

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Geometric Optimization Problems in Sensor Networks

A Dissertation presented

by

Gui Citovsky

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Applied Mathematics and Statistics

(Operations Research)

Stony Brook University

May 2016

Stony Brook University

The Graduate School

Gui Citovsky

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation

Joseph Mitchell
Distinguished Professor. Department of Applied Mathematics and Statistics

Esther Arkin
Professor. Department of Applied Mathematics and Statistics

Zhenhua Liu
Assistant Professor. Department of Applied Mathematics and Statistics

Jie Gao
Associate Professor. Department of Computer Science

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

ii

Abstract of the Dissertation

Geometric Optimization Problems in Sensor Networks

by

Gui Citovsky

Doctor of Philosophy

in

Applied Mathematics and Statistics

(Operations Research)

Stony Brook University

2016

In this thesis, we address a variety of algorithmic problems motivated by
applications in sensor networks. In many of these problems we consider that
the placement of the sensors is in a general metric space and in all of the
problems we consider the case that the sensors lie in the Euclidean plane and
exploit geometric properties in order to achieve better results.

We introduce the SINRk model which is a generalization of the SINR
model. Given a set of sender-receiver requests in the Euclidean plane, the
goal is to minimize the number of rounds of scheduling needed to satisfy all
of the requests. In order to determine whether or not receiver c successfully
receives the signal sent from its paired sender s, we only consider interference
from the k closest senders to c (other than s). We also consider the maximum
capacity problem where the objective is to maximize the number of requests
satisfied in a single round of scheduling.

We then focus on data gathering problems. In these problems we are
given a set of sensors in the Euclidean plane or a general metric space, each
of which generates data at a fixed rate and has a fixed capacity. Given a
budget of data gathering mules, we route these mules in order to maximize
their collective data gathering rate. We also look at the no data loss problem
where the objective is to minimize the number of data mules needed for there
not to be any data loss in the network.

Next, we consider problems in which one needs to select or cover at most
one element from each tuple of a set of tuples of elements in order to optimize
certain objective functions. These elements are objects in the Euclidean

iii

plane. The applications to sensor networks are discussed later in the thesis.
Finally, we consider problems where one is given a set of pairs of points in

a certain metric space with the task of partitioning the pairs into “red” and
“blue” sites. Each pair must have exactly one point colored red and exactly
one point colored blue. The partition should be made to optimize the cost
of certain structures that will be computed on both the red points and the
blue points. These types of problems are motivated by applications in sensor
networks. These applications will be discussed in this thesis.

This work advances the field of sensor networks by improving on previ-
ously known results and by introducing and solving problems that have not
been previously considered.

iv

Acknowledgemets

I will forever be grateful for the constant support from my advisor, Dr.
Joseph Mitchell. He has always provided me the intellectual freedom to pur-
sue whatever research problem interests me. Joe has also allowed me and
has encouraged me to experience life outside of academia in my time as a
doctoral student. The freedom Joe has given me has made my experience as
a doctoral student incredibly satisfying and pleasurable. Additionally, Joe
taught me how to do research and more importantly how to attack and solve
very difficult problems.

I am very thankful to Dr. Svetlozar (Zari) Rachev. Zari encouraged me
to pursue research in Quantitative Finance and has instilled an incredible
amount of confidence in my intellectual abilities. I would like to thank Dr.
Sergio Focardi with whom I collaborated on nearly a year’s worth of research.
I am also extremely thankful to Dr. Matthew (Matya) Katz, of Ben-Gurion
University (Israel), with whom I have worked very closely on many research
problems. Matya has always shared interesting problems with me, including
one that was the basis of my first publication.

I would like to thank my colleagues and coauthors: Dr. Esther Arkin,
Dr. Rom Aschner, Dr. Aritra Banik, Dr. Paz Carmi, Dr. Jie Gao, Tyler
Mayer and Jiemin Zeng. I have had countless interesting discussions with
my coauthors and colleagues that have led to significant results.

Lastly, I would like to thank my parents, Dr. Nurit Ballas and Dr. Vitaly
Citovsky. My parents have supported me in all aspects of life and especially
in the realm of education. They strongly encouraged me to pursue a doctoral
degree and I will always be grateful for this.

v

Table of Contents

Contents

1 Introduction 1

2 Exploiting Geometry in the SINRk Model 4
2.1 Introduction . 4
2.2 Maximum capacity . 8

2.2.1 An O(1)-approximation for constant k 9
2.2.2 All pairs maximum capacity 12

2.3 Scheduling . 13
2.4 A PTAS for maximum capacity with k = 1 13

3 Exact and Approximation Algorithms for Data Mule Schedul-
ing in a Sensor Network 16
3.1 Introduction . 16
3.2 Related Work . 18
3.3 Single Mule Scheduling . 19

3.3.1 Exact Algorithms on a Line or a Tree 20
3.3.2 Hardness . 25
3.3.3 Approximation Algorithm 26

3.4 k-Mule scheduling . 27
3.4.1 Sensors on a line . 27
3.4.2 Sensors in a general metric space 28

3.5 No Data Loss Scheduling . 28
3.5.1 Exact Algorithm on a Line 29
3.5.2 Hardness . 30
3.5.3 Approximation Algorithm 30

3.6 Different Capacities . 32
3.6.1 k-Mule Scheduling . 32
3.6.2 No Data Loss Scheduling 33

3.7 Practical Algorithms . 33
3.7.1 Single Mule Scheduling 33
3.7.2 No Data Loss Scheduling 35

3.8 Simulations . 35

vi

3.8.1 Single Mule Simulations 35
3.8.2 No Data Loss Simulations 37

4 Choice is Hard 40
4.1 Introduction . 40
4.2 A New Satisfiability Result . 42
4.3 Applications of LSAT to Rainbow Problems 45

4.3.1 Rainbow minmax gap (decision version) is NP-complete 45
4.3.2 Rainbow piercing and rainbow covering are NP-complete 47

4.4 Exact Coverage of Color Classes 49
4.4.1 Unit intervals . 49
4.4.2 Arbitrary length intervals 52

5 Conflict-free Covering 55
5.1 Introduction . 55

5.1.1 Our results . 56
5.1.2 Related work . 57

5.2 Covering Color Classes . 57
5.2.1 Covering with a given set of CF-intervals 57
5.2.2 Covering with arbitrary CF-intervals 59

5.3 Two Dimensions . 63
5.3.1 Unit Squares . 63
5.3.2 Covering with a Convex Polygon 66

6 Network Optimization on Partitioned Pairs of Points 69
6.1 Introduction . 69

6.1.1 Our results . 70
6.1.2 Related work . 70

6.2 Spanning Trees . 71
6.2.1 Minimum Sum . 71
6.2.2 Min-max . 76
6.2.3 Bottleneck . 78

6.3 Matchings . 81
6.3.1 Minimum Sum . 81
6.3.2 Min-max . 82
6.3.3 Bottleneck . 84

6.4 TSP Tours . 87
6.4.1 Minimum Sum . 88

vii

6.4.2 Min-max . 90
6.4.3 Bottleneck . 91

7 Conclusion 92

viii

List of Figures/Tables/Illustrations

List of Figures

1 The 7× 7 neighborhood of a sender s located at the center of
a 31× 31 grid. (a) R4, the reception region of s for k = 4 (the
black spot around the center). (b) R44, the reception region
of s for k = 44 (the black spot around the center). 7

2 Proof of Lemma 5. 11
3 Any disk that is not smaller than D and intersects D covers

at least one of the 8 points. 12
4 Remove a segment of the path to eliminate a U-turn at zl. 21
5 The optimal solution repeats sensors 23
6 With two data mules and sensors uniformly spaced c/4 apart, many

sensors will be visited by both mules in the optimal solution. . . . 27
7 Shifted window along TSP of uniformly distributed point sets

in a 5 × 5 square. 36
8 Shifted window along TSP of uniformly distributed point sets

in a 10 × 10 square. 36
9 Shifted window along TSP of 4,663 cities of Canada. 37
10 (i) Chopped MST on 4,663 cities of Canada. 602 mules used;

(ii) Approximation of minimum light cycles on 734 cities of
Uruguay. 85 mules used. 38

11 An example of an LSAT formula. 43
12 The reduction from LSAT to the decision version of minmax

gap. 46
13 A complete example: F = (x1∨x2∨x3)∧ (x4∨x2∨x6)∧ (x1∨

x6 ∨ x4) ∧ (x4 ∨ x2 ∨ x3). 47
14 The reduction from LSAT to rainbow covering. 48
15 Clause gadget for problem 1. 50
16 Variable gadget for problem 1. 50
17 Clause gadget for problem 2. 51
18 Variable gadget for arbitrary length intervals 52
19 Arbitrary length intervals – the big picture. 53
20 Reduction from vertex cover. 58
21 The graph G′. 59

ix

22 Illustration of Theorem 26. 61
23 Variable chain. 64
24 Clause gadget. 65
25 Construction of hardness for Problem 7. 67
26 Close-up of variable gadget for Problem 7. 67
27 Variable gadget. 72
28 Metric distances between variable gadgets. 73
29 Truth assignment. 73
30 Placement of clause gadget points and extra cost incurred to

incorporate clause gadget points into two MSTs once a truth
assignment over the variables is fixed. 74

31 Set up of Min-Max 2-MST instance given an instance of Par-
tition: {x1, x2, ..., xn}. 77

32 |APX|
|OPT | ≈ 2 . 82

33 Set up of the Min-Max 2-Matching instance given an instance
of Partition: {x1, x2, ..., xn}. 83

34 Before and after stitching. 86
35 Before and after merging into a super-cycle. 86

List of Tables

1 The ratio area(Rk)/area(R) for several values of k, computed
for a sender at the center of a 31× 31 grid. 6

2 Our approximation algorithm results for different settings. Note
that m ≤ log(cmax

cmin
) where cmax is the largest capacity and cmin

is the smallest capacity. For the results in the first four rows,
we assume that the sensor capacities are all the same. ε is any
positive constant. 18

3 Number of mules used in chopped MST vs. light cycles in 5
× 5 square. 38

4 Number of mules used in chopped MST vs. light cycles in 10
× 10 square. 38

5 Table of results: α is the Steiner ratio for a particular metric
space. β is the approximation factor for the traveling sales-
person problem in a certain metric space. 70

x

Publications

[1] Rom Aschner, Gui Citovsky and Matthew J. Katz. Exploiting Geometry
in the SINRk Model. ALGOSENSORS, 125–135, 2014.

[2] Gui Citovsky, Kan Huang and Joseph S. B. Mitchell. Optimally Routing a
Tracker to Maximize the Total Time a Mobile Evader is in View. FWCG,
2014.

[3] Gui Citovsky, Jie Gao, Joseph S. B. Mitchell and Jiemin Zeng. Exact and
Approximation Algorithms for Data Mule Scheduling in a Sensor Net-
work. ALGOSENSORS, 57–70, 2015. Invited to special issue of Journal
Theoretical Computer Science (TCS). Selected paper from ALGOSEN-
SORS 2015.

[4] Esther M. Arkin, Aritra Banik, Paz Carmi, Gui Citovsky, Matthew J.
Katz, Joseph S. B. Mitchell and Marina Simakov. Choice is Hard. ISAAC
2015, 318–328, 2015.

[5] Esther M. Arkin, Aritra Banik, Paz Carmi, Gui Citovsky, Matthew J.
Katz, Joseph S. B. Mitchell and Marina Simakov. Conflict-free Covering.
CCCG, 2015.

[6] Gui Citovsky and Sergio Focardi. A Novel View of Suprathreshold
Stochastic Resonance and its Applications to Financial Markets. Fron-
tiers in Applied Mathematics and Statistics, 2015. Volume 1, page 10.

[7] Esther M. Arkin, Aritra Banik, Paz Carmi, Gui Citovsky, Su Jia,
Matthew J. Katz, Tyler Mayer and Joseph S. B. Mitchell. Network Op-
timization on Partitioned Pairs of Points. Submitted for publication.

xi

Chapter 1

Introduction

In Chapter 2 we introduce the SINRk model, which is a practical version
of the SINR model. In the SINRk model, in order to determine whether
s’s signal is received at c, where s is a sender and c is a receiver, one only
considers the k most significant senders w.r.t. to c (other than s). Assuming
uniform power, these are the k closest senders to c (other than s). Under
this model, we consider the well-studied scheduling problem: Given a set L
of sender-receiver requests, find a partition of L into a minimum number of
subsets (rounds), such that in each subset all requests can be satisfied simul-
taneously. We present an O(1)-approximation algorithm for the scheduling
problem (under the SINRk model). For comparison, the best known ap-
proximation ratio under the SINR model is O(log n). We also present an
O(1)-approximation algorithm for the maximum capacity problem (i.e., for
the single round problem), obtaining a constant of approximation which is
considerably better than those obtained under the SINR model. Finally, for
the special case where k = 1, we present a PTAS for the maximum capac-
ity problem. Our algorithms are based on geometric analysis of the SINRk

model.
Next, in Chapter 3, we consider the fundamental problem of schedul-

ing data mules for managing a wireless sensor network. A data mule tours
around a sensor network and can help with network maintenance such as data
collection and battery recharging/replacement. We assume that each sensor
has a fixed data generation rate and a capacity (upper bound on storage
size). If the data mule arrives after the storage capacity is met, additional
data generated is lost. We formulate several fundamental problems for the
best schedule of single or multiple data mules and provide algorithms with
provable performance. First, we consider using a single data mule to collect
data from sensors, and we aim to maximize the data collection rate. We
then generalize this model to consider k data mules. Additionally, we study
the problem of minimizing the number of data mules such that it is possible
for them to collect all data, without loss. For the above problems, when we
assume that the capacities of all sensors are the same, we provide exact al-
gorithms for special cases and constant-factor approximation algorithms for
more generale cases. We also show that several of these problems are NP-

1

hard. When we allow sensor capacities to differ, we have a constant-factor
approximation for each of the aforementioned problems when the ratio of the
maximum capacity to the minimum capacity is constant.

In Chapter 4 we consider problems in which one needs to select or cover
at most one element from a pair of elements in order to optimize certain
objective functions. Let P = {C1, C2, . . . , Cn} be a set of color classes, where
each color class Ci consists of a pair of objects. We focus on two problems in
which the objects are points on the line. In the first problem (rainbow minmax
gap), given P , one needs to select exactly one point from each color class,
such that the maximum distance between a pair of consecutive selected points
is minimized. This problem was studied by Consuegra and Narasimhan, who
left the question of its complexity unresolved. We prove that it is NP-hard.
For our proof we obtain the following auxiliary result. A 3-SAT formula is an
LSAT formula if each clause (viewed as a set of literals) intersects at most one
other clause, and, moreover, if two clauses intersect, then they have exactly
one literal in common. We prove that the problem of deciding whether an
LSAT formula is satisfiable or not is NP-complete. We present two additional
applications of the LSAT result, namely, to rainbow piercing and rainbow
covering. In the second problem (covering color classes with intervals), given
P , one needs to find a minimum-cardinality set I of intervals, such that
exactly one point from each color class is covered by an interval in I. We
consider the case that I must consist of only unit length intervals and the
case that I can consist of intervals of arbitrary length. In both cases we show
that this problem is NP-hard.

In Chapter 5, we follow up on the fundamental set of geometric cov-
erage problems introduced in the second problem in Chapter 4. Let P =
{C1, C2, . . . , Cn} be a set of color classes, where each color class Ci consists
of a set of points. We address a family of covering problems in which each
color class must be covered but no two points from the same color class are
allowed to be covered by the same geometric object. We consider the case
that P is restricted to be on a line and the case that P is anywhere in the
Euclidean plane. We examine the following two objectives; covering at least
one point from each color class and covering exactly one point from each
color class. We prove that the problems in this family are NP-complete (or
NP-hard) and offer several constant-factor approximation algorithms. Both
of these problems have applications in sensor networks. Points of the same
color class can be considered to be sensors with the same data. The objective
is to retrieve data from each color class of sensors. Covering sensors with a

2

geometric object corresponds to having these sensors all interact with the
same transceiver. In order to prevent or mitigate malicious attacks, no two
sensors with the same data are allowed to interact with the same transceiver.

Finally, in Chapter 6, we study network optimization problems where one
is given a set of pairs of points in some metric space with the objective of
determining how to split each pair into a “red” site and a “blue site” in order
to optimize two networks; one on the red sites and one on the blue sites. The
partition into red and blue sets of point sites should optimize the cost of
the following structures on both the red and blue network: spanning trees,
traveling salesman tours or matchings. We consider several different objec-
tive functions and show that some of these problems are NP-hard. We also
provide constant factor approximation algorithms for all of these problems.
Pairs of points can be considered as sensors with two replications of their
data. The goal is to compute two networks (a red and blue network) and
to interconnect the sensors for the purpose of communication connectivity.
By having two networks, one red and one blue, a malicious attack on one
network will leave us protected with a network of backup sensors.

Each chapter contains a more thorough introduction than the ones pro-
vided in this introduction.

3

Chapter 2

Exploiting Geometry in the SINRk Model∗

2.1 Introduction

The SINR (Signal to Interference plus Noise Ratio) model has received a
lot of attention in recent years. It is considered a more realistic model for
the behavior of a wireless network than the common graph-based models
such as the unit disk graph, since it takes into account physical parameters
such as the fading of the signal, interference caused by other transmitters
and ambient noise. A fundamental problem in this context is the following:
Given a set of communication sender-receiver requests, find a good scheduling
for the requests. In other words, what is the minimum number of rounds
needed to satisfy all the requests, such that in each round some subset of the
communication links is active?

More formally, let L = {(c1, s1), (c2, s2), . . . , (cn, sn)} be a set of n pairs
of points in the plane representing n (directional) links, where the points
c1, . . . , cn represent the receivers and the points s1, . . . , sn represent the senders.
The length of the link (ci, si) ∈ L is the Euclidean distance between ci and
si (i.e., |cisi|) and is denoted li. We denote the Euclidean distance between
ci and sj, for j 6= i, by lij. The set of all receivers is denoted C = C(L) and
the set of all senders is denoted S = S(L). Finally, let pi be the transmission
power of sender si, for i = 1, . . . , n. In the SINR model, a link (ci, si) is
feasible, if ci receives the signal sent by si. That is, if the following inequality
holds (assuming all senders in S are active):

pi/l
α
i∑

{j:sj∈S\{si}}
pj/lαij +N

≥ β ,

where α, β ≥ 1 and N > 0 are appropriate constants (α is the path-loss
exponent, N is the ambient noise, and β is the threshold above which a
signal is received successfully).

The scheduling problem is thus to partition the set of links L to a minimum
number of feasible subsets (i.e., rounds), where a subset Li is feasible if,

∗This chapter is based on joint work with Rom Aschner and Matthew J. Katz. The
work in this chapter appeared in ALGOSENSORS 2014 [14].

4

when only the senders in S(Li) are active, each of the links in Li is feasible.
A greedy algorithm that successively finds a feasible subset of maximum
cardinality of the yet unscheduled links yields an O(log n)-approximation.
Therefore, it is interesting to first focus on the maximum capacity problem,
i.e., find a feasible subset of L of maximum cardinality. In other words, find
a set Q ⊆ L, such that if only the senders in S(Q) are active, then each of
the links in Q is feasible, and Q is of maximum cardinality.

In the SINR model, the affectance of senders that are close to a receiver
is much more significant than the affectance of those that are far from it.
Moreover, in many scenarios the interference at a receiver is caused by a few
nearby senders, while signals from farther senders are drastically degraded
by, e.g., walls and distance. This has led us to define a restricted but more
practical version of the SINR model which we name SINRk.

The SINRk model. In this model, in order to determine whether a link
(c, s) is feasible, one only considers the k most significant senders w.r.t. to c
(other than s), which are the k closest senders to c (other than s) assuming
uniform power. Formally, for a receiver ci, let Ski be the set of the k most
significant senders w.r.t. to ci (other than si). Then, the link (ci, si) is feasible
if the following inequality holds (assuming all senders in S are active):

pi/l
α
i∑

{j:sj∈Ski }
pj/lαij +N

≥ β .

Assuming uniform power, we examined the validity of the SINRk model
in the specific but common setting where the senders are located on an m×m
grid, for some odd integer m. Specifically, consider the sender s located at
the center of the grid (i.e., at location ((m+ 1)/2, (m+ 1)/2). Let R denote
the reception region of s; i.e., the region consisting of all points in the plane
at which s is received according to the SINR inequality (assuming all senders
are active). Avin et al. [18] showed that R is convex and fat. Let Rk denote
the reception region of s according to the SINRk inequality, i.e., when only
the k closest neighbors of s are taken into account. Notice that for any two
positive integers k1, k2, if k1 < k2, then Rk1 ⊃ Rk2 . We thus computed the
region Rk for several values of k, and observed the rate at which Rk’s area
decreases as k increases. Consider Table 1 and Figure 1. In this example,
m = 31 (that is, we have 961 senders), α = 4, and β = 2. The values in the
left column are those for which we computed Rk, and the values in the right
column are the corresponding ratios between the area of Rk and the area of

5

k area(Rk)/area(R)

4 1.102
8 1.039
12 1.029
20 1.017
24 1.014
28 1.012
36 1.011
44 1.006

312 − 1 1

Table 1: The ratio area(Rk)/area(R) for several values of k, computed for a
sender at the center of a 31× 31 grid.

R. Notice that already for k = 4, Rk’s area is larger than R’s area by only
roughly 10%, and that for k = 44 the difference drops to roughly 0.5%; see
Figure 1.

Related work. The pioneering work of Gupta and Kumar [51] has initiated
an extensive study of the maximum capacity and the scheduling problems
in the SINR model. Several versions of these problem have been considered,
depending on the capabilities of the underlying hardware, that is, whether
and to what extent one can control the transmission power of the senders.

For the case where the transmission powers are given, Goussevskaia et
al. [48] showed that the maximum capacity and the scheduling problems
are NP-complete, even for uniform power. They also presented an O(g(L))-
approximation algorithm, assuming uniform power, for the (weighted) maxi-
mum capacity problem, where g(L) is the so-called diversity of the network,
which can be arbitrarily large in general. Assuming uniform power, Chafekar
et al. [28] presented an O(log ∆)-approximation algorithm for the maximum
capacity problem, where ∆ is the ratio between the longest link and the
shortest link. If the ratio between the maximum power and the minimum
power is bounded by Γ, then they give an O(log ∆ log Γ)-approximation al-
gorithm for the problem. Goussevskaia et al. [49] and Halldórsson and Wat-
tenhofer [56] gave constant-factor approximation algorithms for the maxi-
mum capacity problem yielding an O(log n)-approximation algorithm for the
scheduling problem, assuming uniform power. In [49] they note that their

6

(a) (b)

Figure 1: The 7 × 7 neighborhood of a sender s located at the center of a
31 × 31 grid. (a) R4, the reception region of s for k = 4 (the black spot
around the center). (b) R44, the reception region of s for k = 44 (the black
spot around the center).

O(1)-approximation algorithm also applies to the case where the ratio be-
tween the maximum power and the minimum power is bounded by a con-
stant and for the case where the number of different power levels is constant.
Later, Wan et al. [91] presented a constant-factor approximation algorithm
for the maximum capacity problem, assuming uniform power; their constant
is significantly better than the one in [49]. Recently, Halldórsson and Mi-
tra [55] have considered the case of oblivious power. This is a special case
of non-uniform power where the power of a link is a simple function of the
link’s length. They gave an O(1)-approximation algorithm for the maximum
capacity problem, yielding an O(log n)-approximation algorithm for schedul-
ing. Finally, the case with (full) power control has also been studied, see,
e.g., [54, 55,63,74].

Our results. We study the maximum capacity and scheduling problems in
the SINRk model, for a given constant k, under the common assumptions that
(i) pi = pj, for 1 ≤ i, j ≤ n, i.e., uniform power (see, e.g., [49,91]), and (ii) N
= 0, i.e., there is no ambient noise (see, e.g., [48]). We exploit some of the
geometric properties of the SINRk model to obtain O(1)-approximation al-
gorithms for both problems. For comparison, the best known approximation

7

ratio for the scheduling problem in the SINR model is O(log n). We also con-
sider a variant of the maximum capacity problem in which one is free to form
the links, and the goal, as in the standard problem, is to find a maximum-
cardinality feasible subset of links. We obtain an O(1)-approximation algo-
rithm for this variant as well. Finally, for k = 1, we present a PTAS for the
maximum capacity problem.

This chapter is organized as follows: In Section 2.2, we prove several
geometric properties of the SINRk model and use them to obtain an O(1)-
approximation algorithm for the maximum capacity problem, where the con-
stant that we get is significantly better than the one in [49]. In Section 2.3,
we present an O(1)-approximation algorithm for the scheduling problem. Fi-
nally, in Section 2.4, we show that in the special case where k = 1, one
can obtain a PTAS for the capacity problem, by using a technique due to
Chan [29] that is based on geometric separators. To the best of our knowledge
our work is the first to study the SINRk model.

2.2 Maximum capacity

Let k be a positive integer. In this section we consider the maximum capacity
problem under the SINRk model, assuming uniform power and no ambient
noise. W.l.o.g., we shall assume that the transmission power of each of the
senders is 1. Let L′ ⊆ L and (ci, si) a link in L′. We say that (ci, si) is
feasible (in L′), if ci receives si when only the senders in S(L′) are active. If
all the links in L′ are feasible, then we say that L′ is feasible. Our goal is to
find a feasible subset of links of maximum cardinality. We begin by proving
a series of lemmas establishing several important geometric properties of
feasible links.

Lemma 1. Let L′ ⊆ L and let (ci, si) ∈ L′ be a feasible link. Then, the disk
centered at ci of radius α

√
β · li does not contain in its interior any sender of

S(L′) except for si.

Proof. Assume that this disk contains another sender (except si) in its inte-
rior. Let sr be such a sender, i.e., lir <

α
√
βli. Then

1/lαi
Σ{j:sj∈Ski }1/l

α
ij

≤ 1/lαi
1/lαir

< β ,

where Ski ⊆ S(L′) is the set of the k closest senders to ci, not including si.
This is a contradiction to the assumption that (ci, si) is a feasible link in

8

L′.

Lemma 2. Let L′ ⊆ L and let (ci, si), (cj, sj) ∈ L′ be two feasible links. Let
Di = D(ci,m · li), Dj = D(cj,m · lj) be two disks around the two receivers.

If m <
α√β−1

2
, then Di ∩Dj = ∅.

Proof. By Lemma 1, lij ≥ α
√
β·li and lji ≥ α

√
β·lj, that is, li+lj ≤ 1

α√β (lij+lji).

By the triangle inequality, lij ≤ |cicj| + lj and lji ≤ |cjci| + li, and therefore

li+ lj ≤ 1
α√β (2|cicj|+ li+ lj). Rearranging, we get that |cicj| ≥

α√β−1
2

(li+ lj) >

m(li + lj) = mli +mlj. This implies that, Di ∩Dj = ∅.

The following lemma is actually a generalization of Lemma 1.

Lemma 3. Let L′ ⊆ L and let (ci, si) ∈ L′ be a feasible link. Then, the disk
centered at ci of radius α

√
βk · li contains in its interior at most k− 1 senders

of S(L′) \ {si}.

Proof.

β ≤ 1/lαi
Σ{j:sj∈Ski }1/l

α
ij

≤ 1/lαi
kmin{j:sj∈Ski }{1/lij

α} ≤
max{j:sj∈Ski }{l

α
ij}

klαi
.

Thus, α
√
βk · li ≤ max{j:sj∈Ski }{lij}. That is, the farthest among the k senders

in Ski does not lie in the interior of the disk centered at ci of radius α
√
βk·li.

Lemma 4. Let L′ ⊆ L and let (ci, si) ∈ L′. If the disk centered at ci of
radius α

√
βk · li does not contain in its interior any sender of S(L′) (except

for si), then the link (ci, si) is feasible.

Proof. For each sj ∈ Ski , we have that lij ≥ α
√
βk·li. Therefore, Σ{j:sj∈Ski }

1
lαij
≤

1
βlαi

, and
1/lαi

Σ{j:sj∈Ski }
1/lαij
≥ β.

2.2.1 An O(1)-approximation for constant k

For each (ci, si) ∈ L, let Di denote the disk of radius α
√
βk · li centered at ci,

and set D = {Di|(ci, si) ∈ L}.
We apply the following simple (and well-known) algorithm that finds an

independent set Q in the intersection graph induced by D, such that |Q| is
at least some constant fraction of the size of a maximum independent set

9

in this graph. We then prove that the set of links corresponding to Q is
an O(1)-approximation of OPT , where OPT is an optimal solution for the
maximum capacity problem (under SINRk). This proof is non-trivial since
the disks in D corresponding to the links in OPT are not necessarily disjoint.

Algorithm 1 An O(1)-approximation

Q ← ∅
Sort D by the radii of the disks in increasing order.
while D 6= ∅ do

Let D be the smallest disk in D
D ← D \ {D}
for all D′ ∈ D, such that D ∩D′ 6= ∅ do
D ← D \ {D′}
Q ← Q∪ {D}

return Q

Algorithm 1 returns a subset Q ⊆ D which is an independent set, i.e., for
any two disks D1, D2 ∈ Q, D1 ∩D2 = ∅. Moreover, by Lemma 4, the subset
of links corresponding to Q is feasible. From now on, we shall mostly think
of OPT as a set of disks, i.e., the subset of disks in D corresponding to the
links in OPT . Below we show that |OPT | = O(|Q|).

Lemma 5. Let L′ ⊆ L be a feasible set of links, and let D(L′) denote the
set of corresponding disks of radius α

√
βk · li around the receivers ci in C(L′).

Then, every point p ∈ R2 is covered by at most τ = 2π(k+1)

arctan(
α√βk−1
α√βk+1

)
disks in

D(L′).

Proof. Let p ∈ R2, and consider the set D(Lp) ⊆ D(L′) of all disks in
D(L′) that cover p. Let si be the sender (among the senders in S(Lp)) that
is farthest from p. We draw a wedge W of angle 2θ and apex p, where
θ = arctan(

α√βk−1
α√βk+1

), such that si is on its bisector (see Figure 2). We claim

that the disk Di (of radius α
√
βk · li and center ci) covers all the senders in

S(Lp) ∩W .
Consider the line perpendicular to psi and passing through si, and let x

and y be the intersection points of this line with W ’s rays. Then,

|xsi| = |psi| tan(θ) ≤ (|pci|+ li) tan(θ) ≤ (α
√
βk+ 1)li tan(θ) = (α

√
βk− 1)li .

10

ci

p si

x

y

θ
θ

Di

Figure 2: Proof of Lemma 5.

Similarly, |ysi| ≤ (α
√
βk − 1)li. Therefore the disk of radius (α

√
βk − 1)li and

center si contains points x and y. But this disk is contained in the disk Di.
So, Di contains the triangle 4pxy (since it covers its three corners), and,
since all the senders in S(Lp) ∩W lie in 4pxy, we conclude that Di covers
all these senders. This implies that the number of these senders is at most
k + 1.

We now remove all the senders in S(Lp) ∩W and repeat. After at most
2π/θ iterations, we finish removing all senders in S(Lp). Thus, the number
of senders in S(Lp) is at most τ , implying that the number of disks in D(L′)
covering p is at most τ .

Lemma 6. |OPT | ≤ 8τ |Q|.

Proof. First notice that each disk in OPT intersects at least one of the disks
in Q. Since, otherwise, consider the smallest disk in OPT that does not
intersect any of the disks in Q. Then, our algorithm would have chosen this
disk – contradiction. We thus associate each disk in OPT with the smallest
disk in Q which it intersects. Let D = D(c, r) ∈ Q. We show that the
number of disks associated with D is at most 8τ . We first observe that each
of the disks associated with D is at least as large as D. Since, if one or more
of these disks were smaller than D, then our algorithm would have chosen
the smallest of them instead of D – contradiction.

11

D
c

Figure 3: Any disk that is not smaller than D and intersects D covers at
least one of the 8 points.

Let A be a set of 8 points including (i) the center point c, and (ii) seven
points evenly spaced on a circle of radius 3r/2 around c; see Figure 3. Notice
that any disk that is not smaller than D and intersects D must cover at least
one of the points in A. In particular, this is true for each of the disks in
OPT associated with D. By Lemma 5, there are at most τ disks in OPT
covering each of these points. Thus, at most 8τ disks in OPT intersect D. We
conclude that our algorithm computes a (1/8τ)-approximation of OPT .

The following theorem summarizes the main result of this section.

Theorem 1. Given a set L of n links and a constant k, one can compute
a (1/8τ)-approximation for the maximum capacity problem under the SINRk

model, where τ = 2π(k+1)

arctan(
α√βk−1
α√βk+1

)
.

2.2.2 All pairs maximum capacity

We now consider the maximum capacity problem where any sender and re-
ceiver can be paired. Let L = {(ci, sj)|1 ≤ i, j ≤ n} be a set of n2 potential
links. We seek a feasible subset of links Q ⊆ L of maximum cardinality,
enforcing a one-to-one correspondence between S(Q) and C(Q).

For each (ci, sj) ∈ L, let Dij denote the disk of radius α
√
βk ·lij centered at

ci (where lii = li), and set D = {Dij|(ci, sj) ∈ L}. We apply Algorithm 1 with
D as our input set of disks. Note that any time a pair (ci, sj) is added to Q,
all other potential links in L that contain ci as a receiver or sj as a sender will
be removed from consideration. This is because all other disks in D either
using ci as receiver or sj as a sender clearly have a nonempty intersection

12

with Dij. Lemma 6 shows that Algorithm 1 gives an O(1)-approximation for
the all pairs version as well. Namely, |OPT | ≤ 8τ |Q|.

2.3 Scheduling

In this section we consider the scheduling problem. That is, given a set
L of links (i.e., requests), how many rounds are needed to satisfy all the
requests? Alternatively, find a partition of L into a minimum number of
feasible subsets.

We show how to obtain a constant factor approximation for the scheduling
problem under the SINRk model. As in the previous section, for each (ci, si) ∈
L, let Di denote the disk of radius α

√
βk · li centered at ci, and set D =

{Di|(ci, si) ∈ L}. The depth of a point p ∈ R2 with respect to D is the
number of disks in D covering p. The depth of D is the depth of a point
p ∈ R2 of maximum depth (i.e., it is the depth of the arrangement of the
disks in D). Notice that the depth of D is not necessarily bounded.

Let r be the number of rounds in an optimal solution, OPT , to the
scheduling problem. We first observe that the depth of D is O(r).

Lemma 7. The depth of D is O(r), where r is the number of rounds in
OPT .

Proof. Let Li be the set of active links in round i, for 1 ≤ i ≤ r. By Lemma 5
every point in the plane is covered by at most τ disks in D(Li) (i.e., the depth
of D(Li) is at most τ). Therefore, the depth of D(L) is at most τr.

Miller et al. [72] showed how to color an intersection graph of a set of balls
in Rd of bounded ply. In particular, their result implies a polynomial-time
algorithm for coloring the intersection graph of the disks in D with 9τr + 1
colors. Each color class is an independent set, and thus, by Lemma 4, is a
feasible solution.

The following theorem summarizes the main result of this section.

Theorem 2. Given a set L of n links and a constant k, one can compute a
(9τ + 1)-approximation for the scheduling problem under the SINRk model.

2.4 A PTAS for maximum capacity with k = 1

By plugging k = 1 in Lemmas 3 and 4, we obtain the following lemma.

13

Lemma 8. Let L′ ⊆ L and let (ci, si) ∈ L′. Then, (ci, si) is a feasible link
if and only if the disk centered at ci of radius α

√
β · li does not contain in its

interior any sender of S(L′) (except for si).

The following theorem is due to Timothy Chan [29].

Theorem 3 ([29]). Given a measure µ satisfying the following five condi-
tions, a collection O of n objects in Rd and ε > 0, one can find a (1 + ε)-
approximation to µ(O) in O(nO(1/εd)) time and O(n) space.

1. If A ⊆ B, then µ(A) ≤ µ(B).

2. µ(A ∪ B) ≤ µ(A) + µ(B).

3. If for any pair (A,B) ∈ A×B, A∩B = ∅, then µ(A∪B) = µ(A)+µ(B).

4. Given any r and size-r box R, if every object in A intersects R and has
size at least r, then µ(A) ≤ c for a constant c.

5. A constant-factor approximation to µ(A) can be computed in time |A|O(1).
If µ(A) ≤ b, then µ(A) can be computed exactly in time |A|O(b) and
linear space.

Chan has applied this theorem to the measures pack(·) and pierce(·) and a
collection of fat objects. We apply this theorem in a somewhat non-standard
manner to obtain our PTAS.

For each (ci, si) ∈ L, let Di denote the disk of radius α
√
β · li centered

at ci, and set D = {Di|(ci, si) ∈ L}. For any A ⊆ D, let µ(A) denote the
cardinality of a feasible subset of A of maximum cardinality. Below, we show
that µ satisfies the five conditions above.

Notice first that two disks D1 and D2 in a feasible subset D′ of D may
intersect; in particular, one or both of the receivers c1, c2 may lie in the
other disk. However, none of the senders s1, s2 may lie in the other disk.
Conditions (1) and (2) are clearly satisfied. Condition (3) is also satisfied,
since the assumption implies that none of the senders corresponding to the
disks in B lies in a disk of A and vise versa. Concerning Condition (4), we
can apply Lemma 5 in a similar way to the one described in the proof of
Lemma 6, to show that (under the assumption of Condition (4)) µ(A) is
bounded by some constant. Finally, Algorithm 1 computes a constant-factor
approximation to µ(A) in time |A|O(1).

The following theorem summarizes the main result of this section.

14

Theorem 4. Given a set L of n links and ε > 0, one can compute a (1− ε)-
approximation for the maximum capacity problem under the SINR1 model.

Remark: Notice that the only condition that is not satisfied when k is a
constant greater than 1, is Condition (3). The reason for this is that for
k > 1 the converse of Lemmas 3 is no longer true.

15

Chapter 3

Exact and Approximation Algorithms for Data

Mule Scheduling in a Sensor Network†

3.1 Introduction

A number of sensor network designs integrate both static sensor nodes and
more powerful mobile nodes, called data mules, that serve and help to man-
age the sensor nodes [60, 61, 82, 84]. The motivation for such designs are
twofold. First, there are fundamental limitations with the flat topology of
static sensors using short range wireless communication. It is known that
such a topology does not scale – the network throughput will diminish if
the number of sensors goes to infinity [52], while allowing node mobility will
help [50]. Second, a number of fundamental network operations can benefit
substantially from mobile nodes. We consider two example scenarios: sensor
data collection and battery recharging. In both cases, data mules that tour
around the sensors periodically can be used to maintain the normal function-
ality of the sensors. In addition, data collection by sensors using multi-hop
routing to a fixed base station often suffers from the bottleneck issue near the
base station, both in terms of communication and energy usage. Using short
range wireless communication with a mobile base station can fundamentally
remove such dependency and avoid the single point of failure [90].

Despite the potential benefits of introducing data mules with static sen-
sors, a lot of new challenges emerge at the interface of coordinating the data
mules with sensors. One of the most prominent challenges is the scheduling
of data mule mobility to serve the sensors in a timely and energy efficient
manner. This has been an active research topic for the past few years. How-
ever, as surveyed later, most prior work is evaluated by simulations or ex-
periments [4]; algorithms with provable guarantees are scarce. We formulate
data mule scheduling problems with natural objective functions and provide
exact and approximation algorithms.
Our Problem. Suppose there are n sensors and a data mule traveling at a
constant speed s to collect data from these sensors. A sensor i generates data

†This chapter is based on joint work with Jie Gao, Joseph S. B. Mitchell and Jiemin
Zeng. The work in this chapter appeared in ALGOSENSORS 2015 [33].

16

at a fixed rate of ri and has a storage (“bucket”) capacity of ci where ci ≥ ri.
When a data mule visits a sensor, all current data stored in the sensor is
collected onto the mule. We assume that the mule has unbounded storage
capacity. We also assume that data collection at each sensor happens instan-
taneously, i.e., we ignore the time of data transmission, which is typically
much smaller than the time taken by the mule to move between the sensors.
If the amount of data generated at a sensor goes beyond its capacity (i.e., its
bucket is full), additional data generated is lost. Thus, a natural objective is
to schedule data mules to efficiently collect the continuously generated data.

We assume that the data collection and the data mule movement con-
tinues indefinitely in time. Therefore, we are mainly concerned about the
long-term data gathering efficiency by periodic schedules.

The same problem arises in the case of battery recharging and energy
management. In that case, each sensor i uses its battery with capacity ci at
a rate of ri. When the battery at a sensor is depleted the sensor becomes
ineffective. Thus, one would like to minimize the total amount of time of
ineffectiveness, over all sensors. We formulate the following three problems.

• Single Mule Scheduling: Find a route for a single data mule to
collect data from the sensors that maximizes the data collection rate
(the average amount of data collected per time unit).

• k-Mule Scheduling: Given a budget of k data mules, find routes for
them to maximize the rate of data collected from the sensors.

• No Data Loss Scheduling: Find the minimum number of data mules,
and their schedules, such that all data from all sensors is collected (there
is no data loss).

Our Results. We report hardness results, exact algorithms for a few special
cases, and approximation algorithms for all three problems. Our algorithmic
results are summarized in Table 3.1. When we assume that the capacities
of all sensors are the same, we provide results for the different cases where
the sensors lie in different metrics. For the case where the capacities of the
sensors are different, we provide general results.

Without loss of generality, we assume that the minimum data rate is 1
and the mule velocity is 1. In fact, we can further assume that all sensors
have a data rate of 1; if a sensor has data rate ri > 1, we can replicate this
sensor with ri copies, each with unit data rate and capacity ci/ri. Thus, in

17

With Sensors Single mule k-mule No Data Loss
on a Line exact 1

3
exact

on a Tree exact pseudo-polynomial 1
3
(1− 1/e

1
2+ε)

12General Metric Space 1/6− ε
Euclidean Space 1/3− ε 1

3
(1− 1/e1−ε)

with Different Capacities O(1
m

) O(m)

Table 2: Our approximation algorithm results for different settings. Note
that m ≤ log(cmax

cmin
) where cmax is the largest capacity and cmin is the smallest

capacity. For the results in the first four rows, we assume that the sensor
capacities are all the same. ε is any positive constant.

the following discussion we focus on the case of all sensors having unit data
rates and possibly different capacities. When we consider the case where all
sensors have the same capacity, we simplify notation and let the capacity of
all sensors be c.

We give the first algorithms for such data mule scheduling problems with
provable guarantees. In addition, we provide upper and lower bounds on the
optimal solution for both problems, and we evaluate the performance using
simulations, for a variety of sensor distributions and densities.

3.2 Related Work

Vehicle Routing Problems. The problems we study belong to the general
family of vehicle routing problems (VRPs) and traveling salesman problems
(TSPs) with constraints [17, 69, 79, 93]. But our problem is the first one
considering periodically regenerated rewards/prizes and thus is the first of
this type.

Related TSP variations stem from the Prize-Collecting Traveling Sales-
man Problem (PCTSP) [19, 24] which was originally defined by Balas [20]
as the problem, given a set of cities with associated prizes and a prize
quota to reach, find a path/tour on a subset of the cities such that the
quota is met, while minimizing the total distance plus penalties for the cities
skipped. (Some recent formulations of this problem do not include penal-
ties for skipped cities.) Archer et. al. [5] provided a (2 − ε)-approximation
algorithm for this formulation of PCTSP where ε ≈ 0.007024.

The Orienteering Problem [47,88] assigns a prize to each city and, given
a constraint on the length of the path, aims to maximize the total prize

18

collected. For the rooted version in a general metric space, Blum et. al. [26]
had proven that the problem is APX-hard and provided a 4-approximation
algorithm which was improved to a 3-approximation by Bansal et. al. [21]
and finally to a (2 + ε)-approximation by Chekuri et. al. [30]. For the rooted
version in <2, Arkin et. al. [7] give a 2-approximation, which was improved
to a (1 + ε)-approximation (PTAS) [31] for fixed dimension Euclidean space.
For additional information we refer to the review papers [44,88].

Similar to our problems, the Profitable Tour Problem [16] balances the
two competing objectives of maximizing total prize collected and minimizing
tour length. In some problems, the profit collected is dependent on the
latency [36].

Our problems are also very similar to many multi-vehicle routing prob-
lems [6, 42, 43, 66]. Arkin et. al. [13] give constant-factor approximation
algorithms for some types of multiple vehicle routing problems including a 3-
approximation for the problem of finding a minimum number of tours shorter
than a given bound that cover a given graph. Nagarajan and Ravi [76]
provide a 2-approximation for tree metrics and a bicriteria approximation
algorithm for general metrics. Khani and Salavatipour [64] present a 2.5-
approximation algorithm for the problem of finding, for a given graph and
bound λ, the minimum number of trees, each of weight at most λ, to cover
the graph (improving on a bound given in [13]).

Data Mule Scheduling. Increasingly, there has been interest in using
mobile data mules to collect data in sensor networks. A common question
that has arisen is how to schedule multiple mules effectively and efficiently.
Many heuristics have been proposed to schedule multiple mules with vari-
ous constraints and objective functions (e.g., evenly distributing loads [60],
scheduling short path lengths [71,92], and minimizing energy [3]). Somasun-
dara et. al. [85] address a very similar problem to ours, but with different
methods; we obtain provable polynomial-time algorithms, while they em-
ploy (worst case exponential-time) integer linear programming and explore
heuristics.

3.3 Single Mule Scheduling

Given a single mobile data mule with unit velocity, n sensors with uniform
capacity and unit data rate, the goal is to route the mule in effort to maximize
its data gathering rate. We explore this problem with sensors on a line, on a

19

tree, and in other metric spaces.

3.3.1 Exact Algorithms on a Line or a Tree

3.3.1.1 Line Case

We first look at the case when the sensors are on a line. We assume that
the input data is integral; specifically, the sensors pi are located at integer
coordinates and the capacities ci for all i are integers. With this assumption,
the optimal schedule can be shown to be periodic.

Lemma 9. The optimal schedule that minimizes data loss is periodic, as-
suming integral input data.

Proof. If the sensors are located at integral positions, the distances between
any two of them are integers as well. Thus, all states of the problem can be
encoded by the position of the mule and the current amount of data at each
sensor i. All of these values are integers. Thus, the total number of possible
states is finite; after a state reappears we realize that the robot must follow
the same schedule, making the schedule periodic.

Theorem 5. Let there be n sensors, p1, p2, . . . , pn on a line. Assume that
the capacities and rates of all sensors are the same: ci = c and ri = 1, for
1 ≤ i ≤ n. Then there exists an optimal path that minimizes data loss with
the following properties: (1) its leftmost and rightmost points are at sensors,
(2) it is a path making U-turns only at the leftmost and rightmost sensors.

Despite the simple and clean statement, the proof is in fact fairly techni-
cal. To provide intuition for Theorem 5, note that paths that have U-turns
not at the outermost points are making a tradeoff of collecting more data
from middle sensors at the cost of having more overflow at the outer sensors.
If this tradeoff is worth it, then we can show it is also worth it to forgo col-
lecting data from some of the outer sensors. The main technical challenge is
to figure out and compare the data rate between the two choices. Below is
the proof of Theorem 5.

Proof. The first claim is obvious since one can remove the portion of the
path beyond the leftmost sensor and shorten the time for one period of the
trip, which results in all covered sensors being visited more frequently than

20

before. Now, let there be an optimal path P with leftmost sensor at xl and
rightmost sensor at xr.

Let us assume that P contains U-turns that do not occur at the extreme
points xl, xr. A U-turn is called a left U-turn if the mule was traveling from
right to left before the turn, and a right U-turn otherwise. Note that one
cycle of P can be split into two sub-paths, a path Pl from xl to xr and a path
Pr from xr to xl. These sub-paths may have U-turns at the extreme points
xl, xr. (In that case, Pl and Pr are not unique.) Without loss of generality,
assume that there are U-turns in the sub-path from xl to xr. Consider the
closest left U-turn to xl and name the point it occurs at zl. Since P is
periodic, we can assume that in one full period, P starts and ends at xl.

Now, we will modify the trip P . Notice that for the mule to make a left
U-turn at zl, it must make a right U-turn in the path from xl to zl. Let the
rightmost such U-turn be zr. We remove the path that begins at the first
time Pl reaches zl to the last time Pl reaches zl. See Figure 4 for an example.

x` z` zr xr x` z` zr xr

Figure 4: Remove a segment of the path to eliminate a U-turn at zl.

After the surgery, we get a schedule without the round trip beginning at
zl. Suppose the trip eliminated has duration δ and the trip after this surgery,
denoted by P ′, has round-trip time length T . That means, the trip P has
duration T + δ.

Since the rate of data accumulation and the bucket size are the same for
all sensors, all sensors take the same amount of time to overflow. As a result,
when a mule travels from right to left and encounters an overflowing sensor
b, then all sensors to the left of b are also overflowing – since the last time
they were visited was definitely before the last time that b was visited.

In the shortened path P ′, the sensors to the left of zl are reached δ time
sooner than in P . In the paths P and P ′, all sensors to the left of zl overflow
in both paths or there exists a sensor to the left of zl that does not overflow
in either P or P ′. Let the leftmost such sensor be yl. We define bl to be the
leftmost of either zl or yl. Let nl denote the number of sensors to the left of
bl. Since all sensors to the left of bl overflow in both P and P ′, the amount of
data lost in those sensors is δnl. Also, note that there exists a path in either

21

P or P ′ from yl to xr to yl where none of the sensors from xr to yl overflow.
The terms br, yr, and nr are defined similarly in the right direction.

Let m denote the amount of overflow for sensors covered by P ′ in one full
period and let n′′ be the number of sensors not covered by the path P ′ (i.e.,
those that are either to the left of xl or the right of xr). The overflow rate is

m/T + n′′ in path P ′ and for P it is m+δ(nl+nr)+e
T+δ

+ n′′ where e is any extra
overflow in P that is not accounted for.

Since P is an optimal path, then m+δ(nl+nr)+e
T+δ

+ n′′ ≤ m/T + n′′. We
simplify this relationship to

nl + nr +
e

δ
≤ m

T
. (1)

Consider a simple periodic path P ′′ only making U-turns at bl and br.
If bl or br is defined by a non-overflowing sensor, then there is no overflow
between bl and br since there exists a longer path between bl and xr (or br
and xl) in P or P ′ that does not cause any sensor to overflow. Thus the
overflow rate of the path is just nl + nr + n′′. If bl is zl and br is zr then the
overflow rate of the path is nl + nr + e′

δ
+ n′′ where e′ is the extra overflow.

Note that by definition, e′ ≤ e since a cycle of P ′′ is shorter than the path
cut out in P . For either case, the overflow rate of the direct periodic path
between bl and br is bound by nl + nr + e′

δ
+ n′′. By Equation 1,

nl + nr +
e′

δ
+ n′′ ≤ m

T
+ n′′

(T + δ)(nl + nr + e′

δ
)

T + δ
≤ m

T + δ
+
δ(nl + nr + (e

δ
))

T + δ

nl + nr +
e′

δ
+ n′′ ≤ m+ δ(nl + nr) + e

T + δ
+ n′′

Since P is optimal, the direct path must be optimal as well. Therefore,
there exists an optimal path that is direct with only U-turns at the extreme
points.

The immediate consequence from Theorem 5 is that one can find the
optimal schedule in O(n2) time, enumerating all possible pairs of extreme
points.

It is important to note that it is sometimes necessary for the mule in
the optimal solution to gather data more than once from a given sensor in

22

a period. In Figure 5, sensors are split into six groups, where each group
has either k or 2k sensors. Within each group, each sensor has the same
x-coordinate. In the optimal solution, the data mule traverses the entire
interval back and forth, picking up data whenever it reaches a sensor. This
solution has data gathering rate 10.5k

2
= 5.25k. In comparison, the best

solution that gathers data from a sensor at most once per period has rate 4k.

0.25

0.125 0.125

0.25 0.25

2k 2kk k k k

Figure 5: The optimal solution repeats sensors

3.3.1.2 Tree Case

We extend our results to a tree topology, with the sensors placed on a
tree network embedded in the plane. Then, we show that the structure of
an optimal schedule for the mule is to follow (repeatedly) a simple cycle (a
doubling of a subtree). Again we assume that all sensors have the same
capacity c and the same rate, 1, of data accumulation. We also assume that
the input is integral, i.e., c is an integer and the distance between any two
sensors on the tree network is an integer.

Theorem 6. Let there be n sensors, p1, p2, . . . , pn on a tree G. For all pi,
1 ≤ i ≤ n, let ci = c and ri = 1, i.e. let the capacity and rates of all sensors
be the same. There exists an optimal path that minimizes data loss with the
following properties: (1) it only changes direction at sensors, (2) it is a cycle
obtained by doubling a subtree.

Proof. For the first claim, we argue that any path that contains a U-turn that
does not coincide with a sensor can be shortened to the preceding sensor. The
shortened path will visit all nodes more frequently and will not lose any more
data than the original path.

Our argument for the second claim is similar to the proof for the line case.
Let there be an optimal path P that is not a cyclic, depth-first traversal on
a subtree G′ of G. We denote the set of nodes X = {x1, x2, . . . , xm} to be
leaves of G′. Therefore, the path P must contain subcycles that do not visit
any node in X.

23

Let the path Pi denote a section of P that begins at xi and ends at earliest
visit to any other node in X. Without loss of generality, let Pi contain a
subcycle. We denote the node zb to be the closest node in Pi to xi that is
also part of a subcycle.

Since P is periodic, we can assume that in one full period, P always starts
at xi and ends at xi. Beginning at xi, the mule travels past zb along Pi and
returns back to zb without visiting any nodes in X. Let this path be denoted
as S.

Now, we will modify the trip P by removing S. Suppose S has duration δ
and the path after this subcycle is removed, denoted by P ′, has duration T .
That means, the trip P has duration T + δ. We now calculate the overflow
rate of one entire cycle with and without the subcycle S.

Let Y denote the set of sensors that overflow in both P and P ′ but are
reached δ time sooner in P ′. Also, let |Y | = n′ and R = P \ Y . Note that
S ⊆ R.

Let m denote the amount of overflow in P ′ in one full period not including
the overflow of the n′′ nodes that P and P ′ miss altogether. The overflow
rate is m/T +n′′ in path P ′ and m+δ·n′+ε

T+δ
+n′′ in path P where ε is any extra

overflow in P that is not accounted for. Since P is an optimal path, then
m+δn′+ε
T+δ

+ n′′ ≤ m/T + n′′. We simplify this relationship to

n′ +
ε

δ
≤ m

T
. (2)

Consider a cyclic, depth-first traversal P ′′ on the subtree R. If R \ S 6=
∅, then there is no overflow within the subtree since there exists a path
beginning at xi that reaches all nodes in R without overflowing. Thus the
overflow rate of the path on R is n′ + n′′. If R = S then the overflow rate of
the path is n′+ ε′

δ
+n′′ where ε′ is the extra overflow. Note that by definition,

ε′ ≤ ε since P ′′ is shorter than or has the same duration as S. For either
case, by the overflow rate is bound by n′ + ε′

δ
+ n′′. By Equation 2,

n′ +
ε′

δ
+ n′′ ≤ m

T
+ n′′

T (n′ + ε′

δ
)

T + δ
+
δ(n′ + ε′

δ
)

T + δ
≤ m

T + δ
+
δ(n′ + ε

δ
)

T + δ

n′ +
ε′

δ
+ n′′ ≤ m+ δn′ + ε

T + δ
+ n′′

24

Since P is optimal, the direct path on R must be optimal as well.
Therefore, there exists an optimal path that is a cyclic, depth-first traver-

sal on a subtree of G.

A consequence of Thereom 6 is that we can compute an optimal mule
route (we can identify an optimal subtree of G) in time that is pseudo-
polynomial, using a dynamic programming algorithm.

It is unlikely that there is a strongly polynomial time algorithm for an
exact solution, since we show that the problem is weakly NP-hard.

3.3.2 Hardness

We show that single mule scheduling on a tree is weakly NP-hard. Further,
we show that the data gathering problem for a single mule and sensors in
Euclidean (or any metric) space is NP-hard.

Theorem 7. The data gathering problem scheduling a single mule among
uniform capacity sensors on a tree is (weakly) NP-hard.

Proof. Our reduction is from PARTITION (or SUBSET-SUM): given a set
S = {x1, . . . , xn} of n integers, does there exist a subset, S ′ ⊂ S, such that∑

xi∈S′ xi = M/2, where M =
∑

i xi? Given an instance of PARTITION, we
construct a tree as follows: There is a node v connected to a node u by an
edge of length M/2. Incident on v are n additional edges, of lengths xi; the
edge of length xi leads to a node where there are exactly xi sensors placed.
Also, at node u there are M2 sensors placed. (If one disallows multiple
(x > 1) sensors to be at a single node w of the tree, we can add x very short
(length Θ(1/n)) edges incident to w, each leading to a leaf with a single
sensor.) Consider the problem of computing a maximum data-rate tour in
this tree, assuming each sensor has capacity 2M . Then, in order to decide if
it is possible to achieve data collection rate of M2 +M/2 we need to decide if
it is possible to find a subtree that includes node u (where the large number,
M2, of sensors lie) and a subset of nodes having xi sensors each, with the sum
of these xi’s totalling exactly M/2. (If the sum is any less than M/2, we fail
to collect enough data during the cycle of length 2M that is allowed before
data overflow; if the sum is any more than M/2, we lose data to overflow at
u, which cannot be compensated for by additional data collected at the xi
nodes, since M2 is so large compared to xi.)

25

Theorem 8. The data gathering problem scheduling a single mule among
uniform capacity sensors in the Euclidean (or any metric) space is NP-hard.

Proof. We reduce from the Hamiltonian cycle problem in a grid graph where
n points are on an integer grid and an edge exists between two points if and
only if they are unit distance apart. If we place a sensor at each point with
capacity n, it follows that there exists a Hamiltonian cycle in this graph if
and only if there exists a data gathering solution with no data loss.

3.3.3 Approximation Algorithm

Theorem 9. For uniform capacity sensors in fixed dimension Euclidean
space, there exists a (1/3−ε)-approximation for maximizing the data gather-
ing rate of a single mule. For general metric spaces, a (1/6−ε)-approximation
exists.

Proof. In order to achieve this, we approximate the maximum number of
distinct sensors a mule can cover in time c/2, the amount of time for sensors
to fill from empty to half capacity (it can be shown that one half capacity is
the optimal choice). The result will be a path, to which we assign one mule
to traverse back and forth. The data gathering rate of this solution is equal
to the number of distinct sensors covered as a mule on a schedule with period
t will collect exactly t units of data from each sensor. We denote R to be the
maximum number of distinct sensors that can be covered by a path of length
c/2. Note that R can be approximated to within a factor of 1 + ε in fixed
dimension Euclidean space using the PTAS for orienteering [31]. In general
metric spaces, R can be approximated to within a factor of 2 + ε [30]. Let
R∗ be the data gathering rate of the optimal solution. We now show that
R∗ ≤ 3R.

Consider the interval of time c/2 in the optimal solution that has the
highest data gathering rate. This is an upper bound on R∗. In this time
period, we know that the number of distinct sensors visited is at most R.
We also know that during this time period at most 3

2
c units of data can

be downloaded from any visited sensor (at most c units of data immediately
downloaded and at most c/2 units of data downloaded after c/2 units of time
have passed). Therefore, the total amount of data collected in the optimal
solution during this period of time is at most 3

2
cR. Averaging the data

collected over the time interval c/2, the data gathering rate of the optimal
solution is at most 3R.

26

3.4 k-Mule scheduling

Given a budget of k data mules, we now consider the problem of maximizing
the total data gathering rate of these mules. We assume the n sensors have
uniform capacity, unit data rate, and unit velocity. It is important to note
that even with sensors on a line, the optimal solution may not assign mules
to private tours; sensors may need to be visited by multiple mules. Consider
an input with two mules and sensors uniformly spaced c/4 apart from one
another. Any time a mule makes a U-turn, it will gather only c/2 data from
the next sensor it visits. In order to maximize the frequency of full buckets
collected, we want to minimize the frequency of U-turns made. This can be
done by maintaining separation of length c between the mules and having
the mules zig-zag across (nearly) the entire line (see Figure 6). Interestingly,
this example also shows that mules can travel arbitrarily far distances.

mule 2

mule 1

Figure 6: With two data mules and sensors uniformly spaced c/4 apart, many
sensors will be visited by both mules in the optimal solution.

3.4.1 Sensors on a line

Theorem 10. Given a budget of k data mules, for uniform capacity sensors
on a line, there exists a 1/3-approximation for maximizing the data gathering
rate.

Proof. Similar to the case when k = 1, we find the maximum amount of
distinct sensors that k mules can cover in time c/2 (it can be shown that half
capacity is the optimal choice). The result will correspond to a set of disjoint
intervals; we assign one mule to each interval. The duration of a cycle for
each mule is the length of time a sensor fills up to capacity so no sensor is
allowed to overflow. Therefore, the data gathering rate of this solution, call
it R, is equal to the number of sensors covered. Note that R, the maximum
amount of distinct sensors that can be covered by k disjoint intervals of length
at most c/2, can be computed exactly in polynomial time using dynamic
programming. Let R∗ be the data gathering rate of the optimal solution. It

27

follows from the same argument given for the k = 1 case (Theorem 9) that
R∗ ≤ 3R.

3.4.2 Sensors in a general metric space

Theorem 11. Given a budget of k data mules, for uniform capacity sensors
in a general metric space, there exists a 1

3
(1− 1

eβ
)-approximation with β = 1

2+ε

for maximizing the data gathering rate. In fixed dimension Euclidean space
there exists a 1

3
(1− 1

eβ
)-approximation with β = 1− ε.

Proof. The proof is similar to the proof of Theorem 9. In order to approxi-
mate the maximum amount of distinct sensors that k mules can cover in c/2
time, we compute an orienteering path with a travel distance budget of c/2
on the uncovered sensors. We repeat this operation for a total of k times.
In the Maximum Coverage problem, one is given a universe of elements, a
collection of subsets, and an integer k. The objective is to maximize the num-
ber of elements covered using k subsets. It has been shown by Hochbaum et
al. [57] that greedily choosing the set with the largest number of uncovered
elements k times yields a (1 − 1

e
)-approximation. Interestingly, Hochbaum

et al. also show that using a β-approximation for covering the maximum
amount of uncovered elements in each of the k rounds yields a (1 − 1

eβ
)-

approximation. Computing orienteering k times on only the remaining un-
covered sensors, we achieve a 1

(2+ε)
-approximation each round and therefore

a (1 − 1
eβ

)-approximation for β = 1
2+ε

for covering the maximum amount of
sensors with k mules. Using similar arguments as the case where k = 1 (The-
orem 9), it is now easy to see that having mules traverse the k orienteering
paths back and forth yields a 1

3
(1− 1

eβ
)-approximation.

3.5 No Data Loss Scheduling

In situations in which it is not possible for a fixed number of data mules to
collect all data in the network, it is natural to increase the number of data
mules and let them collectively finish the data collection task. In the no data
loss scheduling problem, we seek to minimize the number of mules in order
to avoid data loss. Throughout this section we assume that all sensors have
unit data rate, unit velocity, and uniform capacity.

28

3.5.1 Exact Algorithm on a Line

When sensors all lie along a line, we show that the problem can be solved
in polynomial time. As before, we can assume that the sensors lie at integer
coordinates so that, by the same argument as in Lemma 9, the mules in an
optimal solution follow periodic schedules.

Lemma 10. For the minimum cardinality data mule problem with no data
loss, if the sensors have uniform capacity and lie on a line, there is an optimal
schedule in which all mules follow periodic cycles, zigzaging within disjoint
intervals, each with length at most c/2.

Proof. The proof is by induction on the number of sensors. If there is only
one sensor, then one mule is enough and it remains stationary at the sensor;
this is a trivial zigzag schedule.

Suppose we have n sensors and consider the schedule of one optimal
solution using k∗ mules. The mule i follows along a periodic schedule Ci
visiting a set of sensors Si. Without loss of generality we can assume the
mules in this optimal schedule do not visit any point to the left of the leftmost
sensor. Consider the leftmost sensor, p1, and the mules that collect data
from it. If p1 is visited by more than one mule, we will find another optimal
schedule in which p1 is visited by only one mule. To see this, we first fix a time
t1 when p1 is visited by some mule, denoted as the first mule m1. Suppose
the next visit to p1 is by a different mule, say m2, at time t2. Clearly, at the
time when m1 visits p1, m2 is to the right of p1. Later, at the time when m2

is visiting p2, m1 is to the right of p1. By continuity of motion, there must be
a time in [t1, t2] such that m1 and m2 meet. At the intersection we can swap
the motion plan of m1 and m2. So m1 turns back to visit p1 and m2 turns
back and follow the original motion plan of m1. This modification does not
change the data rate, so the modified schedule collects all data and remains
optimal. Similarly, if p1 is later visited by another mule m3, we perform the
same swap. This way p1 is exclusively visited by one mule, m1.

Since p1 is only visited by a single mule, m1, the schedule C1 does not
visit any node that is more than distance 1/2 away from p1 to the right
(otherwise m1 does not have enough time to go back to p1 before its bucket
becomes full). Thus we can assume without loss of generality that C1 is a
simple zig-zag tour on an interval I1 of length c/2 with p1 as the left endpoint.
All sensors in this interval can be collected by this mule without data loss.
Thus, we can modify the schedule for all other mules such that they do not

29

need to visit any nodes in I1. Clearly, k∗ − 1 mules are sufficient to collect
data from the remaining sensors with no data loss. Since there are at most
n− 1 sensors to be covered, by the induction hypothesis there is a schedule
of k∗− 1 mules covering disjoint intervals. Together with the first mule, this
is the disjoint schedule whose existence is claimed.

By the above structural lemma, we can use a simple greedy algorithm to
minimize the number of data mules necessary to collect data, without loss,
for sensors on a line: Starting at the leftmost sensor, schedule a mule to
zigzag within an interval of length c/2 whose left endpoint is the leftmost
sensor, and then continue to the right, adding further intervals of length c/2
until all sensors are covered. This is an O(n) algorithm for n (sorted) sensors.

3.5.2 Hardness

Theorem 12. For uniform capacity sensors in the Euclidean plane (or a gen-
eral metric space), the problem of minimum cardinality data mule scheduling
with no data loss is (strongly) NP-hard.

Proof. Similar to the reduction for Theorem 8, the reduction is from Hamil-
tonian cycle in a grid graph. We place a sensor with capacity n at each of the
n nodes in the graph and observe that one mule suffices to cover all sensors
with no data loss if and only if a Hamiltonian cycle exists in the graph.

3.5.3 Approximation Algorithm

In the following we describe an algorithm achieving a constant-factor approx-
imation.

It is tempting to think that an optimal solution will allocate each mule
to cover an exclusive set of sensors S ′, that are not covered by other mules.
We denote such a set of tours as a private tour set on S ′. However, the
following example shows that this is no longer the case when sensors lie in
the plane. Consider n > 2 sensors placed on a circle, uniformly spaced with
adjacent sensors at (Euclidean) distance exactly c − 1/n. The convex hull
of these sensors is a regular n-gon of perimeter n(c − 1/n) = nc − 1. The
optimal solution would use n− 1 mules, with each mule touring periodically
at constant speed (1) along the boundary of this n-gon, with time/distance
separation of exactly c between consecutive mules. This ensures that each
sensor is visited exactly when its storage (bucket) becomes full. However,

30

any solution using private tours will have to use n mules, since no mule can
use a private tour to cover two or more sensors (since it would have length
at least 2c− 2/n > c).

While it may be that no private tour set is optimal, we now argue that
the optimal schedule using only private tours is provably close to optimal (in
terms of minimizing the number of data mules). Denote by k∗ the minimum
number of cycles, each of length at most c, to cover all nodes, which is denoted
as a light cycle cover. And denote by m∗ the minimum number of data mules
required to collect all data.

Lemma 11. m∗ ≤ k∗ ≤ 2m∗.

Proof. First, note that using k∗ mules, each traversing a (private) light cycle,
results in all data being collected; thus, m∗ ≤ k∗.

Now consider an optimal schedule of m∗ data mules. Mule i moves along
a schedule Ci. Consider any particular time t. Each sensor j is visited by
at least one mule. We assign it to the mule that visits it first, i.e., at the
earliest time after t. We know this time is at most c, since no data is lost at
sensor j. Thus, consider mule i, at current position pi (at time t) and all the
sensors along Ci that are assigned to it. They all lie on a path (along Ci)
of length at most c. Let si be the sensor furthest away from pi, measuring
distance along Ci. Let γi be the corresponding path along Ci, from pi to si.
Let bi be the midpoint of this path. Place a clone of mule i at point si, and
create two private cycles for mule i and his clone: one cycle goes from pi to
bi along γi, then returns to pi directly (along a shortest path or a straight
segment), the other goes from bi to si along γi, then returns to bi directly.
Mule i traverses the first cycle; his clone traverses the second cycle. Do this
for all mules.

We have doubled (via cloning) the number of mules, but now each mule/clone
has a private cycle, of sensors assigned only to it, and these cycles are each of
total length at most c. Thus, this is a valid solution to the light cycle cover
problem. Thus, the minimum number of light cycles, k∗ is no greater than
2m∗.

By the above lemma, an α-approximation for the minimum light cycle
cover gives a 2α-approximation for the minimum number of data mules.
Arkin et al. [13] gave a 6-approximation algorithm for the minimum light
cycle cover problem; thus, we have a 12-approximation for minimum data
mule scheduling. This is summarized in the following theorem.

31

Theorem 13. For uniform capacity sensors within a general metric space
or in the Euclidean plane, computing the minimum number of data mules
to collect all data is NP-hard. There is a polynomial-time 12-approximation
algorithm for sensors in a general metric space.

3.6 Different Capacities

We now consider both the k-mule scheduling problem and the no data loss
scheduling problem on n sensors with potentially different sensor storage ca-
pacities. Each sensor has unit data rate. The result for the k-mule scheduling
problem obviously holds for the single mule problem (i.e. when k = 1).

3.6.1 k-Mule Scheduling

Lemma 12. With m groups of sensors, each group having the same storage
capacity, optimally solving each group independently and taking the solution
with the highest data gathering rate yields a O(1/m)-approximation to the
k-mule scheduling problem.

Proof. Let r(·) be the data gathering rate of a solution. Let OPTi be the
optimal solution to group i and let OPT be the schedule with highest data
rate. r(OPT) ≤ ∑m

i=1 r(OPTi) ≤ m · max
i
{r(OPTi)}. The first inequality

is from the following observation. Consider the optimal schedule OPT and
modify it such that we only visit the nodes in group i. This is obviously a
solution for collecting data from group i and thus has data rate no greater
than r(OPTi).

Let cmax and cmin be the storage capacities of the largest and smallest
sensors respectively. We round the storage capacity of each sensor down to
its nearest power of two. Doing so, we create m groups of sensors where m is
at most log(cmax

cmin
). Note that m may be significantly smaller than log(cmax

cmin
).

In the rounding down process, the storage capacity of each sensor is at most
halved, thus the optimal solution on the new sensors has data gathering rate
of at least 1/2 of the same solution before rounding. We approximate the
optimal solution to each of the groups within a constant factor and choose the
one with highest data gathering rate. By Lemma 12, we have the following.

Theorem 14. By rounding down the sensor capacities into m ≤ log(cmax
cmin

)
groups, the group with highest data gathering rate has rate at least O(1/m) ·
r(OPT) where OPT is the optimal solution to the k-mule scheduling problem.

32

3.6.2 No Data Loss Scheduling

Theorem 15. By rounding down the sensor capacities into m ≤ log(cmax
cmin

)
groups and solving each group independently, at most O(m) · |OPT | mules
are used in total, where |OPT | is the minimum number of mules needed to
avoid data loss.

Proof. Using the same rounding technique as the previous section, we again
obtain m groups of sensors with m ≤ log(cmax

cmin
). In the rounding down

process, the capacity of any sensor is at most halved. Thus, the optimal
solution on the rounded down sensors requires at most two times the number
of mules as the optimal solution to the original set of sensors. Let |OPTi|
be the minimum number of mules needed for no data loss to occur in group
i and let |OPT | be the number of mules in the optimal solution. Since
|OPT | ≥ |OPTi| for 1 ≤ i ≤ m, we have that m · |OPT | ≥ ∑m

i=1 |OPTi|.
Approximating |OPTi| within a constant factor for all i, we use O(m) ·|OPT |
mules.

3.7 Practical Algorithms

Our discussion on mule scheduling algorithms have focused on getting the
best theoretical approximations. Although some of the algorithms (especially
the one for the case of a line) are practical and implementable, some of the
other algorithms mentioned depend on solving the orienteering problem or
k-TSP problem. These algorithms are too complicated for practical imple-
mentation. In this section we try to find heuristic algorithms that are easily
implementable. We also discuss upper and lower bounds that can be used
to estimate the optimal solution and provide comparisons for the heuristic
algorithms. These are tested in our simulations.

3.7.1 Single Mule Scheduling

3.7.1.1 Lower Bounds

For maximizing data rate by a single mule, any algorithm giving a feasible
solution will be a lower bound. We run approximation algorithms of TSP
on the entire point set, then traverse the TSP in one direction, searching all
windows of variable length w in the tour. Each window starts at a distinct
point p in the TSP and is pinned to the point that is farthest away from p

33

along the TSP and still within length w. Thus, these windows will always
be pinned to two points in the TSP. We can then traverse these interval
back and forth and determine the data gathering rate. For example, suppose
w = 1 and suppose this interval covers r nodes, then cycling through the
r nodes gives data rate of at least r/2. We will refer to this algorithm as
‘shifted window along TSP’.

3.7.1.2 Upper Bounds

To get an upper bound on the highest data rate by a single mule, we start
from the optimal schedule to discuss how to estimate it from above.

Let S be a set of nodes in the plane and let P be the optimal schedule
with data rate of R. If the length of P is greater than one, then there must
be a unit length interval along P such that the data gathering rate is at least
R, by pigeon hole principle. Now we take such a unit length interval and
denote it P ′. Suppose the number of nodes covered (with repeats) by P ′ is
h and the set of nodes is H. h ≥ |H|. Note that in a unit length interval,
a node can be considered to be visited at most twice because if a node is
visited three times, the second visit can always be skipped and no data will
be lost. Thus each node in H is visited at most twice in P ′. h ≤ 2|H|. In
addition, R ≤ h since we collect at most a full bucket of data at each node.
Thus we have an upper bound 2|H| on the optimal data rate. Since we do
not know the optimal schedule, we do not know H either and this upper
bound is not immediately useful. In the following we do further relaxation
and find an upper bound on |H|.

Recall that the set of nodes in H can be connected by a path of length
at most 1. Therefore if we can find the maximum number of nodes visited
by a path of length at most 1, then we have an upper bound on |H|. This
is an instance of an orienteering problem and is still hard to solve. But we
know that this set H is fully contained in a square of unit side length. The
distance between the leftmost and rightmost point in H is at most 1. The
same can be said in the vertical direction. Thus, if we lay out a grid over
our point set with cell side length of 1/2, we know that there exists a 3× 3
square in the grid that contains any unit square, and therefore we can find
such a square that contains H.

We enumerate all 3 × 3 squares in the grid and on each square we run
Kruskal’s algorithm until the sum of the edge weights exceeds 1. We choose
the 3 × 3 square that maximizes the number of points picked up. Call this

34

point set K. By the aforementioned argument, we know that |K| ≥ |H|.
Since points in H can be repeated at most twice in the optimal schedule, we
conclude that the optimal data gathering rate is at most 2|K|.

3.7.2 No Data Loss Scheduling

By Lemma 11, a solution to the minimum light cycle cover is a valid solution
to our minimum cardinality mule scheduling problem with no data loss and is
a natural upper bound. Further, if we have a lower bound L on the minimum
light cycle cover problem, L ≤ k ≤ 2k∗ then L/2 is a lower bound on the
number of mules needed. Thus in the following we discuss upper and lower
bounds on the minimum light cycle cover problem.

Besides the algorithm by Arkin et al. [13], The following algorithm pro-
vides a solution (upper bound) on the optimal number of data mules. Take
the minimum spanning tree of the set of sensors and remove all edges of length
1 or more. This leaves a number of connected components S1, S2, · · · , Sk. For
each connected component Si, we can duplicate each edge to form a Euler
tour. Remove duplicate occurrences of any node on this tour and we get a
cycle Ci to visit the nodes in Si. If Ci has length `i, we use d`iemules along Ci
with uniform timewise separation. This algorithm is called ‘chopped MST’.

3.8 Simulations

In this section we show the results of implementations of the upper and lower
bounds that were discussed in the previous section.

3.8.1 Single Mule Simulations

We generated one hundred different point sets. For each instance we gener-
ated 500 uniformly distributed points in a 5 × 5 square and computed shifted
window along TSP with window lengths between 0.5 and 1.0 in increments
of 0.05. We compare the results to the grid based upper bound. Figure 7
shows the results. With window length 0.7, the worst ratio over all point
sets was roughly 0.18353. i.e. the data gathering rate of a mule following our
heuristic was 0.18353 times as fast as the rate produced by the grid based
upper bound. In order to compare to a sparser point set, we ran the same
experiment in a 10 × 10 square (see Figure 8) and noticed improved results.

35

Figure 7: Shifted window along TSP of uniformly distributed point sets in a
5 × 5 square.

Figure 8: Shifted window along TSP of uniformly distributed point sets in a
10 × 10 square.

36

We also computed shifted window along TSP on the 4,663 cities of Canada
[1] (see Figure 9) with varying window lengths. The point set was scaled down
so that the average distance between any two points is 1.

Figure 9: Shifted window along TSP of 4,663 cities of Canada.

3.8.2 No Data Loss Simulations

First, we generated one hundred point sets, each set containing 200 points.
For each set, we generated 10 uniformly distributed points in a 5× 5 square.
Centered at each of these points we generated 20 uniformly distributed points
in a 1×1 square and discarded the center point. Over all point sets, we com-
pared the number of mules used in a chopped MST solution to the number
of mules used in a light cycles solution. The results can be seen in table 3. In
addition to the results in this table, we found that the point set with highest
ratio of number of mules used in a light cycles solution to number of mules
in a chopped MST solution was 1.46154. The lowest ratio was 1.18868. We
repeated this experiment for a 10× 10 square (see table 4). The highest and
lowest ratios were 1.45652 and 1.16949 respectively.

We computed chopped MST on the cities in Canada (fig 10). The points
were scaled down so that the average distance between any two points is
10. 602 mules are enough to cover these points. Note that there are edge
crossings in this solution because we used a two approximation to compute
TSP.

37

Chopped MST Light Cycles

Best 39 53

Worst 55 69

Average 47.45 62.75

Table 3: Number of mules used in chopped MST vs. light cycles in 5 × 5
square.

Chopped MST Light Cycles

Best 45 62

Worst 59 75

Average 52.04 67.58

Table 4: Number of mules used in chopped MST vs. light cycles in 10 × 10
square.

(i) (ii)

Figure 10: (i) Chopped MST on 4,663 cities of Canada. 602 mules used; (ii)
Approximation of minimum light cycles on 734 cities of Uruguay. 85 mules
used.

38

We also tested the approximation algorithm to minimum light cycles.
This algorithm runs significantly slower than chopped MST. Therefore, we
used the 734 cities of Uruguay [1] (fig 10). The point set was scaled down so
that the average distance between any two points is 1. 85 mules are enough
to cover these points. For comparison, chopped MST produces a TSP on
the entire point set and uses 50 mules. We also scaled the Uruguay point
set so that the average distance between any two points is 10. This time the
approximation to minimum light cycles outperformed chopped MST using
436 and 470 mules respectively.

39

Chapter 4

Choice is Hard‡

4.1 Introduction

A multiple choice problem consists of a set of color classes P = {C1, C2, . . . , Cn},
where each color class Ci consists of a pair of objects. When the underlying
objects are points (resp., intervals) on the x-axis, we say that P is a set of
point (resp., interval) color classes. Consider a set P of point color classes.
We call an interval on the x-axis that contains at most one point from each
color class a conflict-free interval (or CF-interval for short). Given a set of
color classes P and a set Q ⊆ ∪ni=1Ci, we say that Q is a rainbow if it con-
tains at most one object from each color class. The first problem that we
study (rainbow minmax gap) is mentioned in a recent paper by Consuegra
and Narasimhan [37].

Rainbow minmax gap (decision version): Given a set P of n point color
classes and a value d > 0, determine whether there exists a rainbow Q of size
n with max gap at most d, where the max gap of Q is the maximum distance
between a pair of consecutive points in Q.
This problem is the 1-dimensional version of a more general 2-dimensional
problem. Consider a set of agents (represented by points in the plane) where
each agent provides a certain service, and for each of these services, there
are several agents in the set providing this service. The goal is to compute a
minimum bottleneck spanning tree consisting of exactly one agent for each
of the available services. In [37], the authors present a 2-approximation algo-
rithm for rainbow minmax gap, but leave the question whether the problem
is NP-hard or not open. In Section 4.3 we prove that the problem is NP-hard.

In order to obtain this result we define a new and especially simple satisfi-
ability problem, which we call linear SAT (or LSAT for short), and prove that
it is still NP-complete. A 3-SAT formula is an LSAT formula if each clause
(viewed as a set of literals) intersects at most one other clause, and, more-
over, if two clauses intersect, then they have exactly one literal in common.

‡This chapter is based on joint work with Esther M. Arkin, Aritra Banik, Paz Carmi,
Matthew J. Katz, Joseph S. B. Mitchell and Marina Simakov. The work in this chapter
appeared in ISAAC 2015 [8].

40

An LSAT formula can be depicted as a set of disjoint semi-closed intervals
on a line, see Figure 11. We prove that the problem of deciding whether an
LSAT formula is satisfiable or not is NP-complete. This is quite surprising,
since the satisfiability problem for the class of formulas that can be depicted
as disjoint closed intervals on a line is already polynomially solvable. We
believe that the NP-completeness of LSAT may be useful in deriving other
hardness results. In particular, we use LSAT to prove NP-hardness of the
following two multiple choice problems, see Section 4.3.

Rainbow piercing: Given a set P of point color classes and a set of inter-
vals I on the x-axis, determine whether there exists a rainbow Q that is a
piercing set for I (i.e., each interval in I is pierced by at least one point in Q.)

Rainbow covering: Given a set P of interval color classes, i.e., where each
color class Ci is a pair of intervals on the x-axis, and a set of points S on the
x-axis, determine whether there exists a rainbow Q that covers S (i.e., each
point in S is covered by at least one interval in Q).

A fascinating related problem is: cover exactly one point from each color
class using a minimum number of (arbitrary) intervals. This problem is moti-
vated by the following problem. Consider a sensor network where two sensors
(points) have the same color if they generate the same data. The goal is to
collect data from each color class of sensors. Covering a set of points with an
interval is equivalent to using one transceiver to retrieve data from a set of
sensors. In order to prevent all data from a color class from being corrupted
by a malicious attack, we only allow one sensor from each color class to in-
teract with a transceiver; the other sensors act as backups.

Covering color classes with intervals of arbitrary length: Given a
set P of point color classes, find a minimum-cardinality set I of intervals of
arbitrary length, such that exactly one point from each color class is covered
by an interval in I.
In Section 4.4 we show that this problem is NP-hard, by first showing that
the following simpler problem is NP-hard.

Covering color classes with unit length intervals: Given a set P of
point color classes, decide whether or not there exists a set of unit length
intervals, I, such that exactly one point from each color class is covered.
Assuming a feasible solution exists, minimize the cardinality of I.

41

Related work. As far as we know, the first to consider a “multiple-choice”
problem of this kind were Gabow et al. [46], who studied the following prob-
lem. Given a directed acyclic graph with two distinguished vertices s and t
and a set of k pairs of vertices, determine whether there exists a path from s
to t that uses at most one vertex from each of the given pairs. They showed
that the problem is NP-complete. A sample of additional graph problems of
this kind can be found in [11,58,86]. The first to consider a problem of this
kind in a geometric setting were Arkin and Hassin [12], who studied the fol-
lowing problem. Given a set V and a collection of subsets of V , find a cover
of minimum diameter, where a cover is a subset of V containing at least one
representative from each subset. They also considered the multiple-choice
dispersion problem, which asks one to maximize the minimum distance be-
tween any pair of elements in the cover. They proved that both problems are
NP-hard. Recently, Arkin et al. [10] considered the following problem. Given
a set S of n pairs of points in the plane, color the points in each pair by red
and blue, so as to optimize the radii of the minimum enclosing disk of the red
points and the minimum enclosing disk of the blue points. In particular, they
consider the problems of minimizing the maximum and minimizing the sum
of the two radii. In another recent paper, Consuegra and Narasimhan [37]
consider several problems of this kind, including the rainbow minmax gap
problem, for which they present a 2-approximation algorithm (and we prove
NP-hardness).

4.2 A New Satisfiability Result

In the boolean satisfiability problem (SAT), one is given a formula in con-
junctive normal form and the goal is to determine whether it is satisfiable
or not. SAT is one of the first problems that was shown to be NP-complete
(by Cook [38]). Subsequently, many variants of SAT were shown to be NP-
complete, including the variant known as 3-SAT, in which each clause consists
of at most three literals [25, 67, 87]. Some restricted variants of SAT can be
solved in polynomial time [15, 41, 68]. In this subsection we define an espe-
cially simple variant of 3-SAT, which we call linear SAT (LSAT for short),
and prove that it is NP-complete. A 3-SAT formula is an LSAT formula if
each clause (viewed as a set of literals) intersects at most one other clause.
Moreover, if two clauses intersect, then they have exactly one literal in com-
mon. Let F be an LSAT formula and let T be its corresponding set of literals,

42

(z1 ∨ z2 ∨ z3)

z1 z2 z3 z4 z5z1 z2 z3z4 z5 z6 z7z6 z7

(z1 ∨ z4)(z4 ∨ z2) (z4 ∨ z5 ∨ z3) (z6 ∨ z7 ∨ z5) (z5 ∨ z6 ∨ z7)

Figure 11: An example of an LSAT formula.

then F can be depicted as in Figure 11. That is, one can sort the literals in
T , such that (i) each clause of F corresponds to at most three consecutive
literals in the sorted list, and (ii) each clause shares at most one of its literals
with another clause, in which case this literal is extreme in both clauses.

Observe that if the clauses of a 3-SAT formula F are pairwise disjoint,
then one can determine in polynomial time whether F is satisfiable or not, by
determining whether the corresponding bipartite graph in which there is an
edge between clause C and variable x if and only if either x or x appear in C
contains a perfect matching. It is therefore somewhat surprising that LSAT
is NP-complete, since the clauses of an LSAT formula are almost pairwise
disjoint. We now prove that LSAT is NP-complete by a reduction from
3,4-SAT. A 3-SAT formula is a 3,4-SAT formula if each variable appears in
at most 4 clauses, either negated or unnegated. 3,4-SAT was shown to be
NP-complete by Tovey [87].

Let F be a 3,4-SAT formula, let X be the underlying set of variables,
and let C be the set of clauses of F . Without loss of generality, we assume
that each variable xi ∈ X appears unnegated (i.e., as xi) in at most three
clauses and negated (i.e., as xi) in at most two clauses. We construct an
LSAT formula FL = (XL, CL) from F , and show that there is a truth as-
signment for X such that each clause in C is satisfied if and only if there
is a truth assignment for XL such that each clause in CL is satisfied. We
construct XL from X as follows. For each variable xi ∈ X we add to XL

the variables xi, ai, yi1, yi2, yi3, zi1, zi2. Also, for each variable xi we add the
following clauses to CL:

1. (yi1 ∨ xi) 2. (xi ∨ ai) 3. (yi2 ∨ ai) 4. (ai ∨ yi3) 5. (zi1 ∨ xi) 6. (xi ∨ zi2) .

Observe that clause 1 and clause 2 share xi, clause 3 and 4 share ai, and
clause 5 and 6 share xi. Now, for each clause Ci ∈ C, we add a clause to CL
as follows. For each variable xi that appears in Ci, if xi appears unnegated,
then we replace it by yi1, yi2, or yi3, depending on whether this is the first,
second, or third occurrence of xi, and if xi appears negated, we replace it by

43

zi1 or zi2, depending on whether this is the first or second occurrence of xi.
For example, given the formula

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4 ∨ x2) ∧ (x1 ∨ x4 ∨ x2) ,

we create the following three clauses (in addition to the six clauses that are
created for each of the variables x1, x2, x3, x4).

(y11 ∨ y21 ∨ z31), (y12 ∨ y41 ∨ z21), (y13 ∨ z41 ∨ z22) .

It is easy to see that the obtained formula, FL, is indeed an LSAT formula,
since each clause in CL that was obtained from a clause in C by replacement
does not share any of its literals with another clause in CL.

Theorem 16. F is satisfiable if and only if FL is satisfiable.

Proof. Assume F is satisfiable, that is, there exists a truth assignment for
X such that each clause in C is satisfied. We show that FL is satisfiable.
If xi ∈ X was assigned FALSE (i.e., 0), then we assign TRUE (i.e., 1) to
the variables ai, yi1, yi2, yi3 and 0 to the variables xi, zi1, zi2. On the other
hand, if xi ∈ X was assigned 1, then we assign 0 to ai, yi1, yi2, yi3 and 1
to xi, zi1, zi2. We claim that this truth assignment to the variables of XL

satisfies FL. Observe first that all the 6|X| clauses created for the variables
in X are satisfied, since each of them consists of two literals which assume
opposite values. It remains to show that the assignment satisfies the clauses
consisting of three literals. But this is obvious, since for any clause C ∈ C
and any literal t of C, the value of t and the value of t′ are equal, where t′

is the literal replacing t in FL. (That is, if t = xi, then t′ = yik, for some
k ∈ {1, 2, 3}, and xi = 1 if and only if yik = 1, and if t = xi, then t′ = zik,
for some k ∈ {1, 2}, and xi = 1 if and only if zik = 1.)

We now prove that if FL is satisfiable, then so is F . Consider any truth
assignment for XL that satisfies FL. This truth assignment (restricted to X)
also satisfies F . This is true, since, as can easily be verified, yik = 1 =⇒
xi = 1 and zik = 1 =⇒ xi = 1. (For example, if yi2 = 1, then since (yi2∨ai)
is satisfied, we deduce that ai = 1 and therefore, ai = 0. But now, since
(xi ∨ ai) is satisfied, we deduce that xi = 1.)

We conclude that

Theorem 17. LSAT is NP-complete.

44

4.3 Applications of LSAT to Rainbow Problems

In this subsection we prove that the rainbow problems mentioned in the in-
troduction are NP complete, by devising reductions from LSAT. Specifically,
we first prove that (the decision version) of minmax gap is NP-complete, and
then we show that rainbow piercing and rainbow covering are NP-complete.

4.3.1 Rainbow minmax gap (decision version) is NP-complete

Let P be a set of n color classes, where each color class Ci is a pair of points
{pi, pi} on the x-axis, and let d > 0. We prove that the decision version of
rainbow minmax gap is NP-complete, that is, it is NP-complete to determine
whether there exists a rainbow Q ⊂ ∪ni=1Ci of size n, such that the maximum
gap between a pair of consecutive points in Q is at most d.

We present a reduction from LSAT. Let F be an LSAT formula, and let
X be the underlying set of variables and B be the set of clauses of F . Let
k be the number of clauses in B that do not intersect any other clause in B.
Place the points q1, q2, . . . , qk+1 on the x-axis, from left to right, such that the
distance between any two consecutive points is d + d

4
. Now, for each clause

Bi of these k clauses, place three additional points between qi and qi+1, one
for each of its literals. For example, if Bi = (xa ∨ xb ∨ xc), then we place the
points pa, pb, and pc such that pb is at the middle of the interval qiqi+1 and
pa and pc are to its left and right, respectively, at distance d

8
from pb (see

Figure 12(a)).
Next, consider the pairs of clauses that have a single literal in common,

and let l be their number. Place the points qk+2, . . . , qk+l+1, from left to
right, such that the distance between qk+i and qk+i+1 is 2d, for i = 1, . . . , l.
Now, for the i’th pair B,B′ of these l pairs of clauses, place five additional
points between qk+i and qk+i+1. For example, if B = (xa ∨ xb ∨ xc) and B′ =
(xc∨xd∨xe), then we place the points pa, pb, pc, pd, pe such that the distance
between qk+i and the first point (pa), as well as the distance between qk+i+1

and the last point (pe), is d
2

and the distance between any two consecutive
points is d

4
(see Figure 12(b)). Finally, place the points q1, . . . , qk+l+1 such

that distance between any two consecutive points, including the distance
between qk+l+1 and q1, is d+ ε, for some ε > 0. See Figure 13 for a complete
example.

Notice that in our reduction, we have assumed that each clause in F
consists of three literals. However, we can adapt the reduction to fit formulas

45

containing two literal clauses.

qi papbpc qi+1

d/2 d/4 d/2

(xa ∨ xb ∨ xc)

pa pcpb pd pe

d/2 d/4 d/4 d/4 d/4 d/2

qk+i qk+i+1

(xa ∨ xb ∨ xc) ∧ (xc ∨ xd ∨ xe)

(a) (b)

Figure 12: The reduction from LSAT to the decision version of minmax gap.

Lemma 13. Let P be the resulting set of color classes (i.e., P = {{q1, q1}, . . . ,
{qk+l+1, qk+l+1}, {pa, pa}, {pb, pb}, . . .}). F is satisfiable if and only if there
exists a rainbow Q consisting of one point from each color class, such that
the maximum gap between a pair of consecutive points in Q is at most d.

Proof. Assume F is satisfiable, and consider the rainbow Q that is obtained
as follows. First, add the points q1, . . . , qk+l+1 to Q. Next, for each variable
xi appearing in F , if xi was assigned TRUE, then add the point pi to Q; oth-
erwise, add the point pi to Q. Obviously, Q consists of exactly one point from
each color class. We claim that the distance between any two consecutive
points in Q is at most d. To see this, it is enough to examine the situation
between qi and qi+1, for i = 1, . . . , k + l. If i ≤ k, then since the clause,
Bi, corresponding to this interval is satisfied, one of its literals is true and
the point corresponding to it was added to Q. Clearly, the distance between
this point and qi (alternatively, qi+1) is at most 3d

4
(see Figure 12(a)). If

k + 1 ≤ i ≤ k + l, then consider the pair of clauses B,B′ corresponding to
this interval. Since both are satisfied, then either the literal that is common
to both is true, or each of them has a unique literal that is true. In the
former case, Q contains the midpoint between qi and qi+1, whose distance
from qi (alternatively, qi+1) is exactly d, and in the latter case, Q contains
two points p1, p2, such that the distance between them is at most d and the
distance between p1 and qi, as well as the distance between p2 and qi+1 is at
most 3d

4
(see Figure 12(b)). We have shown that Q is as required.

Assume now that there exists a rainbow Q consisting of one point from
each color class, such that the maximum gap between a pair of consecutive
points in Q is at most d. Observe that Q cannot contain any of the points
q1, . . . , qk+l+1, so it must contain all the points q1, . . . , qk+l+1. We assign

46

q1 p1p2p3 p4p2p6q2 p1 p4p6q3

d/2 d/4 d/2 d/2 d/4 d/2

q4p2 p3

d/2 d/4 d/4 d/4 d/4 d/2

q1 q2

d+ ǫ d+ ǫ

Figure 13: A complete example: F = (x1 ∨ x2 ∨ x3) ∧ (x4 ∨ x2 ∨ x6) ∧ (x1 ∨
x6 ∨ x4) ∧ (x4 ∨ x2 ∨ x3).

values to the variables appearing in F is follows. If pi ∈ Q, then set xi = 1,
and if pi ∈ Q, then set xi = 0. We claim that this assignment satisfies each
of the clauses of F . Consider any clause Bi that does not intersect any other
clause in B. Since the distance between qi and qi+1 is greater than d, at least
one of the three points corresponding to Bi’s literal belongs to Q, implying
that Bi is satisfied. Consider now any two clauses B,B′ that have a single
literal in common. In this case, the distance between qi and qi+1 is 2d. So,
either Q contains the midpoint between qi and qi+1 which corresponds to
the common literal, implying that both clauses are satisfied, or Q contains
two points, one corresponding to a literal of B and one to a literal of B′,
again implying that both clauses are satisfied. Thus, we have shown that F
is satisfiable.

Hence, we have proved the following theorem.

Theorem 18. The decision version of rainbow minmax gap is NP-complete.

Corollary 1. Rainbow minmax gap is NP-hard.

4.3.2 Rainbow piercing and rainbow covering are NP-complete

Let P be a set of n color classes, where each color class Ci is a pair of points
on the x-axis, and let I be a set of intervals on the x-axis. Recall that a
set of points Q ⊆ ∪ni=1Ci is a rainbow, if Q contains at most one point from
each color class. We prove that rainbow piercing is NP-complete, that is,
it is NP-complete to determine whether there exists a rainbow Q such that
each interval in I is pierced by at least one point in Q.

Theorem 19. Rainbow piercing is NP-complete.

Proof. Let F be an LSAT formula and let T be the set of literals in F . Recall
that one can sort the literals in T , such that each clause of F corresponds to
at most three consecutive literals in the sorted list. Given such a sorted list,
we map each literal to a point on the x-axis, such that if literal t1 precedes

47

Bj = (xa ∨ xb ∨ xc);Bj+1 = (xc ∨ xd ∨ xe)Bi = (xa ∨ xb ∨ xc)

pi

Ia
Ib
Ic

pj pj+1

Ic

Ib

Ia
Ie

Id

Figure 14: The reduction from LSAT to rainbow covering.

literal t2 in the list, then the point corresponding to t1 is to the left of the
one corresponding to t2. We also define, for each variable xi, a color class
Ci that consists of the points corresponding to xi and to xi. Next, we map
each clause B of F to the interval spanning the points corresponding to the
literals in B; see Figure 11. It is easy to see that F is satisfiable if and only
if there exists a rainbow Q that is a piercing set for the set of intervals. (If
xi is assigned true, then the point corresponding to xi is added to Q else the
point corresponding to xi is added to Q; and vice versa.) Hence, the result
holds.

Let P be a set of n color classes, where each color class Ci is a pair of
intervals {Ii, Ii} on the x-axis, and let S be a set of points on the x-axis.
We prove that rainbow covering is NP-complete, that is, it is NP-complete
to determine whether there exists a rainbow Q such that each point in S is
covered by at least one interval in Q.

Theorem 20. Rainbow covering is NP-complete.

Proof. Let F be an LSAT formula, and let X be the underlying set of vari-
ables and B be the set of clauses of F . We create an instance of rainbow
covering, and show that F is satisfiable if and only if there exists a rainbow
cover. For each clause Bi ∈ B, we create a point si. Moreover, for each literal
t of Bi, we create an interval covering only si; if t = xj, then we name the
interval Ij, and if t = xj, then we name it Ij. Finally, if clauses Bi and Bi+1

share a literal, say xj, then we replace the two intervals named Ij by a single
interval Ij covering both si and si+1 (see Figure 14). Set P = {C1, C2, . . .},
where Ci = {Ii, Ii}, and S = {s1, s2, . . .}. It is easy to verify that F is satis-
fiable if and only if there exists a rainbow Q ⊂ ∪iCi that covers S. (If xi is
assigned true, then the interval Ii is added to Q else the interval Ii is added
to Q; and vice versa.) Hence the result holds.

48

4.4 Exact Coverage of Color Classes

Let P = {C1, C2, . . . , Cn} be a set of n color classes, where each color class
Ci is a pair of points {pi, pi} on the x-axis. We consider coverage problems
where the goal is to use intervals on the x-axis to cover exactly one point
from each color class. We now prove that the following three problems are
NP-hard; the decision versions are easily seen to be in NP. Note that in
each of these problems, it is implied that the intervals are conflict-free (no
interval can contain two points from the same color class). In this subsection,
we represent point pairs in Figures 15-19 as the tips of a u shape or the tips
of a t shape. Certain pairs in these figures are drawn in color in order to
help explain the constructions.

Problem 1 (Covering color classes with unit length intervals). Decide
whether or not there exists a set of unit length intervals, I, such that ex-
actly one point from each color class is covered by an interval in I.

Problem 2 (Covering color classes with the fewest unit length intervals).
Find a minimum-cardinality set I of unit length intervals (assuming a feasible
solution exists), such that exactly one point from each color class is covered
by an interval in I.

Problem 3 (Covering color classes with intervals of arbitrary length). Find
a minimum-cardinality set I of intervals of arbitrary length, such that exactly
one point from each color class is covered by an interval in I.

4.4.1 Unit intervals

Theorem 21. Problem 1 is NP-complete.

Proof. Problem 1 is clearly in NP because we can check whether or not
exactly one point from each color class is covered in polynomial time. The
reduction is from 3-SAT. Given n variables {x1, x2, x3, . . . , xn}, and m clauses
{c1, c2, c3, . . . , cm}, we design the following gadgets.

Each clause gadget (Figure 15) consists of five points. It contains a pair
of points di (represented by a u shape in Figure 15), interleaved with three
blue points; each of the three paired to a point in a variable gadget (these
blue pairs are represented by a t shape in Figure 15). In a clause gadget, the
Euclidean distance between any two consecutive (blue) points that are paired
to variables is 1− ε for ε > 0 (ε should be bounded above; ε < 1/3 suffices).

49

variables
di

1 − ε1 − ε

clause ci

Figure 15: Clause gadget for problem 1.

clause contains xi clause contains ¬xiT F

qi
y
y

variable xi

Figure 16: Variable gadget for problem 1.

Each variable gadget (Figure 16) consists of a consecutive pair of points, qi,
surrounded by blue points on each side. If variable xi (resp. xi) appears
in clause ci, then one blue point will be placed to the right (resp. left) of
qi and this point will be paired to a blue point in ci. The blue points that
surround qi are placed a distance of y from their respective farthest points
in qi. We set y < 1, ensuring that any unit interval that covers a point in qi
must also cover either the surrounding blue points to the left or right of qi.
Setting xi to FALSE is equivalent to covering the right point of qi. Setting
xi to TRUE is equivalent to covering the left point of qi. We line up all of
the variables, followed by all of the clauses, so that each consecutive gadget
is spaced farther than unit distance apart.

If a clause evaluates to FALSE, each of the three blue points in a clause
cannot be covered. Pair di will now be left uncovered because we cannot
cover a point in di with a unit interval without covering one of the blue
points in the clause. If a clause evaluates to TRUE, then a point from di can
always be covered. Therefore, there exists a satisfying truth assignment in
3-SAT if and only if there exists a covering with unit length intervals such
that exactly one point from each color class is covered.

Theorem 22. Problem 2 is NP-hard.

Proof. We now suppose that there indeed exists a set of unit length intervals
I such that exactly one point from each color class is covered by an interval

50

in I. We show that finding such a set of minimum-cardinality is NP-hard.
The reduction is from 3-SAT. We use the same variable gadgets and modify
the clause gadgets. A clause gadget, ci, contains 13 points. It contains four
consecutive pairs of points, dij, 1 ≤ j ≤ 4 (see Figure 17) and another pair
of points, di, one of which lies between di1 and di2 and the other lies between
di3 and di4. The remaining three points (blue in Figure 17) lie between di1
and di, between di2 and di3 and between di3 and di. The Euclidean distance
between the right point in dij and the left point in dij+1, 1 ≤ j ≤ 3, is less
than one, ensuring that one unit interval can cover both dij and dij+1. The
two points that define dij are spaced unit distance apart.

variables

clause ci

di1 di2 di3 di4

di

Figure 17: Clause gadget for problem 2.

Again, we line up all of the variables, followed by all of the clauses, so
that each consecutive gadget is spaced farther than unit distance apart. Note
again that if a clause evaluates to FALSE, each of the three blue points in a
clause cannot be covered. Therefore, four unit intervals are required to cover
this clause. If a clause evaluates to TRUE, then three intervals (and no less)
can cover the clause. Pair di is vital to this being true.

The claim is that there exists a satisfying truth assignment in 3-SAT if
and only if a minimum covering uses n + 3m unit intervals. Suppose there
exists a satisfying truth assignment. No clause can be covered by fewer than
three intervals and we need one interval per variable. Therefore, any feasible
solution requires at least n + 3m intervals. A satisfying truth assignment
achieves the lower bound. Now suppose that a minimum cover uses n+ 3m
unit intervals. If even one clause evaluated to FALSE we would have required
an extra interval.

Remark: Problem 1 being NP-hard already implies that Problem 2 is NP-
hard. However, we rely on the proof of Theorem 22 to prove Theorem 23.

51

4.4.2 Arbitrary length intervals

With intervals of arbitrary length, there always exists a solution that gives
complete coverage. We show that finding such a solution of mininum-cardinality
is NP-hard.

Theorem 23. Problem 3 is NP-hard.∗

Proof. The reduction is again from 3-SAT. In this case, spacing of points
is irrelevant. Variable gadgets are set up very similarly to the unit interval
version. This time, in order to ensure that in a minimum-cardinality cover,
the blue points (either to the left or to the right of qi) in a variable gadget
are covered with the same interval that covers qi, we enclose pair qi and its
surrounding blue points with a ‘safety’ pair si (see Figure 18). We will see
that covering a point in qi and not using the same interval to cover a point
in si would be too costly. Clause gadgets are set up in the same way as the
unit interval, optimization problem (Figure 17).

clause contains xi clause contains ¬xiT F

qi

si

Figure 18: Variable gadget for arbitrary length intervals

We break the set of points in the construction into two halves, H1 which
contains the variable and clause gadgets, and H2 which contains another
gadget which will be described soon (see Figure 19). Surrounding each vari-
able and each clause we place a cluster of M >> n + 3m points. Note that
the points in a cluster are laid out side-by-side (rather than on the same
x-coordinate). In H2, we create M groups of points, where each group is
made up of n+m+ 1 points, one paired to each cluster in H1. Surrounding
these groups are pairs of consecutive points, g1 and g2. Pair g1 lies to the left
of the first group and pair g2 lies to the right of the last group. The gadget
in H2 will help us isolate all of the variable and clause gadgets in H1.

First, we show that any feasible solution uses at least n+3m+1 intervals.

∗A restatement of this problem was previously shown to be NP-hard by another group
using a different approach [27].

52

q1 q2 q3 qn

c1 c2 c3 cm

H1 H2

g1 g2
group Mgroup 1 group 2

cluster 1
cluster 2

cluster n+m+ 1

s1 s2 s3 sn

Figure 19: Arbitrary length intervals – the big picture.

Case 1: No cluster in H1 is completely covered. The variable and clause
gadgets are now isolated. We need at least n intervals to cover the variable
gadgets and at least 3m intervals to cover the clause gadgets. At least one
more interval is needed to cover the remaining points in H2.

Case 2: At least one cluster in H1 is completely covered. If any cluster
is completely uncovered then at least M intervals will be needed in H2. If
all clusters are “touched” by an interval then at least n + 3m + 1 intervals
will be used in H1 (at least n + m + 1 intervals touch a cluster and at least
2m intervals are needed to finish covering the clauses). At least one more
interval is needed to cover points in H2. At least n + 3m + 2 intervals are
used in total.

Now we claim that there exists a satisfying truth assignment in 3-SAT
if and only if a minimum cover uses n + 3m + 1 intervals. Suppose there
exists a satisfying truth assignment. Any feasible solution must use at least
n+ 3m+ 1 intervals. This lower bound can be achieved by covering pairs in
H1 the same way as in the unit interval optimization problem construction
and using one more interval in H2 to cover g1, all groups, and g2.

Now suppose that a minimum cover uses n + 3m + 1 intervals. By Case
2, we know that no cluster in H1 can be completely covered. Therefore, all
variable and clause gadgets are isolated the same way they were in the unit
interval version. Recall that in the variable gadgets, a ‘safety’ pair si encloses
the set of blue points that extend to clause gadgets. If the interval used to
cover qi does not also cover pair si, then an extra interval will be needed

53

in the covering; this would be one interval too many. Therefore, we now
see that variable gadgets work the same way as in the unit interval version.
This means that if any clause would have evaluated to FALSE then at least
n+ 3m+ 2 intervals would have been needed.

54

Chapter 5

Conflict-free Covering§

5.1 Introduction

Let P = {C1, C2, . . . , Cn} be a set of color classes, where each color class
Ci consists of a set of points. We address several closely related covering
problems, in which one is allowed to cover at most one point from each color
class. Before defining the problems, let us introduce some terminology. Let
the set P of point color classes be on a line. We call an interval on the x-axis
that contains at most one point from each color class a conflict-free interval
(or CF-interval for short). We consider the following problems.

Covering color classes with CF-intervals: Given a set P of point color
classes on a line where each color class consists of a pair, find a minimum-
cardinality set I of CF-intervals, such that at least one point from each color
class is covered by an interval in I.

Covering color classes with arbitrary unit squares: Given a set P of
point color classes in the Euclidean plane where each color class consists of
a vertically or horizontally unit separated pair of points, find a minimum-
cardinality set S of unit squares (assuming a feasible solution exists), such
that exactly one point from each color class is covered by a square in S.

Covering color classes with a convex polygon: Given a set P of point
color classes in the Euclidean plane where each color class consists of either
a pair or a triple of points, decide whether or not there exists a convex
polygon Q such that Q contains exactly one point from each color class. We
also consider the related problem in which each color class consists of a pair
of points and the goal is to maximize the number of color classes covered by
a convex polygon Q, with Q containing exactly one point from each color
class.

§This chapter is based on joint work with Esther M. Arkin, Aritra Banik, Paz Carmi,
Matthew J. Katz, Joseph S. B. Mitchell and Marina Simakov. The work in this chapter
appeared in CCCG 2015 [9].

55

These problems are motivated by applications in sensor networks. Each
point can be considered a sensor. Two points with the same color can be
thought of as two sensors that have the exact same data. Covering a set of
points with a geometric object corresponds to having a set of sensors interact
with the same transceiver. We desire to cover at most one point from each
color class in order to prevent or mitigate malicious attacks.

5.1.1 Our results

In Section 5.2 we consider the problem dealing with covering color classes,
each consisting of a pair of points, with a minimum-cardinality set of CF-
intervals. We prove that it is NP-hard by first proving that the following
problem (covering color classes with a given set of CF-intervals) is NP-hard.
Given a set P of point color classes and a set I of CF-intervals, find a
minimum-cardinality set I ′ ⊆ I (if it exists), such that, at least one point
from each color class is covered by an interval in I ′. The latter proof is by
a reduction from minimum vertex cover. The former proof also requires the
following auxiliary result, which we state as an independent theorem. More
precisely, we prove that minimum vertex cover remains NP-hard even when
we restrict the underlying set of graphs to graphs in which each vertex is
of degree at least |V |/2, where V is the set of vertices of the graph. We
present a 4-approximation algorithm for this problem. We also present a
2-approximation algorithm for covering with arbitrary CF-intervals.

In Section 5.3 we consider the case where P is a set of point color classes
in the Euclidean plane.

Suppose each color class consists of a pair and each pair of points from
the same color class is unit distance apart, either vertically or horizontally
separated. We show that finding a minimum-cardinality set S of axis parallel
unit squares (assuming a feasible solution exists), such that exactly one point
from each color class is covered by a square in S is NP-hard. We then present
a 6-approximation algorithm.

We then consider the case that each color class consists of either a pair
or triple of points. We show that deciding if there exists a convex polygon Q
such that Q contains exactly one point from each color class is NP-complete.
If each color class consists of a pair of points, we show that maximizing
the number of color classes covered by Q is NP-hard. Finally, we consider
the case that each color class consists of an arbitrary amount of points and
all points from the same color class are vertically collinear. We (optimally)

56

maximize the number of color classes covered (exactly one point from each
color class) by Q in polynomial time.

5.1.2 Related work

The related work discussed in Section 4.1 is also very much related to the work
discussed in this chapter. Following is additional related work. Abellanas et
al. [2], Das et al. [39] and Khanteimouri et al. [65] considered problems of
the following nature. Given a set of colored point sites in the plane, find the
smallest object that encloses at least one point site from each color. Barba
et al. [22] consider the following problem. Given a set of n colored points
in the Euclidean plane and a vector c = (c1, c2, . . . , cm) with m being the
amount of colors present, find a region (axis-aligned rectangle, square, disk)
that encloses exactly ci points of color i for each i. Claverol et al. [34, 35]
considered as input a set S of n line segments and examined the following
problem. Find a stabber (line segment, wedge, double-wedge, zigzag) for S
so that each segment of S is stabbed exactly once by the stabber.

5.2 Covering Color Classes

Let P = {C1, C2, . . . , Cn} be a set of n color classes, where each color class
Ci is a pair of points {pi, pi} on the x-axis. We call an interval on the x-axis
that contains at most one point from each color class a conflict free interval
(CF-interval). A main goal in this subsection is to prove that the following
problem is NP-hard; additionally, we give a 2-approximation.

Problem 4. Covering color classes with CF-intervals. Find a minimum-
cardinality set I of arbitrary CF-intervals, such that at least one point from
each color class is covered by an interval in I.

Before presenting the proof, we prove that the problem in which one has
to pick the covering CF-intervals from a given set of CF-intervals is NP-hard.
We then use this result in our proof for Problem 4, together with an auxiliary
result stated as Theorem 25 below.

5.2.1 Covering with a given set of CF-intervals

We prove that the following problem is NP-hard.

57

Problem 5. Covering color classes with a given set of CF-intervals.
Given a set I of CF-intervals, find a minimum-cardinality set I ′ ⊆ I (if it
exists), such that at least one point from each color class is covered by an
interval in I ′.

We describe a reduction from vertex cover. A vertex cover of a graph
G is a subset of the vertices of G, such that each edge of G is incident to
at least one vertex of the subset. Given a positive integer k, determining
whether there exists a vertex cover of size k is an NP-complete problem [62].
Let G = (V,E) be a graph, where V = {v1, . . . , vn} and E = {e1, . . . , em}.
We construct a set P of point color classes and a set I of CF-intervals, such
that G has a vertex cover of size k if and only if there exists a subset I ′ ⊆ I
of size k that covers at least one point from each color class.

v1 v2

v3

v4

v5

v6
e1

e2

e3

e4

e5

e6

e7
L1 = {e1} L2 = {e1, e2, e3}

L3 = {e2, e4, e6}

L4 = {e4, e5}

L5 = {e3, e5, e7}

L6 = {e6, e7}

p1
p1

p2 p2
p3 p3p4 p4

p5p6 p6
I1 I2

p5
I3 I4

p7 p7

I5 I6

Figure 20: Reduction from vertex cover.

For each vertex vi create an initially empty set Li. For each edge ek =
{vi, vj}, where i < j, add ek to Li and ek to Lj. Now, draw n disjoint
intervals on the x-axis, one per set, such that interval Ii+1 is to the right of
interval Ii, i = 1, . . . , n − 1. Moreover, for each set Li, draw |Li| arbitrary
points on the interval Ii as follows. For each element in Li, if it is of the form
ej, then add the point pj to Ii, and if it is of the form ej, then add the point
pj to Ii. Finally, set P = {{p1, p1}, . . . , {pm, pm}} and I = {I1, . . . , In}. See
Figure 20 for an illustration.

It is easy to see that G has a vertex cover of size k if and only if there
exist k intervals in I which together cover at least one point from each color

58

G1(V1, E1)G

u1

u2

Figure 21: The graph G′.

class in P . Hence we have the following theorem.

Theorem 24. Problem 5 is NP-hard.

5.2.2 Covering with arbitrary CF-intervals

In order to show that Problem 4 is NP-hard, we first need to prove the
following theorem, which says that minimum vertex cover remains NP-hard
even when we restrict our attention to highly dense graphs.

Theorem 25 (Min vertex cover in dense graphs). Finding a minimum vertex
cover of a graph in which the degree of each vertex is at least n

2
is NP-hard,

where n is the number of vertices in the graph.

Proof. Let G = (V,E) be any graph. We construct a new graph G′ = (V ′, E ′)

in which the degree of each vertex is at least |V
′|

2
, and show that one can

immediately obtain a minimum vertex cover of G from a minimum vertex
cover of G′ (and vice versa).

Let G1 = (V1, E1) be the complete graph of |V |+2 vertices. We construct
G′ as follows. Set V ′ = V ∪ V1 ∪ {u1, u2}, where u1, u2 are two new vertices.
Set E ′ = E ∪ E1 ∪ E2 ∪ E3, where E2 = V × V1 and E3 = V1 × {u1, u2} (see
Figure 21). Notice that G′ has the desired property, i.e., for each v ∈ V ′,

the degree of v (in G′) is at least |V
′|

2
= 2|V |+4

2
= |V | + 2. (If v comes

from V , then degG′(v) = degG(v) + |V | + 2 ≥ |V | + 2, if v comes from V1,
then degG′(v) = degG1(v) + |V | + 2 ≥ |V | + 2, and if v ∈ {u1, u2}, then
degG′(v) = |V1| = |V |+ 2.)

We now claim that given a minimum vertex cover of G′, one can imme-
diately obtain a minimum vertex cover of G, and vice versa. Let V ∗ be a

59

minimum vertex cover of G′. We first show that V1 ⊆ V ∗. Since G′ contains
the complete graph G1 of size |V |+ 2, any minimum vertex cover of G′ must
include at least |V |+ 1 vertices of V1. If one of V1’s vertices, v, is not in V ∗,
then both u1 and u2 are necessarily in V ∗ (to cover the edges {v, u1}, {v, u2}).
But, if so, V ∗ is not a minimum vertex cover, since V ∗ \ {u1, u2} ∪ {v} is
also a vertex cover of G′. We conclude that V1 ⊆ V ∗. Notice that V1 covers
all the edges in E ′ except for the edges in E. Thus, the rest of the vertices
in V ∗ consist of a minimum vertex cover of G. In other words, V ∗ ∩ V is a
minimum vertex cover of G.

On the other hand, let Ṽ be a minimum vertex cover of G, then V1∪ Ṽ is
a minimum vertex cover of G′. (Since, as shown above, V1 is contained in any
minimum vertex cover of G′, and in order to cover the remaining uncovered
edges, we need a minimum vertex cover of G.)

Corollary 2. Finding a minimum vertex cover of a graph G = (V,E) in
which the degree of each vertex is at least ε|V |, where 0 < ε < 1, is NP-hard.

Proof. Similar to the proof of Theorem 25.

We are now ready to prove that Problem 4 is NP-hard. We describe
a reduction from minimum vertex cover in dense graphs (see Theorem 25
above). Let G = (V,E) be any graph in which the degree of each vertex is at
least n

2
, where n = |V |. By Dirac’s theorem [40] (or Ore’s theorem [77]), G

contains a Hamiltonian cycle; moreover, Palmer [78] presented a simple and
efficient algorithm for computing such a cycle, under the conditions of Ore’s
theorem.

Let v1, v2, . . . , vn, v1 be a Hamiltonian cycle in G. As for Problem 5, we
construct a set P of point color classes. For each vertex vi ∈ V , we construct
a set Li as follows. For each edge ek = {vi, vj} adjacent to vi, we add ek
(resp., ek) to Li, if i < j (resp., j < i). We now draw n disjoint intervals on
the x-axis, such that interval Ii corresponds to set Li and precedes interval
Ii+1 (for i < n). We draw |Li| points in Ii as follows. Let ej = {vi−1, vi} and
ek = {vi, vi+1}. Then ej, ek ∈ Li. Place a point pj corresponding to ej at
the left endpoint of Ii and place a point pk corresponding to ek at the right
endpoint of Ii. In addition, place a point anywhere in the interior of Ii, for
each of the other elements in Li. For example, in Figure 22 ej and ek are
the edges connecting vi to vi−1 and to vi+1, respectively, and e1, e2, e3, e4 are
the other edges incident to vi. The corresponding interval representation is
shown in Figure 22.

60

vi−1

ej ek
vi

e1 e2

e3 e4

Ii

pj pk

Ii−1 Ii+1

pj pkp1 p2 p3 p4

vi+1

Figure 22: Illustration of Theorem 26.

Now, set P = {{p1, p1}, {p2, p2}, . . .} and I = {I1, . . . , In}. Observe that
Ii is conflict free (by construction), for i = 1, . . . , n. Moreover, any other CF-
interval is necessarily contained in one of the intervals already in I (since any
interval that covers the right endpoint of Ii and the left endpoint of Ii+1 is not
conflict free). Thus, one might as well pick intervals from I when covering
the color classes of P with a minimum number of arbitrary CF-intervals.
But, by Theorem 24 this is NP-hard. Hence we have the following theorem.

Theorem 26. Problem 4 is NP-hard.

A 4-approximation algorithm for Problem 5.
Let P = {C1, C2, . . . , Cn} be a set of point color classes (pairs, Ci = {pi, pi})
on the set of points P =

⋃
iCi. We assume there exists I ′ ⊆ I such

that I ′ covers at least one point from each color class and we provide a
4-approximation algorithm for covering P with the fewest number of CF-
intervals. For a given p ∈ P , let Ip ∈ I be a CF-interval (if it exists) that
covers p and extends farthest to the right among all intervals that cover p.
Let I

(r)
p ⊆ Ip be the subinterval of Ip that contains p and all points to the

right of p.

Lemma 14. |I ′| ≤ 4|OPT |.

Proof. Consider the set T of intervals at the end of the while loop. Let
OPTT ⊆ T be an optimal set cover of the Ci’s. First we claim that |OPTT | ≤
2|OPT |. Consider the leftmost point p in an arbitrary interval A of OPT. By
the construction of Algorithm 2, we know that there must exist an interval
T ∈ T that contains p. If there exists a point that is covered by A and not

61

Algorithm 2 An algorithm for Problem 5.

Input: P = {C1, C2, . . . , Cn}, a set of point color classes and I, a set of
CF-intervals.
Output: A subset I ′ ⊆ I covering at least one point from each color class.
T = ∅
while there exists p ∈ P such that p is uncovered in T and there exists
I ∈ I such that p ∈ I do

Let p be the leftmost uncovered point in P that is contained in some
interval in I.
T ← T ∪ I(r)

p

Compute a subset of intervals T to cover at least one point of each of the
Ci’s, using a low-frequency set cover approximation algorithm.
Let I ′ be the set of intervals Ip ∈ I corresponding to each I

(r)
p of T in the

resulting cover.

covered by T , then let q be the leftmost such point. We know there exists
an interval I

(r)
q ∈ T that starts at q and extends at least as far to the right

as does A. Thus, for any A ∈ OPT , there exist at most two intervals in T ,
the union of which entirely contains A.

Observe that since each newly added interval to T cannot contain a pre-
viously covered point, then, at the end of the while loop, each p ∈ P is
contained in at most one interval of T ; thus, each pair Ci is covered by at
most two intervals of T (one covering pi, one covering pi). Therefore, we
are approximating a low-frequency (at most 2) set cover instance, for which
LP relaxation gives a 2-approximation [89] (pp. 119-120). Hence, we have
|I ′| ≤ 2|OPTT | ≤ 4|OPT |. (For color classes of size at most c, we obtain a
2c-approximation.)

A 2-approximation algorithm for Problem 4.
Let P = {C1, C2, . . . , Cn} be a set of point color classes (pairs, Ci = {pi, pi})
on the set of points P =

⋃
iCi. We provide a simple 2-approximation al-

gorithm for covering P with arbitrary CF-intervals. For any point p ∈ P ,
denote the maximal CF-interval starting at p and ending at a point of P to
the right of p (or at p) by Imax(p).

Consider the set I computed by Algorithm 3. Clearly, I is a set of
(disjoint) CF-intervals, such that at least one point from each color class is
covered by the intervals of I. It remains to prove that I is a 2-approximation

62

Algorithm 3 A greedy algorithm for Problem 4.

Input: P = {C1, C2, . . . , Cn}, a set of point color classes.
Output: A set I of CF-intervals.
I = ∅
while P 6= ∅ do

Let p be the leftmost point in P
I ← I ∪ Imax(p)
For each point of P that lies in Imax(p), remove it and its twin point
from P

of OPT , where OPT denotes any optimal solution.

Lemma 15. |I| ≤ 2|OPT |.

Proof. For any two points x and y, let [x, y] (resp., (x, y)) denote the closed
(resp., open) interval with endpoints x and y. Let [pa, pb] and [pc, pd] be
two consecutive intervals in I. Observe that since [pa, pb] is a maximal CF-
interval, there exists a point pi (resp., pi) in [pa, pb], such that pi (resp., pi) is
in (pb, pc). Therefore any interval in OPT can intersect at most two intervals
in I. Moreover, since OPT must cover the color class Ci = {pi, pi}, there
exists an interval I ∈ OPT , such that I ∩ {pi, pi} 6= ∅. We thus conclude
that |OPT | ≥ |I|/2.

5.3 Two Dimensions

Let P = {C1, C2, . . . , Cn} be a set of n color classes in the Euclidean plane.
We explore covering problems where exactly one point from each color class
must be covered.

5.3.1 Unit Squares

Problem 6. Covering color classes with arbitrary unit squares. Let
P = {C1, C2, . . . , Cn} be in the Euclidean plane and let each color class Ci
consist of a vertically or horizontally unit separated pair of points. Find a
minimum-cardinality set S of axis-aligned unit squares (assuming a feasible
solution exists), such that exactly one point from each color class is covered
by a square in S.

Theorem 27. Problem 6 is NP-hard.

63

Proof. The reduction is from PLANAR 3-SAT [70], where one is given a
formula in conjunctive normal form with at most three literals per clause,
with the objective of deciding whether or not the formula is satisfiable. Given
variables {x1, x2, . . . , xn} and clauses {c1, c2, . . . , cm}, we consider the graph
whose nodes are the clauses and variables and whose edges join variable xi
with clause cj if and only if xi ∈ cj or ¬xi ∈ cj. The resulting bipartite
graph, G, is planar.

In a manner similar to Fowler et al. [45], in a planar embedding of G we
replace all of the edges incident to a variable node with a variable chain that
visits the corresponding clauses and returns to the variable node to form a
loop. The variable chains consist of a sequence of unit separated pairs (see
Figure 23) and are designed in such a way that any minimum cardinality
solution will either cover {ai+k, ai+k+1 : k is even} or {ai+k, ai+k+1 : k is odd}.
That is, for a given variable chain, either all blue unit squares or all red
unit squares will be used. Using red (resp. blue) squares for variable xi is
equivalent to setting this variable to TRUE (resp. FALSE). Using planarity
of the graph embedding, no two variable chains intersect, and any two points
from different chains are spaced at least unit distance apart.

ai+1

ai+1

ai+2

ai

ai

ai+2

ai+3

ai+3

1

1 1

1

Figure 23: Variable chain.

Clause ci consists of a single (green) pair (see Figure 24). If ci evaluates
to FALSE, then a square that is not associated with any variable loop will
be needed to cover ci. If ci evaluates to TRUE, then a point from ci can be
covered by a square from an incoming loop whose literal evaluates to TRUE.

Let ri be the number of pairs used in variable chain i, 1 ≤ i ≤ 3m. We
design the variable chains so that ri is even for all i. Let r =

∑
i ri. It is

64

clause ci

xi

xj

¬xk
1− ε

1− ε

1− ε

1

1

1

1

1

1

1

Figure 24: Clause gadget.

now apparent that there exists a satisfying truth assignment in PLANAR
3-SAT if and only if a minimum cardinality covering with unit squares uses
r
2

squares.

Remark: If P is on a line and pairs are unit separated, we can minimize
the number of unit intervals used in a complete cover (assuming a solution
exists) in polynomial time using dynamic programming.

5.3.1.1 A 6-approximation algorithm.

We lay out a grid with unit dimensions on top of our point set P and
two-color the cells of the grid red and black in the style of a checkerboard.
We say that a cell is occupied if it contains a point in P . Let R be the set
of occupied red cells and B the set of occupied black cells. As a solution, we
use the set of smaller cardinality.

Lemma 16. min{|R|, |B|} ≤ 6|OPT |.

Proof. Suppose w.l.o.g that min{|R|, |B|} = |R|. Note that R is a feasible
solution because any two points of a color class are unit separated either
vertically or horizontally, thus one of the two points must occupy a red cell
and the other must occupy a black cell. Therefore, R covers all color classes
of points and no two points from the same color class are covered by R.

65

Now we claim that in the optimal solution, OPT , at least 1
12

(|R| + |B|)
unit squares are used. An arbitrary unit square, s, used in OPT stabs at
most four cells of the checkerboard. These four cells are adjacent to at most
eight other cells in total, each of which can be occupied by the pair of one of
the points covered by s. Thus, at most 12 occupied cells of the checkerboard
can be accounted for by any unit square used in OPT .

Combining the fact that min{|R|, |B|} ≤ 1
2
(|R| + |B|) and |OPT | ≥

1
12

(|R|+ |B|), we have that min{|R|, |B|} ≤ 6|OPT |.

5.3.2 Covering with a Convex Polygon

Problem 7. Let P = {C1, C2, . . . , Cn} be in the Euclidean plane and let each
color class Ci consist of either a pair or a triple of points. Decide whether or
not there exists a convex polygon Q such that Q contains exactly one point
from each color class.

Problem 8. Let P = {C1, C2, . . . , Cn} be in the Euclidean plane and let
each color class Ci consist of a pair of points. Maximize the number of color
classes covered by a convex polygon Q such that Q contains exactly one point
from each covered color class.

Theorem 28. Problem 7 is NP-complete.

Proof. Problem 7 is clearly in NP because we can check whether or not
polygon Q is convex and whether or not Q contains exactly one point from
each color class in polynomial time. We present a reduction from EXACTLY
1-IN-3-SAT, where one is given a formula in conjunctive normal form with
at most three literals per clause, with the objective of deciding whether or
not the formula is satisfiable. In a satisfying assignment, every clause must
contain exactly one TRUE literal.

Given variables {x1, x2, . . . , xn} and clauses {c1, c2, . . . , cm}, we start by
considering 2n points, S = {s1, s2, . . . , s2n}, in the position of a regular 2n-
gon. These 2n points are not part of any color class; we use them to help
explain the construction. We place two pairs of points around each point of
S in such a way that convex polygon Q must have vertices at each point of
S (see Figure 25). We create a variable gadget xi in between points s2i−1

and s2i for 1 ≤ i ≤ n. Each variable gadget consists of color class that is a
pair of points {qi, qi}, 1 ≤ i ≤ n (see Figure 26). We place {qi, qi} so that Q
can be expanded to cover either qi (green lines in Figure 26) or qi (red lines

66

xi
xi+1

xi+3

s2i−1

s2i
s2i+1

s2i+2

s2i−2

s2i+5

s2i+6

qi
qi

dj1dj2qi+1

qi+1

dj3
qi+3 qi+3

Q

Figure 25: Construction of hardness for Problem 7.

xi

s2i−1

s2i
T

F

qi
qi

dj1

Figure 26: Close-up of variable gadget for Problem 7.

67

in Figure 26), while remaining convex. Setting xi to TRUE (resp. FALSE)
corresponds to expanding Q to cover qi (resp. qi). If xi (resp. ¬xi) appears
in clause cj, a point from a color class that contains triple {dj1, dj2, dj3}
will appear in the expansion of Q that covers qi (resp. qi), and not in the
expansion of Q that covers qi (resp. qi). It is now apparent that there exists
a satisfying truth assignment in EXACTLY 1-IN-3-SAT if and only if convex
polygon Q covers exactly one point from each color class.

Theorem 29. Problem 8 is NP-hard.

Proof. The reduction is from MAX EXACTLY 1-IN-2-SAT where each clause
has at most two literals and the objective is to maximize the number of
clauses that evaluate to TRUE. A clause evaluates to TRUE if and only if
it contains exactly one TRUE literal. Using the same construction as in
Problem 7, it is easy to see that maximizing the number of TRUE clauses is
equivalent to maximizing the number of color classes covered.

68

Chapter 6

Network Optimization on Partitioned Pairs of

Points ¶

6.1 Introduction

We study a class of network optimization problems on pairs of sites in a
metric space. Our goal is to determine how to split each pair, into a “red”
site and a “blue” site, in order to optimize both a network on the red sites
and a network on the blue sites. In more detail, given n pairs of points, S =
{{p1, q1}, {p2, q2}, . . . , {pn, qn}}, in the Euclidean plane or in a general metric
space, we partition the points in S =

⋃n
i=1{pi, qi} into two sets, S1 and S2, so

that pi ∈ S1 if and only if qi ∈ S2. The partition should optimize the cost of
certain structures built on both S1 and S2: spanning trees, traveling salesman
tours (TSP tours) or matchings. Let f(X) be a certain structure computed
on point set X and let λ(X) be the bottleneck edge of a structure computed
point set X. For each of the aforementioned structures we consider the
objective of minimizing |f(S1)| + |f(S2)|, minimizing max{|f(S1)|, |f(S2)|}
and minimizing max{|λ(S1)|, |λ(S2)|}. Here, | · | denotes the cost (e.g., sum
of edge lengths) of a certain structure.

The problems we study are natural variants of well-studied network op-
timization problems. Our motivation comes also from a model of secure
connectivity in networks involving sensors with replicated data. Consider
a set of sensors each having two (or more) replications of their data; the
sensors are associated with pairs of points (or k-tuples of points in the case
of higher levels of replication). Our goal may be to compute two networks
(a “red” network and a “blue” network) to interconnect the sensors, each
network visiting exactly one data site from each sensor type; for communi-
cation connectivity, we would require each network to be a tree, while for
servicing sensors with a mobile agent, we would require each network to be
a Hamiltonian path/cycle. By keeping the red and blue networks distinct, a
malicious attack within one network is isolated from the other.

¶This chapter is based on joint work with Esther M. Arkin, Aritra Banik, Paz Carmi,
Su Jia, Matthew J. Katz, Tyler Mayer and Joseph S. B. Mitchell. The work in this chapter
has been submitted for publication.

69

6.1.1 Our results

We show that several of these problems are NP-hard and we give O(1)-
approximation algorithms for each of them. Table 5 summarizes our O(1)-
approximation results.

min |f(S1)|+ |f(S2)| min-max{|λ(S1)|, |λ(S2)|} min-max{|f(S1)|, |f(S2)|}
Matching 2 3 3

Spanning tree 3α
9
3 R1 4α

TSP tour 3β 18 6β

Table 5: Table of results: α is the Steiner ratio for a particular metric space.
β is the approximation factor for the traveling salesperson problem in a
certain metric space.

6.1.2 Related work

Several optimization problems have been studied of the following sort: Given
sets of tuples of points (in a Euclidean space or a general metric space), select
exactly one point or at least one point from each tuple in order to optimize
a specified objective function on the selected set. Many problems of this
sort have been discussed in Section 4.1 and in Section 5.1.2. In addition,
Myung et al. [75] introduced the Generalized Minimum Spanning Tree Prob-
lem: Given an undirected graph with the nodes partitioned into subsets,
compute a minimum spanning tree that uses exactly one point from each
subset. They show that this problem is NP-hard and that no constant-factor
approximation algorithm exists for this problem unless P = NP . Related
work addresses the generalized traveling salesperson problem [23, 80, 81, 83],
in which a tour must visit one point from each of the given subsets.

While optimization problems of the “one of a set” flavor have been studied
extensively, the problems we study here are fundamentally different: we care
not just about a single structure (e.g., network) that makes the best “one of a
set” choices on, say, pairs of points; we must consider also the cost of a second
network on the “leftover” points (one from each pair) not chosen. As far as
we know, the problem of partitioning points from pairs into two sets in order
to optimize objective functions on both sets has not been extensively studied.
One recent work of Arkin et al. [10] does address optimizing objectives on
both sets: Given a set of pairs of points in the Euclidean plane, color the

70

points red and blue so that if one point of a pair is colored red (resp. blue),
the other must be colored blue (resp. red). The objective is to optimize
the radii of the minimum enclosing disk of the red points and the minimum
enclosing disk of the blue points. They studied the objectives of minimizing
the sum of the two radii and minimizing the maximum radius.

6.2 Spanning Trees

LetMST (X) be a minimum spanning tree over the point setX, and |MST (X)|
be the cost of the tree. Let λ(X) be the bottleneck edge in a spanning tree
on point set X and |λ(X)| be the cost of the bottleneck edge. Given n pairs
of points in a metric space, partition the point set S into two sets, S1 and
S2, so that for pair {pi, qi}, pi ∈ S1 if and only if qi ∈ S2 and the cost of a
spanning tree built over each set is minimized.

6.2.1 Minimum Sum

In this section we consider minimizing |MST (S1)|+ |MST (S2)|.

Theorem 30. The Min-Sum 2-MST problem is NP-hard in general metric
spaces.

Proof. The reduction is from Max 2SAT where one is given n variables
{x1, x2, . . . , xn} and m clauses {c1, c2, . . . , cm}. Each clause contains at most
two literals joined by a logical or. The objective is to maximize the number
of clauses that evaluate to true.

For each variable xi we create a variable gadget that consists of two pairs
of points: {p2i, q2i} and {p2i+1, q2i+1} (see Figure 27). Setting xi to true is
equivalent to using edges (p2i+1, q2i) and (p2i, q2i+1). Setting xi to false is
equivalent to using edges (p2i, p2i+1) and (q2i+1, q2i). Variable gadgets will be
arranged on a line with distance O(L) between consecutive variable gadgets
for L = Ω(n+m) (see Figure 28).

For every pair of variable gadgets corresponding to variables xi, xj, i 6= j
we place a cluster Ai,j of M = Ω(m2) points near point p2i+1. Each of these
points is paired to a point in a cluster Bi,j of M points near point q2j+1.
Any two points in the same cluster, Ai,j or Bi,j, are separated by distance
two from each other and by distance one from point p2i+1, q2j+1 respectively.
Note that this enforces points p2i+1 and q2j+1 to be in different trees for all
1 ≤ i, j ≤ n. Otherwise, if p2i+1 and q2j+1 were placed in the same tree, then

71

connecting the points in clusters Ai,j, Bi,j to the trees would cost at least M
more than it would to have p2i+1 and q2j+1 in different trees.

Now we argue that the optimal solution uses edges (p2i+1, p2i+3) and
(q2i+1, q2i+3), 1 ≤ i ≤ n − 1, as “backbones” of the two MSTs. To see
this, observe that if any other edge was used to connect two consecutive vari-
able gadgets, then we would need to use at least one edge of length L + 2.
Since p2i+1 and q2j+1 will be in different trees for all 1 ≤ i, j ≤ n and since
points p2i and q2i will be connected to points p2i+1 and q2i+1 (1 ≤ i ≤ n),
we have a set of “lower” components that must be connected and a set of
“upper” components that need to be connected. No upper component can
be connected to a lower component. Any edge of length at least L + 2 con-
necting any of these components can thus be replaced by an edge of length
L.

The remaining variable gadget points, {p2i, q2i} (1 ≤ i ≤ n), must be
connected to the backbones. That is, for variable xi, points p2i and q2i will be
picked up either by using edges (p2i+1, q2i) and (p2i, q2i+1) (green in Figure 29)
or edges (p2i, p2i+1) and (q2i+1, q2i) (red in Figure 29). As mentioned, the
green edges correspond to setting xi to true and the red edges correspond to
setting xi to false.

p2i+1

q2i+1

q2ip2i

2

2

4
4

xi

2

2

Figure 27: Variable gadget.

A clause gadget consists of a configuration of 3 point pairs surrounding
variable gadgets corresponding to the variables in that clause (see Figure 30).
The placement of the 3 point pairs depends on whether the literals appear
positively or negatively.

Consider clause ci which consists of variables xj and xk. We create a
pair of points {ai, bi}, each of which will be placed next to variable xj. If
xj appears negatively in ci, then we place ai at distance 1 away from an
endpoint of a green edge of xj and place bi at distance 1 away from the other
endpoint of the green edge (see Figure 30c). If xj appears positively in ci,

72

p1

q1

q2p2

p3

q3

q4p4

2

2

4
4

L

L

2

2

4

x1 x2

4L + 4

2

2

2

2

L

L

Figure 28: Metric distances between variable gadgets.

x1 x2
p1

q1

p2 q2

p3

q3

p4 q4

Figure 29: Truth assignment.

then we do the same thing at the endpoints of a red edge (see Figure 30a).
Then, we create a pair of points {di, ei} and follow the same procedure for
variable xk. Finally, for each clause gadget we create a pair of points {fi, gi}
and place them at a distance of 1 from certain variable gadget points chosen
based on how many literals appear positively in clause ci; zero, one, or two.
The placement of {fi, gi} for all three cases can be found in Figure 30.

As a technical note, to complete the construction, all clause gadget points
placed around the same variable gadget vertex are separated from each other
by distance 2, and these points are at distance only 1 from the nearest variable
gadget vertex. This will ensure that the optimal solution will not link any
two clause gadget points to each other. Also, note that we use the metric
completion to define the weights of the rest of the edges in the graph.

Connecting all points except those associated with clause gadgets into
two MSTs has a base cost of (2n−2)L+4n+2

(
n
2

)
M . Now note that a clause

evaluates to true if and only if it costs 7 units to attach the clause gadget
points to the backbones. A clause evaluates to false if and only if it costs
9 units to attach the clause gadget points to the backbones (see Figure 30).
Thus, it is now apparent that there exists a truth assignment in 2SAT with k
clauses satisfied if and only if there exists a solution to the Min-Sum 2-MST
problem with cost (2n− 2)L+ 4n+ 2

(
n
2

)
M + 7k + 9(m− k).

73

x1 x1
x2 x2 Cost

T T
T F
F T
F F

7
7

7
9

p1

q1

p2 q2

p3

q3

p4 q4

x1 x1
x2 x2 Cost

T T
T F
F T
F F

7
7

7
9

p1

q1

p2 q2

p3

q3

p4 q4

x1 x1 x2 Cost
T T
T F
F T
F F

7
7

7

9p1

q1

p2 q2

p3

q3

p4 q4

x2

1

1

aifi

bi

1

di

ei

gi1

1

bi

ai

ei

di
fi gi

bi

aifi
gi

ei

di

1

1 1 1

1

1

1

11

1

11

1

(a)

(b)

(c)

Figure 30: Placement of clause gadget points and extra cost incurred to
incorporate clause gadget points into two MSTs once a truth assignment
over the variables is fixed.

74

An O(1)-approximation algorithm for Min-Sum 2-MST problem.
Compute MST (S), a minimum spanning tree on all 2n points. Imagine
removing the heaviest edge, h, from MST (S). This leaves us with two trees;
T1 and T2. Perform a preorder traversal on T1, assigning nodes to S1 as long
as there is no conflict. If there is a conflict (qi is reached in the traversal and
pi was already assigned to S1) then assign the node to S2. Repeat this for
T2. We then return S1 and S2 as our approximate partition. In order to help
analyze this algorithm, we will think of the nodes assigned to S1 as colored
red (set R) and the nodes assigned to S2 as colored blue (set B).

• Case 1: All nodes in T1 are of the same color and all nodes in T2 are of
the same color.

This partition is optimal. To see this, note that the weight of MST (S)\
h is a lower bound on the cost of the optimal solution as it is the
cheapest way to create two trees, the union of which span all of the
input nodes. Since each tree is single colored, we know that each tree
must have n points, exactly one from each pair, and thus is also feasible
to our problem.

• Case 2: One tree is multicolored and the other is not.

Let OPT be the optimal solution. Suppose WLOG that T1 contains
only red nodes and T2 contains both blue and red nodes. Then, ∃ i :
pi, qi ∈ T2. Imagine also constructing an MST on each side of the
optimal partition. By definition, in the MSTs built over the optimal
partition, at least one point in T2 must be connected to a point in T1.
This implies that the weight of the optimal solution is at least as large
as |h|, as h is the cheapest edge which spans the cut (T1, T2). Therefore,
|h| ≤ |OPT |.
Consider MST (R). By the Steiner property, we have that an MST over
a subset U ⊆ S has weight at most α|MST (S)| where α is the Steiner
ratio of the metric space. Recall that |MST (S) \ h| ≤ |OPT |. In this
case, since |h| ≤ |OPT |, we have that |MST (R)| ≤ α|MST (S)| ≤
2α|OPT |.
Next, consider building MST (B). Since no blue node exists in T1, there
does not exist an edge that crosses the cut (T1, T2) in MST (B), and

75

thus we have that |MST (B)| ≤ α|MST (S) \ h| ≤ α|OPT |. Therefore,
|MST (R) ∪MST (B)| ≤ 3α|OPT |.

• Case 3: Both trees are multicolored.

In this case, ∃ i : pi, qi ∈ T1 and ∃ j : pj, qj ∈ T2. Imagine also
constructing an MST on each side of the optimal partition. In this
case, there must be at least two edges crossing the cut (T1, T2), one
edge belonging to each tree built on a partition of the optimal solution.
Note that each of these edges has weight at least |h| as h is the cheapest
edge spanning the cut (T1, T2), implying that |h| ≤ |OPT |/2. Thus,
|MST (S)| ≤ 1.5|OPT | as |MST (S) \ h| ≤ |OPT | and |h| ≤ |OPT |/2.

Using our partition, one can compute MST (B) and MST (R), each
with weight at most α|MST (S)|. Therefore |MST (R) ∪MST (B)| ≤
2α|MST (S)| ≤ 3α|OPT |, where α is again the Steiner ratio of the
metric space.

Using the above case analysis, we have the following theorem.

Theorem 31. There exists a 3α-approximation for the Min-Sum 2-MST
problem.

Remark: In a general metric space α = 2 and in the Euclidean plane
α ≤ 1.3546 [59].

6.2.2 Min-max

In this section the objective is to min−max{|MST (S1)|, |MST (S2)|}.

Theorem 32. The Min-Max 2-MST problem is weakly NP-hard.

Proof. The reduction is from Partition. In the partition problem we are
given a set of n integers, P = {x1, x2, . . . , xn}, with the objective of deciding
if there exists a partition P = P1 ∪ P2 : P1 ∩ P2 = ∅, with

∑
i∈P1

xi =∑
j∈P2

xj. Let M =
∑

i xi be the sum of all integers in a given instance of
partition. Then, we can construct an instance of Min-Max 2-MST in the
plane with 2n pairs of points as follows. Place n point pairs {pi, qi}ni=1 along
two ε-separated horizontal lines, such that pi, qi are vertically adjacent, with
horizontal separation of M between consecutive pairs. Then, for each xi in

76

the instance of Partition we place a point pn+i at distance xi from pi, and
its corresponding pair qn+i at distance ε/2 from qi and pi (See Figure 31).

Imagine building an MST on each side of the optimal partition for this
instance. Notice that for pairs {pi, qi}ni=1, edges (pi, pi+1) and (qi, qi+1) will
exist in the optimal solution for 1 ≤ i ≤ n − 1 and serve as “backbones” of
the two MSTs. For each remaining point pair i, n + 1 ≤ i ≤ 2n, as {pi, qi}
can’t be assigned to the same tree, by definition, one tree will incur an “extra
cost” of ε/2 and the other will incur an “extra cost” of xi. Therefore, any
algorithm which minimizes the maximum weight of either tree also minimizes
max{∑i∈P1

xi,
∑

j∈P2
xj} across all partitions of P = P1 ∪ P2.

Thus, by choosing ε small enough, we can guarantee that any proposed
exact algorithm to Min-Max 2-MST will produce two trees, each of weight
(n− 1)M +M/2 + o(1), if and only if there exists a feasible solution to the
partition instance.

x1

M

x2

x3
M

ε

p1 p2 p3 pn

q1 q2 q3 qn

pn+1

qn+1 qn+2 qn+3

pn+2

pn+3

xn

q2n

p2n

M

MMM

Figure 31: Set up of Min-Max 2-MST instance given an instance of Parti-
tion: {x1, x2, ..., xn}.

Theorem 33. There exists a 4α-approximation for the Min-Max 2-MST
problem.

Proof. We use the same algorithm as we did for the Min-Sum 2-MST problem
(Section 6.2.1). The approximation factor is dominated by case 2 in the Min-
Sum 2-MST analysis. For the Min-Max objective function, we have that

77

max{|MST (B)|, |MST (R)|} ≤ α|MST (S)| and that |MST (S)| ≤ 4|OPT |.
Thus, max{|MST (B)|, |MST (R)|} ≤ 4α|OPT |.

6.2.3 Bottleneck

In this section the objective is to min−max{|λ(S1)|, |λ(S2)|}.
Lemma 17. Given n pairs of points on a line where consecutive points on
the line are unit separated, there exists a partition of these points into two
sets, S1 and S2, such that max{|λ(S1)|, |λ(S2)|} ≤ 3.

Proof. The proof will be constructive, using Algorithm 4. We partition the
points on the line into n disjoint buckets, each bucket containing two con-
secutive points.

Algorithm 4 Coloring points on a line.

Color the leftmost point, p, red
Let p′ be the point that is in p’s bucket
Let R be a set of red points and B be a set of blue points
R← {p}; B ← ∅
while There exists an uncolored point do

while p′ is uncolored do
if p is red then

Color p’s pair, q, blue
B ← B ∪ {q}
p← q

else
Let p′′ be the point in p’s bucket
Color p′′ red
R← R ∪ {p′′}
p← p′′

Find the leftmost uncolored point x and color it red. Let x′ be the point
in x’s bucket
p← x; p′ ← x′

S1 ← R; S2 ← B
return {S1, S2}

Observe that at the end of Algorithm 4, each bucket has exactly one red
point and one blue point. Thus, the maximum distance between any two
points of the same color is 3.

78

Theorem 34. There exists a 3-approximation algorithm for the Bottleneck
2-MST problem on a line.

Proof. Note that if the leftmost n points do not contain two points from the
same pair, then it is optimal to let S1 be the leftmost n points and S2 be
the rightmost n points. Suppose now that the leftmost n points contain two
points from the same pair. We run algorithm 4 on the input. Imagine build-
ing two bottleneck spanning trees over the approximate partition (coloring)
as well as over the optimal partition. Let λ be the longest edge (between two
points of the same color) in our solution and λ∗ be the longest edge in the
optimal solution.

Consider any two consecutive input points si and si+1 on the line. We
first show that |λ∗| ≥ |sisi+1| by arguing that the optimal solution must have
an edge that covers the interval [si, si+1]. Suppose to the contrary that no
such edge exists. This means that si is connected to n− 1 points only to its
left and si+1 is connected to n− 1 points only to its right. This contradicts
the assumption that the leftmost n points contain two points from the same
pair.

Let the longest edge in our solution be defined by two points, pi and pj.
Consider the number of input points in interval [pi, pj]. Input points in this
interval other than pi and pj will have a different color than pi and pj. It
is easy to see that if [pi, pj] consists of two input points, that |λ∗| = |λ|,
and if [pi, pj] consists of three input points, that |λ∗| ≥ |λ/2|. We know by
lemma 17 that [pi, pj] can consist of no more than four input points. In this
last case, |λ∗| must be at least the length of the longest edge of the three
edges in [pi, pj]. Thus, we see that |λ∗| ≥ |λ|/3.

Theorem 35. There exists a 9-approximation algorithm for the Bottleneck
2-MST problem in a metric space.

Proof. First, we compute MST (S) and consider the heaviest edge, h. The
removal of this edge induces a cut that separates the nodes into two sets,
H1 and H2. If @ i : pi, qi ∈ Hj for 1 ≤ i ≤ n and 1 ≤ j ≤ 2, then we let
S1 = H1 and S2 = H2 and return S1 and S2. Let λ∗ be the heaviest edge
in the bottleneck spanning trees built on the optimal partition. Note that
MST (S) lexicographically minimizes the weight of the kth heaviest edge,
1 ≤ k ≤ 2n− 1, among all spanning trees over S, and thus the weight of the
heaviest edge in MST (S)\h is a lower bound on |λ∗|. Thus, in this case, our

79

solution is clearly feasible and is also optimal as MST (S1) and MST (S2) are
subsets of MST (S) \ h.

Now suppose ∃ j ∈ {1, 2} : pi, qi ∈ Hj, 1 ≤ i ≤ n. This means that
|λ∗| ≥ |h|. In this case, we compute a bottleneck TSP tour on the entire
point set. It is known that that a bottleneck TSP tour with bottleneck edge
λ can be computed from MST (S) so that |λ| ≤ 3|h| ≤ 3|λ∗|.

Next we run Algorithm 4 on the TSP tour and return two paths, each
having the property that the largest edge has weight no larger than 9|λ∗|.

Remark: Consider the problem of partitioning the point set into two sets, S1

and S2, such that pi ∈ S1 if and only if qi ∈ S2, and computing a bottleneck
TSP tour on S1 and on S2. The objective is to minimize the heaviest edge
(across both paths). Let the heaviest edge in the bottleneck TSP tours built
on the optimal partition be λ∗∗. The above algorithm gives a 9-approximation
to this problem as well because the algorithm returns two Hamilton paths
and we know that (using the notation in the above proof) |λ∗| ≤ |λ∗∗|. Thus,
|λ| ≤ 9|λ∗| ≤ 9|λ∗∗|.

The following is a generalization of Lemma 17. Let S = {S1, S2, . . . , Sn}
be a set of n k-tuples of points on a line and let S be the point set. Each set
Si, 1 ≤ i ≤ n, must be colored with k colors. That is, no two points in set Si
can be of the same color. Consider two consecutive points of the same color,
p and q. We show that there exists a polynomial time algorithm that colors
the points in S so that the number of input points in interval (p, q) is O(k).

Lemma 18. There exists a polynomial time algorithm to color S so that for
any two consecutive input points of the same color, p and q, the interval (p, q)
contains at most 2k − 2 input points.

Proof. The algorithm consists of k steps, where in the jth step, we color n
of the yet uncolored points with color j. We describe the first step.

Divide the kn points into n disjoint buckets, each of size k, where the first
bucket B1 consists of the k leftmost points, the second bucket B2 consists of
the points in places k+ 1, k+ 2, . . . , 2k, etc. Let G = (V,E) be the bipartite
graph, with node set V = {S ∪B = {B1, . . . , Bn}}, in which there is an edge
between Bi and Sj if and only if at least one of Sj’s points lies in bucket Bi.
According to Hall’s theorem [53], there exists a perfect matching in G. Let
M be such a matching and for each edge e = (Bi, Sj) in M , color one of the
points in Bi ∩ Sj with color 1. Now, remove from each tuple the point that

80

was colored 1, and remove from each bucket the point that was colored 1. In
the second step we color a single point in each bucket with the color 2, by
again computing a perfect matching between the buckets (now of size k− 1)
and the (k − 1)-tuples. It is now easy to see that for any two consecutive
points of the same color, p and q, at most 2k − 2 points exist in interval
(p, q).

6.3 Matchings

Given a set S of n pairs of points in a metric space, partition the point set S
into two sets, S1 and S2, such that for each pair {pi, qi}, pi ∈ S1 if and only
if qi ∈ S2. Let M(X) be the minimum weight matching on point set X and
|M(X)| be the cost of the matching. Let λ(X) be the bottleneck edge in a
matching on point set X and |λ(X)| be the cost of the bottleneck edge.

6.3.1 Minimum Sum

The objective is to minimize |M(S1)|+ |M(S2)|.

Theorem 36. There exists a 2-approximation for the Min-Sum 2-Matching
problem in general metric spaces.

Proof. First, note that the weight of the minimum weight perfect matching
on S, M∗, which excludes edges (pi, qi) ∀ i is a lower bound on |OPT |. Let
M̂ denote the minimum weight (exactly) one of a pair matching between
point pairs in S. That is, a minimum weight matching on the pairs of points
where the weight of an edge between two pairs is equal to the weight of the
cheapest edge (of four possible edges) that connects points between the two
pairs. |M̂ | is a lower bound on the weight of the smaller of the two matchings
of OPT and therefore has weight at most |OPT |/2.

Our algorithm computes M̂ , and sets the points involved in this matching
to be in S1 and sets S2 = S \ S1. We return the partition S1, S2 as our
approximate solution.

We have that |M(S1)| = |M̂ | ≤ |OPT |/2. To bound |M(S2)|, consider
the multigraph G = (V = S,E = M∗ ∪ M̂). All v ∈ S2 have degree 1 (from
M∗), and all u ∈ S1 have degree 2 (from M∗ and M̂). For each vi ∈ S2,
either vi is matched to vj ∈ S2 by M∗, or vi is matched to ui ∈ S1 by M∗.
In the former case we can consider vi and vj matched in S2 and charge the
weight of this edge to |M∗|. In the latter case, note that each u ∈ S1 is part

81

1 1− ε 1

OPT APX

pi pi+1
qi qi+1

.

Figure 32: |APX||OPT | ≈ 2

of a unique cycle, or a unique path. If u ∈ S1 is part of a cycle then no vertex
in that cycle belongs to S2 due to the degree constraint. Thus, if vi ∈ S2 is
matched to ui ∈ S1, ui is part of a unique path whose other terminal vertex
x belongs to S2, due to the degree constraint. We can consider vi, and x
matched and charge the weight of this edge to the unique path connecting vi
and x in G. Thus, |M(S2)| can be charged to |M∗ ∪ M̂ | and has weight at
most 1.5|OPT |.

Therefore, our partition guarantees |M(S1)|+ |M(S2)| ≤ 2|OPT |. Figure
32 shows the approximation factor using our algorithm is tight.

6.3.2 Min-max

In this section the objective is to min−max{|M(S1)|, |M(S2)|}.

Theorem 37. The Min-Max 2-Matching problem is weakly NP-hard.

Proof. The reduction is from Partition: given a set P = {x1, x2, ..., xn} of
n integers, decide if there exists a partition P = P1 ∪ P2 : P1 ∩ P2 = ∅, with∑

i∈P1
xi =

∑
j∈P2

xj. Let M =
∑

i xi. Given any instance P of Partition,
we create a geometric instance of the Min-Max 2-Matching problem, as shown
in Figure 33.

We place n point pairs {pi, qi}ni=1 along two ε-separated horizontal lines,
such that pi, qi are vertically adjacent, with horizontal separation of M be-
tween consecutive pairs. Then, for each xi in the instance of Partition we
place a point pn+i at distance xi from pi, and its corresponding pair qn+i at
distance ε/2 from both qi and pi.

Notice that any solution which minimizes the weight of the larger of the
two matchings created only uses edges between points of the same “clus-
ter” {pi, qi, pn+i, qn+i}∀ i. Any edge between two clusters {pi, qi, pn+i, qn+i},
{pj, qj, pn+j, qn+j}, i 6= j costs at least M and if matching edges are chosen

82

within clusters the entire matching can be constructed with cost at most
M + o(1) for ε > 0 chosen small enough.

Within each cluster an assignment will have to be made, that is, WLOG,
{pi, pn+i} ∈ S1, {qi, qn+i} ∈ S2 or {pi, qn+i} ∈ S1, {qi, pn+i} ∈ S2. Therefore,
any algorithm that minimizes the maximum weight of either matching also
minimizes max{∑i∈P1

xi,
∑

j∈P2
xj} across all partitions of P = P1 ∪ P2.

Thus, for ε > 0 chosen small enough the instance of partition is solvable if
and only if the weight of the larger matching created is at most M

2
+ o(1).

x1

M

x2

x3
M

ε

p1 p2 p3 pn

q1 q2 q3 qn

pn+1

qn+1 qn+2 qn+3

pn+2

pn+3

xn

q2n

p2n

MM

Figure 33: Set up of the Min-Max 2-Matching instance given an instance of
Partition: {x1, x2, ..., xn}.

Theorem 38. The approximation algorithm for the Min-Sum 2-Matching
problem serves as a 3-approximation for the Min-Max 2-Matching problem
in general metric spaces.

Proof. In this case we are concerned only with the larger of the two match-
ings returned by our approximation, M(S2), which, as described above,
has weight bounded above by |M̂ | + |M∗|. However, in this case, under
the new cost function |M̂ | ≤ |OPT |, and |M∗| ≤ 2|OPT |. Therefore,
|M(S2)| ≤ |M̂ | + |M∗| ≤ 3|OPT |. The example illustrated in Figure 32
shows the approximation factor achieved by this algorithm is tight.

83

6.3.3 Bottleneck

In this section the objective is to min−max{|λ(S1)|, |λ(S2)|}. We begin with
a lemma concerning the structure of a feasible solution. Let S = S1 ∪ S2 be
any feasible partition to the Bottleneck 2-Matching instance. Let MB(X)
be a minimum bottleneck matching on point set X. Construct a graph
G = (V,E) where V = S and E = (MB(S1) ∪MB(S2) ∪ (pi, qi)

n
i=1) is the

union of any pair of optimal bottleneck matchings on S1, and S2 and the
edges (pi, qi) ∀ i.

Lemma 19. G is a 2-factor such that each input pair is contained in exactly
one cycle, and each cycle contains an even number of input pairs.

Proof. The edge set of G is the union of two disjoint perfect matchings over
S. Therefore, each node has degree exactly 2 and G is by definition a 2-factor.
Also, by definition of a 2-factor, each input point pi is part of a unique cycle,
and in this case, as each node pi has an edge of the form (pi, qi) incident to
it, therefore, the point qi must be contained in the same cycle as pi ∀ i. Thus,
each input pair is contained in the same unique cycle in G.

To see that each cycle contains an even number of input pairs, imagine
coloring the nodes of S1 red and the nodes of S2 blue. Suppose by contra-
diction that some cycle in G contains an odd number of input pairs. By
definition, two nodes defining an edge of MB(S1) ∪MB(S2) must be of the
same color, and two nodes defining an edge of the form (pi, qi) must be of dif-
ferent color. Consider a cycle in G containing an odd number of input pairs.
Coloring nodes of S1 red and S2 blue is equivalent, in this cycle, to contract-
ing edges of the form (pi, qi) and 2-coloring the edges of MB(S1) ∪MB(S2),
as the edges of this cycle alternate between the form (pi, qi) and edges in
MB(S1) ∪MB(S2). Since this contracted cycle has an odd number of edges,
this 2-coloring is not possible, thus a contradiction.

Using the above structure lemma we will argue that we can compute a
graph with the same properties and extract a feasible partition with con-
stant factor approximation guarantees. Let M̂B(S) be the minimum weight
(exactly) one of a pair bottleneck matching over S; that is, a bottleneck
matching on the pairs of points where the cost of an edge between two pairs
of points is the cheapest of the four edges between points in the two pairs.
Note that edges of this matching connect points of S. Let MB(S) be the min-
imum weight bottleneck matching over S (excluding the edges (pi, qi) ∀ i).

84

Let λ̂ (resp. λ) be the heaviest edge used in M̂B(S) (resp. MB(S)) and let
λ∗ be the heaviest edge in a minimum weight bottleneck matching computed
over each of the two sets in OPT . Note that |λ̂| ≤ |λ∗| and |λ| ≤ |λ∗|.

Begin by constructing a graph G = (V = S,E = MB(S) ∪ (pi, qi)
n
i=1),

which is a 2-factor as its edge set is the union of two disjoint perfect match-
ings. Note, it will be the case that each input pair exists in the same unique
cycle. If each cycle contains an even number of input pairs then this graph
has the same structure as that described in Lemma 19 and thus we can
extract a feasible partition from G. We will describe how to obtain this par-
tition later. As |λ∗| ≥ |λ|, this graph induces an optimal partition. On the
other hand, if there exists a cycle with an odd number of input pairs (there
must be an even number of such cycles) then we “merge” cycles of G together
into larger cycles until a point is reached in which each new “super-cycle”
contains an even number of pairs. From this graph we can extract a constant
factor approximation to an optimal partition.

Lemma 20. If G contains at least one cycle with an odd number of input
pairs, then it is possible to merge cycles of G into super-cycles, each of which
contains an even number of input pairs, such that the heaviest edge (excluding
(pi, qi) ∀ i) in any super-cycle has weight at most 3|λ∗|.
Proof. Superimpose a subset of the edges in M̂B(S) over the nodes of G in
the following way. Consider only edges in M̂B(S) which have endpoints in
different cycles. Treat each cycle in G as a node and run Kruskal’s algorithm
until all of the aforementioned edges of M̂B(S) are exhausted. This yields a
forrest on the cycles of G. It is easy to see that every cycle of G containing an
odd number of input pairs has an edge of M̂B(S) connecting it to some other
cycle. This implies that it is possible to merge all cycles which are connected
by an edge of M̂B(S) until one reaches a point where all cycles have an even
number of pairs. We give a brief outline for this merging process.

Find any maximal path P in G which alternates edges of the form MB(S)
and M̂B(S). Consider the cycles in G containing the edges of MB(S) in P
(see Figure 34a). We will label the cycles in this path C1, C2, . . . , Ck where k
is the number of cycles in the path. We will “stitch” the cycles together into
a final super-cycle by making connections between pairs of cycles with odd
subscripts in sorted order then by making connections between cycles with
even subscripts in reverse sorted order. Now, remove all edges of P and we
are left with a super-cycle (see Figure 34b). Recall that the weight of each
edge of MB(S) and M̂B(S) is a lower bound on |λ∗|. Consider the two nodes

85

M̂B(S)
MB(S)

C1 C2 C3 C4

(a) Before.

C1 C2 C3 C4

(b) After.

Figure 34: Before and after stitching.

M̂B(S)
MB(S)

Ci

(a) Before. (b) After.

Figure 35: Before and after merging into a super-cycle.

that define some edge e created in the stitching process. Note that e can be
replaced by path of at most three edges from MB(S) ∪ M̂B(S). Thus, any
edge not of the form (pi, qi) in the super-cycle has weight at most 3|λ∗|. It is
not difficult to see that the stitching process can be done while keeping the
weight of the bottleneck edge at most 3|λ∗| regardless of whether k is even
or odd.

It is possible that many maximal paths share an edge with the same cycle
Ci in G (see Figure 35a). These edges must all be different because, when
only considering edges of MB(S) ∪ M̂B(S), the degree of each node in G is
at most two. This implies that any edge created in one stitching process
is not altered by another stitching process and thus stitching processes are
independent of one another. All cycles associated with these paths will be
merged into the same super-cycle (see Figure 35b), and since the merging
processes are independent, the bottleneck edge created is still of weight no
larger than 3|λ∗|.

Now that each cycle contains an even number of input pairs, all that is
left to show is how to create a feasible partition from these cycles so that the

86

weight of the heaviest edge in the bottleneck matching computed on either
side of the partition is at most 3|λ∗|. Notice that for each cycle, every other
edge is of the form (pi, qi). We will 2-color the nodes of each cycle red and
blue so that if two nodes share an edge of the form (pi, qi), they must be of
different color, and if they share an edge not of the form (pi, qi) they must
be of the same color. Assign the red nodes to S1 and the blue nodes to S2.
This partition is clearly feasible and the weight of the heaviest edge in the
matchings created on either side is equal to the weight of the heaviest edge
not of the form (pi, qi) among all of the cycles we have created; this edge has
weight at most 3|λ∗|.

Theorem 39. There exists a 3-approximation to the Bottleneck 2-Matching
problem in general metric spaces.

6.4 TSP Tours

Given a set S of n pairs of points in a metric space, partition the point set S
into two sets, S1 and S2, such that for each pair {pi, qi}, pi ∈ S1 if and only
if qi ∈ S2. Let TSP (X) be a TSP tour on point set X and |TSP (X)| be the
cost of the tour. Let λ(X) be the bottleneck edge in a TSP tour on point set
X and |λ(X)| be the cost of the bottleneck edge.

In this section we consider partitioning a set of input pairs of points so
that the cost function of a pair of TSP tours, one built on each set of the
partition, is minimized. It is interesting to note the complexity difference
emerging here. In prior sections, the structures to be computed on each
set of the partition were computable exactly in polynomial time. Thus, the
decision versions of these problems, which ask if there exists a partition such
that some cost function over the pair of structures is at most k, are easily
seen to be in NP. However, when the cost function is over a set of TSP tours
or bottleneck TSP tours, this is no longer the case. That is, suppose that
a non-deterministic Touring machine could in polynomial time, for a point
set S and k ∈ R, return a partition for which it claimed the cost of the TSP
tours generated over both sets is at most k. Unless P = NP , the verifier
cannot in polynomial time confirm that this is a valid solution, and therefore
the problem is not in NP. Thus, the problems considered in this section are
all NP-hard.

87

6.4.1 Minimum Sum

In this section the objective is to minimize |TSP (S1)|+ |TSP (S2)|.

Algorithm 5 Algorithm A(µ, β). 0 < µ < 1 and β > 1.

Let a β-factor approximate TSP tour on set X be denoted TSP (X).

1. Compute TSP (S).

2. Let 2k be the maximum even number not exceeding (2+ 1
µ
)β. Enumer-

ate all ways of decomposing TSP (S) into 2k connected components:
for each decomposition, assign the nodes from the components to S1

and S2 alternately (i.e. assign all nodes in component one to S1, all
nodes in component two to S2, etc.). If this partition is infeasible,
then skip to the next decomposition; otherwise compute TSP (S1) and
TSP (S2).

3. Compute a random feasible partition, S = Ŝ1 ∪ Ŝ2, and compute
TSP (Ŝ1) and TSP (Ŝ2).

4. Among all pairs of tours produced in steps 2 and 3, choose the pair of
minimum sum.

We will show for β > 1 and for the proper choice of µ, that Algorithm 5
gives a 3β-approximation for the Min-Sum 2-TSP problem. Fix a constant
µ < 1. Let OPT be the optimal partition S = S∗1 ∪ S∗2 . Let d(S1, S2) be the
minimum point-wise distance between sets S1 and S2. We call an instance
of the problem µ-separable if there exists a feasible partition S = S1 ∪ S2 :
d(S1, S2) ≥ µ(|TSP (S1)|+ |TSP (S2)|).

Let APX be the partition returned by our approximation. We will show
that if S is not µ-separable, then |APX| ≤ 2

1−4µ
β|OPT | (see Lemma 21) and

that if S is µ-separable, then |APX| ≤ 1
4µ
β|OPT | (see Lemma 22). Suppos-

ing both of these are true, then the approximation factor of our algorithm
is max{ 1

4µ
, 2

1−4µ
}β. One can easily verify that µ = 1/12 is the minimizer

which gives the desired 3β factor. The following lemma states that if S is
not µ-separable, then any feasible partition yields a “good” approximation.

Lemma 21. If S is not µ-separable, then |APX| ≤ 2
1−4µ

β|OPT |.

88

Proof. If S is not µ-separable, then for any feasible partition S = S1 ∪ S2

we have d(S1, S2) ≤ µ(|TSP (S1)|+ |TSP (S2)|). In particular, for the parti-
tion induced by the optimal solution, S = S∗1∪S∗2 , d(S∗1 , S

∗
2) ≤ µ(|TSP (S∗1)|+

|TSP (S∗2)|). Then, |TSP (S)| ≤ |OPT |+2d(S∗1 , S
∗
2) ≤ |OPT |+2µ(|TSP (S∗1)|+

|TSP (S∗2)|) ≤ |OPT |+ 4µ|TSP (S)|.
Hence, when µ < 1

4
, |TSP (S)| ≤ 1

1−4µ
|OPT |. Let S = Ŝ1 ∪ Ŝ2 be the

random feasible partition computed by A(µ, β). Then, as we are returning
the best partition between Ŝ1 ∪ Ŝ2 and all O(n2k) partitions of TSP (S), we
have |APX| ≤ β(|TSP (Ŝ1)|+ |TSP (Ŝ2)|) ≤ 2β|TSP (S)| ≤ 2β

1−4µ
|OPT |.

The following lemma states that if S is µ-separable, then any witness
partition to the µ-separability of S gives a “good” approximation.

Lemma 22. If S is µ-separable, then |APX| ≤ 1
4µ
β|OPT |.

Proof. Suppose we successfully guessed a partition X0 = S0
1 ∪ S0

2 that is a
“witness” to the µ-separability of S (we will show how to guess X0 later).

• Case 1: OPT = X0. Then |APX| ≤ β(|TSP (S0
1)| + |TSP (S0

2)|) =
β(|TSP (S∗1)|+ |TSP (S∗2)|) = β|OPT |.
• Case 2: OPT 6= X0. Then for i = 1, 2, S∗i 6= S0

i , which means each
tour in OPT must contain at least 2 edges crossing the cut (S0

1 , S
0
2),

hence the optimal solution must contain at least 4 edges crossing the
cut (S0

1 , S
0
2). So |OPT | ≥ 4d(S0

1 , S
0
2) ≥ 4µ(|TSP (S0

1)|+ |TSP (S0
2)|) ≥

4µ
β
|APX|. Equivalently, |APX| ≤ β

4µ
|OPT |.

The next two lemmas show how to guess a witness partition X0 in poly-
nomial time. First, we show that if S is µ-separable with a witness partition
X0, then TSP (S) cannot cross this partition “too many” times.

Lemma 23. Let TSP (S) be an β-factor approximation for TSP (S). Also,
suppose S is µ-separable with witness X0. Then TSP (S) crosses the cut (S0

1 ,
S0

2) at most (2 + 1
µ
)β times.

Proof. One can construct a TSP tour for S by adding two bridges to TSP (S0
1)

and TSP (S0
2), thus we have |TSP (S)| ≤ |TSP (S0

1)|+|TSP (S0
2)|+2d(S0

1 , S
0
2) ≤

(2 + 1
µ
)d(S0

1 , S
0
2). Also, suppose TSP (S) crosses the cut (S0

1 , S0
2) 2k times.

Then, 2kd(S0
1 , S

0
2) ≤|TSP (S)|≤ β|TSP (S)|. Combining the above two in-

equalities, we obtain 2k ≤ (2 + 1
µ
)β.

89

The next lemma completes our proof.

Lemma 24. Suppose S is µ-separable. Let X0 be any partition which serves
as a “witness”. Then, in step 2 of A(µ, β), we will encounter X0 at some
stage.

Proof. Given a nonnegative integer k and a TSP tour P , define Π(P, k) ={X:
X is a feasible partition and P crosses X at most k times}. By Lemma 23,
we know X0 ∈ Π(TSP (S), (2 + 1

µ
)β). Since step 2 of A(µ, β) is actually

enumerating all partitions in Π(TSP (S), (2 + 1
µ
)β), we are done.

Note that step 2 considers O(n2k) = O(n14β) decompositions and for each
partition that is feasible, we compute two approximate TSP tours. Suppose
the running time to compute a β-factor TSP tour on n points is hβ(n). Then
the worst case running time of Algorithm 5 is O(hβ(2n)n14β). Thus, we have
the following Theorem.

Theorem 40. For any β > 1, the algorithm A(1
12
, β) is a 3β-approximation

for the Min-Sum 2-TSP problem with running time O(hβ(2n)n14β).

Remark: If S is in the Euclidean plane then β = 1 + ε for some ε > 0
[73] yielding a (3 + ε)-approximation and if S is in a general metric space
then β = 3/2 [32] yielding a 4.5-approximation. In both cases hβ(2n) is
polynomial.

6.4.2 Min-max

In this section the objective is to min−max{|TSP (S1)|, |TSP (S2)|}.

Theorem 41. There exists a 6β-approximation to the Min-Max 2-TSP prob-
lem, where β is the approximation factor for TSP in a certain metric space.

Proof. We use the same algorithm, and return the same partition, S1 ∪ S2,
as in Section 6.4.1. Let APX be the partition returned, and let |APX|
be the cost of the larger of the two TSPs computed on APX. Let OPT
be the optimal solution. Note that |APX| ≤ β(|TSP (S1)| + |TSP (S2)|) ≤
3β(|TSP (S∗1)| + |TSP (S∗2)|) ≤ 6β|OPT | since |TSP (X1)| + |TSP (X2)| ≤
2max{TSP (X1), TSP (X2)} for any X = X1 ∪X2.

90

6.4.3 Bottleneck

In this section the objective is to min−max{|λ(S1)|, |λ(S2)|}.

Theorem 42. There exists an 18-approximation algorithm for the Bottleneck
2-TSP problem.

Proof. We remarked in Section 6.2.3 that there exists a 9-approximation to
the problem of finding a partition that minimizes the weight of the bottleneck
edge on two Hamilton paths built on the partition. A Hamilton path can
be converted into a Hamilton cycle by at most doubling the weight of the
bottleneck edge in the Hamilton path. This yields an 18-approximation to
the Bottleneck 2-TSP problem.

91

Chapter 7

Conclusion

In this dissertation we considered many algorithmic problems with applica-
tions in sensor networks. We considered that the placement of an input set
of sensors is in a general metric space and that the placement of the sen-
sors is in Euclidean space. For many of these problems we either designed
efficient exact polynomial-time algorithms or showed that the problems are
NP-hard. For most of the problems that were shown to be NP-hard, we de-
signed O(1)-approximation algorithms and very frequently achieved better
constants when the sensors were assumed to be located in Euclidean space.
We improved on some known results and introduced and solved many new
important problems. This work, with a focus on geometric optimization,
advances the field of sensor networks.

92

References

[1] National traveling salesman problems. http://www.math.uwaterloo.

ca/tsp/world/countries.html. Accessed: 2014-12-15.

[2] M. Abellanas, F. Hurtado, C. Icking, R. Klein, E. Langetepe, L. Ma,
B. Palop, and V. Sacristn. Smallest color-spanning objects. In F. auf der
Heide, editor, Algorithms ESA 2001, volume 2161 of Lecture Notes in
Computer Science, pages 278–289. Springer Berlin Heidelberg, 2001.

[3] K. Almiani, A. Viglas, and L. Libman. Tour and path planning methods
for efficient data gathering using mobile elements. IJAHUC, 21(1):11–
25, 2016.

[4] G. Anastasi, M. Conti, and M. Di Francesco. Data collection in sensor
networks with data mules: An integrated simulation analysis. In Com-
puters and Communications, 2008. ISCC 2008. IEEE Symposium on,
pages 1096–1102, July 2008.

[5] A. Archer, M. Bateni, M. Hajiaghayi, and H. J. Karloff. Improved ap-
proximation algorithms for prize-collecting steiner tree and TSP. SIAM
J. Comput., 40(2):309–332, 2011.

[6] C. Archetti, M. Speranza, and D. Vigo. Vehicle routing problems with
profits. Technical report, Tech. Report WPDEM2013/3, University of
Brescia, 2013.

[7] E. Arkin, J. S. B. Mitchell, and G. Narasimhan. Resource-constrained
geometric network optimization. In In Symposium on Computational
Geometry, pages 307–316, 1998.

[8] E. M. Arkin, A. Banik, P. Carmi, G. Citovsky, M. J. Katz, J. S. B.
Mitchell, and M. Simakov. Choice is hard. In Algorithms and Compu-
tation - 26th International Symposium, ISAAC 2015, Nagoya, Japan,
December 9-11, 2015, Proceedings, pages 318–328, 2015.

[9] E. M. Arkin, A. Banik, P. Carmi, G. Citovsky, M. J. Katz, J. S. B.
Mitchell, and M. Simakov. Conflict-free covering. In Proceedings of the
27th Canadian Conference on Computational Geometry, CCCG 2015,
Kingston, Ontario, Canada, August 10-12, 2015, 2015.

93

[10] E. M. Arkin, J. M. Dı́az-Báñez, F. Hurtado, P. Kumar, J. S. B. Mitchell,
B. Palop, P. Pérez-Lantero, M. Saumell, and R. I. Silveira. Bichromatic
2-center of pairs of points. Comput. Geom., 48(2):94–107, 2015.

[11] E. M. Arkin, M. M. Halldórsson, and R. Hassin. Approximating the tree
and tour covers of a graph. Information Processing Letters, 47(6):275–
282, 1993.

[12] E. M. Arkin and R. Hassin. Minimum-diameter covering problems. Net-
works, 36(3):147–155, 2000.

[13] E. M. Arkin, R. Hassin, and A. Levin. Approximations for minimum
and min-max vehicle routing problems. J. Algorithms, 59(1):1–18, 2006.

[14] R. Aschner, G. Citovsky, and M. J. Katz. Exploiting geometry in the
SINR k model. In Algorithms for Sensor Systems - 10th International
Symposium on Algorithms and Experiments for Sensor Systems, Wire-
less Networks and Distributed Robotics, ALGOSENSORS 2014, Wro-
claw, Poland, September 12, 2014, Revised Selected Papers, pages 125–
135, 2014.

[15] B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for
testing the truth of certain quantified boolean formulas. Information
Processing Letters, 8(3):121–123, 1979.

[16] G. Ausiello, V. Bonifaci, and L. Laura. The online prize-collecting trav-
eling salesman problem. Inf. Process. Lett., 107(6):199–204, Aug. 2008.

[17] G. Ausiello, S. Leonardi, and A. Marchetti-Spaccamela. On salesmen,
repairmen, spiders, and other traveling agents. In Algorithms and Com-
plexity, 4th Italian Conference, CIAC 2000, Rome, Italy, March 2000,
Proceedings, pages 1–16, 2000.

[18] C. Avin, Y. Emek, E. Kantor, Z. Lotker, D. Peleg, and L. Roditty. SINR
diagrams: Convexity and its applications in wireless networks. J. ACM,
59(4):18, 2012.

[19] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. Improved approxima-
tion guarantees for minimum-weight k-trees and prize-collecting sales-
men. In SIAM JOURNAL ON COMPUTING, pages 277–283, 1995.

94

[20] E. Balas. The prize collecting traveling salesman problem. Networks,
19(6):621–636, 1989.

[21] N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Approximation al-
gorithms for deadline-TSP and vehicle routing with time-windows. In
Proceedings of the 36th Annual ACM Symposium on Theory of Comput-
ing, Chicago, IL, USA, June 13-16, 2004, pages 166–174, 2004.

[22] L. Barba, S. Durocher, R. Fraser, F. Hurtado, S. Mehrabi, D. Mondal,
J. Morrison, M. Skala, and M. A. Wahid. On k-enclosing objects in
a coloured point set. In Proceedings of the 25th Canadian Conference
on Computational Geometry, CCCG 2013, Waterloo, Ontario, Canada,
August 8-10, 2013.

[23] B. K. Bhattacharya, A. Custic, A. Rafiey, A. Rafiey, and V. Sokol.
Approximation algorithms for generalized MST and TSP in grid clus-
ters. In Combinatorial Optimization and Applications - 9th International
Conference, COCOA 2015, Houston, TX, USA, December 18-20, 2015,
Proceedings, pages 110–125, 2015.

[24] D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. P. Williamson. A
note on the prize collecting traveling salesman problem. Math. Program.,
59:413–420, 1993.

[25] A. Biere, M. Heule, and H. van Maaren. Handbook of satisfiability,
volume 185. IOS Press, 2009.

[26] A. Blum, S. Chawla, D. Karger, T. Lane, A. Meyerson, and M. Minkoff.
Approximation algorithms for orienteering and discounted-reward TSP.
In Foundations of Computer Science, 2003. Proceedings. 44th Annual
IEEE Symposium on, pages 46–55, Oct 2003.

[27] P. S. Bonsma, T. Epping, and W. Hochstättler. Complexity results on
restricted instances of a paint shop problem for words. Discrete Applied
Mathematics, 154(9):1335–1343, 2006.

[28] D. Chafekar, V. S. A. Kumar, M. V. Marathe, S. Parthasarathy, and
A. Srinivasan. Approximation algorithms for computing capacity of
wireless networks with SINR constraints. In INFOCOM 2008. 27th
IEEE International Conference on Computer Communications, Joint

95

Conference of the IEEE Computer and Communications Societies, 13-
18 April 2008, Phoenix, AZ, USA, pages 1166–1174, 2008.

[29] T. M. Chan. Polynomial-time approximation schemes for packing and
piercing fat objects. J. Algorithms, 46(2):178–189, 2003.

[30] C. Chekuri, N. Korula, and M. Pál. Improved algorithms for orienteering
and related problems. In Proceedings of the Nineteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2008, San Francisco,
California, USA, January 20-22, 2008, pages 661–670, 2008.

[31] K. Chen and S. Har-Peled. The euclidean orienteering problem revisited.
SIAM Journal on Computing, 38(1):385–397, 2008.

[32] N. Christofides. Worst-case analysis of a new heuristic for the travelling
salesman problem. Technical report, DTIC Document, 1976.

[33] G. Citovsky, J. Gao, J. S. B. Mitchell, and J. Zeng. Exact and approx-
imation algorithms for data mule scheduling in a sensor network. In
Algorithms for Sensor Systems - 11th International Symposium on Al-
gorithms and Experiments for Wireless Sensor Networks, ALGOSEN-
SORS 2015, Patras, Greece, September 17-18, 2015, Revised Selected
Papers, pages 57–70, 2015.

[34] M. Claverol, D. Garijo, C. I. Grima, A. Mrquez, and C. Seara. Stabbers
of line segments in the plane. Computational Geometry, 44(5):303 – 318,
2011.

[35] M. Claverol Aguas et al. Problemas geométricos en morfoloǵıa computa-
cional. 2004.

[36] S. Coene and F. C. R. Spieksma. Profit-based latency problems on the
line. Oper. Res. Lett., 36(3):333–337, 2008.

[37] M. E. Consuegra and G. Narasimhan. Geometric avatar problems. In
IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2013, volume 24 of LIPIcs,
pages 389–400, 2013.

[38] S. A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the third annual ACM symposium on Theory of computing,
pages 151–158. ACM, 1971.

96

[39] S. Das, P. P. Goswami, and S. C. Nandy. Smallest color-spanning ob-
ject revisited. International Journal of Computational Geometry and
Applications, 19(05):457–478, 2009.

[40] G. A. Dirac. Some theorems on abstract graphs. Proc. London Mathe-
matical Society, series 3, 2(1):69–81, 1952.

[41] W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing
the satisfiability of propositional horn formulae. The Journal of Logic
Programming, 1(3):267–284, 1984.

[42] B. Eksioglu, A. V. Vural, and A. Reisman. The vehicle routing problem:
A taxonomic review. Computers & Industrial Engineering, 57(4):1472–
1483, 2009.

[43] G. Even, N. Garg, J. Knemann, R. Ravi, and A. Sinha. Covering graphs
using trees and stars. In Approximation, Randomization, and Combina-
torial Optimization.. Algorithms and Techniques, volume 2764 of Lecture
Notes in Computer Science, pages 24–35. 2003.

[44] D. Feillet, P. Dejax, and M. Gendreau. Traveling salesman problems
with profits. Transportation Science, 39(2):188–205, 2005.

[45] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing and
covering in the plane are NP-complete . Information Processing Letters,
12(3):133 – 137, 1981.

[46] H. N. Gabow, S. N. Maheshwari, and L. J. Osterweil. On two problems
in the generation of program test paths. IEEE Transactions on Software
Engineering, 2(3):227–231, 1976.

[47] B. L. Golden, L. Levy, and R. Vohra. The orienteering problem. Naval
Research Logistics, 34:307–318, 1987.

[48] O. Goussevskaia, Y. A. Oswald, and R. Wattenhofer. Complexity in
geometric SINR. In Proceedings of the 8th ACM Interational Symposium
on Mobile Ad Hoc Networking and Computing, MobiHoc 2007, Montreal,
Quebec, Canada, September 9-14, 2007, pages 100–109, 2007.

[49] O. Goussevskaia, R. Wattenhofer, M. M. Halldórsson, and E. Welzl. Ca-
pacity of arbitrary wireless networks. In INFOCOM 2009. 28th IEEE

97

International Conference on Computer Communications, Joint Confer-
ence of the IEEE Computer and Communications Societies, 19-25 April
2009, Rio de Janeiro, Brazil, pages 1872–1880, 2009.

[50] M. Grossglauser and D. Tse. Mobility increases the capacity of ad hoc
wireless networks. IEEE/ACM Transactions on Networking, 10(4):477–
486, August 2002.

[51] P. Gupta and P. Kumar. The capacity of wireless networks. Information
Theory, IEEE Transactions on, 46(2):388–404, Mar 2000.

[52] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE
Transactions on Information Theory, 46(2):388–404, 2000.

[53] P. Hall. On representatives of subsets. J. London Math. Soc, 10(1):26–
30, 1935.

[54] M. M. Halldórsson. Wireless scheduling with power control. ACM Trans-
actions on Algorithms, 9(1):7, 2012.

[55] M. M. Halldórsson and P. Mitra. Wireless capacity with oblivious power
in general metrics. In Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco,
California, USA, January 23-25, 2011, pages 1538–1548, 2011.

[56] M. M. Halldórsson and R. Wattenhofer. Wireless communication is
in APX. In Automata, Languages and Programming, 36th International
Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings,
Part I, pages 525–536, 2009.

[57] D. S. Hochbaum and A. Pathria. Analysis of the greedy approach in
problems of maximum k-coverage. Naval Research Logistics, 45(6):615–
627, 1998.

[58] O. Hudec. On alternative p-center problems. Zeitschrift fur Operations
Research, 36(5):439–445, 1992.

[59] D. Ismailescu and J. Park. Improved upper bounds for the steiner ratio.
Discrete Optimization, 11:22–30, 2014.

98

[60] D. Jea, A. Somasundara, and M. Srivastava. Multiple controlled mo-
bile elements (data mules) for data collection in sensor networks. In
Proceedings of the First IEEE International Conference on Distributed
Computing in Sensor Systems, DCOSS’05, pages 244–257, 2005.

[61] A. Kansal, M. H. Rahimi, D. Estrin, W. J. Kaiser, G. J. Pottie, and
M. B. Srivastava. Controlled mobility for sustainable wireless sensor
networks. In Proceedings of the First Annual IEEE Communications
Society Conference on Sensor and Ad Hoc Communications and Net-
works, SECON 2004, October 4-7, 2004, Santa Clara, CA, USA, pages
1–6, 2004.

[62] R. M. Karp. Reducibility among combinatorial problems. Springer, 1972.

[63] T. Kesselheim. A constant-factor approximation for wireless capacity
maximization with power control in the SINR model. In Proceedings of
the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2011, San Francisco, California, USA, January 23-25,
2011, pages 1549–1559, 2011.

[64] M. R. Khani and M. R. Salavatipour. Improved approximation algo-
rithms for the min-max tree cover and bounded tree cover problems.
Algorithmica, 69(2):443–460, 2014.

[65] P. Khanteimouri, A. Mohades, M. Abam, and M. Kazemi. Computing
the smallest color-spanning axis-parallel square. In L. Cai, S.-W. Cheng,
and T.-W. Lam, editors, Algorithms and Computation, volume 8283
of Lecture Notes in Computer Science, pages 634–643. Springer Berlin
Heidelberg, 2013.

[66] D. Kim, R. Uma, B. Abay, W. Wu, W. Wang, and A. Tokuta. Minimum
latency multiple data mule trajectory planning in wireless sensor net-
works. Mobile Computing, IEEE Transactions on, 13(4):838–851, April
2014.

[67] D. Knuth. SAT11 and SAT11k. Proceedings of SAT Competition 2013;
Solver and Benchmark Descriptions, page 32, 2013.

[68] D. E. Knuth. Nested satisfiability. Acta Informatica, 28(1):1–6, 1990.

99

[69] G. Laporte. The vehicle routing problem: An overview of exact and
approximate algorithms. European Journal of Operational Research,
59(3):345 – 358, 1992.

[70] D. Lichtenstein. Planar formulae and their uses. SIAM Journal on
Computing, 11(2):329–343, 1982.

[71] M. Ma and Y. Yang. Data gathering in wireless sensor networks with
mobile collectors. In Parallel and Distributed Processing, 2008. IPDPS
2008. IEEE International Symposium on, pages 1–9. IEEE, 2008.

[72] G. L. Miller, S. Teng, W. P. Thurston, and S. A. Vavasis. Separators
for sphere-packings and nearest neighbor graphs. J. ACM, 44(1):1–29,
1997.

[73] J. S. Mitchell. Guillotine subdivisions approximate polygonal subdi-
visions: A simple polynomial-time approximation scheme for geomet-
ric TSP, k-MST, and related problems. SIAM Journal on Computing,
28(4):1298–1309, 1999.

[74] T. Moscibroda and R. Wattenhofer. The complexity of connectivity in
wireless networks. In INFOCOM 2006. 25th IEEE International Con-
ference on Computer Communications, Joint Conference of the IEEE
Computer and Communications Societies, 23-29 April 2006, Barcelona,
Catalunya, Spain, 2006.

[75] Y. Myung, C. Lee, and D. Tcha. On the generalized minimum spanning
tree problem. Networks, 26(4):231–241, 1995.

[76] V. Nagarajan and R. Ravi. Approximation algorithms for distance con-
strained vehicle routing problems. Networks, 59(2):209–214, 2012.

[77] O. Ore. Note on hamilton circuits. The American Mathematical
Monthly, 67(1):p. 55, 1960.

[78] E. M. Palmer. The hidden algorithm of Ore’s theorem on hamiltonian
cycles. Computers & Mathematics with Applications, 34(11):113–119,
1997.

[79] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia. A review of
dynamic vehicle routing problems. European Journal of Operational
Research, 225(1):1–11, 2013.

100

[80] P. C. Pop. New models of the generalized minimum spanning tree prob-
lem. J. Math. Model. Algorithms, 3(2):153–166, 2004.

[81] P. C. Pop, W. Kern, G. Still, and U. Faigle. Relaxation methods for
the generalized minimum spanning tree problem. Electronic Notes in
Discrete Mathematics, 8:76–79, 2001.

[82] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data mules: Modeling
a three-tier architecture for sparse sensor networks. In IEEE SNPA
Workshop, pages 30–41, 2003.

[83] P. Slavik. Approximation algorithms for set cover and related problems.
1998.

[84] A. Somasundara, A. Kansal, D. Jea, D. Estrin, and M. Srivastava. Con-
trollably mobile infrastructure for low energy embedded networks. Mo-
bile Computing, IEEE Transactions on, 5(8):958–973, Aug 2006.

[85] A. A. Somasundara, A. Ramamoorthy, and M. B. Srivastava. Mobile
element scheduling with dynamic deadlines. Mobile Computing, IEEE
Transactions on, 6(4):395–410, 2007.

[86] S. L. Tanimoto, A. Itai, and M. Rodeh. Some matching problems for
bipartite graphs. Journal of the ACM (JACM), 25(4):517–525, 1978.

[87] C. A. Tovey. A simplified NP-complete satisfiability problem. Discrete
Applied Mathematics, 8(1):85–89, 1984.

[88] P. Vansteenwegen, W. Souffriau, and D. V. Oudheusden. The orien-
teering problem: A survey. European Journal of Operational Research,
209(1):1–10, 2011.

[89] V. V. Vazirani. Approximation Algorithms. Springer-Verlag New York,
Inc., New York, NY, USA, 2001.

[90] Z. Vincze and R. Vida. Multi-hop wireless sensor networks with mo-
bile sink. In CoNEXT’05: Proceedings of the 2005 ACM conference on
Emerging network experiment and technology, pages 302–303, New York,
NY, USA, 2005. ACM Press.

101

[91] P. Wan, X. Jia, and F. F. Yao. Maximum independent set of links
under physical interference model. In Wireless Algorithms, Systems,
and Applications, 4th International Conference, WASA 2009, Boston,
MA, USA, August 16-18, 2009. Proceedings, pages 169–178, 2009.

[92] F. Wu and Y. Tseng. Energy-conserving data gathering by mobile mules
in a spatially separated wireless sensor network. Wireless Communica-
tions and Mobile Computing, 13(15):1369–1385, 2013.

[93] W. Yu and Z. Liu. Vehicle routing problems with regular objective
functions on a path. Naval Research Logistics (NRL), 61(1):34–43, 2014.

102

