## Stony Brook University



The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.
(C) All Rights Reserved by Author.

# Modified low-density lipoprotein from Mycobacterium tuberculosis induces foamy macrophage formation 

# A Thesis Presented <br> by <br> <br> Guannan Chen 

 <br> <br> Guannan Chen}
to

The Graduate School<br>in Partial Fulfillment of the

Requirements
for the Degree of
Master of Science
in

## Chemistry

Stony Brook University

May 2015

# Stony Brook University 

The Graduate School

## Guannan Chen

We, the thesis committee for the above candidate for the Master of Science degree, hereby recommend acceptance of this thesis.

Nicole S. Sampson, Ph.D. - Thesis Advisor Department of Chemistry

# Jessica C. Seeliger, Ph.D. - Chairperson Department of Pharmacological Sciences 

Scott Laughlin, Ph.D. - Third member Department of Chemistry

This thesis is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

# Abstract of the Thesis <br> Modified low-density lipoprotein from Mycobacterium tuberculosis induces foamy macrophage formation 

by

## Guannan Chen

Master of Science
in

## Chemistry

Stony Brook University
2015

Tuberculosis (TB) is one of the major causes of mortality in the world, causing approximately 1.5 million deaths every year, among which children take a great part. However, due to the perception that children are rarely infectious or they rarely develop severe disease, children with TB have always been neglected. What is worse, diagnosis of childhood TB is difficult, making it harder to control the disease. Foamy macrophages are a key component in the pathology of TB, and the formation of foamy macrophages foresees the progression of infection to active disease. Low-density lipoprotein (LDL) is one of the major lipoproteins that contain cholesterol, and important metabolism of cholesterol enables bacterial survival. After modification in the host, LDL could lead to foamy macrophage formation in the tubercular granuloma. We hypothesized that the modified LDL in patients with TB which induces foamy macrophage formation is different from other forms of LDL. Therefore, modified LDL in patients with TB could serve as a biomarker for TB diagnosis. Our long-term objective is to characterize modified LDL in TB
patients and investigate its function in foamy macrophage formation. In this work, we first prepare $M t b$-modified LDL, and then we set up macrophage experiment to investigate its function towards foamy macrophage formation. Then we focus on the characterization of Mtbmodified LDL using agarose gel electrophoresis, Western blot analysis, and MALDI-TOF analysis.

## Table of Contents

List of Figures. ..... vii
List of Tables ..... viii
List of Abbreviations ..... ix
Chapter 1 Introduction ..... 1
1.1. Mycobacterium tuberculosis ..... 2
1.2. Childhood tuberculosis and current challenges in diagnosis ..... 3
1.3. The life cycle of Mycobacterium tuberculosis ..... 4
1.4. Differentiated macrophages ..... 5
1.5. Foamy macrophages ..... 6
1.6. Low-density lipoprotein ..... 7
1.7. Modified low-density lipoprotein ..... 7
1.7.1. Oxidized low-density lipoprotein ..... 8
1.7.2. Acrolein-conjugated low-density lipoprotein ..... 9
1.8. Characterization and function of Mtb-modified low-density lipoprotein ..... 10
Chapter 2 Experimental Section ..... 12
2.1. Materials ..... 12
2.2. Purification of low-density lipoprotein from Hep G2 cells. ..... 12
2.2.1. Cell culture ..... 12
2.2.2. LDL isolation by ultracentrifugation ..... 13
2.3. Preparation of modified LDL ..... 13
2.3.1. Preparation of oxidized LDL ..... 14
2.3.2. Preparation of acrolein-conjugated LDL ..... 14
2.3.3. Preparation of $M t b$-modified LDL ..... 14
2.4. Determination of protein concentration ..... 15
2.5. Agarose gel electrophoresis of intact LDL and modified LDL ..... 15
2.6. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of intact
LDL and modified LDL ..... 15
2.7. Western blot analysis of intact LDL and modified LDL ..... 16
2.8. Tryptic digestion of apolipoprotein on PVDF membrane and MALDI-TOF analysis17
2.9. THP-1 macrophage formation ..... 17
2.10. Lipid bodies ..... 18
Chapter 3 Results and Discussion ..... 19
3.1. The function of $\mathbf{M t b}$-modified LDL ..... 19
3.2. The characterization of Mtb-modified LDL ..... 21
3.2.1. LDL purification ..... 22
3.2.2. The difference of size or charge in Mtb-modified LDL and other forms of LDL ..... 23
3.2.3. The difference of apoB in $M t b$-modified LDL and other forms of LDL ..... 24
3.2.4. Analysis of apoB in Mtb-modified LDL by tryptic digestion on PVDF membrane andMALDI-TOF ......................................................................................................................... 28
3.3. Conclusion and future directions ..... 50
References. ..... 51

## List of Figures

Figure Page
1-1. Acrolein reacts with Lys to form MP-Lys and FDP-Lys. ..... 10
3-1. Inverted microscopy of THP-1 macrophages incubated with or without intact
LDL, Acro-LDL, and OxLDL. ..... 21
3-2. SDS-PAGE gels of LDL before and after ultracentrifugation. ..... 23
3-3. Agarose gels of intact LDL and modified LDL. ..... 24
3-4. Western blot analysis of apoB in intact LDL and modified LDL. ..... 27
3-5. SDS-PAGE of apoB in intact LDL and modified LDL ..... 28
3-6. Distribution of tryptic digested peptides in intact LDL identified by MALDI-TOF analysis. ..... 32
3-7. Distribution of tryptic digested peptides in Mtb-LDL identified by MALDI-TOF analysis. ..... 34
3-8. MALDI-TOF spectrum of intact LDL (commercial). ..... 41
3-9. MALDI-TOF spectrum of Mtb-LDL. ..... 45
3-10. MALDI-TOF/TOF spectra for tryptic peptides from Mtb-LDL. ..... 49

## List of Tables

Table Page
3-1. Cell fluorescence. ..... 21
3-2. Sequence coverage in MALDI-TOF analysis of LDL. ..... 30
3-3. Peaks in MALDI-TOF spectra of intact LDL (commercial) or $M t b-L D L$ and the matched sequences.38

## List of Abbreviations

| Acro-LDL | Acrolein-conjugated low-density lipoprotein |
| :---: | :---: |
| ApoB | Apolipoprotein B |
| BSA | Bovine serum albumin |
| SR-AI and II | Class A scavenger receptors type I and II |
| $\mathrm{VD}_{3}$ | 1,25-dihydroxyvitamin $\mathrm{D}_{3}$ |
| DTT | Dithiothreitol |
| FBS | Fetal bovine serum |
| HRP | Horseradish peroxidase |
| HIV | Human immunodeficiency virus |
| HNE | 4-hydroxynonenal |
| IAA | Iodoacetamide |
| LOX-1 | Lectin-like oxidized LDL receptor-1 |
| LDL | Low-density lipoprotein |
| MDA | Malondialdehyde |
| Mtb | Mycobacterium tuberculosis |
| $M t b-\mathrm{LDL}$ | Mtb-modified LDL |
| FDP-Lys | $\mathrm{N}^{\varepsilon}$-(3-formyl-3, 4-dehydropiperidino)lysine |
| MP-Lys | $\mathrm{N}^{\varepsilon}$-(3-methylpyridinium)lysine |
| OADC | Oleate-albumin-dextrose-NaCl-catalase |
| OxLDL | Oxidized low-density lipoprotein |
| PFA | Paraformaldehyde |

PMA
PVDF

Rt

SDS-PAGE
TFA

TLR-4
TB
WHO

Phorbol 12-myristate 13-acetate
Polyvinylidene fluoride
Room temperature
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
Trifluoroacetic acid
Toll-like receptor 4
Tuberculosis
World Health Organization

## Chapter 1 Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a major global health problem. It ranks as the second leading cause of death from infectious disease in the world, just after the human immunodeficiency virus (HIV). In the Global Tuberculosis Report 2014, the World Health Organization (WHO) estimated that 9.0 million people developed TB and 1.5 million died from the disease in 2013. ${ }^{1}$ Due to the unacceptably high mortality of TB, the development of effective TB diagnosis is important.

The global burden of TB among children cannot be underestimated. In 2013, there were approximately 550,000 cases and 80,000 deaths among children (aged $<15$ ). ${ }^{1}$ However, the diagnosis of TB in children is challenging. The most common method for diagnosing TB, which is targeting sputum smear-positive cases of TB for epidemic control, greatly ignores children, who rarely have sputum smear-positive TB. ${ }^{2}$ Thus, a biomarker is urgently needed for childhood TB diagnosis.

When Mtb is inhaled by the host, it establishes an infection in lung macrophages. The infected macrophages trigger an inflammatory response leading to the recruitment of blood and tissue macrophages, lymphocytes, and dendritic cells to form a granuloma, the hallmark pathologic lesion associated with a TB infection. Foamy macrophages, a granuloma-specific cell population characterized by their high lipid content, are a key component in the pathology of TB. They constitute a nutrient-rich reservoir for $M t b$ persistence and also serve an active function that leads to lung cavitation and the release of infectious bacilli. One important reason for foamy macrophages formation is the uptake of modified low-density lipoprotein (LDL) by macrophages.

Therefore, we think it is important to identify the function and characterization of modified LDL in TB patients, which is a potential biomarker for TB diagnosis, especially for childhood TB diagnosis.

In this chapter, an overview of TB , current challenges of childhood TB diagnosis, foamy macrophages, and native LDL as well as modified LDL will be discussed.

### 1.1. Mycobacterium tuberculosis

Tuberculosis (TB) is an "old" disease, and its causative agent, the bacterium Mycobacterium tuberculosis (Mtb), is estimated to have originated about 15,000 to 20,000 years ago. ${ }^{3}$ On March 24, 1882, Dr. Robert Koch discovered Mtb. At the time, one out of seven people living in the United States and Europe was killed by TB. ${ }^{4}$ However, despite the development of modern medical technology, TB still remains one of the deadliest infectious diseases of humans.
$M t b$ could not only just lead to an asymptomatic latent infections but also cause an acute disease. ${ }^{5}$ In individuals who are asymptomatic, $M t b$ stays in a dormant state for decades until the reactivated bacilli induce clinical disease. ${ }^{6}$ Now, up to one-third of the human population are infected with the bacterium $M t b$, among which 5-10\% have a risk of developing active disease during their life. ${ }^{7}$ However, until now, due to the similarity of the systemic immune response in those who have active disease and those who only have asymptomatic latent infection without active TB, no biomarker has been found for disease progression. ${ }^{8}$

### 1.2. Childhood tuberculosis and current challenges in diagnosis

Childhood tuberculosis, a leading cause of morbidity and mortality, is a serious problem, especially in developing countries. ${ }^{9}$ Even if childhood tuberculosis accounts for only $6 \%$ of the global burden, it takes a larger proportion (15-20\%) of all TB cases in developing countries. ${ }^{9}$ Therefore, children with TB are important. Because children is the source where future cases will come from, ignoring childhood TB will lead to failure to control TB disease. ${ }^{10}$

However, people have always neglected children with TB. There are several reasons. In some degree, this is because children usually have paucibacillary disease, which means low bacteriologic yield. ${ }^{2}$ This makes people think that they are not infectious, so they could not play significant role in propagation of the epidemic. ${ }^{2}$ Also, only a few countries have prioritized child health organizations. ${ }^{2}$ Another important reason is the difficulties in making an exact diagnosis of TB in children. Due to poor bacteriologic yields of childhood TB, the application of bacteriological confirmation by culture of $M t b$, the accepted gold standard of TB diagnosis, is limited to a great extent. ${ }^{11} \mathrm{~TB}$ in children is usually smear-negative. So sputum smear microscopy, the primary method for TB diagnosis in many developing countries, could only test out a small part of children (10-15\%) with probable TB. ${ }^{11}$ Also, while TB in adults is usually accompanied by specific symptoms and signs, symptoms of childhood TB are non-specific. ${ }^{2}$ All these factors obstruct the accurate diagnosis of childhood TB.

### 1.3. The life cycle of Mycobacterium tuberculosis

$M t b$, which are discharged as infectious droplets by people with active infection, are inhaled by individuals from the atmosphere. ${ }^{12}$ These droplets remain airborne for a period of time, usually a couple of hours. The estimated minimum infectious dose is only a single bacterium, which makes transmission occur at an efficient speed. ${ }^{12}$

Infection is initiated after the inhalation of bacilli by host alveolar macrophages through phagocytosis. ${ }^{8}$ Macrophages play an essential role as the first line of body's defense system in protecting the host against foreign substances. ${ }^{13}$ When $M t b$ are inside macrophages, they replicate in phagosomes. By inhibiting phagosomes maturation and preventing phagosomes from fusion with acidic and hydrolytically active lysosomes, Mtb is able to avoid degradation in phagolysosomes. ${ }^{14}$ In this way, $M t b$ could grow at an extremely rapid speed until the host has a protective immune response. ${ }^{8}$

The infected macrophages trigger a proinflammatory response leading to the recruitment of mononuclear cells from peripheral blood vessels. ${ }^{15}$ Thus, the bacterial population further expand benefiting from having fresh host cells. ${ }^{15}$ These mononuclear cells form the early stage of granuloma. The granuloma is a major histopathological feature of TB , and its function is the containment of $M t b$ at the site of primary infection to avoid bacterial spread to healthy tissues, and to centralize the immune response to a fixed infectious site. ${ }^{16}$ In the early stage of granuloma formation, it consists of infected macrophages as its core with foamy macrophages and other monocytes around it, enclosed by lymphocytes. ${ }^{8}$ As the granuloma matures, a fibrous capsule is developed, which extrudes most of the lymphocytes. ${ }^{8}$ Also, in this stage, the macrophages
differentiate into different morphotypes, such as epithelioid cells, multinucleated giant cells, and foamy macrophages. ${ }^{17}$

The rapid bacterial replication ends after two to three weeks the emergence of lymphocytes. ${ }^{15}$ At this stage, cells are recruited to the site of infection and the granuloma is fully vascularized. ${ }^{15}$ Along with the disease progression, there is a decrease in the number of blood vessels penetrating the granuloma. ${ }^{15}$ In the meantime, the number of foamy macrophages increases. Foamy macrophages are thought to be the major reason that lead progression to active disease, because they are presumed to be responsible for the necrosis in the granuloma center. ${ }^{8}$ In immunocompetent patients with active disease, the infected tissues contain granulomas in all states of development from its formation to active disease, which means the progression is localized to granulomas individually, not systemically. ${ }^{15}$ In the advanced stage, the center of the granuloma liquefies and the lung cavitates, releasing virulent bacilli into the airways. ${ }^{8}$ This causes lung damage, resulting in the generation of aerosol with infectious $M t b$ when patients cough. ${ }^{8}$ From being inhaled to being produced, the life cycle of $M t b$ is complete.

### 1.4. Differentiated macrophages

Differentiated macrophages are long-lived cells with specialized functions. ${ }^{18}$ They originate from monocytes differentiation. ${ }^{19}$ In order to mimic macrophage, several monocytic cell lines with different degrees of differentiation could be used. ${ }^{20}$ There are different protocols to develop differentiated macrophages. The monocytic cell lines could be THP-1 cells, U937 cells, or HL60 cells, and the stimuli that are commonly used to induce macrophage differentiation in
monocytic cell lines could be phorbol 12-myristate 13-acetate (PMA) or 1,25-dihydroxyvitamin $\mathrm{D}_{3}\left(\mathrm{VD}_{3}\right){ }^{21}$ In terms of cell morphology and other factors, one study showed that THP-1 cells, activated with PMA and then rested by culture for a further 5 days without PMA, were similar to the phenotype of human monocyte-derived macrophages. ${ }^{18}$ Therefore, in our experiment, we followed their protocol to induce differentiated macrophages.

### 1.5. Foamy macrophages

Many studies have found that it is the granuloma that determines the progression of TB from a latent infection to active disease. ${ }^{8}$ The granuloma results from the interaction between $M t b$ and the host cells at the infection site. ${ }^{8}$ In the granuloma, macrophages can differentiate into several different cell populations, and one of them is called foamy macrophages.

Foamy macrophages are macrophages filled with lipid-free vacuoles and lipid-rich bodies. ${ }^{6}$ They could serve as a safe reservoir to prevent Mtb from direct contact with lymphocytes, and they could be a nutrient source for Mtb persisting in a dormant non-replicative state. ${ }^{6}$ Electron microscopy has shown that bacilli-containing phagosomes were close to lipid bodies, and ultimately, bacilli were found in lipid bodies and had intracellular lipid inclusions, which suggested that $M t b$ could use lipid bodies as a nutrient source. ${ }^{8}$ Also, one study has shown that foamy macrophages were located mainly at interface region surrounding the central necrotic area, and they were observed only in necrotic lessions. ${ }^{6}$ All these phenomena suggested that foamy macrophages play an important role in the accumulation of caseous debris in the granuloma and the formation of necrosis.

### 1.6. Low-density lipoprotein

Foamy macrophages arise from the accumulation of esterified and non-esterified sterols as well as neutral lipids in lipid bodies. ${ }^{22}$ The conversion from macrophages to foamy macrophages occurs via regulating uptake and release of low-density lipoprotein (LDL) particles from the serum. ${ }^{8}$ Each LDL particle contains a single apolipoprotein B-100 (apoB100) molecule that has 4536 amino acid residues and a hydrophobic core comprising polyunsaturated fatty acid, varying numbers of triglycerides, and many esterified and non-esterified cholesterol molecules. This hydrophobic core is surrounded by a rim of phospholipids and non-esterified cholesterol.

LDL particles are endocytosed by macrophages through LDL receptors. The majority of the cholesterol in plasma lipoprotein exists as cholesteryl esters, which are processed in a twocompartment pathway. ${ }^{23}$ After entering the macrophages, cholesteryl esters are transported to lysosomes, where they are hydrolyzed by lysosomal acid lipase. ${ }^{23}$ Then the cholesterol goes through the lysosomal membrane and enters the cytoplasm, where it is re-esterified by Acyl-CoA cholesterol acyltransferase. ${ }^{23}$ Finally, the re-esterified cholesterol is stored as cholesteryl ester lipid bodies in the cytoplasm. ${ }^{23}$

### 1.7. Modified low-density lipoprotein

Native LDL does not cause foamy macrophage formation. This is because not only differentiated macrophages have just a few LDL receptors but also the receptor is downregulated during cholesterol uptake, preventing the accumulation of excessive cholesterol. ${ }^{24}$ Even when incubated with high concentrations of native LDL, very few macrophages convert to foamy
macrophages. ${ }^{25}$ Therefore, there must be other mechanisms that can explain the accumulation of cholesterol in macrophages. Many studies have demonstrated that modification of LDL is a prerequisite for uptake by macrophages. ${ }^{26}$ Scavenger receptors, which are specific macrophage receptors, are able to recognize modified LDL, and they are different from LDL receptors so they are not downregulated. ${ }^{25}$ Modification of LDL occurs in arterial wall and in plasma circulation, and there are various mechanisms, such as oxidation, aggregation, and hydrolysis. ${ }^{27}$ Then modified LDL is taken up into macrophages through a receptor-mediated endocytosis. ${ }^{24}$ There are two well-known forms of modified LDL. One is oxidized LDL and the other is acrolein-conjugated LDL. They are known to induce foamy macrophages formation, especially in atherosclerosis. ${ }^{28}$

### 1.7.1. Oxidized low-density lipoprotein

The term oxidized LDL (OxLDL) refers to a variety of LDL preparations that have been oxidatively modified under certain conditions or isolated from biological sources. ${ }^{29}$ There have been extensive studies on OxLDL over the last several decades, however, due to its heterogeneity, there is still no conclusion about the exact definition or composition of OxLDL. OxLDL can be broadly divided into four main categories: minimally oxidized LDL, mildly oxidized LDL, moderately oxidized LDL, and extensively oxidized LDL. ${ }^{30}$ The degree of oxidation depends on the concentration of oxidizing agent and the time of oxidation.

Multiple receptors that belong to different classes are able to recognize different forms of OxLDL as well as mediate their cellular interactions. For example, class A scavenger receptors type I and II (SR-AI and II) are most specific for extensively oxidized LDL; class B scavenger
receptor CD36 can bind extensively and moderately oxidized LDL; and class E scavenger receptor lectin-like oxidized LDL receptor-1 (LOX-1) has a higher affinity to mildly-oxidized LDL. ${ }^{29}$ As for minimally oxidized LDL, it is a very mildly oxidized form of LDL that is not sufficiently oxidized to be recognized by the scavenger receptors described above. Studies found minimally oxidized LDL is specifically recognized by a Toll-like receptor 4 (TLR-4). ${ }^{31}$ Once bound to macrophage scavenger receptor, OxLDL is efficiently taken by macrophages, which leads to lipid accumulation.

LDL can be oxidized by metal ions, myeloperoxidase, lipoxygenases, and reactive nitrogen species. ${ }^{32}$ In our study, we used the most common copper oxidation method for OxLDL preparation.

### 1.7.2. Acrolein-conjugated low-density lipoprotein

Lipid peroxidation products are characteristic of patients with advanced tuberculosis. ${ }^{33}$ Aldehydes have been considered as the end products in lipid peroxidation. However, they can still react with biomolecules, including proteins and phospholipids. ${ }^{34}$ Acrolein, a highly reactive unsaturated aldehyde, is the strongest electrophile among all $\alpha, \beta$-unsaturated aldehydes. ${ }^{35}$ It has high reactivity with nucleophiles, such as the sulfhydryl group of cysteine, amino group of lysine, or imidazole group of histidine. ${ }^{35}$ In particular, acrolein derivatives $\mathrm{N}^{\varepsilon}$-(3-formyl-3, 4dehydropiperidino)lysine (FDP-Lys) and $\mathrm{N}^{\varepsilon}$-(3-methylpyridinium)lysine (MP-Lys) have been detected in apolipoprotein B of native LDL in atherosclerosis (Figure 1-4). ${ }^{36}$ This suggests that acrolein plays an important role on LDL modification. Recent studies showed that acrolein-
conjugated LDL (Acro-LDL) contributes to the development of atherosclerosis by inducing foamy macrophage formation. ${ }^{28}$


Figure 1-1. Acrolein reacts with Lys to form MP-Lys and FDP-Lys.

### 1.8. Characterization and function of Mtb-modified low-density lipoprotein

While a large number of studies have investigated the reason for cholesterol accumulation in atherosclerosis, there are many unknowns in TB. Our long-term goal is to characterize modified LDL in TB patients. In this study, we made $M t b$-modified LDL in vitro, investigated its function in foamy macrophage formation, and tried to elucidate the $M t b$-specific modification. Our first hypothesis was that LDL was modified when incubated with Mtb cells, and that Mtbmodified LDL was different from other forms of modified LDL, such as OxLDL and Acro-LDL. We also hypothesized that $M t b$-modified LDL could induce foamy macrophage formation, an indispensable charactristics in the pathology of TB.

Our experimental strategy was to prepare $M t b$-modified LDL, do macrophage experiments to investigate its function, and to use agarose gel electrophoresis, Western blot analysis, and MALDI-TOF analysis to determine its identity. In our experiments, intact LDL, OxLDL and Acro-LDL were used as controls.

## Chapter 2 Experimental Section

### 2.1. Materials

THP-1 cells and Hep G2 cells were purchased from ATCC. RPMI medium 1640 (1X), MEM medium (1X), penicillin streptomycin (Pen Strep), phosphate buffered saline (PBS) (1X), HEPES (1M), and sodium pyruvate ( 100 mM ) were purchased from Gibco. Fetal bovine serum (FBS) was purchased from Invitrogen. 2-mercaptoethanol, hematoxylin, Sudan Red 7B, barbital, bovine serum albumin (BSA), paraformaldehyde (PFA), iodoacetamide (IAA), dithiothreitol (DTT), potassium bromide, formic acid, phorbol 12-myristate 13-acetate (PMA), and copper sulfate were purchased from Sigma-Aldrich. Acrolein was purchased from Ultra Scientific. Oil Red O, anti-LDL (copper oxidized) antibody, and anti-LDL (MDA oxidized) antibody were purchased from Abcam. Agarose, acetonitrile, and ammonium bicarbonate were purchased from Fisher Scientific. Prestained protein ladder was purchased from New England BioLabs. PVDF membrane, goat anti-rabbit $\operatorname{IgG}(\mathrm{H}+\mathrm{L})$-horseradish peroxidase (HRP) conjugate, and immun-star HRP chemiluminescent substrate kit were purchased from Bio-Rad. LDL commercial and OxLDL commercial were purchased from Alfa Aesar. Anti-apoB antibody ( $\mathrm{H}-300$ ) was purchased from Santa Cruz. Goat anti-mouse IgG antibody, HRP conjugate was purchased from EMD Millipore.

### 2.2. Purification of low-density lipoprotein from Hep G2 cells

### 2.2.1. Cell culture

Hep G2 cells, a human liver cell line from hepatocellular carcinoma cells, were maintained in MEM medium with $10 \%$ heat-inactivated fetal bovine serum (FBS), 10 mM HEPES, 110 $\mathrm{mg} / \mathrm{mL}$ sodium pyruvate, and $100 \mathrm{U} / \mathrm{mL}$ penicillin in an atmosphere of $5 \% \mathrm{CO}_{2} / 95 \%$ air. When the cells were grown to $80 \%$ confluence, low-density lipoprotein (LDL) particles as well as other proteins were isolated from culture supernatants by ultrafiltration through a $100-\mathrm{kDa}$ molecular weight cutoff filter. Hep G2 growth medium was removed by concentrating the retentate and washing four times with PBS. Using the Bradford protein assay, protein concentrations of culture supernatants was measured, and the yield of LDL is about 2.4 mg protein $/ \mathrm{mL}$ culture.

### 2.2.2. LDL isolation by ultracentrifugation

In order to remove albumin and other contaminants, LDL particles were separated by density gradient ultracentrifugation. Each 12 mL polyallomer open-top tube contained 7 mL sample in PBS, and potassium bromide was added and dissolved into each tube to adjust the density to $1.063 \mathrm{~g} / \mathrm{mL}$. The volume of the sample was slightly changed after adding salt into it, but we did not take that into account. After ultracentrifugation in Beckman SW 41 Ti rotor at $150,000 \mathrm{~g}$ for 48 h at $4^{\circ} \mathrm{C}$, LDL particles were in the top $3-\mathrm{mL}$ fraction. The top fraction was removed by pipetting. Then LDL particles were desalted by ultrafiltration through a $100-\mathrm{kDa}$ molecular weight cutoff filter and washed four times with PBS. LDL particles were harvested and sterile filtered through $0.22 \mu \mathrm{~m}$ PVDF filters.

### 2.3. Preparation of modified LDL

### 2.3.1. Preparation of oxidized LDL

2 mg protein $/ \mathrm{mL}$ of LDL in PBS was incubated with $50 \mu \mathrm{M} \mathrm{CuSO}_{4}$ at $37^{\circ} \mathrm{C}$ for 24 h . In order to isolate oxidized LDL (OxLDL) and remove free $\mathrm{CuSO}_{4}$, OxLDL was concentrated by ultrafiltration through a $100-\mathrm{kDa}$ molecular weight cutoff filter and washed four times with PBS. Before use in experiments, OxLDL was sterile filtered through $0.22 \mu \mathrm{~m}$ PVDF filters.

### 2.3.2. Preparation of acrolein-conjugated LDL

2 mg protein $/ \mathrm{mL}$ of LDL in PBS was incubated with $2 \mu \mathrm{M}$ acrolein at $37^{\circ} \mathrm{C}$ for 24 h under nitrogen atmosphere. In order to isolate acrolein-conjugated LDL (Acro-LDL) and remove free acrolein, Acro-LDL was concentrated by ultrafiltration through a $100-\mathrm{kDa}$ molecular weight cutoff filter and washed four times with PBS. Before use in experiments, Acro-LDL was sterile filtered through $0.22 \mu \mathrm{~m}$ PVDF filters.

### 2.3.3. Preparation of Mtb-modified LDL

Mtb CDC 1551 was cultured at $37^{\circ} \mathrm{C}$ in Middlebrook 7 H 9 liquid media supplemented with $10 \%$ oleate-albumin-dextrose- NaCl -catalase (OADC) to OD $\sim 0.7$. LDL was added to the culture and the culture was incubated at $37{ }^{\circ} \mathrm{C}$ for one week. The $M t b$-modified LDL (Mtb-LDL) was isolated from the culture medium by centrifugation, sterile filtration of the supernatant, and MtbLDL was further concentrated by ultrafiltration through a $100-\mathrm{kDa}$ molecular weight cutoff filter and washed four times with PBS. This work was performed by Dr. Xinxin Yang.

### 2.4. Determination of protein concentration

Protein concentrations were determined using the Bradford protein assay. ${ }^{37}$ BSA was used as the standard in this assay.

### 2.5. Agarose gel electrophoresis of intact LDL and modified LDL

Agarose gel electrophoresis was performed in 0.06 M barbital buffer (pH 8.6) at $60 \mathrm{~V}, 4^{\circ} \mathrm{C}$. Intact LDL and modified LDL were separated on a $0.8 \%$ agarose gel. A $0.8 \%$ agarose gel was made by melting agarose powder into 0.06 M barbital buffer, followed by pouring the solution into a casting tray and cooling at rt until the gel was completely solidified. After the samples were separated on the gel, the gel was stained with $0.28 \%$ (w/v) Sudan Red 7B in $95 \%$ $\mathrm{MeOH} / \mathrm{DI} \mathrm{H}_{2} \mathrm{O}$. The stain solution was stirred for 24 h and filtered before use. After staining the gel for 17 h , the gel was destained in $75 \% \mathrm{MeOH} / \mathrm{DI}_{2} \mathrm{O}$ until the bands were visible.

### 2.6. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of intact LDL and modified LDL

SDS-PAGE was used to analyze apolipoprotein B (apoB) fragmentation. Intact LDL and modified LDL were separated on an SDS-PAGE gel. The stacking and running gels were $3.5 \%$ and $6 \%$ polyacrylamide, respectively. The molecular weights in the protein standard ranged from $30-460 \mathrm{kDa}$. The voltage at first was 50 V . When the lines were horizontal, the voltage was adjusted to 100 V . The gel was stained with Coomassie blue ( $0.1 \%$ Coomassie bue, $50 \% \mathrm{MeOH}$, $10 \% \mathrm{AcOH}$, and $40 \% \mathrm{DI}_{2} \mathrm{O}$ ) for 40 min and destained using destain I $(50 \% \mathrm{MeOH}, 10 \%$

AcOH , and $40 \% \mathrm{DI} \mathrm{H}_{2} \mathrm{O}$ ) for 17 h , followed by destain II $(5 \% \mathrm{MeOH}, 7 \% \mathrm{AcOH}$, and $88 \%$ DI $\mathrm{H}_{2} \mathrm{O}$ ) to swell the gel.

### 2.7. Western blot analysis of intact LDL and modified LDL

Equal amounts of intact LDL and modified LDL ( $5 \mu \mathrm{~g}$ protein) were separated on $6 \%$ SDSPAGE gels and electrophoretically transferred to polyvinylidene fluoride (PVDF) membranes at $60 \mathrm{~V}, 4^{\circ} \mathrm{C}$ for 2 h . LDL commercial (Alfa Aesar, J65591) and OxLDL commercial (Alfa Aesar, J65039) were also used in this experiment. The primary antibodies were: anti-apoB antibody (H300) (Santa Cruz, sc-25542), which is a rabbit polyclonal antibody raised against amino acids 1 300 of apoB of human origin; anti-LDL (copper oxidized) antibody (Abcam, ab14519), which is a rabbit polyclonal antibody and has strong reactivity with fully oxidized LDL, including copper oxidized LDL and malondialdehyde (MDA) oxidized LDL, but has weak reactivity with intact LDL; anti-LDL (MDA oxidized) antibody (Abcam, ab63976), which is a mouse monoclonal antibody that reacts with MDA oxidized LDL, but does not react with intact LDL and other human plasma proteins. The secondary antibodies were: goat anti-rabbit $\operatorname{IgG}(\mathrm{H}+\mathrm{L})$-horseradish peroxidase (HRP) conjugate (Biorad, 170-6515); goat anti-mouse IgG antibody, HRP conjugate (EMD Millipore, 12-349). PVDF membranes were treated with primary antibodies at $4{ }^{\circ} \mathrm{C}$ for 17 h , and then treated with secondary antibodies at rt for 1 h . Finally, luminol/enhancer and peroxide buffer (immun-star HRP chemiluminescent substrate kit (Biorad, 170-5040)) were mixed in a 1:1 ratio and the membrane was incubated in the mixture for $3-5 \mathrm{~min}$. The image was obtained by using a Typhoon 9400 scanner (Amersham Biosciences).

### 2.8. Tryptic digestion of apolipoprotein on PVDF membrane and MALDI-TOF analysis

Intact LDL or modified LDL (15 $\mu \mathrm{g}$ protein) was spotted on a PVDF membrane, washed twice with $\mathrm{CHCl}_{3}$ by sonication for 10 min , and then air-dried. The membrane was soaked in 80 $\mathrm{mM} \mathrm{NH} 4 \mathrm{HCO}_{3}$ containing $20 \% \mathrm{CH}_{3} \mathrm{CN}$ and 10 mM dithiothreitol (DTT) at $56{ }^{\circ} \mathrm{C}$ for 1 h . The reaction solution was removed, and the membrane was soaked in $80 \mathrm{mM} \mathrm{NH}_{4} \mathrm{HCO}_{3}$ containing $20 \% \mathrm{CH}_{3} \mathrm{CN}$ and 55 mM iodoacetamide (IAA) for 45 min in the dark. The reaction solution was removed, and the membrane was washed with DI $\mathrm{H}_{2} \mathrm{O}$. The membrane was incubated in 30 mM $\mathrm{NH}_{4} \mathrm{HCO}_{3}$ containing $70 \% \mathrm{CH}_{3} \mathrm{CN}$ and trypsin $(5 \mu \mathrm{~g})$. Peptides where then extracted twice with $1 \%$ trifluoroacetic acid (TFA) $/ 70 \% \mathrm{CH}_{3} \mathrm{CN}$ and dried followed by resuspension with $0.1 \%$ formic acid $/ 5 \% \quad \mathrm{CH}_{3} \mathrm{CN}$. A saturated solution of matrix $\alpha$-cyano-4-hydroxycinnamic was prepared with $49.9 \% \mathrm{CH}_{3} \mathrm{CN}, 50 \% \mathrm{H}_{2} \mathrm{O}$, and $0.1 \%$ formic acid. The samples were analyzed by MALDI-TOF mass spectra, obtained on a Bruker Autoflex II TOF/TOF instrument in positive ion mode. The obtained data were analyzed using Flex-Analysis and Sequence-Editor (Bruker Daltonics BioTools 3.0).

### 2.9. THP-1 macrophage formation

THP-1 cells, a human cell line from a one-year-old infant with acute monocytic leukemia, were maintained in RPMI-1640 medium with $10 \%$ FBS, 0.05 mM 2-mercaptoethanol, and 100 U/mL Pen Strep in an atmosphere of $5 \% \mathrm{CO}_{2} / 95 \%$ air. When the cell number reached $1 \times 10^{6}$ cells $/ \mathrm{mL}$, cells were plated in 6-well plates with a coverslip in each well, and were treated with 150 nM phorbol 12-myristate 13-acetate (PMA) in THP-1 growth media. After three days, the medium was removed, then the cells were rinsed twice with RPMI-1640 medium containing
$10 \%$ FBS, and treated with fresh THP-1 growth media. After five days, the adherent cells could be used as differentiated macrophages.

### 2.10. Lipid bodies

THP-1 macrophages were treated with intact LDL or modified LDL in THP-1 growth medium in 6-well plates for two days. 4\% paraformaldehyde (PFA)-PBS solution was prepared by dissolving paraformaldehyde powder into PBS at $60^{\circ} \mathrm{C}$ and adjusting the pH to 6.9 . Oil Red O stock solution was made by dissolving 300 mg Oil Red O powder in 100 mL isopropanol, and a working solution was made by mixing three parts of Oil Red O stock solution with two parts of DDI water. After removing the medium from the wells, cells were gently rinsed with sterile PBS twice, and were fixed in 4\% PFA-PBS solution for 30 min . THP-1 macrophages were stained with freshly prepared Oil Red O working solution for 20 min at rt , and counterstained with hematoxylin for 3 min . Coverslips containing cells were rinsed with rt tap water until the water rinsed off clear, mounted on glass slides, and observed under an inverted microscope (Axiovert 200M Inverted Microscope, 20x objective, 10x eyepiece, 0.75 numerical aperture). Lipid bodies were stained red and nuclei were stained blue. Cell fluorescence was quantified using ImageJ software.

## Chapter 3 Results and Discussion

### 3.1. The function of $M t b$-modified LDL

LDL and modified LDL, the main carrier of plasma cholesterol, can cause macrophages to accumulate cholesterol and to become foamy macrophages. THP-1 macrophages were incubated with or without LDL, OxLDL, and Acro-LDL for 2 days after 3 days PMA culture and 5 days resting. Twenty continuous vision fields were selected and cell number as well as cell fluorescence were quantified. Figure 3-1 only showed one vision field among 10 continuous vision fields. Differential interference contrast (DIC) could convert gradients in specimen optical path length into amplitude differences, so that the contrast in unstained, transparent samples could be enhanced. The cell fluorescence in the Cy3.5 detection channel is indicated in red when merge. The results were in Table 3-1. The experiment was previously conducted twice, but the data was inconclusive. The data presented in Table 3-1 was from one representative experiment. We found that, after adding LDL, OxLDL, or Acro-LDL to macrophages, the average fluorescence per cell increased extremely, which demonstrated the number of lipid bodies did indeed increase after macrophages incubating with LDL, OxLDL, or Acro-LDL. However, not much difference of cell fluorescence was observed between intact LDL, OxLDL, and Acro-LDL. Then, the macrophages were incubated with $M t b-$ LDL at the same condition (performed by Dr. Xinxin Yang). We found that the cell fluorescence was much higher in macrophages incubated with Mtb-LDL than macrophages incubated with intact LDL, OxLDL, or Acro-LDL (data not shown). These results indicated that $M t b-L D L$ did indeed induce foamy macrophage formation, and compared with intact LDL, Acro-LDL, or OxLDL, $M t b-$ LDL could contribute much more to lipid bodies formation in macrophages.



Figure 3-1. Inverted microscopy of THP-1 macrophages incubated with or without intact LDL, Acro-LDL, and OxLDL. (A) THP-1 macrophages without adding LDL. (B) THP-1 macrophages incubated with intact LDL. (C) THP-1 macrophages incubated with Acro-LDL. (D) THP-1 macrophages incubated with OxLDL.

|  | Control | Intact LDL | Acro-LDL | OxLDL |
| :---: | :---: | :---: | :---: | :---: |
| Total cell | 75 | 59 | 54 | 22 |
| number |  |  |  |  |
| Average |  | 535,880 | 728,029 | $1,033,748$ |
| fluorescence per | 52,958 |  |  |  |
| cell (a.u.) |  |  |  |  |

Table 3-1. Cell fluorescence. The cells and cell fluorescence were counted and summed up from 10 continuous vision fields of the same experiment. This experiment was performed once.

### 3.2. The characterization of Mtb-modified LDL

### 3.2.1. LDL purification

LDL was isolated from culture supernatants of Hep G2 cells by sequential density ultracentrifugation. Hep G2 cells accumulated not only LDL but also high-density lipoprotein (HDL) in the culture medium. Also, bovine serum albumin (BSA), a major component of FBS, needed to be removed as well. Separation was accomplished by adjusting the density of the medium between centrifugations to allow sequential floatation of the individual lipoprotein fractions. Since the density of HDL was greater than that of LDL, we added potassium bromide so that the density of the solution was between the density of LDL and HDL. In this way, after ultracentrifugation, LDL was segregated into the top fraction, while HDL and albumin were in the bottom fraction.

Figure 3-2 showed SDS-PAGE gels of LDL. The molecular weight of apoB in LDL is about 500 kDa (the arrow pointed out the apoB band). In Figure 3-2A, the large and dark blue band was BSA. Comparing LDL in both gels, apoB band was the only obvious band in Fig 3-2B, whereas many extra bands appeared in Fig 3-2A. Therefore, LDL was purified after ultracentrifugation.


Figure 3-2. SDS-PAGE gels of LDL before and after ultracentrifugation. (A) Before ultracentrifugation, the sample contained a large amount of BSA and other proteins. (B) After ultracentrifugation, BSA and other proteins were removed and LDL was purified.

### 3.2.2. The difference of size or charge in Mtb-modified LDL and other forms of LDL

Relative electrophoretic mobility was determined by agarose gel electrophoresis. The mobility of the band in gel is influenced by both charge and size of the particles. The more negative charge or the smaller size the particle has, the closer the particle is able to move to the positively-charged anode. Compared with intact LDL, OxLDL, and Acro-LDL, the mobility of $M t b-$ LDL was decreased (Figure 3-3). This result suggested that, the charge of Mtb-LDL was more positive and the size of $M t b$-LDL was larger. Therefore, modification of LDL in Mtb cells was different from oxidation or acrolein conjugation.


Figure 3-3. Agarose gels of intact LDL and modified LDL. The gel was stained with Sudan Red 7B. Each lane was loaded with 1 mg protein of LDL or modified LDL with $95 \%$ BSA.

### 3.2.3. The difference of apoB in Mtb-modified LDL and other forms of LDL

Identity of apoB in $M t b-L D L$ was examined by Western blot. Molecular weight 460 kDa was marked based on the overlay of the pre-stained protein standard. The samples we used were LDL commercial, LDL commercial, OxLDL commercial, LDL (after ultracentrifugation), OxLDL synthesized, Acro-LDL synthesized, and Mtb-LDL. All of the samples were BSA free except for $M t b$-LDL (Figure 3-5). The percentage of BSA in $M t b$-LDL was about $70 \%$ based on the bands in SDS gel (Figure 3-5). In Figure 3-4A, as expected, apoB in intact LDL could be detected by anti-apoB antibody. The reason why apoB in LDL commercial showed not only molecular weight 500 kDa but also several other molecular weights was that some apoB was
degraded during storage. Also, due to long time storage, in Figure 3-4A, no clear band with molecular weight 500 kDa was observed in ApoB of LDL we purified, but in Figure 3-4B, apoB in LDL we purified (fresh) showed an apparent molecular weight 500 kDa . OxLDL commercial and Acro-LDL could also be detected by anti-apoB antibody, and both molecular weights were more than 1000 kDa , which means apoB in OxLDL and AcroLDL was cross-linked or aggregated (Figure 3-4A). ApoB in $M t b-L D L$ was not detected by anti-apoB antibody in this gel (Figure 3-4A). But from Dr. Xinxin Yang's Western blot analysis, apoB in Mtb-LDL could be detected by anti-apoB antibody, and the experiment was repeated for multiple times. The samples we used were from the same batch, but the experiments were conducted weeks apart. So the possible reason why apoB in $M t b$-LDL was not detected by anti-apoB antibody in this gel could be protein degradation. In Figure 3-4C, anti-LDL (copper oxidized) antibody could recognize apoB in intact LDL, OxLDL and Acro-LDL, but it could not recognize or could recognize a very small amount of apoB in $M t b-L D L$, which suggested that modification in $M t b$ cells is different from oxidation. In Figure 3-4D, anti-LDL (MDA oxidized) antibody could only recognize apoB in Acro-LDL. This result suggested that modification in $M t b$ cells is not the same as acrolein conjugation. Also, because anti-LDL (MDA oxidized) antibody was monoclonal, whereas anti-apoB antibody and anti-LDL (copper oxidized) antibody were polyclonal, the band in Figure 3-4C was clearer than that in other figures. To sum up, in Western blot analysis, we demonstrated that $M t b-L D L$ was different from OxLDL and Acro-LDL.


Anti-LDL (copper oxidized) antibody
C.



Figure 3-4. Western blot analysis of apoB in intact LDL and modified LDL. In Figure A, B, C, D, each number represents a different lane with different sample. 1: LDL commercial 2: OxLDL commercial 3: LDL (after ultracentrifugation) 4: OxLDL synthesized 5: Acro-LDL synthesized 6: $M t b-L D L$. The samples in Figure B were fresh, but the samples in Figure A, C, D were 2-3 months old. Each lane was loaded with $5 \mu \mathrm{~g}$ protein of LDL or modified LDL.


Figure 3-5. SDS-PAGE of apoB in intact LDL and modified LDL. Each number represents a different lane with different sample. 1: Protein standard 2: LDL (after ultracentrifugation) 3: Acro-LDL synthesized 4: OxLDL synthesized 5: Mtb-LDL

### 3.2.4. Analysis of apoB in Mtb-modified LDL by tryptic digestion on PVDF membrane and MALDI-TOF

To search for modification of amino acid residues of apoB100, the main protein component, in $M t b-L D L$, an on-membrane sample preparation procedure was established. At first, a conventional proteome technique, in-gel tryptic digestion, was used to analyze apoB100. However, the sequence coverage was very low ( $<10 \%$ ) (data not shown here). Then an alternative method, on-membrane tryptic digestion, was employed in this experiment.

It has been demonstrated that PVDF membrane has some advantages for processing lipoprotein. ${ }^{38}$ PVDF membrane could adsorb lipids and proteins, but lipids with low molecular weight could be washed out by $\mathrm{CHCl}_{3}$, which reduces the interference from lipids. Also, PVDF membrane is available for enzymic digestion in the presence of $80 \% \mathrm{CH}_{3} \mathrm{CN}$. This method greatly improved the sequence coverage in MALDI-TOF analysis because of increased tryptic digestion efficiency and peptide recovery. In Table 3-2, the samples we used were LDL commercial and Mtb-LDL, among which LDL commercial was fresh without BSA while MtbLDL was 2 months old with BSA in it. Figure 3-6 and 3-7 showed the matched sequences of apoB100 in intact LDL (commercial) and $M t b-L D L$.

Several studies have shown that some amino acid residues of apoB100 were modified in OxLDL and Acro-LDL. ${ }^{36}$ Some residues were converted to their oxidized forms by the addition of an oxygen atom (+ 16 Da ). 4-hydroxynonenal (HNE) and acrolein are lipid peroxidation products. When HNE was bound to proteins, a 156 Da shift was observed for all of the peptides containing the modified residues. Acrolein could react with Lys to form FDP-Lys (+94 Da) and MP-Lys (+ 76 Da ). For example, in copper oxidized LDL, certain His residues were detected with a 16 Da or 156 Da shift in the $\mathrm{MS} / \mathrm{MS}$ spectrum, certain Trp residues had a 16 Da mass shift, certain Lys residues had a 76 Da mass shift; in Acro-LDL, certain Lys residues had a 76 Da or 94 Da mass shift. In our study, in order to find modified amino acid residues in apoB100 of Mtb-LDL, we first added a mass to certain residues of apoB and digested it using Sequence Editor software, and then matched with experimentally digested peptides. Table 3-3 showed the matched peptides in intact LDL (commercial) or Mtb-LDL with theoretically digested intact apoB or modified apoB. The peaks which are the same in MALDI-TOF spectra of intact LDL
(commercial) and $M t b$-LDL were indicated in red. Figure 3-8 and 3-9 were the MALDI-TOF spectrum of intact LDL (commercial) and Mtb-LDL, respectively. There were 69 potential modified peptides with a 76 Da mass shift on Lys residues; 75 potential modified peptides with a 94 Da mass shift on Lys residues; 11 potential modified peptides with a 16 Da mass shift on His residues; 5 potential modified peptides with a 16 Da mass shift on Trp residues; 21 potential modified peptides with a 156 Da mass shift on His residues; and 4 potential modified peptides with a 156 Da mass shift on Cys residues. For some peaks, there are several matched potential modified peptides, which indicated that those peaks have higher possibility to be modified.

Several peaks with high intensity in MALDI-TOF spectrum of Mtb-LDL were analyzed by MALDI-TOF/TOF. In Figure 3-10 A, B, C, and D, due to no or just few fragment ion, the peaks with $\mathrm{m} / \mathrm{z} 1001,1481,1640$, and 1882 could not be identified as peptides. They could be the lipids in Mtb. In Figure 3-9 E and F, even if there were several fragment ions, no de novo sequencing result was found by the software. The reason could be the incomplete fragment ions. In the future, LC-MS/MS with high resolution could be used to identify the peaks in Mtb-LDL MALDI-TOF spectrum.

|  | Intact LDL (commercial) | Mtb-LDL |
| :---: | :---: | :---: |
| Sequence coverage | $40.4 \%$ | $21.4 \%$ |

Table 3-2. Sequence coverage in MALDI-TOF analysis of LDL.
mdpprpalla ssgvpgtads efaaamsrye tvygncsth ssqscqytld egtkkmglaf estkstsppk eavtsllpql ievsspitlq psaqqlreif nmardqrsra dedytylilr vignmgqtme qevllqtfld daspgdkrla lnseeldiqd lkklvkealk fdpnnylpke smlkttltaf wvngqvpdgv skvlvdhfgy geelgfaslh dlqligklll gaglqlqiss sgviapgaka mntnffhesg leahvalkag qswsvckqvf pglnyctsga elqredralv dtlkfvtqae destegktsy rltldiqnkk wspaklllqm dssataygst pkslhmyanr lldhrvpqtd fnlqnmglpd fhipenlflk lhfksvgfhl psrefqvptf dhfslraryh mkadsvvdll eklgnnpvsk gllifdasss yglscqrdpn tgrlngesnl lkyenyeltl ksdtngkykn shglelnadi lgtdkinsga smklttngrf rehnakfsld dmmgsyaemk fdhtnslnia lkynaldltn ngklrleplk gvefshrlnt diaglasaid gehtgqlysk fllkaeplaf wklktqfnnn eysqdidayn emrdavekpq eftivafvky hinidqfvrk yraalgklpq ddakinfnek lsqlqtymiq nlvktihdlh lfienidfnk lagklkqhie aidvrvlldq vhelieryev dqqiqvlmdk vkklnelsfk qkaealklfl drmyqmdiqq elqrylslvg veqgftvpei ktilgtmpaf ipsrfstpef tilntfhips iplaritlpd frlpeiaipe ilkiqsplft ldanadigng plalkesvkf sskylrtehg ltldsntkyf hklnipkldf thesqisfti egpltsfgls vltakgmalf gegkaeftgr plrltgkidf lnnyalflsp anldflnipl tipemrlpyt
llagaraeee mlenvslvcp elevpqlcsf vflypekdep teisterdlg ckeqhlflpf qaeavlktlq alvqcgqpqc tlyalshavn qltpelkssi aylmlmrsps esqlptvmdf gfasadliei tkddkheqdm mgartlqgip gvklevanmq
klkfiipspk ysnasstdsa gakqteatmt itevalmghl vskrvawhyd mtfrhvgskl sdgrvkytln tipklyqlqv synvqgsget wgpqmsasvh rfnssylqgt fatsnkmdmt hkatlrigqd gkaaltelsl glsldfsskl lhvagnlkga mstnynsdsl tfshdykgst tkdkigvelt dknqdvhsin qandylnsfn fdqyikdsyd sgsstaswiq lgttisferi lvelahqykl dmlikklksf leslqdtkit qvystlvtyi evslqalqka ftidfvemkv kiirtidqml fiiptlnlnd fqvpdlhipe ttsaneagia asitakgesk semlffgnai egksntvasl ssqadlrnei ktllkaghia nkinskhlrv nqnlvyesgs hdahlngkvi gtlknslffs saqqaswqvs arfnqykynq iittpplkdf slwektglke
ilktsqctlk qmigevirkg aelvakpsvs rpvkllsggn syypltgdtr fkynrqsmtl scdtkeerki eekiefewnt ivamsswlqk knslkieipl pllgvldlst tydhkntftl ldskkkqhlf nqitgryedg fskqnallrs gistsattnl gsayqamilg dniyssdkfy yqnneikhiy hfsnvfrsvm shhlvsrksi grtladltll lpffetlqey werqvshake lhdlkiaian nvdtkyqiri ndvlehvkhf ketiqklsnv dyhqfvdetn liinwlqeal sdwwtlaakn tfqtpdfivp
tyilnikrgi isallvppet eeakqvlfld evygfnpegk tyilnikrgi isallvppet eeakqvlfld allkktknse qcdrfkpirt gisplalikg mtrplstlis syknkygmva qvtqtlkled tpkinsrffg elkkltiseq niqranlfnk lvtelrglsd sthilqwlkr vhanpllidv vtylvalipe nyhktnptgt qelldianyl meqiqddctg lkcvqstkps lmiqkaaiqa lrkmepkdkd qadinkivqi lpweqneqvk nfvashiani rkfsrnyqly ksvslpsldp asakiegnli glegkgfept lealfgkqgf fpdsvnkaly vngimlsvek likdlkskev pearaylril nqnlvyesgs lnfskleiqs qvdsqhvghs gtlknslffs aqpfeitast nnegnlkvrf

```
3 1 8 1 ~ k h r h s i t n p l ~ a v l c e f i s q s ~ i k s f d r h f e k ~ n r n n a l d f v t ~ k s y n e t k i k f ~ d k y k a e k s h d
3 2 4 1 ~ e l p r t f q i p g ~ y t v p v v n v e v ~ s p f t i e m s a f ~ g y v f p k a v s m ~ p s f s i l g s d v ~ r v p s y t l i l p ~
3 3 0 1 ~ s l e l p v l h v p ~ r n l k l s l p d f ~ k e l c t i s h i f ~ i p a m g n i t y d ~ f s f k s s v i t l ~ n t n a e l f n q s
3 3 6 1 ~ d i v a h l l s s s ~ s s v i d a l q y k ~ l e g t t r l t r k ~ r g l k l a t a l s ~ l s n k f v e g s h ~ n s t v s l t t k n
3 4 2 1 ~ m e v s v a t t t k ~ a q i p i l r m n f ~ k q e l n g n t k s ~ k p t v s s s m e f ~ k y d f n s s m l y ~ s t a k g a v d h k ~
3 4 8 1 ~ l s l e s l t s y f ~ s i e s s t k g d v ~ k g s v l s r e y s ~ g t i a s e a n t y ~ l n s k s t r s s v ~ k l q g t s k i d d ~
3 5 4 1 ~ i w n l e v k e n f ~ a g e a t l q r i y ~ s l w e h s t k n h ~ l q l e g l f f t n ~ g e h t s k a t l e ~ l s p w q m s a l v ~
3 6 0 1 ~ q v h a s q p s s f ~ h d f p d l g q e v ~ a l n a n t k n q k ~ i r w k n e v r i h ~ s g s f q s q v e l ~ s n d q e k a h l d ~
3 6 6 1 ~ i a g s l e g h l r ~ f l k n i i l p v y ~ d k s l w d f l k l ~ d v t t s i g r r q ~ h l r v s t a f v y ~ t k n p n g y s f s
3 7 2 1 ~ i p v k v l a d k f ~ i i p g l k l n d l ~ n s v l v m p t f h ~ v p f t d l q v p s ~ c k l d f r e i q i ~ y k k l r t s s f a ~
3 7 8 1 ~ l n l p t l p e v k ~ f p e v d v l t k y ~ s q p e d s l i p f ~ f e i t v p e s q l ~ t v s q f t l p k s ~ v s d g i a a l d l ~
3 8 4 1 ~ n a v a n k i a d f ~ e l p t i i v p e q ~ t i e i p s i k f s ~ v p a g i v i p s f ~ q a l t a r f e v d ~ s p v y n a t w s a
3 9 0 1 ~ s l k n k a d y v e ~ t v l d s t c s s t ~ v q f l e y e l n v ~ l g t h k i e d g t ~ l a s k t k g t f a ~ h r d f s a e y e e ~
3 9 6 1 ~ d g k y e g l q e w ~ e
4 0 2 1 ~ k w n f y y s p q s ~ s p d k k l t i f k ~ t
4081 lydyvnkyhw ehtgltlrev ssklrrnlan
4 1 4 1 ~ y q e w k d k a q n ~ l y q e l l t q e g ~ q a s f q g l k d n ~ v f d g l v r v t q ~ e f h m k v k h l i ~ d s l i d f l n f p ~
4 2 0 1 ~ r f q f p g k p g i ~ y t r e e l c t m f ~ i r e v g t v l s q ~ v y s k v h n g s e ~ i l f s y f q d l v ~ i t l p f e l r k h
4 2 6 1 ~ k l i d v i s m y r ~ e l l k d l s k e a ~ q e v f k a i q s l ~ k t t e v l r n l q ~ d l l q f i f q l i ~ e d n i k q l k e m ~
4 3 2 1 ~ k f t y l i n y i q ~ d e i n t i f s d y ~ i p y v f k l l k e ~ n l c l n l h k f n ~ e f i q n e l q e a ~ s q e l q q i h q y ~
4 3 8 1 ~ i m a l r e e y f d ~ p s i v g w t v k y ~ y e l e e k i v s l ~ i k n l l v a l k d ~ f h s e y i v s a s ~ n f t s q l s s q v ~
4 4 4 1 ~ e q f l h r n i q e ~ y l s i l t d p d g ~ k g k e k i a e l s ~ a t a q e i i k s q ~ a i a t k k i i s d ~ y h q q f r y k l q
4 5 0 1 ~ d f s d q l s d y y ~ e k f i a e s k r l ~ i d l s i q n y h t ~ f l i y i t e l l k ~ k l q s t t v m n p ~ y m k l a p g e l t ~
4561 iil
```

Figure 3-6. Distribution of tryptic digested peptides in intact LDL (commercial) identified by
MALDI-TOF analysis. Identified peptides are indicated in red.
mdpprpalla llalpallll llagaraeee mlenvslvcp ssgvpgtads efaaamsrye tvygncsthf ssqscqytld egtkkmglaf eavtsllpql psaqqlreif dedytylilr qevllqtfld lnseeldiqd fdpnnylpke wvngqvpdgv geelgfaslh gaglqlqiss mntnffhesg qswsvckqvf elqredralv destegktsy wspaklllqm pkslhmyanr fnlqnmglpd lhfksvgfhl dhfslraryh eklgnnpvsk yglscqrdpn lkyenyeltl shglelnadi smklttngrf dmmgsyaemk lkynaldltn gvefshrlnt gehtgqlysk wklktqfnnn emrdavekpq hinidqfvrk ddakinfnek nlvktihdlh lagklkqhie vhelieryev vkklnelsfk qkaealklfl drmyqmdiqq veqgftvpei ipsrfstpef iplaritlpd ilkiqsplft plalkesvkf ltldsntkyf thesqisfti vltakgmalf plrltgkidf anldflnipl tipemrlpyt
rsatrinckv elevpqlcsf lklaipegkq vflypekdep tvktrkgnva teisterdlg akrkhvaeai ckeqhlflpf estkstsppk qaeavlktlq ievsspitlq alvqcgqpqc nmardqrsra tlyalshavn vignmgqtme qltpelkssi daspgdkrla lkklvkealk smlkttltaf skvlvdhfgy dlqllgklll sgviapgaka leahvalkag pglnyctsga dtlkfvtqae rltldiqnkk dssataygst lldhrvpqtd fhipenlflk psrefqvptf mkadsvvdll gllifdasss tgrlngesnl ksdtngkykn lgtdkinsga rehnakfsld fdhtnslnia ngklrleplk diaglasaid fllkaeplaf eysqdldayn eftivafvky yraalgklpq lsqlqtymiq lfienidfnk aidvrvlldq dqqiqvlmdk tfiedvnkfl eetkatvavy elqrylslvg ktilgtmpaf tilntfhips frlpeiaipe ldanadigng sskylrtehg hklnipkldf egpltsfgls gegkaeftgr lnnyalflsp
ilktsqctlk
tyilnikrgi qcdrfkpirt syknkygmva elkkltiseq sthilqwlkr nyhktnptgt lkcvqstkps qadinkivqi rkfsrnyqly glegkgfept vngimlsvek qmigevirkg aelvakpsvs rpvkllsggn syypltgdtr fkynrqsmtl scdtkeerki eekiefewnt ivamsswlqk knslkieipl pllgvldlst tydhkntftl ldskkkqhlf nqitgryedg fskqnallrs gistsattnl gsayqamilg dniyssdkfy yqnneikhiy hfsnvfrsvm shhlvsrksi grtladltll lpffetlqey werqvshake lhdlkiaian nvdtkyqiri $q$ ndvlehvkhf ketiqklsnv dyhqfvdetn liinwlqeal sdwwtlaakn tfqtpdfivp kiirtidqml fqvpdlhipe asitakgesk egksntvasl ktllkaghia nqnlvyesgs gtlknslffs arfnqykynq
kdatrfkhlr kytynyeaes evygfnpegk allkktknse isallvppet eeakqvlfld gisplalikg mtrplstlis qvtqtlkled tpkinsrffg niqranlfnk lvtelrglsd vhanpllidv vtylvalipe qelldianyl meqiqddctg lmiqkaaiqa lrkmepkdkd lpweqneqvk nfvashiani ksvslpsldp asakiegnli lealfgkqgf fpdsvnkaly likdlkskev pearaylril skndfflhyi fmenafelpt vefvtnmgii ipdfarsgvq tlhlvsttkt evipplienr lelelrptge ieqysvsaty ssevqipdfd vdlgtilrvn kgvisiprlq aearseilah gtnvdtkkmt snfpvdlsdy asgslpytqt lqdhlnslke pfggkssrdl kmletvrtpa nvysnlynws asysggntst scdgslrhkf ldsnikfshv vkevkidgqf rvssfyakgt tlsltstsdl qsgiikntas eyqadyeslr ffsllsgsln kcsllvlene lnaelglsga vdsknifnfk vsqeglklsn kqtvnlqlqp yslvttlnsd aissaalsas ykadtvakvq apftmtidah tngngklalw saalehkvsa lltpaeqtgt dspikvplll sepiniidal fernrqtiiv vlenvqrnlk kltaltkkyr itendiqial iideiieklk sldehyhirv qiqeklqqlk rhiqnidiqh vinligdfev aekinafrak lqqvkikdyf eklvgfidda dkirevtqrl ngeiqalelp ssaslahmka kfretledtr ltdfaeqysi qdwakrmkal ltdlripsvq infkdlknik nselqwpvpd iylrdlkved fqlphishti evptfgklys levlnfdfqa naqlsnpkin htekntlels ngvivkinnq wtssgkgswk wacprfsdeg lnfskleiqs qvdsqhvghs aqpfeitast nnegnlkvrf nfsagnneni meahvginge flkttkqsfd lsvkaqykkn

```
3 1 8 1 ~ k h r h s i t n p l ~ a v l c e f i s q s ~ i k s f d r h f e k ~ n r n n a l d f v t ~ k s y n e t k i k f ~ d k y k a e k s h d ~
3 2 4 1 ~ e l p r t f q i p g ~ y t v p v v n v e v ~ s p f t i e m s a f ~ g y v f p k a v s m ~ p s f s i l g s d v ~ r v p s y t l i l p ~
3 3 0 1 ~ s l e l p v l h v p ~ r n l k l s l p d f ~ k e l c t i s h i f ~ i p a m g n i t y d ~ f s f k s s v i t l ~ n t n a e l f n q s ~
3 3 6 1 ~ d i v a h l l s s s ~ s s v i d a l q y k ~ l e g t t r l t r k ~ r g l k l a t a l s ~ l s n k f v e g s h ~ n s t v s l t t k n ~
3 4 2 1 ~ m e v s v a t t t k ~ a q i p i l r m n f ~ k q e l n g n t k s ~ k p t v s s s m e f ~ k y d f n s s m l y ~ s t a k g a v d h k ~
341 lslesltsyf siesstkgdv kgsvlsreys gtiaseanty lnskstrssv klqgtskidd
3 5 4 1 ~ i w n l e v k e n f ~ a g e a t l q r i y ~ s l w e h s t k n h ~ l q l e g l f f t n ~ g e h t s k a t l e ~ l s p w q m s a l v ~
3601 qvhasqpssf hdfpdlgqev alnantknqk irwknevrih sgsfqsqvel sndqekahld
3 6 6 1 ~ i a g s l e g h l r ~ f l k n i i l p v y ~ d k s l w d f l k l ~ d v t t s i g r r q ~ h l r v s t a f v y ~ t k n p n g y s f s
3 7 2 1 ~ i p v k v l a d k f ~ i i p g l k l n d l ~ n s v l v m p t f h ~ v p f t d l q v p s ~ c k l d f r e i q i ~ y k k l r t s s f a ~
3781 lnlptlpevk fpevdvltky sqpedslipf feitvpesql tvsqftlpks vsdgiaaldl
3 8 4 1 ~ n a v a n k i a d f ~ e l p t i i v p e q ~ t i e i p s i k f s ~ v p a g i v i p s f ~ q a l t a r f e v d ~ s p v y n a t w s a
3 9 0 1 ~ s l k n k a d y v e ~ t v l d s t c s s t ~ v q f l e y e l n v ~ l g t h k i e d g t ~ l a s k t k g t f a ~ h r d f s a e y e e ~
3 9 6 1 ~ d g k y e g l q e w ~ e g k a h l n i k s ~ p a f t d l h l r y ~ q k d k k g i s t s ~ a a s p a v g t v g ~ m d m d e d d d f s
4 0 2 1 ~ k w n f y y s p q s ~ s p d k k l t i f k ~ t e l r v r e s d e ~ e t q i k v n w e e ~ e a a s g l l t s l ~ k d n v p k a t g v ~
4 0 8 1 ~ l y d y v n k y h w ~ e h t g l t l r e v ~ s s k l r r n l q n ~ n a e w v y q g a i ~ r q i d d i d v r f ~ q k a a s g t t g t ~
4 1 4 1 ~ y q e w k d k a q n ~ l y q e l l t q e g ~ q a s f q g l k d n ~ v f d g l v r v t q ~ e f h m k v k h l i ~ d s l i d f l n f p ~
4 2 0 1 ~ r f q f p g k p g i ~ y t r e e l c t m f ~ i r e v g t v l s q ~ v y s k v h n g s e ~ i l f s y f q d l v ~ i t l p f e l r k h
4 2 6 1 ~ k l i d v i s m y r ~ e l l k d l s k e a ~ q e v f k a i q s l ~ k t t e v l r n l q ~ d l l q f i f q l i ~ e d n i k q l k e m ~
4 3 2 1 ~ k f t y l i n y i q ~ d e i n t i f s d y ~ i p y v f k l l k e ~ n l c l n l h k f n ~ e f i q n e l q e a ~ s q e l q q i h q y ~
4 3 8 1 ~ i m a l r e e y f d ~ p s i v g w t v k y ~ y e l e e k i v s l ~ i k n l l v a l k d ~ f h s e y i v s a s ~ n f t s q l s s q v ~
441 eqflhrniqe ylsiltdpdg kgkekiaels ataqeiiksq aiatkkiisd yhqqfryklq
4501 dfsdqlsdyy ekfiaeskrl idlsiqnyht fliyitellk klqsttvmnp ymklapgelt
4561 iil
```

Figure 3-7. Distribution of tryptic digested peptides in $M t b$-LDL identified by MALDI-TOF
analysis. Identified peptides are indicated in red.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# \& ${ }_{700.2}^{\text {m/z (Mib-LDL }}$ \& Intensity (Mib-LDL)
133575.3 \& Matched Sequence \& ${ }_{700.2}^{\text {m/ }(\text { LDL })}$ \& $$
\begin{aligned}
& \text { Intensity (LDL) } \\
& 49012.2
\end{aligned}
$$ \& Matched Sequence <br>
\hline 1 \& 700.2 \& \& \& 707.2 \& 1424.0 \& <br>
\hline 3 \& 711.6 \& 7064.4 \& AH(+16)LNIK \& \& \& <br>
\hline 4 \& 712.5 \& 22876.6 \& ETIOK(+94) \& \& \& <br>
\hline 5 \& 714.2 \& 9977.5 \& QNALLR/YTLNK(+76) \& 714.3 \& 2436.0 \& QNalle <br>
\hline 6 \& 715.2 \& 22408.6 \& SDTNGK(+94) \& 715.2 \& 5067.1 \& <br>
\hline 7 \& 719.8 \& 7867.0 \& \& 719.6 \& 2174.7 \& <br>
\hline 8 \& 721.5 \& 7205.9 \& \& \& \& <br>
\hline 9 \& 727.7 \& 6324.1 \& \& 727.5 \& 1317.1 \& Latpegk <br>
\hline 10 \& \& \& \& 728.4 \& 1284.8 \& <br>
\hline 11 \& \& \& \& 730.5 \& 8999.1 \& Lvtelr <br>
\hline 12 \& \& \& \& 731.4 \& 1947.2 \& tLpelk <br>
\hline 13 \& 733.6 \& 41265.5 \& \& 733.1 \& 1736.1 \& <br>
\hline 14 \& \& \& \& 734.1 \& 3843.9 \& <br>
\hline 15 \& \& \& \& 736.3 \& 1162.5 \& LYSILK <br>
\hline 16 \& \& \& \& 741.5 \& 1543.4 \& SYNETK/GVIIIPR <br>
\hline 17 \& \& \& \& 742.5 \& 20393.0 \& AalQalr <br>
\hline 18 \& 746.9 \& 2764.8 \& \& 746.6 \& 1743.1 \& FSHVEK <br>
\hline 19 \& 747.9 \& 23218.2 \& \& 747.6 \& 12031.7 \& <br>
\hline 20 \& \& \& \& 748.5 \& 14882.7 \& MLETVR <br>
\hline 21 \& 753.1 \& 30320.8 \& \& 753.2 \& 10229.6 \& <br>
\hline 22 \& 754.1 \& 55354.9 \& EH(+156) NAK \& 754.2 \& 19166.4 \& <br>
\hline 23 \& \& \& \& 756.2 \& 2208.9 \& <br>
\hline 24 \& \& \& \& 758.5 \& 3949.5 \& ІЮЕек <br>
\hline 25 \& \& \& \& 764.5 \& 8285.8 \& infnek/STRSsvk <br>
\hline 26 \& \& \& \& 770.5 \& 1648.2 \& nllvalk <br>
\hline 27 \& 771.7 \& 5130.0 \& \& \& \& <br>
\hline 28 \& \& \& \& 773.5 \& 1419.0 \& TELRVR/LLLMGAR <br>
\hline 29 \& 774.5 \& 2638.3 \& LTALTKK \& \& \& <br>
\hline 30 \& \& \& \& 777.2 \& 1964.4 \& <br>
\hline ${ }^{31}$ \& 780.6 \& 10405.4 \& TSQCTLK \& 780.5 \& 2015.5 \& TSQCTLK <br>
\hline 32 \& \& \& \& 782.5 \& 2721.2 \& NIfNFK <br>
\hline 33 \& \& \& \& 783.5 \& 2787.8 \& <br>
\hline 34 \& \& \& \& 785.5 \& 22282.4 \& FFGEGTK/LQQLKR <br>
\hline 35 \& \& \& \& 789.5 \& 2307.8 \& <br>
\hline 36 \& \& \& \& ${ }_{8}^{801.5}$ \& 7973.4
55526 \& VSSFYAK/FIIPSPK/ALLKKTK <br>
\hline 37 \& ${ }_{805.6}$ \& 5478.3 \& ARYHMK \& 805.5 \& 5552.6 \& ARYHMK <br>
\hline 38 \& 806.8 \& 2217.1 \& \& \& \& <br>
\hline 39 \& \& \& \& 807.5 \& 5186.9 \& <br>
\hline 40 \& \& \& \& 810.6
8135 \& ${ }_{7}^{3361.6}$ \& ${ }_{\text {a }}^{\text {AOIPLLR }}$ TPALHFK <br>
\hline 41 \& 8158 \& \& \& 813.5 \& 7614.6 \& TPALHFK <br>
\hline 44 \& 818.5 \& 7207.8 \& EvSSkLR \& \& \& <br>
\hline 45 \& \& \& \& 823.5 \& ${ }_{1}^{1362.2}$ \& <br>
\hline 46
47 \& \& \& \& 825.5
8276 \& 1797.4
11960 \& <br>
\hline 48 \& \& \& \& 827.6
828.5 \& 1196.0
5842.9 \& $\stackrel{\text { NIKIPSR }}{\text { NYQLYK/LGNNPVSKFKHLRK }}$ <br>
\hline 49 \& \& \& \& 831.5 \& 967.3 \& wKNEVR <br>
\hline 50 \& 834.3 \& 1324.2 \& 1@1®EK( +76$) \mathrm{K}(+76) \mathrm{NK}(+76) \mathrm{HR}$ \& \& \& <br>
\hline 51 \& 835.3 \& 3352.2 \& SYNETK(+94)/ALVDTLK( +76 ) \& 835.4 \& 1638.3 \& <br>
\hline 52 \& 837.6 \& 1361.1 \& Qswsvck \& \& \& <br>
\hline 53 \& 839.7 \& 5131.5 \& \& \& \& <br>
\hline 54 \& 840.6 \& 10032.2 \& FSHVEK(+94)/ \& \& \& <br>
\hline 55
56 \& 841.2 \& 2507.0 \& INFNEK( +76 )STRSSVK ( +76 ) \& \& \& <br>
\hline 57 \& \& \& \& 844.5 \& 1087.3 \& IgVeltgr <br>
\hline 58 \& 847.7 \& 31425.4 \& W(+16)KNEVR/QHLFVK( +76 ) \& \& \& <br>
\hline 59 \& \& \& \& 850.5 \& 3164.0 \& EAQEVFKLNELSFK/FIAESKR <br>
\hline 60 \& 851.5 \& 1839.4 \& LHVAGNLK/AH(+156)LNIK \& \& \& <br>
\hline 61 \& 853.4 \& ${ }^{25655.6}$ \& SHDELPR/ALVDTLK(+94) \& 853.5 \& ${ }_{8}^{44436.1}$ \& SHDELPR <br>
\hline 62
63 \& 860.2
861.3 \& 25455.9

27943.6 \& ITLPDFR/FFGEGTK(776) \& 860.2 \& 8304.6 \& <br>
\hline 63
64 \& 861.3
864.6 \& 27943.6
1376.2 \&  \& 861.1 \& 8113.5 \& <br>
\hline 65 \& 867.4 \& 1873.7 \& inskhle \& \& \& <br>
\hline 66 \& 868.3 \& 4303.3 \& LRLEPLK \& 868.3 \& 3678.2 \& <br>
\hline 67 \& 869.7 \& 31883.2 \& SH(+16)DELPR/YQK(+94)DK( +94 )/EIOIYK( +76 ) \& 869.3 \& 5055.6 \& <br>
\hline 68 \& 874.3 \& 2228.7 \& TSQCTLK( +94 ) \& \& \& <br>
\hline 69 \& 875.2 \& 3775.4 \& KMEPKDKNFATSNK ( +94 ) \& 875.3 \& 1330.8 \& кмеркdк <br>
\hline 70
71 \& \& \& \& 880.5
8854 \& 8893.4 \& EIFNMAR <br>
\hline 72 \& 888.5 \& 7856.8 \& FDK( +94 )YK( +94 ) \& 885.4 \& \& <br>
\hline 73 \& 891.5 \& 4603.6 \& HDAHLNGK \& \& \& <br>
\hline 74 \& \& \& \& 894.5 \& 23864.3 \& <br>
\hline 75 \& 896.6 \& 3000.5 \& \& 896.5 \& 5342.8 \& <br>
\hline 76 \& 898.8 \& 2709.9 \& \& \& \& <br>
\hline 77 \& ${ }_{903.8}^{9066}$ \& 3507.9
48791 \& EKLTALTKNIK $(+77)$ IPSR
KYRAALGK/HFFK( +76 NR \& \& \& <br>
\hline 78

79 \& $$
\begin{aligned}
& 906.6 \\
& 9077
\end{aligned}
$$ \& 48791.1

17470.7 \& KYRAALGK/HFEK(+76)NR
TPALHFK $(+94)$ WK $(+76)$ NEVR \& 907.5 \& 5156.0 \& <br>
\hline 80 \& 908.6 \& 3985.7 \& SLWDFLK \& \& \& <br>
\hline 81 \& \& \& \& 909.5 \& 2468.8 \& Gmalfgegk <br>
\hline 82 \& \& \& \& 913.6 \& 33577.0 \& FFgegtk <br>
\hline 83 \& \& \& \& ${ }_{9}^{915.6}$ \& 9643.7
8360.4 \& SKEVPEAR <br>
\hline 84 \& \& \& \& 916.5 \& 8360.4 \& <br>
\hline 85
86 \& 918.3 \& 4445.7
58388 \& DLK( +94 ) $\operatorname{NIK}(+94)$ \& 918.4 \& 3102.8
52542 \& <br>
\hline ${ }_{87}^{86}$ \& 922.7 \& 8486.1 \& NYQLYK(+94)/LGNNPVSK(+94) \& \& \& <br>
\hline 88 \& \& \& \& 923.5 \& 6077.8 \& Qsfdisvk <br>
\hline 89 \& 925.6 \& 3368.4 \& WK(+94)NEVR \& \& \& <br>
\hline 90 \& 927.7 \& 28294.4 \& QH(+156)LFVK/LHVAGNLK( +76 ) \& \& \& <br>
\hline ${ }_{92}$ \& 928.8 \& 7413.3 \& KLVKEALK/QLKEMK ( +76 ) \& \& \& <br>
\hline ${ }_{93}^{92}$ \& \& \& \& ${ }_{935.6}^{9326}$ \& ${ }_{\text {113 }}^{1137.1}$ \& TGLKEFLK
IKDYFEK <br>
\hline 93
94 \& 947.7 \& 3694.2 \& \& 942.6 \& 2548.0 \& <br>
\hline 95 \& \& \& \& 950.5 \& 1431.1 \& fvtqaegak <br>
\hline ${ }_{9}$ \& \& \& \& 973.6 \& 2037.5 \& YYELEEK/QIDDIDVR <br>
\hline ${ }_{98}^{97}$ \& 990.8 \& 10243.1 \& EERK(+94)IK(+94) \& 983.6 \& 23953.4 \& MGLAFESTK <br>
\hline 99 \& \& \& \& 991.6 \& 5642.3 \& SLhmyanr <br>
\hline 100 \& 997.6 \& 10191.8 \& QELNGNTK(+94) \& \& \& <br>
\hline 101 \& \& \& \& 999.6 \& 27493.4 \& SVGFHLPsR <br>
\hline 104 \& \& \& \& 1005.6 \& 5928.5 \& <br>
\hline 105 \& 1011.3 \& 1473.3 \& TK( +94 ) GTFAHR \& \& \& <br>
\hline 106
107 \& 1014.8 \& 6185.4 \& KH(+16)VAEAICK \& 1012.6 \& 2908.0 \& TGIPPLalik <br>
\hline 108 \& 1017.8 \& 7907.0 \& LATALSLSNK/GDVKGSVLSR/QSFDLSVK(+94)/ \& \& \& <br>
\hline 109 \& \& \& VK( +76$)$ YTLNK ( +76 ) \& \& \& <br>
\hline 110 \& \& \& \& 1021.6 \& 15179.0 \& nNaLDFvtk <br>
\hline 111
112 \& 1023.8 \& 49029.0 \& QVFLYPEK \& 1022.2 \& 1245.2 \& <br>
\hline 113 \& 1024.8 \& 66719.2 \& \& \& \& <br>
\hline 114 \& 1029.8 \& 1499.1 \& ALLK ( +76 )K( +76 ) TK( +76 ) \& 1029.4 \& 1047.5 \& <br>
\hline 115 \& 1030.2 \& 3033.5 \& \& 1030.3 \& 8008.7 \& <br>
\hline 116 \& 1031.3 \& ${ }^{6384.1}$ \& SISAALEHK( +76 ) \& 1031.2 \& 9713.9
31195 \& <br>
\hline 117 \& 1033.8 \& ${ }_{5}^{12066.0}$ \& GAYONNEIK \& 1033.6 \& 3119.5 \& <br>
\hline 119 \& ${ }_{10373}$ \& ${ }_{51294.3}$ \& YOK( +76 ) $\mathrm{DK}(+76) \mathrm{K}(+76)$ \& 1037.2 \& 14035.9 \& <br>
\hline 120 \& \& \& \& 1039.6 \& 7378.4 \& Lapgeltil <br>
\hline
\end{tabular}

| 121 | 1042.8 | 14481.4 | LKFIIPSPK | 1042.6 | 1324.9 | LKFIIPSPK |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 122 |  |  |  | 1043.6 | 4585.4 |  |
| 123 |  |  |  | 1045.7 | 18087.6 | IPSVQINFK |
| 124 |  |  |  | 1047.6 | 4300.6 | FPEVDVLTK |
| 125 | 1053.2 | 2763.3 |  |  |  |  |
| 126 |  |  |  | 1056.6 | 1015.5 | QTEATMTFK |
| 127 | 1058.8 | 4504.3 | VQGVEFSHR/K( +76 ) YRAALGK( +76 )/K( +76 ) GVISIPR |  |  |  |
| 128 |  |  |  | 1061.7 | 5468.0 |  |
| 129 |  |  |  | 1067.7 | 3139.2 |  |
| 130 | 1068.6 | 5535.3 | EVSSK(+94)LRR |  |  |  |
| 131 |  |  |  | 1070.7 | 17961.7 | ieliplpfggk |
| 132 | 1072.7 | 29624.6 | YKNFATSNK/LTLDIQNKK/VNDESTEGK(+94) |  |  |  |
| 133 |  |  |  | 1076.6 | 2220.9 | LVGFIDDAVK |
| 134 | 1081.8 | 2058.1 | LaAyLmlmr | 1081.7 | 10605.8 | LaAylmlmr |
| 135 | 1083.8 | 8934.3 | ENLCLNLHK/KSISAALEHK/ALLK(+94)K( +94 )TK(+94) |  |  |  |
| 136 | 1088.7 | 15803.8 | TGISPLALIK(+76) | 1088.7 | 10505.8 |  |
| 137 | 1090.7 | 8690.2 | gSWKWACPR |  |  |  |
| 138 |  |  |  | 1091.1 | 6337.9 |  |
| 139 | 1094.7 | 31013.5 | VPQTDMTFR/AKVHELIERIK(+76)DYFEK(+76) |  |  |  |
| 140 |  |  | K(+94)YRAALGK ( +94 )/ |  |  |  |
| 141 | 1107.7 | 14822.7 | AQYK( +76 K ( +76 ) NK ( +76 ) |  |  |  |
| 142 |  |  |  | 1110.6 | 1900.0 | KIKGVIIIPR |
| 143 |  |  |  | 1111.7 | 2714.6 | kmglafestk |
| 144 |  |  |  | 1113.7 | 3135.4 |  |
| 145 |  |  |  | 1120.6 | 1684.3 | LTIIFKTELR |
| 146 | 1129.7 | 8849.2 |  |  |  |  |
| 147 | 1137.9 | 2442.4 |  |  |  |  |
| 148 | 1138.7 | 44556.9 | QGFFPDSVNK | 1138.6 | 33912.9 | QGFFPDSVNK |
| 149 150 | 1142.9 | 54366.1 |  | 1141.7 | 20217.5 | EELCTMFIR/HINIDQFVR |
| $\begin{aligned} & 150 \\ & 151 \end{aligned}$ | 1142.9 1149.7 | 34366.1 | INDVLEHVK( +76 ) |  |  |  |
| 152 |  |  |  | 1156.7 | 42945.8 | SPAFtDLHLR |
| 153 |  |  |  | 1160.6 | 10818.0 |  |
| 154 | 1163.9 | 22455.1 | DK(+76)IGVELTGR |  |  |  |
| 155 | 1164.9 | 47111.8 | IEIPLPFGGK(+94) |  |  |  |
| 156 | 1166.7 | 24652.9 | FRETLEDTR/K(+94)LNELSFK(+94)/GSWK(+76) WACPR | 1166.7 | 3752.9 | Fretledtr |
| 157 | 1168.8 | 1765.3 | NIILPVYDK(+94) | 1168.7 | 4401.7 |  |
| ${ }^{158}$ |  |  |  | 1176.6 | 1323.2 | VAWHYDEEK/GNVATEISTER |
| 159 160 | 1177.9 1178.8 | 4776.3 35551.9 | ${ }_{\text {ENLCLNLHK(+94) }}^{\text {VLVDHFGYTK }}$ | 1178.7 | 109053 |  |
| 161 | 1184.0 | 3282.5 | DLKNIIIPSR |  |  |  |
| 162 | 1185.8 | 11644.0 | EVK( +94 )IDGQFR |  |  |  |
| 163 | 1188.7 | 2096.4 | AQYKKNKH( +16 R/ |  |  |  |
| 164 |  |  | AK(+94)VHELIER |  |  |  |
| 165 | 1193.9 | 61054.7 |  |  |  |  |
| 166 | 1195.8 | 119605.0 | FLDMLIK(+94)K(+94) |  |  |  |
| 167 | 1197.9 | 11917.8 | AEKSH(+16)DELPR |  |  |  |
| 168 169 | 12009 | 2322.1 |  |  |  |  |
| 169 170 |  |  |  | 1201.7 1205.7 | 7187.2 1479.8 | $\xrightarrow{\text { LTISEQNIQR }}$ DEPTYILNIK |
| 171 |  |  |  | 1210.7 | 3683.9 |  |
| 172 |  |  |  | 1212.6 | 9380.0 | NSEEFAAAMSR |
| 173 | 12159 | 5126.6 | EVYGFNPEGK( +76 ) |  |  |  |
| $\begin{aligned} & 174 \\ & 175 \end{aligned}$ | 1217.8 12369 | 19814.8 5675.9 | QH(+156)IEAIDVR | 1234.7 | 1190.2 |  |
| 176 |  |  |  | 1238.7 | 8809.4 | Yegleewegk/selahwspak |
| 177 | 1249.9 | 2715.0 |  |  |  |  |
| 178 | 1252.8 | 1836.9 | VAWHYDEEK ( +76 ) |  |  |  |
| 179 | 12578 | 1206.8 | H(+156)KFLDSNIK/AEK(+76)SHDELPR |  |  |  |
| 180 |  |  |  | 1260.7 | 1354.2 | YELKLAPEGK DLKVEDIPLAR |
| $\begin{aligned} & 181 \\ & 182 \end{aligned}$ | 1274.9 | 1042.5 | NMEVSVATTTK(+94) | 1268.8 | 58592.2 | DLKVEDIPLAR |
| 183 |  |  |  | 1275.8 | 5936.9 | Livamsswlqk |
| 184 |  |  |  | 1280.8 | 21146.7 | SDGRVKYtLn/TEVIPPLIENR |
| 185 | 1283.9 | 15359.6 | QH(+156)LFVKEVK |  |  |  |
| 186 | 1291.8 | 989.2 | NRNNALDFVTK/LVAMSSW(+16)LQK | 1291.8 | 11420.5 | NRNNALDFVTK |
| 187 | 1297.8 | 1445.9 | H(+156)INIDQFVR/EELC( +156 ) TMFIR | 1297.7 | 2003.1 |  |
| 188 |  |  |  | 1304.8 | 2226.1 | Kgnvateister |
| $\begin{aligned} & 189 \\ & 190 \end{aligned}$ | 1305.9 | 33839.7 |  | 1306.8 | 47102.3 | IISDYHQQFR/EFQVPTFTIPK |
| 191 |  |  |  | 1308.8 | 12763.5 | gFeptlealfgk |
| 192 | 1311.8 | 3241.4 | YFHK (+76)LNIPK(+76) | 1311.7 | 4732.8 |  |
| 193 | 1313.8 | 1239.6 | NTFTLSCDGSLR VVLADKFIIPGLK/EK(+94)LTALTK( +94 )K(+94) | 1313.8 | 3962.0 | NTFTLSCDGSLR/VLADKFIIPGLK |
| 194 |  |  |  | 1322.8 | 4086.7 | ESQLPTVMDFRNPNGYSFSIPVK |
| 195 | ${ }_{1}^{1325.8}$ | 7025.8 |  | 1325.7 | 6461.7 |  |
| 196 | 1327.9 | 31171.8 | SKPTVSSSMEFK |  |  |  |
| 197 |  |  |  | 1328.8 | 5382.9 |  |
| 198 199 | 1331.9 | 1089.3 | INSRFFGEGTK( +76 ) | 1329.8 | 22047.1 | KLTISEQNIQR |
| 200 | 1339.8 | 8744.9 | DFSLW(+16)EKTGLKIYSLWEHSTK(+76) | 1339.7 | 5538.9 |  |
| 201 | 1349.9 | 2884.4 | insRffgegTk(+94) |  |  |  |
| 202 | 1353.8 | 2686.6 |  | 1353.6 | 1146.9 |  |
| 203 204 | 1368.2 | 5156.2 |  | 1368.2 | 5193.2 |  |
| 205 | 1373.2 | 2895.3 |  | 1369.2 | 6479.2 | IQIQEKLQQLK |
| 206 | 1374.2 | 18848.5 |  | 1374.1 | 3046.3 |  |
| 207 | 1375.3 | 8184.6 |  |  |  |  |
| 208 209 | 1389.0 | 10130.8 |  | 1386.9 | 2312.2 | IaELSATAQEIIK |
| 210 | 1401.9 | 15441.4 | IPSVQINFKDLK/EH(+156)NAKFSLDGK |  |  |  |
| 211 |  |  |  | 1408.8 | 3715.6 | EQHLFLPFSYK |
| 212 |  |  |  | 1411.9 | 7108.2 | QTIIVVLENVQR |
| 213 | 14199 | 48987.6 | IYSLWEH(+156)STK |  |  |  |
| 214 215 | 1423.9 | 12160.5 | MNFKQELNGNTK/VVSLIKNLLVALK/K(+94)LTISEQNIQR/ DLK(+76)SK(+76)EVPEAR/DATRFK(+76)HLRK(+76) | 1423.8 | 942.6 | MNFKQELNGNTKIVSLIKNLLVALK |
| 216 |  |  |  | 1430.9 | 31651.5 | alveqgatvpeik |
| 217 | 1431.0 | 2559.5 | alveqgFtvpeik |  |  |  |
| 218 219 | 1440.1 | 12615.2 |  | 1434.9 | 8527.5 | KIISDYHQQFR/SSRDLKMLETVR |
| 220 | 1441.9 | 35002.6 | TKNSEEFAAAMSR/TTK(+94)QSFDLSVK(+94)/AK(+76)FRETLEDTR | 1441.8 | 2363.2 | tKNseefatamsk |
| 221 | 1444.9 | 5628.3 | YH(+16)WEH(+16)TGLTLR |  |  |  |
| 222 | 1445.9 | 15919.4 | DLSK (+76)EAQEVFK( +76 ) |  |  |  |
| 223 224 | 1447.8 | 3166.9 | DLGQCDRFKPIR | $\begin{aligned} & 1447.8 \\ & 1452.9 \end{aligned}$ | $\begin{aligned} & 4106.0 \\ & 9394.7 \end{aligned}$ | DLGQCDRFKPIR <br> LNGEIQALELPQK/LDFREIQIYKK |
| 225 | 1463.8 | 12416.1 |  |  |  |  |
| 226 | 1465.9 | 14812.9 | VLADK (+76)FIIPGLK( +76 ) |  |  |  |
| 227 | 1468.0 | 1797.3 | GLK(+76)LATALSLSNK( +76 ) |  |  |  |
| 228 | 1480.0 | 77339.8 | $\underset{\text { SK( }+7 \text { ()PTVSSSMEFK }(+76)}{\text { VNESTEGKTYYR }}$ |  |  |  |
| 229 230 | 1485.8 | 4199.5 | vndestegktsyr |  |  |  |
| 230 231 | 1488.0 | 2042.3 |  | 1488.8 | 56493 | AhLDIAGSLEGHLR |
| 232 |  |  |  | 1490.8 | 8598.6 | EAQEVFKAIQSLK |
| 233 | 1502.0 | 6295.1 | VLADKFIIPGLK(+94) |  |  |  |
| 234 235 | 1505.1 | 21123.8 | LK(+94)SLDEHYHIR/FPFPGK(+94)PGIYTR | 1502.9 | 1838.0 | HDAHLNGKVIGTLK/KHKLIDVISMYR |
| 236 |  |  |  | 1505.8 | 15559.2 | igqdilistattnlk |
| 237 238 | 1512.1 | 1660.4 | DFSLWEK(+94)TGLK(+94)/ANLFNK(+94)LVTELR |  |  |  |
| 238 239 |  |  |  | 1512.9 | 3452.9 | NSLKIEIPLPFGGK |
|  | 1527.1 | 13074.1 | FNSSMLYSTAKESQLPTVMDFRK | 1519.9 | 2623.4 |  |


|  |  | AGK( +76 )LK( +76 ) FIIPSPK( +76 ) |
| :---: | :---: | :---: |
| 1533.0 | 26714.9 |  |
| 1538.0 | 2246.9 | ATVAVYLESLQDTK/K(+94)QHLFVK(+94)EVK(+94) |
| 1555.0 | 23319.5 | MDMTFSKQNALLRTLQGIPQMIGEVIR |
| 1563.9 | 12911.6 | FLDSNIKFSHVEK |
| 1568.0 | 25023.4 | YNALDLTNNGK(+76)LR |
| 1574.0 | 40310.6 | IK(+76)FDK(+76) YKAEK ( +76 ) |
| 1577.1 | 4845.2 |  |
| 1590.0 | 2944.3 | IPSVQINFK(+94)DLK(+94)/VK(+94)YTLNK(+94)NSLK(+94) LLK ( +76 )ENLCLNLHK $(+76)$ |
| 1596.1 | 4488.2 |  |
| 1621.1 | 7172.7 | YDFNSSMLYSTAK( +94 ) |
| 1622.1 | 26687.7 | nfatsnkmdmtfsk |
| 1626.9 | 2219.6 | y yeleekivslik |
| 1633.2 | 1870.6 | ALYWVNGQVPDGVSK/EK(+94)LTALTK( +94 )K( +94 ) YR |
| 1640.1 | 131397.7 |  |
| 1644.4 | 2954.1 | QHLRVSTAFVYTK(+94)/LDNIYSSDK( +76 FFYK( +76 ) |
| 1646.1 | 6348.4 | IK ( +94 ) $\mathrm{FDK}(+94) \mathrm{YK}(+94)$ AEK ( +94 ) |
| 1655.3 | 2824.2 | SYNETK(+94)IK(+94)FDK(+94)NTFTLSCDGSLRHK ( +76 ) K( +76 )HK( +76 )LIDVISMYR/HDAHLNGK( +76 )VIGTLK ( +76 ) |
| 1662.1 | 20609.3 |  |
| 1693.1 | 1461.0 | EVYGFNPEGKALLKK/VLVDH(+156)FGYTKDDK/ <br> TSSFALNLPTLPEVK ( +76 )/K(+76)LQSTTVMNPYMK ( +76 ) |
| 1712.2 | 1529.6 | INAFRAKVH(+16)ELIER/FSH(+156)VEKLGNNPVSK/ ITEVALMGHLSCDTK(+94)/VELEVPQLCSFILK(+94)/ NIFNFK (+94)VSQEGLK(+94)/LDFSSQADLRNEIK ( +76 ) |
| 1715.1 | 1929.6 |  |
| 1724.0 | 4578.9 | IVQLLPWEQNEQVK |
| 1726.1 | 3081.8 | KIISDYHQQFRYK/TLLKAGH( +156 IIAWTSSGK |
| 1730.2 | 1897.4 | HEQDMVNGIMLSVEK/LDFSSQADLRNEIK(+94)/ IEFEWNTGTNVDTK(+76) |
| 1751.1 | 3526.5 | LQDFSDQLSDYYEK/LK(+76)FIIPSPKRPVK(+76) |
| 1773.1 | 2364.0 |  |
| 1796.1 | 1275.3 | DNVPKATGVLYDYVNK/ATLYALSHAVNNYHK (+94)/ EK(+76)IAELSATAQEIIK (+76) |
| 1863.0 | 1034.1 | FDKYKAEKSHDELPR |
| 1879.0 | 1692.4 | ALVDTLK(+94)FVTQAEGAK(+94) |
| 1881.0 | 42000.3 | AAIOALRK(+94)MEPK(+94)DK( +94 ) |
|  |  | QAEAVLK(+94)TLOELK ( +94 ) ${ }^{(+94)}$ |
| 1902.0 | 4545.6 | KITEVALMGH(+156)LSCDTK/KITEVALMGHLSC(+156)DTK |
| 1908.0 | 3454.9 | LIK( +94 ) DLK( +94 )SK( +94 )EVPEAR |
| 1924.0 | 4114.1 | EYSGTIASEANTYLNSK(+76) |
| 1928.1 | 854.2 |  |
| 1930.1 | 2839.8 | FEVDSPVYNATW(+16)SASLK/K(+94)MTSNFPVDLSDYPK(+94) |
| 1946.1 | 9572.3 |  |
| 1956.1 | 2055.1 |  |
| 1969.1 | 663.8 | tihdlhlfienidfnk |
| 1978.1 | 2558.6 | TFIEDVNK(+76)FLDMLIK(+76) |
| 2000.0 | 882.7 | IKDYFEKLVGFIDDAVK/QH(+156)LFVKEVKIDGQFR |
| 2017.2 | 2101.5 | KLTISEQNIQRANLFNK |
| 2020.1 | 4181.8 | IEDGTLASK( +94 )TK(+94)GTFAHR |
| 2042.0 | 2775.4 | YKLQDFSDQLSDYYEK/LLQELKKLTISEQNIQR |
| 2045.1 | 994.2 | H(+16)INIDQFVRKYRAALGK/TIHDLHLFIENIDFNK( +76 ) |
| $\begin{aligned} & 2163.1 \\ & 2185.1 \end{aligned}$ | $\begin{aligned} & 2219.4 \\ & 2811.7 \end{aligned}$ | TK(+94)NSEEFAAAMSRYELK(+94) H(+156)INIDQFVRKYRAALGK |


| 1532.9 | 2984.8 |  |
| :---: | :---: | :---: |
| 1535.8 | 1952.2 |  |
| 1541.9 | 1510.4 | QsFdlsvkapykk |
| 1555.0 | 4277.5 | MDMTFSKQNALLR/TLQGIPQMIGEVIR |
| 1563.9 | 23457.1 | FLDSNIKFSHVEK |
| 1565.9 | 9514.0 | avsmpsfiligsdir |
| 1571.0 | 14864.7 | gmalfgegkaeftgr |
| 1581.9 | 7207.9 | hiyaissaalsasyk |
| 1593.0 | 778.6 | LIDVISMYRELLK |
| 1600.9 | 1602.0 |  |
| 1603.0 | 1943.3 | VPQTDMTFRHVGSK/LALWGEhTGQLYSK |
| 1613.9 | 7861.9 | MTSNFPVDLSDYPK |
| 1617.0 | 1172.5 | TSSFALNLPTLPEVK |
| 1621.9 | 17255.6 | nfatsnkmdmtesk |
| 1632.9 | 30469.0 | AlywVngevpdgysk |
| 1635.0 | 7141.9 |  |
| 1636.0 | 3869.6 | LDFSSQADLRNEIK |
| 1642.9 | 2208.7 | AASGTTGTYOEWKDK/RHIQNIDIQHLAGK |
| 1654.9 | 7232.8 |  |
| 1658.0 | 7474.7 | SVSDGIAALDLNAVANK |
| 1664.9 | 1120.3 |  |
| 1667.0 | 2422.3 | gisallvppeteeak |
| 1675.0 | 1588.5 | SDTNGKYKNFATSNK |
| 1676.9 | 8609.0 |  |
| 1680.0 | 8493.1 |  |
| 1699.0 | 2952.7 |  |
| 1702.0 | 2363.8 | atlyalshavnnyhk |
| 1706.1 | 1411.7 | NIQEYLSLLTDPDGK/RQHLRVSTAFVYTK |
| 1717.0 | 5411.2 | LNIPKLDFSSQADLR |
| 1724.1 | 32607.9 | IVQLIPWEQNEQVK |
| 1738.0 | 925.2 |  |
| 1742.0 | 2330.5 | KMTSNFPVDLSDYPK |
| 1746.0 | 14219.7 | NSEEFAAAMSRYELK/KITEVALMGHLSCDTK |
| 1756.0 | 959.2 |  |
| 1764.0 | 6447.8 | EALKESQLPTVMDFR |
| 1769.0 | 1464.7 |  |
| 1776.0 | 27497.3 | NLQNNAEWVYQGAIR |
| 1780.0 | 1410.7 |  |
| 1798.1 | 988.3 |  |
| 1834.1 | 28442.0 | ATFQTPDFIVPLTDLR |
| 1856.1 | 758.4 |  |
| 1874.2 | 3448.6 | EVKIDGQFRVSSFYAK/FSVPAGIVIPSFQALTAR |
| 1883.1 | 2086.6 |  |
| 1889.1 | 4248.9 | VIGNMGQTMEQLTPELKLTIISEQNIQRANLFNK |
| 1905.1 | 595.4 |  |
| 1907.1 | 2434.6 | LQaearsellahwspak |
| 1911.1 | 1433.9 |  |
| 1921.1 | 712.9 |  |
| 1923.0 | 908.5 |  |
| 1929.1 | 2552.8 | NLTDFAEQYSIODWAK/YQIRIQIQEKLQQLK |
| 1932.1 | 516.7 | RNLQNNAEWVYQGAIR |
| 1947.2 | 3345.0 | SPAFTDLHLRYQKDKK/ATLRIGQDGISTSATTNLK/TLLGTMPAFEVSLQALQK |
| 1963.2 | 2614.9 |  |
| 1969.2 | 1032.9 | TIHDLHLFIENIDFNK |
| 1985.2 | 581.2 | nnaldfytksynetiok |
| 1995.1 | 4966.5 | LPQQANDYLNSFNWER/ALLKKTKNSEEFAAAMSR |
| 2014.1 | 10774.9 | SFDYHPFVDETNDKIRNRNNALDFVTKSYNETK/KLRTSSFALNLPTLPEVK |
| 2022.2 | 906.3 | LAAYLMLMRSPSQADINK/YGMVAQVTQTLKLEDTPK |
| 2036.1 | 474.0 | LVGFIDDAVKKLNELSFKLIDVISMYRELLKDLSK |
| 2042.1 | 977.3 | YKLQDFSDQLSDYYEK/LQELKKLTISEQNIQR |
| 2053.3 | 2172.4 | ilgeelgfaslhdlollgk |
| 2073.2 | 1894.7 | ASGSLPYTQTLQDHLNSLK |
| 2089.2 | 456.7 |  |
| 2147.2 | 2228.2 | DQEVLLQTFLDDASPGDKR |
| 2154.2 | 666.1 | YTYNYEAESSSGVPGTADSR/TTLTAFGFASADLIEIGLEGK |
| 2163.3 | 22141.1 |  |
| 2185.3 | 6377.2 |  |
| 2190.3 | 450.1 | EAQEVFKAIQSLKTTEVLR |
| 2203.3 2210.4 | 403.0 2197.9 | QVFLYPEKDEPTYILNIK/IPSVQINFKDLKNIKIPSR |
| 2234.3 | 659.6 | DKDQEVLLQTFLDDASPGDK |
| $\begin{aligned} & 2243.5 \\ & 2251.2 \end{aligned}$ | 949.1 940.1 | vPSYTLLLPSLELPVLHVPR |


| 361 |  |  |  | 2262.4 | 796.9 | DNVFDGLVRVTQEFHMKVK/LPYTIITTPPLKDFSLWEK |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 362 |  |  |  | 2273.4 | 10344.2 |  |
| 363 | 2277.1 | 1432.8 | ALLK( +94 )K( +94 )TK(+94)NSEEFAAAMSR |  |  |  |
| 364 |  |  |  | 2282.3 | 1871.3 | KYTYNYEAESSSGVPGTADSR/EALKESQLPTVMDFRKFSR |
| 365 |  |  |  | 2289.4 | 966.5 |  |
| 366 | 2295.1 | 1340.5 | LEDTPK(+76)INSRFFGEGTK(+76)K(+76) | 2295.4 | 2087.6 |  |
| 367 | 2299.0 | 1386.6 | YLRTEHGSEMLFFGNAIEGK/ |  |  |  |
| 368 |  |  | EVYGFNPEGK ( +94 )ALLK( +94 )K( +94 ) TK( +94 ) / |  |  |  |
| 369 |  |  | HLRVNQNLVYESGSLNFSK(+94) |  |  |  |
| 370 | 2301.1 | 2098.2 | HKLIDVISMYRELLKDLSK/ |  |  |  |
| 371 |  |  | IGVELTGRTLADLTLLDSPIK(+76) |  |  |  |
| 372 |  |  |  | 2366.5 | 769.3 | AQNLYQELLTQEGQASFQGLK/QVFLYPEKDEPTYILNIKR |
| 373 |  |  |  | 2390.4 | 20749.2 | DKDQEVLLQTFLDDASPGDKR |
| 374 | 2405.2 | 888.3 | LQQLK( +76 )RHIQNIDIPHLAGK( +76 ) |  |  |  |
| 375 |  |  |  | 2412.4 | 721.8 |  |
| 376 | 2427.1 | 570.1 | NSLK(+76)IEIPLPFGGK(+76)SSRDLK(+76) |  |  |  |
| 377 |  |  |  | 2431.4 | 1265.3 | TIDQMLNSELQWPVPDIYLR |
| 378 |  |  |  | 2435.4 | 1178.7 | AALGKLPQQANDYLNSFNWER/LTIFKTELRVRESDEETQIK |
| 379 | 2458.1 | 2062.9 | DDKH(+16)EQDMVNGIMLSVEKLIK |  |  |  |
| 380 |  |  |  | 2466.6 | 4644.2 | IADFELPTIIVPEQTIEIPSIK |
| 381 | 2480.0 | 1695.5 | ENFAGEATLQRIYSLWEHSTK/ |  |  |  |
| 382 |  |  | LSLESLTSYFSIESSTK (+94)GDVK( +94 )/ |  |  |  |
| 383 |  |  | YFHK(+94)LNIPK(+94)LDFSSQADLR/ |  |  |  |
| 384 |  |  | IK ( +94 )FDK( +94 ) YK (+94)AEK( +94 )SHDELPR |  |  |  |
| 385 |  |  |  | 2483.5 | 432.2 | IDGQFRVSSFYAKGTYGLSCQRNFVASHIANILNSEELDIQDLK |
| 386 |  |  |  | 2488.6 | 1357.4 |  |
| 387 | 2498.1 | 10005.4 | ADSVVDLLSYNVQGSGETTYDHK |  |  |  |
| 388 |  |  |  | 2509.4 | 4055.0 | DFSAEYEEDGKYEGLQEWEGK |
| 389 | 2520.0 | 7162.6 |  |  |  |  |
| 390 | 2529.1 | 7080.1 | ALLKKTKNSEEFAAAMSRYELK/KITEVALMGHLSCDTKEERKIK/ |  |  |  |
| 391 |  |  | AALGK(+94)LPQQANDYLNSFNWER/ |  |  |  |
| 392 |  |  | HK(+76)LIDVISMYRELLK( +76 )DLSK( +76 ) |  |  |  |
| 393 |  |  | FLDSNIKFSH(+156)VEKLGNNPVSK/ |  |  |  |
| 394 |  |  |  | 2531.4 | 906.8 | NEVRIHSGSFQSQVELSNDQEK/HFVINLIGDFEVAEKINAFRAK |
| 395 | 2541.1 | 3850.4 | DSYDLhDLKIAIANIIDEIIEK/ |  |  |  |
| 396 |  |  | SLWDFLKLDVTTSIGRRQHLR/ |  |  |  |
| 397 |  |  | GSVLSREYSGTIASEANTYLNSK(+94)/ |  |  |  |
| 398 |  |  | NLKH(+156)INIDQFVRKYRAALGK |  |  |  |
| 399 |  |  |  | 2550.5 | 3936.1 | LIDLSIQNYHTFLIYITELLK |
| 400 | 2551.1 | 1637.8 | LIDLSIQNYHTFLIYITELLK/ETIQKLSNVLQQVKIKDYFEK/ |  |  |  |
| 401 |  |  | LFLEETK(+76)ATVAVYLESLQDTK ( +76 ) |  |  |  |
| 402 |  |  |  | 2560.6 | 630.1 |  |
| 403 | 2563.0 | 657.4 | KLTIFKTELRVRESDEETQIK/ |  |  |  |
| 404 |  |  | TTKQSFDLSVKAQYKKNKH(+156)R/ |  |  |  |
| 405 |  |  | VSSFYAKGTYGLSC( +156 )QRDPNTGR/ |  |  |  |
| 406 |  |  | GMTRPLSTLISSSQSCQYTLDAK( +76 / |  |  |  |
| 407 |  |  | VNDESTEGK( +76 )TSYRLTLDIQNK( +76 ) |  |  |  |
| 408 |  |  |  | 2572.5 | 1106.5 |  |
| 409 |  |  |  | 2581.5 | 819.1 | LQDFSDQLSDYYEKFIAESKR |
| 410 | 2587.1 | 567.6 | AEPLAFTFSHDYKGSTSHHLVSR/ |  |  |  |
| 411 |  |  | LFLEETK(+94)ATVAVYLESLQDTK(+94)/ |  |  |  |
| 412 |  |  | LTIFK( +76 )TELRVRESDEETQIK( +76 ) |  |  |  |
| 413 |  |  |  | 2592.5 | 1183.1 | EYSGTIASEANTYLNSKSTRSSVK |
| 414 |  |  |  | 2611.7 | 749.5 | NFVASHIANILNSEELDIQDLKK |
| 415 |  |  |  | 2645.7 | 1223.7 | LPQQANDYLNSFNWERQVSHAK/NRNNALDFVTKSYNETKIKFDK/TSSFALNLPTLPEVKFPEVDVLTK |
| 416 | 2867.2 | 3203.5 | LIDVISMYRELLKDLSKEAQEVFK/ |  |  |  |
| 417 |  |  | LIDLSIONYHTFLIYITELLK( +94 ) $\mathrm{K}(+94) /$ |  |  |  |
| 418 |  |  | K( +76 ) MTSNFPVDLSDYPK( +76 )SLHMYANR/ |  |  |  |
| 419 |  |  | GSVLSREYSGTIASEANTYLNSK( +76 )STR/ |  |  |  |
| 420 |  |  | AEPLAFTFSHDYK( +76 ) GSTSHHLVSRK( +76 ) |  |  |  |
| 421 | 2889.1 | 1785.5 | QTIIVVLENVQRNLKHINIDQFVR/ |  |  |  |
| 422 |  |  | NEIK(+94)TLLK( +94 )AGHIAWTSSGK(+94)GSWK( +94 )/ |  |  |  |
| 423 |  |  | KGNVATEISTERDLGQC(+156)DRFKPIR/ |  |  |  |
| 424 |  |  | LPYTIITTPPLK ( +76 ) DFSLWEK( +76 )TGLK ( +76 ) |  |  |  |
| 425 | 2949.1 | 1223.4 | ATGVLYDYVNKYH (+156)WEH(+156)TGLTLR/ |  |  |  |
| 426 |  |  | ALYWVNGQVPDGVSKVLVDH(+156)FGYTK/ |  |  |  |
| 427 |  |  | K(+94)SISAALEHK( +94 )VSALLTPAEQTGTWK( +94 )/ |  |  |  |
| 428 |  |  | NRNNALDFVTK ( +76 ) SYNETK( +76 )IK( +76 )FDK ( +76 ) / |  |  |  |
| 429 |  |  | LEVLNFDFQANAQLSNPK(+76)INPLALK(+76) |  |  |  |
| 430 | 2997.7 | 1189.8 | YNRQSMTLSSEVQIPDFDVDLGTILR/ |  |  |  |
| 431 |  |  | ITLIINWLQEALSSASLAH(+156)MKAKFR/ |  |  |  |
| 432 |  |  | TTEVLRNLQDLLQFIFQLIEDNIK(+94)/ |  |  |  |
| 433 |  |  | WK(+94)NEVRIHSGSFQSQVELSNDQEK( +94 )/ |  |  |  |
| 434 |  |  | GDVK(+94)GSVLSREYSGTIASEANTYLNSK(+94) |  |  |  |
| 435 |  |  |  | 3235.0 | 293.8 |  |
| 436 |  |  |  | 3441.3 | 481.6 | YSQPEDSLIPFFEITVPESQLTVSQFTLPK/TLQELKKLTISEQNIQRANLFNKLVTELR |
| 437 | 3574.2 | 1542.2 | GLLIFDASSSWGPQMSASVH(+16)LDSKKKQH(+16)LFVK/ |  |  |  |
| 438 |  |  | LTRKRGLKLATALSLSNKFVEGSH(+16)NSTVSLTTK/ |  |  |  |
| 439 |  |  | LRRNLQNNAEW(+16)VYQGAIRQIDDIDVRFQK |  |  |  |

Table 3-3. Peaks in MALDI-TOF spectra of intact LDL (commercial) or Mtb-LDL and the matched sequences. The peaks which are the same in Mtb-LDL MALDI-TOF spectrum and LDL

MALDI-TOF spectrum were indicated in red.




Figure 3-8. MALDI-TOF spectrum of intact LDL (commercial).




Figure 3-9. MALDI-TOF spectrum of $M t b-L D L$. The peaks that are identified by matching with theoretically digested apoB100 are indicated with "a"; the peaks that match those of the intact LDL (commercial) spectrum are indicated with "b"; the peaks with potential oxidized His or Trp are indicated with c ; the peaks that match those of both theoretically digested apoB100 and the intact LDL (commercial) spectrum are indicated with "a/b"; the peaks that match those of the intact LDL (commercial) spectrum and have potential oxidized His or Trp are indicated with "b/c".






Figure 3-10. MALDI-TOF/TOF spectra for tryptic peptides from Mtb-LDL. (A) MALDITOF/TOF spectrum of the parent ion $\mathrm{m} / \mathrm{z}$ 1001. (B) MALDI-TOF/TOF spectrum of the parent ion $\mathrm{m} / \mathrm{z}$ 1481. (C) MALDI-TOF/TOF spectrum of the parent ion $\mathrm{m} / \mathrm{z}$ 1640.(D) MALDITOF/TOF spectrum of the parent ion $\mathrm{m} / \mathrm{z}$ 1882. (E) MALDI-TOF/TOF spectrum of the parent ion $\mathrm{m} / \mathrm{z}$ 1036. (F) MALDI-TOF/TOF spectrum of the parent ion $\mathrm{m} / \mathrm{z} 1024$.

### 3.3. Conclusion and future directions

In this study, we successfully purified LDL from Hep G2 cells, prepared OxLDL, AcroLDL, and Mtb-LDL. THP-1 macrophages were used to mimic human monocyte-derived macrophages. From macrophage experiment, we demonstrated that $M t b$-LDL could cause foamy macrophage formation to a much higher degree compared with intact LDL, OxLDL and AcroLDL. Using agarose gel electrophoresis, we found the charge and size of $M t b$-LDL was different from that of intact LDL, OxLDL and Acro-LDL. Mtb-LDL particles were more positively charged, and the size was larger. Using Western blot analysis, we further demonstrated that MtbLDL was different from intact LDL, OxLDL and Acro-LDL, because anti-apoB antibody, antiLDL (copper oxidized) antibody and anti-LDL (MDA oxidized) antibody could not recognize Mtb-LDL. Finally, an on-membrane tryptic digest experiment and MALDI-TOF analysis were carried out to analyze the modification on apoB100 of Mtb-LDL, and some potential modified peptides were found.

In the future, we will test serum from pediatric TB patients for the presence of Mtb-LDL. We still need to further analyze apoB100 from $M t b-$ LDL by using MS/MS to identify the modified peptide sequences. Also, using the Mtb-LDL, we will select antibodies specific for $M t b-\mathrm{LDL}$ to undertake the diagnosis of TB from serum samples.

## References

1. Global Tuberculosis Report 2014. World Health Organization: 2014.
2. Seddon, J. A.; Shingadia, D., Epidemiology and disease burden of tuberculosis in children: a global perspective. Infect Drug Resist 2014, 7, 153-165.
3. Donoghue, H. D.; Spigelman, M.; Greenblatt, C. L.; Lev-Maor, G.; Bar-Gal, G. K.; Matheson, C.; Vernon, K.; Nerlich, A. G.; Zink, A. R., Tuberculosis: from prehistory to Robert Koch, as revealed by ancient DNA. Lancet Infect Dis. 2004, 4 (9), 584-592.
4. Kaufmann, S. H. E., Robert Koch, the Nobel Prize, and the ongoing threat of tuberculosis. N. Engl. J. Med. 2005, 353 (23), 2423-2426.
5. Parrish, N. M.; Dick, J. D.; Bishai, W. R., Mechanisms of latency in Mycobacterium tuberculosis. Trends Microbiol. 1998, 6 (3), 107-112.
6. Peyron, P.; Vaubourgeix, J.; Poquet, Y.; Levillain, F.; Botanch, C.; Bardou, F.; Daffé, M.; Emile, J.-F.; Marchou, B.; Cardona, P.-J., Foamy macrophages from tuberculous patients' granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog. 2008, 4 (11), e1000204.
7. Glickman, M. S.; Jacobs, W. R., Jr., Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell 104 (4), 477-485.
8. Russell, D. G.; Cardona, P.-J.; Kim, M.-J.; Allain, S.; Altare, F., Foamy macrophages and the progression of the human tuberculosis granuloma. Nat. Immunol. 2009, 10 (9), 943-948.
9. Hesseling, A.; Schaaf, H.; Gie, R.; Starke, J.; Beyers, N., A critical review of diagnostic approaches used in the diagnosis of childhood tuberculosis. Int. J. Tuberc. Lung Dis. 2002, 6 (12), 1038-1045.
10. Khan, E. A.; Starke, J. R., Diagnosis of tuberculosis in children: increased need for better methods. Emerg. infect. dis. 1995, 1 (4), 115-123.
11. Marais, B. J.; Gie, R. P.; Schaaf, H. S.; Beyers, N.; Donald, P. R.; Starke, J. R., Childhood pulmonary tuberculosis: old wisdom and new challenges. Am. J. Respir. Crit. Care Med. 2006, 173 (10), 1078-1090.
12. Russell, D. G., Who puts the tubercle in tuberculosis? Nature Rev. Microbiol. 2007, 5 (1), 39-47.
13. Li, A. C.; Glass, C. K., The macrophage foam cell as a target for therapeutic intervention. Nat. Med. 2002, 8 (11), 1235-1242.
14. Rohde, K.; Yates, R. M.; Purdy, G. E.; Russell, D. G., Mycobacterium tuberculosis and the environment within the phagosome. Immunol Rev. 2007, 219 (1), 37-54.
15. Russell, D. G.; Barry, C. E.; Flynn, J. L., Tuberculosis: what we don't know can, and does, hurt us. Science 2010, 328 (5980), 852-856.
16. Puissegur, M.-P.; Lay, G.; Gilleron, M.; Botella, L.; Nigou, J.; Marrakchi, H.; Mari, B.; Duteyrat, J.-L.; Guerardel, Y.; Kremer, L., Mycobacterial lipomannan induces granuloma macrophage fusion via a TLR2-dependent, ADAM9-and $\beta 1$ integrin-mediated pathway. $J$. Imтипol. 2007, 178 (5), 3161-3169.
17. Cáceres, N.; Tapia, G.; Ojanguren, I.; Altare, F.; Gil, O.; Pinto, S.; Vilaplana, C.; Cardona, P.-J., Evolution of foamy macrophages in the pulmonary granulomas of experimental tuberculosis models. Tuberculosis 2009, 89 (2), 175-182.
18. Daigneault, M.; Preston, J. A.; Marriott, H. M.; Whyte, M. K. B.; Dockrell, D. H., The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLOS ONE 2010, 5 (1), e8668.
19. Gordon, S.; Taylor, P. R., Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 2005, 5 (12), 953-964.
20. Gordon, S. B.; Irving, G. R. B.; Lawson, R. A.; Lee, M. E.; Read, R. C., Intracellular trafficking and killing of Streptococcus pneumoniae by human alveolar macrophages are influenced by opsonins. Infect. Immun. 2000, 68 (4), 2286-2293.
21. (a) Murao, S.-i.; Gemmell, M. A.; Callaham, M. F.; Anderson, N. L.; Huberman, E., Control of macrophage cell differentiation in human promyelocytic HL-60 leukemia cells by 1 , 25-dihydroxyvitamin D3 and phorbol-12-myristate-13-acetate. Cancer Res. 1983, 43 (10), 49894996; (b) Olsson, I.; Gullberg, U.; Ivhed, I.; Nilsson, K., Induction of differentiation of the human histiocytic lymphoma cell line U-937 by $1 \alpha$, 25-dihydroxycholecalciferol. Cancer Res. 1983, 43 (12 Part 1), 5862-5867; (c) Fleit, H. B.; Kobasiuk, C. D., The human monocyte-like cell line THP-1 expresses Fc gamma RI and Fc gamma RII. J. Leukoc. Biol. 1991, 49 (6), 556-565.
22. Caire-Brändli, I.; Papadopoulos, A.; Malaga, W.; Marais, D.; Canaan, S.; Thilo, L.; de Chastellier, C., Reversible lipid accumulation and associated division arrest of Mycobacterium avium in lipoprotein-induced foamy macrophages may resemble key events during latency and reactivation of tuberculosis. Infect. Immun. 2014, 82 (2), 476-490.
23. Brown, M. S.; Goldstein, J. L., Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu. Rev. Biochem. 1983, 52 (1), 223-261.
24. Kruth, H. S.; Huang, W.; Ishii, I.; Zhang, W.-Y., Macrophage foam cell formation with native low density lipoprotein. J. Biol. Chem. 2002, 277 (37), 34573-34580.
25. Luc, G.; Fruchart, J. C., Oxidation of lipoproteins and atherosclerosis. Am. J. Clin. Nutr. 1991, 53 (1), 206S-209S.
26. Witztum, J. L.; Steinberg, D., Role of oxidized low density lipoprotein in atherogenesis. J. Clin. Invest. 1991, 88 (6), 1785-1792.
27. Estruch, M.; Sánchez-Quesada, J. L.; Ordóñez Llanos, J.; Benítez, S., Electronegative LDL: a circulating modified LDL with a role in inflammation. Mediat. Inflamm. 2013, 2013.
28. Watanabe, K.; Nakazato, Y.; Saiki, R.; Igarashi, K.; Kitada, M.; Ishii, I., Acroleinconjugated low-density lipoprotein induces macrophage foam cell formation. Atherosclerosis 2013, 227 (1), 51-57.
29. Levitan, I.; Volkov, S.; Subbaiah, P. V., Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid. Redox Signal. 2010, 13 (1), 39-75.
30. Parthasarathy, S.; Raghavamenon, A.; Garelnabi, M. O.; Santanam, N., Oxidized lowdensity lipoprotein. In Free Radicals and Antioxidant Protocols, Springer: 2010; pp 403-417.
31. Miller, Y. I.; Viriyakosol, S.; Binder, C. J.; Feramisco, J. R.; Kirkland, T. N.; Witztum, J. L., Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J. Biol. Chem. 2003, 278 (3), 1561-1568.
32. Mertens, A. N. N.; Holvoet, P., Oxidized LDL and HDL: antagonists in atherothrombosis. FASEB J. 2001, 15 (12), 2073-2084.
33. Sultan, K. M., Assessment of body mass index and nutritional status in pulmonary tuberculosis patients. J. Fac. Med. Baghdad 2012, 54 (3), 204-208.
34. Uchida, K.; Kanematsu, M.; Sakai, K.; Matsuda, T.; Hattori, N.; Mizuno, Y.; Suzuki, D.; Miyata, T.; Noguchi, N.; Niki, E., Protein-bound acrolein: potential markers for oxidative stress. Proc. Natl. Acad. Sci. 1998, 95 (9), 4882-4887.
35. Esterbauer, H.; Schaur, R. J.; Zollner, H., Chemistry and biochemistry of 4hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 1991, 11 (1), 81128.
36. Obama, T.; Kato, R.; Masuda, Y.; Takahashi, K.; Aiuchi, T.; Itabe, H., Analysis of modified apolipoprotein B-100 structures formed in oxidized low - density lipoprotein using LC - MS/MS. Proteomics 2007, 7 (13), 2132-2141.
37. Kruger, N. J., The Bradford method for protein quantitation. In The protein protocols handbook, Springer: 2009; pp 17-24.
38. (a) Bunai, K.; Nozaki, M.; Hamano, M.; Ogane, S.; Inoue, T.; Nemoto, T.; Nakanishi, H.; Yamane, K., Proteomic analysis of acrylamide gel separated proteins immobilized on polyvinylidene difluoride membranes following proteolytic digestion in the presence of $80 \%$ acetonitrile. Proteomics 2003, 3 (9), 1738-1749; (b) Iwamatsu, A., S - Carboxymethylation of proteins transferred onto polyvinylidene difluoride membranes followed by in situ protease digestion and amino acid microsequencing. Electrophoresis 1992, 13 (1), 142-147; (c) Yamaguchi, M.; Nakazawa, T.; Kuyama, H.; Obama, T.; Ando, E.; Okamura, T.-a.; Ueyama, N.; Norioka, S., High-throughput method for N-terminal sequencing of proteins by MALDI mass spectrometry. Anal. Chem. 2005, 77 (2), 645-651.
