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Abstract 
of the Dissertation 

Temporal fidelity and functional dynamics in functional MRI time-
series analyses. 

by 

Daniel James DeDora 

Doctor of Philosophy 

in 

Biomedical Engineering 

Stony Brook University 

2015 

Functional magnetic resonance imaging (fMRI) has revolutionized the study of the human brain 
by allowing researchers and clinicians to map neural function at fine spatial resolutions. Modern 
fMRI acquisition and analytic techniques are beginning to uncover the network-scale dynamics 
of meso-circuits within the brain, which could lead to enhanced treatments or prevention of 
psychiatric and neurological illnesses. However, artifact and noise potentially compromise the 
validity of dynamic analyses. Here, we evaluate and utilize dynamic fMRI signals to advance the 
study of the human brain. The dissertation comprises three parts: a human study, a phantom 
study, and a combined human-phantom study. First, we use novel analyses and modeling 
techniques to define a brain meso-circuit associated with threat evaluation. We show that the 
inferior frontal gyrus (IFG) is significantly dysregulated in anxiety patients, and use causal 
modeling to reveal aberrant circuitry between the IFG, ventromedial prefrontal cortex, and 
amygdala during processing of ambiguous threat. Second, we prototyped (designed, 
manufactured, and validated) a dynamic phantom that enables the rigorous evaluation of the 
temporal fidelity of fMRI time-series with respect to controlled dynamic inputs. The phantom 
comprises concentric cylinders containing agarose gels whose magnetic susceptibilities are 
spatially varying; a novel pneumatic motor and fiber optic feedback system are coupled with a 
microcontroller to produce precisely timed changes in fMRI signal within predefined regions of 
the phantom. We validate the phantom by demonstrating biomimetic response functions and 
motion artifact-free output fMRI time-series. Third, we combine human and phantom data from 
three separate fMRI scanners to aid in the development of a novel measure of signal to noise for 
resting-state studies, deemed signal fluctuation sensitivity (SFS). We first use the phantom to 
develop and test SFS on data with known inputs, and compare SFS with classical temporal SNR 
(tSNR). We then validate SFS using human resting-state data, and demonstrate advantages over 
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tSNR. Taken together, the three elements of this dissertation advance fMRI state of the art, with 
broad implications for clinical neuroimaging.  
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Frontispiece: Our novel measure of signal fluctuation sensitivity (SFS) in 
functional MRI is robustly predictive of neural synchrony (ReHo) in 
humans. Scale bar represents correlation between SFS and ReHo in 12 
human subjects during a task-free scanning paradigm.  
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CHAPTER 1 

1. Background and Introduction 

Recent years have seen unprecedented investment in brain research, with the Human Brain 
Project aiming to simulate the human brain using supercomputers ($1.2 billion in European 
funds), the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) project 
aiming to develop new and innovative technologies towards mapping brain activity ($100 
million in US funds), and the Human Connectome Project aimed at producing an openly 
accessible map of functional and structural connectivity in humans ($40 million in US funds). 
These massive multicenter undertakings are fundamentally transforming our understanding of 
the brain. These projects are designed to couple computational techniques with modern imaging 
methods to offer valuable insight into the function and regulation of neural systems. When 
applied to functional MRI, however, computational techniques are sensitive to non-neural 
contributions from physiological noise and scanner noise. This dissertation focuses on the 
functional dynamics and fidelity of fMRI signal.  

The aim of the following chapter is to describe the current state of the art in functional 
magnetic resonance imaging (fMRI). We begin with a survey of MRI, followed by an 
introduction to fMRI. This subsection includes brief discussions of neurobiological activity 
underlying fMRI signal changes, acquisition techniques, preprocessing pipelines, and sources of 
artifact. These topics set the stage for a review of what the authors believe to be the entirety of 
the available literature on functional MRI phantoms.  

 
1.1 Magnetic Resonance Imaging  

First developed by Paul Lauterbur (Lauterbur 1973), magnetic resonance imaging is often the 
tool of choice for the generation of images that map internal anatomy. Magnetic Resonance 
Imaging (MRI) utilizes the differential concentrations of hydrogen molecules in biological 
tissues to generate non-invasive images with high resolution. MRI works by sensing 
radiofrequency (RF) emissions following excitation under the influence of a large magnetic field 
and a combination of smaller gradients (Brown, Perthen et al. 2007). The MRI machine contains 
a uniform main field B0, which is typically on the order of 1.5-7 Telsa (T) for modern imaging 
systems. Protons precess with a frequency (Larmor frequency) that is proportional to the 
magnetic field surrounding them. Three gradients are produced within the field (x, y, and z), 
which modify the local magnetic field and alter the Larmor frequency for slice-selection, the 
phase for phase encoding, and the frequency for frequency encoding. In summary, the main field 
is modulated as a function of local gradients. The change in each of these magnetic fields allows 
the localization of magnetic signal, while magnetic susceptibility differences between tissues 
allows contrast. The longitudinal and spin-spin relaxation constants of a tissue are deemed T1 
and T2, respectively. A Fourier transform of these emissions produces images that detail the 
underlying tissues. MRI is now used by clinicians and researchers worldwide for an array of 
applications; these include cardiac imaging (Jabbour, Ismail et al. 2011, McLellan, McKenzie et 
al. 2011, Metzner, Kivelitz et al. 2011, Petryka, Misko et al. 2011, Thavendiranathan, Liu et al. 
2011), tumor detection (Jaffar, Ain et al. 2011, Li, Padhani et al. 2011, Matsumura, Aoki et al. 
2011, Nakanishi, Chuma et al. 2011), brain function mapping (Josephs and Henson 1999, Friston 
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2009, Radulescu and Mujica-Parodi 2009), diffusion weighting (Barbaro, Vitale et al. 2011, 
Rheinheimer, Stieltjes et al. 2011, Yuan, Wang et al. 2011), soft tissue damage (Brash, Foster et 
al. 1999), and intestinal imaging (McRobbie, Moore et al. 2007, Fruehauf, Menne et al. 2011, 
Haans, de Zwart et al. 2011), among others.  

1.2 Functional MRI 
For two decades, functional MRI (fMRI) has been an indispensible tool at the forefront of 
neuroimaging. fMRI utilizes the paramagnetism of deoxygenated blood to indirectly identify and 
map temporal changes in brain activity. This is called blood oxygen level dependent (BOLD) 
imaging (Ogawa, Lee et al. 1990), and frequently utilizes the echo-planar imaging sequence to 
measure T2* relaxation (Bruning, Seelos et al. 1999) (see below for EPI explanation). Briefly, 
when neurons in a region of the brain are activated, they quickly absorb available oxygen, 
resulting in an “initial dip” in MR signal due to the decreased relative susceptibility of a small 
group of neurons  (see controversy regarding this dip (Renvall and Hari 2009)). The brain then 
sends a flood of freshly oxygenated blood to the area, which results in a signal increase (Buxton, 
Wong et al. 1998). After the cessation of activity, the brain returns to resting state (though there 
may be a post-stimulus undershoot, which is again controversial (Renvall and Hari 2009)). This 
neurobiological sequence – dip, spike, dip, rest - is known as the hemodynamic response. fMRI 
data is then analyzed statistically (see 1.3.4 - statistical analysis for a brief overview of these 
steps) over experimental groups, brain regions of interest, or conditions (or all three).  For 
illustrative purposes, results of fMRI are typically superimposed on a structural image (Figure 
1.1). Naturally, many pulse sequences and reconstruction algorithms exist that are not discussed 
here. However, this section serves to introduce the reader to the space. 

 
1.2.1 Echo Planar Imaging 

Echo planar imaging is a common form of functional MRI (DeLaPaz 1994). After the scanner 
issues a slice-selective pulse (proportional to the Larmor frequency of the slice of interest), the 
scanner must fill a 2D matrix known as k-space using information obtained through frequency 
and phase encoding. In contrast to typical gradient echo imaging, where one line of k-space is 
filled per repetition time (TR), here a single excitation pulse is followed by a full filling of k-
space through the alternation of powerful gradients; the scanner traces a continuous waveform 
through K-space.  EPI images can be created very quickly (each slice can be produced in as little 
as 20ms), capturing the temporal dynamics of the hemodynamic response. Because EPI is a 
variant of gradient-echo imaging, the T2 relaxation time of a material is sensitive to static field 
inhomogeneities. This shortens the apparent T2, and is subsequently known as T2

*.  

 
1.2.2 Spiral Imaging 

Another popular type of functional imaging is spiral imaging. Spiral imaging is similar to EPI; 
however, sinusoidal gradients are used instead of the rectangular shifts in EPI. This results in a 
filling of K-space starting from the center and spiraling outwards. While this is less taxing on the 
hardware (more gradual gradient changes), it requires significant post-processing to transform 
the circular K-space to a typical Cartesian coordinate system (Huettel, Song et al. 2004). Thus, 
our focus will be on echo-planar imaging.  
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1.2.3 Multiband and Parallel Imaging 
Recently, several sophisticated image acquisition and reconstruction algorithms have enabled 
considerable advances in functional imaging. Though what follows are not all pulse sequences 
per se, these algorithms allow for considerably speedier acquisition times and are therefore 
worthy of discussion. Many of these methods allow the user to acquire fewer lines along the 
phase-encode direction of k-space, thus improving scan time.  

Sensitivity encoding (SENSE) utilizes a priori knowledge of the acquisition area in a 
phased array coil. The coil must be SENSE-enabled, which refers to slight variances in coil 
sensitivity along the phase-encode direction. This method requires a calibration scan but allows 
the user to acquire fewer phase-encode lines in k-space. SENSE addresses the aliasing inherent 
in undersampled k-space by solving a linear system of equations synthesized from two images 
and their respective coil sensitivities (McRobbie, Moore et al. 2011). mSENSE is a slight 
modification that trades the acquisition of a calibration scan for additional lines of k-space. 
Artifacts can occur with this method when the field of view does not contain the full region of 
interest; this results in a kaleidoscope-type effect known as “hot-lips.” 

Simultaneous acquisition of spatial harmonics (SMASH) uses combinations of array coil 
sensitivities to create “virtual” phase encoding.  Similar to SENSE, this method reduces the 
number of phase encoding steps. However, this method requires very specific coil designs with 
known sensitivities. Auto-SMASH acquires additional phase-encoded lines of k-space during 
acquisition, and solves a linear system of equations to fill the remaining k-space. VD-Auto-
SMASH further reduces artifact but requires more lines of k-space to be acquired; however, 
suboptimal calibration of element sensitivities leads to poor reconstructions. Thus, a derivative of 
VD-AutoSMASH is Generalized Autocalibrating partially parallel acquisitions (GRAPPA). 
GRAPPA uses some spatial information inherent in the components of the headcoil array to 
replace some of the spatial encoding with gradients; however, it uses a sum of squares method to 
enhance the reconstruction (Griswold, Jakob et al. 2002). For a review of each of these 
techniques, see (Blaimer, Breuer et al. 2004) 
 

1.2.4 Preprocessing Overview 
An inherent limitation of fMRI is that signal changes are typically on the order of only a 1-3% 
percent; the magnitude of the inherent noise is also 1% percent, which complicates data analysis 
and interpretation. Thus, a lengthy set of preprocessing procedures nearly always precedes the 
analysis of fMRI data.  

The preprocessing pipeline in fMRI is extensive. Research groups typically utilize 
popular preprocessing packages, including FSL, AFNI, Free Surfer, BrainVoyager and SPM. The 
steps in preprocessing will be described as in (Huettel, Song et al. 2004). This section is meant to 
be introduction, and is by no means exhaustive.  
 

Slice time correction - Each volume is acquired rapidly in EPI; however, each slice in a volume 
does represent a slightly different time point. For example, if the sampling rate is 2 (TR = 
2000ms), and 50 slices are acquired within that two-second window, then the first and last slice 
can potentially be acquired nearly two full seconds apart. Given the temporal resolution of the 
hemodynamic response, critical changes in signal could occur within this window. Interleaving 
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slice acquisitions is often used to mitigate these time differences (though it is necessary for 
parallel imaging purposes as well). First, slice acquisition time correction is performed. This 
usually includes a modification of the predicted hemodynamic response as well as an 
interpolation of the results to account for slight differences in signal timing. 

Motion Correction - Head motion is a pervasive problem in fMRI, since slight motions (a few 
mm) can result in large fluctuations in signal. These fluctuations are nonlinear and often result in 
spurious spatial and temporal correlations in data (Power, Barnes et al. 2012). Cortical surfaces 
and certain tissue interfaces are often most vulnerable to these types of motion, since small 
movements can introduce tissue with different properties into a voxel or cluster (Huettel, Song et 
al. 2004). Typically, the first strategy for motion correction is called coregistration; it ensures 
that the brain is in the same spatial location in each image. Realignment uses a combination of 
three dimensional rotations and translations to coregister each volume to an initial image; a least 
squares approach is used to minimize the differences between successive images (Friston, 
Ashburner et al. 1995, Friston, Williams et al. 1996, Bullmore, Brammer et al. 1999). Once 
alignment is complete, spatial interpolation is performed to calculate the theoretical values of 
signal within the voxel that would have been measured without head movement. This routine is 
not sufficient to remove motion artifacts, however (see Motion section). 
Geometric distortion correction - These distortions are usually caused by static field 
inhomogeneities. The current method to correct for distortion is called bias-field estimation; this 
technique estimates inhomogeneities based on the acquired set of images (including the 
structural image).  The American College of Radiology has a certified phantom designed to 
measure geometric fidelity, which will be covered in a later section.  

Normalization - This allows the user to map low-resolution functional images to high-resolution 
structural images - often Talairach’s image, which is a standard in fMRI. Gross features, such as 
the center sulci and ventricles, are mapped onto each other to rescale the image.  
Filtering and smoothing - Filtering and smoothing are used to remove random noise. Sources of 
noise in fMRI will be covered below, but these sources include physiological (heart rate, 
breathing, movement) and scanner-related (instabilities) noise. fMRI data is often high-pass 
filtered to remove underlying trends, and is sometimes band-pass filtered to remove trends as 
well as high-frequency noise (Kruggel, von Cramon et al. 1999). The application of Gaussian 
kernels to spatially smooth fMRI data is often used to improve signal detection and to better 
identify regions of activity. Smoothing kernels are typically between 4-8 mm wide. This assumes 
that noise is random and uncorrelated, such that averaging between voxels enhances signal and 
cancels out noise. In practice, however, this is not an entirely valid assumption. 

 
1.3 Sources of Noise in fMRI 

fMRI analyses are subject to numerous sources of artifact and noise. Here, we briefly describe 
these noise sources and their effect on analyses. For the purposes of this dissertation, we focus on 
scanner and equipment related noise sources. For an in-depth discussion on the topic, the reader 
is directed to an excellent review by Greve and colleagues (Greve, Brown et al. 2013).  

1.3.1 Thermal Noise 
Thermal noise is the result of Brownian motion of charged carriers within a substrate. Ions, being 
charged particles, create small magnetic fields as they move. These small magnetic fields are 
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picked up by the MR-scanner. In general, thermal noise can be modeled by homoscedastic 
Gaussian random noise (Greve, Brown et al. 2013) whose amplitude is guided by coil loading 
(Triantafyllou, Hoge et al. 2005), and is an independent additive noise to BOLD fluctuations 
(assuming bandwidth is fixed)(Wald 2012).  While smoothing, averaging, and filtering are 
typically utilized to remove thermal noise post-hoc, thermal noise is not perfectly temporally 
uncorrelated (Triantafyllou, Polimeni et al. 2011). Indeed, colored noise has long been observed 
in static phantoms (Zarahn, Aguirre et al. 1997). 
1.3.2 Scanner Instabilities 

Scanner instabilities encompass a fairly broad subset of noise in functional MRI. Instabilities are 
multiplicative instrument-induced noise sources that influence the k-space trajectories, RF 
pulses, and slice select pulses during a scan (Greve, Mueller et al. 2011). Fluctuations in resistive 
shim currents, RF gain or phase, receiver amplifier gain or phase, and gradients can underlie 
these artifacts (Greve, Mueller et al. 2011). Some controversy exists over whether or not these 
fluctuations are exacerbated in modern scanning paradigms, as scanners are subject to 
increasingly demanding scan protocols (Greve, Mueller et al. 2011, Mikkelsen and Lund 2013). 
Much fMRI research operates under the assumption of minimal scanner instability 
(Triantafyllou, Hoge et al. 2005), which is consistent with existing reports where physiological 
and background noise constitute at least 95% of the variance in an fMRI experiment (Greve, 
Mueller et al. 2011). Additionally, recent studies estimate that thermal noise and scanner 
instabilities account for approximately 25% of drift effects observed in fMRI. 

In contrast to these reports indicating the fairly innocuous effect of scanner instabilities 
and thermal noise, other recent studies suggest significant differences in scanner performance 
between scanners. Our very recent work found significant differences in the spectral signatures 
of two healthy groups of age- and gender-matched participants (Rubin, Fekete et al. 2013). Inter-
scanner reliability is consistently lower than intra-scanner reliability (Friedman and Glover 
2006); by some estimates, inter-scanner reproducibility hovers around 10% (Friedman, Stern et 
al. 2008). It is clear that proper quality assurance and calibration routines should be strictly 
followed, but whether this approach is enough to ensure precise and accurate fMRI results is still 
controversial.  
1.3.3 Physiological Noise  

Unlike thermal noise, physiological noise is multiplicative and scales with field strength (Kruger, 
Kastrup et al. 2001). Physiological noise is an umbrella term for a subset of noise sources 
stemming from natural physiological processes, including heart rate and breathing.  
 Functional MRI is sensitive to changes in the concentration of deoxygenated hemoglobin 
in the blood. The beating heart sends a rush of freshly oxygenated blood to the brain, and thereby 
produces a pulsatile fluctuation in fMRI signal (Weisskoff, Baker et al. 1993). This heart-rate 
based fMRI fluctuation is often faster than 1 Hz. When fMRI experiments utilize a sampling rate 
of < 0.5 Hz (TR < 2), heart rate effects get aliased into lower frequencies (Greve, Brown et al. 
2013). Heart rate can be tracked with MR-compatible electrocardiogram, allowing regression of 
heart rate-related variables during preprocessing.  

Breathing presents a two-pronged source of noise. First, breathing introduces fluctuations 
in deoxygenated blood flow to the brain, modifying fMRI signal similarly to heart rate; in this 
case, the fluctuation is on the order of 0.3 Hz. As with heart rate, it is possible to track breathing 
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with an expansion belt and implement a regressor during preprocessing. Second, breathing 
introduces a small amount of motion. Images stretch and compress with each breath, causing 
partial volume and spin history effects (Greve, Brown et al. 2013)  (motion will be covered in the 
next section). Finally, breathing creates a shift in the main field at the head, leading to distortions 
(Raj, Anderson et al. 2001). 

Physiological noise has been well studied. Several groups have found that physiological 
noise is a dominant source of fMRI variance at moderate to high field (≥ 3T) (Kruger, Kastrup et 
al. 2001, Triantafyllou, Hoge et al. 2005, Hutton, Josephs et al. 2011) and low resolution, while 
thermal noise becomes more prominent at high resolution and low field (Triantafyllou, Hoge et 
al. 2005). The ratio of physiological noise to thermal noise grows as flip angle increases and as 
greater array coils are used (Triantafyllou, Polimeni et al. 2011). Many software algorithms and 
modeling approaches have been produced to remove physiological noise from fMRI time-series, 
including principal component approaches (Bullmore, Rabe-Hesketh et al. 1996, Hansen, Larsen 
et al. 1999), independent component approaches (McKeown, Jung et al. 1998, McKeown, 
Makeig et al. 1998, McKeown and Sejnowski 1998, Beckmann and Smith 2004), canonical 
correlation analyses (Churchill, Yourganov et al. 2012, Churchill and Strother 2013), and the 
well-known RETROICOR method (Glover, Li et al. 2000). It is critically important to include 
physiological noise in simulations to avoid bias (Welvaert and Rosseel 2012).  For a review of 
physiological noise in resting-state human imaging, see (Birn 2012, Birn, Cornejo et al. 2014).  
1.3.4 Motion-related noise 

Motion-related noise is one of the most persistent and difficult noise sources to deal with. As an 
object moves, it interacts with the gradients along each dimension. This interaction changes the 
relaxation properties of the substrate, and thus, influences the measured fMRI signal. If an object 
is moving between imaging slices and is re-excited prior to relaxing fully, the new Larmor 
frequency will both a function of the current field strength (which is a function of the gradients 
and position) as well as the previous Larmor frequency. This is known as the spin history effect, 
and can be modeled as an autoregressive moving average model (Friston, Williams et al. 1996).  

Realignment of images is the most frequency used method for partial correction of 
movement (Friston, Ashburner et al. 1995). However, realignment does not fully remove these 
artifacts. Often, researchers will also regress motion and a second order term – including its 
square or its derivative (Rubin, Fekete et al. 2013). The analysis of stimulus-driven tasks is 
further complicated by task-correlated motion (Bullmore, Brammer et al. 1999); this type of 
motion is common in “active” tasks, such as a game, or in tasks that elicit emotion or surprise. 
This creates a problem because regression of motion can also remove neural signal. Regression 
can also create spurious activations due the presence of outliers (Freire and Mangin 2001).  

Motion of the head does not affect all voxels uniformly. It was previously shown that 
motion during resting-state results in decreased long-range correlations and increased short-range 
correlations (Power, Barnes et al. 2012). There does not seem to be a simple, linear relationship 
between motion and fMRI signal. Thus, scrubbing (or censoring) of affected images has been 
proposed (Power, Barnes et al. 2012). Filtering and spike correction can also improve motion 
correction algorithms (Jo, Gotts et al. 2013). For a detailed review of motion-artifact related 
preprocessing routines, see (Power, Schlaggar et al. 2015). 

1.4 Calibration and Quality Assurance 
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As discussed above, many sources of noise influence fMRI images: patient motion, magnetic 
field inhomogeneities (particularly with gradient echo images), signal drift, aliasing, scanner 
variability (particularly with functional imaging), signal dropout at air-tissue interfaces, signal 
distortion from fat, blood flow, peristaltic motion, cardiac motion, phase wrap-around, Gibb’s 
artifact, zipper artifact, and others (McRobbie, Moore et al. 2007). Though many of these 
sources of artifact are caused specifically by patient physiology, many are a direct result of 
equipment shortcomings. Thus, tight calibration and quality assurance procedures are necessary 
to ensure optimal MRI function.  

There are various ways to optimize MRI function. Ensuring the proper MRI environment 
can help to prevent many problems before they occur. Following installation of an MR machine, 
shimming optimizes the uniformity of the MRI (McRobbie, Moore et al. 2007). Nonetheless, 
quality assurance is performed to ensure optimal signal to noise (SNR), uniformity, linearity, 
resolution, slice parameters, contrast to noise ratios (McRobbie, Moore et al. 2007). Quality 
assurance protocols are performed using a phantom, which is an inorganic object that produces a 
desired MR signal.  

The American College of Radiology (ACR) requires a standard phantom for 
accreditation, which most QA protocols for clinical MRI use today (Radiology 2005). The ACR 
MRI phantom (Figure 1.2) is a sealed cylinder filled with approximately 300 mL of an 
electrolyte solution; it contains various internal structures to perform quality assurance protocols 
– for details, see (Radiology 2005). This phantom is used to optimize the following seven 
parameters: 1) geometric accuracy, 2) high-contrast spatial resolution, 3) slice-thickness 
accuracy, 4) slice-position accuracy, 5) image intensity accuracy, 6) percent-signal ghosting, and 
7) low-contrast object detectability (Radiology 2005).  These optimization procedures help 
ensure high-quality MR images. However, despite their obvious utility for structural MRI, static 
phantoms fall short in the functional realm of neuroimaging.  

 Modern functional imaging facilities utilize similar phantoms for ACR accreditation. 
These phantoms are static in the temporal domain. They do not allow a researcher to assess the 
fidelity of small signal changes. Accordingly, several research groups have developed phantoms 
capable of producing functional MRI signal with predictable temporal dynamics; these are used 
to ensure that a known input creates a consistent signal output. These phantoms, sometimes 
called dynamic phantoms, will be the focus of the remainder of this section.  

1.4 Dynamic Phantoms 

Four groups have published designs for functional MRI phantoms capable of producing 
simulated BOLD signal. Three utilize inner circuitry to produce small magnetic fields, and the 
fourth is a simple two-compartment cylinder that is hand-operated. The most notable fMRI 
phantom is the SmartPhantom. 

1.4.1 SmartPhantom 
The SmartPhantom is a patented device used to create simulated BOLD data (Cheng, Zhao et al. 
2004, Friedman, Zhao et al. 2004, Cheng, Zhao et al. 2006, Zhao, White et al. 2006). The device 
was designed to allow for inter-scanner and intra-scanner quality control and calibration 
experiments. Additionally, it could be used for the comparison of modern analysis software. It is 
designed to be scanned as part of a routine maintenance procedure, and fits snuggly into the 
headcoil.  
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 The SmartPhantom comprises a combination of three RC circuits and a larger LC circuit 
with switch-based voltage sources to induce controllable magnetic fields within a large, square 
coil (Cheng, Zhao et al. 2004, Friedman, Zhao et al. 2004, Cheng, Zhao et al. 2006, Zhao, White 
et al. 2006). The coil is embedded within a cylinder of hydrogel, which functions as the region of 
interest.  When a magnetic field is induced within the phantom, the T2* of the surrounding 
hydrogel is modified, and signal is enhanced. The equation governing signal enhancement, as 
derived from Biot-Savart law by the authors, is: 

 
where R(t) is the resistance of the circuit as a function of time, which is modified by the user. Z0 
and q are constants associated with the device and scanner (Cheng, Zhao et al. 2006). The 
phantom is remotely controlled, and can simulate the hemodynamic response.  The authors claim 
that a relatively uniform activation area of approximately 14 cm3 can be produced with their 
device, which is comparable to commonly imaged brain regions (Cheng, Zhao et al. 2006).  

 The SmartPhantom has been used for various experimental purposes, including an inter-
scanner reproducibility study (Friedman, Zhao et al. 2004). The authors compared a Siemens 
1.5T Sonata and a GE Signa Excite 1.5T, both with quadrature head coils; they used four 
different flip angles, and four signal enhancement levels. They found that the GE had more 
scanner noise, and that the machines had small but noticeable differences in signal change. This 
study suggested that, as the authors had predicted, scanner performance was not identical. 
Because analysis depends on minute effect sizes amidst large amounts of noise, these differences 
would undoubtedly be significant for studies with small numbers of participants.  The 
SMARTPHANTOM has also been used to present a new method for improving the derivation of 
the hemodynamic response function (Li, Reza et al. 2007). The authors presented a method to 
measure and correct for the aliasing of high-frequency noise into lower frequencies in the fMRI 
signal. 

1.4.2 fMRI Reference Phantom 
The need to correct for within-scan signal drift suggests that a priori calibrations may not suffice 
for functional studies (Renvall, Joensuu et al. 2006, Renvall 2009). Knowing this, a reference 
phantom was developed, designed to be scanned simultaneously within research paradigms. By 
simulating brain responses during a functional study, changes in signal strength due to dynamic 
field inhomogeneities and other unexpected effects can be quantified and regressed from subject 
scan data.  
 The reference phantom works via the same principle as the SmartPhantom. A circuit is 
embedded in a hydrogel, and current is used to produce magnetic fields; these fields can simulate 
BOLD response within an fMRI (Renvall, Joensuu et al. 2006, Renvall 2009). Most importantly, 
the reference phantom is a small rod shape, which can be scanned beside the subject in the 
headcoil. This phantom was most recently used to evaluate the controversial “post stimulus 
undershoot” in the absence of physiological effects (Renvall and Hari 2009). The authors found 
that transients occur when fMRI signals change sharply, and conjecture that this effect could be 
scanner-based and not physiological. This finding highlights just one of many uses of dynamic 
phantoms.  
1.4.3 Two-compartment Gel Phantom 

€ 
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Utilizing only hydrogels and plexiglass, this phantom is the only truly MR-compatible design 
available (Olsrud, Nilsson et al. 2008).  The phantom has two compartments, each filled with a 
specific concentration of doped-agarose gel. Between TRs, the operator slides the phantom 
between the “active” and “inactive” regions, which produces BOLD contrast. The principle is 
based on the following equation: 

 
where percent signal change is dependent on the change in T2

*
 value,  as well as the echo time. 

The author published a proof-of-concept study to show that differential agarose concentrations 
can produce physically simulated fMRI signal changes. 

1.4.4 Trace ion MRI Phantom 
The most recent dynamic phantom design was published in June 2014 (Qiu, Kwok et al. 2014). 
Qiu et. al. developed a phantom containing small parallel electric plates within propylene 
carbonate solutions. When an electric field is applied, the polar solvent forms ion currents; these 
ion currents create dephasing in magnetic fields perpendicular to the main field. The authors 
were able to control the fMRI signal within a single slice, but the wiring creates noticeable 
distortion in the images.  

1.5 Conclusion 

These phantom designs establish several methods of creating on/off signal changes in fMRI. 
However, each of these phantoms suffers from one of two key issues – (1) presence of magnetic 
materials, including wires and plates that cause signal artifact, or (2) inability to produce 
complex input signals over multiple slices. The utility of a dynamic phantom has grown even 
greater in recent years, as dynamic analyses relying on precise temporal fidelity replace more 
traditional functional localization studies. Therefore, the need for an MRI-compatible and 
automated phantom still exists.  

Chapter 1 Figures and Captions 

Figure 1.1: An example fMRI statistical map. 
Functional MRI of the left amygdala during a masked-fear detection protocol (Carlson, 
Greenberg et al. 2010). 
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Figure 1.2: The ACR MRI phantom.  

a) Cross section showing various structures, including a lipid-containing section, and hole-pair 
arrays. b) Longitudinal section of the phantom (American College of Radiology). 
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CHAPTER 2 

2. Clinically anxious patients show disrupted feedback between inferior frontal gyrus and 
prefrontal-limbic control circuit. 

 

Preface 
Portions of this chapter have been reproduced from: 

Daniel James DeDora, J. Cha, S. Nedic, J. Ide, T. Greenberg, G. Hajcak, L.R. Mujica-Parodi, 
"Clinically anxious patients show disrupted feedback between inferior frontal gyrus and 
prefrontal-limbic control circuit.", Under review, Journal of Neuroscience 
 

The authors listed in the above manuscript have contributed towards the data reported in this 
chapter. 
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2.1 Introduction 
Anxiety disorders have been linked with flawed evaluation of threat (Greenberg, Carlson et al. 
2013, Cha, Carlson et al. 2014), in which innocuous stimuli elicit neurobiological and behavioral 
fear responses. This hypersensitivity to threat may be driven by diminished recruitment of the 
lateral prefrontal cortex during cognitive and emotional tasks (Bishop, Duncan et al. 2004, 
Bishop 2009, Strawn, Bitter et al. 2012).  The inferior frontal gyrus (IFG) is a subregion of the 
lateral prefrontal cortex that plays an important role in the regulation of emotion and attention 
(Aron, Fletcher et al. 2003, Ochsner and Gross 2005, Depue, Curran et al. 2007, Sagaspe, 
Schwartz et al. 2011, Ochsner, Silvers et al. 2012, Vanderhasselt, Kuhn et al. 2012), including 
modulation of the threat response (Fitzgerald, Angstadt et al. 2006, Eippert, Veit et al. 2007).  
Previously, we showed that IFG (Brodmann’s Area 45) reactivity to fearful faces positively 
correlated with suppression of the amygdala responses, and negatively correlated with trait 
anxiety in healthy individuals (Mujica-Parodi, Korgaonkar et al. 2009). Later, we quantified the 
functional dynamics of the IFG in trait anxious individuals with power spectrum scale invariance 
(PSSI) (Tolkunov, Rubin et al. 2010), a control systems-derived measure of circuit-wide 
regulation. PSSI showed that individuals with greater trait anxiety exhibited IFG functional 
dynamics that shifted away from optimal regulation (‘pink noise,’ see Radulescu and Mujica-
Parodi 2014). However, the underlying basis for the dysregulation is under-determined, as 
dysregulatory dynamics can result either from stronger chaotic excitatory inputs or weaker 
negative feedback or both (Radulescu and Mujica-Parodi 2014). Recently, we observed the same 
pattern of aberrant IFG functional dynamics in a high sensation-seeking group of first-time 
skydivers with poor threat-evaluation (Mujica-Parodi, Carlson et al. 2014). The commonality in 
the IFG results across the two extreme ends of the anxiety spectrum in healthy individuals, both 
sharing deficits in threat-evaluation, raised the question of whether our (Mujica-Parodi, 
Korgaonkar et al. 2009, Radulescu and Mujica-Parodi 2014) and others’ (Aron, Fletcher et al. 
2003, Bishop, Duncan et al. 2004, Ochsner and Gross 2005, Fitzgerald, Angstadt et al. 2006, 
Depue, Curran et al. 2007, Eippert, Veit et al. 2007, Bishop 2009, Sagaspe, Schwartz et al. 2011) 
initial view of the IFG as simply an inhibitory component of the negative feedback loop 
regulating emotion might be incomplete. 

Here, we focus on clarifying three critical aspects of the IFG’s role within the prefrontal-
limbic control circuit responsible for threat evaluation, with the aim of better informing our 
previous results, as well as better interpreting the region’s role across the emotion literature.  
First, do our trait anxiety results (aberrant IFG dynamics) continue to hold when we move to 
clinical anxiety?  Second, if so, does the IFG provide the direct inhibitory component of the 
prefrontal-limbic control system, as we and others initially suggested, or does it function in a 
distinct (perhaps evaluative) capacity within the circuit, as suggested by our later findings and 
the wider, non-affective, fMRI literature on that area?  Third, do the aberrant dynamics first 
observed in trait anxiety reflect hyper-excitatory function and/or weaker regulation across the 
circuit?   

 To address these three questions, we further analyzed data on a fear generalization task 
that we have previously shown to be capable of probing subtle features of threat disambiguation 
in clinical anxiety (Greenberg, Carlson et al. 2013, Cha, Carlson et al. 2014).  For this study, we 
recruited medication-free individuals with clinical anxiety (GAD) and age- and gender-matched 
controls to take part in a fear-generalization paradigm (Greenberg, Carlson et al. 2013), which 
included stimuli that were threat-ambiguous due to their perceptual similarity to a conditioned 
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stimulus. Our prior work explored traditional activation-based measures in the context of fear 
generalization (Greenberg, Carlson et al. 2013, Cha, Carlson et al. 2014).  Here, we build upon 
this work:  we first use PSSI to test for dysregulatory functional dynamics along the entire time-
series; then use functional and structural connectivity analyses, including stochastic dynamic 
causal modeling, to further interpret our results.  

2.2 Methods 

2.2.1 Study Design 
This data set includes 57 participants (Mage = 22.3, SD = 4.5, Table 1), who took part in a fear 
generalization task while being scanned.  Of these, 32 were patients with Generalized Anxiety 
Disorder and 25 were healthy controls (HC). There is a significantly higher occurrence of 
anxiety disorders in females than males (McLean, Asnaani et al. 2011); thus, we tested only 
females for the study to avoid potentially uneven sample sizes due to lack of male participants. 
This study was approved by the Stony Brook University Institutional Review Board; all 
participants provided informed consent. 

2.2.2 Diagnoses   
Clinical diagnoses were performed in two steps: informal clinical interview, and a structured 
clinical interview. Diagnoses were based on DSM-IV Axis I Disorders (American Psychiatric 
Association. and American Psychiatric Association. Task Force on DSM-IV. 2000, First, Spitzer 
et al. 2002). The control group was cleared of Axis I diagnoses, while the patient group was 
diagnosed with Generalized Anxiety Disorder (GAD); 17 of the 32 patients were diagnosed with 
comorbid GAD and Major Depressive Disorder (MDD). All participants were free from 
psychiatric medication for at least six months leading up to the experiment; additional exclusion 
criteria included presence of another major psychiatric illness such as bipolar disorder, alcohol or 
substance dependence, and schizophrenia. All participants completed several self-report 
questionnaires, including the Mood and Anxiety Symptom Questionnaires (MASQ)(Watson, 
Weber et al. 1995), presented in Table 2.1.   

2.2.3 fMRI Task 
After screening and consenting in accordance with a protocol approved by the Stony Brook 
University Institutional Review Board, participants read written instructions for the entire study. 
The fear generalization task was administered inside the fMRI scanner. Before the task, a voltage 
level was set for each participant to a level that was “uncomfortable but not painful” and was 
delivered to the left forearm (Constant Voltage Stimulator STM 200; Biopac Systems). 
Instructions for the task were then provided again verbally. Participants were told that a mid-
sized rectangle (conditioned stimulus; CS) indicated a 50% probability that they would receive a 
subsequent electric shock but that shocks would never follow rectangles of greater or lesser size. 
Following the instruction, we administered a conditioning phase. This included five 
presentations of the CS with the shock (i.e., 100% probability) and a single presentation of each 
generalized stimulus (GS) in a pseudo-random order with inter-stimulus intervals of 4 –10 s. A 
generalization phase immediately followed.  The fear generalization task (Figure 2.1) consisted 
of the presentation of an initial fixation screen (a white cross on a black background), followed 
by a 2 s stimulus presentation. For the CS, a red rectangle was paired with 500 ms of electric 
shock with a partial reinforcement schedule of a 50% delivery probability, 1500 ms after the cue 
onset. For GS, we used six red rectangles with systematically varying widths (i.e., ±20%, ±40%, 
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and ±60%) without shock. Each GS was pseudo-randomly presented 15 times, and the CS was 
presented 30 times: 15 with shock and 15 without shock, for a total of 120 trials. Trials were 
flanked with inter-stimulus intervals ranging from 4 to 10 s with a white fixation crosshair on a 
black background.  Task duration was 15 minutes and 24s. 

2.2.4 MRI Data Acquisition 
We scanned participants with a 3T Siemens Magnetom Trio scanner within the Social, 
Cognitive, and Affective Neuroscience center at Stony Brook University. We acquired a total of 
440 T2*-weighted echo planar images with an oblique coronal angle and TR = 2100ms, TE = 
23ms, flip angle = 83º, matrix = 96 × 96, FOV = 224 × 224mm, slices = 37, and slice thickness = 
3.5mm. For structural scans, T1-weighted images were acquired with the following parameters: 
TR = 1900 ms, TE = 2.53, flip angle = 9°, FOV = 176 × 250 × 250 mm, matrix = 176 × 256 × 
256, and voxel size = 1 × 0.98 × 0.98 mm. Diffusion Tensor Imaging (DTI) was collected in a 
separate session. We used the following parameters to collect DTI: TR = 5500 ms, TE = 93 ms, 
FOV = 220 × 220 mm, matrix = 120 × 220 × 220, voxel size = 1.7 × 1.7 × 3.0 mm, EPI factor = 
128, slices = 40, slice thickness = 3 mm, bandwidth = 1396 Hz/pixel, and GRAPPA acceleration 
factor = 2. The series included two initial images acquired without diffusion weighting and with 
diffusion weighting along 40 non-collinear directions (b = 800 sm-2). 

2.2.5 fMRI Analyses 

2.2.5.1 Overview:   
Standard task-based activation results for this study, showing neural correlates of fear 
generalization in GAD, have already been reported (Greenberg, Carlson et al. 2013, Greenberg, 
Carlson et al. 2013); here, we focused on identifying key features of circuit regulation using 
systems-based analyses across the entire time-series.  First, we examined circuit efficiency of the 
negative feedback loop using power spectrum scale invariance (PSSI) β-signatures (Rubin, 
Fekete et al. 2013) from the fear generalization fMRI data. Autocorrelation provided 
complementary information, identifying timescales for feedback. Next, we tested our hypothesis 
that disrupted corticolimbic regulation of negative affect (quantified by PSSI β-signatures) in the 
GAD group was linked to altered corticolimbic connectivity (Radulescu and Mujica-Parodi 
2014), using three techniques. As a first step towards defining connectivity associated with β-
signatures, we used psychophysiological interaction (PPI) analysis to identify regions of interest 
(ROI). We then applied stochastic Dynamic Causal Modeling (sDCM), defining prefrontal (IFG, 
vmPFC) ROIs from previously-established connectivity analyses (Greenberg, Carlson et al. 
2013, Cha, Greenberg et al. 2014), and the amygdala from a standardized atlas.  Finally, we 
estimated integrity of the major corticolimbic white matter pathway—the uncinate fasciculus—
using diffusion probabilistic tractography, and tested for a relationship between fiber integrity of 
the UF and IFG β-signatures.  

2.2.5.2 Preprocessing:  
We performed standard preprocessing procedures for fMRI, including slice time correction, 
motion correction, normalization, and smoothing with a 6 mm FWHM Gaussian kernel in SPM8 
(www.fil.ion.ucl.ac.uk/spm). In addition, our preprocessing procedures included detrending and 
regression of global signal, cerebral spinal fluid, white matter, and six degrees of motion (Rubin, 
Fekete et al. 2013). 

2.2.5.3 Power Spectrum Scale Invariance:   
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Using methods previously optimized by our group for fMRI (Rubin, Fekete et al. 2013), we 
estimated PSSI β from each FFT-transformed time series S(f) as per S 𝑓   ∝   𝑓!𝜷. Power 
spectrum densities were computed from preprocessed EPI images on a voxel-wise basis and 
plotted on a log-log scale.  We computed the slope of the linear fit (β) within a frequency 
window of 0.01-0.1 Hz using least squares fitting; this range of frequencies has previously been 
shown to obey a power-law model (He, Zempel et al. 2010, He 2011).  Consistent with other 
groups, as well as our more recent publications using PSSI, here we used preprocessed time-
series without taking the derivative and reported −β to simplify interpretation of correlations by 
having PSSI represented by positive numbers. Thus, β = 0 represents a power spectrum with 
maximum entropy (white noise), and increasing β represents greater persistence (which can be 
due either to diminished excitatory inputs or tighter homeostatic constraint over the system via 
negative feedback (Radulescu and Mujica-Parodi 2014)). Group differences in β-signatures were 
examined using voxel-wise t-tests. Independent variables included group and subject, while 
individual β images were used as dependent variables. To rule out head motion related artifacts 
on β-signatures (Rubin, Fekete et al. 2013), we confirmed no group differences in movement 
(e.g., absolute maximum translation, maximum rotation, mean translation, mean rotation) (two-
sample t-test, p’s > .3).  We then tested for correlations between PSSI values and MASQ anxiety 
subscales in MATLAB (The Mathworks Inc., Natick, MA, USA).  

2.2.5.4 Autocorrelation Function:   
To aid in the circuit-wide interpretation of PSSI, we also computed the temporal autocorrelation 
function (ACF) of preprocessed blood oxygen level dependent (BOLD) time-series. Negative 
feedback loops produce outputs in the form of damped oscillations, as feed-forward (excitatory) 
and feedback (inhibitory) components work in series (i.e., with some lag) to establish 
homeostasis.  Closed-loop systems with greater negative feedback have more ‘memory’ within 
their time-series, as outputs not only reflect inputs, but also previous outputs.  The ACF reflects 
the correlation of a signal with itself at different time lags, and thus provides more detailed 
information about the speed at which feedback occurs.  Here, we modeled the ACF as a decaying 
exponential function with mean lifetime parameter τ(s), the system’s ‘memory’ (the amount of 
time a signal maintains an association with past and future values).  A time-series from a system 
with stronger feedback exhibits greater persistence/memory and therefore longer mean lifetimes 
τ(s), while a time-series from a system under perturbation and no feedback exhibits greater chaos 
(white noise) with a τ(s) close to zero seconds.  

PSSI and ACF are related via the Wiener-Khinchin theorem, which states that the Fourier 
transform of the ACF is equivalent to the power spectral density, with which PSSI is computed. 
The ACF augments PSSI analysis in two ways: (i) the autocorrelation is a function of time, and 
its mean lifetime can be expressed in units of seconds, making it more easily interpretable than 
PSSI β-signatures (which are expressed as ∂(log(power))/∂(log(frequency))), and (ii) model fit is 
improved compared with PSSI, partially owing to the use of least squares fitting in log-log space 
in PSSI (Clauset, Shalizi et al. 2009).  
 We estimated voxel-wise ACF using the Econometrics Toolbox implemented in 
MATLAB R2010a. We then fit an exponential function of the form y = ae-bx to the first 9 (lag = 
8) points of each voxel's ACF using the nonlinear least-squares fitting method as implemented in 
the Curve Fitting Toolbox within MATLAB R2010a. We chose to model eight lags (16.8 
seconds at TR = 2.1s) because the canonical hemodynamic response function spans 16 seconds 
post stimulus (Miezin, Maccotta et al. 2000); this duration was found to allow for full relaxation 
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of ACF signal (see Figure 2.2c). Here, b values are related to the mean lifetime decay of a 
signal, τ(s), through the relation τ = 1/b × TR. Group differences in gray matter voxel-wise b 
values were examined using the same general linear model approach and t-contrasts in SPM as in 
the PSSI group differences analysis. Finally, ACF b values were converted to mean half-life τ for 
interpretation. Notice that the size of τ determines the rate of decay of ACF, with lower τ 
signifying faster decay (more randomness/lower β) and higher τ signifying slower decay (more 
persistence/higher β). The entire procedure was limited to gray matter voxels in order to reduce 
computational time associated with nonlinear fitting. It is important to differentiate the temporal 
autocorrelation of a time-series reported here and the autocorrelation of the residuals following 
GLM or similar analyses; the latter refers to temporal pre-whitening of a signal, a technique 
frequently used to satisfy the assumption of independence of errors in linear models (Woolrich, 
Ripley et al. 2001). 
2.2.5.5 Dynamic Causal Modeling:  

Based upon prior simulations (Radulescu and Mujica-Parodi 2014) and empirical studies 
(Anderson, Zielinski et al. 2013), we postulated a close relationship between β-signatures and 
corticolimbic connectivity. We tested this using dynamic causal modeling (DCM). Our ROIs 
within the corticolimbic circuit were defined from a synthesis of our present results, our previous 
work with anxiety patients, as well as human and animal published literature of corticolimbic 
connectivity. We therefore chose the inferior frontal gyrus based on strong group differences in 
β–signatures identified here with PSSI (see Results), the left vmPFC based on previous analyses 
of the fear generalization task, which showed a subset of this region to track gradients associated 
with perceptual similarity to the CS (Greenberg, Carlson et al. 2013, Cha, Greenberg et al. 2014), 
and the right amygdala for its established role in fear conditioning (LeDoux 2003).  

 To define ROIs for DCM, we first explored IFG-seeded effective connectivity during fear 
generalization and its association with β-signatures using psychophysiological interaction (PPI) 
analysis (Friston, Buechel et al. 1997), focusing on the vmPFC and amygdala. A seed region was 
defined post-hoc from the group differences in β-signatures within the left IFG. A representative 
time-series was extracted from the IFG by applying a 6 mm-radius sphere centered at the peak β-
signature group difference and deconvolved with the hemodynamic response function (HRF). 
This time-series was multiplied by a regressor for all GS minus baseline, and then reconvolved 
with HRF. This procedure generated one interaction term representing IFG functional coupling 
during all GS, as well as individual interaction terms for each condition. The interaction terms 
were entered into a separate model containing three regressors: the IFG time-series by "all GS 
vs. baseline" interaction, "all GS vs. baseline", and the unmodulated IFG time-series. We entered 
the demeaned IFG β-signatures as a regressor and group as a regressor of no interest in a second 
level (group) general linear model in order to account for the group difference in the IFG β. We 
tested for correlations between IFG β and functional coupling for the “all GS” condition within 
the left vmPFC and right amygdala. We corrected for multiple comparisons using a cluster-
extent approach, AFNI 3dClustSim, and adjusted a ROI-specific α level (α = .025) according to 
the number of ROIs (2) to achieve a corrected α level of 0.05. We also performed an exploratory 
voxel-wise analysis to assess the relationship between IFG-seeded effective connectivity and 
IFG β-signatures across the whole brain. 
 We then used dynamic causal modeling (DCM) (Friston, Harrison et al. 2003) to test 
various directional models of the circuit and to evaluate the relationship between the causal 
connectivity and IFG β-signatures. As a method, DCM identifies directed connectivity among 



 17 

the nodes; hidden underlying neural populations are modeled from measured hemodynamic 
activity, and a system of differential equations is constructed to best explain the given behavior. 
Bayesian model selection (BMS) is used to select the most likely model from a set of user-
defined models. Traditional DCM models the inputs of an experimental design; stimuli are 
treated as perturbations within a system, while stochastic DCM (Daunizeau, Friston et al. 2009) 
relies on the modeling of hidden inputs. Given that PSSI is a task-agnostic measure of dynamic 
regulation of a control system, in which stochastic inputs are assumed, stochastic DCM was 
better suited than standard DCM in identifying consistent models for PSSI results.  

 As in the PPI analyses, our regions of interest for the DCM were the left IFG, left 
vmPFC, and right amygdala. The IFG was defined by the PSSI differences between patients and 
controls reported here – a 6 mm sphere at [MNI: -52, 20, 6]; the vmPFC was defined by the 
present PPI results, using a 6 mm sphere at [MNI: -10, 40, -16]; given the strong habituation 
effect we previously reported (Greenberg, Carlson et al. 2013) within this context, and the lack 
of PPI-specific correlations with IFG β, the right amygdala was defined by the AAL atlas. The 
regions of interest were defined uniformly across subjects. Time series for DCM were obtained 
by using SPM8 to compute the first principal component of the time series from all voxels inside 
each of the three regions of interest, and were adjusted for the effects of interest contrast as 
specified in 1st level GLM (where GS60±, GS40±, GS20±, CSP, CSU, and US onsets were used 
to define conditions of interest). We tested four models (Fig. 8) that differed in terms of their 
endogenous connections, including (1) a fully-connected model (bilateral endogenous 
connections between each of the three regions), (2) a model in which both amygdala and vmPFC 
modulate the IFG, (3) a model in which the IFG has bidirectional connections to both the 
vmPFC and the amygdala, and (4) a model in which the IFG modulates the vmPFC and in which 
the vmPFC modulates the amygdala. Each model consisted solely of intrinsic connections (no 
modulatory influences were tested) (Almeida, Versace et al. 2009, Li, Friston et al. 2014). We 
used the standard DCM pipeline in SPM8. BMS was used to determine the highest likelihood 
model from the given model set. We then extracted the individual connectivity strengths from 
the highest likelihood model and explored whether IFG PSSI was associated with this 
connectivity.  
2.2.5.6 Measurement of Fiber Integrity:  

We hypothesized that structural connectivity within the corticolimbic network would be 
associated with abnormal IFG β-signatures in participants with GAD. To this end, we 
investigated the relationship between IFG β-signatures and the integrity of the major 
corticolimbic white matter pathway previously implicated in anxiety disorders (Kim and Whalen 
2009, Westlye, Bjornebekk et al. 2011, Hettema, Kettenmann et al. 2012): the uncinate 
fasciculus (UF). We used standard preprocessing steps in FMRIB's Diffusion 
Toolbox)(www.fmrib.ox.ac.uk/fsl): after skull stripping, we performed corrections for head 
motion and eddy-currents via reference volume registration. Diffusion tensor parameters, such as 
fractional anisotropy, were calculated by fitting a tensor model (DTIFIT) in FDT. Finally, for 
probabilistic tractography, crossing fibers were modeled using Bayesian Estimation of Diffusion 
Parameters Obtained using Sampling Techniques in FMRIB Diffusion Toolbox (Behrens, Berg 
et al. 2007). As described previously (Cha, Greenberg et al. 2014), we reconstructed the entirety 
of the UF using a global tractography approach, TRACULA (Yendiki, Panneck et al. 2011). 
From the reconstructed UF (i.e., posterior distribution maps) in each individual, average 
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fractional anisotropy (FA) values (per hemisphere) were derived. We then tested for correlations 
between IFG β-signatures and FA of the UF.  

2.2.5.7 Summary of Statistics:  
Group differences in β-signatures were examined using voxel-wise two sample t-tests. 
Independent variables included group and subject, while individual β images were used as 
dependent variables. To minimize bias, group differences in ACF b-values were examined using 
the same general linear model approach and t-contrasts in SPM as in the PSSI group differences 
analysis. Pearson’s correlation was used to test for an association between IFG β-signatures and 
MASQ-GDA anxiety subscales, connection strengths from DCM, as well as FA of the UF. 
Partial correlations were used to control for confounding effects, as noted.  

2.3 Results 
2.3.1 Inferior frontal gyrus functional dynamics are more random in GAD.  

Compared with HC, patients with GAD exhibited IFG β signatures that were significantly closer 
to white noise (βcontrols = 0.45 ± 0.21; βGAD = 0.28 ± 0.18; Figure 2.2a, b) at ROI corrected p < 
0.05 (peak t(55) = 4.46; peak p = 0.00002). Furthermore, the mean autocorrelation lifetime τ(s) 
of IFG activity was significantly reduced in patients vs. controls at corrected p < 0.05 (τcontrols = 
2.88s, τpatients = 2.50s; peak t(55) = 4.12; peak p = 0.00007; Figure 2.2c). These results indicate 
greater randomness of the IFG BOLD time series in patients with GAD compared with HC, an 
index of either stronger excitatory chaotic inputs or weaker constraints imposed by negative 
(inhibitory) feedback within the system(Radulescu and Mujica-Parodi 2014). We found no 
significant differences between patients with GAD and those comorbid with major depressive 
disorder (p  = 0.43, two-sample t-test). 

 We then tested for an association between IFG β and anxiety symptom measures. We 
extracted subject-wise average β-signatures from a sphere (radius = 6 mm) centered on the peak 
voxel within the IFG and found that IFG β was negatively associated with self-reported anxiety, 
as measured by MASQ GDA (r = -0.39, p = 0.004; Pearson’s correlation; Figure 2.3).  This 
effect was robust to differences in both group and self-reported depression (MASQ GDD) 
(partial correlation, controlling for group and MASQ GDD subscale, r = -0.29, p = .04), and was 
not specific to either patients or controls (Pearson’s correlation, group-wise, p’s > 0.15). These 
findings suggest that IFG β-signatures map onto individual variability in anxiety across a broad 
continuum of anxiety levels.  

2.3.2 Inferior Frontal Gyrus β-signatures correlate with effective connectivity between 
prefrontal and limbic regions.  

We used dynamic causal modeling (DCM) to examine the neurobiological circuitry underlying 
observed β-signature differences in the IFG of patients vs. controls. As motivated by previous 
work (Greenberg, Carlson et al. 2013, Cha, Greenberg et al. 2014), our ROIs for DCM included: 
the inferior frontal gyrus, left vmPFC, and right amygdala.  
 We first used PPI analysis to define ROIs whose connectivity with the IFG (modulated 
by generalization stimuli) is associated with IFG β-signatures. We found a significant positive 
relationship between IFG β signatures and IFG connectivity with the left vmPFC (Figure 2.4, 
Table 2.2); IFG connectivity with the amygdala showed no significant association with IFG β-
signatures. We also found positive associations between IFG β-signatures and IFG-seeded 
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connectivity (modulated by GS) with the ventrolateral prefrontal cortex, bilateral caudate, and 
the bilateral mid-temporal lobes at corrected p’s < 0.05 (Figure 2.4, Table 2.2).  No group 
differences in IFG-seeded functional connectivity were observed (p’s > 0.1) in any of these 
regions. 

 Using dynamic causal modeling, we tested four models, which represented a synthesis of 
the present results as well as our previous empirical and modeling work highlighting the roles of 
the IFG (Tolkunov, Rubin et al. 2010, Mujica-Parodi, Carlson et al. 2014), vmPFC (Cha, 
Greenberg et al. 2014), and amygdala (Tolkunov, Rubin et al. 2010, Radulescu and Mujica-
Parodi 2014). Bayesian model selection indicated that the fully connected model best supported 
the empirical results; this model consisted of bidirectional endogenous causal connectivity 
between the three ROIs (Figure 2.5, Table 2.3). We found significant correlations between IFG 
β-signatures and vmPFCàIFG connectivity (r  = 0.37, p = 0.007) and IFGàvmPFC 
connectivity (r  = 0.43, p = 0.001); here, greater positive bidirectional connectivity with the 
vmPFC was associated with less randomness in left IFG time-series. The correlation between 
IFGàvmPFC and vmPFCàIFG connectivity was significant (r = 0.95, p < 0.001), indicating a 
highly reciprocal relationship. BMS selected the fully connected model for both patients and 
controls, and there were no group differences in connection strength for any of the six 
connections (two-sample t-test, p’s >> 0.1). Inter-node connection strengths ranged from -0.005 
Hz (L. vmPFC à R. Amygdala) to 0.06 Hz (L. IFG à R. Amygdala), and all connection 
probabilities reached significance within the DCM construct (connection probability ≅ 1) —
consistent with values cited in the literature (Ma, Steinberg et al. 2014). 

2.3.3 Inferior Frontal Gyrus regulation (PSSI) correlates with fiber integrity of the 
prefrontal-limbic white matter pathway.  

Finally, we tested whether the observed β-signatures were associated with integrity of the major 
white matter pathway connecting the IFG with subcortical regions. We found a significant 
positive relationship between FA (fiber integrity) of the UF and IFG β signatures (r = .30; p = 
.03; Figure 2.6). White matter integrity did not significantly correlate with anxiety or depression 
subscales (p’s > 0.7), though we previously reported a trend towards higher FA in controls than 
patients within this dataset (Cha, Greenberg et al. 2014). Nonetheless, this effect was significant 
after controlling for the effects of group, anxiety (MASQ-GDA), and depression (MASQ-GDD; 
r  = 0.28, p = 0.05). 

2.4 Discussion 

We found that aberrant IFG dynamics replicated results that we first identified for trait anxiety 
(Tolkunov, Rubin et al. 2010) in both clinical anxiety and with anxious symptoms identified by 
the MASQ (suggesting an anxiety spectrum approach to be appropriate), and that this shift in 
functional dynamics was associated with altered functional and structural corticolimbic 
connectivity within the circuit comprising the IFG, vmPFC, and amygdala. Specifically, IFG 
functional dynamics were strongly associated with bidirectional interactions with the vmPFC, 
while the vmPFC exhibited inhibitory causal influence upon the amygdala, a well-established 
excitatory node within the corticolimbic network (LeDoux 2003).  

Using modeling and simulations, we previously showed that dynamics for a node within a 
negative feedback loop become more random, or ‘white,’ under two conditions:  when excitatory 
inputs are strengthened, or when negative feedback is weakened (Radulescu and Mujica-Parodi 
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2014). Our previous GLM analyses (Cha, Carlson et al. 2014, Cha, Greenberg et al. 2014), as 
well as current PSSI and DCM, provide converging evidence specifically for the latter, and 
support a role for the IFG that is indirectly inhibitory (via interactions with the vmPFC, which 
inhibits the amygdala) rather than directly inhibiting the amygdala.  This structure is consistent 
with non-human primate tracing, which shows extensive anatomical connections from the IFG to 
the vmPFC, which in turn innervates to and from subcortical limbic areas (Barbas and Pandya 
1989).  In our task, we employed fear conditioning to induce fear to a particular stimulus (CS), 
and then presented stimuli across a gradient of perceptual similarity to that stimulus; these 
ranged from identical (CS) to clearly distinct (± 60%), with more ambiguous stimuli in between. 
We previously showed that, for health individuals, both the vmPFC and ventral tegmental area 
(VTA) closely track the gradient of perceptual similarity to the CS.  The VTA is strongly 
activated to the CS, and becomes gradually less activated as cues show greater dissimilarity to 
the CS (Cha, Carlson et al. 2014).  In contrast, the vmPFC follows the opposite pattern, showing 
strongest activation to the cue most dissimilar to the CS (± 60%), and becomes gradually less 
activated as cues show greater similarity to the CS (Greenberg, Carlson et al. 2013).  These 
patterns are consistent with the VTA’s role reinforcement learning in response to positive or—in 
the present case—negative reward (Cha, Carlson et al. 2014, Hennigan, D'Ardenne et al. 2015), 
and also suggests that the vmPFC’s role must be primarily inhibitory (Motzkin, Philippi et al. 
2015)(i.e., the ‘brakes’ are off when the cue indicates alarm, but are activated in direct 
proportion to the likelihood that the cue is deemed ‘safe’). This interpretation of the GLM 
analyses is supported by our current DCM results (Table 2.3), which indicated that the only 
negative effective connectivity observed was from the vmPFC to the amygdala.  
But how does the brain decide what is ‘safe’ with respect to perceptually ambiguous threat?  
Here, the IFG seems to be playing a key role. Looking at a spectrum of threat assessment that 
included 137 individuals, across three independent studies (N=57 for our current study of clinical 
anxiety, N=50 for our study of trait anxiety (Tolkunov, Rubin et al. 2010), and N=30 for our 
study of ‘reckless’ risk-takers (Mujica-Parodi, Carlson et al. 2014)), we observe a clear inverted-
U pattern for Brodmann’s Area 45, a subset of the IFG. Individuals at the center of the threat 
assessment spectrum (showing accurate perception of threat:  physiologically in anticipation of 
jumping out of a plane, behaviorally in classifying faces with ambiguous affect, as well as 
emotionally with self-reported low trait anxiety in non-dangerous contexts) showed IFG 
regulation in the ‘pink-noise’ range, which our simulations show to occur when a control system 
includes optimal feedback (Radulescu and Mujica-Parodi 2014), and which our DCM results in 
the current study linked with strong bi-directional connectivity to the vmPFC.  However, 
individuals at both ends of the spectrum (exceptionally anxious and exceptionally reckless) 
showed circuit-wide dysregulation localized most strongly to the IFG, with ‘white-noise’ 
dynamics.  Individuals at each end of the spectrum would appear to be opposites of one another 
(our clinically anxious sample identified threat where it did not exist, whereas our reckless 
sample failed to identify threat where it did exist), yet the most prominent feature that they both 
had in common was a failure to accurately assess ambiguous threat.  The fact that both ends of 
the spectrum also shared in common an IFG disconnected to the rest of the prefrontal-limbic 
circuit suggests that the IFG’s role in fear inhibition is indirect: providing disambiguation of ill-
defined stimuli, which informs the (inhibitory) vmPFC. Our interpretation is consistent with our 
DCM results, which provide evidence for a fully connected (closed-circuit) model, with the 
altered IFG dynamics found in anxious patients most strongly reflecting interactions between the 
IFG and vmPFC—but not between the IFG and amygdala, or between the vmPFC and amygdala.   
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The dissociation of roles within the circuit is also supported by the wider human neuroimaging 
literature. A Neurosynth (www.neurosynth.org) meta-analysis of 272 fMRI studies of ‘fear’ 
alone implicate the vmPFC (Z=4.67; x=0, y=44, z=2) but not the IFG; while 94 fMRI studies of 
‘ambiguous’ cues alone implicate the left IFG (Z=4.68; x=46, y=32, z=10) but not the vmPFC. 
Indeed, the IFG is most commonly implicated in ambiguity not only of fear (Bach, Seymour et 
al. 2009), but also of semantics (Bozic, Tyler et al. 2010, Rodd, Johnsrude et al. 2012).  It thus 
seems to play a more general role in the evaluation and disambiguation of stimulus meaning, a 
function that is impaired in anxious patients who may live in a state of constant alarm because 
they do not distinguish well between cues that genuinely signal threat, from those that do not 
(Lissek, Biggs et al. 2008, Lissek, Rabin et al. 2009, Lissek, Rabin et al. 2010, Greenberg, 
Carlson et al. 2013, Cha, Carlson et al. 2014).  
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2.5 Chapter 2 Figures and Tables 

 
Figure 2.1: Fear Generalization Task.  

Participants (N = 57; n = 32 patients with generalized anxiety disorder, GAD) were instructed 
that they would be shown a red rectangle, which would be paired with a 50% probability of 
electric shock to the forearm (conditioned stimulus, CS). During fear conditioning, participants 
viewed five pseudorandom presentations of the CS, paired with a shock each time, and six 
alternative stimuli (generalization stimuli, GS), which varied systematically in width from the CS 
(±20%, ±40%, ±60%) and indicated no shock (conditioning phase, not shown). The fMRI task 
proceeded the conditioning phase. During the task, there were 15 pseudo-random presentations 
of each stimulus, resulting in 120 total trials; the task employed a 4-10s (jittered) inter-stimulus 
interval with fixation cross and 2s stimulus presentation. GS were grouped by similarity to CS 
(i.e., ±20 were analyzed as one condition, as were ±40 and ±60).  

 

Figure 2.2: Prefrontal Functional dynamics are altered in GAD. 
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During fear generalization, patients with Generalized Anxiety Disorder (GAD) showed 
functional dynamics within the inferior frontal gyrus (IFG) that were significantly more random 
(uncontrolled) than those of healthy controls. We quantified dynamics by power spectrum scale 
invariance β signatures, which provide the slope of time-series fit to a power-law, as well as 
autocorrelation lifetime τ, which indicates temporal range of time-series’ self-similarity—a 
measure of memory due to negative feedback within the system. (A, B) Patients with GAD 
showed power spectrum scale invariance significantly closer to white noise (β=0) within the IFG 
([MNI: -52 20 6]; p(uncorrected) = 2 × 10-5; cluster extent = 57 voxels; p(corrected) < .001). (C) 
Patients with GAD exhibited significantly shorter τ than controls ([MNI: -54 18 18]; 
p(uncorrected) = 7 × 10-5; cluster extent = 57; p(corrected) < 0.001) for the same region. 
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Figure 2.3: Functional dynamics in the IFG are predictive of anxiety. 

Power-law β-signatures of the inferior frontal gyrus (IFG) were negatively correlated with self-
reported anxiety measures (Mood and Anxiety Symptom Questionnaires (Watson, Weber et al. 
1995), General Distress: Anxiety (MASQ-GDA)), an effect that was not specific to either 
patients diagnosed with Generalized Anxiety Disorder or healthy controls alone (p’s > 0.15).  
This effect remained significant after controlling for both group and depression (MASQ-GDD; r 
= -0.29, p = 0.04).  
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Figure 2.4: Correlation between inferior frontal gyrus (IFG) PSSI β-signatures and 
effective connectivity modulated by generalization stimuli (GS).  
Using psychophysiological interaction analyses, we found that IFG β-signatures significantly 
correlated with the GS-induced IFG connectivity with the ventromedial and ventrolateral 
prefrontal cortices (vmPFC and vlPFC), caudate, and temporal lobe.  

 
 



 26 

 
Figure 2.5: Dynamic causal modeling suggests altered connectivity underlies functional 
dynamics. 
Stochastic dynamic causal modeling (DCM) suggests a circuit consisting of the inferior frontal 
gyrus (IFG), ventromedial prefrontal cortex (PFC), and amygdala during fear generalization. (A) 
Model space. (B) In Bayesian model selection, Model 1 (a fully connected model) showed the 
greatest expected probability and exceedance probability. All connections within tripartite model 
1 were significant (connection probability ≅  1). (C) Individual variability in bidirectional 
connectivity between the IFG and vmPFC significantly correlates with IFG β-signatures. See 
Table 3 for connection strengths.  
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Figure 2.6: Functional dynamics correlate with structural connectivity. 

β-signatures of the inferior frontal gyrus (IFG) significantly correlate with the integrity of a 
major white matter tract in the corticolimbic circuit, the uncinate fasciculus (UF). We used 
diffusion tensor imaging and an automated tractography approach (TRACULA) to compute the 
fractional anisotropy (a proxy for white matter integrity) of the UF. This effect remains 
significant after controlling for the effects of group, anxiety (MASQ-GDA), and depression 
(MASQ-GDD; r  = 0.28, p = 0.05). 



 28 

Table 2.1 Demographic and Clinical Data for Patients with Generalized Anxiety Disorder 
(GAD) and Healthy Controls (HC).  

Group GAD HC t  Value p Value 

Age (SD) 22.3 (5.2) 21.5 (5.2) 0.63 .58 

Weight 130.0 (18.8) 142.2 (27.0) 1.93 .06 

MASQ1 GDA2  26.5 (7.4) 16.8 (4.1) 5.73 < .0001 

MASQ DD3 35.5 (12.1) 17.9 (3.6) 6.81 < .0001 

MASQ AA4 28.8 (9.2) 20.8 (3.9) 4.03 .0002 

MASQ AD5 76.0 (15.4) 53.3 (11.6) 6.01 < .0001 

1 Mood and Anxiety Symptom Questionnaires (MASQ)(Watson, Weber et al. 1995), 2General 
Distress Anxiety Subscale, 3Distress Depression, 4Anxious Arousal, 5Anhedonic Depression.  

 
Table 2.2 Power-law β-signatures within the IFG are positively associated with functional 
coupling. 

 

Region 

             Peak 

 Extent     p(unc) 

 

p(cor) 

MNI 

x                 y               z 

L. Temporal Lobe  659 1 x 10-6 <.001 -66 -46 4 

R. Temporal Lobe 210 3 x 10-4 <.001 66 -40 -4 

R. Caudate 143 8 x 10-6 <.001 -4 2 4 

L. ventromedial PFC  125 4 x 10-5 <.005 -10 40 -16 

R. ventrolateral PFC 97 7 x 10-5 <.01 28 34 -18 
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Table 2.3. DCM connectivity 
DCM connection strengths for a fully connected tripartite model, consisting of the inferior 
frontal gyrus (IFG), ventromedial prefrontal cortex (vmPFC), and amygdala. All connections are 
significant within the DCM construct (connection probability ≅ 1). No group differences in any 
connection strength were found (p’s > 0.1). 

 
Connection 

Strength 
(Hz) 

L. IFG  à L. vmPFC 0.02 

L. IFG à R. Amygdala 0.06 

L. vmPFC à L. IFG 0.02 

L. vmPFC à R. Amygdala -0.005 

R. Amygdala à L. IFG 0.03 

R. Amygdala à  L. vmPFC 0.01 
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CHAPTER 3 

3. The development and validation of a dynamic phantom for fMRI 

 
Preface 

Portions of this chapter have been reproduced from the provisional patent application: 
Daniel James DeDora, H.H. Strey, L.R. Mujica-Parodi, “A dynamic phantom for fMRI.” 
Provisional patent, in filing.  
 

The authors listed in the above manuscript have contributions towards the data reported in this 
chapter. 
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3.1 Introduction 
Functional magnetic resonance imaging is a well established method of studying cognition (Luk, 
Green et al. 2011), emotion (Ochsner, Silvers et al. 2012), and disease (L, D et al. 2012). fMRI 
signal changes generally comprise a combination of three components: 1) changes in oxygenated 
and deoxygenated blood following neural activity (the hemodynamic response), 2) physiological 
noise sources, including heartbeat, breathing, and motion, and 3) scanner instabilities. Novel 
fMRI methods are typically validated with human imaging data. However, human data lack a 
“ground truth,” in that fMRI methods attempt to interpret an output (changes in fMRI signal) 
without direct knowledge of the input (i.e., neural-activity-triggered hemodynamics). With the 
continued development of sophisticated acquisition (parallel imaging) and analysis techniques 
(complexity and connectivity), the need to tease apart the separate components of fMRI signal 
has grown considerably in recent years. While a great deal of attention has been devoted to the 
study of physiological noise in fMRI (Triantafyllou, Hoge et al. 2005, Triantafyllou, Hoge et al. 
2006, Barry, Klassen et al. 2008, van Houdt, Ossenblok et al. 2010, Triantafyllou, Polimeni et al. 
2011, Birn 2012, Lutti, Thomas et al. 2013), the study of scanner instabilities has received 
considerably less attention. Meanwhile, significant scanner-related differences within multi-
center datasets have been well documented (Friedman, Glover et al. 2006, Friedman, Stern et al. 
2008, Rubin, Fekete et al. 2013). These reports demonstrate the need for further study of scanner 
instabilities and their influence on the fidelity of dynamic fMRI signals.  

One strategy to address the gap between fMRI input and output is to use simulations. 
Simulations of blood-oxygen-level-dependent (BOLD) fluctuations, scanner instabilities, and 
eddy currents can be used to better understand and test the ability of analysis techniques to 
dissociate neural activity from noise (Drobnjak, Gavaghan et al. 2006, Erhardt, Allen et al. 2012, 
Radulescu and Mujica-Parodi 2014). While simulations offer a wide breadth of applications, 
oversimplification of complex processes (Renvall and Hari 2009) and fragmentation of model 
parameters (Erhardt, Allen et al. 2012) can bias models. Another strategy to address the input-
output gap in fMRI has been the development of physical fMRI phantoms. A standard fMRI 
phantom is a sphere of water or doped liquid, allowing an operator to study stability of an fMRI 
signal over time (Zarahn, Aguirre et al. 1997). These phantoms are suitable for both simple 
calibration and quality assurance routines. However, these phantoms cannot be used to study to 
degree to which dynamic input signals are captured by the fMRI, and therefore are of limited 
used in this context. 

  Thus, several groups have developed functional MRI phantoms capable of dynamically 
changing fMRI signal intensity to mimic BOLD signals. These phantoms produce a known, 
dynamic, BOLD-like signal and experience scanner instabilities in the absence of physiological 
noise, therefore allowing the dissociation of scanner noise and BOLD. Most of these designs 
utilize current-carrying wire, capable of distorting small areas of the magnetic field surrounding 
a gel (Cheng, Zhao et al. 2006, Renvall, Joensuu et al. 2006, Li, Reza et al. 2007, Renvall 2009, 
Renvall and Hari 2009) or polarized hydrocarbon (Qiu, Kwok et al. 2014). BOLD phantoms 
have been utilized to correct for aliasing when estimating the hemodynamic response functions 
in human data (Li, Reza et al. 2007), and in the study of transient fMRI signals (Renvall and Hari 
2009). While these designs offer flexibility and well-controlled fMRI signal changes, they utilize 
conductive materials widely known to be MR-incompatible; this is especially true at high fields. 
Furthermore, magnetic field distortions vary spatially as a function of r2, lending uncertainty to 
results. According to these shortcomings, Olsrud et al. (Olsrud, Nilsson et al. 2008) developed a 
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simple fMRI phantom utilizing agarose gels; in this study, a transversely divided cylinder was 
filled with two calibrated agarose gels with slightly different concentrations and, thus, different 
relaxation constants. The divided cylinder was placed within a larger, homogeneous cylinder 
containing a single agarose gel, and was slid back and forth between two positions by hand. 
While successful in creating changes in fMRI signal, this phantom lacked automation and 
required the removal of motion-corrupted images. Therefore, there remains a need for an 
automated, fully MR-compatible dynamic phantom that is capable of complex inputs.  

Accordingly, we describe the development and validation of a novel dynamic BOLD 
phantom for fMRI. The phantom is fully automated, contains only plastics and agarose gels, and 
produces a relatively large activation area spanning multiple slices. We validate the phantom by 
exploring potential artifacts, presenting representative time-series, and utilizing a trigger-
averaging routine to extract a physically simulated hemodynamic response. 

3.2 METHODS 
3.2.1 Engineering constraints 

A dynamic phantom has been designed with the following engineering constraints, as determined 
by thorough literature review: 

i) Production of controlled and versatile fMRI signal  (i.e., capable of producing 
complex waveforms). 

ii) Full fMRI compatibility - no circuitry, metals, or paramagnetic materials. 
iii) Full automation for precise reproducibility – removing sources of human error. 
iv) Inexpensive to fabricate and mass-produce for widespread adoption. 
v) Modular design – for design flexibility and easy upgrades. 

3.2.2 Design strategy 
Olsrud et al. (Olsrud, Nilsson et al. 2008) developed a hand-cranked phantom to show that 
dynamic fMRI signal could be achieved by sliding different concentrations of agarose gels in and 
out of a region of interest. The magnetic susceptibility of agarose gels is concentration dependent 
(Christoffersson, Olsson et al. 1991, Cheng, Zhao et al. 2004, Ebrahimi, Swanson et al. 2010), 
and this created changes in T2* within a given voxel or region. Utilizing this premise, we 
designed, fabricated, and validated a novel dynamic phantom for fMRI. This new dynamic 
phantom is fully automated, capable of complex waveforms, and contains no paramagnetic 
materials.  

The dynamic phantom is composed of calibrated agarose gels housed within two 
concentric cylinders. The outer cylinder contains a “baseline” gel, while the inner cylinder is 
longitudinally divided with both (i) a baseline gel matching the outer cylinder and (ii) an “active” 
gel with slightly lower concentration of agarose.  The longitudinally divided inner cylinder 
produces dynamic fMRI signal via rotation about its long axis. We developed a novel fMRI-
compatible pneumatic motor to drive rotation of the inner cylinder, while the outer cylinder 
remains motionless. Position of the inner cylinder is continuously monitored with a fiber optic 
feedback system, and the device is operated from the fMRI control room with a microcontroller. 
Compressed air drives rotation of the inner cylinder, and monitoring of the phantom occurs 
through plastic fiber optic cables, which run between the scanner and control room.  
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 Thus, the dynamic phantom is comprised of two main systems: 1) the scanned phantom, 
consisting of two concentric cylinders and supports, a plastic gearbox, tubing, and fiber optic 
cables, and 2) the control unit, consisting of a microcontroller, compressor, and circuit board. 
The description of the design will be broken down within these two systems and their interface. 
Figure 3.6 details phantom operation in its entirety.  

3.2.3 Agarose Gels and materials justification  

We first fabricated calibrated agarose gels for precise control of T2
* production (Figure 3.1). 

Agarose was chosen as a contrast medium because of its relative ease of use, flexibility in 
preparation, and temporal stability. The use of agarose in phantom construction has been 
validated throughout the literature, and it is shown to be homogenous with respect to MR 
relaxation properties (Christoffersson, Olsson et al. 1991, Olsrud, Nilsson et al. 2008). First, we 
measured the relaxation properties of agarose gels (Figure 3.1) at various concentrations. 
Consistent with the literature, we found that agarose exhibits grey matter-like T2* relaxation 
properties at concentrations between 2-3%. Thus, to be consistent with prior work, the outer 
cylinder was filled uniformly with 2.27% agarose. The inner cylinder was filled with 2.21% and 
2.27% agarose gels. No dividing materials were used, i.e., the gels were in direct contact. These 
concentrations were chosen to closely match previous agarose phantom work (Olsrud, Nilsson et 
al. 2008), but with the goal of creating more biologically feasible fMRI signal changes of 1-2%. 
Gels were degassed with a vacuum chamber.   

3.2.4 Phantom Housing 

We used AutoCAD (AutoDesk, Inc) to design a cylinder-within-cylinder phantom (Figure 3.2). 
The inner cylinder contains four compartments, divided longitudinally (in contrast to the traverse 
compartmentalization of Olsrud (Olsrud, Nilsson et al. 2008), as in Figure 3.3). All custom 
phantom parts were printed with a Makerbot 3D printer with “natural” color polylactic acid 
filament (Makerbot, Inc, Brooklyn, NY). The volume of the outer cylinder was 600 mL, while 
the volume of the inner cylinder was 150mL.  

3.2.5 Control and automation 
To achieve automated rotation of the inner cylinder, we designed and fabricated a fully fMRI 
compatible pneumatic motor system. The motor consists of a compressor, valves, manifold, 
tubes, dual fans, and a gearbox. An air compressor is placed in the control room of the fMRI 
center; input pressure is set to 40 pounds per square inch at 1.9 cubic feet per minute. Plastic 
tubing guides the compressed air through a splitter and into two Arduino® controlled solenoid 
valves (Sparkfun, CO). Compressed air leaves the two independent valves and is guided through 
two tubes into the scanner bed.  

 Finally, the compressed air is released from the pairs of tubes via pneumatic connectors, 
resulting in high velocity airflow. Depending on which valve is open, this airflow powers one of 
two fans; these fans are coupled to a gearbox and spin in opposing directions. The dual fan setup 
allows the gearbox to be driven in either direction and also allows precise braking. The rapid 
rotation of the fans is stepped down and torque is increased via five 3:1 compound gears, 
resulting in a step down ratio of 243:1. The gearbox ultimately interfaces with the inner cylinder 
and optical interruption disk to produce pneumatically controlled rotation. The outer cylinder 
does not rotate. 

3.2.6 Fiber optic feedback 
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We designed a fiber-optic feedback system using plastic fiber-optic cables, an LED light source, 
a photodiode, and an interrupter disc (Figure 3.4). An Arduino microcontroller powers a high-
powered 10 mm LED (Spark Fun, CO), which is coupled with a 1.5 mm diameter fiber optic 
cable (Thor Labs, NJ). The first cable guides light from the LED source within control room to 
the scanner bed through a waveguide. The fiber optic cables are positioned opposite each other 
and spaced 5mm apart, such that as the phantom rotates, the interrupter disk (3mm thickness) 
will intermittently block light transmission between the two cables. The second fiber optic cable 
receives light and is fed back to a photo-diode on the microcontroller.  As the interrupter disc 
spins, the photo-diode receives differential intensity readings. The microcontroller then displays 
the interruption count as a live feed at each TR. Prior to each fMRI scan, the device performs a 
self-calibrating procedure to ensure optimal position encoding regardless of ambient light. The 
interrupter disc has 60 teeth, corresponding to ~6o of rotation per interrupt. Empirical testing 
with the phantom shows that the phantom is capable of traversing between 0.5 and 1.5 
interruptions per TR, with one interruption being average.  

3.2.7 Arduino microcontroller and fMRI communication 
 TR signals are sent to the Arduino via USB input from the fMRI. To properly calibrate the 
phantom rotation and avoid motion artifacts in regions of interest, we ran a simple EPI 
acquisition (TR = 2, TE = 30ms, 25 slice) where the phantom began rotation just after the start of 
each TR, and examined each slice for motion artifacts. As shown in Figure 3.5, severe motion 
artifacts occur when the phantom is rotating during or before a slice is acquired, whereas slices 
acquired before the phantom rotates within a TR contain considerably less artifact. Therefore, if 
the phantom is programmed to begin rotation towards the end of a TR (after a sufficient number 
of slices have been acquired) and to stop rotation just before the next TR, motion artifacts are 
negligible (see Results). Empirical testing with this design suggests that the phantom should 
begin rotation 650ms prior to each TR, and stop ~100ms before the TR. Thus, for TR = 2s, the 
dynamic phantom begins rotation at 1350ms and ends at 1900ms. 

3.2.M8 Arduino software 
The dynamic phantom is controlled with an Arduino Mega ® (www.Arduino.cc). All software 
was developed in-house. The phantom can operate in three distinct modes: 1) stimulus-driven, 2) 
guided, and 3) rest.  

In stimulus-driven mode, the user enters onsets and “amplitudes” of each stimulus. The 
phantom is programmed to respond to the onset of a “stimulus” by mimicking a simple 
hemodynamic response function (Figure 3.3), with a gradual rise and fall over ~16 seconds. 
Thus, when the phantom receives an input, it begins rotation towards a designated “amplitude,” 
which corresponds directly to an interrupt number. When the stimulus-specific amplitude is 
reached, the phantom begins returning to baseline. If another stimulus is received during this 
cycle, the phantom begins rotation towards the new amplitude. In this way, the dynamic phantom 
is capable of producing biomimetic fMRI time series.  

In guided mode, the user enters a desired interruption destination for each TR. The 
phantom will receive a new instruction (interrupt number) at each TR. This mode is useful for 
the production of specific time-series, such as a pink-noise time-series.   

 In rest mode, the phantom is used to measure baseline noise levels in the absence of 
BOLD-like signal. The culmination of these features is a flexible and modular architecture 
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through which the phantom can be easily made to perform a wide variety of experimental 
designs. 

3.2.8 Experimental paradigm 
 For this report, the phantom was programmed to follow a simple stimulus-driven paradigm 
during a series of five-minute scans. We implemented an event-related stimulus-driven design, 
which consisted of seven “stimuli” separated by 40 seconds each. We chose a simple event-
driven paradigm to optimize our acquisition for the analysis of trigger-averaged responses.  

3.2.9 Acquisition parameters: 

The dynamic phantom was scanned in a 3T Siemens Trio scanner with a 12-channel headcoil at 
the Stony Brook University SCAN Center in Stony Brook, NY. The acquisition parameters used 
closely matched our recent work (Greenberg, Carlson et al. 2011, Greenberg, Carlson et al. 2013, 
Cha, Carlson et al. 2014, Mujica-Parodi, Carlson et al. 2014) - TR = 2000ms, TE = 30ms, flip 
angle = 83o, matrix = 96 × 96, FOV = 224 × 224mm, slices = 31, and slice thickness = 3.5mm. 
The DICOM images were converted to 4D NifTi. 

3.2.10 Statistical analysis: 
We took several steps to validate our dynamic phantom datasets. First, we examined our data for 
the presence of motion artifacts. “Active” voxels were explicitly designed to produce significant 
task-specific standard deviations, compared with non-active voxels. Therefore, when examining 
for motion artifacts, we used a custom script to remove “active” voxels by setting a strict 
correlation threshold (r > 0.25) between raw time series and phantom inputs (optical interrupter 
reading); we then used binary masks and rank-sum tests to test for differences in standard 
deviation between non-active inner (moving) and outer (stationary) cylinder voxels.  

 We extracted several time series from each scan using custom MATLAB software tools. 
We tested for parametric correlations between phantom input (interruptions from Arduino) and 
output (fMRI time-series). As a final validation measure, we employed a simple trigger 
averaging code to “active” voxels, located along the gel-gel interfaces, to demonstrate 
hemodynamic-response-like signal changes. Where noted, data were band-pass filtered between 
0.01 and 0.1 Hz (Rubin, Fekete et al. 2013). 

3.3 RESULTS 
3.3.1 Calibrated gels 

Development of a phantom useful for functional MRI requires calibration of agarose gels for T2
* 

relaxation values similar to that of brain matter. We scanned four concentrations of standard 
agarose gel (Figure 3.1), as well as three concentrations of high-strength agarose (1.0%, 2.0%, 
3.0%) to evaluate relaxation time of each. Each sample was scanned at TEs increasing in 
intervals of approximately 10ms from 47ms to 140ms. Short TEs were found to elicit highest 
signal to noise ratios. We found that we could achieve predictable T2 relaxation within the range 
of brain matter (~50-60 ms) (Olsrud, Nilsson et al. 2008) with concentrations of standard agarose 
between 2.2-2.8%. High strength agarose was found to be difficult to clear of bubbles (which 
cause image artifacts); therefore, standard agarose was used for our phantom. 

3.2.2 Motion artifact mitigation 
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As an initial proof of concept, we sought to test whether motion artifacts could be avoided via 
precisely timed rotation of the phantom. First, we explored time-series resulting from our 
preliminary tests, as described in Methods and presented in Figure 3.5. After calibrating 
phantom rotation and acquiring event-driven data, we extracted two representative slices of 
interest from our phantom volume (slices 6 and 7). Due to the interleaved odd-first slice 
acquisition, slice 7 was acquired prior to rotation, while slice 6 was acquired post-rotation. For 
slice 7, rank sum tests between inactive inner cylinder voxels and outer cylinder voxels revealed 
no significant differences in standard deviation of the signals (SDouter = 13.5, SDinner 14.75, p = 
0.894). As expected, slice 6 showed significantly higher standard deviations in the inner cylinder 
than both the outer cylinder (SDinner = 15.39, SDouter = 13.1, p <1 × 10-9) and inner cylinder from 
slice 7 (p < 1× 10-3). Thus, we showed no evidence for motion artifacts in slices acquired before 
rotation.  

3.2.3 Time-series analysis 
Next, we explored phantom data for activated voxels. We extracted time series from within gel-
gel interfaces (expected to show activation), as well as time-series from between interfaces and 
the outer cylinder (not expected to show activation). Results for slice 7 are demonstrated in 
Figure 3.7. As expected, we found that phantom inputs (interrupt readings) were significantly 
correlated with fMRI data at gel-gel interfaces; these areas displayed signal voxel percent signal 
change (computed as (Max(X) – Min(X))/Mean(X)) of between 3-7%. Between slices 5 and 12 
(excluding slices at the top and bottom edges of the phantom), a total of 3,352 voxels 
demonstrated correlations (r > 0.25) with phantom inputs.  

3.2.4 Mimicking the hemodynamic response  

As a demonstration of the practical applications of the present dynamic phantom, we sought to 
test whether the dynamic phantom could produce realistic physical simulations of the biological 
hemodynamic response function (HRF). If so, the phantom could be used to optimize scan 
parameters (for example - TR, SMS factor) for the extraction of HRFs in the absence of 
physiological variables, which are known to reduce intra and inter-scanner reproducibility 
(Friedman, Stern et al. 2008). We employed a trigger averaging routine to extract the average 
response function of the phantom following a “stimulus” in stimulus-driven mode. As predicted, 
the phantom produced a realistic HRF, shown in Figure 3.8.  

3.4 DISCUSSION 
3.4.1 Summary 

This methods paper detailed the development and validation of a dynamic BOLD phantom for 
fMRI. This phantom is completely MR-compatible, fully automated, and is capable of producing 
complex inputs to mimic biological hemodynamics. To validate the dynamic phantom, we 
explored both active and inactive time-series from the inner cylinder, as well as inactive outer 
cylinder time-series. Finally, we demonstrated a biomimetic hemodynamic response produced 
with the phantom.  

F4.2 Materials and design 
We used undoped agarose gels to produce BOLD-like signal changes. Doping these gels could 
help tailor both T1 and T2 relaxation times for specific uses (Olsrud, Nilsson et al. 2008). 
Additionally, other hydrogels or similar materials may be suitable for use within the dynamic 
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phantom. For example, poly(dimethylsiloxane) (PDMS) can also be calibrated for specific 
relaxation properties (Dreiss, Cosgrove et al. 2007).  

We developed a custom MR-compatible motor to drive rotation of the phantom. This 
motor allows for precise rotation in either direction. If necessary, greater flexibility could be 
afforded by modifying the number of gears and their ratios. Furthermore, inclusion of a geneva 
mechanism could grant phantom operators an exact amount of rotation per pulse.  

Phantom rotation is monitored continuously through an interrupter disc. We chose a 
1.5mm diameter fiber optic cable to ensure sufficient illumination was attained with our LED 
and photodiode setup. The spacing between the teeth of the interrupter disc was designed to 
closely match the diameter of the fiber optic cable used, ensuring full interruption. Thus, finer 
control of the phantom could be achieved with a combination of reduced fiber-optic cable 
diameter and interruption tooth size. Furthermore, the interrupter disc could be replaced with a 
continuously variable translucent color wheel, which would allow the phantom to be tracked 
continuously by color.  

3.4.3 Mitigation of motion artifacts 
The phantom produces BOLD-like signal changes by moving differentially calibrated agarose 
gels in and out of a volume of interest. In fMRI studies, motion is considered a significant source 
of noise; many previous studies report reduced connectivity in populations less likely to remain 
still during fMRI scanning – children, the elderly, and the mentally ill (Power, Schlaggar et al. 
2015). Many methods for motion correction have been presented, including standard 
coregistration, regression (Rubin, Fekete et al. 2013), and removal of affected images (Power, 
Barnes et al. 2012).  Indeed, the hand-cranked fMRI phantom developed by Olsrud et al. (Olsrud, 
Nilsson et al. 2008) required the removal of images during which movement occurred.  

The phantom avoids motion artifacts in regions of interest by precisely timing its rotation 
to begin 650ms before the onset of a TR, and finish before TR onset. This strategy allows most 
of the phantom to be imaged without motion-artifacts. Indeed, we found no significant 
differences between inner and outer cylinder standard deviations in slices acquired before 
rotation; as expected, significantly higher standard deviations were found in the inner cylinder 
during slices acquired after rotation onset. It is also important to note that inner cylinder voxels 
outside of the gel-gel interface that contain air pockets or gel inhomogeneities may experience 
larger standard deviations than the outer cylinder, due to the passing of these impurities through 
voxels-of-no-interest. Thus, it is critically important to properly degas phantom cylinders and to 
ensure gel homogeneity during development of a rotation phantom. 

Despite our present focus on avoiding motion artifacts, it should certainly be noted that 
this phantom is capable of producing motion-related artifacts for the continued study of motion 
in fMRI signal. For example, the phantom can be programmed to periodically rotate out of sync 
with fMRI pulses, causing single- or multi-frame motion artifacts (spikes) at designated times 
within a study. This type of data could significantly improve current models of motion in fMRI 
(Drobnjak, Gavaghan et al. 2006).  

3.4.4 fMRI signal production 

At the single-voxel level, we found that the dynamic phantom produced maximum percent signal 
changes (PSC) of 5% with agarose concentrations of 2.21% and 2.27%. This represents a high 
but biologically feasible level (Olsrud, Nilsson et al. 2008). fMRI time-series, however, are 
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typically represented as an average across a region-of-interest. This phantom design utilizes 
partial volume effects (see Figure 3.2) to achieve variable PSC, ranging from nearly 0% (if 
slightly less than half of the inner cylinder is used as an ROI) to up to 5%. In this way, a wide 
range of biologically and analytically relevant PSCs are produced.  

 Here, the phantom was programmed to simulate a hemodynamic response following a 
virtual “stimulus.” The extracted response function closely mirrors the biological hemodynamic 
response, especially after filtering. The post-stimulus undershoot appearing in the filtered 
response function is an artifact of filtering, and not an observation of fMRI “transients” 
discussed by Renvall et al. (Renvall and Hari 2009); here, we found no evidence of transients 
following changes in fMRI signal. We suggest two possibilities for this. First, the agarose 
phantom may produce changes in fMRI signal too slowly to reproduce this type of signal artifact. 
However, the biological hemodynamic response is also slow as compared to neural activity, so 
speed of fMRI signal change is unlikely to influence transient signal production. Second, the 
Maxwell coils in Renvall’s fMRI phantom could interact with fMRI in unforeseen ways, perhaps 
briefly storing and releasing small charges in response to rapidly changing RF fields within the 
headcoil. Further study with the agarose phantom will shed light on this issue.   

3.4.5 Important points on phantom design 
We gleaned several important lessons from our experiments with this phantom. First, the 
phantom must be placed perpendicular to the imaging gradient to avoid slice-based signal 
artifacts. Second, the phantom is particularly sensitive to inhomogeneities and imperfections in 
the agarose gel. Third, shaking of the fMRI during scanning may induce slight motion artifacts 
on their own, adding a source of variance to the data. Thus, the phantom should be secured 
within the headcoil. 

3.4.6 Advancements made in SAII.  

This report comprised several advancements in the field of fMRI device development, the most 
notable of which are discussed below. 

3.4.6.1 Development of a pneumatic motor.  
One of the most challenging parts of a building the first completely MRI compatible dynamic 
phantom was developing a pneumatic motor. The current design was developed under the 
following constraints: 

1. Full MRI compatibility (plastics/glass only). 
2. Precise control and flexibility in operation. 
3. Enough torque to rotate a phantom filled with agarose gel. 
4. Minimal air pressure requirement  - 20-30 PSI max. 

 Our current design utilizes 3D printed fans and gearing to allow for dual rotation 
directions and precise motor control. Our phantom is capable of starting to rotate from a stop 
quickly, and is capable of nearly instant braking using the dual fan system.  
 Our design is not the only MRI compatible motor on the market. Several years ago, a 
pneumatic motor was developed for fMRI that utilized sequential and precisely controlled 
stepper “levers” (Stoianovici, Patriciu et al. 2007). Pneumatic activation of each of these levers 
in sequence allowed rotation of the motor. However, this motor is considerably more complex 
than our motor. Additionally, many robot-actuators for MR-guided surgeries are available 
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(Fischer, Iordachita et al. 2008, Tokuda, Song et al. 2012), which offer considerably more 
precision. However, our design offers considerably greater simplicity and cost-effectiveness than 
the current market options.  
3.4.6.2 Development of fMRI compatible position encoding system.  

In addition to a pneumatic motor, we had to develop a method of tracking the position of the 
phantom at any given time. Using 3D printing, fiber optics, a high-power LED, and a photodiode 
in conjunction with an Arduino microprocessor, we constructed a closed-loop position feedback 
system. The system calibrates itself to ambient lighting conditions, performs a position 
calibration based on a strategically placed double-interrupt, and proceeds to track the motion of 
the phantom continuously. The position encoding software was written in Arduino, and can be 
found in the appendix.  
3.4.6.3 Mitigation of motion artifact with precise rotation timing.  

In September, 2011, an NIH R21 grant was filed by our group. Reviewers of the dynamic 
phantom claimed that severe ghosting and motion artifact would plague the design. Our 
reviewers were correct in that continuous rotation and rotation prior to slice acquisition caused 
motion artifacts (FIGURE). However, our group was able to mitigate these through precise 
rotation timing. The potential implications of this discovery are significant. Motion correction 
algorithms generally examine motion time-series from SPM through a thresholding mechanism. 
When the magnitude of motion is greater than 3mm or 3O, either the volume is discarded (as in 
“scrubbing” (Power, Barnes et al. 2012)) or the entire subject is removed from analysis for 
“excessive motion.” Timing of the motion within the imaging volume is typically neglected.  

However, the phantom data suggest that when reasonable motion of the subject takes 
place, only slices acquired after the motion took place but before the next volume acquisition are 
affected. In other words, when studying motion artifacts, it is important to identify the timing 
and extent of motion within a volume. This possibility is beyond the scope of the present work, 
but further research could address this shortcoming of fMRI.   

3.4.7 Potential limitations of the dynamic phantom. 
A shortcoming of our present design is that our fiber optic feedback and positioning system is 
relatively coarse. The interruption disk fins are 2.5mm thick and separated by 2.5mm, meaning 
that the phantom must travel an angular distance of 5 mm to get from one interruption to the 
next. This distance requires several TRs to traverse, resulting in coarse-grained “input” curves. 
This could be addressed in a straightforward manner with a more advanced fiber optic system. 

Similarly, the phantom is only capable of creating BOLD-like signal changes as a 
function of rotation time and speed between TRs; i.e., the phantom can create signal changes 
only according to the number of degrees it can rotate within the 500ms rotation window. In other 
words, the phantom is limited in signal changes to a range of S(max) – S(min) and it may take 
several TRs of rotation to change from one extreme to the other.  This limitation can be 
addressed during analysis by restricting the size of the region of interest (ROI) – a smaller region 
of interest will see more dramatic changes on average compared to a larger region of interest. 
Additionally, voxels nearer to the interface between gels will see considerably more abrupt 
changes than those further from the interface. 

Another shortcoming of the design is the presence of air pockets in the agarose gel. These 
pockets create large signal distortions in our images. When paired with motion of the inner 
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cylinder, this creates areas of artifact, where air travels in and out of a voxel. This shortcoming 
can be addressed with better degassing during the gelling process.  

Despite the many advantages of a rotation phantom design, the rotation phantom 
produces simulated BOLD signal in a somewhat biologically-irrelevant manner; i.e., the human 
brain produces fMRI signal changes by changing the local concentrations of oxygenated vs. 
deoxygenated blood through flow, whereas the phantom produces changes through rotation of 
two gels. A phantom that properly modeled the activity of the human brain would be useful for 
the continued development of vasculature-BOLD models (Uludag, Muller-Bierl et al. 2009), 
among other uses (arterial spin labeling, diffusion tensor imaging, etc).  

Finally, the dynamic phantom was limited in size by the surface area of the 3D printer 
used to prototype the device. A larger outer cylinder (in all directions) would increase the 
stability of the signal and increase biomimetic capabilities. Additionally, the phantom comprises 
just a single type of gel, whereas the brain comprises three major tissue types – gray matter, 
white matter, and cerebrospinal fluid. Incorporation of different materials into the outer cylinder 
could help enhance the biomimickry of the phantom. Additional incorporation of geometric 
features, as well as more tightly defined geometries, could help the phantom be used for spatial 
resolution measures simultaneously with temporal measures.  

3.4.8 Conclusion 

This chapter comprised the fabrication and validation of an automated, compartmentalized, 
programmable rotation phantom for fMRI that is capable of producing predictable and 
reproducible fMRI signal. This project required a combination of 3D printing, open-source 
electronics, C++ software, a fiber optic feedback system, and agarose gels. The completion of 
this chapter will serve to enable researchers to answer the fundamental question, “when 
physiological noise is removed, to what extent do the fMRI scanner and subsequent data 
analyses capture the fidelity of an input signal?” In the final chapter, we use the phantom to 
begin answering this question.  
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3.5 Figures and captions 
Figure 3.1: Calibrating agarose gels for fMRI contrast. 

(A) and (B) show agarose gels at 1.5, 2, 2.5, and 3.0% w/w, at TE = 47ms (A) and 140ms (B). 
(C) T2 vs agarose %. The T2 of grey matter is ~45ms, corresponding to [agarose] ≈ 2.75%. Based 
on these results and prior work, we decided to use 2.27% agarose for baseline, and 2.21% for the 
“active” state.  
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Figure 3.2: Design of the dynamic phantom.  

The dynamic phantom is the first automated agarose gel phantom capable of producing dynamic 
fMRI signal without the use of any metallic components. The phantom comprises a concentric 
dual cylinder (A) design. The inner cylinder is divided longitudinally into four compartments and 
filled with two calibrated agarose gels with slightly different concentrations. The outer cylinder 
contains a uniform agarose gel. The inner cylinder interfaces with a pneumatic motor (B) and 
(C), comprising 3D printed fans and gears. Compressed air enters the scanner through tubing (D) 
and drives the fans, which face opposing directions and allow both bidirectional rotation and 
precise braking. The fans are coupled with a custom 243:1 gearbox, which produces torque 
necessary to rotate the phantom. An interrupter disk is coupled to the inner cylinder. Plastic fiber 
optic cables face each other on either side of the interrupter disc. Light from an LED in the 
control room leaves the first fiber optic cable, enters the second fiber optic, and is guided back to 
a photodiode. The interrupter disk interrupts the light as the phantom rotates, allowing for 
position tracking. 

A B 

D 
C 
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Figure 3.3: Phantom production of pseudo-BOLD. 

(top) Conceptual representation of pseudo-BOLD signal production mechanism, and empirically 
measured signal change (bottom). Automated and precisely timed rotation of the phantom 
between two calibrated agarose gels within a region-of-interest produces smoothly varying 
hemodynamic response-like signal changes. Here, agarose gel concentrations were 2.21% (gel 1) 
and 2.27% (gel 2). Data shown are extracted from a simple event-driven design via trigger 
averaging with an 18 TR window. Region of interest is a 3 x 3 voxel square.  
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Figure 3.4: Interrupter system.  

The smaller inner cylinder (dark gray) is physically linked to the interrupter disk (black). The 
interrupter disk contains slots, which interrupt the flow of light through fiber optic cables placed 
on either end of the disk at the bottom of the phantom. The light originates from an LED on the 
Arduino. Fiber optic cable carries the light from the source, through the interrupter system, and 
eventually to the diode receiver. This setup allows the Arduino to encode relative position as a 
function of interruptions.  
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Figure 3.5: Motion artifacts during rotation vs. slice.  
The dynamic phantom rotates between 3-6o between TRs. Rotation is coupled with TR 
acquisition through a microcontroller, and is tightly controlled with a brake. For demonstration 
purposes, we show here that slices acquired before rotation (A) are subject to considerably less 
spiking than slices acquired during rotation (B) and after rotation is completed (C). Accordingly, 
we optimized our rotation/braking scheme such that inner cylinder voxels contain no significant 
differences in standard deviation for slices of interest (rank sum test)(D).  

 

A B C D 
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Figure 3.6: Flowchart for the phantom’s operation.  

Within-scanner (right) and control-room (left) based functions are separated for clarity. 
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Figure 3.7: Dynamic phantom data acquisition.  
The inner cylinder of the phantom rotates back and forth between TRs, producing signal changes 
at the gel-gel interfaces (top panels, left and right). Voxels distant from the interfaces and 
within the static (non-rotating) outer cylinder experience uncorrelated scanner noise (bottom 
panels, left and right). 
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Figure 3.8: Validation of dynamic phantom biomimetic capabilities.  
The dynamic phantom was programmed to physically simulate a biological hemodynamic 
response function within an fMRI task. Region of interest was a triangle straddling a single gel-
gel interface, covering a total of 35 voxels. (A) Average window (raw data) following a 
programmed “stimulus.” (B) For visualization purposes, the same window was band-pass filtered 
between 0.01 and 0.1 Hz.  

 
 

A. B. 
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CHAPTER 4 

4. Signal Fluctuation Sensitivity Quantifies Temporal Fidelity for Resting-State Functional 
MRI 

 
Preface 

Portions of this chapter have been reproduced from the manuscript: 
Daniel James DeDora, S. Nedic, P. Katti, S. Arnab, J. Polimeni, L.L. Wald, A. Takahashi, K. 
Van Dijk, R. Buckner, H.H. Strey, L.R. Mujica-Parodi, “Signal Fluctuation Sensitivity 
Quantifies Temporal Fidelity for Resting-State Functional MRI.”, In preparation. 

 
The authors listed in the above manuscript have contributions towards the data reported in this 
chapter. 
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4.1 Introduction 
Neuroimaging with functional magnetic resonance imaging (fMRI) has proved to be an 
indispensible tool in addressing the explosion of interest in human brain connectivity and its 
relationship to brain-based disease.  However, one significant consequence of fMRI’s transition 
from mapping the areas of the brain most “active” under a task, towards the characterization of 
brain connections and circuits, is a radical and largely unacknowledged shift in what is 
considered signal versus noise.  

During fMRI’s first decade, researchers almost exclusively used stimulus presentation 
(task) to evoke blood oxygen level dependent (BOLD) activity in subjects.  To identify the 
relationship between different brain regions and their functional roles, tasks included one or 
more experimental conditions, as well as a baseline measure absent of stimuli (rest).  FMRI 
time-series were then fitted to an ideal expected hemodynamic shape for each condition 
(canonical hemodynamic response function, or HRF).  Once fitted, trials for each condition were 
averaged and used to statistically compare hemodynamic amplitudes for each condition 
(contrasts) across subjects.  Contrasts that met statistical thresholds were then represented as 
activity, producing activation maps. 

The fitting, averaging, and subtraction approach used to analyze task-based data was 
primarily driven by the assumption that fMRI time-series had signal to noise ratios (SNR) too 
poor to preserve most of the dynamic information contained in the neuronal response.  In the late 
1990’s, however, several influential papers (Biswal, Van Kylen et al. 1997, Raichle, MacLeod et 
al. 2001, Greicius, Krasnow et al. 2003, Salvador, Suckling et al. 2005) showed for the first time 
that the resting brain showed strong and reliable correlations between unfitted fMRI time-series; 
more recently, the relationship between correlation-derived networks, and the neuronal events 
that underlie them, has been identified using combined fMRI with electrophysiological 
recordings of local field potentials (Logothetis, Eschenko et al. 2012). The fMRI community 
quickly responded, and today connectivity studies—which map connections between brain nodes 
as defined by correlations between their time-series—comprise over 20% of human 
neuroimaging studies published every year(Bandettini 2014).  Connectivity analyses include not 
only those that access the well-established default mode network (DMN), but also those obtained 
by correlations with a pre-defined region (seed-based) as well as those that describe graph-
theoretic features of the connectome (complex network analyses) (Bassett and Bullmore 2006). 
Together, connectivity studies have contributed a wealth of new human brain data on aging 
(Damoiseaux, Beckmann et al. 2008), psychiatric (Greicius, Flores et al. 2007) and neurological 
(Bettus, Guedj et al. 2009) disorders, and injury (Mayer, Mannell et al. 2011). Resting-state 
fMRI protocols are easily standardized, require minimal patient compliance, and permit 
exploratory analyses; as such, they would appear to be well positioned for both clinical 
neurodiagnostics as well as large-scale international bio-repositories established for 
epidemiological research. 

However, the transition from activation maps to connections between nodes not only 
produced a conceptual shift with respect to the role of functional neuroimaging, but also 
radically increased analytic dependence upon dynamic information contained within the time-
series. The standard measure for establishing the quality of task-based data has been the 
contrast-to-noise ratio (CNR), defined as the contrast (mean activation level acquired during task 
minus the mean activation level acquired during rest) divided by the standard deviation of the 
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time-series (Bandettini and Cox 2000). For task-free designs (such as resting-state), CNR cannot 
be computed, and thus is often replaced by the temporal signal-to-noise ratio (tSNR), defined as 
the mean of the time-series divided by its standard deviation (Kruger, Kastrup et al. 2001). 
Intuitively, both CNR and tSNR compare the amplitude of a signal against a background of 
undesired physiological, thermal, and scanner noise present in all fMRI studies.  This manner of 
conceptualizing what is ‘signal’ versus what is ‘noise’ makes perfect sense within the context of 
activation maps, in which a task activates the brain reliably more under one condition (signal) 
than another (noise)(Murphy, Bodurka et al. 2007).  However, for correlational analyses, the 
gray matter fluctuations themselves are the signal.  Thus, for most connectivity studies, tSNR 
would appear to do exactly the opposite of what one would wish, as it penalizes sensitivity to the 
fluctuations (standard deviation of the time-series) upon which correlational analyses are based. 
Indeed, several recent studies have reported little correspondence between resting-state tSNR and 
the detection of stable functional networks (Smith, Beckmann et al. 2013, Welvaert and Rosseel 
2013, Gonzalez-Castillo, Handwerker et al. 2014, Molloy, Meyerand et al. 2014).  

For correlational analyses, rather than relegate time-series fluctuations to the category of 
noise (as per tSNR), we want to distinguish relevant fluctuations that are neurobiologically 
significant (e.g., emanating from BOLD signal consequent to neuronal response) from nuisance 
fluctuations that are neurobiologically insignificant (e.g., physiological, scanner, and motion 
artifact).  The dissociation between the two can be characterized by signal fluctuation sensitivity 
(SFS), which we define as: 

 
Eqn. 1 
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In the first term, we average over mean (µ) voxel-specific values acquired for fMRI time-series 
in a region of interest (ROI) in the numerator, and for the entire brain (global) in the denominator.  
In the second term, we average over the standard deviation (σ) of fMRI time-series from each 
voxel obtained from a region of interest (ROI) in the numerator, and from a region in which 
BOLD signals are not expected, but in which physiological, scanner, and motion artifacts are still 
present, (nuisance) in the denominator.  Prior work suggests that time-series obtained from 
cerebrospinal fluid (CSF) meet criteria for the nuisance denominator (Wald 2012).  

In order to establish the validity of SFS in quantifying the degree to which fMRI 
accurately captures true BOLD fluctuations, we first need know the ‘ground truth’ for those 
fluctuations.  To establish that ground truth, we designed a dynamic phantom, which provides 
user-controlled—and thus known—dynamic BOLD-like inputs to which fMRI-derived outputs 
can be compared.  After validating SFS’s relationship to the dynamic integrity of the BOLD-like 
signal, we then demonstrate SFS’s ability to predict detection sensitivity to functional 
connectivity in human data, across three sets of representative acquisition parameters.  
Collectively, this work has powerful and direct practical applications to all functional MRI 
studies that utilize dynamic analyses. 

4.2 Methods 
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4.2.1 Overview of the dynamic phantom for fMRI 
Novel fMRI methods are typically validated with human imaging data. However, human 

data lack a “ground truth,” in that researchers attempt to interpret an output (changes in fMRI 
signal) without direct knowledge of the input (i.e., neural-activity-triggered hemodynamics). 
Simulations could address this challenge by modeling input-output fidelity in the presence of 
physiological and scanner noise, but models can be susceptible to bias and often over-simplify 
the complexities of fMRI noise (Renvall and Hari 2009, Erhardt, Allen et al. 2012). Static 
phantoms are useful for quantifying scanner stability, but cannot be used to test dynamic fidelity. 
Therefore, we designed a novel dynamic phantom capable of producing tightly controlled 
changes in fMRI signal. In this way, we produced input-output mappings for three different 
scanners at three different sampling rates each, and tested whether SFS and tSNR predicted 
fidelity in the absence of confounding effects (such as physiological noise). The phantom design 
and validation data are detailed in Figure 4.1.  
4.2.1.1 Design of the phantom 

 The dynamic phantom comprises two concentric cylinders coupled with a pneumatic 
motor and fiber optic feedback system. The outer cylinder contains a “baseline” agarose gel 
(2.27% w/w), while the inner cylinder is longitudinally divided with both (i) a baseline gel 
matching the outer cylinder and (ii) an “active” gel with slightly lower concentration of agarose 
(2.21% w/w). The longitudinally divided inner cylinder produces dynamic fMRI signal via 
rotation about its long axis via a novel fMRI-compatible pneumatic motor to drive rotation of the 
inner cylinder. The phantom receives image signals from the fMRI, and rotates only between 
image acquisitions to avoid motion artifacts. As the phantom rotates, position is monitored 
continuously through a fiber-optic feedback system. As the fMRI acquires each image, the 
phantom reads out its position, which serves as a 1:1 “input” for input-output mapping. During 
phantom validation, the phantom was programmed to produce fMRI signals according to a 
simple event-related protocol. See Chapter 2 for fMRI scanning details regarding phantom 
validation. As expected, the dynamic phantom produced tightly controlled changes in fMRI 
signal (Figure 4.1D) in the presence of scanner noise. Thus, we utilized the phantom to develop 
and validate SFS. 

First, we programmed the phantom to the mimic resting-state oscillations observed in 
human fMRI (van den Heuvel, Stam et al. 2008). We scanned the phantom in three different 
fMRI scanners, including a 3 Tesla magnet (3T) with a 32-channel headcoil (a fairly common 
setup), a 3T magnet with a 64-channel headcoil (a human connectome scanner), and a 7T magnet 
with a 32-channel headcoil (high-field scanner). The phantom was scanned at three different 
sampling rates (TR) within each scanner for ten minutes each; in total, we performed nine scans 
with the phantom. Scan parameters for each session can be found in Table 4.1.  

The dynamic phantom is longitudinally divided into four chambers, and rotates about the long 
axis orthogonally to the main field (see Figure 4.1D for an example fMRI image). Due to the 
lack of confounding effects within the dynamic phantom, we exclusively used raw data in our 
analysis – i.e., no preprocessing was performed; however, the first 10 points of each dataset were 
removed to allow for steady state to be achieved. Input-output fidelity was measured as the 
correlation between phantom position measurements and fMRI signal. We computed SFS, tSNR, 
and fidelity for each time-series. For the region of interest (ROI) fluctuations, we extracted the 
average time-series from the four quadrants of the inner cylinder (corresponding to the four 
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chambers) with an automated masking procedure using MATLAB software developed in-house.  
We repeated this for six slices positioned in the center of the phantom (n = 24 time-series per 
scan).  For the nuisance fluctuations, we extracted the time-series from the outer cylinder of the 
phantom, which does not activate. We then computed SFS based on the definition: 
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4.2.2 Human scanning and analyses 
4.2.2.1 Acquisition 

In an effort to represent a wide variety of task-free scanning paradigms, we collected three sets 
of human data (n = 12 subjects each) in the three scanners previously utilized for the phantom 
studies (3T 32 channel, 3T 64 channel, and 7T 32 channel) under three different sampling rates 
(2000ms, 1080ms, 802ms). As mentioned, these three scanners and sampling rates are a 
representation of a (i) standard acquisition paradigm (acquisition A), (ii) a Human Connectome 
Project (Harvard-MGH) paradigm (acquisition B), and a (iii) fast TR at high field paradigm 
(acquisition C), respectively. All subjects were age matched (µA = = 25.6 ± 3.7; µB = 23.3 ± 
4.2; µC = 25.7 ± 3.6; p = 0.34, Kruskall-Wallis test). Acquisition A and acquisition C 
participants were exclusively male, while acquisition B had nine males and three females. 
Specific scanner parameters for these three studies are highlighted in Table 1. Anterior to 
posterior phase encoding was used in all scans. Scanner A acquisition lasted 5 minutes, while 
scanner B (originally 6.2 minutes) and scanner C (originally 10 minutes) data were truncated to 
match this duration. We removed the first ten seconds of data for all datasets. All participants 
were instructed to lie quietly with eyes open in the scanner without moving for the duration of 
the scan. A fixation cross was displayed for each scan.  

4.2.2.2 Preprocessing 
We followed the standard SPM 8 pipeline for realignment, coregistration to a structural image, 
and normalization to Montreal Neurological Institute (MNI) space. We examined both 
unsmoothed and smoothed data, because smoothing is considered standard procedure in most 
functional neuroimaging. We utilized a 4-mm (2 voxel) FWHM Gaussian smoothing kernel. 
Slice time correction was performed on acquisition A data, since the sampling rate was 
considerably slower than the other two scanners (TR = 2000ms vs. 1080ms and 802ms). Field 
map correction was performed on acquisition A and acquisition C. Scrubbing was performed to 
remove the influence of motion, with scan-to-scan global signal deviation from the mean > 3 and 
scan-to-scan composite motion > 0.5mm as thresholds for removal(Power, Barnes et al. 2012). 
The mean percentage of data points removed between all three groups was 2.22%, with no 
subjects having more than 9% of data scrubbed. Data were then imported into the Conn Toolbox 
for confound correction, which included time series detrending, regression of six motion 
variables (three translation vectors and three rotation vectors), regression of white matter and 
cerebrospinal fluid signals and temporal band-pass filtering between 0.01–0.1 Hz.  
4.2.2.3 Computation of SFS, tSNR, amplitude of low frequency fluctuations, and regional 
homogeneity.  
We used MATLAB to compute voxel-wise SFS and tSNR. SFS was computed as the mean 
signal of a voxel of interest (before confound regression, but after scrubbing) multiplied by the 
ratio between the standard deviation of the voxel of interest and the average standard deviation 
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of the cerebrospinal fluid (after confound regression). Cerebrospinal fluid mask was computed 
using an eroded apriori probabilistic map of CSF provided in SPM8  (P > 0.6) to ensure minimal 
contributions from neural sources. tSNR was computed voxel-wise as the mean (before confound 
regression, but after scrubbing) divided by the standard deviation of a signal (after confound 
regression). 

Both amplitude of low frequency fluctuations (ALFF) and regional homogeneity (27-
voxel KCC-ReHo) were computed from confound-corrected data, using the REST toolbox 
(Song, Dong et al. 2011). Resulting subject-specific voxel-wise ReHo and ALFF maps were 
standardized by dividing each voxel’s value by the mean value of the whole brain. ALFF 
measures the total power of the low frequency components of a signal, which underlie resting-
state connectivity analyses. ReHo is a measure of local connectivity. Thus, ALFF is a single-
voxel measure, while ReHo is a measure of local synchronization of neighboring voxels.  

 To test whether tSNR or SFS were predictive of these established resting-state measures, 
we computed within-subject correlations between (i) SFS and ALFF, (ii) SFS and ReHo, (iii) 
tSNR and ALFF, and (iv) tSNR and ReHo for voxels belonging to the well-established default 
mode network (DMN) regions: medial prefrontal cortex (mPFC), posterior cingulate cortex 
(PCC), and left and right lateral parietal cortices (LLP and RLP). These regions were defined as 
10-mm radius spheres centered on previously established coordinates, intersected with a SPM8 
brain mask to ensure only brain voxels were included (Fox, Snyder et al. 2005). For the 
extraction of ROI-based SFS and tSNR values, we used the four aforementioned DMN masks, as 
well as a probabilistic gray matter mask from SPM8 (P > 0.6). We obtained subcortical ROI 
masks from the atlas included in CONN14p, which derived these from FSL Harvard-Oxford 
subcortical atlas. 

4.3 Results 

4.3.1 The Dynamic Phantom data suggest that SFS predicts input-output fidelity of 
fMRI time-series. 

Temporal fidelity directly correlated with SFS for each of the nine scans (Figure 4.2; Table 4.2; 
mean r = 0.56±0.12; mean p = 0.01) and inversely correlated with tSNR for each of the nine 
scans (Figure 4.2; Table 4.2; mean r = −0.58±0.17; mean p  = 0.03).   Thus, when the scanner 
was most sensitive in capturing dynamic inputs, SFS was maximized while tSNR was 
minimized, and vice-versa. Given that researchers typically optimize acquisition parameters for 
fMRI connectivity studies by trying to maximize tSNR, the fact that doing so would appear to 
produce the least detection power has significant consequences for the neuroimaging community.  
Yet, the Dynamic Phantom is a well-defined system that differs from the brain significantly in 
the composition of its ROI and nuisance areas, as well as with respect to potential confounds 
from physiological noise. Therefore, the next step was to directly test the implications of our 
Dynamic Phantom SFS results for human connectivity studies.   

4.3.2 SFS predicts resting state features in humans  

We first tested whether SFS and tSNR would predict resting-state features on a single-subject 
level – a critical aspect of clinical neuroimaging (i.e., for diagnostics, pre-surgical localization, 
etc.). We performed region-specific correlations within the default mode network (DMN), 
revealing robust and significant positive relationships between SFS and ReHo (median r = 0.62, 
p’s << 0.001*; by acquisition set: rA = 0.61, rB = 0.63, rC = 0.60; see Figure 4.3 for median by 
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subject). In contrast, we found a negative correlation between tSNR and ReHo for all four DMN 
regions (median r = -0.36, p’s << 0.01; by acquisition set: rA = -0.49, rB = -0.34, rC = -0.26; see 
Figure 4.3 for median by subject). Smoothing magnified this effect, where SFS positively 
predicted ReHo (median r = 0.78, all p’s << 0.001; by acquisition set: rA = 0.75, rB = 0.81, rC = 
0.79) and tSNR negatively predicted ReHo (median r = -0.78, all p’s << 0.001; by acquisition 
set: rA = -0.77, rB = -0.76, rC = -0.80) 

 While ReHo is a measure of between-voxel connectivity, ALFF is a single-voxel measure 
that estimates the total power of the low frequency component of an fMRI signal, as these low 
frequency fluctuations are the basis of resting-state connectivity (Biswal, Yetkin et al. 1995). 
Thus, we expected the relationship between ALFF and SFS/tSNR (both single voxel measures) 
to be even more robust than the relationship between SFS and ReHo. Indeed, a strong positive 
relationship between ALFF and SFS was found (median r = 0.90, all p’s << 0.001; by acquisition 
set: rA = 0.93, rB = 0.86, rC = 0.85), whereas tSNR was negatively correlated with ALFF (median 
r = -0.80, all p’s << 0.001; by acquisition set: rA = -0.85, rB = -0.79, rC = -0.75). Again, 
smoothing magnified this effect for both SFS (median r = 0.96, all p’s << 0.001; by acquisition 
set: rA = 0.97, rB = 0.95, rC = 0.96), and tSNR (median r = -0.88, all p’s << 0.001; by acquisition 
set: rA = -0.88, rB = -0.88, rC = -0.88).  

4.3.3 SFS and tSNR values between acquisition sets 

The purpose of signal-to-noise ratio assessments, for any measurement, is to provide accurate 
feedback by which parameters can be tuned to optimize performance, as well as to aid in the 
interpretation and artifact-correction of results. Our three representative acquisition strategies 
illustrate clearly the practical importance of using SFS, and not tSNR, when optimizing fMRI 
studies for analyses that depend critically upon temporal fidelity. We compared SFS and tSNR 
values between acquisition paradigms for the default mode network, subcortical regions critical 
to the emotion and reward circuits, and global gray matter. To better represent realistic 
optimization studies, which normally utilize smoothing, we present results from 4-mm smoothed 
data. To directly compare SFS and tSNR values between acquisition sets, we extracted average 
values from seven ROIs, including the default mode network, amygdala, caudate, hippocampus, 
and average subcortical (each defined from FSL Harvard-Oxford Atlas ROIs included in CONN 
toolbox; average subcortical includes bilateral accumbens, amygdala, caudate, hippocampus, 
pallidum, putamen, and thalamus), as well as for all gray matter (using SPM8 probabilistic gray 
matter mask thresholded at P > 0.6). As shown in Figure 4.4, SFS identifies the advantages of 
increasingly temporal resolution, as well as the costs and benefits of increasing head-coil 
channels vs. field strength as a strategy to recovery signal loss from accelerated acquisition. In 
general, the ultra-dense head-coil strategy employed by Acquisition B optimizes over preserving 
temporal fidelity in cortical regions, whereas the ultra-high-field strategy employed by 
Acquisition C optimizes over preserving temporal fidelity in subcortical regions.  TSNR provides 
a very different story:  showing the greatest stability in Acquisition A, diminished performance in 
Acquisition C, and the worst performance in Acquisition B.  Which strategy is optimal, for any 
particular study, therefore depends critically upon the scientific questions to be asked: not only 
with respect to the regions of interest implicated, but also the types of analyses to be performed.  

4.4 DISCUSSION 

Functional neuroimaging has ushered in a new era of brain research, in which time-series 
dynamics play an increasingly large role.  As such, we need to reconsider whether fMRI 
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optimization paradigms that rely solely on maximizing stability might actually be leading us 
astray by minimizing detection of the very signal fluctuations upon which resting-state analyses 
are based. Here we propose a new measure—Signal Fluctuation Sensitivity (SFS)—that 
distinguishes between neurobiologically relevant fluctuations of interest, and nuisance 
fluctuations due to physiological or scanner artifact. We demonstrate that SFS positively—and 
tSNR negatively—correlates with temporal fidelity in a Dynamic Phantom, as well as with the 
detection power of local functional networks in humans, across three sets representative 
acquisition parameters previously optimized for clinical fMRI studies.   

Our design of the Dynamic Phantom was motivated by the need to rigorously test 
temporal fidelity in response to known dynamic inputs, neither of which is possible using human 
data nor static phantoms.  While we could have simulated input-output fidelity in the presence of 
physiological and scanner noise, models can be susceptible to bias and often over-simplify the 
complexities of fMRI noise (Renvall and Hari 2009, Erhardt, Allen et al. 2012). The empirical 
approach defined here captures actual scanner noise, and thus is more accurate in evaluating the 
utility of SFS to clinical neuroimaging.  

While the phantom produced precise input-output mappings, the brain is not a well-
defined system, and long-range brain connectivity is not yet reliable enough to provide a gold 
standard against which a new method can be compared. Thus, we used a more conservative 
measure of local-connectivity (regional homogeneity – ReHo (Zang, Jiang et al. 2004)), as well 
as a single voxel measure of resting-state signals (amplitude of low frequency fluctuations – 
ALFF (Yu-Feng, Yong et al. 2007)), for our evaluation of detection sensitivity for resting-state 
data. ReHo is correlated with task-activations and may be related to neurovascular coupling 
(Yuan, Di et al. 2013). Both ALFF and ReHo have been widely used to study resting-state brain 
activity, with clinical applications to Parkinson’s Disease (Wu, Long et al. 2009), Alzheimer’s 
Disease  (Liu, Wang et al. 2008), and psychiatric illnesses (Han, Wang et al. 2011).  Thus, we 
were able to show that, by optimizing for dynamic fidelity instead of temporal stability, SFS can 
have direct practical applications for clinical neuroimaging results.  

In developing SFS for humans, one important decision is the optimal location for the 
acquisition of nuisance fluctuations.  We chose cerebrospinal fluid, rather than surrounding air, 
white matter, or whole brain, because time-series from the cerebrospinal fluid contain the 
greatest proportion of nuisance variance of the three brain tissues (Wald 2012), including 
motion, scanner variance, and some physiological effects. Moreover, unlike white matter 
(Gawryluk, Mazerolle et al. 2014) and the global signal, the eroded CSF masks used here are 
unlikely to contain neurobiologically-relevant fluctuations of interest. Another consideration in 
the computation of SFS is that gray matter contains significantly more physiological noise 
contributions (heart-rate and respiration) than other tissues. Fluctuations within gray matter that 
are related to non-neural physiological noise may influence SFS computations. Therefore, it is 
important to employ proper preprocessing and physiological noise reduction schemes (such as 
confound correction in CONN) to reduce the influence of physiological noise. 

Although we have emphasized the application of SFS to correlational analyses 
(connectivity, complex network) due to their increasing prevalence within the field, it is 
important to note that other types of dynamic analyses will also be much better served by 
optimization to SFS than tSNR.  This category of approaches includes analyses based upon 
power spectra, complexity, and calculation of transfer functions (e.g., ALFF, power spectrum 
scale invariance, entropic analyses, dynamic causal modeling), for which temporal fidelity is 
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critical. However, this is not to suggest that CNR and tSNR do not continue to be useful and 
accurate measures in answering particular questions.  TSNR is a measure of signal stability and 
is proportional to field strength, voxel size, and sampling rate (Kruger, Kastrup et al. 2001, 
Triantafyllou, Hoge et al. 2005); thus, in static phantoms, tSNR can be used to quantify and 
minimize scanner-related noise. If the primary aim of a study is to show contrast between two 
conditions, then CNR, and not SFS, is correct. For dynamic and nonlinear analytic methods 
(including task-free analyses), CNR is not directly measurable, thus classical tSNR is frequently 
cited as a surrogate (Van Dijk, Sabuncu et al. 2012, Smith, Beckmann et al. 2013). However, the 
relationship between tSNR during rest and task activation is inconsistent (Murphy, Bodurka et al. 
2007), and gray matter regions with the lowest tSNR at rest also show the greatest activation 
during tasks (Yan, Zhuo et al. 2009).  As with so many zero-sum decisions in fMRI acquisition, 
it is important to realize that we optimize over one parameter at the expense of the other.  
Therefore, just as tuning of acquisition parameters benefits enormously from knowing a priori 
the region of interest to be targeted, knowing a priori the type of analysis to be performed will 
permit researchers decide whether to optimize for stability (tSNR) or for dynamics (SFS). 

4.5 Figures, Captions, and Tables. 
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Figure 4.1: Design and validation of the dynamic phantom 

The dynamic phantom produces tightly controlled changes in functional MRI signal, establishing 
a “ground truth” for quantifying input-output fidelity. (A and B) The dynamic phantom 
comprises concentric cylinders filled with agarose gels. The inner cylinder is coupled to an 
fMRI-compatible pneumatic motor and fiber optic feedback system. (C) The inner cylinder is 
longitudinally compartmentalized into four chambers. One of two calibrated agarose gels with 
different concentrations is contained in each; the gels are in direct contact. The outer cylinder 
contains a single agarose gel. Precisely-timed rotation of the inner cylinder between images 
produces dynamic changes in fMRI signal (bottom panel of C). (D) The top two panels 
demonstrate “active” voxels within the inner cylinder of the phantom along the gel-gel 
interfaces; these voxels exhibit strong input-output fidelity. The bottom two panels show that the 
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inactive outer cylinder and inactive inner cylinder voxels are indistinguishable. For validation of 
phantom performance, a simple event-related design is pictured in D. During the phantom 
scanning for SFS experiments, the phantom utilized a more complex input mimicking human 
resting-state data (Figure 4.7).  

 
Figure 4.2: Fidelity vs. SFS and tSNR in the dynamic phantom  

The dynamic phantom results suggest that resting-state signal to noise (SFS) better predicts 
fidelity than classical temporal signal to noise (tSNR). SFS predicts input-output fidelity (mean r 
= 0.626, p < 0.01), but tSNR inversely correlates with fidelity (mean r = -0.671, p < 0.01). These 
results suggest that SFS is more informative for dynamic signals than classical tSNR. Groups 
presented here match the scanning parameters presented in the subsequent human data – 
acquisition A represents data from a 3 Tesla magnet with a 32-channel headcoil (TR = 2000ms), 
acquisition B represents data from a 3 Tesla magnet with a 64-channel headcoil (TR = 1080ms), 
and acquisition C represents data from a 7 Tesla magnet with a 32-channel headcoil (TR = 
802ms). Table 2 details the results from all nine dynamic phantom scans. 
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Figure 4.3: Signal fluctuation sensitivity (SFS) positively correlates with local neural 
synchrony across the default mode network, while classical tSNR negatively correlates with 
the same measure. 
 SFS strongly predicts regional homogeneity (a well-established measure of neural synchrony in 
fMRI) on an unsmoothed single-subject level across the medial prefrontal cortex (mPFC), 
posterior cingulate cortex (PCC), and right and left lateral parietal lobes (RLP and LLP), 
whereas tSNR inversely correlates with ReHo. Scatter plots are produced from a single 
representative subject, but group r represents the average correlation between SFS/tSNR and 
ReHo between all 36 subjects in three scanners. For each dataset, n = 12 participants took part in 
a five-minute rest scan. Images produced using BrainNet Viewer (https://www.nitrc.org/projects/bnv/).  
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Figure 4.4: SFS distributions across the brain reveal differences in sensitivity between 
acquisition strategies. 

 As before, acquisition A represents data from a 3 Tesla magnet with a 32-channel headcoil (TR 
= 2000ms), acquisition B represents data from a 3 Tesla magnet with a 64-channel headcoil (TR 
= 1080ms), and acquisition C represents data from a 7 Tesla magnet with a 32-channel headcoil 
(TR = 802ms). (A) Full brain SFS maps for each acquisition demonstrate that cortical (especially 
prefrontal and parietal/visual) SFSs are robust across all acquisitions. Acquisition B shows more 
uniform cortical SFS than A or C, while acquisition C shows greater subcortical SFS than A or 

C. (B) SFS values across 
acquisition strategies 
averaged within several 
regions, including the 
DMN, subcortical 
regions, and gray matter. 
In general, acquisition A 
offered the lowest SFS. 
Overall gray matter SFS 
was highest in acquisition 
B, while subcortical SFS 
was highest in acquisition 
C. (C) Acquisition A 
demonstrated the highest 
tSNR for all regions, 
followed by acquisition C 
and acquisition B. These 
values were derived from 
preprocessed and 
smoothed resting-state 
data (n = 12 per group, 5 
minutes of data). *p < 
0.05, **p  < 0.01, ***p < 
0.001 
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Figure 4.5: Pink noise waveform for phantom input. 
 To accurately mimic human resting-state fluctuations in the dynamic phantom, we utilized a 
complex waveform as shown above (dotted line). The 10-minute input function originated from 
our previous neuroimaging data and was subsequently programmed into the phantom. The 
Dynamic Phantom “inputs” (Phantom Interrupt axis) are derived from position tracking during 
rotation. A representative output fMRI signal is superimposed (fMRI signal axis), as acquired 
under Acquisition B:  3T magnet, 64 Channel head-coil, at TR = 1080 ms (see Table 1). This 
waveform was used for all nine phantom fMRI scans described here. 
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Scan	  
Number	  

Main	  Field	   Head	   Coil	  
Channels	  

TR	  (ms)	   TE	   Resolution	   Slices	  

1*	   3	   32	   2000	   30	   2x2x2	   69	  

2	   3	   32	   1080	   30	   2x2x2	   60	  

3	   3	   32	   802	   30	   2x2x2	   55	  

4	   3	   64	   2000	   30	   2x2x2	   62	  

5*	   3	   64	   1080	   30	   2x2x2	   68	  

6	   3	   64	   824	   30	   2x2x2	   65	  

7	   7	   32	   2000	   20	   2x2x1.5	   86	  

8	   7	   32	   1010	   20	   2x2x1.5	   84	  

9*	   7	   32	   802	   20	   2x2x1.5	   85	  

 

Table 4.1: Scan parameters for the nine dynamic phantom scans.  
We tested three scanners at three TRs with the dynamic phantom. *Highlighted rows indicate 
scans for which we collected corresponding human data, where scan 1 corresponds to acquisition 
A, scan 5 corresponds to acquisition B, and scan 9 corresponds to acquisition C. 
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       TR 3T 32Ch 3T 64Ch 7T 32Ch 

 2000 0.525 0.539 0.439 

SFS 1080 0.643 0.568 0.566 

 802 0.442 0.512 0.837 

     
 2000 −0.629 −0.611 −0.238* 

tSNR 1080 −0.776 −0.823 −0.583 

 802 −0.501 −0.450 −0.638 

 

Table 4.2: SFS predicts fidelity.  
SFS positively predicted input-output fidelity in all nine dynamic phantom scans, whereas tSNR 
inversely correlated with fidelity. All p’s < 0.03. * n.s. 
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