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Abstract of the Dissertation

High-Order Adaptive Extended Stencil
Finite Element Methods for Applications

with Curved Boundaries

by

Tristan Joseph Delaney

Doctor of Philosophy

in

Applied Mathematics and Statistics

Computational Applied Mathematics

Stony Brook University

2017

High-order numerical methods for PDE discretizations have attracted sig-
nificant interests for scientific and engineering applications in recent years.
For engineering problems with complex geometries, achieving high-order con-
vergence is decidedly challenging, especially with curved boundaries. The
existing high-order finite element methods based on isoparametric elements
require the definition of curved volumetric elements to represent the geometry
accurately and ensure the validity of their variational formulations. However,
these high-order elements have much stricter mesh quality requirements due
to the possibilities of internal foldings of the elements, which are very hard
to detect. In addition, poor mesh quality may also lead to potential loss
of the completeness of the basis functions. Some recently proposed alterna-
tives such as isogeometric analysis and NURBS-enhanced FEM can achieve
high-order convergence but are very complicated and also have even stricter
requirement on mesh quality.

In our recent work, we have developed the adaptive extended stencil fi-
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nite element method (AES-FEM), which has less dependent on mesh qual-
ity. In this dissertation, we extend the AES-FEM to achieve high order
convergence on geometries with curved boundaries and Neumann boundary
conditions. AES-FEM uses high-degree polynomial basis functions to accu-
rately discretize the PDE. In the interior, AES-FEM uses piecewise linear test
functions for simplicity and efficiency. For elements adjacent to the curved
boundary, we construct new superparametric elements, whose test functions
are piecewise linear in the parametric space but curved in the real space to
capture the curved geometry accurately. We construct these superparametric
elements using simplices with curved faces and edges defined by the curved
geometry.

As another contribution, we propose a new strategy for enforcing Neu-
mann boundary conditions for weighted residual methods in the variational
formulations, which only require integrating the Neumann boundary condi-
tions over small regions on the boundary. The method is consistent with the
variational problem and simplifies some of the implementation, and it allows
enforcing Neumann boundary conditions even for boundaries with discontin-
uous normal directions. We present the method both for AES-FEM as well
as generalized finite difference (GFD) methods. We present results of our
method applied to second-order elliptic problems on curved boundaries.
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Chapter 1

Introduction

The success of the finite element method (FEM) has been due to the need of

engineers, scientists, and mathematicians to handle ever increasingly large-

scale physical problems involving complex geometries, multiphysics, and mul-

tiple types of boundary conditions. Finite element software is ubiquitous in

the automobile, aerospace, and shipbuilding industries and makes up a multi-

billion dollar market [32]. Finite elements have driven the research and de-

velopment of advanced meshing techniques to discretize complex geometries,

in particular because the representation of geometry is closely tied to the

relationship of the mesh. Indeed, isoparametric elements use the same func-

tions to represent the geometry as they do the actual finite element function

space used to discretize the partial differential equation (PDE) [10, 14].

The requirements of FEMs as well as finite volume methods (FVMs)

and finite difference methods (FDMs), have motivated decades worth of re-
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search for computational geometers and applied mathematicians into what

exactly a “good mesh quality” is. This question has its roots in geometric

interpretations of the linear test functions over simplices in the context of in-

terpolation error over refinements of meshes. Zlámal suggested the minimum

angle among triangles should be bounded below by a constant [75], while the

seminal paper [1] showed that the maximum angle condition was “essential”

for the convergence of FEM. However these conditions are only made in the

asymptotic context of sequences of triangulation refinements. Additional

measures of for meshes with moderate quality have been proposed in [62] for

linear triangles and tetrahedra which bound the interpolation errors in terms

of various geometric properties of triangles. Algebraic mesh quality measures

have also been suggested which also apply to other element topologies such

as quadrilaterals or hexahedral meshes [41].

For problems with curved boundaries, it becomes necessary to represent

the boundary to high order in order for FEM to converge to high-order[3].

This creates additional challenges for the meshing community as mesh op-

timization becomes more difficult. Oftentimes, the geometry is represented

through a parametric mapping from some reference element to each of the

mesh elements. If the Jacobian of this parametric mapping is negative, then

the parametric mapping is no longer a homeomorphism; and if the Jacobian

is nearly singular at some points then the condition number of the resulting

linear system may become very large. Detecting these poor quality elements

is expensive and requires costly optimization procedures [16, 38, 40]. Often-
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times, poor quality elements exist near boundary features where large aspect

ratios and complex features make it difficult for parametric elements to be

created from standard linear mesh generation techniques.

The adaptive extended stencil finite element method (AES-FEM) was

designed to overcome difficulties with mesh quality while still preserving the

advantages that meshes provide. It has been successfully shown to handle

linear meshes with poor quality [19], as well as having the ability to obtain

high-order accuracy from only a linear mesh [18]. In particular, it achieves

this by constructing new basis functions from a weighted least-squares (WLS)

approximation in contrast to the more typical interpolatory techniques used

in traditional finite elements. This provides robustness by replacing the ap-

proximation of the function by a stencil of neighboring vertices rather than

defining a set of basis functions over individual elements. Additionally, the

mesh provides a simple data structure for determining vertices to include

inside each stencil as well as domains for numerical integration to be per-

formed. In the previous work, this has been done solely on linear meshes for

PDEs with pure Dirichlet boundary conditions.

This dissertation expands upon the work that was presented in [19] and

[18] in three areas. First, we introduce how to generate new test functions for

AES-FEM using superparametric elements generated from the curved bound-

ary. In particular, issues regarding guaranteeing of well-defined parametric

mappings are discussed. Second, the issue of interpolating Neumann bound-

ary conditions from linear meshes is considered and the issues pertaining to
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high-order numerical integration over surfaces are discussed. Lastly, a novel

implementation of Neumann boundary conditions is proposed for AES-FEM

and, more generally, methods of weighted residuals (MWRs) where the ap-

propriate test functions are defined only on the surface. We use this new

boundary treatment in the contexts of AES-FEM and generalized finite dif-

ference (GFD) methods.

This dissertation is less of a discussion of mesh quality measures as it

is a fundamental retreatment of geometry with PDEs. AES-FEM had been

used in [19] to overcome issues of mesh quality while restraining itself to

quadratic basis functions on simplicial meshes, and it was generalized to high-

order polynomial basis functions defined on simplicial meshes in [18]. In this

dissertation, we add new functionality to AES-FEM, specifically Neumann

boundary conditions and special treatment of curved boundaries.

For problems with curved boundaries, Neumann boundary conditions be-

come more challenging as the test functions no longer decay to zero and

geometric errors begin to dominate over truncation and integration errors.

In particular, the basis functions in AES-FEM are merely polynomials with-

out compact support, and the geometry is represented by the test functions,

which are chosen to be finite element shape functions constructed from the

mesh itself. Therefore, it becomes necessary to define new test functions

which can accurately represent the geometry to high-order, while maintain-

ing the order of consistency from the basis functions.

The remainder of this dissertation is outlined as follows: Chapter 2 cov-
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ers a brief outline of the current state of finite element methods. Chapter 3

provides the background and basic implementation of AES-FEM including

the generalized Lagrange polynomial basis functions. Chapter 4 discusses

the treatment of curved boundary conditions and Neumann boundary con-

ditions in AES-FEM. Chapter 5 introduces a new variational formulation for

the treatment of Neumann boundary conditions using boundary integrals.

Chapter 6 applies our proposed methods for several second-order elliptic

problems on curved geometries. Finally Chapter 7 offers concluding remarks

and directions for further research.
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Chapter 2

Background and Related Work

Let Ω ⊂ Rd be a bounded domain with boundary ∂Ω = ΓD ∪ ΓN . Let L be

a second order elliptic linear differential operator

L =
∑

1≤i,j≤d

− ∂

∂xi

(
aij (x)

∂

∂xj

)
+
∑

1≤i≤d

bi (x)
∂

∂xi
+ c (x) . (2.1)

The associated boundary value problem is to find a sufficiently smooth solu-

tion u ∈ C2 (Ω) ∩ C1
(
Ω
)
such that

Lu = f, on Ω. (2.2)

The solution u may have to satisfy some boundary conditions on the bound-

ary of the domain, ∂Ω. These boundary conditions may be Dirichlet (other-

wise known as essential) or Neumann (otherwise known as natural) boundary
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conditions

u = ū, on ΓD, (2.3)
∂u

∂n
= g, on ΓN . (2.4)

The most general means of approximating the solution to (2.2) is through

the method of weighted residual (MWR) [24]. In MWR, the solution u is

expanded as a linear combination of basis functions u =
∑N

j=1 ujφj, where

uj ∈ R denote the coefficients of the linear combination. The basis func-

tions must satisfy the essential boundary conditions (2.3) while the natural

boundary conditions (2.4) are enforced automatically. The residual of a point

x ∈ Ω is

R(u, f) := Lu− f,

and the weighted residual is

(R, v) =

∫
Ω

Rv dΩ,

where v is an appropriate test function. MWR uses a set of test functions vi

such that ∫
Ω

R (u, f) vi dΩ = 0, for i = 1, . . . , N. (2.5)

This results in a system of linear equations for linear PDEs.

The different choices for both basis functions φj and test functions vi lead

to a variety of numerical methods, and each method may have advantages

7



Property Basis Functions Test Functions
Completeness Yes Optional

Compact Support Optional Yes
Integrability Yes Yes

Lagrange Property Preferred No

Table 2.1: List of basic properties of MWR.

over the others. For example, the basis functions must generally form a

complete basis in the sense that any polynomial up to some degree d must be

reproduced exactly. The test functions, on the other hand, are often desired

to have compact support and some level of smoothness. Table 2.1 summarizes

many of the desired properties of both the test and basis functions. In the

following sections, we provide a brief description of these methods, their

benefits, and their challenges.

2.1 Galerkin Methods

Galerkin methods choose the basis functions to be equal to the test functions

in (2.5). Specifically, the finite element method uses basis functions that are

piecewise polynomials defined over individual mesh elements; these functions

are also used in computing the derivatives and integrals. FEMs typically

solve (2.5) by performing integration by parts and substituting any natural

boundary conditions (2.4) specified by the problem. For test functions that

8



satisfy v|∂ΩD
= 0, integration by parts allows for (2.5) to be rewritten as

a (u, v) = F (v) , (2.6)

where

a (u, v) =

∫
Ω

aij
∂u

∂xj

∂v

∂xi
dΩ (2.7)

+

∫
Ω

bi
∂u

∂xi
v dΩ

+

∫
Ω

cuv dΩ

F (v) =

∫
Ω

fv dΩ +

∫
ΓN

gv dΓ. (2.8)

Equation (2.7) has the advantage that it only requires the the first partial

derivatives of the function u, which significantly lessens the burden of dis-

cretizing the function space.

Let {φi}Ni=1 be a basis for a finite dimensional vector space Vh, then a

linear system of equations is formed with

Ax = b

Aij = a (φj, φi)

bi = F (φi) .

The matrix A is often referred to as the stiffness matrix while the vector

b is the load vector. These names are derived from solid mechanics where
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the stiffness matrix represents the internal forces present in the solid mate-

rial, which resist the external loads experienced by the material. For many

classes of elliptic boundary problems, the resulting linear system is sparse,

symmetric, and positive-definite (SPD). This has the benefit of being able

to use simple sparse linear solvers such as preconditioned conjugate gradient

method (PCG).

Central to the computation of the stiffness matrix and load vector is the

discretization of both the function space and the geometry of the domain Ω.

Traditionally, this is achieved through the use of a simplicial meshes where

the domain is discretized into separate triangles or tetrahedra in two or three

dimensions, respectively. Let T be a triangulation of Ω so that the domain

Ω ≈ Ωh =
⋃
iKi, where Ki are individual triangular or tetrahedral elements

of the mesh. In the assembly of the stiffness matrix and load vector, inte-

gration over the domain is split into seperate integrals over each individual

element.

Integration over each element is performed by defining quadrature rules

over a reference element, K̃, using a parametric mapping from Φ : K̃ →

K. Although this parametric mapping is flexible, it can also be a source

of instability as any elements with large or small angles tend to lead to

large condition numbers [1, 62, 75]. For linear meshes, there are a variety

of estimates of mesh quality, which are used to quantify how well the FEM

may be expected to perform on certain meshes. These mesh quality measures

are often based on estimates of the interpolation of smooth functions to the

10



Jacobian of the transformation Φ. Even for linear meshes, it is difficult to

guarantee “good” mesh quality in three dimensional tetrahedral meshes due

to the existence of slivers [64] or poor quality elements near complex features.

In [19], it was shown that even a small number of bad quality elements can

lead to drastic change in the condition number of the matrix and the number

of iterations in the linear solver.

For problems with curved geometries, linear meshes may inadequately

represent the geometry and constrain the performance of finite element solvers

to second order [3]. In particular, this necessitates the high-order represen-

tation of the geometry itself through the generation of curved elements. Let

K be an element of a mesh with k basis functions. Any function may be

written in terms of the m basis functions are defined and the solution u|K
can be expressed as

uh|K =
k∑
i=1

uiφi (x) , x ∈ K.

Oftentimes, the basis functions may be Lagrange polynomials, but they may

also be chosen to be classes of orthogonal polynomials such as Legendre or

Chebyshev. The integration over the element K requires the parameteriza-

tion of K in terms of a set of shape functions of the finite element, which

represent the geometric mapping from the reference element to the physical

element. Shape functions are a set of functions φ∗j , usually polynomials, such

11



that

x|K =
m∑
i=1

xiφ
∗
i (x) .

Isoparametric elements correspond to the case where m = k and φi = φ∗i .

For m > k (resp. m < k), then the element is said to be superparamet-

ric (resp. subparametric). Typically, the classical isoparametric formulation

constructs elements using Lagrange polynomials to represent both the ba-

sis/test functions as well as the geometry [14]. The computation of integrals

can still be done over a reference element, but the basis functions will no

longer be polynomials [10]. These isoparametric finite element methods have

much stricter mesh quality requirements due to the possibility of inversion

or near singular Jacobians of the isoparametric transformation. Thus, these

high order meshes require mesh optimization procedures to ensure that local

isoparametric representations of the geometry are in fact diffeomorphic to

the reference or some ideal element [27, 39, 41, 51, 56, 57].

2.2 Meshless Methods

Meshless methods are a general class of numerical discretizations which focus

on point-cloud descriptions of the domain without reference to any volumetric

“elements” [2, 6]. Meshless methods such as smooth particle hydrodynam-

ics (SPH) [30, 47] use the concept of kernel functions to achieve compact

support as well as numerical approximation of the derivatives of the PDE.

These kernel functions generally have requirements of partition of unity and

12



smoothness to ensure consistency of the numerical approximation, and sev-

eral choices including truncated Gaussian distributions [30], splines [6], and

radial basis functions [11]. Central to these methods is the domain of influ-

ence and the choice of numerical quadrature rules, which may complicate the

implementation [6]. The stability of the meshless methods has been shown

to be determined by the completeness of the kernel, that is the ability of the

kernel functions to approximate polynomials up to a certain degree; and the

integrability of the kernel functions [5]. If these conditions are not satisfied,

then the methods may fail to converge.

Another class of meshless methods were introduced with the diffuse ele-

ment method (DEM) [49] and further developed with element-free Galerkin

method (EFG) [7]. For both of these methods, the domain is represented as

a point cloud with some description of the domain. Basis functions are con-

structed using a moving least-squares approximation (MLA) [42] to estimate

derivatives. Integration is performed on quadrature rules for Cartesian grids

with essential boundary conditions being enforced weakly using Lagrange

multipliers. DEM and EFG are Galerkin methods, which use the MLA basis

functions as polynomials. Central to compactness of these methods is the use

of a weighting function that restricts the domain of influence of each node in

the point cloud. These methods do not have the issue of poor mesh quality,

but can still suffer from poor selections of local neighrhoods and difficult

choices of numerical integration rules.
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2.3 CAD-Enhanced Galerkin Methods and Iso-

geometric Analysis

Others like isogeometric analysis (IGA) [32, 20, 4] and NURBS-enhanced

finite element method (NEFEM) [59, 60] incorporate the exact geometry of

a CAD model into the finite element discretization. These methods have

gained much popularity over the past decade as CAD models are integral in

the design process for many industries.

Isogeometric analysis directly constructs basis and test functions from

the CAD model’s NURBS [32] or T-splines [4] representation of the entire

volume of the domain. It ties the use of the splines and the exact representa-

tion of the geometry together with the discretization of the solution function

space. The individual splines provide both smoothness and compact support

necessary for Galerkin methods. Condition number estimates for IGA were

shown to be similar to those of traditional FEMs in [26]. IGA has been ap-

plied successfully in several settings for boundary value and time-dependent

problems [21, 73]. Issues of model quality have been increasingly researched

over the past several years to estimate a priori the performance of IGA from

properties of the CAD model [17]. Severe distortions of control points often

require may also cause a loss of consistency for low degree NURBS [44], and

the modeling of fine structures such as fillets requires special care on the part

of the modeler.

In contrast, NEFEM constructs curved elements using the NURBS rep-
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resentation only one the surface of the boundary while maintaining tradi-

tional isoparametric elements within the interior [59, 60]. NEFEM only

requires the special treatment of elements with at least one edge or face

on the non-uniform rational B-splines (NURBS) boundary. The elements

are constructed by assigning new parametric mappings between a referential

prism element that blend the NURBS surface into the interior vertices. Basis

functions and test functions can be constructed from Lagrange polynomials

either in the parametric space for continuous Galerkin approximations or in

the physical space for discontinuous Galerkin approximations.

2.4 Finite Difference Methods and Their Gen-

eralizations

A broad but important class of numerical methods for PDE discretization are

the finite difference (FDM) and finite volume (FVM) methods. Finite dif-

ference methods are among the oldest numerical methods for solving PDEs,

although they have fallen out of favor with engineers due to their perceived

difficulties in using complex geometries. Finite difference methods use Dirac

delta functions as the weight functions in (2.5) and construct local polyno-

mial approximations of the function and its partial derivatives at the vertices

of the mesh [8, 25, 28, 43, 50, 67]. Function values away from the mesh ver-

tices are generally not considered. Finite difference methods do not have a

concept of mesh quality, but do rely on judicious selection of local stencils to
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make the resulting differentiation rules stable [34, 33, 45]. In classical finite

difference methods, stencils are taken from a global Cartesian grid which

leads to well known finite difference formulas for various partial derivatives.

However because of the nature of Cartesian grids, it is difficult to use these

methods on complex geometries.

Numerous generalizations of FDMs have been investigated in the past.

Many of these [46, 48, 58] rely on a local least squares approximation from

a set of basis functions to approximate derivatives at the vertices including

radial basis functions [11, 63, 72] and weigthed least squares approximation of

local polynomial basis functions [8, 43, 46, 48, 50, 52]. In particular methods

that use latter choice of basis functions, known as generalized finite difference

methods (GFDMs), can be used on unstructured meshes of complex and

dynamically changing geometries. These include problems with heat transfer

over complex or irregular geometries [13], estimations of geometric quantities

of surfaces [16, 37, 70, 71], and and mesh smoothing via geometric flows [15].

GFDMs are capable of modeling a wide range of applications including fluid

dynamics [9] and solid mechanics [46, 48, 69].
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Chapter 3

Adaptive Extended Stencil Finite

Element Method

The adaptive extended stencil finite element method was developed for prob-

lems involving meshes that may have less than perfect element quality. The

idea of AES-FEM is simple: combine the robustness of weighted least-squares

approximation with the ease of integration and natural enforcement of bound-

ary conditions provided by the finite element test functions of a mesh. AES-

FEM constructs a its basis functions from generalized Lagrange polynomial

basis functions (GLPBFs), which are derived from a local WLS approxima-

tion. The GLPBFs are consistent up to high order and can be adapted as

needed for the solution of (2.6). We discuss the derivation and basic proper-

ties of the GLPBFs and their inclusion in AES-FEM.
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3.1 Generalized Lagrange Polynomial Basis Func-

tions

Consider any vertex xk on a mesh or point cloud. Any collection of m + 1

vertices {x0,x1, ...,xm} with x0 = xk is called a stencil of the vertex xk

with radius h = max0≤i≤m {‖xi − x0‖}. Let δxi = xi − x0. Then any

function u (x) = u (x0 + δx) may be approximated at the individual points

xi = (xi, yi) by a degree p Taylor series expansion

u (xi) =

p∑
d=0

r+s=d∑
r≥0,s≥0

crsδx
r
i δy

s
i +O

(
hp+1

)
. (3.1)

We may equivalently write the equation above as

u (xi) = cTM (δxi) +O
(
hd+1

)
(3.2)

where

c = [c00 c10 c01 c20 c11 c02]T ,

M (δx) =
[
1 δx δy δx2 δxδy δy2

]T
are the vector of polynomial coefficients and the monomial basis, respectively,

for p = 2.

Considering (3.1) for each of the m + 1 vertices in the stencil results in
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the system of linear equations

V c ≈ b, (3.3)

where bi ≡ u (xi). The matrix V is the Vandermonde matrix of the stencilX.

The least square problem is then to find a solution of polynomial coefficients

c which minimizes the least-squares error of (3.3), that is

c = arg min
x∈Rn

‖V x− b‖2
2 . (3.4)

If V is of full column rank, then the solution to (3.3) is given by the Moore-

Penrose pseudo-inverse

c = V +b. (3.5)

The function u (x) can then be approximated by a degree p polynomial given

as uh (x) = cTM (δx) . Furthermore, any order ` linear differential operator

can be approximated by applying the differential operator to the invididual

monomial basis functions [19]

Lu (x+ δx) ≈ cTLM (δx) +O
(
‖δx‖d−l+1

∞

)
. (3.6)

One can also substitute (3.5) into (3.1) to get the an expression for a set

of polynomials

uh (x+ δx) = bTV +TM (δx) = bTΦ (x+ δx) (3.7)
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where Φ (x+ δx) = V +TM (δx) is a group of polynomials associated with

each vertex in the stencil.

Definition 1 (Generalized Lagrange Polynomials). The generalized Lagrange

polynomials of a stencil X are given by

Φ = V +TM (δx) . (3.8)

The generalized Lagrange polynomials allow for the simple approxima-

tion of function values and their partial derivatives from the monomial basis

in space. In general, V may be rank-deficient, either analytically or numer-

ically, which will lead to a loss of accuracy under floating point arithmetic.

Therefore, it is wiser to safeguard the computation of GLPBFs using a more

stable version of V + . This is achieved by altering the least squares error of

(3.4) with a weighted least squares error .

Let w (d) = w (‖x− x0‖) be a weighting function which satisfies limd→∞w (d) =

0. The weighting function w will prioritize the minimization of errors for

vertices, which are near the center of the stencil, x0. Throughout this dis-

sertation, we work with weights of the form

w (d) =
1

(d/h+ ε)α
,

where ε � 1 is used to avoid a singularity at d = 0 and α > 0 is an

appropriate exponent which determines the rate of decay of the weighting

20



function. In this dissertation, we tend to use ε ≈ 0.1 and α to be one

half of the degree of polynomial basis used in the weighted least squares

approximation. Let W = diag (w0, w1, . . . , wm), then the weighted least-

squares solution becomes

c = arg min
x∈Rn

‖W (V x− b)‖2
2 .

Furthermore, the radius of the stencil could cause the columns of V

or WV to have different scales, which can be a source of ill-conditioning,

which can affect the computation of (3.5). Therefore, the positions of the

vertices are normalized to lie in the unit cube [−1, 1]d by right-multiplying

the weighted Vandermonde matrix by the matrix

M = diag (M (h))−1 .

The resulting weighted Vandermonde matrix is

A = WVM .

The matrix A has the property that every entry is O(1) in magnitude, and

usually has an improved condition number in comparison to the unscaled

Vandermonde matrix V . Equation (3.3) may then be rewritten as

Az ≈Wb,
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and the weighted-least squares solution is now given by

c = MA+Wb. (3.9)

For full column rank Vandermonde systems, the solutions given by (3.5) and

(3.9) will be equivalent under exact arithmetic [19]. Substituting (3.9) into

(3.8) gives an equivalent expression for the GLPBFs

Φ (x) = WA+TMM (δx) . (3.10)

3.2 Numerical Stability of Computation

Generalized Lagrange polynomial basis functions allow for the estimates of

partial derivatives and function values to be used inside the weak formulation.

The matrix A is constructed so that the condition number κ (A) = O(1) if

V is of full column rank. However in practice, the condition number of A

may still be very large due to position of the points in the stencil. In this

case, the GLPBFs must be constructed in a robust and numerically stable

manner. The numerical rank of A is estimated by using a rank-revealing

QR-factorization [12] with column pivoting (QRCP)

AΠ = QR. (3.11)
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The rank of A is then estimated from the numerical rank of R which can

easily be computed by observing the diagonal entries. The matrix A is said

to have numerical rank k if |rk+1,k+1| ≤ ε |r11| with ε � 1. If A is found to

have numerical rank k, then only the first k columns of AΠ are chosen, and

the GLPBFs are computed as

Φ (x) = WQ̂:,1:kR̂
−T
1:k,1:kΠ̂

T

:,1:kMM (δx) . (3.12)

The use of QRCP guarantees that the GLPBFs computed will be consis-

tent so long as the condition number of A is not too large. If the condition

number is too large, then the order of consistency must be reduced to favor

stability of the method. However this order of consistency only occurs if the

truncated columns correspond to high-order terms. This assumption may be

violated if the distribution of the stencils is unbalanced, such as when the

stencil is situated near a boundary. These one-sided stencils are well-known

in the finite difference literature and are often having a larger truncation error

as opposed to the fully-balanced finite difference schemes [67]. Additionally,

balanced finite difference schemes may also benefit from error cancellation

and lower truncation error constants than unbalanced schemes.

To improve consistency of the scheme while still maintaining stability,

an altered scheme must be used to ensure that columns of A corresponding

to low-order terms are not thrown out before high order terms, which may

depend on them. This is achieved by creating a direct acyclic graph (DAG)
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Figure 3.1: Pascal’s triangle for bivariate monomials and the DAG represent-
ing priority relationships.

dependency graph based on Pascal’s triangle or tetrahedron for bivariate or

trivariate monomials as shown in Figure 3.1. The DAG is pruned as columns

corresponding to the roots of the DAG are pivoted into position during the

QRCP algorithm, and no high-order monomial may be chosen as a pivot

unless all of its ancestors have already been removed from the DAG. The

algorithm is terminated if the 2-norm of the columns corresponding to all

available roots is less than a predefined tolerance ε. The description of the

column pivoting strategy is shown in Algorithm 1.

3.3 Weak Formulation of AES-FEM

AES-FEM is traditionally constructed by computing a local stencil for each

test function denoted by vi, the ith test function of the traditional finite

element family, as given by the mesh. Let φj (x) be the associated GLPBF

of the jth vertex in the stencil (X i,wi). Then the solution is approximated
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Algorithm 1: Column Pivoting Strategy for QRCP.
input : A list of root monomials, list of parents remaining, and the

parent-child dependency list for each monomial;
Vandermonde matrix A; tolerance ε

output: The QR-factorization of A, a permutation vector π, rank(A)

for c = 1:ncols do
Find maximum column norm of all root monomials, store as k
if ‖Ac:end,k‖2 < ε then

/* Truncate A and return permutation vector */
Set rank(A)=c-1
return A:,1:r, π

end
Swap π(c) and π(k), A:,c and A:,k, and perform Householder
reflection

/* Update DAG representation and add orphans to root
list */

Remove root monomial from list of roots
foreach child of root do

Decrement parent count
if parent count == 0 then

Add child to root list
end

end
end
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by substituting

uh =
n∑
j=1

ujφj

into the weak form

a (uh, vi) = F (vi) , ∀i = 1, . . . , n.

The resulting linear system of equations is

Au = b,

where

Aij = a (φj, vi)

bi = F (vi) .

The stiffness matrix A is in general nonsymmetric, but in practice is well-

conditioned with proper choices of test functions.

In the assembly of the linear system, the stiffness matrix and load vector

are constructed row by row for scalar problems such as Poisson or advection-

diffusion, or block-row by block-row for problems of several variables (e.g.

linear elasticity). The integration is performed in the same manner as tra-

ditional finite element matrices with mappings from a reference element to

the individual mesh elements being computed. Let J = ∂x
∂ξ

be the Jacobian
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of the isoparametric mapping from the reference element K̂ to the physical

element K. Then the integration over K is performed via the change of

variables

dK = detJdK̂.

The first-order partial derivatives of the test functions v are replaced with

appropriate first order partial derivatives of the test functions v̂ defined over

K̂,

∇xv = J−T∇ξ v̂.

The partial derivatives of the GLPBFs are computed by determining the

position of quadrature points in physical space using the parametric mapping

provided by the mesh element. The numerical quadrature rules are exact for

linear elements due to the fact that the GLPBFs are polynomials in physical

and parametric space.

Neumann boundary conditions can be imposed in a similar manner to

FEMs and computed using either prescribed data as in (2.4). In practice, the

boundary data g may not be defined by an analytical function, but rather are

only given by their values at the vertices and interpolated over the boundaries

of the elements during load vector assembly. In the case of AES-FEM, the

elements are linear, and the boundary data is only prescribed at the corner

vertices of the elements. This could lead to an unacceptable loss of accuracy

for high-order problems if only linear interpolation were used to estimate

g at the boundary quadrature points. Therefore it becomes necessary to
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approximate g on the boundary to high-order in addition to the high-order

representation of the curved boundary itself. These issues are addressed in

Chapters 4 and 5.

3.4 Results for High-Order AES-FEM

In this section, we assess the accuracy, efficiency, and element-quality depen-

dence of AES-FEM with quadratic, quartic, and sextic basis functions, and

compare it against FEM with linear, quadratic and cubic basis functions.

The errors are calculated using the discrete L2 and L∞ norms. Let U de-

note the exact solution and let Ũ denote the numerical solution. Then, we

calculate the norms as

L2 (error) =

(∫
Ω

|Ũ − U |2∂Ω

)1/2

and L∞ (error) = max
i
|Ũ−U |. (3.13)

On a series of meshes of different grid resolution, we calculate the average

convergence rate as

convergence rate = − log2

(
error on mc

error on mf

)/
log2

(
d

√
nodes in mc

nodes in mf

)
,

(3.14)

where d is the spacial dimension, mc is the coarsest mesh, and mf is the

finest mesh.
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Figure 3.2: Example 2D meshes with linear elements.

3.4.1 2D Results

We first assess AES-FEM in 2D over the unit square and the unit disc,

which are representative for geometries with flat and curved boundaries, re-

spectively. We triangulated the domains using Triangle [61] for linear meshes

and using Gmsh [29] for quadratic and cubic meshes. See Figure 3.2 for some

examples meshes with linear elements, which are representative in terms of

mesh quality but are coarser than those used in actual computations. The

numbers of nodes for the unit square range from 1,027 to 146,077, and those

for the unit disc range from 544 to 79,417. Since isoparametric FEM requires

good mesh quality, we ensured that these meshes all have good element

shapes for our comparative study: For linear meshes, the minimum angle

is 24.04 degrees and the maximum angle is 128.17 degrees; for high-order

meshes, all elements have positive Jacobians everywhere.

We consider the Poisson equation and convention-diffusion equation. For

both cases, we use GMRES with the ILU preconditioner to solve the linear
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systems arising from AES-FEM. For FEM, we use conjugate gradient (CG)

with incomplete Cholesky as the preconditioner for the Poisson equation, and

use GMRES with ILU for the convection-diffusion equation. To demonstrate

the accuracy of high-order methods, we set the tolerance of the iterative

solvers to 10−12. The drop tolerance for the incomplete factorization is set

as 10−4 by default, unless otherwise noted.

Poisson Equation

We first present results for the Poisson equation with Dirichlet boundary

conditions on the unit square and on the unit disc. That is,

−∇2U = ρ in Ω, (3.15)

U = g on ∂Ω. (3.16)

For the unit square Ω = [0, 1]2, we consider the following three analytic

solutions:

U1 = 16x3(1− x3)y3(1− y3), (3.17)

U2 = cos(πx) cos(πy), (3.18)

U3 =
sinh(πx) cosh(πy)

sinhπ coshπ
. (3.19)
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For the unit disc Ω = {(x, y)|x2 + y2 ≤ 1}, we consider U3 and also

U4 = cos
(π

2

(
x2 + y2

))
.

For each problem, the right-hand side ρ and the Dirichlet boundary condi-

tion g are obtained from the given analytic solutions. For all the cases, the

iterative solvers converged to the desired tolerance for AES-FEM. For FEM,

the solver stagnated for the finest meshes in some cases without achieving

the specified tolerance, even after we reduced the drop tolerance to 10−6 in

incomplete Cholesky. However, the resulting errors were small enough not

to affect the comparison qualitatively.

Figure 3.3 shows the L∞ and L2 norm errors for U1 on the unit square.

The L2 norm errors for U2 and U3 on the unit square and for U3 and U4

on the unit disc are shown in Figures 3.4 and 3.5, respectively. In all cases,

quadratic AES-FEM and linear FEM have similar errors, and quartic AES-

FEM has similar or better results compared to cubic FEM. Both of the above

pairs have similar sparsity patterns and similar numbers of nonzeros in the

coefficient matrices. Furthermore, sextic AES-FEM is far more accurate than

all the other methods, achieving sixth-order accuracy despite the use of linear

elements. This result confirms our accuracy analysis in Section 3.3 for 2D

problems.
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Figure 3.3: The errors for 2D Poisson equation on the unit square for U1

in L∞ (left) and L2 norms (right). The number to the right of each curve
indicates the average convergence rate.
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Figure 3.4: The L2 norm errors for 2D Poisson equation on the unit square
for U2 (left) and U3 (right).
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Figure 3.5: The L2 norm errors for 2D Poisson equation on the unit disc for
U3 (left) and U4 (right).

Convection-Diffusion Equation

In our second example, we consider the time-independent convection-diffusion

equation with Dirichlet boundary conditions, that is,

−∇2U + c ·∇U = ρ in Ω, (3.20)

U = g on ∂Ω. (3.21)

We take c = [1, 1]T for all of our tests, and we consider the same analytic

solutions over the unit square and on the unit disc as for the Poisson equation.

Figure 3.6 shows the L∞ and L2 norm errors for U1 on the unit square.

The L2 norm errors for U2 and U3 on the unit square and for U3 and U4

on the unit disc are shown in Figures 3.7 and 3.8, respectively. Similar to

the Poisson equation, quadratic AES-FEM has similar convergence rate as

linear FEM, but slightly lower errors. Quartic AES-FEM is more accurate

than cubic FEM in all cases, and sextic AES-FEM again delivers superior
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Figure 3.6: The errors for 2D convection-diffusion equation on the unit square
for U1 in the infinity norm (left) and the L2 norm (right).

Number of Degrees of Freedom
10

4
10

6

L
2
 E

rr
o
r

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

1.97

4.20

5.84

2.04

2.98

3.98

Linear FEM
Quad FEM
Cubic FEM
Deg-2 AES-FEM
Deg-4 AES-FEM
Deg-6 AES-FEM

Number of Degrees of Freedom
10

4
10

6

L
2
 E

rr
o
r

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

2.61

4.59

5.65

1.98

1.84

3.84

Linear FEM
Quad FEM
Cubic FEM
Deg-2 AES-FEM
Deg-4 AES-FEM
Deg-6 AES-FEM

Figure 3.7: The L2 norm errors for 2D convection-diffusion equation on the
unit square for U2 (left) and U3 (right).

accuracy, achieving about sixth-order convergence.

3.4.2 3D Results

We now assess AES-FEM in 3D over the unit cube and the unit ball, which

are representative for geometries with flat and curved boundaries, respec-

tively. We mesh the domains using TetGen [65] for the linear meshes and
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Figure 3.8: The L2 norm errors for 2D convection-diffusion equation on the
unit disc for U3 (left) and U4 (right).

using Gmsh for the quadratic and cubic meshes. See Figure 3.9 for some

example meshes with linear elements, which are representative in terms of

mesh quality but are coarser than those used in actual computations. The

numbers of nodes for the unit cube range from 509 to 7,272,811, and those

for the unit ball range from 1,011 to 2,834,229. As in 2D, since isopara-

metric FEM requires good mesh quality, we ensured that these meshes all

have reasonable element shapes: For linear meshes, the minimum dihedral

angle is 6.09 degrees and the maximum angle is 166.05 degrees; for high-order

meshes, all elements have positive Jacobians everywhere.

We consider the Poisson equation and the convection-diffusion equation.

For both cases, we use GMRES with the Gauss-Seidel preconditioner to

solve the linear systems arising from AES-FEM. For FEM, we use CG with

incomplete Cholesky as the preconditioner for the Poisson equation, and use

GMRES with Gauss-Seidel for the convection-diffusion equation. We set the

tolerance of the iterative solvers to 10−12. The drop tolerance for incomplete
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Figure 3.9: Example 3D meshes with linear elements.

Cholesky is 10−3 on the cube and 10−6 on the ball.

Poisson Equation

We first present results for the Poisson equation with Dirichlet boundary

conditions on the unit cube and on the unit ball. That is,

−∇2U = ρ in Ω, (3.22)

U = g on ∂Ω. (3.23)
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For the unit cube, where Ω = [0, 1]3, we consider the following three analytic

solutions:

U1 = 64x3
(
1− x3

)
y3
(
1− y3

)
z3
(
1− z3

)
, (3.24)

U2 = cos(πx) cos(πy) cos(πz), (3.25)

U3 =
sinh(πx) cosh(πy) cosh(πz)

sinhπ cosh2 π
. (3.26)

For the unit ball Ω = {(x, y, z)|x2 + y2 + z2 ≤ 1}, we consider the analytic

solution U3 and also

U4 = cos
(π

2

(
x2 + y2 + z2

))
.

For each problem, the right-hand side ρ and the Dirichlet boundary condi-

tions g are obtained from the given analytic solutions.

Figure 3.10 shows the L∞ and L2 norm errors for U1 on the unit cube.

The L2 norm errors for U2 and U3 on the unit cube and for U3 and U4 on the

unit ball are in Figures 3.11 and 3.12, respectively. In all cases, quadratic

AES-FEM converges at similar or better rates than linear FEM and has lower

errors, and quartic AES-FEM has similar or lower errors than cubic FEM.

As in 2D, both of the aforementioned pairs have similar sparsity patterns

and similar numbers of nonzeros in the coefficient matrices. Furthermore,

sextic AES-FEM is far more accurate than all the other meshes, achieving

sixth-order accuracy despite the use of linear elements. This further confirms
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Figure 3.10: The errors for 3D Poisson equation on the unit cube for U1 in
the infinity norm (left) and L2 norm (right).
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Figure 3.11: The L2 norm errors for 3D Poisson equation on the unit cube
for U2 (left) and U3 (right).

our accuracy analysis in Section 3.3 for 3D problems.
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Figure 3.12: The L2 norm errors for 3D Poisson equation on the unit ball for
U3 (left) and U4 (right).

Convection-Diffusion Equation

We consider the time-independent convection-diffusion equation with Dirich-

let boundary conditions on the unit cube and the unit ball, that is,

−∇2U + c ·∇U = ρ in Ω, (3.27)

U = g on ∂Ω. (3.28)

We take c = [1, 1, 1]T and we consider the same analytic solutions over the

unit cube and unit ball as for the Poisson equation.

Figure 3.13 shows the L∞ and L2 norm errors for U1 on the unit cube.

The L2 norm errors for U2 and U3 on the unit cube and for U3 and U4 on the

unit ball are in Figures 3.14 and 3.15, respectively. Similar to the Poisson

equation, quadratic AES-FEM and linear FEM converge at similar rates with

quadratic AES-FEM having slightly lower errors. Quartic AES-FEM is more
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Figure 3.13: The errors for 3D convection-diffusion equation on the unit cube
for U1 in the infinity norm (left) and L2 norm (right).
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Figure 3.14: The L2 norm errors for 3D convection-diffusion equation on the
unit cube for U2 (left) and U3 (right).

accurate than the cubic FEM in all cases, and sextic AES-FEM is again the

most accurate, with about sixth-order convergence. For FEM, the linear

solver stagnated for the same problems on the finest mesh, but the resulting

errors were small enough not to affect the comparison qualitatively.
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Figure 3.15: The L2 norm errors for 3D convection-diffusion equation on the
unit ball for U3 (left) and U4 (right).
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Chapter 4

Treatment of Curved Geometries

in AES-FEM

Geometry plays a critical role in the discretization of partial differential equa-

tions and their boundary conditions. This was well documented in [3] where

the convergence of solving the 2D Euler Equations in discontinuous Galerkin

finite element method (DGFEM) was shown to be highly dependent on the

representation of the curved boundary. For AES-FEM, the goal is to main-

tain a high-order accurate solution on simplicial meshes without resorting to

generating isoparametric meshes, which could be very large. An ideal sit-

uation would be to modify the simplicial meshes to conform to the curved

boundary only for elements that are adjacent to the boundary. The first such

method was proposed in [76], where the author constructed curved triangular

elements that conformed exactly to the curved boundary. However, the map-

42



ping proposed is impossible to extend to three dimensions, which has led to

the use of simpler high-order mappings based on quadratic approximations of

the curved boundary [23]. Methods such as IGA [20]and NEFEM [59] have

found success by using the exact NURBS geometry for problems when it is

available. In particular, NEFEM only uses the exact NURBS geometry for

elements adjacent to the boundary. This is attractive because the framework

of classical Galerkin or DGFEM is conserved in the interior while special

treatment is only required for a relatively small subset of elements near the

boundary.

For AES-FEM, the order of accuracy is constrained by the accuracy of

the representation of the geometry. Because partial derivatives are estimated

via weighted least squares to high order, their consistency is guaranteed by

construction. However for the integration of the weak form, geometry begins

to play a role. This problem is especially critical for Neumann boundary con-

ditions on the curved boundary, as the linear approximation of the boundary

only allows for up to second order accuracy in practice.

In this chapter, we describe how the construction of high-order super-

parametric elements when given a parameterization of the geometry whether

it be exact or an approximation. These superparametric elements allow for

the accurate representation of the geometry in the discretization of the weak

form. The procedure for generating the superparametric elements, similar

to those presented in NEFEM [59, 60], but are used only for their geomet-

ric properties. Second, we discuss the needs for reconstructing the curved
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boundary when no analytic representation, such as a parameterization or

CAD model, is available We reconstruct the surface using weighted aver-

age of least squares fittings (WALF) [36] and use it to construct the curved

elements.

4.1 Generation of High-Order Elements

At its heart, the GLPBFs share many similarities with meshless methods

such as DEM [49] and EFG [7], because the GLPBFs are constructed from

local weighted stencils for each test function without regard for “elements”

defined by a mesh.1 Therefore, the geometry must be described in order for

numerical integration over the domain to be performed. Meshless methods

generally tend to use simple quadrature rules for Cartesian grids with only a

representation of the boundary overlayed on top of the integration domain.

However, because one generally has a mesh in AES-FEM, the geometry and

the domains of integration are determined by the elements of the mesh. The

mesh itself necessary for AES-FEM to be consistent for several reasons. First,

the mesh elements allow for the definition of compact weakly differentiable

test functions, which are required for the weak form to be consistent. Second,

the mesh elements allow for AES-FEM to use the same quadrature rules as

traditional Galerkin elements
1By convention, AES-FEM selects the stencil by looking at rings of neighbors sur-

rounding a vertex. This is effectively a geodesic metric rather than a Euclidean metric.
However if the mesh is folded, other strategies such as k-nearest neighbor search can also
be used.
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The curved boundary itself may be given exactly (e.g. a CAD model,

level set, or analytic function), but the exact representation of the geometry

is not required. This idea was explored using NURBS surfaces in [59] for two

dimensional DG problems and extended to three dimensional problems in

[60]. In particular, in [60] the authors define several simple mappings which

allow for the definition of curved tetrahedral elements along the boundary.

These mappings are used for defining new reference elements for domains of

integration.

The test functions in [60] may be polynomials defined on the reference ele-

ment or polynomials defined in terms of the physical coordinates. The latter

formulation is attractive because the partial derivatives of the basis func-

tions is then guaranteed to be a polynomial, and the numerical quadrature

rules may be exact [60]. However, continuity across curved element faces and

edges is lost. This is acceptable for DG discretizations because the interele-

ment discontinuities are accounted in the numerical fluxes across element

faces. However, for the purposes of this dissertation, test functions must be

continuous across element faces to ensure the consistency of AES-FEM with-

out the need of integrating fluxes across element boundaries. Therefore, we

construct superparametric elements, whose geometric shape functions are of

higher degree polynomials than the degree of the test functions themselves

[10, 14]. The superparametric elements will be both C0-continuous as well as

weakly differentiable, both of which are necessary for the weak formulation

of second-order elliptic problems to be consistent. The superparametric test
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functions are essential for representing the geometry of the boundary as well

as formulating the weak formulation of the PDE in question. Therefore, to

formulate the superparametric test functions, we need a local parameteriza-

tion of the surface as well as C0-continuity across element faces and edges.

4.1.1 Generation of Curvilinear Triangles

Let C : [0, 1] → Γ be a parameterization of a portion of the boundary

with near the edge x1x2 of a triangle K = {x1,x2,x3} arranged in counter-

clockwise orientation. Furthermore, suppose that C satisfies C (0) = x1 and

C (1) = x2. In NEFEM, the curved element K̃ can be represented as the

function

Φ (ξ, η) = (1− η)C (ξ) + ηx3. (4.1)

This effectively is a degenerate mapping of a unit square [0, 1]2 → K, which

enforces the curved boundary exactly. The parameterization of the boundary

C could be either a spline/NURBS or derived from an analytical expression

of the boundary.

The mapping provides a simple way to express geometry near a given

surface, but for traditional FEM discretizations (or more generally weighted

residual methods) at least C0-continuity is required for integration by parts

to be consistent.2 The question becomes how to make parametric repre-
2A generalization to nonconforming elements is also possible but requires that in-

terelement discontinuities be accounted for in the weak formulation. Examples of these
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sentations of these mappings that are nonsingular but that also preserve

continuity across element edges with both adjacent curvilinear elements and

linear simplex elements.

Definition 2. Given a linear simplex element K = {x1,x2,x3}, with ¯x1x2

lying adjacent to the boundary, and let C be a parameterization which sat-

isfies condition above. Then for any parametric coordinate (ξ, η) the point

x (ξ, η) ∈ K̃ given by

x (ξ, η) = (1− η)C
(
ξ̄
)

+ ηx3,

with

ξ̄ =


ξ

1−η , if η > 0,

0, if η = 0.

Using this parameterization, we can place points from the traditional

Lagrange points in parametric space with vertices in physical space as shown

in Figure 4.1. The Lagrange points are placed on equally spaced points on the

parametric reference element. Since the new Lagrange points only represent

the geometry, the test functions are chosen to vary linearly on the reference

element. Due to the placement of the Lagrange points, C0-continuity follows.

Once the parameterization of the surface has been defined (either through

exact geometry, CAD model, or WALF-reconstruction), then the shape func-

tions of the element must be constructed. In particular, Lagrange vertices

nonconforming elements include Raviart-Crouzeix [22] and Raviart-Thomas [53] elements.
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x3

x1 = C(0)

x2 = C(1)

ξ

η

C(ξ)

Figure 4.1: Parameterization used to generate superparametric elements from
parameterized portion of boundary.

must be strategically placed in the element to guarantee C0 continuity along

the element faces and edges while maintaining a nonsingular Jacobian of

the parametric transformation throughout the interior of the element. In

particular, curved elements may be adjacent to linear simplex elements that

exist inside of the interior. High-order Lagrange nodes on the straight-edged

faces/edges of these elements can be placed in traditional equidistant con-

figurations or along Fekete point distributions. Then along these edges and

faces, the superparametric geometry will align exactly with the geometry of

the linear elements of the interior.

Lemma 3. Let K be a curvilinear triangle with test functions v1, v2, v3
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defined as the traditional linear test functions on the unit circle

v1 (ξ, η) = 1− ξ − η

v2 (ξ, η) = ξ

v3 (ξ, η) = η.

Then the test functions are C0-continuous across edges.

The distribution of interior superparametric nodes is more involved due

to the stringent constraints that the parametric mapping must be diffeomor-

phic between the reference element and the physical element. Therefore, it

becomes desirable to choose interior vertex positions that lead to nonsingu-

lar Jacobians a priori. This is further complicated by the fact that curved

elements in three dimensions occur when the element has either one face or

one edge along the curved boundary, while curved elements in two dimen-

sional meshes only occur if a single edge is located on the curved boundary.

Fortunately, several mappings are provided in [59, 60], which allow for the

simple placement of points inside the superparametric elements.

In the two dimensional case, only elements with one edge on the curved

boundary will need to be treated. Using the parametric representation of

(4.1) allows for simple placement of the Lagrange points, which can satisfy

both C0 continuity and curved representation of the geometry.
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Algorithm 2: Placement of high-order vertices for superparametric
triangles.

input : A linear triangle x1x2x3, a parameterization C(ξ) over x1x2

output: The location of Lagrange vertices of superparametric element

foreach corner vertex in linear triangle do
Store in high-order triangle

end
foreach edge opposite of interior triangle do

Compute equidistant vertices on edge and store in high-order
triangle

end
Compute equidistant vertices on curve
foreach interior vertex coordinate (ξ, η) do

Compute position xhi = (1− η)C(ξ) + ηx3

end

4.1.2 Generation of Curvilinear Tetrahedra

In three dimensions, there are more conditions that need to be satisfied to

guarantee C0 continuity because elements may be curved whenever they have

one face or one edge on the curved boundary. Let (ξ, η, ζ) be the coordinates

of the reference element. Then for curved tetrahedron, we assume that the

curved face will lie on the (ξ, η, 0) face, and that any curved edge will mapped

from the (ξ, 0, 0) edge.

For any elementK with a face lying on the curved boundary Γ, letC (ξ, η)

be a local parameterization of Γ over the face of the element with C (0, 0) =

x1, C (1, 0) = x2, C (0, 1) = x3. Let K̃ be the reference tetrahedra for a

high-order element. Then the Lagrange nodes for the vertices can be placed
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at

x (ξ, η, ζ) = (1− ζ)C
(
ξ, η
)

+ ζx4, (4.2)

where

ξ =


ξ

1−ζ if ζ > 0,

0 if ζ = 0,

η =


η

1−ζ if ζ > 0,

0 if ζ = 0.

The mapping (4.2) is shown in Figure 4.2.

For elements with only a single edge lying on the boundary, the mapping

is a bit more involved. For an element K with corner vertices x1 and x2 lying

on the curved boundary, let C (ξ) be a parameterization of curve. Then for

any vertex with coordinates (ξ, η, ζ) ∈ K̃, the vertex will be placed at the

point

x (ξ, η, ζ) = (1− ζ) Θ
(
ξ, η
)

+ ζx4 (4.3)

Θ
(
ξ, η
)

= (1− η)C(ξ) + ηx3
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x1 = C(0, 0)

x2 = C(1, 0)

x3 = C(0, 1)

x4

Γ

C(ξ, η)

ξ

η

ζ

Figure 4.2: Curvilinear mapping for tetrahedron with a face on curved bound-
ary.
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where

ξ =


ξ

1−ζ if ζ > 0,

0 if ζ = 0,

η =


η

1−ζ if ζ > 0,

0 if ζ = 0.

ξ =


ξ

1−η if η > 0

0 if η = 0.

For this parameterization, the tetrahedron has two curved sides adjoining

the curved edge while also having two planar faces that connect each vertex

on the surface with the two interior vertices.

The parameterizations again have C0-continuity of test functions when

the test functions are chosen to linearly vary over the reference element.

4.2 Weighted Averaging of Local Fittings (WALF)

Geometries for many applications in biology, physics, and engineering are too

prohibitive to model exactly either because the geometry is only given by a

discrete set of points or is deforming too much to be able to use an exact

representation such as NURBS or T-splines. This necessitates the high-

order reconstruction of the geometry using only the information available at

mesh vertices, and we accomplish this using WALF [36]. In WALF, local

53



Γ

x1 = C(0)

x2 = C(1)

x3 x4

C(ξ)

ξ

η

ζ

Figure 4.3: Construction of a curvilinear tetrahedron with one edge on the
curved boundary.
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polynomial fittings of the surface are blended together using piecewise linear

finite shape functions. Additionally, it was shown in [54] how to use WALF

reconstructions of discrete surfaces to perform high-order integration over

surfaces using only discrete data given at the nodes.

The weighted average of least squares fittings (WALF) allows for the

reconstruction of surfaces only given a discrete set of points on the surface

[35, 36]. In practice, the parameterization x (u) may not be given exactly

and must be reconstructed. This reconstruction is performed as a weighted

average of least squares fittings (WALF), where local parameterizations of the

surface Γ are chosen to be approximated by polynomial local height functions

[36]. For each vertex xi of a linear mesh, assume that m̂i is a unit normal

vector which approximates the true unit normal to at least first order. At xi

we may construct a local coordinate system given by the column vectors of

the matrix

Qi =
[
t̂1|t̂2|m̂i

]
, (4.4)

where t̂j, j = 1, 2, are unit vectors orthogonal to m̂i which approximate the

tangent space of Γ.

Given a collection of n vertices X i = {x0,x1, ...,xn−1} about a vertex

xi, with x0 ≡ xi by convention, the vertices may be transformed into the local

coordinate system (4.4), giving a set of point positionsU = {(uj, vj, f (uj, vj))}n−1
j=0 ,

where f : U → R is the height function of the surface in the local coordinate
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frame. We approximate f as a degree-d Taylor series

f (u, v) =
d∑
p=0

∑
r+s=p

crsu
rvs +

∑
r+s=d+1

c̃rsu
rvs, (4.5)

where crs = 1
r!s!

∂r+sf
∂ur∂vs

(0, 0) and c̃rs = 1
r!s!

∂r+sf
∂ur∂vs

(ũ, ṽ) for 0 ≤ ũ ≤ u, 0 ≤ ṽ ≤

v. Equation (4.5) is solved approximately by solving a linear system

V c ≈ f , (4.6)

where V is the Vandermonde matrix, c is a vector with unknowns crs, and f

is a vector of the height function values of the surface. If V is of full column

rank, then the least squares solution to (4.6) is unique and given by

c = V +f , (4.7)

where V + is the pseudo-inverse of V .

Often, the condition number of (4.6) can be very large. This may lead

to a loss of accuracy in the computation of (4.7). To ensure robustness of

the linear system, row weighting and column scaling are applied to the local

Vandermonde matrix to improve the condition number, resulting in the linear

system

Az ≈Wf . (4.8)

If the rescaled Vandermonde system is still ill-conditioned, then (4.8) is solved
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using truncated QR factorization with column pivoting to effectively reduce

the high-order terms which contribute to the instability [36].

Let f̃ (u, v) =
∑d

p=0

∑
r+s=p crsu

rvs be the local height function of the

local coordinate frame at some point (u, v), then the corresponding point in

physical space is given by

pi (u, v) = Q


u

v

f̃ (u, v)

+ xi = ut̂1 + vt̂2 + f̃ (u, v) m̂i + xi. (4.9)

Let {x1,x2,x3} be vertices at the corner of a linear triangle K located ap-

proximately on the surface, and denote the finite element shape functions

defined on K as Ni (ξ, η). The WALF-reconstructed surface is then given as

a weighted averaging of the local fittings

p (ξ, η) =
3∑
i=1

Ni (ξ, η)pi (ξ, η) . (4.10)

The WALF-reconstructed surface (4.10) allows for a high order recon-

struction of the ideal surface when given only a linear surface mesh and is

necessary for high-order convergence.. For future use we give the following

theorem whose proof can be found in [36]

Theorem 4. Let p be a degree-d WALF-reconstructed surface in (4.10) of

some smooth surface Γ. Then p approximates Γ to O
(
hd+1 + h6

)
.

The bounds of Theorem 4 are somewhat pessimistic because of the mis-
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matching local coordinate frames over each element. However for many ap-

plications, sixth order accuracy is more than sufficient.

4.3 Interpolation of Neumann Boundary Con-

ditions

High-order representation of the Neumann boundary conditions must also

be transferred from the linear mesh. If there is an analytic formula for the

boundary conditions, then they can be transferred to the curved boundary

exactly. It is often the case that only the values of the Neumann bound-

ary conditions are given for the degrees of freedom located within the mesh.

This requires that the data be interpolated on the boundary to high-order to

maintain high-order accuracy. For AES-FEM, we are only given the associ-

ated boundary conditions at the vertices of a linear triangular or tetrahedral

mesh; therefore the Neumann boundary conditions must be reconstructed at

the quadrature points if an analytic expression for them is not given.

For each test function on the surface, the function g is locally recon-

structed using the data from the neighbors on the surface. Suppose that

Γh =
⋃
iKi for a set of curvilinear elements Ki over which the test function

vi has support. Then the surface integral may be computed using quadra-

ture rules defined over the surface lines or triangles as shown in [55]. The

coefficients of the local polynomial approximations to g can be precomputed

and evaluated at the quadrature points, or it can be computed on the fly.
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Figure 4.4: Domains for Poisson equation with curved and linear geometries.

4.4 Numerical Experiments

We present numerical experiments for various PDEs on some domains involv-

ing curved geometries. First, we will explore the effects of curved geometry

on the convergence of AES-FEM for simple Poisson equation in two and

three dimensions under both Dirichlet and Neumann boundary conditions

using linear test functions. Second, we will then consider the superparamet-

ric elements described in Section 4.1

4.4.1 Two Dimensional Poisson Equation

We begin by providing a couple of numerical tests for Poisson equation using

the two domains shown in Figure 4.4. In the numerical experiments, the

values of L = 1 and r = 0.5 are chosen. Both geometries are relatively simple
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Table 4.1: Convergence for two dimensional Poisson equation on curved hole
with Dirichlet conditions on inner hole.

#DOFs 152 540 1992 7716 Convergence Rate

G
LP

B
F
D
eg
. Quadratic 2.84e-1 6.36e-2 1.00e-2 1.52e-3 2.66

Cubic 1.13e-1 5.47e-2 1.56e-2 3.99e-3 1.70
Quartic 7.96e-3 8.75e-4 6.11e-5 2.90e-6 4.0
Quintic 5.16e-3 9.03e-4 7.07e-5 5.46e-6 3.49
Sextic 2.302e-3 4.03e-5 1.29e-6 1.84e-8 5.98

but display the importance of the representing the geometry to high order

even for simple problems with nontrivial boundary conditions. A sequence of

linear simplex meshes were constructed using Gmsh [29], and both the linear

mesh and the reconstructed geometries are considered.

The solution considered is

u1 (xi) =

(
d∏
i=1

(
1− x2

i

))(
1− 4

d∑
i=1

x2
i

)2

. (4.11)

The forcing function is computed analytically by applying the Laplace oper-

ator to (4.11).

The results for the two dimensional problem with the round hole show

that a high order representation of the geometry is required in order to

achieve high order convergence. As expected, the curved geometry with

the round hole has numerous challenges for high order convergence due to

the prevalence of geometric errors near the interior hole. Figure 4.5 shows

that the convergence rate for the Poisson equation with Neumann boundary

conditions are more or less the same regardless of the These geometric errors
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Figure 4.5: Results for two dimensional Poisson Equation with pure Dirichlet
boundary conditions on curved domain using linear (left) and superparamet-
ric (right) test functions.

Table 4.2: Table of convergence for two dimensional Neumann problem using
linear test functions.

#DOFs 152 540 1992 7716 Convergence Rate

G
LP

B
F
D
eg
. Quadratic 3.16e-1 6.68e-2 1.19e-2 1.60e-3 2.69

Cubic 3.28e-1 1.46e-1 4.04e-2 1.01e-2 1.77
Quartic 2.72e-2 2.67e-3 7.54e-4 2.08e-4 2.48
Quintic 4.49e-3 4.82e-3 9.41e-4 2.18e-4 1.54
Sextic 1.13e-2 3.48e-3 8.33e-4 2.10e-4 2.03
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Figure 4.6: Convergence plot for AES-FEM for Poisson equation with Neu-
mann boundary conditions on curved domain using linear (left) and super-
parametric test functions. .

#DOFs 152 540 1992 7716 Convergence Rate

G
LP

B
F
D
eg
. Quadratic 2.84e-1 6.36e-2 1.01e-2 1.52e-3 2.66

Cubic 1.13e-1 5.47e-2 1.56e-2 3.99e-3 1.70
Quartic 7.97e-3 8.75e-4 6.11e-5 2.90e-6 4.03
Quintic 5.17e-3 9.02e-4 7.07e-5 5.46e-6 3.49
Sextic 2.30e-3 4.03e-5 1.29e-6 1.85e-8 5.97

Table 4.3: Table of convergence for two dimensional Dirichlet problem.

become a limiting factor when Neumann boundary conditions are present

as the test functions are nonzero near the boundary. However for Dirichlet

boundary conditions, the test functions vanish near the boundary and hence

the weighted residuals do not penalize the error near the boundary as much.

Figure 4.6 shows the convergence plot for the two domain using curved

elements on the round hole with Tables 4.3 and 4.4 showing the numerical

errors and rates of convergence for each choice of basis function.

The degree of the shape functions of the curved elements are chosen to
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#DOFs 152 540 1992 7716 Convergence Rate
G
LP

B
F
D
eg
. Quadratic 3.17e-1 6.62e-2 1.15e-2 1.54e-3 2.71

Cubic 3.18e-1 1.43e-1 3.96e-2 9.93e-3 1.77
Quartic 3.94e-2 1.37e-3 1.04e-4 3.99e-6 4.69
Quintic 1.32e-2 1.45e-3 1.21e-4 8.70e-6 3.73
Sextic 2.87e-3 8.69e-5 2.30e-6 3.94e-8 5.50

Table 4.4: Table of convergence for two dimensional Neumann problem.

be equal to the degree of the

4.4.2 Three Dimensional Poisson Equation

The Poisson equation is again solved on a simple three dimension domain

with a cube Ω = [−1, 1]3 \B (0, 0.5), and homogeneous boundary conditions

u|ΓD
= 0 on the exterior boundary. On the interior curved boundary, either

pure Dirichlet conditions or pure Neumann boundary conditions are imposed.

Superparametric elements are constructed by projecting the appropriate La-

grange points on the boundary faces and edges onto the spherical hole. The

other Lagrange points are interpolated based on (4.2) and (4.3). The result-

ing linear systems are solved using Petsc’s GMRES implementation with ILU

preconditioning using SuperLU.

Figure 4.7 shows the convergence of AES-FEM with curved superpara-

metric test functions for pure Dirichlet boundary. The orders of convergence

are listed in Tables 4.5 and 4.6. Although quadratic basis functions do not

have optimal convergence, high degree polynomial bases enjoy very good con-

vergence rates. The benefits of using the high degree polynomials allows for
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Figure 4.7: Convergence results for curved geometry with curved superpara-
metric elements for Dirichlet (left) and Neumann (right) boundary condi-
tions.

Table 4.5: Table of convergence for three dimensional Dirichlet Problem with
curved test functions.

#DOFs 6458 25,084 100,772 Convergence Rate

G
LP

B
F
D
eg
. Quadratic 1.8264e-2 8.5774e-3 4.9821e-3 1.419

Cubic 6.5279e-2 2.6985e-2 1.0527e-2 1.992
Quartic 2.6384e-3 3.5349e-4 4.2339e-5 4.512
Quintic 1.3208e-3 2.0118e-4 2.5777e-5 4.298
Sextic 5.5690e-4 2.5652e-5 9.2739e-7 6.986

one to use relatively coarse meshes to achieve high accuracy compared to low

order methods. For Neumann boundary conditions, some errors seem to ac-

cumulate from the curved boundaries. This could arise from nearly inverted

elements or suboptimal performance of the linear solver.
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Table 4.6: Table of convergence for three dimensional Neumann Problem
with curved test functions.

#DOFs 6458 25,084 100,772 Convergence Rate

G
LP

B
F
D
eg
. Quadratic 2.54e-1 9.18e-3 5.19e-3 1.229

Cubic 3.08e-1 1.14e-1 2.19e-2 2.119
Quartic 3.96e-3 3.56e-4 5.03e-5 4.77
Quintic 2.52e-3 3.63e-4 6.81e-5 3.95
Sextic 8.03e-3 1.90e-3 8.30e-5 4.99
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Chapter 5

Direct Treatment of Neumann

Boundary Conditions with

Boundary Integrals

In the traditional derivation of the weak form, Neumann boundary conditions

arise naturally from the integration by parts of the PDE multiplied by its test

function. These natural boundary conditions can then be assembled into the

load vector as an additional surface term to the computed volume terms in

the stiffness matrix and boundary term of the load vector. In the method of

weighted residual formulation, natural boundary conditions may be enforced

in several ways. The first is to take an appropriate choice of test function

which is smooth at the boundary and applying integration by parts to the

resulting integral, hence the term natural boundary conditions [24]. This
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manner is the most common used in finite element methods, because it often

results in a symmetric positive definite linear system for elliptic equations.

Because of the volumetric nature of the test functions, this requires a

volume integral to be computed. There are two factors which make compli-

cate the implementation of methods. First, the use of high order volumetric

elements requires a well-defined mapping that blends the curved boundary

with the interior of several elements. Constructing this mapping is possible

as in [59, 60] or as outlined in Section 4.1, but it is difficult to determine a

priori if the resulting elements are well-conditioned and have nonzero Jaco-

bian everywhere. In particular, if the parameterization of the curve has a

very large curvature, then it is possible for the parametric mappings given in

Section 4.1 to be inverted in physical space. Second, is that the continuity

requirements of the test functions require an isoparametric or superparamet-

ric mapping over a curved element, which in general are not polynomials.

This leads to variational crimes in the choice of numerical quadrature that

only work for polynomials defined on the reference element [66].

However for collocation methods such as finite difference methods, test

functions are chosen to be Dirac delta functions, which do not satisfy the

smoothness requirements for integration by parts. In practice, Neumann

boundary conditions may be enforced directly at the boundary point. How-

ever, this becomes difficult when the unit normal of the surface Γ is not

defined at features such as corners or ridges. If one has two or more different

boundary conditions meeting at a single point, then it is no longer clear how
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to satisfy all boundary conditions at the same time. This situation can be

avoided if the Dirac delta function is replaced with a new test function that

can be integrated over the boundary of the mesh, since the normal vector

could be defined almost everywhere on the boundary.

Therefore, it would be preferable to avoid the definition of new volumetric

elements at all costs while still maintaining the advantages of the treatment

of Neumann boundary conditions on the surface of the mesh. Therefore,

we propose to incorporate the integration of Neumann boundary conditions

along the boundary alone. This can be interpreted as a new type of test

function whose support is contained only within the boundary of the domain,

effectively solving ∫
Γ

∂u

∂n
v dΓ =

∫
Γ

gv dΓ, (5.1)

where v is the trace of a finite element test function defined over the volume

of the mesh.

Theorem 5. Let v : Γ → R be a test function defined on Γ with compact

support, and solution u to the strong form of the Laplace equation. Then, for

any function w ∈ {w′ ∈ H1 (Ω) : w′|Γ = v}, (5.1) is equivalent to the weak

form with test function w,

∫
Ω

∇u · ∇w dΩ =

∫
Ω

fw dΩ +

∫
Γ

gw dΓ.

.
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Proof. From the Neumann boundary conditions and divergence theorem, one

has

∫
Γ

gv dΓ =

∫
Γ

∂u

∂n
v dΓ

=

∫
Ω

∇ · (w∇u) dΩ

=

∫
Ω

∇u · ∇w dΩ +

∫
Ω

w∆u dΩ.

Substituting −∆u = f and subtracting that term from both sides gives the

weak formulation with test function w.

Theorem 5 allows one to treat the Neumann boundary conditions directly

on the surface in a manner that is directly equivalent to the traditional weak

formulation using test functions defined over the volume of the domain. As

the surface can be more easily parameterized than volume elements generated

from Section 4.1, this approach has a significant advantage. Furthermore,

(5.1) allows for the natural boundary conditions to be enforced over features

where no normal may be defined pointwise.

Similarly, estimation of normal derivatives can either be taken from a pre-

existing CAD model or exact geometry or they can be computed using the

WALF-reconstructed surface. The stiffness matrix is now contained inside

the term ∫
Γ

∂u

∂n
v dΓ =

∫
Γ

(v∇u) · n dΓ. (5.2)

The computation of (5.2) is performed in the same manner as outlined in
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Section 4.3 through the use of numerical quadrature rules and estimates of

the weighted area.

The treatment of Neumann boundary conditions described above is ag-

nostic of the test functions used inside of the interior. For AES-FEM, finite

element test functions are taken from the mesh. However, these test functions

could be other types of functions with compact support such as radial-basis

functions or even Dirac delta functions. In the latter case, this corresponds

with GFD. To the author’s knowledge, this is the first treatment of Neumann

boundary conditions in such manner for finite difference methods. This is

particularly attractive for GFD methods because Neumann boundary condi-

tions are generally treated only at a single point as opposed to some nonzero

measure set. This can be ambiguous for many geometries where a normal

may not even be defined at points which lie on features such as ridges or cor-

ners. Because the boundary has a well-defined piecewise continuous normal

vector for most applications, integration can be performed over the geometry.

Theorem 6. Let u be a smooth function Cd+1 (Ω) ∩ C0
(
Ω
)
, and let uh be

a degree d polynomial approximation of the solution u to O
(
hd+1

)
. Assume

that the boundary Γ is represented exactly, and that v ∈ L1
loc (Γ). Then

∣∣∣∣∫
Γ

v
∂ (u− uh)

∂n
dΓ

∣∣∣∣ ≤ C (v)hd. (5.3)

Proof. The weighted residual of the normal derivative error can be bounded
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by ∣∣∣∣∫
Γ

v
∂ (u− uh)

∂n
dΓ

∣∣∣∣ ≤ ∫
Γ

|v|
∣∣∣∣∂ (u− uh)

∂n

∣∣∣∣ dΓ. (5.4)

By Holder’s inequality, the normal derivative is bounded by 1-norm of the

gradient vector,

∣∣∣∣∂ (u− uh)
∂n

∣∣∣∣ = |∇ (u− uh) · n| ≤ ‖∇ (u− uh) ‖1‖n‖∞ ≤ ‖∇ (u− uh) ‖1

(5.5)

because n is the unit vector normal to Γ. Taylor’s theorem and the assump-

tion that u is smooth implies that for each first order partial derivative there

exists a constant Ci > 0 such that

∣∣∣∣ ∂∂xi (u− uh)
∣∣∣∣ ≤ Cih

d. (5.6)

Combining (5.5) and (5.6) for each partial derivative and substituting into

the right hand side of (5.4) then gives

∣∣∣∣∫
Γ

v
∂ (u− uh)

∂n
dΓ

∣∣∣∣ ≤ C (v)hd,

where C (v) =
∫

Γ
|v| dΓ

(∑d
i=1Ci

)
.

Theorem 6 allows for the explicit approximation of Neumann boundary

conditions up to sufficiently high-order approximations. Furthermore, it cou-

ples the interplay of internal and external forces because the gradient term

∇u will be approximated by vertices residing on the interior of the domain
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Figure 5.1: Convergence plot of GFD with Neumann boundary treatment.

and not just along the boundary.

To test the accuracy of the new enforcement of Neumann boundary con-

ditions, we again solve Poisson equation on a square domain with a circular

hole as described in Section 4.4. The solution to the problem is given by

(4.11), and both Dirichlet and Neumann boundary conditions are imple-

mented on the interior hole. The PDE is discretized using generalized finite

differences for vertices on the interior, and the Neumann boundary condi-

tions are discretized as (5.1). Dirichlet boundary conditions are computed

by directly substituting the function value at Dirichlet nodes directly into

the finite difference rule and subtracting them from the load vector.

Figure 5.1 shows the convergence of the GFD method for both Dirich-

let and Neumann boundary conditions. Table 5.1 shows that the Dirichlet

problem converges at a high order even though the curved boundary is not

represented in the discretization. The Neumann problem also converges to

high order, as shown in Table 5.2, with slightly larger errors than the cor-
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Table 5.1: Relative errors for Dirichlet boundary conditions with GFD.
#DOFs 152 540 1992 7716 Convergence Rate

G
LP

B
F
D
eg
. Quadratic 3.18e-1 7.60e-2 2.15e-2 5.12e-3 2.10

Cubic 2.81e-1 9.11e-2 2.54e-2 6.32e-3 1.93
Quartic 4.31e-2 4.24e-3 1.81e-4 7.39e-6 4.42
Quintic 3.19e-2 2.78e-3 7.12e-5 7.23e-6 4.27
Sextic 9.38e-2 1.30e-3 4.04e-6 7.84e-8 7.13

Table 5.2: Relative errors for GFD with Neumann boundary conditions im-
plemented on the surface.

#DOFs 152 540 1992 7716 Convergence

G
LP

B
F
D
eg
. Quadratic 5.50e-1 1.62e-1 5.25e-2 1.17e-2 1.96

Cubic 7.02e-1 2.36e-1 6.44e-2 1.57e-2 1.93
Quartic 8.68e-2 6.43e-3 1.85e-4 9.53e-6 4.64
Quintic 3.29e-2 6.08e-3 9.86e-5 9.58e-6 3.97
Sextic 8.54e-2 2.21e-3 9.36e-4 2.50e-7 6.49

responding mesh with Dirichlet boundary conditions. It should be noted

that for degree d polynomials the consistency error should be dominated by

the GFD approximation in the interior where second derivatives are taken,

which only lead to O
(
hd−1

)
instead of the O

(
hd
)
consistency error of the

Neumann boundary condition given by Theorem 6. Therefore, the results

for odd degree polynomials are optimal while even degree polynomials enjoy

an extra order of convergencek.
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Chapter 6

Application: Linear Elasticity

Linear elasticity in solid mechanics is a common application for FEM due

to the ease of imposition of a diverse set of material properties, boundary

conditions on complex geometries. Indeed, FEM software makes up a one

billion dollar industry and is a crucial part of the automotive, aerospace,

and shipbuilding industries [31]. Here we compare the new superparametric

test functions AES-FEM from Chapter 4 with the GFD with the alternative

Neumann boundary condition treatment from Chapter 5 to the solution of

the equations of linear elasticity on problems with curved geometries.

Linear elasticity, and more generally the field of solid mechanics, is an ex-

cellent application for comparing finite element methods because the devel-

opment of FEMs has long been motivated by the solid mechanics community.

Even the nomenclature of stiffness matrix and load vector have their roots

in solid mechanics where they represent the internal stresses of a mechanical
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object counteracting the external loads applied to it.

Consider an elastic body Ω ⊂ R3 with so-called material coordinate given

by the vector x ∈ R3. The elastic body may be in a deformed configuration Ω′

where each material coordinate has a new position x′ = x+u, with u = u (x)

being the displacement of the material coordinate x. The deformation tensor

of the material is the Jacobian of the material

(∇u)ij =
∂ui
∂xj

, (6.1)

from which the components of the symmetric rank two linear strain tensor e

is given by

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (6.2)

The linear strain tensor may also be represented in Voigt notation [74] using

the 6-vector

e = [e1, e2, e3, 2e23, 2e13, 2e12]T . (6.3)

The description of the material is given in the form of certain material

parameters, of which we assume knowledge of either the Young’s modulus

(E) and the Poisson ratio (ν) or the Lamé parameters,

λ =
Eν

(1− 2ν) (1 + ν)

µ =
E

2 (1 + ν)
.
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The internal stresses of the material are given by the symmetric rank two

Cauchy strain tensor, σ = σij, which may be expressed in Voigt notation

using the 6-vector

σ = [σ11, σ22, σ33, σ23, σ13, σ12]T . (6.4)

The components of the stress and strain tensors are related by the consti-

tutional equations. For homogeneous materials, the components of the rank

four stiffness tensor are given in terms of the Lamé parameters as

σij = Cijrsers = (λδijδrs + 2µδirδjs) ers, (6.5)

which satisfy the symmetries Cijrs = Crsij and Cijrs = Cjirs. The stiffness

tensor may be represented in Voigt notation as a symmetric square matrix

C =



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


. (6.6)

The balance of internal forces experienced by the material points of Ω is
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given by the equations

∇ · σT + f = 0 for x ∈ Ω (6.7)

where f = f (x) is the body forces experienced at the material coordinate

x. Boundary conditions may be imposed on the boundary of the domain,

∂Ω, in one of two ways. A subset of the boundary of the domain ΓN ⊂ ∂Ω

may experience external tractions t which are defined by

σ · n = t for x ∈ ΓN , (6.8)

where n is the unit outer normal vector of the domain. Another subset

ΓD ⊂ ∂Ω may have prescribed displacement conditions in the form of

Du|ΓD
= d for x ∈ ΓD, (6.9)

where D ∈ Rm×3, m ≤ 3 determines whether the material point is fixed

m = 3 or has “sliding” boundary conditions along a line or a plane.1

Multiplying (6.7) by a test function δu (also known as a virtual displace-

ment [74]) which satisfies δu|ΓD
= 0 and performing integration by parts

1For the purposes of this dissertation, we assume that the matrix D is fixed. However,
FEM software usually allows for boundary conditions where material points may slide
tangent to the suface, in which case D = nT .
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over Ω leads to the principle of virtual work

∫
Ω

σ : δe dΩ =

∫
Ω

f · δu dΩ +

∫
ΓN

t · δu dΓ, (6.10)

where σ : δe =
∑

i,j σijδeij and f ·δe =
∑

i fiδui. All versions of FEM deter-

mine a solution by solving (6.10). Substituting the constitutional equations

(6.5) into (6.12) gives the principle of virtual work in terms of the material

displacements

∫
Ω

(Ce) : δe dΩ =

∫
Ω

f · δu dΩ +

∫
ΓN

t · δu dΓ. (6.11)

Using the finite element discretization, a linear system of equations may

be constructed from (6.11)

Au = b, (6.12)

where A is the stiffness matrix and b is the load vector. The assembly of

(6.12) in AES-FEM is similar to traditional FEM matrix assembly proce-

dures.

6.1 Infinite Plate with Circular Hole

The following problem is from [68], where an infinite thin plate with a circular

hole of radius a is applied with unit traction in the +x-direction at the point

at infinity as shown in Figure 6.1. The analytic solution of the components
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a σ∞ = 1

Figure 6.1: Geometry of the infinite thin plate with circular hole. Lines of
symmetry along the x- and y-axes are denoted by the dashed lines.

of the Cartesian stresses is given in polar coordinates as [5]

σxx = 1− a2

r2

(
3

2
cos (2θ) + cos (4θ)

)
+

3a4

2r4
cos (4θ) (6.13)

σyy = −a
2

r2

(
1

2
cos (2θ)− cos (4θ)

)
− 3a4

2r4
cos (4θ) (6.14)

σxy = −a
2

r2

(
1

2
sin (2θ) + sin (4θ)

)
+

3a4

2r4
sin (4θ) . (6.15)

The problem is solved on a finite portion of the upper-right quadrant with

length L = 1 and an inner hole radius of a = 0.25 as shown in Figure 6.2.

The external tractions on the boundary are computed at the boundary using

as t = σn, with the entries of σij computed using given by (6.13) through

(6.15). It should also be noted that the equations above give the external
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Figure 6.2: Set up of quadrant for numerical experiment. Boundary tractions
are enforced from the analytical expressions for the stress tensor, and sliding
boundary conditions are imposed on the +x- and +y-axes.
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tractions on the the hole as t = 0. Sliding boundary displacement conditions

are enforced along the lines of symmetry by directly imposing the conditions

u · n = 0 on the +x- and +y-axes.

This benchmark is noteworthy because it demonstrates that holes within

otherwise ideal material can lead to a concentration of stresses near the hole.

As the material around the hole deforms, the internal stresses tangential to

the hole reach a maximum value of exactly σmax = 3σ∞ at the points (0,±a).

The factor of three is known as the stress concentration factor in mechanical

engineering literature, and is defined as

K =
σmax

σ∞
. (6.16)

If the internal stresses accumulate past a certain material-dependent thresh-

old, then cracks are more likely to nucleate and propagate from the high stress

regions. Figure 6.3 shows the deformation of the finite region of plate along

with the σθθ component of the stress tensor, often called the hoop stresses,

for a mesh with approximately 4000 degrees of freedom. The material pa-

rameters chosen were a Young’s modulus of 200 GPa and Poisson ratio of

0.3, which are approximately the material parameters of steel. The value

of σ∞ = 20 GPa, and the results shows good agreement with the analytic

solution which predicts a maximum of 60 GPa at the top of the circle and

−20 GPa at the .

We study the convergence of this problem for a sequence of meshes for
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Figure 6.3: Distribution of stresses on the deformed configuration of the
computational domain from Figure 6.2.

the above problem. The linear finite element meshes are generated by Gmsh

[29], from which the curved superparametric elements are constructed ad-

jacent to the circular hole as described in Section 4.1. The resulting linear

systems were solved using the preconditioned GMRES solver in Matlab®

to a tolerance of 10−8 with incomplete LU-factorization as a preconditioner.

Figure 6.4 shows the convergence of AES-FEM for quadratic, quartic, and

sextic GLPBFs using for both linear and superparametric test functions. As

can be seen, there is significant advantage using high order basis functions

with superparametric test functions. For linear test functions, the rate of

convergence is significantly reduced for high degree basis functions due to

the accumulation of geometric errors near the circular hole. However, these
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Figure 6.4: Convergence of stress concentration error for AES-FEM with
linear (left) superparametric (right) test functions on the boundary.

geometric errors are significantly reduced when using superparametric ele-

ments which are able to approximate the curvature of the hole to high order.

It can be noted that the stress concentration factor can be estimated reliably

to below 10−7 with less than 30,000 degrees of freedom when using degree

six polynomials with curved elements.

6.2 Thick-Walled Annulus

Now we consider another common benchmark in linear elasticity as outlined

in [68]. The domain is a thick-walled annulus with outer radius a and inner

radius b shown in Figure 6.5. Uniform pressure may be imposed on the inner

and outer surfaces of the annulus measuring Pi and Po, respectively. Under

the assumption of rotational symmetry, the displacements are assumed to
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only be in the radial direction and may written as

ur = C1r +
C2

r
, (6.17)

where

C1 =
1− ν
E

b2Pi − a2Po
a2 − b2

,

C2 =
1− ν
E

a2b2 (Pi − Po)
a2 − b2

;

while the stress tensor has only two nonzero components

σrr =
E

(1− ν2)

[
(1 + ν)C1 −

1− ν
r2

C2

]
, (6.18)

σθθ =
E

(1− ν2)

[
(1 + ν)C1 +

1− ν
r2

C2

]
, (6.19)

where E represents the Young’s modulus of the material and ν is the Poisson

ratio.

The computational domain is chosen to be the first quadrant of the anu-

lus, with sliding boundary conditions applied to the +x- and +y-axes. The

degrees of freedom corresponding to these degrees of freedom are omitted

from the global stiffness matrix and assembled into the load vector. Natu-

ral boundary conditions at the inner and outer arcs are imposed as surface

tractions

t = P n̂,
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Figure 6.5: A thick walled annulus with external loading and lines of symme-
try (left), and the computational domain used in the numerical experiments
(right).

where n̂ is the unit normal of the surface oriented outwards and P is the

corresponding value of pressure. In our numerical experiments, we use the

value of Pi = 0 GPa and Po = 100 GPa. The x and y axes also have surface

tractions applied to them taken from the analytic solution from (6.19). We

choose material parameters E = 200 GPa and ν = 0.3 for the convergence

study. The results of the convergence study are presented in Figure 6.6.

Again, the results indicate that high order representation of the geometry is

required to guarantee high order convergence.
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Figure 6.6: Convergence of AES-FEM for thick-walled annulus using linear
(left) and superparametric test functions (right).
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Chapter 7

Conclusion

In this dissertation, adaptive extended stencil finite element method was im-

proved to account for elliptic PDEs with Neumann boundary conditions on

curved geometries. This was achieved by using superparametric elements

which can be created from an analytic representation of the geometry or by

using high order surface reconstruction techniques such as WALF. The su-

perparametric test functions improve the consistency of the weak formulation

by minimizing geometric errors which restrict the order of accuracy for prob-

lems with Neumann boundary conditions in curved geometries. Additionally,

these superparametric elements are only constructed when they are adjacent

to the boundary, which reduces the total computational work load overall.

Therefore, using a high degree polynomial basis with curved superparamet-

ric elements can result in significantly higher accuracy with less degrees of

freedom than low order methods.
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This dissertation also proposes a new method for incorporating Neumann

boundary conditions for methods of weighted residuals such as generalized

finite difference methods. This is achieved by designing new test functions

defined only on the boundary of the domain and computing a weighted resid-

ual of the Neumann boundary conditions on the boundary of the domain.

This new computation of the Neumann boundary conditions is advantageous

over the existing pointwise implementation of Neumann boundary conditions

for finite difference methods because it allows for these conditions to be com-

puted points which have no well defined normal direction.

Lastly, we showed that AES-FEM can be used for problems in linear

elasticity for problems with Neumann boundary conditions, curved geome-

tries, and non-smooth boundaries. We were able to show that AES-FEM

can achieve high order convergence for many classical benchmark problems

in linear elasticity when superparametric elements were used to represent

the boundary. These superparametric elements are necessary to ensure that

AES-FEM can achieve high order convergence for curved geometries.

AES-FEM has several directions for further research. Although this dis-

sertation has focused on elliptic problems, AES-FEM can be easily used in

solving time-dependent equations. It would be of interest to use AES-FEM

in Adaptive Lagrangian-Eulerian (ALE) methods and other time dependent

problems with moving geometry. These would require specialized treatment

of the test functions so as to prevent folding under large deformations. In-

vestigation into parallelizing AES-FEM
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Additionally, the direct treatment of Neumann boundary conditions pre-

sented in Chapter 5 can be used to combine generalized finite difference

discretizations with problems involving sharp features in novel manner.

89



Bibliography

[1] I. Babuska and A. K. Aziz, On the angle condition in the finite ele-

ment method, SIAM Journal on Numerical Analysis, 13 (1976), pp. pp.

214–226.

[2] I. Babuska, U. Banerjee, and J. Osborn, Survey of meshless and

generalized finite element methods: a unified approach., Acta Numerica,

(2003), pp. 1–125.

[3] F. Bassi and S. Rebay, High-order accurate discontinuous finite el-

ement solution of the 2D euler equations, Journal of Computational

Physics, 138 (1997), pp. 251–285.

[4] Y. Bazilevs, V. Calo, J. Cottrell, J. Evans, T. Hughes, S. Lip-

ton, M. Scott, and T. Sederberg, Isogeometric analysis using t-

splines, Computer Methods in Applied Mechanics and Engineering, 199

(2010), pp. 229–263.

90



[5] T. Belytschko, Y. Krongauz, J. Dolbow, and C. Gerlach,

On the completeness of meshfree particle methods, Int. J. Numer. Meth.

Engrg., 45 (1998), pp. 785–819.

[6] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and

P. Krysl, Meshless methods: An overview and recent developments,

Comput. Methods Appl. Mech. Engrg., 139 (1996), pp. 3–47.

[7] T. Belytschko, Y. Y. Lu, and L. Gu, Element-free Galerkin meth-

ods, Int. J. Numer. Meth. Engrg., 37, pp. 229–256.

[8] J. J. Benito, F. Ureña, and L. Gavete, The generalized finite dif-

ference method, in Leading-Edge Applied Mathematical Modeling Re-

search, M. P. Álvarez, ed., Nova Science Publishers, Inc., 2008, ch. 7.

[9] M. Berger, Adaptive finite difference methods in fluid dynamics, in von

Karman Lecture Notes on CFD, 1987. NYU/DOE report 03077-277.

[10] S. C. Brenner and R. Scott, The Mathematical Theory of Finite El-

ement Methods, vol. 15, Springer Science & Business Media, New York,

2008.

[11] M. Buhmann, Radial basis functions: theory and implementations,

Cambridge University Press, Cambridge, 2003.

[12] T. F. Chan, Rank revealing {QR} factorizations, Linear Algebra and

its Applications, 88?89 (1987), pp. 67 – 82.

91



[13] K. C. Chung, A generalized finite-difference method for heat transfer

problems of irregular geometries, Numerical Heat Transfer, 4 (1981),

pp. 345–357.

[14] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, So-

ciety for Industrial and Applied Mathematics, 2002.

[15] B. Clark, Accurate, Semi-Implicit Methods with Mesh Adaptivity for

Mean Curvature Flow and Surface Diffusion Using Triangulated Sur-

faces, PhD thesis, Stony Brook University, 2012.

[16] B. Clark, N. Ray, and X. Jiao, Surface mesh optimization, adap-

tion, and untangling with high-order accuracy, in Proceedings of 21st

International Meshing Roundtable, San Jose, CA, 2012.

[17] E. Cohen, T. Martin, R. M. Kirby, T. Lyche, and R. F. Riesen-

field, Analysis-aware modeling: Understanding quality considerations

in modeling for isogeometric analysis, Computer Methods in Applied

Mechanics and Engineering, 199 (2010).

[18] R. Conley, Overcoming Element Quality Dependence of Finite El-

ement Methods, PhD thesis, State University of New York at Stony

Brook, 2016.

[19] R. Conley, T. J. Delaney, and X. Jiao, Overcoming element qual-

ity dependence of finite elements with adaptive extended stencil FEM

(AES-FEM), Int. J. Num. Method. Engrg., 108 (2016), pp. 1054–1085.

92



[20] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs, Isogeometric

Analysis: Toward Integration of CAD and FEA, Wiley, Chichester, West

Sussex, UK, 2009.

[21] J. A. Cottrell, A. Reali, Y. Bazilevs, and T. J. R. Hughes,

Isogeometric analysis of structural vibrations, Comput. Meth. Appl.

Mech. Engrg., 195 (2006), pp. 5257–5296.

[22] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming

finite element methods for solving the stationary stokes equations i,

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisa-

tion Mathématique et Analyse Numérique, 7 (1973), pp. 33–75.

[23] H. Fahs, Improving accuracy of high-order discontinuous Galerkin

method for time-domain electromagnetics on curvilinear domains, Inter-

national Journal of Computational Mathematics, 88 (2011), pp. 2124–

2153.

[24] B. A. Finlayson, The Method of Weighted Residuals and Variational

Principles, Academic Press, New York, 1973.

[25] B. Fornberg, Calculation of weights in finite difference formulas,

SIAM Review, 40 (1998), pp. 685–691.

[26] K. P. S. Gahalaut, Isogeometric Analysis: Condition Number Esti-

mates and Fast Solvers, PhD thesis, Johannes Kepler Universit at, 2013.

93



[27] A. Gargallo-Peiró, X. Roca, J. Peraire, and J. Sarrate,

Defining quality measures for validation and generation of high-order

tetrahedral meshes, in Proceedings of the 22nd International Meshing

Roundtable, Springer International Publishing, 2014, pp. 109–126.

[28] L. Gavete, M. Gavete, and J. Benito, Improvements of generalized

finite difference method and comparison with other meshless methods,

Appl. Math. Model., 27 (2003), pp. 831–847.

[29] C. Geuzaine and J.-F. Remacle, Gmsh: a three-dimensional finite

element mesh generator with built-in pre- and post-processing facilities,

Int. J. Numer. Meth. Engrg., 79 (2009), pp. 1309–1331.

[30] R. Gingold and J. Monaghan, Smoothed particle hydrodynamics:

theory and application to non-spherical stars, Mon. Not. R. Astron. Soc.,

181 (1977), pp. 375–89.

[31] T. J. Hughes, J. A. Cottrell, and Y. Bazilevs, Isogeometric

analysis: CAD, finite elements, NURBS, exact geometry and mesh re-

finement, Comput. Meth. Appl. Mech. Engrg., 194 (2005), pp. 4135–

4195.

[32] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, Isogeomet-

ric analysis: CAD, finite elements, NURBS, exact geometry and mesh

refinement, Comput. Meth. Appl. Mech. Engrg., 194 (2005), pp. 4135–

4195.

94



[33] P. Jensen, A finite difference technique for variable grids, in Conference

on Computer Oriented Analysis of Shell Structures, Palo Alto, CA.,

Aug. 1970.

[34] P. S. Jensen, Finite difference techniques for variable grids, Comput.

Struct., 2 (1972), pp. 17–29.

[35] X. Jiao and D. Wang, Reconstructing High-Order Surfaces for Mesh-

ing, in Proceedings of the 19th International Meshing Roundtable,

S. Shontz, ed., Springer Berlin Heidelberg, 2010, pp. 143–160.

[36] X. Jiao and D. Wang, Reconstructing high-order surfaces for meshing,

Engineering with Computers, 28 (2012), pp. 361–373.

[37] X. Jiao and H. Zha, Consistent computation of first-and second-order

differential quantities for surface meshes, in ACM Symposium on Solid

and Physical Modeling, Stony Brook, NY, 2008, ACM, pp. 159–170.

[38] A. Johnen, J.-F. Remacle, and C. Geuzaine, Geometrical validity

of curvilinear finite elements, J. Comput. Phys., 233 (2013), pp. 359 –

372.

[39] A. Johnen, J. F. Remacle, and C. Geuzaine., Geometrical validity

of curvilinear finite elements, J. Comput. Phys., 233 (2013), pp. 359–

372.

[40] P. Knupp, Achieving finite element mesh quality via optimization of

the jacobian matrix norm and associated quantities. part i: a framework

95



for surface mesh optimization, Int. J. Numer. Meth. Engrg., 48 (2000),

pp. 401–420.

[41] P. M. Knupp, Algebraic mesh quality metrics, SIAM J. Sci. Comput.,

23 (2001), pp. 193–218.

[42] P. Lancaster and K. Salkauskas, Surfaces generated by moving

least squares methods, Mathematics of Computation, 37 (1981), pp. 141–

158.

[43] R. J. LeVeque, Finite Difference Methods for Ordinary and Partial

Differential Equations: Steady State and Time Dependent Problems,

SIAM, Philadelphia, 2007.

[44] S. Lipton, J. A. Evans, Y. Bazilevs, T. Elguedj, and T. J. R.

Hughes, Robustness of isogeometric structural discretizations under se-

vere mesh distortion, Computer Methods in Applied Mechanics and En-

gineering, 199 (2010).

[45] T. Liszka and J. Orkisz, The finite difference method at arbi-

trary irregular grids and its application in applied mechanics, Com-

puters & Structures, 11 (1980), pp. 83 – 95. <ce:title>Special Issue-

Computational Methods in Nonlinear Mechanics </ce:title>.

[46] T. Liszka and J. Orkisz, The finite difference method at arbitrary

irregular grids and its application in applied mechanics, Comput. Struct.,

11 (1980), pp. 83–95.

96



[47] L. B. Lucy, A numerical approach to testing of the fission hypothesis,

Astronomical Journal, 82 (1977), pp. 1013–1024.

[48] S. Milewski, Meshless finite difference method with higher order ap-

proximation applications in mechanics., Arch. Comput. Method. E., 19

(2012), pp. 1–49.

[49] B. Nayroles, G. Touzot, and P. Villon, Generalizing the finite

element method: diffuse approximation and diffuse elements, Comput.

Mech., 10 (1992), pp. 307–318.

[50] J. Orkisz, Finite Difference Method (Part, III), Springer, Heidelberg,

1998.

[51] V. N. Parthasarathy, C. M. Graichen, and A. F. H. AF, A

comparison of tetrahedron quality measures, Finite Elem. Anal. Des., 15

(1993), pp. 255–261.

[52] N. Perrone and R. Kao, A general finite difference method for arbi-

trary meshes, Comput. Struct., 5 (1975), pp. 45–57.

[53] P. A. Raviart and J. M. Thomas, A mixed finite element method

for 2-nd order elliptic problems, Springer Berlin Heidelberg, Berlin, Hei-

delberg, 1977, pp. 292–315.

[54] N. Ray, High-Order Surface Reconstruction and its Applications to Sur-

face Integrals and Surface Remeshing, PhD thesis, Stony Brook Univer-

sity, 2013.

97



[55] N. Ray, D. Wang, X. Jiao, and J. Glimm, High-order numerical

integration over discrete surfaces, SIAM Journal on Numerical Analysis,

50 (2012), pp. 3061–3083.

[56] X. Roca, A. Gargallo-Peiró, and J. Sarrate, Defining quality

measures for high-order planar triangles and curved mesh generation,

in Proceedings of the 20th International Meshing Roundtable, Springer

Berlin Heidelberg, 2012, pp. 365–383.

[57] X. Roca, A. Gargallo-Peiró, and J. Sarrate, Defining Quality

Measures for High-Order Planar Triangles and Curved Mesh Genera-

tion, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 365–383.

[58] R. Sanders, Finite difference techniques for nonlinear hyperbolic con-

servation laws, in Proceedings of the 1983 Summer Seminar on Large-

Scale Computations in Fluid Mechanics, American Mathematics Society,

1983.

[59] R. Sevilla, S. Fernández-Méndez, and A. Huerta, NURBS-

enhanced finite element method (NEFEM), International Journal for

Numerical Methods in Engineering, 76 (2008), pp. 56–83.

[60] , 3D NURBS-enhanced finite element method (NEFEM), Inter-

national Journal for Numerical Methods in Engineering, 88 (2011),

pp. 103–125.

98



[61] J. R. Shewchuk, Triangle: Engineering a 2D quality mesh generator

and Delaunay triangulator, in Applied Computational Geometry To-

wards Geometric Engineering, Springer, Philadelphia, 1996, pp. 203–

222.

[62] J. R. Shewchuk, What is a good linear finite element? interpolation,

conditioning, anisotropy, and quality measures. preprint, 2002.

[63] C. Shu, H. Ding, and N. Zhao, Numerical comparison of least

square-based finite-difference (lsfd) and radial basis function-based finite-

difference (rbffd) methods, Comput. Math. Appl., 51 (2006), pp. 1297–

1310.

[64] H. Si, TetGen, a quality tetrahedral mesh generator and three-

dimensional Delaunay triangulator v1.4, 2006.

[65] H. Si, TetGen, a Delaunay-based quality tetrahedral mesh generator,

ACM Trans. Math. Software, 41 (2015), pp. 11:1 – 11:36.

[66] G. Strang, Variational crimes in the finite element method, in Math-

ematical foundations of the finite element method with applications to

partial differential equations, Baltimore, MD, 1972, Academic Press,

pp. 689–710.

[67] J. W. Thomas, Numerical Partial Differential Equations: Finite Dif-

ference Methods, Springer, 1995.

99



[68] S. P. Timoshenko and J. N. Goodier, Theory of Elasticity,

McGraw-Hill, 3 ed., 1987.

[69] F. Ureña, E. Salete, J. J. Benito, and L. Gavete, Solving third-

and fourth-order partial differential equations using gfdm: application to

solve problems of plates., International Journal of Computer Mathemat-

ics, 89 (2012), pp. 366 – 376.

[70] D. Wang, B. Clark, and X. Jiao, An analysis and comparison of

parameterization-based computation of differential quantities for discrete

surfaces, Comput. Aid. Geom. Des., 26 (2009), pp. 510–527.

[71] D. Wang, B. L. Clark, and X. Jiao, An analysis and comparison of

parameterization-based computation of differential quantities for discrete

surfaces, Comput. Aid. Geom. Des., 26 (2009), pp. 510–527.

[72] G. B. Wright and B. Fornberg, Scattered node compact finite

difference-type formulas generated from radial basis functions, J. Com-

put. Phys., 212 (2006), pp. 99 – 123.

[73] Y. Zhang, Y. Bazilevs, S. G. C. Bajaj, and T. J. R. Hughes,

Patient-specific vascular NURBS modeling for isogeometric analysis of

blood flow, Comput. Meth. Appl. Mech. Engrg., 196 (2007), pp. 2943–

2959.

100



[74] O. Zienkiewicz, R. Taylor, and J. Zhu, The Finite Element

Method: Its Basis and Fundamentals, Butterworth-Heinemann, London,

2013.

[75] M. Zlámal, On the finite element method, Numerische Mathematik,

12 (1968), pp. 394–409.

[76] , Curved elements in the finite element method II, SIAM J. Numer.

Anal., 11 (1974), pp. 347–362.

101


	Introduction
	Background and Related Work
	Galerkin Methods
	Meshless Methods
	CAD-Enhanced Galerkin Methods and Isogeometric Analysis
	Finite Difference Methods and Their Generalizations

	Adaptive Extended Stencil Finite Element Method
	Generalized Lagrange Polynomial Basis Functions
	Numerical Stability of Computation
	Weak Formulation of AES-FEM
	Results for High-Order AES-FEM

	Treatment of Curved Geometries in AES-FEM
	Generation of High-Order Elements 
	Weighted Averaging of Local Fittings (WALF)
	Interpolation of Neumann Boundary Conditions
	Numerical Experiments

	Direct Treatment of Neumann Boundary Conditions with Boundary Integrals
	Application: Linear Elasticity
	Infinite Plate with Circular Hole
	Thick-Walled Annulus

	Conclusion

