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Abstract of the Dissertation

Overcoming Element Quality Dependence of Finite
Element Methods

by

Rebecca Conley

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2016

The finite element methods (FEM) are important techniques in engineering for
solving partial differential equations, especially on complex geometries. One
limitation of the classical FEM is its heavy dependence on element shape quality
for stability and good performance. We introduce the Adaptive Extended Stencil
Finite Element Method (AES-FEM) as a means to overcome this dependence on
element shape quality. Our method replaces the traditional basis functions with
a set of generalized Lagrange polynomial (GLP) basis functions, which we con-
struct using local weighted least-squares approximations. The method preserves
the theoretical framework of FEM, and allows imposing essential boundary con-
ditions and integrating the stiffness matrix in the same way as the classical FEM.
In this dissertation, we describe the formulation and implementation of AES-
FEM with quadratic basis functions, and analyze its consistency and stabil-
ity. Next, we present an extension to high-order AES-FEM, including analy-
sis and implementation details. High-order AES-FEM uses meshes with linear
elements, thus avoiding the challenges of isoparametric elements. We present
numerical experiments in both 2D and 3D for the Poisson equation and a time-
independent convection-diffusion equation, including results on curved bound-
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aries. We demonstrate high-order convergence up to sixth order of accuracy.
Since AES-FEM results in a non-symmetric stiffness matrix, we compare the
timing results of several combinations of linear solvers and preconditioners. The
numerical results demonstrate that high-order AES-FEM is more accurate than
high-order FEM, is also more efficient than FEM in terms of error versus run-
time on finer meshes, and enables much better stability and faster convergence
of iterative solvers than FEM over poor-quality meshes.
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Chapter 1

Introduction

Finite element methods (FEM) are one of the most important tools for solving par-

tial differential equations on complex geometries. They account for an overwhelm-

ing majority of the commercial and research code for modeling and simulations,

and there is a vast amount of theoretical work to provide a rigorous foundation; see

[18, 93].

Despite their apparent success in many applications, classical finite element

methods have a very fundamental limitation: they are dependent on element shape

quality. This is especially true for elliptic and parabolic problems, for which the

resulting linear system is often ill-conditioned if a mesh contains a few “bad” ele-

ments. This can lead to very slow convergence of iterative solvers and sometimes

even a loss of accuracy. This element-quality dependency has impeded productivity

and efficiency. A recent survey conducted by NASA found that the mesh generation

remains a significant bottleneck for large scale complex simulations in the field of

computational fluid dynamics [81]. Because of this, researchers and users of FEM

often spend a tremendous amount of time and computing power to generate and
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maintain meshes, trying to fix that one last bad element. This has spurred much

successful research in meshing, including Delaunay triangulation [79, 80], advanc-

ing front [54], and octree-based methods [77].

FEM originated as a second order accurate method, but for several decades,

researchers have been exploring high-order variants. In this dissertation, we use

the term “high-order” to refer to any method of third or greater order accuracy.

Some high-order methods include isoparametric FEM [27], hp-FEM [25], discon-

tinuous Galerkin method [21], spectral element method [16], and isogeometric anal-

ysis [42]. The element quality requirements for high-order methods are even more

stringent. Despite the fact that these methods can reach exponential convergence

under appropriate conditions, high-order methods have remained largely confined

to academic study and has yet to make much of an impact in industry [88]. This

is due to many reasons, not least of which is that high-order schemes are generally

less robust [90] and generating good quality meshes for high-order methods is still

not fully resolved [69].

The FEM community has long considered this dependency on element quality

as a critical issue, and the community has been actively searching for alternative

methods to mitigate the issue for decades. Examples of such alternative methods

include the diffuse element or element-free Galerkin methods [9, 64], least-squares

FEM [12], generalized or meshless finite different methods [10, 44, 52, 60, 68],

generalized or extended FEM [8, 33], and partition-of-unity FEM [59]. To reduce

the dependency on mesh quality, these methods avoid the use of the piecewise-

polynomial Lagrange basis functions found in the classical FEM. However, they

also lose some advantages of the classical FEM. In particular, for the generalized

finite different methods, the strong form instead of the weak form of the PDE must
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be used. The partition-of-unity FEM and other similar generalizations often incur

complexities in terms of imposing essential boundary conditions and/or integrating

the stiffness matrix [59]. Therefore, it remains an open problem to develop a numer-

ical method that overcomes the element-quality dependence, while preserving the

theoretical framework of FEM, without complicating the imposition of boundary

conditions and numerical integration.

This dissertation presents a new method, called the Adaptive Extended Sten-

cil Finite Element Method (AES-FEM) (pronounced as ace-F-E-M), to address this

open problem [22, 23]. Similar to some of the aforementioned methods, the AES-

FEM replaces the piecewise-polynomial Lagrange basis functions in the classical

FEM with alternative basis functions. Different from those methods, our basis

functions are partition-of-unity polynomial basis functions, constructed based on

local weighted least squares approximations, over an adaptively selected stencil to

ensure stability. We refer to these basis functions as generalized Lagrange poly-

nomial (GLP) basis functions. Another difference of AES-FEM from most other

generalizations of FEM is that AES-FEM preserves the traditional finite element

shape functions as the weight functions (a.k.a. test functions) in the weak form,

to preserve the compact support of integration and the weak form after integra-

tion by parts. This combination of the basis and weight functions enables AES-

FEM to overcome the element-quality dependence, while preserving the theoreti-

cal framework of FEM, without any complication in imposing essential boundary

conditions or integrating the stiffness matrix. In addition, the resulting stiffness

matrix of AES-FEM has virtually the same sparsity pattern as that of the classical

FEM, while allowing the use of higher-degree polynomials and hence significantly

improved accuracy. AES-FEM is most applicable to elliptical and parabolic prob-
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lems. For solving hyperbolic problems, the weighted least squares based essentially

non-oscillating (WLS-ENO) scheme has been proposed for finite volume methods

in [53], which also uses local weighted least squares polynomial approximations

like AES-FEM.

As a general method, AES-FEM allows polynomial basis functions of arbitrary

degrees. The degree of the basis functions controls the rate of convergence. AES-

FEM is based on the weighted-residual formulation of FEM instead of the Galerkin

formulation, and hence the resulting system is non-symmetric, which is more ex-

pensive to solve than a symmetric system. In addition, it is more expensive to

construct the basis functions of AES-FEM than to use the standard basis functions

in FEM. Therefore, AES-FEM is conceivably less efficient than FEM for a given

mesh. However, as we will demonstrate in our experimental results, AES-FEM is

significantly more accurate than FEM on a given mesh due to its use of higher-

degree basis functions, and it is also more efficient than FEM in terms of error

versus runtime. Most impotently, AES-FEM enables better stability and faster con-

vergence of iterative solvers than FEM over poor-quality meshes.

The reminder of the dissertation is organized as follows. In Chapter 2, we

present some background information and recent developments of related methods.

In Chapter 3, we formulate FEM from a weighted residual perspective, describe the

construction of generalized Lagrange polynomial basis functions based on weighted

least squares approximations, and then introduce quadratic AES-FEM. Chapter 4

contains an analysis, including consistency, accuracy and stability, of AES-FEM

and a generalization to high-order. In Chapter 5, we discuss some implementation

details including the utilized data structure and the applicable algorithms. In Chap-

ter 6, we present the results of some numerical experiments with our approach.
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Finally, Chapter 7 concludes the paper with a discussion.

The main contributions of this thesis are as follows. First, we extend the con-

cept of Lagrange basis functions, which are interpolary by nature, to generalized

Lagrange polynomial basis functions, which apply to least-squares approximation.

The generalized Lagrange polynomial basis functions retain two very important

properties of the Lagrange basis functions, that is, function value as coefficient and

partition of unity. Second, we introduce the adaptive extended stencil finite element

method (AES-FEM), which is insensitive to element-quality because it utilizes the

generalized Lagrange polynomial basis functions. Third, we generalize AES-FEM

to high-order accuracy, for which AES-FEM uses linear meshes even on domains

with curved boundaries. We analyze the consistency, accuracy, and stability of

AES-FEM and explain the use of linear elements with curved boundaries. Last,

we apply AES-FEM to the Poisson equation and the convection-diffusion equa-

tion in 2D and 3D, and we present convergence of up to sixth order. We test the

element-dependence of AES-FEM and FEM, and we compare the efficiency of the

two methods.

In this work, we use boldface, uppercase letters for matrices, e.g., A. We use

boldface, lowercase letters for vectors, e.g., u. Lowercase, non-bold letters are used

for scalars, e.g., x. We refer to entry in the ith row and jth column of matrix A as

aij . The ith row of matrix A is denoted A(i,:) and the jth column is denoted A(:,j).

We denote the leading principle sub-matrix of size k ⇥ k of matrix A by A1:k,1:k.

We use  for weight functions and � for basis functions.
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Chapter 2

Background and Related Work

Researchers have long realized the demands on mesh quality made by the use of

Lagrange basis functions in traditional FEM. For several decades, they have been

actively searching for alternative basis functions to reduce the dependence on mesh

quality. Alternatives include the diffuse element method [64] and element free

Galerkin method [9]; the generalized finite element method and extended finite

element method [8, 33]; the discontinuous Galerkin method [2, 21]; the spectral

element method [66]; isogeometric analysis [42] and other methods using NURBS

[76]; and generalized finite difference or meshless methods [44].

Many of these above mentioned methods have the ability to achieve higher or-

der accuracy. Other high-order accurate methods include FEM with isoparametric

elements [27, 43] and p- and hp-FEM [4]. High-order methods hold the promise

of increased accuracy at a comparable computational cost to lower order method.

Additionally, there are some problems (such as vortex-dominated flows, like heli-

copter blade vortex interaction) for which lower order methods are not well-suited

[90].
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In this chapter we discuss the aforementioned methods and other generalizations

of the finite element method, include least-squares finite element method. We focus

on the basis functions used in each method, its relation to higher-order accuracy,

and the differences with AES-FEM.

2.1 High-Order Finite Element Order

2.1.1 Isoparametric Finite Element Method

Isoparametric finite element method uses the same, often high-order polynomial,

shape functions to define both the geometry and the functional approximation [93].

This concept of elements with curved edges was popularized in the 1960s by Irons,

Ergatoudis, and Zienkiewicz [27, 43] and was predicated on the earlier unpublished

work by I. C. Taig [43, 93]. In 1973, Zlamal proposed a method of using curved

elements only along curve boundaries and straight edge triangles on the interior

[95]. In the same year, he provided some theoretical analysis of curved elements,

including error bounded and an approximation theorem [94]. Isoparametric ele-

ments provided a answer to an open issue, that is, if the boundary of the domain

are curved, a high-order approximation of the geometry is necessary for the accu-

racy of the solution to be high-order [7]. However, this solution is not without its

difficulties.

In the decade following the first suggestion of the use of isoparametric elements,

a series of a short articles and communications highlighted the poor performance

of the serendipity-type of isoparametric elements when the elements were distorted

[32, 37, 83]. In 1993, Lee and Bathe compiled these results and performed similar
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experiments for Lagrangian-type elements [49]. They found that while Lagrangian-

type elements with angular-distortions do not suffer the same poor performance as

serendipity-type elements with angular-distortions, both types of elements exhibit

poor performance for curved-edge distortions. The reason for this poor perfor-

mance is that the use of isoparametric elements demands a high quality mesh. If

an element is too distorted then the one-to-one mapping between the local coor-

dinates and global coordinates no longer exists, and the method will break down

[93]. Another way of stating this requirement is that the Jacobian determinate must

be positive everywhere within the reference element for the physical element to be

geometrically valid [46].

The meshing requirements on isoparametric elements are stringent. In 1972,

Ciarlet and Raviart proved that the Jacobian of the mapping and its first p deriva-

tives must be bounded for isoparametric, curved elements [19]. Additionally, in

1986, Lenior highlighted the contradictory requirements for curved elements: the

difference between the curved elements and the straight-edged elements with the

same vertices must vanish fast enough, and at the same time, the approximated

boundary must be close enough to the physical boundary of the domain [50].

While progress has been made to address the meshing requirements, efficient

meshing of high-order, high-quality curvilinear elements is still area of active re-

search especially in 3D. One method for refining a curved mesh is to project the

new vertices onto the correct geometry, but care must be taken that the refined

mesh is free of invalid elements [51]. A low-quality, but valid element, can result

in an ill-conditioned Jacobian which degrades the solution and introduces approxi-

mation error [34]. Mesh optimization requires mesh-quality measures, and in 2014

Gargallo-Peiró et al. extended the the set of Jacobian-based measure for linear
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elements to isoparametric elements in 3D [34]. In 2015, Moxey et al. propose

a technique for generating high-order boundary layer meshes by refining a valid

coarse meshing [63].

Because AES-FEM uses generalized Lagrange polynomial basis functions, AES-

FEM is independent of mesh quality. Additionally, AES-FEM uses linear meshes

and thus does not suffer from the issues associated with high-order meshing on

curved boundaries.

2.1.2 h-FEM, p-FEM, and hp-FEM

In original implementation of the finite element method, the polynomial degree

of the elements is some low constant number, such as p = 1 or p = 2. To achieve

convergence the diameter of the elements, denoted h, is reduced. This version of the

finite element method is referred to as the h-version or h-FEM. Another option is to

fix the number of elements and to increase the polynomial degree of the elements.

This is referred to as the p-version or p-FEM. Finally, when a combination of the

two versions is used the resulting method is referred to as the hp-version or hp-FEM

[75].

Until the 1978 paper of Szabó and Mehta, it had been thought that the rate of

convergence of elasticity problems with stress singularities was independent of the

element polynomial p [84]. In that paper, it was demonstrated that p-FEM could

converge faster than h-FEM. The theoretical foundations for p-FEM were estab-

lished in the 1981 paper by Babuška, Szabó, and Katz [5], where it was proved

that if there is a singularity at a vertex, the p-version converges twice as fast as

the h-version. In 1985, Gui and Babuška published a detailed analysis of the 1-
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dimensional p-version [39]. In the ensuing decade, Babuška and his colleagues

contributed greatly to the field of p- and hp-FEM, and in 1994, Babuška and Suri

collected much of the work into a survey paper covering many topics, include basic

theory and a benchmark comparison between the three versions in all three dimen-

sions [4]. By this point, it was clear that one of the greatest challenges of the

methods was designing an adaptive mesh for the hp-version.

Starting in the late 1980s, researchers began to focus on developing and imple-

menting optimal hp-adaptivity strategies. Demkowicz and his colleagues proposed

a refinement strategy that calculates a reference solution and is based on edge re-

finements [25]. Šoĺin’s proposed refinement strategy also calculates on a reference

solution but is based on element refinements [82]. Ainsworth and Senior proposed

a strategy that uses three error estimates to estimate the smoothness of the solution

[1]. A recent survey paper by Mitchell compares thirteen strategies on twenty-

one benchmark problems and found that both Demkowicz’s and Šoĺin’s strategies

perform the best in terms of convergence but that they are every expensive [62].

Picking the best strategy is problem dependent, and there is a trade-off concerning

accuracy and expense.

Because of the use of high-order basis functions, p- and hp-FEM have the same

challenges with meshing as discussed in the previous subsection. Additionally,

since in p-FEM the elements are typically larger than in h-FEM, it is absolutely

necessary to represent the domain properly and special care must be taken with

integration [56]. In 2010, Luo et al. presented a method for constructing nearly op-

timal meshes on 3-dimensional, curved domains with singularities and thin sections

for the p-version. Their method starts with a CAD model and uses medial surface

points to identify thin sections [57].
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In addition to the area of meshing, another major challenge of hp-FEM is guar-

anteeing the inter-element continuity of the shape functions. This can be addressed

by using constrained approximation [24, 82], although this is algorithmic complex

especially in 3D. Another strategy is multi-level hp-adaptivity, which uses coarse

mesh everywhere and then overlays finer meshes in areas of interest [92]. Thus the

continuity of the shape functions is guaranteed by construction.

The use of linear meshes and generalized Lagrange polynomial basis functions

in AES-FEM prevent the challenges associated with meshing from affecting AES-

FEM.

2.2 Diffuse Element Method and Element Free

Galerkin Method

Various alternatives of finite element methods have been proposed in the literature

to mitigate the mesh-quality dependence. One of the examples is the diffuse element

method (DEM) [64], proposed by Nayroles, Touzot, and Villon in 1992. Similar to

AES-FEM, DEM constructs local approximations to an unknown function based on

a local weighted least squares fitting at each node. However, unlike AES-FEM, the

DEM is based on the Galerkin formulation, which requires the shape functions to

have a compact support for efficiency. To this end, DEM relies on a weight function

that vanishes at a certain distance from a node, in a manner similar to the moving

least squares fittings [48]. The accuracy and efficiency of numerical integration in

DEM depends on the particular choice of the weight function. In contrast, based

on a weighted-residual formulation, AES-FEM enforces the compact support of the
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weak form with the weight functions, so the shape function does not need to have a

compact support.

Another approach, which is closely related to DEM, is the element-free Galerkin

method (EFGM) [9], proposed by Belytschko, Lu, and Gu in 1994. As a Galerkin

method, EFGM also requires a compact support of its shape functions, which serve

as both the trial functions and weight functions. Similar to DEM, EFGM constructs

the shape functions based on moving least squares, for which the weight function

plays a critical role in terms of accuracy and efficiency. However, depending on the

weight functions, the shape functions in EFGM may not be polynomials. It requires

special quadrature rules with more quadrature points than those of standard FEM

[9], and it also requires evaluating a moving least squares fitting at each quadrature

point. In addition, EFGM requires the use of Lagrange multipliers for essential

boundary conditions. In contrast, AES-FEM can utilize the same treatments of

boundary conditions and numerical integration as the standard FEM.

2.3 Generalized Finite Element Methods

Generalized Finite Element Methods (GFEM), Extended Finite Element Methods

(XFEM), and Partition of Unity Methods (PUM) are all methods which seek to

extend standard FEM through the addition of enrichment functions, in order to bet-

ter model discontinuous or singular phenomena such as the cracks, dislocations,

grain boundaries, phase boundaries, material interfaces, shocks, and boundary lay-

ers. The enrichment functions are special functions which are designed to capture

the behavior of the solution locally (such as jumps or singularities). They may be

obtained from asymptotic solutions which are not exact solutions. The main advan-
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tage of these methods is that the mesh may be independent of the physical entities

causing the discontinuity. The mesh does not need to conform to a discontinuity or

be refined near a singularity, and there is no longer a need for continuous remesh-

ing as the problem evolves. There has been much research about these methods

and there are many excellence survey papers, including [8] and [33]. It should be

noted that while GFEM, XFEM, and PUM developed from different roots, their

current implementations are virtually indistinguishable, and we will refer to them

collectively as GFEM.

While GFEM may offer an efficient method to model discontinuities, the ad-

dition of the enrichment functions often leads to some complications. First, the

resulting basis functions may be linearly dependent (or nearly so) and this leads

to ill-conditioning. This becomes even more of a problem when multiple enrich-

ments are used. Second, the enforcement of essential boundary conditions is no

longer a trivial matter. One must use Lagrange multipliers, penalty method, or

another method to impose them. Third, the enrichment functions often contain

jumps, kinks or high gradients and thus the standard Gauss quadrature rules cannot

be used. Depending on the properties of the enrichment functions, strategies for

accurate quadrature include element decomposition for discontinuous enrichment

functions, special quadrature rules for singular enrichment functions, and the use of

a large number of Gauss points for enrichment functions with high gradients. Fi-

nally, there are difficulties with blending elements, which are elements where some

but not all of the nodes are enriched. Partition of unity no longer holds in these

elements, which can negatively effect convergence. There are many strategies for

dealing with blending elements, with differing applicability and efficacy.
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2.4 Other Variants and Generalizations of FEM

Starting in the 1970s there have been many new methods which have build off of

ideas central to the finite element method and the weighted residual formulation.

The aim of all of these methods is to extend the positive aspects of FEM; some to

problems whose behavior is not well captured by FEM like shocks or convection

dominated problems, and others to decrease the dependency on mesh quality.

2.4.1 Discontinuous Galerkin Method & Internal Penalty

Method

In the 1970s, two Galerkin methods based on piecewise continuous polynomial

function spaces were developed simultaneously and independently [2, 21]. Interior

Penalty Method was developed for elliptic and parabolic problems; it grew from

the observation that if Dirichlet boundary conditions could be imposed weakly then

so could inter-element continuity. Discontinuous Galerkin (DG) Method was orig-

inally conceived for hyperbolic problems, specifically for neutron transport [71].

DG was then extended to elliptic and parabolic problems; it is especially useful for

problems with a dominate convective part and a non-negligible diffusive part. Later

it was realized that these two methods were the same and now they have been united

under the name Discontinuous Galerkin Methods [2]. The trial and test functions

are piecewise continuous polynomials and continuity between elements is not en-

forced. Most Discontinuous Galerkin methods use a numerical flux at the element

boundaries; the way this flux is defined will change the method being used.

DG methods are able to achieve high accuracy and can be used on complex

geometries [21]. Bassi and Rebay applied high order accurate DG to the Navier-
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Stokes and compressible Euler equations [6, 7]. More recent developments include

compact DG [67], which have a more compact stencil than local DG methods, and

hybridized DG [20], which have a relatively low number of degrees of freedom.

Unlike DG, AES-FEM uses basis functions which have inter-element continuity.

2.4.2 Spectral Element Method

In 1984, Patera combined the ideas of the finite element method with those of the

spectral method to invent the Spectral Element Method (SEM) [66]. The objective

was to exploit the ease with which the former handled complex domains and capture

the high accuracy of the latter. High-order, orthogonal functions, such as Cheby-

shev or Legendre polynomials, are used for the trial and test functions. Quadrature

is performed using Legendre-Gauss–Lobatto points, which allows for the conve-

nient enforcement of boundary conditions. Assuming the solution is sufficiently

smooth, exponential (or spectral) convergence is achieved. While increasing the

degree of the polynomial basis used can increase the accuracy exponentially, if too

high of a degree is used the method becomes prohibitively expensive. Most imple-

mentations are based on quadrilaterals and hexahedra, which may not allow com-

plex geometries to be captured well, but research is being performed into triangle

and tetrahedral meshing for SEMs [15].

2.4.3 Least-Squares Finite Element Method

Since the 1990s, Bochev and Gunzburger have popularized a method known as

Least-Squares Finite Element Method (LSFEM) [12]. This method solves a given

PDE by minimizing a global error residual in the least squares sense. LSFEM was
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developed to extend the many positive aspects of the Rayleigh-Ritz formulation to

problems that the Rayleigh-Ritz formulation does not apply to (such as non-self

adjoint problems) and to problems for which the standard variational formulation

results in a saddle-point problem (such as the Stokes problem in primitive vari-

ables). LSFEM has several positive properties, not the least of which is that the

resulting system is always sparse, symmetric, and positive definite. There are still

several challenges and open problems. In order to make LSFEM practical to imple-

ment, any higher order PDE must be decomposed into a system of first order PDEs.

This not only increases the size of the system and the number of unknowns, but

can also introduce ambiguity into the problem because there is often more than one

way to perform the decomposition. Additionally, because of the global nature of

the least squares problem, LSFEM does not have local conservation of mass. One

may use Lagrange multipliers to recover mass conservation but the resulting linear

system is indefinite.

2.4.4 Isogeometric Analysis

Isogeometric analysis (IGA) uses NURBS (Non-Uniform Rational B-Splines) or T-

splines as basis functions instead of the standard FEM basis functions [42]. These

methods can deliver high accuracy over very coarse meshes and can be advanta-

geous for problems that can benefit from high-degree continuity, such as thin-shell

modeling. Another related method is the NURBS-enhanced finite element method

(NEFEM), which uses NURBS to represent the boundary of the computational do-

main and uses standard piecewise polynomials for solutions [76]. These methods

bypass the process of generating meshes in the traditional sense, and they can de-
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liver accurate solutions with relatively fewer degrees of freedom. However, they do

not alleviate the dependency on mesh quality, because NURBS and T-splines tend

to impose a stronger requirement on mesh quality than the traditional FEM.

2.5 Generalized Finite Difference & Weighted Least

Squares

The study of generalized finite difference (GFD) methods or meshless finite differ-

ence methods (MFDM) has been an active research area for at least five decades. In

1960, Forsythe and Wasow [30] first suggested applying the finite different method

to irregular grids. This idea was not actualized until 1972 when Jensen [44] used the

Taylor series expansion to get 2nd order finite difference formulations on 6 point

stars. The resulting matrices were often singular or ill-conditioned. In 1975 Perrone

and Kao [68] attempted to tackle the problem of ill-conditioning. They proposed

the inclusion of more nodes in the stars and the selection of nodes based on the

‘eight-segment’ criterion instead of only using distance as the criterion. In 1980,

Liszka and Orkisz [52] further improved the ill-conditioning problem by selecting

nodes based on the ‘four-quadrant’ criterion and then minimizing the norm of the

matrix equation to solve for the coefficients.

In more recent years, Benito, Ureña, and Gavete have analyzed the influence of

several key parameters (including the number of and selection criteria for the nodes

in a star), presented an h-adaptivity procedure, and applied GFD to parabolic and

hyperbolic PDEs and the advection-diffusion equation [10, 11, 35, 70]. Milewski

demonstrated how to apply GFD to both the weak form and the strong form of
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a Poisson equation and released his Matlab code [60, 61]. Jiao et al. computed

differential quantities, such as normals and curvatures, on surfaces using a gen-

eralized finite difference method based on weighted least squares [45, 89]. They

explored methods to improve accuracy and stability, including node selection, a

column scaling matrix, and the solution of the weighted least square problem using

QR factorization with column pivoting.
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Chapter 3

Formulation of AES-FEM

The main idea of AES-FEM is the use of an alternative set of basis functions. For

the basis functions, we propose the use of a set of generalized Lagrange polynomial

basis functions (GLPBF) computed using a weighted least squares formulation. We

use the standard FEM (hat) basis functions for the weight functions (a.k.a. test

functions). In this chapter, we describe the weighted residual formulation of FEM,

define generalized Lagrange polynomial basis functions based on weighted least

squares, explain the stable computation of the GLP basis functions, and then de-

scribe AES-FEM.

3.1 Weighted Residual Formulation of FEM

We will approach the formulation of the finite element method through the lens of

the weighted residual method for solving PDEs. The main idea of the formulation

is to consider the unknown solution as a linear combination of basis (trial) func-

tions and then select the coefficients such that the residual is orthogonal to a set
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of weight (test) functions. Depending on the choice of the weight functions, one

will derive different numerical methods, such as the collocation method, the least

squares method, and the Galerkin method. Details about weighted residual and

FEM can be found in [14, 18, 28]. In the following, we give a brief overview of

weighted residuals for completeness.

Consider a linear differential operator L defined on a bounded, simply-connected

domain ⌦, with outward unit normal vector n. Denote the boundary of ⌦ as

� = �D [ �N , where �D and �N are disjoint sets on which Dirichlet and Neu-

mann boundary conditions are specified, respectively. We want to find a function U

such that

LU = ⇢ (3.1.1)

subject to the boundary conditions

U = g on �D and
@U

@n

= h on �N . (3.1.2)

Eq. (3.1.1) is the strong form of the PDE. In the weighted residual formulation, we

introduce a set of weight functions  = { 1, . . . , n}, by requiring the residual

LU � ⇢ to be orthogonal to  i, i.e.,

ˆ
⌦

 i (LU � f) dV = 0. (3.1.3)

Typically,  forms a partition of unity, i.e.,
Pn

i=1  i = 1, and in this case the

weighted-residual formulation satisfies global conservation in the sense of

ˆ
⌦

(LU � ⇢) dV = 0. (3.1.4)
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If L involves higher than first order derivatives, then integration by parts is often

used to decrease the order of the derivatives to obtain the weak form. To approxi-

mate u, let � = {�1, . . . ,�n} be a set of basis functions, and define an approxima-

tion

U ⇡
nX

j=1

xj�j. (3.1.5)

Substituting (3.1.5) into (3.1.3) and rearranging the equations, we then obtain

nX

j=1

xj

ˆ
⌦

 i (L�j) dV =

ˆ
⌦

 i⇢ dV, (3.1.6)

leading to a system of equations in xj . At this point for simplicity, let us consider

the Poisson equation with Dirichlet boundary conditions, for which the weighted-

residual formulation is given by

ˆ
⌦

 ir2
U dV =

ˆ
⌦

 i⇢ dV. (3.1.7)

Substituting (3.1.5) into (3.1.7), we obtain

nX

j=1

xj

ˆ
⌦

 ir2
�j dV =

ˆ
⌦

 i⇢ dV. (3.1.8)

The finite element method uses integration by parts to reduce the order of deriva-

tives required by (3.1.8). If  i has weak derivatives and satisfies the condition

 i|�D = 0, then after integrating by parts and imposing the boundary conditions,

we arrive at

�
nX

j=1

xj

ˆ
⌦

r i ·r�j dV =

ˆ
⌦

 i⇢ dV. (3.1.9)
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Note that, (3.1.9) is often referred to as the weak form of the Poisson equation.

Taking (3.1.9) over the n weight functions, we obtain the linear system

Kx = g, (3.1.10)

where K is the stiffness matrix and g is the load vector, with

kij = �
ˆ
⌦

r i ·r�j dV and gi =

ˆ
⌦

 if dV. (3.1.11)

If the weight functions are chosen to be the same as the basis functions, then we

will arrive at the Galerkin method. In this paper, we introduce a new set of basis

functions based on weighted least squares and we use the standard linear FEM “hat

functions” as the weight functions.

3.2 Weighted Least Squares Approximations

In this subsection, we review numerical differentiation based on weighted least

squares approximations, as described in [45, 89]. Similar to interpolation-based

approximations, this method is based on Taylor series expansion. Let us take 2D as

an example, and suppose f(u) is a bivariate function with at least d + 1 continu-

ous derivatives in some neighborhood of u0 = (0, 0). Denote cjk =

@j+k

@uj@vk f(u0).

Then for any u in the neighborhood, f may be approximated to the (d+ 1)st order
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accuracy about the origin u0 as

f(u) =

dX

p=0

j+k=pX

j,k�0

cjk
u

j
v

k

j!k!

| {z }
Taylor Polynomial

+O(kukd+1
)| {z }

remainder

. (3.2.1)

Analogous formulae exist in 1D and 3D. The derivatives of the Taylor polynomial

are the same as those of f at u0 up to degree d. Therefore, once we have calculated

the coefficients for the Taylor polynomial, finding the derivatives of f at u0 is trivial.

We proceed with calculating the coefficients as follows.

For any point u0, we select a stencil of m nodes from the neighborhood around

u0. Stencil selection is described further in Section 5.2. We do a local param-

eterization of the neighborhood so that u0 is located at the origin (0, 0) and the

coordinates of the other points are given relative to u0. Then substituting these

points into (3.2.1), we obtain a set of approximate equations

dX

p=0

j+k=pX

j,k�0

cjk
u

j
iv

k
i

j!k!

⇡ fi, (3.2.2)

where fi = f (ui) and the cjk denote the unknowns, resulting in an m⇥ n system.

There are n = (d+ 1)(d+ 2)/2 unknowns in 2D and n = (d+ 1)(d+ 2)(d+ 3)/6

unknowns in 3D. Let V denote the generalized Vandermonde matrix, c denote the

vector of unknowns (i.e., the cjk) and f denote the vector of function values. Then

we arrive at the rectangular system

V c ⇡ f . (3.2.3)

Let us now introduce some notation to allow us to write the Taylor series in ma-
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trix notation before we proceed with our discussion of solving (3.2.3). Let P (d)
k (u)

denote the set of all k-dimensional monomials of degree d and lower, stored in as-

cending order as a column vector. If no ambiguities will arise, we will use P in

place of P (d)
k (u). For example, for second degree in 2D we have

P (2)
2 (u) =

⇥
1 u v u

2
uv v

2
⇤T

. (3.2.4)

Let D be a diagonal matrix consisting of the fractional factorial part of the coeffi-

cients, i.e. 1
j!k! in (3.2.1). For example, for second degree in 2D we have

D = diag
✓
1, 1, 1,

1

2

, 1,

1

2

◆
. (3.2.5)

Then we may write the Taylor series as

f(u) = c

T
DP (u) . (3.2.6)

To solve (3.2.3), we use a weighted linear least squares formulation [38], that

is, we will minimize a weighted norm (or semi-norm)

min

c

kV c� fk
W

⌘ min

c

kW (V c� f)k2 , (3.2.7)

where W is an m⇥m diagonal weighting matrix. The entries of W assign weights

to the rows of matrix V . Specifically, if we denote the diagonal entries of W as

wi, then row i is assigned weight wi. These weights can be used to prioritize the

points in the system: we assign heavier weights to the nodes that are closer to the

center point. By setting a weight to zero (or very close to zero), we may also filter
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out outliers or other undesirable points. Note that for a given node, the weighting

matrix W is constant.

If f is in the column space of V , then the solution of the linear system is not

affected by a nonsingular weighting matrix. However, if f is not in the column

space, which is often the case, then different weighting schemes can lead to different

solutions. Choosing a good weighting matrix is application specific. For quadratic

approximations, we compute the weights as follows. Let h denote the maximum

radius of the neighborhood, that is

h = max

1im
{kuik2} . (3.2.8)

Then

wi =

✓kuik2
h

+ ✏

◆�1

, (3.2.9)

where ✏ is a small number, such as ✏ = 0.01, for avoiding division by zero.

After the weighting matrix has been applied, we can denote the new system as

Mc ⇡ ˜

f , where M = WV and ˜

f = Wf . (3.2.10)

This resulting system may be rank-deficient or ill-conditioned. This is a chal-

lenge that GFD researchers have been dealing with since the 1970s [44]. The

ill-conditioning may arise from a number of issues including poor scaling, an insuf-

ficient number of nodes in the neighborhood, or a degenerate arrangement of points.

We resolve these issues with neighborhood selection, discussed in Section 5.2. We

can address the scaling issue with the use of a diagonal scaling matrix S. Let aj

denote the jth column of an arbitrary matrix A. A typical choice for the jth entry of
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S is either 1/ kajk2, which approximately minimizes the 2-norm condition number

of AS [38], or 1/ kajk1 [17]. Using exact arithmetic, the matrix S does not affect

the solution, but it can significantly improve the conditioning and thus the accuracy

in the presence of rounding errors. After applying the scaling matrix to WV , the

problem becomes

min

d

��� ˜V d� ˜

f

���
2
, where ˜

V ⌘WV S = MS and d ⌘ S

�1
c. (3.2.11)

Conceptually, the solution to the above problem may be reached through the use of

a pseudoinverse. We will have

d =

˜

V

+
˜

f where ˜

V

+ ⌘
⇣
˜

V

T
˜

V

⌘�1
˜

V

T
. (3.2.12)

However, since the resulting system may still be rank-deficient or ill-conditioned,

we solve it using QR factorization with column pivoting, as discussed in Subsec-

tion 5.3. Finally, we get the vector of partial derivatives for the Taylor polynomial

c = Sd. (3.2.13)

3.3 Description of Generalized Lagrange Polynomial

Basis Functions

We now define basis functions based on weighted least squares. Note that the stan-

dard finite element methods use piecewise Lagrange polynomial shape functions,

which have two especially important properties: the coefficients of the basis func-
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Figure 3.1: The ‘hat’ basis function exhibits the Kronecker Delta property, whereas
a GLP basis function does not.

tions have the physical meaning of the function values or their approximations at

the nodes, and the basis functions form a partition of unity. We refer to the two

properties as function value as coefficient and partition of unity, respectively. These

properties are desirable in ensuring the consistency of the method based on these

basis functions and also for the ease of imposing Dirichlet boundary conditions.

However, the traditional concept of the Lagrange basis functions is interpolatory,

so they are not applicable to least squares. We now generalize this concept, so that

it can be applicable to least-squares-based basis functions. Figure 3.1 contains a

‘hat’ function, which is an example of a linear Lagrange function, and an example

of a quadratic GLP basis function.

Definition 1. Given a set of degree-d polynomial basis functions {�i}, we say it is

a set of degree-d generalized Lagrange polynomial (GLP) basis functions if:

1.
P

i f (xi)�i approximates a function f to O �hd+1
�

in a neighborhood of the

stencil, where h is some characteristic length measure, and

2.
P

i �i = 1.
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We now define a set of GLP basis functions based on weighted least squares.

Given a stencil {xi}, we follow the procedure in Subsection 3.2. When comput-

ing the jth basis function �j , let f = ej , where ej is the jth column of the identity

matrix. Following (3.2.12) and (3.2.13), we have

c = S

˜

V

+
Wej. (3.3.1)

Thus for the jth basis function, the vector c is exactly the jth column of S ˜

V

+
W .

We define a set of basis functions as

� =

⇣
S

˜

V

+
W

⌘T
DP . (3.3.2)

For a more concrete example, if we denote the elements of ˜

V

+
as aij we can see

that the jth basis function for degree 2 in 2D is

�j = wj

✓
a1js1 + a2js2x+ a3js3y + a4js4

1

2

x

2
+ a5js5xy + a6js6

1

2

y

2

◆
. (3.3.3)

Note that wj is a constant scalar, so �j is a polynomial. The basis functions in

(3.3.2) are an example of GLP basis functions. We summarize this key feature in

the following theorem.

Theorem 2. The basis functions based on weighted least squares as defined in

(3.3.2) are generalized Lagrange polynomial basis functions.

We shall postpone the proof of this theorem to Section 4.2, where we will also

analyze the accuracy and stability of finite element discretization based on these

basis functions. In the following, we will finish the description of AES-FEM.
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3.4 Stable Computation of GLP Basis Functions

Even with proper neighborhood selection, it cannot be guaranteed that the least-

squares problem in (3.2.11) will be well-conditioned. Hence, it is critical to use a

robust method that ensures the accuracy and stability of the approximate solutions.

Note that one standard technique in linear algebra for solving rank-deficient

least-squares problems is truncated singular value decomposition (TSVD) [38]. The

TSVD is not recommended here, because it can result in the loss of partition of

unity of the basis functions. The reason is as follows. When truncating SVD, one

truncates any singular value �j that is smaller than ✏�1, where �1 is the largest sin-

gular value and ✏ is some small positive value, such as 10�4. These singular values

may be necessary for computing the constant terms in the GLP basis functions, and

hence their loss can result in a set of basis functions that lack the partition of unity

and in turn may compromise convergence.

We avoid the above issue by using truncated QR factorization with column piv-

oting (QRCP). When performing QRCP, one can find a numerical rank r of matrix

R so that the condition number (R1:r,1:r) < 1/✏, where ✏ is some small positive

value, such as 10�4. This is elaborated in the below discussion of Algorithm 1. If r

is less than the size of R, then any diagonal entry of R in position r + 1 or greater

is truncated, thus truncating the (r + 1)th and subsequent columns of Q. In QRCP,

we require the first column not to be permuted, and this ensures the resulting basis

functions satisfy the property of partition of unity.

In Algorithm 1, we present the procedure for initializing the generalized Van-

dermonde matrix ˜

V and factoring it using QRCP. The generalized Vandermonde

matrix is formed from the local coordinates of the stencils and is scaled by the col-

29



Algorithm 1 Initialization of a Generalized Vandermonde Matrix
function: initiate_GVM
input: 1. xk: local coordinates of stencil

2. w: vector of row weights
3. p: desired degree for V
4. ✏: tolerance for rank deficiency

output: struct gvm: with fields W , S, Q, R, P , r (estimated rank)
1: create generalized Vandermonde matrix V from local coordinates xk

2: determine column scaling matrix S

3: W  diag(w)

4: ˜

V  WV S

5: solve ˜

V P = QR

6: estimate rank r from R so that r = max {i|cond (R1:i,1:i)  1/✏}

umn scaling matrix S and the row scaling matrix W . The resulting matrix is then

factored using QRCP. We use a variant of Householder triangularization [38] since

this procedure is more efficient and stable than alternatives (such as Gram-Schmidt

orthogonalization). When implementing this procedure, the QR factorization of ˜

V

can overwrite V . The jth Householder reflection vector is of size n � j + 1. By

requiring the first element of the vector to be positive, the first element may be re-

constructed from the other elements, and thus only n � j entries are required to

store the jth Householder reflection vector. The Householder vectors are stored in

the lower triangular part of V and the R entries are stored in the upper part. The

permutation matrix P is stored in a permutation vector.

In addition to computing the QR factorization of the generalized Vandermonde

matrix, an estimation of the numerical rank of R is also computed in Algorithm 1.

The rank is important for ensuring the overall stability of other algorithms that use

this initialization step. In order to estimate the numerical rank, we estimate the

condition numbers of the leading principal sub-matrices of R, R1:r,1:r, and find the

largest r such that ̃(R1:r,1:r)  1/✏ where ̃ is the estimated condition number and
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Algorithm 2 Approximating Df at given point x from WLS
function diff_WLS
input: 1. struct gvm: with fields W , S, Q, R, P , r (estimated rank)

2. coefficients a = DP(x)

output: weights d, so that dT
g = Df(x) for g containing f(xk) at stencil points

1: a (P :,1:r)
T
S

�1
a;

2: a R

�T
1:r,1:ra;

3: d WQ:,1:ra;

✏ is some given drop-off tolerance depending on the degree of polynomials. Note

that since the matrix R is small, the condition numbers in different norms differ by

only a small factor. Therefore for efficiency, we estimate the condition number of

R in the 1-norm using the algorithm described in [41].

Once the generalized Vandermonde matrix has been initialized, it may be used

to construct generalized finite differentiation operators from the weighted least

squares approximations, as described in Algorithm 2. The input for this algorithm

is the output from Algorithm 1 and a vector a. The vector a = DP(x) contains the

values for some specified derivative D of the monomial basis functions P at point

x. For example, let D be @
@y . Then in 2D, we have a = DP(x, y) = [0 0 1 0 x 2y]

T

and in 3D, we have a = DP(x, y, z) = [0 0 1 0 0 x 0 2y 0 0]

T . The algorithm re-

turns a vector of weights d so that dT
g = Df(x) for a vector g = [f1 f2 . . . fm]

T

containing the values of the function at the stencil points. Note that for a GLP basis

function, the returned weights are the values of the specified derivative at the points

in the stencil.

In terms of the computational cost, the step that dominates Algorithm 1 is the

QRCP factorization, which takes O �2mn

2 � 2
3n

3
�

flops where ˜

V is m ⇥ n [38].

Here, m is the number of points in the stencil and n is the number of terms in the

Taylor series expansion (for second order expansion n = 6 in 2D and n = 10
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in 3D). As long as the valance is bounded, that is m is bounded, this algorithm

is executed in a constant time. Compared to calculations based on the standard

finite-element basis functions, which are tabulated, the computation based on the

GLP basis functions is more expensive. This leads to higher cost of AES-FEM in

assembling the stiffness matrix and load vector, as we discuss next. However, this

cost is a small constant per element, and AES-FEM can be more efficient overall

by delivering higher accuracy, as we will demonstrate in Section 6.

3.5 Description of Quadratic AES-FEM

Starting with the weighted residual formulation for FEM from (3.1.9), we propose

using GLP basis functions for the basis functions and using the traditional hat func-

tions for the weight functions. More specifically, for a given node i and its associ-

ated weight function  i, a specific set of GLP basis functions {�j} is constructed

from a weighted stencil (X i,wi) of n neighboring vertices centered at node i. This

weight function  i and its associated set of GLP basis functions {�j} are used to

compute the ith row of the stiffness matrix, as given by (3.1.11). Note that, because

a different set of basis functions is associated with each weight function, the basis

functions on a given element differ row-to-row in the stiffness matrix.

For AES-FEM, when using the 1-ring neighborhood of a vertex as the stencil,

we can use quadratic GLP basis functions, which have the advantage of decreased

dependence on element quality and improved accuracy over standard finite element

with linear basis functions, while virtually preserving the sparsity pattern of the

stiffness matrix, as we will demonstrate in Section (6.1).

In terms of the computation of the load vector, we can use either the FEM or
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AES-FEM basis functions. We refer to the AES-FEM with these two options as

“AES-FEM 1” and “AES-FEM 2,” respectively. Additional implementation details

will be given in Subsection 5.3.
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Chapter 4

Analysis and High-Order

Generalization of AES-FEM

In this chapter, we analyze the consistency and stability of AES-FEM, and we

present a generalization of AES-FEM to high-order. We start by explaining the

applicability of Green’s identity to the GLP basis functions. We will then prove

that basis functions in (3.3.2) are GLP basis functions and discuss the consistency,

accuracy, and stability of AES-FEM. Finally, explain the high-order extension and

discuss high-order AES-FEM over curved boundaries using meshes with linear el-

ements.

4.1 Green’s Identity and Integration by Parts

For a given weight function  , the GLP basis functions are continuously differ-

entiable everywhere in within the domain of integration. Hence, in a variational

sense, the GLP basis functions still allow one to use Green’s identities to formulate
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a weak form. Let �j be any GLP basis function computed from a weighted stencil,

and  i be a classical FEM shape function with compact support contained within

the set ⌦. Therefore, for any partial derivative operation @, it follows that

ˆ
⌦

(@�j) i dx = �
ˆ
⌦

�j (@ i) dx. (4.1.1)

Because of this property, the weak-form formulation with the GLP basis functions

in AES-FEM is mathematically sound.

In addition, since the finite-element basis functions  i vanish along the bound-

ary, after integration by parts, we have the identities

ˆ
⌦

 ir2
�j dV = �

ˆ
⌦

r i ·r�j dV. (4.1.2)

Therefore, we can reduce the order of derivatives similar to the classical FEM,

without introducing additional boundary integrals to the computation.

4.2 Properties of Generalized Lagrange Polynomial

Basis Functions

We now show that the basis functions in (3.3.2) are indeed generalized Lagrange

polynomial basis functions, which follows from the two lemmas below.

Lemma 3. Let {xi} be a stencil with m nodes and stencil diameter h. Let {�j} be

the complete set of basis functions of degree up to d as defined by (3.3.2) on this
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stencil. Given an arbitrary function f , define the following approximation of f

f

h
(x) ⌘

mX

j=1

fj�j(x) = f

T�, (4.2.1)

where fj = f (xj) and f = [f1 f2 . . . fm]
T . If the rescaled matrix ˜

V has a

bounded condition number, then f

h approximates f to O �hd+1
�
. In addition, given

any degree-k differential operator D, if f is continuously differentiable up to degree

k, then Df

h approximates Df to O �hd�k+1
�
.

Proof. First, we show that the approximation f

h is equivalent to directly solving

a weighted least squares problem for a local polynomial fitting of f . Using the

method described in Subsection 3.2, we get the coefficients c = S

˜

V

+
Wg where

g = [f1 f2 . . . fm]
T . Thus, the local polynomial fitting of f is

f (x) ⇡ c

T
DP

=

⇣
S

˜

V

+
Wg

⌘T
DP

= g

T
⇣
S

˜

V

+
W

⌘T
DP

= g

T�

= f

h
(x) .

It follows from Theorem 4 in [45] that fh approximates f to O �hd+1
�
, and Df

h

approximates Df to O �hd�k+1
�

for any degree-k differential operator D.

Lemma 4. The basis functions in (3.3.2) form a partition of unity, i.e.,
Pm

j=1 �j(x) =

1.

Proof. We will show that on a given stencil {xi}, the GLP basis functions {�j}

36



form a partition of unity. Let V be the generalized Vandermonde matrix for the

given stencil. For example, for second order expansion in 2D, we have

V =

2

66666664

1 x1 y1 . . .

1
2y

2
1

1 x2 y2 . . .

1
2y

2
2

...
...

... . . . ...

1 xm ym . . .

1
2y

2
m

3

77777775

. (4.2.2)

For a given function f , using the truncated Taylor series, we have

V c = g, (4.2.3)

where c is the vector of partial derivative values. Applying the diagonal row weight-

ing matrix W and the diagonal column scaling matrix S, we have

˜

V

�
S

�1
c

�
= Wg where ˜

V ⌘WV S. (4.2.4)

This is a least squares problem, and the solution for c may be reached through the

use of a pseudoinverse,

c = S

˜

V

+
Wg. (4.2.5)

For the jth GLP basis function, we have gj = [0 . . . 1 . . . 0]

T , where the 1 is in the

jth position, and hence the columns of S ˜

V

+
W multiplied by the Taylor constants

D give the coefficients for the GLP basis functions. This implies that the entries of

the ith row of S ˜

V

+
W correspond to the coefficients of the ith terms in the set of

basis functions.

To finish the proof, it suffices to show that the sum of the entries in the first row
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of S ˜

V

+
W is 1, and the sum of the entries in any other row is 0. Let vector w be

the diagonal entries of W . Every entry of the first column of V is equal to 1, thus

the first column of ˜

V is then s1w. Denote the ith row of ˜

V

+
as ˜

v

+
(i,:). The sum of

the entries of the ith row of S ˜

V

+
W is s1˜v+T

(i,:)w. Since ˜

V

+
is a left inverse of ˜

V ,

we have ˜

V

+
˜

V = I , and hence

s1˜v
+T
(i,:)w =

8
>><

>>:

1 i = 1

0 2  i  n

. (4.2.6)

Therefore, the GLP basis functions form a partition of unity.

From the above lemmas, the basis functions in (3.3.2) satisfy both the properties

of function value as coefficient and partition of unity, and hence they are GLP basis

functions, as claimed in Theorem 2.

4.3 Consistency and Accuracy of AES-FEM

The accuracy of the AES-FEM depends on its consistency and stability. We first

consider the consistency of AES-FEM, in terms of its truncation errors in approx-

imating the weighted-residual formulation (3.1.3) by (3.1.6) using the GLP basis

functions. In a nutshell, the consistency of the AES-FEM follows directly from

Lemma 3. For completeness, we consider a specific example of solving the Poisson

equation. The analysis for other PDEs can be derived in a similar fashion.

Theorem 5. Consider a bounded domain ⌦ with a piecewise smooth boundary �.

Suppose U is smooth and thus krUk is bounded. Then, when solving the Poisson

equation on ⌦ using AES-FEM with degree-d GLP basis functions in (3.1.9), for
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each  i the weak form (3.1.9) is approximated to O(ch

d
), where h is some charac-

teristic length measure of the mesh and c =

´
⌦ ||r i|| dx.

Proof. Let u be the exact solution on a mesh with mesh size h, and let

˜

U =

nX

j=1

xi�j (4.3.1)

denote the approximation to u using degree-d GLP basis functions. When using

degree-d GLP basis functions, it follows from Lemma 3 in [23] that

krU �r ˜

Uk = O �hd
�

(4.3.2)

within each element. Under the assumption that U is twice differentiable, rU is

bounded, and hence

����
ˆ
⌦

⇣
rU �r ˜

U

⌘
·r i dV

���� = O �hd
� ����
ˆ
⌦

rU ·r i dV

���� . (4.3.3)

Assume krUk is bounded, then
��´

⌦rU ·r i dV
��
= O �´⌦ kr ik dV

�
.

Furthermore, if ⇢ is approximated by degree-d GLP basis functions as ⇢̃ =

Pn
j=1 ⇢i�j , then we have

��´
⌦ (⇢� ⇢̃) i dV

��
= O �hd+1

� ��´
⌦ ⇢ i dV

��. Assume ⇢ is

bounded, then
��´

⌦ ⇢ i dV
��
= O �´⌦  i dV

�
, which is higher order than

´
⌦ kr ik dV

for hat functions. Therefore, the residual in the weak form is O(ch

d
), where

c = O �´⌦ kr ik dV
�
.

More specifically, when using quadratic GLP basis functions, the truncation

errors are second order in the stiffness matrix. The truncation errors in the load

vector is third order for quadratic AES-FEM 2 when ⇢ is also approximated using
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quadratic GLP basis functions, but it is second order for quadratic AES-FEM 1

when ⇢ is approximated using linear FEM hat functions.

4.4 High-Order Basis Functions

In AES-FEM, we use the GLP basis functions for �j , where the degree of the basis

functions may vary. For the test functions  i, we use the piecewise-linear traditional

FEM shape functions, a.k.a. the “hat” functions, independent of the degree of the

basis functions. Note that for different  i, we may use different basis functions,

constructed using WLS with different stencils at each node. Therefore, it is possible

to adapt the degree of the polynomials for different  i. In this work, we shall assume

that the degree of the basis functions is uniform.

The order of convergence of AES-FEM is determined by the degree of the basis

functions, as summarized by Theorem 5. Like most other PDE methods, as long

as the method is stable, the rounding errors do not dominate the truncation errors,

and there is no systematic cancelation of truncation errors, we expect the solution

to converge at the same rate as the local truncation errors. This hold for even-

degree basis functions for even-degree PDEs, as we will demonstrate numerically

in Chapter 6. In Section 4.4, we discuss systematic cancelation of odd-degree basis

functions for an even-degree PDE, which results in a convergence rate one degree

lower than the degree of the basis function.

However, when using AES-FEM with odd-degree basis functions, the situation

is more complicated. In practice, we observe that if the highest-order spatial deriva-

tive of the PDE is even, which is typically the case for elliptic and parabolic PDEs,

the order of convergence may be one less than the degree of the basis functions
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when using odd-degree polynomials. This is because of the cancelation of the odd

functions in the integrals over equally spaced grids. To illustrate this effect, let

us consider an odd-degree polynomial f(x) = x

2m+1. Suppose the two elements

incident on the node at x = 0 are [�l1, 0] and [0, l2], and the test function asso-

ciated the node is  . On an equally spaced grid, l1 = l2,  0
(x) = � 0

(�x) and

f

0
(x) = f

0
(�x). Therefore,

ˆ 0

�l

 

0
(x) f

0
(x) dx = �

ˆ l

0

 

0
(x) f

0
(x) dx. (4.4.1)

Integrating the weak form corresponding to the test function  , we obtain

ˆ
⌦

 

0
f

0
dx =

ˆ l

�l

 

0
f

0
=

ˆ l

0

 

0
f

0
dx�

ˆ l

0

 

0
f

0
dx = 0. (4.4.2)

For nearly even-spaced grids, which is typically the case, the integral correspond-

ing to odd-degree polynomials would be close to zero, so using degree-(2m + 1)

polynomials would lead to similar errors as using degree-2m polynomials. Fig-

ure 4.1 demonstrates this behavior numerically with the Poisson equation in 1D

using degree-3 and 5 basis functions. It can be seen that on unequally spaced grids,

the convergence rate is approximately equal to the degree of polynomials, but for

equally spaced grids, the convergence was lower, although the error may be smaller.

This behavior can also be observed in 2D and 3D. Therefore, we will use only even-

degree basis functions in the week forms for even-order PDEs. For odd-order PDEs,

odd-degree basis functions would be recommended for AES-FEM.
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Figure 4.1: The errors from AES-FEM with odd-degree basis functions for the
Poisson equation in 1D. The number to the right of each curve indicates the average
convergence rate.

4.5 Treatment of Curved Geometries

Another critical issue of AES-FEM is the resolution of curved geometries. For most

high-order FEM methods, elements near the boundary must be curved and approx-

imate the boundary to a high enough order [7, 50]. This is because the mid-edge

or mid-face nodes of those high-order elements must approximate the geometry

accurately. In AES-FEM, it is also important for all the nodes to approximate the

boundary to high-order accuracy. However, because the basis functions in AES-

FEM are constructed from the nodes, independently of the elements, and its test

functions are hat functions, AES-FEM uses linear elements without mid-edge or

mid-face nodes. Although the linear elements gives only a piecewise linear approx-

imation to the boundary, the effect of this linear approximation is confined in the

approximation to the weighted residual formulation (3.1.3) without compromising

the order of accuracy. Specifically, instead of solving (3.1.3), we would be solving
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a perturbed integral equation

ˆ
⌦h

 i (LU � ⇢) dV = 0, (4.5.1)

where ⌦h denotes the geometric realization of a linear mesh of ⌦. Note that (4.5.1)

remains an exact equality for the exact U and ⇢, and hence Theorem (5) remains

valid for the equation

ˆ
⌦h

 ir2
U dV =

ˆ
⌦h

 i⇢ dV (4.5.2)

in place of (3.1.7). Therefore, after substituting the numerical approximations of

U into 3.1.9, the order of the local truncation errors remains the same, and hence

the order of convergence is preserved. The only compromise of using ⌦

h instead of

⌦ is that if the test functions  forms a partition of unity, the global conservation

is satisfied in the sense of
´
⌦h(LU � ⇢) dV = 0 instead of

´
⌦(LU � ⇢) dV = 0.

This slight deviation of global conservation does not constitute a problem, because

global conservation is in general never satisfied exactly even in FEM after boundary

conditions are imposed.

To discretize the PDE fully, it is important that boundary conditions are imposed

in a fashion that preserves the order of accuracy. For Dirichlet boundary conditions,

we enforce them strongly by simply substituting the function values of Dirichlet

nodes into the equations, thanks to the use of GLP basis functions. For Neumann

boundary conditions, we also propose to impose them strongly by using the Dirac

delta function as test functions at Neumann nodes, multiplied by O(h

d�1
) in d-

dimensions to ensure the stiffness matrix is properly scaled. This is analogous to
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the generalized finite difference method except for the scaling part. This approach

ensures the consistency of the discretization, and it avoids the need of high-order

accurate boundary integrals, which would have been required if Neumann bound-

ary conditions were to be imposed weakly as in FEM. Note that accurate normals

at Neumann nodes are still required, which can be computed to high-order accu-

racy as described in [45]. In addition, since the stencils for Neumann nodes are

one-sided, it requires special care to ensure stability in the computation of the GLP

basis functions. We defer the robust treatment of Neumann boundary conditions to

future work, and focus on Dirichlet boundary conditions in our numerical experi-

mentations.

4.6 Stability

For elliptic PDEs, the stability of a method depends on the condition number of

its coefficient matrix, which can affect the performance of iterative solvers and the

accuracy of the solution. It is well known that the traditional finite element method

may be unstable for poorly shaped meshes [3], and some meshless methods may

also suffer from instability when two points nearly coincide. AES-FEM avoids

these potential instability issues.

As a concrete example, let us consider the Poisson equations with Dirichlet

boundary conditions, whose coefficient matrix is the stiffness matrix. It is well

known that the condition number of the stiffness matrix is proportional to h

�2,

where h is some characteristic length of the mesh [55]. However, if the condition

number is significantly larger, then the method is said to be unstable, which can

happen due to various reasons.
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The ill-conditioning of any local stiffness matrix may lead to poor scaling and

in turn ill-conditioning of the global stiffness matrix. This is owing to the following

fact, which is given as Theorem 2.2.26 in [91].

Proposition 6. For any matrix A 2 Rm⇥n, m � n, its condition number in any p-

norm, denoted by p (A), is bounded by the ratio of the largest and smallest column

vectors in p-norm, i.e.,

p (A) � max1in kaikp
min1jn kajkp

, (4.6.1)

where ak denotes the kth column vector of A.

The above fact offers an intuitive explanation of a source of ill-conditioning in

traditional finite element methods due to poorly shaped elements: poorly shaped

elements may lead to unbounded large entries in local stiffness matrices, so the

column norms of the global stiffness matrix would vary substantially, and in turn

the global stiffness matrix is necessarily ill-conditioned. In the context of AES-

FEM, there can be two potential sources of local instability due to poor scaling.

First, the unnormalized local Vandermonde system given in (3.2.3) is in general

very poorly scaled. We resolved this by normalizing the Vandermonde system to

avoid poor scaling. Second, the normalized Vandermonde system may still be ill-

conditioned occasionally, when a stencil is degenerate or nearly degenerate, which

could lead to unbounded large values in the local stiffness matrix. We resolved this

issue by using QR with column pivoting and condition-number estimation.

Even if the local stiffness matrices are bounded, the global stiffness matrix may

still be ill-conditioned due to linearly dependent rows or columns. This is the po-

tential source of instability for some meshless methods when two points nearly

45



coincide; the two points may share the same stencil and basis functions, so that the

rows or columns corresponding to the two points would be nearly identical. There-

fore, these meshless methods also require good point distributions. In AES-FEM,

we utilize the mesh topology to construct the stencil, as we will describe in Sec-

tion 5.2. This ensures that no two vertices share the same stencil unless there are

coincident points, and hence it gives a strong guarantee that the rows in the global

stiffness matrix are linearly independent.

The aforementioned reasons are the most common causes of instability for solv-

ing elliptic PDEs. Another source of instability is a cluster of coincident points or

inverted elements, which rarely happen in practice, and hence we defer their treat-

ments to future work. As we will demonstrate numerically in Chapter 6, by resolv-

ing these instabilities, AES-FEM produces well-conditioned stiffness matrices for

meshes, even with very bad quality elements or point distributions.
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Chapter 5

Implementation

We discuss the practical aspects of the implementation of AES-FEM in this chapter.

We start with a discussion of the utilized mesh data structure and then explain how

this enables quick and efficient neighborhood selection. Finally, the algorithms are

presented and runtime is analyzed.

5.1 Data Structure

We use an Array-based Half-Facet (AHF) data structure [26] to store the mesh in-

formation. In a d-dimensional mesh, the term facet refers to the (d�1)-dimensional

mesh entities; that is, in 2D the facets are the edges, and in 3D the facets are the

faces. The basis for the half-facet data structure is the idea that every facet in a man-

ifold mesh is made of two half-facets oriented in opposite directions. We refer to

these two half-facets as sibling half-facets. Half-facets on the boundary of the do-

main have no siblings. In 2D and 3D, the half-facets are half-edges and half-faces,

respectively. We identify each half-facet by a two tuple: the element ID and a local
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element vertices

1 1 4 5

2 1 5 2

3 2 5 3

4 3 5 6

5 6 5 9

6 8 9 5

7 7 8 5

8 5 4 7

element sibhes

1 nil h8, 1i h2, 1i
2 h1, 3i h3, 1i nil

3 h2, 2i h4, 1i nil

4 h3, 2i h5, 1i nil

5 h4, 2i h6, 2i nil

6 nil h5, 2i h7, 2i
7 nil h6, 3i h8, 3i
8 h1, 2i nil h7, 3i

vertex v2he

1 h1, 1i
2 h2, 3i
3 h3, 3i
4 h8, 2i
5 h1, 3i
6 h4, 3i
7 h7, 1i
8 h6, 1i
9 h5, 3i

1 2 3

4 5 6

7 8 9

e7 e6

e8 e5

e1

e2 e3

e4

Figure 5.1: An example of half edges and associated data structure.

facet ID within the element. In 2D, we store the element connectivity, sibling half-

edges, and a mapping from each node to an incident half-edge. In 3D, we store the

element connectivity, sibling half-faces, and a mapping from each node to an inci-

dent half-face. For an example of a 2D mesh and the associated data structure, see

Figure 5.1. This data structure allows us to do neighborhood queries for a node in

constant time (provided the valance is bounded). For additional information about

the AHF data structure, see [26].

5.2 Neighborhood Selection

5.2.1 Neighborhood Selection for Quadratic AES-FEM

The use of the AHF data structure allows us to quickly find the neighborhood of

a node. We use the concept of rings to control the size of the neighborhood. The

1-ring neighbor elements of a node are defined to be the elements incident on the

node. The 1-ring neighborhood of a node contains the nodes of its 1-ring neighbor

elements [45]. Most of the time, when using GFD with second order basis functions

or when constructing second order GLP basis functions, the 1-ring neighborhood of
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1.5 ring

2.5 ring

1 ring

2 ring

Figure 5.2: Examples of 2D stencils with 1-ring, 1.5-ring, 2-ring, and 2.5-ring
neighborhoods of center node (in solid black).

a node supplies the appropriate number of nodes. If the valance is low, it might be

necessary to further expand and collect more nodes for the neighborhood. There-

fore, for any integer k � 1, we define the (k + 1)-ring neighborhood as the nodes

in the k-ring neighborhood plus their 1-ring neighborhoods.

As k increases, the average size of the k-ring neighborhood grows very quickly.

The granularity can be fine-tuned by using fractional rings. In 2D we use half rings,

which are defined in [45]; for any integer k � 1 the (k +

1
/2)-ring neighborhood is

the k-ring neighborhood plus the nodes of all the faces that share an edge with the

k-ring neighborhood. See Figure 5.2 for a visualization of rings and half-rings in

2D. In 3D, we use one-third and two-third rings, as defined in [23]; for any integer

k � 1, the (k +

1
/3)-ring neighborhood contains the k-ring neighborhood plus the

nodes of all elements that share a face with the k-ring neighborhood. The (k+ 2
/3)-

ring neighborhood contains the k-ring neighborhood plus the nodes of all faces that

share an edge with the k-ring neighborhood.
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Table 5.1: Comparison of the average number of nodes per ring versus the number
of coefficients for 2D (left) and 3D (right) Taylor polynomials.

Degree #Coeffs. Ring #Nodes
2 6 1

1
/2 12.85

3 10 2 19.55
4 15 2

1
/2 30.53

5 21 3 39.07
6 28 3

1
/2 54.80

Degree #Coeffs. Ring #Nodes
2 10 1 15.46
3 20 1

1
/3 31.89

4 35 1

2
/3 50.17

5 56 2 72.64
6 84 2

1
/3 127.83

Note that for 2D triangular and 3D tetrahedral meshes, the 1-ring neighborhood

typically has enough points for constructing quadratic GLP basis functions. There-

fore, the stiffness matrix from AES-FEM has a similar sparsity pattern to that from

standard FEM with linear shape functions. However, when the 1-ring neighborhood

is too small, the extended stencil with a larger ring allows AES-FEM to overcome

mesh-quality dependence and improve its local stability.

5.2.2 Neighborhood Selection for High-Order AES-FEM

To achieve high-order accuracy, a critical question is the selection of the stencils at

each node for the construction of the GLP basis functions. We utilize meshes for

speedy construction of the stencils. Given a simplicial mesh (i.e. a triangle mesh

in 2D or a tetrahedral mesh in 3D), we use the concept of ring, as defined above, to

select the neighborhood.

In Table (5.1), we compare the average number of nodes in a given ring, denoted

by m, to the number of unknowns for a given degree in (3.2.3), denoted by n. We

have found that having approximately m ⇡ 1.5n works well. For 2D triangular

meshes, the 1

1
/2-ring has an appropriate number of nodes for quadratic basis func-

tions. The 2-ring, 21/2-ring, 3-ring, and 3

1
/2-ring typically provide an appropriate
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number of nodes for degree 3 to 6 basis functions, respectively. For 3D tetrahedral

meshes, the 1-ring, 11/3-ring, 12/3-ring, 2-ring, and 2

1
/3-ring have an appropriate

number of nodes for degrees 2 to 6 basis functions, respectively. If a particular

neighborhood does not provide enough points, we further expand the stencil to a

larger ring. This allows AES-FEM to overcome element-quality dependence and

also to improve the stability of its local computations.

5.3 Assembly of Stiffness Matrix and Load Vector

Algorithm 3 presents a summary of the AES-FEM procedure for assembling the

stiffness matrix and load vector for a PDE with Dirichlet boundary conditions. Un-

like the standard FEM procedure, we build the stiffness matrix row by row, rather

than element by element. This is because the most computationally expensive part

of the procedure is to compute the derivatives for the set of basis functions on each

stencil. A weight function is nonzero only on the neighborhood around its corre-

sponding node. Since the weight functions correspond to the rows, we assemble

the stiffness matrix row by row, ensuring that we will only need to compute the

derivatives for each neighborhood once.

When computing a row of the stiffness matrix, the first step is to obtain the

stencil of node k. This step is performed by utilizing the data structure presented

in Subsection 5.1 and the proper size of the stencil is ensured by choosing the ring

sizes adaptively. Next, the local coordinates are calculated for the points in the sten-

cils and the row weights are computed. Using Algorithm 1, the QR factorization of

the generalized Vandermonde matrix is computed for the neighborhood. Then for

each element that contains node k, we perform the integration of the weak form in
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a manner that is similar to standard FEM. The element Jacobian is computed and

used to find the local coordinates of the quadrature points. The derivatives of the

weight function are computed, that is r i, at the quadrature points of the current

element. Recall that the weight functions are the standard hat functions. Next the

derivatives of the basis functions, that isr�j , are computed at the quadrature points

of the current element. The basis functions are the GLP basis functions and thus

Algorithm 2 is used. The value of the integral on the current element is computed

and either added to the stiffness matrix or subtracted from the load vector, depend-

ing on whether the basis function corresponds to a node with Dirichlet boundary

conditions.

When computing the load vector, typically the entries bi =
´
 i⇢ dV are com-

puted using a quadrature rule. One may evaluate ⇢ at the quadrature points in two

ways. The first way is to use the standard procedure in FEM, i.e., to use the FEM

basis functions and the values of ⇢ at the nodes of the element. Let m be the vector

of FEM shape functions evaluated at quadrature point xk and gelem be the vector of

the function values at the nodes of the element. Then, we have

⇢ (xk) = m

T
gelem. (5.3.1)

Alternatively, we may use GLP basis functions to interpolate the values of ⇢ at the

quadrature points. We can approximate an arbitrary function using the set of GLP

basis functions. In matrix notation, we have

⇢ (xk) = g

T
sten

⇣
S

˜

V

+
W

⌘T
DP (xk) , (5.3.2)
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where gsten is the vector of function values at the nodes in the stencil and the vector

P (xk) has been evaluated at the quadrature point xk. As mentioned earlier, we

refer to the variant of AES-FEM using the former method of calculating the load

vector as AES-FEM 1 and refer to the latter variant as AES-FEM 2.

We use Gaussian quadrature to perform the integration within each element.

For quadratic GLP basis functions in 2D, we use a 1-point rule for stiffness matrix,

and a 3-point rule for the load vector. In 3D, we use a 1-point rule for the stiffness

matrix and a 4-point rule for the load vector. These rules are exact because the basis

functions and their derivatives are quadratic and linear, respectively.

It is worth noting that because of the properties of generalized Lagrange poly-

nomial basis functions, Dirichlet boundary conditions may be imposed in AES-

FEM in the same manner as in standard FEM. One does not need to use Lagrange

multipliers or a penalty method. Additionally, the standard method for imposing

Neumann boundary conditions may be used in AES-FEM.

All the steps inside of the primary for-loop are executed in constant time, as-

suming that the size of each neighborhood is bounded. Therefore, the assembly of

the stiffness matrix in AES-FEM has an asymptotic runtime of O(n), where n is

the number of nodes in the mesh. When using quadratic AES-FEM 2, that is when

WLS approximation is used to compute the approximation of ⇢ at the quadrature

points, Algorithm 2 is called again. While this function is constant in runtime, it has

a large coefficient and thus takes longer than approximating the values of f using

FEM (hat) basis functions. Therefore, the assembly time for quadratic AES-FEM 2

is longer than that for quadratic AES-FEM 1, as can be seen in Chapter 6.

Finally, for completeness, we include Algorithm 4 to summarize the GFD pro-

cedure for solving PDEs with Dirichlet boundary conditions. We use this algorithm
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Algorithm 3 Building a Stiffness Matrix and Load Vector using AES-FEM
function: aes_fem
input: 1. x, elem, opphfs, vh2f: mesh information

2. p: desired degree for GLP functions
3. ✏: tolerance for rank deficiency
4. AESFEM1: boolean for AES-FEM 1 or AES-FEM 2
5. isDBC: flags for Dirichlet boundary conditions

output: stiffness matrix K and load vector b
1: for each node without Dirichlet boundary conditions do
2: obtain neighborhood of node
3: calculate local parameterization xk and row weights w for neighborhood
4: aes_gvm initiate_GVM(xk, w, p, ✏)
5: obtain local element neighborhood
6: for each element in local neighborhood do
7: calculate element Jacobian and local coordinates of quad-points
8: calculate derivatives of FEM shape functions at quad-points
9: a DP(x) where DP(x) is defined by the PDE we are solving

10: GLPderivs diff_WLS(aes_gvm, a)
11: for each node in neighborhood do
12: if not Dirichlet BC node then
13: add integral to appropriate stiffness matrix entry
14: else
15: subtract integral from load vector
16: end if
17: end for
18: if AESFEM1 then
19: calculate load vector over current element using FEM approximations

for quad-points
20: else
21: calculate load vector over current element using GLP approximations

for quad-points
22: end if
23: end for
24: end for
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Algorithm 4 Constructing a GFD coefficient matrix
function: gfd
input: 1. x, elem, opphfs, vh2f: mesh information

2. p: desired degree for GFD functions
3. isDBC: flags for Dirichlet boundary conditions

output: GFD matrix K and vector b
1: for each node without Dirichlet boundary conditions do
2: obtain neighborhood of node
3: calculate local parameterization and row weights for neighborhood
4: gfd_cvm initiate_CVM(xk, w, p, ✏)
5: a DP(x) where DP(x) is defined by the PDE we are solving
6: GFDderivs diff_WLS(gfd_cvm, a)
7: for each node in local neighborhood do
8: if not BC node then
9: enter value in matrix

10: else
11: subtract from RHS vector
12: end if
13: end for
14: end for

primarily for comparison with the AES-FEM algorithm. We can see that for GFD,

we need to use Algorithm 2 to compute the weights once for each non-Dirichlet

node in the mesh; that is, if there are n non-Dirichlet nodes, Algorithm 2 is called

n times. For AES-FEM, for a given node, we use this algorithm once for every

element containing that node. Thus if every node has a neighborhood of k elements

and there are n non-Dirichlet nodes, we call the algorithm kn times. Therefore, the

assembly time is longer for AES-FEM than for GFD, as we will see in Chapter 6.
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Chapter 6

Numerical Results and Applications

In this chapter, we assess the accuracy, efficiency, and element-quality dependence

of AES-FEM and compare with FEM and GFD, and we compare the runtimes for

a variety of combinations of linear solvers and preconditioners. In Section 6.1, we

focus on quadratic AES-FEM 1, quadratic AES-FEM 2, linear FEM, and quadratic

GFD. We compare these four method because the sparsity pattern of the coefficient

matrix is nearly identical for all the methods. The sparsity pattern determines the

amount of storage necessary and also the computational cost of vector-matrix mul-

tiplication. In Section 6.2, we assess AES-FEM with quadratic, quartic, and sextic

basis functions, and compare it against FEM with linear, quadratic and cubic ba-

sis functions. In Section 6.3, we discuss some commonly used linear solvers and

preconditioners. Then we compare the runtimes of various pairs of preconditioners

and linear solvers for solving the linear systems resulting from the Poisson equation

and the convection-diffusion equation using AES-FEM and FEM.

The errors are calculated using the discrete L2 and L1 norms. Let U denote

the exact solution and let ˜

U denote the numerical solution. Then, we calculate the
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norms as

L2 (error) =
✓ˆ

⌦

| ˜U � U |2@⌦
◆1/2

and L1 (error) = max

i
| ˜U � U |. (6.0.1)

On a series of meshes of different grid resolution, we calculate the average conver-

gence rate as

convergence rate = � log2

✓
error on mc

error on mf

◆,
log2

 
d

s
nodes in mc

nodes in mf

!
, (6.0.2)

where d is the spacial dimension, mc is the coarsest mesh, and mf is the finest

mesh.

6.1 Numerical Results of Quadratic AES-FEM

6.1.1 2D Results

In this section, we present the results of our 2-dimensional experiments with quadratic

AES-FEM, linear FEM, and quadratic GFD. We use two different series of meshes,

each series with 4 meshes. The first series of meshes (referred to collectively as

“mesh series 1”) is generated by placing nodes on a regular grid and then using

MATLAB’s Delaunay triangularization function to create the elements. The meshes

range in size from 64⇥ 64 to 512⇥ 512 nodes. On the most refined mesh, the min-

imum angle is 45 degrees and the maximum angle is 90 degrees. The maximum

aspect ratio is 1.41, where a triangle’s aspect ratio is defined as the ratio of the

length of longest edge to the length of the smallest edge. The second series of

meshes (referred collectively as “mesh series 2”) is generated by using Triangle
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Figure 6.1: The mesh on the left is representative of the meshes used in series 1.
The mesh on the right is representative of the meshes used in series 2. Note that the
meshes above are coarser than the meshes used in computations so that the details
can be seen clearly.

[78]. The number of nodes for each level of refinement is 4,103, 16,401, 65,655,

and 262,597, respectively, approximately the same as those in series 1. On the most

refined mesh, the maximum angle is 129.6 degrees and the minimum angle is 22.4

degrees. The maximum aspect ratio is 2.61. See Figure 6.1 for a visualization of

the types of meshes used.

Poisson Equation

The first set of results we present is for the Poisson equation with Dirichlet boundary

conditions on the unit square. That is,

�r2
U = ⇢ in ⌦ = [0, 1]

2
, (6.1.1)

U = g on @⌦. (6.1.2)
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We consider the following three analytic solutions:

U1 = 16x(1� x)y(1� y), (6.1.3)

U2 = cos(⇡x) cos(⇡y), (6.1.4)

U3 =
1

sinh ⇡ cosh ⇡

sinh(⇡x) cosh(⇡y). (6.1.5)

The Dirichlet boundary conditions are obtained from the given analytic solutions.

The boundary conditions for U1 are homogeneous and they are non-homogenous

for U2 and U3 .

The L1 and L2 norm errors for U1 on mesh series 1 are displayed in Figure 6.2.

One can see that the two graphs are fairly similar; this is true for U2 and U3 as well

and thus we show only the L1 norm errors for these two problems; see Figure 6.3.

GFD is the most accurate for U1 and U2 and AES-FEM 2 is the most accurate for

U3. FEM is the least accurate in all three cases.

For mesh series 2, the L1 and L2 norm errors for U1 can be seen in Figure 6.4

and the L1 norm errors for U2 and U3 can be seen in Figure 6.5. On this mesh

series, AES-FEM 2 has the lowest error for U1 and U2. For U3, the errors for GFD

and AES-FEM 2 are very similar.
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Figure 6.2: The errors for 2D Poisson equation on mesh 1 for U1. The errors were
computed using the L1 norm (left) and the L2 norm (right).
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Figure 6.3: The L1 norm errors for the 2D Poisson equation on mesh 1 for U2 (left)
and U3 (right).
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Figure 6.4: The errors for 2D Poisson equation on mesh 2 for U1. The errors were
computed using the L1 norm (left) and the L2 norm (right).
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Figure 6.5: The L1 norm errors for the 2D Poisson equation on mesh 2 for U2 (left)
and U3 (right).

Convection-Diffusion Equation

We consider the convection-diffusion equation with Dirichlet boundary conditions

on the unit square. That is,

�r2
U + c ·rU = ⇢ in ⌦, (6.1.6)

U = g on @⌦. (6.1.7)

We take c = [1, 1]

T for all of our tests and we consider the same analytic solutions

as for the Poisson equation. Again the boundary conditions are obtained from the

given analytic solutions.

The L1 and L2 norm errors obtained from the convection-diffusion equation on

mesh series 1 with U1 are presented in Figure 6.6. The L1 norm errors for U2 and

U3 on mesh series 1 are in Figure 6.7. For all three problems, AES-FEM and GFD

are both more accurate than linear FEM. For U1, GFD is the most accurate. For U2,

the most accurate method is either AES-FEM 2 or GFD depending on the level of

refinement. For U3, AES-FEM 2 is the most accurate.

61



Number of Vertices
103 104 105 106

L
∞

 E
rr

o
r

10-6

10-5

10-4

10-3

2nd order

FEM
AES-FEM 1
AES-FEM 2
GFD

Number of Vertices
103 104 105 106

L
2
 E

rr
o

r

10-7

10-6

10-5

10-4

10-3

2nd order

FEM
AES-FEM 1
AES-FEM 2
GFD

Figure 6.6: The errors for 2D convection-diffusion equation on mesh 1 for U1. The
errors were computed using the L1 norm (left) and the L2 norm (right).
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Figure 6.7: The L1 norm errors for the 2D convection-diffusion equation on mesh
1 for U2 (left) and U3 (right).

On mesh series 2, AES-FEM 2 is the most accurate for U1, as can be seen in

Figure 6.8. For U2 AES-FEM 1 or AES-FEM 2 is the most accurate, and for U3

GFD is the most accurate; see Figure 6.9. In all these cases, AES-FEM is more

accurate than FEM.

Element-Quality Dependence Test

We test how FEM, AES-FEM, and GFD perform on a series of progressively worse

meshes. We begin with the most refined mesh from mesh series 2. We select 6 of the
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Figure 6.8: The errors for 2D convection-diffusion equation on mesh 2 for U1. The
errors were computed using the L1 norm (left) and the L2 norm (right).
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Figure 6.9: The L1 norm errors for the 2D convection-diffusion equation on mesh
2 for U2 (left) and U3 (right).
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523,148 elements and incrementally move one of their nodes towards the opposite

edge so as to create flatter triangles. We then solve the Poisson equation with the

polynomial analytic solution U1 in (6.1.3) and record the condition numbers of

the coefficient and stiffness matrices and the numbers of iterations required for the

solver to converge. Since the stiffness matrix is the same for AES-FEM 1 and AES-

FEM 2, the results are just labeled as AES-FEM. We use the conjugate gradient

method with incomplete Cholesky preconditioner for FEM and we use GMRES

with incomplete LU preconditioner for AES-FEM and GFD. The tolerance for the

solvers is 10�8 and the drop tolerance for the preconditioners is 10�3. As a measure

of the mesh quality, we consider the cotangent of the minimum angle in the mesh;

as the minimum angle tends to zero, the cotangent tends towards infinity. For very

small angles, the cotangent of the angle is approximately equal to the reciprocal

of the angle. We estimate the condition numbers using the MATLAB function

condest, which computes a lower bound for the 1-norm condition number.

The worse the mesh quality, the higher the condition number of the stiffness

matrix resulting from FEM. In contrast, the condition numbers of the GFD coeffi-

cient matrix and stiffness matrix from AES-FEM remain almost constant. As the

condition number for FEM rises, so does the number of iterations required for the

solver to converge, from 102 to 128. The numbers of iterations required to solve the

equation for AES-FEM and GFD remain constant, at 73 and 74, respectively. We

show the results for 6 meshes. Preconditioned conjugate gradient stagnates when

trying to solve the FEM linear system from the 7th mesh, where the minimum angle

is approximately 9.1 ⇥ 10

�5 degrees. Solving the AES-FEM and GFD linear sys-

tems from the 7th mesh requires the same numbers of iterations as the other meshes,

73 and 74 respectively. See Figure 6.10 for a comparison of the condition numbers
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Table 6.1: Errors in L2 norm for FEM, AES-FEM 1, AES-FEM 2, and GFD for u1

on a series of meshes with progressively worse mesh element quality.
FEM AES-FEM 1 AES-FEM 2 GFD

Mesh 1 2.42⇥ 10

�6
2.47⇥ 10

�6
7.82⇥ 10

�7
1.11⇥ 10

�6

Mesh 2 2.42⇥ 10

�6
2.47⇥ 10

�6
7.83⇥ 10

�7
1.10⇥ 10

�6

Mesh 3 2.42⇥ 10

�6
2.47⇥ 10

�6
7.82⇥ 10

�7
1.10⇥ 10

�6

Mesh 4 2.42⇥ 10

�6
2.81⇥ 10

�6
1.19⇥ 10

�6
1.10⇥ 10

�6

Mesh 5 2.42⇥ 10

�6
2.81⇥ 10

�6
1.19⇥ 10

�6
1.10⇥ 10

�6

Mesh 6 2.42⇥ 10

�6
2.81⇥ 10

�6
1.19⇥ 10

�6
1.10⇥ 10

�6
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Figure 6.10: The condition numbers of the stiffness matrices for FEM and Adaptive
Extended Stencil (AES)-FEM and the coefficient matrix for generalized finite dif-
ference (GFD) (left) and the numbers of solver iterations (right). Solvers used are
preconditioned conjugate gradient (PCG) for FEM and preconditioned generalized
minimal residual (GMRES) for AES-FEM and GFD.

and the numbers of iterations.

The errors for both AES-FEM 1 and AES-FEM 2 rose slightly between the 3rd

and the 4th mesh; the errors were then constant for the rest of the meshes. The

errors for FEM remained constant and the errors for GFD remained nearly constant

over the 6 meshes. AES-FEM 1, AES-FEM 2 and GFD converge on the 7th mesh in

the series with the same errors as on Mesh 6, whereas for FEM the solver stagnates.

See Table 6.1 for specific errors.
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Efficiency

We compare the runtimes for the four methods: AES-FEM 1, AES-FEM 2, FEM,

and GFD. We consider the convection-diffusion equation on the most refined mesh

of series 2 with the polynomial analytic solution U1 for this runtime experiment.

We decompose the total time into 4 subcategories: Initialization, which includes

the time to load the mesh and the time to assign the boundary conditions and prob-

lem values; Assembly, which includes the time to build the stiffness matrix and load

vector; Preconditioner, which is the time it takes to construction the matrix pre-

conditioner using incomplete LU factorization with a drop tolerance of 10�3; and

Solver, which is the amount of time for solving the preconditioned system using

GMRES with a tolerance of 10�8. See Figure 6.11 for the comparison. The ini-

tialization time is minuscule compared to the other categories and is not visible in

the figure. FEM requires 76 iterations of GMRES to converge, AES-FEM 1 and

AES-FEM 2 both require 74 iterations, and GFD requires 75 iterations.

One can see that FEM has an advantage when it comes to efficiency on the

same mesh. In terms of total runtime, it is about 2.1 times faster than AES-FEM

1, 2.1 times faster than AES-FEM 2, and 1.8 times faster than GFD. In terms of

assembly time, FEM is about 6.1 times faster than AES-FEM 1, 7.7 times faster

than AES-FEM 2, and 2.2 times faster than GFD. Comparing the assembly time

of AES-FEM and GFD, we see that GFD is approximately 3.2 and 3.5 times faster

than AES-FEM 1 and AES-FEM 2, respectively.

In 2D, assembling the load vector using FEM basis functions (AES-FEM 1)

saves some time compared to using GLP basis functions (AES-FEM 2). AES-

FEM 1 offers a savings of approximately 1.1 seconds or, in other words, a 10.3%
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Figure 6.11: Runtimes for a 2D convection-diffusion equation on the most refined
mesh in series 2.

reduction of assembly time and a 3.5% reduction of total time compared to AES-

FEM 2. We will see in the next section that the efficiency of these two methods

varies more in 3D.

However, in terms of error versus runtime, AES-FEM is competitive with, and

often is more efficient than, the classical FEM with linear basis functions. In Fig-

ure 6.12, we compare the L1 norm errors versus runtimes for the four methods on

mesh series 2 for the Poisson equation and the convection-diffusion equation with

the analytic solution equal to U2. For the Poisson equation, all four methods are

very similar, with AES-FEM 1 being slightly more efficient for finer meshes. For

the convection-diffusion equation, AES-FEM 1 and AES-FEM 2 are approximately

the same in terms of efficiency and are the most efficient. GFD is also more efficient

than FEM.

6.1.2 3D Results

In this section, we present the results from the 3D experiments with quadratic AES-

FEM, linear FEM, and quadratic GFD. We consider the Poisson equation and the
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Figure 6.12: L1 norm errors versus runtimes for a 2D Poisson equation (left) and
convection-diffusion equation (right) on mesh series 2. Lower is better.

convection-diffusion equation in 3D. We test three problems for each equation on

two different series of meshes, each with four levels of refinement. The first series

of meshes (referred to collectively as “mesh series 1”) is created by placing nodes

on a regular grid and using MATLAB’s Delaunay triangularization to create the

elements. The meshes in series 1 range from 8 ⇥ 8 ⇥ 8 nodes to 64 ⇥ 64 ⇥ 64

nodes. The minimum dihedral angle in the most refined mesh of series 1 is 35.2

degrees and the maximum dihedral angle is 125.2 degrees. The maximum aspect

ratio is 4.9, where the aspect ratio of a tetrahedron is defined as the ratio of the

longest edge length to the smallest height. The second series of meshes (referred to

collectively as “mesh series 2”) is created using TetGen [80]. The number of nodes

in mesh series 2 for each level of refinement is 509, 4,080, 32,660, and 261,393,

which is approximately the same as the meshes in series 1. The minimum dihedral

angle of the most refined mesh in series 2 is 6.7 degrees and the largest dihedral

angle is 165.5 degrees. The largest aspect ratio is 15.2.
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Poisson Equation

We first consider the Poisson equation with Dirichlet boundary conditions on the

unit cube. That is,

�r2
U = ⇢ in ⌦, (6.1.8)

U = g on @⌦. (6.1.9)

where ⌦ = [0, 1]

3. We consider three different analytic solutions listed below.

U1 = 64x (1� x) y (1� y) z (1� z) , (6.1.10)

U2 = cos(⇡x) cos(⇡y) cos(⇡z), (6.1.11)

U3 =
1

sinh ⇡ cosh ⇡ cosh ⇡

sinh(⇡x) cosh(⇡y) cosh(⇡z). (6.1.12)

The Dirichlet boundary conditions are derived from the analytic solutions. They are

homogeneous for U1 and non-homogeneous for U2 and U3.

The L1 and L2 norm errors for the Poisson equation on mesh series 1 for U1

can be seen in Figure 6.13 and the L1 norm errors for U2 and U3 can be seen in

Figure 6.14. GFD is the most accurate for U1 and U2. AES-FEM 2 is the most

accurate for U3.

For mesh series 2, AES-FEM 2 is the most accurate and is close to an order

of magnitude more accurate than FEM. See Figure 6.15 for the L1 and L2 norm

errors for U1 and Figure 6.16 for the L1 norm errors for U2 and U3.
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Figure 6.13: The errors for 3D Poisson equation on mesh 1 with U1. The errors
were computed using the L1 norm (left) and the L2 norm (right).
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Figure 6.14: The L1 norm errors for the 3D Poisson equation on mesh 1 for U2

(left) and U3 (right).
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Figure 6.15: The errors for 3D Poisson equation on mesh 2 for U1. The errors were
computed using the L1 norm (left) and the L2 norm (right).
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Figure 6.16: The L1 norm errors for the 3D Poisson equation on mesh 2 for U2

(left) and U3 (right).

Convection-Diffusion Equation

We consider the convection-diffusion equation with Dirichlet boundary conditions

on the unit cube, ⌦ = [0, 1]

3.

�r2
U + c ·rU = ⇢ in ⌦, (6.1.13)

U = g on @⌦. (6.1.14)

We take c = [1, 1, 1]

T and we consider the same analytic solutions as in the previous

section. Again, the Dirichlet boundary conditions are derived from the analytic

solutions U1, U2, and U3.

The L1 and L2 norm errors for the 3D convection-diffusion equation on mesh

series 1 for U1 can be seen in Figure 6.17, see Figure 6.18 for the L1 norm errors

on mesh series 1 for U2 and U3. As with the Poisson equation, GFD is the most

accurate for U1 and u2. For u3, either GFD or AES-FEM 2 is the most accurate

depending on the level of refinement.

On mesh series 2, AES-FEM 2 is the most accurate for U1 and U2, as can be
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Figure 6.17: The errors for 3D convection-diffusion equation on mesh 1 for U1. The
errors were computed using the L1 norm (left) and the L2 norm (right).
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Figure 6.18: The L1 norm errors for the 3D convection-diffusion equation on mesh
1 for U2 (left) and U3 (right).

seen in Figure 6.19 and the left panel of Figure 6.20. For U3, either GFD or AES-

FEM 2 is the most accurate, as can be seen in the right panel of Figure 6.20. Similar

to 2D results, AES-FEM is more accurate than FEM in all these cases.

Element-Quality Dependence Test

We test how FEM, AES-FEM, and GFD perform on a series of meshes with pro-

gressively worse element shape quality. We begin with the most refined mesh from
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Figure 6.19: The errors for 3D convection-diffusion equation on mesh 2 for U1. The
errors were computed using the L1 norm (left) and the L2 norm (right).
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Figure 6.20: The L1 errors for the 3D convection-diffusion equation on mesh 2 for
U2 (left) and U3 (right).
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mesh series 1. We select 69 out of the 1,500,282 elements and incrementally move

one of their nodes towards the opposite side so as to create sliver tetrahedra. We

then solve the Poisson equation with the polynomial analytic solution U1 in (6.1.10)

and record the condition numbers of the coefficient and stiffness matrices and the

numbers of iterations required for the solver to converge. We use the conjugate gra-

dient method with Gauss-Seidel preconditioner for FEM and we use GMRES with

Gauss-Seidel preconditioner for AES-FEM and GFD. We use a tolerance of 10�5

for both solvers. As a measure of the mesh quality, we consider the cotangent of

the minimum dihedral angle in the mesh; as the minimum angle tends to zero, the

cotangent tends towards infinity. For very small angles, the cotangent of the angle

is approximately equal to the reciprocal of the angle. We estimate the condition

numbers using the MATLAB function condest, which computes a lower bound

for the 1-norm condition number.

The worse the mesh quality, the higher the condition number of the stiffness

matrix resulting from FEM. The condition numbers of the stiffness matrix from

AES-FEM and the coefficient matrix from GFD remain almost constant. As the

condition number of the matrix rises so does the number of iterations required for

the solver to converge. For FEM the number of iterations increases from 69 for

the best mesh to 831 for the most deformed mesh. The numbers of iterations for

AES-FEM and GFD remain almost constant, increasing from 56 to 59 and from 56

to 60, respectively. See Figure 6.21 for a comparison of the condition numbers and

iteration counts of the solvers.

For each of the four methods, the errors were nearly constant over the series of

meshes. For FEM, the L2 error on the 1st mesh was 4.36 ⇥ 10

�4 and on the 6th

mesh, the error was 4.37 ⇥ 10

�4. For AES-FEM 1, the L2 error on all the meshes
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Figure 6.21: The condition numbers of the stiffness matrices for FEM and AES-
FEM and the coefficient matrix for GFD (left) and the numbers of solver iterations
(right). Solvers used are preconditioned CG for FEM and preconditioned GMRES
for AES-FEM and GFD.

was 2.92⇥ 10

�4. For AES-FEM 2, the L2 error on all the meshes was 1.30⇥ 10

�4.

For GFD, the L2 error on the 1st mesh was 3.43 ⇥ 10

�5 and on the 6th mesh, the

error was 3.40⇥ 10

�5.

Efficiency

We compare the runtimes of the four methods for solving the convection-diffusion

equation with the polynomial analytic solution U1 on the most refined mesh of

series 2. As in 2D, the total time is decomposed into 4 subcategories: Initialization,

Assembly, Preconditioner, and Solver. The preconditioner used is incomplete LU

with a drop tolerance of 10

�1. GMRES with a tolerance of 10

�8 is used as the

solver. AES-FEM 1 and AES-FEM 2 each require 142 iterations to converge, FEM

requires 128 iterations, and GFD requires 138 iterations. The majority of the time

is spent assembling the matrix and solving the system. See Figure 6.22 for the

comparison.

As in 2D, FEM is the most efficient method on a given mesh. Overall, the
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Figure 6.22: Runtimes for a 3D convection-diffusion equation on the most refined
mesh in series 2.

total runtime of FEM is approximately 1.7 times faster than AES-FEM 1, 1.9 times

faster than AES-FEM 2, and 1.8 times faster than GFD. The assembly of FEM is

approximately 5.6 times faster than AES-FEM 1, 6.5 times faster than AES-FEM

2, and 1.2 times faster than GFD.

In 3D, the difference of assembling the load vector using FEM basis functions

(AES-FEM 1) versus using GLP basis functions (AES-FEM 2) is more pronounced

than in 2D. The assembly in AES-FEM 1 is 8.3 seconds shorter than that of AES-

FEM 2. This means the assembly of AES-FEM 1 uses 14.4% less time than that of

AES-FEM 1 and the total runtime is 8.7% shorter.

However, similar to 2D, AES-FEM is competitive with, and most of time more

efficient than, the classical FEM with linear basis functions in terms of error ver-

sus runtime. Figure 6.23 shows the L1 norm errors versus runtimes for the four

methods on mesh series 2 for the Poisson equation and the convection-diffusion

equation for u2. For the Poisson equation, GFD is more efficient on coarser meshes

and AES-FEM 2 is more efficient for finer meshes. For the convection-diffusion

equation, GFD is more efficient on smaller meshes and AES-FEM 2 is more effi-

cient for finer meshes. AES-FEM 1 is also more efficient than FEM.
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Figure 6.23: L1 norm errors versus runtimes for a 3D Poisson equation (left) and
convection-diffusion equation (right) on mesh series 2. Lower is better.

6.2 Numerical Results of High-Order AES-FEM

In this section, we assess the accuracy, efficiency, and element-quality dependence

of AES-FEM with quadratic, quartic, and sextic basis functions, and compare it

against FEM with linear, quadratic and cubic basis functions.

6.2.1 2D Results

We first assess AES-FEM in 2D over the unit square and the unit disc, which are

representative for geometries with flat and curved boundaries, respectively. We

triangulated the domains using Triangle [78] for linear meshes and using Gmsh

[36] for quadratic and cubic meshes. See Figure 6.24 for some examples meshes

with linear elements, which are representative in terms of mesh quality but are

coarser than those used in actual computations. The numbers of nodes for the unit

square range from 1,027 to 146,077, and those for the unit disc range from 544

to 79,417. Since isoparametric FEM requires good mesh quality, we ensured that

these meshes all have good element shapes for our comparative study: For linear
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Figure 6.24: Example 2D meshes with linear elements.

meshes, the minimum angle is 24.04 degrees and the maximum angle is 128.17

degrees; for high-order meshes, all elements have positive Jacobians everywhere.

We consider the Poisson equation and convention-diffusion equation. For both

cases, we use GMRES with the ILU preconditioner to solve the linear systems

arising from AES-FEM. For FEM, we use conjugate gradient (CG) with incomplete

Cholesky as the preconditioner for the Poisson equation, and use GMRES with ILU

for the convection-diffusion equation. To demonstrate the accuracy of high-order

methods, we set the tolerance of the iterative solvers to 10

�12. The drop tolerance

for the incomplete factorization is set as 10�4 by default, unless otherwise noted.

Poisson Equation

We first present results for the Poisson equation with Dirichlet boundary conditions

on the unit square and on the unit disc. That is,

�r2
U = ⇢ in ⌦, (6.2.1)

U = g on @⌦. (6.2.2)
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For the unit square ⌦ = [0, 1]

2, we consider the following three analytic solutions:

U1 = 16x

3
(1� x

3
)y

3
(1� y

3
), (6.2.3)

U2 = cos(⇡x) cos(⇡y), (6.2.4)

U3 =
sinh(⇡x) cosh(⇡y)

sinh ⇡ cosh ⇡

. (6.2.5)

For the unit disc ⌦ = {(x, y)|x2
+ y

2  1}, we consider U3 and also

U4 = cos

⇣
⇡

2

�
x

2
+ y

2
�⌘

. (6.2.6)

For each problem, the right-hand side ⇢ and the Dirichlet boundary condition g are

obtained from the given analytic solutions. For all the cases, the iterative solvers

converged to the desired tolerance for AES-FEM. For FEM, the solver stagnated

for the finest meshes in some cases without achieving the specified tolerance, even

after we reduced the drop tolerance to 10

�6 in incomplete Cholesky. However, the

resulting errors were small enough not to affect the comparison qualitatively.

Figure 6.25 shows the L1 and L2 norm errors for U1 on the unit square. The

L2 norm errors for U2 and U3 on the unit square and for U3 and U4 on the unit

disc are shown in Figures 6.26 and 6.27, respectively. In all cases, quadratic AES-

FEM and linear FEM have similar errors, and quartic AES-FEM has similar or

better results compared to cubic FEM. Both of the above pairs have similar sparsity

patterns and similar numbers of nonzeros in the coefficient matrices. Furthermore,

sextic AES-FEM is far more accurate than all the other methods, achieving sixth-

order accuracy despite the use of linear elements. This result confirms our accuracy

analysis in Section 4.3 for 2D problems.
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Figure 6.25: The errors for 2D Poisson equation on the unit square for U1 in L1
(left) and L2 norms (right). The number to the right of each curve indicates the
average convergence rate.
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Figure 6.26: The L2 norm errors for 2D Poisson equation on the unit square for U2

(left) and U3 (right).

Convection-Diffusion Equation

In our second example, we consider the time-independent convection-diffusion

equation with Dirichlet boundary conditions, that is,

�r2
U + c ·rU = ⇢ in ⌦, (6.2.7)

U = g on @⌦. (6.2.8)
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Figure 6.27: The L2 norm errors for 2D Poisson equation on the unit disc for U3

(left) and U4 (right).

We take c = [1, 1]

T for all of our tests, and we consider the same analytic solutions

over the unit square and on the unit disc as for the Poisson equation.

Figure 6.28 shows the L1 and L2 norm errors for U1 on the unit square. The

L2 norm errors for U2 and U3 on the unit square and for U3 and U4 on the unit

disc are shown in Figures 6.29 and 6.30, respectively. Similar to the Poisson equa-

tion, quadratic AES-FEM has similar convergence rate as linear FEM, but slightly

lower errors. Quartic AES-FEM is more accurate than cubic FEM in all cases,

and sextic AES-FEM again delivers superior accuracy, achieving about sixth-order

convergence.

Assessment of Element-Quality Dependence

To assess the dependence of AES-FEM and FEM on mesh quality, we use a series

of meshes for the unit square with progressively worse element quality, which we

obtain by distorting a good-quality mesh. For AES-FEM and linear FEM, we use a

mesh with 130,288 elements and 65,655 nodes and distort four elements by moving
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Figure 6.28: The errors for 2D convection-diffusion equation on the unit square for
U1 in the infinity norm (left) and the L2 norm (right).
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Figure 6.29: The L2 norm errors for 2D convection-diffusion equation on the unit
square for U2 (left) and U3 (right).
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Figure 6.30: The L2 norm errors for 2D convection-diffusion equation on the unit
disc for U3 (left) and U4 (right).
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Figure 6.31: Left: the lower bound of the condition numbers of the stiffness matri-
ces of FEM and AES-FEM method on a series of progressive worse meshes in 2D.
Right: the number of iterations required for the iterative solver to converge when
solving the corresponding systems.

one vertex of each of these elements incrementally towards its opposite edge. For

quadratic FEM, we use a mesh with 32,292 elements and 65,093 nodes and distort

a single element by moving one vertex and its adjacent mid-edge nodes. For cubic

FEM, we use a mesh with 32,292 elements and 146,077 nodes, and distort a single

element by moving one vertex and its adjacent mid-edge nodes. On each distorted

mesh, we solve the Poisson equation with the exact solution U2.

Figure 6.31 shows the condition numbers of the stiffness matrices of FEM and

AES-FEM and the numbers of iterations required to solve the linear systems. It

can be seen that the condition numbers of FEM increase inversely proportional to

the minimum angle, while the condition numbers of AES-FEM remain constant.

In terms of the linear solver, the numbers of iteration increase significantly for lin-

ear FEM as the mesh is distorted, and preconditioned CG fails for poorly-shaped

quadratic and cubic meshes due to nonpositive pivot during incomplete Cholesky

or due to stagnation of CG. In contrast, the number of iterations remains constant

for AES-FEM, independently of the element quality.
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Figure 6.32: The errors verses runtime for 2D Poisson equation on the unit square
for exact solution U2 (left) and on the unit disc for exact solution U4 (right).

Efficiency

To compare the efficiency of AES-FEM and FEM, Figures 6.32 and 6.33 show the

errors versus runtimes for the 2D Poisson equation and convection-diffusion equa-

tion, respectively. It is evident that for the convention-diffusion equation, both quar-

tic and sextic AES-FEM outperform cubic FEM over relatively fine meshes. For the

Poisson equation, sextic AES-FEM outperforms cubic FEM over finer meshes. We

expect AES-FEM will perform even better with further optimization of its imple-

mentation.

6.2.2 3D Results

We now assess AES-FEM in 3D over the unit cube and the unit ball, which are

representative for geometries with flat and curved boundaries, respectively. We

mesh the domains using TenGen [80] for the linear meshes and using Gmsh for the

quadratic and cubic meshes. See Figure 6.34 for some example meshes with linear

elements, which are representative in terms of mesh quality but are coarser than
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Figure 6.33: The errors verses runtime for 2D convection-diffusion equation on the
unit square for exact solution U2 (left) and on the unit disc for exact solution U4

(right).

those used in actual computations. The numbers of nodes for the unit cube range

from 509 to 7,272,811, and those for the unit ball range from 1,011 to 2,834,229.

As in 2D, since isoparametric FEM requires good mesh quality, we ensured that

these meshes all have reasonable element shapes: For linear meshes, the minimum

dihedral angle is 6.09 degrees and the maximum angle is 166.05 degrees; for high-

order meshes, all elements have positive Jacobians everywhere.

We consider the Poisson equation and the convection-diffusion equation. For

both cases, we use GMRES with the Gauss-Seidel preconditioner to solve the linear

systems arising from AES-FEM. For FEM, we use CG with incomplete Cholesky

as the preconditioner for the Poisson equation, and use GMRES with Gauss-Seidel

for the convection-diffusion equation. We set the tolerance of the iterative solvers

to 10

�12. The drop tolerance for incomplete Cholesky is 10�3 on the cube and 10

�6

on the ball.
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Figure 6.34: Example 3D meshes with linear elements.

Poisson Equation

We first present results for the Poisson equation with Dirichlet boundary conditions

on the unit cube and on the unit ball. That is,

�r2
U = ⇢ in ⌦, (6.2.9)

U = g on @⌦. (6.2.10)

For the unit cube, where ⌦ = [0, 1]

3, we consider the following three analytic

solutions:

U1 = 64x

3
�
1� x

3
�
y

3
�
1� y

3
�
z

3
�
1� z

3
�
, (6.2.11)

U2 = cos(⇡x) cos(⇡y) cos(⇡z), (6.2.12)

U3 =
sinh(⇡x) cosh(⇡y) cosh(⇡z)

sinh ⇡ cosh

2
⇡

. (6.2.13)

86



Number of Degrees of Freedom
102 104 106 108 1010

L
∞

 E
rr

o
r

10-8

10-6

10-4

10-2

100

2.08

2.77

4.94

1.80

1.97

3.17

Linear FEM
Quad FEM
Cubic FEM
Deg-2 AES-FEM
Deg-4 AES-FEM
Deg-6 AES-FEM

Number of Degrees of Freedom
102 104 106 108 1010

L
2
 E

rr
o
r

10-10

10-8

10-6

10-4

10-2

100

2.58

4.49

6.49

2.10

3.08

4.20

Linear FEM
Quad FEM
Cubic FEM
Deg-2 AES-FEM
Deg-4 AES-FEM
Deg-6 AES-FEM

Figure 6.35: The errors for 3D Poisson equation on the unit cube for U1 in the
infinity norm (left) and L2 norm (right).

For the unit ball ⌦ = {(x, y, z)|x2
+ y

2
+ z

2  1}, we consider the analytic solu-

tion U3 and also

U4 = cos

⇣
⇡

2

�
x

2
+ y

2
+ z

2
�⌘

. (6.2.14)

For each problem, the right-hand side ⇢ and the Dirichlet boundary conditions g are

obtained from the given analytic solutions.

Figure 6.35 shows the L1 and L2 norm errors for U1 on the unit cube. The L2

norm errors for U2 and U3 on the unit cube and for U3 and U4 on the unit ball are in

Figures 6.36 and 6.37, respectively. In all cases, quadratic AES-FEM converges at

similar or better rates than linear FEM and has lower errors, and quartic AES-FEM

has similar or lower errors than cubic FEM. As in 2D, both of the aforementioned

pairs have similar sparsity patterns and similar numbers of nonzeros in the coef-

ficient matrices. Furthermore, sextic AES-FEM is far more accurate than all the

other meshes, achieving sixth-order accuracy despite the use of linear elements.

This further confirms our accuracy analysis in Section 4.3 for 3D problems.
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Figure 6.36: The L2 norm errors for 3D Poisson equation on the unit cube for U2

(left) and U3 (right).
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Figure 6.37: The L2 norm errors for 3D Poisson equation on the unit ball for U3

(left) and U4 (right).
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Convection-Diffusion Equation

We consider the time-independent convection-diffusion equation with Dirichlet bound-

ary conditions on the unit cube and the unit ball, that is,

�r2
U + c ·rU = ⇢ in ⌦, (6.2.15)

U = g on @⌦. (6.2.16)

We take c = [1, 1, 1]

T and we consider the same analytic solutions over the unit

cube and unit ball as for the Poisson equation.

Figure 6.38 shows the L1 and L2 norm errors for U1 on the unit cube. The L2

norm errors for U2 and U3 on the unit cube and for U3 and U4 on the unit ball are in

Figures 6.39 and 6.40, respectively. Similar to the Poisson equation, quadratic AES-

FEM and linear FEM converge at similar rates with quadratic AES-FEM having

slightly lower errors. Quartic AES-FEM is more accurate than the cubic FEM in

all cases, and sextic AES-FEM is again the most accurate, with about sixth-order

convergence. For FEM, the linear solver stagnated for the same problems on the

finest mesh, but the resulting errors were small enough not to affect the comparison

qualitatively.

Assessment of Element-Quality Dependence

To assess the dependence of AES-FEM and FEM on mesh quality in 3D, we use a

series of meshes on the unit cube with progressively worse element quality, which

we obtain by distorting a good-quality mesh. For AES-FEM and linear FEM, we
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Figure 6.38: The errors for 3D convection-diffusion equation on the unit cube for
U1 in the infinity norm (left) and L2 norm (right).

Number of Degrees of Freedom
102 104 106 108

L
2
 E

rr
o

r

10-10

10-8

10-6

10-4

10-2

100

2.52

4.71

6.92

2.05

3.17

4.06

Linear FEM
Quad FEM
Cubic FEM
Deg-2 AES-FEM
Deg-4 AES-FEM
Deg-6 AES-FEM

Number of Degrees of Freedom
102 104 106 108

L
2
 E

rr
o

r

10-12

10-10

10-8

10-6

10-4

10-2

100

2.29

4.57

6.16

2.06

2.92

4.14

Linear FEM
Quad FEM
Cubic FEM
Deg-2 AES-FEM
Deg-4 AES-FEM
Deg-6 AES-FEM

Figure 6.39: The L2 norm errors for 3D convection-diffusion equation on the unit
cube for U2 (left) and U3 (right).
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Figure 6.40: The L2 norm errors for 3D convection-diffusion equation on the unit
ball for U3 (left) and U4 (right).
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use a mesh with 1,604,418 elements and 190,978 nodes and distort 74 elements

by moving one vertex of each of these elements incrementally towards its opposite

face. For quadratic FEM, we use a mesh with 178,746 elements and 250,047 nodes

and distort nine elements by moving one vertex of each of these elements and their

adjacent mid-edge and mid-face nodes incrementally towards its opposite face. For

cubic FEM, a mesh with 20,250 elements and 97,336 nodes is used and distort

a single element by moving one vertex and its adjacent mid-edge, mid-face, and

mid-cell nodes incrementally towards its opposite face.

On each distorted mesh, we solve the Poisson equation with the exact solution

U2. The iterative solvers used are GMRES for AES-FEM and CG for FEM. The

tolerance for both solvers is 10

�8. The preconditioner used for both methods is

Gauss-Seidel.

Figure 6.41 shows the condition numbers of the stiffness matrices of FEM and

AES-FEM and the numbers of iterations required to solve the linear systems. It can

be seen that the condition numbers of FEM increase inversely proportional to the

minimum angle, while the condition numbers of quadratic and quartic AES-FEM

remain constant. The condition numbers of sextic AES-FEM increase slightly for

the second and third meshes, but then dropped back to the original number. In terms

of the linear solver, the number of iterations increases significantly for FEM while

remaining constant for AES-FEM, independent of element quality.

Efficiency

To compare the efficiency of AES-FEM and FEM in 3D, Figures 6.42 and 6.43

show the errors versus runtimes for the 3D Poisson equation and convection-diffusion

equation, respectively. It is evident that on relatively finer meshes, sextic AES-FEM
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Figure 6.41: Left: the estimated condition numbers of the stiffness matrices of FEM
and AES-FEM method on a series of progressive worse meshes in 3D. Right: the
number of iterations required for the iterative solver to converge when solving the
corresponding systems.
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Figure 6.42: The errors verses runtime for 3D Poisson equation on the unit cube for
exact solution U2 (left) and on the unit ball for exact solution U4 (right).

outperforms cubic FEM, and for the Poisson equation on the unit ball, quartic AES-

FEM does as well. We expect AES-FEM will perform even better with further code

optimizations.
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Figure 6.43: The errors verses runtime for 3D convection-diffusion equation on
the unit cube for exact solution U2 (left) and on the unit ball for exact solution U4

(right).

6.3 Linear Solvers

The stiffness matrix resulting from AES-FEM is a large, non-symmetric, sparse

system. Krylov subspace methods are often used for iteratively solving such sys-

tems [73]. For symmetric positive definite systems, the conjugate gradient method

(CG) [40] is preferred and for symmetric indefinite systems, the minimum residual

method (MINRES) [65] is the typical choice [29]. CG and MINRES both use the

Lanczos process. CG has a two-term recurrence and MINRES has a three-term re-

currence. CG minimizes the energy norm of the residual and MINRES minimizes

the two-norm. Both CG and MINRES require one matrix-vector multiplication per

iteration.

For non-symmetric systems, the choice of which solver to use is less clear than

for the symmetric case. Popular methods include the generalized minimal residual

method (GMRES) [74], the biconjugate gradient stabilized method (Bi-CGSTAB)

[86], and the transpose-free quasi-minimal residual method (TFQMR) [31]. GM-

RES uses the Arnoldi iteration to find the vector that minimizes the residual. Each
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iteration requires one matrix-vector multiplication. GMRES often requires a restart

due to its k-term recurrence, where k is the iteration count. Bi-CGSTAB uses the

non-symmetric Lanczos iteration. Each iteration requires two matrix-vector multi-

plications. Bi-CGSTAB has a three-term recurrence. TFQMR also uses the non-

symmetric Lanczos iteration and has a three-term recurrence. Like Bi-CGSTAB,

each iteration of TFQMR requires two matrix-vector multiplications.

Krylov subspace methods are typically used in conjunction with precondition-

ers, which can improve the robustness and efficiency of the solver. When solving

a symmetric system, the preconditioner should preserve the symmetry and thus a

two-sided preconditioner is used. If we are solving the system Ax = b, then

the corresponding preconditioned system will be SASy = Sb where x = Sy.

For symmetric systems, incomplete Cholesky factorization [87], shifted incomplete

Cholesky factorization [58], or Gauss-Seidel [47] are common choices for a pre-

conditioner. When solving a non-symmetric system Ax = b, either a left pre-

conditioner or a right preconditioner may be applied, that is, MAx = Mb or

AMy = Mb with x = My, respectively. Using a left preconditioner changes

the norm in which the residual is minimized. If a right preconditioner is used, the

norm is unchanged. MATLAB uses left preconditioners. For non-symmetric sys-

tems, incomplete LU factorization [72], algebraic multigrid [13], or Gauss-Seidel

can be used as preconditioners. Another option for solving this system would be

multigrid methods [85], and we will explore their use in future work.

The performance of any method depends on the number of matrix-vector multi-

plications and inner-product, whether the solver uses a 3-term or k-term recurrence,

the condition number of the matrix, and what preconditioner (if any) is used.

Here, we conduct a comparison of various combinations for solvers and precon-
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ditioners for solving the linear systems obtained from quadratic, quartic, and sextic

AES-FEM and linear, quadratic, and cubic FEM. In Table 6.2, we list the size, the

number of non-zero entries, and the condition number for each matrix. Applying

FEM to the Poisson equation results in a symmetric matrix, and all other matri-

ces are non-symmetric. For solving non-symmetric systems, we consider GMRES,

BiCGSTAB, and TFQMR. We use Gauss Seidel as a left and a right preconditioner.

We compare two variants of incomplete LU: no-fill, which we use as a left and a

right preconditioner, and ilutp, which we use as a left preconditioner with drop-

tolerances of ⌧ = 10

�3, ⌧ = 10

�6, and ⌧ = 10

�9 in 2D and ⌧ = 10

�1 and ⌧ = 10

�2

in 3D. We also include an algebraic multigrid preconditioner, both as a left and a

right preconditioner. When using a left precondition, other than AMG, we used the

builtin MATLAB solvers. For solvers with a right preconditioner and for the solvers

with left or right AMG, we used our own implementation. For symmetric systems,

we include a comparison of conjugate gradient and MINRES, with Gauss Seidel

and incomplete Cholesky preconditioners. We consider two variants of incomplete

Cholesky, one with no-fill and one with the same drop tolerances as ILU. We rank

the method by their runtimes on one core of a 2.6 GHz Xeon E5-2670 CPU. We use

a tolerance of 10�12 for the solvers. For GMRES, we use restart equal to 20.

For solving AES-FEM systems from the 2D Poisson equation, the three most

efficient methods are BiCGSTAB with right no-fill ILU is the most efficient, GM-

RES with right AMG, and then TFQMR with left no-fill ILU. See Table 6.3 for

the runtimes. For solving FEM systems from the 2D Poisson equation, the three

most efficient methods are CG with incomplete Cholesky with ⌧ = 10

�3, MINRES

with incomplete Cholesky with ⌧ = 10

�3, and then CG with incomplete Cholesky

with ⌧ = 10

�6. See Table 6.4 for the runtimes. The matrices for linear FEM and
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quadratic AES-FEM are the same size, although in 2D the number of non-zeros is

greater for AES-FEM and the sparsity patterns are different. The fastest method

for linear FEM required 0.7188 seconds and the fastest for quadratic AES-FEM re-

quires 1.964 seconds. We avoid comparing the run times of the high-order methods

since the matrices have different size, sparsity patterns, and number of non-zeros.

For solving AES-FEM systems from the 2D convection-diffusion equation, the

three most efficient methods are BiCGSTAB with left no-fill ILU, GMRES with

right AMG, and then BiCGSTAB with right no-fill ILU. See Table 6.5 for the run-

times. For solving FEM systems from the 2D convection-diffusion equation, the

three most efficient methods are GMRES with right AMG, BiCGSTAB with right

AMG, and then BiCGSTAB with left AMG. See Table 6.6 for the runtimes. The

fastest method for linear FEM required 1.838 seconds and the fastest for quadratic

AES-FEM requires 2.131 seconds.

For solving AES-FEM systems from the 3D Poisson equation, the three most

efficient methods are BiCGSTAB with right no-fill ILU, BiCGSTAB with left no-

fill ILU, and then TFQMR with left no-fill ILU. See Table 6.7 for the runtimes. For

solving FEM systems from the 3D Poisson equation, the most efficient methods are

CG with incomplete Cholesky with ⌧ = 10

�3. Incomplete Cholesky with ⌧ = 10

�2

encountered a non-positive pivot for quadratic FEM, but for linear and cubic FEM,

this preconditioner coupled with CG is also very efficient. See Table 6.8 for the

runtimes. The matrices for linear FEM and quadratic AES-FEM are the same size

with the same number of non-zeros and sparsity patterns. The fastest method for

linear FEM required 6.971 seconds and the fastest method for AES-FEM required

8.284 seconds. Again, we avoid comparing the run times of the high-order methods

since the matrices have different size, sparsity patterns, and number of non-zeros.
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For solving AES-FEM systems from the 3D convection-diffusion equation, the

three most efficient methods are BiCGSTAB with left no-fill ILU, BiCGSTAB with

right no-fill ILU, and then TFQMR with left no-fill ILU. See Table 6.9 for the

runtimes. For solving FEM systems from the 3D Poisson equation, the three most

efficient methods are BiCGSTAB with left no-fill ILU, BiCGSTAB with right no-

fill ILU, and then BiCGSTAB with ⌧ = 10

�1. See Table 6.10 for the runtimes. The

fastest method for linear FEM required 11.191 seconds and the fastest method for

AES-FEM required 8.790 seconds.
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Table 6.2: Description of the matrices that we use in testing the runtimes.
Size #Non-Zero Cond. Num.

2D

Poisson

Deg-2 AES-FEM 64,635 830,379 5.4729⇥ 10

4

Deg-4 AES-FEM 64,635 1,971,551 5.1220⇥ 10

4

Deg-6 AES-FEM 64,635 3,534,311 7.8084⇥ 10

4

Linear FEM 64,635 450,381 5.0979⇥ 10

4

Quad FEM 64,077 730,335 8.6221⇥ 10

4

Cubic FEM 35,407 592,755 7.9266⇥ 10

4

Conv-Diff

Deg-2 AES-FEM 64,635 830,379 5.3261⇥ 10

4

Deg-4 AES-FEM 64,635 1,971,551 5.0594⇥ 10

4

Deg-6 AES-FEM 64,635 3,534,311 7.5688⇥ 10

4

Linear FEM 64,635 450381 5.0524⇥ 10

4

Quad FEM 64,077 730,515 8.5397⇥ 10

4

Cubic FEM 35,407 592,765 7.8595⇥ 10

4

3D

Poisson

Deg-2 AES-FEM 237,737 3,678,999 6.0501⇥ 10

3

Deg-4 AES-FEM 237,737 11,954,665 4.3106⇥ 10

3

Deg-6 AES-FEM 237,737 30,460,354 3.9280⇥ 10

4

Linear FEM 237,737 3,678,771 9.0463⇥ 10

3

Quad FEM 239,099 6,641,095 1.9284⇥ 10

4

Cubic FEM 91,088 4,086,480 1.7085⇥ 10

4

Conv-Diff

Deg-2 AES-FEM 237,737 3,678,999 6.2140⇥ 10

3

Deg-4 AES-FEM 237,737 11,954,665 4.2780⇥ 10

3

Deg-6 AES-FEM 237,737 30,460,354 2.4835⇥ 10

5

Linear FEM 237,737 3,678,771 8.9887⇥ 10

3

Quad FEM 239,099 6,641,095 1.9133⇥ 10

4

Cubic FEM 91,088 4,086,480 1.6975⇥ 10

4
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Table 6.3: Runtime in seconds for solving AES-FEM systems from 2D Poisson
equation.

AES-FEM
Quad Quartic Sextic

GMRES

GS Left 17.04 20.29 26.78
Right 10.19 16.15 21.89

ILU

Left ⌧ = 10

�3 5.77 9.82 19.29
Left ⌧ = 10

�6 97.38 184.83 304.79
Left ⌧ = 10

�9 280.01 585.38 989.64
Left no-fill 14.07 11.79 7.42

Right no-fill 8.41 8.15 6.18

AMG Left 3.01 - 9.69
Right 1.96 3.65 5.86

BiGCSTAB

GS Left 3.39 4.79 7.01
Right 3.31 6.09 10.59

ILU

Left ⌧ = 10

�3 4.80 8.86 17.84
Left ⌧ = 10

�6 97.81 182.32 303.30
Left ⌧ = 10

�9 278.03 583.30 975.45
Left no-fill 2.95 3.16 3.75

Right no-fill 2.99 4.23 5.15

AMG Left 2.98 5.87 9.70
Right 2.13 3.59 6.40

TFQMR

GS Left 3.34 5.18 7.32
Right 4.76 10.91 17.42

ILU

Left ⌧ = 10

�3 5.10 8.91 17.97
Left ⌧ = 10

�6 95.50 182.17 301.78
Left ⌧ = 10

�9 280.99 593.73 962.78
Left no-fill 2.92 3.67 4.02

Right no-fill 4.30 7.24 9.28

AMG Left 3.19 6.09 9.33
Right 3.14 6.50 9.72
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Table 6.4: Runtime in seconds for solving FEM systems from 2D Poisson equation.

FEM
Linear Quad Cubic

CG

Gauss Seidel symmetric 2.89 4.11 2.94

Incomplete Cholesky

⌧ = 10

�3 0.72 0.95 0.79
⌧ = 10

�6 1.44 2.57 1.43
⌧ = 10

�9 6.42 18.53 6.61
no-fill 3.06 3.87 3.03

MINRES

GS symmetric 3.30 4.18 3.27

Incomplete Cholesky

⌧ = 10

�3 0.80 0.99 0.85
⌧ = 10

�6 1.50 2.59 1.49
⌧ = 10

�9 6.66 18.61 6.64
no-fill 3.63 4.57 3.97
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Table 6.5: Runtime in seconds for solving AES-FEM systems from 2D convection-
diffusion equation.

AES-FEM
Quad Quartic Sextic

GMRES

GS Left 16.14 21.789 32.95
Right 11.42 18.06 26.19

ILU

Left ⌧ = 10

�3 5.30 9.28 19.34
Left ⌧ = 10

�6 89.28 179.23 304.26
Left ⌧ = 10

�9 270.98 591.11 975.91
Left no-fill 15.23 10.74 8.19

Right no-fill 8.79 7.68 6.03

AMG Left 3.21 5.78 9.69
Right 2.13 3.71 6.01

BiGCSTAB

GS Left 3.07 5.30 6.36
Right 3.41 7.08 10.25

ILU

Left ⌧ = 10

�3 4.66 8.59 18.19
Left ⌧ = 10

�6 90.02 187.08 298.89
Left ⌧ = 10

�9 268.00 605.10 974.37
Left no-fill 2.99 3.43 3.57

Right no-fill 2.65 4.29 5.35

AMG Left 3.27 5.30 9.44
Right 2.25 3.73 6.56

TFQMR

GS Left 3.45 5.33 8.21
Right 5.48 11.37 18.84

ILU

Left ⌧ = 10

�3 4.83 8.68 17.67
Left ⌧ = 10

�6 92.24 183.83 298.05
Left ⌧ = 10

�9 272.80 598.31 985.59
Left no-fill 3.25 3.98 3.76

Right no-fill 5.06 8.06 9.22

AMG Left 3.17 5.88 10.10
Right 3.48 6.60 10.07
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Table 6.6: Runtime in seconds for solving FEM systems from 2D convection-
diffusion equation.

FEM
Linear Quad Cubic

GMRES

GS Left 40.21 38.79 38.84
Right 24.25 31.00 23.82

ILU

Left ⌧ = 10

�3 2.93 27.94 2.67
Left ⌧ = 10

�6 30.03 475.87 29.28
Left ⌧ = 10

�9 89.28 1988.43 86.29
Left no-fill 31.74 43.60 33.92

Right no-fill 16.56 24.63 17.32

AMG Left 3.12 3.55 2.95
Right 2.04 2.10 1.69

BiGCSTAB

GS Left 4.66 6.04 4.50
Right 3.90 6.01 3.84

ILU

Left ⌧ = 10

�3 2.04 26.61 2.03
Left ⌧ = 10

�6 29.45 483.68 29.21
Left ⌧ = 10

�9 88.36 2015.26 88.54
Left no-fill 4.07 5.50 4.05

Right no-fill 3.44 5.15 3.48

AMG Left 2.79 3.57 2.76
Right 1.84 2.26 1.80

TFQMR

GS Left 5.07 7.02 5.37
Right 6.01 10.28 6.16

ILU

Left ⌧ = 10

�3 2.16 27.26 2.25
Left ⌧ = 10

�6 29.19 489.79 29.95
Left ⌧ = 10

�9 87.01 2015.69 91.15
Left no-fill 4.77 5.55 4.52

Right no-fill 16.55 8.03 16.61

AMG Left 3.23 3.69 3.30
Right 3.37 3.72 3.31
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Table 6.7: Runtime in seconds for solving AES-FEM systems from 3D Poisson
equation.

AES-FEM
Quad Quartic Sextic

GMRES

GS Left 17.21 61.45 1644.59
Right 14.13 51.73 927.43

ILU

Left ⌧ = 10

�1 28.41 70.62 214.59
Left ⌧ = 10

�2 58.58 350.47 1515.67
Left no-fill 14.98 59.67 50.92

Right no-fill 9.42 36.36 47.98

AMG Left 74.20 224.11 659.47
Right 46.97 85.87 694.64

BiGCSTAB

GS Left 9.70 28.84 161.72
Right 9.06 24.72 174.34

ILU

Left ⌧ = 10

�1 10.83 42.99 83.96
Left ⌧ = 10

�2 57.46 316.41 1458.80
Left no-fill 8.88 22.35 39.62

Right no-fill 8.28 21.59 40.58

AMG Left 63.14 146.47 20065.70
Right 44.31 82.68 8109.98

TFQMR

GS Left 11.32 31.87 265.95
Right 15.63 48.42 449.45

ILU

Left ⌧ = 10

�1 12.87 43.57 126.19
Left ⌧ = 10

�2 91.72 402.21 53.48
Left no-fill 8.44 22.90 41.70

Right no-fill 13.32 46.15 68.16

AMG Left 75.87 163.45 -
Right 81.72 163.27 7022.07
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Table 6.8: Runtime in seconds for solving FEM systems from 3D Poisson equation.

FEM
Linear Quad Cubic

CG

Gauss Seidel symmetric 14.93 22.65 16.31

Incomplete Cholesky

⌧ = 10

�1 11.66 23.06 11.89
⌧ = 10

�2 7.03 - 6.67
⌧ = 10

�3 6.97 11.98 7.05
no-fill 8.59 12.57 9.81

MINRES

Gauss Seidel symmetric 15.95 22.74 17.13

Incomplete Cholesky

⌧ = 10

�1 12.19 23.26 13.03
⌧ = 10

�2 7.43 - 7.63
⌧ = 10

�3 8.18 12.54 7.85
no-fill 9.15 12.17 9.22
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Table 6.9: Runtime in seconds for solving AES-FEM systems from 3D convection-
diffusion equation.

AES-FEM
Quad Quartic Sextic

GMRES

GS Left 16.61 39.37 303.28
Right 17.34 39.41 350.79

ILU

Left ⌧ = 10

�1 29.12 81.04 148.93
Left ⌧ = 10

�2 88.96 293.27 1114.39
Left no-fill 20.07 27.17 62.28

Right no-fill 12.58 22.63 47.78

AMG Left 84.19 207.78 -
Right 48.22 91.09 552.05

BiGCSTAB

GS Left 9.83 25.54 133.30
Right 9.70 32.11 165.81

ILU

Left ⌧ = 10

�1 11.47 41.83 79.67
Left ⌧ = 10

�2 81.81 279.21 1113.45
Left no-fill 9.58 18.84 44.75

Right no-fill 8.79 19.19 44.29

AMG Left 63.14 124.51 -
Right 40.51 78.51 -

TFQMR

GS Left 10.66 28.19 182.43
Right 20.28 60.90 314.12

ILU

Left ⌧ = 10

�1 12.86 43.39 76.99
Left ⌧ = 10

�2 80.80 285.52 1012.30
Left no-fill 9.49 19.16 48.95

Right no-fill 17.01 30.52 82.37

AMG Left 63.38 130.78 -
Right 76.50 136.64 -
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Table 6.10: Runtime in seconds for solving FEM systems from 3D convection-
diffusion equation.

FEM
Linear Quad Cubic

GMRES

GS Left 29.27 35.49 24.40
Right 25.45 36.36 26.06

ILU

Left ⌧ = 10

�1 27.61 66.97 26.14
Left ⌧ = 10

�2 79.01 726.72 63.57
Left no-fill 24.50 31.68 25.67

Right no-fill 18.11 25.89 18.74

AMG Left 75.34 46.93 70.97
Right 34.32 19.36 12.30

BiGCSTAB

GS Left 15.26 17.16 12.31
Right 15.67 22.00 15.54

ILU

Left ⌧ = 10

�1 11.27 19.89 11.16
Left ⌧ = 10

�2 77.28 702.59 59.65
Left no-fill 11.66 15.70 11.89

Right no-fill 11.19 18.50 11.60

AMG Left 43.16 32.48 38.69
Right 28.83 22.80 12.63

TFQMR

GS Left 14.61 17.17 12.95
Right 25.54 35.41 21.44

ILU

Left ⌧ = 10

�1 13.56 19.97 12.43
Left ⌧ = 10

�2 78.67 697.63 59.39
Left no-fill 12.98 16.32 12.56

Right no-fill 22.22 31.81 20.30

AMG Left 46.11 32.56 41.60
Right 52.32 37.81 21.86
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Chapter 7

Conclusion and Further Work

The primary contribution of this dissertation is the presentation of the adaptive ex-

tended stencil finite element method (AES-FEM), which uses generalized Lagrange

polynomial basis functions constructed via weighted least squares approximations

to overcome the element-dependency of the traditional finite element method. Gen-

eralized Lagrange polynomial basis functions extend the concept of interpolary La-

grange basis functions to weighted least-squares approximations, while retaining

two critical properties, i.e., function value as coefficient and partition of unity. By

utilizing generalized Lagrange basis functions, AES-FEM is insensitive to element-

quality. Additionally, AES-FEM can reach high-order accuracy with linear meshes,

even for domains with curved boundaries. AES-FEM preserves the theoretical

framework of the classical FEM and the simplicity in imposing essential bound-

ary conditions and integrating the stiffness matrix.

In this dissertation, we presented the formulation of AES-FEM, extended the

method to high-order, showed that the method is consistent, and discussed both

the local and global stability of the method. We described the implementation, in-
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cluding the mesh data structure and the numerical algorithms. We compared the

accuracy of AES-FEM against the classical FEM with linear basis functions and

the quadratic generalized finite difference method for the Poisson and convection-

diffusion equations in both 2D and 3D. We showed improved accuracy and stability

of quadratic AES-FEM over linear FEM, and demonstrated that the condition num-

ber of AES-FEM, and hence the convergence rate of iterative solvers, are indepen-

dent of the element quality of the mesh. We compared the accuracy of quadratic,

quartic and sextic AES-FEM against linear, quadratic and cubic FEM for the Pois-

son equation and the time-independent convection-diffusion equation in 2D and

3D, including on domains with curved boundaries. We showed improved accuracy

and stability of high-order AES-FEM over high-order FEM. We demonstrated up to

sixth order convergence rates of AES-FEM, despite the use of linear elements. Our

experiments also showed that AES-FEM is more efficient than the classical FEM

in terms of error versus runtime, while having virtually the same sparsity patterns

of the stiffness matrices. Since AES-FEM results in a non-symmetric matrix, we

compared the efficiency of linear solvers and preconditioners.

The future work for AES-FEM can be thought of in two broad categories: im-

provements to the method and applications of the method. We discuss the first in

the paragraph. While AES-FEM is efficient in terms of error versus runtime, it is

slower than the classical FEM on a given mesh due to the more expensive com-

putation of the basis functions and the non-symmetry of the stiffness matrix. The

efficiency can be improved substantially by exploring p-adaptivity, leveraging the

parallelism and the efficient multigrid solvers, which we will report in the future.

Our present implementation of AES-FEM uses the standard hat functions as the

weight functions, which may lead to large errors when applied to tangled meshes
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with inverted elements. We will report the resolution of tangled meshes in a future

publication. This work has focused on elliptic or diffusion-dominant PDEs with

solutions with smooth solutions. Another future research direction is the resolution

of discontinuities from hyperbolic problems.

Another area of future work is exploring applications. Because AES-FEM

performs well on poor-quality meshes, it would be highly applicable for applica-

tions with deforming meshes and could reduce, or possibly eliminate, the need

for remeshing. One area of interesting is fluid structure interactions, including the

modeling of thin-shells and membranes. For these models, it is well known that the

C

0-continuous finite elements may not converge on poor-quality elements. AES-

FEM can overcome this problem. Another area of interest is linear and nonlinear

elasticity, including fracture mechanics problems. A third area of interest is super-

conductivity, especially as applied to super conductor digital circuits.
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