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Abstract of the Dissertation 

Statistical image reconstruction for low-dose X-ray computed 
tomography: statistical models and regularization strategies 

by 

Hao Zhang 

Doctor of Philosophy 

in 

Biomedical Engineering  

Stony Brook University 

2016 

 

Low-dose X-ray computed tomography (CT) imaging is desirable due to the growing 
concerns about excessive radiation exposure to the patients. However, the reconstructed 
CT images by the conventional filtered back-projection (FBP) method from the low-dose 
acquisitions may be severely degraded. Statistical image reconstruction (SIR) methods 
have shown potential to substantially improve the image quality of low-dose CT as 
compared to the FBP method. According to the maximum a posteriori (MAP) estimation, 
the SIR methods can be typically formulated by an objective function consisting of two 
terms: (1) data-fidelity term modeling the statistics of projection measurements, and (2) 
regularization term reflecting prior knowledge or expectation on the characteristics of the 
image to be reconstructed. Statistical modeling of the projection measurements is a 
prerequisite for SIR, while the regularization term in the objective function also plays a 
critical role for successful image reconstruction. The objective of this dissertation is 
investigating accurate statistical models and novel regularization strategies for SIR to 
improve CT image quality in low-dose cases.  Specifically, we proposed two texture-
preserving regularizations based on the Markov random field (MRF) model and one 
generic regularization based on the nonlocal means (NLM) filter. The feasibility and 
efficacy of the proposed strategies are explicitly explored in this dissertation, using both 
computer simulation and real data (i.e., physical phantoms and clinical patients).  
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Chapter 1 . Low-dose X-ray computed tomography imaging 

X-ray computed tomography (CT) has been widely exploited for various clinical 
applications such as diagnosis and image-guided interventions. In 2013, it was estimated 
that 76 million CT scans were performed across the hospitals and clinics in the United 
States. Recent discoveries regarding the potential harmful effects of X-ray radiation 
including genetic and cancerous diseases have raised growing concerns to patients and 
the medical physics community (Brenner and Hall 2007). Consequently, low-dose CT 
with satisfactory image quality for specific clinical tasks is highly desirable. Many 
techniques and strategies have been proposed for radiation dose reduction of CT 
examinations to achieve the as low as reasonably achievable (ALARA) principle (Hsieh 
2009). In the past decade, two classes of strategies have been widely explored for 
radiation dose reduction: (1) lower the X-ray tube current and exposure time (i.e., 
milliampere-second (mAs)) or the X-ray tube voltage (i.e., kilovoltage (kV)) settings to 
reduce the X-ray flux towards each detector bin; and (2) lower the number of projection 
views per rotation during projection data acquisition. 

In this chapter, I give an introduction of CT imaging physics, including X-ray 
emission, its interaction with scanned patient, as well as projection data acquisition and 
preprocessing. 

1.1      X-ray photons emission and beam filtration 

The X-ray photons emitted from X-ray tube have a wide energy spectrum. In clinical 
CT systems, in order to reduce radiation dose and beam-hardening artifacts, a flat filter 
(which is often Cu/Al) is usually employed to remove the low-energy photons which 
mostly would be absorbed by the patients and make little contribution to the detected 
signals (Hsieh 2009). To further optimize radiation dose utility and improve the noise 
homogeneity in the projection data after traversing the body, an additional bowtie filter is 
also commonly used to compensate for the typically oval shape of the patient in cross 
section, see Figure 1.1. Also, the bowtie filter is important for reduction of beam 
hardening and cupping artifacts.  The beam filtration by the two filters modifies the 
energy spectrum and intensity distribution of the emitted X-ray photons across the field 
of view (FOV), which will be discussed in following sections. 
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Figure 1.1. Illustration of the bowtie filter and flat filter used in clinical CT system. 

1.2      Fundamentals of X-ray CT imaging 

The X-ray photons after filtration and just before entering the patient are defined as 
the incident photons in this work. Figure 1.2 shows representative normalized energy 

spectra ( ( ) 1
E

E dE  ) of incident X-ray photons with four different tube voltage (kV) 

settings. The spectra were plotted by the Spektr (Siewerdsen et al. 2004) with tungsten 
anode and 3mm aluminum filter. It can be observed that the maximum energy of the 
incident X-ray photons is determined by the tube voltage, and most of the low-energy 
photons (e.g., <20 keV) are removed due to the beam filtration. 
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Figure 1.2. Illustration of normalized energy spectra of incident X-ray photons with tube 
voltage at 80, 100, 120 and 140 kV. 

If we discretize the polychromatic spectrum at discrete energies lE  in energy bin l (l 

=1,2,...,L),  we have: 

1

( ) 1
L

l
l

E


                                                                    (1.1) 

Although the normalized energy spectrum of the incident X-ray photons can be 
slightly different for each detector bin due to effects such as bowtie filtration and anode 
angulation, the variation is generally neglected practically (Whiting et al. 2006). 

1.3       Intensity distribution of incident X-ray photons 

For a given tube voltage and tube current in a given time interval (fixed kV and mAs 
level), the number of incident photons along the ith X-ray path, 0iN , is widely treated as 

a Poisson random variable (Macovski 1983) with a mean 0iN  . Since 0iN  is a large 

number in most circumstances, the noise in the incident photon counts can often be 
ignored, that is, 0 0i iN N  . 0iN  can be estimated by the system calibration, e.g., by 

repeated air scans. In clinical CT systems, because of the use of bowtie filter and the heel 
effect, 0iN  is not the same for all X-ray paths and is depending on the detector bin 

position.  
Figure 1.3 reflects the distribution of 0iN  of different detector bins across the FOV at 

a fixed mAs level and four different kV settings for a Siemens scanner (Manduca et al. 
2009). Alternatively, if we fix the X-ray tube voltage and adjust the mAs levels, we can 
observe similar curves of  0iN  as in Figure 1.3. 

 
Figure 1.3. Incident photons distribution in different detector bins caused by the bowtie 
filter. (Figure reprinted from Manduca et al. 2009, Projection space denoising with 
bilateral filtering and CT noise modeling for dose reduction in CT, Med. Phys., 36(11): 
4911–4919). 

1.4      X-ray photons interaction inside the patient 

The process of X-ray photons interacting with human tissue is assumed to be a binary 
process, where the photons are either attenuated (absorbed or/and scattered) or pass 
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through without any interaction (Macovski 1983). X-ray photons with different energies 
have different surviving probabilities. Let 0 ( )i lN E denote the mean number of incident 

photons with energy lE  along the ith X-ray path. Then, the number of transmitted 

photons with energy lE  along the ith X-ray path, ( )i lN E , is a statistical independent 

Poisson random variable, governed by the Lambert-Beer's law: 

 
 

0  

0  

( ) ( ) exp ( , )

            ( ) exp ( , )

i l i l lray i

i l lray i

N E Poisson N E E r dr

Poisson N E E r dr





    

     





 

  
                               (1.2) 

where ( , )lE r 
is the attenuation coefficient of the patient at the position r


 at energy lE . 

    Consequently, the total number of transmitted photons along the ith X-ray path can be 
given as: 

 0  
1 1

( ) ( ) exp ( , )
L L

i i l i l lray i
l l

N N E Poisson N E E r dr
 

        
                        (1.3) 

1.5      Signal model for energy-integrating detector 

     In current clinical CT systems, energy-integrating detectors are commonly used. The 
detected signal strength is proportional to the energy that the transmitted photons carry. 
Let   be the conversion or gain factor from X-ray photon energy (keV) to detected signal. 
The total signal strength along the ith X-ray path can be given as (La Rivière et al. 2006):  

 0  
1

( ) exp ( , )
L

i l i l lray i
l

Signal E Poisson N E E r dr


      
                              (1.4) 

The energy weighted combination of Poisson random variables in Eq. (1.4) induces the 
compound Poisson statistics, which has been described by Whiting et al (Whiting et al. 
2006).  
     The detected signal is read out through detector electronics, therefore, extra 
uncertainty is added to the recorded signal due to the electronic noise. The electronic 
noise is intrinsic to the detection system and results from electronic fluctuation in the 
detector photodiode and other electronic components. The electronic noise is typically 
modeled as additive Gaussian noise, where the mean and variance reflect the detector 
dark current and readout noise of electronics, respectively (Hsieh 2009). The mean of the 
electronic noise can be determined immediately before each scan by sampling the signals 
in unexposed detectors over some time interval, and the variance of the electronic noise 
can be estimated from the sample variance of a series of dark current measurements. 
Consequently, the recorded signal can be described by:  

  2
0 , , 

1

( ) exp ( , ) ( , )
L

i l i l l e i e iray i
l

Signal E Poisson N E E r dr Gaussian M  


       
        (1.5) 

where ,e iM  and 2
,e i  denotes the mean and variance of electronic noise for the ith 

projection measurement, respectively.  
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1.6       Degrading factors and signal preprocessing 

In reality, besides the statistical noise mentioned above, there are several other factors 
that degrade the recorded signals, including off-focal radiation, beam hardening, scattered 
radiation, detector speed and afterglow, detective quantum efficiency, detector 
nonlinearity, crosstalk, quantization noise, etc (Hsieh 2009). As a result, the statistics of 
raw CT signals can be very complicated. In clinical practice, the raw CT signals are 
always preprocessed or calibrated by vendors for these degrading factors, while the 
specific operations are proprietary in nature and unavailable in the public domain. 
Therefore, the typically accessible projection data to academic researchers are calibrated 
transmitted photon counts (before log-transform), or calibrated line integrals (after log-
transform) which are given by: 

      0ln( / )i iiNy N                                                                 (1.6) 

where iy  represents the line integral measurement along the ith X-ray path, and the 

approximation in Eq. (1.6) reflects an assumption that the Lambert-Beer's law can be 
applied to random values. Figure 1.4 illustrates the flow chart from raw CT signal 
acquisition, preprocessing, up to the tomographic reconstruction from calibrated 
transmitted photon counts or calibrated line integrals. 
 

 

Figure 1.4. Flow chart of CT projection data preparation for image reconstruction. 

raw CT signals preprocessing 
or calibration 

calibrated photon counts 
or line integrals 

tomographic 
reconstruction 
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Chapter 2 . Statistical image reconstruction of low-dose CT 

In order to improve the CT image quality from the abovementioned low-dose acquisitions, 
the statistical image reconstruction (SIR) methods were proposed and have become an endeavor 
for almost all major vendors of clinical CT systems (Beister et al. 2012). Actually, their origins 
can be traced back to the early time of CT development in the decade of 1970s (Herman 1980). 
In parallel to the search for analytical inversion to the Radon transform for analytical CT image 
reconstruction, an alternative effort was devoted to discretize the Radon transform as a system of 
linear equations and then invert the system of linear equations for algebraic CT image 
reconstruction. A typical example of the alternative effort is an iterative approach to the solution 
of the linear equations, rather than directly inverting the system matrix, by consideration of the 
unique nature of re-projection and back-projection operations in tomographic imaging. This 
iterative approach was thereafter named the algebraic reconstruction technique (ART) (Herman 
1980), and some variations were explored later, e.g., simultaneous ART. The ART was 
employed for image reconstruction of the original EMI CT scanners in clinic until the analytical 
inversion of the Radon transform was established, named FBP (Herman 1980). For low-dose CT 
imaging, where data statistics is an essential factor to be considered in the image reconstruction 
(similar to the count-limited imaging modalities of single photon emission computed 
tomography (SPECT) and positron emission tomography (PET)), the SIR methods are desired 
and iterative strategies are needed (Shepp and Vardi 1982; Lange and Carson 1984; Bouman and 
Sauer 1996). Essentially, the SIR methods search for the image or solution that makes the 
projection measurements the most probable. Instead of treating all the measurements equally, a 
statistical model provides different degrees of credibility/reliability among measurements 
according to the signal-to-noise ratio (Thibault et al. 2007). Figure 2.1 illustrates typical image 
reconstruction methods for X-ray CT.  

 
Figure 2.1. List of image reconstruction methods for X-ray CT. 

Because of the explicit statistics modeling and potential dose reduction benefits, the SIR 
methods are likely to play a dominant role in image reconstruction development for low-dose CT 
in the future. However, due to the ill-posedness of the reconstruction problem, the resulting 
image of those SIR that directly optimizes the maximum likelihood (ML) criterion can be very 
noisy and unstable. Alternatively, more recent and more sophisticated SIR methods are derived 
from the maximum a posteriori (MAP) estimation from the given the measurements, which 
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consists of two terms in the objective function: the data-fidelity term modeling the statistics of 
measured data, and the regularization term incorporating prior knowledge or expected properties 
of the image to be reconstructed. The statistical modeling of the projection measurements is a 
prerequisite for building the data-fidelity term, and the regularization term also has a strong 
influence on the quality of reconstructed images. In this chapter, I illustrate the statistical models 
of CT projection measurements and derive the SIR framework for low-dose CT accordingly. 

2.1      Statistical modeling on projection measurements 

In clinical CT systems, the raw signals from detectors are always preprocessed by CT 
vendors for various degrading factors, while the raw signals (considered proprietary by vendors) 
are rarely accessible to academic researchers (Hsieh 2009). Therefore, the researchers generally 
focus on investigating the properties of preprocessed CT signals in the past decades. Commonly, 
the accessible projection data are calibrated transmitted photon counts (before log-transform) or 
calibrated line integrals (after log-transform).  

2.1.1 Calibrated transmitted photon counts 

     According to the analysis in Chapter 1, the calibrated transmitted photon counts along the ith 
X-ray path can be expressed as (Ma et al. 2012): 

2
, ,( , ) ( , )i i e i e iN compoundPoisson N Gaussian M                                   (2.1) 

     While the mathematical formula of the compound Poisson distribution has been explicitly 
derived (Whiting et al. 2006), the lack of analytical probability density function (PDF) 
expression impedes its use in SIR method development. Additionally, this model has more 
challenges when the electronic noise is considered, which makes this exact model impractical for 
SIR.  
     Practically, this exact model can be well-approximated by a simple Poisson noise model 
assuming monochromatic X-ray source, and is widely used in the SIR methods:  

( )i iN Poisson N                                                                 (2.2) 

     Although the simple Poisson model is acceptable in most cases, the influence of electronic 
noise becomes non-neglectable, and has been considered as an important factor affecting the 
image quality (Xu and Tsui 2009) under very low-flux acquisitions (transmitted photon counts 
are extremely low). In clinical CT systems, in order to reduce the effect of detector dark current, 
the mean of electronic noise is often calibrated to be zero in practice. Also, the variance of 
electronic noise is assumed to be the same for all X-ray paths and thus the index can be removed. 
As a result, the statistics of the calibrated transmitted photon count along the ith X-ray path can 
be described by (Snyder et al. 1993; Snyder et al. 1995): 

2( ) (0, )i i eN Poisson N Gaussian                                                   (2.3) 

     However, the likelihood function of the 'Poisson+Gaussian' model in Eq. (2.3) is still 
analytically intractable. To circumvent this problem, a shifted Poisson approximation can be 
exploited to match the first two statistical moments (Yavuz and Fessler 1998). That is, the 

random variable 2ˆ
i i eN N 


     can have the variance equal to its mean 2( )i eN  .  Based on 

the relationship of variance equal to the mean, we assume that the shifted random variable ˆ
iN  

follows Poisson distribution: 
2 2ˆ ( )i i e i eN N Poisson N 


                                              (2.4) 



 
 

8

where x x

  if 0x  and is 0 otherwise. 

2.1.2 Calibrated line integrals 

The noise property of the calibrated line integrals has been investigated by analyzing 
experimental data of a physical phantom from repeated scans. The statistical analysis showed 
that the calibrated line integrals can be fitted approximately by a Gaussian distribution with a 
nonlinear signal-dependent variance (Lu et al. 2002; Li et al. 2004):      

2( , )
ii i yy Gaussian y                                                           (2.5) 

With the Poisson noise model of the transmitted photon counts in Eq. (2.2) and the Taylor's 
expansion, it has been shown that the variance of the line integral yi is given by: 

2
01/ exp(y ) /

iy i i iNN                                                         (2.6) 

Similarly, with the 'Poisson+Gaussian' noise model of the transmitted photon counts in Eq. 
(2.3), the variance of the line integral can be described by (Thibault et al. 2006; Ma et al. 2012): 

2 2

0 0

2
2

1
exp( ) 1 exp( )

i

i

i

e e
i i

i i
y y y

N N

N

N

 


 
 


 




                                 (2.7) 

Essentially, Eqs. (2.6) and (2.7) still have the monochromatic X-ray source assumption 
because of the models from which they are derived. Since the polychromatic nature of X-ray 
generation does not change the mean and only affect the variance of the calibrated line integrals, 
Eqs. (2.6) and (2.7) actually have the potential to consider the polychromatic nature by replacing 

01/ iN with a factor i , where i  is no longer exactly equal to  01/ iN  but can be measured by 

repeated scans and experimental data fitting (Li et al. 2004).  

2.2     Discrete forward models 

Under the assumption of monochromatic X-ray generation, the CT projection measurement 
can be expressed as: 

 0  
ln( )/ ( )i i ij jray i

j
i i

N N r d ay r     Aμ
 

                                       (2.8) 

or described as a discrete linear system: 
y Aμ                                                                          (2.9) 

where 1Iy   denotes the vector of expected line integrals, and I is the total number of 

projection measurements; 1Jμ  represents the vector of attenuation coefficients of the object 

to be reconstructed, and J is the total number of image voxels; I JA   is the projection matrix 
and its element ija  represents the contribution of voxel j to the ith projection ray. In CT imaging, 

the projector mainly accounts for the geometry of the imaging system. A variety of projectors as 
well as strategies to accelerate the process have been proposed, comprehensive review of which 
are out of the scope of this paper. Herein, we briefly review three commonly used approaches to 
calculate the projection matrix: (1) voxel-driven (or pixel-driven, in 2D presentation), which 
connects a line from the focal spot through the center of concerned voxel and projects to the 
detector (Herman 1980); (2) ray-driven, which casts one ray (or several rays) from the focal spot 
to the center (or boundaries) of the detector bin of interest and utilize the intersected length, 
intersected area (for 2D case), or intersected volume (for 3D case) as the weight (Herman 1980); 
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(3) distance-driven, which maps the boundaries of each voxel and detector bin onto a common 
axis and employ the length of overlap as the weight (De Man and Basu 2004). Figure 2.2 
illustrates the three projection models in 2D case. Although there are potential benefits of 
modeling the focal spot size, it is noted that, for the projectors in Figure 2.2, the focal spot is 
generally assumed to be infinitely small point for simplicity.  

 

 
Figure 2.2. (a) pixel-driven projection-backprojection; (b) ray-driven projection-backprojection; 
(c) distance-driven projection-backprojection. (Figure reprinted from DeMan and Basu 2004, 
Distance-driven projection and backprojection in three dimensions, Phys. Med. Biol., 49: 2463–
2475) 

2.3      Maximum likelihood (ML)/weighted least-squares (WLS) criterions 

2.3.1     Poisson model for calibrated transmitted photon counts 

Let 1IN   denote the vector of calibrated transmitted photon counts. Assuming the 
measurements among different bins are statistically independent, the likelihood function of the 
joint probability distribution, given a distribution of the attenuation coefficients, can be written 
as: 

( ) exp( )
( | )

!

iN
i i

i i

N N
P

N


N μ                                                          (2.10) 

Due to the logarithm’s monotonicity, we can take the natural logarithm, which will not 
change the location of the maximum. Thus, the log-likelihood function ( | )L N μ , can be written 
as:   

( | ) ln ( | ) ( ln ln !)i i i i
i

L P N N N N   N μ N μ                                    (2.11) 

Ignoring the constant terms which will not change the optimization solution, we can obtain: 
[

0 0
]( | ) ( e ) ( e [ ] )i iy

i ii i i
i i

iL N yN N N        AμN μ Aμ                         (2.12) 

where Eq. (2.12) is called the ML criterion. 
A second-order Taylor’s expansion can be applied to 0( ) e iy

i i i i ig y N N y   around the 

measured line integral iy  (Sauer and Bouman 1993), that is: 
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                           (2.13) 

Therefore, ignoring the constant and irrelevant terms, the log-likelihood in Eq. (2.12) can be 
approximated as: 

2 1 1
( | ) ( ) ( ) ( ) ( ) ( )

2 2 2
T Ti

i i
i

N
L y y

            
 

y μ y y Λ y y y Aμ Λ y Aμ             (2.14) 

where { }idiag NΛ  depends on the random variable iN . The approximate log-likelihood in Eq. 

(2.14) has computational advantages compared to Eq. (2.12) due to the quadratic form, but it 
may be biased when iN  is close to zero. Despite the potential shortcomings, the approximate log-

likelihood has been used successfully in CT applications, and its negative is also widely known 
as the WLS criterion. 

2.3.2      Poisson+Gaussian model for calibrated transmitted photon counts 

The likelihood function of the ‘Poisson+Gaussian’ model in Eq. (2.3) is analytically 
intractable. To circumvent this problem, a shifted Poisson approximation in Eq. (2.4) is exploited 
to match the first two statistical moments (Yavuz and Fessler 1998). With the shifted Poisson 
model and ignoring the constant and irrelevant terms, the corresponding log-likelihood function 
similar to that in Eq. (2.12) can be written as:   
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                             (2.15) 

where Eq. (2.15) is the ML criterion with consideration of the electronic noise. 
Similar to the Taylor’s expansion in Eq. (2.13) and omitting the constant and irrelevant terms, 

the log-likelihood in Eq. (2.15) can be approximated as: 
2

2
2

1 1 1
( | ) ( ) ( ) ( ) ( ) ( )

2 2 2
T Ti

i i
i i e

N
L y y

N 
 

            
y μ y y Λ y y y Aμ Λ y Aμ         (2.16) 

where 
2

2
i

i e

N
diag

N 
 

   
Λ  depends on the random variable iN . Also, the negative of Eq. (2.16) 

is called as the WLS criterion in consideration of the electronic noise. 
It is noted that if we neglect the influence of the electronic noise ( 2 0e  ), the diagonal 

matrix Λ in Eq. (2.16) reduces to  idiag NΛ , which is the same as that in Eq. (2.14).     

2.3.3      Gaussian model for calibrated line integrals 

Similarly, assuming the calibrated line integrals among different detector bins are statistically 
independent, the likelihood function of the joint probability distribution, given a distribution of 
the attenuation coefficients, can be written as: 
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y μ                                                  (2.17) 

where 0Z  is a normalizing constant.  

Then, ignoring the constant and irrelevant terms, the log-likelihood function can be written as:   
2
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( ) 1 1
( | ) ln ( | ) ( ) ( ) ( ) ( )

2 2 2
i

T Ti i

i y

y y
L P



             
  

y μ y μ y y Λ y y y Aμ Λ y Aμ    (2.18) 

where the matrix Λ  is diagonal and 2=diag{1/ }
iyΛ .  

With the monochromatic X-ray source assumption, the variance of the calibrated line integral 
can be given as: 

2 1/
iy iN  , or 2

2
2

i

i e
y

i

N

N



                                              (2.19) 

The WLS criterion derived in Eq. (2.18) is consistent with that in Eq. (2.14) and Eq. (2.16) 
with the approximation of i iN N . It shall be noted that this approximation holds only if the 

mean value iN  is relatively large. In the cases of ultra low-dose CT imaging and presence of the 

electronic noise, this approximation may not hold.  The gain of the matrix Λ  of (2.18) over that 
of (2.14) was analyzed theoretically (Xu and Tsui 2014). In practice, since the variance in matrix 
Λ  of (2.18) depends on the unknown mean iN , it is typically re-calculated during iterative 

image reconstruction, and the criterion in Eq. (2.18) is sometimes called re-weighted least-
squares (Wang et al. 2006). 

2.4      Maximum a posteriori (MAP) estimation 

Mathematically, low-dose CT image reconstruction is an ill-posed problem due to the 
presence of noise and other inconsistencies in the projection data. Therefore, the image 
estimation that directly optimizes the ML criterion can be very noisy and unstable. So 
researchers reformulate this problem with the MAP estimation by posing a prior term to penalize 
or regularize the solution. The prior term enables us to incorporate available information or 
expected properties of the image to be reconstructed. 

Mathematically, the MAP estimator can be expressed as: 
* ( | )arg max P

μ

μ μ N                                                          (2.20) 

According to the Bayesian law:  

( | ) ( )
 ( | )

( )

P P
P

P


N μ μ
μ N

N
                                                      (2.21) 

By taking the logarithm and omitting the irrelevant term, the MAP estimator can be 
simplified to: 

*  [ln ( | )]  [ ( | )]  [ ( | ) ln ( )]arg max arg max arg maxP L L P   
μ μ μ

μ μ N μ N N μ μ               (2.22) 

By replacing the log a priori probability ln ( )P μ with a more general form, we have: 
*  [ ( | ) ( )]  [ ( | ) ( )]arg max arg maxL R L U   

μ μ

μ N μ μ N μ μ                            (2.23) 
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where ( )U μ  denotes a penalty, and 0   is a scalar control parameter which allows one to tune 
the MAP (or penalized ML (pML)) estimation for a specific noise-resolution tradeoff. When β 
goes to zero, the reconstructed image from the MAP estimation approaches the ML estimation. 

From the Tikhonov regularization point of view, the MAP estimation can be considered as an 
objective function consisting of two terms: a data-fidelity term (e.g., the log-likelihood) 
modeling the statistics of projection measurements, and a regularization term (e.g., the log-prior) 
incorporating prior knowledge or expected properties of the image to be reconstructed. 

The log-likelihood functions in Eqs. (2.12) (2.14) (2.16) (2.18) are concave functions of μ , 
therefore, the resulting objective functions in Eq. (2.23) would be concave if and only if ( )U μ is 

a convex function of μ . The log-likelihood function in Eq. (2.15) is not concave in μ  for 2 0e  , 

so the corresponding objective function in Eq. (2.23) would not be concave in μ  anyway. Global 
maximum can be found for concave objective functions, while only local maximum can be 
achieved for others. 

In summary, the SIR of low-dose CT can be considered to estimate the attenuation map by 
maximizing the MAP (or pML) criterion with a non-negativity constraint (using the calibrated 
transmitted photon counts):  

*

0

[ ( | ) ( )]arg max L U





 μ N μ μ                                                     (2.24) 

or directly minimizing the penalized WLS (PWLS) criterion (using the calibrated line-integrals): 

*

0 0

1
 [ ( | ) ( )]  ( ) ( ) ( )arg max arg min

2
TL U U

 
 

 

        
μ y μ μ y Aμ Λ y Aμ μ                    (2.25) 

where ( | )L N μ is defined in Eqs. (2.12) (1.15), and ( | )L y μ  is defined in Eqs. (1.14) (2.16) 
(2.18).  
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Chapter 3 . Deriving voxel-specific MRF coefficients from 
previous normal-dose CT scan for low-dose CT reconstruction 

Repeated CT scans are required for some clinical applications such as image-guided 
interventions. To optimize radiation dose utility, a normal-dose scan is often first 
performed to set up reference, followed by a series of low-dose scans for intervention.  
One common strategy to achieve the low-dose scan is to lower the X-ray tube current and 
exposure time settings in the scanning protocol, but the resulting image quality by the 
conventional filtered back-projection (FBP) method may be severely degraded due to the 
excessive noise. Statistical image reconstruction has shown the potential to significantly 
improve the image quality from low-mAs acquisitions, where the penalty plays an 
important role.  In this work, we explore an adaptive Markov random field (MRF)-based 
penalty term by utilizing previous normal-dose scan to improve the subsequent low-dose 
scans image reconstruction. 

3.1 Introduction 

In the applications with repeated CT scans, previous scan can be exploited as prior 
information due to the similarity among the reconstructed image series of the scans.  
These scans generally contain the same anatomical structures. While somewhat 
misalignment or deformation may occur among the image series, they can be mitigated 
through registration of the image series and/or modeling the effects in constructing the 
cost function.  Using the reconstruction from previous normal-dose scan to improve the 
follow-up low-dose scan reconstructions has become a research interest recently. For 
instance, Yu et al (Yu et al. 2009) proposed a previous scan-regularized reconstruction 
(PSRR) method for perfusion CT imaging by replacing the unchanged regions of the low-
dose CT image with the corresponding embodiments in the previous normal-dose 
reconstruction and employing a nonlinear noise filtration in the remaining regions.  Ma et 
al (Ma et al. 2011) and Xu and Muller (Xu and Mueller 2012) investigated restoration on 
the low-dose CT images with the help of the previous normal-dose image via the 
nonlocal means (NLM) noise filtration algorithm.  The above efforts also explored the 
use of the previous scan as a penalty for regularized iterative image reconstructions.  For 
instance, the studies (Nett et al. 2009; Lauzier et al. 2012) incorporated a prior image 
(averaging over FBP reconstructions from different time frames) as a penalty into their 
prior image-constrained compressed sensing (PICCS) framework for time-resolved 
sparse-view CT reconstruction. Tian et al (Tian et al. 2011) presented a temporal NLM 
regularization for low-dose four-dimensional (4D) CT reconstruction, where the 
reconstruction of the current frame image utilizes the previous iteration results of the two 
neighboring frames. Ma et al (Ma et al. 2012) proposed a low-mAs perfusion CT image 
reconstruction method by incorporating a previous normal-dose unenhanced image into 
the regularization term for the subsequent reconstruction of the low-dose enhanced CT 
images.  Recently, Wang et al (Wang et al. 2012) explored the potential of using a high 
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quality image to estimate the MRF weighting coefficients for penalized reconstruction of 
its corresponding image from noisy (or low-dose) data.  They exploited an 11×11 MRF 
window and estimated the MRF weighting coefficients from a high-quality bone-region 
sample image, and then incorporated the single set of MRF coefficients into an iterative 
CT reconstruction framework to preserve details in the bone structures.  Inspired by this 
recent work, this study aims to incorporate a previous normal-dose CT scan into the 
quadratic functional form, while considering adaptively the entire local region for the 
MRF weighting coefficients, for the purpose of reconstructing the subsequent low-dose 
CT images.  In this way, both the MRF window size and the corresponding coefficients 
are adaptively estimated for better reflection of the prior information in both space and 
frequency domains.  Thus, it is expected that with the proposed penalty term from the 
previous normal-dose scan, the reconstruction from the follow-up low-dose scans will be 
substantially improved. 

3.2 Markov random field (MRF) model-based regularization 

Under the MRF model, a family of regularization terms is widely used for iterative 
image reconstruction: 

( ) ( )
j

jm j m
j m W

U b   


  μ                                          (3.1) 

where index j runs over all the pixels in the image domain, Wj denotes a small fixed 
neighborhood window (typically 8 neighbors in the 2D case) of the jth image pixel, and 
bjm is the weighting coefficient that indicates the interaction degree between pixel j and 
pixel m.  Usually the weighting coefficient is considered to be inversely proportional to 
the Euclidean distance between the two pixels. Thus, in 2D case, bjm=1 for the four 

horizontal and vertical neighboring pixels, bjm=1/ 2  for the four diagonal neighboring 
pixels, and bjm=0 otherwise. In this study, the normalized form was used to make 
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(3.2) 

And   denotes a potential function, which can be given as: 

2( )      ,   or   
2
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2 | |       | |>




  
  

  
  

                           (3.3) 

where the former corresponds to the Gaussian MRF penalty, and the latter corresponds to 
the Huber MRF penalty that introduces an adjustable parameter δ to balance the desired 
degree on the regional smoothness and edge sharpness. 

3.3 The proposed adaptive MRF regularization 

Inspired by the work of Wang et al (Wang et al. 2012), we investigate the design of 
an adaptive MRF regularization term which exploits space-variant MRF window size and 
adaptive weighting coefficients, which are predicted from local sampling window of a 
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normal-dose scan, to help the following low-dose scan CT reconstruction. The proposed 
adaptive MRF regularization term is defined as: 

_ 2( ) ( )
j

ND predict
jm j m

j m AW

U b  


  μ                                               (3.4) 

where AWj is no longer a fixed neighborhood window, but varies depending on the object 
scale (to be described later).  Also, the coefficients _ND predict

jmb  are no longer constant but 

adaptively predicted from the previous normal-dose scan. The symbols AW and ND are 
short for adaptive-window and normal-dose, respectively. AWj and _ND predict

jmb are 

determined through the following three steps: 

3.3.1 Computation of object scale 

The scale at every pixel j, K(j), is defined as the radius of the largest hyperball (or 
hypercirle in a 2D case) centered at the pixel j such that all pixels within the ball satisfied 
a predefined image intensity homogeneity criterion (Saha and Udupa 2000). For any 
pixel j in a given image, a digital ball of radius r centered at j is the set of pixels: 

( ) { | }rB j h h j r                                                              (3.5) 

where h j  denotes the Euclidean distance between j and h. Then, a fraction FOr(j) 

("fraction of object") is defined.  It indicates the fraction of the ball boundary occupied by 
a region which is sufficiently homogeneous with j, and can be described by: 

1( ) ( )

1

( )
( )

( ) ( )
r r

j hh B j B j
r

r r

H
FO j

B j B j

  
 









                                             (3.6) 

where |Br(j) – Br-1(j)| is the number of pixels in the region Br(j) – Br-1(j), and Hѱ is a 
homogeneity function defined by:  

2

2
( ) exp

2

x
H x


 

   
 

                                                             (3.7) 

where σѱ is the region-homogeneity parameter and computed following the method as in 
(Saha and Udupa 2000).   

Thus, the scale at pixel j, K(j), is computed as follows: K(j) is initialized as one. Then 
we iteratively increase the ball radius r by one and check the value of FOr(j).  When the 
first time this fraction falls below ts (usually set to be 85%), we consider that the ball 
contains an object region different from that to which j belongs and set the scale value of 
K(j) as  r – 1. Table 3.1 lists the pseudo-code for the object scale computation.  

                                      Table 3.1. Pseudo-code for the object scale computation. 

    For each pixel j: 
    begin 
         r = 1; 
         while FQr(j) > ts (e.g., 85%) 
                r = r+1; 
         end 
         K(j) = r-1; 
    end 
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Figure 3.1(b) illustrates an example of the object scale map calculated from one 

transverse CT slice of the anthropomorphic torso phantom of Figure 3.1(a). The 
black/grey dots indicate pixels with low sclae values, while the white regions are relative 
uniform with high scale values.  

 

                  
                                      (a)                                                             (b) 
Figure 3.1. (a) One transverse slice of the anthropomorphic torso phantom; (b) the 
corresponding object scale map of the CT image in (a).  

 
3.3.2 Determination of MRF window size and sample window size 

For each pixel in the FBP reconstructed image from the normal-dose scan, an explicit 
MRF window can be modeled with its size determined by the object scale, which is a 
quantitative measure of local uniformity as described above.  In terms of signal 
processing, when the neighborhood of a specific pixel tends to be homogeneous (i.e., 
when its object scale is large), there exists a small spread of frequency spectrum, and vice 
versa.  Therefore, a lower-order MRF, penalizing only differences among immediately 
neighboring pixels, is adequate to model a small spread of frequency spectrum (i.e., when 
the object scale is large), while a higher-order MRF is required when the spread of 
frequency spectrum is large (i.e., when the object scale is small).  The correspondence 
between the object scale and MRF window size was empirically set in this study in a 2D 
presentation, as shown in Table 3.2.   

Table 3.2. MRF window size setting based on object scale, and corresponding sample 
window size required for MRF coefficient prediction. 

Object 
scale 

MRF window 
size 

Number of coefficients 
to be predicted 

Sample size needed to reach 
90% prediction power 

Actual sample 
window size used

>7 3×3 8 136 13×13 
6-7 5×5 24 206 15×15 
4-5 7×7 48 278 17×17 
2-3 9×9 80 355 19×19 
0-1 11×11 120 435 21×21 
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Subsequently, assuming similar frequency spectrums among nearby pixels, the MRF 
coefficients for each pixel were predicted adaptively from a local sample window.  
Statistically, to ensure the prediction power of the least-squares linear regression with a 
certain number of predictors (i.e., the number of MRF coefficients to be predicted), the 
required sample size needs to be determined.  Given a type I error rate of less than 5%, 
the sample size was calculated using the G*Power software (Faul et al. 2009) to achieve a 
prediction power of at least 90% at a medium effect size (Cohen’s f2 = 0.15).  The actual 
sample window size utilized in this study was designed to be a bit larger than the required 
sample size, as summarized in Table 3.2. 

Hence, the prediction of adaptive MRF coefficients depends on an adaptive MRF 
window size and the corresponding sample window size.  Figure 3.2 shows an example 
of the MRF window as well as the prediction sample window for a pixel (labeled with 
green marker) whose object scale is 4-5. According to Table 3.2, a 7×7 MRF window 
(labeled with gray marker) and 17×17 sample window should be adopted for this pixel. 
Similar MRF/sample window selection strategy based on Table 3.2 is performed for 
pixels in the 2D image one-by-one. 

  

Figure 3.2. Example illustration of the MRF/sample window designed for one single 
pixel (labeled with green marker). The gray window represents the 7×7 MRF window, 
and the white window is the corresponding 17×17 sample window. 
 
3.3.3 Prediction of MRF coefficients 

After we have obtained the MRF and sample window sizes for each pixel in the FBP 
reconstructed image slices of the normal-dose CT scan, we can predict the corresponding 
MRF coefficients for each pixel via least-squares regression as every pixel can be 
predicted from a linear combination of its clique-mates. The clique-mates of current pixel 
here are the neighbors within the MRF window. According to (Wang et al. 2012), the 
least-squares predicted coefficients for the clique-mates can be formulated as: 

1

2_ ( ) ( ( ) ) ( )arg min
k k k k

j j j j

ND predict ND T ND ND ND T ND ND
j k j AW AW AW AW k

k S k S k S

 


  

   
      

      
  

b

b b μ μ μ μ                  (3.8) 

where bj is the vector of MRF coefficients for the neighbors of pixel j within the MRF 
window, Sj is the  sample window of pixel j, AWk represents the set of neighbors for pixel 
k within the MRF window and 

kAWμ is the vector of corresponding attenuation value for 

them.  Herein, the expression ( ( ) )
k k

j

ND ND T
AW AW

k S
 μ μ is the sample autocorrelation matrix, while
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( )
k

j

ND ND
AW k

k S



 μ is the sample cross-correlation vector. The symbol ND was defined before as 

the short for normal-dose. 

In order to solve Eq. (3.8), the sample autocorrelation matrix is required to be of full 
rank and reversible.  This condition is met for all the pixels except for some whose object 
scale is relatively large, where the intensity homogeneity leads to the multi-collinearity of 
the sample space.  In our experiments, we empirically set a robust threshold on the object 
scale to be 7.  For those pixels with scale above this threshold, their MRF window size 
should be 3 ×3 according to Table 3.2, and therefore, we set their weighting coefficients 
the same as that for the conventional GMRF. For the pixels with object scale under the 
preset threshold, the MRF coefficients were estimated directly using Eq. (3.8). And it is 
worth noting that the sum of predicted MRF coefficients _ND predict

jb  for the pixel j using Eq. 

(3.8) is close to 1 (e.g., 0.95-1.05).  

3.4 Summary of presented reconstruction method 

With the WLS criterion and the newly designed quadratic-form MRF regularization 
presented above, our PWLS iterative reconstruction scheme for low-dose CT can be 
summarized as follows: 

* 1 _ 2

0

( ) ( ) ( ) }arg min{
j

T ND predict
jm j m

j m AW

b


  

 

     μ y Aμ Σ y Aμ                    (3.9) 

Minimization of this cost function can be achieved with many algorithms, and in this 
study, the Gauss-Seidel (GS) updating strategy was exploited due to its rapid 
convergence (Wang et al. 2006). It updates each pixel sequentially, and the values for all 
pixels are updated in each iteration. The use of the GS strategy for the minimization 
solution of Eq. (3.9) is given in the Appendix. The flowchart of deriving the MRF 
weighting coefficients and PWLS minimization for image reconstruction is shown by 
Figure 3.3.  

 

Figure 3.3. Flow chart of the proposed PWLS iterative reconstruction with adaptive MRF 
regularization for low-dose CT. 

 
The pseudo-code for the cost function minimization in Eq.(3.9) is listed as follows 

(where Aj denotes the jth column of the projection matrix A):  
 
Initialization: 

ˆ { }FBPμ y ; ˆq Aμ ; ˆ r y - q ;  2

iydiag Σ ;  

   1 ,T
j j j j  A Σ A  
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For each iteration:                                      
begin 

For each pixel j: 
begin 

j
old
j  ˆ:ˆ  ;              

1 _

_

ˆ ˆ

ˆ : j

j

T old ND predict
j j j jm m

m AWnew
j ND predict

j jm
m AW

b

b

   


 







 








A Σ r
; 

ˆ ˆ: max{0, }new
j j  ; 

ˆ ˆ ˆ ˆ: ( )old
j j j   r r A ; 

end 
end 
 
In our implementations, we stop the reconstruction process after a number of 

iterations when the estimated images between two successive iterations become very 
small (e.g., RMSE < 0. 0002). This kind of stopping rule has been widely used in the 
iterative image reconstruction community. For the datasets presented in this study, 20 
iterations were seen to be large enough for good convergence. And it may take around 30 
minutes to reconstruct a 512×512 image on a desktop computer without any acceleration. 

3.5 Experiments and results 

       In this study, experimental physical phantom and patient data were utilized to 
validate the presented PWLS iterative reconstruction scheme using the proposed adaptive 
MRF regularization (referred to as PWLS-adaptive), with comparison to the PWLS 
iterative reconstruction using the conventional GMRF regularization (referred to as 
PWLS-GMRF), the PWLS iterative reconstruction using the edge-preserving Huber 
regularization (referred to as PWLS-Huber), and the classical FBP algorithm. 

3.5.1 Anthropomorphic torso phantom study 

1). Data acquisition 
An anthropomorphic torso phantom (Radiology Support Devices, Inc., Long Beach, 

CA) was used for experimental data acquisition. The phantom was scanned by a Siemens 
SOMATOM Sensation16 CT scanner (Siemens Healthcare, Forchheim, Germany) in a 
cine mode at a fixed bed position. The X-ray tube voltage was set to be 120 kV while the 
mAs level was set to be 40 mAs. Each scan included 1160 projection views evenly 
spanned on a 3600 circular orbit, and each view included 672 detector bins. The distance 
from the X-ray source to the detector arrays was 1040 mm and the distance from the X-
ray source to the rotation center was 570 mm. The CT scanner was rotated 150 times 
around the phantom. 

The central slice sinogram data (672 bins×1160 views) of one scan was extracted for 
this feasibility study, which is regarded as low-dose scan. The averaged sinogram data 
from those 150 repeated scans of that slice was reconstructed by the FBP method to serve 
as the ground truth image for evaluation purpose and also as the previous normal-dose 
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scan for MRF coefficients prediction. The size of reconstructed image is 512×512 with 
pixel size of 1.0 ×1.0 mm2. 

2). Visualization-based evaluation 
The reconstructed images by FBP, the PWLS-GMRF with β= 3×105, the PWLS-

Huber with β= 3×105, and the PWLS-adaptive with β= 3×105 from the noisy 40 mAs 
sinogram are shown in Figure 3.4. It can be observed that all the SIR algorithms 
outperformed the FBP in terms of noise and streak artifact suppression. As for the SIR 
algorithms, the PWLS-adaptive is superior to the PWLS-GMRF and the PWLS-Huber in 
terms of edge/detail preservation, which will be quantified in the following section. 

     
                                       (a)                                                           (b) 

               
                                      (c)                                                             (d) 

ROI 1 

ROI 3 

ROI 2 
ROI 4 

ROI 5 

target profile 
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                                     (e) 

Figure 3.4. A reconstructed slice of the anthropomorphic torso phantom: (a) The FBP 
reconstruction from the averaged sinogram; (b) The FBP reconstruction from 40 mAs 
sinogram; (c) The PWLS-GMRF reconstruction from 40 mAs sinogram, β = 3×105; (d) 
The PWLS-Huber reconstruction from 40 mAs sinogram, β = 3×105, δ=0.004; (e) The 
PWLS-adaptive reconstruction from 40 mAs sinogram, β = 3×105. All the images are 
displayed with the same window. 

 
3). Quantitative evaluation 

To quantitatively demonstrate the benefits of our proposed scheme, we compared the 
performance of the four algorithms on the reconstruction of ROIs with detailed structures, 
which were labeled with red rectangles in Figure 3.4(b). Four metrics were employed to 
quantitatively evaluate the image quality of the detailed ROIs. They are root mean 
squared error (RMSE), universal quality index (UQI), correlation coefficient (CC) and 
signal-to-noise ratio (SNR). 

Let rμ denote the vector of the reconstructed image and 0μ be the vector of the ground 

truth image or reference image, the metrics are defined as (Q is the number of image 
pixels): 

2
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The corresponding quantitative results are shown in Figure 3.5. As we can see, the 
proposed PWLS-adaptive algorithm offered the lowest RMSE and the highest 
UQI/CC/SNR for all the five detailed ROIs.   

   

      
Figure 3.5.  Performance comparison of four algorithms on the reconstruction of detailed 
ROIs labeled in Figure 3.4(b) with four different metrics. The corresponding algorithms 
are illustrated in figure legend. 
 
4). Profile-based evaluation 

To further visualize the difference among the four reconstruction algorithms, a 
horizontal profile of the resulting images were drawn across the red line labeled in Figure 
3.4(b). The profile comparison further demonstrated the advantage of three SIR 
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algorithms over the FBP on noise suppression, as well as the advantage of the PWLS-
adaptive over the PWLS-GMRF and the PWLS-Huber on edge/contrast preservation at 
matched noise level. 

 

 

   
Figure 3.6. Comparison of the profiles along the horizontal line labeled in Fig. 4(b) 
between the four algorithms with 40 mAs sinogram and ground truth image. The 
corresponding algorithms are illustrated in figure legend. 

3.5.2 Patient data study 

1). Data acquisition 
To evaluate the algorithms in a more realistic situation, the raw sinogram data was 

acquired using the same Siemens scanner from a patient who was scheduled for CT scan 
for medical reasons under the approval of the Institutional Review Board of the Stony 
Brook University. The scanning geometry is the same as that for the anthropomorphic 
torso phantom. The tube voltage was set to be 120 kV, and the mAs level was 100 mAs. 
We regarded this acquisition as the normal-dose scan, and instead of scanning the patient 
twice, we simulated the corresponding low-dose sinogram data by adding noise to the 
normal-dose sinogram data using the simulation method in (La Rivière and Billmire 
2005). The noisy measurement Ni at detector bin i was generated according to the 
statistical model:  
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2
0Poisson ( exp( )) Gaussian (0, )i i i eN N y                             (3.14) 

where N0i was set to be 5×104 and 2
e  was set to be 10 for low-dose scan simulation in 

this study. Then the corresponding noisy line integral yi was calculated by the logarithm 
transform. 
2). Visualization-based evaluation 

The reconstructed images from the normal-dose sinogram data with the FBP 
algorithm serve as the ground truth image for this patient data study. The optimal β value 
for the PWLS-GMRF algorithm with the simulated low-dose patient sinogram data is 
2×105. Again, the identical β value was adopted for the PWLS-Huber and the PWLS-
adaptive so that the noise level in the uniform background region is equivalent for all the 
three PWLS algorithms. 

One slice of the reconstructed images are shown in Figure 3.7, where (a) and (b) are 
the FBP reconstructed images from the acquired normal-dose and simulated low-dose 
sinogram data respectively, and (c) (d) (e) are the reconstructed images from the 
simulated low-dose sinogram by the PWLS-GMRF, the PWLS-Huber and the PWLS-
adaptive algorithms with β=2×105. It is evident that all the three SIR algorithms 
outperformed the FBP in terms of noise suppression, and the PWLS-adaptive algorithm 
was superior to the PWLS-GMRF and the PWLS-Huber in terms of edge and detail 
preservation. 
 

                     
                                       (a)                                                              (b) 

ROI 1 

ROI 2 

ROI 3 

ROI 4 

ROI 5 

target profile 1 

target profile 2 



 
 

25

                 
                                        (c)                                                             (d) 

             
                                      (e)                                                                           
Figure 3.7. Reconstructed transverse slice of the patient data: (a) The FBP reconstruction 
from the normal-dose sinogram; (b) The FBP reconstruction from the simulated low-dose 
sinogram; (c) The PWLS-GMRF reconstruction from the simulated low-dose sinogram, β 
= 2×105; (d) The PWLS-Huber reconstruction from the simulated low-dose sinogram, β = 
2×105, δ=0.004; (e) The PWLS-adaptive reconstruction from the simulated low-dose 
sinogram, β = 2×105. All the images are displayed with the same window. 
 
3). Quantitative evaluation 

To quantitatively demonstrate the benefits of our proposed scheme, we compare the 
performance of the four algorithms on the reconstruction of ROIs with detailed structures, 
which were labeled with red rectangles in Figure 3.7(b). The corresponding quantitative 
results based on the four different metrics were shown in Figure 3.8. Again, the PWLS-
adaptive algorithm yielded the lowest RMSE and the highest UQI/CC/SNR for all the 
five detailed ROIs.  
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Figure 3.8.  Performance comparison of four algorithms on the reconstruction of detailed 
ROIs labeled in Figure 3.7(b) with four different metrics. The corresponding algorithms 
are illustrated in figure legend. 
 
4). Profile-based evaluation 

Figure 3.9 shows the targeted horizontal profiles (labeled with red line in Figure 3.7 
(b)) of the reconstructed images by the four reconstruction algorithms in Figure 3.7 as 
compared to that of the FBP reconstruction with normal-dose sinogram. The profile 
comparison quantitatively demonstrated the advantage of the three SIR algorithms over 
the FBP on noise suppression, as well as the advantage of the PWLS-adaptive over the 
PWLS-GMRF and the PWLS-Huber on edge and contrast preservation at matched noise 
level. 
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Figure 3.9. Comparison of the profiles along the horizontal line labeled in Figure 3.7(b) 
between the four algorithms with simulated low-dose sinogram and the FBP 
reconstruction with the normal-dose sinogram. The corresponding algorithms are 
illustrated in figure legend. 
 
5). Profile-based evaluation 

Figure 3.10 shows the vertical profiles (labeled with red line in Figure 3.7(b)) through 
a small object for the three SIR algorithms with comparison to the FBP reconstruction 
from the normal-dose sinogram. The contrasts shown in the figure legend were computed 
as: 

max base

base

Contrast
 




                                               (3.15) 

where µmax is the maximum value of a profile through the object, while µbase is the mean 
value of the profile baseline. 

The reconstructed small object by the PWLS-adaptive algorithm has higher contrast 
(2.07) than that of the PWLS-GMRF algorithm (1.45) and the PWLS-Huber algorithm 
(1.83), and is closer to that of the FBP reconstruction from the normal-dose sinogram 
(2.37). 
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Figure 3.10. Comparison of the profiles along the vertical line labeled in Figure 3.7(b) 
between the three SIR algorithms with simulated low-dose sinogram and the FBP 
reconstruction with the normal-dose sinogram. The contrast of the small object and the 
corresponding algorithms are illustrated in figure legend. 

3.6 Discussion and conclusion 

The regularization term which reflects prior information, is very important for the 
SIR algorithms. Strategies using the image reconstructed from previous scan to improve 
the current scan reconstruction have been explored in several studies. Different from 
these works, we proposed to utilize the frequency information in the FBP reconstructed 
image from the previous normal-dose scan to improve the follow-up low-dose scans by 
incorporating a quadratic-form MRF regularization with adaptive MRF window and 
adaptive coefficients predicted from the previous normal-dose scan into the established 
PWLS iterative reconstruction scheme (PWLS-adaptive). The experimental results with 
both physical phantom and patient data demonstrated the feasibility and efficacy of the 
proposed scheme. We further compared the reconstruction results using the PWLS-
adaptive to that using the conventional Gaussian MRF penalty (PWLS-GMRF) and the 
edge-preserving Huber penalty (PWLS-Huber). The results consistently showed that the 
presented PWLS-adaptive algorithm is superior on edge, detail and contrast preservation 
at matched noise level. In turn, this study showed us again how critical the penalty term is 
for the SIR algorithms.  

It may seem counterintuitive to employ a small MRF window for uniform regions and 
a large MRF window for non-uniform regions in this study. Therefore, we emphasize 
again that this kind of MRF window size selection is operated in the frequency domain. 
The rationale behind this approach is that the more uniform the local structure is, the 
smaller the frequency spectrum spread is, so a smaller MRF window should be adopted, 
and vice versa. Traditional penalties generally utilize a small fixed MRF window size 
(e.g., 3×3 in the 2D case), which limit the spectral description to a crude low-pass model. 
By increasing MRF window size, the penalty term raises the number of degrees of 
freedom in spectral description, and can include the high frequency information (Wang et 
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al. 2012). In this way, the high frequency components, such as the edges and details, 
could be better preserved. In our another work (Zhang et al. 2013) which also utilizes the 
object scale map, we employed a large MRF window for uniform regions while a small 
MRF window for edge regions, but the weighting coefficients were adopted inversely 
proportional to the Euclidean distance between the central and neighboring pixels. The 
consideration was based on the reasons that the neighbors cupping is strong for uniform 
regions and a large MRF window should be employed while the neighbors cupping is 
weak for edge regions thus a small MRF window may be more reasonable. Generally, 
these are two different ways of utilizing the object scale map, one in the frequency 
domain as in this study while the other in the spatial domain as in (Zhang et al. 2013). 

In this proof-of-concept study, the image misalignment issue between the low-dose 
scan and the corresponding normal-dose scan was not considered explicitly. In some 
applications where the normal-dose scan and low-dose scan is perfectly aligned, the 
proposed PWLS-adaptive algorithm can be used directly. For example, in the image-
guided needle biopsy for lung nodule analysis, the motion among different scans can be 
ignored when CT is used in a cine mode and the patient holds the breath during each 
single scan. In the applications where misalignment between the low-dose and normal-
dose scans cannot be ignored, registration can be first employed to align the scans. We 
plan to investigate the influence of image registration accuracy on our proposed method 
in a future study. 
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Chapter 4  . Deriving region-specific MRF coefficients from 
previous full-dose CT scan for low-dose CT reconstruction  

In our previous study of utilizing full-dose (or normal-dose) CT scan via MRF 
coefficients in chapter 3, we predicted MRF coefficients for each single voxel in the full-
dose image. That is, for a 2D image with 512×512 pixels, 512×512 sets of MRF 
coefficients were obtained. And because of the pixel-by-pixel mechanism, accurate 
registration between the previous full-dose image and the current low-dose image is 
required before we can reconstruct the low-dose image. In practice, severe patient motion, 
tissue or organ deformation, fluid flow, etc. can occur between the full- and low-dose 
scans, where even a deformable registration may not be adequate to capture the complex 
anatomical and physiological motions, resulting in residual errors in the low-dose image 
reconstruction (Dang et al. 2014). To mitigate this issue, in this chapter, we proposed to 
segment each image into several tissue regions (e.g., lung, bone, fat, and muscle). And 
then, for a 2D image with 512×512 pixels, only 4 sets of MRF coefficients are predicted 
from the previous full-dose image, assuming that the pixels within the same tissue region 
share similar texture pattern. Because of its region-by-region nature, the strategy in this 
chapter is more efficient and more feasible in practice than that in chapter 3. We validate 
the efficacy and feasibility of the proposed strategy via experiments with simulated and 
real patient datasets.  

4.1 Introduction 

Recently, noticeable research efforts have been devoted to take advantage of 
previously-available full-dose CT (FdCT) scan, for the purpose of improving the piece-
wise smooth image reconstruction of low-dose CT (LdCT) images. For instance, Nett et 
al. (Nett et al. 2009) incorporated a registered FdCT image into their prior image 
constrained compressed sensing (PICCS) cost function (Chen et al. 2008) for iterative 
reconstruction of subsequent LdCT images. Stayman et al. (Stayman et al. 2013; Dang et 
al. 2014) presented a PICCS-type penalty term, but the high-quality prior image was 
formulated into a joint estimation framework for both image registration and image 
reconstruction in order to better capturing the anatomical motion among different scans. 
Moreover, Ma et al. (Ma et al. 2011; Ma et al. 2012) proposed previous FdCT image 
induced nonlocal means penalties to improve the following LdCT image reconstruction 
for perfusion and interventional imaging, wherein the previous FdCT image was also pre-
registered with the LdCT scans. These efforts share the common idea of registering the 
FdCT image structure with the LdCT image to ensure piece-wise regional smoothness 
and edge-sharpness image reconstructions. The edge-preserving regional smoothing 
paradigm can sharpen the tissue region borders, but may sacrifice the tissue region image 
texture characteristics, which have been shown as a useful imaging marker for many 
clinical tasks (Aerts et al. 2014). 
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This exploratory study aims to shift the paradigm to texture-preserving LdCT 
reconstruction by capturing the regional tissue textures from the previous FdCT scan and 
incorporating the textures as a priori knowledge for Bayesian reconstruction of the 
current LdCT images. Specifically, it captures the image textures of muscle, fat, bone, 
lung, etc., from the full-dose image and then incorporates the tissue image textures as a 
priori knowledge for Bayesian reconstruction of the corresponding tissue regions in the 
low-dose images, so that the reconstruction preserves not only the edges but also the 
textures inside the tissue regions. 

4.2 The proposed texture-preserving MRF regularization  

Different from the regional noise smoothing penalty such as GMRF and Huber 
penalty, we proposed a novel tissue region-based texture-preserving regularization 
which can be given as: 

FD_predict 2

1 Region ( )

( ) ( )
j

R

jm j m
r j r m

U b  
  

   μ ,                          (4.1) 

where R is the number of different tissue regions and typically set to be 4 for chest CT 
imaging, representing lung, bone, fat and muscle, respectively. The index r runs over all 
the tissue regions, and index j runs over all the voxels in a specific tissue region.   
denotes the MRF window for the neighborhood system. FD_predict FD_predict{ }

jjm m rb   b   

represents a set of MRF model coefficients of tissue region r (each tissue region has a 
specific set of MRF coefficients, and the voxels in the same tissue region employ the 
same set of MRF coefficients) predicted from the previous FdCT scan, where FD is the 
abbreviation for full-dose. This definition of MRF model coefficients is the central idea 
of this study and will be investigated in the following sections. The description on the 
MRF neighborhood system employs a pair-wise quadratic form for simplicity in 
computing the PWLS solution. For the task of extracting tissue textures, an adequate 
window size is desired and will be determined by experiments. The definition of Eq. 
(4.1) is based on the well-established MRF theory and thus our attention will then turn 
to its implementation in the following sections. 

   Given a FdCT image and an adequate MRF window size, a set of MRF model 
coefficients corresponding to a tissue region can be determined by a linear regression 
strategy such that every image voxel inside the MRF window can be predicted from a 
linear combination of its clique-mates. Among all the linear regression estimation 
algorithms, the least-squares algorithm is adapted in this study because of its 
computational efficiency. According to the MRF definition that the clique-mates of 
current voxel are the neighbors within the MRF window, thus the least squares predicted 
MRF coefficients for the clique-mates can be formulated as (Wang et al. 2012): 
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where vector FDμ  is the FdCT image. The expression
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expected that the sum of the predicted MRF coefficients for each region, FD_predictsum ( )rb  , 

shall be equal to 1. 

4.3 Summary of the presented PWLS-texture method 

With the WLS criterion and the texture-preserving MRF regularization presented 
above, our PWLS iterative reconstruction scheme for low-dose CT can be summarized as 
follows: 

* FD_predict 2

0 1 Region( )

( ) ( ) ( ) }arg min{
j

R
T

jm j m
r j r m

b


  
   

      μ y Aμ D y Aμ          (4.3)      

A flowchart for implementation of the presented knowledge-based Bayesian 
reconstruction method can be summarized by the four steps in Figure 4.1, where steps 1 
and 2 operate on both full- and low-dose scans, and steps 3 and 4 only on full- and low-
dose scan, respectively. More details on the implementation are described below. 

 

 
 

Figure 4.1. Flowchart of the proposed texture-preserving LdCT image reconstruction 
algorithm. 

 
Many numerical methods could be chosen to calculate the resulting PWLS solution. 

This study employed the Gauss-Seidel updating strategy due to its rapid convergence. 
The algorithm for the minimization solution can be illustrated by the pseudo codes below. 
where  denotes the jth column of the projection matrix , σ  is the electronic noise and 
N  is the mean number of X-ray photons just before entering the patient body and going 
toward the detector cell i, where the values of σ  and N  were estimated given the data 
acquisition protocol.  
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Step 4: Bayesian reconstruction (LD) Step 3: MRF coefficients prediction (FD) 

Step 2: Image segmentations (FD, LD) Step 1: FBP reconstructions (FD, LD) 

With the regional MRF coefficients set predicted 
from the previous full-dose CT scan in step 3 and 
segmentation result of current low-dose scan in 
step 2, the current low-dose scan can be 
reconstructed . 

Based on the results from step 1 and step 2 of the 
previous full-dose CT scan, the regional MRF 
coefficients set for each region can be predicted. 

FBP reconstruction of the previous full-dose CT 
scan and current low-dose scan. The former is 
needed to estimate the regional MRF 
coefficients sets in step 3, and the latter is used 
as the initial image estimation of the presented 
iterative image reconstruction in step 4.

Segment the FBP-reconstructed images in step 1 
into four regions (lung, bone, fat, muscle) for both 
the previous full-dose CT scan and current low-
dose scan. The former is needed to estimate the 
regional MRF coefficients in step 3, and the latter 
is needed in step 4 to choose the appropriate 
regional MRF coefficients set. 
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For each iteration: 
begin 

For each voxel j: 
determine tissue region for voxel j , Region ( )j r ; 
choose corresponding MRF coefficient set; 
begin 

j
old
j  ˆ:ˆ  ; 

_

_

ˆ ˆ

ˆ : j

j

T old FD predict
j j j jm m

mnew
j FD predict

j jm
m

b

b

   


 




 








A Dr
; 

ˆ ˆ: max{0, }new
j j  ; 

ˆ ˆ ˆ ˆ: ( )old
j j j   r r A ; 

end 
ˆ

ˆ

2

2
:

( )
ijj

i

j

j jj

Ao
i

Ao
i e

N e
diag

N e














    
   

D

 
: ,T

j j j jA DA    

end. 
 
We stopped the reconstruction process after a number of iterations when the 

estimated images between two successive iterations become very small (e.g., RMSE < 0. 
0002). Typically, 20 iterations were seen to be large enough for good convergence. And 
it may take around 30 minutes to reconstruct a 512×512 image on a desktop computer 
without any acceleration. 

4.4 Experiments and results 

A patient, who was scheduled for CT-guided lung nodule needle biopsy at Stony 
Brook University Hospital, was recruited to this study under informed consent after 
approval by the Institutional Review Board. The patient was scanned using a Siemens CT 
scanner. The X-ray tube voltage was set to be 120 kV, and the tube current was set to be 
100 mAs for the full-dose scan. The subsequent low-dose scans were performed at 20 
mAs level. The raw data were calibrated by the CT system and outputted as sinogram 
data or line integrals. In addition to the patient recruitment for both full- and low-dose 
scans, two more recruitments were made for only full-dose scans on patients, one patient 
has a lung nodule and the other patient has a colon polyp, both of which have a size of 10 
mm. 

Based on the patient scans, we first performed experiments using simulated low-dose 
sinogram data by adding noise to the full-dose sinogram data with the simulation tool of 
(La Rivière and Billmire 2005). The reason of using simulated low-dose data is that the 
ground truth is available for a proof-of-concept study. Also, by a prefect registration 
between the full- and low-dose scans in the simulation, the region-specific MRF 
coefficients predicted from the neighboring slices of the full-dose image can be applied to 
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different slices in the corresponding low-dose image reconstruction and the impact on the 
mismatch of slice location and, therefore the mismatch of tissue regions, can be 
accurately documented. 

Then experiments using the acquired full- and low-dose sinogram data at 100 and 20 
mAs levels from the same patient were also performed. In the 20 mAs scan, all variations, 
including patient movements, organ deformations, gantry positioning between the full- 
and low-dose scans, etc., are present. In addition, the variation associated with the image 
segmentation is also involved. This clinical pilot study reflects the current clinical 
situation. 

4.4.1    Experiments on simulated low-dose sinogram data 

1). Extraction of MRF model coefficients 
Given the 100 mAs full-dose data of the patient (who has also a low-dose scan at 20 

mAs level) and its simulated low-dose sinogram data, the Step 1 of Figure 4.1 is to apply 
the well-established filtered back-projection (FBP) algorithm to reconstruct the full-dose 
data with Ramp filter at Nyquist frequency and the low-dose data with Hann filter at 50% 
Nyquist frequency. The reason of using Hann filter at 50% Nyquist frequency is because 
of the increased noise in the low-dose data. This smoothed FBP reconstruction of low-
dose data will be treated as the initial estimate of the desired solution. The full-dose FBP 
reconstruction will be treated as a priori image, from which the tissue image textures will 
be extracted. 

Given the above FBP reconstructions, the Step 2 of Figure 4.1 is to apply an efficient 
image segmentation algorithm to label the tissue regions. Because of its high computing 
efficiency, our previously-reported vector quantization (VQ) segmentation algorithm 
(Han et al. 2015) was adopted in this exploratory study. It is fully automatic once the 
number of tissue types is given, e.g., setting R=4 to represent lung, bone, fat, and muscle 
for chest CT imaging. Moreover, we adopted morphological operations to enlarge the 
segmented lung parenchyma and bone region boundaries slightly so that the final lung 
region for MRF coefficients prediction would include both the blood vessels inside lung 
and the juxta-pleural nodules attached to the pleural wall. The bone marrow with 
relatively lower intensities was also included in the refined bone region for MRF 
coefficients prediction of the bone tissue. Generally, it took less than 1 second to segment 
a 512×512 image on a desktop computer without acceleration. Because of the high 
computing efficiency, the VQ algorithm was applied to the low-dose initial estimate and 
each refining iteration result to obtain the tissue masks. Figure 4.2 illustrates an example 
of segmenting the full-dose image. 
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(a) 

  
(b)                              (c) 

  
(d)                              (e) 

Figure 4.2. Segmented masks of the chest CT image (a). Picture (b) is the lung mask; (c) 
is the bone mask; (d) is the fat mask; and (e) is the muscle mask. 

Given the segmented masks of the four tissue types from the FdCT FBP 
reconstruction of Figure 4.2, the Step 3 of Figure 4.1 is to extract the corresponding MRF 
model coefficients set by Eq. (4.2). From experiments, we found that a 7×7 MRF window 
size is sufficient, since the MRF coefficients beyond this window are close to zero and 
have nearly no impact. Figure 4.3 illustrates the predicted MRF coefficients set of the 
four tissue regions, respectively. It is interesting to see that the MRF model coefficients 
of the lung and bone regions have some similarity while the coefficients of the fat and 
muscle regions also have some similarity, but the coefficients of the group of lung/bone 
are clearly different from the coefficients of the group of fat/muscle. The former group 
has a large intensity variation while the later group has a small intensity variation. All the 
four tissue regions exhibit different spectral patterns corresponding to different image 
textures. It is worth noting that the sum of the predicted MRF coefficients for each region, 

FD_predictsum ( )rb  , is close to 1, as expected. 

ROI  
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Figure 4.3. The predicted four sets of MRF model coefficients for the four tissue regions 
of Figure 4.2 with a 7×7 MRF window size in 2D presentation. The corresponding 
regions are indicated by picture title. 

Since our ultimate goal is to preserve these image textures of full-dose scan in the 
low-dose image reconstructions, the spatial mismatch between the full- and low-dose 
images must be considered. In the image slice (transverse) plane, the spatial mismatch is 
not a concern because the contents in each segmented region mask remain the same 
regardless where the region is located once the axial location is the same between the 
full- and low-dose images. Therefore, the concern would be on the mismatch of the axial 
location. To get insights on this, we took the slice of Figure 4.3 which is located at slice 
#60 as the reference to investigate its nearby slices. Figure 4.4 shows the predicted MRF 
model coefficients of the lung region from slice #58 to slice #62 of the same patient, as 
well as the coefficients predicted from the whole five neighboring slices. The similarity 
among the six sets of MRF coefficients can be quantified by the correlation coefficient 
measure with a value greater than 98% and with a very tiny difference (discrepancy <5%). 
The phenomenon of the predicted MRF model coefficients from the neighboring image 
slices for the lung region also holds for the other three regions (bone, fat, and muscle). 

The regional spectral pattern similarity can be attributed to the tissue structure 
similarity among nearby image slices. Because of this similarity among nearby image 
slices and the region-specific nature of the estimated MRF model coefficients across the 
entire image slice, an accurate image alignment between the full-and low-dose in the 
axial direction is also not necessary. In other words, when we reconstruct one slice of the 
low-dose scan, we can potentially utilize the MRF model coefficients trained from the 
roughly-matched nearby image slices of the FdCT scan, which dramatically relieves the 
demand for accurate alignment of the full-dose image with the low-dose image along the 
axial direction and completely eliminates the need for voxel-by-voxel alignment across 
the transverse plane. 
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Figure 4.4. The predicted MRF coefficients of the lung region for five neighboring slices 
in 2D presentation. The corresponding slice numbers are indicated in picture title. 
 
2). Image reconstruction 

From the simulated low-dose data of the patient, the sinogram of one slice (slice #60) 
was extracted to illustrate the first scenario of our experiments, i.e., the slice match 
between full- and low-dose scans. In this study, we chose β value that gave the best eye-
appealing result among other values for the three MRF algorithms. The reconstructed 
images from the simulated low-dose sinogram by the FBP, PWLS-GMRF, PWLS-Huber, 
and our proposed PWLS-texture algorithm are shown in Figure 4.5. It can be observed 
that all the MRF algorithms outperformed the FBP method in terms of noise suppression. 
While for the three MRF algorithms, the proposed PWLS-texture is superior to both the 
PWLS-GMRF and the PWLS-Huber in terms of edge/detail preservation, which will be 
quantified in the following sections. It should be noted that, for the PWLS-texture 
algorithm, the region-specific MRF coefficients were predicted from the same slice of the 
corresponding full-dose image (i.e., slice #60, as shown in Figure 4.2(a)). Therefore, we 
use the legend "MRF-T60" to denote the corresponding results. 

According to the analysis of Figure 4.3 and Figure 4.4, since the predicted MRF 
coefficients from nearby slices show similar patterns, we may not necessarily need to 
utilize the MRF coefficients predicted from the exactly same slice of the corresponding 
FdCT scan. That is, when we reconstruct the slice #60 of the low-dose scan, we can 
potentially employ the MRF coefficients predicted from any one or summation of all the 
nearby slices (slice #58, #59, #60, #61, #62) of the full-dose scan. In this second scenario 
of our experiments, Figure 4.6 shows the reconstructed images from the simulated low-
dose sinogram data by the proposed PWLS-texture algorithm using MRF coefficients 
predicted from different slices of the full-dose image. We can observe that the 
reconstructed images in Figure 4.6 are very similar to each other, and the quantitative 
evaluations in the following sections also validate this observation. 
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                                            (a)                                                             (b) 

                     
                                            (c)                                                           (d) 
Figure 4.5. Reconstructed transverse slice of the patient from the simulated low-dose 
sinogram: (a) The FBP reconstruction; (b) The PWLS-GMRF reconstruction, β = 3×105; 
(c) The PWLS-Huber reconstruction, β = 3×105, δ=0.004; and (d) The MRF-T60 
reconstruction, β = 3×105. All the images are displayed with the same window [0, 0.034] 
mm-1. 
 

     
(a)                                                           (b) 
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(c)                                                          (d) 

     
(e)                                                         (f) 

Figure 4.6. Reconstructed transverse slice of the patient by the proposed PWLS-texture 
algorithm from the simulated low-dose sinogram: (a) The MRF-T58 reconstruction; (b) 
The MRF-T59 reconstruction; (c) The MRF-T60 reconstruction; (d) The MRF-T61 
reconstruction; (e) The MRF-T62 reconstruction; and (f) The MRF-T58-62 
reconstruction. The images were cropped for better visualization. All the images are 
displayed with the same window [0, 0.034] mm-1. 
 
3). Normal vector flow measure 

In order to quantify the texture benefit of the proposed a priori knowledge model, a 
region of interest (ROI), indicated by a rectangular box in Figure 4.2(a), was selected to 
plot the normal vector flow (NVF) (Liu et al. 2014) images for different reconstruction 
methods in Figure 4.5, and the corresponding NVF images are illustrated in Figure 4.7. 
The NVF image in Figure 4.7(a) is corresponding to the FBP reconstruction from the 
full-dose scan of Figure 4.2(a), and can serve as the reference standard. The gradual 
changes of the intensities in the desired image are often shown as ordered arrow in the 
NVF image, while the noise in the image is often shown as disordered arrows, as shown 
in Figure 4.7(b). From Figure 4.7(c)-(e), we can see that the disordered arrows in the 
uniform regions were suppressed by using MRF reconstruction methods. However, the 
ordered arrows around the bone boundaries in Figure 4.7(c) swelled a little bit due to the 
edge blurring in the PWLS-GMRF reconstructed image of Figure 4.5(b), and those in 
Figure 4.7(d) were falsely depicted due to the brute enforcing of edge-preserving 
characteristics of the Huber penalty of Figure 4.5(c). In contrast, the NVF image of the 
proposed PWLS-texture algorithm in Figure 4.7(e) demonstrated best matches of the 
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ordered arrows as compared to the reference standard of Figure 4.7(a), which indicates 
that the textures of the corresponding reconstruction were best preserved.  

 

 
(a) 

  
                                      (b)                                                                  (c) 

  
                                         (d)                                                                 (e) 
Figure 4.7. NVF images of a ROI labeled in Figure 4.2(a). (a) is the reference from 
Figure 4.2(a). (b)-(e) are corresponding to the reconstructions in Figure 4.5(a)-(d). 
 
4). Haralick texture measures 
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Haralick texture features have been widely used for classification of lesion 
malignancy (Haralick et al. 1973) and, therefore, adopted to quantify the texture 
preservation in the reconstructions of the four methods above (the FBP, PWLS-GMRF, 
PWLS-Huber, and MRF-texture). Eight ROIs were selected on the lung, bone, fat, and 
muscle, respectively, from the full-dose image in Figure 4.5(a) to set up the baseline or 
reference. The corresponding ROIs were selected on the low-dose reconstructions of the 
four methods. The 14 Haralick texture measures were extracted from each ROI. The 
Euclidean distance between the textures of the full- and low-dose images was used as the 
quantitative measure. A shorter distance indicates better texture preservation by the 
reconstruction algorithm. Table 4.1 shows the quantitative results. The presented PWLS-
texture image reconstruction has the best performance on texture preservation, as 
expected. Because of the known textures from lung, bone, fat, and muscle from the full-
dose image, the gain by the proposed PWLS-texture algorithm on these four tissue types 
are noticeable in the low-dose image reconstruction. 

 
Table 4.1. Texture distance between the reference full-dose image and the reconstructed 

low-dose images in Figure 4.5. 
ROI Tissue type FBP PWLS-

GMRF
PWLS-
Huber 

PWLS-
texture 

1 lung 7.2076 2.3043 7.3989 1.7932 
2 lung 6.3935 3.688 7.6508 3.5876 
3 bone 8.7506 3.2533 3.1033 3.0221 
4 bone 8.0978 4.3529 5.7742 3.4321 
5 fat 8.8243 3.1907 2.685 2.5203 
6 fat 9.3355 4.3106 3.6281 2.7702 
7 muscle 9.2740 6.9097 6.9131 6.0375 
8 muscle 5.7516 6.4899 5.2064 4.6562 

 
To show how the gain on the large tissue volumes of lung, bone, fat, and muscle can 

lead to the gain on the texture preservation of small lung nodule or colon polyp inside the 
large tissue volumes, the above procedure of extracting texture information from FdCT 
and performing texture-preserving LdCT image reconstruction was repeated to the 
sinogram data of the two patients, one with a nodule and the other with a polyp, 
respectively. Figure 4.8 shows the reconstructed images of the two patients acquired from 
routine protocol of full-dose level (120 kV, 100 mAs) where the ROIs were selected to 
compute the textures. The simulated low-dose scans were reconstructed by the four 
algorithms of FBP, PWLS-GMRF, PWLS-Huber, and MRF-texture. The textures from 
the full-dose scans were used as the reference when comparing the texture distance of the 
four algorithms. Table 4.2 and Table 4.3 show the experimental outcomes. The gain from 
the known large tissue volumes led to a noticeable gain on the unknown small nodule or 
polyp. 
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Figure 4.8. Reconstructed transverse slice of two patients from full-dose acquisitions: (a) 
containing a lung nodule as indicated by ROI 5; (b) containing a colon polyp as indicated 
by ROI 4.  

 
Table 4.2. Texture distance between the reference full-dose image in Figure 4.8(a) and 

the reconstructed low-dose images by the four reconstruction algorithms. 

ROI Tissue type FBP PWLS-
GMRF

PWLS-
Huber 

PWLS-
texture 

1 lung 6.4241 5.7532 9.9530 5.0552 
2 bone 8.6492 5.6968 5.9468 2.5173 
3 fat 7.3578 7.4379 7.4194 6.6144 
4 muscle 11.6797 3.8456 5.8283 2.8951 
5 lung nodule 9.9584 4.5440 5.1329 4.3407 

 
Table 4.3. Texture distance between the reference full-dose image in Figure 4.8(b) and 

the reconstructed low-dose images by the four reconstruction algorithms. 

ROI Tissue type FBP PWLS-
GMRF

PWLS-
Huber 

PWLS-
texture 

1 bone 8.8206 7.8440 6.1991 4.7278 
2 fat 8.9881 7.5032 6.1540 5.2425 
3 muscle 8.2534 9.3631 9.2090 7.9403 
4 colon polyp 9.7208 7.0602 5.8975 4.5296 

4.4.2    Experiments on real low-dose sinogram data 

1). Image reconstruction 
To evaluate the proposed a priori knowledge model in a more realistic situation, the 

real low-dose sinogram data (120 kV, 20 mAs) of the same patient (of Figure 4.5) was 
also used to perform a pilot clinical study. The slice #45 of the low-dose scan roughly 
matches the slice #60 of the full-dose scan by visual judgment. Therefore, we employed 
the MRF coefficients sets (as shown in Figure 4.3 and Figure 4.4) predicted from the 
slice #60 and its neighboring slices of the full-dose scan to reconstruct the slice #45 of the 
low-dose scan. 
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        (a)                                                         (b) 

     
        (c)                                                       (d) 

Figure 4.9. Reconstructed transverse slice of the patient data from the low-dose 20 mAs 
sinogram: (a) The FBP reconstruction; (b) The PWLS-GMRF reconstruction, β = 1×105; 
(c) The PWLS-Huber reconstruction, β = 1×105, δ=0.004; and (d) The MRF-T60 
reconstruction, β = 1×105. All the images are displayed with the same window [0, 0.034] 
mm-1. 
 

In the first scenario of using the MRF coefficients of the slice #60, the reconstructed 
images from the low-dose 20 mAs sinogram by the FBP, PWLS-GMRF, PWLS-Huber 
and MRF-T60 methods are shown in Figure 4.9. It is evident that all the three MRF 
methods outperformed the FBP method in terms of noise suppression, and the MRF-T60 
result is superior to the PWLS-GMRF and the PWLS-Huber in terms of edge/detail 
preservation. 

In the second scenario of using the MRF coefficients set of the nearby slices around 
the slice #60, (i.e., slice #58, #59, #60, #61, #62) of the full-dose scan to reconstruct the 
slice #45 of the low-dose 20 mAs sinogram data, Figure 4.10 shows the results of our 
proposed PWLS-texture method. By visual judgment, the reconstructed images in Figure 

ROI  
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4.10 are very similar to each other, concurring with the simulation results of Figure 4.6. 
Quantitative measures on the results of Figure 4.9 and Figure 4.10 are given below. 

    
(a)                                                       (b) 

     
(c)                                                       (d) 

    
(e)                                                      (f) 

Figure 4.10. Reconstructed transverse slice of the patient by the proposed PWLS-texture 
algorithm from the low-dose 20 mAs sinogram: (a) The MRF-T58 reconstruction; (b) 
The MRF-T59 reconstruction; (c) The MRF-T60 reconstruction; (d) The MRF-T61 
reconstruction; (e) The MRF-T62 reconstruction; and (f) The MRF-T58-62 
reconstruction. All the images are displayed with the same window [0, 0.034] mm-1. 

 
2). Normal vector flow study 

The NVF images of a ROI as indicated in Figure 4.9(a) were also plotted for the 
results of the four different reconstruction methods of Figure 4.9, and the corresponding 
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NVF images are illustrated in Figure 4.11. The NVF image of Figure 4.7(a) can be served 
as a reference for comparison, because that image was made from a similar ROI as that in 
Figure 4.9(a). Despite the lacking of golden standard in this real clinical low-dose data 
pilot study, yet we can still observe similar phenomena as those claimed in the simulation 
study. And the NVF image of the presented PWLS-texture algorithm in Figure 4.11(d) 
has the best match to the reference in Figure 4.7(a), indicating that the textures of the 
corresponding reconstructed image were best preserved by our proposed a priori 
knowledge model. 

  
                    (a)                                                               (b) 

 
                                     (c)                                                                (d) 
Figure 4.11. NVF images of a ROI labeled in Figure 4.9(a). The NVF images in Figure 
4.11(a)-(d) are corresponding to the reconstructions in Figure 4.9(a)-(d). 
 
3). Evaluation by physician experts 

In an effort to qualitatively compare the results of the four different reconstruction 
methods, three experienced physicians were asked to score the reconstructed images from 
0 (worst) to 10 (best) in terms of noise reduction and resolution/contrast/ detail/texture 
preservation. The reconstructed images by different methods were displayed on the 
screen randomly, so it was a completely blind procedure for the physicians. Table 4.4 
lists the physicians' scores on the reconstructed image quality under three different 
display windows: bone window (BW), soft tissue window (TW), and lung window (LW). 
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It is evident that the reconstructed image by our proposed PWLS-texture algorithm 
generally has the highest scores (with mean 7.56) and, therefore, outperformed the other 
three methods (with mean 3.22 for FBP, 5.67 for PWLS-GMRF, and 5.44 for PWLS-
Huber, respectively) from the physicians' point of view. 

 
Table 4.4. Physicians' scoring of the reconstructed image quality in Figure 4.9 by the four 

reconstruction methods. 
 Physician #1 Physician #2 Physician #3 

BW TW LW BW TW LW BW TW LW 
FBP 3 3 2 5 4 5 3 2 2 

PWLS-GMRF 7 5 4 6 5 7 5 6 6 
PWLS-Huber 5 5 5 6 5 6 7 6 4 

MRF-T60 8 7 7 7 5 9 9 8 8 
 

4.5 Discussion and conclusion 

In this chapter, we introduced a previous full-dose high-quality CT scan induced 
MRF penalty model for Bayesian image reconstruction of subsequent low-dose scans. 
The proposed a priori knowledge model considers the anatomical similarity among the 
reconstructed image series of the previous full-dose and current low-dose scans and 
utilizes the full-dose image to predict region-specific MRF model coefficients, which 
have been routinely specified by an ad hoc manner based on the nearby image voxel 
distance to the concerned voxel. The presented a priori knowledge model further 
considers the tissue specific patterns in addition to the anatomical similarity and makes 
the MRF model coefficients adaptive to be regionally specific, resulting in the 
elimination of the demand for point-by-point image registration between the full- and 
low-dose scans in the prediction of the model coefficients (Zhang et al. 2014). 
Experimental outcomes showed noticeable gain by the proposed a priori knowledge 
model compared to the well-known generic GMRF penalty and Huer penalty (which are 
based on the distance model coefficients), in terms of computer-based merits and 
physician assessment on the reconstructed images. Essentially, the generic MRF penalty 
encourages regional smoothness and edge sharpness, lacking a mechanism to preserve the 
tissue specific characteristics or patterns (i.e., image textures). The proposed MRF-
texture model takes advantages of the generic MRF penalty’s neighborhood system and 
also brings the a priori knowledge of the image textures into the LdCT image 
reconstruction. Particularly, the gain on textures of the nodule and polyp is clinically 
important because (1) the majority of nodules and polyps are benign and differentiation 
of malignant vs. benign is necessary and (2) the image textures play an important role in 
the lesion differentiation. 

Also, in this proof-of-concept study, we used 2D MRF window (with size 7×7) when 
computing the MRF model coefficients and reconstructing each transverse image, while 
the 3D volume was formed as a stack of 2D transverse images. Although lacking of 
regularization in axial direction, we did not observe artifacts in the coronal or sagittal 
views of the reconstructed volume. However, a 3D MRF window (e.g., with size 7×7×3), 
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which results in fully 3D MRF-texture regularization, may be beneficial and would be 
investigated in our future study. 
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Chapter 5 . Adaptive nonlocal means-regularized statistical 
image reconstruction for low-mAs CT 

The reconstructed CT images by the conventional filtered back-projection (FBP) 
method from the low-mAs acquisitions may be severely degraded due to the excessive 
noise. The well-known edge-preserving nonlocal means (NLM) filtering can reduce the 
noise-induced artifacts in the FBP reconstructed image, but it sometimes cannot 
completely eliminate the artifacts, especially under the very low-dose circumstance when 
the image is severely degraded. Instead of taking NLM filtering, we proposed a NLM-
regularized statistical image reconstruction scheme, which can effectively suppress the 
noise-induced artifacts and significantly improve the reconstructed image quality. Also, 
we noted that using a spatially-invariant filtering parameter in the regularization was 
rarely optimal for the entire field of view (FOV). Therefore, we developed a novel 
strategy for designing spatially-variant filtering parameters which are adaptive to the 
local characteristics of the image to be reconstructed. In this chapter, the adaptive NLM-
regularized statistical image reconstruction method was evaluated with low-contrast 
phantoms and clinical patient data to show (1) the necessity in introducing the spatial 
adaptivity and (2) the efficacy of the adaptivity in achieving superiority in reconstructing 
CT images from low-mAs acquisitions. 

5.1 Introduction 
The nonlocal means (NLM) algorithm was introduced by Buades et al for image de-

noising (Buades et al. 2005). Essentially, it is one of the nonlinear neighborhood filters 
which reduce image noise by replacing each pixel intensity with a weighted average of its 
neighbors according to the similarity. The similarity comparison could be performed 
between any two pixels within the entire image, although it is limited to a fixed 
neighboring window area (e.g., 17×17) of target pixel for computation efficiency in 
practice. Inspired by its success in image processing scenario, researchers further 
extended it to the medical imaging applications such as the low-dose CT. For instance, 
Giraldo et al (Giraldo et al. 2009) examined its efficacy on CT images for noise reduction. 
Ma et al (Ma et al. 2011) tried to restore the low-mAs CT images using previous normal-
dose scan via the NLM algorithm, and observed noticeable gains over the traditional 
NLM filtering. Similarly, Xu and Muller (Xu and Mueller 2012) added effort to restore 
the sparse view CT images using high quality prior scan and artifact-matched prior scan 
with the NLM algorithm and also noticed remarkable improvements. However, these 
methods are essentially post-reconstruction filtering or restoration, which do not fully 
take advantage of the projection data. The traditional NLM filtering (Giraldo et al. 2009) 
sometimes cannot completely eliminate the noise and streak artifacts. The extensions (Ma 
et al. 2011; Xu and Mueller 2012) need high quality prior scan and necessary registration 
to align the images from two different scans. Furthermore, researchers also explored the 
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NLM-based regularizations for several inverse problems, including image reconstructions 
for magnetic resonance imaging, positron emission tomography and X-ray CT. For 
instance, Tian et al (Tian et al. 2011) presented a temporal NLM regularization for 4D 
dynamic CT reconstruction, where the reconstruction of current frame image utilizing 
two neighboring frame images. Ma et al (Ma et al. 2012) proposed previous normal-dose 
CT scan induced NLM regularizations to improve the follow-up low-dose CT scans 
reconstruction. However, for some applications, the neighboring frame images or 
previous normal-dose scan may not be available. In this study, we explored to incorporate 
a NLM-based generic regularization into the SIR framework for low-dose CT, wherein 
the regularization only utilizes information of the current scan. 

5.2 Overview of the NLM algorithm 
The NLM method was proposed as a non-iterative and edge-preserving filter for 

image de-noising.  It reduces image noise by replacing each pixel's intensity with a 
weighted average of its neighbors according to similarity. Although the similarity 
comparison could be performed between any two pixels within the entire image, it is 
typically limited to a fixed neighboring window area (called search-window (SW), e.g., 
17×17, in 2D case) of target pixel in practice for computation efficiency.  Mathematically, 
the NLM method can be describes as (Buades et al. 2005): 

ˆ ˆ ˆ( ) ( )
j

j jk k
k SW

NLM w 


  μ                                                        (5.1) 

where 1ˆ ˆ ˆ( ,..., )T
J μ  represents the noisy image to be smoothed, and ˆ( )jNLM   is the 

intensity value of pixel j after the NLM filtering. 
However, different from the previous neighborhood filters, the NLM calculates the 

similarity based on patch instead of a single pixel. A patch of a pixel can be defined as a 
squared region centered at that pixel (called patch-window (PW), e.g., 5×5, in 2D case). 
Let ˆ( )jP  denote the patch centered at pixel j and ˆ( )kP  denote the patch centered at 

pixel k. The similarity between pixels j and k depends on the weighted Euclidean distance 
of their patches 
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weighting coefficient which indicates the interaction degree between two pixels. 
Specifically, the weighting coefficient is given as: 
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The parameter h in Eq. (5.2) controls the decay of the exponential function as well as 
the weighting coefficient. When h is small, the image tends to be weakly smoothed, and 
vice versa. For simplicity, h is called filtering parameter hereafter. According to (Buades 
et al. 2005), the filtering parameter h is a function of the standard deviation of the image 
noise. And if we further consider the size of the patch-window, the parameter h can be 
given as (Coupé et al. 2008): 

2 2 22 jh PW                                                             (5.3) 
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where  and   are free scalar parameters,   is the standard deviation of the image noise, 

and jPW  denotes the size of the patch-window. However, it is well known that the noise 

distribution of low-dose CT images is non-stationary, so determining the standard 
deviation   is not a trivial task. In the past, the parameter h has been simply set to be a 
global constant for the entire FOV, although such a practice may result in suboptimal 
filtering result. Besides, the NLM filter usually cannot effectively suppress the streak 
artifacts of low-dose CT images. 

5.3 Adaptive NLM-regularized statistical image reconstruction 

5.3.1 NLM-based regularization 

      Motivated by the work of  NLM filter, Buades et al. (Buades et al. 2006) proposed 
the regularization model :  

( ) ( )
j

j jk k
j k SW

U w  


 
   

 
 μ μ                                        (5.4) 

where μ  is a reference image, and the weighting coefficient ( )jkw μ is calculated from μ . 

However, a good reference image is usually not available before image reconstruction for 
low-dose CT. Lou et al. (Lou et al. 2010) suggested to use the FBP reconstruction result 
as the reference image, but such a reference image is typically noisy and the resulting 
regularization in Eq.(5.4) may lead to suboptimal reconstruction result.  
      To improve the reconstruction accuracy, in this work, we intend to make the 
regularization model be generic and thus take the following form: 
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There are several choices for the potential function, but in this study, we only explored 
the regularization where 2( )    . This choice makes the PWLS cost function quadratic 
and easy to optimize. We also utilized this as an example to demonstrate the feasibility 
and efficacy of the presented NLM-based regularizations for low-dose CT reconstruction, 

although some other potential functions (e.g. ( ) (1 2)
p

p      ) may further improve 

the performance.  
 
5.3.2 Local adaption of the filtering parameter h 

The filtering parameter h determines the smoothness of the resulting image, where 
larger h results in more smoothing and smaller h results in less smoothing. In the 
previous studies, the h in the NLM-based regularizations was often set to be a constant 
across the entire FOV.  However, when the local characteristics of the image differ 
significantly across the entire FOV, a constant h may result in inferior/suboptimal 
reconstruction result, since it may be too large for some regions (blurring edges and 
subtle structures) while too small (filtering little) for other regions within the image 
domain. To mitigate this issue, in this study, we propose a novel locally-adaptive 
estimation of the filtering parameter h at pixel j as: 
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 2

2,
( ) ( ) ,  j j k ja

h s mean k SW t    P P                                             (5.6) 

where s and t are two constants, and can be determined through experiments. 
The rationale behind the mathematical expression of Eq. (5.6) is that the value of h 

should depend on the similarity between the patch of target pixel and the patches within 
the corresponding SW. That is, when SW contains many similar patches to ( )jP , h 

needs to be decreased to reduce the influence of the other patches. On the contrary, when 
very few similar patches exist in SW for ( )jP , h needs to be increased to relax the 

selection(Coupé et al. 2011). To achieve robust implementation of the similarity 
dependence in Eq. (5.6), the constant t is introduced to ensure numerical stability and 
adequate filtering for uniform regions, and the constant s is introduced to control the 
relative filtering strength for non-uniform regions in the image domain. 

 
5.3.3 Adaptive NLM-regularized statistical image reconstruction 

Using the regularization presented above, our PWLS image reconstruction scheme for 
low-dose CT can be summarized as follows: 
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 μ y Aμ D y Aμ μ          (5.7)      

Since the weighting coefficients in the regularization are computed on the unknown 
image μ , direct minimization of the objective function in Eq. (5.7) using the 
regularization in Eq. (5.5) can be very complicated. Instead, an empirical one-step-late 
(OSL) implementation is employed, based on the Gauss-Seidel (GS) updating strategy, 
for the minimization task in this study, where the weighting coefficients are computed on 
current image estimate and then are assumed to be constants when updating the image. 
Although there is no proof of global convergence for such an OSL iteration scheme, it is 
observed that the image estimation converges to a steady status after 20 iterations (the 
difference between the estimated images of two successive iterations becomes very small) 
for all the datasets presented in this study. 

5.4 Experiments and results 

In this work, three categories of projection data were utilized to validate the 
performance of the proposed adaptive NLM-regularized statistical image reconstruction 
method (referred to as PWLS-adaptiveNLM) for X-ray CT imaging from low-dose 
acquisitions. For comparison purpose, the standard FBP reconstruction, the FBP 
reconstruction followed by NLM filtering (referred to as FBP+NLM filtering), the NLM-
regularized statistical image reconstruction with constant filtering parameter (referred to 
as PWLS-NLM), and the total variation regularized statistical image reconstruction 
(referred to as PWLS-TV) were also implemented in a similar fashion as the 
implementation of the proposed method. To ensure the fairness of comparison, the 
parameters for each method were carefully tuned to obtain the best image quality. 

5.4.1 Digital clock phantom 

1). Projection data acquisition 
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A computer simulated clock phantom was utilized in this study, which is modified 
from the reported one in (Evans et al. 2011). The clock phantom consists of a water 
background and eight circular inserts with different contrasts (C1: -100%, C2: +150%, 
C3: +7%, C4: -50%, C5: +85%, C6: -15%, C7: -7%, C8: +30%). The low-dose sinogram 
data of the clock phantom was acquired using the simulation method in (La Rivière and 
Billmire 2005). After calculating the noise-free line integral, the noisy measurement Ni at 
detector bin i was generated according to the statistical model: 

2
0Poisson ( exp( )) Gaussian(0, )i i i eN N y                                   (5.8) 

where 0iN  was set to be 3×104 and 2
e  was set to be 10 in this study. Then the 

corresponding noisy line integrals were calculated by the logarithm transform. The 
scanning geometry was the same as the Siemens Somatom Sensation 16 CT scanner 
(Siemens Healthcare, Forchheim, Germany). 

 
2). Visualization-based evaluation 

The reconstructed images by the FBP, FBP+NLM filtering, PWLS-NLM, PWLS-
adaptiveNLM and PWLS-TV from the simulated low-dose sinogram are shown in Figure 
5.1(b)-(f).  The zoom-in views of three low-contrast inserts (C3: +7%, C6: -15%, C7: -
7%) by different reconstruction methods are also illustrated. We can see that the 
FBP+NLM filtering can suppress the noise in the FBP reconstructed image to a large 
extent, but it is still not comparable to the PWLS-NLM reconstructed image.  However, 
since these two methods use a constant filtering parameter, their outcomes seem to blur 
the low-contrast inserts substantially. In contrast, the PWLS-adaptiveNLM method can 
effectively suppress the noise while retaining the low-contrast objects.  Finally, the 
PWLS-TV reconstructed image slightly suffers from patchy artifacts in the uniform 
region, and the low-contrast inserts are also considerably distorted. 
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Figure 5.1.  One slice of the clock phantom: (a) phantom; (b) FBP reconstruction from 
simulated noisy sinogram; (c) FBP+NLM filtering from simulated noisy sinogram 
(h=0.012); (d) PWLS-NLM reconstruction from simulated noisy sinogram (β=5×106, 
h=0.008); (e) PWLS-adaptiveNLM reconstruction from simulated noisy sinogram 
(β=5×106, s=5×10-4, t=4×10-6); (f) PWLS-TV reconstruction from simulated noisy 
sinogram (β=2×103). All the images are displayed with the same window. 
 
3). Noise reduction performance 

To evaluate the noise reduction performance of the different reconstruction methods, 
two quantitative metrics were employed. According to Table 5.1, the proposed PWLS-
adaptiveNLM method offers the highest PSNR and lowest NMSE, and therefore 
outperforms other methods in term of noise reduction, which is consistent with the visual 
inspection. 
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Table 5.1. Noise reduction performance of the five reconstruction methods for the clock 
phantom 

Metrics FBP FBP+NLM filtering PWLS-NLM PWLS-adaptiveNLM PWLS-TV 

PSNR (dB) 29.32 36.15 44.25 44.87 42.69 

NMSE (1e-4) 129.12 26.80 4.15 3.61 5.95 

 
4). Assessing local image quality 

In order to evaluate the performance of different methods on the reconstruction of 
fine structures, we chose eight ROIs in the clock phantom, as labeled by the red 
rectangles in Figure 5.1(b).  Since the FBP reconstructed image was obviously worse 
than those by the other four methods due to the excessive noise, we excluded it and only 
compared the local image quality by the other four methods.  The quantitative results 
with RMSE and UQI are illustrated in Figure 5.2.  Still, the proposed PWLS-
adaptiveNLM has the best local image quality for the eight detailed ROIs with the lowest 
RMSE and highest UQI.  The UQI quantifies the noise, spatial resolution, and texture 
correlation.  From Figure 5.2(b), it is noted that the UQI values of the high-contrast ROIs 
(including C1: -100%, C2: +150%, C4: -50%, C5: +85%, C8: +30%) by the four 
different methods are relatively high and comparable, while the UQI values of the low-
contrast ROIs (including C3: +7%, C6: -15%, C7: -7%) by the four different methods are 
relatively low and differ substantially.  These results suggest that the low-contrast objects 
are more difficult to recover but the PWLS-adaptiveNLM method performed well in 
recovering them.  It is well-known that the low-contrast objects can be very critical in 
clinic. 

     
Figure 5.2.  Performance comparison of the four methods on reconstruction of the eight 
ROIs labeled in Figure 5.1(b) with RMSE and UQI metrics.  The corresponding methods 
are illustrated in figure legend. 

5.4.2 Physical anthropomorphic torso phantom 

1). Projection data acquisition 
To evaluate the above presented reconstruction algorithm in a more realistic situation, 

an anthropomorphic torso phantom (Radiology Support Devices, Inc., Long Beach, CA) 
was used for experimental projection data acquisition. The phantom was scanned by the 
same clinical Siemens scanner in a cine mode at a fixed bed position. The X-ray tube 
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voltage was set to be 120 kV and the mAs level was set to be 40 mAs. The CT scanner 
was rotated 150 times around the torso phantom. 

The central slice sinogram data of one scan was extracted and regarded as the low-
dose scan.  The averaged sinogram data of that slice from 150 repeated scans was 
reconstructed by the FBP method to serve as the ground truth image for evaluation 
purpose. 

 
2). Visualization-based evaluation 

Figure 5.3(a) shows one transverse image of the anthropomorphic torso phantom 
reconstructed by the FBP method from the averaged sinogram of 150 repeated scans, 
which serves as the ground truth image for evaluation.  Figure 5.3(b)-(f) illustrates the 
reconstructed images by the FBP, FBP+NLM filtering, PWLS-NLM, PWLS-
adaptiveNLM and PWLS-TV from a low-dose 40 mAs sinogram.  The FBP+NLM 
filtering method can suppress the noise pretty well, but there are still tiny streak artifacts 
in the image.  The three PWLS methods outperform the FBP+NLM in terms of streak 
artifacts suppression, which can be attributed to the statistical modeling of the sinogram 
data.  From the zoom-in views of the detailed regions, we can observe that the PWLS-
adaptiveNLM method is superior to the PWLS-NLM and PWLS-TV on the 
reconstruction of the fine structures. 
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Figure 5.3. A reconstructed slice of the anthropomorphic torso phantom:  (a) FBP 
reconstruction from the averaged sinogram;  (b) FBP reconstruction from the 40 mAs 
sinogram;  (c) FBP+NLM filtering from the 40 mAs sinogram (h=0.012);  (d) PWLS-
NLM reconstruction from the 40 mAs sinogram (β=3×105, h=0.008);  (e) PWLS-
adaptiveNLM reconstruction from the 40 mAs sinogram (β=3×105, s=5×10-4, t=4×10-6);  
(f) PWLS-TV reconstruction from the 40 mAs sinogram (β=200).  All the images are 
displayed with the same window. 
 
3). Noise reduction performance 

Table 5.2 lists the quantitative results of the five different reconstruction methods on 
the anthropomorphic torso phantom with PSNR and NMSE metrics. The proposed 
PWLS-adaptiveNLM method also demonstrates better performance than the other four 
methods on image noise reduction. 
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Table 5.2. Noise reduction performance of the five reconstruction methods for the 
anthropomorphic torso phantom 

Metrics FBP FBP+NLM filtering PWLS-NLM PWLS-adaptiveNLM PWLS-TV 

PSNR (dB) 31.00 38.91 39.17 39.39 39.09 

NMSE (1e-4) 148.54 24.06 22.62 21.54 23.11 

 
4). Assessing local image quality 

To quantitatively demonstrate the benefits of the proposed PWLS-adaptiveNLM 
method, we compare the performance of the four methods on the reconstruction of ROIs 
with fine structures, which are labeled with red rectangles in Figure 5.3(b). The 
corresponding quantitative results based on the RMSE and UQI metrics are shown in 
Figure 5.4. Again, the PWLS-adaptiveNLM method yielded the lowest RMSE and the 
highest UQI for all the five detailed ROIs. 

   
Figure 5.4. Performance comparison of the four methods on the reconstruction of detailed 
ROIs labeled in Figure 5.3(b) with RMSE and UQI metrics.  The corresponding methods 
are illustrated in figure legend. 

5.4.3 Clinical patient data 

1). Projection data acquisition 
The projection data of a patient were acquired using the same Siemens scanner after 

obtaining informed consent from the patient, and this clinical data serve as a pilot clinical 
study. The patient was scheduled for CT scan for medical reasons. The X-ray tube 
voltage was 120 kV, and the mAs level was 20 mAs, which was considered as ultra low-
dose scan in clinic. 

 
2). Visualization-based evaluation 

The reconstructed images by the FBP, FBP+NLM filtering, PWLS-NLM, PWLS-
adaptiveNLM and PWLS-TV from the ultra low-dose 20 mAs sinogram of the patient are 
shown in Figure 5.5(a)-(e).  We can see that the FBP+NLM filtering method cannot 
eliminate the streak artifacts in the image, while the three PWLS methods do not have 
such problem due to the statistical modeling of the sinogram data.  However, the PWLS-
TV exhibits slight patchy artifacts in the region indicated by the arrow, which is also 
reported in (Tang et al. 2009). From the zoom-in views of the three detailed regions, we 
can also see that the PWLS-adaptiveNLM method outperforms the other methods on the 
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reconstruction of the fine structures. However, for the patient study, we cannot 
implement the quantitative evaluations as the phantom studies due to the lack of ground 
truth image. Still, we observe that the patient study exhibits the same trend as the 
phantom studies through visual inspection.   
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Figure 5.5.  A reconstructed slice of the patient data:  (a) FBP reconstruction from the 20 
mAs sinogram;  (b) FBP+NLM filtering from the 20 mAs sinogram (h=0.012);  (c) 
PWLS-NLM reconstruction from the 20 mAs sinogram (β=1×105, h=0.008);  (d) PWLS-
adaptiveNLM reconstruction from the 20 mAs sinogram (β=1×105, s=1×10-3, t=4×10-6);  
(e) PWLS-TV reconstruction from the 20 mAs sinogram (β=50).  All the images are 
displayed with the same window. 

5.5 Discussion and conclusion 

In this chapter, we proposed and validated an adaptive NLM-regularized statistical 
image reconstruction method for X-ray CT from low-dose acquisitions. One motivation 
of this work is that the traditional NLM filtering methods sometimes cannot completely 
remove the noise and streak artifacts in the low-dose CT images, especially when the 
streak artifacts are very severe. The NLM-regularized statistical image reconstruction 
method can mitigate this problem, partially due to the explicit statistical modeling of the 
projection data. However, the choice of the associated filtering parameter h as a spatially-
invariant global constant in the NLM-based regularization may not be optimal for the 
reconstruction of the entire image. To further improve the reconstruction results, we 
proposed a novel strategy to determine locally optimal filtering parameter by considering 
local characteristics of the image, which made the NLM-based regularization to be 
adaptive. The experimental results with the PWLS-NLM and PWLS-adaptiveNLM 
methods proved that it is indeed necessary and beneficial to introduce the spatial 
adaptivity of the filtering parameter.   

It is noted that the adaptive NLM-based regularization in this study is implemented in 
2D domain. The implementation can be expanded to 3D space by setting the search-
window and patch-window to, for instance, 17×17×17 and 5×5×5 respectively for 
isotropic data. This may further improve the performance of the proposed method, 
although it would also increase the computation burden.  

Also, it is noted that the proposed adaptive NLM regularization shares similar idea 
with the edge-preserving TV (Tian et al. 2011) and adaptive-weighted TV (Liu et al. 
2012) regularization. Although using different mechanism to incorporate the spatial 
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adaptivity, they essentially both consider local characteristics of the image to be 
reconstructed. However, the NLM-based regularization may have the advantage of better 
eliminating the patchy artifacts sometimes appearing in the TV-based regularization, due 
to the use of a larger neighborhood.  

As any other proposed method, the presented PWLS-adaptiveNLM method also has 
some potential limitations. The first one is the parameters tuning. While the sizes of 
search-window and patch-window (also the standard deviation of the Gaussian kernel) do 
not show noticeable effects on the reconstructed image when they are set in a reasonable 
range and the parameter setting t = 4×10-6 in Eq. (7) works well, the strength parameter s 
in Eq. (7) seems need more manual tuning than the others. In this study, a typical range 
for s was found from 4×10-4 to 1×10-3.  Further investigation on the strength parameter is 
needed. This is another topic in our future research plan. 
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Chapter 6 . Adaptive nonlocal-means regularized statistical 
image reconstruction for sparse-view CT  

In previous chapter, we explored a NLM-regularized statistical image reconstruction 
scheme for low-mAs CT, which takes advantage of projection data and utilizes 
information only from current scan. While one can reduce CT radiation dose by either 
low-mAs or sparse-view data acquisition, the latter strategy may have additional 
advantage in computational burden due to fewer projection measurements. Therefore, in 
this chapter, we extend the NLM-regularized image reconstruction scheme on sparse-
view CT to demonstrate its feasibility and efficacy. 

6.1 Introduction 

Low-dose X-ray computed tomography (CT) imaging is desired in clinic due to the 
growing concerns on excessive radiation dose to the patients (Brenner and Hall 2007). In 
addition to hardware improvement for CT systems (Hsieh 2009), two more cost-effective 
strategies have also been widely explored for radiation dose reduction: (1) lower the 
number of projection views per rotation (e.g., sparse-view) during projection data 
acquisition; and (2) lower the X-ray flux (e.g., mAs level) toward the patient per 
projection view. In this study, we focus on the first strategy wherein the projection data 
are sparsely sampled but the X-ray flux at each projection view remains relatively high. 
For this data acquisition manner, the reconstructed image by the conventional filtered 
back-projection (FBP) method usually suffers from view-aliasing artifacts due to 
insufficient angular sampling. 

In order to improve image quality from abovementioned sparse-view acquisitions, 
various image reconstruction methods have been proposed. The first category of those 
methods is based on the compressed sensing (Donoho 2006), which was initially 
proposed to accurately reconstruct a signal from much fewer samples than that is required 
by the Nyquist sampling theorem. Although the CT images are generally not sparse in 
their original pixel representation, one can apply a sparsifying transform to increase the 
sparsity. Discrete gradient transform (DGT) is one of the most commonly used 
sparsifying transforms, which leads to the well-known total variation (TV) norm. Sidky et 
al (Sidky et al. 2006; Sidky and Pan 2008) investigated sparse-view CT reconstruction by 
minimizing the TV of the desired image with the adaptive steepest descent projection 
onto convex sets (ASD-POCS) algorithm. Also, the edge-preserving TV (Tian et al. 
2011), adaptive-weighted TV (Liu et al. 2012), anisotropic TV (Debatin et al. 2012), and 
TV-strokes (Liu et al. 2014) models were explored for sparse-view CT image 
reconstitution. In addition, Chen et al (Chen et al. 2008) proposed a prior image 
constrained compressed sensing (PICCS) model to reconstruct dynamic CT images from 
sparsely sampled projection data. By introducing a prior image, it was reported that the 
PICCS method can better preserve the low-contrast objects (Lauzier et al. 2012). Besides 
DGT, other sparsifying transforms were also explored for sparse-view CT image 
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reconstruction, such as the wavelet transform (Yu and Wang 2010) or tight frame 
transform (Jia et al. 2011). The second category of reconstruction methods for sparse-
view CT is based on dictionary learning (Donoho and Elad 2003). A dictionary is a 
redundant basis whose elements are called atoms and are learned from training images. 
Then, an image can be sparsely represented as a linear combination of the atoms. The 
dictionary learning-based method processes the image patch by patch, contrary to pixel 
by pixel fashion in conventional sparsifying transforms. Xu et al (Xu et al. 2012) 
investigated a way to utilize the dictionary learning-based sparsification as the 
regularization term for penalized reconstruction of sparse-view CT image. Furthermore, a 
dual dictionaries strategy (Lu et al. 2012), with one transitional dictionary for atom 
matching and one global dictionary for image updating, was also studied to improve the 
reconstructed image quality. 

Another category of reconstruction methods for sparse-view CT is based on nonlocal 
means (NLM) algorithm (Buades et al. 2005). For instance, Jia et al (Jia et al. 2012) 
proposed a temporal NLM regularization for 4D CT image reconstruction or 
enhancement from sparse-view acquisitions, wherein the reconstruction of current frame 
image utilized the two neighboring frame images. Xu and Muller (Xu and Mueller 2012) 
tried to restore FBP-reconstructed sparse-view CT images with the help of a high quality 
prior image via the NLM algorithm, and noticed remarkable improvements over the 
conventional NLM filtering in suppressing the view-aliasing artifacts. However, the high 
quality prior image may not be readily available for some clinical applications, and even 
if it exists, registration is needed to align the two images, which can be challenging due to 
the existence of severe view-aliasing artifacts. In addition, a previous normal-dose CT 
scan induced nonlocal regularization was also investigated for iterative reconstruction of 
sparse-view CT (Zhang et al. 2012), but the method faced similar issues as the 
aforementioned method. In our previous work (Zhang et al. 2014; Zhang et al. 2015), we 
explored a generic NLM-regularized image reconstruction scheme for low-mAs CT, 
which takes advantage of projection data and utilizes information only from current scan. 
While one can reduce CT radiation dose by either low-mAs or sparse-view data 
acquisition, the latter strategy may have additional advantage in computational burden 
due to fewer projection measurements. Therefore, in this study, we extend the NLM-
regularized image reconstruction scheme on sparse-view CT to demonstrate its feasibility 
and efficacy. Also, it is noted that the many NLM-based approaches generally utilize a 
spatially-invariant filtering parameter, but this setting is suboptimal for the entire image 
because the filtration may be too strong for some regions while too weak for other 
regions (Li et al. 2014; Zhang et al. 2015). Thus, in this study, we further investigate to 
use spatially-variant filtering parameters which are adaptive to the local characteristics of 
the image to be reconstructed. And the resulting approach is termed as adaptive NLM-
regularized image reconstruction. 

6.2 Adaptive NLM-regularized image reconstruction 

The adaptive NLM-regularized image reconstruction for sparse-view CT can be 
formulated as: 

                                         (6.1) * 1
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While statistical modeling of projection measurements may not be essential in relatively 
high flux imaging application, the statistical assumption would still be important when 
the detected X-ray photon counts are limited (Xu and Tsui 2014). Therefore, we retain 
the weighted least-squares (WLS) rather than least-squares (LS) criterion as the data-
fidelity term.  is the regularization term which is given as: 
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To further improve the reconstructed image quality, we utilized a locally-adaptive 
estimation of the filtering parameter h at pixel j as (Zhang et al. 2015): 

 2
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h s mean k SW t    P P                               (6.3) 

where s and t are two constants, and can be determined through experiments. 
In this study, the regularization term in Eq. (6.2) using spatially-variant adaptive 

filtering parameter h in Eq. (6.3) is termed as adaptive NLM-based regularization and the 
resulting objective function in Eq. (6.1) is referred to as adaptive NLM-regularized image 
reconstruction.   

6.3 Experiments and results 

In this study, two categories of projection data (digital phantom and clinical patient) 
were utilized to evaluate the performance of the proposed NLM-regularized image 
reconstruction scheme for sparse-view CT. In the rest of this chapter, the NLM-
regularized image reconstruction using spatially-invariant constant h is referred to as 
"PWLS-NLM", while the reconstruction using spatially-variant adaptive h in Eq. (6.3) is 
referred to as "PWLS-adaptiveNLM". For comparison purpose, the standard FBP 
reconstruction using Ramp filter at 100% Nyquist frequency (referred to as "FBP"), the 
FBP reconstruction followed by traditional NLM filtering (referred to as "NLM filtered 
FBP"), were also implemented. 

6.3.1 Digital clock phantom 

1). Projection data acquisition 
A computer simulated clock phantom (Zhang et al. 2015) was utilized in this study, as 

shown in Figure 6.1. The clock phantom consists of a water background and eight 
circular inserts with different contrasts (C1: -100%, C2: +150%, C3: +7%, C4: -50%, C5: 
+85%, C6: -15%, C7: -7%, C8: +30%). The sinogram data was simulated utilizing a 
scanning geometry that mimics a Siemens Sensation 16 CT scanner (Siemens Healthcare, 
Forchheim, Germany). No noise was added in the sinogram data. The number of 
projection views per 3600 rotation was simulated at 20, 30, 40, and 50.  

( )U μ
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Figure 6.1. The computer simulated clock phantom.  

 
2). Visualization-based evaluation 

The reconstructed images by FBP, NLM filtered FBP, PWLS-NLM, and PWLS-
adaptiveNLM, from 20, 30, 40, and 50 projection views are shown in Figure 6.2. We can 
observe that FBP reconstructed images suffer from severe view-aliasing artifacts, NLM 
filtered FBP images are still corrupted with artifacts, while the NLM-regularized image 
reconstructions drastically remove the artifacts. A closer observation shows that the 
PWLS-NLM reconstructions seem to blur the low-contrast inserts (C3: +7%, C6: -15%, 
C7: -7%) substantially, while the PWLS-adaptiveNLM reconstructions can better 
preserve the low-contrast objects. That is, the PWLS-adaptiveNLM reconstructions seem 
to achieve the best image quality among the four methods. Meanwhile, we can see that, 
as the number of projection views increases, the quality of reconstructed images by any 
method also improves. These observations are validated with quantitative metrics in the 
following sections.   
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Figure 6.2. One reconstructed slice of the clock phantom by the four reconstruction 
methods from sparse-view acquisitions: (a1)-(a4) are reconstructed from 20 projection 
views; (b1)-(b4) are reconstructed from 30 projection views; (c1)-(c4) are reconstructed 
from 40 projection views; (d1)-(d4) are reconstructed from 50 projection views. All the 
images are displayed with the same window [0, 0.04] mm-1.  
 
3). Reconstruction accuracy 

To evaluate the overall reconstruction accuracy of different reconstruction methods, 
the PSNR metric was employed. Table 6.1 demonstrates that the two NLM-regularized 
reconstructions have significantly higher PSNR than the FBP reconstructed images and 
the NLM filtered FBP images. Meanwhile, the PWLS-adaptiveNLM method has tiny 
gains over the PWLS-NLM method for all the cases, which is also consistent with our 
visual inspection.  

Table 6.1. PSNR (dB) measures of the results reconstructed by the four methods for the 
clock phantom 

Methods 20 views 30 views 40 views 50 views 

FBP 19.23 21.49 22.89 23.12 

NLM filtered FBP 25.53 28.97 30.53 31.41 

PWLS-NLM 39.35 42.11 48.15 53.82 

PWLS-adaptiveNLM 40.42 43.15 49.26 54.26 

 
4). Assessing local image quality 

The FBP reconstructed images in Figure 6.2 demonstrate that the high-contrast 
objects are easier to be recovered than the low-contrast objects. However, we know that 
the low-contrast objects are more critical in clinic. Therefore, in this work, we focus on 
the reconstruction of low-contrast inserts (C3: +7%, C6: -15%, C7: -7%) for the clock 
phantom. Three ROIs were chosen to include those inserts, as labeled by the red 
rectangles in Figure 6.1. Since the reconstruction accuracy study in the previous section 
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indicated that the two NLM-regularized image reconstruction methods obviously 
outperformed the FBP or NLM filtered FBP, we only compared the local image quality 
by the two NLM-regularized image reconstruction methods. The corresponding results 
with RMSE and UQI metrics are illustrated in Figure 6.3. Apparently, the PWLS-
adaptiveNLM method generated better low-contrast objects reconstruction than the 
PWLS-NLM method, with lower RMSE and higher UQI. These results clearly 
demonstrate the merits of introducing the spatially-adaptive filtering parameter h in Eq. 
(4) for the NLM-regularized image reconstruction scheme.  

     
Figure 6.3. Performance comparison of the two NLM-regularized image reconstruction 
methods on reconstruction of the three ROIs labeled in Figure 6.1 with RMSE and UQI 
metrics. The corresponding methods are illustrated in figure legend. 

6.3.2 Clinical patient data 

1). Projection data acquisition 
The projection data of a patient was acquired using the same Siemens scanner after 

obtaining informed consent from the patient, and this patient data serves as a pilot clinical 
study. The patient was scheduled for CT scan for medical reasons. The X-ray tube 
voltage was 120 kV, the mAs level was 100 mAs, and the number of projection views 
was 1160 per 3600 rotation. Figure 6.4 shows one reconstructed slice of the patient from 
the projection data by the FBP method from the full 1160 projection views, which is 
considered as the ground truth image. In order to perform sparse-view CT image 
reconstruction, we evenly extracted 116 (10%), 145 (12.5%), 232 (20%), 290 (25%) 
projection views from the sinogram data. The size of reconstructed image is 512×512 
with pixel size of 1.0 ×1.0 mm2 for all implementations. 
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Figure 6.4. One reconstructed slice of the patient by the FBP method from 1,160 
projection views. 
 

2). Visualization-based evaluation 
Figure 6.5 shows one reconstructed slice of the patient by the four image 

reconstruction methods from 116, 145, 232, and 290 projection views, respectively. 
Basically, we observe the same trends as the phantom study. That is, compared with the 
FBP and NLM filtered FBP methods, the two NLM-regularized image reconstruction 
methods can more effectively suppress the view-aliasing artifacts. Figure 6.6 illustrates 
the zoom-in views of Figure 6.5 for ROI 1 and ROI 3 which are labeled in Figure 6.4. 
The zoom-in views demonstrate that the PWLS-adaptiveNLM method is superior to the 
PWLS-NLM method in retaining the subtle structures in the image, which may be of 
great importance to physicians’ diagnosis. In the following sections, we quantify the 
differences of the images reconstructed by the four methods.  
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Figure 6.5. A reconstructed slice of the patient data by the four reconstruction methods 
from sparse-view acquisitions: (a1)-(a4) are reconstructed from 116 projection views; 
(b1)-(b4) are reconstructed from 145 projection views; (c1)-(c4) are reconstructed from 
232 projection views; (d1)-(d4) are reconstructed from 290 projection views. All the 
images are displayed with the same window [0, 0.034] mm-1, and the images are cropped 
for better visualization. 
 

 

Figure 6.6. Zoom-in views of Figure 6.5 for two detailed ROIs labeled in Figure 6.4: 
Figure 6.6(a) corresponds to ROI 1 and Figure 6.6(b) corresponds to ROI 3. All the 
images are displayed with a typical lung window [0, 0.022] mm-1. 
 
3). Reconstruction accuracy 

Table 6.2 illustrates the quantitative results of the four different reconstruction 
methods on the patient data with the PSNR metric. Still, the presented PWLS-
adaptiveNLM method demonstrates the best reconstruction accuracy among the four 
methods for all cases.  
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Table 6.2. PSNR (dB) measures of the results reconstructed by the four methods for 
patient data 

Methods 116 views 145views 232 views 290 views 

FBP 24.70 26.00 28.98 30.50 

NLM filtered FBP 32.22 33.54 35.10 35.89 

PWLS-NLM 39.43 40.94 43.33 44.38 

PWLS-adaptiveNLM 39.79 41.36 43.68 44.65 

 
4). Assessing local image quality 

To quantitatively demonstrate the gains of the PWLS-adaptiveNLM over the PWLS-
NLM, we compared the performance of the two methods on the reconstruction of three 
ROIs in the lung region with subtle structures, which are labeled with red rectangles in 
Figure 6.4. The corresponding quantitative results based on the RMSE and UQI metrics 
are shown in Figure 6.7. For different projection views cases, the adaptive NLM method 
yields lower RMSE and higher UQI for all the three detailed ROIs. 

   
Figure 6.7. Performance comparison of the two NLM-regularized image reconstruction 
methods on reconstruction of the three ROIs labeled in Figure 6.4 with RMSE and UQI 
metrics. The corresponding methods are illustrated in figure legend. 

6.4 Discussion and conclusion 

In this study, we validated a NLM-regularized image reconstruction scheme for X-ray 
CT from sparse-view acquisitions. The experimental results with computer simulated 
phantom and clinical patient data demonstrate that the presented reconstruction scheme 
can successfully suppress the view-aliasing artifacts, and outperforms the method that 
taking NLM filtration of FBP reconstructed images. Meanwhile, the NLM-regularized 
image reconstruction using spatially-variant adaptive filtering parameters can better 
recover the low-contrast objects and subtle structures than that using spatially-invariant 
constant filtering parameter. Therefore, in order to improve image quality of low-contrast 
objects and subtle structures, it may be beneficial to employ the adaptive NLM-
regularized image reconstruction method.  

It is well known that the FBP reconstructed CT images from sparse-view acquisitions 
usually suffer from view-aliasing artifacts. Applying the NLM filter directly to FBP 
reconstructed CT images (i.e., NLM filtered FBP) is not quite effective in suppressing the 
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view-aliasing artifacts. Therefore, in this study, we propose a NLM-regularized image 
reconstruction scheme for sparse-view CT. Experimental results with the phantom and 
patient datasets demonstrate that the proposed reconstruction scheme is advantageous to 
the NLM filtered FBP method in suppressing the view-aliasing artifacts, as shown in 
Figure 6.2 and Figure 6.5. In order to improve the quality of low-contrast objects and 
subtle structures, we further investigate to design locally adaptive filtering parameters for 
the NLM-based regularization. Figure 6.3 and Figure 6.7 quantitatively illustrate that the 
adaptive NLM-regularized image reconstruction method considerably improves the 
quality of low-contrast objects and subtle structures as compared with the conventional 
NLM-regularized image reconstruction method, although it only marginally improves the 
overall image quality as shown in Table 6.1 and Table 6.2. Finally, it is also noted that, 
previous studies (Manjón et al. 2010; Li et al. 2014) which used NLM as a post-
processing filter also demonstrated the benefits of employing adaptive filtering 
parameters. That is, the conclusions are consistent, no matter using the NLM as a post-
processing filter or regularization in iterative reconstruction.  
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Chapter 7 . Overview and prospective of statistical image 
reconstruction for low-dose CT  

The statistical image reconstruction (SIR) methods for CT have been explored for 
radiation dose reduction in the past decades. Each of the SIR methods consists of two 
basic components of (1) construction of an adequate objective function and (2) utilization 
of a suitable algorithm for maximization or minimization of the objective function.  

7.1 Construction of objective function 

In construction of the objective function, the statistical modeling of the projection 
measurements for the data fidelity term is a prerequisite. The statistical phenomena in CT 
projection measurements are so complicated that it is rarely practical to have an exact 
statistical model and likelihood function (Nuyts et al. 2013). Instead, the statistical 
models in chapter 2 are considered as good approximations, and have been widely 
employed in the CT image reconstruction. In addition to the statistical model, a good 
regularization term is also a key to solve the ill-posed inverse problems including low-
dose CT reconstruction. In practice, effectively suppressing the noise and streak artifacts 
while preserving the edges/details/contrasts are the two major concerns when designing a 
regularization term. Many regularization terms have been proposed and studied for low-
dose CT reconstruction in the past decades, including those proposed in this dissertation. 
And more desirable regularizations based on prior knowledge may be proposed in the 
future. 

While the statistical models in chapter 2 can reasonably describe the statistical 
properties of the low-dose CT projection data, the regularization for faithful image 
reconstruction remains an open question. There are many regularization models to 
impose local smoothness on the image, however, their diagnostic values are still not well 
documented. In theory, the regularization shall incorporate the prior knowledge of the 
image to be reconstructed. Unfortunately, the diagnostic information is not known in 
prior and actually need to be from the current scan. However, for some specific clinical 
tasks, such image-guided interventions, prior knowledge is available to achieve the task. 

Furthermore, the hyper-parameter β in the pML or PWLS criterion controls the 
tradeoff between the data fidelity term and the regularization term. A larger β value 
produces a more smoothed reconstruction with lower noise but also lower resolution, and 
vice versa. The noise-resolution tradeoff curve, or bias-variance tradeoff curve, can 
indicate the influence of β value selection on reconstructed image quality. In practice, a 
series of β values can be tested for a specific SIR method with specific projection data, 
and after the images are reconstructed, visual inspection and quantitative measurements 
are used to determine the optimal β value. This scheme can also be considered as a 
process of trial and error. But generally, the selection of β value for SIR methods is still 
an open question and is considered as one of their drawbacks.  
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7.2 Optimization of objective function 

Efficient algorithms for objective function optimization are important to avoid local 
maximum or minimum for the optimal solution. An iterative algorithm is typically 
employed because the objective function usually does not have a closed-form solution, or 
even if it has closed-form solution it is still impractical to directly invert the system 
matrix due to the large size (Fessler 2006). Several types of iterative algorithms have 
been proposed for solving objective functions of SIR, including the steepest descent (or 
gradient descent), conjugate gradient, expectation maximization, iterative coordinate 
descent, separable parabolic surrogates and so on (Fessler 2000). The selection of an 
iterative algorithm depends on several factors such as the form of the objective function, 
convergence rate, parallelization ability, and reconstruction accuracy. There are also 
some variants of these iterative algorithms which attempt to accelerate the reconstruction, 
such as the ordered subsets, group coordinate descent, and alternating direction method of 
multipliers approaches. In this dissertation, the objective function is usually of a quadratic 
form and easy to be optimized by the GS method.  

7.3 Clinical use of SIR methods 
Although considerable progress has been made on SIR of CT during the past decades, 

the analytical FBP method is still employed by most commercial scanners for image 
reconstruction. Due to a strong desire for radiation dose reduction, SIR methods have 
recently become an endeavor for major CT vendors, and some prototypes products based 
on this have been exhibited in a number of national and international meetings. Since the 
optimization of objective function for SIR is routinely performed by iterative algorithms, 
the computational burden due to multiple re-projection and back-projection operation 
cycles in the projection and image domains has always been one big challenge for clinical 
use. However, software approaches and hardware approaches using the graphical 
processing unit (GPU) (Xu and Mueller 2005) and cell broad-band engine (Knaup et al. 
2006) have been investigated to accelerate the iterative procedure and substantially 
reduce the reconstruction time. With constant improvements in computation technology, 
SIR methods can move closer to clinical use and may play a dominant role there in the 
near future. 
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