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Abstract of the Dissertation

On the derivation of accurate force �eld
parameters for molecular mechanics simulations

by

James Allen Maier

Doctor of Philosophy

in

Biochemistry and Structural Biology

Stony Brook University

2015

Proteins carry out many diverse but important biological tasks, the
understanding of which can be greatly augmented by theoretical
methods that can generate microscopic insights. A popular method
for simulating proteins is called molecular mechanics. Molecular
mechanics drives the dynamics of molecules according to their po-
tential energy surface as de�ned by a force �eld. Because force
�elds are simple, molecular mechanics can be fast; but force �elds
must simultaneously be accurate enough for the conformational
ensembles they generate to be useful.

One force �eld that has been widely adopted for its utility is AM-
BER force �eld 99 Stony Brook (�99SB). The �99SB protein back-
bone parameters were �t to quantum mechanics energies of glycine
and alanine tetrapeptides, including a set of minimum energy con-
formations in the gas-phase. Although �99SB rigorously reproduces
many thermodynamic properties, it has shortcomings. Issues with
backbone parameters may result from training against only ener-
getic minima or from the energy calculations being in the gas phase.
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Problems with side chain parameters can stem from the protocol
of �99, where the amino acid side chain parameters were trained
against energies of small molecules, while transferability from small
molecules to amino acids may be problematic. Small updates to the
backbone potential were applied by several groups, as well as the
Simmerling group as part of �14SB.

Whereas �99SB and �14SB are �xed-charge, additive molecular
mechanical models, there are also molecular mechanical models
that include non-additive e�ects like charge polarization. Polar-
izable force �elds, with their many additional degrees of freedom,
promise enhanced accuracy relative to �xed charge force �elds. But
with so many degrees of freedom and thus parameters, polarizable
force �elds can be more di�cult to train. Although this complexity
may be overcome, it is unclear whether the utility of �xed-charge,
additive force �elds has been exhausted, warranting the great en-
deavors of developing a polarizable model.

This dissertation seeks to answer how much more �xed charge force
�elds can be improved. Speci�cally, this work addresses two ques-
tions. Firstly, can the side chain parameters of �99SB be improved
by �tting to quantum mechanics energies? We investigated di�er-
ent options in the calculation of energies for parameter training,
�nding that how the structures were minimized can signi�cantly
a�ect transferability of parameters trained against them. Speci�-
cally, we found that loosely restraining the side chains, which were
being re�ned, and tightly restraining the backbone, which was not,
made the errors most similar between α and β backbone contexts.
This transferability can be measured by improved agreement with
the quantum mechanics training set as well as experimental scalar
couplings.

Secondly, can the backbone parameters of �99SB be made more
accurate, alternatively to empirical tweaks, by another, improved
�tting to quantum mechanics energies? We found that better re-
production of NMR solution scalar couplings was possible, if energy
calculations included solvation e�ects, full grids of structures were
included, and, perhaps surprisingly, if parameters were extrapo-
lated to those appropriate for a zero-length peptide.

These results show that quantum mechanics can be e�ectively used
to improve the accuracy of molecular mechanics force �elds. These
improvements have implications for protein structure prediction,
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aiding the successful folding of 16 of 17 proteins in GB-Neck2 im-
plicit solvent. Beyond, the insights from the QM-based backbone
training could be extended to develop residue-speci�c parameters
that bolster the sequence-dependent structural preferences of pro-
teins in simulation models.
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Chapter 1

Introduction

�Nature is pleased with simplicity. And nature is no dummy�

� Isaac Newton

State-of-the-art computational methods have been able to complement ex-

perimental structural biology with information that is both interesting and dif-

�cult to obtain without computers. One highlight is the time-resolved, atomic-

detail folding of ubiquitin during a 1 ms simulation [Piana et al., 2013]. The

conformational sampling of such extensive simulations is driven by an energy

landscape de�ned by simple functions called force �elds. Despite increasing

accomplishments, force �elds have limitations. One limitation�the focus of

this dissertation, for proteins�is accuracy. Before exploring how accuracy can

be improved, a brief history and overview of atomistic force �eld methods will

be presented.

First, however, proteins and their structure�the modeling of which is the

subject of this dissertation�will be described. Then, the main tenets of sta-

tistical mechanics, which allows the connection between microscopic details of

molecular (in this case, protein) behavior and macroscopic observables, will be

summarized. Following statistical mechanics, classical, quantum, and molec-

ular mechanics that provide microscopic information will be presented. From
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Figure 1.1: A glycine amino acid in zwitterionic form with protonated amino
and deprotonated carboxylic groups.

molecular mechanics, the introduction will switch to force �elds, general prin-

ciples of force �eld development, and a recent history of AMBER protein force

�elds. Finally, the reader will be prepared for an outline of the dissertation

that aims to improve the accuracy of protein force �elds.

1.1 Proteins

Proteins are known as the doers of the cell. Some of their responsibilities are

enzymatic, structural, or informational. The diverse tasks proteins carry out

are enabled by the �alphabet� of twenty natural amino acids from which pro-

teins are composed�the simplest of which, glycine, is depicted in Figure 1.1.

α-amino acids possess an amino (N) base, then a carbon (Cα), and �nally a

carboxylic (C) acid. The Cα is often bound to a side chain that imbues the

amino acid with the side chain's chemical functionality. Possessing both a base

and an acid, amino acids readily form zwitterions in aqueous solution at neu-

tral pH, possessing positively and negatively charged groups as the N-group

becomes protonated while the C-group becomes deprotonated.

Sequences of amino acids, also called peptides or polypeptides, arise from

polymerization, bonding the N-terminus of one amino acid to the C-terminus

of another. By convention, an amino acid sequence is read from the amino acid

with a free N-terminus to the amino acid with a free C-terminus�the order in
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which polypeptides are synthesized in the ribosome. The order of amino acids

is known as the primary structure.

Following condensation of two amino acids, the amino acids become joined

by a peptide bond. The peptide bond has partial double bond character, due to

the resonance shown in Figure 1.2, which arises from electron overlap between

the carbonyl oxygen of one amino acid and the electron pair on the amino

nitrogen of the next amino acid. Obeying this resonance, the peptide bond

tends to be planar, assuming one of two stable isomers called cis, where the

Cαs of two amino acids are on the same side of the double bond, or the

preferred trans isomer, where the Cαs are on opposite sides of the double

bond. The peptide bond therefore constrains protein structure because of its

rigidity.

The �exibility in the protein main chain arises from rotation around the

remaining bonds between N and Cα and between Cα and C. For a residue i

(with previous residue i − 1 and next residue i + 1), rotation around the Ni�

Cαi bond is canonically described by the φ torsion (Ci−1�Ni�Cαi�Ci), while

rotation around the Cαi�Ci bond is canonically described by the ψ torsion

(Ni�Cαi�Ci�Ni+1) (Figure 1.3). As φ and ψ are the �exible dihedrals in the

backbone, the conformation of a single amino acid can therefore be described

by the values of the φ and ψ dihedrals. It is common to graph conformations

of single amino acids in terms of (φ,ψ) coordinates. Such graphs of ψ versus φ

are known as Ramachandran plots after Ramachandran et al. who developed

the graph style [Ramachandran et al., 1963]. An example of a Ramachandran

plot is depicted in Figure 1.4, using (φ,ψ) pairs for the second simplest amino

acid, alanine, extracted from the protein data bank (PDB) [Lovell et al., 2003].

Due to favorable interactions between the polar amino and carbonyl groups

of di�erent amino acids within a peptide chain, certain conformations that

facilitate N�H to O=C hydrogen bonds are preferred. The local arrangement

of amino acids that leads to these hydrogen bonds is referred to as secondary

structure. The prototypical secondary structure types arrange amino acids in

a helix, referred to as α, or in neighboring extended strands, referred to as

β (Figure 1.5).

Helices are most commonly right-handed (αR, hereto referred to as simply
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Figure 1.2: The resonance of the peptide bond that results in partial double
bond character and peptide planarity.
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Figure 1.3: An oligomer of three amino acids. The torsions described by φ,
ψ, and χ are indicated by curved arrows, with a label indicating the dihedral
that measures that rotation.

α), but can also be left-handed (αL). In both cases, helices allow hydrogen

bonds between the C=O of residue i and the H�N of residue i+ 4, where i is

any residue ID from the beginning of the helix to the end of the helix minus

four (see helix in Figure 1.5A). Conventionally, hydrogen bonds are represented

from the H to the O, thus helical hydrogen bonding can be represented as

i ← i + 4. There are also helical secondary structures with other hydrogen

bonding patterns: 310-helix with i← i+ 3 and π-helix with i← i+ 5.

Alternatively, β-strands can be arranged parallel to each other, facilitating

j + 2i← k + 2i and k + 2i← j + 2i+ 2 interstrand hydrogen bonds, where j

and k indicate the beginning of each strand and i is an integer from 0 to the

number of residues with strand-strand interactions (see central two strands in

Figure 1.5B). Or, β-strands can be antiparallel, facilitating j + 2i ← k − 2i

and k − 2i← j + 2i hydrogen bonds, where j is the beginning of one strand,

k is the end of another, and i is again an integer from 0 to the number of

residues with strand-strand interactions (see left two or right two strands in

Figure 1.5B).

Tertiary structure describes the geometrical arrangement of strands and

helices, as well as intervening turns and loops that do not form helices or

5



Figure 1.4: Typical φ/ψ coordinates of α (−60◦,−45◦), αL(60◦, 45◦), 310

(−49◦,−26◦), π (−55◦,−70◦), β (−135◦, 135◦), and ppII (−75◦, 150◦) sec-
ondary structures on a Ramachandran plot of 500 alanine conformations
[Lovell et al., 2003]. The φ/ψ coordinates of each secondary structure as spec-
i�ed are not exact, but approximately typical, average values.
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Figure 1.5: Characteristic hydrogen bonding of (A) α and (B) β secondary
structures. In B, the two left and two right strands are antiparallel, whereas
the two center strands are parallel. Both renderings are of an X-ray structure of
GB3 re�ned with dipolar couplings [Ulmer et al., 2003], rendered using VMD
[Humphrey et al., 1996].

7



strands. Tertiary structure intimately depends on key contacts between sec-

ondary structure units, as mediated by hydrophobic packing, salt bridges, and

hydrogen bonding. Hydrogen bonding does not drive folding, as hydrogen

bonds can form with water as easily as protein. But maintaining the total

number of hydrogen bonds can be an important constraint on the folded pro-

tein structure, resulting in the motifs described above. Hydrophobic packing

and salt bridge interactions between secondary structure units are usually me-

diated by the amino acid side chains, which thus de�ne the preference of a

sequence for a particular tertiary structure. Similar to the description of back-

bone conformation by φ and ψ dihedral angles, the conformation of the side

chain can also be described by dihedral angles χ1�χN (Figure 1.3), where N

is the number of rotatable bonds in the side chain.

The main driving force of protein folding, however, is water. Liquid wa-

ter forms a dynamic network of hydrogen bonds. When a hydrophobic solute

is placed in water, water cannot form hydrogen bonds with it. To maintain

the total number of hydrogen bonds, water interacts with itself in a restricted

clathrate, cage-like structure. This results in a penalty as the number of ac-

cessible states, and thus the entropy, decreases. This entropic cost is lessened

when hydrophobic chemicals aggregate, reducing the total surface area ex-

posed to water. For proteins with hydrophobic and hydrophilic side chains,

this �hydrophobic e�ect� drives hydrophobic side chains towards the core of

the protein, away from water, while hydrophilic side chains remain at the pro-

tein surface.

Lastly, proteins that possess primary through tertiary structure can be

further assembled, in what is called quaternary structure. Quaternary structure

arises from noncovalent interactions between distinct polypeptide chains. In

quaternary structure, each polypeptide is called a subunit. Homodimers, like

HIV-protease, involve the association of two subunits with the same primary

structure. Heterotrimers, as in G protein complexes, involve the association

of three distinct subunits. These are two basic examples of numerous possible

quaternary structures.

Many proteins perform their roles dynamically. For example, HIV-protease

undergoes large domain motions whereby it opens and closes to gate access
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of the substrate to the active site where proteolysis occurs [Ding et al., 2008].

Molecular motors change their shape, as dynein and kinesin move along mi-

crotubules or myosin moves along micro�laments. Many transcription factors

have motions where two domains �open� to allow DNA binding and then close

on their target sequence to form a stable complex. Some of these events are

very rare from a microscopic perspective, occurring one thousand times per

second or sometimes less.

To understand their dynamic nature, it is desirable to obtain a micro-

scopic description of the behavior of proteins. For an understanding of function,

this description should be accurate but highly resolved and in atomic detail.

One way to obtain such information is through computational methods. These

methods, however, must be both e�cient and conformationally rigorous. But

before moving on to how the microscopic properties can be obtained, we con-

sider that one must be able to compare microscopic insights to the macroscopic

properties observed experimentally, to ensure that the microscopic computa-

tional methods describe the same phenomena observed experimentally. We

thus turn to a very super�cial survey of some common experimental measure-

ments before describing statistical mechanics that can bridge macroscopic and

microscopic observations.

1.2 Experimental measurements of proteins

Protein structure determination was kickstarted with solution of the very

�rst structure using X-ray crystallography, of myoglobin at 6Å resolution by

Kendrew et al. [1958]. Max Perutz then obtained a 5.5Å resolution crystal

structure of hemoglobin [Perutz et al., 1960]. Thus Kendrew and Perutz shared

the 1962 Nobel Prize for chemistry for their pioneering work in structure de-

termination. To date, the protein data bank lists 86 744 protein structures

determined using X-ray crystallography [PDB].

But crystallizing a protein is laborious and the crystal environment may

not exactly reproduce the e�ects on the protein provided by a solution en-

vironment. Another technique has been used to experimentally characterize

proteins in solution: nuclear magnetic resonance (NMR). NMR can provide
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information about the interactions of nuclei with non-zero spin. If a nucleus

has an even number of protons and an even number of neutrons, its spin, and

thus its magnetic moment, is zero. If, however, there is an odd number of both

protons and neutrons, the nucleus has integer spin. Otherwise, the nucleus

has half-integer spin. Whereas any nonzero spin nucleus will resonate in re-

sponse to a magnetic �eld, spin-1
2
nuclei�including 1H, 13C, 19F, and 31P, but

particularly 1H�are most commonly studied. Spin-1
2
nuclei can assume two

di�erent spin states that, in the absence of a magnetic �eld, are degenerate,

or energetically equal, and thus neither is preferred.

In a magnetic �eld, the two nuclear spin states separate in energy, assuming

a Boltzmann distribution where the preferred state is called α and the other

state β. Although the di�erence in the number of nuclei with each spin is small,

it causes net magnetization of the system. With electromagnetic radiation of

the appropriate frequency, resonant absorption will occur, whereby a nucleus

with α spin can transition to the less favorable β spin. It is possible to add

energy to the system such that α and β are evenly distributed, at which point

the system will absorb no more radiation, a phenomenon called saturation.

But not all nuclei of the same element and spin number will require the

same amount of energy for resonant absorption. Electrons also have spin, and

due to their magnetic properties can shield nuclei from an external magnetic

�eld. A reduced e�ective magnetic �eld at a spin-1
2
nucleus decreases the energy

separation of its two spin states; thus a lower frequency of radiation is needed

for resonant absorption. This di�erence of the apparent magnetic �eld felt by

a nucleus from that applied externally is referred to as a chemical shift.

Nuclei may also shield each other. The strength of the e�ect of one magnetic

nucleus on the resonant frequencies of another can be described by a scalar

coupling constant. Scalar couplings, especially those that occur across three

bonds, are particularly relevant for local protein structure. Conformational

changes concerning secondary or tertiary structure commence by dihedral mo-

tion that can be described by atoms connected by three bonds, such as atoms

connected to the N and Cα de�ning the φ dihedral torsion.

The dependence of three-bond scalar couplings on dihedral torsions can

be estimated using Karplus relations [Karplus, 1959, 1963]. Karplus relations
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establish 3J scalar couplings as a cosine series of a single dihedral φ with

parameters A, B, and C, as in Equation 1.1. Karplus parameter sets have

been derived from experiment by comparing scalar coupling values from NMR

spectroscopy to dihedral angles in X-ray structures that include the nuclei they

describe, as has been done for the H−Hα scalar coupling [Hu and Bax, 1997].

Karplus parameter sets have also been derived from theoretical chemistry [Case

et al., 2000], by computing the magnetic scalar coupling interactions. Three

H−Hα Karplus curves are depicted in �gure 1.6.

3J = A cos(φ)2 +B cos(φ) + C (1.1)

Scalar couplings, however, arise from interactions within a complex ar-

rangement of magnetic nuclei, as well as electrons. Therefore, a single dihedral

may not su�ciently capture all phenomena that result in an experimental mea-

surement. One theoretical study has proposed a grid-based method of calculat-

ing protein backbone scalar couplings as a function of both φ and ψ [Salvador

et al., 2011]. However, the calculated scalar couplings depend on the basis set

used in the calculations, as well as how a set of pre-calculated scalar couplings

is interpolated to the scalar coupling for a particular conformation. Addition-

ally, the calculations Salvador et al. performed were for Ala3, and thus do not

account for other spin systems that may be present in real proteins.

Spin relaxation is of great interest in NMR, as well. The net magnetization

of a sample aligned in a magnetic �eld can be rotated by applying a pulse of

circularly polarized electromagnetic radiation. If one visualizes the direction of

the magnetic �eld as along the z-axis, and the direction of the electromagnetic

pulse as along the y-axis, then after a pulse of electromagnetic radiation that

rotates the system by 90◦, the net magnetization of the system can be visual-

ized as along the x-axis. In such an alignment, the system has an equal number

of α and β spins. The magnetization will then recover to its equilibrium state, a

process called spin relaxation. Spin can relax in two ways: longitudinally, along

the z-axis, in spin-lattice relaxation, where spins transition from β back to α

while exchanging energy with the surroundings, or lattice; or transversely, in
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the xy-plane, in spin-spin relaxation, where the orientations of spins random-

ize relative to other spins. Spin relaxation depends on how molecular motions

orient spins relative to local and global magnetic �elds.

Lipari and Szabo worked out a �model-free approach� for interpreting NMR

(spin) relaxation spectra [Lipari and Szabo, 1982]. Their approach produces

�generalized order parameters� (S2) that provide an intuitive measure of how

much the motion of a bond vector is restricted. NH order parameters are

thus used to probe the �exibility of the protein backbone, whereas CH order

parameters can be used to measure the �exibility of protein side chains.

Nuclear Overhauser E�ects (NOEs) can be used to determine the distances

between protons. Spin can be transferred via cross-relaxation when protons are

near each other. This e�ect depends upon the dipolar �eld generated by each

proton, as dipolar interaction facilitates spin-lattice relaxation. This dipolar

�eld dies o� through space inversely with the distance cubed, i.e. as r−3, where

r represents the distance from a proton. As the e�ect on relaxation is propor-

tional to the square of the dipolar �eld, NOE intensity can be related to r−6.

It is not unusual for hundreds of interproton NOEs to be recorded during

NMR structure characterization. NOEs have become important in establish-

ing tertiary contacts in a solution structure as they are not con�ned to nuclei

connected by chemical bonds.

Besides structural measurements, thermodynamic measurements can also

be applied to proteins. For example, free energy of interaction between

molecules, e.g. the binding between a protein and a drug, can be measured

using calorimetry methods like isothermal titration calorimetry. All the exper-

imental methods described are quite e�ective at obtaining macroscopic prop-

erties of molecular ensembles.

1.3 Statistical mechanics

When studying chemical systems such as proteins one is often interested in

the relationship between microscopic behavior and the macroscopic prop-

erties of an ensemble including many (on the order of Avogadro's number,

NA = 6.022 × 1023) particles, which is the regime traditionally measured by
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experiments (though single-molecule experiments constitute a growing �eld).

Such macroscopic quantities include thermodynamic variables like pressure,

temperature, volume, number of particles, chemical potential, energy, and en-

tropy, as well as structural measurements like the average distance between

two protons. In contrast to these macroscopic properties, simulations produce

the microscopic interactions and motions of molecules. With enough compu-

tational power, one could hypothetically simulate the ∼ NA particles needed

to match the macroscopic scale. Such calculations are not only prohibitively

expensive, however, they are also unnecessary.

Statistical mechanics connects the microscopic to the macroscopic. Through

statistical mechanics, information about molecular behavior obtained from

simulations of a single molecule could be used to predict thermodynamic ob-

servables like energy. The connection between the microscopic and macroscopic

worlds is achieved through a partition function. The nature of this partition

function depends on the boundary conditions of the microscopic system, which

are particular to di�erent ensembles. The most common ensembles are the

canonical, microcanonical, and isobaric-isothermal:

� The canonical ensemble �xes the number of particles (N), the volume

(V ), and the temperature (T ); thus, this ensemble is also called the NVT

ensemble.

� The microcanonical ensemble also �xes N and V , but instead of tem-

perature, �xes the energy (E); this ensemble is therefore also called the

NVE ensemble.

� The isobaric-isothermal ensemble di�ers from the canonical in that pres-

sure (p) is held constant rather than volume; this ensemble is hence called

the NpT ensemble.

The canonical partition function is Equation (1.2). The partition function

is a sum over the Boltzmann factors, e−βEj , of all t states of a system, where

j is an identi�er for each state. The result of this sum, Q, can be used as a

normalizing factor when calculating macroscopic observables. The probabil-

ity of a state j, pj, can be calculated by dividing its Boltzmann factor by Q
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(Equation (1.3)). Additionally, one can calculate the average energy by sum-

ming over the Boltzmann factor-weighted energies of each state of the system,

and dividing by Q (Equation (1.4)).

Q =
t∑

j=1

e−Ej/kT (1.2)

pj =
e−Ej/kT

Q
(1.3)

〈E〉 =

∑t
j=1 e

−Ej/kTEj

Q
(1.4)

Likewise, any average property, 〈P 〉, can be calculated analogously to Equa-
tion (1.4), as

〈P 〉 =

∑t
j=1 e

−Ej/kTPj

Q
(1.5)

One can also use Equation (1.4) to calculate the relative energies between

two states i and j, ∆Eij = Ei − Ej.

pj
pi

=
e−Ej/kT/Q

e−Ei/kT/Q
(1.6)

= eEi/kT−Ej/kT (1.7)

= e∆E/kT (1.8)

∆E = kT ln
pj
pi

(1.9)

Upon �rst inspection, one aspect of the partition function is daunting.

To calculate Q, one needs information about every microscopic state of the

system. Practically, however, this requirement is not rigid; the vast majority

of states contribute negligibly to the partition function, with only the most

populated states contributing signi�cantly. Thus, with knowledge of the major

states, one can reasonably approximate Q.

Earlier, the notion that observation of enough states of a single molecule

will produce the same distribution as that of many molecules was raised. This
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is called the Ergodic hypothesis. Given in�nite time, the fraction of each state

sampled is expected to be equivalent to the fraction observed over an ensemble

of in�nite molecules. Ergodicity is central to approaches that use simulations of

single molecules to calculate ensemble properties using statistical mechanics.

Still needed is an accurate but computationally feasible route to obtain-

ing the microscopic behavior of a protein system. Two methods that are not

e�ective�one that cannot describe molecular behavior and one that is too

slow for large, dynamic systems like proteins�will be introduced, followed by

a third method, borrowing from the �rst two, that will be the subject of this

dissertation.

1.4 Classical mechanics describes the motions of

bodies

With the 1687 volume Philosophiæ Naturalis Principia Mathematica (or Prin-

cipia), Sir Isaac Newton revolutionized physics. For the �rst time, the inter-

actions and motions of projectile and celestial bodies, their mechanics, could

be predicted using a single set of equations. Newton prescribed three laws:

1. Objects maintain their velocity unless an external force causes accelera-

tion.

2. The forces acting on an object equal the object's mass times acceleration.

3. The action of a body on another always accompanies an equal but op-

posite reaction of the second body on the �rst.

In other words:

1. In the absence of an external force, v(t) = v, where v(t) and v represent

velocity as a function of time or as a constant, respectively.

2. ~F = m~a, where ~F represents force, m is mass, and ~a is acceleration.

3. ~Fij = −~Fji, where ~Fij is the force of body j acting on body i, and ~Fji is

the converse.
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Moreover, Newton had laid out calculus�a system for interrelating vari-

ables, including physical properties. From calculus, one can relate energy, accel-

eration, velocity, and position. Force, ~F , is the derivative of potential energy,

U(~x), with respect to the coordinates, ~x (Equation (1.10)). Acceleration�

obtained from force by Newton's second law�is the derivative of velocity, ~v,

with respect to time, t (Equation (1.11)). In turn, velocity, ~v, is the derivative

of position, ~x, with respect to time, t (Equation (1.12)). Thus, if one knows

the form of the di�erentiable function U(~x) and the masses ~m, one can use

equations 1.10 to 1.12 to go from coordinates to forces (and accelerations), to

velocities, and back to coordinates.

~F = −∂U(~x)

∂~x
(1.10)

~a =
∂~v

∂t
(1.11)

~v =
∂~x

∂t
(1.12)

It is often desired to apply these equations circularly to predict the time-

trajectory of coordinates ~x(t). Principally, the goal is to obtain ~x(t) at some

time t, τ in the future from a reference time t0. One can accomplish this

using Equation (1.13) to determine position ~xi(t) of each atom i from previ-

ous position and velocity ~xi(t0) and ~vi(t0), respectively. A key assumption in

this equation is that the force (Equation (1.10)) is continuous over the time

interval [t0 : t) or, more generally, that higher order time derivatives are neg-

ligible; thus τ must be su�ciently small for constant force to be a reasonable

approximation.

~xi(t = t0 + τ) = ~xi(t0) + ~vi(t0)τ − 1

2mi

∂U(~x(t0))

∂~xi(t0)
τ 2 (1.13)

Equation (1.13) is equivalent to the Euler method or a second order Taylor

series about ~x(t0). Classically, gravitational potential has been used for U(~x) to

predict the motions of arrows or planets. Within this regime, Newton's classical
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mechanics safely assumes that energy and matter can be treated continuously.

1.5 The failure of classical mechanics

Despite its predictive power for celestial bodies and projectiles, shortcomings

were discovered in the 19th century that render classical mechanics unsuitable

for the atomic-scale.

For example, the Rayleigh-Jeans formula for predicting black-body radia-

tion resulted in the ultraviolet catastrophe�the prediction that black-bodies

can radiate with in�nite power at high frequencies. This is clearly unphysical

and violates the law of conservation of energy. Max Planck observed that this

prediction resulted from the assumption that energy is continuous, whereby

any quantity of energy can be absorbed or emitted.

Other gaps in classical mechanics were discovered around the turn of the

20th century. For example, the photoelectric e�ect describes the emission of

electrons by metals in response to light. Classically, the transfer of energy from

light to electrons in the metal could occur gradually, and therefore changes to

the amplitude or wavelength of the incident light could modulate electron

emission. It was assumed that light of su�cient intensity was required for the

photoelectric e�ect. But it was observed that low intensity light could evoke

the photoelectric e�ect; meanwhile, high intensity light was insu�cient for the

photoelectric e�ect if the light was above a certain wavelength. Something was

wrong.

1.6 Quantum mechanics

Addressing these issues, Planck postulated that energy can only be exchanged

in integer multiples of a quantity hν, where h is Planck's constant and ν is

the radiation frequency. Though it has been debated whether Planck unwit-

tingly invented quantum mechanics [Galison, 1981], Planck's law, ∆E = nhν,

meant that the highest frequencies of radiation could not be emitted without

a su�cient quantity, or quantum, of energy. Black-body radiation predictions
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incorporating this consideration agreed with experimental emission spectra. In

1905, Einstein hypothesized that light was composed of particles called pho-

tons, and that these photons were Planck's quanta, with energy proportional

to frequency. Einstein went a step further to explain that the photoelectric ef-

fect required photons of certain energy or frequency, independent of intensity.

Thus began a revolution in the understanding of physics on the scale of atomic

particles.

Heisenberg discovered that, for particles, position and momentum cannot

be simultaneously known�barring the Newtonian equations of motion. In-

stead, matter can be described by wavefunctions that indicate the probability

of a particle occupying a given region in space. A Hamiltonian operating on the

wavefunction can yield the energy of the system, as detailed by the Schrödinger

equation (1.14), where ı is the imaginary unit, ~ is the reduced Planck con-

stant, h
2π
, t is time, Ψ is the wavefunction, and H is the Hamiltonian.

ı~
∂

∂t
Ψ(~r, t) = H Ψ(~r, t) (1.14)

For a non-relativistic particle, the Hamiltonian may be de�ned as:

H = − ~2

2µ
∇2 + U(~r, t) (1.15)

where µ is the reduced mass,∇2 is the Laplacian, and U(~r, t) is the potential at

coordinates ~r and time t. The �rst term in this equation, − ~2
2µ
∇2, is the kinetic

operator�when operating on the wavefunction, it yields kinetic energy. It is

analogous to the classical de�nition of kinetic energy, 1
2
mv2, when one considers

that the momentum p = mv, hence the kinetic energy can be expressed, p2

2m
.

Substituting µ for m and ı~∇ for p, one obtains the quantum mechanical

version in Equation (1.15).

If the potential is assumed to be independent of time, i.e., U(~r, t) = U(~r),

then one may use the time-independent Schrödinger equation (1.16) to predict

stationary states.

H ψ(~r) = Eψ(~r) (1.16)
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Whereas the time-dependent Schrödinger equation requires an initial wave-

function to project the wavefunction some time in the future, the time-

independent Schrödinger equation allows the solution of stationary states that

are of interest for physicists and chemists. Unfortunately, the Schrödinger equa-

tion is not able to be directly applied to systems with multiple electrons. Thus

approximations are necessary.

1.7 Theoretical chemistry

�The underlying physical laws necessary for the mathematical the-

ory of a large part of physics and the whole of chemistry are thus

completely known, and the di�culty is only that the exact appli-

cation of these laws leads to equations much too complicated to

be soluble. It therefore becomes desirable that approximate practi-

cal methods of applying quantum mechanics should be developed,

which can lead to an explanation of the main features of complex

atomic systems without too much computation.�

� Paul Dirac

To discuss the approximations typically made in the �eld of theoretical

chemistry, we �rst consider the Hamiltonian for N electrons and M nuclei:

H = −
N∑
i=1

1

2
∇2
i −

M∑
A=1

1

2MA

∇2
A −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB
rAB

(1.17)

Above, MA is the ratio between the mass of nucleus A and the mass of an

electron, ZA is the charge of nucleus A in units of the electron charge (and

of nucleus B, mutatis mutandis), riA is the distance between electron i and

nucleus A, rij is the distance between electrons i and j, and rAB is the distance

between nuclei A and B. From left to right, the terms include the electronic

kinetic operator, the nuclear kinetic operator, the Coulomb attraction between

nuclei and electrons, the interelectronic repulsion, and the internuclear repul-

sion.
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The most fundamental approximation to quantum mechanics is the Born-

Oppenheimer Approximation (BOA). The mass of the electron is dwarfed by

the mass of a proton-containing nucleus. Therefore, with commensurate mo-

menta, an electron will move much more quickly than a proton. It can then

be assumed that electrons will adapt their con�guration to an arrangement

of nuclei before the nuclei can move appreciably. This separates nuclear and

electronic degrees of freedom.

In terms of Equation (1.17), the BOA implies that the second term can be

neglected, as the nuclei can be assumed to have no kinetic energy, and that

the �nal term is constant, as the internuclear distances are invariant. Being

constant, the �nal term will not contribute to the wavefunction, but can be

applied to the wavefunction obtained using the electronic Hamiltonian:

Helec = −
N∑
i=1

1

2
∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
(1.18)

An additional number of approximations together with the BOA comprise

Hartree-Fock (HF)�the foundation of nearly all theoretical chemistry. HF

is unique in that it allows an approximate solution of the time-independent

Schrödinger equation from �rst principles�ab initio. HF assumes:

� BOA

� Relativistic e�ects can be neglected

� The wave function is a linear combination of basis functions

� A �nite number of basis functions can approximate a complete set

� A single Slater determinant will describe each energy eigenfunction

� Electrons only interact with each other in an average way in the mean

�eld approximation

The �nal two assumptions are perhaps the weakest, though they enable the

unsurpassed power of HF to even approximately solve the Schrödinger equa-

tion. To compensate for inaccuracies due to the HF approximations, various
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post-HF methods have been developed employing di�erent corrections to the

HF energy for the last two approximations.

A description of electron correlation accounting for deviations from the

mean �eld approximation is of particular interest; several methods with a

range of computational expense have been introduced. Correlation arises be-

cause electrons have speci�c interactions that are not perfectly captured by

a mean-�eld approximation. To accurately model long-range chemical e�ects

like London dispersion interactions, correlation must be included.

One of the most widely used classes of post-HF methods, Møller-Plesset

perturbation theory (MP), employs Rayleigh-Schrödinger perturbation theory

to account for electron correlation. This perturbation, when truncated after

the second order, is referred to as MP2. Commonly, MP2 is applied to the

study of small- to medium-sized biomolecules, up to hundreds of atoms.

There are other methods that are much more accurate than MP2, includ-

ing coupled-cluster theory and, the golden standard, full con�guration inter-

action (CI). CI can recover the true BOA energy surface, compensating for all

non-BOA approximations in HF. Yet, CI is extremely expensive, and is thus

typically applied to small molecules with on the order of 10 atoms.

Although theoretical chemistry based on HF can garner many insights, it

is still generally too slow for problems of biological interest like evaluating

millions of conformations of molecular systems with thousands of atoms. Even

evaluating several conformations of a solvated protein would be challenging.

Thus there is special interest in methods that may compromise some accuracy

or generality to attain greater speed.

There are semi-empirical methods with functional forms that can reproduce

HF-like behavior with appropriate parameterization. The necessity of parame-

ters means that these methods are no longer ab initio and, commonly, di�erent

semi-empirical methods will be better suited for di�erent problems. Unfor-

tunately, despite being less accurate than ab initio methods, semi-empirical

methods are still generally too slow for studying solvated biomolecules like

proteins.
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1.8 Molecular mechanics

Instead of making further approximations to quantum mechanics, one can

forgo the Schrödinger equation and wavefunctions altogether. The BOA as-

sumes that the motions of the nuclei are slow enough that their positions can

be frozen while the time-independent Schrödinger equation is solved. Con-

versely, one can assume that as nuclei move, they experience averaged e�ects

from the much faster moving electrons. Thus one can approximate the ground

state of the Born-Oppenheimer surface by modeling averaged electronic ef-

fects as a function of nuclear coordinates. This approximation fuels molecular

mechanics (MM) models that treat a system in terms of prescribed nuclear

interactions, a key component in multi-scale molecular simulations for which

the 2013 Nobel Prize in Chemistry was awarded.

MMmethods employ force �elds, sets of empirical formulae that collectively

describe the potential energy of a class of molecules. Thus MM describes a sys-

tem's chemistry not by a wavefunction that must be self-consistently solved

for each nuclear arrangement, but by simple algebraic functions of nuclear co-

ordinates like bond lengths or angles that can leverage the prior derivation

of physically meaningful parameters. Unlike the approximations of theoreti-

cal chemistry, which are deductive, MM is an inductive approximation. MM

methods have become popular for calculation of molecular properties because

of their computational e�ciency over quantum mechanics�they can be ap-

plied to one trillion evaluations of ubiquitin in explicit solvent [Piana et al.,

2013].

MM uses variations of Equation (1.13), typically Velocity Verlet [Swope

et al., 1982] or Leapfrog integration, to propagate the dynamics of a system.

The timestep typically employed is on the order of 1 fs, as required to stably

model the vibration of bonds including hydrogen. This requirement arises from

the assumption that higher-order derivatives of potential energy with respect

to time are negligible, as �rst described in Section 1.4. U(~x) is provided by a

sum of simple functions of molecular geometries called a force �eld.
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1.9 Force �elds

In 1968, Shneior Lifson and Arieh Warshel developed the consistent force �eld

(CFF) [Lifson and Warshel, 1968]. Prior to the CFF, functions were derived

independently for speci�c problems one was interested in, such as bond vibra-

tions or van der Waals interactions. Lifson and Warshel, however, developed a

framework whereby a single function could have parameters that were solved

together�consistently�to reproduce enthalpies, vibrations, and geometries of

alkanes. Using this framework, a number of functional forms were evaluated

and the most useful incorporated into the CFF, upon which most modern force

�elds [Jorgensen and Tirado-Rives, 1988, Cornell et al., 1995, Wang et al.,

2000, Hornak et al., 2006, MacKerell et al., 1998, 2004a, Best et al., 2012] are

based. One essential set of terms preserves the most basic geometric results of

chemical connectivity�bond lengths and angles.

The bond lengths and angles are approximated as harmonic oscillators,

with each unique class, or type, having a characteristic equilibrium length r0

or equilibrium angle θ0 with harmonic vibrations according to bond and angle

force constants kr and kθ, respectively (Equation 1.19).

Vbonded =
bonds∑
r

kr(r − r0)2 +

angles∑
θ

kθ(θ − θ0)2 (1.19)

Equation 1.19 has strengths and weaknesses. The separation of each bond

and angle makes a force �eld more intuitive and the harmonic approximation is

very computationally e�cient. On the other hand, as bond lengths and angles

change, so do the densities of electrons and, therefore, there should be some

coupling between di�erent bonded interactions. Additionally, approximations

beyond harmonicity may aid prediction of strained geometries, where overtones

from higher order vibrational levels may become signi�cant.

Addressing the �rst issue of coupling, the extensively parameterized organic

force �elds of Norman Allinger [Allinger, 1977, Allinger et al., 1989] include

coupling between bonded terms. A number of options have also been employed

to better model bond anharmonicity. A Morse potential (Equation 1.20), for
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example, can allow the system to adapt to longer bond lengths more natu-

rally, while predicting greater strain at close range than a harmonic approx-

imation. More simply, adding third or higher-order terms, rather than only

the second order harmonic contribution, can improve the accuracy of bond

and angle energy functions. This has been employed, for example, by Nor-

man Allinger [Allinger, 1977, Allinger et al., 1989] or by Ren and Ponder in

AMOEBA [Ren and Ponder, 2003]. The CHARMM line of force �elds employs

not only 1�3 interactions parameterized by the covalent angle between the two

atoms, but Urey-Bradley potentials (Equation 1.21) parameterized by the 1�3

distance. Other force �elds [Weiner et al., 1984, 1986, Cornell et al., 1995,

Wang et al., 2000, Duan et al., 2003, Hornak et al., 2006, Best and Hummer,

2009], however, have maintained the simple, additive form of Equation 1.19

for computational e�ciency and have been successfully applied to dynamics

of polypeptides, nucleic acids, carbohydrates, and lipids.

VMorse = De(1− e−a(r−r0))2 (1.20)

VUrey-Bradley =
∑
u

Vu(u− u0)2 (1.21)

Besides the bonded interactions that restrain chemical connectivity, atoms

can also have non-bonded interactions. Non-bonded interactions are often not

considered between atoms in a bond or angle; instead, 1�4 interactions and

beyond are evaluated. In so-called Class I force �elds, as in the CFF, these are

summarized as Coulombic potentials and van der Waals (in this case, Lennard-

Jones [Jones, 1924]) potentials (Equation 1.22). The latter principally model

repulsion due to the Pauli exclusion principle and long-range attraction due

to London dispersion.

Vnon-bonded =
non-bonds∑

i,j

qiqj
rij

+
Aij
r12
ij

− Bij

r6
ij

(1.22)

Whereas Coulomb's law is used also in quantum mechanics, the deriva-

tion of nuclear point charges qi and qj is not straightforward as electron
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Figure 1.7: The Morse potential describes the anharmonicity characteristic
of real bonds, as illustrated for this toy system with 1.5Å equilibrium bond
length, 100 kcal/mol/Å

2
force constant at the minimum, and harmonic energy

(black) or Morse well depth of 32 (red), 64 (green), 96 (purple), 128 (blue), or
160 (orange) kcal/mol.
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density is not localized to the nucleus but comprises dynamic molecular or-

bitals. Some �xed-charge force �elds take the simple approach of calculat-

ing the electrostatic potential at several points outside a molecular surface,

and �tting atomic point charges that best reproduce the electrostatic poten-

tials. Contemporary AMBER charge models [Cornell et al., 1995, Duan et al.,

2003, Cerutti et al., 2013] have used restrained electrostatic potential (RESP)

�ts to ensure that underdetermined charges within molecules do not become

arbitrarily large [Bayly et al., 1993]. Meanwhile, other force �elds, such as

CHARMM [MacKerell et al., 1998], have used an iterative re�nement of non-

bonded and bonded parameters together, to reproduce interaction energies,

geometries, dipole moments, heats of vaporization, molecular volumes, and

heats of solvation.

Some more detailed models attempt to account for o�-nuclear electro-

static components like dipoles and quadrupoles, as in AMOEBA [Ren and

Ponder, 2003]. Also like AMOEBA, a number of charge models also allow

polarization�the redistribution of electron density in response to an electric

�eld. In theory, these types of models promise fundamental improvements over

simple �xed nuclear point-charge models. Due to great investments in the lat-

ter and the few degrees of freedom that need to be parameterized, however,

�xed-charge models can often be nearly as accurate as polarizable models, with

less computational cost [Fried et al., 2013].

The Lennard-Jones van der Waals contributions in Equation 1.22 consist of

dispersion, modeled by r−6, and repulsion, modeled by r−12. Whereas r−6 has

physical basis, r−12 is used because it is the square of r−6, and thus is a very

inexpensive treatment of repulsion requiring only multiplication of r−6 (al-

ready calculated for dispersion) times itself, times the Lennard-Jones param-

eter A. The approximation may overestimate internuclear repulsion at close

distances, however. Realistically, repulsion may be more accurately modeled by

an exponential form, as in the Buckingham (Equation (1.23)) or Morse (Equa-

tion (1.20)) potentials. Some models, like AMOEBA, have used �bu�ered�

van der Waals functions, instead [Ren and Ponder, 2003]. Yet for cases where

molecules are not very strained or experience little repulsion, the 12-6 form

may be reasonable [Weiner et al., 1984].
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VBuckingham = Ae−Br − C

r6
(1.23)

Whereas bond lengths and angles are relatively rigid, many conformational

changes of interest consist of the dihedral torsion of groups on opposite ends

of single bonds, such as rotation of φ and ψ dihedral torsions in the protein

backbone. Dihedral torsional motion depends on 1�4 interactions between A

and D in consecutively bonded atoms A−B−C−D. As one of the limitations
of the Lennard-Jones form is exaggerated repulsion at close range, AMBER

force �elds scale 1�4 van der Waals interactions by 1
2
. Electrostatic interactions

between 1�4 atoms are scaled by 1
1.2

in AMBER, as this facilitated agreement

with ab initio calculations [Cornell et al., 1993]. CHARMM22 [MacKerell et al.,

1998, 2004a] and GLYCAM [Kirschner et al., 2008], however, have not required

1�4 scaling factors. Meanwhile, because of the importance of torsion, dihedral

corrections coordinate with the 1�4 non-bonded interactions to adequately

model this soft degree of freedom. AMBER and CHARMM force �elds include

Fourier series dihedral corrections as presented in Equation 1.24.

Vdihedral =
dihedrals∑

φ

periodicities∑
n

Vφn(1 + cos(nφ− γφn)) (1.24)

This form descends from a study of alkanes showing that cosines map

to torsional vibrations better than harmonic functions [Pitzer, 1951]. Pitzer

hypothesized that the relevant e�ects that result in cosine-shaped torsional

energy contributions included quadrupole/quadrupole and van der Waals in-

teractions. In force �elds that include van der Waals interactions explicitly, a

cosine correction can still serve to mask errors in 1�4 non-bonded interactions,

besides accounting for all missing multipole, inductive, and bonding and anti-

bonding orbital e�ects. Importantly, dihedral corrections are the only term in

class I force �elds that can maintain planarity across double bonds.

As all other functions presented, the sinusoidal dihedral correction has

advantages and disadvantages. Its elegance is that by simply adding more

cosines to the series, one can map nearly any correction for a single dihedral.
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Additionally, its locality to a single torsion allows some physical rationale

based on the e�ects of quadrupole-quadrupole or van der Waals interactions.

In practice, the physical basis is limited by the challenge of partitioning errors

relative to quantum mechanics or experiments, that may be of any nature,

into corrections for single dihedral torsions. The greatest limitation is that the

cosine terms in Equation 1.24 must use individual dihedral angles to produce

corrections that apply at all relevant combinations of remaining dihedrals. This

problem is nontrivial as there may be coupling between dihedrals that is not

fully captured by other, e.g. non-bonded, force �eld terms.

In recent CHARMM force �elds [MacKerell et al., 2004a, Best et al., 2012],

an additional correction that is simultaneously a function of two dihedrals is

added. This correction, called a coupled correction map (CMAP) [MacKerell

et al., 2004b], consists of a two-dimensional grid, where each gridpoint rep-

resents an energy correction for that combination of dihedral values. From

this grid, bicubic interpolation can map a correction for any point on the

two-dimensional surface. Thus the CMAP allows the near-quantitative repro-

duction of any two-dimensional surface. Their one disadvantage is lack of clear

physical motivation (although physical motivation isn't necessarily character-

istic of cosine-based corrections in practice, either). There is a risk that CMAP

corrections may therefore mask a de�ciency in nonbonded parameters, for in-

stance, that could either not transfer to other amino acids with di�erent side

chains or that could potentially create an imbalance between local and global

interactions. E�ective use of CMAP, however, enables much �ner force �eld

tuning than simple cosine-based corrections.

In addition to the limitations of the force �eld functionals just discussed,

there are fundamental weaknesses in molecular mechanics. For example, molec-

ular mechanics is not quantized, but allows arbitrary energies. Additionally,

molecular mechanics lacks entanglement, tunneling, and other potentially rel-

evant quantum e�ects. Furthermore, real chemistry is dynamic and coupled

in a way that is explicitly absent from class I �xed-charge force �elds, and

that polarizable models and cross-terms may not su�ciently capture. A sim-

ple illustration is that charge polarization seeks to capture changes in electron

density, but these same changes should simultaneously a�ect van der Waals
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and all other interactions. The partitioning of chemistry is an arduous approx-

imation.

But the approximations are not unredeemed. Balancing MM's limitations

are its speed and the many force �eld parameters that can be added to more

precisely describe the amino acid energy landscape. Molecular mechanics on

the millisecond timescale has revealed a potential folding path for 76-residue

ubiquitin, a feat that would not be possible with even semi-empirical quantum

methods. Meanwhile, �e�ective� force �eld training (if such a term can be

de�ned, but see below) can compress a great deal of information into the

parameters describing individual molecular interactions, with a trend in recent

years toward more parameters.

1.10 Force �eld development principles

Due to the inductive, empirical nature of molecular mechanics, opinions di�er

on exactly how to perform �e�ective� force �eld training. But there are sets of

principles that recur in force �eld development. A classic theme, originating

with the early liquid simulations of OPLS [Jorgensen and Tirado-Rives, 1988],

is that there should be a balance between intramolecular and intermolecular

interactions. Especially, protein-solvent interactions should be of an appro-

priate magnitude relative to protein-protein and solvent-solvent interactions.

This has led AMBER force �elds to develop amino and nucleic acid charges

that polarize the solute to a level comparable to that of the commonly em-

ployed TIP3P [Jorgensen et al., 1983] water model [Bayly et al., 1993, Cornell

et al., 1993]. Additionally, CHARMM optimization of non-bonded parameters

explicitly included interactions with TIP3P water in the training [MacKerell

et al., 1998].

Another critical issue to consider is how many parameters to use to describe

model chemistry. The variety and constitution of force �eld parameters is con-

trolled by the segregation of atoms into unique types. These atom types are

often divided based on element and bonding partners. For example, there may

be sets of atom types for hydrogen and carbon. Hydrogen types may be divided

into those bound to nitrogen, oxygen, aliphatic carbon, or aromatic carbon.
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Carbon types may be divided into sp3-hybridized carbon, sp2-hybridized car-

bonyl carbon, and aromatic carbon.

The complexity of atom types is largely a function of two competing ideals.

First, one wants to ensure ample speci�city in describing chemically unique

atoms. As in �94, for example, one may wish to describe carbonyl oxygen as

atom type O, but carboxylic oxygen as atom type O2 [Cornell et al., 1995].

Second, one must ensure there are adequate data for the number of parame-

ters being de�ned. Therefore, without physical motivation for distinction, one

may leave chemically similar atoms with the same type�as �94 uses the CT

atom type for the β-carbon of every amino acid (except glycine, which has

no β-carbon)�to maximize the ratio of data to parameters. Thus force �eld

design must account for the competing goals of speci�city�the number of

parameters�and robustness�the amount of data used to derive each param-

eter.

This information requirement restricts how complicated a force �eld can

be. Many force �elds, for example, have only two or three sets of backbone

dihedral corrections, with one or a combination of corrections being applied to

each amino acid. AMBER, for example, has traditionally had one set of φ/ψ

backbone dihedral corrections that applies to all amino acids, and is the only

set that glycine has, with a second set of φ′/ψ′ corrections that adds to the

�rst set to correct all amino acids with a β-carbon�every amino acid except

glycine. CHARMM, as of CHARMM22/CMAP [MacKerell et al., 2004a], has

had one set of dihedral parameters for glycine, one set for proline, and then

another alanine-based set for everything else.

Intuitively, force �elds that include explicit coupling of di�erent parame-

ters would require an enormous amount of �tting data to ensure all coupled

degrees of freedom are adequately sampled. What is less obvious is that force

�elds with uncoupled parameters still include coupling, albeit implicitly. For

example, the correction needed for χ1 may depend on whether the backbone

conformation is α, β, or something else. Thus if trained for only one case,

say the case of a β backbone conformation, then the χ1 parameters would

likely be appropriate in the context of β backbone conformations, but with no

31



guarantee of transferability to other contexts such as helical backbone confor-

mations. Alternatively, this implicit coupling could be averaged over multiple

backbone conformations. In that case, the χ1 correction may not be as ideal for

β backbone conformations, but will likely be more reasonable across multiple

contexts.

What information sources to use in training is a very important question,

as well. Simulations must be able to explain experimental observations to aid

our understanding of protein properties and behavior, for example. But be-

cause of ensemble averaging in many experiments, it can be di�cult to obtain

information that is uniquely identi�able to a single conformation. An NMR

measurement like an NOE might reveal that two atoms are, on average, in

close proximity. But exactly how close they are, the dynamic distribution of

that proximity, and more importantly why the two atoms associate and what

this means for the rest of the molecule, may not always be obvious from a

single experimental observation. Thus a major goal of force �eld development

is to produce simulation models that can be consistent with and support ex-

periments.

Unfortunately, it is not generally the case that experimental observations

simultaneously o�er the microscopic detail and thermodynamic rigor needed to

train a reliable force �eld. For example, a high-resolution crystal structure will

tell much about a protein's average structure, but much less about that struc-

ture's dynamics and energetics that would be needed for a force �eld de�ning

potential energy as a function of coordinates that can change. Calorimetry

may reveal thermodynamic properties�at what temperature a phase transi-

tion occurs and how much heat is associated with the transition. Three-bond

scalar couplings may reveal dynamical information about bond rotamer pref-

erences. But these experiments typically only report on one property at a time.

Calorimetry does not provide structure. A scalar coupling may only suggest

conformations for a single φ or χ1 dihedral. Even with knowledge of the φ

distribution of an amino acid, one still will generally not know whether this

distribution arises because of energetics internal to the φ dihedral, or for some

other cause. Some conformations, like those along a transition between two sta-

ble structures, may be nearly impossible to determine experimentally because
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of the overwhelming signal from the stable structures. To obtain additional,

highly speci�c information, most force �eld training e�orts incorporate, along

with experimental observables, information from quantum mechanics.

Quantum mechanics (QM), though too slow to simulate solvated proteins

over biologically relevant timescales, can be used to calculate a reference po-

tential energy for any set of nuclear coordinates of a computationally accessible

number of atoms, as well as to calculate atomic forces, geometry, electrostatic

potential, or any chemical property. QM is often utilized to calculate the po-

tential energy surface for a set of conformations, which can be compared to

the same energy surface according to MM. A QM reference potential energy

surface on a two-dimensional grid spanning backbone dihedrals φ and ψ, for

example, can allow the calibration of the MM potential energy surface by

adjusting relevant backbone parameters [Cornell et al., 1995, Kollman et al.,

1997, Wang et al., 2000, Hornak et al., 2006, MacKerell et al., 1998, 2004a,

Best et al., 2012]. Or, returning to the example of side chain parameters ap-

propriate for multiple backbone conformations, with QM one can obtain side

chain potential energy scans multiple times with the backbone �xed to di�er-

ent conformations, such as α and β. Or, by calculating the interaction between

two molecules at varying orientations, one can train force �eld parameters to

describe the interaction energy, ideal interaction geometry, and the penalty

for deviation from that ideal geometry [MacKerell et al., 1998]. All would

be important for dynamical simulations where two interacting molecules can

translate or rotate relative to each other, constrained only by the force �eld

describing their interactions.

Alas, as with all things, there are limitations in �tting against QM data.

One limitation is that the exact answer prescribed by QM may depend on the

level of theory used, which is necessarily approximate. Perhaps a more impor-

tant limitation in �tting to QM data is that MM and QM are fundamentally

di�erent. QM is able to couple chemistry in a way that MM is unable to. For

example, whereas MM models may have one optimal length or angle for each

bond with harmonic penalties for deviations, QM may reasonably have di�er-

ent optimal bond lengths and angles as the electronic wavefunction optimizes

for di�erent nuclear coordinates. Additionally, MM includes some unphysical
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approximations. The r−12 MM repulsions means that energy errors for confor-

mations with steric interactions could be di�erent than they would be without

the steric interactions. If dihedral parameters were to account for errors with

the steric interaction, then the e�ect of the steric interaction would persist,

inappropriately, when the encroaching atoms separate, as may happen during

a simulation. In that case, the dihedral parameters would be erroneous. Thus,

inclusion of many diverse conformations in training should enable some im-

plicit coupling to di�erent contexts, while minimizing the impact of artifacts

that depend on conformation.

How force �eld development e�orts juggle the issues of number of param-

eters, the balance of experimental and quantum mechanical targets, and the

development of training data has varied over the years. Decades ago, extensive

quantum mechanics calculations were largely intractable, so quantum calcula-

tions were limited to the conformations of small model systems most salient

for force �eld training. This meant that a small number of parameters could be

supported in training, to ensure reasonable sampling of each parameter. Re-

cently, additional unique parameters have been adopted to more precisely de-

scribe the chemistry of di�erent fragments [Pérez et al., 2007, Lindor�-Larsen

et al., 2010].

1.11 Recent AMBER protein force �eld history

Owing to the success of AMBER protein force �eld 99SB (�99SB) at agreeing

with experimental properties [Hornak et al., 2006, Showalter and Bruschweiler,

2007, Li and Brüschweiler, 2009, Lange et al., 2010, Cerutti et al., 2010],

this dissertation focuses on the AMBER line of force �elds descending from

�94 [Cornell et al., 1995], on which �99SB was based. The �94/�99SB protein

atom types are illustrated in Figure 1.8. The backbone of every amino acid

includes the N atom type for the amide nitrogen, H for the amide hydrogen

(except in proline), CT for the α-carbon, H1 for the α-hydrogen, C for the

carbonyl carbon, and O for the carbonyl oxygen. The atom type landscape is

intentionally simple, di�erentiating chemistries only with clear physical justi-

�cation. The amino acid with the most complicated atom typing is histidine,
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where some nitrogens are protonated, having the NA atom type, and, in un-

charged histidine, some aren't, having the NB atom type. The adjacent carbon

atom types also change, with CW bound to the protonated NA nitrogen, and

CV bound to the deprotonated NB nitrogen. Otherwise, �94 utilizes a minimal

number of atom types.

Table 1.1: The �94/�99/�99SB atom types for natural amino acids de�ned by
Cornell et al. [1995]

Atom type Element Hybridization Bonding environment

CT C sp3 Aliphatic

CA C sp2 Aromatic

CB C sp2 Aromatic, 5- & 6-member ring junc-

tion

CC C sp2 Aromatic, 5-member ring ring

CR C sp2 Aromatic, 5-member ring, between

two nitrogens

CV C sp2 Aromatic, 5-member ring with 1 N

and 1 H (His)

CW C sp2 Aromatic, 5-member ring with 1

NH and 1 H (His)

C* C sp2 Aromatic, 5-member ring with 1

substituent

C C sp2 Carbonyl

H H s Nitrogen

HC H s C without electron withdrawing

group

H1 H s C with 1 electron withdrawing

group

H2 H s C with 2 electron withdrawing

groups

H3 H s C with 3 electron withdrawing

groups
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Table 1.1: Continued

Atom type Element Hybridization Bonding environment

H4 H s Aromatic C with 1 electron with-

drawing group

H5 H s Aromatic C with 2 electron with-

drawing group

HA H s Aromatic C without electron with-

drawing group

HO H s Hydroxyl

HP H s C next to positively charged group

HS H s Sulfhydryl

N N sp2 Amide

N3 N sp3 Charged groups

NA N sp2 5-member ring with H atom (His)

NB N sp2 5-member ring with lone pair (His)

O O sp2 Carbonyl

O2 O sp2/sp3 Carboxyl

OH O sp2 Hydroxyl

SH S sp3 Sulfhydryl

S S sp3 Disul�de

In �94, bond vibrational parameters were determined from infrared spec-

troscopy and crystal structure geometries, partial charges from restrained

�ts to HF/6-31G* electrostatic potentials (ESPs) [Bayly et al., 1993, Cornell

et al., 1993], and van der Waals parameters from liquid simulations or from

OPLS [Jorgensen and Tirado-Rives, 1988]. The HF/6-31G* charge model was

used as this level of theory and basis set tends to approximate the observed

∼ 20% increase in TIP3P water charges relative to the gas phase charge dis-

tribution [Bayly et al., 1993, Cornell et al., 1993, 1995]. Therefore, HF/6-31G*

allows the rapid assignment of atomic charges for solution based on gas phase

quantum calculations.

Dihedral parameters are also used, in which the energy pro�le for rotation
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Figure 1.8: The �94 atom types of each amino acid, separated by group. In
the �rst column are acids, polar residues, and bases. In the second column are
aromatics, nonpolar residues, and amino acids with less (Pro) or more (Gly,
Ala) �exibility.
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around bonds has a Fourier series adjustment applied to the pro�le arising

from the other terms (such as sterics). A key assumption in these force �elds

is that the dihedral corrections are uncoupled, and thus the correction has

no explicit dependence on values of neighboring dihedrals. Optimization of

dihedral corrections is typically the last step in �tting force �eld parameters.

�Generic� torsions applying to all sets of four atoms around a bond between

two atom types (using a wildcard for the outer 2 atoms) were �t to a set

of experimental small molecule barrier heights. In �99 [Wang et al., 2000],

multiple-periodicity speci�c torsional parameters applicable to protein side

chains were �t to a larger set of small molecules.

An important component of protein force �elds is the �backbone� dihedral

parameters that can alter secondary structure preferences. Since the backbone

φ and ψ rotations around 2-atom bonds each have contributions from multiple

sets of 4 atom dihedral terms (due to multiple atoms bonded to the central

2 atoms), there has been some confusion over the years as to which of the

dihedral terms should be optimized and applied to various amino acids, such

as glycine (which lacks Cβ), proline (which lacks HN) and all others. In �94,

the baseline backbone dihedral pro�le for φ (C�N�Cα�C) and ψ (N�Cα�C�N)

dihedral corrections were �t to glycine dipeptide conformation energies from

QM. Then, the in�uence of the side chain was added by �tting parameters

for the so-called φ′ (C�N�Cα�Cβ) and ψ′ (Cβ�Cα�C�N) based on alanine

dipeptide QM conformational energies. Importantly, the φ′ and ψ′ were �t as

a correction on top of the φ and ψ parameters that had already been �t to

glycine. Thus all amino acids except glycine had 2 full sets of �backbone� dihe-

dral contributions, one for the backbone and a second correction set using the

Cβ atom. The ubiquity of �94-based force �elds shows its overall e�ectiveness,

despite speci�c weaknesses in performance for proteins, such as exaggerated

helical propensity [Hornak et al., 2006].

Several attempts to improve secondary structure balance were reported. In

�96 and �99, the backbone φ/ψ dihedral corrections were adjusted to better

reproduce the QM energies of a set of alanine dipeptide (blocked Ala1) and

tetrapeptide (blocked Ala3) conformation energies [Beachy et al., 1997, Wang

et al., 2000]. This decision was signi�cant as the tetrapeptide can form a single
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α-helical hydrogen bond, and thus have a local minimum in the helical confor-

mation, which is absent for the dipeptide in the gas phase. This is especially

important since only minima were used in �tting energy pro�les. However, the

approach in �99 had two signi�cant weaknesses: �rst, the optimization used

alanine energies, but the parameter �tting was done for the C-N-CA-C and

N-CA-C-N 4-atom dihedrals, which had been �t to glycine in �94. The �94

φ′ and ψ′ corrections were left in place during the �99 �tting. As a result,

simulations of glycine with �99 employed φ and ψ parameters that were �t to

alanine, rather than to glycine as originally intended [Hornak et al., 2006]. The

second problem in �99 was that the �tting was done to reproduce the energies

of multiple backbone conformations, but each energy was de�ned relative to

the energy of the helical conformation (since the zero of energy is arbitrary in

MM) [Wang et al., 2000]. However, this procedure resulted in an overly strong

in�uence of the helical conformation energy in �99 [Hornak et al., 2006], and

as a result �99 favored helices even more strongly than the �94 model that it

was intended to improve. Both of these problems were recognized and largely

corrected in �99SB [Hornak et al., 2006].

With �99SB, protein backbone dihedrals were re�t by expanding upon the

methods used in �94 and �99. A larger set of alanine tetrapeptide conforma-

tions were used in �tting φ′ and ψ′, as well as introducing glycine tetrapep-

tide conformations for �tting φ and ψ. The problem with using the helical

structure as a reference was resolved by using as a �tting target the relative

energies of all conformation pairs. These relative energies are what control

populations and barriers in an MM model, and thus they were direct tar-

gets in the parameter optimization. The conformations were limited to local

minima because of computational expense, but the �tting struck a balance

of secondary structure suitable for a range of systems [Hornak et al., 2006,

Showalter and Bruschweiler, 2007, Li and Brüschweiler, 2009, Lange et al.,

2010, Cerutti et al., 2010]. Resultantly, �99SB became widely adopted in the

simulation community.

Limitations in models often only become apparent after extensive use and

testing. One advantage of the wide adoption of �99SB is that trends in the

weaknesses were noted, as compared to single anecdotal failures for which the
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cause may be di�cult to determine, or unknown weaknesses in force �elds that

are not widely distributed. Most notably, rotamer preferences for several side

chains were observed to be less accurate than others [Lindor�-Larsen et al.,

2010]. This likely arose since �99SB inherited amino acid side chain dihedral

parameters from �99, which were derived against a limited set of relative en-

ergies for small organic compounds [Wang et al., 2000]. The transferability of

energy correction parameters for small molecules with relatively simple energy

landscapes to amino acids may be an issue. The atoms in the amino acids

typically have di�erent partial atomic charges than the reference compounds,

as well as more complex coupling to neighboring fragments. Due to recent

increases in computational power, more extensive calculations (including full

rotational energy pro�les rather than selected stable conformations) can now

be used to train side chain parameters directly against QM data on complete

amino acids.

Although the secondary structure preferences in �99SB were a dramatic

improvement from previous Amber force �elds, several studies noted room for

improvement. After �99SB was published, solution scalar coupling data for

short peptides [Graf et al., 2007] became available, against which �99SB and

other force �elds were compared [Best et al., 2008, Wickstrom et al., 2009], and

the potential for improvement was discussed [Wickstrom et al., 2009]. Maier

et al. hypothesized that two potential weaknesses in the �99SB backbone pa-

rameter �tting strategy may be the dominant factors limiting accuracy: (1)

the lack of backbone �tting data outside gas-phase minima and (2) using pre-

polarized MM partial charges intended for aqueous solution simulations while

�tting dihedral parameters against gas-phase QM data [Maier et al., 2015].

Limiting the backbone parameter training to gas-phase local minima left po-

tentially arbitrary energies for transition barriers or, importantly, in regions

that become minima in solution or in the complex landscape of the protein

interior. Additionally, the additive �99SB model employs HF/6-31G* RESP

partial atomic charges [Bayly et al., 1993, Cornell et al., 1993, 1995] that over-

estimate gas-phase dipoles by a similar amount as obtained in water models

such as TIP3P [Jorgensen et al., 1983], thus approximating the polarization

expected in aqueous solution [Bayly et al., 1993, Cornell et al., 1993]. However,
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subsequent re�tting of dihedral energy pro�les to more accurate gas-phase en-

ergies calculated at the MP2 level results in dihedral parameters that may

partially counteract the contribution of implicit polarization e�ects on the

rotational energy pro�les. Thus empirical corrections may provide additional

bene�t in reproducing experiments in water. While an alternative strategy to

account for solvation e�ects in a more consistent way might be to develop an

entirely new charge model [Duan et al., 2003, Cerutti et al., 2013], the orig-

inal �94 RESP charge model [Bayly et al., 1993, Cornell et al., 1993, 1995]

developed by Peter Kollman has been extensively tested, and retaining it also

maintains compatibility with many other parameter sets such as those model-

ing nucleic acids and carbohydrates [Kirschner et al., 2008]. Likewise, re�tting

the entire backbone dihedral pro�le rather than just minima would potentially

lose the advantage of extensive studies [Showalter and Bruschweiler, 2007, Li

and Brüschweiler, 2009, Wickstrom et al., 2009, Best et al., 2008, Thompson

et al., 2010] evaluating �99SB's strengths and weaknesses. Maier et al. [2015]

investigated the simpler strategy of developing a small empirical adjustment to

the �99SB backbone parameters to improve reproduction of the experimental

data in solution.

As described in more detail in Carmenza Martinez's dissertation [Martinez,

2014], Maier et al. created an array of small empirical perturbations to φ′ and

ψ (or ψ′) torsions that were designed to overcome the shortcomings of the

�99SB training set described above [Maier et al., 2015]. Several combinations

of φ′ corrections with ψ or ψ′ corrections were tested, pruning the number of

variations as the test systems became more complex. This di�ers from other

recent work that has focused on modifying a single torsional term to reproduce

solution measurements directly [Best and Hummer, 2009, Nerenberg and Head-

Gordon, 2011] or deriving φ/ψ coupled corrections against protein chemical

shifts [Li and Brüschweiler, 2011]. The goal was parameters that were trans-

ferable between short disordered peptides (such as Ala5) and larger peptides

with propensity to adopt stable secondary structure. Thus the �14SB back-

bone approach was between that of Nerenberg and Head-Gordon [Nerenberg

and Head-Gordon, 2011] and those of Best and Hummer [Best and Hummer,

2009], and Li and Brüschweiler [Li and Brüschweiler, 2011]. The best performer
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Figure 1.9: The �99SB Ala3 training set as circles, with the Hu and Bax [Hu
and Bax, 1997] Karplus curve behind. Vertical lines indicate where the Karplus
curve matches NMR (black) or �99SB (gray). The maximum of the Karplus
curve (φ = −120◦) is undersampled.

in small peptides was chosen as the backbone component to �14SB [Maier

et al., 2015].

A few studies have arisen, comparing force �elds from AMBER and

CHARMM to experimental data [Beauchamp et al., 2012, Lindor�-Larsen

et al., 2012]. One particular goal of these studies was to evaluate the perfor-

mance of force �elds over time. Early force �elds, such as CHARMM22 [MacK-

erell et al., 1998, Lindor�-Larsen et al., 2012] or �99 [Wang et al., 2000,

Beauchamp et al., 2012] had the greatest deviations from experiment. Results
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with later force �elds, particularly CHARMM22* [Piana et al., 2011] and vari-

ants of �99SB [Hornak et al., 2006, Best and Hummer, 2009, Lindor�-Larsen

et al., 2010, Nerenberg and Head-Gordon, 2011, Li and Brüschweiler, 2010],

deviated least from experiment according to both studies [Beauchamp et al.,

2012, Lindor�-Larsen et al., 2012]. Although both studies sought to assess the

performance of force �elds over time, �99SB, upon which many later force

�elds were based, was inexplicably excluded. Yet, the trend remains that force

�elds are continuing to improve. According to Lindor�-Larsen et al. [2012],

�99SB*-ILDN and CHARMM22* both have an error score of 0. Although,

as Lindor�-Larsen et al. [2012] concede that their score depends on �subjec-

tive choices,� improving beyond the latest force �elds will clearly require a

thorough e�ort. In particular, �ne details such as the possible necessity of

amino acid-dependent parameters or precise details in energy calculations for

training must be evaluated carefully. Hence, as described in Chapters 2 and 3,

investigation of these options was pursued.

1.12 Outline

Chapter 2 describes development of the side chain component of �14SB,

whereby di�erent approaches to re�ne side chain parameters were examined

and the best applied to training parameters against QM data of dipeptides

of each amino acid. Speci�cally, we investigated the e�ects of di�erent levels

of restraints on the side chain and backbone during side chain conformational

sampling and the e�ect of re-optimizing structures molecular mechanically

versus using quantum mechanically optimized structures to calculate molecu-

lar mechanics energies before training. Parameters derived against dipeptides

with multiple backbone conformations resulted in better reproduction of ex-

perimental data, such as NMR χ1 scalar couplings.

Beyond the small backbone tweaks employed in �14SB [Maier et al., 2015],

Chapter 3 investigates whether the insights gained in Chapter 2 for QM-based

�tting of side chain parameters can also be applied to more rigorously retrain

the entire backbone energy surface. The chapter evaluates various choices in

backbone parameter development. One choice is the level of sampling�energy
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minima, as done for �99SB [Hornak et al., 2006], structures from high tem-

perature simulation, and grid-based scans, as done for the �14SB side chain

parameters [Maier et al., 2015] described in Chapter 2. Chapter 3 also probes

structure optimization (QM versus MM structures), inclusion of implicit sol-

vation e�ects in training, size of the training target (tetrapeptides, dipeptides,

or �monopeptides�), and the sequence dependence of the necessary backbone

correction. A method was derived that proved e�ective in reproducing Ala5

and Val3 backbone scalar couplings, reproducing the former as well as �14SB,

which was optimized against Ala5 scalar couplings, and the latter as well as

�99SB. A plan for the future force �eld enabled by the method developed is

laid out.

Chapter 4 concerns the implications of Chapter 2 and Chapter 3 for devel-

opment of force �eld models. The impact is discussed in terms of simulation

results for the new side chain parameters. Additionally, the implications for

the continuing role of QM-based force �eld training is discussed.
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Chapter 2

Examine and improve accuracy of

amino acid side chain sampling

using molecular mechanics force

�eld �99SB

2.1 Acknowledgments

This chapter is reproduced in part with permission from the Journal of Chem-

ical Theory and Computation, submitted for publication. Unpublished work

copyright 2015 American Chemical Society.

2.2 Introduction

There are several possible routes to attempting to improve the quality of the

protein side chain model in �99SB, such as using a more complex functional

form for each dihedral, or including explicit coupling between various terms

in the force �eld, or �tting to a higher level of QM theory. While each could

potentially improve �99SB, we focus here on improving the aspects that are
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most likely to be the greatest weaknesses in the current model. Several recent

reports of force �eld training have focused on application of more accurate

quantum theory [Hornak et al., 2006, Pérez et al., 2007, Lindor�-Larsen et al.,

2010, Best et al., 2012, Zgarbova et al., 2011, 2013]. While the level of theory

is certainly important, we feel that improving the conformational diversity in

the training data set is more likely to improve the model. In principle, di-

hedral parameters account for orbital e�ects missing in a classical model for

bond rotation, but in practice also serve as empirical corrections for all di�er-

ences between the QM and MM models, including lack of charge polarization

changes during rotation, as well as dihedral-dependent errors in other terms in

the force �eld (such as bond, angle and nonbonded interactions). As a result,

the appropriate correction needed to match the MM torsion rotation energy

pro�le to that obtained using QM may di�er depending on chemical or confor-

mational context, such as backbone conformation or other side chain torsions.

In most biomolecular MM force �elds, however, each rotatable bond is de-

scribed by parameters that are independent of the conformation of the rest of

the molecule (a notable exception is the CHARMM correction map (CMAP)

of φ and ψ [MacKerell et al., 2004b]). As a result, while the net energy pro�le

for rotating about a given bond will likely depend on other dihedrals (through

steric e�ects, for example), the lack of explicit coupling in dihedral parameters

limits the parameters to an implicit account for any coupling missing in the

classical model. Therefore, it is important that the structures used for dihedral

�tting include neighboring regions of the molecule where the parameters will

be used. It is paramount to include conformational variety in those regions to

avoid implicit coupling to a limited subset of their phase space, for example, a

single rotamer or backbone conformation. In the present case, this led us to use

complete amino acids in the QM calculations for the training data, as opposed

to the small organic compounds used in �99 [Wang et al., 2000]. Furthermore,

implicit coupling was incorporated by �tting a single set of dihedral parame-

ters using a large set of conformations that included multidimensional scans of

all side chain χ rotatable bonds, with both α and β backbone conformations

for the dipeptide. Thus, while the model lacks explicit coupling, the correction

parameters for each dihedral are optimized in a mean �eld of conformational
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variability for the remainder of the molecule.

The culmination of this work, �14SB improves upon �99SB and the back-

bone tweaks thereto in protein side chains (χ1 scalar couplings) and peptide

helicity (CD, CSDs), while maintaining the quality of �99SB local dynam-

ics (Lipari-Szabo S2 order parameters) and hairpin structure (CLN025). We

recommend �14SB.

2.3 Fitting Strategy and Goals

As discussed above, our general strategies for improving the protein force �eld

have focused on �tting to QM calculations for systems more directly relevant to

proteins (tetrapeptide for the backbone, dipeptide for side chains), and gener-

ating training sets of conformations with simultaneous variations in multiple

dihedral angles so that the �nal parameters can include implicit (averaged)

coupling between dihedral corrections. The goal is maximum transferability of

the dihedral parameters for alternate chemical or conformational diversity in

the remainder of the system.

It is important, however, to note that lack of explicit coupling in the dihe-

dral correction parameters does not imply that the overall energy pro�les are

not coupled, since much of the observed coupling likely comes from steric and

electrostatic through-space e�ects that are not directly related to the dihedral

parameters. For this reason, a model with side chain χ parameters that do

not depend on backbone conformation could still be capable of reproducing

backbone-dependent side chain rotamer preferences [Lovell et al., 2000]. In this

work, we extend the approach taken in �99SB development, and the side chain

χ dihedral parameter �tting is performed using multiple backbone conforma-

tions to implicitly average the corrections over possible backbone/side chain

coupling needed to best reproduce the QM data and maximize transferability.

In �94 and �99, side chain torsions were decoupled by �tting data to small

organic compounds representative of functionality seen in side chains, such as

ethane, butane, or methanol, and deriving parameters based on these model

compounds [Cornell et al., 1995, Wang et al., 2000]. Here, we used a more
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realistic chemical context of the dipeptide, which also provides the opportu-

nity to include implicit coupling to the presence of the backbone polypeptide

chain, as well as include conformational diversity in the backbone in the side

chain training set. In a recent revision of a small number of �99SB side chain

torsions that were identi�ed by comparison of rotamer preferences in a heli-

cal context against the PDB, training against quantum mechanics energies for

conformations with extended backbone improved χ1 rotamer preferences in

β-rich proteins. However, while two of four amino acids showed considerable

improvement in the helical test case, the other two showed more modest re-

duction in errors [Lindor�-Larsen et al., 2010]. As discussed above, our goal is

to derive parameters that are transferable across chemical and conformational

diversity, thus we explicitly included dipeptide conformations with both α and

β backbone when sampling side chain rotational pro�les. As with backbone

parameters, we did not �t to side chain scalar couplings, but used them only

to evaluate results of parameter changes. This di�erentiates our approach from

CHARMM36 [Best et al., 2012], for example, where side chain parameters were

�nally adjusted to better reproduce χ1 scalar couplings.

Another choice concerns the diversity of conformations to use in the side

chain rotamer training set. One option is to scan each dihedral rotamer sepa-

rately, but as discussed above, this approach can fail to incorporate coupling

needed in the correction terms, and may provide parameters that work well

for some rotamer combinations, but fail for others that were absent in the

training data. As including coupling via multidimensional scans can generate

large numbers of conformations, one option to reduce the size of the train-

ing set is to include only minima. However, the exact locations of side chain

χ minima can depend on backbone conformation, solvent, and packing with

nearby residues. We thus made the decision to sample side chain conforma-

tions via full two-dimensional scans for the thirteen amino acids (counting

di�erent protonation states for Asp and His) with two side chain dihedrals

(Table S1). For larger amino acids, conformational diversity was generated via

symmetry considerations or dynamics simulations (described below). Because

positions of minima may change in the context of a more complex system,

and because energies for transitions may be relevant, each point in these scans
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was considered equally important as compared to weighting data points by

their energy. As side chain preferences are coupled to the backbone [Dunbrack

and Karplus, 1993, Lovell et al., 2000], we performed these scans at both α

(φ,ψ = −60◦,−45◦) and β (−135◦, 135◦) backbone conformations. While ad-

ditional backbone conformations could be employed, we considered only the

archetypal α and β secondary structures due to computational cost. A sep-

arate ppII conformation (−75◦, 150◦) was not included, as the interaction of

the side chain with the N-terminal peptide group is comparable in ppII and

α conformations, while the interaction of the side chain with the C-terminal

peptide is comparable in ppII and β conformations, thus these interactions are

represented in the two backbone conformations already included in our set.

Our �tting targets for the side chains were gas-phase ab initio energies, as

in �99SB. To accommodate the 15 082 dipeptide conformations in our training

set, we employed a relatively modest level of theory, with geometries calculated

at HF/6-31G* and single point energies calculated at MP2/6-31+G**. Given

the fundamental approximations, such as additivity, �xed partial charges, r−12

repulsion, and harmonic bond and angle vibrations, we do not expect the

quantum theory to be the limiting factor in improving our model and focused

on increasing the conformational diversity in the training set.

Additional choices that must be made relate to the generation of the QM

and MM energies for conformations in the training set. First, we investigated

what restraints to use in potential energy surface scans. Restraining the 4-

atom set de�ning each χ dihedral, as well as those for φ and ψ, is natural

given the goal of scanning combinations. Less obvious is whether other di-

hedral restraints should be included for the rotatable bond being scanned,

such as those sharing the same 2 atoms de�ning the central bond, but varying

the outer atoms. For example, the restraint for χ1 in Val is de�ned using N�

Cα�Cβ�Cγ1, but the dihedral N�Cα�Cβ�Cγ2 could either be restrained or

allowed to freely optimize in the presence of the χ1 restraint. Another choice

is whether (and how strongly) to restrain other parts of the molecule, such

as methyl rotations, or the peptide ω rotation. Next, given the fundamental
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di�erences in QM and MM models, and weakness in MM description of en-

ergetics beyond dihedral pro�les, we investigated whether to optimize geome-

tries once�calculating molecular mechanical energies of quantum mechanical

structures�or to re-optimize the QM structures with the MM model prior

to comparing energies. The energies could be calculated for identical struc-

tures, for example the quantum mechanical structures. An advantage of this

approach is that all coordinates and non-bonded distances would be identical.

Alternatively, energies could be compared for structures optimized with the

corresponding method (i.e. MM energies for MM-optimized structures). The

MM model may not reproduce small changes in bond and angle geometries

for di�erent rotamers in the QM model, and the sti�ness of the MM quadratic

function could result in these di�erences making large contributions to energy

errors that could be relaxed with MM structural re-optimization (as would also

occur during molecular dynamics), thus focusing the resulting energy pro�le

on the rotamer changes rather than MM covalent structure approximations.

Like several other MM force �elds, the Amber-related models have tradi-

tionally used atom types to apply a small number of bond, angle and dihedral

parameters to similar fragments in di�erent amino acids. Ideally, the parame-

ters would be highly transferable, and show accuracy for a variety of contexts.

This approach reduces the number of parameters needed, but also limits the

accuracy of the model since the implicit coupling we seek is worsened when

the parameters are averaged over too great a variety of neighboring functional

groups that can in�uence charge distribution. Since many sets of four atoms

in the amino acid backbone and side chains shared the same atom types (and

therefore the same dihedral corrections) with each other and also with nu-

cleic acids in �99SB, new atom types were created when needed to improve

speci�city. For example, asparagine χ2 (Cα�Cβ�Cγ�Nδ), glutamine χ3 (Cβ�

Cγ�Cδ�Nε), and ψ′ (Cβ�Cα�C�N) all shared atom types CT-CT-C -N , and

therefore the same dihedral corrections applied to all three bonds. Here, addi-

tional atom types were created to allow independent adjustment of backbone

parameters and di�erent side chain parameters, with all atom types depicted

in Figure 2.1. A new atom type for the α-carbon (CX) was created to separate

main chain, χ1, and χ2 parameters, enabling the independent adjustment of
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the side chain parameters. Where cross-referencing simulation data and er-

rors �tting quantum energies suggested that solving corrections for particular

amino acids together led to inaccuracies that solving separately would alle-

viate, additional atom types were also introduced to segregate them. Within

the side chains, atom types 2C and 3C were developed for carbons bound to

two or three heavy atoms, respectively, more thoroughly describing branched

amino acids while isolating the revisions to amino acids (and preventing appli-

cation to nucleic acids, which was possible in previous models). The CO atom

type was introduced to distinguish carboxylate carbon from other carbonyl

carbons. The C8 atom type was added for arginine and lysine, to distinguish

them from glutamate, glutamine, and methionine. Each side chain atom type

was added only if it allowed better reproduction of both quantum mechanics

�tting targets and dynamic properties (described more fully below), to verify

that additional parameters are appropriate.

Potential limitations in our approach We retain many of the approx-

imations present in �99SB, such as weaknesses in the harmonic description

of covalent bonds and angles (Equation (1.19)), as well as the 6-12 Lennard-

Jones function (Equation (1.22)). We also retained the same 1-4 nonbonded

scaling factors employed with �99SB. We re�t all side chain dihedral parame-

ters except the �generic� terms applied to nonpolar hydrogens, which were left

at the values from �99. We continue to assume that explicit coupling between

dihedral pairs can be neglected. We additionally assume that gas-phase com-

parison against MP2/6-31+G**//HF/6-31G* quantum energies is su�cient to

improve the side chain parameters. Ultimately, improving the level of theory

or adding solvent in QM may alleviate some errors or inconsistencies in this

approach. These assumptions, however, allowed us to overhaul the side chain

dihedral parameters that had been carried over from �94, in the context of the

RESP charge model used in many force �elds.
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Figure 2.1: The amino acids drawn with their AMBER �14SB [Maier et al.,
2015] atom types.
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2.4 Methods

2.4.1 Side chain dihedral training

Structure generation

Acetyl and N-methyl capped dipeptides of the natural amino acids, except

proline, alanine, and glycine, were built using LEaP [Zhang et al., 2010] at α

(−60◦,−45◦) and β (−135◦, 135◦) backbone conformations. We explored ~χ by

rotating in 10◦ increments, re-optimizing at each step, or by high temperature

simulation (described in Results).

Molecular mechanics optimizations were performed with �99SB using

the sander module of AMBER11 [Case et al., 2005, 2012] for a maxi-

mum of 1.0× 107 cycles or until the RMS gradient was less than 1.0× 10−4

kcal mol−1 Å
−1
, with a non-bonded cuto� of 99.0Å and initial step size of 10−4.

All backbone torsions and one torsion per side chain rotatable bond were re-

strained with weights of 2× 105 kcal mol−1 rad−2. Minimization proceeded by

10 steps of steepest descent followed by conjugate gradient. Molecular mechan-

ics energies were calculated from the last step of �99SB minimization.

Quantum mechanics optimizations were performed with RHF/6-31G*.

Scanned residues were optimized using GAMESS (US) [Schmidt et al.,

1993, Gordon and Schmidt, 2005], version 1 MAY 2012 (R1), with de-

fault options. Optimization continued until the RMS gradient was less than

1.0× 10−4 Hartree/Bohr, with an initial trust radius of 0.1 Bohr that could

then adjust between 0.05 and 0.5 Bohr. Minimization proceeded by the

quadratic approximation. Residues sampled by high temperature simulations

were optimized using Gaussian98, Revision A.7 [Frisch et al., 1998] with

VTight convergence criteria. Quantum mechanics energies were calculated

with MP2/6-31+G**.

Generating conformational diversity in the training set

Scans To maximize transferability of the parameters, multidimensional struc-

ture scans were employed to generate conformational diversity and incorporate

implicit coupling, despite lack of explicit coupling in the energy function. For
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smaller side chains, we used grid scans in dihedral space to generate side chain

variety, including both α and β backbone conformations for each side chain

rotamer. Grid scans were generated for Val in one dimension, as it only has

χ1, at an interval of 10◦. Grids were generated for Asp−, Asn, Cys, Phe, His

(δ-, ε-, and doubly-protonated), Ile, Leu, Ser, Thr, and Trp in two dimensions,

as they have χ1 and χ2, at intervals of 20◦, yielding 324 structures per each

combination of amino acid and backbone conformation.

We were unable to exhaustively explore side chain conformational space

side chains with more than two rotatable bonds. Tyrosine has 3 rotatable χ

bonds, but dihedral space is reduced since 180◦ rotation of either the phenol

(χ2) or of the hydroxyl produce the same e�ect when accounting for symmetry

of the ring. We therefore fully scanned each tyrosine dihedral when the other

two were at a stable rotamer de�ned as any instance of that value in the ro-

tamer library for this amino acid, rounded to the nearest 10◦ and limiting χ2

to (−90◦, 90◦] to account for symmetry. Stable rotamers were 180◦ or ±60◦ for

χ1, ±30◦ or 90◦ for χ2, and 0◦ or 180◦ for the hydroxyl. Conformations were

generated using a full scan for each dihedral (at 20◦ increments), repeated for

every combination of stable rotamer values for the other two dihedrals, yield-

ing 288 conformations per backbone conformation. As protonated aspartate

has nearly the same dihedrals as Tyr (χ1, χ2, and hydroxyl), we scanned it

in the same manner, but without χ2 restriction because aspartate does not

have the same symmetry properties, yielding 576 conformations per backbone

conformation.

Cysteine presents a special case, as it can form disul�de bonds that cross

a single amino acid. In addition to developing parameters for reduced Cys

(no disul�de), we employed a pair of Cys dipeptides with a disul�de bond

to scan the S�S energy pro�le. However, a disul�de between CysA and CysB
has a total of �ve dihedrals: χ1A, χ2A, χSS, χ2B, and χ1B. Since full sampling

across �ve dihedrals is clearly intractable, we reduced the conformation space

by applying the same χ1/χ2 values to both dipeptides. Using this symmetry,

we performed a two-dimensional scan for all χ1/χ2 combinations using 20◦

spacing; this scan was repeated with χSS restrained to 180◦, ±60◦, or ±90◦

(�ve 2D scans). Separately, the χSS pro�le was scanned with 20◦ spacing using
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χ1 of 180◦ or ±60◦ and χ2 of 180◦ or ±60◦ (nine 1D scans total). As with

the other amino acids, the entire procedure was repeated with the backbone

in α and β conformations; here, both dipeptides adopted the same backbone

conformation.

Simulations The remaining side chains, Arg+, Gln, Glu (protonated), Glu−,

Lys+, and Met, have at least three side chain dihedrals (Table S1). Rather

than performing a grid search, we used MD simulations to generate diverse

side chain conformations for these side chains. We simulated each dipeptide

twice, with α or β backbone restraints, for 100 ns each. To overcome kinetic

traps, these simulations were performed at 500 K and the dielectric was set to

4 r. Next, we generated a diverse subset by mapping each conformation to a

multidimensional grid spaced 10◦ in each χ. We saved the �ve lowest energy

conformations at each grid point. From each simulation grid, �ve hundred

structures were randomly selected (comparable to the number generated by

the grid procedure described above for Tyr). Since the longer, more �exible

side chains of these amino acids can adopt conformations with strong interac-

tions between backbone and side chain, we excluded conformations where we

suspected the in vacuo MM description may produce �tting artifacts, using

electrostatic and distance cuto�s de�ned below.

Simulations details Simulations were maintained at 500 K by a Langevin

thermostat with γln = 1.0. Restraints of 2× 103 kcal mol−1 rad−1 on φ and ψ

maintained the backbone throughout. The simulations were integrated with a

1 fs timestep. Structures were saved every 2 fs to capture short-lived transitions.

To generate sets structures that varied principally in side chain con-

formation, minor di�erences in backbone conformation had to be recon-

ciled. For each set of structures, the average value of every backbone di-

hedral was determined. Each structure was minimized for 100 000 cycles

using �99SB, with incremental restraints on the dihedrals describing all

four-atom torsions within the backbone to their average values at weights

of 100 kcal mol−1 rad−2, 500 kcal mol−1 rad−2, 1× 103 kcal mol−1 rad−2, 5× 103

55



kcal mol−1 rad−2, and then 1× 104 kcal mol−1 rad−2, for 500 steps each, and �-

nally 1.5× 104 kcal mol−1 rad−2 for the remainder of minimization. The methyl

groups at the N- and C-termini, due to their C3 symmetry, were not restrained

to their average values but to −5◦ for one of the H−C−C−N and 60◦ for one

of the C−N−C−H dihedrals.The simulations generated some structures with

challenging sterics or electrostatics, where atoms were within close proximity.

One concern is that the molecular mechanical model employs charges that are

�xed for a dielectric. A second concern is that the r−12 Lennard-Jones approxi-

mation of repulsion is an unphysical mathematical convenience (the dispersive

r−6 squared) that may be too hard at close range. We did not want to �t the

errors of �xed charges in a vacuum, nor possible MM repulsion artifacts. Struc-

tures where the distances between atoms not in a bond or angle breached the

sum of their van der Waals radii [Bondi, 1964] divided by 1.3 were eliminated.

The scaling factor 1.3 was chosen empirically as a value that left a reasonable

number of structures in the training set but targeted those with the greatest

degree of contact.

A second non-bonded �lter speci�cally targeted electrostatic interac-

tions. When the Coulombic energy between a side chain particle exceeded

42 kcal mol−1 in magnitude, the interaction was evaluated �very strong� and

the structure was discarded from the training set. Although any number be-

tween 40 and 43 kcal mol−1 could have been suitable, 42 received preference

based on previous work [Adams, 1979]. Both �99SB and MP2/6-31+G** Mul-

liken charges were considered in this evaluation.

Structures with relative energies greater than 30 kcal mol−1 were considered

overly strained and were also therefore removed from the training.

Summary Thus, valine has 72 structures, tyrosine has 576, protonated as-

partate has 1152, all 2d-scanned residues have 648, and the remaining residues

have the numbers in Table 2.1.
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Table 2.1: Distribution of REEs in terms of mean, standard deviation (stdev),
minimum (min), and maximum (max), using �99SB or �14SB side chain pa-
rameters, against the conformations of each amino acid (AA) and backbone
conformation (BB). `# confs' is the number of conformations in each set.

�99SB �14SB

AA BB
#

confs
mean stdev min max mean stdev min max

Arg α 396 1.41 1.07 0.00 6.97 1.06 0.86 0.00 7.87

Arg β 355 1.50 1.23 0.00 8.71 1.06 0.96 0.00 8.10

Ash α 576 1.87 1.44 0.00 10.51 1.22 0.96 0.00 7.76

Ash β 576 2.06 1.55 0.00 10.71 0.96 0.78 0.00 7.21

Asn α 324 1.99 1.50 0.00 8.70 1.06 0.79 0.00 4.86

Asn β 324 1.97 1.44 0.00 9.02 0.97 0.73 0.00 4.62

Asp α 324 2.63 1.95 0.00 10.65 1.11 0.85 0.00 4.63

Asp β 324 2.46 1.76 0.00 8.76 0.73 0.68 0.00 4.43

Cys α 324 1.42 1.17 0.00 7.11 1.14 1.02 0.00 5.43

Cys β 324 1.15 0.84 0.00 5.14 0.91 0.68 0.00 3.95

Glh α 436 1.63 1.25 0.00 9.29 1.23 1.01 0.00 7.53

Glh β 420 1.48 1.11 0.00 7.14 0.92 0.73 0.00 4.88

Gln α 313 1.69 1.30 0.00 8.18 1.23 0.92 0.00 6.49

Gln β 282 1.29 1.03 0.00 7.01 0.91 0.70 0.00 4.52

Glu α 284 1.96 1.48 0.00 7.62 1.26 0.97 0.00 5.95

Glu β 271 2.03 1.52 0.00 8.40 1.29 1.00 0.00 6.31

Hid α 324 1.09 0.83 0.00 5.52 0.76 0.56 0.00 3.71

Hid β 324 1.24 0.99 0.00 6.66 0.79 0.65 0.00 4.14

Hie α 324 1.24 0.99 0.00 7.51 0.92 0.69 0.00 4.52

Hie β 324 1.37 1.00 0.00 6.11 0.99 0.72 0.00 3.98

Hip α 324 1.55 1.18 0.00 6.24 1.46 1.08 0.00 6.24

Hip β 324 1.36 1.03 0.00 7.02 1.04 0.82 0.00 6.45

Ile α 324 1.64 1.20 0.00 6.60 0.97 0.73 0.00 4.62

Ile β 324 1.17 0.87 0.00 5.40 0.77 0.58 0.00 3.42

Leu α 324 1.19 0.87 0.00 4.86 1.01 0.78 0.00 4.45

Leu β 324 1.28 0.93 0.00 4.87 0.76 0.56 0.00 3.30
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Table 2.1: Continued

�99SB �14SB

AA BB
#

confs
mean stdev min max mean stdev min max

Lys α 466 1.66 1.34 0.00 8.07 1.30 1.08 0.00 7.80

Lys β 439 1.38 1.09 0.00 8.07 0.96 0.79 0.00 6.17

Met α 483 1.33 1.10 0.00 8.01 1.16 0.96 0.00 7.30

Met β 497 1.22 1.01 0.00 7.96 1.02 0.85 0.00 6.82

Phe α 324 0.86 0.70 0.00 4.47 0.88 0.67 0.00 4.24

Phe β 324 0.98 0.75 0.00 4.08 0.77 0.60 0.00 3.56

Ser α 324 1.68 1.26 0.00 7.67 1.01 0.75 0.00 4.50

Ser β 324 1.17 0.88 0.00 5.00 0.71 0.53 0.00 3.04

Thr α 324 1.58 1.16 0.00 6.37 0.92 0.73 0.00 4.14

Thr β 324 1.22 0.89 0.00 5.00 0.81 0.63 0.00 3.51

Trp α 324 1.37 1.15 0.00 9.76 1.13 1.12 0.00 11.54

Trp β 324 1.25 1.02 0.00 8.26 0.91 0.95 0.00 8.81

Tyr α 288 2.44 1.92 0.00 8.63 0.83 0.62 0.00 3.82

Tyr β 288 2.45 1.92 0.00 8.85 0.73 0.55 0.00 3.43

Val α 36 1.17 0.86 0.00 3.37 0.77 0.58 0.00 2.77

Val β 36 0.53 0.37 0.00 1.44 0.36 0.32 0.00 1.08

Objective function for parameter optimization

As in �99SB, we evaluated the errors of relative energies between all pairs of

conformations to alleviate the choice of a single, potentially arbitrary reference

conformation. We �rst de�ned the relative energy error (REE) between a single

pair of conformations i and j

REE(i, j) = (EQM,i − EQM,j)− (EMM,i − EMM,j) (2.1)

where EQM,i and EMM,i are the quantum and molecular mechanics energies

of conformation i. EMM is calculated as either �99SB or, during parameter

search, as the �99SB energy with the dihedral energy, Eff99SB
χ , replaced using
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candidate dihedral parameters, yielding Eff_new:

Eff_new = Eff99SB +
∑
χ

Eff_new
χ − Eff99SB

χ (2.2)

where the sum is taken over all side chain rotatable bonds χ. For each force

�eld ff , Eff
χ is the sum of dihedral contributions of Nχ sets of four atoms

around each rotatable bond, excluding those containing nonpolar hydrogens

(Tables 2.2 to 2.13). For each dihedral, we summed over periodicity n ∈ [1, 4]

Fourier series contributions (c) with amplitudes V ff
χ[c],n and phases γff

χ[c],n,

Eff
χ =

Nχ∑
c

4∑
n

V ff
χ[c],n

(
1 + cos(nφχ[c] − γff

χ[c],n)
)

(2.3)

We note that this equation is consistent with the AMBER standard and

lacks a factor of 1
2
; hence the true amplitude of each cosine is actually 2V ff

χ[c],n.

The �tting was limited to the fourth order term in each correction. Test �ts

using more terms resulted in noisier corrections without signi�cantly altering

�t quality. Aspartate, for example, converged with an error of 1.832 kcal mol−1

with a max periodicity of 6, rather than 1.839 kcal mol−1 with a max periodicity

of 4. The simpler correction was preferred to such small (< 0.4%) improvement.

To focus the energy di�erences on side chain rotamer pro�les, we excluded

comparisons between structures with di�erent backbone conformations, or of

di�erent amino acids. Alternate protonation states for ionizable amino acids

were summed separately. For each amino acid, in either α or β backbone

conformation, we summed the magnitude of REE over all pairs of N side

chain conformations, dividing by the number of pairs to obtain the average

absolute error (AAE, as de�ned by Hornak et al. [2006]). The AAE for each

amino acid, in a given protonation state, in a speci�c backbone conformation

is

AAE =
2

N(N − 1)

∑
i

∑
j<i

|REE(i, j)| (2.4)

We then minimized the sum of the AAEs for each amino acid and backbone

conformation by adjusting the amplitude and phase parameters for all terms
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in Equation (2.3). Formally, we minimized the objective function

O =
1

Nprofiles

aminoacids∑
r=1

∑
bb=α,β

AAEr,bb (2.5)

where Nprofiles is the number of pro�les, resulting in a normalized O value that

represents the error in energy di�erences for conformation pairs, averaged over

all backbone contexts, amino acids and protonation states.

We optimized the parameters for all non-hydrogen dihedrals in the pro-

tein side chains describing rotation around single bonds, as well as hydroxyl

or sulfhydryl torsions (Tables 2.2 to 2.14). As discussed above, our structure

training set is designed to include amino acid conformation pairs with simulta-

neous changes to more than one rotatable bond, thus necessitating concurrent

optimization of parameters for multiple dihedrals (rather than the simpler

approach of scanning parameter space one rotatable bond at a time [Wang

and Kollman, 2001]). This enables the optimized energy corrections for each

rotatable bond to incorporate implicit coupling to nearby conformational di-

versity. Furthermore, the presence of similar local structure (as described by

atom types) in multiple amino acids often led to the requirement for �tting pa-

rameters using data from all amino acids where that functionality exists. This

provides parameters that implicitly account for nearby chemical diversity, as

opposed to training in a single amino acid and use in others. As a result of

these two design factors, the parameter space for optimization is considerable.
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Table 2.2: Group 1 atom types of each correction modi�ed, the residues, bonds,
and atom names a�ected

Dihedral atom types Bonds a�ected Dihedral atom names

N-CX-2C-2C Glh χ1 N-Cα-Cβ-Cγ
Gln χ1
Glu χ1
Met χ1

C-CX-2C-2C Glh χ1 C-Cα-Cβ-Cγ
Gln χ1
Glu χ1
Met χ1

CX-2C-2C-C Glh χ2 Cα-Cβ-Cγ-Cδ
Gln χ2

2C-2C-C-OH Glh χ3 Cβ-Cγ-Cδ-Oε2
2C-2C-C-N Gln χ3 Cβ-Cγ-Cδ-Nε2
CX-2C-2C-CO Glu χ2 Cα-Cβ-Cγ-Cδ
2C-2C-C-O2 Glu χ3 Cβ-Cγ-Cδ-Oε1

Cβ-Cγ-Cδ-Oε2
CX-2C-2C-S Met χ2 Cα-Cβ-Cγ-Sδ
2C-2C-S-CT Met χ3 Cβ-Cγ-Sδ-Cε
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Table 2.3: Group 2 atom types of each correction modi�ed, the residues, bonds,
and atom names a�ected

Dihedral atom types Bonds a�ected Dihedral atom names

N-CX-3C-CT Ile χ1 N-Cα-Cβ-Cγ2

Thr χ1
Val χ1 N-Cα-Cβ-Cγ1

N-Cα-Cβ-Cγ2

C-CX-3C-CT Ile χ1 C-Cα-Cβ-Cγ2

Thr χ1
Val χ1 C-Cα-Cβ-Cγ1

C-Cα-Cβ-Cγ2

N-CX-3C-2C Ile χ1 N-Cα-Cβ-Cγ1

C-CX-3C-2C Ile χ1 C-Cα-Cβ-Cγ1

N-CX-3C-OH Thr χ1 N-Cα-Cβ-Oγ1

C-CX-3C-OH Thr χ1 C-Cα-Cβ-Oγ1

CX-3C-2C-CT Ile χ2 Cα-Cβ-Cγ1-Cδ1
CT-3C-2C-CT Ile χ2 Cγ2-Cβ-Cγ1-Cδ1
CX-3C-OH-HO Thr oh Cα-Cβ-Oγ1-Hγ1

Table 2.4: Group 3 atom types of each correction modi�ed, the residues, bonds,
and atom names a�ected

Dihedral atom types Bonds a�ected Dihedral atom names

N-CX-2C-C Ash χ1 N-Cα-Cβ-Cγ
Asn χ1

C-CX-2C-C Ash χ1 C-Cα-Cβ-Cγ
Asn χ1

CX-2C-C-O Ash χ2 Cα-Cβ-Cγ-Oδ1
Asn χ2

CX-2C-C-OH Ash χ2 Cα-Cβ-Cγ-Oδ2
CX-2C-C-N Asn χ2 Cα-Cβ-Cγ-Nδ2
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Table 2.5: Group 4 atom types of each correction modi�ed, the residues, bonds,
and atom names a�ected

Dihedral atom types Bonds a�ected Dihedral atom names

N-CX-CT-CC Hid χ1 N-Cα-Cβ-Cγ
Hie χ1
Hip χ1

C-CX-CT-CC Hid χ1 C-Cα-Cβ-Cγ
Hie χ1
Hip χ1

CX-CT-CC-NA Hid χ2 Cα-Cβ-Cγ-Nδ1
Hip χ2

CX-CT-CC-NB Hie χ2 Cα-Cβ-Cγ-Nδ1
CX-CT-CC-CV Hid χ2 Cα-Cβ-Cγ-Cδ2
CX-CT-CC-CW Hie χ2 Cα-Cβ-Cγ-Cδ2

Hip χ2

Table 2.6: Group 5 atom types of each correction modi�ed, the residues, bonds,
and atom names a�ected

Dihedral atom types Bonds a�ected Dihedral atom names

N-CX-2C-CA Phe χ1 N-Cα-Cβ-Cγ
Tyr χ1

C-CX-2C-CA Phe χ1 C-Cα-Cβ-Cγ
Tyr χ1

CX-2C-CA-CA Phe χ2 Cα-Cβ-Cγ-Cδ1
Tyr χ2 Cα-Cβ-Cγ-Cδ2

CA-C-OH-HO Tyr oh Cε1-Cζ-Oη-Hη
Cε2-Cζ-Oη-Hη
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Table 2.7: Group 6 atom types of each correction modi�ed, the residues, bonds,
and atom names a�ected

Dihedral atom types Bonds a�ected Dihedral atom names

N-CX-C8-C8 Arg χ1 N-Cα-Cβ-Cγ
Lys χ1

C-CX-C8-C8 Arg χ1 C-Cα-Cβ-Cγ
Lys χ1

CX-C8-C8-C8 Arg χ2 Cα-Cβ-Cγ-Cδ
Lys χ2

C8-C8-C8-C8 Lys χ3 Cβ-Cγ-Cδ-Cε
C8-C8-C8-N3 Lys χ4 Cγ-Cδ-Cε-Nζ
C8-C8-C8-N2 Arg χ3 Cβ-Cγ-Cδ-Nε
C8-C8-N2-CA Arg χ4 Cγ-Cδ-Nε-Cζ

Table 2.8: Group 7 atom types of each correction modi�ed, the residues, bonds,
and atom names a�ected

Dihedral atom types Bonds a�ected Dihedral atom names

N-CX-2C-SH Cys χ1 N-Cα-Cβ-Sγ
C-CX-2C-SH Cys χ1 C-Cα-Cβ-Sγ
CX-2C-SH-HS Cys χ2 Cα-Cβ-Sγ-Hγ

Table 2.9: Group 8 atom types of each correction modi�ed, the residues, bonds,
and atom names a�ected

Dihedral atom types Bonds a�ected Dihedral atom names

N-CX-2C-S Cyx χ1 N-Cα-Cβ-Sγ
C-CX-2C-S Cyx χ1 C-Cα-Cβ-Sγ
CX-2C-S-S Cyx χ2 Cα-Cβ-Sγ-Sγ′
2C-S-S-2C Cyx χSS Cβ-Sγ-Sγ′-Cβ′
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Table 2.10: Group 9 atom types of each correction modi�ed, the residues,
bonds, and atom names a�ected

Dihedral atom types Bonds a�ected Dihedral atom names

N-CX-CT-C* Trp χ1 N-Cα-Cβ-Cγ
C-CX-CT-C* Trp χ1 C-Cα-Cβ-Cγ
CX-CT-C*-CW Trp χ2 Cα-Cβ-Cγ-Cδ1
CX-CT-C*-CB Trp χ2 Cα-Cβ-Cγ-Cδ2

Table 2.11: Group 10 atom types of each correction modi�ed, the residues,
bonds, and atom names a�ected

Dihedral atom types Bonds a�ected Dihedral atom names

N-CX-2C-CO Asp χ1 N-Cα-Cβ-Cγ
C-CX-2C-CO Asp χ1 C-Cα-Cβ-Cγ
CX-CS-CO-O2 Asp χ2 Cα-Cβ-Cγ-Oδ1

Cα-Cβ-Cγ-Oδ2

Table 2.12: Group 11 atom types of each correction modi�ed, the residues,
bonds, and atom names a�ected

Dihedral atom types Bonds a�ected Dihedral atom names

N-CX-2C-3C Leu χ1 N-Cα-Cβ-Cγ
C-CX-2C-3C Leu χ1 C-Cα-Cβ-Cγ
CX-CS-3C-CT Leu χ2 Cα-Cβ-Cγ-Cδ1

Cα-Cβ-Cγ-Cδ2

Table 2.13: Group 12 atom types of each correction modi�ed, the residues,
bonds, and atom names a�ected

Dihedral atom types Bonds a�ected Dihedral atom names

N-CX-2C-OH Ser χ1 N-Cα-Cβ-Oγ
C-CX-2C-OH Ser χ1 C-Cα-Cβ-Oγ
CX-2C-OH-HO Ser oh Cα-Cβ-Oγ-Hγ
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Table 2.14: The amino acids and the bonds that have been corrected, the
four atom combinations, and the atom types of each correction that has been
modi�ed. This table has the same contents as Tables 2.2 to 2.13, but sorted
by amino acid rather than solving group.

Amino
acid

Rotatable
bond Atom names Atom types

Solving
group

Arg χ1 N-Cα-Cβ-Cγ* N-CX-C8-C8 6

C-Cα-Cβ-Cγ C-CX-C8-C8

χ2 Cα-Cβ-Cγ-Cδ* CX-C8-C8-C8

χ3 Cβ-Cγ-Cδ-Nε* C8-C8-C8-N2

χ4 Cγ-Cδ-Nε-Cζ* C8-C8-N2-CA

Ash χ1 N-Cα-Cβ-Cγ* N-CX-2C-C 3

C-Cα-Cβ-Cγ C-CX-2C-C

χ2 Cα-Cβ-Cγ-Oδ1* CX-2C-C-O

Cα-Cβ-Cγ-Oδ2 CX-2C-C-OH

oh Cβ-Cγ-Oδ2-Hδ2* 2C-C-OH-HO

Asn χ1 N-Cα-Cβ-Cγ* N-CX-2C-C 3

C-Cα-Cβ-Cγ C-CX-2C-C

χ2 Cα-Cβ-Cγ-Oδ1* CX-2C-C-O

Cα-Cβ-Cγ-Nδ2 CX-2C-C-N

Asp χ1 N-Cα-Cβ-Cγ* N-CX-2C-CO 9

C-Cα-Cβ-Cγ C-CX-2C-CO

χ2 Cα-Cβ-Cγ-Oδ1* CX-CS-CO-O2

Cα-Cβ-Cγ-Oδ2 CX-CS-CO-O2

Cys χ1 N-Cα-Cβ-Sγ* N-CX-2C-SH 7

C-Cα-Cβ-Sγ C-CX-2C-SH

χ2 Cα-Cβ-Sγ-Hγ* CX-2C-SH-HS

Cyx χ1 N-Cα-Cβ-Sγ* N-CX-2C-S 0

C-Cα-Cβ-Sγ C-CX-2C-S

χ2 Cα-Cβ-Sγ-Sγ′* CX-2C-S-S

χSS Cβ-Sγ-Sγ′-Cβ′* 2C-S-S-2C

Glh χ1 N-Cα-Cβ-Cγ* N-CX-2C-2C 1

C-Cα-Cβ-Cγ C-CX-2C-2C
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Table 2.14: Continued

Amino
acid

Rotatable
bond Atom names Atom types

Solving
group

χ2 Cα-Cβ-Cγ-Cδ* CX-2C-2C-C

χ3 Cβ-Cγ-Cδ-Oε1* 2C-2C-C-OH

Cβ-Cγ-Cδ-Oε2 2C-2C-C-OH

Gln χ1 N-Cα-Cβ-Cγ* N-CX-2C-2C 1

C-Cα-Cβ-Cγ C-CX-2C-2C

χ2 Cα-Cβ-Cγ-Cδ* CX-2C-2C-C

χ3 Cβ-Cγ-Cδ-Oε1* 2C-2C-C-O

Cβ-Cγ-Cδ-Nε2 2C-2C-C-N

Glu χ1 N-Cα-Cβ-Cγ* N-CX-2C-2C 1

C-Cα-Cβ-Cγ C-CX-2C-2C

χ2 Cα-Cβ-Cγ-Cδ* CX-2C-2C-CO

χ3 Cβ-Cγ-Cδ-Oε1* 2C-2C-C-O2

Cβ-Cγ-Cδ-Oε2 2C-2C-C-O2

Hid χ1 N-Cα-Cβ-Cγ* N-CX-CT-CC 4

C-Cα-Cβ-Cγ C-CX-CT-CC

χ2 Cα-Cβ-Cγ-Nδ1* CX-CT-CC-NA

Cα-Cβ-Cγ-Cδ2 CX-CT-CC-CV

Hie χ1 N-Cα-Cβ-Cγ* N-CX-CT-CC 4

C-Cα-Cβ-Cγ C-CX-CT-CC

χ2 Cα-Cβ-Cγ-Nδ1* CX-CT-CC-NB

Cα-Cβ-Cγ-Cδ2 CX-CT-CC-CW

Hip χ1 N-Cα-Cβ-Cγ* N-CX-CT-CC 4

C-Cα-Cβ-Cγ C-CX-CT-CC

χ2 Cα-Cβ-Cγ-Nδ1* CX-CT-CC-NA

Cα-Cβ-Cγ-Cδ2 CX-CT-CC-CW

Ile χ1 N-Cα-Cβ-Cγ1* N-CX-3C-2C

C-Cα-Cβ-Cγ1 C-CX-3C-2C

N-Cα-Cβ-Cγ2 N-CX-3C-CT 2

C-Cα-Cβ-Cγ2 C-CX-3C-CT
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Table 2.14: Continued

Amino
acid

Rotatable
bond Atom names Atom types

Solving
group

χ2 Cα-Cβ-Cγ1-Cδ1* CX-3C-2C-CT

Cγ2-Cβ-Cγ1-Cδ1 CT-3C-2C-CT

Leu χ1 N-Cα-Cβ-Cγ* N-CX-2C-3C 10

C-Cα-Cβ-Cγ C-CX-2C-3C

χ2 Cα-Cβ-Cγ-Cδ1* CX-CS-3C-CT

Cα-Cβ-Cγ-Cδ2 CX-CS-3C-CT

Lys χ1 N-Cα-Cβ-Cγ* N-CX-C8-C8 6

C-Cα-Cβ-Cγ C-CX-C8-C8

χ2 Cα-Cβ-Cγ-Cδ* CX-C8-C8-C8

χ3 Cβ-Cγ-Cδ-Cε* C8-C8-C8-C8

χ4 Cγ-Cδ-Cε-Nζ* C8-C8-C8-N3

Met χ1 N-Cα-Cβ-Cγ* N-CX-2C-2C 1

C-Cα-Cβ-Cγ C-CX-2C-2C

χ2 Cα-Cβ-Cγ-Sδ* CX-2C-2C-S

χ3 Cβ-Cγ-Sδ-Cε* 2C-2C-S-CT

Phe χ1 N-Cα-Cβ-Cγ* N-CX-2C-CA 5

C-Cα-Cβ-Cγ C-CX-2C-CA

χ2 Cα-Cβ-Cγ-Cδ1* CX-2C-CA-CA

Cα-Cβ-Cγ-Cδ2 CX-2C-CA-CA

Ser χ1 N-Cα-Cβ-Oγ* N-CX-2C-OH 11

C-Cα-Cβ-Oγ C-CX-2C-OH

oh Cα-Cβ-Oγ-Hγ* CX-2C-OH-HO

Thr χ1 N-Cα-Cβ-Oγ1* N-CX-3C-OH

C-Cα-Cβ-Oγ1 C-CX-3C-OH

N-Cα-Cβ-Cγ2 N-CX-3C-CT 2

C-Cα-Cβ-Cγ2 C-CX-3C-CT

oh Cα-Cβ-Oγ1-Hγ1* CX-3C-OH-HO

Cγ2-Cβ-Oγ1-Hγ1 CT-3C-OH-HO

Trp χ1 N-Cα-Cβ-Cγ* N-CX-CT-C* 8
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Table 2.14: Continued

Amino
acid

Rotatable
bond Atom names Atom types

Solving
group

C-Cα-Cβ-Cγ C-CX-CT-C*

χ2 Cα-Cβ-Cγ-Cδ1* CX-CT-C*-CW

Cα-Cβ-Cγ-Cδ2 CX-CT-C*-CB

Tyr χ1 N-Cα-Cβ-Cγ* N-CX-2C-CA 5

C-Cα-Cβ-Cγ C-CX-2C-CA

χ2 Cα-Cβ-Cγ-Cδ1* CX-2C-CA-CA

Cα-Cβ-Cγ-Cδ2 CX-2C-CA-CA

oh Cε1-Cζ-Oη-Hη* CA-C-OH-HO

Cε2-Cζ-Oη-Hη CA-C-OH-HO

Val χ1 N-Cα-Cβ-Cγ1* N-CX-3C-CT 2

N-Cα-Cβ-Cγ2 N-CX-3C-CT

C-Cα-Cβ-Cγ1 C-CX-3C-CT

C-Cα-Cβ-Cγ2 C-CX-3C-CT

To reduce problem size and accelerate convergence, amino acids were sepa-

rated into the solving groups listed in Table 2.15 based on shared dihedral atom

types, and a separate objective function (Equation (2.5)) was constructed for

each of the solving groups. Speci�c tables of dihedrals in each solving group

are provided in Tables 2.2 to 2.14. Since each group shares no four-atom di-

hedrals with other groups, the full parameter space could be partitioned, with

each solving group providing all conformations and energies necessary for sep-

arate optimization of each parameter subset. Optimized values of the objective

function for each solving group are provided in Table 2.16.

Fitting details

Six populations of 63 individuals each were created: two with �99SB param-

eters, two with zero parameters, and two with random parameters created

with di�erent random seeds. Each set of populations was then subjected to

a series of evolutions using random seeds 314 159 and 271 828, carried out
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Table 2.15: Dihedral solving groups noting the amino acids that were included
in each combined �t due to shared dihedral parameters. The numbering for
each group is arbitrary.

Group Amino acids

1

Glutamate
Protonated glutamic acid
Glutamine
Methionine

2
Isoleucine
Threonine
Valine

3
Protonated aspartic acid
Asparagine

4
δ-protonated Histidine
ε-protonated Histidine
Doubly-protonated Histidine

5
Phenylalanine
Tyrosine

6
Arginine
Lysine

7 Cysteine

8 Cysteine dimer (disul�de)

9 Tryptophan

10 Aspartate

11 Leucine

12 Serine
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using GAlib [Wall, 1996]. An elitist regime maintained the �ttest tenth of

the population from one generation to the next. Initially, each population

evolved for 200 000 generations at a mutation rate of 0.01 and crossover rate

of 0.8. Mutation frequency de�ned the probability with which a given parame-

ter pair�amplitude and phase shift�will mutate. Upon mutation, the lowest

bit of the random number was used to determine whether the amplitude or

the phase shift will change. Perturbation to amplitude (mutateBy) depended

upon mutation rate (mutRate) and the random number (random ∈ [0, 1)), by

the relation:

mutateBy =

random/mutRate − 0.5, random < mutRate

0, random ≥ mutRate
(2.6)

This scheme alternated with a second, where all changes to amplitude were

0.001 kcal mol−1 in magnitude. If perturbing the phase shift, the lowest bit of

the random number determined whether the phase shift would be 0 or 180

degrees.

To narrowly locate sets of parameters that minimize error after the �rst

200 000 generations, each population was continued with a mutation rate of

0.005 and crossover rate of 0.8 with the second scheme, then 0.002 and 0.8

with the �rst and second scheme, and �nally 0.001 and 0.8 with the �rst and

second scheme until convergence.

Convergence was evaluated as a run starting from �99SB �nding the same

(as de�ned in the next sentence) steady (less than 0.001 kcal/mol/pair im-

provement in 10 000 generations) solution as a run starting from zero or ran-

dom parameters. Solutions were considered the same if the correction energy

pro�le scanned every 10◦ was identical within 0.01 kcal mol−1. In most cases,

however, di�erent runs achieved the same dihedral corrections, with no di�er-

ences in amplitude to three decimal places.

Fitting χ1 N-Cα-Xβ-Xγ and C-Cα-Xβ-Xγ parameters required consider-

ation of the sp3 hybridization of the α-carbon. Multiple three-fold dihedral
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corrections cannot be partitioned between the N and the C, as they are ro-

tated 120◦ relative to the Cα-Xβ bond; the same three-fold correction must

be applied to both. In the AMBER12-bundled �12SB, we did not account

for this, and so amplitudes like the three-fold around χ1 were of arbitrary

magnitude, with potentially undesirable e�ects on small peptides like Val3
and loop regions. Other periodicity terms, however, were trained separately,

such as one-fold corrections around χ1 describing whether the side chain γ

substituent should be placed gauche to the N, the C, or both.

Where amino acids had planar moieties, however, there were multiple sets

of 4-atom combinations with dihedrals o�set by 180◦. In these cases, it was

necessary to choose a single set of atom types to apply corrections to, as a

180◦ o�set means odd-periodicity terms will be out-of-phase, and have exactly

opposite e�ects, while even-periodicity terms will be in-phase, and thus cannot

be distinguished. In the case of amide and carboxylic groups sharing atom

types, we only �t the terms correcting C-C-C-OH and C-C-C-N, as these are

distinct between the two.

In the case of histidine, the various atom types of the di�erent protona-

tion states required us to �t multiple corrections. Histidine has two χ2 non-

hydrogen dihedrals, to the Nδ and to the Cδ. Histidine Nδ1 and Cδ2 are atom

types NA and CV in δ-protonated histidine, NB and CW in ε-protonated

histidine, and NA and CW in ionic histidine. Since only δ-protonated histi-

dine possessed a χ2 CV and only ε-protonated histidine possessed a χ2 NB,

it seemed logical to �t one of these χ2 corrections independently, while �tting

the remaining two protonation states with two sets of corrections. We tried

both and chose �tting ε-protonated histidine separately as the combination

that best �t the quantum data.

Backbone dependence analysis

Our goal is to use the AAEs to optimize a single set of parameters that mini-

mizes the REE for multiple backbone conformations. However, the AAE for α

and β are averages over all side chain pairs, while the ability of the optimiza-

tion procedure to maximize transferability hinges on the backbone dependence
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of the QM-MM energy error for pairs of side chain conformations. Greater sim-

ilarity would indicate a better likelihood of being able to optimize a single set

of parameters that is transferable among di�erent backbone conformations. To

quantify this, we subtracted the β REE from the α REE for each pair i, j of

side chain conformations, averaging the magnitudes of these di�erences:

BBD =
2

N(N − 1)

∑
i

∑
j<i

|REE(i, j)α − REE(i, j)β| (2.7)

where the same notation is used as de�ned for Equation (2.4). We note that

the BBD does not report on how well the QM and MM energies match, only

on whether the di�erences between QM and MM energies are consistent as the

backbone conformation changes. Thus BBD for each amino acid is a measure

of the ultimate ability of side chain dihedral parameters to match QM data in

the absence of explicit coupling between backbone and side chain parameters;

the di�erence cannot be corrected with side chain dihedral parameters.

2.4.2 Test dynamics simulations

Initial structures

Helical conformations were de�ned as all (φ,ψ) = (−60◦,−40◦). Linear con-

formations were de�ned as all (φ,ψ) = (180◦, 180◦). Native conformations,

as appropriate, were de�ned for each system as below. Explicit solvation was

achieved with truncated octahedra of TIP3P water [Jorgensen et al., 1983]

with a minimum 8Å bu�er between solute and the water box boundary. All

structures were built via the LEaP module [Zhang et al., 2010] of Ambertools.

General details

Except where otherwise indicated, equilibration was performed with a weak-

coupling (Berendsen) thermostat and barostat [Berendsen et al., 1984] tar-

geting 1 bar pressure with isotropic position scaling as follows. With posi-

tional restraints on protein heavy atoms of 100 kcal mol−1 Å
−2
, structures were

minimized for up to 10 000 cycles and then heated at constant volume from
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100 K to 300 K over 100 ps, followed by another 100 ps at 300 K. The pressure

was equilibrated for 100 ps and then 250 ps with time constants of 100 fs and

then 500 fs on coupling of pressure and temperature to 1 bar and 300 K, and

100 kcal mol−1 Å
−2

and then 10 kcal mol−1 Å
−2

positional restraints on protein

heavy atoms. The system was again minimized, restraining only the protein

main chain N, Cα, and C positionally with 10 kcal mol−1 Å
−2

for up to 10 000

cycles. Three 100 ps simulations with temperature and pressure time con-

stants of 500 fs were performed, with backbone restraints of 10 kcal mol−1 Å
−2
,

1 kcal mol−1 Å
−2
, and then 0.1 kcal mol−1 Å

−2
. Finally, the system was simu-

lated unrestrained with pressure and temperature time constants of 1 ps for

500 ps with a 2 fs time step, removing center-of-mass translation every ps.

SHAKE [Ryckaert et al., 1977] was performed on all bonds including hydro-

gen with the AMBER default tolerance of 10−5 Å for NpT/NVT and 10−6 Å for

NVE. Non-bonded interactions were calculated directly up to 8Å with cubic

spline switching and the particle-mesh Ewald approximation [Darden et al.,

1993] in explicit solvent, with direct sum tolerances of 10−5 for NpT/NVT

or 10−6 for NVE. The timesteps for NpT/NVT and NVE simulations were

2 fs and 1 fs, respectively. Tighter convergence criteria and a shorter timestep

facilitated the energy conservation required for NVE.

System-speci�c details

HBSP The HBSP sequence denoted 3a by Wang et al. [2006] (Ac-GQVA

RQLAEIY-NH2) was chosen, as it had the greatest measured helical content.

HBSP has a covalently pre-organized α-turn, with the O of the �rst CO and the

H of the NH of residue 5 substituted by carbons, with a covalent single bond

between the substituted carbons. Modeling of this covalent modi�cation was

approximated by a harmonic distance restraint between the CO of the acetyl

cap and the NH of A5 with force constant 100 kcal mol−1 Å
−2
. This restraint

was chosen as it well reproduced the distribution of hydrogen bond distances

present in a crystal structure of aquaporin (PDB ID: 3ZOJ [Kosinska Eriksson

et al., 2013]). HBSP was solvated with 2643 TIP3P water molecules and sim-

ulated for 1.6 µs in the NVT ensemble. Two independent runs were conducted
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with all helical or semi-extended conformations. The semi-extended conforma-

tion was built with the �rst �ve residues helical in obeisance to the covalent

bond in the experiment, with the remaining residues extended.

CLN025 As a model system to carry out initial tests of secondary structure

balance, we turned to CLN025, an engineered fast-folding hairpin that is a

thermally optimized variant of chignolin, with N- and C-terminal glycine-to-

tyrosine substitutions. Thus the CLN025 sequence was YYDPETGTWY. The

native conformation was chosen as the �fth conformation in the NMR ensem-

ble [Honda et al., 2008], as that conformation was closest to the average of the

NMR ensemble.

Proteins We simulated four folded proteins for comparison of dynamic prop-

erties against NMR. First was the third Igg-binding domain of protein G (GB3,

sequence: MQYKLVINGKTLKGETTTKAVDAETAEKAFKQYANDNGVD

GVWTYDDATKTFTVTE). The native structure was de�ned as a liquid crys-

tal NMR structure (PDB ID: 1P7E [Ulmer et al., 2003]). Second was the bovine

pancreatic trypsin inhibitor (BPTI, sequence: RPDFCLEPPYTGPCKARIIR

YFYNAKAGLCQTFVYGGCRAKRNNFKSAEDCMRTCGGA). The native

structure was de�ned as a joint neutron/X-ray di�raction structure (PDB ID:

5PTI [Wlodawer et al., 1984]). Third was ubiquitin (Ubq, sequence: MQIF

VKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDG

RTLSDYNIQKESTLHLVLRLRGG), with the native structure de�ned as a

crystal structure (PDB ID: 1UBQ [Vijay-Kumar et al., 1987]). Fourth was hen

egg white lysozyme (Lys, sequence: KVFGRCELAAAMKRHGLDNYRGYS

LGNWVCAAKFESNFNTQATNRNTDGSTDYGILQINSRWWCNDGRTP

GSRNLCNIPCSALLSSDITASVNCAKKIVSDGNGMNAWVAWRNRCKG

TDVQAWIRGCRL), with the native structure de�ned as a crystal structure

(PDB ID: 6LYT [Young et al., 1993]). Owing to their larger size, the proteins

were equilibrated as above, but with the unrestrained step extended to a full

nanosecond, rather than 500 ps. NVE was employed for the production sim-

ulations, so that artifacts from barostats or thermostats would not in�uence

the dynamics.
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Urea-denatured GB1 calculations

Experimental χ1 scalar couplings have been determined for urea-denatured

GB1 were at pH 2.0 [Vajpai et al., 2010], at which glutamate is protonated.

GB1 has a C-terminal glutamate, but protonated C-terminal glutamate was

not in the standard AMBER libraries, it was built as follows. The charge

di�erences from Glu to C-Glu and from Glu to Glh were summed and then

added to the original Glu charges. The -0.014 charge needed to bring the charge

to -1 was distributed across all atoms evenly. After rounding to 6 decimal

places, there was a net charge of -1.000008; the 0.000004 was added to the

charges on the backbone amide hydrogen and the side chain carboxyl hydrogen,

bringing the charge to -1.

Initial structures were built fully extended with LEaP, without adding sol-

vent. To allow LEaP fully extended structures to relax, GB1 was simulated

with GB-Neck2 implicit solvent [Nguyen et al., 2013] and minimized for 100 000

cycles, heated from 100 to 300 K over 500 ps, and then simulated at 300 K,

writing snapshots every 5 ps. This protocol was repeated for both �99SB and

�14SB.

Then, the �rst 10 ns from simulations with each force �eld were clustered

using the hierarchical-agglomerative algorithm in cpptraj [Roe and Cheatham,

2013] with a target of 10 clusters. The centroids from each cluster were then sol-

vated with 8 molar urea, using protein parameters in conjunction with RESP

charges and N-C-N bond angle vibrational parameters determined by Alexey

Onufriev [Case et al., 2005]. First, they were each solvated with an 8Å bu�er

to determine how many solvent molecules would be needed to cover each con-

formation. Then, the bu�er size was increased as necessary so that all confor-

mations had, to within 5 molecules, the same quantity of solvent. The solvated

centroids of the four most populated clusters were then subject to the same

protocol as the folded proteins, following the general equilibration and NVE

production settings detailed above.
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2.4.3 Analysis

Calculation of NMR observables

Scalar couplings were calculated from simulations using Karplus rela-

tions [Karplus, 1959, 1963]. Side chain scalar couplings were calculated using

Ile, Thr, and Val C/N-Cγ Karplus parameters from Chou et al. [2003], and

Perez et al. Karplus parameters [Perez et al., 2001] for all other χ1 scalar

couplings.

Backbone NH Lipari-Szabo S2 order parameters were calculated using

the iRED method [Prompers and Brüschweiler, 2002] via cpptraj [Roe and

Cheatham, 2013].

NOE reproduction in CLN025 was evaluated by computing r−6 for all in-

terproton vectors for every trajectory frame, and comparing 〈r−6〉−
1
6 for each

vector with the NOE-based restraints published by Honda et al. [2008], down-

loaded via the BMRB [Ulrich et al., 2008]. For ambiguous restraints, contri-

butions from each proton pair to the NOE were summed [Nilges, 1995]. For

each force �eld we generated two ensembles, one combining structures from

the 4 initially folded simulations and the other combining the 4 initially linear

simulations. These were used to calculate NOE deviations, with the di�erence

between ensembles from di�erent initial structures used to quantify precision.

Calculation of helical content

Helical content was de�ned as the average fraction of residues, excluding the

�rst two and last, in α-helix (H) or 3-10 helix (G) as de�ned by DSSP [Kabsch

and Sander, 1983], as implemented in cpptraj [Roe and Cheatham, 2013].

Signi�cance analysis

One way to incorporate statistical signi�cance into analyzing force �eld di�er-

ences is to plot the average di�erence in errors for all scalar couplings whose

comparison satis�es any of a range of p-values. Those that satisfy lower p-

values may be considered more informative than those that only satisfy higher

p-values. The probability that distributions are not di�erent was approximated
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by Welch's t-test [Welch, 1947]. The p-value was calculated using the survival

function of the SciPy [Travis, 2007, Jones et al., 2001-] stats module, based on

t as in Equation (2.8) with µFF and SE FF corresponding to the average nor-

malized error and standard error of the mean normalized error, respectively,

for each force �eld FF , and degrees of freedom approximated by the Welch-

Satterthwaite equation [Welch, 1947, Satterthwaite, 1946], (Equation (2.9);

n˘1, being 3 for all force �elds, enters the numerator).

t = (µff14SB − µff99SB−ILDN)
(
SE 2

ff14SB − SE 2
ff99SB−ILDN

)− 1
2 (2.8)

d .f . =
3
(
SE 2

ff14SB + SE 2
ff99SB−ILDN

)2
)

SE 4
ff14SB + SE 4

ff99SB−ILDN

(2.9)

2.5 Fitting Results

2.5.1 Side chain rotamer energies improved match to QM

data and better transferability between backbone

conformations

An important question is how to de�ne EQM,i and EMM,i used for calculating

REE (Equation (2.1)). As discussed above, restraints could be applied to di-

hedrals other than the speci�c 4-atom set de�ning the φ, ψ, and χ rotatable

bonds. We tested several choices, including restraining only the 4-atom sets

de�ning φ, ψ, and χ, as well as restraining all possible 4-atom dihedrals, or

restraining all dihedrals in the backbone but only the de�ning dihedrals in

the side chains (see Table 2.14 for dihedral classi�cations). We also tested the

impact of MM re-optimization of QM geometries. As discussed above, these

choices in the generation and comparison of structures can introduce artifacts

in the energy pro�les that hamper parameter optimization and weaken trans-

ferability. We evaluated the impact of these choices by calculating the intrinsic

BBD as well as the AAE for various restraint and structure optimization op-

tions, using �99SB as a reasonable MM model.

Ideally, one should start with relatively close agreement between �99SB
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and MP2/6-31+G**//HF/6-31G* energies (low AAE), with similar errors be-

tween di�erent backbone conformations (low BBD), if dihedral parameters are

to reconcile errors without explicit coupling to the backbone conformation. Ac-

cording to the penultimate rotamer library [Lovell et al., 2000], the side chains

of aspartate and asparagine depend most on backbone conformation; we thus

chose them for initial testing of how the energy calculations impact coupling

between side chain and backbone dihedral parameters.

Restraining all backbone dihedrals and re-optimizing the QM structure

with MM before calculating energy yielded both the lowest AAE (2.55± 0.09

kcal mol−1 for Asp and 1.98± 0.01 kcal mol−1 for Asn, error bars re�ect dif-

ference between α and β backbone context) and lowest BBD (1.35± 0.01

kcal mol−1 for Asp and 1.42± 0.03 kcal mol−1 for Asn, error bars re�ect di�er-

ence between two staggered halves of structures), as shown in Figure 2.2. At

the opposite extreme, restraining just φ and ψ and using the QM structures to

calculate MM energies resulted in the greatest AAE (3.45±0.13 kcal mol−1 for

Asp and 3.09± 0.74 kcal mol−1 for Asn) and BBD (2.23± 0.02 kcal mol−1 for

Asp and 3.90± 0.08 kcal mol−1 for Asn). Fundamental di�erences in the mod-

eling of bonded and non-bonded interactions between QM and MM are likely

exacerbated when the QM-optimized structures are evaluated in MM without

re-optimization; these di�erences manifest as larger errors in MM energy, as

well as less transferability between backbone contexts. Restraining all possi-

ble combinations of four-atoms describing each dihedral in both the backbone

and side chain was also attempted (this approach led to the �12SB parameter

set, see Appendix B), but restraining all 4-atom dihedrals in the side chains

prevented relaxation of angle terms in MM optimization, leading to increased

error that likely would not be present in a simulation when steric clashes can

be alleviated through adjustment of covalent structure. Based on these results,

we made the decision to restrain all backbone dihedrals during structure op-

timization, but only the de�ning dihedrals for side chains, and to re-optimize

the QM structures with the MM model (using the same restraints) prior to

calculation of MM energies. These energies were used in the calculation of the

objective function in Equation (2.5).
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Figure 2.2: AAE vs. BBD of aspartate and asparagine, calculating MM ener-
gies of QM structures and restraining: φ and ψ (red crosses) or all backbone
dihedrals (blue stars); or calculating MM energies of MM re-optimized struc-
tures and restraining: φ and ψ (green `X's) or all backbone dihedrals (purple
squares). The latter provides the lowest AAE values, as well as the best in-
trinsic transferability between backbone conformations. Error bars in AAE
indicate di�erence between AAE calculated in the α or β backbone context,
and BBD using half of the structures.
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As discussed in Methods, each solving group was optimized separately (ob-

jective function O values for each solving group are provided in Table 2.16),

but here we average the individual objective function O values, weighted by

the number of amino acid-backbone combinations contributing to each, to fa-

cilitate their comparison between di�erent parameter sets. The resulting O

values quantify the magnitude of error in energy di�erences for conformation

pairs, averaged over all amino acids and backbone conformations. In �99SB,

O was 1.52 kcal mol−1, while O for the �nal optimization parameter set was

0.98 kcal mol−1. This 35% improvement is decomposed by residue and by back-

bone conformation in Figure 2.3, and the distribution of all pair energy errors

(REEs) is presented in Table 2.1. All of the amino acids with errors larger

than 2 kcal mol−1 in �99SB (tyrosine and protonated or deprotonated aspar-

tic acid) were signi�cantly improved with the new parameters. In addition to

improvement for the ILDN residues previously addressed by Lindor�-Larsen

et al. [2010], we observed better agreement with the QM training data for

every residue compared to �99SB. The only pro�le that didn't improve was

α-backbone Phe, in which the initial �99SB error was close to the average �nal

AAE for all residues, limiting the potential for improvement. It is remarkable

to see that the optimization procedure was able to �nd a solution that simul-

taneously improved performance for all amino acids, and with little resulting

backbone dependence. We refer to the combination of �99SB with new side

chain dihedral parameters as �14SBonlysc; adding a set of updated backbone

parameters [Maier et al., 2015, Martinez, 2014] will result in the �14SB model.

Although the �14SBonlysc parameters show improved reproduction of the

QM data, several caveats apply. First, the performance in Figure 2.3 measures

the ability of the parameters to reproduce energies for structures that were

used in the training shown above, but not training data used for the other

force �elds, thus better performance on the training data is expected. Second,

closely reproducing gas-phase QM data does not guarantee reliable simula-

tion properties [MacKerell et al., 2004b]. As discussed above, it is possible

that training against gas-phase QM data might counteract some of the in�u-

ence of the �pre-polarized� partial charges in our model, potentially worsening

81



Figure 2.3: The AAE of each force �eld for each amino acid (single letter codes),
with data for both α and β backbone conformations. Ionized residues are
indicated by charge superscripts. CC indicates the disul�de bridge. Data are
shown for �99SB, �99SB-ILDN, and �99SB with the new side chain corrections
(�14SBonlysc).

performance for simulations in aqueous solution. Thus we followed the train-

ing against QM data with more rigorous testing in solution simulations, with

comparison to experiments also in solution.

2.6 Testing Strategy

Key �tting assumptions raise important questions, like whether the diversity

and designed backbone-independence of our side chain training set will im-

prove side chain rotamer preferences for proteins in solution, despite training

against in vacuo dipeptide energies at a modest level of QM theory. To investi-

gate accuracy of side chain rotamer sampling, we compared against χ1 scalar

couplings for a set of folded proteins including GB3, ubiquitin, lysozyme, and

BPTI (collated by Lindor�-Larsen et al. [Lindor�-Larsen et al., 2010, Berndt

et al., 1992, Grimshaw, 1999, Hu and Bax, 1997, Chou et al., 2003, Miclet et al.,

2005, Schwalbe et al., 2001, Smith et al., 1991]). Importantly, we considered

the performance of the new model relative to �99SB [Hornak et al., 2006] and

�99SB-ILDN [Lindor�-Larsen et al., 2010] in di�erent secondary structures, to

evaluate whether the design of average coupling into our side chain parameters

is expressed by improved transferability between di�erent backbone conforma-

tions in proteins. We also tested the bene�t of re-optimizing parameters for

side chains other than ILDN (Ile, Leu, Asp, and Asn).
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Table 2.16: Objective values O for each of the solving groups

Solving group Amino acids Off99SB Off14SB

0 Cyx 1.5 1.2
1 Glh Gln Glu Met 1.6 1.1
2 Ile Thr Val 1.2 0.8
3 Ash Asn 2.0 1.1
4 Hid Hie Hip 1.3 1.0
5 Phe Tyr 1.7 0.8
6 Arg Lys 1.5 1.1
7 Cys 1.3 1.0
8 Trp 1.3 1.0
9 Asp 2.5 0.9
10 Leu 1.2 0.9
11 Ser 1.4 0.9

These side chain parameter evaluations are subject to numerous caveats as

discussed in Chapter 1. For example, the Karplus curve assumes that a scalar

coupling can be calculated from a single dihedral angle [Karplus, 1959, 1963],

although the spin-spin coupling may be sensitive to the spin lattice structure.

One important limitation is that many reported scalar couplings are outside

the range of relevant Karplus curves that might be used to compare simulated

ensembles to experiment. Thus reproduction of the experimental observations

would be impossible regardless of the ensemble of conformations sampled in

simulation. In these cases, we adjusted the target value by adopting the value

on the Karplus curve lying closest to the experimental value; otherwise, the

experimental value was used as the target:

3J∗i,NMR =


min(Ji,Karplus), Ji,NMR < min(Ji,Karplus)

max(Ji,Karplus), Ji,NMR > max(Ji,Karplus)

Ji,NMR, otherwise

(2.10)

Additionally, because H-H scalar couplings reporting on some residues have

a much larger range than C-C scalar couplings reporting on others, deviations

were normalized by Karplus curve range. The errors are summarized in terms
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of the average normalized error,

ANE =
1

N

N∑
i

∣∣〈Ji〉sim − 3J∗i,NMR

∣∣
max(Ji,Karplus)−min(Ji,Karplus)

(2.11)

The resulting metric is more intuitive than average error, as 0 indicates

best possible agreement, whereas 1 indicates maximum deviation.

In the peptides and proteins tested here, backbone and side chain dihedrals

are coupled to each other within and between residues, making it di�cult to

determine exactly why a particular scalar coupling may disagree with experi-

ment (assuming the error is not because of the experimental measurement or

the Karplus curve). Likewise, this hinders ascribing credit for improvement to

any speci�c backbone or side chain update. To help aid in the decomposition,

we tested χ1 scalar couplings with just side chain modi�cations and then intro-

duced backbone updates, to help isolate the e�ects of intended and secondary

changes. On the other hand, this dihedral coupling can mean that χ1 scalar

couplings implicitly report on backbone, χ2 or χ3 torsions; thus reproducing

χ1 data may suggest reasonable accuracy in other parameters as well.

Side chains are coupled to the backbone, but we do not expect folded

proteins to globally unfold on the 100 ns timescale considered here for proteins

due to changes in side chain parameters. The backbone parameters studied by

Martinez [2014] increased the helical content of a small peptide, hydrogen bond

surrogate peptide. This peptide was designed with a covalent modi�cation that

emulates a persistent helical hydrogen bond between the N-terminus and the

�fth residue. Thus, this system can extend the helix especially quickly from

its pre-nucleated core, despite having only ten residues. But the backbone

modi�cations brought the helical content from 0.12 ± 0.01 with �99SB to

0.26±0.01 with �14SB, compared to the experimental 0.46 [Wang et al., 2006].

As backbone dynamics may depend on side chain conformation, we therefore

tested the e�ect of introducing the new side chain parameters on hydrogen

bond surrogate peptide helicity.

As the �14SB [Maier et al., 2015] backbone changes increased helical con-

tent relative to �99SB [Hornak et al., 2006], we wanted to ensure that �14SB

did not compromise β-stability, but maintained secondary structure balance.
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Thus, we compared the folding dynamics of a small β-hairpin between �99SB

and �14SB.

Finally, we veri�ed that the combined backbone and side chain updates,

�14SB, maintained the reasonably accurate protein order parameter repro-

duction reported previously for �99SB [Hornak et al., 2006]. We calculated

backbone NH order parameters for the same simulations used to analyze χ1

scalar couplings.

2.7 Testing Results

2.7.1 Agreement with side chain NMR scalar couplings

is improved with �14SB

We evaluated side chain dihedral parameter changes by comparing to three-

bond scalar couplings that report on dihedral dynamics. In this evaluation, we

simulated GB3, ubiquitin, lysozyme, and bovine pancreatic trypsin inhibitor

(BPTI) to compare against scalar couplings aggregated by Lindor�-Larsen

et al. [Lindor�-Larsen et al., 2010, Berndt et al., 1992, Grimshaw, 1999, Hu

and Bax, 1997, Chou et al., 2003, Miclet et al., 2005, Schwalbe et al., 2001,

Smith et al., 1991], and simulated GB1 in urea to compare against χ1 scalar

couplings [Vajpai et al., 2010] in an unfolded context.

We tested �99SB and �99SB-ILDN as references, �14SB which includes

the backbone [Maier et al., 2015, Martinez, 2014] and side chain parame-

ter updates described above, and also �14SBonlysc, which includes the side

chain updates described above while retaining the �99SB φ and ψ param-

eters. This allows us to partially deconvolute the in�uence of improvements

to the side chain and backbone. Simulations of each protein were carried out

using each force �eld, and the ANE (Equation (2.11)) was calculated for each

amino acid where experimental data is available (Figure 2.4). The average error

was 0.160± 0.004 with �99SB, 0.129± 0.003 with �99SB-ILDN, 0.127± 0.003

with �14SBonlysc, and 0.129± 0.003 with �14SB. The average �gures were

within statistical uncertainty for �99SB-ILDN and �14SB, both of which show

measurable improvement over �99SB. Not surprisingly for these stably folded

85



proteins, there is little di�erence between �14SB and �14SBonlysc, suggesting

that the improvement from �99SB observed in this test is largely due to side

chain parameter updates.

All of the variants signi�cantly improved upon �99SB in aver-

age, however the speci�c improvements of each force �eld di�ered.

For example, the errors obtained using �14SB (�99SB-ILDN values

given in parentheses after �14SB values) in isoleucine, leucine, aspar-

tate, and asparagine�the four residues modi�ed by �99SB-ILDN�were

0.11±0.01 (0.091±0.005), 0.16±0.02 (0.13±0.01), 0.111±0.009 (0.16±0.02),

and 0.12±0.02 (0.154±0.009), respectively�slightly improved in 2 cases, and

slightly worsened in 2 others.

As discussed above, �99SB-ILDN was �t using β backbone conformations,

while our �tting procedure was designed to improve side chain energetics for

multiple backbone conformations. We investigated whether explicit inclusion of

dipeptide α backbone conformations for QM calculations in the gas phase was

successfully transferred to improvement in scalar couplings of helical residues

in larger proteins. We analyzed residues re�t by both �99SB-ILDN and �14SB

that matched the following criteria: in a helix, solvent-exposed and therefore

likely to represent the intrinsic preferences of the amino acid, and experi-

mentally characterized by χ1 scalar couplings. Only three residues �t these

criteria, N35 of GB3, D32 of ubiquitin, and N97 of lysozyme. Of the three,

all are signi�cantly better reproduced with �14SB than �99SB-ILDN, with

ANEs for N35, D32 and N93 of 0.11±0.03/0.22±0.09 (�14SB/ �99SB-ILDN),

0.15± 0.04/0.47± 0.02, and 0.16± 0.02/0.31± 0.04, respectively.

As ubiquitin D32 was the most statistically di�erent between the two force

�elds, we attempted to decompose its simulation accuracy according to �tting

method, potentially providing insight to guide future parameter optimization

e�orts. First, we used �14SB aspartate side chain parameters in �99SB-ILDN

to ensure that aspartate side chain parameters are responsible for observed

di�erences. This signi�cantly reduced the D32 ANE to a value comparable to

�14SB (0.077± 0.006), con�rming direct in�uence of the Asp parameters on

D32 dynamics. The most obvious methodological di�erence that could explain

this phenomenon is the inclusion of helical backbone structures in training.
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We repeated the optimization for solving group 10 (containing just aspartate),

but using only β backbone conformations in Equation (2.5). Simulations using

these parameters still resulted in rather low ANE of 0.070± 0.008, suggesting

that this particular improvement was not due to inclusion of �tting for both

backbone conformations. A second possibility is that our �tting protocols had

several di�erences compared to �99SB-ILDN, such as weighting of squared

QM-MM energy di�erences by QM energy in the �99SB-ILDN �tting, which

could introduce bias if positions of side chain rotamer minima are coupled to

backbone conformation. Another protocol di�erence is that �14SB parameters

used two 4-atom dihedrals to describe χ1, while �99SB-ILDN �t only one set.

We re�t parameters for solving group 10 using the �14SB protocol but with

the aspartate QM and MM energies published by Lindor�-Larsen et al. [2010].

With the resulting parameters, sampling of D32 was not improved compared

to �99SB-ILDN (ANE = 0.42 ± 0.07), suggesting that the D32 performance

is related to di�erences in the QM benchmarks used to train the two force

�elds rather than the optimization protocol. Although both data sets used a

2D scan of χ1 and χ2, the resulting energies are in�uenced by the level of QM

theory and the restraints used to generate potential energy surfaces for �tting.

To test the in�uence of restraints, we used the potential energy surfaces that

we generated with di�erent structure optimization methods to test backbone-

dependence (Figure 3). We therefore retrained solving group 10 parameters

based on potential energy scans of only β, or α and β conformations, using

the combinations of restraints and QM or MM optimized structures as carried

out for Figure 2.2. The ANE of D32, and of all aspartates in ubiquitin, were

plotted against the BBD of each method in Figure 2.5. For the parameters

trained using only β dipeptides, the BBD of each method forwardly predicts

the error of D32 obtained using those parameters. This suggests that how

the structures in a potential energy surface are generated can signi�cantly

alter their transferability. In fact, the combination matching �99SB-ILDN (re-

straining only φ and ψ, using QM structures for MM energies) also provided

comparable results to �99SB-ILDN (ANE of 0.32± 0.11), suggesting that the

deviation in MD from solvated protein NMR data can be traced to the re-

straint method used during parameter development. The largest errors arise
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when using QM structures for MM energies with fewer restraints; these er-

rors are reduced when both α and β dipeptides are used in �tting, perhaps

because artifacts from backbone interactions are lessened when requiring that

the parameters work in multiple backbone contexts (for example, D32 ANE

is reduced from 0.32± 0.11 with β-only training to 0.067± 0.007 using both

α and β). Although we examined only one location in detail (D32), the same

trend holds when considering all Asp residues in ubiquitin (Figure 2.5). These

results on agreement between MD and NMR also mirror the �ndings in Fig-

ure 2.2, where the ability to reproduce QM energies (AAE) showed a similar

dependence on BBD for di�erent restraint methods. Taken together, the re-

sults show not only the sensitivity of the model to restraint method, but also

reinforce that improved reproduction of gas-phase QM dipeptide energies leads

to a better match to NMR data for proteins simulations in water.

If we expand the backbone-dependent comparison to consider all ILDN

residues within helices versus all those without, we observe the same trends

of �14SB backbone-independence. The average errors of all I, L, D, and N

residues in helices were 0.18 ± 0.01 with �99SB-ILDN and 0.13 ± 0.01 with

�14SB. On the other hand, the average errors of all ILD and N residues not

in helices were 0.11 ± 0.01 with both force �elds. This indicates that overall

errors for side chains in helical context are improved with �14SB relative to

�99SB-ILDN, and that in �14SB these errors are similar in magnitude to

the non-helical side chain errors for both force �elds. It seems reasonable to

conclude that this improved transferability in �14SB arises directly from the

training of �14SB against more transferable energy targets than other options

tested, with multiple backbone conformations.

Overall, the results suggest that more careful consideration of these issues

should be a factor in future force �eld e�orts, as these measures can impact

performance of simulations using the resulting parameters. These choices in-

clude how �nely geometric changes outside the scan region are controlled, what

level of variation in this geometry is desirable between QM and MM energy

evaluations, and how these decisions are a�ected by intentional inclusion of

diversity in neighboring regions.

The performance of individual amino acids with �14SB is not always better

89



Figure 2.5: Simulated average normalized error (ANE) of ubiquitin (Ubq) D32
and all Ubq aspartate (Asp), with parameters developed from β or α and β
conformations of aspartate dipeptides with restraints on all backbone dihedrals
(BB) or only φ and ψ (φψ), and with molecular mechanics energies calculated
for molecular mechanics structures (MM(MM)), or quantum mechanics struc-
tures (MM(QM)), versus backbone dependence on the x-axis. Parameters from
β dipeptides with less backbone-dependent errors against quantum mechanics
also exhibit lower errors against helical D32 scalar couplings. Training with
α and β conformations performs comparably or, as in MM(QM)/φψ, better
against scalar couplings.
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than with other force �elds, however. Lysozyme Q41 had a greater ANE with

�14SB (0.29± 0.06) than �99SB (0.17± 0.02) or �99SB-ILDN (0.13± 0.01).

With �14SBonlysc, Q41 had an ANE of 0.20± 0.02. With �14SBonlyILDN

(�14SB but without side chain updates for amino acids other than I, L, D and

N), the Q41 ANE was 0.12± 0.03. Looking at individual errors in�uencing

the ANE, the experimental Q41 HαHβ2 scalar coupling average values were

too low with all force �elds. Compared to the experimental value of 10.0 s−1

(suggesting predominantly g− χ1), �99SB-ILDN, �99SB and �14SBonlysc were

very similar at 9.2± 0.2 Hz, 8.8± 0.5 Hz, and 8.7± 0.3 s−1, respectively, while

�14SB was even lower at 7.3± 0.5 Hz due to additional sampling of trans

χ1. Oversampling trans with �14SB also resulted in HαHβ3 scalar couplings

of 5.4± 0.9 Hz, compared to experimental 1.2 Hz. Replacing the �14SB Gln

parameters with those from �99SB had little e�ect on Q41, (7.7± 0.6 Hz for

HαHβ2 and 5.6± 0.5 Hz for HαHβ3, with an ANE of 0.29± 0.06). This is not

surprising, since Q41 ANEs were comparable between �99SB and �14SBonlysc.

While this suggests that the error is related to backbone parameter changes,

attempts to decompose dynamics are hampered by the fact that Q41 ANEs

are not statistically worse for �14SB than for �99SB.

In fact, only 19% of all normalized errors were statistically di�erent be-

tween �99SB-ILDN and �14SB at a signi�cance of p < 0.05. As di�erences of

varying statistical signi�cance may be worth consideration, we determined the

signi�cance of each di�erence between �99SB-ILDN and �14SB by performing

t-tests. As some of the insigni�cant di�erences may be small in magnitude,

we calculated the average di�erences in normalized errors satisfying a range

of p values from 0 to 1 (Figure 2.6). With the exception of the second most

signi�cant di�erence in BPTI, �14SB was more accurate than �99SB-ILDN

for all of the most signi�cant di�erences (up to p < 0.1).

It is also of interest to evaluate side chain dynamics in an unfolded protein.

There are experimental scalar couplings describing GB1 and ubiquitin dena-

tured in 8 M urea [Vajpai et al., 2010]. These experiments were carried out at

low pH (2.5 and 2.0 for ubiquitin and GB1, respectively), allowing us to test

the parameters for the protonated side chains of amino acids Asp and Glu.

As the computational cost of simulating unfolded proteins is quite high, we
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Figure 2.6: All normalized errors according to �99SB-ILDN [Lindor�-Larsen
et al., 2010] (x-axis) and �14SB (y-axis), a subset of the errors where the
uncertainties do not cross the equivalence line, and the average di�erence in
normalized error from �99SB-ILDN to �14SB (y-axis) for normalized errors
with signi�cance of p<P (x-axis) for GB3 (A-C), ubiquitin (D-F), lysozyme
(G-I), and BPTI (J-L).
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limited this analysis to GB1, with 56 residues versus ubiquitin's 76 residues.

Initial structures were generated using an implicit solvent [Nguyen et al., 2013]

to collapse initially fully linear conformations built using LEaP [Zhang et al.,

2010], performing cluster analysis on this collapse trajectory. The cluster cen-

troids were then solvated with the same number of solvent molecules that was

required for an 8Å bu�er for all of them. The centroids for the four most popu-

lous clusters were then simulated, with all the details provided in Section 2.4.

The ANEs for GB1 in urea (Figure 2.7) show similar improvements for

�14SB and �99SB-ILDN in isoleucine, leucine, and asparagine. Several other

residues improved with �14SB. Most notably, �14SB includes parameters for

protonated aspartate, which was an outlier with �99SB and �99SB-ILDN,

which did not update protonated aspartate. Additionally, improvements are

noted for tyrosine and valine. In �99SB-ILDN and �14SB variants, tryptophan

agreement got slightly worse, but the di�erence from �99SB is small consider-

ing uncertainties. Overall, �14SB best reproduced side chain dynamics in the

folded and unfolded proteins tested here.

2.7.2 Helical stability is improved with �14SB backbone

changes and further improved with updated side

chain parameters

Before a single backbone correction was chosen for �14SB [Maier et al., 2015],

Carmenza Martinez and Koushik Kasavajhala tested whether any of several

candidate �14SB backbone parameters that improved reproduction of Ala5
scalar couplings also addressed �99SB's helical limitation by examining a ten-

residue hydrogen bond surrogate peptide (HBSP), where the geometry of the

�rst helical hydrogen bond is enforced by a covalent bond between residues

1 and 5 [Chapman et al., 2004, Wang et al., 2006, Patgiri et al., 2008]. As

mentioned, this alleviates the entropic cost of aligning the �rst four residues

in a helix, allowing rapid testing of helical propagation according to each force

�eld. Wang et al. reported ∼ 46% helical content in PBS [Wang et al., 2006],

but due to the potential for aggregation in that experiment, we followed the

suggestion [Arora, 2015] of the authors and used the value of 70.13% helical
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content in 10% TFE, adjusted downward by ∼ 5�10% to obtain an estimate

in water of ∼ 65%.

Simulations with �99SB, which reproduced Ala5 scalar couplings better

than any of the potential �14SB corrections when using DFT1 Karplus pa-

rameters, exhibited 0.17 ± 0.01 fraction helix. The mod1φ correction that

performed best with Orig parameters, with the lowest χ2 overall, increased

this number to 0.51 ± 0.01. Further adding the mod2ψ correction to create

mod1φ2ψ�the second lowest χ2 against Ala5 scalar couplings using the Orig

Karplus parameters�yielded 0.72 ± 0.01 helical content, slightly higher than

0.65, but quite close. Meanwhile, mod3φ, which most closely reproduced Ala5
scalar couplings with the DFT2 Karplus parameters [Case et al., 2000], only

achieved 0.26± 0.01 helical content.

Adding the new side chain parameters increased the helical content in each

case: �99SB from 0.17± 0.01 to 0.26± 0.01, mod1φ from 0.51± 0.01 to 0.60±
0.01, mod1φ2ψ from 0.72 ± 0.01 to 0.79 ± 0.01, and mod3φ from 0.26 ±
0.01 to 0.46 ± 0.01. Whereas using mod1φ2ψ with the side chain corrections

produced too much helix, mod1φ with the side chain corrections produced

very close to the experimental target of 0.65. This increase in helical content

by the side chain parameters suggests that a correction of only the backbone

parameters to quantitatively address a system with side chains like HBSP,

without considering side chain errors, may have led to an overcorrection in the

backbone to cancel errors in the side chains. In that case, the transferability of

such a setup to other amino acids might be challenging. Instead, the new side

chain parameters improved the experimental agreement of HBSP simulations

using mod1φ, which became the �14SB backbone parameters. This increase of

stability with the side chain parameters suggests that the side chain parameters

have wanted e�ects on secondary structure.

2.7.3 Testing hairpin stability and structure

It is possible that the improvement in helical content was obtained at the

cost of less accurate performance on β systems, whereas the side chain mod-

i�cations, as for HBSP, may also a�ect stability. As a model system to carry
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out initial tests of secondary structure balance, we turned to CLN025 [Honda

et al., 2008, Davis et al., 2012], an engineered fast folding hairpin that is a

thermally optimized variant of Chignolin. CLN025 contains N- and C-terminal

glycine-to-tyrosine substitutions from Chignolin, which already possesses one

tyrosine and one tryptophan. The presence of four aromatic side chains in a

short peptide suggests the potential for strong sensitivity of observed stability

to accurate treatment of side chain conformational energy pro�les, as well as

of hydrophobicity. The system also presents a challenge due to the relatively

slow folding of β-sheets compared to the helical systems (although estimates of

100 ns for CLN025 were obtained from T-jump IR experiments [Davis et al.,

2012]), and obtaining precise measures of population may be di�cult. Still,

use of CLN025 as a model presents a reasonable route to obtaining a qualita-

tive view of whether �14SB's increased helical propensity also compromises β

stability.

Experimentally, CLN025 has both crystal and NMR structures [Honda

et al., 2008], with 80 NOEs available for comparison. Honda et al., who derived

CLN025 from chignolin, suggested that CLN025 is > 90% folded at 300 K. As

mentioned, Davis et al. have probed CLN025 using infrared, con�rming Honda

et al.'s claim that CLN025 is a fast folder [Davis et al., 2012]. The change in

nonpolar accessible surface area on folding has been estimated to be 376Å
2
for

CLN025, compared to 222Å
2
for chignolin, thus indicating that the nonpolar

side chains may be important in controlling stability [Honda et al., 2008].

For �99SB and for �14SB, we performed four MD runs starting from the

NMR-based structure [Honda et al., 2008] closest to the ensemble average, and

four additional runs starting from fully linear structures to quantify conver-

gence. We compared simulation snapshots against the initial NMR structure

using all non-symmetric atoms (Figure 2.8). We also performed cluster analy-

sis on the combined trajectories from both force �elds so that the in�uence of

force �eld on cluster populations could be directly compared. Simulations with

�99SB predominantly sampled structures within cluster 0 at around 3Å RMSD

(59± 10 %), or within cluster 1 at around 4.8Å RMSD (34± 9 %; all uncer-

tainties re�ect the di�erence between initially linear and native ensembles).

Compared to �99SB, the �14SB simulations sampled cluster 0 with similar
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frequency (57± 14 %), but sampled cluster 1 much less than �99SB (5± 3 %),

though the comparisons are qualitative due to the uncertainties. Instead, the

�14SB simulations are more diverse when unfolded, sampling structures rang-

ing from 4 to just over 9Å RMSD. Whereas �99SB simulations sampled 194

clusters with non-zero frequency, �14SB simulations sampled 843.

Inspection of the second major cluster of �99SB (cluster 1, blue in Fig-

ure 2.8) reveals a shift of the C-terminal strand one residue out of phase

relative to the N-terminal strand (representative structures for clusters 0 and

1 are shown overlaid on the NMR-based structure in Figure 2.9). The popu-

lations suggest that �14SB destabilizes this alternate conformation, although

the populations are not well converged; however, the di�erence is also qual-

itatively apparent in observing that this cluster is signi�cantly sampled in 6

of 8 �99SB simulations, but only 2-3 of 8 �14SB simulations, with typically

shorter persistence time than with �99SB (Figure 2.8). Whether the �14SB

parameter changes favor the native-like cluster over the alternate cluster can

be probed by decomposing the dihedral energies of each cluster according to

each force �eld. In particular, we evaluated how the di�erence in energies of

the two main clusters evolved from �99SB to �14SB:

∆∆E = (〈U�14SB〉cluster0 − 〈U�14SB〉cluster1)− (〈U�99SB〉cluster0 − 〈U�99SB〉cluster1)
(2.12)

Analysis using Equation (2.12) indicates that the dihedral changes in �14SB

favor the native cluster over the alternate by 2.9 kcal mol−1 relative to �99SB.

Further decomposition of this di�erence reveals that parameter changes ap-

plied to Asp3 χ2 favor this native structure by 1.2 kcal mol−1, and then φ

modi�cations favor the native structure by 0.5 kcal mol−1 in the backbone of

Glu5. What's interesting is that both these changes adjust the barriers found

at the level of individual amino acids. Asp3 was pushed away from χ2 of ±90◦.

Our training suggested that this barrier was too low with �99SB, thus desta-

bilizing this conformation is an expected result of considering local maxima to
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Table 2.17: Sum of the NOE violations from the restraints determined by
Honda et al. [2008] for CLN025, for each simulation using �14SB and �99SB
starting from linear and native conformations. *FF=force �eld

linear native

1 2 3 4 1 2 3 4

�14SB 3.6 1.8 3.7 2.4 2.1 1.8 1.5 2.1
�99SB 2.4 3.8 3.3 2.7 3.3 1.8 2.5 4.9

be important in side chain parameter derivation. Additionally, Glu5 had sam-

pled conformations to the left of αRwith �99SB, but with �14SB was con�ned

to a more conservative α-helical basin, consistent with the �14SB backbone

goal of increasing φ barriers. This case illustrates the importance of reason-

able barrier heights as well as the collaboration of side chain and backbone

parameters.

Although it may appear desirable for �14SB to favor the native conforma-

tion more than in �99SB, the alternate structure echoes �ndings from simu-

lations of Chignolin where presence of a similar strand-shifted structure ac-

tually improved agreement of simulations with experimental NOEs [Kührová

et al., 2012]. We therefore estimated NOE buildup in the simulations, us-

ing the `naïve' approach [Feenstra et al., 2002] used previously for Chignolin

[Kührová et al., 2012]. Brie�y, r−6 was computed for all interproton vectors

and 〈r−6〉−1/6 of each vector compared to the NOE restraints published by

Honda et al. [2008], downloaded from the BMRB [Ulrich et al., 2008]. For

ambiguous restraints, contributions from each proton pair to the NOE were

summed [Nilges, 1995]. The sum of NOE violations from each simulation were

tabulated (Table 2.17)

Unlike Chignolin, however, better agreement is found for �99SB native run

3, which sampled only the native cluster, than for �99SB native runs 1 and 4

or extended runs 2 through 4, which sampled comparable amounts of the two

clusters. In fact, the �14SB extended simulations with their large variability

agreed with experimentally derived NOE restraints [Honda et al., 2008] just as

well as �99SB extended simulations (2.9± 0.8Å �14SB vs. 3.1± 0.6Å �99SB).
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Figure 2.9: Licorice structures of CLN025. (A) The NMR structure closest to
the ensemble averageHonda et al. [2008], colored by atom; (B) the centroid of
cluster 0, the native-like cluster, colored black; (C) the centroid of cluster 1,
where a shift in hydrogen bonding accompanies extension of the C-terminus of
the second strand past the N-terminus of the �rst strand and �ipping of W9 to
the opposite side of the hairpin from Y2, against which it stacks in the NMR
structure and cluster 0, and P4, which stacks against Y2, colored blue. Large
licorice indicates atoms used in the clustering mask; smaller licorice atoms
were omitted from clustering.
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The best NOE deviations of 1.9± 0.2Å were found for the �14SB native simu-

lations, though the di�erence from the 3.1± 1.2Å deviations of �99SB native

simulations are only signi�cant at p<0.37. Although high uncertainties suggest

that no de�nitive conclusions can be drawn about potential improvements of

�14SB based on these simulations alone, only 1 of the �99SB native simula-

tions had NOE deviations (1.8) lower than the maximum �14SB deviations

(2.1). Thus the simulations together with energy analysis suggest that �14SB

is at least as reasonable as �99SB at hairpin modeling, and thus the desirable

increase in α-helical content with �14SB did not worsen β-hairpin simulation

accuracy.

Examination of NOE violations for the clusters alone shows that the �rst,

native-like cluster violates NOE restraints by 2.5Å, but addition of the second

(whose violations are 53.5Å) causes violations of 3.3Å, comparable to vio-

lations for �99SB simulations comprising these two structures (2.4Å�4.9Å).

Interestingly, there is a third cluster most present in the �14SB native-initiated

simulations, which does improve agreement with experimental NOEs, down to

3.1Å with the �rst two clusters and to 2.4Å with only the �rst cluster. The

�rst eight clusters, except the second, violate NOE restraints by 2.1Å, and the

�rst 15, again except the 2nd, arrives at the �14SB native average violation of

1.9Å. This steady but subtle downward trend continues with the addition of

more clusters (by cluster 37, the violations are 1.8Å). Of course, analyzing the

subtle di�erences caused by the many small clusters is not necessarily statis-

tically rigorous, especially as the source simulations have not converged. The

point, however, is that the structural diversity observed with �14SB may not

be totally undesired, and actually improves the �14SB match to experiment.

2.7.4 High quality of dynamics in the native state is

maintained

We also evaluated the ability of �14SB to reproduce local dynamics in well-

folded proteins as measured by NH S2 Lipari-Szabo order parameters. We

calculated NH order parameters from the same simulations used for side

chain scalar coupling evaluation. This calculation was performed using iRED,
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Figure 2.10: NOE [Honda et al., 2008] violations of CLN025 simulations with
�99SB and �14SB, of each amino acid backbone and side chain to each other
amino acid backbone and side chain. Nearly all simulations have minor vi-
olations within the N-terminus and between the N- and C-termini, whereas
�99SB simulations have greater violations within the C-terminus than �14SB.
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Figure 2.11: Order parameters from NMR compared to those backcalculated by
iRED for �99SB, �99SB-ILDN, and �14SB simulations of GB3, ubiquitin, and
lysozyme. The top panels show di�erences between simulation and experiment,
while the lowest panels show average data for each secondary structure region,
following Hornak et al. [2006].

which does not require separability of local and global motions [Prompers and

Brüschweiler, 2002]. The iRED-calculated order parameters, shown in Fig-

ure 2.11, are within 0.05 RMSD of NMR for all systems and force �elds. We

conclude that the high quality order parameter reproduction previously re-

ported for �99SB [Hornak et al., 2006] is maintained with �14SB. There are,

however, subtle di�erences worth noting.

Several turns or loops increased in order with �14SB. In the cases of loops

L1 and L4 in lysozyme, this increased order better reproduces experimental

order parameters. Turn T3 in GB3 and loop L3 in lysozyme, however, may have

become too ordered. L3 begins with S85, which is 0.16±0.04 too ordered. With

�99SB, S85 was already 0.10±0.02 too ordered, meanwhile D87 was 0.09±0.02

too disordered with �99SB but only 0.05 ± 0.01 too ordered with �14SB.
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Hence, �14SB is not statistically worse at modeling S85 spin relaxation, which

may have already been too ordered with �99SB. Naturally, these estimates

depend on both the accuracy of the iRED method and the uncertainty in the

simulations and experiments; absolute comparisons against the experimental

S2 di�ering by 0.06 ± 0.04 should not be overemphasized. But as a trend,

there appears to be slightly less �exibility in loops with �14SB compared to

�99SB, both aiding and lessening agreement between iRED and experimental

order parameters. We conclude that �14SB maintained �99SB order parameter

reproduction on average, but with subtle reduction in �exibility.

2.8 Conclusion

The weaknesses of �99SB addressed by �14SB [Maier et al., 2015] are its

less than ideal agreement with polyalanine scalar couplings, insu�cient helical

propensity, and, as described here, inaccurate side chain preferences. We tack-

led the latter by de novo �tting against a backbone-independent MP2 training

set. The new model �14SB improved side chain rotamer distributions as sug-

gested by scalar couplings, while augmenting helical content of small peptides

and maintaining the reasonable reproduction of order parameters and hairpin

structure. The ubiquity of �14SB improvements and more thorough descrip-

tion of potential limitations will require further testing than possible here. But

based on the benchmark reported, we recommend �14SB for the simulation of

proteins and peptides.
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Chapter 3

Assessing the factors that may be

used to improve the �99SB protein

backbone parameter training

3.1 Introduction

As discussed in Chapter 1, the accuracy of AMBER force �eld 99SB

(�99SB) [Hornak et al., 2006, Showalter and Bruschweiler, 2007, Li and

Brüschweiler, 2009, Lange et al., 2010, Cerutti et al., 2010] resulted in its

wide adoption by the simulation community. This wide adoption allowed the

identi�cation of trends in �99SB's strengths and weaknesses�weaknesses that

groups have sought to improve. Chapter 2 details the re�nement of the �99SB

side chain parameters against quantum mechanics energy pro�les, resulting in

improved NMR scalar coupling reproduction. Additionally, issues with �99SB

backbone sampling have been reported [Thompson et al., 2010, Best and Hum-

mer, 2009, Maier et al., 2015]. The accuracy of �99SB has been directly eval-

uated by comparison against solution NMR data [Best et al., 2008, Li and

Brüschweiler, 2009, Wickstrom et al., 2009]. Thus recent re�nements of �99SB
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backbone parameters have focused on empirical adjustments to better repro-

duce solution NMR data [Best and Hummer, 2009, Li and Brüschweiler, 2011,

Maier et al., 2015]. This is reasonable as deviations from NMR suggested that

only small changes to the �99SB backbone energy landscape may be needed.

Moreover, the solution NMR data likely includes e�ects that are di�cult to

incorporate by training against ab initio energies of small model systems.

These small empirical corrections, while abating their target errors, may

miss less apparent shortcomings of the �99SB energy surface. For example, the

�99SB �tting against only in vacuo energy minima left much of the backbone

energy surface unconstrained. Whereas �14SB is unique among �99SB back-

bone modi�cations in that it adjusted not only energy minima, but speci�cally

targeted the β-ppII transition [Maier et al., 2015], it is still not clear whether

other changes might be bene�cial.

Another concern when comparing in vacuo energies between QM and MM

has been that most biomolecular force �elds do not have true gas-phase charges,

but charges that are more suitable for simulations in water. Thus artifacts can

arise in vacuo simply because the QM electron density polarizes only in re-

sponse to the molecule, in the absence of any dielectric medium, whereas �xed

MM charges may be �pre-polarized� in anticipation of such a medium. Al-

though empirical corrections may help compensate for this weakness, work on

protein force �elds [Duan et al., 2003] and more recent work on nucleic acid

force �elds [Zgarbova et al., 2011, 2013] suggest that calculation of QM and

MM energies in the context of implicit solvent may also be a viable workaround

to this problem.

Additionally, �99SB and its derivatives used alanine as a model for all

non-glycine amino acids. But the sequence dependence of structural prefer-

ences may require separate corrections for di�erent amino acids. For example,

Martinez showed that the �14SB backbone updates, while improving agree-

ment with Ala5 scalar couplings, worsened agreement with scalar couplings

for Val3 [Martinez, 2014]. Notably, higher experimental HNHα scalar couplings

for Val3 than Ala3 suggest more structures along the β-ppII transition for

valine than for alanine. To better picture this conformational di�erence, his-

tograms of φ/ψ distributions for alanine and valine extracted from the PDB
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by Lovell et al. [2003] are plotted in Figure 3.1. These histograms corroborate

the solution NMR data in suggesting that valine samples conformations more

evenly along the β-ppII barrier than alanine. This di�erence is expected as

there is a higher chance of steric clash between the backbone and valine's two

γ-carbons than between the backbone and alanine's methyl hydrogens. For

example, the helical conformation, where the backbone NH points towards the

side chain, would be destabilized by valine's isopropyl side chain relative to

alanine's methyl. Whereas this could reasonably be accounted for in force �elds

by the presence of the valine side chain and reasonable non-bonded parame-

ters, simulations with �99SB and �14SB as compared to NMR scalar couplings

suggest that the correction needed along this transition for alanine and valine

may di�er. If this is the case, it would also suggest that the alanine-based

QM �tting in �99SB [Hornak et al., 2006] may not apply to all amino acids.

This result would not be surprising given that, as described in Chapter 2, dif-

ferent amino acids were found to need di�erent side chain corrections. Still,

another possibility is that a single correction yet undiscovered may apply to

both alanine and valine reasonably well.

Missing sequence dependence was additionally suggested when Hai Nguyen

and the author of this dissertation applied �99SB together with the updated

side chain parameters described in Chapter 2 (�14SBonlysc) to the folding

of seventeen proteins with diverse topologies [Nguyen et al., 2014]. Although

most systems folded successfully, some failures occurred that did not suggest

systematic trends in one secondary structure being too stable relative to an-

other. In the native conformation of hypothetical protein 1WHZ, for example,

there are a three-strand β-sheet and three helices. In the structure preferred by

�14SBonlysc, the �rst β-strand became an α-helix, and the last two α-helices

became strands in a β-turn [Nguyen et al., 2014]. This suggests errors that are

not systematic across all amino acids, but may depend on the speci�c amino

acids in each of these secondary structure units.

One more concern with the Cornell et al. [1995] line of force �elds (includ-

ing �99SB [Hornak et al., 2006] and �14SB [Maier et al., 2015]) is that the

shapes of the structure basins do not quite match the shapes suggested by the

PDB Figure 3.1. Generally, whereas the PDB suggests that φ and ψ should be
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Figure 3.1: Histograms of (A) alanine and (B) valine backbone dihedrals φ
and ψ based on the rotamer libraries provided by Lovell et al. [2003]. Each
contour line represents a doubling in population, with labels indicating the fold
enrichment compared to a completely �at distribution. Density is also shown
as grids �lled with white (no density) to black (maximum density).

anticorrelated, for example, in the αR basin, �99SB and �14SB produce round

blobs suggesting that φ and ψ are sampled somewhat independently. Fur-

thermore, whereas PDB structures indicate a conformation centered around

φ,ψ = (−75◦, 75◦), just below ppII, this conformation is not well sampled by

�99SB or �14SB. As this work seeks to build upon the energy surface achieved

by �14SB, a goal is to more faithfully reproduce the �ne details of each struc-

ture basin, not only the gross features like relative energy between α, β, and

ppII.

One important tool for achieving greater correlation between φ and

ψ would be coupled corrections that are a function of both dihedrals.

The preeminent coupled correction in �xed-charge force �elds is the

CMAP [MacKerell et al., 2004b] employed by CHARMM force �elds like

CHARMM22/CMAP [MacKerell et al., 2004a] and CHARMM36 [Best et al.,

2012]. The CMAP correction can reproduce any grid of energy di�erences

spaced 15◦ across two dihedrals. The phase space between grid points is then
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extrapolated using bicubic interpolation. CHARMM36 currently has individ-

ual CMAP corrections for glycine and proline, as well as a non-glylyl-non-prolyl

correction based on alanine. It is trivial, however, to apply a CMAP correction

to any combination of amino acids; in AMBER, one can simply specify a list

of residues to be targeted by a CMAP when the CMAP is loaded. This dis-

sertation will examine whether further CMAP amino acid demarcations could

bene�t simulations using force �elds derived from �94 [Cornell et al., 1995].

To investigate all these concerns, this chapter builds on the ideas of Chap-

ter 2 that more, possibly residue-speci�c parameters, trained against quantum

mechanics energies, with careful consideration of how the energies should be

calculated and compared, may be a viable tool for retraining the full back-

bone energy surface of individual amino acids. We have two expectations if

this method is viable. First, simulations of Ala5 with new alanine force �eld

parameters should agree with scalar coupling data [Graf et al., 2007] compa-

rably to �14SB [Maier et al., 2015] without empirical adjustment. Surpassing

�14SB would likely be an unreasonable challenge as �14SB was empirically

optimized to reproduce Ala5 scalar couplings. Second, as the ultimate goal

is to derive backbone parameters for non-glycine/non-alanine amino acids,

agreement with Ala5 scalar couplings should be accompanied by appropriate

residue-dependent backbone preferences when the method is applied to other

amino acids. In this case we use valine, as Val3 is also characterized by solution

NMR scalar couplings and valine exhibits di�erent preferences from alanine

that are not fully reproduced by �99SB or �14SB. Both alanine-derived pa-

rameters and valine-derived parameters will be considered, to evaluate whether

residue-speci�c parameters are necessary.

Before attempting to retrain backbone parameters that might improve

upon �99SB, we �rst review the �99SB assumptions that have been described

so far. It was assumed that:

1. Alanine is an appropriate model for derivation of all nonglycine backbone

parameters. Other non-glycine amino acids will be distinguished by their

side chains. This assumption implies that the non-bonded e�ects of the

side chain on the backbone are reasonable.
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2. In vacuo energy minima would be a su�cient training set with con-

straints on the amplitude of some parameters. This assumption implies

that transition energies can be ignored in training, as well as that the

in vacuo minima obtained represent those sampled in dynamics simula-

tions. It was acknowledged, however, that this assumption was necessary

for computational tractability.

3. Vacuum energies would allow rigorous training of parameters for use in

solution. As discussed in Chapter 1, the molecular mechanical charges

of �99SB are overpolarized by approximately 20% relative to gas-phase

charges. This can lead to errors compared to gas-phase QM that result

from using an incompatible charge model. Note that the same assump-

tion was made in the side chain �tting of �14SB [Maier et al., 2015]

(Chapter 2).

4. Simple, uncoupled cosine corrections to φ and ψ dihedral torsion would

adequately capture the di�erences of the true Ramachandran energy

surface from those captured by bonded (bond and angle) and non-bonded

(electrostatic and van der Waals) interactions.

5. Tetrapeptides that can form a helical hydrogen bond will provide an ac-

curate means of accounting for secondary structure propensity in train-

ing (they are also needed when training against only energetic minima

in vacuo because the dipeptide has no gas-phase helical minimum).

As a �rst step, this chapter evaluates assumptions 2�5 for alanine, for

which there is a wealth of experimental scalar coupling data [Graf et al., 2007].

Importantly, alanine lacks side chains, simplifying the conformational space

that needs to be mapped when �tting parameters. Moreover, its small size

facilitates the many quantum mechanics calculations required for testing the

variations to be described. The precedent of training against alanine [Hornak

et al., 2006, Maier et al., 2015] means that the accuracy of other force �eld

development approaches is readily available for comparison to a new training

method.
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To assess Assumption 2, three structure sets are developed, including: a

set of variable structures extracted from high-temperature simulations; two-

dimensional grids in φ and ψ; and, as in �99SB [Hornak et al., 2006], energetic

minima. It should be noted that for the grids, all amino acids in a molecule

were assigned the same φ/ψ values. Thus, the grid is not a full grid spanning

all energetically relevant conformations of molecules with more than one amino

acid.

To investigate Assumption 3, energy calculations are carried out in vacuum

as well as with implicit solvent. As mentioned above, �03 [Duan et al., 2003]

and recent RNA force �elds [Zgarbova et al., 2011, 2013] employed implicit

solvation in the QM and MM energy comparisons. This work tests compar-

ing QM with COSMO [Klamt and Schuurmann, 1993] and MM with Poisson

Boltzmann (PB) [Gilson et al., 1993], as done in the more recent RNA param-

eterization [Zgarbova et al., 2011, 2013].

To consider Assumption 4, corrections are derived using uncoupled cosine

terms or coupled corrections. We use the CMAP [MacKerell et al., 2004b]

well utilized by CHARMM force �elds. Whereas CHARMM employs Ala-

based CMAPs for all non-glycyl,non-prolyl amino acids, this dissertation tests

whether AMBER force �elds could bene�t from additional partitioning of

backbone parameter space.

And lastly, to test Assumption 5, structure sets for tetrapeptides and for

dipeptides are considered. Against all expectations, we found that parame-

ters based on Ala1 allowed more accurate simulation results than those based

on Ala3. More remarkably, the results suggested that even smaller training

compounds may be appropriate; thus we explored a scheme of extrapolating

beyond the scale of the dipeptide. This extrapolation could be interpreted as

either adjusting the e�ect of the peptide bonds in the training to achieve a

correction based on a single peptide bond, which could be appropriate for

polypeptides where the ratio of amino acids to peptides is approximately one,

or perhaps serving to limit the e�ect of artifacts that depend on the length of

the peptide used in training.

After �rst focusing on evaluating the latter four assumptions just reviewed

111



to develop a protocol for alanine, the ultimate goal is to reproduce the sequence-

dependent preferences of di�erent amino acids. Thus, Assumption 1 will be

tested by applying the insights from alanine to deriving parameters for valine.

Importantly, the scalar couplings for Ala3 and Val3 indicate di�erent prefer-

ences that so far have not been captured by a single set of parameters with

�99SB or �14SB. Our expectation is that a force �eld derived using a reason-

able physics-based method should be able to capture these di�erences. Alanine

parameters will also be tested in valine to evaluate the need for a separate set

of parameters.

We note that we limited this analysis to goals that most directly stem from

our experience with �14SB. Particularly, we tried to use the tenets applied to

the �14SB side chain training to address limitations with the �99SB backbone

parameters as subsequently adjusted with �14SB. The most concerning of

these is the potentially poor transferability of the alanine correction to (in

particular) β-branched amino acids like valine. But there are myriad other

options and approaches that may be worth visiting in the not-so-distant future.

Firstly, there are several alternate charge models to the Cornell et al. model

employed by �99SB. For example, �03 [Duan et al., 2003] and �14ipq [Cerutti

et al., 2014] both employ charges derived from electrostatic potentials in the

context of solvent, with �03 using PCM and �14ipq using average charge distri-

butions from TIP4P simulations. Such charge derivation schemes are promis-

ing, as the polarization in the charges is based on more readily understandable

physics than the cancellation of error achieved by using gas-phase HF/6-31G*

ESPs in the Cornell et al. charge set [Bayly et al., 1993, Cornell et al., 1993,

1995]. But neither of these force �elds has been as widely adopted with �99SB,

and the author has more intimate experience with the speci�c shortcomings

of �14SB. Thus, as a follow-up to the �rst part of this dissertation, this work

is restricted to optimizing �14SB.

Even more promising than the above �xed charge force �elds, in princi-

ple, are polarizable force �elds that allow a rearrangement of charge based on

molecular conformation. Such force �elds are generally more expensive to use

than �xed charge force �elds like �14SB, and have not been demonstrated to
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the same point as their �xed charge contemporaries. One reasonable compro-

mise between the accuracy of fully polarizable force �elds and the simplicity of

�xed-charge force �elds is semi-polarizable models like the e�ective polarizable

bond approach [Xiao et al., 2013]. In that model, only polar bonds are allowed

to polarize, with a computational cost increase of only 10% relative to �xed-

charge models. Although all these models promise to be very accurate when

appropriately trained, again, we focused on evaluating what options could be

applied to the simple and well-tested �99SB as well as �14SB. Hopefully, the

insights gained may also apply to more advanced models.

Another thing that hasn't been done here is to optimize the parameters

against experimental observations. One example of residue-speci�c parameters

for AMBER, the Residue-Speci�c Force Field 2 (RSFF2), had parameters for

each amino acid derived from coil conformation libraries [Zhou et al., 2015].

It was assumed that the distributions found in the PDB would match those

in solution. RSFF2 actually can fold several systems with reasonable dynam-

ics [Zhou et al., 2015]. Yong Duan's group has also added some parameters to

AMBER for use with AMOEBA [Ren and Ponder, 2003], that include CMAPs

for each amino acid based on PDB distributions. Despite the usage of such an

approach by multiple groups and the apparent successes reported by Zhou

et al. [2015], it is not clear to the author that coil libraries should indicate

anything about physics or dynamics. Each structure is not guaranteed to be

at the same temperature, there is usually only one conformation to represent a

dynamic ensemble, the structures present are generally only those that could

be crystallized, and usage of an amino acid in a protein may be as likely to

re�ect the requirements of biology as the actual energetic preferences of the

same amino acid in a di�erent context. These issues are more complicated than

this chapter was intended to address, although based on the results reported

by Zhou et al. [2015] may be worth investigating.

Although the above are some of the broad issues not addressed, there are

many speci�c details to be worked out, at least as many as were examined

for the side chain training discussed in Chapter 2. The landscape of backbone

parameters is also much more complicated than that of side chain parameters;

therefore, the accuracy of the backbone corrections must be of a very high

113



level to contribute to this �eld. With the many questions and potential issues

involved, what follows is an examination of a subset of the issues that were

considered most salient by the author of this dissertation. Issues that may need

further examination include:

1. Potential inconsistency between the QM COSMO [Klamt and Schuur-

mann, 1993] and MM PB [Gilson et al., 1993] solvation models. Besides

It is unclear yet whether the radii should be the mbondi radii suggested

for PB, the radii suggested for COSMO, or whether each solvation model

should use the radii suggested for it. Initially, the author considered the

recommended options for each solvation model, including radii. But there

is some evidence that di�erences in radii, and thus in formation of a sol-

vent cavity, may be problematic when comparing energies for speci�c

structures.

2. Potential inconsistency between COSMO and RESP charges. Part of the

goal of the screening is also to reduce the level of electrostatic interactions

to that expected in aqueous solution, thus lessening the e�ects of small

di�erences in charge, but inconsistency could still a�ect the results.

3. The Ala3 �grids� calculated here only include structures where all amino

acids are in the same conformation (φ, ψ, χ). Whereas this limitation

grossly simpli�es the conformational space and includes extended and

helical segments, there are many possible conformations that are absent.

These missing conformations may be especially important in loops devoid

of canonical secondary structure.

4. The conformations used were optimized in vacuo. The limiting step was

the MM structure optimization in PB, which never completed within the

72-hour wallclock limit, compared to QM optimizations in COSMO that

completed within 10 hours. Pursuing this further will require some inves-

tigation of compromises in the PB parameters for the sake of e�ciency

and/or a larger computational investment.

5. The QM optimizations considered here used the same level of theory

114



(HF/6-31G*) as the �99SB training and the �14SB side chain training.

Using a more expensive level of theory may provide greater accuracy.

It is emphasized that this work is preliminary, and serves as much as a

guideline for future work that can use the ideas presented herein, as it is a

vehicle for testing the ideas themselves. But the results obtained for simulations

of Ala5 and Val3 are promising. Thus the author believes the work that follows

is worth building on with a more thorough e�ort, even one that may require

a signi�cant fraction of a Ph.D.

3.2 Methods

3.2.1 Structure generation by high-T simulations

To generate structures for a random conformational set and a minimum energy

set, simulations were performed of tetrapeptides using �99SB for 100 ns. The

timestep was 1 fs, with structures saved to a trajectory every 2 fs. Tempera-

tures were maintained at 500 K using the Langevin thermostat with γln = 1.0.

Implicit solvation was provided by GB-Neck2 [Nguyen et al., 2013] to prevent

favorable electrostatics from inhibiting e�cient sampling.

The natural goal is to extract conformations with maximal spread of the

torsional landscape and minimal coupling between dihedrals. This was accom-

plished by minimizing the torsional similarity (Equation (3.1)) between each

conformation A and all other conformations B.

similarityA =
conformations∑

B 6=A

torsions∏
φ

(1 + cos(φA − φB)) (3.1)

We minimized the sum over Equation (3.1) using a Monte Carlo approach,

starting with 500 randomly selected conformations. We then chose one of the

500 at random and one from the remaining trajectory structures, and calcu-

lated the similarity of each to the rest of the population. We then exchanged

the two if the similarity was lower for the structure selected from the trajec-

tory, or if a random number between 0 and 1 was less than the ratio of the
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similarity score for the selected conformation of the 500 chosen to the similar-

ity score for the selected conformation of the many yet unchosen structures.

This was repeated until the overall similarity summed over Equation 3.1 for

all 500 structures stopped decreasing. In practice, 100 000 attempted Monte

Carlo moves was found to be su�cient, with no detectable improvements after

30 000 iterations.

3.2.2 Energy calculations

All QM calculations were performed using ORCA [Neese, 2012], a �exible

quantum chemistry software package that can calculate gradients while em-

ploying the resolution of the identity approximation [Vahtras et al., 1993] to-

gether with COSMO implicit solvation [Klamt and Schuurmann, 1993]. The

`TightSCF' keyword was used for energy calculations and the `TightOpt' key-

word for structure optimizations. Implicit solvation was provided by the

COSMO model [Klamt and Schuurmann, 1993] via the `COSMO(Water)' di-

rective. Otherwise, all default options were used. QM optimizations were per-

formed with HF/6-31G* theory, whereas single point energies were calculated

with RI-MP2/cc-pVTZ.

All MM calculations were performed using AMBER14 [Case et al., 2014].

Minimizations were performed for a maximum of 10 000 000 cycles in vacuo

with the cuto� set to 99.0Å�larger than the system size to enable the direct

calculation of all non-bonded interactions. Minimizations were performed with

the AMBER force �eld 14SB (�14SB) [Maier et al., 2015]. Implicit solvation

was provided by PB [Gilson et al., 1993] (igb=10 in AMBER), with either

the modi�ed Bondi radii [Bondi, 1964] or the COSMO radii. The PB options

were: εin = 1.0; εout = 78.4; a ratio of 4.0 between the longest dimension

of the rectangular �nite-di�erence grid and that of the solute; solvent probe

radius of 1.4Å; mobile ion probe radius of 2.0Å; the solvent excluded surface

as implemented by Wang et al. [2012]; trimer arc dots with 0.125Å resolution;

convergence criterion of 0.0001; maximum iterations of 10 000; and grid spacing

of 0.1Å.

All structure optimizations included restraints on φ, ψ, and (for valine)
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χ1 de�ned as N�Cα�Cβ�Cγ1, with harmonic weights of 25 000 kcal mol−1. In

QM optimizations, these dihedrals were constrained, and thus were invariant,

rather than restrained against an energy penalty.

3.2.3 Fitting

Analytical solution of parameters is an attractive option. Although the solu-

tion of parameters typically takes less time than generation of ab initio train-

ing data or testing of the parameters by rigorous MD calculations, it is still

a critical step during which one would like to ensure an optimal solution.

Global minimizers like genetic algorithms have the advantages of maximizing

(or minimizing) arbitrary objective functions, such as the mean absolute rela-

tive energy error. But convergence is always a question; even if multiple genetic

algorithm runs converge to the same solution, there is no guarantee of a global

optimum. Analytical solution could alleviate this problem. Typically, however,

least linear squares solvers minimize the square errors that emphasize outliers,

and require �tting of a single o�set between molecular mechanics and target

energy surfaces.

The latter of these limitations can be alleviated, however. Traditionally, the

problem of �tting absolute energy errors with an o�set has been formulated:

∑
v

Nv∑
n

(∑
d

cos(nφdi )

)
Vv,n + C = Ei − E0

i (3.2)

for conformation i, with v representing all dihedral corrections with Nv peri-

odicities n and amplitudes Vv,n, d representing all dihedrals with values φd to

which each dihedral correction v applies, and C representing an o�set between

Ei, the target energy, and E0
i , the baseline energy to which the left half of the

equation is added.

Meanwhile, the �tting of relative energy errors can be formulated by simply

subtracting Equation 3.2 evaluated for the di�erences between conformations
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i and j:

∑
v

Nv∑
n

(∑
d

cos(nφdi )− cos(nφdj )

)
Vv,n = (Ei − E0

i )− (Ej − E0
j ) (3.3)

In this case, the o�set C drops out of the �t, as errors in relative energies are

minimized. The only limitation is the requirement to �t square errors, rather

than absolute errors. This will emphasize outliers in the data set; therefore, it

is more important to discard real outliers where energies may not be sensible.

Given the exponential relationship between energy and population, however,

a square mapping of energy di�erences to the objective function may actually

be more relevant to dynamics than absolute values.

Hence the system of linear equations in Equation 3.4 becomes that in Equa-

tion 3.5.


cos(n1φ1,1) · · · cos(nNφ1,N) 1

...
. . .

...
...

cos(n1φM,1) · · · cos(nNφM,1) 1



V1

...

VN

C

 =


∆E1

...

∆EM

 (3.4)


cos(n1φ1,1)− cos(n1φ2,1) · · · cos(nNφ1,N)− cos(nNφ2,N)

...
. . .

...

cos(n1φM−1,1)− cos(n1φM,1) · · · cos(nNφM−1,1)− cos(nNφM,1)



V1

...

VN



=


∆E1 −∆E2

...

∆EM−1 −∆EM


(3.5)

where M is the number of conformations and N is the number of dihedral

corrections.
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3.2.4 Extrapolation of parameters to length-independence

The energy di�erences (∆EA0) for the hypothetical alanine monopeptide (A0)

were calculated by a linear �t to dipeptide (A1) and tetrapeptide (A3) per-

residue energy di�erences. For every conformation on a grid, the QM −MM

energy di�erences for A1 (∆EA1) and for A3 (∆EA3) were computed and di-

vided by the number of residues. The slope in the per-residue energy di�erences

versus number of residues ( ∆E
∆Nres

) was determined as in Equation (3.6), sub-

tracting the A3 di�erences minus the A1 di�erences, and dividing by the 2

residue di�erence between A1 and A3.

∆E

∆Nres

=
1
3
∆EA3 −∆EA1

2 residues
(3.6)

Then, from the energy di�erences for A1 were subtracted the slopes in the

per-residue energy di�erences versus number of residues, multiplied by the 1

residue needed to extrapolate to the monopeptide (A0) level. Hence the target

energy surface for Ala0 was de�ned as:

∆EA0 = ∆EA1 −
∆E

∆Nres

× 1 residue (3.7)

The A0− A1 o�set can be simply rearranged as

∆EA0 −∆EA1 = − ∆E

∆Nres

× 1 residue (3.8)

This o�set was added to the energy di�erences for other amino acid dipep-

tides. The approximate extrapolation from V1 to V0, referred to as V0(A)

to parenthetically indicate the use of the alanine o�set, was calculated as in

Equation (3.9).

∆EV0(A) = ∆EV1 −
∆E

∆Nres

× 1 residue (3.9)
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3.2.5 Test simulations

Initial structures

Helical conformations were de�ned as all (φ,ψ) = (−60◦,−45◦). Linear con-

formations were de�ned as all (φ,ψ) = (180◦, 180◦). TIP3P water [Jorgensen

et al., 1983] was added to �ll truncated octahedra with at least 8Å from the

system to the water boundary or 12Å for Val3. A larger bu�er was needed for

Val3 as the CUDA implementation of pmemd [Salomon-Ferrer et al., 2013] is

unstable using the particle mesh Ewald approximation [Darden et al., 1993]

with small systems.

General details

Equilibration was performed with a weak-coupling (Berendsen) thermostat

and barostat [Berendsen et al., 1984], targeting 1 bar pressure with isotropic

position scaling, as follows. With 100 kcal mol−1 Å
−2

positional restraints on

protein heavy atoms, structures were minimized for up to 10 000 cycles and

then heated at constant volume from 100 K to 300 K over 100 ps, followed

by another 100 ps at 300 K. The pressure was equilibrated for 100 ps and

then 250 ps with time constants of 100 fs and then 500 fs on coupling of pres-

sure and temperature to 1 bar and 300 K, and 100 kcal mol−1 Å
−2

and then

10 kcal mol−1 Å
−2

positional restraints on protein heavy atoms. The system

was again minimized, restraining only the protein main chain N, Cα, and C

positionally with 10 kcal mol−1 Å
−2

for up to 10 000 cycles. Three 100 ps sim-

ulations with temperature and pressure time constants of 500 fs were per-

formed, with backbone restraints of 10 kcal mol−1 Å
−2
, 1 kcal mol−1 Å

−2
, and

then 0.1 kcal mol−1 Å
−2
. Finally, the system was simulated unrestrained with

pressure and temperature time constants of 1 ps for 500 ps with a 2 fs time

step, removing center-of-mass translation every ps.

SHAKE [Ryckaert et al., 1977] was performed on all bonds including hydro-

gen with the AMBER default tolerance of 10−5 Å for NpT/NVT and 10−6 Å for

NVE. Non-bonded interactions were calculated directly up to 8Å with cubic

spline switching and the particle-mesh Ewald approximation [Darden et al.,
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1993] in explicit solvent, with direct sum tolerances of 10−5 for NpT/NVT

or 10−6 for NVE. The timesteps for NpT/NVT and NVE simulations were

2 fs and 1 fs, respectively. Tighter convergence criteria and a shorter timestep

facilitated the energy conservation required for NVE.

Production simulations were carried out in the NVE ensemble.

3.2.6 Analysis

Scalar couplings were calculated from simulations using Karplus rela-

tions [Karplus, 1959, 1963]. Backbone scalar couplings were calculated as by

Best et al. [Best et al., 2008]: using the Orig parameters [Ding and Gronenborn,

2004, Hennig et al., 2000, Hu and Bax, 1997, Wirmer and Schwalbe, 2002] also

used by Graf et al. [2007] and the Dft1 and Dft2 parameters from Case et al.

[2000]. Experimental scalar couplings for Ala5 and Val3 were obtained by Graf

et al. [2007].

3.3 Evaluating methods with alanine

As outlined above, the �rst goal is to test the assumptions in the �99SB

training against alanine, before moving on to the question of whether di�er-

ent amino acids could bene�t from unique parameters. This investigation is

conducted by simulating Ala5 to evaluate �99SB, �14SB, and modi�cations

to �14SB that will be described. First, TIP3P is compared against a new

water model [Izadi et al., 2014]. Then training against minimum energy con-

formations, stochastically chosen conformations, and a grid of conformations

is presented. These trainings optimized cosine or CMAP [MacKerell et al.,

2004b] corrections, and either used MM structures for MM and QM energy

calculations or �rst re-optimized structures with QM before calculating QM

energies. Additionally, parameterization was done against energies calculated

in the presence or absence of implicit solvent. The e�ects of these choices on

parameters are discussed and then evaluated in Ala5, with the �nding that

most parameters presented overstabilize α-helices. After examining the trends

in error versus length of the training compound, a protocol for extrapolating
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smaller than alanine dipeptide, to a hypothetical alanine monopeptide, is pre-

sented. The monopeptide parameters performed comparably to �14SB, against

Ala5 scalar couplings without empirical adjustment, and sampled secondary

structure basins that better resemble the PDB in shape than �99SB or �14SB.

Thus quantum mechanics is likely a viable target for training force �elds that

continue to improve consistency with NMR and PDB conformations.

3.3.1 An �optimal point charge� water model improves

Ala5 scalar couplings

The goal is to improve the dynamics of polypeptides. But to begin, a new,

promising QM-based water model is tested. As discussed in Chapter 1, wa-

ter is essential to polypeptide structure. The water models most commonly

applied to biomolecular studies are rigid explicit water models of the three-

point [Jorgensen et al., 1983, Berendsen et al., 1987] and four-point [Horn et al.,

2004] �avors. Often these models start with atomic-centered charges. An alter-

nate approach, called �optimal point charge� (OPC), begins with a Lennard-

Jones center on the oxygen, but then places three point charges wherever they

best reproduce electrostatic properties, resulting in better reproduction of bulk

properties and hydration free energies than other rigid water models of similar

complexity [Izadi et al., 2014].

OPC may very subtly destabilize helices relative to TIP3P and thus en-

hance ppII populations (Figure 3.2). As a result, the lowest χ2 of 0.85± 0.02 is

obtained for �14SB in OPC solvent with the Orig parameters, compared with

0.90± 0.02 for �14SB in TIP3P with the Orig parameters. These di�erences

are not great when considering uncertainties. But �14SB was empirically op-

timized in the context of TIP3P. Given the physical basis of the OPC water

model, it is reasonable that it may improve the prediction of various proper-

ties, in this case agreement with three-bond scalar couplings. Thus OPC will

be considered as methods are evaluated for alanine.
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Figure 3.2: Ramachandran pro�les of the second residue of Ala5 in simulations
with �99SB and TIP3P (A) or OPC (B), as well as with �14SB and TIP3P
(C) or OPC (D).
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3.3.2 Training conformations selected from high-T simu-

lation

The �rst sets of structures for training were generated by simulating Ala3
with N-terminal acetyl and C-terminal N-methyl caps (Ala tetrapeptide), to

generate structures with the diversity that would be necessary for training

backbone dihedrals. Two 100 ns simulations, beginning from α (−60◦,−45◦)

or linear (180◦, 180◦) conformations, generated a total of 100 000 000 confor-

mations, the histogram of which is shown in Figure 3.3A. Although the �14SB

force �eld was optimized for alanine [Maier et al., 2015], the �99SB force

�eld [Hornak et al., 2006] was employed here, as it o�ered a more even dis-

tribution of structures across the β to ppII transition. Although this may be

unphysical, it facilitates the generation of varied structures for training.

Choosing 500 structures that minimized Equation (3.1) yielded the distri-

bution of structures shown in Figure 3.3B, hereafter referred to as the sim

structures. To compare against the �99SB training, where HF/6-31G* min-

ima were used, each of these conformations was minimized using HF/6-31G*

in vacuo. Removing duplicates, there were the 151 minimum energy confor-

mations shown in Figure 3.3C, hereafter referred to as the min structures.

These overlap fairly well with the 51 minimum energy structures of the �99SB

training set, but are nearly three times as numerous. These sampling options

are contrasted with conformations on a 24×24 grid, spaced every 15◦ in φ/ψ,

hereafter referred to as the grid structures. The grid structures can be for

peptides of any length. For dipeptides, grid simply refers to a grid across φ

and ψ. For tetrapeptides, all residues were kept structurally homogeneous,

i.e., all residues were given the same φ and ψ. Although this means the grid

structures are not true grids across all relevant dihedral space, where some

conformations may have residues with di�erent (φ,ψ), the grid captures the

all-helical and all-extended conformations and simpli�es conformational space

331 776-fold (576 conformations, rather than 191 102 976 for the tetrapeptide,

spaced every 15◦ in φ and ψ). Energy analysis and �tting of parameters to

the sim, min, and grid structure sets are described below.
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Figure 3.3: (A) Histogram of simulation of Ala3 in GB-Neck2; (B) 500 Monte
Carlo-selected pool of structures from Ala3 simulation; (C) 151 unique in vacuo
HF/6-31G* optimized conformations of Ala3 from Monte Carlo structures; (D)
576 grid structures, spaced 15◦ in φ and ψ.
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3.3.3 Energies of grids

Although it is di�cult to visualize energy di�erences for irregular sets of con-

formations, like those of the sim and min data sets, the energies for the grid

conformational sets were plotted, including each scheme for calculating ener-

gies. The vacuum energy surfaces for alanine dipeptide (A1) and tetrapeptide

(A3) are shown in Figure 3.4 and Figure 3.7, respectively. Unsurprisingly, the

A1 vacuum surface does not have an α-helical minimum, whereas the A3 vac-

uum surface does.

On the other hand, the solvated A1 and A3 energy surfaces are shown in

Figure 3.5 and Figure 3.8, with MM solvation by PB [Gilson et al., 1993] and

QM solvation by COSMO [Klamt and Schuurmann, 1993]. One potential is-

sue in the COSMO treatment can arise from small molecular charge outside

the solute cavity. To overcome the inconsistency of this charge, an outlying

charge correction can be added to the potential energy. Two additional �gures

show the QM energy surfaces with the COSMO outlying charge correction,

in Figure 3.6 and Figure 3.9. The implicit solvation e�ects result in A1 pos-

sessing an α-helical minimum according to all energy surfaces. In the helical

conformation, the orientation of the NH and CO groups establishes a dipole.

Polar solvents, like water, can polarize in response to this dipole, resulting in a

stable α conformation even without a helical hydrogen bond. At least one his-

torical weakness of using dipeptides in QM-based training�that they have no

gas-phase minimum�is thus alleviated when solvation e�ects are considered.

The most obvious di�erence between the QM and MM pro�les is that the

MM pro�les all strongly destabilize conformations with φ ≈ 120◦, whereas the

QM pro�les destabilize this region less strongly. As this region is rarely sampled

in simulations or the PDB [Lovell et al., 2003], having errors in this region

may not be problematic in most cases, but is likely still worth addressing.

Particularly, this region may play a role in the kinetics of sampling the αL
conformation.

Other di�erences relevant to dynamics pertain to the helical and ppII en-

ergy basins. Notably, the α basin stretches upward into 310 helical conforma-

tions in the MM pro�les and beyond, whereas the QM pro�les tend to suggest
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that the helical region should be more diagonal. Additionally, the QM pro�les

generally suggest the ppII region is too stable with �14SB, but by how much

ranges from ∼0.5 kcal mol−1 when QM energies are calculated for MM struc-

tures to ∼1 kcal mol−1 when QM energies are calculated for QM structures. To

examine the e�ects of these di�erences on simulations, corrections �rst must

be made to calibrate the MM energy surface to the QM energy surface for

each energy calculation setup.

3.3.4 Dihedral corrections from each training set

First, cosine-based dihedral corrections were solved against the sim, min, and

grid tetrapeptide datasets described above. One result was intuitive: minima

tell nothing about transition energies. This is illustrated for cosine �ts to en-

ergy di�erences for min (Figure 3.10) and sim (Figure 3.11) structure sets. The

�ts to QM energies of minimum energy structures stabilize the barrier in the

center of the Ramachadran, continuing in a stripe across ψ near φ = 0◦, of

between 5 and 12 kcal mol−1 relative to β. Additionally, some �ts suggest that

φ near 120◦ should be stabilized, whereas one �t (including implicit solvent

with QM-reoptimized structures, pane C) suggests that the correction near

φ = 120◦ should be destabilized by more than 6 kcal mol−1 relative to the

average energy di�erence. Although one cannot say that any of these changes

are reasonable or unreasonable based only on the energies of the minimum

energy structures, it is clear that the structures in the training set do not

prescribe such changes in the regions just discussed. The degree of variation

in each of the corrections is also alarming, as in some cases there is up to

∼12 kcal mol−1 di�erence in the suggested relative energy change. I therefore

no longer consider minimum energy structures on their own, as the parameter

training landscape they provide is underdetermined.

Training with the sim set of structures resulted in much more similar

changes for di�erent energy calculation schemes. None of the sim �ts indi-

cated that any strong stabilization of φ near 0◦ is warranted. What's inter-

esting is that the sim structure set possesses only 5 structures actually within
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Figure 3.4: Ramachandran backbone energy surfaces for A1 in vacuo according
to (A) QM energies of MM-optimized structures, (B) QM energies of QM-
optimized structures, and (C) MM energies of MM-optimized structures. Solid,
labeled contours indicate integer energy values in kcal mol−1, whereas dashed
contours indicate half-integer energies.
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Figure 3.5: Ramachandran backbone energy surfaces for A1 in water according
to (A) QM(COSMO) energies of MM-optimized structures, (B) QM(COSMO)
energies of QM-optimized structures, and (C) MM(PB) energies of MM-
optimized structures. Solid, labeled contours indicate integer energy values
in kcal mol−1, whereas dashed contours indicate half-integer energies.
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Figure 3.6: Ramachandran backbone energy surfaces for A1 in water, with the
outlying charge correction (OCC) included for COSMO calculations, according
to (A) QM(COSMO+OCC) energies of MM-optimized structures, and (B)
QM(COSMO+OCC) energies of QM-optimized structures. Repeated here, for
comparison, are (C) the MM(PB) energies of MM-optimized structures. Solid,
labeled contours indicate integer energy values in kcal mol−1, whereas dashed
contours indicate half-integer energies.
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Figure 3.7: Ramachandran backbone energy surfaces for A3 in vacuo according
to (A) QM energies of MM-optimized structures, (B) QM energies of QM-
optimized structures, and (C) MM energies of MM-optimized structures. Solid,
labeled contours indicate integer energy values in kcal mol−1, whereas dashed
contours indicate half-integer energies.
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Figure 3.8: Ramachandran backbone energy surfaces for A3 in water according
to (A) QM(COSMO) energies of MM-optimized structures, (B) QM(COSMO)
energies of QM-optimized structures, and (C) MM(PB) energies of MM-
optimized structures. Solid, labeled contours indicate integer energy values
in kcal mol−1, whereas dashed contours indicate half-integer energies.
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Figure 3.9: Ramachandran backbone energy surfaces for A3 in water, with the
outlying charge correction (OCC) included for COSMO calculations, according
to (A) QM(COSMO+OCC) energies of MM-optimized structures, and (B)
QM(COSMO+OCC) energies of QM-optimized structures. Repeated here, for
comparison, are (C) the MM(PB) energies of MM-optimized structures Solid,
labeled contours indicate integer energy values in kcal mol−1, whereas dashed
contours indicate half-integer energies.
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Figure 3.10: E�ect of parameters �t to HF/6-31G* minimized structures (min)
of alanine tetrapeptide, with energies calculated for MM-optimized structures
in vacuo (A) or in implicit solvent (B), or with QM re-optimization of struc-
tures in vacuo (C) or in implicit solvent (D). Contour labels represent energy
di�erence due to the parameters in kcal mol−1.
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φ ∈ [−30◦, 30◦], but with only 5 structures the energy correction in this re-

gion was constrained. An important di�erence between the min and sim sets

of structures is that min has no structures within φ ∈ [−59◦, 50◦], while for

sim this gap is φ ∈ [−21◦, 5◦]. Thus the strong stabilization conferred by min

parameters are likely artifacts of data scarcity.

Conversely, all sim-derived parameters suggested thatφ around 120◦ should,

in fact, be stabilized by about 6 kcal mol−1 relative to the average energy di�er-

ence. This result is surprisingly consistent with three of the four min-derived

parameter sets. One concern with the sim set is that there are no structures

with φ ∈ [83◦, 179◦], and yet the correction is quite favorable in this region.

What's interesting is that, although data are sparse in this rightmost region of

the Ramachandran, this stabilization is common to all the sim �ts performed.

This was investigated further by �tting corrections to a more uniformly dis-

tributed set of structures with conformations in this region.

I considered grids of alanine tetrapeptide, where all three alanine residues

were restrained to the same φ/ψ for each tetrapeptide conformation. The

results of �tting these di�erences with cosines is shown in Figure 3.12. The

feature of the sim corrections (Figure 3.11) where conformations with φ near

120◦ were stabilized exists in these grids, as well. Thus, this energy correction

is not a result of poor sampling in that region in the sim training set. As

it turns out, the issue is not that these new parameters overly stabilize that

region; rather, the correction for �99SB was arbitrarily high, as there were no

data there in the �99SB training. These conformations are not likely to be

sampled frequently anyway, as they do not appear commonly in experimental

protein structures [Lovell et al., 2003], but may be sampled even less with

�99SB than they already should be when, for example, transitioning to the αL
conformations.

The training quality with cosine �ts to the sim and grid sets, however, is

not very satisfactory (Table 3.1). The minimum root mean square error (rmse)

achieved for these sets was 1.5 kcal mol−1, for the sim structure set without

QM re-optimization, both in vacuo and in the context of implicit solvent. The

min structure set, that was poorly constrained, achieved rmses of less than

1 kcal mol−1, but this is likely because good error can be achieved by �tting
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Figure 3.11: The correction pro�les (least-squares optimized to reproduce
QM−MM di�erences) �t to stochastically chosen simulation structures (sim)
of alanine tetrapeptide, with energies calculated for MM-optimized structures
in vacuo (A) or in implicit solvent (B), or with QM re-optimization of struc-
tures in vacuo (C) or in implicit solvent (D). Contour labels represent energy
di�erence due to the parameters in kcal mol−1.
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Figure 3.12: E�ect of parameters �t to two-dimensional φ/ψ grids (grid) of ala-
nine tetrapeptide conformations, with energies calculated for MM-optimized
structures in vacuo (A) or in implicit solvent (B), or with QM re-optimization
of structures in vacuo (C) or in implicit solvent (D). Contour labels represent
energy di�erence due to the parameters in kcal mol−1.
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Table 3.1: Root mean square errors against Ala3 QM energies with �14SB and
after �tting cosine dihedral parameters. rmse=root mean square error with
�14SB. new=root mean square error with new parameters

min sim grid

QM re-opt? solvent rmse new rmse new rmse new

no vacuum 2.0 0.6 2.2 1.5 13.0 3.6
no water 3.1 0.8 2.3 1.5 11.9 4.6
yes vacuum 1.9 0.9 2.5 2.0 12.7 4.5
yes water 2.6 0.9 2.2 1.6 11.5 4.1

less of the Ramachandran surface.

The e�ects of these parameters were evaluated in Ala5 simulations. These

results are also concerning. None of the corrections derived thus far improved

upon �14SB, or even �99SB, in Ala5 simulations when compared to NMR

scalar couplings (Tables 3.2 and 3.3). Two possibilities exist: either (1) the

data have not been �t well enough, and with better quality �ts, Ala5 sampling

should improve; or, (2) the data suggest trends that are problematic, unrelated

to the quality of the QM �t. To identify patterns in errors in the underlying

energy surface, more accurate corrections were created using a di�erent func-

tional form, and the e�ects on structure ensembles analyzed.

3.3.5 Training against tetrapeptides overstabilizes helices

To alleviate possible limitations in �tting that may arise from using uncou-

pled cosine corrections, I created CMAP corrections based on the QM−MM

di�erences in the structure grids. As discussed, the CMAP can reproduce any

two-dimensional energy surface exactly [MacKerell et al., 2004b]. Simulations

of Ala5 with the CMAPs derived from tetrapeptide �tting data resulted in

considerable χ2 errors of 3.98± 0.12 or higher with TIP3P solvent (Table 3.2)

or 3.27± 0.17 or higher with OPC solvent (Table 3.3). This is surprising as

tetrapeptides have been utilized in many force �eld training e�orts, including

�99SB [Hornak et al., 2006], which achieves χ2 of as low as 1.46± 0.02 with

TIP3P, using Dft1 Karplus parameters. In the worst case, one of the new force
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�elds, derived against a grid of implicitly solvated, MM-optimized structures,

achieved χ2 of 9.04± 0.32 with the Dft1 Karplus parameters. A histogram of

residue 2 in φ and ψ backbone dihedrals as sampled by this rogue force �eld

is depicted in Figure 3.13. It is nearly entirely helical.

To examine why CMAPs based on the tetrapeptide data could be so detri-

mental, a CMAP was compared to cosine corrections trained to reproduce the

same data set�a φ/ψ grid of solvated A3 energies of MM-optimized struc-

tures (Figure 3.14). From the CMAP (Figure 3.14B), which matches the under-

lying energy di�erences exactly, there is a clear stabilization near the α-helical

region of the Ramachandran at about (−60◦,−45◦), with destabilizations to

the left and directly above. As the areas that need to be destabilized share the

same φ (for the area above) or the same ψ (for the area to the left), �tting

the α-helical energies together with these destabilizing features would be quite

di�cult with uncoupled cosine terms. The correction resulting from this �t is

shown in Figure 3.14A, with the di�erence from the CMAP correction shown

in Figure 3.14C. Although the cosine corrections capture some of the same

overall features as the CMAP, it lacks the same helical stabilization that the

CMAP can reproduce from the energy di�erences. If the energy di�erences in

the source data are such that the helical region is overstabilized, this may actu-

ally result in more reliable energetics for cosine corrections that are tempered

by the training data for nearby conformations. In other words, errors from

�99SB assumptions 4 (using cosine corrections) and 5 (using tetrapeptides)

above may partly cancel in this case. In the context of a CMAP correction,

however, one can �t the data too exactly, and the helical overstabilization

in the training data will be captured too well to bene�t simulations. Thus,

the presence of a helical hydrogen bond in training may not be desired, when

�tting corrections as exactly as allowed by CMAP.

Previous, successful force �elds like �99SB have been trained against

tetrapeptide minimum energy structures [Hornak et al., 2006], whereas simu-

lations with the poorly converged set of cosine-based corrections derived here

against tetrapeptides have not been performed. It is thus di�cult to assess

what speci�c variations in the training procedures might have important ef-

fects in dynamics simulations. Training set sampling may play a signi�cant role
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Figure 3.13: An impressively awful result. The second residue of Ala5 is nearly
entirely helical after training against QM energies for a grid of solvated MM-
optimized tetrapeptides. Each square is colored from white for low population
to black. Each overlaid blue contour represents a doubling in population, with
1, 4, 16, and 64 labels denoting how many times more populated each square
is than if the same surface had a completely �at distribution. This simula-
tion attained the enviable χ2 of 9.04± 0.32, higher than any other simulation
performed here (and hopefully anywhere else).
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Figure 3.14: The corrections to an A3 φ/ψ scan, in the context of implicit
solvent, with (A) cosine corrections and (B) a CMAP, as well as (C) the
CMAP correction minus the cosine corrections.

in how the trained parameters stabilize di�erent secondary structures. Imagin-

ably, for example, training against a wide variety of structures including many

transitions may limit the ability to �t minima. Or di�erent assumptions em-

ployed in the �99SB �tting to account for the limited set of conformations,

such as assuming that the φ n=1 torsional term should have positive ampli-

tude [Hornak et al., 2006], may also play a role. Regardless of other likely

important di�erences, the cosine corrections here �t to tetrapeptide grid en-

ergies resulted in better agreement with experiment and closer behavior to

�99SB than �tting using CMAPs.

Although cosine-based corrections solved to reproduce Ala3 energy di�er-

ences may yield better results than CMAPs against Ala5 scalar couplings by

not completely �tting the quantum mechanics data, neither provides the level

of performance that would be needed to replace �14SB. Moreover, coupledφ/ψ

corrections that can quantitatively reproduce any φ/ψ energy di�erences are

still desirable to provide a more exact description of backbone dynamics. Thus

I have pursued alternative means of generating data for training. In particular,

I would like a method that stabilizes helices a little less than those examined

thus far. One potential weakness in the use of tetrapeptides is that they allow

the correction of errors in helical hydrogen bonds�errors that may be of a

di�erent magnitude in vacuum or when comparing COSMO and PB than in

explicit solvent simulations. Of course, the hydrogen bond is only one aspect
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of the helical conformation, in addition to the formation of a dipole that may

have di�erent e�ects in a QM model than in a �xed-charge MM model. Thus,

I have turned to a model system without helical hydrogen bonding to exam-

ine whether it may provide a more reasonable training ground for solvated

peptides.

3.3.6 Training against dipeptides stabilizes helices less

Dipeptides do not form helical hydrogen bonds. When, as here, correcting the

helical hydrogen bond imparts too much stability to helical conformations in

simulations, it may be because some error in the QM−MM comparison does

not transfer precisely to a correction suitable for explicit solvent like TIP3P.

As a result, it may actually be preferable to use smaller training compounds

that cannot form hydrogen bonds. An alternative approach may be to incor-

porate both helical and interstrand hydrogen bonding in training to provide

a balanced description. How to apply the latter to a dihedral correction is

not trivial, however, as there is no guarantee that a single strand will have a

neighbor. Moreover, if the error is in the α-ppII balance, it is not clear improv-

ing the α-β balance would help. It is additionally unclear whether �tting the

errors in both α and β hydrogen bonds in QM-MM comparisons would even

bene�t the α-β balance in explicit solvent simulations, or whether the errors

may include nontransferable artifacts.

Ultimately, I chose to �rst try the simplest option of applying the various

methods described above to generating �tting data for alanine dipeptide (A1),

where it is comparatively easy to map out the full 2D φ/ψ conformational

space. As shown in Figures 3.4 to 3.9, the A1 energy di�erences stabilize the

helical basin less than the A3 energy di�erences. These energy di�erences are

explicitly presented in Figure 3.15, where QM is calculated with COSMO and

the OCC for the MM-optimized structures, and compared to MM with PB.

The e�ect of this decreased helical stability can be seen in simulations of

Ala5. With decreased helical populations, the χ2 values also decrease, in some

cases by more than half (for the solvated MM parameters according to all

sets of Karplus parameters, in both TIP3P and OPC solvents). This result
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Figure 3.15: The QM-MM di�erences, with QM in the context of COSMO
(with the outlying charge correction), and MM in the context of PB, for (A)
alanine tetrapeptide, (B) alanine dipeptide, and (C) alanine �monopeptide.�
Also shown are (D) the di�erences from the dipeptide di�erence map (B) to
the �monopeptide� di�erence map (C). From the tetrapeptide to the dipeptide,
and on, the di�erences stabilize α-helix less.
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is interesting because one would intuit that Ala3 should be more appropriate

for Ala5 than Ala1 would be, based on more similar peptide length. But the

situation is much more insidious.

Whereas some of the A1 parameters achieved lower χ2 than �99SB (Ta-

bles 3.2 and 3.3), still none of them approached the accuracy of �14SB. Ex-

amining histograms of residue 2, these parameters still generate a signi�cant

quantity of α-helix. This helical stability may arise from weaknesses in compar-

ing the di�erent electrostatics or solvent e�ects between MM and QM, perhaps

concerning the stabilizing e�ect of the helical dipole, that persist even at the

scale of A1. To investigate this, I examined trends in error compared to QM

versus peptide length.

3.3.7 Length-independent parameters

Based on the previous sections, it appears that there is a component of the

per-residue error between QM and MM energies that increases with the length

of the peptide. This error manifests as QM helical stability that's missing from

�14SB with A3, but that is missing less from �14SB with A1. This shows that

the per-residue error depends on the number of residues. Imaginably, there

is also some component of the per-residue error that does not depend on the

number of amino acids. Or there may be an optimal length for the training

compound to alleviate errors that result from artifacts in the training, and

this may be smaller than A1. Of course, A1 is the smallest size that can be

achieved in real calculations, so to get any smaller would require extrapolation

from real data on A1 or larger.

There are (at least) two ways to think about extrapolation to a length

smaller than A1:

1. Extrapolating out e�ects from having peptide groups in the training; or

2. Extrapolating out e�ects from having amino acids in the training.

In either case, we would �rst want to get the slope for the change in the

correction over the change in the number of peptides (case 1) or amino acids
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(case 2). Mathematically, this can be described as in Equation (3.10) for the

case of extrapolating peptides or as in Equation (3.11) for the case of extrap-

olating amino acids, where AA stands for amino acid and V is the potential

energy for Ala3 (tetrapeptide) or Ala1 (dipeptide).

∆V

∆peptide
=

Vtetrapeptide − Vdipeptide

4 peptides− 2 peptides
(3.10)

∆V

∆AA
=

VAla3 − VAla1

3 AAs− 1 AA
(3.11)

We could extrapolate to a per-residue correction assuming only one peptide

group. If this correction needs to be in a protein where the ratio of peptide

groups to residues is ∼ 1, then it would make sense to add a correction to each

residue that only accounts for one peptide group. This extrapolation to the

�monopeptide� level would be:

Vmonopeptide = Vdipeptide −
∆V

∆peptide
× peptide (3.12)

Alternatively, if we want to extrapolate to the correction that, assuming a

linear trend in QM−MM artifacts per amino acid, would remove the artifacts

of having amino acids, we would want to extrapolate to zero amino acids:

VAla0 = VAla1 −
∆V

∆AA
× AA (3.13)

What's neat is that both of these equations involve exactly the same cal-

culations. The critical di�erence is the concept: either the correction is for a

system where the number of peptides is extrapolated to 1, or the correction

is for a system where the presence of amino acids is extrapolated away. The

former makes sense in terms of the essentials of molecular mechanics, not just

considering possible artifacts in the QM − MM comparisons. Likely, there's

some combination of factors at play.

Another way of conceptualizing this, is that the derivation of A0 parame-

ters serves to subtract o� the component of the per-residue energy error that

�uctuates with the number of residues or peptides. In other words, what is

being removed is the component of the error that is not linear with peptide
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length. One may arrive at the conclusion that this �uctuation in the per-residue

error is cooperativity�something that could be appropriate when simulating

peptides and proteins. But if this were the case, then it is surprising that in-

cluding the cooperativity of A3 and even of A1 could result in such egregious

behavior at the level of A5, where cooperativity should be greater than in A3

or A1.

More likely, these nonlinear errors may result from di�ering treatments

of nonbonded interactions between the QM and MM models in a vacuum or

in the context of di�erent implicit solvent models. These discrepancies would

not be inherent to alanine and may di�er in explicit solvent. A simplistic

hypothesis is that subtracting o� these nonlinear additions would result in

length-independent alanine backbone parameters that ought to depend less on

the exact details of how energy comparisons are performed.

Of course, there are some limitations to this approach. Firstly, some would

argue that larger fragments are more appropriate and that moving to an A0

training set is the opposite of what is desired. Force �elds, as might be argued,

should incorporate the cooperativity that the quantum mechanics may be ex-

hibiting. I would counter, as argued above, that these calculations have not

only true cooperative e�ects that, hypothetically, could yield a more robust

force �eld, but also contain artifacts resulting from imperfect treatment of

electron correlation, basis set incompleteness and superposition errors, di�er-

ent QM/MM charge/solvent modeling, and the di�erent preferred geometries

in the QM/MM comparison. Thus what's removed when one extrapolates to

A0 is not necessarily cooperativity that ought to be captured. Whether it is

better to subtract both cooperativity and such artifacts, or to maintain both,

remains to be shown below.

Secondly, assuming that one would want to attain A0 parameters, there's

no reason to expect that the extrapolation should be linear through A3 and A1.

I would concede that this may be true. One could evaluate the issue with scans

on A2, testing whether there even exists any simple trend from A1 to A3. In

the present work, however, we simply assume that the per-residue di�erences

being subtracted o� are those that are linear with peptide length. We test the

e�ects of this assumption later, and it turns out to be quite productive.
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And thirdly, performing tetrapeptide and dipeptide backbone potential

energy scans may be feasible for alanine, which is so small, but would become

very expensive with larger amino acids that also have multiple side chain

rotamers to consider. Thus, this method would appear to be ad hoc in the

worst sense, in that it's not even necessarily generalizable. I suggest, however,

as will be tested, that the trend in length-dependent di�erences for alanine

may not be altogether that di�erent for other amino acids. There may be

some physical justi�cation for expecting the A0−A1 di�erences to transfer to

other amino acids if one considers the view that the extrapolation moves from

the dipeptide to the monopeptide, and all amino acids form peptide bonds.

This assumption would imply that the principal nonlinearity in the energy

di�erences with respect to peptide length results from the hydrogen bond or

the dipole of helical conformations, rather than the identity or presence of side

chains. Still, extension to other residues may be a somewhat heuristic exercise

where the Ala o�set derived here is assumed to transfer, applied, and then

tested. A more rigorous treatment could include extensive QM calculations on

all other amino acids for which backbone corrections are to be derived. Here I

have only considered the former.

Ideally, A0 parameters would result in good agreement with A5, indicated

by low χ2 values on the order of �14SB's 0.90± 0.02 in TIP3P with the Orig

Karplus parameters. Such agreement would suggest that using quantum me-

chanics, with a few tricks, like implicit solvent and an extrapolation that has

some physical meaning, can produce parameters that are appropriate for sim-

ulations of peptides, and perhaps proteins, in aqueous solvent. As expected,

the helical destabilization in the A0 energy corrections relative to A3 and A1

corrections resulted in the lowest χ2 accessed by QM-derived parameters.

The A0 correction for one combination of methods that performed most

similarly to �14SB in A5 simulations�using MM structures for energy calcu-

lations without re-optimization (MM) in the context of water, including the

COSMO outlying charge correction (water*)�is displayed in Figure 3.15. Pane

C shows the A0 CMAP itself, whereas Pane D shows the di�erence between

the A1 CMAP (Pane B) and the A0 CMAP (Pane C). The di�erences from

A1 to A0 are small, less than 1 kcal mol−1 in magnitude. The notable feature
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is that these di�erences destabilize the α-helical region of the Ramachandran,

which is an expected result given the trend from A3 to A1.

The example shown in Figure 3.15C, the A0-grid-MM-water* parameters,

had a χ2 of 1.05± 0.02 in TIP3P solvent, or 0.96± 0.04 in OPC solvent, in

both cases using the Orig Karplus parameters. Histograms of φ and ψ of the

second residue are shown in Figure 3.16, where panes (A) and (B) illustrate

A0-grid-MM-water* parameters in TIP3P and OPC, respectively. Analogous

results, only for A1 parameters instead of A0 parameters, are shown in panes

(C) and (D).

Notably, the four Ramachandran pro�les in Figure 3.16 exhibit quite sim-

ilar shapes for the α, β, and ppII basins. Importantly, these shapes match

those illustrated by the PDB Figure 3.1 more closely than �14SB. To make

this comparison easier, Figure 3.17 contains just the Ala PDB histogram with

histograms of the third residue in Ala5 simulated with �99SB, �14SB, and A0

parameters. In particular, there is a more diagonal helical conformation with

anticorrelation between φ and ψ, and the sampling of conformations below

ppII on the Ramachandran map (φ,ψ ≈ −75◦, 75◦). This result is signi�cant

as this means that the details in backbone preferences found in experimental

structures can also be obtained from quantum mechanics.

The di�erence in the four Ramachandran pro�les in Figure 3.16 is that

the simulations derived for A0, as expected, exhibit less α-helix. Presumably,

further tweaking of the A0-MM-water* parameters, as was done for �14SB,

could result in slightly closer agreement with A5 scalar couplings, but the

Karplus parameters may be limiting in this comparison. Having a method

that can result in performance better than �99SB and similar to �14SB, I

instead turn to the point of this exercise. The method must be able to work

not only for alanine, which already agreed quite well with scalar couplings

when using �14SB. I apply the method to generate Val0 (V0) parameters,

using the A0− A1 o�set, as well as test whether the new alanine parameters

can reproduce the preferences suggested by experiments for valine.
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Figure 3.16: Ramachandran histograms of the second residue in A5, using
force �elds trained against MM-optimized structures in the context of water*,
with extrapolation to A0, simulated in (A) TIP3P and (B) OPC, and without
extrapolation (using A1 parameters), simulated in (C) TIP3P and (D) OPC.
The most lucid di�erence is that the A0 plots in (A) and (B) exhibit greater
sampling of ppII conformations, indicated by darker shading.
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Table 3.2: χ2 deviations from experimental scalar couplings [Graf et al., 2007]
for simulations of Ala5 in TIP3P solvent, according to Orig, Dft1, and Dft2
sets of Karplus parameters (described in text). Vacuum indicates training in
a vacuum, as expected, whereas water indicates PB solvation for MM and
COSMO solvation for QM, and water* indicates the same as water, except
with the outlying charge correction added to the COSMO energies. A0, A1,
and A3 models were developed based on grids of conformations.

Model Optimized Solvent Orig Dft1 Dft2

�99SB 1.74± 0.10 1.46± 0.02 1.56± 0.09
�14SB 0.90± 0.02 2.78± 0.20 1.26± 0.08

A0 MM vacuum 3.05± 0.27 4.00± 0.02 3.15± 0.21
A0 MM water 1.13± 0.01 2.94± 0.01 1.52± 0.02
A0 MM water* 1.05± 0.02 2.89± 0.03 1.45± 0.00
A0 MM/QM vacuum 3.37± 0.16 3.69± 0.02 3.26± 0.12
A0 MM/QM water 2.08± 0.05 2.48± 0.05 2.12± 0.07
A0 MM/QM water* 2.09± 0.03 2.48± 0.07 2.14± 0.05

A1 MM vacuum 3.61± 0.13 4.57± 0.03 3.71± 0.08
A1 MM water 1.85± 0.13 4.30± 0.20 2.49± 0.16
A1 MM water* 1.80± 0.09 4.22± 0.16 2.42± 0.12
A1 MM/QM vacuum 3.37± 0.44 3.42± 0.26 3.21± 0.39
A1 MM/QM water 1.98± 0.00 2.58± 0.06 2.00± 0.02
A1 MM/QM water* 2.13± 0.18 2.58± 0.10 2.12± 0.17

A3 MM vacuum 4.56± 0.20 6.05± 0.34 4.89± 0.27
A3 MM water 5.15± 0.26 9.04± 0.32 6.42± 0.29
A3 MM water* 5.05± 0.19 8.87± 0.27 6.29± 0.23
A3 MM/QM vacuum 4.04± 0.01 3.98± 0.12 4.15± 0.03
A3 MM/QM water 4.39± 0.01 6.82± 0.05 5.07± 0.01
A3 MM/QM water* 4.25± 0.18 6.57± 0.27 4.88± 0.22
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Table 3.3: χ2 deviations from experimental scalar couplings [Graf et al., 2007]
for simulations of Ala5 in OPC solvent, according to Orig, Dft1, and Dft2 sets
of Karplus curves (described in text). Model, Optimized, and Solvent columns
follow the same conventions as Table 3.2.

Model Optimized Solvent Orig Dft1 Dft2

�99SB 2.07± 0.42 1.73± 0.30 1.89± 0.42
�14SB 0.85± 0.02 2.72± 0.11 1.20± 0.03

A0 MM vacuum 2.72± 0.00 3.60± 0.17 2.77± 0.06
A0 MM water 1.01± 0.02 2.85± 0.07 1.39± 0.04
A0 MM water* 0.96± 0.04 2.71± 0.06 1.30± 0.05
A0 MM/QM vacuum 3.92± 1.10 3.93± 0.65 3.72± 0.98
A0 MM/QM water 2.23± 0.03 2.73± 0.09 2.40± 0.07
A0 MM/QM water* 2.18± 0.07 2.67± 0.11 2.33± 0.12

A1 MM vacuum 2.85± 0.08 3.47± 0.07 2.87± 0.10
A1 MM water 1.41± 0.02 3.63± 0.04 1.94± 0.03
A1 MM water* 1.26± 0.04 3.46± 0.06 1.77± 0.05
A1 MM/QM vacuum 3.64± 0.81 3.63± 0.51 3.47± 0.74
A1 MM/QM water 1.89± 0.05 2.41± 0.08 1.89± 0.09

A3 MM vacuum 3.61± 0.08 4.42± 0.09 3.67± 0.08
A3 MM water 3.90± 0.20 7.43± 0.00 4.97± 0.13
A3 MM/QM vacuum 3.95± 0.10 3.75± 0.14 4.03± 0.13
A3 MM/QM water 3.27± 0.17 5.03± 0.23 3.63± 0.19
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Figure 3.17: Histograms of alanine φ,ψ distributions based on (A) the
PDB [Lovell et al., 2003], or the third residue of Ala5 in simulations using
(B) �99SB, (C) �14SB, or (D) A0 parameters.
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Figure 3.18: Newman projections of the side chain rotamers of l-valine, named
for the dihedral angle between N and Cγ1: (A) trans (t); (B) gauche− (m);
and (C) gauche+ (p).

3.4 How do backbone parameters di�er for β-

branched valine?

As discussed above, an assumption from �94 through �99SB was that alanine

is an appropriate model to train backbone parameters for all non-glycine amino

acids that possess a β carbon. But scalar coupling results for �99SB and �14SB

suggest that alanine and valine may need separate parameters. The di�erences

implied by NMR scalar couplings for Ala3 and Val3 are corroborated by PDB

distributions (Figure 3.1).

I thus re�ned backbone parameters against Val1, applying the methodol-

ogy developed for alanine. First, I generated a grid of dipeptide (V1) confor-

mations, as was done for alanine. In this case, however, valine had not one

grid across φ and ψ, but three�for the t (trans), m (gauche minus), and p

(gauche plus) rotamers de�ned by Lovell et al. [2000], shown in Figure 3.18.

The absolute QM and MM energies, as well as their di�erences, are plotted in

Figure 3.19.

There are subtle di�erences among the QM−MM surfaces for di�erent ro-

tamers. It may be an issue that these backbone energy di�erences depend on

side chain conformation, and thus cannot be reproduced fully in the context

of all rotamers with a CMAP. To quantify the similarity of backbone errors

across rotamers, the root mean square deviations (RMSD) in backbone energy
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Figure 3.19: The V1 QM, MM, and QM-MM Ramachandran energy surfaces
for the t (A�C), m (D�F), and p (G�I) rotamers as de�ned by Lovell et al.
[2000].
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Figure 3.20: The V1 trans (A), gauche− (B), and gauche+ (C) QM−MM φ,ψ
di�erence maps minus the average di�erence map.

di�erences were calculated between di�erent side chain rotamers. This analysis

revealed that the trans conformation is more di�erent from the gauche confor-

mations (RMSD of 2.0 kcal mol−1 to gauche− and 1.7 kcal mol−1 to gauche+)

than the gauche conformations are from each other (RMSD of 1.3 kcal mol−1).

The QM−MM energy di�erence surfaces for each rotamer minus the average

energy di�erences are plotted in Figure 3.20.

The trans and gauche− rotamers di�er opposingly from the average,

whereas the gauche+ rotamer is closer to the average. In particular, whereas

the trans rotamer requires more destabilization when φ or ψ are 0◦ or 0◦, the

gauche− rotamer exhibits the opposite trend. One di�erence could be that the

trans rotamer has both side chain methyl groups gauche to the α-hydrogen,

whereas the gauche− and gauche+ rotamers have at least one methyl group

gauche to both the backbone N and C (Figure 3.18). It may be that in the

trans rotamer, the side chain methyls can't move away from the backbone as

easily to avoid steric clashes, as moving away from the backbone by eclipsing

the Hα would be accompanied by the two γ-methyls coming closer together.

Additionally, the gauche− rotamer requires the least amount of additional sta-

bility at φ = −60◦ (Figure 3.20). As this rotamer has both side chain methyl

groups gauche to the NH, it is possible that errors in steric clashes between

the methyls and the backbone NH are responsible for this di�erence. If these

factors are related to the side chain dependence in the backbone errors, then it
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is possible that updating some van der Waals parameters could bene�t trans-

ferability of a single backbone CMAP. Re�tting non-bonded parameters may

be important, but is beyond the goals established for this chapter. Which

parameters might be bene�cial to update is discussed in Section 3.6.

Despite the di�erences across rotamers, backbone energy comparisons

against QM for all rotamers suggest that the demarcations between β and

ppII are too well de�ned in �14SB, consistent with the suggestions of scalar

coupling and PDB comparisons. The average energies across φ and ψ for all

three rotamers according to QM and MM are shown in Figure 3.21A-B. The

QM−MM di�erences, shown in Figure 3.21C, include a higher β-ppII barrier

in the MM pro�le, as well as di�erent shaped basins. Notably, the energy dif-

ferences suggest that α and ppII need to exhibit more rugged features, such

as anticorrelation between φ and ψ in the α basin.

Applying a single valine correction is not as bad as the di�erences across

rotamers would suggest, as the average valine energy di�erence surface is closer

to the energy di�erence surfaces for each rotamer than the surfaces for each

rotamer are to each other. The trans, gauche−, and gauche+ energy maps

di�er from the average map by RMSDs of 1.2 kcal mol−1, 1.0 kcal mol−1, and

0.7 kcal mol−1, respectively. Thus a valine CMAP averaged over each rotamer,

though not perfect, may still be a reasonable model for the valine energy

surfaces.

To follow the alanine protocol of extrapolating to the monopeptide level,

extrapolation to a V0 correction was the next goal. Adding the V1 CMAP and

the A0−A1 o�set yielded the V0(A) CMAP, where the (A) signi�es usage of

the alanine zero-length o�set. This CMAP is illustrated in Figure 3.21D. Here

the alanine extrapolation is assumed to apply to valine.

A question that arises is whether the Ala1 (A1) correction map also repro-

duces the V1 energy surfaces reasonably well. This was assessed by calculating

RMSDs between the A1 and V1 di�erence maps. Intriguingly, the RMSDs

between the A1 di�erence map and the V1 di�erence maps for each rotamer

are comparable to the RMSDs between the V1 di�erence maps for di�erent

rotamers. The RMSDs from the A1 di�erence map to the V1 trans or gauche−

maps are both 1.4 kcal mol−1, whereas the RMSD from the A1 di�erence map
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Figure 3.21: The average (A) QM and (B) MM energies, averaged for all three
rotamers, of V1 across φ and ψ. (C) the di�erence between the average QM
and MM pro�les, and (D) the di�erences extrapolated to V0 using the A0−A1
o�sets.
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to the gauche+ map is 1.3 kcal mol−1. Thus the di�erences between the energy

map for alanine and the energy maps for valine rotamers are smaller than

the di�erences between valine rotamers. It should be noted, however, that the

average valine map is still closer to the di�erent rotamer maps than is the

alanine map.

The important question still remains of how the alanine and valine cor-

rection surfaces di�er, and whether they are consistent with the sampling

suggested by scalar couplings [Graf et al., 2007] and PDB distributions [Lovell

et al., 2003]. The QM−MM energy di�erences (and thus CMAPs) for A1 were

subtracted from the energy di�erences for V1, with the result graphed in Fig-

ure 3.22. There is a trend that conformations with φ ≈ −120◦ are stabilized

for valine more than for alanine. Speci�cally, the valine correction stabilizes

φ = −120◦ relative to φ = −60◦ more than alanine by 0.5± 0.2 kcal mol−1.

This di�erence is contrary to the �14SB increase in the β-ppII barrier for va-

line, and is consistent with the erroneous decrease in V3 HNHα scalar couplings

accompanying �14SB.

CMAPs for V1, V0(A), and A0 were used to simulate V3, along with �99SB

and �14SB. The Ramachandran histogram of residue 2 for each force �eld is

plotted in Figure 3.23. Notably, the shapes of the conformational basins look

similar for simulations with the V1 and V0 CMAPs, but both look di�er-

ent from the shapes with �99SB and �14SB, which themselves look similar.

Whereas �99SB and �14SB both have de�ned β and ppII populations with a

barrier between them, the V1 and V0 force �elds exhibit a continuous gradient

of population from ppII, decreasing across toward β. Additionally, �99SB and

�14SB both sample a helical basin that is wide across φ, sampling from∼ −60◦

to ∼ −150◦, whereas the new force �elds sample a more conservative helical

basin terminating around −120◦. Additionally, subtleties like the less rounded

boundaries of the secondary structure population contours are consistent with

the PDB distributions shown in Figure 3.1 and Figure 3.23F. Histograms of

the PDB distribution [Lovell et al., 2003] and the second residue in Val3 ac-

cording to �99SB, �14SB, and V0(A) are brought together in Figure 3.24 to

facilitate this comparison.
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Figure 3.22: A map of the di�erences from the alanine CMAP to the valine
CMAP.
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Figure 3.23: Ramachandran φ/ψ histogram of residue 2 of Val3 with (A)
�99SB, (B) �14SB, (C) V1-MM-water*, (D) V0(A)-MM-water*, and (E) A0
force �elds, as well as (F) a histogram of valine conformations according to
Lovell et al. [2003]. Note the lack of a β-ppII transition in the new valine-based
force �elds (panes C and D), whereas with the A0 parameters there is some
energy separation between ppII and β.
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Figure 3.24: Histograms of valine φ,ψ distributions based on (A) the
PDB [Lovell et al., 2003], or the second residue of Val3 in simulations using
(B) �99SB, (C) �14SB, or (D) V0(A) parameters.
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Table 3.4: The χ2 error for Val3 scalar couplings in TIP3P solvent according
to Orig, Dft1, and Dft2 Karplus parameters

Force �eld Orig Dft1 Dft2

�99SB 1.08± 0.17 1.64± 0.13 1.25± 0.19
�14SB 1.31± 0.03 4.48± 0.32 2.14± 0.12

A0 1.09± 0.16 4.19± 0.07 1.94± 0.13

V1 1.04± 0.01 3.90± 0.07 1.74± 0.04
V0(A) 0.97± 0.03 3.66± 0.08 1.60± 0.02

The new force �elds don't only have a histogram that re�ects the PDB dis-

tribution in overall shape, but also better reproduce V3 scalar couplings than

�14SB, with the V0(A) parameters performing comparably to �99SB (Ta-

ble 3.4). Notably, the �99SB χ2 with the Orig Karplus parameters was

1.08± 0.17, whereas that for V0(A) was 0.97± 0.03, lower on average but

well within error bars. This result is important, as it suggests that a single

protocol can achieve χ2 of ∼ 1 for both alanine and valine, as was not the case

in �99SB or �14SB. The performance with the A0 parameters is also compa-

rable to �99SB, but with high uncertainties is yet di�cult to compare against

the V0(A) parameters. Further testing of these parameters will require more

sampling of small systems like Val3, as well as larger systems.

3.5 Conclusion

We demonstrated that quantum mechanics, with the appropriate manipula-

tions, can generate energy surfaces for alanine and valine that fare well against

small peptide scalar couplings. The conformational preferences displayed by

these new force �elds have a φ/ψ distribution more similar to those of the

PDB [Lovell et al., 2003]. To achieve this agreement, implicit solvent in the

training set energy calculations and extrapolation of parameters to those ap-

propriate for a �zero-length� peptide were needed, as well as �tting by CMAPs.

The performance in amino acids with diverse preferences like alanine and va-

line suggests a protocol that can be extended to other amino acids.
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3.6 Future directions

The work of this chapter seeks to answer a very speci�c question: whether

quantum mechanics, used in light of the insights gained in Chapter 2�that

full conformational sampling (not just minima, with variations across multi-

ple dihedrals) is important, that the details in the QM and MM calculations

matter, and that additional parameters can be assigned for speci�c residues�

can help further improve the backbone corrections employed in force �elds

like �14SB. But it leaves many questions unanswered. The questions that the

author feels are most important are discussed below.

Firstly, the COSMO versus PB comparison, which is at the heart of the

positive results for A0 and V0(A) CMAPs, needs to be examined in more

detail. In the preceding sections, I used all options that were recommended

for each method. This included radii, that were thus allowed to di�er between

COSMO in the QM calculations, and PB in the MM calculations. This can

result in artifacts between the MM and QM calculations that aren't even

because of di�erences between PB and COSMO, but arise simply because the

solvent cavity being treated is not the same in both models.

To examine this brie�y, I recalculated the solvated MM training energies

for Ala and Val, constructing the PB solvent cavity with the atomic radii

employed by COSMO. The correction maps for the MM structures with im-

plicit solvent presented before are again presented alongside the correction

maps where COSMO radii are used in the QM and MM calculations, along

with the di�erence between the two maps, for Ala in Figure 3.25 and for

Val in Figure 3.26. The CMAPs derived using cosmo radii are labeled with

the su�x `.cosmoradii,' hence these corrections are either A0.cosmoradii or

V0(A).cosmoradii. The COSMO radii are larger than the bondi radii gener-

ally employed by PB; thus the helical hydrogen bond may be less shielded with

the COSMO radii. Given the expected reduction in hydrogen bond shielding,

it is not surprising that the energy surfaces derived from these new MM en-

ergies for Ala3 do not require nearly the same helical stabilization relative to

QM. Thus it is likely that the choice of radii, at least inasmuch as they are

the same between both solvation models, is highly relevant.
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Table 3.5: χ2 deviations from experimental scalar couplings [Graf et al., 2007]
for simulations of Ala5 in TIP3P solvent, according to Orig, Dft1, and Dft2
sets of Karplus parameters (described in text).

Model Orig Dft1 Dft2

A0.cosmoradii 1.32± 0.05 3.08± 0.05 1.69± 0.06
A1.cosmoradii 1.59± 0.05 3.54± 0.16 2.03± 0.09
A3.cosmoradii 3.12± 0.04 5.71± 0.06 3.83± 0.05

Table 3.6: χ2 deviations from experimental scalar couplings [Graf et al., 2007]
for simulations of Ala5 in OPC solvent, according to Orig, Dft1, and Dft2 sets
of Karplus parameters (described in text).

Model Orig Dft1 Dft2

A0.cosmoradii 1.13± 0.06 2.80± 0.02 1.45± 0.04
A1.cosmoradii 1.19± 0.00 2.93± 0.07 1.52± 0.03
A3.cosmoradii 2.10± 0.48 4.35± 1.14 2.63± 0.61

The reduction in A3 χ2 resulting from using the same radii is noteworthy.

As shown in Table 3.5 for TIP3P solvent and in Table 3.6 for OPC solvent, the

χ2 was reduced roughly 40%. The χ2 for A1.cosmoradii parameters, however,

is comparable to that for A1 parameters. This would suggest that the limi-

tation in the tetrapeptide could relate to the e�ects of di�erent PB radii on

the helical hydrogen bond. The results with A3.cosmoradii still do not achieve

the same level of reproduction of scalar couplings as A1.cosmoradii or �99SB,

however. Also, A0.cosmoradii parameters perform better than A1.cosmoradii

or A3.cosmoradii parameters in TIP3P solvent, although in OPC solvent the

A0.cosmoradii and A1.cosmoradii parameter sets achieve similar χ2 within

error bars. The valine χ2 with parameters derived using the COSMO radii

(Table 3.7) are also similar to the parameters derived using di�erent radii for

PB and COSMO. Whether the monopeptide parameters derived from energies

calculated using the COSMO radii are more reliable than monopeptide param-

eters using di�erent radii is not clear from this test. But evaluating di�erent

radii in the training calculations could be bene�cial.

A second issue is that these parameters have been tested only on small
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Figure 3.25: The correction maps for (rows) Ala3, Ala1, and Ala0, according
to (columns) calculations using recommended radii for each solvation model,
calculations using the recommended radii for COSMO, and the di�erence from
the correction using di�erent radii to the correction using COSMO radii.

Table 3.7: The χ2 error for Val3 scalar couplings in TIP3P solvent according
to Orig, Dft1, and Dft2 Karplus parameters

Force �eld Orig Dft1 Dft2

V1.cosmoradii 1.15± 0.14 3.65± 0.02 1.75± 0.14
V0(A).cosmoradii 0.95± 0.01 3.38± 0.02 1.55± 0.02
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Figure 3.26: The correction maps for (rows) Val1 and Val0, according to
(columns) calculations using recommended radii for each solvation model, cal-
culations using the recommended radii for COSMO, and the di�erence from
the correction using di�erent radii to the correction using COSMO radii.
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model systems. It of the utmost importance to perform more extensive valida-

tion on larger systems including full-length proteins, and especially to ascertain

the e�ects on the stability of molecules like the ones used by Hai Nguyen and

me previously [Nguyen et al., 2014]. A limited validation is presented here,

with simulations of lysozyme with the new parameters being compared to

simulations of lysozyme with �14SB. Lysozyme had an issue previously as dis-

cussed in Chapter 2. The issue in the side chain sampling was most prominent

in Q41 χ1 scalar couplings deviating from the experimental measurements.

But there was also an issue with β-branched amino acids, particularly T43

and T69, having HNHα scalar couplings that were too low (5.9± 0.2 Hz and

5.2± 0.3 Hz for T43 and T69, respectively, with �14SB, compared to 9.3 Hz

for both experimentally [Schwalbe et al., 2001]). This was concerning as the

�99SB scalar couplings were already lower than experiment (7.4± 0.4 Hz and

6.3± 0.4 Hz for T43 and T69, respectively), and the agreement was worsened

with the updated parameters. One question, then, is whether the new back-

bone parameters might adjust the backbone sampling of these threonines, po-

tentially increasing the HNHα scalar couplings and improving Q41 χ1 scalar

couplings, as well. Depending on which sets of parameters were used, T43

and T69 backbone scalar couplings are improved. With the A0 parameters

applied to all non-glycine residues, the T43 and T69 HNHα scalar couplings

improve from �14SB to 7.1± 1.4 Hz and 6.0± 0.2 Hz, respectively. With the

A0.cosmoradii parameters, the HNHα scalar couplings improve to 8.0± 0.3 Hz

and 6.4± 0.3 Hz for T43 and T69, respectively. Meanwhile, Q41, which had an

average normalized error (ANE, Equation (2.11)) of 0.17± 0.05 with �99SB

and 0.29± 0.06 with �14SB, had an ANE of 0.19± 0.05 with �A. With the

�A.cosmoradii parameters, however, the ANE remained at around 0.28± 0.10.

These results show promise, but are not very well converged, and may depend

on an issue brie�y discussed in the next paragraph.

One important issue related to this analysis is whether the lysozyme crystal

structure [Young et al., 1993] is a good starting point for dynamics simulations

meant to be compared against NMR. In particular, the region of lysozyme

from D66 to L83, which includes T69 and I87, has an RMSD between the

NMR [Schwalbe et al., 2001] and crystal structure [Young et al., 1993] of
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2.1± 0.2Å (reported uncertainty is the standard deviation in the RMSD to

the crystal structure across the 50 NMR structures), when the whole protein

backbone (N, Cα, and C atoms) is aligned to the crystal structure. Some of

the disagreement with NMR measurements may arise from the in�uence of the

initial structure. This should be investigated further.

A third issue is that the backbone correction for valine depended on the

side chain rotamer. This may arise from limitations in the �14SB non-bonded

parameters inherited from �94. The author did a very simple analysis to inves-

tigate the van der Waals radii. Given the potential weaknesses observed in the

steric interactions between the side chain methyl groups (CT and HC atom

types) and the backbone O and H (with atom types O and H, respectively),

the radii of each of the HC, CT, O, and H atoms was reduced by 1% or 10%,

to examine whether lessening of steric clashes between the side chain γ-methyl

groups and the backbone may be helpful. These reductions in van der Waals

radii were evaluated by recalculating the energies of the valine conformations

minimized with �14SB. A better, but more expensive option, would be to re-

minimize the conformations with the new van der Waals radii and calculate

new QM energies based on the new set of conformations. This could be im-

portant because changing van der Waals interactions would likely a�ect the

bonded degrees of freedom, such as angle bending, and should be done when

this issue is investigated further.

To evaluate the limited tests that are performed here, simply measuring

whether each change reduced the absolute error would not be adequate, as the

highly trained dihedral parameters of �14SB may be compensating for some

weaknesses in nonbonded parameters. Thus, more accurate nonbonded ener-

getics could potentially worsen agreement with QM. Instead, it is desirable

to see that the backbone errors are similar across rotamers. This is measured

by the side chain dependence (SCD) in the backbone errors. Much like the

backbone dependence (BBD, Equation (2.7)) de�ned for side chain errors in

the context of multiple backbone conformations, this is not a measure of the

quality of the existing �t, but rather the potential ability to �t a single cor-

rection for all rotamers simultaneously. One important distinction from BBD

is that SCD requires evaluation over more than two rotamers (rather than
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α and β backbone contexts for BBD), so simply taking the di�erences in

the relative errors between two rotamers won't su�ce. Instead, the average

di�erence in relative errors for all pairs of rotamers is computed. Thus the

SCD was calculated as in Equation (3.14), where Nsc is the number of side

chain rotamers, a and b are pairs of side chain rotamers, Nbb is the num-

ber of backbone conformations, i and j are pairs of backbone conformations,

and REE(i, j)a = (EMM
i,a − EMM

j,a ) − (EQM
i,a − E

QM
j,a ) is the relative energy error

(�rst de�ned for di�erent side chain conformations in Equation (2.1)) between

conformations i and j compared to QM, in the context of rotamer a.

SCD =
2

Nsc(Nsc − 1)

Nsc∑
a

∑
b<a

2

Nbb(Nbb − 1)

Nbb∑
i

∑
j<i

|REE(i, j)a − REE(i, j)b|

(3.14)

The SCD was used to evaluate the ��ttability� of the valine backbone pa-

rameters when each of the atom types, H or O in the backbone, and CT or HC

in the side chain methyl, was reduced by 1% or 10%. As shown in Table 3.8,

a 10% reduction in van der Waals radii is likely too extreme, causing SCD to

increase in most cases, indicating less congruence between di�erent rotamers.

On the other hand, a 1% reduction in the van der Waals radius of any of the

atom types reduced the SCD. Although the reduction is not huge (at most

6%, for reduction of the H van der Waals radius), this comparison does not

exhaustively search for optimal van der Waals radii, and only considers one

atom type at a time. A more thorough evaluation should involve more possi-

ble changes to the van der Waals radii, as well as combinations of changes to

multiple atom types.

Ideally, once the above issues are resolved, one would apply the parame-

terization process to each amino acid individually. Having a separate set of

parameters for each amino acid is an attractive option, as it would maximize

the capacity to describe the sequence-dependent backbone preferences that

are needed to connect primary to tertiary structure. The largest amino acids,

and therefore the least conducive to ab initio QM calculations, have dozens

of rotamers, however. Arginine, for example, has 34 side chain rotamers listed
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Table 3.8: The side chain dependence (SCD, Equation (3.14)) with energies
calculated using �14SB (Atom type modi�ed = None), or derivatives where
van der Waals radii of atom types HC, O, CT, or H are reduced by 1% or 10%.

SCD (kcal mol−1)
Atom type modi�ed 99% radii 90% radii

None 1.31 1.31
HC 1.25 1.37
O 1.25 1.37
CT 1.27 1.57
H 1.23 1.24

by Lovell et al. [2000]. Thus, backbone parameters for arginine would require

19 584 QM calculations to sample φ and ψ at each rotamer. Assuming sus-

tained availability of 200 CPUs and that each calculation may take on the

order of 10 h to complete, this set of calculations would take roughly 41 d.

Considering arginine is just one of the twenty natural amino acids (albeit the

most expensive one), it may be desirable to �rst group the amino acids based

on common characteristics, before undertaking such a comprehensive and com-

putationally expensive protocol as deriving unique parameters for each amino

acid.

A possible arrangement of amino acids might be hypothesized by examining

the PDB distributions of each [Lovell et al., 2003]. The φ distribution of each

amino acid and H−Hα scalar couplings, calculated using the Hu and Bax [1997]

Karplus equation evaluated for each φ angle contributing to the histogram, are

depicted in Figure 3.27. While this scalar coupling calculation is across many

di�erent residues in various proteins and therefore nonphysical, it suggests that

alanine should exhibit lower H−Hα scalar couplings (6.3 s−1) than valine (7.8

s−1), and in fact, valine should have the second highest H−Hα scalar couplings.

These values correlate quite well with NMR data for the second residues of Ala3
(5.68± 0.03 s−1) and Val3 (7.94± 0.02 s−1) [Graf et al., 2007]. Interestingly,

the highest backcalculated H−Hα scalar couplings are for threonine at 7.9 s−1,

with isoleucine nearby at 7.7 s−1. This similarity in sampling of all β-branched
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Figure 3.27: The φ histogram of each amino acid based on the conformations
listed by Lovell et al. [2003]. The 3JH−Hα scalar coupling in the upper right
corner of each graph was calculated based on each distribution using the Hu
and Bax Karplus parameters [Hu and Bax, 1997].

amino acids suggests that, based on the in�uence of the branch at the β-

carbon, threonine and isoleucine may be grouped together with valine.

But alanine and valine (together with isoleucine and threonine) are confor-

mational outliers. Many residues exhibit conformational preferences between

those of alanine and valine (Figure 3.27). Additionally, whereas alanine only

has a β-carbon, and therefore no χ side chain dihedrals, valine only has γ-

carbons, and therefore only χ1. Meanwhile, many amino acids have longer side

chains. It may be more appropriate to use a residue or set of residues other

than alanine or valine to derive parameters for non-alanine, non-β-branched

amino acids. The question becomes which of the amino acids with one heavy
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Table 3.9: The possible composition of a future force �eld based on the method
derived, applied to all amino acids in the left column, to yield parameters for
the corresponding amino acids in the right column

AA derived from AA(s) applied to

Ala Ala
Val Val · Ile · Thr
Pro Pro
Gly Gly
Leu Leu

Cys · Ser · Asn · Gln
Phe · Tyr · Trp · His
Asp · Glu
Lys · Arg
Met

atom at the side chain γ position, and perhaps at the δ position as well, would

be suitable.

One residue that appears to be a well-suited model is leucine. Its conforma-

tional preferences are nearly halfway between alanine and valine, as measured

by the HNHα scalar coupling. It is also uncharged, lessening potential con-

cerns about non-bonded artifacts in QM/MM comparisons and improving the

chances that the A0 extrapolation can be safely applied. Importantly, having

only two side chain dihedrals, Lovell et al. have only listed �ve rotamers for

leucine [Lovell et al., 2000]. Thus it is tractable for backbone corrections to be

derived in the context of all �ve rotamers. As a �rst step, therefore, I propose

a force �eld with the composition outlined in Table 3.9.

This landscape may still task leucine with too much responsibility, if the

many amino acids assigned to it have residue-speci�c preferences that cannot

be modeled adequately with the scheme in Table 3.9. If extensive test simula-

tions suggest that certain residues have systematic deviations from experiment

with leucine parameters, groups may be further separated. Each row for leucine

(Leu) in Table 3.9 could comprise its own group, including leucine (by itself),

polar amino acids, aromatics, acids, bases, and methionine (by itself, or per-

haps grouped with leucine). This would be a large undertaking, and therefore
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I recommend a stepwise protocol, making sure that each step is justi�ed and

only adding more �tting calculations as needed. It is still possible that the

protocol derived here may encounter problems with some of the amino acids

like the charged lysine, for example.

Ultimately, the necessity of these or other demarcations would need to be

evaluated in more detail. To avoid prohibitive computation by reducing the

load of costly QM calculations, appropriate residue groupings could be iden-

ti�ed by comparing innate preferences of each amino acid in a small peptide

to that residue's PDB distribution [Lovell et al., 2003]. It may be the case,

for example, that Asp is better grouped with Asn than with Glu, or that

neither grouping makes more sense than another. On the other hand, when

training data can be obtained for all amino acids, it may be desirable to have

an individual CMAP correction for each.

Once the appropriate parameter partition is identi�ed, I feel that the pro-

tocol demonstrated for alanine and valine may be a useful means of obtain-

ing quality training data using quantum mechanics. Compared to the �14SB

model partitioning amino acids into glycine and everything else, this should

allow greater reproduction of sequence-dependent backbone preferences.

173



Chapter 4

Implications

I have shown that quantum mechanics can be successfully applied to enhanc-

ing the accuracy of molecular mechanics force �elds based on �99SB [Hornak

et al., 2006]. As described in Chapter 2, comprehensive �tting of molecular

mechanical side chain dihedral parameters against quantum mechanics (QM)

energy pro�les can enhance accuracy as measured by side chain scalar cou-

plings, as well as improving secondary structure preferences. Furthermore,

Chapter 3 presented a quantum mechanics-based �tting method that shows

promise for improving the backbone potential energy surface beyond the many

small tweaks [Best and Hummer, 2009, Li and Brüschweiler, 2011, Maier et al.,

2015] applied to �99SB. These accomplishments have implications for force

�eld development as well as for protein folding and structure prediction.

A longstanding challenge to the biophysical community is to predict the

folding of a protein's tertiary structure based solely on its primary sequence.

The most successful e�orts at structure prediction have included a blend of

bioinformatic and physics-based approaches. For example, Rosetta employs a

number of statistical rules to predict secondary structure motifs and then op-

timizes the arrangement of those motifs using physics [Simons et al., 1999].

Simulation-based methods that incorporate even a relatively sparse set of na-

tive contacts (e.g. from NOEs) have also been successfully applied to protein

structure prediction [Perez et al., 2013].
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Although information-based methods like Rosetta and Meld enjoy success

at prediction of three-dimensional structures in competitions like CASP, suc-

cessful folding to the correct three-dimensional structure using physics alone

remains a di�cult endeavor because of two simultaneous requirements. First,

the employed physics model needs to be fast enough to predict the folding

that typically occurs on the supra-microsecond, and even supra-millisecond,

timescale. Second, a physics model of su�cient speed must also be accurate

enough to select a single native protein structure of many possible alterna-

tives that through a random search, as may be approached by a model that

does not favor the native state, would not be found within the age of the

universe [Levinthal, 1969].

The tertiary structure of a protein is encoded in its primary structure. As

side chains are what di�erentiate the amino acids that comprise a protein's pri-

mary structure, I expect that the side chain parameter modi�cations presented

here could have important implications for prediction of protein structure and

stability.

For example, the GB-Neck2 implicit solvent model [Nguyen et al., 2013]

that was recently developed in the Simmerling lab was paired with the updated

side chain parameters presented in Chapter 2, and applied to the folding of

seventeen proteins of varying topologies (α, β, or both) from 10 to 92 amino

acids long [Nguyen et al., 2014]. Sixteen of seventeen proteins folded to the

correct native structure. For fourteen of the seventeen proteins, this native

structure was the preferred conformation. To our knowledge, this is the �rst

time a physics-based force �eld has been so successfully paired with a physics-

based implicit solvent model without explicitly depending on cancellation of

error, and especially having been applied to a benchmark of proteins of such

diversity.

What's noteworthy is that �14SBonlysc was used partly because the native

conformation [Freddolino et al., 2008] of one system, Fip35 [Liu et al., 2008],

was not stable in simulations with �99SB at 325 K, unfolding within hundreds

of nanoseconds. To examine further, I simulated Fip35 starting from the native

conformation for 4 runs each with �99SB and �14SBonlysc, extending each

simulation to 18µs, at 325 K, following all the same simulation parameters
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Figure 4.1: Histograms of the backbone (N, Cα, C) RMSD to the native struc-
ture of Fip35 for four simulations each with �99SB (red) and �14SBonlysc
(blue).

used in the protein folding study [Nguyen et al., 2014], most notably GB-

Neck2 implicit solvent with mbondi3 radii [Nguyen et al., 2013], 4 fs time step

with hydrogen mass repartitioning [Feenstra et al., 2002], and the Langevin

thermostat [Cies-gravela et al., 2001] with collision frequency γ = 1.0 ps−1. To

quantify the reproduction of the native structure, I calculated the RMSD of

the backbone (N, Cα, C) of residues 10�28, including the two hairpins but not

the long, �exible termini. These simulations con�rmed the initial �99SB test.

Histograms of the RMSD (Figure 4.1), removing the �rst 6 µs that include the

initial folded state, illustrate that �99SB exhibits almost no conformations <2

Å RMSD during the latter 12µs, whereas �14SBonlysc exhibits a well-de�ned,

if small, peak. To be clear, simulations with both force �elds are predominantly

unfolded. But the �14SBonlysc simulations capture the native conformation

in the structural ensemble, which did not happen with �99SB. This suggests

that the revised side chain parameters are able to improve protein stability

dramatically, though there still may be room for improvement in, for example,

the backbone parameters.

A truly accurate force �eld should not only distinguish the native fold from
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unfolded conformations for varying protein sequences, but should also repro-

duce the sensitivity of structure to single amino acid substitutions in a family

of related sequences. Koushik Kasavajhala has been studying TrpCage and

several variants whose experimental folding characteristics have been shown

to change with mutation of only a single residue. Accurate reproduction of

this folding sensitivity would suggest reliable modeling at the level of indi-

vidual amino acids. In his preliminary studies, he has found that �14SB and

�14SBonlysc best reproduce the structural di�erences observed experimen-

tally when speci�c residues are mutated. Thus, the updated side chain correc-

tions common to both force �elds impart structural preferences with enhanced

sequence-speci�city at �ne granularity.

When it comes to training force �eld parameters, the question of what is a

good target is fore. There is some debate over the continued utility of QM as

a target as MM models mature and the required accuracy becomes higher. In

CHARMM force �eld development, it is typical to employ quantum mechanics

only in conjunction with empirical adjustments against, for example, crystal

structures [MacKerell et al., 2004a, Best et al., 2012]. In Chapter 3, I examined

whether training to match quantum mechanics energies might still be a viable

option for improving backbone parameters, as it was in �99SB [Hornak et al.,

2006].

What I found, as for training side chain parameters, is that many details

in how the QM and the MM calculations are performed can play pivotal roles

in the e�cacy of the resulting parameters. For example, training in vacuum

against tetrapeptides can lead to parameters that strongly promote helical

stability, compromising agreement with NMR scalar couplings [Graf et al.,

2007]. But I was able to �nd combinations that yielded excellent agreement

with the NMR data. Notably, these combinations involved the use of implicit

solvent in the energy evaluations, as well as extrapolation of parameters to

those appropriate for zero-length peptides, and use of coupled correction maps

(CMAPs [MacKerell et al., 2004b]). I argue that the success of this quantum

mechanical approach for alanine and valine suggests that quantum mechan-

ics should continue to play a role in force �eld development, especially when

moving to highly speci�c parameterizations where each amino acid may have
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its own backbone parameters. Ultimately, Chapters 2 and 3 provide a means

of enhancing the structural code in simulations. The rise of tertiary structure

from primary sequence can thus be probed in silico in greater detail and with

higher accuracy.
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Appendix A

Additional �14SB analysis

This appendix shows the sampling of �99SB and �14SB in terms of φ and
ψ 2d histograms (Figures A.1 to A.5). Most φ/ψ distributions are roughly
equivalent. Only occasionally �14SB drives the sampling toward φ = −60◦.

Also shown are RMSDs and RMSD histograms in terms of probability
density function, and cumulative distribution function (Figures A.6 to A.9).
Although RMSD histograms are generally comparable, within error bars, there
are some slight qualitative di�erences. Most noticeably, lysozyme backbone
RMSDs �uctuate for every force �eld but �14SB, even �14SBonlysc. But for
�14SB, as depicted in the histograms, the RMSD remains quite low, below 1Å
except for one excursion to a max of about 2Å for less than 10 ns in run 3. Due
to large uncertainties for other force �elds, it is unclear how signi�cant this
di�erence is quantitatively. Additionally, it is unclear whether �14SB might be
trapped in the crystal structure, whereas other force �elds may have found a
conformation that is sampled in solution. Still, all force �elds sample RMSDs
predominantly below 2Å for all systems.
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A.1 Protein Ramachandran histograms
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Figure A.1: Ramachandran histograms of each residue in GB3 from four simu-
lations each with �99SB (red) and �14SB (blue). Vertical and horizontal lines
indicate the experimental φ and ψ, respectively.
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Figure A.2: Ramachandran histograms of each residue in bovine pancreatic
trypsin inhibitor from four simulations each with �99SB (red) and �14SB
(blue). Vertical and horizontal lines indicate the experimental φ and ψ, re-
spectively.
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Figure A.3: Ramachandran histograms of each residue in ubiquitin from four
simulations each with �99SB (red) and �14SB (blue). Vertical and horizontal
lines indicate the experimental φ and ψ, respectively.
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Figure A.4: Ramachandran histograms of each residue in lysozyme from four
simulations each with �99SB (red) and �14SB (blue), for residues 2 to 100.
Vertical and horizontal lines indicate the experimental φ and ψ, respectively.
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Figure A.5: Ramachandran histograms of each residue in lysozyme from four
simulations each with �99SB (red) and �14SB (blue), for residues 101 to 128.
Vertical and horizontal lines indicate the experimental φ and ψ, respectively.
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A.2 Protein backbone RMSDs

Figure A.6: GB3 backbone (N, Cα, C) RMSD to 1P7E [Ulmer et al., 2003]
for four runs of �99SB (top row, gray), �99SB-ILDN (second row, green),
�14SBonlysc (third row, blue), and �14SB (fourth row, purple). The prob-
ability density function (pdf) and cumulative distribution function (cdf) are
plotted for each force �eld in the bottom row.
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Figure A.7: BPTI backbone (N, Cα, C) RMSD to 5PTI [Wlodawer et al.,
1984] for four runs of �99SB (top row, gray), �99SB-ILDN (second row, green),
�14SBonlysc (third row, blue), and �14SB (fourth row, purple). The proba-
bility density function (pdf) and cumulative distribution function (cdf) are
plotted for each force �eld in the bottom row.
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Figure A.8: Ubiquitin backbone (N, Cα, C) RMSD to 1UBQ [Vijay-Kumar
et al., 1987] for four runs of �99SB (top row, gray), �99SB-ILDN (second row,
green), �14SBonlysc (third row, blue), and �14SB (fourth row, purple). The
probability density function (pdf) and cumulative distribution function (cdf)
are plotted for each force �eld in the bottom row.
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Figure A.9: Lysozyme backbone (N, Cα, C) RMSD to 6LYT [Young et al.,
1993] for four runs of �99SB (top row, gray), �99SB-ILDN (second row, green),
�14SBonlysc (third row, blue), and �14SB (fourth row, purple). The proba-
bility density function (pdf) and cumulative distribution function (cdf) are
plotted for each force �eld in the bottom row.
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Appendix B

�12SB versus �14SB

The �12SB that was bundled with AMBER12 [Case et al., 2005, 2012] dif-
fers from �14SB presented here in three ways. First, in an e�ort to reduce
the degree of in vacuo non-bonded interactions in the �12SB training set�
particularly between side chain and backbone, as might arise when polar atoms
deviate from planarity�all possible four-atom dihedrals were frozen. This had
the unfortunate e�ect of locking angles centered on branching atoms, actu-
ally worsening steric clashes and limiting agreement with quantum mechanics
energies. By restraining only one dihedral per rotable side chain bond in the
�14SB training set, we achieved a �ner �t to quantum energies and better
agreement with experimental scalar couplings.

Second, in �12SB corrections with periodicities corresponding to their o�-
sets around a bond were allowed to di�er. As corrections with such a relation
have the ability to cancel, many of these corrections had large and potentially
arbitrary magnitudes. In very small peptides, χ1 corrections were observed
to alter the relative positions of the main chain N and C, a�ecting backbone
dynamics in ways that are di�cult to predict. Therefore, corrections that are
in phase were forced to be identical in �14SB.

Third, �12SB side chain corrections allowed phase shifts other than 0°
or 180°. While this permitted better agreement with quantum energies, it
prohibits use of the same parameters as molecules change chirality. Therefore,
�14SB corrections only employ 0° or 180° phase shifts.

The di�erence in �12SB and �14SB training sets is signi�cant for a few
residues. In Supplementary Figure 1, we show the errors of �12SB and �14SB
against the sets of energies used to train each. Naturally, errors are lowest for
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Figure B.1: The errors of �12SB and �14SB against the quantum mechanics
energies used to train �12SB (A) and �14SB (B).

each force �eld against its own training set. But �12SB reproduces the en-
ergies of several residues in the �14SB training set notably poorly. Whereas
�14SB is at most 1.2± 0.1 times the error of �99SB (for threonine) against
the �12SB training set, �12SB has 2.2± 0.4 times the error of �99SB against
�14SB phenylalanine targets. After that, �12SB has 1.8± 0.0 times the error
for valine, 1.7± 0.1 times for tryptophan, and 1.4± 0.2 times for threonine.
The �12SB training generated parameters less appropriate for the �14SB tar-
get energies of several residues than �99SB.

What's important is how such di�erences in the training a�ect accuracy of
simulations in real systems. In Supplementary Figure 2, we illustrate some of
these di�erences in GB3, ubiquitin, and lysozyme in terms of normalized error
versus χ1 scalar couplings [Lindor�-Larsen et al., 2010, Berndt et al., 1992,
Grimshaw, 1999, Hu and Bax, 1997, Chou et al., 2003, Miclet et al., 2005,
Schwalbe et al., 2001, Smith et al., 1991]. In fact, some residues improved
dramatically, with aspartate and threonine normalized scalar coupling errors
being 39± 7 % and 34± 8 % better with �14SB, respectively. Lysine, argi-
nine, isoleucine, serine, valine, leucine, and tyrosine also improve by 29± 7 %,
22± 15 %, 20± 11 %, 19± 8 %, 16± 12 %, 14± 12 %, and 8± 2 %, although
some of these di�erences approach insigni�cance. Phenylalanine and trypo-
phan are worse by 17± 2 % and 5± 2 %, respectively, though the normalized
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Figure B.2: The mean absolute errors of simulations with �99SB (gray), �12SB
(tomato), and �14SB (purple) compared to experimental J couplings, normal-
ized by Karplus curve range, of all residues and each residue horizontally in all
and each of GB3, ubiquitin (Ubq), and lysozyme (Lys) vertically. Error bars
represent the standard error in the mean absolute errors of each independent
run.

errors in �14SB are still quite small�0.08± 0.00 and 0.10± 0.00 for pheny-
lalanine and tryptophan, respectively. Altogether, �14SB better reproduces
side chain scalar couplings by 17± 3 % with a normalized error of 0.13± 0.00,
compared with �12SB's normalized error of 0.16± 0.00.
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Appendix C

Analytical CMAP �tting

The CMAP correction utilizes a bicubic interpolation scheme to evaluate any
arbitrary point on a surface from a �xed grid of data points. In this scheme,
there are actually many bicubic interpolations for each square on the grid
de�ned by four neighboring points. To ensure the bicubic interpolated surface
is smooth and continuous, the values, derivatives, and mixed double derivative
are ensured to be identical at the interfaces of any two squares.

First, cubic splines are �t to each row and each column of points on the grid,
to allow one to obtain derivatives. Typically, each cubic spline is �t such that
the values, �rst, and second derivatives match at each point in one dimension.
Through some algebraic manipulation, this amounts to solving the system of
equations: 

4 1 1
1 4 1

. . . . . . . . .
1 4 1

1 1 4

 ~D =


3(y2 − yN)
3(y3 − y1)

...
3(yN − yN−2)
3(y1 − yN−1)

 (C.1)

This means that ~D can be summarized as:

~D = M−1
141


3(y2 − yN)
3(y3 − y1)

...
3(yN − yN−2)
3(y1 − yN−1)

 (C.2)
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The bicubic interpolation takes the form:

f(x, y) =
3∑
i=0

3∑
j=0

aijx
iyj (C.3)

One can build a sixteen-element vector out of the aij values, which we will
call ~a. f(x, y) can then be seen as the dot product between ~a and another
vector containing the appropriate xiyj, called ~x.

~a =
(
a00 a10 a20 a30 a01 a11 · · · a23 a33

)>
(C.4)

~x =
(
1 x x2 x3 y xy · · · x2y3 x3y3

)ᵀ
(C.5)

Additionally, one can begin to establish some identities between the aij
values and grid points de�ning square boundaries, by evaluating the function
and its derivatives at each point. For instance,

f(0, 0) = a00 (C.6)

f(1, 0) = a00 + a10 + a20 + a30 (C.7)

f(0, 1) = a00 + a01 + a02 + a03 (C.8)

f(1, 1) =
3∑
i=0

3∑
j=0

aij (C.9)

One can similarly evaluate the derivatives with respect to x (fx(x, y)) or
with respect to y (fy(x, y)).

fx(x, y) =
3∑
i=1

3∑
j=0

ixi−1yj (C.10)

fy(x, y) =
3∑
i=0

3∑
j=1

jxiyj−1 (C.11)

As there are sixteen possible aij, there must be sixteen equations to de�ne
~a. For f(x, y) and its single derivatives, we can establish four identities each�a
total of twelve. The remaining four can be established from the cross derivative
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∂2f
∂x∂y

.

fxy(x, y) =
3∑
i=1

3∑
j=1

ijaijx
i−1yi−1 (C.12)

If one considers each of these functions evaluated at (0, 0), (1, 0), (0, 1),
and (1, 1), one can set up a relationship between ~a and the values at the grid
points by the matrix A (Equation C.13) (Equation C.14).

A =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 2 0 0 0 3 0 0 0
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 2 3 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 2 0 0 0 3 0 0
0 0 0 0 0 1 2 3 0 2 4 6 0 3 6 9



(C.13)
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A~a =



f(0, 0)
f(1, 0)
f(0, 1)
f(1, 1)
fx(0, 0)
fx(1, 0)
fx(0, 1)
fx(1, 1)
fy(0, 0)
fy(1, 0)
fy(0, 1)
fy(1, 1)
fxy(0, 0)
fxy(1, 0)
fxy(0, 1)
fxy(1, 1)



(C.14)

In the application of a bicubic interpolation, one knows f(x, y) at the
boundaries of each square, and can determine the derivatives from cubic splines
�t through each point. In this way, the derivatives depend on the values of
f(x, y). Each evaluation only requires the dot product of ~a and ~x, as estab-
lished above. Thus one typically would be interested in solving for ~a, which
turns out to be a rather simple solution: ~a is A−1 times the vector of f(x, y)
and its derivatives.

If, however, one wishes to solve for a grid that will provide an ~a that
optimizes agreement with an arbitrary set of data, one cannot simply solve for
~a, as this vector has certain properties. Nor can one simply solve for f(x, y)
and its derivatives; the derivatives must naturally follow from f(x, y). Thus,
if one wants to solve for a set of values de�ning a bicubic interpolation for
the CMAP correction of protein conformations, one must state the problem of
f(x, y) in terms of the grid points alone.

The single derivatives can be expressed in terms of f(x, y) using Equa-
tion C.2. For example, the set of derivatives with respect to φ along a given
ψ may be expressed as


fx(0, 0)−180◦,ψ

fx(0, 0)−165◦,ψ
...

fx(0, 0)165◦,ψ

 = M−1
141


3(f(0, 0)−165◦,ψ − f(0, 0)165◦,ψ)

3(f(0, 0)−150◦,ψ − f(0, 0)−180◦,ψ)
...

3(f(0, 0)180◦,ψ − f(0, 0)150◦,)

 (C.15)
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Thus, anywhere one must multiply by fx(0, 0)φ,ψ, one may express that by
adding the appropriate row of Equation C.15.

f(φ,ψ) =
(
~xaa ~xba · · · ~xxx

)

~aaa
~aba
...
~axx

 (C.16)

=
(
~xaa ~xba · · · ~xxx

)

A−1

A−1

. . .
A−1



~faa
~fba
· · ·
~fxx

 (C.17)

=
(
~xaa ~xba · · · ~xxx

) [A−1

. . .

]
MF


~F
~Fx
~Fy
~Fxy

 (C.18)

Above, MF is composed of Ngrid successive matrix slices mF, where each
slice mF has components m′F that are the m′F of the former slice, except with
the �nal column moved to the beginning.

mF =


m′F 0 0 0
0 m′F 0 0
0 0 m′F 0
0 0 0 m′F

 (C.19)

The m′F for the �rst slice is shown below.

m′F =


1 0 0(×Nrows − 2) 0 0 0(×Nrows − 2)
0 0 0(×Nrows − 2) 1 0 0(×Nrows − 2)
0 1 0(×Nrows − 2) 0 0 0(×Nrows − 2)
0 0 0(×Nrows − 2) 0 1 0(×Nrows − 2)

 (C.20)

As ~F represents the energies at the grid points of the CMAP correction,
it is most sensible to arrange this in the order input to molecular dynamics
engines in CHARMM and AMBER. This order samples all values of ψ before
incrementing φ, and then sampling all values of ψ for the next φ, and so on.
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Thus, we de�ne ~F as in Equation C.21.

~F =


f(0, 0)−180◦,−180◦

f(0, 0)−180◦,−165◦

f(0, 0)−180◦,−150◦

...
f(0, 0)165◦,165◦

 (C.21)

Then, as the derivatives of ~F depend on ~F , we must de�ne
(
~F ᵀ ~Fx

ᵀ ~Fy
ᵀ ~Fxy

ᵀ
)ᵀ

in terms of ~F . 
~F
~Fx
~Fy
~Fxy

 =


1
Mx

My

MxMy

 ~F (C.22)

Thus we need only de�ne the derivative matrices Mx and My, starting with
My:

My =

M141
−1M−303

M141
−1M−303

. . .

 (C.23)

where M−303 is de�ned, analogously to Equation C.15, as:

M−303 =



3 · · · −3

−3 3
. . .

−3 3
. . .

...
. . . . . . . . . . . .

−3 3
3 −3


(C.24)

Knowing My, we can apply this matrix to evaluate the derivatives with
respect to x by simply rearranging the values in ~F by an adapter matrix C.
This can be accomplished by setting to 1 the column equal to the modulus of
the row with respect to the dimension, times the dimension, plus the �oor of
the row divided by the dimension, for each row, leaving all other values 0. An
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example for a 3× 3 matrix in vector form is shown below.

C3×3 =



1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1


(C.25)

Such a matrix could be used to switch the columns and rows when cal-
culating derivatives across y, and then to switch back the columns and rows.
Thus, Mx depends on My.

Mx = CMyC (C.26)

Thus, the �nal equation is:

f(φ,ψ) =
(
~xaa ~xba · · · ~xxx

) [A−1

. . .

]
MF


1
Mx

CMxC
MxCMxC

 ~F (C.27)

As all but ~F can be pre-computed into a single row-vector, this becomes
a problem amenable to linear-least squares analytical solution by composing
a target vector containing all f(φ,ψ) and a data matrix containing all the
rows as speci�ed in Equation C.27. Then ~F is the vector of unknowns readily
obtained from a singular value decomposition or other solver method.
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