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Abstract of the Dissertation
The piRNA pathway in the somatic stem cells of a regeneration-competent

flatworm, Macrostomum lignano
by
Xin Zhou
Doctor of Philosophy
in
Molecular and Cellular Biology
(Cellular and Developmental Biology)
Stony Brook University
2015

piRNA pathway and its central components, PIWI proteins, are essential for transposon
silencing and some aspects of gene regulation. Although they predominantly function in
the animal germline, increasing evidence has pointed to their involvement in somatic
cells. Some flatworms possess a unique somatic stem cell system named neoblasts.
These totipotent cells are the only dividing cell population thus critical for postembryonic
development, adult homeostasis and the remarkable regeneration ability. In the study
led by Kaja A. Wasik and me, we identify and characterize piRNAs and PIWI proteins in
the emerging regenerative flatworm model, Macrostomum lignano, combining targeted
gene knockdown and deep sequencing. We find that M. lignano has a highly conserved
piRNA pathway utilizing at least three PIWI proteins in the germline and somatic stem
cells. One of the PIWIs, Macpiwi1, acts as a pivotal player by interacting with the
primary piRNAs in a heterogenic secondary piRNA biogenesis. Knockdown of Macpiwi1
dramatically reduces piRNA levels, derepresses transposons, and severely impacts
stem cell maintenance. Knockdown of the piRNA biogenesis factor Macvasa causes an
even greater reduction in piRNA levels, with a corresponding increase in transposons.
Yet, in Macvasa knockdown worms, we detect no major impact on stem cell self-
renewal. These results may suggest stem cell maintenance functions of PIWI proteins
in flatworms that are distinguishable from their impact on transposons and that might
function independently of what are considered canonical piRNA populations.
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Chapter 1
Introduction

1.1 Transposable elements (TEs) — a double-edged sword

Barbara McClintock first discovered the phenomenon of “jumping genomic
elements” in maize, where the color patterns were altered by unstable mutations moving
around the genome (McClintock 1951). Her findings raised suspicion in the scientific
community at first, due to the common concept that genes were fixed in the genome.
However, soon after similar elements were discovered in organisms ranging from
bacteria to mammals (Biemont 2010), the significance of TEs started to surface.

1.1.1 Classification of TEs

Based on the presence or absence of RNA intermediates, transposable elements
are usually divided into two classes: the class | transposable elements
(retrotransposons) and the class Il transposable elements (DNA transposons) (Wicker
et al. 2007) (Figure 1.1). Retrotransposons utilize a “copy-and-paste” mechanism via
RNA intermediates. The genomic template is first transcribed into RNA intermediate and
then reversely transcribed into DNA by a reverse transcriptase (RT). Based on different
mechanistic features, the class | transposons can be further divided into five orders:
long terminal repeat (LTR), Dictyostelium intermediate repeat sequence (DIRS),
Penelope-like element (PLE), long interspersed nuclear element (LINE) and short
interspersed nuclear element (SINE). The class Il transposable elements are divided
into two subclasses, based on the number of DNA strands that are cut during
transposition. The terminal inverted repeat (TIR) subclass uses a ‘cut-and-paste’
mechanism involving a transposase. The transposition usually generates target site
duplication. The other subclass contains TEs that replicate template DNA using ‘copy-
and-paste’ mechanisms, such as helitron and maverick. Helitron utilizes a rolling circle
replication to replicate template. Only one DNA strand is cut and no target site
duplication is generated. The mechanism of maverick remains unclear. The relative
amount of class | and class Il elements varies greatly across species, ranging from
100% class | elements in yeast S. cerevisiae to 100% class Il elements in protozoan
T.vaginalis (Feschotte and Pritham 2007). In human and mouse, the majority (>90%) of
TEs are class | elements.



Classification Structure TSD Code Occurrence
Order Superfamily

Class | (retrotransposons)

LTR Copia = GAG AP INT_RI__RH | 46 RLC PM,FO
Gypsy =3 GAG AP RT RH INT |=—3 4-6 RLG PM,FO
Bel-Pao —>»{ GAG AP RT RH INT }—> 46 RLB M
Retrovirus =3 GAG AP RT RH INT ENV |=—3 4-6 RLR M
ERV =3 GAG _AP__RT__RH_INT_ENV_jed 46 RLE M

DIRS DIRS »—{ GAG AP RT RH YR < 0 RYD PM,EO
Ngaro =3 GAG AP RT RH YR |=—i=mdpmi> 0 RYN M,F
VIPER =P GAG AP RT RH YR | ey 0 RYV (0}

PLE Penelope Variable RPP PM,EO

LINE R2 Variable ~ RIR M
RTE - APE RT = Variable RIT M
Jockey ORF1 APE RT Variable RI) M
L1 ORFl | APE RT | Variable RIL PM,FO
I =—{ ORA M  APE RT RH - Variable RIl PM,F

SINE tRNA Variable RST PM,F
75L ———— Variable RSL PM,F
5S e s Variable RSS M, 0

Class Il (DNA transposons) - Subclass 1

TIR Tc1-Mariner TA DTT PM,FO
hAT 8 DTA PM,FO
Mutator 9-11 DTM PM,FEO
Merlin 89 DTE M,0
Transib 5 DTR M.F
P 8 DTP PM
PiggyBac TTAA DTB M, 0
PIF-Harbinger [ Tase* = OrRR | 3 DTH PM,FO
CACTA —=e Tase = ORR2 pPre—< 2-3 DTC PM,F

Crypton Crypton 0 DYC F

Class Il (DNA transposons) - Subclass 2

Helitron Helitron — RPA oy e YO HEL e 0 DHH PM,F

Maverick ~ Maverick P CINT | ATP =A== CYP |~ POLB | 6 DMM M,FO

Structural features
m— | ONg terminal repeats W mmmmg Terminal inverted repeats == lm= Coding region — N ON-COdiNg region

el Diagnostic feature in non-coding region eyl RegiON that can contain one or more additional ORFs
Protein coding domains
AP, Aspartic proteinase APE, Apurinic endonuclease ATP, Packaging ATPase C-INT, C-integrase CYP, Cysteine protease EN, Endonuclease

ENV, Envelope protein GAG, Capsid protein HEL, Helicase INT, Integrase ORF, Open reading frame of unknown function
POL B, DNA polymerase B RH, RNase H RPA, Replication protein A (found only in plants)  RT, Reverse transcriptase
Tase, Transposase (* with DDE motif) YR, Tyrosine recombinase Y2, YRwith YY motif

Species groups
P, Plants M, Metazoans F, Fungi O, Others

Figure 1.1 Classification of transposable elements (TEs). DIRS, Dictyostelium intermediate repeat
sequence; LINE, long interspersed nuclear element; LTR, long terminal repeat; PLE, Penelope-like
elements; SINE, short interspersed nuclear element; TIR, terminal inverted repeat. Adapted from (Wicker
et al. 2007).

1.1.2 Interactions between TEs and the host genome



Regarding the relationship between TEs and the host genome, McClintock
(McClintock 1951) and Britten & Davidson (Britten and Davidson 1969) proposed that
TEs serve as controlling elements in gene regulation. In contrast, some simply
perceived TEs as “junk DNA” (Ohno 1972), as most of these TEs and interspersed
repeats did not seem to have functions. Moreover, owing to the ability of transposition,
they were considered “selfish DNA” or “genomic parasites” (Doolittle and Sapienza
1980; Orgel and Crick 1980), suggesting that their existence was only due to their
selfish nature. However, as the knowledge of TEs grew, the views have been driven
towards a common ground — TEs may have both beneficial and deleterious effects on
the genome (Kidwell and Lisch 2001), just like most other genetic elements. On one
hand, due to their ability to replicate within the genome, they provide a big repertoire of
genetic regulatory elements that co-evolve with the host genome. On the other hand,
the host genome has developed mechanisms to put TEs under control in order to
prevent harmful transposition.

It is imaginable that uncontrolled TE transposition might introduce insertional
mutations thus disrupt normal biological functions. Active TEs have been recorded to
cause a series of human diseases, such as hemophilia (Kazazian et al. 1988) and
neurofibromatosis (Wallace et al. 1991). However, in many aspects, TE insertions in
fact help shape the host genome. TEs, a natural source of regulatory elements, are
largely attributable to transcript diversity. And this is one of the contributors to the high
complexity human genome achieves using relatively small number of genes. TE
insertions can alter gene expression at both transcriptional and post-transcriptional
levels (Figure 1.2). TEs can provide alternative splice sites and polyadenylation signals
to the inserted transcripts. Take the human ATRN gene as an example (Tang et al.
2000). An L1 element has been inserted into one intron. As a result, some transcripts
are spliced and polyadenylated within the L1 element, while other transcripts are spliced
around the element with five additional exons. They two isoforms produce different
forms of Attractin with distinct localizations and functions. Some TEs can also provide
alternative promoters to the host gene. The classic example for this scenario is the
ectopic mouse Agouti gene expression driven by the additional promoter from an
upstream retrotransposon IAP (Morgan et al. 1999). This expression gives rise to the
yellow fur color of agouti mouse. At post-transcriptional level, some TEs generate small
RNAs that can silence the target transcripts. For instance, in Drosophila TE-derived
small RNAs target Nanos mRNA and destabilize it by promoting deadenylation (Rouget
et al. 2010). On a larger scale, TEs can provide a means to regulate a gene network
involved in specific pathways, by providing regulatory elements or binding sites. For
example, the activation of ERV LTRs in embryonic stem cells initiates the switch
required for differentiation through epigenetic mechanism (Rowe et al. 2010; Macfarlan
et al. 2011; Macfarlan et al. 2012). Furthermore, the host genome is able to domesticate
the enzymatic activities carried out by TEs and adopt novel functions. The best known
case is the V(D)J recombination in immune cells (Jones and Gellert 2004). Rag1, an
enzyme derived from transposase (Kapitonov and Jurka 2005), initiates this process,
together with Rag2. The RNA-dependent DNA polymerase, telomerase, is also thought
to phylogenetically and functionally relate to non-LTR reverse transcriptase (Eickbush
1997), suggesting its origin from domesticated retrotransposons. In some species



lacking telomerase such as D. melanogaster, retrotransposon takes the part in
chromosome end maintenance (Pardue and DeBaryshe 2003).
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Figure 1.2 Mechanisms by which TEs alter gene expression. These mechanisms can act at either
transcriptional or post-transcriptional level. The transcriptional alterations include: insertion of a TE into an
open reading frame (ORF); providing alternative tissue- or stage-specific promoter; providing alternative
splicing by exon skipping or introducing a new exon; providing alternative polyadenylation site; creating
new tissue- or stage-specific transcription factor binding sites. At post-transcriptional level, small RNAs
derived from TEs can regulate the expression from target transcripts. Adapted from (Cowley and Oakey
2013).



While maintaining the ability to transpose, TEs are under surveillance to avoid
deleterious effects by both TE-driven and host genome-driven mechanisms. Within TEs,
the spatiotemporal self-regulation is accomplished by several means, such as the
dependence on host regulatory factors, alternative splicing and alternative
polyadenylation sites. So TEs are only activated in specific tissues at specific time. For
example, Drosophila P element is alternatively spliced in somatic tissue and germline in
order to restrict the active form in the germline only (Siebel and Rio 1990).

During the evolution with TEs, the host genome has developed several defense
mechanisms to suppress harmful TE activities. These mechanisms function primarily
through epigenetic regulation, such as DNA and histone methylation. In eukaryotic
genomes, TEs are usually methylated and associated with heterochromatins (Lippman
et al. 2004). In animal germline, there exists a small RNA-guided immune system
against TEs to protect the genomic integrity. This system generally involves Argonaute
family proteins and their associated small RNAs (endo-siRNAs, piRNAs et al)
(Watanabe et al. 2006). Small RNAs can guide proteins to target site in order to either
modify the epigenetic states of TE DNA/chromatins or directly cleave the TE transcripts
(Khurana and Theurkauf 2010). Defects in these pathways usually lead to uncontrolled
TE activities, DNA damage and functional abnormality (Klattenhoff et al. 2007). In
metazoans the small RNA-guided defense system includes the piRNA pathway and
endogenous siRNA pathway. The next section will be mainly focused on the prime
defender against TEs - the piRNA pathway.

1.2 piRNA pathway: immunity for genomic stability and beyond
1.2.1 Argonaute family proteins — effector of RNAI

Small RNAs play essential roles in gene regulation in metazoans. They interact
with and guide Argonaute family proteins to target RNA transcripts by sequence
complementarity and fulfill the silencing functions. The small RNA-bound Argonaute
protein makes up the central component of the silencing complex. An Argonaute is
characteristic for the presence of PAZ (PIWI-ARGONAUTE-ZWILLE) domain and PIWI
(P element-induced wimpy testes) domain (Cerutti et al. 2000). The PAZ domain
accommodates the 3’ end of small RNAs by bending it into a pocket (Lingel et al. 2003;
Song et al. 2003), while MID domain binds the 5 end of small RNAs with a strong
preference for U and A nucleotides (Frank et al. 2010). The PIWI domain has an RNase
H-like structure and is responsible for the cleavage of target RNA transcripts (Song et
al. 2004). Only some Argonaute family proteins possess endonuclease activity. And the
catalytic activity relies on a catalytic triad DDX with X being H or D (Rivas et al. 2005).
The cleavage site is between 10" and 11™ nucleotide from the 5 end of the guide
(Wang et al. 2009). Catalytically inactive Argonaute proteins silence the targets through
other transcriptional and post-transcriptional mechanisms, such histone modification
and translation repression (Hock and Meister 2008).
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Figure 1.3 Structure of Argonaute proteins. (A) Domains of an Argonaute family protein. N: N-
terminus; C: C-terminus; PAZ: PAZ (PIWI-ARGONAUTE-ZWILLE) domain; MID: MID (middle) domain;
PIWI: PIWI domain. (B) The structure of a guide RNA-bound Argonaute protein. (C) A schematic
presentation of small RNA-guided target cleavage. The small RNA (endo-siRNA in this example) guides
Argonaute to the target mRNA by base pairing and the PIWI domain cleaves the target strand. Adapted
from (Kim et al. 2009) and (Liu and Paroo 2010).

1.2.2 Classification of small RNAs

Based on different biogenesis mechanisms, there are three major classes of
small RNAs in metazoans — microRNAs (miRNAs), endogenous small interfering RNAs
(endo-siRNAs) and PIWI-interacting RNAs (piRNAs). Argonaute family proteins can be
divided into two subclades — AGO clade and PIWI clade (Carmell et al. 2002; Hock and
Meister 2008). miRNAs and endo-siRNAs interact with AGO clade proteins, while
piRNAs are associated with PIWI clade. In addition to the distinct biogenesis processes,
each small RNA pathway also carries out different biological functi