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Abstract of the Thesis 

MELD application on refining DOCK results  

by 

Cong Liu 

Master of Science 

in 

Chemistry 

Stony Brook University 

2016 

 In order to bridge the computational gap between DOCK and MD-based methods, a pipeline 

was designed to combine external information derived from DOCK with replica exchange 

molecular dynamics using MELD, an algorithm recently developed by our lab.  Our goal was to 

predict the lowest free energy binding pose within the DOCK ensemble, therefore enabling us to 

refine DOCK results in cases where the correct structure is incorrectly scored. Our method was 

tested on 8 such ‘scoring failures’ found in the DOCK database SB2012.  Three protocols of 

extracting structural information from DOCK ensembles were designed and tested. Crystal-like 

poses were correctly identified from the DOCK ensemble using all three protocols.  In particular, 

the prediction within 3Å of the crystal pose using information derived from “Automatically 

cluster and choose based on KGS penalty function” protocol demonstrated the ability of this 

pipeline to refine DOCK results.  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MELD application on refining DOCK results

1.Introduction 

The methodology of Computer-aided drug design has been widely used in all stages of the ‘hit 
to lead’ optimization protocol of the modern drug discovery industry[1]. During the ‘hit’ process, 
the primary goal is to quickly screen millions of molecules and find the most promising ones. 
Compromising some accuracy for speed is acceptable. However, for the lead optimization 
process, accurately predicting the binding free energy, therefore distinguishing the ‘best’ ligand 
from the ‘better’ ones is the main goal[2]. Based on different needs, various methods have been 
used in this field and they could be roughly separated into two groups: the structure-based 
DOCK method and more computationally expensive MD-based method[3] which sample the free 
energy landscape. Here we bridge these two approaches using MELD[4,5] a physics-based, 
enhanced sampling technique that can utilize information provided by approaches such as DOCK 
to rigorously sample ligand binding poses and find the most stable structure. 

The DOCK method, which was first implemented based on shape complimentary and later 
included more sophisticated force field scoring functions and sampling strategies, is noted for its 
speed and reasonable accuracy[6]. It enables the user to quickly evaluate the fitness of millions of 
molecules to a known protein structure and exhibits a quite high success rate to certain protein 
families[7]. DOCK uses the genetic algorithm quickly sample ligand conformation space and a 
scoring function to rank all possible conformations based on shape and energetic compatibility[6]. 
It has achieved a remarkable success in drug discovery. The discovery of DNA gyros inhibitors is 
a well-known case[8].  

As implemented, DOCK has limitations. In most cases, the DOCK method uses a rigid protein 
structure. This might cause insufficient sampling of the protein conformational space during the 
binding process[3]. Moreover, a rigid protein binding cavity may also cause a insufficient 
sampling of ligand conformation space. To address this, various methods had been implemented, 
including rotamer libraries, soft docking and use of multiple receptor conformation of the 
binding pocket[3]. However, these simple methods still have difficulty handling the protein 
backbone level rearrangement[9]. Another limitation of DOCK is incapable of truly evaluating 
binding affinities. Due the intrinsic implementation of DOCK algorithm, the entropy effect is not 
included in the binding process.  

These kind of limitations of DOCK might contribute to failures in DOCK calculations. 
Recently a test of DOCK was carried by Allen, et al[10]. They test the pose reproducibility of 
DOCK with respect to a DOCK validate dataset SB2012 which consists of 1042 systems . It was 
found that in 73.3%(765/1043) of the cases DOCK was to be correctly predict the binding poses. 
However, for the other 26.9% failure cases, 66%(183/278) of the case was due to a scoring 
failure, that is the DOCK program could successfully sample the crystal structure but the scoring 
function didn’t correct rank it on the top[6]. They also argued that the lacking of an entropic term 
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in the scoring function or limited protein flexibility in the DOCK process might contribute to 
scoring failures.  

Molecular dynamics(MD) can be used to refine docking results, especially in the case of  
scoring failures. The underlying assumption is that the correct, experimentally observable 
docking pose is a minimum on the free energy landscape and therefore will be frequently 
sampled by the MD simulation[3]. A bad docking pose is less stable minimum and therefore the 
simulation would sample around it infrequently[3]. Moreover, unlike DOCK, the MD simulation 
could capture the so-called “induced-fit effect” where the binding cavity of the protein 
rearranged to establish more specific and stronger interaction with ligand molecule. Also, MD 
can better capture solvent effect.  

However MD also has limitations. Due to the rugged nature of the free energy landscape[11], 
the system might be trapped in a local minimum region and unable to get out and sample other 
regions. Although advanced computation tools like T-REMD[3,12,13,14] were invented to address 
this problems, the efficiency still wasn’t enough to allow fast sampling in the binding process. 
Problems like repeated sampling at certain region and longer equilibration time[11] hinder its 
application in the lead process of drug discovery.  

MELD was introduced by MacCallum,Perez, and Dill. to address this sampling efficiency 
problem by utilizing sparse, ambiguous information[4]. In our implementation of MELD, the 
information constraints which derived from DOCK ensembles were combined with T-REMD 
simulation to facilitate the sampling of ligand binding poses. Information uncertainties were 
handled by group and collection strategies to make sure that the sampling results were consistent 
with those from sampling the unbiased free energy landscape. MELD can shorten the sampling 
time without losing the physical reality of the system as described by standard force fields.  

In this project, we designed a pipeline to refine DOCK results using the physics-based MD 
simulation method MELD. The structural information of DOCK ensemble was converted to 
MELD constraints through three successful constraint generating protocols. Then those 
constraints were used in MELD. After applying this pipeline to several protein systems, we 
found eight systems where DOCK experienced a scoring failure and could predict some of these 
complex systems’ crystal conformation within 3Å. The high level of accuracy obtained in this 
study demonstrated the power of MELD and potential application to structure-based drug design. 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2.DOCK 

DOCK has became a powerful tools in the structure-based “hit to lead” drug design 
process[7,10]. It relies on the generic algorithm to sample ligand conformation space and generate 
DOCK ensemble structure[1]. Then scoring functions are used to rank poses in the DOCK 
ensemble based on their shape and energetic compatibility with the receptor proteins. This kind 
of process can be quite fast and efficient in generating preliminary hit structure and has achieved 
lots of success in the past. Recent studies by He et al. [14]and Khare et al. [15] were two of these 
examples. But the limitations of it, including lack of protein flexibility and entropic effect, also 
cause failure cases.     

MD based methods were powerful tools to refine DOCK failure cases[16]. The protein 
flexibility and entropic effect could be captured by MD simulation. 

2.1. DOCK Database 

The DOCK database SB2012, which were constructed by Allen et al[10], consisted of 1048 
ligand-receptor complex systems was the ideal DOCK database to search for refinement targets. 
The SB 2012 consisted of 25 protein families and various ligand types with different amount of 
rotation bonds.  SB2012 was available on Rizzo’s lab webpage and free to download.  

2.2. Refinement Target Systems. 

DOCK scoring failures are the refinement targets. The DOCK outcomes could be classified 
into three groups: success, scoring failure and sampling failure[7]. By definition, the DOCK 
scoring failure means that the crystal conformation is successfully sampled by DOCK but the 
scoring functions don’t rank it at the top. Sampling failure means that the crystal conformation 
aren’t sampled by DOCK.  

Figure 1. DOCK outcomes vs RMSD cutoff distance.  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In order to define whether a pose in DOCK ensemble is accounted as crystal pose, a RMSD 
cutoff distance is chose. Based on how big this RMSD cutoff, the DOCK outcomes could varies. 
Figure 1. shows that the composition of DOCK outcomes varies depends on the cutoff RMSD 
distance. In practice, balancing the DOCK success rate and the accuracy of DOCK ensemble 
poses, 2Å RMSD cutoff distance was used to define whether a DOCK pose is accounted as 
crystal pose. 

Recently pose reproducible test by Allen[10] shown that the scoring failure consisted the main 
part of DOCK failure cases. 66.7% of all failure cases were due to scoring failure. Therefore, 
DOCK scoring failure became our refinement targets.  

Based on the computing power of our refinement tools and the complexity of DOCK scoring 
failure systems, we decided to focus on the DOCK scoring failure cases with receptor protein 
length shorter than 250 amino acid and single ligand systems.  

After searching the DOCK database SB2012 based on these criterions, we found out twenty 
systems that meet our request. These systems are listed below in Table I  

Table I: Refinement Target systems:  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PDBID Protein Length Charge Protein Type
1SV9 121 -2 Phospholipase A2 
2QVD 121 -1 Lysozyme
1Z6S 124 -2 Ribonuclease pancreatic 
1BB7 129 0 Lysozyme
1HEW 129 0 Lysozyme
1LMO 129 0 Lysozyme
1LZB 129 0 Lysozyme
1LZC 129 0 Lysozyme
1LZE 129 0 Lysozyme
1BB5 130 0 Lysozyme
1TOW 131 -1 Fatty acid-binding protein
9HVP 198 0 HIV-I protease
1JLD 198 0 HIV-I protease
1HPX 198 0 HIV-I protease
1HXB 198 1 HIV-I protease
1UY8 208 0 HEAT SHOCK PROTEIN
1UYC 209 0 HEAT SHOCK PROTEIN
1UYH 209 0 HEAT SHOCK PROTEIN
1UYK 209 0 HEAT SHOCK PROTEIN
1UYF 209 0 HEAT SHOCK PROTEIN



3.MELD 

MELD is a novel, physics-based computational tools designed by Maccallum, Perez, Dill[4,5] 

to utilize information constraints to accelerate temperature replica exchange(T-REMD) 
simulation. 

MELD consists of two parts: T-REMD simulation and information constraints. Information 
constraints defines specific regions on free energy landscape where the most likely the global 
minimum would be found. The T-REMD simulation provides a efficient sampling tools to 
sample around those regions and find out the most global likely conformation.Moreover, MELD 
also contains fancy strategies: group and collection to handle the uncertainty of the information 
constraints to make sure the sampling results are consistent with force field.  

In this section, we will introduce these three main feature of MELD: 
• Information constraints; 
• T-REMD; 
• Group and collection; 

3.1. Information constraints: 

There are information constraints in MELD: distance constraints and angular constraints. The 
distance constraints were assigned to among atoms to restraint the distance among atoms. The 
angular constraints were used to restraint torsion angle in the protein structure. Here we use 
constraints to guide the ligand to binding cavity on the protein surface, therefore the distance 
constraints are the most useful.  

The distance constraints has the so called “Flat-bottom shape”. 

Figure 2. Flat bottom constraints  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As the Figure 2. showed here, the distance constraints in MELD has the “flat bottom shape”. 
• Flat bottom region: Distance  <=  cut_off_1, Econstraints =  0; 
• Quartic region: cut_off_1 < Distance <= cut_off_2, Econstraints  >  0; 
• Linear region: Distance > cut_off_2, Econstraints  >  0; 

The information constraints accelerate the T-REMD simulation. When ligand samples at 
region which doesn’t consistent with constraints(Quartic region and Linear region), the 
information constraints are activated and external forces are applied to constrained atom pairs. 
These external forces drive the ligand towards the region which consistent with the information 
constraints(Flat bottom region). Therefore it accelerates the sampling in the T-REMD simulation.   

Moreover, MELD preserves the relative binding affinity.  

Figure 3. MELD preserves the relative binding affinity.  
The Figure 3. shows how MELD information constraints help preserve the relative free 

energy. The left graph represents the original free energy landscape which described by force 
field and solvent model. Two minimum a and b represents the region which consistent with 
MELD information constraints. The original relative free energy difference is represented by 
ΔGBA. When ligand sample around region a and b which are consistent with information 
constraints in MELD, no MELD constraint is activated due to the flat bottom shape of constraint 
energy function. Therefore no MELD energy is introduced into simulation system and the shape 
of the free energy landscape is unaltered around those two region. Thus the relative free energy 
preserves.  

In this project, we used a distance constraints function with details listed below[4].  
 Table II: Information constraint function details:  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cut_off_1(nm) 0.7

cut_off_2(nm) 0.9

Force Constant(KJ*mol-1*nm-2) 250



Moreover, in order to cooperate with T-REMD simulation to maximize the sampling 
efficiency around the binding free energy landscape, the constraint force constant is scaled along 
temperature replica ladder. Each replica in T-REMD simulation is assigned a value alpha to 
determine the exact force constant on that replica. The exact math formula is given below[4]: 

      

(Eq.1) 

αmin αmax are the starting replica and ending replica of constraint scaling. factor controls the 
steepness of constraints scaling changing.  

For replicas which had alpha value lower than the setting alpha mim, no scaling was applied to 
the constraints’ force constant. 

For replicas within the range of alpha in and alpha max, the constraints’ force constant was 
generally weaken to relax the interaction between ligand and receptor. This process coupled with 
temperature increasing, therefore the ligand had probability to escape trap and sample wider 
region.  

At the top several replicas, which the alpha greater than the setting alpha max, the constraints’ 
force constant equaled to zero and no external force applied between ligand and receptor. The 
ligand had the full ability to “walk around” the free energy landscape and sampled around the 
widest region. 

In this project, the details about the force constant scaling parameters are listed below: 
Table III: Force constant scaling parameters 

3.2. T-REMD  

In order to avoid kinetic traps, T-REMD simulation is introduced. The modeling system has 
“multiple copies”(replicas) which running at different temperatures. At the top replica, where the 
system is running at the highest temperature. It has the largest probability to escape kinetic traps. 
When the temperature cools down, the system could sample more diverse local minimums[14]. 

 In order to strictly determine the temperature of each replica, a replica index alpha was given.  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The temperature(T) and replica index(α) was linked through Eq.13 [4]: 

   (Eq.2) 

Tmin,Tmax were the corresponding maximum T and minimum T.  
For this project, the temperature scaling parameters are listed in  Table III: 

Table IV: Temperature scaling parameters 

3.3. Group and Collection 

The group and collection were designed in a hierarchical way to enable MELD to handle the 
uncertainty of constraints by using the enforced factor.  

“Group aggregated multiple constraints in collective, multi-body constraints such that only a 
specific fraction of constraints are activated.”[4] 

       (Eq.3) 

where the component constraints are sorted by energy[4]: 

    (Eq.4) 

The nactive,i was the enforced factor which represented how many constraints we could trust.  
The collection was the upper layer of group providing additional sorting and activation to 

handle ambiguity of grouped  constraints: 
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      (Eq.5) 

where different groups in collection are sorted by energy[4]: 

    (Eq.6) 

In this project, we used different group and collection strategies to handle the uncertainty. 
Details will be listed in the next section “Constraint generating protocols”. 

4.Testing the stability of crystal pose in force field. 

The motivation of stability test came from the studies[3,17] which had shown that force field 
and solvent model might prefer certain conformations. If that were the case, we must limit our 
refinement to systems which were consistent with the current best force field and solvent model. 
Based on this understanding, we designed a standard MD simulation protocol to test whether the 
crystal structures of our target systems were stable. We the current state-of-art protein force field 
ff12SB[18] and implicit solvent model gbNeck2[19]. The technical details of stability test were 
separated into four parts: 

• Prepare ligand library file; 
• Energy minimization of complex structure; 
• MD simulation; 
• Results; 
• Discussion; 

4.1.Prepare ligand library file 

First, the DOCK pose which had the lowest root-mean-square deviation(rmsd) to crystal pose 
was chose as the crystal conformation. Visual checking was performed to make sure that this 
crystal conformation was consisted with its chemical structure.  

Second, the charges of ligand atoms were calculated using AM1-BCC[20] charge model in 
Chimera[21]’s built-in function “Add Charge”. Then a mol2 file of the charged ligand was saved 
relative to protein structure using Amber/GAFF atom types.  

Third, this ligand mol2 file was used as template to build a ligand library file using Amber 
package tLeap[22,23]. The details are listed in Amber’s “Antechamber Tutorial”[24]. Once the 
library was created, the topology(.top) and coordinate file(.inpcrd) of the complex systems were 
then generated using this ligand library file and ff12SB protein force field.  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4.2.Energy minimization of complex structure 

The purpose of energy minimization was to relax the system and avoid potential atom clashes 
The topology and coordinate file were used as input file for the energy minimization process. 

The initial crystal structure was energy minimized using Amber’s Pemed function[22]. The key  
parameters were listed in Table V: 

Table V: Energy minimization parameters 

After energy minimization, a .rst file which stores the minimized structure was saved. Then a 
file format converting from rst to pdb was implemented using Amber package program ambpdb. 
This pdb file was used as input file to run the MD simulation. 
4.3.MD simulation  

The purpose of the MD simulation at this stage was to find out systems which were consistent 
with the force field and solvent model and therefore could be stabilized at their crystal 
conformation.  

Through the previous two steps, we got the ligand library file and the energy minimized 
crystal structure file. Now we could run MD simulation to check which systems were stable. The 
simulation details are listed below:  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Max number of 
iteration(maxcyc)

500

Gradient Descend 
steps(ncyc)

150

Implicit Solvent 
Model(igb)

GB-Neck2[19]

Cut-off distance for 
electrostatic 

interaction(cut)
999999

Force Field ff12SB[18]



Table VI: Stability Test Run Parameters: 

Note that instead of running a normal MD simulation at 300K, we used a trick here using 2 
replicas in MELD to run the stability test. Since the MELD requires minimum two replicas, 
therefore we set up a temperature scaling with Tmin = 300k, Tmax = 300k, alphamin = 0.0, alphamax 
= 0.7 to make sure that the two replicas were running at the same temperature.  

In order to keep consistent with the normal MD simulation with only one replica, the 
“extract_trajectory follow_dcd —replica 0 ” command was used to follow one structure.  

Also a harmonic cartesian constraints was applied to protein carbon alpha atoms with a 
displacement 0.35nm and force constant 250 KJ*mol-1*nm-2. 

4.4. Results: 

As we mentioned before, the purpose of stability test was to find out complex systems which 
their crystal conformations suffered least from the imperfectness of force field and solvent model 
during MD simulation and therefore could be stabilized at conformations that were similar to 
their crystal conformation. 

Two typical results(1HEW and 1Z6S) are listed below. For simulation of all other systems, 
please refer to Appendix 8.1 “Testing the stability of crystal pose in force field”.  

Figure. 4 Stability Test results of 1Z6S, simulation parameters are listed in Table VI, the left is 
the probability density plot of the L_rmsd distribution, the right one is ligand rmsd plot.  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Protein Force Field FF12SB[18] Software MELD[4,5]

Ligand Force Field GAFF[25] T_scaling 0.0,0.7,300.300

Charge Model AM1-BCC[20] Number of 
Replicas

2

Temperature 300K Cartesian 
Constraints

0.35 250

Solvent Model GB-Neck2[19]



 

Figure 5. Stability Test results of 1HEW, simulation parameters are listed in Table VI, the left is 
the probability density plot of the L_rmsd distribution, the right one is ligand rmsd plot. 

As we could see that, for systems like 1HEW, the ligand could stable at conformation closer 
than 4Å to crystal pose. These kind of systems are defined as stable system and our refinement 
will focus on those systems.  

For systems like 1Z6S, the ligand stable at confirmation at about 7 Å away from the crystal 
pose. Virtually checking found out that the ligand was completely misplaced at the binding 
cavity. For those systems which couldn’t stable at crystal conformation, we defined them as 
unstable systems. We didn’t include them in our refinement targets.  

After running the stability test and calculate the ligand RMSD with respect to crystal pose, we 
found out 8 stable systems which their ligand could stable at conformation closer than 4Å to 
crystal pose. All those systems were listed below: 

Table VII: Stable systems  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PDB Code Protein

1LMO Lysozyme

1LZB Lysozyme

1HEW Lysozyme

1TOW Fatty acid-binding protein

1BB7 Lysozyme

1BB5 Lysozyme

1LZC Lysozyme

1LZE Lysozyme



4.5.Discussion 

As we mentioned in previous section, the results was divided into two groups: Stable systems 
and unstable systems.  

• Unstable Systems: 
Those systems were 1HPX(Fig.33), 1HXB(Fig.34), 1UY8(Fig.35), 1UYC(Fig.36), 

1UYF(Fig.37), 1UYH(Fig.38), 1Z6S(Fig.4), 2QVD(Fig.39), 1SV9(Fig.40), 1UYK(Fig.41). 
All members of this group  except 1UYC, 1UY8, 1UYK, 1UYH used ff12SB protein force 

field and GB-neck2 implicit solvent model. 1UYC, 1UY8, 1UYK, 1UYH used ff14SB protein 
force field[26] and GB-neck2 implicit solvent model[19]. The reason for using different protein 
force field was due to the poor performance of 1UYF under ff12SB and GB-neck2 implicit 
solvent model. All  systems were using standard cartesian constraints method.  

For those failed systems, 2 out of 10, 1Z6S and 1SV9, were highly charged. 2QVD and 1HXB 
were slightly negatively/positively charged.  6 out of 10, 1HPX, 1UY8, 1UYC, 1UYH, 1UYK, 
1UYF, were neutral.  

The diverse character of those failed system, which range from system with highly charged 
ligand to system with neutral ligand or protein family from lysozyme to HIV-I protease to Heat 
shock proteins, indicated that these failure might be cause by different reasons.  

Reason 1: Overestimate charged ligand interaction with protein.   
Rocklin et al[27] analyzed the binding free energy of charged ligand to a bioengineered protein 

and found that scaling net charge of ligand and a key residue aspartate in protein to smaller, non-
integral values helps decreasing the root-mean-square error for binding affinity prediction. They 
argued that “current force field have been parameterized to match pure liquid properties and gas-
phase electrostatic potentials”. This might cause the overestimation the charged ligand 
interaction with protein due to the lack of polarization effect when ligand binds to receptor. 
Virtual checking the trajectories of 1Z6S and 1SV9 turned out that the highly negatively charged 
phosphate group of 1Z6S and carboxyl group of 1SV9 were misplaced to other positively charge 
residues during the simulation.   

However, the unique shape and chemical environment of the 1SV9’s binding cavity may also 
contribute to the its unstable condition. The Leu2 and Ile19 formed a hydrophobic channel which 
accommodated the aromatic rings of ligand diclofenac in 1SV9. The clash of the hydrophobic 
channel, which caused by the twisting of the sidechain of Leu2 and Ile19 toward inner side of 
protein, closed the entrance to the binding cavity and may caused the improper placement of 
ligand around binding cavity.  

Reason 2: Poor reproducible the ‘π-π stacking’ interaction due to lack of polarization effect.  
As for 1Z6S, crystallographic study[28] showed that there is a π-π stacking interaction between 

the five member ring of adenine in the adenine monophate(AMP) and His 119 of ribonuclease 
pancreatic A(RNase A) in the crystal structure. Homology study demonstrated that His 119 was 
preserved among other complexes in the same protein family. This meant that “His 119” played a 
key role in ligand binding process. However, this specific interaction didn’t preserve during the 
stability test.  
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Several studies suggested that lack of polarization effect in the force field might contribute to 
it. Hunter and Sanders’ study[29] suggested a polarized pi system theory which provide 
qualitatively understanding and predicting aromatic-aromatic interactions. They argued that the 
dislocation of electrons in the aromatic ring forms a quadrupole moment with two partial 
negatively charge ‘electron cloud’ above/below the aromatic ring and two partial positively 
charge around periphery. Then based on this theory, Martinez, C. R.[30] argued that the increased 
electronic polarizability in aromatic pi system was most often thought to be responsible for ‘π-π 
interaction’. Due to the intrinsic limitation of fixed charged model and the training method of 
current force field, either the ligand or the protein is fully polarizable. The lack of polarizability 
of protein or ligand atoms in the simulation might cause the misplacement of AMP in 1Z6S and 
the deviation of AMP from its crystal pose during the simulation.  

Reason 3:  Underestimate the hydrogen bond interaction.  
Both the charge ligand in 1Z6S[28], 1SV9[31], 2QVD[32] and the neutral ligand in 1HXB[33],

1UY8[34],1UYC[34],1UYH[34],1UYK[34] formed directly hydrogen bonds or water-mediated 
hydrogen bonds with protein receptor. For example, in 1Z6S complexes, the charged phosphate 
group in AMP interacted with the Gln 11 and His 12 through hydrogen bonds. In 1SV9 
systems[31], the highly charged carboxyl group stabilized at crystal conformation through three 
hydrogen bonds: one directly with His48 N and the other two through water48 O and water54 O. 
Moreover in 2QVD[31], One of the two etherial oxygen atoms of berberine form ed hydrogen 
bond with the hydrogen attached to the main chain nitrogen of Gly 30, the same oxygen atom 
also made a water mediated hydrogen bond with His 48. Those hydrogen bonds played an 
important role in ligand binding process.  

While Paton et al[34] study demonstrated that the AMBER force field , which doesn’t explicitly 
include the hydrogen bond interaction, underestimated the stabilization of hydrogen bonded 
complexes. This kind of effect we believed could explain most of the failure in the stability test. 
Since all those failure systems were include either directly hydrogen bond or water-mediated 
hydrogen bonds, our research group was currently working on implementation of TIP3P explicit 
solvent model into MELD. we believed that some of those unstable systems, which caused by 
excluding hydrogen bond interactions, could also be analyzed by MELD in the future .  

Reason 4: Steric effect of crystal water. 
As for 2QVD, we noticed that the berberine inserted deeper into the binding cavity and 

occupied the place where the crystal water located. For 1HXB,1UY8, 1UYC, 1UYH, 1UYK, the 
binding cavity was also filled with crystal water in the crystal structure. We thought that treating 
water implicitly through GB-neck2 implicit model provide more space for ligand wiggling 
around in the binding cavity in our simulation. Therefore we believed that introducing the 
explicit solvent model might help those complexes stabilize at crystal structure.  

• Stable Systems: 
This Group was consisted of complexes which their ligands could be stabilized at 

conformations no more than 4.0Å away from the crystal pose most of the time in the 
trajectory.These systems were 1HEW(Fig.6), 1BB5(Fig.24), 1BB7(Fig.25), 1TOW(Fig.26), 
1LMO(Fig.27), 1LZB(Fig.28), 1LZC(Fig.29), 1LZE(Fig.30), 1JLD(Fig.31),  9HVP(Fig.32).    

All members used ff12SB protein force field and GB-neck2 implicit solvent model during 
stability test. All members except 9HVP were applied standard cartesian constraint to alpha 

�14



carbon atoms of the protein backbone. 9HVP used cartesian constraint to all heavy 
atoms(N,CA,C,O) of the backbone. The reason for using new cartesian constraint to 9HVP was 
that this system couldn’t stabilize at crystal-like structure under standard cartesian constraint 
method. 

7 out of 10 complexes in stable systems had protein coming from the lysozyme family. 1 
complex was fatty acid-binding protein and 2 complexes were HIV-I protease. The ligand charge 
condition were almost the same. The Lysozyme family protein and HIV-I protease protein had 
neutral ligand with zero net charge. While the fatty acid binding protein binds with negatively 
charged carbazole butanoic acid(-1).  

However, not all stable systems were suitable for validate our sampling tools MELD. For 
9HVP and 1JLD, both computational and experimental studies had shown that the HIV-protease 
underwent a large conformation change during the binding process. While our currently protocol 
for replica exchange simulation required cartesian constraint on the carbon alpha of the protein 
backbone atoms. Moreover the 9HVP system need additional protein backbone cartesian 
constraints to keep it stable during the stability test. Both of them introduced more difficulty to 
sample the crystal conformation. It required novel constraints strategy to balance the rigidity 
request of HIV protease for stabilizing the ligand at the final crystal pose and the flexible 
demand of HIV-I protease during the binding process. Therefore it was reasonable to exclude 
9HVP and 1JLD  and focus on validating MELD on the remaining complex systems in the stable 
group.  

In summary, the polarization effect, hydrogen bond and crystal water contributed a lot to the 
instability of complex with either highly charged or neutral ligand. The overestimated 
electrostatic interaction which caused by the lack of polarizability of protein and ligand atoms 
drove the phosphate group of AMP to the place where it shouldn’t be. The lack of polarizability 
of protein and ligand atoms might cause the reproducible failure of the π-π stacking structure in 
1SV9 complex. The underestimated hydrogen bond interaction and the lack of steric effect of the 
crystal water might be the common problems for all failure case of stability test. Therefore the 
force field might need to introduce new parameters to account the polarizability of atoms or new 
training environment to mimic the induced polarize of atoms which involved in the binding 
process.  However, no force field or solvent model was perfect. We couldn’t wait for the coming 
of the perfect force field to validate our sampling method. Therefore in order to minimize the 
influence from the imperfectness of force field and solvent model, we limited the validation of 
our sampling method to those systems which could be stabilized under the current best protein 
force field ff12SB and solvent model Gb-neck2.  

The 3D structure of the stable systems which we used for MELD simulation were generated 
using Chimera[20](Appendix 8.2 “3D structure of stable system” Fig.42).  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5.Constraint generating protocols 

In the previous section, we find target systems based on computational power of our available 
resources, complexity of receptor-ligand system. Then we designed a so-called “stability test” to 
find our the systems which suffered the least from the imperfectness of force field and implicit 
solvent model. Therefore these systems’ crystal structure could be stabilized at their crystal 
conformation.  

In this section, we aim to design method which could cluster DOCK poses and properly 
translate their structural information into MELD constraints.  

In practice,this designing problem could be split into two parts : 
• How to translate structural information into MELD constraints? 
• How to cluster DOCK poses? 

Three protocols were designed and tested to solve these two problems. 
5.1.Manually choose DOCK poses based on ligand RMSD 

• Motivation: 

In order to isolate the problem of clustering DOCK poses and focus on solving the problem of 
how to translating structural information of DOCK poses into MELD constraints, the “Manually 
choose DOCK poses based on ligand rmsd” method was first designed.  

• Technical Details: 

We used the poses’ RMSD with respect to crystal structure as the principle to select four poses 
in such way that their ligand RMSD varies from 2Å to 8Å.  

Then a contact cut-off 3.5Å was chose to search for all contact heavy atoms between protein 
and ligand. The atom indices of contact atom pairs were recoded. Duplicated pairs were removed 
and the remaining ones were stored into a constraint atom pair list.  

A harmonic distance MELD constraint was applied to all atom pairs in the constraint atom pair 
list. Then a MELD constraint group was created to store all those constraints. The constraint 
details and pose summary are listed in Table VIII and Table IX. 

Table VIII: Constraint manage strategy 
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Table IX: Pose summary 

• Pros and Cons: 

Pros: Intuitive and simple; 
Cons: Need prior knowledge of poses’ rmsd with respect to crystal structure which means that 

we need to have crystal structure.  

• Results: 

The MELD simulation results of “Manually choose DOCK poses based on ligand RMSD” are 
listed below.  

For each complex systems, six graphs were plotted. Five of them were Population of ligand 
RMSD(with respect to poses which used for generating constraints) at the lowest temperature 
replica(300K). The bottom right graph shown the density plot of each population plot. Pose 
details about those poses are listed in Table IX.  
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d

Pose1 pose2 pose3 pose4 Total 
Steps

zero 
constrain 

energy 
frame

1BB7 20% 4.7Å (#100) 6.6Å (#87) 7.2Å (#46) 8.0Å (#104) 3150 82%

1HEW 30% 3.1Å (#77) 6.1Å (#75) 8.0Å (#55) 4.4Å (#132) 2898 99%

1LMO 20% 8.6Å (#2) 8.3Å (#3) 8.6Å (#4) 7.2Å (#5) 8589 79%

1LZB 20% 2.3Å (#42) 3.1Å (#28) 4.1Å (#57) 4.8Å (#33) 8998 54%

1LZC 20% 2.7Å (#18) 5.7Å (#75) 6.0Å (#103) 8.3Å (#105) 2199 86%

1LZE 20% 5.9Å (#12) 4.1Å (#13) 5.4Å (#59) 7.0Å (#114) 11498 72%

1BB5 20% 6.1Å (#76) 2.7Å (#44) 6.1Å (#20) 7.1Å (#73) 3534 93%

1TOW 30% 3.8Å (#5) 4.5 Å (#22) 5.1Å (#8) 6.1Å (#25) 4398 100%



 

Figure 6. MELD simulation results of 1HEW, five population graphs of ligand RMSD with 
respect to corresponding poses and one density plot of five population graph are given.  
  

Figure 7. MELD simulation results of 1BB5, five population graphs of ligand RMSD with 
respect to corresponding poses and one density plot of five population graph are given.  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Figure 8. MELD simulation results of 1BB7, five population graphs of ligand RMSD with 
respect to corresponding poses and one density plot of five population graph are given. 

Figure 9. MELD simulation results of 1LMO, five population graphs of ligand RMSD with 
respect to corresponding poses and one density plot of five population graph are given.  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Figure 10. MELD simulation results of 1LZB, five population graphs of ligand RMSD with 
respect to corresponding poses and one density plot of five population graph are given. 

Figure 11. MELD simulation results of 1LZC, five population graphs of ligand RMSD with 
respect to corresponding poses and one density plot of five population graph are given.  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Constraint collection 1



Figure 12. MELD simulation results of 1LZE, five population graphs of ligand RMSD with 
respect to corresponding poses and one density plot of five population graph are given. 

Figure 13. MELD simulation results of 1TOW, five population graphs of ligand RMSD with 
respect to corresponding poses and one density plot of five population graph are given.  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• Discussion: 

I. MELD could find crystal pose on the ligand-protein interaction landscape 
As we could see from Fig.6 to Fig.13, there are lots of frames which the ligand has a RMSD 

value closer than 3Å to crystal pose.  
If we chose 3Å as the cut-off distance to distinguish whether the ligand was sampling at 

certain pose or not, we could see that the ligand in all system sampled around the crystal poses.  
II. MELD could distinguish crystal pose from other DOCK poses.     
Using the same criterion of defining whether ligand samples at certain pose or not, we decided 

to compare the amount of frames which sampled at DOCK poses with those sampled at crystal 
pose. Qualitatively checking the bars which represented the frames had ligand RMSD closer than 
3Å to either DOCK poses or crystal, we could find out that the MELD sampled more often at 
crystal pose than other DOCK poses. The only exception was 1TOW, 1BB5, 1LZB. 

Pose1 in 1LZB, Pose2 in 1BB5, and all four DOCK poses in 1TOW has almost the same 
sampling frequency. It means that the MELD simulation couldn’t distinguish those poses from 
the crystal pose.   

The possible reason for MELD couldn’t distinguish these pose might be these pose are 
thermodynamically equivalent to their corresponding crystal pose. Evidence comes from the 
stability test results of these system. The thermo-fluctuation region of crystal pose in 1LZB and 
1BB5 is 1~4Å in terms of ligand RMSD to their starting conformation. The ligand RMSD of 
pose1(2.3Å, TableIX) in 1LZB and pose2(2.7Å, TableIX) in 1BB5 are within this fluctuation 
region. For 1TOW, all 4 poses are within crystal pose’s thermo-fluctuation region(2~6Å). It 
means that these poses are equivalent to their corresponding crystal poses. Therefore, it won’t be 
surprise to find out that the MELD simulation couldn’t distinguish them.   

III. No blindly Prediction 
This manually choose four DOCK poses method depends on the prior knowledge about the 

ligand RMSD of each DOCK poses verse crystal pose.  
Since we wouldn’t like to be able to blindly select DOCK poses, we decided to design another 

method which could automatically algorithm to cluster the DOCK output and generate poses for 
MELD.  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. 
5.2. Automatically cluster and manually choose DOCK poses based on 

ligand RMSD 

• Motivation: 

The first method “Manually choose DOCK poses based on ligand RMSD” required prior 
knowledge about the crystal structure. This largely limited its usage in practice.  

In order to be able to blindly cluster the DOCK poses, the “automatically cluster and manually 
choose” method was designed.  

• Technical Details: 

A. Ligand characterization: 

Without using each pose’s relative RMSD to crystal structure, we designed another quantity, 
which combined the center of mass and the moment of inertia, to characterize the difference 
among poses.  

Our idea came from the rigid body orientation in physics. In order to describe the state of a 
rigid body in 3D space, it required six degree of freedom: three cartesian coordinates to describe 
the exact location and three corresponding axis of inertia tensor to describe its orientation.  

 Recalled from basic physics[36] that the moment of inertia determines the corresponding 
torque for a desired angular acceleration about a rotational axis. 

        (Eq.7) 

where τ is the torque, I is the moment of inertia and α is the angular acceleration.  
Thus the corresponding rotational axis could be used to describe the orientation of the rigid 

body.  
In order to keep a mathematical strict and consistent way to generate those rotational axis, we 

decided to use the principal axis of rigid body. 
The principal axis coordinate system was the system such that the product terms of the inertia 

tensor matrix are zero. The existence and the uniqueness of principal axis have been proved.  
 Mathematically, the problem of determining the principal axis and corresponding moment of 

inertia was equivalent to find the eigenvector and eigenvalue of the inertia tensor matrix 
constructed from a arbitrary reference coordinate system[36] 
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  (Eq.8) 

where the Ireference was the inertia tenser matrix in reference coordinate, ωx , ωy, ωz where 
represented the x,y,z directions of the principal coordinates were the eigenvector of Ireference  and 
the coordinating moment of inertia was the eigenvalue.  

In practice, we treated the ligand molecule as rigid body by ignoring all its rotational bonds 
and used a hybrid quantity, which combined the center of mass and principle axis, to characterize 
DOCK poses’ relative difference.   

The exact definition of this hybrid quantity was: 

   
  (Eq.9) 

The first term represents the relative orientation of the ligand which defined by the cosine 
angle between the first principal axis. The reason we chose the first principle axis  was due to the 
shape of the ligand and the binding cavity. The second term represents the relative location of the 
ligand in three dimensional cartesian space which defined by the center of mass distance 
difference between poses. 

 Using this hybrid quantity, we could generate a covariance matrix(M) that quantitatively 
determined the pairwise difference of DOCK poses.  

After generating the covariance matrix(M), we used hierarchical clustering algorithm to 
cluster the DOCK poses.  

B.Hierarchical clustering algorithm  

Previously, we generated the covariance matrix(M) where each element (Mij)represented the 
relative distance between pose i and pose j.  

In this section, the “average” criterion of Hierarchical clustering  method was used to cluster 
DOCK poses. 

In Hierarchical clustering algorithm, the algorithm first calculated and compared the “average 
distance” between all elements of matrix M. The pair which had the shortest distance were 
merged to form new cluster. The definition of average distance was:  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    (Eq.10) 
  

Trs was the sum of all pairwise distances between cluster r and cluster s. Nr and Ns were the 
sizes of the cluster r and s, respectively. 

Then in the following iteration steps, new members merging to the existing cluster or merging 
of two existing clusters were based on the same criterion until all members were merged into one 
big cluster.  

After the clustering process completed, a linkage matrix, which described all the merging 
operation during the clustering process, was returned. Based on empirical data, 8~12 was the  
optimized cluster amount. A pose from each cluster was used to generate MELD constraints. 

The clustering outcomes for each refinement systems are listed below: 
Table X: Clustering outcomes 

C.Translate DOCK poses structural information into MELD constraints 

In previous step, we used hierarchical clustering algorithm to cluster the DOCK poses and a 
empirical cut-off to determine the optimized number of clusters. One pose per cluster was 
selected and the heavy atom contact pairs among those poses were generated using the same 
criterion as the first method. 

A slightly difference criterion, which aimed to further reduce the redundancy of constraints, 
was used to generate the contact atom pairs.  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D(r, s) =
Trs

(Nr ⇤Ns)

Enforced
Constraints 

Number
Cluster 

Numbers Total Steps
zero constrain 

energy 
fraction

1LMO 10% 155 11 2998 89%

1LZB 10% 127 9 2998 95%

1LZC 10% 200 9 2998 98%

1LZE 10% 247 12 3198 75%

1HEW 10% 212 12 2998 99%

1TOW 10% 67 11 2098 98%

1BB5 10% 332 10 3498 99%

1BB7 10% 132 8 2998 95%



We defined the neighbor of a host constraint as the constraints which had at least one atom 
that was covalently bonded to atom in host constraint. We further assumed that due to the   
relative smaller geometric distance between host and neighbor constraints, they were equivalent 
and simultaneously satisfied during the MELD simulation. Thus it was reasonable to delete those 
neighbor constraints from the whole constraint list to reduce the redundancy.  

In practice, this was done in three steps. First, a N*2 python numpy array, called “topology 
array”, which stored all covalently connected atoms’ indices, was generated based on the 
topology of the DOCK pose. Each row of this array represented the covalently connected atom 
pairs’ indices. Second, all host and neighbor constraint pairs from contact map list, which had at 
least two covalently connected atoms, were selected through comparing with the topology array. 
Third, the host constraints, which had the smallest atom indices, were saved and all their 
neighbor were  disregarded. In the end, all those host constraints were assigned MELD 
constraints.  

These constraints were collected into one constraint group and one MELD collection was 
created to store this constraint groups.  

• Pros and Cons: 

Pros: Blindly cluster the DOCK poses without prior knowledge about crystal structure. 
Cons: Since we ignored the internal rotational degree of freedom of the rotational bonds, the 

robustness of this method was poor. Less strict in term of determining optimized cluster amount.  

• Results: 

The MELD simulation results of “Automatically cluster and manually choose DOCK poses” 
method are listed below. For each complex systems, a histogram of ligand RMSD with respect to 
crystal pose was plotted.  

�26



 Figure 14. MELD simulation results of 1HEW with 12 DOCK poses; 

Figure 15. MELD simulation results of 1BB5 with 10 DOCK poses; 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Figure 16. MELD simulation results of 1BB7 with 8 DOCK poses; 

Figure 17. MELD simulation results of 1LMO with 11 DOCK poses  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Figure 18.  MELD simulation results of 1LZB with 9 DOCK poses; 

Figure 19. MELD simulation results of 1LZC with 9 DOCK poses  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Figure 20.  MELD simulation results of 1LZE with 12 DOCK poses 

Figure 21. MELD simulation results of 1TOW with 11 DOCK poses  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• Discussion: 

We could see this time, most simulation still find the crystal poses, but the frequency was 
much less(Fig.14-Fig.21). The possible reasons for this were first the total constraint atom pairs 
were much larger. The ‘good’ information, which is the constraints appears in crystal-like poses, 
were much less. The dilution effect  which caused by introducing more incorrect information into 
MELD constraint group largely increased the sampling uncertainty, therefore the crystal pose 
was no longer appears often in the trajectory. Second we included more DOCK poses. Maybe 
there were some local minimums which were relative more stable. It will require longer 
simulation time to get away from it and sample at crystal pose. Third the method of combing 
center of mass and moment of inertia didn’t work as we expected. Sometime, the method 
couldn’t even cluster all crystal-like poses into one cluster. This means that we couldn’t 
guarantee that we could always include the constraint information from the crystal-like poses 
into our MELD constraints.  

In order to better enrich the crystal-like poses, we tested another constraint method. 

5.3. Automatically cluster and choose DOCK poses based on Kelley-

Gardner-Sutcliffe penalty function 

• Motivation: 

The second method had the problem of poor robustness and lack of strictness in term of 
optimized cluster number determination. Thus we designed and tested a new method which 
could automatically determine the cluster amount and had more robustness. 

• Technical Details: 

A.Ligand characterization 

Instead of introducing much assumption and estimation to describe the ligand orientation, we 
simply used the relative root-mean-square-deviation(rmsd) difference among poses to describe 
their relative difference.  

By definition, the relative rmsd of pose i and j were the rmsd between i and j pose without 
performing any translational and rotational operation.  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         (Eq.11) 

N is the number of atoms involved in rmsd calculation, δi is the corresponding atoms’ distance 
between pose i and pose j.  

Then using the relative RMSD among poses, a covariance matrix(M) which described the 
pairwise difference among top30 poses were generated.  

B.Hierarchical clustering algorithm with Kelley-Gardner-Sutcliffe 

penalty function  

Like in the second method, a same hierarchical clustering  algorithm was used. Then a linkage 
matrix was returned.  

However, instead of empirical determining the optimized cluster number, a strict Kelley-
Gardner-Sutcliffe(KGS) penalty function[36,37] was used. This idea came from the observation 
that in general, the more new members included in a cluster, the lower the homology it was. 
While less complexity of the whole dataset was due to the reducing of cluster numbers in it.  

 

        
(Eq.12) 
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Eq12.1 described the “spread” or homology  within cluster m. J was the total number of 
elements in cluster m and d(i,k) was the distance between element i and element k in cluster m; 
Eq12.2 described the average “spread” among all clusters in i-th iteration step during the 

clustering process. Ki was the total number of clusters at i-th step.  
Eq12.3 described the normalized “spread” among the whole process of clustering. N is total 

number of steps.  
Eq12.4 was the penalty function which took into account the “spread” of each cluster and the 

complexity of the whole dataset at i-th step . It equals to the average pairwise distance among all 
cluster members.   

In the end, the clusters in the step which had the lowest accumulated cost was determined as 
the best cluster assignment of the original dataset.  

C.Translate DOCK poses’ structural information into MELD constraints 

Once the optimized cluster number was determined, all poses in each cluster were used to 
generate MELD constraints. As for reducing redundancy, please refer to the second 
method:"Automatically cluster and manually choose DOCK poses” 

Once the redundant constraints were removed, all the remaining constraints were assigned 
harmonic distance constraints. All these constraints were partitioned into 5 different constraint 
groups and one collections was created to manage these constraint groups. Each time, one out of 
five constraint groups was selected and the lowest 50% constraints were activated.  

• Pros and Cons: 

Pros: Robustness and including internal rotational degree of freedom of ligand’s rotational 
bonds.  

Cons: Complexity in implementing the KGS penalty score function.  

• Results: 

Table XI: Cluster outcomes  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Cluster Index Cluster Members

Cluster1 6,7,11

Cluster2 4,10,21,29

Cluster3 1,5,9,20,26,27

Cluster4 2,3,8,14,17,19,21,22,24

Cluster5 12,13,16,18,30



 

Figure 22. KGS penalty score plot of system 1BB7.  

Figure 23. MELD simulation results of 1BB7, the left side is the population of ligand RMSD 
with respect to crystal structure, the right side is the density plot of the left side graph.  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• Discussion:  

For the KGS penalty score plot, we could see that at the left most, there is only one cluster for 
the whole dataset. Therefore the homology penalty score is very high which caused the whole 
penalty score also very high. With the cluster forming in the original dataset, the homology 
penalty score decreases while the complexity penalty score which represents by nclus increases. 
However, Since the driving force at this stage is the decreasing of homology penalty score, 
therefore the whole penalty score continuously decreases until the whole dataset forms the 
optimized number of clusters.  

After total number of clusters in the dataset passed the optimized number of clusters, the 
complexity penalty score becomes the driving force for penalty increasing. Thus with the 
increasing of total number of clusters in the dataset, the whole penalty score increases again. 
Based on the minimum value of penalty score, the optimized number of clusters in the original 
dataset is 5 for system 1BB7.  

As for the MELD simulation results, we could see(Fig.23) that this constraint generating 
method performed very well in 1BB7. The ligand could quickly find the crystal poses and keep 
stable there. The possible reasons for it works well might came from two aspects: the intrinsic 
structure of top30 DOCK poses, the properly designed MELD constraint group.  

The intrinsic DOCK poses’ structure was hard to quantitatively measure, but we could 
indirectly feel it from the hierarchical cluster results. The top30 DOCK poses were well clustered 
into five groups(Table XI) and crystal-like poses were all concentrated in one cluster. This meant 
that the DOCK poses were quite different from each other. Moreover the less constraint groups 
enabled MELD to have higher probability to choose the correct information. This is a incomplete 
work. There is no more time to test this new constraint generating method on more systems. In 
the future, we would further test this method on other complexes in the Stable group(1BB7, 
1BB5, 1HEW, 1TOW, 1LMO, 1LZB, 1LZC, 1LZE, 1JLD,  9HVP). Moreover, polarized force 
field and explicit solvent model would also be included in order to target systems, like 1Z6S 
which has highly charged ligand or 1JLD which has a lot of crystal water involved in the binding 
site. 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6.Conclusion: 

In the modern “hit to lead” pharmaceutical industry, the speed request of fast searching a huge 
small molecule database and generating candidate molecules in the “hit identification” process 
and the accuracy demand of predicting the binding geometry and binding affinity in the “lead 
optimization” process were like two far separated extremes and hard to balance in current 
computational method. Although advanced computational tools have addressed these processes 
separately, few have bridged the gap. 

Here we designed a pipeline which combined external constraint information with T-REMD 
within the framework of MELD in order to shorten the computational gap between hit and lead 
process. The constraint information was derived from ensembles of binding poses generated by 
DOCK. We aim to utilize this information to find the lowest free energy binding pose within the 
ensemble. Our method is of particular use in cases where DOCK alone fails to correctly score 
poses in their ensemble. 

Parsing the DOCK ensembles into information that can be employed within MELD was a 
methodological goal of this work.  Three strategies which refer to “Manually choose DOCK 
poses based on ligand RMSD”, “Automatically cluster and choose DOCK poses” and 
“Automatically cluster and choose DOCK poses based Kelley-Gardner-Sutcliffe penalty 
function” were designed and tested in this project. After applying the “Manually choose” 
method, we found that MELD could find the crystal pose and distinguish it from other DOCK 
poses which were used in the simulation. The low efficiency of sampling in 1LZB and 1BB7, 
which might caused by the specific ligand conformation in those system, needs further study.  
Then more complex but automatic method, “Automatically cluster and choose DOCK poses”, 
was designed and tested for all complex systems. Although the constraint amount increased 2-
fold with 1BB5 even increased 5-fold, the MELD could still find the crystal poses. The low 
enforced factor further demonstrated the robustness of MELD. However, the sampling efficiency 
still needed improvement. Finally, the “Automatically cluster and choose DOCK poses based on 
Kelley-Gardner-Sutcliffe penalty function” method, which aimed to improve the sampling 
efficiency through including more information from crystal-poses, were tested on previous 
poorly performed 1BB7 complex. Due to the novel constraint method and constraint group 
strategy, both the sampling efficiency and accuracy of MELD were improved.  

Of course, no method is perfect and MELD is not ‘magic.’ It can only infer the globally most 
likely conformation as defined by the force field and external information. This means that the 
confidence of MELD results largely depended on the accuracy of the force field and solvent 
model we used as well as on the external information. Therefore we are currently implementing 
an explicit solvent model (TIP3P) into MELD and are also planning to add support for polarized 
force fields. This will allow us to better deal with the highly charged ligand system and co-
crystal waters that are often present in the crystal structure. Currently, the third constraint 
generating protocols, “Automatically cluster and choose based on L_rmsd and Kelley-Gardner-
Sutcliffe(KGS) penalty function”, provides the best clustering results. It worked pretty well on 
1BB7 and we will further test it on other complexes in the DOCK database.  
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8.Appendix 

The Appendix contains figures of all simulation results. All figures are grouped into two 
section: 

• Testing the stability of crystal poses in force field; 
• 3D crystal structure of Stable systems; 

8.1.Testing the stability of crystal poses in force field 

The simulation results of each complex system in TableVI except 1HEW and 1Z6S are listed 
below. Two graphs were generated from each complex. One was the ligand rmsd plot. The 
Ligand rmsd, which superposed the protein heavy atoms to crystal conformation and calculated 
the in-place root-mean-square deviation of all heavy atoms in ligand, was plotted against frames. 
Another one was the density of ligand rmsd distribution. The probability density of its rmsd 
value, which proportional to its frequency appearing in the trajectory, was plotted against the 
rmsd value of each frames. 

Figure 24. Stability Test results of 1BB5, simulation parameters are listed in Table II, the left is 
the probability density plot of the L_rmsd distribution, the right one is ligand rmsd plot. 
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Figure 25. Stability Test results of 1BB7, simulation conditions same as Figure 24. 
 

Figure 26. Stability Test results of 1TOW, simulation conditions same as Figure 24. 
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Figure 27. Stability Test results of 1LMO, simulation conditions same as Figure 24. 

 
Figure 28. Stability Test results of 1LZB, simulation conditions same as Figure 24.  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Figure 29. Stability Test results of 1LZC, simulation conditions same as Figure 24. 

Figure 30. Stability Test results of 1LZE, simulation conditions same as Figure 24.  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Figure 31. Stability Test results of 1JLD, simulation conditions same as Figure 24. 

Figure 32. Stability Test results of 9HVP, simulation conditions same as Figure 24.  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Figure 33. Stability Test results of 1HPX, simulation conditions same as Figure 24. 

Figure 34. Stability Test results of 1HXB, simulation conditions same as Figure 24. 
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Figure 35. Stability Test results of 1UY8, simulation conditions same as Figure 24. 

Figure 36. Stability Test results of 1UYC, simulation conditions same as Figure 24. 
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Figure 37. Stability Test results of 1UYF, simulation conditions same as Figure 24. 

Figure 38. Stability Test results of 1UYH, simulation conditions same as Figure 24. 
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Figure 39. Stability Test results of 2QVD, simulation conditions same as Figure 24. 
 

Figure 40. Stability Test results of 1SV9, simulation conditions same as Figure 24.  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Figure 41. Stability Test results of 1UYK, simulation conditions same as Figure 24.  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8.2.3D crystal structure of stable systems 

Figure 42. 3D structure of all stable systems
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