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Abstract of the Dissertation 

Distributed Energy Resources and Dynamic Microgrid: An Integrated Assessment 

by 

Duo (Rick) Shang 

Doctor of Philosophy 

in 

Technology Policy and Innovation 

Stony Brook University 

2015 

The overall goal of this thesis is to improve understanding in terms of the benefit of DERs to both 

utility and to electricity end-users when integrated in power distribution system. To achieve this 

goal, a series of two studies was conducted to assess the value of DERs when integrated with new 

power paradigms.  

First, the arbitrage value of DERs was examined in markets with time-variant electricity pricing 

rates (e.g., time of use, real time pricing) under a smart grid distribution paradigm. This study uses 

a stochastic optimization model to estimate the potential profit from electricity price arbitrage over 

a five-year period. The optimization process involves two types of PHEVs (PHEV-10, and PHEV-

40) under three scenarios with different assumptions on technology performance, electricity 

market and PHEV owner types. The simulation results indicate that expected arbitrage profit is not 

a viable option to engage PHEVs in dispatching and in providing ancillary services without more 

favorable policy and PHEV battery technologies. Subsidy or change in electricity tariff or both are 

needed.  
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Second, it examined the concept of dynamic microgrid as a measure to improve distribution 

resilience, and estimates the prices of this emerging service. An economic load dispatch (ELD) 

model is developed to estimate the market-clearing price in a hypothetical community with single 

bid auction electricity market. The results show that the electricity market clearing price on the 

dynamic microgrid is predominantly decided by power output and cost of electricity of each type 

of DGs. At circumstances where CHP is the only source, the electricity market clearing price in 

the island is even cheaper than the on-grid electricity price at normal times. Integration of PHEVs 

in the dynamic microgrid will increase electricity market clearing prices. It demonstrates that 

dynamic microgrid is an economically viable alternative to enhance grid resilience.    
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Chapter 1 Introduction  

1.1 Motivation, research strategy, and organization of the dissertation 

The thesis is motivated by the promising future of distributed energy resources (DERs), and its 

role played in power industry when coexists with conventional sources as primary energy sources 

in the future power systems (Poudineh & Jamasb, 2014). DERs are usually directly connected to 

the distribution network or are on the customer site of the meter (Georgilakis & Hatziargyriou, 

2013). DERs are consisted of distributed generator (DG), energy storage, load control, and, for 

certain systems, advanced power electronic interfaces between the DGs and bulk power providers 

(Lasseter et al., 2002). Integration of DERs is evolving as an emerging power scenario for electric 

power system infrastructure based on the significant issues, such as reducing heavy dependence 

on fossil fuel, widespread deployment of advanced DERs technologies, deregulation of electric 

utility industry, and enhancing environmental awareness of low carbon society from public (Basak, 

Chowdhury, nee Dey, & Chowdhury, 2012). 

Customers, utilities, and society can gain many benefits from the applications of DERs (Corey, 

Iannucci, & Eyer, 2004; KEMA, February 2012; Mohd, Ortjohann, Schmelter, Hamsic, & Morton, 

2008; Zogg, Lawrence, Ofer, & Brodrick, 2007). When integrated with electric gird, DERs can: 

(1) increase energy efficiency, reduce energy costs and pollutant emissions; (2) improve power 

quality and reliability of the grid; (3) relieve transmission and distribution congestion and avoid 

or defer investment in the upgrade of transmission and distribution system; and (4) improve system 

resilience, especially to critical loads and vital services; and (5) increase generation diversity.  
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Traditional distribution configuration is not designed to accommodate much DER integration 

(Zhenhua, 2006). The integration of DERs for the current distribution grid system is a critical and 

complex issue, which requires both technical and economic changes to make current distribution 

networks more adaptive to DERs (Poudineh & Jamasb, 2014). There have been numerous 

endeavors to address these issues. Technically, system has to be more intelligent with higher 

flexibility to absorb the intermittent DER sources. From an economic viewpoint, the adoption of 

distributed resources requires extending the traditional business model of distribution utilities in a 

consistent manner within the unbundled sectors (Poudineh & Jamasb, 2014).  When integration of 

DERs in the emerging power paradigm can provide new services for customers,  previous 

assessment tool is not adequate enough to fully understand the value of DER technology (Lasseter 

et al., 2002). Hence,  new tools of assessment should be conducted under the evolving technical 

and economic models of distribution system(Poudineh & Jamasb, 2014).  

The overall objective of this dissertation is to improve understanding DERs’ benefit to both utility 

and electricity end-users in the emerging grid paradigms. These benefits will be calculated and 

reflected in a couple of innovative economic models in a future distribution system. Addressing 

technical barriers of facilitating DER integration is not the aim of this thesis, and it’s assumed that 

the emerging power paradigms are functioning well in the defined distribution system. To achieve 

the overall objective, several specific sub-objectives shall be accomplished. The first sub-objective 

is to understand the arbitrage value of DERs in the application of energy storage. The financial 

benefit from arbitrage will help DER owners offset the operation cost of vehicle and encourage 

more adoption of emerging technologies. Next, the economics of DERs in islanded situation shall 

be examined. This provide an evidence of DERs as emergent energy sources to improve system 



 

3 

 

resilience to extreme outage events. Finally, the policy implications of utilizing DERs shall be 

concluded.  

Plug-in hybrid electric vehicle (PHEV), as one type of DERs with both electric and chemical 

energy and having been widely discussed as one of the primary future transportation candidates, 

is primarily studied in this dissertation. It can discharge power from both electric and chemical 

energy sources, and the power output from PHEV battery discharging can be utilized without 

considering the complex intermittency issues that some of DERs may process. The value of PHEV 

as DERs is impacted by various factors, including technology performance, economic market 

design, and customer’s preferences of emerging technology, etc. Any changes or the inherit 

uncertainties of these factors will impact the successfulness of integration of DERs (Kassakian & 

Schmalensee, 2011). To eliminate uncertainty issues in terms of future DER technology 

improvement, this research not only considers the state-of-the-art DERs technologies, but also 

predicts the improvements of these technologies. Other uncertainties are interpreted in forms of 

probability distributions to represent the stochastic nature of these factors.   

Each chapter explains an independent research topic, and aims to achieve the overall and sub-

objectives of this thesis. PHEVs as the studied DER are tested in various circumstances to reduce 

the impact of parameters with uncertainty. Operation of PHEVs is optimized to minimize its 

overall operation cost. Since the chapters of this dissertation were written separately, each chapter 

may exist some conceptual redundancy throughout the body of work. The chapters, however, are 

intended for academic publication, and therefore can be read separately.  
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Figure 1.1 shows the overall structure of the primary researches. Each node in this structure 

represents the significant elements and their relationships in each study and the arrow demonstrates 

how the models in each research are formulated to achieve each objective. Chapter 2 

comprehensively reviewed the benefit and challenge of DERs’ integration, and the transformation 

process of electricity power grid to better adopt DERs integration from various perspectives. 

Chapter 3 and 4 are the two major research studies of DER technologies and their application in 

the emerging power grid paradigms. Chapter 3 used a stochastic optimization method to optimize 

PHEV battery charging and discharging behavior. Arbitrage profit equals to the revenue of PHEV 

discharging after taking off the electricity charging cost and the degradation cost resulted from 

battery discharging. Chapter 4 examined an innovative concept of power grid paradigm as a 

measure improving grid resilience. An economic load dispatch (ELD) model is developed to 

Economic Load Dispatch in Dynamic Microgrid  

Total Supply Cost ($) 

Electricity Tariff (TOU/RTP) 

Electricity 
discharge revenue 

Chapter 3: PHEV arbitrage value  

Chapter 4: Pricing dynamic-islanding service 

Arbitrage profit 

Degradation cost 

PHEV operation cost 

CHP operation cost 

 Unserved energy cost  

Electricity charge 
cost 

Electricity Demand 
(kWh) 

All/Significant 
Load 

Dynamic microgrid 
Electricity Price 

($/kWh) 

Electricity Supply per 
DG ($/kWh) 

Chapter 2: Literature review of 
DERs’ integration and the 
transformation of electricity grid 
system  

Figure 1.1  Thesis Structure 
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estimate the market clearing price in a hypothetical community with single bid auction electricity 

market.   

Specifically, Chapter 2, “Distributed Energy Resources: status and benefits”, first summarized the 

benefits of DERs to customers and utilities when integrated with electricity distribution system.  

The integration process, however, is not as intuitive as a simple plug-and-play process during 

which residents plug electric appliances onto the wall. Traditional grid (distribution) system is 

controlled and operated in a passive way, and it’s not designed to adopt large integration of DERs. 

The intermittency essence of some DERs complicates the voltage regulation across the length of 

distribution feeders and are deemed as “dirty power” since it may have adverse impact to the 

distribution system. When largely integrated, DERs will bring catastrophic impact on the U.S. bulk 

power system. A couple of changes are required to make current grid system more adaptive to 

large DERs integration. Technically, power system has to be more intelligent, evolving from 

passive to active management and control, and enhancing system flexibility to absorb DERs 

intermittent output. Storage technology plays a critical role when deployed close to intermittent 

DGs. Economically, an evolving economic market is required to expand new businesses other than 

from DG connection and distribution system usage charges. Smart grid and microgrid are 

introduced as the future power paradigm candidates to address the issue of large integration of 

DERs.  

Chapter 3, “Electricity-price Arbitrage with Plug-in Hybrid Electric Vehicles (PHEV): Gain or 

Loss”, evaluates the value of battery on PHEV in the electricity arbitrage implications. Battery can 

serve as distributed energy storage device which brings PHEV owner financial benefit when doing 

active arbitrage. The magnitude of the arbitrage benefit will be answered by a quantitative 
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assessment, which examines PHEVs financial benefit when deployed in different time-based 

electricity markets in a smart grid paradigm. This study implemented a stochastic optimization 

model to optimize PHEV owners’ charging and discharging behavior. The model estimates the 

financial benefit from electricity price arbitrage of two types of PHEVs (PHEV-10, and PHEV-40) 

under three designed scenarios. The scenarios are consisted of different electricity market designs 

with various PHEV owner types over a five-year period. The impact of DERs technology 

improvement is also reflected on the scenarios. The results indicate that under current market 

conditions, even with significant improvement in battery technologies (e.g., higher efficiency, 

lower cost), PHEV owners can't achieve a positive arbitrage profit. This finding implies that 

expected arbitrage profit is not a viable option to engage PHEVs in dispatching and in providing 

ancillary services without more favorable policies and PHEV technologies. Subsidy or changing 

electricity tariff or both from government are needed.   

Chapter 4, “Pricing Dynamic Microgrid Service as Way Enhancing Distribution Resilience” 

examined the concept of dynamic microgrid as a measure improving system resilience to extreme 

weather events and accelerating grid restoration process. The electricity market clearing prices in 

dynamic microgrid are estimated. This research implements an economic load dispatch (ELD) 

model to estimate the market clearing price of electricity in a hypothetical community with single-

bid auction electricity market. The model is further tested under four scenarios with two DER types 

included in this study: a combined heat and power (CHP) plant and a fleet of plug-in hybrid electric 

vehicles (PHEVs The results show that the electricity market clearing price on the dynamic 

microgrid is predominantly decided by power output and cost of electricity of each type of DGs. 

At circumstances where CHP is the only source, the electricity market clearing price in the island 

is even cheaper than the on-grid electricity price at normal times. Integration of PHEVs in the 
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dynamic microgrid will increase electricity market clearing prices. It demonstrates that dynamic 

microgrid is an economically viable alternative to enhance grid resilience.   

Finally, Chapter 5, “Summary of major findings, policy implications, and future research needs”, 

summarizes major findings and provides their policy implications from the previous conducted 

researches. The last section in this chapter states the future work to be accomplished to address 

some simplified parameters or omitted uncertain factors in the primary researches.  
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Chapter 2 Distributed Energy Resources: Status and Benefits  

-- Comprehensive literature review of DERs integration, with focus on the status and benefit  

2.1.  Benefit of Distributed Energy Resources 

Distributed energy resources (DERs) are rapidly becoming attractive because it produces electrical 

power with immense benefits to customers, utilities and societies (Basak, Chowdhury, nee Dey, & 

Chowdhury, 2012). The recent shift towards utility restructuring renewed interest in the 

distribution (and transmission) side of the business, which helps expanding the integration of 

distributed energy resource  (Masters, 2013).  

Literatures summarized the benefits of DER when integrated in the grid system DERs (Corey, 

Iannucci, & Eyer, 2004; KEMA, February 2012; Mohd, Ortjohann, Schmelter, Hamsic, & Morton, 

2008; Zogg, Lawrence, Ofer, & Brodrick, 2007). The integration of distributed generators (DGs) 

based on renewable energy reduced green house gas emission and dependency on conventional 

fossil fuels. A diversification of electricity sources also reduces energy security risk. Small scale 

of DGs is easy and flexible to install. DERs can serve as ancillary services which help voltage 

regulation, supply emergency power at outages, and manage demand response etc. The ancillary 

services can serve customers with better power efficiency and improved reliability.  

In addition, the integration of DERs is going to change the way of energy transmission through 

utility grid. Consumers are enabled to have some scale of flexible energy utilizations. By 

integrating these distributed sources from consumers, power system can be converted into small 

distributed energy integrated system. This change will relief the existing power system from 

congestion on transmission and distribution system and defers the investment on upgrading 

generation and transmission systems.  
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2.2. Challenge of grid integration of distributed energy resources 

2.2.1. Development dilemma of traditional distribution system  

A conventional electric power distribution system refers to the networks where the lines carry 

medium voltage power from the end of transmission and deliver it to individual power consumers. 

It’s either a three-phase system which serves urban and suburban residential, or a single phase 

system primarily serving for rural areas.  

The basic configuration and operation of existing electric grid has remained unchanged in the past 

century. It’s a strictly hierarchical system in which centralized power plants at the top of the chain 

ensure power delivery to customers’ loads at the bottom of the chain via transmission and 

distribution (Farhangi, 2010). Current distribution system is controlled and operated in a passive 

way which relies on manual and paper-based systems with little real-time circuit and customer 

data (Fan & Borlase, 2009). Primarily, the distribution system is essentially a one-way pipeline, 

where the configuration of power lines and protective relaying assume a “unidirectional power 

flow”. While the physical wires and transformers can carry power flow in the reverse direction, 

DG nonetheless can have adverse impacts on system reliability, power quality, and safety (Ipakchi 

& Albuyeh, 2009). Therefore, current distribution grid is not designed to accommodate much DER 

integration(Zhenhua, 2006). 

It’s been argued that the current centralized power system architecture may not be sustainable for 

the power needs in a foreseeable future (Lasseter et al., 2002). First, since peak demand is an 

infrequent occurrence, the system operation is inherently inefficient (Farhangi, 2010). Then, an 

unprecedented rising power demand coupled with lagging investments in the electrical power 



 

11 

 

infrastructure decreases system stability (Farhangi, 2010). Under the current scale of grid 

distribution, however, investments on expanding and repairing of aged grid facility may not be 

cost effective (Kassakian & Schmalensee, 2011). A dwindling available sites, and a general 

NIMBY (not in my backyard) or BANANA (build absolutely nothing anywhere near anybody) 

suspicion of power facilities also make the current centralized generating paradigm incapable of 

adequate expansion (Lasseter et al., 2002). Furthermore, current centralized generation hardly 

satisfies future end-use need since power quality and reliability have been a great concern to end 

users. Increasing small-scale generations close to loads has emerged as a desire to addressing 

increased demand and unsatisfied power quality and reliability issues (Lasseter et al., 2002). Last, 

in the traditional distribution system, the installment of DER has been focused on connection rather 

than integration, which makes DER invisible to the system(Pudjianto, Ramsay, & Strbac, 2007). 

DER lacks the functionality required for system support and security activities. 

 

2.2.2. Impact of DER integration on the U.S. bulk power system  

When considering grid integration of DERs, technically, a primary issue is to address the impact 

of some DERs as intermittent generation sources. Intermittency of a power source refers to the 

extent to which a power source may exhibit undesired and uncontrolled changes in output (Sinden, 

2005). When DG sources are intermittent energy resource (e.g. solar, wind, etc.), it complicates 

the regulation of voltage across the length of distribution feeders. In addition, the loss of DG units 

at the same time will induce voltage sag and fast drop in frequency, and recovery could be slow.  

The current deployment of DERs has very little impacts to the U.S. bulk power system because 

they have accounted for only a small fraction of energy supply (Kassakian & Schmalensee, 2011). 

The impact, however, could make system aggravated or destructive when higher penetration of 
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DER being applied (Kassakian & Schmalensee, 2011). Since modern infrastructure systems are 

highly interconnected, a change in conditions at any one location can have immediate impacts over 

a wide area (Amin & Wollenberg, 2005). Large-scale cascade failures can occur almost 

instantaneously and with consequences in remote regions or seemingly unrelated businesses (Amin 

& Wollenberg, 2005). System could suffer a large shortage of generation when DERs are largely 

integrated in the network (Bollen & Häger, 2005). 

From economic perspective, when integrating intermittent DERs, fossil fuel plants must bear the 

expenses of more frequent regulation by additional start-ups and shut-downs. More frequent start-

ups and shut-downs (and ramping up and downs) can increase mechanical stress on generation 

plants, potentially resulting in higher maintenance costs and reduced life” (Kassakian & 

Schmalensee, 2011).  

 

2.3. Pathway of power distribution network to adopt large integration of DERs 

When penetration rate of DERs is beyond a certain point, more sophisticated challenges urge 

necessary changes of distribution system in terms of system planning and operations (Houwing, 

Ajah, Heihnen, Bouwmans, & Herder, 2008; Houwing, Heijnen, & Bouwmans, 2006; Mendez et 

al., 2006). This section states the changes needed for conventional distribution network to enhance 

its capability of adopting large integration of DERs. This is further illustrated from technical and 

economic perspectives of changes, and a couple of future promising paradigms of power 

distribution system are discussed in the end of this section.  
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2.3.1. Changes of power distribution from technical perspective 

Technically, network management needs to evolve from passive to active by using real time 

control and management of DERs and network equipment based on real time measurement of 

primary system parameters (i.e. voltage and current) (Zhang, Cheng, & Wang, 2009). To maintain  

power system reliability after DER integration, it requires a more flexible power system, in which 

additional operational costs is incurred to cover for the variability and high uncertainty associated 

with DG output (Alarcon-Rodriguez, Haesen, Ault, Driesen, & Belmans, 2009; Energy, 2010). To 

reach that flexibility, power system must have enough response capacity, from interconnections, 

demand response, storage, and backup supply to maintain reliability standards (Holttinen et al., 

2011).  

There have been endeavors to overcome the technological challenges from a potential future 

explosion of DER integration. For example, upgrading to bidirectional power flow distribution 

system will enable DER owners dispatching power back to the grid as an alternative of expanding 

power capacity; by aggregating a geographically diverse collection of DERs, rapid changes in the 

outputs of individual DERs will be replaced by the slower output variations of the aggregated 

resource (Laughton, 2007). The industry also has collaborated with the Institute of Electrical and 

Electronics Engineers (IEEE) to create IEEE Standard 1547 to ensure that DG units won’t do harm 

to other customers or equipment connected to the grid (Kassakian & Schmalensee, 2011).  

Energy storage is a primary key to the intermittency issue. When installed closed to DGs (as part 

of the DER components), it enriches the value of DERs. Several financial benefits of energy 

storage have been summarized in (Mohd et al., 2008). The stochastic nature and sudden 

deficiencies of DGs will be compensated by energy saved in storage without suffering loss of load 

events or expenses for starting new generation units (Hamsic et al., 2006). Energy storage 
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combining with advanced power electronics would allow utilization of the DG powers after 

smoothing and voltage regulation at the remote point of connection.  

 

2.3.2. Change of power distribution from economic perspective 

Economically, the business model of distribution market is required to evolve and expand beyond 

the current revenue source of DG connection and distribution system usage charges (Poudineh & 

Jamasb, 2014). This is because large integration of DERs close to loads reduces the volume of 

energy transmission in the grid and consequently shrinks the revenue base of utility companies 

(van Werven & Scheepers, 2005).   

The extended business mode comes from interaction of distribution system operator (DSO) with  

more stakeholders in distribution system, which include the well-defined electricity end-user types, 

transmission system operator (TSO), DER operators/owners, and retail suppliers (Poudineh & 

Jamasb, 2014). DSO provides services to extend revenue sources and pays services from certain 

customers that consists of partial cost. These new services are stated in the literature (Poudineh & 

Jamasb, 2014), which include supplying power with premium quality and reliability for demanding 

commercial and industrial end-users whose production processes are sensitive to the electricity 

quality. Other services include offering system data to the DGs operators and retail energy 

suppliers since DSO maintains the source of customer data, and services of load balancing and 

ancillary services through dispatchable DG operators which will be reimbursed by the upstream 

TSO, etc.  

An important extended economic model that hasn’t been fully understood and well developed is 

for the integration of DERs as alternatives to grid capacity enhancement (Poudineh & Jamasb, 

2014). This economic model must be consistent with regulatory framework of unbundled sectors, 
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and will facilitate DSOs to procure DERs efficiently and ensure physical compliances by resource 

providers  

 

2.4. New paradigms as solutions for DER integration 

From power system perspective, power grid with advanced technologies will have a better 

adaption to the integration of DERs. Smart grid and microgrid are the two promising power 

paradigm candidates that are best suitable for large DERs integration in the future. The two 

paradigms are not on the same scale of power distribution system. Microgrid can be collectively 

treated by the utility grid as a controllable load or generation unit in a distribution system which 

may implement the smart grid technology.  

 

2.4.1. Smart grid  

The smart grid paradigm is a modern electric power grid infrastructure, which collects all 

technologies, concepts, topologies, and approaches, that allow the traditional architecture of power 

system to be replaced with an end-to-end, organically intelligent, fully integrated environment 

where the business process, objectives, and needs of all stakeholders are supported by the efficient 

exchange of data, service, and transactions (Farhangi, 2010; Gungor et al., 2011). The smart grid 

paradigm has been widely discussed because it’s expected to address the major shortcomings of 

the existing grid and to define a new way of engagement with energy transactions among various 

stakeholders(Farhangi, 2010). There’re more features that differentiate smart grid from an existing 

grid, and the comparison has been summarized in a table below (Farhangi, 2010).   
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Table 2-1 Comparison between existing grid and smart grid 

Existing Grid Smart Grid 

Electromechanically  Digital 

One-way Communication Two-way Communication 

Centralized Generation Distributed Generation 

Hierarchical Network 

Few Sensors Sensors Throughout 

Blind Self-monitoring 

Manual Restoration  Self-healing 

Failures and Blackouts Adaptive and Islanding 

Manual Check/Test Remote Check/Test 

Limited Control Pervasive Control 

Few Customer Choice Many Customer Choices  

One of the designated feature of smart  grid is to “accommodate a wide variety of distributed 

generation and storage operations” (Brown, 2008). Through real-time advanced tele-

communication and surveillance, DER units will be observable to system operators and will be 

involved into the grid operation process. The integration of DERs also benefits smart grid by 

helping minimize the operation and maintenance expenses, since a higher reliable and qualified 

power will be reachable after integrations. Several applications of smart grid assist DER 

integration. The advanced metering infrastructure (AMI) is an advanced digital meters at all 

customer service locations. It’s evolving from advanced metering reading (AMR) technique 

(Farhangi, 2010). It’s a two-way communication meter system, which makes a large amount of 

data available to operations and planning in real time (Brown, 2008). At smart grid distribution 
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feeders, the distribution automation units (DAs) monitor, control the power flow and communicate 

with end-users. The units resemble as intelligent nodes in the distribution system connecting each 

other. They are the fundamentals of constructing smart grid as a tree-shaped distribution network 

(Brown, 2008).   

 

2.4.2. Microgrid 

Microgrid is considered as a cluster of interconnected DGs, loads, and intermediate storage units 

that cooperate with each other to be collectively treated by the utility grid as a controllable load or 

generation unit in the distribution network(Pedrasa & Spooner, 2006).  Microgrid can operate in 

grid-connected mode or in islanded mode. Whatever mode microgrid is running, balancing a 

balanced condition has to be maintained between supply and demand applicable to microgrid 

(Basak et al., 2012). Primary parameters that determine the balance condition is voltage and 

frequency.  

When microgrid operates in grid connected mode, it either draws power from the grid or supply to 

the grid depending on the market policies.  The voltage and frequency are determined by the grid 

at this mode. Were there abnormal conditions on main grid, microgrid should be shifted to islanded 

mode (Peng, Li, & Tolbert, 2009). At this mode, voltage and frequency of the islanded microgrid 

should be determined by one or more primary or intermediate energy sources within the microgrid 

(Basak et al., 2012). If the frequency reaches to a very low value, loads in the microgrid have to 

be shed.  

Preparation for planned islanding is an important aspect in microgrid concept. It’s used to maintain 

the continuity of supply during planned outages, like substation maintenance period, etc. 

(Hatziargyriou, Asano, Iravani, & Marnay, 2007). Energy storage device plays a critical role in the 
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balancing operation during this period. The energy storage should be capable of reacting rapidly 

to frequency and voltage changes and exchanging large amounts of real or reactive power to 

maintain microgrid reliability. In addition, storage units are expected to offer spinning reserve 

assembled advantages for microsource control. Without spinning reserves like usual grid, DERs 

will have delayed responses when implementing secondary voltage and frequency control. Further 

control and operation details of microgrid will be illustrated in chapter four. 
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Chapter 3 Electricity-price Arbitrage with Plug-in Hybrid Electric Vehicle: 

Gain or Loss? 

3.1. Introduction 

Customers, utilities, and society can gain many benefits from the applications of distributed energy 

resources (DERs). The ones include: (1) increase energy efficiency and reduce energy costs; (2) 

when integrated with grid, improve power quality and reliability of the grid; (3) avoid or defer 

investment in the expansion of transmission and distribution system; and (4) improve system 

resilience, especially to critical loads and vital services. Time-based pricing mechanisms (e.g., 

time of use, real time pricing or dynamic pricing) have been used by many utilities to shift load 

demand. Customers who are sensitive to electricity price will shift load demand from peak to off-

peak periods. These mechanisms allow DER owners to gain financial benefits by using DERs to 

hedge price risk, to sell power to the grid, or to provide ancillary services. Plug-in hybrid electric 

vehicle, with both battery and gas tank, can serve as a distributed energy storage device of both 

electric and chemical energy. From owner’s perspective, the potential financial benefits from 

arbitraging and from providing ancillary services can offset some of the operation costs. For 

utilities and societies, PHEVs connecting with a smart grid can bring many of the benefits that 

DERs can. An Oakridge National Lab (ONL) study found that wide penetration of PHEVs can 

significantly improve the demand curves and that current U.S. power grid can accommodate these 

new loads (Hadley & Tsvetkova, 2009). A demonstration project that tests the feasibility of using 

PHEVs to provide ancillary services is also undergoing in the Pennsylvania-Jersey-Maryland (PJM) 

system (Sioshansi, Denholm, Jenkin, & Weiss, 2009). 
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These potential benefits have been studied under a variety of scenarios of battery and market 

conditions. Williams and Lipman (Williams & Lipman, 2010) estimated the potential arbitrage 

gain of a PHEV-15 in the California electric market with real-time pricing tariff, and the result is 

estimated $114 per year per vehicle. In their study, the PHEV battery is treated as a stationery 

storage device and degradation is not considered as the PHEV operation cost. Peterson (Peterson, 

Whitacre, & Apt, 2010) examined the impact of electricity price prediction mechanism on the 

arbitrage profits under two scenarios, and reported similar estimates. White and Zhang (White & 

Zhang, 2011), however, found that arbitrage profit is negative in near term when degradation cost 

is included. The arbitrage profit could be positive in a long term when more PHEVs are deployed 

in the vehicle market. Their major assumptions and findings are summarized in Table 3.1.  

This study is different with previous studies in several ways. First, two PHEV cases, PHEV-10 

and PHEV-40, are tested. Second, previous studies are based on the state-of-the-art battery 

technologies of their times, which did not reflect recent and future progresses. Li-ion battery has 

experienced a rapid progress in recent years, and this trend will continue in the future because 

enormous efforts have been invested in its innovation. A National Research Council study 

(Council, 2010) predicts that the costs of Li-ion battery will gradually decline with improved 

performance. For instance, it predicts the number of cycles will rise from 3000 in 2010 to 7500 by 

2030. The energy and power density will improve, too. These progresses will have significant 

impacts on the arbitrage profit.   
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Table 3.1 Previous PHEV arbitrage project summary 

 Vehicle & battery Market design Arbitrage profit per year 

Peterson(Peterso

n, Whitacre, et 

al., 2010) 

 

PHEV-20 

Capacity: 16 kWh 

Charging time: 2.2 hours 

Real time pricing  

perfect 

information  

two-weeks ahead 

prediction 

No degradation: 

$142-249 *  

With degradation: 

$12-118 * 

$6-72 # 

Note:  
*: perfect price prediction 

#: price prediction based on fortnight data 

White and 

Zhang (White & 

Zhang, 2011) 

 

PHEV-40 (Volt) 

Capacity: 16 kWh 

Depth of discharge: 95%  

Charging time: 6 hours 

 

Real time pricing 

(Hour ahead 

Market) 

Low Penetration (10%): 

-$110 to -$126 (life cycles: 1500; 

degradation cost: 26.25 cents/kWh) 

-$17 to -$33 (life cycles: 5300; 

degradation cost: 6.45 cents/kWh) 

High penetration:  

25%:  $29 

50%:  $27 

Williams and 

Lipman 

(Williams & 

Lipman, 2010) 

 

PHEV-15 

Capacity: 6 kWh 

Depth of discharge: 80% 

Battery as a stationary 

storage 

No degradation 

Real time pricing  

(California 

market) 

$114  

Previous studies assumed that PHEV batteries are solely used for vehicle to grid (V2G) service. 

This assumption neglects the impacts of driving-related discharge on both the state of charge (SOC) 

and battery degradation (i.e., capacity drop). Another problem of not including driving discharge 

is that the state of charge at the beginning of arbitrage is not accurate. Battery degradation resulted 

from driving is an important factor impacting the battery capacity. First, arbitrage discharging 

causes less battery degradation than driving discharge (Peterson, Apt, & Whitacre, 2010). When 

driving discharge is factored in, the battery lifespan will be shorter. Previous studies overestimated 

the life span, and hence underestimated the degradation cost.  

Current literature of PHEV arbitrage studies assumes that PHEV owners are rational decision 

makers with identical and fixed time preferences. Early adopters of a new technology (e.g., PHEV), 

however, have different time preferences with those of late followers. This difference implies that 
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the expected values of the financial profit from price arbitrage are different to various types of 

buyers. 

Assuming PHEV owners as price takers, this study estimates the value of a single PHEV (PHEV-

10 or PHEV-40) under three scenarios. The research question is, what is the financial benefit that 

PHEV owner can gain if the battery is used as distributed energy storage (DES) device that can 

arbitrage electricity prices, in addition to as a source of vehicle power?  

 

3.2. Model description 

3.2.1. General description 

A stochastic optimization model is developed to estimate the arbitrage profit of PHEV under three 

scenarios of electricity market and owner behavior. The arbitrage profit is measured as difference 

between the baseline and arbitrage cases. The cost in the arbitrage case is the sum of charging cost 

and battery degradation cost, minuses the revenue from V2G discharging. In the baseline case, 

PHEV does not participate arbitrage. The cost consists of only charging cost and degradation cost 

from PHEV driving.  

This model has three major modules: (1) arbitrage module; (2) battery depletion module; and (3) 

battery degradation module. Figure 3.1 shows the model structure.  
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3.2.2. Arbitrage module 

The arbitrage module calculates the revenue from electricity arbitrage. This study assumes that 1) 

V2G is immediately available when PHEV arrives at home, and 2) V2G occurs only at home. The 

charging and discharging of the battery is optimized to minimize the net electricity cost during a 

24-hour period, and the optimization is repeated for 1,827 times (five years) with real electricity 

price data. The daily electricity price profile with the electricity prices of every hour, is provided 

by the utility one day in advance. PHEV charges when the hourly prices are at the lowest levels, 

and, in the arbitraging case, conducts discharging (e.g. sell electricity back to the grid) when the 

prices are at the highest levels. It is also assumed that the arbitrage costs are only consisted of 1) 

the electricity cost that the utility charges the PHEV owner, and 2) the battery degradation cost.  

The operation of electricity price arbitrage has to comply with the technical constrains of the 

battery and V2G devices. The first limit is the rated capacity of the battery. In real practice, only a 

Price Signal 

(RTP, TOU) 

Battery 
Degradation 

Battery Depletion 
(Driving) 

Battery Arbitrage 
(V2G) 

Battery 

CharacteristiPHEV 
Battery  

Use 

Result 
Arbitrage Gain 

(No Degradation) 

Use 

Influence 

Feedback 

Arbitrage 
Profit 

Figure 3.1 PHEV Battery Arbitrage Model Structure 
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portion, not all of the rated capacity, is available for discharging. SOC window must be within a 

range between 80% (i.e., 80% of the full capacity) and 30% (Council, 2010; Nelson, Amine, 

Rousseau, & Yomoto, 2007).  80% of the full capacity as the estimated upper threshold is because 

the battery needs free capacity to accept the power from regenerative braking. The lower limit of 

SOC is normally set as 30% of full capacity to protect vehicle battery (Council, 2010). 

The round circuit efficiency, a combination of charging and discharging efficiency, is a key factor 

influencing the arbitrage profit. Lithium-ion batteries for PHEV have an efficiency window 

ranging from 80% to 85%; and may improve to a window of 95% to 97% with a high-power battery 

systems (Nelson et al., 2007; Storage, 1993).  

The objective functions are listed below:  

 Cost of electricity (baseline case): min ZBaseline = ∑ 𝑃𝑡 ∗  𝐸1𝑡
𝐵

𝑡∈𝑇  

 Cost of electricity (arbitrage case): min ZArbitrage =∑ (𝑃𝑡 ∗  𝐸1𝑡
𝐴

𝑡∈𝑇 −  𝑃𝑡 ∗  𝐸2𝑡) 

 Total cost in the baseline case:  TCBaseline = ZBaseline + DBaseline 

 Total cost in the arbitrage case:  TCArbitrage = ZArbitrage + DArbitrage 

 Arbitrage profit = TCArbitrage - TCBaseline 

Where 

1. ZBaseline: Electricity cost in the baseline case ($) 

2. ZArbitrage: Net electricity cost in the arbitrage case ($) 

3. DBaseline and DArbitrage: Battery degradation cost ($) in the baseline and arbitrage 
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case, respectively 

4. Pt: electricity spot price at time t ($/kWh)   

5. E1t: the extent of electricity charged at time t (kWh) 

6. E2t: the extent of electricity discharged via V2G at time t (kWh) 

The charging and discharging equations are subjected to the following constraints:  

1. The state of charge of the battery must be between maximum and minimum allowable 

SOC.  

2. The charging and discharging rates depend on the chargers. Slow charger for household 

use has a peak power of about 3.3 kW (Morrow, Karner, & Francfort, 2008). Charging 

power is reversely proportional with time required to fully charge an empty battery. "C" 

is used as a measure of charging and discharging limit. This study assumes the 

discharging rate is “1C”, which means that battery completely depleting from its full 

capacity needs one hour. This limit is designed to protect charging facilities and battery 

(Vytelingum, Voice, Ramchurn, Rogers, & Jennings, 2010). 

3. The battery is charged to the maximum level (e.g. 80% of the full capacity) before the 

first trip of a day.  

When constraints are represented as constraint functions: 

E1t ≥ 0 

E2t ≥ 0 
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E1t ≤ min (𝑃𝑤1𝑚𝑎𝑥 ∗
1

2
ℎ, (SOCmax ∗ C −   Ebattery_t))  

E2t ≤ min (𝑃𝑤2𝑚𝑎𝑥 ∗
1

2
ℎ, (Ebattery_t −  SOCmin ∗ C))  

SOCt=0 = SOCmax 

Where  

1. Ebattery_t = SOC0 ∗ C + ∑ (∝∗t−1
i=1 E1i − E2i) , the total electricity in the battery at 

time t; 

2. Pw1max and Pw2max: the maximum charging and discharging rate,  respectively 

(kW)  

3. T: 48 half-hour time periods (1-48) 

4. SOCmax and SOCmin: the maximum SOC (80% in this study) and minimum SOC 

(30% in this study) 

5. SOC0: SOC at the beginning of a trip 

6. α : round circuit efficiency of battery 

7. C: maximum capacity of the battery (kWh, degradation considered) 

 

3.2.3. Battery depletion module  

This module simulates the state of charge of PHEV battery from the beginning to the end of a trip. 

The remaining electricity is available for V2G service. Electricity used for driving depends on 

several factors including mode of operation, driving distance, and driving conditions. With given 
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initial SOC (i.e., SOC at the beginning of a trip), the SOC at the end of a trip can be estimated 

through this depletion module. 

 Electric vehicles including PHEV have two major operation modes when driving: the charge 

depleting mode (or CD mode), and the charge sustaining mode (or CS mode). At charge depleting 

mode, the vehicle is exclusively, or almost exclusively, powered by the battery until the SOC 

reaches a specific threshold level. After that, PHEV switches to the charge sustaining mode, where 

chemical energy becomes the primary source of power (Zhang, 2010).  

Battery driving efficiency is a measure of PHEV's energy efficiency. It is defined as the energy 

consumed for one mile when a PHEV drives at pure electric mode. It is a similar measure as the 

fuel economy--miles per gallon--for a car with internal combustion engine. Peterson et al.(Peterson, 

Apt, et al., 2010) estimated that the average battery driving efficiency is about 0.28 kWh/mile 

assuming the PHEV has a National Household Travel Survey (NHTS) trip profile from (DoT, 

2001). EPRI estimated the battery driving efficiency was about 0.26 kWh/mile for a compact sedan 

(Duvall, 2002). A test at University of California Davis found that the efficiency is between 0.12 

and 0.30 kWh/mile (Jonn Axsen, Kurani, & Burke, 2010). A truncated normal distribution 

(mean=0.21; standard deviation=0.03) is used to appropriate the battery driving efficiency. It is 

truncated at 0.12 and 0.30, which are assumed to be the lower and upper bounds of the 99.7% 

confidential interval. 

The distance of each trip is estimated based on a national household travel survey of 2009 (Santos, 

McGuckin, Nakamoto, Gray, & Liss, 2011). This survey shows that average number of trips per 

vehicle is 3.02 trips (3.21 trips per day on weekdays and 2.53 trips per day during weekends), and 

that the average distance per vehicle per day is 28.97 miles (9.72 miles per trip). Table 3.2 shows 
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an average daily trip profile used in Peterson's study (Peterson, Apt, et al., 2010), which includes 

the starting time, duration, and distance of each trip. This study uses an exponential distribution to 

appropriate the miles a PHEV travels during a day, with a coefficient λ of 0.0296 (Shiau et al., 

2010).  

Table 3.2 Daily PHEV driving profile 

Trip Start Time Duration (minutes) Distance (%) 

1 8:45 15 27.8%    

2 12:16 12 22.2% 

3 16:30 10 22.2% 

4 17:20 15 27.8% 

 

3.2.4. Battery degradation module 

This module estimates the battery degradation process. The lifespan of a battery, either calendar 

life or cycle life, is an important factor influencing the battery economics, and hence that of the 

PHEV. Calendar life measures the time that a battery degrades to a specific level, and is an 

indicator of its ability to withstand degradation over time without factoring in how the battery is 

used (Jonn Axsen, Burke, & Kurani, 2008). Cycle life, the number of charging and discharging 

cycles a battery can have before it degrades to a specific level, is influenced by the depth of 

discharge (DOD), current, and temperature of charging/discharging (Köhler, Kümpers, & Ullrich, 

2002; Omar, Van Mierlo, Verbrugge, & Van den Bossche, 2010; Ritchie, 2004). The charging and 

discharging involve chemical reactions. The reactivity of chemicals declines, and the resistance 

increases, as the number of charging/discharging cycle increases. The impact of DOD, however, 

is less significant on the degradation of next generation battery (Jonn Axsen et al., 2008). Peterson 

et al. found that DOD per cycle has no significant impact on the degradation rate for 
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LiFePO4/graphite battery (Peterson, Apt, et al., 2010). The battery degrades faster at higher 

charging/discharging temperature (Jonn Axsen et al., 2008). Battery degradation leads to declined 

voltage and capacity. When the voltage and capacity drop below a certain level (normally 80% of 

the original level), the battery needs to be replaced as it cannot power the vehicle safely and 

functionally (Meissner & Richter, 2003). The battery usually reaches cycle life first before the 

calendar life. 

The total amount of electricity charged and discharged is the most important determinant of battery 

degradation. For the same amount of electricity discharged, V2G causes less degradation than 

driving discharging (Peterson, Apt, et al., 2010). 

Table 3.3 PHEV battery degradation coefficients (Peterson, Apt, et al., 2010) 

Coefficient Value 95% Confidence Interval 

Driving discharge, γd −5.99E−5 1.71E−6 

V2G discharge, γV2G −2.71E−5 1.85E−6 

The degradation coefficients, γd and γV2G are different because PHEV battery has more frequent 

and transient discharging in driving mode than in V2G behaviors. Table 3.3 shows the respective 

degradation coefficients, γ, and their ranges.  

This study assumes that PHEV battery is an A123 battery with ANR26650M1 cell (LiFePO4). To 

simplify the calculation, the battery degradation at CS mode was excluded since the extent of 

degradation is much less significant than the degradation at CD mode. Therefore, the degradation 

process of a battery is a function of the accumulated amount of electricity discharged over life time: 

∆𝐶 =  𝐶0 −  𝐶 = 𝐸𝑑 ∗  𝛾𝑑 +  𝐸𝑉2𝐺 ∗  𝛾𝑉2𝐺 

where,  
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C0: the nameplate capacity (kWh) of the battery 

C: the battery capacity (kWh)  

Ed : accumulated electricity discharged for driving  

EV2G: accumulated electricity discharged for V2G 

γd: battery degradation coefficient of driving discharging process 

γV2G: battery degradation coefficient of V2G process 

When C is less than Cmin, the battery needs to be replaced. Assuming replacement cost is K (in $), 

E is the total amount of electricity discharged for both driving and V2G (e.g. E = Ed + EV2G), the 

degradation cost associated with 1 kWh of electricity discharged, D, is:  D=K/E. 

This study assumes that the battery is replaced with a new one when its capacity drops to 80% of 

the initial level. The specific cost of a new battery (in $/kWh) is represented with a truncated 

normal distribution. A NRC study presents three estimates of the future costs: conservative, 

probable, and optimistic (Council, 2010). This study assumes that the "probable" estimate is the 

mean of the normal distribution, and the "conservative" and "optimistic" estimates are the lower 

and upper limits of the 99.7% confidence interval of the mean, respectively. Labor cost of replacing 

the battery is not included.  

 

3.2.5. Electricity price  

The electricity tariff data is from Frontier Zone of National Grid (Buffalo, Niagara Falls, Olean, 

Angola, Lakewood, and Dunkirk). Real time price is calculated on a day-ahead basis and is 

determined by the supply and demand in each hour of a day. TOU price data is from the same 



 

33 

 

region. Residential households have three different blocks of rates on a weekday: on-peak, 

shoulder, and off-peak; and a flat rate (i.e. off-peak rate) during the weekends and on holidays. 

The TOU hours are shown in Table 3.4.  

A five-year electricity price data (from 2007 to 2012) is utilized to reduce the influences of weather 

variation or substantial demand spikes. The time interval of this model is 30 minute. 

Table 3.4 TOU tariff periods (Grid, 2012) 

TOU Period Hours 

Peak 12:00 p.m. to 8:00 p.m. 

Shoulder 7:00 a.m. to 12:00 p.m. and 8:00 p.m. to 10:00 p.m. 

Off-Peak 10:00 p.m. to 7:00 p.m. Weekdays, and all hours for Weekend and Holidays 

 

3.2.6. Simulation environment 

This model estimates the arbitrage profits of two types of PHEV: PHEV-10 with a 4-kWh battery 

pack and PHEV-40 with a 16-kWh battery pack. The numbers “10” and “40” are the number of 

pure electric miles that PHEV can travel with a fully charged battery. The model is built and 

executed in ANALYTICA with Optimizer. 

 

3.3. Factors influencing PHEV arbitrage value  

The roles of PHEVs in a future smart grid system, including potential arbitrage profits to owners, 

have uncertainties including those in the technology, market, and society.  

 

3.3.1. Battery characteristics  

Several types of battery (e.g. Lead-acid, Nickel-metal hybrid (NiMH), Lithium-ion, Nickel-Zinc 

(Ni-Zn), Nickel-Cadmium(Ni-Cd)) can be used to power PHEV (Khaligh & Li, 2010). Lithium-
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ion battery is the best among these technologies and has been widely adopted on PHEV. Lithium-

ion battery has both high energy and high power density, and can maintain a good performance at 

extreme environment. There are several major tradeoffs among power density, capacity, and usable 

state-of-charge. They determine the cost, mass, volume, lifespan of battery, battery driving 

efficiency, and vehicle operation (Markel & Simpson, May 2006). Battery with larger capacity 

stores more electricity, hence is more capable of providing ancillary services. But it is also heavier 

at a given density, and usually costs more, and hence lowers the battery driving efficiency. The 

usable SOC window involves another major tradeoff. A large SOC window with deeper depth of 

discharge (DOD) can significantly reduce the costs. It, however, will shorten the battery lifespan 

(Markel & Simpson, May 2006).  

In terms of future prediction of battery technology, some primary coefficients of battery are 

expected improved in 2025 and further. Battery unit cost will reduce significantly in 2030, where 

the unit cost of PHEV-10 battery reduced from average $825/kWh in 2010 to $475/kWh, and the 

unit cost of PHEV-40 battery reduced from average $875/kWh in 2010 to $500/kWh (Council, 

2010). The uncertainty of battery improvement is considered in a truncated normal distribution. 

The truncated thresholds represent the worst and the best technology improvement scenarios 

published in the report (Council, 2010). Then, battery roundtrip efficiency is deemed as the other 

factor that may have significant improvement in the future. This study uses 90% as the average 

round circuit efficiency for today’s state-of-the-art battery, and 95% as the future improved battery 

round circuit efficiency in 2030 (Gerssen-Gondelach & Faaij, 2012). 
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3.3.2. Electricity market and tariff structure 

Potential arbitrage profits depend on variation of electricity rates during a day. Flat rate is the 

simplest and most commonly used electricity tariff. It doesn’t vary with load change or with the 

time. Inclining block rate (IBR) sets the marginal price increase based on the total amount of 

electricity consumed. When demand exceeds a specific level, an electricity rate spike will be 

expected (Reiss & White, 2005). Customers who are sensitive to electricity prices have to switch 

load demand to the less expensive times. Time-based pricing mechanisms (i.e., dynamic pricing) 

is another approach to reduce peak loads (Mohsenian-Rad & Leon-Garcia, 2010). 

Time of use (TOU) is an easy and commonly used dynamic pricing mechanism. The 24 hours on 

a weekday is divided into three blocks: peak, shoulder, and off-peak hours, and different rates are 

set for each period of time (Fox-Penner, 2010). Consumers who are sensitive to price signals are 

likely to switch some loads from peak hours with higher rates to off-peak hours. TOU is also 

convenient for customers since they only need to know when rates change, and then adjust their 

electricity use behavior accordingly. 

Real-time-pricing (RTP) is a more accurate but more complex form of dynamic pricing mechanism. 

Power system engineering uses the constantly changing marginal cost known as “system lambda” 

to calculate the present hourly prices and matches the demand with supply (Fox-Penner, 2010). 

The price that retail customers pay equals to these hourly wholesale prices plus several fixed fees. 

Compared with other tariffs, RTP can lower the average daily utility cost by 5 to 25% (Doostizadeh, 

Khanabadi, Esmaeilian, & Mohseninezhad, 2011; Mohsenian-Rad & Leon-Garcia, 2010). 

Two barriers, however, impede the deployment of RTP: 1) lack of real-time forwarded price 

information to customers; and 2) low adoption rate of home automation systems (Doostizadeh et 
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al., 2011). In a smart grid system, smart meters can receive real-time price information from the 

utilities. Smart meter also records real-time loads, and sends the records back to the utility, which 

can be used to improve load prediction. 

Over long term under the time-based pricing schemes, however, the profit margin of arbitrage will 

decline as more people adjust their behavior in response to differentiated rates. Wide deployment 

of PHEVs introduces significant new challenges to the utility (Yuchen, Hess, & Edwards, 2007). 

Aggregated adjustment in electricity use behavior will lead to a demand curve with smaller 

difference between peak and off-peak. The change of load demands over long-term is not included 

in this research.  Therefore, the electricity rate won’t have apparent differences between short-term 

and long-term electricity market.  

 

3.3.3. PHEV owner: technology adoption and time preference 

The expected value of arbitrage profits depends on the types of technology buyers are, as they have 

different time preference reflected by their discount rates (Jonn  Axsen & Kurani, 2012; Huijts, 

Molin, & Steg, 2012). Individual's belief and attitude influence their intention of accepting or 

rejecting a new technology (Huijts et al., 2012). From sociological perspectives, personal 

preference and attitude are also shaped by the social context (e.g. family, household, or work place). 

Three types of technology adopters are defined in this study. The innovators love new technologies, 

and are willing and have resources to pay a premium to own a new product. Late adopters are the 

majority population who are sensitive to purchasing price of the emerging technology product. 

Between them are early adopters. As a new technology, PHEV is first adopted by innovators, who 

then generate information about this technology, and share within their social network  (Moore, 

2002). 
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The diffusion of PHEV as an innovative technology takes time. During this time period, PHEV 

technology improves, its market share increases. First buyers of PHEV as a new product are 

innovators. They are followed by early adopters, and then late adopters. Study on the time 

preference of hybrid electric vehicle (HEV) buyer's reveals that as the market share rises, discount 

rates of potential buyers increases and they become more concerned about the vehicle price and 

less about the energy-saving benefit (Mau, Eyzaguirre, Jaccard, Collins-Dodd, & Tiedemann, 

2008).  Table 3.5 shows the discount rates of HEV buyers at different market-share levels. 

Assuming the discount rates of HEV buyers are indicative, this study uses them to approximate 

those of PHEV buyers.  

Table 3.5 Discount rates and market share (Mau et al., 2008) 

Market Share 0.03% 5% 10% 20% 

Discount Rate 21% 28 % 35% 49% 

 

3.4. Scenario Designs 

Electricity tariff and PHEV-buyer type (and hence the discount rate) are the two most important 

uncertainty factors in estimating the arbitrage profit. They are used to define a two-by-two matrix 

with each quadrant representing a different combination of these two uncertainties, and a plausible 

scenario of the future. This study estimates the potential arbitrage profits under three scenarios. 

The technological uncertainty is also considered into the scenarios. For the market design, two 

tariff systems are considered: real time pricing, and time of use. Two types of PHEV buyers are 

considered: early adopter, and late adopter. 

The table 3.6 shows a 2 X 2 matrix of scenarios. Scenario I may represent the current situation. 

Under this scenario, the electricity market uses a TOU tariff system, which requires no advanced 
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metering instruments. PHEV is a new technology in the market. Potential buyers are considered 

as "early adopter". Since the market penetration of PHEV is still low, their aggregated influence 

on the power system is negligible. The battery represents today’s state-of-art battery technology. 

Table 3.6 Scenarios 

PHEV Buyer    

Electricity Tariff 

Early adopter 

(low penetration) 

Late adopter 

(high penetration) 

Time of Use Scenario I (Excluded in this study) 

Real Time Pricing Scenario II Scenario III 

The only difference between Scenario and Scenario I is the electricity market. Under Scenario II, 

smart meters have been widely deployed, and a dynamic real time pricing mechanism is 

implemented. Under this scenario, the market penetration of PHEV is still low, and the number of 

commercial and residential PHEVs driving on road or charging at charging stations is low. PHEV 

owners in this electricity market will take advantage of the price gaps between the peak and off-

peak prices, and the smart meters and other electronic systems help PHEV owners optimize the 

charging and discharging behavior to maximize the arbitrage profits. 

Scenario III represents a future market where battery cost drops to a much lower level as a result 

of technology progress and economy of scale. This study assumes that the load curve in Scenario 

III is as same as that in Scenario II. The market penetration level of PHEV is assumed as high as 

the HEVs’ today.  

This study does not consider Scenario IV because the TOU scheme is assumed to be gradually 

replaced by RTP in the future.  
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3.5. Result and Analysis 

3.5.1. Battery SOC and electricity price 

Figure 3.2 shows the state of charge of a PHEV-40 battery over 24 hours (i.e., 48 half-hour periods), 

and the electricity price profile under Scenario II. Figure 3.3 shows the charging and discharging 

behaviors of the battery during a 24-hour period on a sample day. The PHEV is assumed driving 

at the 2nd, 9th, 18th, and 20th time interval, which represent four transportation trips. The PHEV 

returned home at the 21st period, and immediately became available for V2G service. The charging 

and discharging were controlled by an optimization algorithm. In this example, PHEV discharged 

electricity back to house at the 22nd and 33rd time intervals when prices were the highest, and 

recharged from the grid at the 31st, 32nd, and 38th to 44th periods when the prices were relatively 

low. 

Figure 3.2 SOC of a sample PHEV-40 battery and corresponding electricity price  
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Figure 3.3 Sample charging and discharging profile of PHEV-40 battery under Scenario II 

 

 

3.5.2. Arbitrage profits 

The five-year total arbitrage profit is shown below. Under all three scenarios, price arbitrage can't 

bring any profit to PHEV owner. PHEV with a larger battery loses more. For a PHEV-10 with a 

4-kWh battery, the median value of the net loss is -74, -99, and -45 dollars under Scenario I, II, 

and III, respectively. For a PHEV-40 with a 16-kWh capacity, the loss is -253, -371, and -139 

dollars under Scenario I, II and III, respectively. Figures 3.4 to 3.6 show the simulation results of 

each scenario.  
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Figure 3.4 Arbitrage profit under Scenario I (discount rate=0.21) 

 

Figure 3.5 Arbitrage profit under Scenario II (discount rate =0.21) 

 

 

Figure 3.6 Arbitrage profit under Scenario III (discount rate=0.49) 
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3.5.3.  Arbitrage profits and the impact of degradation cost 

The simulation results indicate that the degradation costs have significant impacts on the arbitrage 

profits. Table 3.7 shows the arbitrage profits with degradation cost included and excluded cases. 

When excluding degradation costs, electricity price arbitrage can generate profits to the owner. 

The gains from price arbitrage for PHEV-10, however, are negligible even excluding degradation 

costs under three scenarios. Under Scenario I, PHEV-10 doesn't participate in arbitrage for two 

reasons: (1) with a small battery, there is no electricity left after driving events, and hence no 

capacity for further V2G arbitrage; and (2) a time-of-use tariff provides little financial incentive 

to recharge the battery for later V2G arbitrage. Even with real time pricing mechanism (Scenario 

II, and III), price arbitrage brings to owners a gain of $1-2 over 5 years.  For PHEV-40, when 

excluding degradation cost, PHEV arbitrage can gain financial profits as $62, $88, and $58 per 

vehicle per year under Scenarios I, II, and III, respectively. 

Price arbitrage brings PHEV owners more profits as the battery capacity increases. Yet, once 

degradation costs are included, they offset all the gains. As results shown in Table 3.7, the impact 

of degradation is much more significant than the gains from price arbitrage, and hence negative 

profits.   
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Table 3.7 Arbitrage profits with and without degradation costs 

 Scenario I (r=0.21) Scenario II (r=0.21) Scenario III (r= 0.49) 

No 

Degradation 

Degradation No 

Degradation 

Degradation No 

Degradation 

Degradation 

PHEV-10 0 -74 1.2 -99 2.2 -45 

PHEV-40 62 -253 88 -370 58 -139 

 

3.5.4. Electricity tariff and arbitrage profits 

The only difference between Scenario I and II is the electricity tariff. Table 3.8 compares the 

arbitrage profits under Scenario I and Scenario II. With a TOU tariff, price arbitrage causes a loss 

to PHEV owner, which is -$74, -$253 over 5 years for PHEV-10, and 40, respectively. When a 

RTP mechanism is used, losses are -$99 and -$370 for PHEV-10, and 40, respectively. 

The PHEV owners under Scenario II (RTP) lose more than those under Scenario I (TOU), which 

contradicts with previous studies that RTP tariff can enable owners to save more than the other 

price tariff system (Doostizadeh et al., 2011; Mohsenian-Rad & Leon-Garcia, 2010). The primary 

reason that RTP leads to more losses is that RTP provides PHEV owners more opportunities (i.e., 

electricity price varies more frequently) to conduct arbitrage. Figure 3.7 demonstrates the charging 

and discharging events in a typical day. There is only one V2G discharging under TOU scheme, 

but two discharging events under RTP scheme. More discharging causes more battery degradation, 

and hence higher degradation cost.  
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Figure 3.7 PHEV-40 Operates at TOU vs. RTP at day=64 

 

Table 3.8 Arbitrage profits comparison between scenarios I and II (discount rate = 0.21) 

Vehicle (battery capacity) Scenario I (TOU) Scenario II (RTP) 

PHEV-10 (4 kWh) -$74 -$99 

PHEV-40 (16 kWh) -$253 -$370 

 

3.5.5. Technology progress and arbitrage profit 

There are two differences between Scenarios II and III, which are the battery technology 

performance and PHEV owners' discount rate. This study assumes that battery in Scenario III is 

more advanced than that in Scenario II. First, the round-trip efficiency has increased from 90% to 

95%. Second, the cost of PHEV-10 battery drops from $825/kWh-capacity in Scenario II to 

$475/kWh-capacity in Scenario III; and cost of PHEV-40 battery drops from $875/kWh-capacity 

in Scenario II to $500/kWh-capacity in Scenario III.  

-4

-3

-2

-1

0

1

2

1 6 11 16 21 26 31 36 41 46

kW
h

Charging

Driving Discharging

V2G Discharging

-4

-3

-2

-1

0

1

2

1 6 11 16 21 26 31 36 41 46

kW
h

Time

Charging

Driving Discharging

V2G Discharging

TOU 

RTP 



 

45 

 

Another difference is the type of PHEV buyers and hence their discount rates. The buyers in 

Scenario III are assumed to be a late adopter and have a higher discount rate. The discount rate is 

0.49 in Scenario III, and 0.21 in other Scenarios. 

The degradation cost in Scenario III is much lower than in Scenario II (see Table 3.9). With the 

same electricity prices, Table 3.9 shows the median values of the arbitrage profit of the two 

scenarios. The loss in Scenario III is about half of those in Scenario II. Yet, the arbitrage profits 

are still negative. This finding suggests that even with a much better battery technology, the 

degradation cost is still so high that PHEV owner can't make a profit from price arbitrage. 

Table 3.9 Arbitrage profit under Scenario II and III 

 Scenario II (discount rate= 0.21) Scenario III (discount rate= 0.49) 

PHEV-10 -99 -45 

PHEV-40 -370 -139 

 

3.5.6. Sensitivity analysis 

A set of sensitivity analyses are conducted to examine the impact of discount rate on arbitrage 

profits. Economic literature on consumer behavior suggests that the discount rate for consumers 

with higher income tends to be lower. This study assumes the discount rate equals to 0.21 when 

early adopters are the major buyers (i.e., market penetration is very low), and 0.49 when market 

share is high. Additional discount rates are examined. Under Scenarios I and II, when PHEV is 

still an emerging technology and is at early stage of market penetration, potential buyers are 

innovators or early adopters who have financial resources to pay a premium. Two more discount 

rate cases (0.12 and 0.16) are tested to examine the impact of more types of customers.  
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This study also examines the impact of a very high discount rate (0.7) on arbitrage profit under 

Scenario III. Buyers with very high discount rate are assumed to be conservative buyers who are 

sensitive to the vehicle price and concern heavily on future savings. To demonstrate the impacts 

of discount rate on the arbitrage profit, Figures 3.8 and 3.9 show the cases of PHEV-10 under 

Scenario I, and PHEV-40 under Scenario III, respectively.  

Figure 3.8 Impacts of discount rate on arbitrage profit (PHEV-10 under Scenario I) 

 

Figure 3.9 Impacts of discount rate on arbitrage profit (PHEV-40 under Scenario III) 
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When arbitrage profit is negative, the owners (who don’t know the final outcome ahead) with high 

expectation of PHEV technology will lose more money through the price arbitrage. Under 

Scenario II, the arbitrage profit for aggressive early adopters with a discount rate of 0.12 lose $30 

more than the group of consumers with standard discount rate (r = 0.21). Under Scenario III, in 

figure 3.9, the expected value of arbitrage profit for a conservative customer (discount rate=0.7) 

loses less than a typical late adopter (discount rate=0.49).  

 

3.6. Conclusion 

This study develops a method to estimate the potential profit of using PHEV in electricity-price 

arbitrage. The simulation is conducted under three scenarios of electricity tariff and PHEV buyer.  

The simulation results show that when degradation is excluded, PHEV in market with RTP scheme 

gains more benefit than it does that with TOU scheme. When degradation cost is included, PHEV 

owner will have a net loss in both current market and future market. PHEV owner loses money in 

all cases and the value of arbitrage in RTP loses more than those in TOU. Technology progress 

will reduce the loss. Yet, they can’t make the price-arbitrage profitable. The impact of degradation 

cost is more significant than the benefit earned by the corresponded arbitrage benefit. 

This finding confirms that customers will lose money in the arbitrage practice. The significant 

impact of degradation cost is the primary reason contributed to the negative result, and limited 

benefit of arbitrage can’t offset the cost to make profit. By comparing with previous literature, the 

differences of the outcome are resulted from the parameters with different settings. For example, 

the scale of electricity price tariff (both TOU and RTP) is much smaller than the ones quoted by 

other literature. 
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Overall, this finding implies that expected profits from arbitrage are not a viable option to engage 

PHEVs in dispatching and in providing ancillary services. Subsidy or change electricity tariff or 

both are needed from external resources.  
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Chapter 4 Pricing Emergency Service of Dynamic Microgrid as a Measure to 

Increase Distribution Resilience  

4.1. Introduction 

Customers, utilities, and society can gain many benefits from the applications of DERs (Corey, 

Iannucci, & Eyer, 2004; I. KEMA, February 2012; Mohd, Ortjohann, Schmelter, Hamsic, & 

Morton, 2008; Zogg, Lawrence, Ofer, & Brodrick, 2007). It can: (1) increase energy efficiency, 

reduce energy costs and pollutant emissions; (2) when integrated with the grid, improve power 

quality and reliability of the grid; (3) relieve transmission and distribution congestion and avoid 

or defer investment in the upgrade of transmission and distribution system; and (4) improve system 

resilience, especially to critical loads and vital services; and (5) increase generation diversity. 

Although there have been discussions of DERs as a promising supplement to the current 

centralized grid, the extent of those benefits hasn’t been fully understood (Lasseter et al., 2002). 

Since current distribution configuration is not designed to accommodate much DER integration 

(Zhenhua, 2006), DERs’ implementation to the current distribution grid system will be a critical 

issue to the system operator. Previous assessment methodology in the grid distribution will not be 

adequate to assess DER value, and new assessment should be conducted under the emerging power 

industry. 

Large grid integration of DERs will increase system resilience to weather resistance. In the 

aftermath of extreme weathers, power grid may suffer outage or blackout. DERs can supply 

continuous electricity to customers who are temporally losing power either from a major 

unanticipated surge in demand or from a substantial breakdown on the supply side in the main feed 

line of the distribution network (Vickrey, 1971). By integrating primary power sources and 
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supplemental DERs in a grid islanding paradigm, end-users will be able to pay these continuous 

electricity services at a fair rate to avoid power loss.  

The pricing issue, however, hasn’t drawn much attention in previous studies. Theoretically, the 

pricing process distinguishes with that in a normal distribution operation since the resources of 

power generation are different. Zeineldin considered a pricing model to formulate a single auction 

market, and assumed a real-time forecast of the load demand before the pricing activity(Zeineldin, 

Bhattacharya, El-Saadany, & Salama, 2006). The service rate of DERs in his model depended on 

the cost of DG portfolio and the unserved energy cost resulted from power shortage. The result 

showed that the electricity price was different between the two sides of island, and the electricity 

price within the island was directly affected by the distribution status. Zeineldin’s research, 

however, was limited by the state-of-the-art islanding technology, and the unserved energy costs 

as index of economic evaluation were given judiciously. 

My research will address both technical and economic issues to assessing DERs as supplemental 

power resources enhancing distribution resilience. It’s different with previous studies in the 

following aspects. First, the study will be conducted by implementing an emerging power 

distribution system (the dynamic microgrid scheme) to estimate the electricity market clearing 

prices of islanding regions at various circumstances. In addition, unserved energy costs will be 

given in a set of well-founded economical schemes, and the pricing scheme will be tested at various 

scenarios to reduce uncertainty. In order to maximize social benefits, i.e. total revenue of electricity 

off the operational cost, an optimal planning model is conducted by complying with associated 

distribution physical constrains. 
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The remaining study has the following sections. Section 4.2 introduced the innovative dynamic 

microgrid islanding scheme with current pricing practices of grid and off-grid islanding cases. 

Section 4.3 described an optimization methodology to estimate the market clearing price in a 

single-bid auction market. The overall benefit in the dynamic islanding region shall be maximized. 

Section 4.4 designed a hypothetical community with various type of building types in different 

load sectors. Four scenarios are proposed to comprehensively assess the impact of DER enhancing 

grid resilience. Section 4.5 explained the data sources and described the data structure, followed 

by a group of analyses in terms of the simulation result in section 4.6. Section 4.7 concluded the 

study.  

 

4.2. Dynamic microgrid and pricing DG services at normal and islanding situations  

4.2.1. Power islanding schemes and dynamic microgrid 

One promising implication of deploying DERs is to enhance the power distribution reliability. 

Current practices in distribution systems, however, disconnect all distributed generations and don’t 

permit islanded operation during outages (IEEE, 2000). Therefore, partial capacity of DGs is 

wasted(Mahat, Chen, & Bak-Jensen, 2010). To address this issue, IEEE released the standard 

1547.4, which allows intentional islanding by using available DG sources for continuous power 

supply [2]. Since DG technology will have significant improvement and cost of operation will be 

reduced in the coming future, it’s foreseeable to implement DG as back-up resource in intentional 

islanding schemes to enhance distribution system resilience (Chowdhury, Agarwal, & Koval, 2003; 

Zeineldin et al., 2006).  

A few islanding schemes have been discussed in the previous studies (Fuangfoo, Lee, & Kuo, 

2007; Londero, Affonso, Nunes, & Freitas, 2010; Tortós & Terzija, 2012; You, Vittal, & Wang, 
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2004). The scale of intentional islanding depends on the aim of design, ranging from solar panel 

and battery storage combined system at individual homes (Hales, 2014), to a microgrid providing 

continuous power supply to critical load under extreme cases. An innovative islanding scheme -- 

dynamic microgrid, is an ad hoc micro-grid that is created through dynamic islanding. Dynamic 

microgrid has a great potential as a way enhancing system resilience. Traditional microgrid has a 

fixed boundary, in which all the DGs and loads are affiliated to the microgrid. Dynamic microgrid, 

however, has a dynamic boundary which is established in accordance with status of distribution 

(e.g. generation capacity and load demand, voltage and frequency, etc.). Under such circumstances, 

DERs, which were independently operated by end-users or utilities, will be controlled by 

distribution operators. Loads and DERs in distribution are sectioned by intelligent controls and 

devices to minimize the number of household who would otherwise lose power. Smart switches 

are the key technologies to establish boundaries of each islanded section. They are displaced either 

on the routes extended from a single feeder, or deployed between feeders closed to each other. 

 

4.2.2. Pricing DG services at normal and islanding situations 

Previous literature lacks of study on pricing power supplies in a dynamic islanding paradigm. This 

study focuses on the issues of pricing the dynamic microgrid service.  

Pricing electricity in normal operation depends on the bids of each generator participant. In a 

wholesale electricity market, independent system operator (ISO) and regional transmission 

organizer (RTO) of the grid use auctions to set wholesale electricity market clearing prices. Each 

generator offers bid(s) to an independent administrator with the amount of electricity and the 

associated schedule when it plans to dispatch. The independent administrator then dispatches 

powers from generators with the lowest to highest bid prices until all power demands are matched. 
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In order to keep total cost of operation at minimum, an economic load dispatch (ELD) activity or 

its extension form --Optimal Power Flow (OPF), which regulates the optimization process 

following the physical laws of electricity and network (Bhattacharya, Bollen, & Daalder, 2001), is 

implemented. The market clearing price of electricity is determined by the types of auction.  If 

market clearing price is set as the bid price offered by the generator who meets the last increment 

of demand regardless the rest less expensive bid offers, this type of auction is a single/uniformed 

auction.  

The pricing scheme may not be applicable at islanding cases, where imbalanced supply and 

demand status and costly small scale power resources impact regional electricity rates. Zeineldin 

examined the impact of intentional islanding on electricity market price(Zeineldin et al., 2006). 

The system cost consists of DG generation costs and unserved energy cost. DG generation cost is 

the sum of fuel cost and the maintenance cost. Unserved energy cost is defined in terms of the 

value (in $ per kWh) of electricity not supplied due to an unplanned outage (S. DOE, 2010). The 

Electricity price in island is set as the generation cost of DGs which satisfies the last piece of 

demand of the island (S. DOE, 2010) When unit cost of unserved energy is less than unit cost of 

DG, customers will choose losing power instead. 

Previous literature assumes distribution system operators “judiciously” assigning unserved energy 

costs for customers(S. DOE, 2010). In real practices, however, reflecting a true value of unserved 

energy is difficult. It depends on the extent and duration of interruptions and other factors which 

are complex to acquire. Bose’s study identifies several types of methods estimating the cost of 

unserved energy (Bose, Shukla, Srivastava, & Yaron, 2006). “Direct assessment” intuitively 

perceives the cost as an economic loss in production due to the loss of certain electricity power. 
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Such losses are perceived from questionnaires completed by electricity consumers. This method 

requires further classification of each outage duration and type. In this method, unserved energy 

cost is represented as the “interrupted energy assessment rate (IEAR)” in $/kWh being the ratio of 

the expected customer interruption cost (ECOST) and the expected energy not supplied (EENS) 

(Wangdee & Billinton, 2005). The survey result depends on the classification of customers and 

accuracy of power loss estimation. The second method, the “indirect assessment”, uses operation 

cost of alternative power generations as unserved energy cost in order to avoid unfinished load 

demands. This assessment, however, is only applicable when sufficient alternative power 

generation capacity is guaranteed. Otherwise, there is not applicable to estimate the rest unserved 

load demand that hasn’t been supplied by generators(Bose et al., 2006). Other literature proposed 

a price elasticity demand model to analyze the demand responsiveness of customer, which 

correlates energy price with the extent of power that customers are willing to pay at that price 

(Bompard, Carpaneto, Chicco, & Gross, 2000). The elasticity, as an intrinsic attribute of customer, 

greatly affects the demand prices, but is limited by the availability of data sources.  

 

4.3. Methodology of electric market clear pricing  

4.3.1. Objective function and constrains 

The purpose of this study is to implement a pricing scheme in a dynamic microgrid case in terms 

of enhancing distribution resilience. This research adopts a single-auction market settlement model 

that prices electricity based on generation bids only. Bids are visible to market operators and spot 

prices of electricity are obtained every five minutes by maximizing the social welfare (Zeineldin 

et al., 2006). The social welfare is defined as the total revenue less the total generation cost 

submitted to the market.  
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Since maximizing the social welfare is implicitly related to minimizing the total generation cost, 

the objective function of this model is defined as:  

min J = ∑ 𝐶𝑖𝑃𝑖

𝑁𝐺

𝑖=1

+ ∑ 𝐶𝑢𝑛𝑃𝑢𝑛(𝑗)

𝑁

𝑗=1

 

where  

1. J is the total generation cost 

2. Ci(Pi) is the bid price of the ith DG associated with Pi , the ith generator power output 

capacity. DG portfolio includes installed generators in dynamic microgrid (CHP, PVs, 

etc.) and may have parked PHEVs which are controlled by a dynamic islanding control 

center through Vehicle-to-Grid technology; 

3. NG is the number of distributed generators within the dynamic microgrid boundary;  

4. Unserved power Pun and the unit cost of unserved energy Cun are also included in the 

second part.  

The objective function is minimized subject to the following constraints: 

1. Generator capacity limits 

𝑃𝑖
𝑀𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖

𝑀𝑎𝑥 

Where  

Pmin, PMax are the lower and upper thresholds on real power output of the ith DG; 

2. PHEV Battery SOC minimum threshold 

𝑆𝑂𝐶𝑡 ≥ 𝑆𝑂𝐶𝑚𝑖𝑛 ∗ 𝐶 



 

58 

 

Where  

SOCt is battery SOC at time t (kWh); 

SOCmin is the minimum electricity SOC (assumed as 30% in this case) of modeled battery; 

C is a constant equaling to the maximum capacity of battery (kWh).  

3. Stored gasoline in PHEV should be nonnegative at any time t,  

𝐺𝑆𝑡 ≥ 0 

Where  

GSt is the remaining gasoline at time t (gallon); 

4. Demand and supply balance 

∑ 𝐷𝑘

𝑁𝐿

𝑘=1

= ∑ 𝑃𝑖

𝑁𝐺

𝑖=1

+ ∑ 𝑃𝑢𝑛(𝑗)

𝑁

𝑗=1

 

Where 

Dk is the load demand of the kth bus, and NL is the total number of load buses.  

5. Uniform market price formulation 

𝜌 ≥ 𝜆𝑖, ∀𝑖 ∈ 𝑁𝐼 

Where  

ρ is the market clearing price for customers in the dynamic microgrid; 

λi is the incremental cost at the ith bus within the island; 

NI is total buses of the islanded system.  
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4.3.2. Unit cost of electricity model  

4.3.2.1. Combined heat and power (CHP) model 

A CHP plant is installed in a microgrid. During normal times, the CHP fulfills the power needs of 

microgrid. When an outage happens, the microgrid disconnects from its connected grid. The CHP 

must continuously supply electricity to maintain vital facilities working as usual. The cost of 

generating one more unit of electricity in CHP is termed as the unit cost of electricity (COE). COE 

is a short-term marginal cost, which is combined by the capital, fuel, and operations and 

maintenance (O&M) costs of plant. COE can be interpreted as the price at which electricity must 

be sold in order to cover all expenses and to match the return on power plant’s equity(Gulen, 2011). 

The formula is shown below:  

𝐶𝑂𝐸 =
𝛽 ∙ 𝐶

𝑃 ∙ 𝐻
+

𝑓

𝜂
+ 𝑂𝑀 

Where  

β = Levelized carrying charge factor or cost of money (assumed as 0.15/year in this model); 

C = Total plant cost ($) = $45M; 

H = Annual operating hours = 8670 h; 

P = Net rated output (MW) = 40 * load capacity factor; 

f = fuel cost ($/MWh); 

η= Net rated efficiency of the combined-cycle plant; 
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OM = fixed O&M cost ($/MWh) =$ 4.2/MWh.  

By assuming a targeted CHP with constant load capacity factor (KEMA),  the average power 

output, equaling to the load capacity factor times the rated output power capacity, is constant. 

Hence, the capital cost is constant for each year. Assuming the O&M cost is constant, the fuel cost 

is the only variable in the COE formula.  

The formula of COE shows that the electricity generation efficiency at partial loads impacts the 

fuel cost, and further the COE. A simulation of partial load efficiency has been run by a third party 

company. The extent of power plant efficiency at each partial load is listed in the figure 4.1, which 

shows an upward but decreasing tendency when picking up more load. Assuming the fuel of CHP 

will always be satisfied and the fuel price doesn’t change in short term, the fuel cost curve at each 

partial load has an inverse relationship with the efficiency curve (see figure below). The curve of 

fuel cost indicates that the COE of CHP is less expensive if CHP supplies more power to its served 

region.  

Figure 4.1  Efficiency and COE of CHP at Partial Load 
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4.3.2.2. PHEV model 

When parking at home, PHEVs can provide emergent power. The fuel sources of electricity 

differentiate PHEV discharging operation, which can be classified in two modes. PHEV can 

directly discharge electricity from battery if there is adequate energy stored. PHEV discharging 

electricity in this situation is termed as the “pure electric” mode. After the SOC of battery 

decreasing to its minimum threshold, the battery SOC becomes invariant. PHEV discharging in 

this situation is termed as the “hybrid mode”. In this mode, chemical energy instead of battery 

electricity becomes the primary power source. PHEV as a stationary emergency generator 

consumes gasoline from its battery packs to generate electricity.  

In the “pure electric” mode, the unit cost of electricity consists of the electricity price in $/kWh 

and the degradation cost of battery per kWh discharged. To simplify the calculation, the electricity 

price in normal hours uses a flat price, which is quoted from the average rate of electricity proposed 

by long island power authority (LIPA). The degradation rate, which is inferred as independent 

with the battery depth of discharge, is derived from the previous PHEV arbitrage research 

(Peterson, Apt, & Whitacre, 2010).  

In the “hybrid” mode, PHEV generator consumes gasoline to generate electricity. It’s assumed 

that the efficiency of gasoline consumption and its corresponding electricity generated is constant. 

The unit costs of electricity equals to the petroleum unit price in $/gallon divided by the 

transformation efficiency, represented in kWh/gallon.  

This model uses a 2011/13 Chevrolet Volt as an example(U. DOE, 2014), whose battery capacity 

is 16kWh with 12.4kW power output, and the fuel tank can contain a maximum of 9.3 gallons of 

gasoline. The PHEV gasoline to electric conservation rate is quoted from a study in University of 
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Texas at Austin(Tuttle, Fares, Baldick, & Webber, 2013), which is 8.4kWh/gallon. The model 

complies with the physical constrains of vehicle and battery which has been stated in the PHEV 

arbitrage section, and no other operation cost (e.g. vehicle-to-grid connection cost, congestion cost, 

etc.) is considered in the model. The cost of discharging one extra unit of electricity depends on at 

which mode the vehicle is operating.  

 

4.4. A hypothetical community and model scenario design 

4.4.1. A hypothetical community  

The figure 4.2 shows a hypothetical community on which a dynamic microgrid system is 

established. A combined heat and power (CHP) plant associated with the loads of critical 

infrastructures (hospital, policy station, and colleges) consists of the “traditional” microgrid, which 

is the No.1 sector in the hypothetical community. When an outage happens due to substation or 

transmission failure (shown in a dashed circle), all loads connected to this substation lose power 

immediately, except the ones in No.1 sector (the original microgrid). When dynamic microgrid 

scheme is enacted, excess power from CHP can supply power to the neighborhood areas. The 

power dispatched from microgrid is transmitted to the connected distribution substation, where 

multiple feeders connect with loads of closed sectors. No.2 sector is the next sector to have power 

restored. It consists of loads of residential buildings with identical daily load profile per household. 

PHEVs are deployed and assumed only deployed in this building sector. The electricity stored in 

PHEV battery is the second power source in the dynamic microgrid. Were there excess power after 

supplying the first two sectors, dynamic microgrid will expand to the No.3 sector, the commercial 

building sector. In the commercial sector, the buildings function differently with a wide range of 

commercial building types. Therefore, an average load profile representing all of the commercial 
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building types is not adequate to state commercial building characteristics. Further specified 

classification of building types is required, and the average hourly load profiles of each building 

type requires to be identified. The load profiles per building type and DG portfolio in this 

hypothetical community will be stated explicitly in the next section.  

Figure 4.2 Demo of a hypothetical community 

 

Building sectors other than the first building sector will be affected by the power outage. These 

buildings won’t be powered until the dynamic microgrid is able to pick up the loads from a new 

load sector. Assuming only facilities in the dashed circle were damaged by the outage events and 

no other technical issues are in the hypothetical community. It’s assumed that load demand within 

a same sector shall have power restored at the same time. When dynamic microgrid expands to a 

new building sector, it takes time for the new formulated dynamic microgrid to reach its reliability 

standard. The waiting time is assumed identical and is given arbitrarily due to lack of data sources. 

The impact of assigning different waiting times by system operator will further be tested in its 

sensitivity analysis section.  

This study only examines the concept of dynamic microgrid in a hypothetical community, and the 

electricity market clearing prices on the island estimated in this study don’t represent a real case. 



 

64 

 

 

4.4.2. Scenario Design 

Previous studies examined that electricity price in islanded operation directly affected by the status 

of distribution. The status of distribution is determined by generation and load demand profiles. 

To further examine the impact of these factors on electricity price, four scenarios are tested in the 

designed hypothetical community.  

The first two scenarios are in terms of dynamic microgrid restoring all load demand in the 

hypothetical community. Facilities are either powered by a solely CHP plant or by a combination 

of CHP and PHEVs.  

The second two scenarios are in terms of dynamic microgrid restoring only significant load 

demand in the hypothetical community. The “significant load” differs from critical load, and is 

defined as a minimum cluster of load demand that satisfies people’s living or staying need without 

enduring apparent discomfort feelings.  It not only satisfies critical needs for evacuation and life 

safety tasks, but fulfills fundamental needs that a facility is designed for. For example, cooking 

and refrigeration are the significant loads in restaurants, and refrigeration is the significant loads 

in refrigerated warehouse, etc. Significant instead of critical load is selected because the scale of 

CHP power capacity is large enough to supply more load than only the critical fractions.  

The four scenarios are summarized in a 2x2 matrix in the table 4.1 below.  
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Table 4.1 Dynamic microgrid pricing scenarios 

With PHEV? 

Dynamic  

microgrid status  

No 

(CHP is the primary   

source) 

Yes 

(CHP and PHEV are the 

primary sources) 

All Load Demand Scenario I Scenario II 

Significant Load Demand Scenario III Scenario IV 

 

a)  Scenario I and II are the scenarios in which dynamic microgrid restores all load demands 

of facilities in the islanding boundary. The maximum number of facilities restored in the 

first two scenarios is N1. Whether PHEV being allowed is the only factor that distinguishes 

the Scenarios between I and II.  

Scenario I: Under generation capacity limits, only CHP supplies load demand of end-users. 

The electricity market clearing price only applies to end-uses who involve in the dynamic 

islanding service.   

Scenario II: The combined generation sources supply all load demands of dynamic 

microgrid.  

CHP and PHEVs provide continuous electricity to fulfill all load demands of dynamic 

microgrid. With extra energy capacity, dynamic microgrid will have excess generation 

capacity supplying all facilities.  

b) Dynamic microgrid only restores significant load demand of involved facilities.  

“Significant load” satisfies more than critical needs for evacuation and life safety tasks. 

The identification process is introduced in the following section. In Scenario III and IV, 

DG(s) supplies only the significant portion of load demand. The insignificant load will be 

shed by operation, but their unserved cost will not account for the system operation cost 
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since it is mandatorily excluded by system operators.  

Since load demands per facility are reduced in the “significant load” scenario, according 

to the dynamic microgrid definition, the dynamic microgrid boundary will expand. Hence, 

more facilities will be involved in the dynamic microgrid, and their associated load demand 

will be restored. Assuming the maximum number of facilities restored in the second two 

scenarios is N2, N2 should be larger than N1. In this section, whether or not PHEV being 

deployed before the outage is the only factor that distinguishes the Scenarios between III 

and IV.  

Scenario III: Under generation capacity constraints, CHP only supplies significant loads 

of end-users.  

Scenario IV: The combined sources of CHP and PHEVs supply only significant loads of 

facilities in the dynamic microgrid   

 

4.4.3. Sensitivity analysis design 

Three sensitivity analyses will be conducted to examine factors that may impact electricity market 

clearing price results.  

1) Penetration rate of PHEV  

The penetration rate of PHEVs directly impacts the aggregated PHEV power capacity and 

further the total power capacity of DG portfolio. The rate is 5% as a default to simulate an 

emerging PHEV market case. The result in the 20% penetration rate case as a future market 

prediction will be compared.  
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2) Time selection of outage cases 

Load demand impacts distribution status and it varies with time. In this study, starting times 

and seasons in which outages happen impact the load demand profile and further the 

outcome of electricity market clearing price.  

a. Start time of the power outage  

Electricity load demand varies with time. The figure 4.3 shows a sample load 

profile of residential building within a day (Zimmermann et al., 2012). Different 

starting time of power outage will have different extent of load demand.  

Figure 4.3 Sample load profile of residential building 

 

b. Date/Season  

Electricity load profile varies with seasons. For example, residential peak loads in 

summer and winter are different. Peak load in summer starts from late afternoon till 

early night; by comparison, there are two peak load periods in winter which are at 

early morning and evening (seen figure 4.4. below) (Zimmermann et al., 2012).  
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Figure 4.4 Sample load profiles in winter 

 

To address these two factors, three outage cases resulted from extreme weather are 

implemented. Detailed information of outage is stated in the data description 

section.  

3) Waiting time between sectors with different restoration priorities  

Waiting time is manually controlled and defaults as 20 minutes in this model. Earlier or 

later restoration of new load sectors may induce significant load profile changes in dynamic 

microgrid. To address this issue, 10 and 30 minute cases of waiting time are compared in 

this sensitivity analysis.  

 

4.5. Data description 

4.5.1. Outage case description 

Outage duration and intensity (i.e. number of loads affected) determine the impact of outage 

damages.  

Two cases of outage duration are considered: 1) one-hour outage, and 2) four-hours outage. Since 

CHP fuel is unlimited by assumption, outage duration may affect PHEV operation if its energy is 
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required to make cost-effective power supplies. Stored electricity and reserved gasoline are more 

likely drained away in longer outage durations.  

The two duration cases will be repeated in three major outages, whose starting times and seasonal 

indexes are different. Specifically, hurricane Sandy brought strong winds and significant storm 

surge to the Long Island Sound and New York harbor in the early morning of Oct. 28, 2012 

(Macmath, 2013). Hurricane Irene, in the summer of 2011, made landfall along the coast of New 

Jersey at 5:35 am, and condition was at the strongest between 5am to 10am (Dover, 2011). 

Nor'easter Storm has appeared in winter in multiple years. The starting times in this research are 

set as: 7am (Irene, fall), 9am (Sandy, summer), and 4pm (Nor’easter, winter).  

In terms of the coverage of outage damage, we assume only transmission and lines shown in red 

are failed to work.  All loads connected to this substation and lines lose power immediately, except 

the ones in No.1 sector (the original microgrid). Dynamic microgrid can only power facilities 

connected on the green lines in the hypothetical community.  

 

4.5.2. Load profile of residential sector 

The residential load profile data is quoted from a household electricity survey conducted by the 

department of energy and climate change in U.K. The preliminary report (Zimmermann et al., 

2012) was first published in 2012, and presented the results of a survey of 251 households in 

England whose energy demand and consumptions were recorded over a year started from May 

2010.  

To better understand the survey result, the data from each household were compiled in a database, 

and shown by a simple, user-friendly tool. The tool shows how much electricity, broken down into 
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eight end-use types, is used for each 10-minute, either in aggregated or in average single 

household(s) form. The outcome layout demonstrates the result in tables and graphics. The hourly 

load curves represent all types of dwellings on each type of days (weekday and weekend, month 

of the day average, the hottest and coldest day of a month). A sample hourly load profile for a 

single household in January workdays is shown in the figure 4.5 below. It’s assumed that the load 

of electric heating is excluded in the residential sector. Appliances in each type of end-use are 

described in the appendix A (Zimmermann et al., 2012). 

 

Figure 4.5 A sample hourly load profile for a single household in January workdays 

There are assumed 20,000 residential households with identical load profile in the No.2 sector. 

The No.2 sector load profiles of three seasons are shown below.  
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Figure 4.6 Residential sector load demand in aggregated form 

 

In figure 4.6, the periods of peak demands are between 5pm and 9pm. There’re semi-peak demand 

periods from 6am till 10am.  

 

4.5.3. Load profile of commercial sector  

Commercial buildings are buildings that devoted to commercial purposes. In the commercial sector, 

buildings function differently with a wide range of commercial types. Therefore, an average load 

profile of all commercial types can’t represent a single commercial building designated to different 

commercial purposes. Further specified classification of building types is required, and the average 

hourly load profile of each building type will be implemented as the commercial load data.  

A comprehensive study of commercial building sector end-use energy use, the California 

Commercial End-Use Survey (CEUS), is conducted by the Itron Inc. and other companies. This 

survey records detailed building system data, including electricity and gas usage, operating 

schedules, and other elements reflecting commercial building characteristics (Commission & 

Commission, 2006). A random sample of 2,790 commercial facilities has been completed 

representing the total 574,273 Commercial buildings in the State. Specified software developed 

for the CEUS project automatically transfers the on-site survey data to the end-use load profiles 
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for user-defined commercial market segments. The commercial segments in the report 

(Commission & Commission, 2006) include Small (<30KSqFt) and Large Office (≥30KSqFt), 

Restaurant, Retail, Grocery, Refrigerated and Unrefrigerated Warehouse, School, College, 

Hospital, Lodging, and Miscellaneous (including fire department and police station). Three out of 

twelve segments are marked as critical commercial infrastructures, which include college, hospital, 

police and fire station. The end-use load types of commercial facility include Space Heating, Space 

Cooling, Ventilation, Indoor and Outdoor Lighting, Office, Cooking, Refrigeration, Water Heating, 

Motors (non-HVAC), Air Compressors, Process, and Miscellaneous (for equipment that is not 

covered by one of the pre-defined end uses). End use mappings on building appliances are 

described in the appendix.  

The result of CEUS is shown in a 16-day hourly end-use load profile diagrams for each commercial 

segment. The 16-day graph presents a set of stacked end-use hourly curves on the selected 16 days 

of a year: 4 day types (Typical, Hottest/Coldest day, Weekdays and Weekend) in 4 seasons (winter, 

spring, summer, and fall). The results show the aggregated forms of electricity consumptions for 

each commercial sector in the California State. A sample hourly load profile of all colleges in 

California on a Winter Typical Day is presented below:  
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Figure 4.7 Sample load profile of all colleges in California State in winter season 

 

The load demands for each commercial building type are further transformed to the demands in 

per unit floor area. It’s assumed that the energy consumption per unit floor area data in the survey 

is identical to the ones in the hypothetical community buildings. The total load demand in the 

hypothetical community equals to the multiplication of per unit floor area load profile data and the 

extent of floor areas of each commercial building type.   

Table 4.2 No.1 sector building type and building numbers, and average floor areas 

Building Type Data Source Average floor areas (kSqFt) # of building(s)  

College Stony Brook Campus 8561.369 (Main Campus) + 

85.561 (R&D park) 

1 

Hospital  Stony Brook Hospital 202 1 

Police station  Suffolk County Police 

Station 

25.8 1 

Fire station  East Setauket Fire 

District 

22.99 1 
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Buildings in the No.1 sector (college campus, hospital, police station and fire station) are assumed 

having the same floor areas as the ones around the Stony Brook region. The average floor areas 

and assumed number of buildings in No.1 sector are listed in the table 4.2.  

The three-season hourly load profiles for buildings in No.1 sector are shown in figure 4.8 below. 

The curves of each season are similar to each other, and the peak demands happen in the middle 

of the day. This shows a daily electricity consumption pattern in critical infrastructures, e.g. college, 

hospital and enforcement departments, where people’s working hours are commonly during that 

time.  

Figure 4.8 Critical Infrastructure Sector Load Demand 

 

It’s also assumed that the floor area spaces of other commercial building types (i.e. buildings in 

the No.3 sector) are quoted from the result of average commercial building floor space in the 2012 

Commercial Buildings Energy Consumption Survey (EIA, 2014). The result is listed in the table 

4.3 below.   
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Table 4.3 No.3 sector building type and building numbers, and average floor areas 

Building Type Average floor areas(kSqFt) Number of building(s) assumed 

Small office 15.8 100 

Large office 50 10 

Lodging 37.4 5 

Restaurant 4.8 10 

School  31.6 1 

Non-refrigerated warehouse 16.4 1 

Refrigerated warehouse  16.4 1 

Retail store 19 6 

Grocery 7.4 10 

 

Figure 4.9 No.3 sector load demand in aggregated form 

 

Figure 4.9 demonstrates the aggregated load demand in No.3 sector. The curves follow the same 

load characteristics as the one in No.1 sector, on which loads tend to pile up around noon times. 

The extent of load demand in summer has an apparent rise over the other two seasons. This is due 

to the gigantic commercial AC consumptions in summer.  The figure 4.10 shows the per thousand 
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square feet cooling demand of retail stores in three different seasons (Commission & Commission, 

2006). Load demand in summer has an apparent increase on the cooling needs.  

Figure 4.10 per kSqFt Cooling Demand of Retail Store in three seasons (CEUS) 

 

 

4.5.4. Identifying significant load in each sector 

The definition of significant load has been described in the Scenario section. Significant load refers 

to the load of appliances which are “significant” to building operation otherwise users in facility 

will experience apparent discomforts. In the CEUS data, the minimum unit of load demand is “end-

use type”, not load of appliances in each end-use (i.e. end-use mapping).  The definition of 

significant load in this section can extend to the load of end-use types which include significant 

load appliances.  
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minor effect on retail or storage facilities. Therefore, identifying significant load requires 

classification of each facility.  

The classification of facility is determined by its occupancy type and risk code. The 2012 

International Building Code (IBC) made a detailed classification(IBC, 2006). In the occupancy 

classification table, the left column lists the categories of occupancy types relevant to this study. 

The facilities belonging to the respective occupancy categories are enumerated in the right column.  

Table 4.4 Building occupancy classification by IBC 

Occupancy Classification Facility  

Assembly Restaurant 

Business Policy/Fire Station, Office, College 

Educational  School (K-12)  

Institutional Hospital 

Mercantile Grocery, Retail 

Residential House, Hotel/Lodging 

Storage  Warehouse/ Refridged Warehouse 

In the Risk Category table, each facility is assigned to a risk code. Risk-I indicates the lowest risk, 

and Risk-IV tags for the most critical facilities. FEMA’s study (Bachman et al., 2014) identifies 

four levels of operation for facilities of each risk code. In NFPA 99, the Health Care Facilities 

Code (NFPA, 2012) provides additional requirements for critical health care facilities beyond the 

basic requirements of the 2012 International Building Code (IBC, 2006). The additional code 

specifies the equipment(s) that must have continuous electricity supplies at emergency.  
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Table 4.5 Risk category by FEMA and IBC 

Risk Category Facility 

I: low hazard Storage 

II: Except those listed in the other three category  

III: Substantial hazard to human life in the event of 

failure 

School, College, Office, 

Lodging , Residential house, 

Restaurant, Grocery, Retail 

IV: Essential facilities Hospital, fire/police 

 

It’s assumed that facilities with same occupancy classification and risk category having same 

significant load types. Since the CEUS data only focuses at end-use level, based on the assumption 

and essential functionality of facilities, the end uses of significant load in each facility are identified 

in the table 4.6:  
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Table 4.6 Identified significant end-use in each facility type 

Facility Significant End-use 

Hospital Vent, Interior Light, Office Equipment, Misc, Motors, Air Compressor  

Residential/Lodging 

(Pipattanasomporn, 

Feroze, & Rahman, 2012) 

Refrigeration, freezer, cooking, and interior lighting 

Warehouse Interior Light and Ventilation 

Refridged 

Warehouse 

Refrigeration and Interior Light   

Fire/Police Interior lighting, Outside Lighting, Miscellaneous, Office Equipment, 

Motors, Ventilation 

School (K-12)  Interior lighting, office Equipment, Cooking, Refrigeration, Motors, 

Miscellaneous, Ventilation 

College  Outside lighting, Interior lighting, office Equipment, Cooking, 

Refrigeration, Motors, Miscellaneous, Ventilation 

Small Office Interior lighting, office Equipment, Miscellaneous, Ventilation 

Large Office  Interior lighting, office Equipment, Miscellaneous, Ventilation, 

Motors 

Restaurant  Interior lighting, Cooking, Refrigeration, Miscellaneous, Ventilation 

Retail  Interior lighting, Miscellaneous, Ventilation 

Grocery Interior lighting, Refrigeration, Miscellaneous, Ventilation 
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Identifying significant end-use instead of significant load of appliances, however, may induce 

inaccurate estimation. Load appliances in each significant end-use category may not be of same 

significant. For example, in “motors” end-use mappings, loads of passenger elevator is much more 

significant than loads of swimming pool in large population gathered facilities (e.g. hospital). 

Hence, only loads of the passenger elevators are significant by definition. Since the residential and 

commercial load demands are only broken into various end-uses, the estimation of significant load 

demand could be inaccurate.  

A sub-scenario under the “supplying significant load” scenario is designed. In the sub-scenario, 

it’s assumed that only half appliances in the identified significant end-uses are significant. The 

sub-scenario is termed as “50% Significant End-use”. The load demand in the “50% Significant 

End-use” scenario accounts for the fewest significant load cases in the “significant load” scenarios. 

The impact of different merits of significant load identification will be tested in a sensitive analysis.  

In dynamic microgrid, with fewer loads per facility in the “significant load” scenarios, more 

facilities in the hypothetical community shall be involved. The numbers of facilities in residential 

and commercial sectors are assumingly doubled in the significant end-uses scenario and tripled in 

the “50% significant end-use” sub-scenario. The number of facilities in No.1 sector doesn’t change 

in both scenarios because the number of facilities served by the original microgrid is fixed.   

The aggregated significant load profiles in each sector of hypothetical community are listed from 

figure 4.11 to 4.13. When AC load is removed from significant end-use, the significant load 

profiles of each sector are closer to each other among different seasons.  
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Figure 4.11 Critical infrastructure sector significant load demand 

 

Figure 4.12 Residential sector significant load demand 

 

Figure 4.13 Commercial Sector Significant Load Demand 
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4.5.5. Unserved energy cost  

In the model, the unserved energy costs are assumingly equivalent to the load interruption costs, 

which are impacted by outage duration and load characteristics (Balducci, Roop, Schienbein, 

DeSteese, & Weimar, 2002). The interruption costs are interpreted as the cost of interruption per 

unit load of annual peak demand ($/kW). Balducci and their colleagues conducted a couple of 

customer surveys interpreting the interruption costs in Canada in 1992 and 1996(Balducci et al., 

2002). The 1992 and 1996 surveys asked Canadian energy consumers from residential, industrial, 

and commercial sectors submitting their willingness to pay in several cases of outage disruptions. 

The 1996 survey exclusively focused on some specific commercial industries (e.g. government, 

banking, insurance, health, etc.) (Balducci et al., 2002). The interruption costs were then converted 

to the U.S. dollars based on the 1992 and 1996 Canadian–U.S. currency exchange rates (Balducci 

et al., 2002).  

The interruption costs of energy customer in three sectors are summarized in the table 4.7 below:  

Table 4.7 Interruption costs of energy customer 

Sector ($/kW) Duration of Interruption 

1 Hour 4 Hours 

Commercial 12.87 44.37 

Residential 0.15 1.64 

Transportation 16.42 45.95 
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The interruption costs of commercial sector are further broken down into different commercial 

groups. The group interruption costs are termed as the group customer damage functions (GCDFs) 

in US $/kW. Table 4.8 only listed the commercial sector groups which are relevant to this research.  

Table 4.8 The interruption costs of commercial sector broken down by commercial groups 

Industry ($/kW)  Duration of Interruption 

1 Hour 4 Hours 

Food Stores/Restaurant 28.41 147.93 

General Merchandise 21.14 228.15 

Miscellaneous retail 11.32 33.19 

Health Service 3.02 4.38 

State Government 8.36 19.84 

Lodging 1.13 3.05 

Amusement and Recreation  63.83 78.01 

Education service 1.13 4.27 

 

4.6. Result and analysis  

A 40-MW CHP power plant is simulated as the power source within the traditional microgrid 

boundary. The partial load efficiency associated with other parameters follows the data description 

in the previous section, since the 40-MW CHP equivalents to a combination of two 20-MW scaled 

power plants of the same type. It’s also assumed that 5% of residential households (20,000 

household numbers) have PHEV deployed. A further sensitivity analysis on a higher penetration 

rate (20%) of PHEV will be conducted in the respect section.   
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The simulation results are presented for the problem formulated in this research. A 24-hour time 

frame, dived into 144 10-minute intervals, is used for the simulation. CHP supplies power demand 

of hospital and campus at normal situations, and picks up all the demands of critical infrastructures 

when outage happens. After waiting for a constant time (defaults as 20 minutes), the dynamic 

microgrid expands to include the neighborhood residential load demands, and last, buildings of 

the commercial sector.  The dynamic expansion process is referred as the two increasing segments 

of generation profile after the outage begins. The market electricity prices within the dynamic 

microgrid are obtained every 10 minutes. The uniform market prices are determined by calculating 

the incremental cost at each power buses and setting the highest bus incremental cost as the market 

price. Results in each subsections represents the outcomes in each designed scenarios.   

 

4.6.1. Scenario I: CHP as the only source covering all loads within the boundary  

The figures below show the market-clearing price ($/kWh) of electricity within the dynamic 

microgrid for 1 hour and 4 hours outage durations. Since CHP is the only power source, the fuel 

and O&M costs of CHP for each extra unit of electricity generated equals to the maximum 

incremental costs which is the market clearing price. The electricity market clearing prices among 

different seasons (figure 4.14 to 4.16) depends on the power output (figure 4.17) of CHP at each 

time interval.  
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Figure 4.14 Electricity Market Price at 1-hour/No-PHEV Scenario/Summer Case 

 

Figure 4.15 Electricity Market Price at 1-hour/No-PHEV Scenario/Fall Case 

 

Figure 4.16 Electricity Market Price at 1-hour/No-PHEV Scenario/Winter Case 

 

CHP is the only power source in the dynamic microgrid. The figure 4.17 demonstrates the CHP 

power output during the three outage events.  
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Figure 4.17 CHP Power Output at 1-hour/No-PHEV Scenario/All-Season Cases 

 

In the 4-hour/no-PHEV cases, there is unserved energy in winter season. When CHP is the only 

source within the dynamic microgrid, electricity demand over the generation capacity (i.e. 40MW) 

has to be unserved. The supply and demand imbalance only increases the total system cost, but has 

no impact on the electricity price since the market clearing price only matters with the incremental 

cost of buses. The electricity rate and CHP power output during three outage events in 4-hour/no-

PHEV case are listed in the figures 4.18-21 below.  

Figure 4.18Electricity Market Price at 4-hour/No-PHEV Scenario/Summer Case 
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Figure 4.19 Electricity Market Price at 4-hour/No-PHEV Scenario/Fall Case 

 

Figure 4.20 Electricity Market Price at 4-hour/No-PHEV Scenario/Summer Case 

 

Figure 4.21 CHP Power Output at 4-hour/No-PHEV Scenario/All-Season Cases 
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4.6.2. Scenario II: CHP pluses PHEVs to cover all load demands 

For all the 1-hour outage cases in this scenario, there is no difference of electricity rates between 

the first two scenarios. Since CHP has a huge economic advantage over PHEVs, it still works as 

the only active power source despite whether or not PHEV were deployed.  

For the 4-hour outage cases in this scenario, the electricity rates in “summer” and “fall” cases are 

similar to the counterparts in scenario I. Electricity demands are still below the CHP power 

capacity. In the “winter” case, however, when demand exceeds the CHP power capacity, PHEV 

has to be activated to fill the extent of demand unserved. Nevertheless, under the low penetration 

settings (i.e. 5% residential houses has PHEV stand by), the power capacity of PHEV is not 

adequate to fill up the remaining unserved power at peak intervals. There is still unserved energy 

that neither CHP nor PHEV could cover.  

The figure 4.22 shows the electricity rate at 4-hour/PHEV scenario in winter case. When outage 

happens, the first rise of electricity rate is resulted from the activation of standby PHEVs in the 

residential sector. The SOC of aggregated PHEV batteries reduced to the minimum SOC threshold 

after four 10-minute intervals. PHEV then switched to the battery charging sustaining mode at 

107th time interval, in which the engines (consuming gasoline) started working to supply electricity.  

Figure 4.23 demonstrates the electricity output of PHEV in winter seasons.  
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Figure 4.22 Electricity Market Price at 4-hour/PHEV Scenario/Winter Case 

 

Figure 4.23 CHP & PHEV Power Output at 4-hour/PHEV Scenario/Winter Case 

 

 

4.6.3. Scenario III: CHP covers only significant load demand 

In this scenario, electricity market clearing prices in the one-hour outage case is demonstrated from 

figure 4.24 to 4.27.  By comparison, the narrow lines show the respective market clearing prices 

in the counterpart cases in Scenario I.  Electricity prices in scenario III cases are higher than the 

Scenario I cases at the beginning of the outages, but reduce sharply after load demands of new 

sectors are restored.  
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Figure 4.24 Electricity Market Price at 1-hour/NoPHEV/Significant Load/Summer Case 

 

Figure 4.25 Electricity Market Price at 1-hour/NoPHEV/Significant Load/Fall Case 

 

Figure 4.26 Electricity Market Price at 1-hour/NoPHEV/Significant Load/Winter Case 

 

The CHP power output time-variant profiles in figure 4.27 show three load drops happen at the 

beginnings of each outage. This is because only the significant load demands in critical facility 

sector were restored during these time periods.  
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Figure 4.27 CHP Power Output at 1-hour/No-PHEV/Significant Load/All-Season Cases 

 

The electricity market clearing prices in 4-hour/No-PHEV/Significant-load cases have little 

differences with the counterpart cases in scenario I.  

 

4.6.4. Scenario IV: CHP and PHEV to cover only significant load demand 

In the 1-hour outage cases and 4-hour outage summer and fall cases of this scenario, the CHP has 

excess capacity to cover the significant demands of new formed hypothetical community. PHEVs 

don’t need to supply emergent electricity to customers in the 1-hour or 4-hour outage cases. The 

electricity market clearing prices of the 1-hour outage cases and 4-hour outage summer and fall 

cases are similar with the counterpart cases in Scenario II. 
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Figure 4.28 Electricity Market Price at 4-hour/PHEV/Significant Load/Winter Case 

 

In figure 4.29, the electricity price in the winter case (shown in green dashed line), however, differs 

with its counterpart result (shown with the orange narrow line) in Scenario II. First, there is no 

unserved energy in this case. Second, the electricity price in winter has only one apparent rise at 

the 104th time interval when energy from PHEV battery is required to restore excess demand. In 

comparison with the 4-hour outage winter case in Scenario II, there is no second rise of market 

clearing price. Third, the high electricity prices resulted from PHEV discharging last shorter in the 

4-hour winter case in Scenario IV than its counterpart in Scenario II. This can be interpreted as the 

excess demand over the CHP limit last shorter than the ones in the counterpart case in Scenario II. 

PHEVs, therefore, have less energy required to discharge in this case. In figure 4.30, PHEVs have 

adequate energy stored in battery after discharging. The second rise of electricity market clearing 

price is avoided because PHEV doesn’t consume gasoline in this case.   
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Figure 4.29 CHP & PHEV Power Output at 4-hour/PHEV/Significant Load/Winter Case 

 

Figure 4.30 PHEV SOC at 4-hour/PHEV/Significant Load/Winter Case 
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at a higher penetration rate, PHEV consumes electricity from battery solely without using gasoline 

as a secondary source.  

Figure 4.31 Electricity Market Price at 4-hour/PHEV/Winter Case PHEV penetration rates 
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Figure 4.32 Electricity Market Price at 4-hour/PHEV/Winter/waiting times 
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process of dynamic islanding starting proceeded, the extent of load demand in the sub-scenario 

gradually increases until it reaches to the generation capacity of dynamic microgrid.  

Figure 4.33 Electricity Market Prices of 1-hour/Summer/Without PHEV case 

 

At the 4-hour/winter/with PHEV case, shown in figure 4.34, the electricity market clearing price 

in the sub-scenario doesn’t’ have an upward spike during the outage case, which is different with 

the price curve in the “Significant Load” scenario. This is due to the configuration of total load 

demands in the sub-scenario where the design of half-load of significant end-use per facility and 

tripled facility numbers resulted in an excessive supply of CHP in the sub-scenario. Therefore, the 

electricity market clearing price is only determined by the CHP operation cost.  

Figure 4.34 Electricity Market Price of 4-hour/winter/With PHEV case 
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4.8. Conclusion  

This research uses the ELD model to calculate the electricity market clearing prices in a 

hypothetical community with single bid auction electricity market. According to the generation 

and load demand status, the research developed four scenarios to assess the impact of these factors 

on the electricity prices. Each scenario is further dived into six cases, which include three extreme 

weather cases and two outage duration types in each extreme weather case.   

The simulation result indicates that the electricity market clearing price in this designed dynamic 

microgrid is predominantly decided by the power output and cost of electricity of each DGs. When 

CHP has surplus capacity over demand, no matter whether or not PHEVs are deployed, electricity 

price is only impacted by the CHP operation cost which owns a huge economic advantage over 

other DERs. When CHP is deficient to power the designated loads, energy from PHEV will be 

consumed. The expensive operation cost of PHEV raises electricity price within the dynamic 

microgrid. When PHEV stored electricity reached to its minimum threshold, PHEV needs to stop 

discharging from the battery, and gasoline, a more expensive resource, will be consumed after that. 

Therefore, two price hikes are expected if PHEV uses both gasoline and stored electricity to 

generate emergent power. When the total capacity of CHP and PHEV are deficient, there will be 

unserved energy. Some facilities in the dynamic microgrid have to lose power again and suffer the 

outage. The deficiency of power supply won’t impact the electricity prices for facilities who 

already have power restored, but the overall system cost will be increased.  

To further examine the impact of designed factors, three sensitivity analyses were conducted.  The 

first sensitivity analysis states that the penetration rate will increase the power capacity of PHEV 

and enhance PHEV output in pure electric mode. After increasing the penetration rate from 5% to 



 

98 

 

20%, the previous two hikes of electricity price appeared only once. The waiting time of dynamic 

microgrid expansion has trivial impact on the electricity price and therefore could be neglected 

from policy implication concerns. The last sensitivity analysis examined the impact of significant 

load demand identification on the electricity price. A 50% of significant load demand case is 

selected. The simulation results indicated that, with less extent of load demands per facility but 

more numbers of facilities involved, there is little impact on the electricity price. At extreme cases 

where the change of load demand profile impacted the power output of each DG, the electricity 

market clearing price shall appear an apparent difference.  

This research implicates that dynamic microgrid offers an option that end-users can gain access to 

emergency power supply without paying high prices. Dynamic microgrid is, therefore, an 

economically viable alternative to enhance grid resilience.  
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Chapter 5 Summary of Major Findings, Policy Implications, and Future 

Researches  

5.1. Result summary of primary researches 

Figure 5.1 summarized the primary elements in the two major studies. In figure 5.1, the PHEV 

charging cost and its associated degradation cost in Study 1 are the PHEV operation cost in Study 

2. The electricity market clearing price in dynamic microgrid, as a possible electricity rate scenario 

in an emergent condition, could further influence PHEV arbitrage value (not considered in this 

dissertation). The benefit will provide PHEV owners financial incentives to offset partial operation 

cost in normal times.  

  

Figure 5.1 Structure of major researches and relationship between major researches 

Economic Load Dispatch in Dynamic Microgrid  
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5.1.1. Summary of PHEV arbitrage research 

In the PHEV arbitrage research, the simulation results show that when degradation is excluded, 

electricity price scheme in RTP helps PHEV owners gaining more benefit than the TOU scheme. 

When degradation cost is included, PHEV owner will have a net loss in both current market and 

future market. Technology progress will reduce the loss. Yet, they can’t make the price-arbitrage 

profitable. The impact of degradation cost is more significant than the benefit earned by the 

corresponded arbitrage benefit.  

This finding confirms that, unless having significant improvement on battery degradation rate, 

customers will lose money in the arbitrage practice. The significant impact of degradation cost is 

the primary reason contributed to the negative result, and limited benefit of arbitrage can’t offset 

the cost to make profit.  

 

5.1.2. Summary of pricing dynamic microgrid research 

In the pricing dynamic microgrid research, it uses the ELD model to calculate the electricity market 

clearing prices in a hypothetical community with single bid auction electricity market at 

emergency.   

The simulation result indicates that the electricity market clearing price in this designed dynamic 

microgrid is only impacted by the status of generation and demand. The simulation result indicates 

that the electricity market clearing price in this designed dynamic microgrid is predominantly 

decided by the power output and cost of electricity of each DGs. When CHP is deficient to power 

the designated loads, energy from PHEV will be consumed. The expensive operation cost of PHEV 

raises electricity price within the dynamic microgrid. PHEV consumes electricity either from 
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battery or gasoline, which causes different operation costs. Unserved energy may exist at extreme 

cases, though it won’t influence the electricity price but increasing overall system cost by the 

amount of unserved energy cost.  

 

5.2. Policy implications from primary studies 

The findings in PHEV arbitrage research implies that expected profits from arbitrage are not a 

viable option to engage PHEVs in dispatching and in providing ancillary services under the current 

and predicted power industry and PHEV battery technology. Subsidy or change electricity tariff 

or both from government are needed. The source of charged electricity from almost zero-marginal 

cost of power sources (e.g. renewable energy) will be another promising way of reducing PHEV 

charging cost.  

In the dynamic microgrid pricing research, the result estimates the electricity market clearing 

prices in a hypothetical community where a dynamic microgrid paradigm is enacted. At 

circumstances where CHP as the only source restoring facility power within the dynamic microgrid, 

the electricity market clearing price is even cheaper than the on-grid electricity price at normal 

times. Hence, dynamic microgrid offers an option that end-users can gain access to emergency 

power supply without paying high prices. Dynamic microgrid is therefore an economically viable 

alternative to enhance grid resilience. 

 

5.3. Future researches of DERs assessment 

The value of DER integration is impacted by technology performance, electricity market design, 

and customers’ attitude and behavior of adopting emerging technologies. Some factors whose 

uncertainties haven’t been discussed in this thesis will be my future research aims.  
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A change of load demand in long-term will be a primary uncertainty factor influencing the future 

value of DERs integration. When more people adjust their behavior in response to differentiated 

electricity rates, the aggregated adjustment in electricity use behavior will lead to a demand curve 

with smaller difference between peak and off-peak. The rate difference between peak and off-peak 

will be reduced or even disappeared. Some researchers(Exarchakos, Leach, & Exarchakos, 2009) 

analyzed the impact of the demand-side management (DSM) on arbitrage profit. When load 

demand curve becomes flatter, the arbitrage profit drops, and consumers are less likely to 

participate in arbitrage. Vytelingum (Vytelingum, Voice, Ramchurn, Rogers, & Jennings, 2010) 

used game theory to analyze the relationship between the arbitrage profit and the fraction of 

population involving in arbitrage using stationary battery. They found that the Nash equilibrium 

is at 38% of the population at which the social welfare is at maximum. A flat load curve implies 

the sunk cost of storage facility will be larger than the benefit from arbitrage. At the equilibrium, 

any variation of strategy on opt-in or opt-out of the technology participation will hurt the general 

benefit, and the average saving on electricity bill will decrease. In a quick response, a new 

equilibrium associated with the same proportion of participants will be reached when some 

customers opt-out or in the program. Therefore, from a longer term perspective, the equilibrium 

of market participation stands for the lowest value from arbitrage behavior, where the benefit of 

wide technology adoptions equals to the avoided cost from not participating into the program 

(Vytelingum et al., 2010). The distribution system, however, benefits the most since it’s the most 

cost-effective operation when power generation powers in an invariant manner.  

More types of DERs, other than PHEV or BEV installed battery, will be deployed in the grid 

integration paradigms, and the intermittency essential of these DERs will bring more uncertainties 

in the assessment.  In a long term view, with development of manufacturing and performance of 
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DER technique, capital costs of DER manufacturing and handling will be much cheaper to be 

affordable by individuals or families. The development of internet of the thing (IOT) makes end-

users easier to get access to grid integrated DERs, and the negligible short term marginal cost of 

renewable energy will become a great advantage for enhancing DERs’ value and facilitating more 

DER integrations (Rifkin, 2014).  
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Appendix A: Residential End-use Mapping of Appliances to End Use  

Cold appliances Other Audiovisual Site 

Fridge-freezer  Sockets Television 

Refrigerator  Vacuum Cleaner Set Top Box 

Upright Freezer  Hair Dryer DVD 

Chest Freezer  Iron Audiovisual Site 

Wine Cooler  Garage Nintendo Wii 

  Hair Straightener VCR 

Computer site Fan Sky set Top Box 

Laptop Aquarium  Hi-Fi 

Router Alarm Sony PS3 

Printer Other DVD recorder 

Desktop Sewing Machine Microsoft Xbox 360 

Monitor Electric Blanket Sony PS2 

Computer Site Pond Pump Home Cinema Sound 

Speakers Door Bell Audiovisual Equipment 

Multifunction Printer Sterilizer Radio 

Modem Paper Shredder Microsoft Xbox  

Computer Equipment Smoke Detector Blue-ray Player 

Fax/Printer Vivarium CD player 

Scanner Clock Radio Aerial 

Hard drive Cordless Phone Game Console 

  Dehumidifier TV booster 

Cooking Fire Video Sender 

Kettle Organ   

Microwave  Trouser Press Water Heating 

Cooker Charger Shower 

Toaster Massage Bed Water Heater 

Oven Baby Monitor Immersion Heater 

Extractor Hood Electric Chair   

Bread Maker Jacuzzi Washing/Drying 

Coffee Maker Motor home Washing machine 

Hob Digital Picture Frame Clothes Dryer 

Food Mixer Sun-bed Dishwasher 

Grill   Washing/Drying machine 

Fryer Heating/Cooling   

Food Steamer Heater   

Bottle Warmer Central Heating Lighting 

Hot Tub Circulation Pump Lighting 

Yogurt Maker Air Conditioning Light Distribution 
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Appendix B: Commercial End-use Mapping of Equipment to End Use  

DRCEUS utilizes seven electric-only end uses and six end uses that can be either electric or natural 

gas. There are three HVAC end uses (1 – 3) and 10 non-HVAC end uses (4-13).  

1. Space Heating (Electric & Gas) 

Heating source equipment 

Hot water circulation pumps 

Supplemental heat pump heating 

2. Space Cooling (Electric & Gas) 

Cooling source equipment  

Chilled water circulation pumps  

Heat rejection equipment 

3. Ventilation 

AHU Supply & Return fans  

Exhaust fans  

Make-up air fans  

4. Water Heating (Electric & Gas) 

Water Heater (boiler, standard, instantaneous) 

Swimming Pool/Spa Heater 

5. Outdoor Lighting 

Parking Lot Lighting 

Parking Garage Lighting 

Building Façade Lighting 

Advertising Lighting 

6. Indoor Lighting 

Area Lighting 

Task Lighting 

Exit Signs 

Track Lighting 

Display/Advertising Lighting 

 

7. Office Equipment 

Personal Computer-- Desktop Workstation 

Personal Computer-- Laptop Servers 

Printer -- Ink Jet Switching Equipment 
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Printer-- Laser FAX machine 

Uninterruptible Power Supply Telephone System 

Small Copier Point-of-sale terminals 

Medium Copier Cash Registers 

Large Copier Typewriter 

Blueprint Machine Hole Punch 

Monitor/Terminal Shredder 

Computer-- Mainframe Other office equipment 

Printer--  Mainframe  

8. Cooking (Electric & Gas) 

Broiler, Conventional Oven (in Range or standalone) 

Broiler, Infrared Oven, Convection 

Charbroiler (32” X 36” reference) Oven, Finishing/Toaster 

Coffee Maker Oven, FlashBake 

Cold Food Table Oven, Microwave 

Dishwasher Oven, Pizza, Counter-top 

Dishwasher Booster Heater Oven, Pizza, Large 

Drink Dispenser (Refrigerated) Popcorn Maker 

Food Steamer Proofers/Holding Cabinet 

Food Warmer/Well Range, Large (6 burners) 

Fryer, Counter-type Range, Medium (4 burners) 

Fryer, Floor-type Range, Small (2 burners) 

Fryer, Induction (1 vat reference) Rotisserie (3 spits reference) 

Garbage Disposal Slicer (Meat, Cheese, etc) 

Griddle Soup Pots 

Hot Food Table (4 holes reference) Steam Kettle 

Hot Plates (2 burners reference) Toaster, Conveyor-type 

Ice Cream Dispenser Toaster, Slotted-type 

Induction Cooktop (2 burner ref) Trash Compacter 

Mixer, Large Other (describe) 
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9. Refrigeration 

Non-Commercial Refrigerators/Freezers 

Single-door 

Two-door 

Three-door 

Under counter/compact 

Chest 

Other (describe)____________ 

 

Commercial Refrigeration Equipment (Self-Contained) 

Glass door beverage cases (e.g. vendor supplied) from 2 to 4 doors 

Open upright display cases (pizza, juice, etc.) usually 4,5,6 ft lengths 

Island cases (cheese, sometimes produce or juice) from 8 to 16 ft long 

Service cases (bakery, sometimes deli) from 4 to 8 ft long 

Closed door storage cases, one to three doors 

Upright glass door freezer cases from one to three doors 

Coffin type glass top freezer cases (usually ice cream) typically 6 or 8 ft 

Ice storage boxes 

Other: self-contained refrigeration not listed above 

Ice vending machines (hotel-sized icemaker) 

 

Remote Refrigeration 

Display Cases (and all peripherals like fans, lights, etc.) 

Walk-Ins/Prep Areas (and all peripherals like fans, lights, etc.) 

Compressors 

Condensers 

10. Motors 

Pumps 

Fan/Blower 

Material Handling/conveyor 

Machine Tool 

Grinding/milling 

Escalator 

Passenger Elevator 

Freight Elevator 

Separation 

Other _____________ 

Hot Water Circulation Pumps 

Swimming Pool/Spa Pump 

Swimming Pool/Spa Circulation Pump 

11. Process (Electric & Gas) 

Heat Processing: Pulping: Drying/Curing/Baking: 

Direct Fired Gas Heating Batch Digesters Ovens 

Direct Fired Oil Heating Stock Refiners Microwave 

Blanchers Paper Preparation Infrared 
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Microwave Pulpers Electric Resistance 

Sterilizers Refiners Steam from Process Boiler 

Pasteurizers Stock Mixers Ultraviolet 

Induction Heating  Kiln 

Induction Melting Separation and Distillation Radio Frequency 

Radio Frequency Thermal Distillation Column Electron Beam 

Indirect Resistance Freeze Concentration  

Direct Resistance Vacuum Condensation Refrigeration/Freezing: 

Encased Resistance Membrane Separation Forced Air Cooling 

Plasma Processing Pressure Swing Absorption Blast Freezing 

Electric Arc Furnace Vacuum Concentration Hydro cooling 

Ion Nitriding Ultra Filtration Belt Freezing 

Laser Hardening Reverse Osmosis Plate Freezing 

Cupola Evaporators Vacuum Cooling 

  Immersion Freezing 

Dehydration: Solid-Liquid Extraction:  

Convection Dryer Single Stage Extractors Mixing and Emulsification: 

Infrared Dryer 

Multi-Stage, Static Bed 

Extractors Pressure Homogenizers 

Electric Resistance Drying 

Continuous Moving-Bed 

Extractors 

Ultrasonic Emulsification 

Devices 

Microwave Dryer   

 Plastic Molding: Fiber Preparation 

Material Preparation: Injection Molding Dye Tanks 

Arc Welding Extrusion Molding  

Laser Cutting Blow Molding Crystallization: 

Water Jet Cutting Rotational Molding Oil Winterization 

Electron Beam Welding Compression Molding Freeze Concentration 

Laser Welding Thermoforming Ice Crystallization 

Plasma Cutting  Lactose Crystallization 

 Washing and Drying: Fat Crystallization 

Filtration: Rotary Kilns  

Pressure Filters Cascade Dryer Screening and Separation 

Vacuum Filters Fluidized Bed Dryer Froth Floatation Baths 

 Suspension Dryer  

Finishing:  Exploration and Drilling: 

Ovens Standard  Other 

Engine Driven Boring 

Equipment 

Electroplating   

Hot Dip Galvanizing  
Emission Reduction 

Equipment: 

  Standard Thermal Oxidizer 

  Recuperative Thermal Oxidizer 
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12. Miscellaneous (Electric & Gas) 

Building Equipment  Electronics  Laundry 

Air Hand Dryers  Broadcasting Equipment Clothes Dryer, Residl. 

Alarm System Stereo System Clothes Washer, Residl. 

Automatic Door  Television  Clothes Dryer, Commcl. 

Battery Charger  Video Recorder (VCR) Clother Washer, Commcl 

Janitorial Equipment   Dry Cleaning Unit 

Vacuum  Cleaner Shop Equipment Sewing Machine 

  Forklifts  

Medical/Hospital  Hand Truck/Pallet Lifts Service/Retail  

Autoclave 

Non-Forklift Elec. 

Vehicles ATM Machine Portable Shop Tools 

CAT Scan Machine  Other Electric Transport Change Machine Shop Equipment 

Centrifuge Battery Chargers 

Conveyor (check-out) Soldering Gun or 

Iron 

Chromatograph, 

analyzer Electric Crane Film Processing Welder 

Cytometer, blood 

analyzer Portable Shop Tools Photo Equipment 

Dentist Chair Shop Equipment Pinball or Video Game 

EKG Machine Soldering Gun or Iron Hair Dryers 

Hot Plate, Lab 

Equipment Welder Exercise Equipment 

Incubator  Industrial Compactor 

Laboratory Oven Space Comfort Vending Machine, Hot Food 

Laboratory, other equip. Air Cleaner Vending Machine, Refrig. 

Sterilizer Ceiling or Portable Fan Vending Machine, Non-Refr. 

X-Ray Machine Dehumidifier Water Vending Machine 

 Humidifier  

Other Portable Heater  

Describe   

 

13. Air Compressors 

Cleaning 

Drive Tools 

HVAC Pneumatic 

Other 

 

 


