupied by mosquitoes would be quickly filled by other insects 

(Fang, 2010), mosquitoes provide an ecological service as pollinators and are an important food 

source for many species (Poulin et al., 2010). The substantial biomass that mosquitoes comprise 

in some arctic and aquatic environments hints at the potential impact of their absence. Likewise, 

the concern that a gene drive mechanism might be transferred to another species and drive an 

unintended target to extinction is reason enough to proceed with great caution. 
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A report (Hayes et al., 2015) from the Australian Commonwealth Scientific and 

Industrial Research Organization (CSIRO) assessing the mosquito gene drive research exhibits 

some of the qualities of a good risk assessment as described in the previous recommendations. 

First, the assessment follows the second recommendation by limiting itself to a relatively narrow 

task - to “identify and quantify the ecological and human health risks associated with an 

accidental release of the I-PpoI mosquitoes from African insectaries in Burkina Faso, Mali and 

Kenya.” The report does not attempt to identify or quantify all risks or benefits associated with 

gene drive technology and should be seen as a small piece of a much larger debate. 

Likewise, the report assesses a more inherently safe version of the gene-drive technology. 

Early versions of the I-Ppol HEG inadvertently created fully sterile male mosquitoes 

(Windbichler et al., 2007). This creates the need to continually add genetically engineered males 

to the wild population in order to decrease total population. While this would be an economically 

unfeasible mosquito control mechanism in most regions where malaria is endemic, the self-

limiting nature of this HEG variant is useful for early stage research. 

The report also follows the fourth recommendation by using multiple methods to identify 

and quantify the potential hazards. A Boolean literature search was conducted to determine prior 

efforts to identify or quantify the risk of gene drives. Likewise, hierarchical holographic 

modeling (Haimes, 1981; Haimes et al., 2002) was used as a complementary approach to identify 

potential hazards. The basic idea of hierarchical holographic modeling is to create a detailed 

matrix of all the potential interactions of processes within a complex system. This matrix can 

then serve as a systematic guide for inductively investigating risk. Finally, fault tree analysis 

(Vesely et al., 1981) was used to deductively identify and quantify risks. Additionally, two 

methods were used for combining expert opinion within the fault tree (i.e., “Aggregate First 
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Then Convolute” (AFTC) and “Convolute First Then Aggregate”(CFTA) (Hayes et al., 2015, 

40)). 

The CSIRO report has mixed success at following the third recommendation, to use 

broad conceptions of uncertainty. The assessment does consider a range of risk estimates based 

on assumptions of both independence and strong positive dependence between model 

parameters. However, the assessment assumes the independence of expert opinion and does not 

consider interval uncertainty to express incertitude. 

If one follows the fifth recommendation, the purpose of the RBA becomes risk 

exploration and communication. In this respect, the CSIRO report is less than ideal as a risk 

communication tool. First, the report is very technical and requires advanced knowledge of 

biology and risk analysis to comprehend. If the report is to be understood by non-technical 

policymakers or the general public, more introductory material is needed. Even the executive 

summary, where the most essential points of a report are distilled, is full of technically precise 

terms, such as "eukaryotes" and species "complex," which are jargon to non-biologists. This is 

unfortunate because the authors have unintentionally ceded control of risk communication to the 

technical policy advisors who will be needed to translate the material into plain English. 

Likewise, the report may be giving an unintended false impression of precision by its 

combined use of Monte Carlo sampling of elicited probability density functions and linear 

pooling of expert opinion to create a quantitative assessment. It is understandable that the CSIRO 

report used expert opinion for model quantification due to the practical limitations of observing 

some of the modeled phenomena (i.e., it is “trans-science” (Weinberg, 1972)). However, 

unnecessary complexity of analysis is discouraged. As Casman et al. (1999) note, “a prescription 

that one’s analytical formulation should grow in complexity and computational intensity as one 
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knows less and less about the problem, will not pass the laugh test in real-world policy circles.” 

The CSIRO report authors have drawn a somewhat arbitrary line between qualitative and 

quantitative analysis; “Quantitative risk estimates in our opinion are essential to meet science 

quality criteria, [94] and we achieved this by using direct elicitation to fit subjective probability 

density functions to expert beliefs about the probability of the events in fault trees, and for a set 

of well established vectorial capacity parameters” (Hayes et al., 2015, 97). While the goal of 

quantitative assessment is laudable, the public often conflates the quantitative/qualitative 

distinction with the empirical/subjective distinction. Particular care is needed to properly 

communicate to users of the report that it is a quantitative risk assessment using subjective 

probabilities with difficult-to-estimate reliability. 

5.4 Conclusion 

This chapter reviewed standard suggestions for risk management of controversial 

research and their general shortcomings. Based on the previous chapters, five recommendations 

were made and an example was used to illustrate the recommendations and how they can 

improve RBA. Of the many risk management methods, the most universally acceptable way 

forward is to attempt to remove the characteristic of the research or technology that is causing 

the controversy while retaining the essential elements. In the next chapter, the ideas laid out so 

far will be applied to the example of controversial research presented in the first chapter – highly 

pathogenic avian influenza gain-of-function research.  

  

                                                 
94 According to the authors, “A scientific risk assessment should be transparent, repeatable and 

wherever possible make predictions that are measurable and falsifiable.” 
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6 THE GAIN-OF-FUNCTION RESEARCH DEBATE 

In this final chapter, I revisit the influenza gain-of-function (GOF) research controversy. 

The history of the controversy and resulting moratorium was outlined in the first chapter. Here I 

apply the arguments presented in the previous chapters to this controversy with special attention 

given to the risk management proposals made by the scientific and science policymaking 

community to resolve the controversy. Finally, I summarize findings and draw some general 

conclusions that may be helpful to those attempting to manage controversial research. 

6.1 Timeline 

The moratorium instituted on October 17, 2014 by the U.S. Office of Science and 

Technology Policy called for “a robust and broad deliberative process” to “evaluate the risks and 

potential benefits of gain-of-function research with potential pandemic pathogens” (OSTP, 

2014). The proposed multi-step process consists of a series of meetings by the NSABB and 

National Research Council (NRC) to draft recommendations on how a risk-benefit analysis 

(RBA) should be conducted followed by an evaluation of an independently performed RBA 

(Figure 5). The primary role of the NRC meetings is to provide additional feedback from the 

scientific community while the NSABB provides the final recommendations to the Secretary of 

HHS and Director of the NIH. The initial NSABB meeting was conducted on October 22, 2014 

(NSABB, 2014b) followed by a conference call on November 25, 2014 (NSABB, 2014a). The 

subsequent NRC symposium occurred on December 15-16, 2014. A May 5, 2015 NSABB 

meeting was held to discuss and adopt the framework of the independent RBA. Another NSABB 

meeting to discuss ethical issues surrounding GOF research and receive an update on the 

ongoing RBA was held on September 28, 2015. As of this writing, the next NSABB meeting is 

scheduled for January 7 and 8, 2016. 
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A $1.1 million contract, administered by the NIH Office of Science Policy, was awarded 

to an independent Maryland biodefense consulting firm, Gryphon Scientific, on March 11, 2015 

to conduct the RBA within 12 months (NIH, 2015). The original notice (NIH, 2014) requested 

that any RBA “be comprehensive, sound, and credible” and use “established, accepted methods 

in the field.” 

 

Figure 5: NIH proposed deliberative outline (from Sharples et al., 2015) 

6.2 The Risk-Benefit Assessment 

Evans (2013) summarizes the most commonly mentioned risks and benefits of influenza 

gain-of-function research. The primary risks are that: (1) a virulent engineered virus could be 

accidentally released causing a pandemic, and (2) an engineered virus could be intentionally 

released in an attempt to start a pandemic. The potential benefits include: (1) increased 

understanding of influenza virology, (2) improved influenza pandemic surveillance, and (3) more 
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effective and faster-to-market vaccines. There are also additional risks attached to the debate that 

are not specific to the research. That is, any restriction of research is accompanied by loss of 

academic freedom, chilling effects on related research, and the potential that the research will be 

ineffective.  

An important distinction regarding the potential benefits of GOF research is that it is 

conditioned on factors outside the laboratory (Evans, 2013). That is, while the risk of accidental 

release is largely controlled by laboratory conditions, the beneficial use of any knowledge 

discovered depends on the public health system which varies widely among communities, 

regions, and nations. For example, one year into the 2009 influenza pandemic, there was still 

only enough vaccine for a quarter of the world’s population (Stöhr, 2014). Given the uneven 

distribution of basic public health services in the world, any research benefits will be far more 

limited in extent than in an ideal world. The problem is further exacerbated by the frequent 

regression of public health services in regions experiencing war and failed governments (Hotez, 

2015). In summary, the concern is that the potential risks are more immediate and wide-spread 

than the potential benefits. 

While procedures for performing biosafety and biosecurity risk assessments for 

dangerous pathogen research have been previously formalized (e.g., Caskey et al., 2010), the 

NSABB (2012a) made a first attempt at RBA guidelines for the avian influenza controversy 

(Figure 2). However, the emphasis at the time was specifically focused on potential misuse and 

the decision whether to communicate or censor research results. The framework does not 

consider accidental laboratory release – a concern just starting to gain widespread attention at the 

time it was written (e.g., Berg, 2012). Thus, the NIH proposal for a comprehensive RBA for 

gain-of-function research has no obvious precedent to emulate.  
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Figure 6: RBA guidelines (modified from NSABB, 2012a) 

 

The NIH (2014) notice for an independent third-party95 RBA included the following 

requested elements: 

  updated literature on key pathogen characteristics needed for qualitative and 

quantitative assessments, such as dose-response; 

 a comprehensive list of potential accidents and events;  

 a detailed analysis of a sub-group of risk events; 

 estimates of event frequencies based on available data and extrapolations; 

 estimates of consequences of exposure events; 

 a qualitative and quantitative risk assessment for selected pathogens and events 

that includes sensitivity and uncertainty analyses and addresses the following 

issues: biosafety, physical and personnel security, proliferation, information risk 

(e.g., publication risk), international relations, national security, and 

environmental risk; and 

 a qualitative and quantitative benefits assessment that includes identifying less 

risky alternatives with similar benefits that addresses the following issues: the 

value of information of the research and improvements in surveillance, 

therapeutics, diagnostics, vaccines, international relations, and national security. 

                                                 
95 An independent third-party analysis should not be confused with an impartial analysis. 

Analysts are human and may be influenced by the hiring organization, social pressures, and 

cultural norms. Likewise, there is a trend towards specialization among analysts as they are 

expected to quickly ascertain all the relevant information, key stakeholders, and alternatives (von 

Winterfeldt and Edwards, 2007). Analysts trained and embedded in the field of interest are more 

likely to have a strong personal position at the outset and in a small research community it is 

even more difficult to find someone both qualified and independent.  
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The many value judgments inherent in the RBA process have been previously described 

as well as the importance of not using RBA as a method to avoid the responsibility of making 

difficult decisions (see Chapter 3). This was well summarized by Baruch Fischhoff, an NRC 

symposium planning committee member, “Anybody who thinks that putting out a contract for a 

risk-benefit analysis will tell the country what to do on this topic is just deluding themselves” 

(Sharples et al., 2015). 

Another difficulty of assessing and managing GOF research is the broad range of 

activities the term includes. The primary concern is research using potentially pandemic 

pathogens that may result in increased virulence, transmissibility, or pathogenicity. However, as 

discussed at the NRC symposium (Sharples et al., 2015), gain-of-function research is already 

widely used in virology for multiple beneficial and largely benign purposes. Some examples 

include: increasing vaccine yields (Schultz-Cherry et al., 2014), expanding genomic sequence 

surveillance databases (Davis et al., 2014), and creating animal models of human viruses to aid 

further research. Furthermore, naturally occurring gain-of-function mutations are common in 

research labs that work with RNA viruses. Thus, banning GOF research leading to increased 

virulence, transmissibility, or pathogenicity is difficult to accomplish in practice without casting 

a wide net. Because the current state of science is unable to predict what genomic changes will 

increase danger, it is not possible to foresee what experiments will result in new undesirable 

traits.  

However, proponents of the moratorium point out the wording was specific enough that 

only 18 federally funded projects were affected and that public health surveillance and vaccine 

development activities were exempt (Lipsitch and Inglesby, 2014). Rather, critics of the 
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moratorium may be attempting to “muddy the waters” by widening the definition of what might 

be banned in hopes of weakening support for any restrictions. 

This is not the only debate over terminology. It has been argued that the use of the term 

“pandemic” is an “apocalyptic rhetorical device” (Casadevall et al., 2014b, 2014d) that preempts 

any reasonable discussion of risks and benefits by appealing to our innate fear of rare, but 

catastrophic events. However, this assumes the risk of pandemic is rare despite considerable 

disagreement among informed scientists regarding the likelihood of such an event. Ironically, 

labeling the use of "pandemic" as rhetorical sophistry is itself a rhetorical trick because it 

dismisses a category of serious claims without due consideration of merit. 

6.2.1 Quantitatively estimating the risks and benefits 

While the NIH requests both qualitative and quantitative risk-benefit assessments if 

possible, the general expectation among the scientists involved is that a quantitative assessment 

should be performed (e.g., Lipsitch and Inglesby, 2014) under the assumption that numbers carry 

more credibility and may suggest solutions. Klotz and Sylvester (2012) performed a simple 

probabilistic risk assessment to argue that research with potential pandemic pathogens (PPPs) 

should be restricted. Starting with the assumption that the probability of release from a 

laboratory each year was 0.003 and that at least 42 labs worldwide were working with PPPs (in 

this case, highly pathogenic influenza, Middle East respiratory syndrome (MERS), or severe 

acute respiratory syndrome (SARS)), there is an 80 percent likelihood of a release every 13 

years. An updated estimate (Klotz and Sylvester, 2014) finds the risk of a pandemic over ten 

years due to laboratories working on PPPs is between 5% and 27%. 

Using BSL-3 lab infection data from Henkel et al. (2012), a simulation model for 

transmissibility, and historical pandemic data, Lipsitch and Inglesby (2014) estimate a 



 

131 

 

probability of creating a pandemic of between 0.01% and 0.1% per laboratory-year which would 

cause between 2 million and 1.4 billion fatalities. This yields an expected fatality rate of 2,000 to 

1.4 million per BSL-3 laboratory year.96 Alternatively, if using data from the National Institutes 

of Allergy and Infectious Diseases, the probability of pandemic would be between 0.05% and 

0.6% per worker-year with a resulting expected fatality rate of between 10,000 and 10 million 

per laboratory worker. When Lipsitch presented these calculations at the NRC symposium, Ron 

Fouchier, the lead researcher for the original controversial H5N1 paper, responded, “I prefer no 

numbers rather than ridiculous numbers that make no sense”97 (Sharples et al., 2015). 

A subsequent risk estimate from Fouchier (2015b) starts from the same data (Henkel et 

al., 2012), but then argues that highly pathogenic viral experiments occur in special facilities 

(BSL-3+) and, using the Erasmus MC facility as an example, estimates that risks are much lower 

due to extra physical barrier biosafety measures, lab personnel vaccinations, and available anti-

viral therapeutics. Thus, he estimates the risk of a laboratory acquired infection to be less than 1 

x 10-7 per person-year. Taking into account that any infected lab worker would have already been 

vaccinated against a homologous H5N1 virus, would be taking anti-viral medication, and would 

be quarantined, Fouchier estimates a lab-induced pandemic would occur every 33 billion years.98 

Fouchier concludes with the observation that there have been no confirmed laboratory acquired 

influenza infections or releases in decades which suggests current measures are sufficient. 

                                                 
96 As discussed in Chapter 3, expected utility (or disutility) can be an unhelpful way to express 

low probability-high consequence events, but that doesn’t seem to stop anyone. The economists 

seem to have won this battle so far. 
97 One must acknowledge the boldness required for a virologist to make such a retort to a 

Harvard epidemiologist. 
98 This is more than twice the known age of the universe. Thus, the calculated risk for all 

practical purposes is zero. 
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A reply by Lipsitch and Inglesby (2015) questions Fouchier’s claim that virology labs are 

safer than other BSL-3 labs. They also note that Fouchier’s calculations incorrectly account for 

the uncertainty associated with zero observed events.99 Furthermore, the assumption of zero 

events is unreasonable because viral laboratory-acquired infections have occurred in non-U.S. 

facilities (cf. Gaudioso et al., 2009) and underreporting is common. In separate comments, Klotz 

(2015) argues that Fouchier’s calculations use the wrong method of calculating the elapsed time 

of escape for a laboratory-acquired-infection and that his estimate of less than one laboratory-

acquired infection in one million years is too low. A reply by Fouchier (2015a) argues that Klotz 

does not provide “scientific justification” for higher estimates.  

Within this debate among competing risk estimates, there appears to be a disagreement as 

to not only what constitutes the appropriate methodology, but also what constitutes evidence. For 

example, Fouchier (2015a) does not believe that recent laboratory errors (most notably at the 

CDC) constitute relevant data because: the errors did not result in laboratory-acquired infections, 

the pathogen was not an engineered avian influenza virus, and the work was not conducted 

specifically in a BSL-3+ laboratory.  However, critics contend that these errors demonstrate the 

general failure of laboratory safety procedures that Fouchier’s calculations depend upon. That is, 

estimates that rely on all systems functioning as designed with no safety measures being 

bypassed by unforeseen circumstances is an incredibly optimistic assumption unsupported by 

history.100 

                                                 
99 Lipsitch and Inglesby reference the standard “rule of three” approach (e.g., Eypasch et al., 

1995) where the 95% confidence interval is [0,3/n] when no events are recorded in n 

observations. However, this approach is not universally recommended (cf. Winkler et al., 2002; 

Quigley and Revie, 2011). 
100 See the section on “inherent safety” in Chapter 5. 
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A similar debate over evidence arose when Rozo and Gronvall (2015) proposed that the 

1977 flu pandemic was caused by a vaccine trial or vaccine development accident rather than a 

research laboratory release; they concluded that, “it remains likely that to this date, there has 

been no real-world example of a laboratory accident that has led to a global epidemic.” A 

critique by Furmanski (2015) argued that this nuanced position was largely irrelevant to the GOF 

debate. Since vaccine development is still a primary goal of GOF research, a vaccine mishap is 

no less worrisome than a research lab release – an epidemic could occur regardless of which lab 

made the fatal error. 

This doubt is corroborated by a previous study that estimated a probability of between 

5% and 15% that a laboratory escape event would not even be detected (Merler et al., 2013). 

There is also considerable doubt regarding the availability of relevant data for a realistic 

biosafety risk assessment. An investigative report of U.S. biolabs (Young and Penzenstadler, 

2015) argues that a reliable biosafety assessment is not possible for many reasons, including: the 

federal government does not have a comprehensive list of labs working with PPPs; there is no 

consistent requirement for reporting laboratory accidents; incidences are generally 

underreported; and a 2002 U.S. bioterrorism law is frequently used to limit public disclosure of 

findings. Additionally, the exposé found isolated, but persistent reports of researchers that 

intentionally ignored biosafety rules and regulations. 

An alternative view of government research oversight (Smith et al., 2015) suggests that 

the system is functional. A review of requests to the CDC’s Division of Select Agents and 

Toxins (DSAT)101 between 2006 and 2013 found that a total of 618 requests were made and that 

                                                 
101 The DSAT was primarily created to approve or deny requests to conduct experiments that 

would create drug resistance in select agents that would make disease control difficult.    
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85% were determined not to be restricted experiments. The authors, who work at DSAT, 

interpreted these data as evidence that researchers were conscientious and practicing an 

abundance of caution. This was further evidenced by only four known cases during that time 

where restricted experiments were conducted without prior approval.  It is difficult to determine 

where the DSAT program is an effective gatekeeper from these data alone. One can argue that 

the program is restrictive because only 34% of requests within the narrow purview of DSAT 

were approved. Conversely, in any given year, DSAT restricted less than a quarter of the 

requests received and, over the entire study period, about ten percent of requests were restricted. 

Without reviewing the actual risk assessments conducted (which are not public), it is hard to 

know if the program is effective, overly restrictive, or overly permissive.102 The effectiveness of 

DSAT has become more relevant to the GOF debate since H5N1 avian influenza was proposed 

to be added to the select agents list (HHS, 2015). The important benefit of this move is that the 

select agents list applies to all research in the U.S. – not just labs with NIH funding. The major 

disadvantage is that it would also remove the risk assessment process from public scrutiny. 

A review of the various assessments suggests that the most useful contribution of a single 

independent quantitative risk assessment may be to standardize the language of the debate. It is 

difficult enough to assess the quality of the data and validity of assumptions in each risk 

assessment. Comparison is made nearly impossible by inconsistent units (e.g., escape 

probability, risk per lab-year, and risk per worker-year) and different treatments of uncertainty 

(e.g., point estimates versus 95% confidence intervals). Using a single RBA as a starting point, 

                                                 
102 Based on the arguments in this dissertation, the likelihood that these risk assessments would 

be controversial themselves is quite high. 
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hopefully the various stakeholders will at least be able to argue using the same mathematical and 

terminological framework.  

Quantitative pandemic risk assessments are difficult because they are low probability-

high consequence events. As Fineberg (2009) said, “The first lesson is to avoid over-confidence 

about scientific insights. Major flu pandemics arise on average only about three times every 

century, which means scientists can make relatively few direct observations in each lifetime and 

have a long time to think about each observation. That is a circumstance that is ripe for over-

interpretation.” While formal tools for assessing the pandemic risk of influenza viruses exist 

(e.g., Trock et al., 2012; Cox et al., 2014), their effectiveness is yet unproven and hampered by 

substantial data requirements. 

6.2.2 Quantitative ≠ objective 

Despite the NIH request for a comprehensive risk-benefit analysis, there is 

acknowledgement that this may not be possible. During the NRC symposium, both Baruch 

Fischhoff and Ronald Atlas discussed the difficulty of estimating benefits from the GOF 

research, or more generally, any basic research due to its unpredictable and serendipitous nature. 

Likewise, the time frame for reaping any rewards is also unknown.103 

Further complicating the benefits analysis is the multiple ways in which evidence can be 

interpreted. For example, during the NRC symposium, it was widely acknowledged that genetic 

analysis of PPPs currently could not predict the resulting phenotype (cf. Russell et al., 2014). 

Critics of GOF research argued that this lack of prediction severely limited the benefits of this 

line research for any practical therapeutic purposes (e.g., vaccine design). However, proponents 

argued that this was the very reason that GOF research should continue. That is, the gap in 

                                                 
103 See Chapter 2 for a detailed discussion of assessing the benefits of research. 
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understanding between genotype and expression of phenotype must be closed and GOF research 

is the best way to obtain this valuable information. Thus, an argument against the current 

practical value of the research is interpreted by others as an argument for the value of the 

research from the perspective of basic research. In this case, interpretation of benefit is a value 

judgment regarding what is most important: current practical utility or basic research. 

The GOF controversy includes many other value-laden debates regarding risks, benefits, 

and assessment methodology. Proponents argue that GOF research has unique scientific value 

that should be considered a substantial benefit (Casadevall et al., 2014a). Meanwhile, critics 

argue that the scientific value may be no greater than safer alternatives which should be 

considered as an opportunity cost (Lipsitch, 2014). The debate also extends to disagreement 

regarding: the practical value of GOF experiments to policy makers (Casadevall et al., 2014b; 

Lipsitch, 2014); how we should count and compare the various ways of valuing research (e.g., 

intrinsic value versus instrumental value) (Casadevall et al., 2014c; Evans, 2014); and how 

publication criteria should compare public health risk to scientific merit (Dermody et al., 2014; 

Wain-Hobson, 2014). 

Value judgments pervade the discussions. For example, Fouchier (2015a) argues that 

most of the biosafety and biosecurity concerns raised also apply to natural pathogen research 

which is currently not restricted; thus, GOF research should not be restricted. Temporarily 

ignoring the possibility that the consequences of an engineered virus release may be much 

greater, the underlying assumption is that natural pathogen research is relatively safe. However, 

with the recent spate of laboratory accidents, there is renewed concern that even research on 

naturally occurring pathogens may require further restriction. 
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Considerable disagreement even exists regarding ancillary effects, such as the impact of 

the various moratoria, “pauses,” and potential regulation on the decisions of young scientists to 

work in virology (Casadevall and Imperiale, 2014a; Culp, 2014; Imperiale and Casadevall, 

2014). The overall purpose of summarizing and critiquing some of the arguments within the 

debate is to emphasize the many epistemic and ethical value judgments inherent to risk-benefit 

analysis and to provide evidence for prior claims that a consensus-building assessment is 

unlikely (Casadevall and Imperiale, 2014b). 

6.2.3 Ebola: lessons from a current epidemic 

It may be useful to look at a recent epidemic, the 2014 Ebola outbreak in West Africa, to 

help us understand the current state of pandemic risk assessment. Adalja (2014) provides some 

background information regarding the Ebola virus, which has caused a dozen outbreaks in Africa 

since it was first recognized in 1976. Ebola virus disease (EVD) is a hemorrhagic fever with 

mortality rates of the five known strains ranging from the Reston strain, which does not cause 

disease in humans, to the Zaire strain which kills 90% of those infected. Much like avian 

influenza, EVD is a zoonotic disease, but in this case the primary natural reservoir is bats rather 

than birds. In addition to the much higher mortality rate, Ebola is much less transmissible than 

influenza. These combined factors tend to limit outbreaks and the pandemic potential of EVD is 

much lower than influenza. 

Given its more modest growth characteristics, presumably an EVD outbreak should be 

easier to model than an influenza outbreak. However, multiple epidemiological models have 

overestimated the severity of the most recent EVD outbreak in West Africa (Butler, 2014b). A 

summary of predictions made in the latter half of 2014 is shown in Table 2. 
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Table 2: Accuracy of EVD predictions made in late 2014 

Source Model Timeframe Prediction Actual (WHO 

data) 

Gomes et al. 

(2014) 

EVD cases in 

Liberia 

10 weeks 9,400 - 47,000 < 7,000 

Pandey et al. 

(2014) 

daily cases in 

Liberia 

15 weeks 249 - 545 < 50 

Lewnard et al. 

(2014) 

reported cases in 

Liberia 

12 weeks 20,471 - 94,143 7,819 

WHO Ebola 

Response 

Team (2014) 

cumulative 

number of 

confirmed and 

probable cases 

6 weeks 5,740 in Guinea 

9,890 in Liberia 

5,000 in Sierra 

Leone 

1,820 in Guinea 

4,240 in Liberia 

4,602 in Sierra 

Leone 

 

The general inaccuracy of these short-range predictions (i.e., all less than 4 months) 

suggests that the progression of an epidemic in developing countries is still difficult to model. 

Although one could argue that localized EVD outbreaks are dissimilar to influenza pandemics, 

there are still valuable lessons. Like EVD, influenza pandemics move quickly and the early 

stages are critical to assumptions regarding public health interventions. Likewise, failure to 

understand all the transmission routes can make the end stages of a pandemic equally difficult to 

predict (Enserink, 2015). There is no reason to believe that the progression of a highly 

pathogenic influenza epidemic would be any easier to model. Furthermore, the translation of 

Ebola transmission risk studies performed in developing nations to developed nations presents a 

considerable challenge (Haas, 2015). The reverse is also true. Thus, any influenza pandemic risk 

assessment would need to account for local and regional conditions that affect an outbreak’s 

progression; averaged data tell a very incomplete story. 

Any quantitative assessments using these types of estimates in either the costs or benefits 

calculations are contingent upon debatable assumptions. That is, the stated confidence intervals 

should not inspire confidence. Estimates of costs are just as uncertain. For example, the WHO 
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estimated that the cost of controlling the West African EVD outbreak was $4.8 million on April 

10, 2014; $100 million on July 31, 2014; $490 million on August 28, 2014; and $988 million on 

September 16, 2014 (Butler and Morello, 2014). That the cost estimates increased by a factor of 

200 within six months demonstrates how quickly costs can change and how difficult it can be to 

estimate the cost of a potential outbreak when it is not known at what stage the outbreak will be 

discovered or contained. The economic impact of a potential pandemic would also be expected 

to change rapidly and would need to include a range of extraneous factors that would only 

increase the uncertainty. Despite these daunting uncertainties, quantitative influenza pandemic 

risks models have been created, for use in the insurance industry (e.g., AIR Worldwide, 2013), 

that attempt to characterize uncertainty using complex proprietary models and thousands of 

stochastic simulations. However, a realistic accounting of uncertainty in a risk assessment should 

show that our incertitude is so large as to hinder decisive quantitative decision making.104  

6.3 Underlying Risk Frameworks 

Vogel (2013) attributes discrepancies in biotechnology risk estimates to two competing 

narratives on technology development: biotech revolution and biotech evolution. The revolution 

narrative is a dystopian form of technological determinism (cf. Smith and Marx, 1994) that 

predominates the biosecurity community.105 The evolution narrative is based on the 

sociotechnical model of technology development (cf. Jasanoff, 2004) and comes from historical 

science and technology studies where the predominant view is that biotechnology is built on 

                                                 
104 A secondary relevant policy issue arising from the Ebola outbreak is the noticeable difference 

in how scientists and public officials estimated risk. Because the transmissibility of Ebola is 

relatively low, medical experts recommended against the quarantine of U.S. physicians returning 

from West Africa. However, the cost and effort of tracking and monitoring potential exposures 

led public officials to lean towards precautionary quarantines.  
105 This view of an unstoppable and rapidly changing biotechnology is common in science fiction 

literature —some of which has directly influenced U.S. biosecurity policy (cf. Wright, 2006).  
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slow and incremental innovation (e.g., Nightingale and Martin, 2004). In this case, the revolution 

narrative roughly equates to the skeptical technological risk attitude as discussed in the previous 

chapter, whereas the biotech evolution narrative is a more benign and optimistic technological 

risk attitude. The biotech evolution narrative also forms the basis for incrementalism, an 

argument frequently used by proponents of research freedom (e.g., Morens et al., 2012). The 

argument is that each published paper is usually a small addition to the corpus of a particular 

field. Thus, if previous papers were not restricted, then why limit the next one. This is why 

regulating entire lines of research rather than individual projects is a more effective approach 

(Rappert, 2014). 

At the December, 2014 NRC symposium, Gregory Koblentz discussed the propensity of 

risk attitudes to dominate risk assessments in the absence of good data (e.g., risks with few past 

events). In the context of biosecurity risks, Koblentz described three views: optimists, pessimists, 

and pragmatists. The optimists (e.g., Trevan, 2012) believe bioterrorism risk is exaggerated 

because: very few past terrorist attacks used bioweapons, terrorists tend to use more readily 

available weapons, and the technical obstacles are significant. Pessimists believe bioterrorism 

risk is understated because: the few past bioweapons examples show terrorist are innovative, 

terrorist acts have become increasingly lethal over time, terrorist ideologies embrace mass 

casualties, and technical obstacles are decreasing with time. Koblentz argued that these 

assumptions need to be clearly stated in any risk assessment. 

The parallels of these opposing views to the concepts of technological optimism and 

skepticism, presented in Chapter 4, are clear. While I would agree with Koblentz that 

acknowledging technological risk attitudes in an assessment is ideal, it may be difficult in 

practice because, as discussed in Chapter 3, the influence of value judgments is felt throughout 



 

141 

 

the risk assessment process. That aside, the important point here is that these opposing views 

interpret the same available data to reach conclusions that can result in very different and 

controversial risk management strategies.  

6.4 The Deliberative Process 

Despite a desire for a “broad deliberative process,” the NSABB and NRC evaluations are 

largely led by experts in virology and public health. It is unclear how strong a voice security 

experts, social scientists, and the general public have in the process. Furthermore, some of the 

most vocal experts have a vested personal interest in the outcome of the assessment. This has led 

to some confusing science communication. For example, when first presenting their findings, 

Fouchier and others made bold claims that influenza transmissibility in ferrets and humans was 

nearly equivalent. However, after the public backlash and subsequent threats to the viability of 

the research, Fouchier made much weaker claims regarding the use of ferrets as surrogates for 

humans. Lipsitch and Inglesby (2015) noted this confusion in the Fouchier (2015b) risk 

assessment. Similar confusing statements were made regarding the transmissibility and lethality 

of the engineered virus (Kahn, 2012). Sandman (2012) made the same observation but framed it 

in terms of risk miscommunication. That is, the initial Fouchier announcement played up the 

danger of the H5N1 research in order to attract attention from his peers and potential future 

funding. However, he made a miscalculation in that the public heard the same message, 

panicked, and thereby threatened all future funding for this line of research. Subsequent media 

interactions by Fouchier attempted to downplay the danger of the work. This is a good example 

of the balancing act that scientists performing controversial research must perform. The scientist 
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must appear to be cutting-edge while at the same time appearing safely incremental.106 This 

tightrope walk only becomes more difficult as modern communications technology makes it 

harder to separate messages intended for the internal science community from the external public 

community. 

The concerns of bias and narrow interests has led to calls for more active public 

engagement in the deliberative process; a reasonable request considering that most of the world’s 

population would potentially be affected by both the risks and benefits of GOF research 

(Fineberg, 2015; Schoch-Spana, 2015).107 That is, the public should have more access to the 

process than simply through public comment periods. The NSABB has acknowledged the need 

for public input (NSABB, 2015), but the deliberations are still unintentionally obscure and 

passive. A letter to the NSABB Chair (Roberts and Relman, 2015)108 voices concerns regarding 

the deliberative process: that it does not include enough risk assessment experts, is not 

sufficiently international, does not have enough public comment opportunities, is generally 

opaque and moving too fast, and has an inherent conflict of interest by being funded by the NIH. 

Likewise, the GOF debate has been critically compared to deliberative processes associated with 

genome editing research (Lipsitch et al., 2015). In the latter case, researchers have proactively 

                                                 
106 Fouchier has continued his risk miscommunications; his risk assessment of the frequency of a 

lab-induced pandemic was once every 33 billion years (Fouchier, 2015b). The number invites 

incredulity.  
107 There are further distinctions in that, while risks are broadly equivalent across the world, 

immediate benefits accrue primarily to individuals in developed nations with access to modern 

health care (Quinn et al., 2011). During the NRC symposium, Laurie Garrett of the Council on 

Foreign Relations noted this disparity, “We are having a very American conversation that 

excludes the rest of the planet.” 
108 The letter was signed by Richard Roberts, who won the 1993 Nobel Prize in Physiology or 

Medicine for work on gene splicing, and David Relman, a professor of microbiology and 

biosecurity specialist at Stanford who was also a former NSABB board member.  
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called for discussions of ethics and safety in order to gain and maintain public support for 

controversial but potentially widely beneficial biotechnology.  

Science policy making is an ethical process and therefore should not be left to the 

scientific community. “Scientists may approach their research with the best of intentions and the 

good of society in mind, but it would be a mistake to assume that they could know what is best 

for the world – and a tragedy to foist that burden on them” (Evans, 2013). As discussed in the 

previous chapter, engaging multiple perspectives increases the likelihood that important 

considerations in the risk assessment and viable options for risk management will not be missed. 

However, given the potential global reach of GOF research, truly inclusive public engagement at 

this scale is rarely attempted. The few previous attempts at international-scale public 

participation have failed to demonstrate any impact that justified the considerable effort, 

expense, and time involved (Rask, 2013). Some middle ground is necessary. 

Another possibility is that the deliberative process is harmed by the nature of the 

institutions in which it takes place. That is, the NSABB may be the wrong model for appropriate 

technical oversight of controversial life science research. In a proposal to improve the objectivity 

of science and technology assessments for policy decisions, Kantrowitz (1967) suggested an 

“institution for scientific judgment” where science experts would argue their position and a 

disinterested scientist from another field would act as a judge or mediator. This would separate 

the judge and advocate positions as is common in the U.S. judicial system. This “science court” 

proposal is an attempt to be proactive considering research controversies will eventual find their 

way to the legal system if not adequately addressed elsewhere.109 

                                                 
109 A deeper exploration of the concept of the science court can be found in the proceedings of a 

symposium held in Concord, NH, Oct. 6-7, 1994 (Field Jr., 1994). 
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6.5 Inherent Safety 

Fischhoff suggested that, rather than use the RBA to only inform the eventual policy 

decision, it should instead be used to improve research design (Sharples et al., 2015). This 

implicitly includes inherent safety considerations. While this idea seems commonsense, it is a 

departure from most previous work on biosafety and biosecurity (e.g., Gaudioso et al., 2009; 

Caskey et al., 2010) which solely focuses on improving risk management through formalized 

processes and training.110 The continued emphasis on these methods is unfortunate given the 

poor record of implementing such measures. For example, the European Committee for 

Standardization’s CWA 15793 framework for lab biosafety was adopted in 2008, but by 2013 

only a third of the European Biosafety Association’s 118 members were using the framework 

and 15% were unaware of its existence (Butler, 2014a). Likewise, there has been insufficient 

effort to integrate biosecurity considerations into the culture of the life sciences. An informal 

survey of 220 graduate students and postdoctoral fellows at top NIH-funded U.S. institutions 

found 80% of the respondents had bioethics or biosafety training while only 10% had biosecurity 

training (Kahn, 2012).111 

Lipsitch and Galvani (2014) make the same argument for improving research design 

when studying the potential human adaptation of avian influenza viruses, but in the context of 

                                                 
110 For example, one biosafety practices report states, “biosafety best practices and international 

guidance span a wide variety of biosafety risk mitigation measures, which can be categorized as 

engineering controls, procedural and administrative controls, and the use of personal protective 

equipment” (Caskey et al., 2010). 
111 Some theories for the dearth of biosecurity training include: a lack of perceived relevance 

(Rappert, 2014), a lack of familiarity, and a general reluctance to acknowledge that the research 

community might contain bad actors or that research could be used to cause harm (Kahn, 2012).  
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responsible research principles. They argue that most gain-of-function PPP experiments are not 

ethically justifiable because they do not meet the criterion of yielding humanitarian benefits not 

attainable by safer alternatives.112 Specifically, they contend that two main goals of GOF 

experiments, guiding vaccine113 development and interpretation of surveillance data, are better 

achieved by other methods. Lipsitch and Galvani present an alternative list of safer approaches 

which includes molecular dynamical modeling, in vitro experiments that involve single proteins 

or inactive viral components, and genetic sequence comparison studies (cf. Russell et al., 2014). 

They also note that the ultimate goal of reducing influenza pandemics is more safely, and 

potentially more successfully, pursued by research related to universal influenza vaccines, broad-

spectrum antiviral drugs (cf. Bekerman and Einav, 2015), and rapid vaccine manufacturing. 

Although Lipsitch and Galvani do not use the term, these alternatives all fall within the general 

concept of inherently safe design.114  

The calls for inherently safe design appear to have yielded some consensus from the 

opposing camps. One sign during the NRC symposium was Yoshihiro Kawaoka, a principal 

investigator of one of the two original studies that started the debate, endorsing the idea that 

some – but not all115 – research could be conducted with alternative techniques such as: loss-of-

function studies, using less pathogenic viruses, and phenotypic (i.e., observable traits) analyses 

                                                 
112 This is a principle taken from the 1947 Nuremberg Code – a foundational bioethics document 

that arose from revelations of Nazi medical research. 
113 It should be noted that vaccines are not inherently safe so including them within the goals of 

inherent safety is problematic. For example, one vaccine used in Europe during the 2009 H1N1 

influenza pandemic has been associated with over 1300 cases of autoimmune-induced 

narcolepsy (Wekerle, 2015). 
114 While they do not mention costs, it is also useful to note that these inherently safe research 

alternatives are probably more cost effective in that all the additional physical, procedural, and 

administrative layers of biosafety and biosecurity risk management are reduced. 
115 His own research was, of course, unalterable. 
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(Sharples et al., 2015). Proponents of inherently safe PPP research have been buoyed by recent 

successes. For example, Langlois et al. (2013) have shown that species-specific microRNA 

targeting can be used to conduct relevant animal model PPP research that still poses low risk to 

humans. As Michael Imperiale stated, “you can develop safer approaches to do these types of 

experiments; it just needs a little bit of imagination on the part of researchers” (Sharples et al., 

2015). 

The suggestions to incorporate inherent safety have had an impact. While the initial HHS  

guidelines (Patterson et al., 2013) did include the concept of inherent safety in its third 

criterion,116 the discussion among scientists and regulators was focused on a risk-benefit 

analysis. However, after critics started discussing legitimate alternatives, the most recent 

literature from the NSABB references “alternative methods that may be employed to yield 

similar scientific insights or benefits, while reducing potential risks” (NSABB, 2015). 

Because the application of inherent safety is relatively new to the biosciences, there are 

some special considerations. For example, the principles of inherent safety are more restrictive 

than when applied to the fields of chemical and nuclear engineering. The important difference is 

the ability of hazardous materials in the life sciences to replicate. Thus, inherent safety requires 

that a hazardous organism be eliminated, rendered unable to reproduce, or have survival 

limitations imposed. This last approach is being pursued in synthetic biology; genetically 

modified organisms have been created that require a synthetic amino acid for metabolic 

processes (Mandell et al., 2015). The organism can only survive in the presence of the 

anthropogenic metabolite and has shown no ability to mutate around this restriction.  

                                                 
116 “There are no feasible alternative methods to address the same scientific question in a 

manner that poses less risk than does the proposed approach” (Patterson et al., 2013). 
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As with all risk management, inherently safe design cannot be implemented unless a risk 

is perceived. For example, it was recently discovered that certain types of attenuated viruses have 

the potential to recombine into more virulent forms when the same livestock population is 

vaccinated with two different forms of the same vaccine (Lee et al., 2012). Traditional biosafety 

risk management would suggest that new policies and processes are needed to prevent double 

vaccinations. An inherent safety approach would focus on reformulating the vaccine (e.g., using 

an inactivated rather than attenuated virus) so as to remove the potential hazard altogether.  

6.6 Potential Outcome 

It would appear that the various accounts of laboratory biosafety lapses at the CDC that 

made the news in the summer of 2014 were the key events instigating the moratorium on gain-

of-function research on select PPPs. These breakdowns in safety at a well-respected institution 

raised alarm among the public and policymakers. The standard assurances by scientists that 

research was being conducted safely began to lack credibility. The result was a precautionary 

backlash that embodies what Jasanoff (2003) has labeled “popular technological assessment.” 

Fischhoff argues that such public responses often appear to ignore scientific evidence. However, 

they are not simply due to scientific illiteracy (cf. Reaven, 1987a) or incompetence,117 but rather 

a reaction to sophisticated analyses that lack credibility; invoking the precautionary principle is a 

common response (Sharples et al., 2015). The precautionary principle has already been 

                                                 
117 In Science, Technology and Society literature, this is referred to as the “deficit model” where 

any lack of public support is assumed to be based on ignorance and the solution is more 

explanatory lectures (Mooney, 2010). Meanwhile, surveys suggest that educational attainment is 

not strongly correlated with support for controversial science policy questions (Funk et al., 

2015). While more widely accepted today, the first discussions of the underlying hubris of 

scientists (Feyerabend, 1978) were treated as blasphemous.  
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suggested as a reasonable response to most PPP research by biosecurity experts (Klotz and 

Sylvester, 2012). 

At the NRC symposium, Alta Charo framed the GOF debate in terms of burden of proof. 

Whereas the government traditionally has the burden of proof to show that research may be 

harmful, after the declared moratorium on certain GOF research, the burden of proof now falls to 

the scientists to show that their work does not fall within the moratorium or that the benefits of 

their work exceed the risks. Harvey Fineberg, the Chair of the committee that organized the 

symposium, agreed with this idea noting that the NSABB had the burden of proof to halt the 

research when the controversy first arose in 2011, but that the burden of proof had shifted by 

2014. 

The principle of controversial research, as proposed in the previous chapter, suggests that 

the research will continue. Because the research was not banned outright, a cynical interpretation 

of the situation is that the pause was politically necessary for public attention to turn elsewhere 

and that the risk-benefit analysis will be used as a fig leaf for the continuation of the work. 

However, just as plausible, is that the research will be abandoned because inherently safe 

methods will have been found to be just as effective and less problematic for the scientists 

involved. Indeed, all the collected “public”118 comments from the November 2014 NSABB 

meeting (NSABB, 2014a) opposed the research with general agreement that the potential 

benefits were minimal and the risks were substantial. It remains to be seen whether the 

underlying culture of technological inevitability that is prevalent in the U.S. will overcome the 

moratorium. Nonetheless, it is a substantial shift from only a decade ago when both the NRC and 

                                                 
118 The comments were public only in the sense that they came from outside of the NSABB. The 

commenters consisted of six public health specialists, a virologist, and a policy analyst. 
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NSABB broadly supported self-regulation in the biosciences (Resnik, 2010). The situation is 

further complicated by a 2015 U.S. avian influenza outbreak that was the largest in decades 

(Hvistendahl, 2015). While the outbreak only affected poultry, the geographic immediacy and 

substantial economic losses may refocus public attention on this field of research.  

In either case, it is important to note that this moratorium only applies to research funded 

by the U.S. government. An optimistic assessment is that any recommendations or regulations 

will carry as much weight as the Recombinant DNA Advisory Committee which issues 

guidelines that are mandatory only for NIH-funded research, but have become widely accepted 

(Resnik, 2010). While the influence of federal funding within the global research community is 

still substantial, it is shrinking and it is not inevitable that even closely aligned communities, 

such as the European Union, will adopt U.S. policies.119 The international biotechnology 

regulatory landscape is inconsistent (Araki and Ishii, 2014). Some countries legislatively ban 

controversial biotechnology activities, some provide non-binding guidelines, while others have 

little or no restrictions at all.  

Other contemporary trends make biotechnology regulation even more difficult. Given the 

increasingly competitive nature of NIH funding and the decreasing cost of advanced labs, the 

proportion of biomedical scientists in the U.S. working independently of federal funding is 

growing. While gain-of-function research on PPPs is conducted solely in well-funded labs with 

strict biosafety measures, the issues that underlie this debate are similar to controversies 

associated with synthetic biology – a field that has a much more do-it-yourself independent lab 

culture that includes entrepreneurs trained in non-biological fields. 

                                                 
119 This was seen in the WHO’s and NSABB’s conflicting assessments for the original H5N1 

papers (see Chapter 1). 
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6.7 Lessons on Managing Controversial Research 

Lessons learned in a particular case study can be quite useful when presented to a larger 

audience. The research community is not monolithic; insight from past events can be quickly 

forgotten and best practices in one field are often ignored by other fields that face similar 

problems but have little interaction. 

General rules for similar relevant activities have been proposed before. Sutherland et al. 

(2013) propose twenty “tips” for interpreting scientific claims. While the list was intended to 

help non-scientists have meaningful debates with scientists (cf. Reaven, 1987a),120 the advice is 

also useful to policymakers assessing controversial research. The advice ranges from statistical 

(e.g., “correlation does not imply causation” or “regression to the mean can mislead”) to 

sociological (e.g., “scientists are human”121). Another useful list containing ten principles for 

providing science advice to government (Gluckman, 2014) is also based on the realities of 

science policy, “These issues are urgent and of high public and political concern; the people 

involved hold strong positions based on their values, and the science is complex, incomplete and 

uncertain. Diverse meanings and understandings of risks and trade-offs dominate.” 

The primary point of this study is to argue that risk-benefit analysis is an ineffective tool 

for assessing and managing controversial research. A list of heuristic recommendations were 

made in the previous chapter that can improve the use of RBA by policymakers. The following 

are a few additional lessons to be gleaned from the H5N1 debate. 

                                                 
120 The list also serves as a helpful reminder to practicing scientists. 
121 This point acknowledge “that scientific judgment itself is value-laden, and that bias and 

context are integral to how data are collected and interpreted” (Sutherland et al., 2013). 



 

151 

 

6.7.1 Post hoc management is difficult 

Once funding has been obtained and work has begun, researchers have more than a 

purely intellectual position regarding a line of research. Funding creates an immediate personal 

financial interest as well as a long-term career impact.122 More importantly, an investment of 

time and effort creates an emotional attachment; researchers will tend to defend their work for 

reasons that may have more to do with personal reputation and feelings of ownership than with 

the merits of the work. Expecting researchers to self-govern their work is asking too much of 

even the most well-intentioned scientists. 

Furthermore, post hoc management options are limited. For controversial research, 

censorship is commonly proposed. However, the ubiquity of modern communications 

technology makes effective censoring increasingly difficult. Moreover, past censorship, mostly 

in the form of classification for national security purposes, has an unpleasant history of shielding 

scientists from essential public oversight (cf. Evans, 2013).123 Also, in the U.S., restricting the 

dissemination of research can run afoul of the First Amendment under the unconstitutional 

conditions doctrine (Kraemer and Gostin, 2012) which prohibits a governmental benefit (e.g., 

research funding) from being conditioned on giving up a protected Constitutional right (e.g., free 

speech). These issues do not arise when considering proactive regulation at the funding stage. 

 

                                                 
122 As Upton Sinclair said, “It is difficult to get a man to understand something when his job 

depends on not understanding it.”  
123 Classification may be necessary in some cases to avoid Freedom of Information Act 

disclosures (Kraemer and Gostin, 2012).  
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6.7.2 Research controversies are predictably unpredictable 

Research controversies are like snowflakes – unique in detail, but identical from a distant 

perspective. The principle of controversial research presented in Chapter 4 outlines a general 

trend in research controversies. With a few exceptions, a line of research continues unless it has 

been found to be unproductive or inferior to an alternative. As the H5N1 debate shows, research 

that is controversial due to safety concerns may give way to more inherently safe designs. In 

cases where the controversy is purely ethical, the research may never be abandoned unless 

pragmatic justifications can be argued. 

So, while there are general trends in the evolution of research controversies, the outcomes 

are contingent upon the specific technical details, utility, and viable alternatives. Thus, the 

principle of controversial research has limited predictive power. However, predictive power is 

not the only valuable characteristic of a theory.124 Rather, the principle is a simple framework for 

interpreting a situation that frequently arises in science policy and technology assessment.  

6.8 Relevance 

The avian flu gain-of-function research was used because it is a prime example of low-

embodiment, low-governability science and technology. However, other examples abound 

(Brumfiel, 2012; Baum and Wilson, 2013). Cybersecurity research has even lower embodiment 

and represents a potential threat that is almost exclusively information-driven (a basic computer 

and internet access are the only physical requirements). Given that critical infrastructure (e.g., 

energy, telecommunications, and transportation systems) are at risk of disruption and potential 

                                                 
124 For example, game theory, originally lauded for describing economic systems, has lost some 

of its luster in recent years due to its lack of predictive power (Rubinstein, 2006). Nonetheless, it 

still remains a valuable framework for analyzing certain problems and has generated useful niche 

applications, such as evolutionary game theory. 
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economic and national security losses increase as more systems become automated and 

interconnected, it is no surprise that the field of cybersecurity is rapidly growing in the twenty-

first century (Nelson, 2014).125 

Even more closely related to the influenza gain-of-function research is the emerging field 

of synthetic biology where detailed genetic-level bioengineering is already being used to make 

materials ranging from biofuels to food additives (Hayden, 2014). Applications have been 

primarily restricted to bacteria and fungi, but widespread applications to plants and animals are 

expected (Medford and Prasad, 2014). The field raises issues regarding biotechnologies such as 

“gene drives” which can potentially alter species (Gurwitz, 2014; Oye et al., 2014; Bohannon, 

2015; Lunshof, 2015), the creation of entirely synthetic genomes (Gibson and Venter, 2014; 

Pennisi, 2014), or even the creation of new forms of life (Malyshev et al., 2014; Thyer and 

Ellefson, 2014; Woyke and Rubin, 2014). Like gain-of-function research with PPPs, expert 

opinions on synthetic biology vary widely (cf. Specter, 2009). Proponents claim that increasingly 

detailed modification of genetic sequences will result in decreasing unintended consequences (ter 

Meulen, 2014), while critics fear unpredictable emergent properties and scientific hubris (Cho 

and Relman, 2010). With the potential for substantial harm and benefits to humans and 

ecosystems, similar questions have been raised regarding whether the current regulatory systems 

and avenues of risk assessment are sufficient (Lowrie and Tait, 2010; Kelle, 2013; Carter et al., 

2014; Drinkwater et al., 2014; Breitling et al., 2015; Kuiken, 2015). Recent work on 

bioengineering yeast to convert sugar into morphine (DeLoache et al., 2015; Fossati et al., 2015) 

                                                 
125 Cyberwarfare is also full of unique ethical situations. For example, the malicious code, 

Stuxnet, which is believed to have destroyed approximately 1000 Iranian uranium enrichment 

centrifuges, has been argued to be the first highly targeted ethical war weapon (Singer and 

Friedman, 2014). 
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underlines just how socially disruptive this technology can be and the regulatory challenges that 

lie ahead (Ehrenberg, 2015; Oye et al., 2015) 

This in no way minimizes the continued importance of “traditional” material-centric 

dual-use policy. The old threats have not disappeared, but they must now vie for our attention 

among a growing crowd of technological risks. The discussion of the role of RBA also applies to 

technologies with high material embodiment. For example, a relatively new uranium enrichment 

technique using lasers lauded by the commercial nuclear power industry has created considerable 

alarm in the nuclear non-proliferation community (Slakey and Cohen, 2010; Weinberger, 2012). 

When the US Nuclear Regulatory Commission licensed this technology in 2012, opponents 

criticized the commission’s narrow conception of risks – considering only the physical security 

of an enrichment facility while ignoring the broader societal implications of encouraging the 

technology (Price, 2012). Likewise, entire new fields of controversial material-centric research 

are emerging. For example, the current debate over using geoengineering to mitigate climate-

change has raised concerns regarding unintended consequences and moral hazard 126 (i.e., using 

geoengineering as an excuse to delay implementing more permanent and difficult mitigation 

strategies). Ultimately, no field of study is immune from controversy. One of the more 

controversial papers in the past decade was a mathematical model created by two economists that 

described the risk of intentional food supply poisoning (Wein and Liu, 2005); critics felt the 

paper served as a warning, but also as a roadmap for miscreants. 

 

                                                 
126 Another example of a scientific moral hazard is the proposal to bring back extinct species 

through modern biotechnology. Unintended consequences aside, it is dangerous to encourage the 

belief that poor stewardship of global biodiversity has a simple technological fix (Minteer, 

2014). 
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6.9 Future Work 

This work is situated within a larger group of questions. When controversial research or 

technology becomes publicly known, questions are invariably asked regarding who funded the 

work, why it was allowed, etc. In light of the examples of controversial R&D programs 

previously discussed, an important general question arises: In a free and open society, how, if at 

all, should society control science research and technology development? Adequately addressing 

this question leads to a series of secondary issues that I have partially addressed: who should 

make the decisions (as many stakeholders as practicable – while acknowledging the limitations 

of public participation); what form control should take (primary controls are better than 

secondary); and, at what stage should controls be established (as early as possible). However, 

there are many questions that still need to be explored.  

For example, it is unclear whether restricted communication is a useful technique for 

reducing technological risk. Open debate engages multiple perspectives and improves the 

likelihood that unintended consequences will be discovered. Secrecy and classification reduce 

open debate which works against risk discovery. While secrecy reduces misappropriation, it may 

also exacerbate the larger risks of accidents and unintended consequences. Openness can also 

reduce ethical issues when researchers are less inclined to be associated with R&D that is 

publicly controversial. Conversely, once research is published, other scientists may attempt to 

replicate the work or use the results to perform similar research thereby exacerbating the 

situation. If the work is potentially dangerous, publication may be encouraging other laboratories 

to also perform dangerous work. It would seem that advances in science, yielding increasingly 

powerful technology, challenge our ability to maintain a free society. 

 



 

156 

 

6.10 Conclusion 

There is considerable disagreement among scientists as to whether gain-of-function 

research on potential pandemic pathogens has any value for current public health preparedness. 

However, there is some consensus that, as science, this class of research does help further our 

knowledge regarding how viral genetic variation affects phenotypic characteristics relevant to 

public health which may eventually have practical applications. The larger question is whether 

the risk of pandemic caused by intentional or accidental release outweighs these potential 

benefits. This question may be less relevant if it is determined that alternative techniques can 

achieve the same goals while avoiding the risks. That is, inherently safe design may be the best 

resolution of the H5N1 controversy, in which case the biosciences need to revamp their 

biosafety/biosecurity culture to adopt these principles to avoid frequently repeating this 

unpleasant process. 

More generally, the many ways in which research benefits can be valued and the many 

value judgments inherent in assessing risk suggest that definitive quantitative risk-benefit 

analysis is not possible. This realization does not devalue RBA; it is still useful as an 

indispensable risk exploration and communication tool for engaging experts and the public in a 

conversation about risk-benefit tradeoffs. However, if calls for RBA become a knee-jerk 

response to what are essentially quantitatively intractable technological risk problems, everyone 

will be disappointed. Likewise, RBA should not be used as a stalling tactic to distract concerned 

citizens. RBA works best when expectations are realistic. When data are plentiful and there are 

no moral or cultural differences among the stakeholders relevant to the issue, RBA can generate 

answers or avenues to follow. However, for emerging technologies and controversial research 

where data are sparse and uncertainty is large, putting a number on an unavoidably subjective 
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quantity just yields an unavoidably subjective number that now has the suspicious appearance of 

objectivity. RBA works best when viewed as a tool for risk exploration and communication. 
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