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Abstract of the Dissertation

Risk Assessment in Intraday Trading

by

Fangfei Dong

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2016

In these days, high frequency hedge funds have developed as a new and
successful category of hedge funds. Accordingly, risk management is now
obliged to keep pace with this market and takes intraday-risk management
into consideration.

To aim to contribute on answering questions on intraday risk management, the
dissertation consists of three parts. In first part, an intraday risk assessment
model incorporating long-range dependence and heavy-tailness is suggested.
Fractional integrated time series model with nearly elliptical distributed
innovations are used to compute more accurate intraday level value at risk.
Second part investigates the market efficiency by analyzing the relation
between market sentiment and price movement. A theoretical consumption-
based equilibrium model and empirical analysis are employed to show various
behavior under different market sentiment and cross-sectional stocks. The
third parts further analyzes the long-range dependence behaviors in equity
markets cross-sectionally on different sampling frequencies and various market
conditions.
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Chapter 1
Risk Assessment Model for Intraday Market

1.1 Introduction and Motivation

Financial industry participants are required by regulations to use mathe-
matical models to forecast the risk associated with portfolios consisting of
potentially hundreds and thousands of assets. A standard metric for repre-
senting this risk is known as Value-at-Risk (VaR). VaR refers to the maximum
expected loss that will not be exceeded under normal market conditions over
a predetermined period at a given confidence level (Jorion, 2001, p.xxii). VaR
has been largely adopted by financial institutions as a foundation of day-to-day
risk measurement since worldwide adoption of the Basel II Accord, beginning
in 1999 and nearing completion today. In these days, VaR is probably the
most widely used as a foundation of day-to-day risk measurement in financial
industry.

As stated in Dionne, Duchesne and Pacurar 2009, financial institutions
generally calculate their VaR at the end of the business day, to measure
their total risk exposure over the next day. For regulated capital adequacy
purposes, banks usually compute the market VaR daily and then re-scale it
to a 10-day horizon.

Over the last decades, technology has transformed the way we trade securities
and other financial instruments. The speed of trading has been constantly
increasing. In many financial markets such as stock markets and future
markets, the traditional way, human intermediation via floor trading or the
telephone, has been abandoned and substituted by human intermediaries
with an electronic limit order book or another automated trading system.
This allows orders to buy and sell appearing and matching at a faster rate
than ever before. Consequently, ”High frequency finance hedge funds” have
emerged as a new and successful category of hedge funds. According to the
SEC, high-frequency traders are “professional traders acting in a proprietary
capacity that engage in strategies that generate a large number of trades on
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daily basis.” (SEC Concept Release on Equity Market Structure, 75 Fed.
Reg. 3603, January 21, 2010).

For these high frequency traders, the horizon of their investment is generally
less than a day. Therefore, their risk should be evaluated on a shorter time
horizon than daily time intervals. In addition, agents who provide service
to high frequency traders, such as brokers, should also have the ability to
calculate the risk exposure as fast as their clients. In another word,risk
management is now obliged to keep pace with this market and takes intraday-
risk management into consideration. Moreover, as noted by Gourieroux and
Jasiak 2010, and Dionne, Duchesne and Pacurar 2009, banks also use intraday
risk analysis for internal control of their trading desk. For example, a trader
could be asked at 11 a.m. to give his IVaR for the rest of the day.

Nowadays, high frequency trading takes account for large and larger volume
in the market. Hendershott and Riordan (2011) find that HFT accounts for
about 42% of (doublecounted) Nasdaq volume in large-cap stocks and 17%
of volume in small-cap stocks. Brogaard (2012) similarly finds that 68% of
trades have an HFT on at least one side of the transaction. As a consequence,
A rapidly increasing attention from both financial industry and academia is
focused on intraday risk management these days. Basel III requirements apply
to intraday risk and liquidity measures, and pertain to intraday liquidity
source and tools, monitoring tools and stress management.

However, existing methods for risk measure calculation are mainly restricted
to Gaussian short memory models, which due to their derivation from assump-
tions with weak correlations, fast decay autocorrelations show rapid decay
of probabilities for extreme events, known in the jargon as thin tails and
short memory. Such models represent poor fit if directly used on intraday risk
management since it is well known that intraday data displays fetures such
as long memory, volatility clustering and excess leptokurtosis. Inaccuracies
introduced by short memory Gaussian approximation or by dimension reduc-
tion techniques require large safety margins to be applied to VaR forecasts,
thereby exaggerating the true VaR and requiring excess capital to be held
back in reserve in less volatile market conditions, which becomes a even more
serious issue if adopted by intraday risk evaluation.

To build an intraday risk assessment system and to minimize the disadvantage
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discussed in previous paragraph, a bottom-up approach is adopted and we
need to model the returns of each asset and the dependence structure among
them first, and then to model the probability distribution of portfolio returns.
Autoregressive conditional heteroscedastic (ARCH) models introduced by
Engle(Engle 1982) and their extensions to generalized ARCH (GARCH)
models introduced by Bollerslev (Bollerslev 1986) capture two stylistic features
of financial returns: volatility clustering and excess leptokurtosis. Accordingly,
ARMA-GARCH models have been widely used in the industry to modell
asset returns, and recently more complicated innovation distributions begin
to be incorporated into ARMA-GARCH for a more realistic modeling.

A copula is a multivariate probability distribution for which the marginal
probability distribution of each variable is uniform. Copulas are used to
describe the dependence between random variables. Here we adopt a copula
to model the dependence among assets.These types of models have seen as
new development in the financial industry.

Intraday data generally displays long memories. To capture this feature, the
ARMA-GARCH model is modified and the returns of each asset follow a
fractional and fractionally integrated ARMA-GARCH (FARIMA-FIGARCH)
process.

To forecast VaR for a portfolio of assets where the assumed asset return
process is FARIMA-FIGARCH, the dependence among each asset’s FARIMA-
FIGARCH innovation is modeled with a copula function. In this way, one
accounts for the heavy tails and volatility clustering of the individual as-
sets separately from the dependence structure, among them, with its own
heavy tails. This is referred to as a copula FARIMA-FIGARCH model.
Quasi-maximum likelihood estimation is adopted here. We first estimates
FARIMA-FIGARCH models for each individual asset with maximum likeli-
hood estimation. Then we estimate the parameters of a copula dependence
structure for the standardized residuals of each FARIMA-FIGARCH model.

To construction of the VaR of an estimated copula FARIMA-FIGARCH
model, Monte Carlo and closed form expressions (for the probability function
or for the characteristic function) will be adopted.

Another important component of the system is data cleaning. The data
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cleaning fills in missing data which are not observed in raw data. The missing
data are recovered by the simple and multiple regression methods.

With considering large system which may have hundreds of thousands of
assets, a factor analysis are also introduced here. The factor analysis is used
for reducing the dimension of portfolio and to find important hidden factors
having an effect on the portfolio risk. Two factor analyses are provided,
including principal component analysis and GH-distributed factor analysis.

To wrap it up, he high speed risk assessment provided by conventional methods
has been generally limited to Gaussian or low dimensional factor models,
and has not been previously applied to long memory financial time series
exhibiting clustering volatility with heavy tailed innovation process. In this
article, we build a model based on multivariate long memory processes with
volatility clustering and heavy tails allows accessing the risk of portfolios in
intraday level. We believe this will contribute to risk assessment on intraday
level and could be used in intraday portfolio optimization.

1.2 Data Cleaning

Before analyzing the data with FARIMA-FIGARCH model with GH inno-
vations, the data is cleaned and missing data filled in. Financial data is
inevitable has missing data problem. The common method to deal with this
is back filling.

1.2.1 A General Backfill Method

By definition, a time series include two fields: date/time and value. Unfortu-
nately, the data we are using not usually have value at same date/time, or
data is not available at some date/time we are interested in. Therefore, we
need to fill in the missing data.

To be more precise, denote the returns by (r
(i)
t )t∈T for i-th asset. And T (i) is

the set of times that r(i) is accessible, T (i)
is the set of times that r(i) is not

accessible.
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1. T (i) ∩ T (i)
= ∅;

2. T = T (i) ∪ T (i)
, for all i.

Factor Model

Assume the following relation:

r
(i)
t = α + β1f

(1)
t + ...+ βdf

(d)
t + ε

(i)
t ,

where f
(j)
t , j = 1, ..., d are the factors, which have no missing data, and ε

(i)
t

are i.i.d random variables following normal distribution N(0, (σ(i))2).

OLS Regression

For each asset i, fit the factor model by minimizing the least squared error:

θ̂ = arg min
∑
t∈T (i)

ξ̂2
t (1.1)

= arg min
∑
t∈T (i)

(
r

(i)
t − (α + β1f

(1)
t + ...+ βdf

(d)
t )
)2

, (1.2)

where θ̂ = (α, β1, ..., βd), and ξ̂t are the sample error.

This optimization gives

(α̂, β̂1, ...β̂d)
′ = (F ′F )−1F ′y (1.3)

Then in order to fill in missing data, two methods can be considered:

1. Without Bootstrapping :

For t ∈ T (i), let the filled-in data be

r̂
(i)
t = α̂ + β̂1f

(1)
t + ...+ β̂df

(d)
t .
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2. With Bootstrapping :

For t ∈ T (i), first generate a sample error ε̂
(i)
t from N(0, (̂σ(i))2), where

(̂σ(i))2 be the sample variance of the error. Then the filled-in data will
be

r̂
(i)
t = α̂ + β̂1f

(1)
t + ...+ β̂df

(d)
t + ε̂

(i)
t .

Maximum Likelihood

For each asset i, fit the model by maximizing the log likelihood function

θ̂ = arg max l(θ;y
(i)

T (i) ,y
(i)

T (i)), (1.4)

where yT denotes {yt : t ∈ T }, yT denotes {yt : t ∈ T }, and (to simplify
notation, index i is omit)

l(θ;yT ,yT ) =− T ln
√

2π − n lnσ − 1

2σ2

∑
t∈T (i)

(
yt − α− β1f

(1)
t − ...− βdf

(d)
t

)2

(1.5)

− 1

2σ2

∑
t∈T

(
yt − α− β1f

(1)
t − ...− βdf

(d)
t

)2

. (1.6)

In this method, the filled-in data is given by the optimization. However it
can be shown that this method gives the same results with OLS regression
without bootstrapping when it is assumed that the data is missing or not is
independent with factors. In other cases, the log-likelihood function needs to
be revised and EM algorithm can be applied to estimate.

Back to our case, we use benchmark indices as regressors and adopt both
simple and multiple regressions to do the backfilling.

1.2.2 Data Cleaning with the simple regression method

Assume we have a benchmark index (for example S&P 500 index) return time
series data for some given frequency (e.g. 1 minute); the benchmark index
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return time series data has no missing values; and one has an asset return
time series data having missing values. Let I = {1, 2, ....T} be thegiven index
set for all time steps.

Let (X(j))j∈I be the time series data for S&P 500 index return, and (Y (j))j∈I
be the time series data for the given asset return data having missing values.
The index for the missing value is defined by Imissing and Imissing ⊂ I. That
is to say Y (k)’s values when k ∈ Imissing are missing. Let Iexist = I/Imissing.
If I = Imissing, it is impossible to fill up the missing data using the proposed
method.

Assume that

Y (j) = α + βX(j) + εj (1.7)

where j ∈ Iexist, then by OLS

β̂ =
Σj∈Iexist(Y (j)− Ȳ )(X(j)− X̄)

Σj∈Iexist(X(j)− X̄)2
(1.8)

α̂ =
Ȳ

βX̄
(1.9)

where X̄ = 1
N

Σj∈IexistX(j) and Ȳ = 1
N

Σj∈IexistY (j), and N is the number of
element of Iexist.

Fill in the missing data by using:

Y (k) = α̂ + β̂X(k) (1.10)

where k ∈ Imissing.

1.2.3 Data Cleaning with the multiple regression method

Sometime we need to adopt M different benchmark indices with no missing
data to backfill an asset. Then

Let (Xi(j))j∈I be the time series of the i-th market index. Use the following
multi-variate regression model:

Y (j) = α + ΣM
0 βiXi(j) + εj (1.11)
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The estimate of coefficients B = (α, β1, ...βM)′ are

B̂ = (X ′X)−1X ′Y (1.12)

where Y = (Y (j1), Y (j2), ...Y (jN))′ and

X =


1 X1(j1) · · · XM(j1)
1 X1(j2) · · · XM(j2)
...

...
. . .

...
1 X1(jN) · · · XM(jN)


for Iexist = {j1, j2, ...jN}.

Fill the missing data by

Y (k) = α̂ + ΣM
0 β̂iXi(k) (1.13)

where k ∈ Imissing.

1.3 FARIMA-FIGARCH Model

The asset returns has been recognized not independent through time, and most
returns processes tend to exhibit volatility clustering. Autoregressive condi-
tional heteroskedasticity (ARCH) model is first introduce by Engle(1982),
and following it, generalized autoregressive conditional heteroskedasticity
(GARCH) and exponential generalized autoregressive conditional heteroscedas-
tic (EGARCH) were proposed by Bollerslev (1986) and Nelson (1991). Mean-
while, more and more empirical studies have noted the extreme degree of
persistence of shocks to the conditional variance process(Bollerslev, Chou,
and Kroner (1992)).

On the other hand, in the 1990s, many empirical studies document the pres-
ence of apparent long-memory in the autocorrelations of squared or absolute
returns of various financial asset prices, such as Breidt, and Crato (1994),
Dacorogna et al. (1993), Ding, Granger, and Engle (1993), and Harvey (1993).
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Motivated by these observations, Bailliea, Bollerslev,and Mikkelsen 1996 intro-
duced the Fractionally Integrated Generalized AutoRegressive Conditionally
Heteroskedastic, or FIGARCH, class of processes.

As documented in Bailliea, Bollerslev,and Mikkelsen 1996, the FIGARCH
process combines many of the features of the fractionally integrated process
for the mean together with the regular GARCH process for the conditional
variance. In particular, the FIGARCH model implies a slow hyperbolic
rate of decay for the lagged squared innovations in the conditional variance
function, although the cumulative impulse response weights associated with
the influence of a volatility shock on the optimal forecasts of the future
conditional variance eventually tend to zero, which is similar to weakly
stationary GARCH processes.

For the estimation, an approximate Maximum Likelihood Estimation (MLE)
procedure was first discussed in Bailliea, Bollerslev,and Mikkelsen (1996).
Chung (1999) suggested a slightly different version and provide detailed
discussions about the estimation.

A stochastic process rt is said to be the fractionally integrated ARMA (FI-
ARMA) process of the orders p and q, or the FIARMA(a, d,m) process, if it
is defined by

φa(L)(1− L)d(rt − µ) = θm(L)εt, (1.14)

where L is the backward shift operator defined by LjXt = Xt−j, and φa, θm
are two polynomials with degree of a,m respectively, εt are the innovations
with mean 0 and variance σ2.

In order to see how the FARIMA model can be used to describe long-range
dependence. We will start with a simple case that a = m = 0.

For a model FARIMA(0, d, 0), it can be written as

(1− L)dXt = εt.

Now we can rewrite the model as a moving average(MA) model with infinite
lags as follows,

Xt = (1− L)−dεt, (1.15)
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or, equivalently when the following power expansion converges,

Xt =
∞∑
j=0

bjεt−j, (1.16)

where the coefficients {bj} are given by, b0 = 1, and

bj =
Γ(j + d)

Γ(j + 1)Γ(d)
, j ∈ N (1.17)

with Γ(p) =
∫∞

0
tp−1e−tdt is the gamma function. It follows that when

−∞ < d < 1/2, the series
∑∞

j=0 bjεt−j converges in L2(Ω). Then we can
safely say the MA(∞) representation satisfies FARIMA(0, d, 0).

Here furthermore, we define the basic range for d to be −1/2 < d < 1/2,1

since we can always simply put the integer part of d into the φ(L) part. Now,
we can define the fractional integrated part (1− L)d by means of expansion,

(1− L)d =
∞∑
j=0

πjL
j, (1.18)

where π0 = 1 and

πj =

j∏
k=1

k − 1 + d

k
=

Γ(j − d)

Γ(j + 1)Γ(−d)
, j ∈ N. (1.19)

The following proposition shows the relation between FARIMA models and
long-range dependence.
Proposition 1 (Brockwell and Davis 1991, pp. 522-523). If X = (Xt)t∈Z
is FARIMA(0, d, 0) with −1/2 < d/1/2, d 6= 0, then the auto-covariance
function γ(k) = EX0Xk is given as

γ(0) = σ2 Γ(1− 2d)

Γ2(1− d)
, and (1.20)

γ(k) = σ2 (−1)kΓ(1− 2d)

Γ(k − d+ 1)Γ(1− k − d)
∼ c|k|2d−1 (1.21)

1d = −1/2 is not included due to the consideration of invertability.
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as k →∞, where

c = σ2 Γ(1− 2d)

Γ(d)Γ(1− d)
. (1.22)

Thus, if and only if 0 < d < 1/2, FARIMA(0, d, 0) has long-range dependence.

Formally, consider the FARIMA model on price returns as in 1.23, we can
define rt as

rt = µ+ φ−1
p (L)(1− L)−dθm(L)εt, , (1.23)

if d < 1/2 and φa(z) has no roots inside unit circle, the process rt is well
defined, causal and stationary. In addition, if d > −1/2 and roots of Phip(z)
lie outside unit circle, it is invertible.

The long-range dependence is only is not existing in return process itself, but
also in the volatility process. Therefore, the same fractional integration is also
introduced to model stochastic volatility. A fractional integrated GARCH
model (FIGARCH) is expressed as in Chung (1999),

ψp(L)(1− L)d(ε2t − σ2) = (1− β(L))vt, (1.24)

εt =
√
htut, (1.25)

vt = ε2t − ht, (1.26)

where ut, t ∈ Z are i.i.d. standardized residuals with mean 0 and unit variance.
When 0 < d0 < 1, FIGARCH model exhibits long-range dependence in
variance.

In this work, we will focus only on FIGARCH models with low degrees, that
is, p ≤ 1, q ≤ 1. To ensure the positivity of the conditional variances ht, t ∈ Z,
the following conditions for FIGARCH(1, d, 1) are imposed as in Baillie et al.
(1996)

β − d ≤ ψ ≤ 1

3
(2− d), (1.27)

d(ψ − 1− d
2

) ≤ β(d− β + ψ). (1.28)
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In Chung (2001), another condition is use

0 ≤ ψ ≤ β ≤ d0 ≤ 1. (1.29)

A general condition for non-negative conditional variance as given by Conrad
and Haag (2006) is shown in the following proposition.
Proposition 2 (Conrad and Haag (2006)). Let the coefficients gj and fi
be the functions of the fractional differencing parameter d such that gj =
fjgj−1 =

∏j
i=1 fi, with fj = j−1−d

j
for j ∈ N and g0 = 1. Then the conditions

are

κ1 = d+ ψ1 − β1, and κi = β1κi−1 + (fi − ψ1)(−gi−1), for i ≥ 2, (1.30)

or, alternatively,

κi = β2
1κi−2 + [β1(fi−1ψ1) + (fi − ψ1)fi−1](−gi−2) for all i ≥ 3. (1.31)

Here the FARIMA-FIGARCH structure is summarized as follows

φa(L)(1− L)d0(rt − µ) = θm(L)εt, (1.32)

ψp(L)(1− L)d(ε2t − σ2) = (1− β(L))vt, (1.33)

εt =
√
htut, (1.34)

vt = ε2t − ht, (1.35)

where

φa(L) = 1−
a∑
j=1

φjLj, (1.36)

θm(L) = 1 +
m∑
j=1

θjLj, (1.37)

ψp(L) = 1−
p∑
j=1

ψjLj, (1.38)

βq(L) =

q∑
j=1

βjLj, (1.39)

and µ is the unconditional mean of rt, σ
2 is the unconditional variance of εt,

εt are the innovations and ut are the standardized residuals with mean 0 and
unit variance. The stationary conditions is given as

12



1. −1
2
< d0 <

1
2
, and roots of φa(z) lie outside unit circle.

2. 0 ≤ d < 1, roots of ψp(z) lie outside unit circle.

3. for p = q = 1, 0 ≤ ψ1 ≤ β1 ≤ d ≤ 1.

1.4 Generalized Hyperbolic Innovations

In this section, the generalized hyperbolic (GH) distributions and their char-
acteristics will be summarized as GH distribution will be used to model the
innovation distribution.

As in many other literature, the non-Gaussian distributions with fat-tails and
excess kurtosis and skewness are haevily used to model financial return. Here
we will generalized hyperbolic distribution family as it allows heavy tails and
asymmetry. Also GH distributions are infinitely divisible, which is a high
desired property since the standardized residuals ut from FARIMA-FIGARCH
model is interpreted as a aggregation of external stationary effects that might
be seen in an more frequent sampling or even in continuous time.

A random vector X is said to have a multivariate GH distribution if X can
be expressed as a normal mean-variance mixture distribution

X
d
= µ+Wγ +

√
WAZ, (1.40)

where Z ∼ Nk(0, Ik) is standard k-dimensional normal distributed random
vector, A is a d × k real matrix, µ, γ ∈ Rd, and W ≥ 0 is a scalar-valued
random variable independent of Z and having a Generalized Inverse Gaussian
distribution GIG(λ, χ, ψ).

A random variable W is said to have a generalized inverse Gaussian (GIG)
distribution if its probability density is given by

fGIG(x;λ, χ, ψ) =
χ−λ(

√
χψ)λ

2Kλ(
√
χψ)

xλ−1 exp

(
−1

2

(
χx−1 + ψx

))
, (1.41)

for x > 0, and where χ, ψ > 0, and Kλ is a modified Bessel function of the
third kind with index λ. The parameters satisfy χ > 0, ψ ≥ 0 if λ < 0,
χ ≥ 0, ψ > 0 if λ > 0, and χ > 0, ψ > 0 if λ = 0.
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By letting Σ = AA′, we denote a GH distributed random vector by

X ∼ GHd(λ, χ, ψ, µ, γ,Σ). (1.42)

The univariate GH distribution is obtain with d = 1. The joint density when
Σ is not singular is given by, for x > 0,

fGH(x) = c
Kλ− d

2

(√
(χ+ (x− µ)′Σ−1(x− µ))(ψ + γ′Σ−1γ)

)
e(x−µ)′Σ−1γ(√

(χ+ (x− µ)′Σ−1(x− µ))(ψ + γ′Σ−1γ)
) d

2
−λ

,

(1.43)

where the normalizing constant is given by

c =

(√
χψ
)−λ

(ψ + γ′Σ−1γ)
(d/2)−λ

(2π)d/2|Σ|1/2Kλ

(√
χψ
) . (1.44)

One advantage of GH distribution family is that they are closed under linear
transformation.
Theorem 1 (Linear transformation of GH). If X ∼ GHd(λ, χ, ψ, µ, γ,Σ),
and

Y = BX + b

with B ∈ Rk×d and b ∈ Rk. Then

Y ∼ GHd(λ, χ, ψ,Bµ+ b, Bγ,BΣB′).

Many common-used distributions can be obtained as special cases or limiting
cases of GH. Here we describe the skewed Student’s t-distribution as the
special case of GH distribution, with ψ = 0, λ = −ν/2, χ = ν. The skewed t
has the following density

fskewed-t(x) = c
K ν+1

2

(√
(ν + σ−1(x− µ)2)(σ−1γ2)

)
e(x−µ)σ−1γ(√

(ν + σ−1(x− µ)2)(σ−1γ2)
)− ν+1

2
(

1 + σ−1(x−µ)2

ν

) ν+1
2

,

(1.45)
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where the normalizing constant is

c =
2

2−(ν+1)
2

Γ(ν/2)
√

(πν)σ
. (1.46)

Generalized hyperbolic distribution can capture the heavy-tailedness. The
tail behavior of GH is given by

fGH(x;λ, χ, ψ, µ, σ, γ) ∼ |x|λ−1e(∓α+β)x, x→ ±∞, (1.47)

where α =
√
χψ and β = σ−1γ.

1.5 Estimation

1.5.1 Fraction Differencing Parameter

Considering a FARIMA(0, d, 0) model, the fractional differencing parameter
d has a close relation with the Hurst index (self-similarity) H. As in Taqqu
(2002), it can be illustrated by the following property. If X is a Gaussian
FARIMA(0,d,0) time series with d ∈ (0, 1/2), then n→∞,

1

nH

[ns]∑
t=1

Xt → BH(s), (1.48)

where H = d+ 1/2, {BH(s), s ∈ R} is an fractional Brownian motion. The
auto-covariance function in this case then follows

γ(n)
∆
= Cov(X(0), X(n)) ∼ cn2d−1, n→∞, (1.49)

or the spectral density function

g(λ) ∼ Cλ−2d, λ→ 0+, (1.50)

where

γ(n) =

∫ π

−π
g(λ) cosnλdλ, n ∈ Z. (1.51)

15



For a general FARIMA(a, d,m) model as in (1.23), the spectral density is
given by, for −π < λ ≤ π,

g(λ) =
σ2

2π

∣∣1− eiλ∣∣−2d |φ(eiλ)|2

|θ(eiλ)|2
. (1.52)

For Gaussian X = (Xn), an estimation can be considered to maximize the
criterion (proportional to the log likelihood after omitting a constant),

− 1

2N
log |Σ(η)| − 1

2N
X ′Σ(η)−1X, (1.53)

where η denotes the parameter vector η = (σ2, d, φ1, .., φa, θ1, .., θm), Σ(η) is
the matrix with (i, j) entry being γ(i − j; η), and X = (X1, ..., XN)′. Note
that the criterion above can be approximated by

− 1

2π

∫ π

−π
log g(λ; η)dλ− 1

4π

∫ π

−π

I(λ)

g(λ; η)
dλ, (1.54)

where I(λ) is the periodogram

I(λ) =
1

2πN

∣∣∣∣∣
N∑
n=1

Xne
inλ

∣∣∣∣∣
2

, (1.55)

and g(λ; η∗) > 0 is assumed for all λ where η∗ denote the closed-form solution.

Furthermore, the integrals are approximated by a discrete sum. Thus finally
the following approximation is considered,

− 1

2π

N−1∑
j=1

[
log g(λj; η) +

I(λj)

g(λj; η)

]
, (1.56)

where λj = 2πj
N

. The estimates maximize the approximated criterion (1.56) is
called Whittle estimates.

For a simple model as FARIMA(0, d, 0), the following estimated in a closed-
form are proposed by Kashyap and Eom (1988)

d̂ = −1

2

∑N−1
j=1 log |1− eiλ| log I(λj)∑N−1

j=1 (log |1− eıλj |)2
. (1.57)
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Another local estimator introduced by Geweke and Porter-Hudak (GPH)
(1983) is also considered to estimate d. Let us separate the fractional part
and ARMA part, and rewrite the FIARMA model as follows,

(1− L)dXt = wt (1.58)

φ(L)wt = θ(L)εt. (1.59)

Then the spectral density satisfies

gX(λ) = |1− eiλ|−2dgw(λ). (1.60)

Then the pooled periodogram follows the linear form

log IX(λ) = log gw(0)− 2d log

∣∣∣∣2 sin
λ

2

∣∣∣∣+ log
gw(λ)

gw(0)
+ log

IX(λ)

gX(0)
(1.61)

Given a bandwidth parameter M, the local log-periodogram regression esti-
mator is defined as the minimum of the local least-squares criterion,

d̂ = arg min
M∑
j=1

(
log I(λj)− 2d log

∣∣∣∣2 sin
λj
2

∣∣∣∣)2

, (1.62)

where λj = 2πj
N
, j = 1, ...,M . Thus solve for d̂ gives

d̂GPH = −1

2

∑M
j=1(gj − ḡ) log Ij∑M

j=1(gj − ḡ)2
, (1.63)

where gj = log
∣∣∣2 sin

λj
2

∣∣∣, ḡ = M−1
∑M

j=1 gj, and Ij = IX(λj). The bandwidth

parameter is chosen to be M = N0.65.

1.5.2 FARIMA-FIGARCH with Gaussian Innovations

In this section, we consider the FARIMA-FIGARCH model

φa(L)(1− L)d0(rt − µ) = θm(L)εt, (1.64)

ψp(L)(1− L)d(ε2t − σ2) = (1− β(L))vt, (1.65)
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εt =
√
htut, (1.66)

vt = ε2t − ht, (1.67)

with (ut) i.i.d standard normal distributed random variables, thus εt follows
N (0, ht). Then, as suggested in Chung (1999), the approximated log-likelihood
under Gaussian assumption can be written as

logL(η; r1:T ) = −T
2

log(2π)− 1

2

T∑
t=1

log ht −
1

2

T∑
t=1

ε2t
ht
, (1.68)

where parameter vector η = (µ, d0, φ1, ..., φa, θ1, ..., θm, σ
2, d, ψ1, ..., ψp, β1, ..., βq),

r1:T = (r1, ..., rT ), and (ht) and (εt) are the filtered conditional variances and
innovations based on the given η. The filtering procedure for (ht) and (εt)
are simply as follows

εt =
φa(L)

θm(L)
(1− L)d0(rt − µ), (1.69)

vt =
ψp(L)

1− β(L)
(1− L)d(ε2t − σ2), and, (1.70)

ht = ε2t − vt. (1.71)

In order to get better local maximum for (1.68), the initial point for η
is produced by separating fractional integrated part and ARMA part as
following,

1. Estimate d0 based on (rt) by use of GPH estimator.

2. Filter wt = (1− L)d0(rt − µ) with µ is the sample mean of (rt).

3. Estimate (wt) as ARMA(a,m) model.

4. Filter εt = φa(L)
θm(L)

wt.

5. Estimate d based on ε2t − σ2 with σ2 is the sample variance of (εt).

6. Estimate ψ, β by maximizing (1.68) with the given d as estimated from
previous step.
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1.5.3 GH Innovations

The estimation procedure of generalized hyperbolic innovations is adopted
from McNeil, Frey and Embrects (2005). It is a modified EM algorithm
so-called MCEMC (multi-cycle expectation conditional estimation), and given
as following.

Let θ[k] denotes the parameter vector at k-th iteration step.

1. Set iteration k = 1 and initialize the stating value of θ[1]. For example,
set µ,Σ to be sample mean and sample covariance matrix S respectively,
and γ = 0.

2. Calculate the weights δ
[k]
i and η

[k]
i by

δ
[·]
i = E(W−1

i |Xi; θ
[·]), (1.72)

η
[·]
i = E(Wi|Xi; θ

[·]), (1.73)

where

Wi|Xi, θ ∼ GIG
(
λ− d/2, (Xi − µ)′Σ−1(Xi − µ) + χ, ψ + γ′Σγ

)
(1.74)

are the latent subodinator.

3. Computer the average of δ
[k]
i and η

[k]
i

δ̄[k] =
1

N

N∑
i=1

δ
[k]
i and η̄[k] =

1

N

N∑
i=1

η
[k]
i . (1.75)

4. For a symmetric model set γ[k+1] = 0. Otherwise set

γ[k+1] =
1

N

∑N
i=1 δ

[k]
i (X̄ −Xi)

δ̄[k]η̄[k] − 1
. (1.76)

5. Updates the location and dispersion by

µ[k+1] =
1

N

∑N
i=1 δ

[k]
i Xi − γ[k+1]

δ̄[k]
(1.77)
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Σ[k+1] =
|S|1/dΨ
|Ψ|1/d

, (1.78)

where

Ψ =
1

N

N∑
i=1

δ
[k]
i

(
Xi − µ[k+1]

) (
Xi − µ[k+1]

)′ − η̄[k]γ[k+1](γ[k+1])′ (1.79)

6. Set

θ[k,2] = (λ[k], χ[k], ψ[k], µ[k+1],Σ[k+1], γ[k+1])′. (1.80)

Calculate δ
[k,2]
i , η

[k,2]
i and ξ[k,2] by (1.72)(1.73) and

ξ[·] = E
(
log(Wi)|Xi; θ

[·]) . (1.81)

7. Maximize the following functionQ(λ, χ, ψ; θ[k,2]) to obtain λ[k+1], χ[k+1], ψ[k+1],

Q(λ, χ, ψ; θ[·]) =(λ− 1)
N∑
i=1

ξ[·] − 1

2
χ

N∑
i=1

δ[·] − 1

2
ψ

N∑
i=1

η[·] (1.82)

− 1

2
Nλ log(χ) +

1

N
λ log(ψ)−N log(2Kλ(

√
χψ))

8. Increment k → k + 1 and go to step 2. Repeat untill convergence.

1.6 Risk Assessment

1.6.1 Dependency Structure

Once the marginal stock process is calibrated in FARIMA-FGARCH model,
the filtered innovations of multiple assets then can be coupled by use of the
idea of copula. A d-dimensional copula C is a d-dimentional cumulative
function on [0, 1]d with standard uniform margins. Sklar’s Theorem stats that
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every multivariate cumulative function F with continuous marginals F1, ..., Fd
can be written as

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)), (1.83)

for some unique copula function C. It can be seen also in the form

C(u1, ..., ud) = F (F−1
1 (u1), ..., F−1

d (ud)), (1.84)

where F−1
i , i = 1, ..., d are the inverse (quantile) function of Fi since Fi is

continuous thus well-defined.

The process considered here can be obtained by an affine transform of a process
with identity dispersion matrix Σ = Id and null location vector µ = 0. The
transformed process then can be written in spherical coordinated. In general,
the transformed process is not spherically symmetric. The d-dimensional
generalized hyperbolic random vector X = (X − 1, ..., Xd) is an example.
More generally, let us consider a normal mean-variance mixture in stochastic
representation

X = m(W ) +
√
WAZ, (1.85)

with a measurable function m : [0,∞)→ Rd here specified as

m(W ) = µ+Wγ, (1.86)

where µ is the location vector, γ is skewness vector, Z ∼ Nd(0, Id) thus
AZ ∼ N (0,Σ) the dispersion matrix Σ = AA′, and W is a positive random
variable independent of Z. The transformation to spherical coordinates will
simply gives identity dispersion matrix and it will transform W . The inde-
pendent random variable W , after transformation, introduces non-spherically
symmetric parameters into Z.

If the non-spherically symmetric directions for a multivariate random process
are confined to a finite dimensional subspace, the process is nearly spherical.
By the same terminology, before application of affine transformation, yields
the definitions of nearly elliptical if there are a finite number of non-spherical
dimensions, and elliptical if all dimensions are spherical after transform.

There several explicit and useful examples of multivariate nearly elliptical
distributions. We can estimate the parameters of these distribution, that is,
of the copulas.
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In the follows, we will look at two copulas: Gaussian and generalized hyper-
bolic.

Gaussian Copula

The Gaussian copula is obtained from multivariate normal distribution,

CΣ(u) = NΣ(Φ−1(u1), ...,Φ−1(ud)), (1.87)

where Σ is a positive definite correlation matrix, and Φ−1 is the inverse
distribution function of univariate standard normal distribution. One of the
major drawback of this copula is the lack of lower tail dependence.

A multivariate random vector with a standard normal marginal and a Gaussian
copula of correlation matrix Σ is Gaussian N (0,Σ). Therefore sampling from
the Gaussian copula is a simple process,

1. Compute the Cholesky decomposition A of Σ, i.e., AA′ = Σ.

2. Generate d-dimensional standard normal vector Z = (Z1, ..., Zd)
′ from

N (0, Id).

3. Compute the Gaussian sample by X = AZ.

4. Generate the copula sample by ui = Φ(Xi), for i = 1, ..., d.

Once the copula sample U = (u1, ..., ud) is obtained, each marginal sample
can be computed by F−1

i (ui) for i = 1, ..., d.

When the marginal distribution is also Gaussian, the joint distribution will
be Gaussian as well. In this case, the VaR can be computed directly. But
when the marginal innovation is GH, it can not be computed directly. The
simulation-based computation will be applied.

Multivariate Generalized Hyperbolic Copula

From the normal mean-variance mixture construction (1.85) with the subordi-
nator W having the generalized inverse Gaussian (GIG) distribution, X has
a multivariate generalized hyperbolic (MGH) distribution. The joint density
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function is given by

fGH(x) = c
Kλ− d

2

(√
(χ+ (x− µ)′Σ−1(x− µ))(ψ + γ′Σ−1γ)

)
e(x−µ)′Σ−1γ(√

(χ+ (x− µ)′Σ−1(x− µ))(ψ + γ′Σ−1γ)
) d

2
−λ

,

(1.88)

where the normalizing constant is given by

c =

(√
χψ
)−λ

(ψ + γ′Σ−1γ)
(d/2)−λ

(2π)d/2|Σ|1/2Kλ

(√
χψ
) . (1.89)

When assuming the marginals shares the same subordinator W , the they are
joined with the MGH copula, then the innovations follows the multivariate
generalized hyperbolic distribution. A MGH scenario can be generated by
use of the mean-variance construction,

1. Draw a sample Z from d-dimensional multivariate normal distribution
N (0,Σ).

2. Draw a sample W from the generalized inverse Gaussian distribution
GIG(λ, χ, ψ),

3. Generate the sample X from the mean-variance mixture construction
(1.85).

1.6.2 Value at Risk

Value at Risk (VaR) is used heavily to measure the risk. Recall that VaR with
confidence level α is defined as the smallest number such that the probability
that the loss exceed VaR is no larger than (1−α). Formally, given the return
X,

VaRα(X) = inf(l ∈ R : P(−X > l) ≤ 1− α) = inf(l : F (−l) ≤ 1− α).
(1.90)

Financial log returns are express as a multivariate probability distribution
function. From the FARIMA-FIGARCH model, the joint distribution is
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transformed to a standard form. It is written as a FARIMA-FIGARCH
prediction plus an innovation. For the purpose of VaR, we do not need the
full high dimensional stochastic returns. We can reduce the VaR evaluation to
a low dimensional space, and operates with this space of the low dimensional
marginals, which express the probability of returns within this space only.
Recall that a elliptical or nearly elliptical distribution can be reduced to spher-
ical or nearly spherical by an affine transformation. The MGH distribution,
considered in details here, is nearly elliptical with an exceptional dimension
for the skewness vector. We work in the low dimensional space defined by the
(spherically transformed) portfolio and by the exceptional dimensions. Thus
for MGH, we have two essential dimensions for the marginal used to evaluate
VaR.

1.6.3 Direct Computation From Density

Suppose the multivariate random vector X follows GHd(λ, χ, ψ, µ,Σ, γ), recall
that X can be written as

X
d
= µ+ γW +

√
(W )Z, (1.91)

where W ∼ GIG(λ, χ, ψ) and Z ∼ N (0,Σ) are independent.

Consider Xt is the log return at time t and generated by the FARIMA-
FIGARCH filter. Thus, we can write

Xt = µt−1 +Dt−1Ut, (1.92)

where µt−1 is the conditional mean given by FARIMA, Dt−1 is the con-
ditional std given by FIGARCH, and Ut is standardized residual follows
Ut ∼ GH(λ, χ, ψ, µU ,Σ, γ) with

µU = −γ
√
χ

ψ

Kλ+1(
√
χψ)

Kλ(
√
χψ)

. (1.93)

It ensures the mean of Ut is 0. Then we have

Xt ∼ GH(λ, χ, ψ, µt−1 +Dt−1µU , Dt−1ΣD′t−1, Dt−1γ). (1.94)
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Furthermore, the portfolio return with weight w, Yt = 〈w,Xt〉 follows univari-
ate GH distribution,

Yt ∼ GH(λ, χ, ψ, µY , σ
2
Y , γY ), (1.95)

where

µY = w′uu−1 + w′Dt−1µU = w′uu−1 − w′Dt−1γ

√
χ

ψ

Kλ+1(
√
χψ)

Kλ(
√
χψ)

, (1.96)

σ2
Y = w′Dt−1ΣD′t−1w, and, (1.97)

γY = w′Dt−1γ (1.98)

The VaR at confidence level α is the solution of the equation

α = P(Yt < −VaRα) =

∫ −VaRα

−∞
fYt(y)dy, (1.99)

where fYt is the probability density function of Yt.

In order to numerically solve it for VaRα, we can approxiate the integral by∫ −VaRα

−∞
fYt(y)dy ≈

∫ −VaRα

y

fYt(y)dy (1.100)

≈
N∑
j=1

fYt(yj)∆y, (1.101)

where y is set to y = −5 · std(Yt), and yj = y+ j∆y, j = 1, .., N . the standard
deviation of Yt is given by{√

χ

ψ

Kλ+1(
√
χψ)

Kλ(
√
χψ)

σ2
Y +

(
χ

ψ

Kλ+2(
√
χψ)

Kλ(
√
χψ)

−
(√

χ

ψ

Kλ+1(
√
χψ)

Kλ(
√
χψ)

)2
)
γ2
Y

} 1
2

.

(1.102)

For the case that the characteristic function is known in closed-form rather
that density function, the process can be done similarly, but depends on an
FFT to generate density function form the characteristic function.
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1.6.4 Monte Carlo Computation

Suppose there are N i.i.d d-dimensional multivariate GH random vectors
X(1), ..., X(N) generated by the algorithm in section 1.6.1. Then we will have
N scenarios of our portfolio returns

Y (N) = 〈w,X(k)〉, k = 1, .., N (1.103)

where 〈〉 denotes the the inner product i.e. 〈w, x〉 = w′x. Then the empirical
distribution of the portfolio return Y is given by

F̂ (y) =
1

N

N∑
i=1

1{Y (i)<y}, (1.104)

where 1 is the indicator function. The VaR with confidence level α is the
solution of

F̂ (−VaRα(Y ))− α = 0 (1.105)

Thus the above equation can solved by use of the order statistics,

1. Sort the random numbers Y (1), ..., Y (N) and get Y (s1) ≤ Y (s2) ≤ ... ≤
Y (sN ).

2. Pick k = [αN ], and VaRα(Y ) ≈ Y (sk).

The sorting algorithm usually take O(N logN).

One can also smooth the empirical distribution function by for example the
Gaussian kernel as follows,

F̂ (y) =
1

N

N∑
i=1

Φ

(
y − Y (i)

σw

)
, (1.106)

where Φ is the CDF of standard normal distribution and σ2
w = w′ΣXw with

ΣX the covariance matrix of the MGH random vector X. By solving (1.105),
it gives a smooth approximation of VaR.
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1.6.5 Computation by Affine Transformation

For general nealy elliptical distribution, we can calculation VaR efficiently
by use of affine transformation to reduce the dimension. Suppose that the
density function is of the form

f(x) = g((x− µ)′Σ−1(x− µ), (x− µ)′γ). (1.107)

The goal is to compute the probability distribution of the portfolio return
Y = 〈w, x〉,

F (y) =

∫
〈w,x〉≤y

f(x)dx =

∫
〈w,x〉≤y

g((x− µ)′Σ−1(x− µ), (x− µ)′γ)dx.

(1.108)

First we change the parameters into the spherical coordinates z = A−1(x− µ)
where A is the Cholesky decompostion of Σ. Then we obtain

F (y) =

∫
〈ws,z〉≤y−〈w,µ〉

c1g
(
‖z‖2, 〈z, γs〉

)
dz, (1.109)

where ws = A′w, γs = A′γ and c1 is the constant given by the determinant of
the Jacobian of the transformation. It is hard to calculate c1 directly, but we
know the fact that ∫

c1g
(
‖z‖2, 〈z, γs〉

)
dz = 1, (1.110)

thus we can set

c1 =

(∫
g
(
‖z‖2, 〈z, γs〉

)
dz

)−1

(1.111)

Without loss of generality, we replace the dummy variable z by x,

F (y) =

∫
〈ws,x〉≤y−〈w,µ〉

c1g
(
‖x‖2, 〈x, γs〉

)
dx. (1.112)

Next we perform the orthogonal transformation z = Ux, where U is a unitary
matrix with the first row given by w′s

‖ws‖ . Therefore, we have

z1 =
〈ws, x〉
‖ws‖

, and ‖z‖ = ‖x‖, (1.113)
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since the unitary transformation does not change the length. Then we obtain

F (y) =

∫
z1≤ y−〈w,µ〉‖ws‖

c1c2g
(
‖z‖2, 〈z, Uγs〉

)
dz, (1.114)

where c2 is the determinant of the Jacobian of the unitary transformation
and can be expressed as before as

c2 =

(∫
c1g
(
‖z‖2, 〈z, Uγs〉

)
dz

)−1

. (1.115)

Without loss of generality, we replace the dummy variable z again by x,

F (y) =

∫
x1≤ y−〈w,µ〉‖ws‖

c1c2g
(
‖x‖2, 〈x, Uγs〉

)
dx. (1.116)

Then we use the orthogonal transformation again, z = V x. V is a unitary
matrix such that the first row of which is e′1 = (1, 0, ..., 0) and the second row

is given by (Uγs)′

‖γs‖ . Therefore we have

z − 1 = x1, and z2 =
〈x, Uγs〉
‖γs‖

. (1.117)

Finally, we obtain

F (y) =

∫
z1≤ y−〈w,µ〉‖ws‖

c1c2c3g
(
‖z‖2, ‖γs‖z2

)
dz (1.118)

=

∫
z1≤ y−〈w,µ〉‖ws‖

∫
z2

∫
z⊥
c1c2c3g

(
z2

1 + z2
2 + ‖z⊥‖2, ‖γs‖z2

)
dz⊥dz2dz1,

(1.119)

where z⊥ = (z3, z4, ..., zd)
′, and

c3 =

(∫
c1c2g

(
‖z‖2, ‖γs‖z2

)
dz

)−1

(1.120)

Thus our goal is to compute

h(z1, z2)
∆
=

∫
z⊥
c1c2c3g

(
z2

1 + z2
2 + ‖z⊥‖2, ‖γs‖z2

)
dz⊥. (1.121)
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Let c = c1c2c3, then cg(·) is a density of the original nearly elliptical distribu-
tion with parameters µ = 0, Σ = I and γ = (0, ‖γs‖, 0, ..., 0)′. and h is the
two dimensional marginal distribution of the nearly elliptical distribution. To
get h numerically, we can use a Monte Carlo to generate N random vectors
from the original elliptical distribution, X(1), ..., X(N). Then the function h
can be apprixated by

ĥ(x1, x2) =
1

N

N∑
i=1

1{
X

(i)
1 ∈(x1−dx,x1+dx)∩X(i)

2 ∈(x2−dx,x2+dx)
}. (1.122)

Once the function h is obtained, the VaR at confidence level α then can be
computed by solving

F (−VaRα(Y ))− α = 0, (1.123)

where F is given by

F (y) =

∫
z1≤ y−〈w,µ〉‖ws‖

∫
z2

h(z1, z2)dz2dz1. (1.124)

1.7 Factor Analysis

For large number of assets in portfolio, the principle component analysis is
commonly used to reduce dimension and find hidden statistical risk factors.

1.7.1 Basic Principle Component Analysis (PCA)

Suppose we have the returns vector from a portfolio R = (R1, ..., Rd)
′. And

let Σ denotes the variance-covariance matrix of R. Then Σ is be decomposed
by

Σ = V ΛV ′, (1.125)
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where V is an orthogonal matrix V V ′ = I, and

Λ = diag(λ1, ..., λd) =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λd

 , (1.126)

with the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd, and V = (V1, V2, ..., Vd) with Vk the
eigenvector corresponding to λk for k = 1, ..., d.

When λi > λj, the eigenvector Vi has more effect on the matrix Σ than Vj.
Hence, Σ can be approximated by using only first largest K eigenvectors,

Σ ≈ Σ̃ = (V1, ..., VK)


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λK

 (V1, ..., VK)′. (1.127)

For example, if λ1∑
λ

= 0.5, then V1 explains 50% of the portfolio variance. If
λ2∑
λ

= 0.25, the V2 explains 25% of the portfolio variance additional to V1

since V1, V2 are orthogonal to each other. Thus suppose for some K ≤ d,∑K
k=1 λk∑d
n=1 λn

≥ 0.95. (1.128)

Then V1, ..., VK explains more than 95% of the portfolio variance.

The eigenvector Vk can be reviewed as the weights on R so that the variance
is given by V ′kΣVk = λk. The k-th principle component factor is referred as

Fk = V ′kR =
d∑

n=1

vn,kRn, k = 1, 2, ..., K. (1.129)

We have Cov(Fi, Fj) = 0 for i 6= j since eigenvectors are orthogonal.

Applying the regress, we can obtain the following

Rn = βn,0 +
K∑
k=1

βn,kFk + εn, n = 1, 2, ..., d (1.130)
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where Eεn = 0 for all n = 1, ..., d. Let RP (w) be the portfolio return with a
capital allocation weight w = (w1, w2, ..., wd)

′. Then we have

RP (w) = βP,0 +
K∑
k=1

βP,kFk +
d∑

n=1

wnεn, (1.131)

where

βP,k =
d∑

n=1

wnβn,k, k = 0, 1, 2, ..., K. (1.132)

And the portfolio variance is given by

Var(RP (w)) =
K∑
k=1

β2
P,k Var(Fk) +

d∑
n=1

w2
n Var(εn). (1.133)

1.7.2 PCA under FARIMA-FIGARCH with GH innovation

Let Rn(t) be the observed n-th asset resturn at time t ∈ {0, 1, 2, ...} and τ be
the current time. Assuming Rn follows FARIMA-FIGARCH model, then we
have, for n = 1, ..., d,

Rn(τ + 1) = µn(τ + 1) + σn(τ + 1)Xn(τ + 1), (1.134)

where µn(τ + 1) is the forecasted mean by FARIMA, and σn(τ + 1) is the
forecasted std by FIGARCH.

Let X(t) = (X1(t), ..., Xd(t))
′ and

X = (X(τ), X(τ − 1), ..., X(1)) =


X1(τ) X1(τ − 1) · · · X1(τ)
X2(τ) X2(τ − 1) · · · X2(τ)

...
...

. . .
...

Xd(τ) Xd(τ − 1) · · · Xd(τ)

 .

(1.135)

Note that the random variable Xn(t) has zero mean and unit variance for
n = 1, 2, ..., d. Then PCA can be easily conducted. Let λ1, ...λd be the
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eigenvalues and V1, ..., Vd the corresponding eigenvectors of the covariance of
X, that is,

Cov(X) = EXX ′ = V ΛV ′, (1.136)

where Λ = diag(λ1, ..., λd) and V = (V1, ..., Vd) with λ1 ≥ · · · ≥ λd and
Vn = (v1,n, ..., vd,n)′. And we select K by

K = min

{
k

∣∣∣∣∣
∑K

k=1 λk∑d
n=1 λn

≥ α

}
, (1.137)

where α is a given accuracy level. Denote V̂ = (V1, ..., VK).

Let the factor sequence Fk(t) = V ′kX(t) for k = 1, .., K and F (t) = (F1(t), ..., FK(t))′,

that is, F (t) = V̂ ′X(t). Let

F = (F (τ), F (τ − 1), ..., F (1)) =


F1(τ) F1(τ − 1) · · · F1(τ)
F2(τ) F2(τ − 1) · · · F2(τ)

...
...

. . .
...

Fd(τ) Fd(τ − 1) · · · Fd(τ)

 .

(1.138)

Then we have F = V̂ ′X.

By multiple regression, we have

X(t) = β′F (t) + ε(t), (1.139)

where ε(t) = (ε1(t), ..., εd(t))
′, and

β = (FF ′)−1FX ′ = (V̂ ′XX ′V̂ )−1V̂ ′XX ′ = V̂ ′. (1.140)

Hence we have

X(t) = V̂ F (t) + ε(t), t = 1, ..., τ, (1.141)

or in a matrix form,

X = V̂ F + ε, (1.142)
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where

ε = (ε(τ), ε(τ − 1), ..., ε(1)) =


ε1(τ) ε1(τ − 1) · · · ε1(τ)
ε2(τ) ε2(τ − 1) · · · ε2(τ)

...
...

. . .
...

εd(τ) εd(τ − 1) · · · εd(τ)

 . (1.143)

Now we can extract ε as

ε(t) = X(t)− V̂ V̂ ′X(t) = (I − V̂ V̂ ′)X(t), t = 1, ..., τ, (1.144)

or in matrix form

ε = X − V̂ V̂ ′X = (I − V̂ V̂ ′)X. (1.145)

Here we assume the innovations are from GH distribution,

F (t) ∼ GH(λ, χ, ψ, µF , γF ,ΣF ), (1.146)

ε(t) ∼ GH(λ, χ, ψ, µε, γε,Σε). (1.147)

Then we have that(
F (t)
ε(t)

)
∼ GH

(
λ, χ, ψ,

(
µF
µε

)
,

(
γF
γε

)
,

(
ΣF ΣFε

Σ′Fε Fε

))
. (1.148)

In addition, we assume that F (t) and ε(t) are uncorrelated. It implies the
covariance of (F (t), ε(t))′ is(

CF 0
0 Cε

)
= E(W )

(
ΣF ΣFε

Σ′Fε Fε

)
+ Var(W )

(
γFγ

′
F γFγε

γεγ
′
F γεγ

′
ε

)
, (1.149)

where W ∼ GIG(λ, χ, ψ). Thus we have

ΣFε = −Var(W )

E(W )
γFγ

′
ε. (1.150)

Furthermore, we assume ε(t) is uncorrelated. It implies that Cε is a diagonal
matrix. Thus we have

Σε = diag(Σε)−
Var(W )

E(W )
(γεγ

′
ε − diag(γεγ

′
ε)) . (1.151)
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Then the distribution of X(t) is then given by

X(t) ∼
(
V̂ I

)(F (t)
ε(t)

)
∼ GH(λ, χ, ψ, µX , γX ,ΣX), (1.152)

where

µX = V̂ µF + µε, (1.153)

γX = V̂ γF + γε, (1.154)

and

ΣX = V̂ ΣF V̂
′ + V̂ ΣFε + Σ′FεV̂

′ + Σε (1.155)

= V̂ ΣF V̂
′ + diag(Σε)−

Var(W )

E(W )

(
V̂ γFγ

′
ε + γεγ

′
F V̂
′ + γεγ

′
ε − diag(γεγ

′
ε)
)
.

(1.156)

If we further assume that ε(t) follows elliptical GH, that is, γε = 0, then we
can rewrite ΣX as

ΣX = V̂ ΣF V̂
′ + diag(Σε). (1.157)

Moreover, if we assume ε(t) has zero mean, then Σε can be obtained as

Σε =
diag(Cov(ε(t)))

E(W )
. (1.158)

1.7.3 GH-distributed Factor Analysis

Here we will discuss the factor analysis under GH distribution assumption
(GHFA). Consider the following model

X = mX +BF + E, (1.159)

where

1. X is the d× 1 random vector for asset return or for the innovations of
FARIMA-FIGARCH model,

34



2. mX is the d× 1 real vector for the intercept,

3. B is the d× k loading matrix for coefficients,

4. F is the k × 1 random vector for the latent factors,

5. E is the d × 1 random vector for the noise with diagonal covariance
matrix Ξ = diag(ξ1, ξ2, ..., ξd).

Parameter estimation for the GHFA is constructed by MLE with the following
model,(

X
F

)
∼ GH

(
λ, χ, ψ,

(
mX

mF

)
,

(
BB′ + Ξ B

B′ I

)
,

(
γX
γF

))
, (1.160)

where Ik is the k-dimensional identity matrix, γX and γ − F are d× 1 and k
real vectors respectively, mF is k× 1 real vector, and λ, χ, ψ are real numbers.
It can be written in normal mean-variance mixture form,(

X
F

)∣∣∣∣
W

∼ N
((

mX + γXW
mF + γFW

)
,

1

W

(
BB′ + Ξ B

B′ Ik

))
, (1.161)

with W ∼ GIG(λ, χ, ψ).

To simplify the model , we assume that mF = −γFE(W ). Then given n
i.i.d samples x1, ..., xn, the EM algorithm can be applied to estimate the
parameters θ = (B,Ξ, γX , γF , λ, χ, ψ),

max
θ,F

l(θ, F |X) = max
θ,F

N∑
i=1

log(fGH(xi, F |θ)), (1.162)

where fGH denotes the density function of GH distribution.

In the special case that λ = χ = ν
2

and ψ = 0, W ∼ Gamma(ν/2, ν/2), we
have (

X
F

)∣∣∣∣
W

∼ N
((

mX

0

)
,

1

W

(
BB′ + Ξ B

B′ Ik

))
, (1.163)

when assuming mF = 0, γX = 0, and γF = 0.
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1.7.4 VaR with Factor Analysis

Here let RP (w) denotes the forecasted portfolio return at τ + 1 with a captical
allocation weight w = (w1, ..., wd)

′. Then we have

RP (w)(τ + 1) =
d∑

n=1

wnµn(τ + 1) +
d∑

n=1

wnσn(τ + 1)Xn(τ + 1) (1.164)

= w′µ(τ + 1) + w′ diag(σ(τ + 1))X(τ + 1), (1.165)

where

µ(τ + 1) = (µ1(τ + 1), ..., µd(τ + 1)), and (1.166)

σ(τ + 1) = (σ1(τ + 1), ..., σd(τ + 1)). (1.167)

By the portfolio property of GH distribution family, we have

Y
∆
= w′ diag(σ(τ + 1))X(τ + 1) ∼ GH(λ, χ, ψ, µY , γY ,ΣY ), (1.168)

where

µY = w′ diag(σ(τ + 1))µX , (1.169)

γY = w′ diag(σ(τ + 1))γX , (1.170)

ΣY = w′ diag(σ(τ + 1))ΣX diag(σ(τ + 1))w. (1.171)

Therefore, the portfolio VaR under information Fτ can be written as

VaRα(RP (w)(τ+1)|Fτ ) = −w′µ(τ + 1) + VaRα(Y ). (1.172)

1.8 Empirical Results

In this section pick 5 stocks to empirical test FARIMA-FIGARCH with GH
innovation models, including MSFT, C, PFE, GE and GIS. The sampling
frequency is 1 minute. And the time period is from 2013-01-01 to 2013-1-31.
Thus the data set is 1-min log returns of one-month.

Summary Statistics
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Table 1.1: Basic Statistics of Intraday 1-min Log-returns

Mean (10−5) Std (10−3) Skewness Kurtosis

MSFT 0.4145 0.5741 -0.1080 15.5225

C 0.0685 0.6464 -0.1383 11.7905

PFE 0.2062 0.5297 -0.1376 16.6694

GE 0.0249 0.4984 -0.0913 13.9847

GIS 0.1723 0.4466 -0.2163 30.5321

The basic statistics are summarized in Table 1.1. As documented in many
literatures, the asset returns show negative-skewness, heavy-tailedness and
volatility clustering.

The auto-correlation function (ACF) of the asset return series and its magni-
tude are shown in Figure 1.1 and Figure 1.2. The auto-correlation of log-return
and absolute log-return is almost flat in the log-log plot when lag is large,
which indicates a power decay rather than exponential. It implies that the
auto-correlations especially of the absolute log-return have very slow decays
when lag is large, which suggests the possibility of long-range dependence
especially in volatility.

FARIMA-FIGARCH

The estimated model are listed in Table 1.2. After filtering by FARIMA-
FIGARCH model, the residuals has almost zero auto-correlation and as well
as its absolute value. It is illustrated as an example in Figure 1.3.

Value at Risk

The VaR are computed for each asset with a rolling window of size one week
(390× 5 = 1950 data points). The results are illustrated in Figure 1.4-1.5.

For a equally weighted portfolio composed with theses 5 assets, the VaR is
computed and report in Figure 1.6.

The violation number for each assets and equally-weighted portfolio of the
whole period are summarized in Table 1.3.
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Figure 1.1: MSFT Autocorrelation Function.
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Figure 1.2: GE Autocorrelation Function.

39



T
ab

le
1.

2:
F
A

R
IM

A
-F

IG
A

R
C

H
E

st
im

at
io

n
R

es
u
lt

s
Il

lu
st

ra
ti

on

F
A

R
IM

A
F

IG
A

R
C

H

d
0

φ
θ

µ
(1

0−
4
)

d
ψ

β
σ

2
(1

0−
8
)

M
S
F

T
-0

.0
25

5
0.

00
87

-0
.0

68
5

-0
.1

67
6

0.
23

28
0.

23
00

0.
02

50
2.

93
58

(0
.0

00
0)

(0
.6

36
3)

(0
.5

41
4)

(0
.0

03
1)

(0
.0

00
0)

(0
.0

00
0)

(0
.0

00
0)

(0
.0

00
0)

C
0.

00
24

0.
04

36
-0

.2
04

0
0.

24
73

0.
95

68
0.

85
21

0.
05

60
0.

48
79

(0
.2

60
3)

(0
.6

66
0)

(0
.0

00
0)

(0
.0

00
8)

(0
.0

00
0)

(0
.0

00
0)

(0
.0

00
0)

(0
.0

00
0)

P
F

E
-0

.1
40

6
0.

01
84

0.
00

93
0.

11
85

0.
47

17
0.

66
10

0.
26

83
0.

54
78

(0
.0

00
0)

(0
.0

56
7)

(0
.0

00
0)

(0
.2

01
3)

(0
.0

00
0)

(0
.0

00
0)

(0
.2

19
4)

(0
.0

00
0)

G
E

-0
.1

65
6

0.
01

53
-0

.0
00

7
-0

.1
62

6
0.

32
04

0.
24

61
0.

02
50

2.
98

79

(0
.0

00
0)

(0
.4

62
7)

(0
.0

00
0)

(0
.0

00
1)

(0
.0

00
0)

(0
.0

00
0)

(0
.0

71
5)

(0
.0

00
0)

G
IS

-0
.1

02
2

0.
05

10
-0

.0
44

2
0.

00
73

0.
31

93
0.

23
88

0.
03

25
1.

71
36

(0
.0

00
0)

(0
.3

08
1)

(0
.1

84
7)

(0
.0

28
5)

(0
.0

00
0)

(0
.0

00
0)

(0
.7

22
1)

(0
.0

00
0)

40



0 5 10 15 20

A
C

F

-0.5

0

0.5

1
Autocorrelation function of residuals

Lag
0 5 10 15 20

-0.5

0

0.5

1
Autocorrelation function of absolute residuals

Figure 1.3: MSFT Autocorrelation Function after FARIMA-FIGARCH Fil-
tering.

Table 1.3: Number of Violations of Value-at-Risk.

VaR(99%)
GH

VaR(99%)
Normal

VaR(95%)
GH

VaR(95%)
Normal

MSFT 119 (1.45%) 212 (2.59%) 493 (6.02%) 482 (5.89%)

C 116 (1.42%) 191 (2.23%) 518 (6.32%) 515 (6.29%)

PFE 131 (1.60%) 199 (2.43%) 513 (6.26%) 491 (6.00%)

GE 127 (1.55%) 206 (2.52%) 494 (6.03%) 455 (5.56%)

GIS 75 (0.92%) 137 (1.67%) 436 (5.32%) 361 (4.41%)

Portfolio 85 (1.04%) 120 (1.47%) 497 (6.07%) 446 (5.45%)

Time period is one-month (390× 21 = 8910 minutely returns).
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Figure 1.4: VaR of MSFT. Upper plot is for whole period. Lower is a
zoomed-in plot.
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Figure 1.5: VaR of GE. Upper plot is for whole period. Lower is a zoomed-in
plot.
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Lower is a zoomed-in plot.
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Chapter 2
Market Efficiency in Different Market Sentiment

2.1 Introduction and Motivation

Market efficiency basically says that the price in the stock market reflects
all the available information. If the Market Efficiency Hypothesis(EMH)
holds, when all the information about the investments is known, it is not
possible for anyone to beat the market and expect returns that are above
average. EMH views market prices as random thus serial correlations especially
long range dependence between observations cannot exist. Therefore, if we
already observe the long range dependence in the market as documented in
large volume of literatures such as Sensoy 2013, Cajueiro and Tabak 2008,
Hammoudeh and Yoon 2014, then EMH should not hold. Meanwhile, the
behavior of break of EMH should in certain level related to the behavior of
long range dependance.

Based on this, we explore a well documented break of EMH, the effect on
market price brought from investor sentiment.

2.2 A Survey on Investor Sentiment

2.2.1 Definition

Investor sentiment can be defined broadly as a belief about future market
dynamic and investment risks not justified by the facts at hand.1 That means
investors could be optimistic or pessimistic on the market. As a consequence,
investors will make their decisions based on not only the information accessible

1Notice this definition is from Baker and Wurgler (2007). Although the sentiment
is a belief not justified by the facts, it still could be related to the facts at hand, see
overconfidence model.
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but also the believes they are holding.

The market efficiency hypothesis states that security prices always fully reflect
available information. Over the last decade that paradigm has come under
attack. Shleifer (2000)summarizes the related strands of literature. First,
theoretical work argues that arbitrage has limited effectiveness. Second,
experimental evidence shows that agents hold beliefs that are not completely
correct and/or make choices that are normatively questionable. In another
word, the question why the investor sentiment will influence the market and
price behavior has been well answered by these two aspects. It is because
that the arbitrage, which in traditional asset pricing theory, is considered
able to offset influences brought by sentiment [Fama (1970)], nowadays, is
more and more taken as risky, limited and not be able to offset the investor’s
sentiment/ irrationality.

A number of researchers, such as Grossman and Stiglitz (1980), Black (1986),
em DeLong et al. (1990), Campbell and Kyle (1993), Barberis et al. (1998),
Daniel et al. (1998), and Hong and Stein (1999) have more formally modeled
the role of sentiment or investor behavior. However, how to measure the
effect of investor sentiment is still an open problem. In this article, we are
mainly focusing to answer how investor sentiment influences the market.

2.2.2 Measurement

Authors have been seeking for a good measure of investor sentiment for a
long time. Some measures are constructed and/or extracted directly from
the financial market, such as closed-end fund discount, IPO first-day returns
and trading volume among others. There are also other sentiment measures
coming from media sources, such as professional journals and corporate
accouterments. The following list summaries the popular measures in existing
literature:

• Several sentiment proxies are summarized or proposed in Baker and
Wurgler (2007), p135-p138, namely, investor surveys, investor mood,
retail investor trades, mutual fund flows, trading volume, dividend
premium, closed-end fund discount, option implied volatility, IPO first-
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day returns, IPO volume, equity issues over total new issues and insider
trading.

• In behavioral finance world, sentiment is synonymous with error. Thus,
in some literature, scientists use mispricing factor such as discretionary
accruals, netequity issuances/repurchases, and price momentum as
sentiment factor,as in Polk and Sapienza(2002).

• In Baker and Wurgler (2006), sentiment index is a linear combination
of six selected proxies: “trading volume as measured by NYSE turnover;
the dividend premium; the closed-end fund discount; the number and
first-day returns on IPOs; and the equity share in new issues”. This
sentiment index is commonly used in recent literature.

• In Kaplanski and Levy (2010), aviation disasters are used as a indicator
of bad mood of investors.

• In Brown and Cliff (2005), bull-bear spread is constructed by tracking
the number of market newsletters. This is also a popular measurement
of investor sentiment.

• Rosen (2006) uses merge announcement as a signal of investor becoming
optimistic.

• In Tetlock (2007), so-called pessimism media factor is used, which counts
the number of key words in WSJ column.

• Edmans, Garćıa and Norli (2007) proxies investor mood by international
soccer results.

• Mian and Sankaaraguruswamy (2010) uses firm-specific earning news
as the trigger of investor sentiment reaction.

• Wang 2001 classifies traders into three classes: large speculators, large
hedgers, and small traders. And for each type of traders, its sentiment
is measured from its aggregate position.

• Conference Board Consumer Confidence Index (CCI), Consumer Senti-
ment Index (CSI)
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• News sentiment that is extracted from news publications.

• Barron’s Confidence Indexis confidence indicator calculated by divid-
ing the average yield on high-grade bonds by the average yield on
intermediate-grade bonds. The discrepancy between the yields is in-
dicative of investor confidence.A rising ratio indicates investors are
demanding a lower premium in yield for increased risk and so are
showing confidence in the economy.

Among these measures, most of them (expect the event-based) are constructed
as indexes. Moreover, these indexes, as proxies of investor sentiment, are
regarded as risk factors. That means the mechanism and interplay between
market and investors believes are put into black-box.

2.2.3 Empirical Effects

There are at least two difficulties to model how investor sentiment affects
market prices: 1. It is hard to describe sentiment, a belief investor are holding.
Probabilistically speaking, it is the probability measure that investor is using
to decide trading strategy for making profits and reducing risks. 2. It is
hard to quantitatively describe the mechanism how investor sentiment moves
market. When investors are irrational, i.e. subject to their own sentiments,
the demand and supply relation changes. And the investors interplay with
each other, then finally the market gets to an equilibrium and gives prices.
Only a few literature work on quantify and model this mechanism.

However, literature have done rich empirical analysis with considering senti-
ment proxies as risk factors, that means the mechanism and interplay between
market and investors believes are put into black-box. The important empirical
effects are listed as follows,

• Short-horizon positive relation and Event effect, that is, stock will be
overpriced/underpriced when investor sentiment becoming high/low
(triggered by events). Kaplanski and Levy (2010) gives evidences that
“aviation disaster negatively affect stock prices for a short period of a few
days”. Rosen (2006) shows stock prices tend to increase in short-run
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scale after a merger announcement. Similar evidences can also be found
in Brown and Cliff (2005), Tetlock (2007), Brown and Cliff (2004),
Hengelbrock, Theissen, and Westheide (2010).

• Long-run Reversal effect, that is, stock returns will revert back to
average slowly after a sentiment shock, or stock returns in long horizon
has a negative relation with investor sentiment. Kaplannski and Levy
(2010) gives an example that market takes about 10 days to revert to
average after a decline triggered by aviation disaster. Similar results
can also be found in Rosen (2006), Brown and Cliff (2005).

• Cross-sectional effects, that is, the impact of investor sentiment on
the cross-section of stock returns. Chung et al. (2012) documents the
asymmetric predictive power across portfolios formed on size, book-
to-market, dividend-yield, P/E ratio, age, sigma, R&D expense/assets
ratio, fixed assets sales growth and external finance/asset ratio. Neal
and Wheatley (1998) finds the differences of prediction pattern between
small and large firm. Kumar and Lee (2006) also constructs portfolios
based on firm size. Baker and Wurgler (2006) examines the expected
return of characteristic-based portfolios conditioned on sentiment level.
See also in Polk and Sapienza (2002), Chung, Hung and Yeh (2012).

• Subject to market regime. Chung, Hung and Yeh (2012) shows pre-
diction power of investor sentiment under different market regimes
(described by NBER recession index or in Markov-switching model).

• Effects on implied volatility. Han (2007) shows implied volatility smile
is steeper when investor sentiment is low.

2.2.4 Related Theories

Figure 2.1 shows a logic framework of related researches following the devel-
opment of Efficient Market Hypothesis (EMH). The statements in black are
the assumptions and deductions of EMH. The evidences in blue contradict
their corresponding statement in black. The red stars show where investor
sentiment is playing a role. The literature corresponding to the red stars are
summaries in following.
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Figure 2.1: Related theories
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1* DeLong, Shleifer, Summers and Waldmann (1991) build the model
for portfolio choice of irrational(noise) and rational trader, and show
that noise trader, who has no price impact, can achieve even higher
expected return. Wang (2001) build an evolutionary game model to
examine whether irrational investor can survive in a large economy.
Their conclusion claims moderate overconfident or optimistic investors
can survive and even dominate. Kogan, Ross, Wang, and Westerfield
(2006) claims irrational trader can affect market significantly under a
competitive equilibrium setting.

2* Tversky and Kanheman (1979) develop the Prospect Theory giving a
understanding of how investor make decision under uncertainty and risk.
Gallimore and Gary (2002) investor sentiment affects decision-making
for both rational and irrational traders. Wang, Yan, Yu (2012) apply
prospect theory and provide cross-sectional empirical evidence.

3* Scheinkman and Xiong (2003) propose an equilibrium with agents
holding overconfident sentiment to illustrate the behavior of many
equilibrium vairiables of interest in bubble.

4* Barberis, Shlefier and Vishny (1997) propose a regime-switching Markov
model to formalize investor over/underreation behavior. Empirical
works can be found in many literatures2.

2.2.5 Discussion

On sentiment measure

In short word, it is not a simple causality relation between market performance
and investor sentiment, but interplay. Therefore, for sentiment measures that
are extracted directly form the market, such as trading volume, dividend
premium, option implied volatility among others, it is hard to distinguish how
much sentiment is measured and how much market response is measured.

To construct the good measure, a nature way is to follow the way how investors

2See Brown and Cliff (2004), Rosen (2006), Tetlock (2007), Kaplannski and Levy (2010)
among others.
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form their believes. Investors’ decision-making subject to their believes, and
their believes are moved by not only market performance but also exogenous
information (such as news, big social events), their own historical investment
performance and even their own personal character. Although to model
the whole mechanism seems not feasible, it is suggested that exogenous
information should be considered as risk resources.

On time horizon of over/underreation

Time horizon in existing literature are quite vary, from minutely to yearly3.
It reminds us that investors process news information in different scale. For
long-term portfolio management, investors tend to pay more attention on
earning announcement, accounting report and other more fundamental and
low-frequent news. The daily traders tends to take more high-frequent news
into account. For some occasionally happened event, such as aviation disaster
and senior management changes, investors could react in vary time horizons.
As the consequence, the over/underreaction behavior of prices to news of
different frequency could be very differently in terms of time horizon.

On firms who are more sensitive to investors sentiment

Many analysis on cross-section of stocks have been done to identify what
type of firms is more sensitive to investor sentiment. A straightforward guess
could be that the firms which irrational traders prefer to invest are more
sensitive. In other words, the prices of firms which are held by more rational
investors are more stable. Therefore, it is reasonable to state the hypothesis,
the firms held by more institutional investors are more sensitive to sentiment
if assuming institutional investors are more rational.

However, it has never been fully proved that a small amount of irrational
traders with extreme or mediate sentiment cannot move the the prices in a
considerable scale.

3See Kaplanski and Levy (2010), Brown and Cliff (2005), Tetlock (2007), Brown and
Cliff (2004), Hengelbrock, Theissen, and Westheide (2010).
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2.3 A Simple General Equilibrium Model

We consider a parsimonious model in general equilibrium setting with news
sentiment and irrational belief. Our purpose is to find what is the price impact
of irrational traders with incorrect belief with is influenced by exogenous news
sentiment process.

2.3.1 The Economy

Information structure

We consider a continuous-time economy with finite time horizon [0, T ]. The
only uncertainty source is a one-dimensional, standard Brownian motion
(Wt, 0 ≤ t ≤ T )4, defined on a complete filtered probability space (Ω,F ,F,P),
where F is the augmented filtration generated by the Brownian motion Wt.

The financial market

In the economy, there exists one risky asset, the stock, which pays aggregate
dividend process (Dt) given by

dDt

Dt

= µdt+ σdWt.

The stock price process is denoted by (St). Also, the economy allows invest-
ment on zero-coupon bond in zero net supply. Each of the bond mature at
time T and pays the face value of one5.

4The assumption of only one uncertainty source can be improved by importing other
uncertainty source which simultaneously drives news sentiment process.

5Note that here no interest rate structure is considered. In other words, risk-free rate is
always 1. This condition can be relaxed by assuming the price process of bond Bt follows
dBt = Btrtdt.
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Trading strategy

Assume the market is frictionless and trading can be made in continuous time.
Investors’ trading strategy (θt) satisfies the integrability condition∫ T

0

θ2
tS

2
t dt <∞. a.s.

Endowments

Assume there are two investors, one rational and one irrational, denoted by
1, 2 respectively. Rational and irrational investors are endowed with q(1) = q
and q(2) = 1− q share of the stock at time 0 respectively, where 0 < q < 1.

News sentiment

Assume there exist two news sentiment processes η+
t , η

−
t follows mean-reverting

dynamic

dη+
t = θ+(η̄+ − η+

t )dt+ σ+
η dWt,

dη−t = θ−(η̄− − η−t )dt− σ−η dWt,

where θ+, θ−, η̄+, η̄−, σ+
η , σ

−
η are some positive parameters. These two process

denote the positive and negative sentiment processes respectively. The reason
to model positive and negative new sentiment separately is that empirical
evidences has been shown that positive sentiment and negative sentiment
have different momentum properties and also market response to them are
different.

Both of rational and irrational traders observe this news sentiment process.
But only the irrational one changes his or her belief according to it.
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Preferences and beliefs

Assume there are two investors {1, 2} and both of them have the utility
function

u(1)(c) = u(2)(c) =
c1−γ

1− γ
, γ > 0.6

Investors reaction process to news sentiment (ηt) is given by

δ
(1)
t = 0, for rational trader and

δ
(2)
t = ξ+η+

t − ξ−η−t , for irrational trader,

where ξ+, ξ− are some positive numbers denoting the strength of reaction to
positive and negative news sentiment respectively. Investors’ beliefs are the
probability measures P(i), i = 1, 2 under which

W
(i)
t = Wt −

∫ t

0

δ(i)
s ds

is a standard Brownian motion. Thus for the rational trader 1, P(1) is same
with P and dividend process follows the same dynamic as in Section 4.2. For
the irrational trader 2, dividend process follows

dDt

Dt

= (µ+ δt)dt+ σdW
(2)
t .

When δt is positive, the irrational trader is optimistic on the expected growth
rate of the aggregate dividend. Conversely, δt is negative when he or she is
pessimistic. Both of the rational and irrational traders maximize expected
utility under their own beliefs:

E(i)

[∫ T

0

e−ρtui(ct)dt

]
,

where E(i)[·] denotes the expectation under probability measure P(i). Denote
by

∆
(i)
t =

(
dP(i)

dP

)
t

, i = 1, 2

6In case γ = 1, u(c) = ln c.
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the Radon-Nikodym derivative of probability measure P(i) to P, then investors
objective can be written under probability measure P,

maxE
[∫ T

0

e−ρt∆
(i)
t ui(ct)dt

]
,

subject to budget constraint

E
[∫ T

0

ptctdt

]
≤ q(i)E

[∫ T

0

ptDtdt

]
,

where pt is the price kernel under P and ∆
(i)
t follows

∆
(1)
t = 1, and

d∆
(2)
t = ∆

(2)
t δtdt.

To simplify the notion, we use ∆t := ∆
(2)
t . 7

The individual optimization problem above is equivalent to

maxE
[(∫ T

0

e−ρt∆
(i)
t ui(ct)− λ(i)ptct

)
dt

]
,

with

E
[∫ T

0

ptctdt

]
= q(i)E

[∫ T

0

ptDtdt

]
,

for some Lagrange multiplier λ(i) > 0.

2.3.2 The Equilibrium

Definition 1. A competitive equilibrium is a collection of
{

(Bt, St), (c
(i)
t ), (θ

(i)
t )
}

satisfying:

1. each of the investors optimizes his or her trading strategy and maximizes
the individual expected utility.

7The choice of the form of η and δ is partially coming from avoiding non-smoothness.
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2. all investors are price taker, that is, they take the same price process.

3. all markets are clear.

The following proposition shows the solution of the equilibrium allocation by
using the standard approach as in Duffie 2001.
Proposition 3. The equilibrium allocation between the two traders is given
by

c
(1)
t =

1

1 +
(
λ(1)

λ(2)
∆t

) 1
γ

Dt

c
(2)
t =

(
λ(1)

λ(2)
∆t

) 1
γ

1 +
(
λ(1)

λ(2)
∆t

) 1
γ

Dt

and the price kernel can be expressed by

pt = e−ρt

[(
1

λ(1)

) 1
γ

+

(
∆t

λ(2)

) 1
γ

]γ
D−γt ,

where λ(1), λ(2) are the Lagrange multiplier of the budget constraints for each
of the investors respectively.

2.4 Empirical Study

2.4.1 Data

The empirical analysis in this paper utilizes the RavenPack News Analytics
(Dow Jones Edition). RavenPack News Analytics delivers a company-level
record for each news story analyzed. Each record contains fields including
time stamp, company identifier, relevance, event novelty, event sentiment and
event category among others (See Table 2.1 for a description). The data is
available for the period from January 2002 through December 2011.

The news items those are used in my analysis are filtered by the following
conditions: ENS=100, G ENS=100 and Relevance is larger than 90. That
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Table 2.1: RavenPack News Annalytics Data Field Description

Field Description

Time Stamp The Data/Time (with millisecond accuracy) at which the
news item was recorded.

Company The company identifier related to the news item.

Relevance A score (0-100) that indicates how strongly related the
company is to the underlying news story.

Category An element or tag representing a company-specific news
announcement or formal event. Relevant stories about
companies are classified into a set of predefined event

categories following the RavenPack taxonomy.

ESS - Event
Sentiment

Score

A granular score (0-100) that represents the news
sentiment for a given company by measuring various

proxies sampled from the news.

ENS - Event
Novelty Score

A score between 0 and 100 that represents how ”new” or
novel a news story is within a 24-hour time window

across all news stories.

G ENS -
Global Event
Novelty Score

A score (0-100) that represents how ”new” or novel a
news story is within a 24-hour time window across all

news providers covered by RavenPack.
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is, only the news stories of high novelty and high relevance are chosen for
my analysis. The reason to choose new items of high novelty is to avoid
additional noises brought by random citation and reprints. The trade-off is
that it is possible that the dimension of reprints reflects how much media
cares about the news and contains valuable information. The reason to filter
the news items by relevance is that 80% of news items in our dataset hold
low relevance (< 85) which could be adding noises .

Our universe includes a cross-section of 330 firms. The total number of news
items used for the analysis is 504480.

Another data source is Bloomberg. Individual equity characteristics (market
size, PE ratio, dividend, volatility, sector) are obtained from Bloomberg.

2.4.2 Empirical Analysis

Construction of News Sentiment Measure

Investor sentiment is measured by the sentiment of news. Individual sentiment
for stock i is constructed by

Sent
(i)
t =

∑
news j

ESSj − 50

50
1tj∈(t−1,t]1Relevance(i,j)>90,

where Relevance(i, j) is the relevance between news j and stock i.

For daily-based sentiment, the time interval (t− 1, t] is from 4:00pm of day
t − 1 to 4:00pm of day t. As in Figure 2.2 and Figure 2.3, the seasonality
pattern of the number of news items can be observed. In these figures, we can
see, most news firstly revealed during 7:00pm- 10:00pm, which is surprising,
given the firm decisions/announcements should be made and revealed in the
working hours. To this phenomena, our explanation is, some reviews to the
daytime market performance maybe considered as innovated news, however,
these news have been revealed/even priced before that. To decrease this
effect(can not remove), we might need to consider the categories in the future
work.
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Figure 2.2: The number of news items in each month from Jan-2002 through
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Figure 2.3: The number of news items during 24 hours
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Portfolio sentiment is the sum of capital size weighted sentiments of portfolio
components,

Sent
(p)
t =

∑
i∈portfolio p

w
(i)
t Sent

(i)
t ,

where weights w
(i)
t ’s are rebalanced monthly, at the beginning of each month.

Market sentiment Sent
(M)
t is the sum of capital size weighted sentiment of all

stocks in my universe.

In addition, positive sentiment and negative sentiment are also be constructed
separately. That is,

Sent
+,(i)
t =

∑
news j

ESSj − 50

50
1ESSj>501tj∈(t−1,t]1Relevance(i,j)>90,

Sent
−,(i)
t =

∑
news j

50− ESSj
50

1ESSj<501tj∈(t−1,t]1Relevance(i,j)>90.

Similarly, positive sentiment and negative sentiment of market and portfolio,
Sent

+,(M)
t , Sent

−,(M)
t , Sent

+,(p)
t , Sent

−,(p)
t , are also constructed.

The monthly market sentiments are shown in Figure 2.4. In my analysis,
positive sentiment and negative sentiment are both investigated. From Figure
2.4, roughly speaking, positive sentiment and negative sentiment are showing
very different features. Positive sentiment is keeping at a certain level around
3.5. Negative sentiment increases greatly during September 2008. There are
always be relatively stable volume of positive news across the whole time
period from 2002 to 2011. It is showing that low level of negative sentiment
dose not imply high level of positive sentiment. In addition, the correlation
between positive sentiment and negative sentiment is -0.06 with p-value 0.50.
Thus, it is reasonable to believe positive sentiment and negative sentiment
have different characteristics and should be assumed to have different relation
with market.

Sorts

Portfolios are constructed based on 5 criterions: Capital Size, PE ratio,
dividend, volatility and Sector. On each criterion, 10 portfolios are formed
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Figure 2.4: Monthly Market Sentiment Measures

with equally weight. Thus, in total, 50 portfolios are analyzed in this paper.
Table 2.2 and Table 2.3 shows the conditional characteristics effects in a
simple and non parametric way.

The first rows of Table 2.2 show the effect of size conditioned on market
sentiment. The rows reveals that the size effect appears in both of the months
with high and low sentiment. Small size firms tend to have higher return than
large size firm. The average return is higher when sentiment is high than it is
when sentiment is low, across all of the cross-section. However the difference
tends to be large for small size firms.

The effect of PE ratio does not show any strong pattern, as in Table 2.2.

As shown in Table 2.2, the effect of dividend is not strong conditioned on high
sentiment periods. However in the months with low sentiment, the average
return tends to be high for the firms of high dividend.

Table 2.2 also shows the effect of volatility shows strong patterns during the
month is of high and low sentiment. When sentiment is high, high volatility
firms tend to have high returns. But when sentiment is low, high volatility
firms tend to have low returns on contrary.
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It also can be told by Table 2.2 that for some sectors, the difference between
average return in high and low sentiment is quite large (≥ 3.2). These sectors
includes Energy, Financials, and Technology. For sector like Health Care and
Utilities, the difference is small (< 1.5).

Noticing that Table 2.2 shows the return and sentiment of the same month,
and it can not indicate any predictability, we present the monthly return and
the previous moth sentiment in Table 2.3. The first rows of Table 2.3 show
the effect of size conditioned on market negative sentiment. The rows reveals
that the size effect appears not so obvious as in Table 2.2. Although it still
holds that at the beginning of the month low negative sentiment firms will
be followed by higher return, there is no pattern show that small firms will
be ore sensitive to sentiment.

The second rows of Table 2.3 show the sentiment effect on different PE ratio
firms. The effect of PE ratio does not appear in the months of high negative
sentiment. However, in the months of low negative sentiment, the average
return of high PE ratio firms tends to be smaller than the return of low PE
ratio firms.

The effect of dividend conditioned on negative sentiment, as shown in Table
2.3, is not found.

The effect of volatility does not show a strong pattern when the previous
month is of high negative sentiment. However, it appears during the months
with low negative sentiment,high volatility firms tend to have a higher return.

It also can be told by Table 2.3 that for some sectors, the difference between
average subsequent return in high and low negative sentiment is quite large
(< −1.5). These sectors includes Communications, Materials, and Utilities.
For sector like Consumer Staples, Health Care and Technology, the difference
is small (> −0.8).
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2.4.3 Long-Short Portfolio Regressions

Based on the previous discussion, we can see the sentiment might have pre-
dictability on the return of a long-short portfolio. To incorporate continuous
features of data, and perform significant test, we run the following regression
models.

R
p(X=High)
t −Rp(X=Low)

t = c+ βMRPt + sSMBt + hHMLt +mMOMt

(2.1)

+ d+Sent
+(M)
t−1 + εt.

R
p(X=High)
t −Rp(X=Low)

t = c+ βMRPt + sSMBt + hHMLt +mMOMt

(2.2)

+ d−Sent
−(M)
t−1 + εt.

The dependent variable on LHS is monthly return of a long-short portfolio
based on firm size, PE ratio, dividend and volatility, respectively. The
regressors are widely used comovement factors, plus sentiment factor.

The variable MRPt is excess return of SP 500 over the risk-free rate. The
variable SMBt is the return on portfolios of small and big ME stocks that is
separate from returns on HMLt, where HMLt is constructed to isolate the
difference between high and low BE/ME portfolios. The variable MOMt is
the return on high-momentum stocks minus the return on low-momentum
stocks.The variable Sent

−(M)
t−1 is the negative market sentiment factor of last

month. And the variable Sent
+(M)
t−1 is the positive market sentiment factor of

last month.

Table 2.4 shows the results. The results provide formal support to our
preliminary impressions from the sorts. From Table 2.4 , we can see positive
news and negative news have different effect on the market. Positive sentiment
have significant effect on long-short portfolio based on firm size and dividend.
Negative sentiment have significant effect on long-short portfolio based on
PE ratio and volatility.

As show in first rows of Table 2.4, small firms are more sensitive to positive
news. When the positive sentiment of the beginning of the month is strong,
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small firms is tend to have a better market performance than large firms.
However, there is no similar conclusion on negative sentiment.

In the second rows of Table 2.4, we can see, firms with a lower P/E ratio,
tend to have a low return when the negative sentiment at the beginning of the
month is strong. Since PE ratio reflect the investors’ expectation of the firms
future performance, this effect may be caused by that during the pessimistic
period, investor tend to invest on firms they consider will grow in the future.
However, there is no similar conclusion on positive sentiment.

In the third rows, low dividend firms tend to have a higher return if the
positive sentiment is high at the beginning of the month. This maybe reflect
the under reaction of market. There is no similar conclusion on positive
sentiment.(Considering the dividend may be influence by company strategies
so that it can not reflect the profitability of a company. In future work, we
may also consider decile portfolios of earnings and compare the result with
dividend decile portfolios. )

In the fourth rows of Table 2.4, high volatility firms may have a higher return
when the beginning of the month has a strong negative market sentiment.
Positive news doesn’t have similar effect.

From second rows and fourth rows, we can see, firms with high P/E ratio and
high volatility tend to have a higher return during the low sentiment market.
This is consistent with our intuition, that when the market is bad, investor
expect higher risk premium. This is to say, investors might be more risk
averse during the bearish and these effect can not be only priced in market
portfolio betas and the HML factor. If this is the reason, it is not hard to
understand why these two long-short portfolios are not significant effected by
positive sentiment.

However, small firms do not show the similar results. Another phenomena
maybe related to this phenomena is that, small firms have very little news.
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Table 2.4: Long-Short Regressions

Sent
+,(M)
t−1 Sent

−,(M)
t−1

d+ × 102 p-value d− × 102 p-value

Firm Size High - Low -1.01 (0.03) 0.08 (0.87)

High - Medium -0.24 (0.49) 0.22 (0.52)

Medium - Low -0.77 (0.05) -0.14 (0.73)

PE Ratio High - Low 0.53 (0.36) 1.01 (0.09)

High - Medium -0.27 (0.10) 1.10 (0.01)

Medium - Low 0.81 (0.16) -0.09 (0.88)

Dividend High - Low -1.64 (0.02) -0.54 (0.47)

High - Medium -0.81 (0.17) -0.92 (0.13)

Medium - Low -0.83 (0.06) 0.38 (0.40)

Volatility High - Low -0.63 (0.37) 1.43 (0.05)

High - Medium -0.80 (0.24) 1.72 (0.01)

Medium - Low 0.16 (0.71) -0.29 (0.07)
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Chapter 3
Long Range Dependence for Different Market Period and

Cross-sectional Assets

3.1 Introduction and Motivation

We see from last chapter that market efficiency varies in different market
situation, say in positive market sentiment, or in negative market sentiment.
A natural hypothesis would be, the LRD parameters may also change in
different market situation.

To better understand the LRD component to the return process, in this chap-
ter, we will focus on S&P 500 Index, and to explore the LRD behavior of the
index returns in different market situation with different sampling frequency.
This is a key component of determining the optimal investment strategies
and portfolio management because of its relevance to market efficiency

Some relevant researches can be found in the literature. Researchers has used
several methods such as the rescaledrange (R/S), the modified R/S test, the
Geweke and Porter-Hudak (GPH) method, the Gaussian semi parametric
(GSP) approach and the exact maximum likelihood (EML) method, among
others to test the long-memory hypothesis.

For example, Sensoy 2013 studies the time-varying efficiency of nineteen
members of the Federation of Euro-Asian Stock Exchanges by generalized
Hurst exponent(GHE) analysis of daily data with a rolling window technique.
Cajueiroa and Tabakb 2008 also uses GHE to test for long-range dependence
in equity returns and volatility, ranking stock market indices in terms of weak
form efficiency. Walid, Hammoudeh, and Yoon 2014 analyses long memory
properties of four major foreign exchange markets of the world oil exporter
Saudi Arabia, using the FARIMA-FIGARCH model under several global
events. Kang, Cheong, and Yoon (2011) investigate the impacts of structural
changes on volatility persistence, and then incorporated these impacts into the
bivariate estimation in order to understand the information flow and volatility
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transmission in two crude oil markets. Following the same line, Arouri,
Hammoudeh, Lahiani, and Nguyen (2012) examine the potential of structural
changes and long memory properties in returns and volatility of four major
precious metal commodities (gold, silver, platinum and palladium) traded
on the COMEX markets and show that dual long memory is found to be
adequately captured by an FARIMA-FIGARCH model. In addition, evidence
shows that conditional volatility of precious metals is better explained by
long memory than by structural breaks.

The most recognized model used to examine LRD in the conditional mean is
the FARIMA model, which is introduced in Chapter 1. With the seminar work
of Engle (1982) and Bollerslev (1986), the GARCH-family processes become
the most popular processes to capture persistence and volatility clustering.
Following this research line, the analysis of LRD has been extended from
focusing on persistence in the conditional mean to also examining persistence
in the conditional volatility of financial time series, which is conducted by
employing FIGARCH model.

In this study, we first focus on S&P 500 Index(SPY),to test the relevance of
the FARIMA-FIGARCH-GH model for intra-day index returns for different
frequencies(1-minute, 5-minute, 10-minute, and 30-minute). We employ two
periods: a turbulent period (from 07/2008 to 12/2008) and a calm period (from
01/2013 to 06/2013). First we test the FARIMA-FIGARCH-GH against the
two nested models ARIMA-IGARCH-GH and ARIMA-IGARCH-Gaussian.
Then we use the likelihood-ratio test to see which model should be employed.
The first comparison will answer the question if the fractional component
is statistically significant. The second one is about the distribution of the
residual. Finally we test the residuals for fractionality (apply the Hurst index
test). This is to see if there is any residual LRD in the residuals (to the extent
that the Hurst index can capture it). Later in this chapter we move to stock
level to see for individual stocks with different capital size and P/E ratio,
whether the findings in index level still hold.
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3.2 Data Preparation

The dataset is based on the TAQ CD-ROMs of the NYSE and contains
intraday trade and quote data for SPY. The finest resolution of the data is
1 second. We choose two period data: a turbulent period (from 07/2008 to
12/2008) and a calm period (from 01/2013 to 06/2013). We clean the data
following the procedure described in Chapter 1 and construct the 1-minute
frequency return data data {y1

t }, t = 1, ....N .

Here to avoid the crossing-day problem, we only calculate 390 one-minute
returns in one day, instead of 391 minutes.

Further more, intraday data exhibits intraday seasonality, well know as U-
shape. Figure 3.1 and Figure 3.2 show the intraday pattern of the 1-min
return magnitude and 1-min return of variance, of SPY.

0 50 100 150 200 250 300 350 400
2

3

4

5

6

7

8

9

10
x 10

−4 Intraday Pattern of Magnitude of Return

min

Figure 3.1: Intraday Pattern of Return Magnitude

To avoid such ‘time of the day effect’, we employ the method in Giot (2005),
by assuming a deterministic seasonality in the intraday volatility.
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Figure 3.2: Intraday Pattern of Variance

We deseasonalize return {y1
t }

r1
t =

y1
t

φi
(3.1)

where φi is the deterministic intraday seasonal component, defined as the
expected volatility conditioned on time-of-day, where the expectation is
computed by averaging the squared raw returns over the i-th minute of each
day, given y1

t is the return of i-th minute of the day.

According to Giot (2005), Similar deterministic techniques are also used in
Andersen and Bollerslev (1997, 1998, 1999). Beltratti and Morana (1999)
define a stochastic seasonality for the intraday volatility (which is much more
complicated to estimate) and the results are hardly better than those obtained
with the more simple deterministic seasonality.

Then we get 5-min {y5
t } , 10-min {y10

t } and 30-min {r30
t } by simply adding

up the 1-minute return in different frequency.
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3.3 Models and Tests

We test the FARIMA-FIGARCH-GH against the two nested models ARIMA-
IGARCH-GH and ARIMA-IGARCH-Gaussian.

3.3.1 FARIMA-FIGARCH-GH

The FARIMA-FIGARCH structure is summarized as follows

φa(L)(1− L)d0(rt − µ) = θm(L)εt, (3.2)

ψp(L)(1− L)d(ε2t − σ2) = (1− β(L))vt, (3.3)

εt =
√
htut, (3.4)

vt = ε2t − ht, (3.5)

where

φa(L) = 1−
a∑
j=1

φjLj, (3.6)

θm(L) = 1 +
m∑
j=1

θjLj, (3.7)

ψp(L) = 1−
p∑
j=1

ψjLj, (3.8)

βq(L) =

q∑
j=1

βjLj, (3.9)

(3.10)

and µ is the unconditional mean of rt, σ
2 is the unconditional variance of εt,

εt are the innovations and ut are the standardized residuals with mean 0 and
unit variance.

For estimation we preset a,m, p, q all equal to 1.

The generalized hyperbolic (GH) distributions can be written in the following
way.
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A random vector X is said to have a multivariate GH distribution if X can
be expressed as a normal mean-variance mixture distribution

X
d
= µ+Wγ +

√
WAZ, (3.11)

where Z ∼ Nk(0, Ik) is standard k-dimensional normal distributed random
vector, A is a d × k real matrix, µ, γ ∈ Rd, and W ≥ 0 is a scalar-valued
random variable independent of Z and having a Generalized Inverse Gaussian
distribution GIG(λ, χ, ψ).

A random variable W is said to have a generalized inverse Gaussian (GIG)
distribution if its probability density is given by

fGIG(x;λ, χ, ψ) =
χ−λ(

√
χψ)λ

2Kλ(
√
χψ)

xλ−1 exp

(
−1

2

(
χx−1 + ψx

))
, (3.12)

for x > 0, and where χ, ψ > 0, and Kλ is a modified Bessel function of the
third kind with index λ. The parameters satisfy χ > 0, ψ ≥ 0 if λ < 0,
χ ≥ 0, ψ > 0 if λ > 0, and χ > 0, ψ > 0 if λ = 0.

By letting Σ = AA′, we denote a GH distributed random vector by

X ∼ GHd(λ, χ, ψ, µ, γ,Σ). (3.13)

The univariate GH distribution is obtain with d = 1. The joint density when
Σ is not singular is given by, for x > 0,

fGH(x) = c
Kλ− d

2

(√
(χ+ (x− µ)′Σ−1(x− µ))(ψ + γ′Σ−1γ)

)
e(x−µ)′Σ−1γ(√

(χ+ (x− µ)′Σ−1(x− µ))(ψ + γ′Σ−1γ)
) d

2
−λ

,

(3.14)

where the normalizing constant is given by

c =

(√
χψ
)−λ

(ψ + γ′Σ−1γ)
(d/2)−λ

(2π)d/2|Σ|1/2Kλ

(√
χψ
) . (3.15)

For comparison, we use ARIMA(1,0,1)-IGARCH(1,0,1)-GH, which is to say
for the previous FIARMA-FIGARCH-GH, we specifically set d, d0 all equal
to 0.

And to get ARIMA(1,0,1)-IGARCH(1,0,1)-Gaussian, we simply replace the
innovation by Gaussian distribution described in 1.5.2.
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3.3.2 Hurst Exponent

The Hurst exponent is employed as a measure of long range dependence of
time series, usually noted as H.

As presented by Hurst(1951), H, is defined in terms of the asymptotic behavior
of the rescaled range as a function of the time span of a time series as follows,

E

[
R(n)

S(n)

]
= CnH as n→∞ (3.16)

where,

• R(n) is the range of the first n values, and S(n) is their standard
deviation

• E [x] is the expected value

• n is the time span of the observation (number of data points in a time
series)

• C is a constant.

To estimate Hurst Exponent, we us the R/S analysis of Hurst proposed in
Hurst 1951, corrected for small sample bias proposed in Weron (2002), with
following steps.

1. We begin with dividing the time series {Xi}, i = 1, 2...L., which is of
interest, of length L, into d subseries of length n {Xk

j }, j = 1, 2...n, k =
1, 2...d.

2. Then for each subseries {Xk
j }, we find its mean Ek and standard devia-

tion Sk.

3. Demean {Xk
j } to get {X̄k

j }.

4. creat a cumulatie timeseries {Y k
j }, Y k

j =
∑j

m=1 X̄
k
m, j = 1, ...n.
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5. find the range of {Y k
j } for each k, Rk = max{Y k

1 , ...Y
k
n }−min{Y k

1 , ...Y
k
n }.

6. rescale range Rk by using standard deviation, Rk/Sk

7. calculate the mean value of the rescaled range for all subseries of length
n

(R/S)n =
1

d

d∑
l=1

Rl/Sl (3.17)

8. Mandelbrot (1975) shows

(R/S)n ∼ cnH . (3.18)

Therefore, H can be given by a simple linear regression,

log(R/S)n = log c+H log n (3.19)

Weron (2002) also documents, for small n there is a significant deviation from
the 0.5 slope. To solve this problem, he suggests to use the estimation from
Anis and Lloyd (1975), in which they theoretically estimated the values of
the R/S statistic to be:

E[R(n)/S(n)] =


Γ(n−1

2
)√

πΓ(n
2

)

n−1∑
i=1

√
n−i
i
, for n ≤ 340

1√
nπ

2

n−1∑
i=1

√
n−i
i
, for n > 340

, (3.20)

where Γ is the gamma function, with a minor adjustment,

E[R(n)/S(n)] =


n−1/2
n

Γ(n−1
2

)√
πΓ(n

2
)

n−1∑
i=1

√
n−i
i
, for n ≤ 340

n−1/2
n

1√
nπ

2

n−1∑
i=1

√
n−i
i
, for n > 340

, (3.21)
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where the n−1/2
n

term was added by Peters to improve the performance for
very small n.

If the process is a long memory process then the slope H is greater than
0.5, that is to say 0.5 < H < 1; if it is anti-persistent or mean reversion
then the slope H is less than 0.5, that is to say 0 < H < 0.5. A value of
H = 0.5 can indicate a completely uncorrelated series, but in fact it is the
value applicable to series for which the autocorrelations at small time lags can
be positive or negative but where the absolute values of the autocorrelations
decay exponentially quickly to zero.

3.3.3 Likelihood-ratio Test

A likelihood-ratio test is a statistical test used to compare the goodness of fit
of two models, one of which (the null model) is a special case of the other
(the alternative model).

A statistical model is often a parametrized family of probability density
functions or probability mass functions f(x|θ). A simple hypotheses are

H0 : θ = θ0, (3.22)

H1 : θ = θ1. (3.23)

Let

Λ(x) =
L(θ0|x)

L(θ1|x)
=
L(∪ixi|θ0)

L(∪ixi|θ1)
, (3.24)

where L(θ|x) is the likelihood function, and Λ is the likelihood ratio function
for the hypotheses and Λ(x) is the likelihood ratio statistic.

Obviously, the likelihood ratio is small if the alternative model is better than
the null model and the likelihood ratio test provides the decision rule as
follows:
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If Λ > c , do not reject H0; If Λ <= c , reject H0;

with a significance level α, where P (Λ < c|H0) = α.

The Neyman-Pearson Lemma, named for Jerzy Neyman and Egon Pearson,
shows that when performing a hypothesis test between two simple hypotheses
H0 : θ = θ0 and H1 : θ = θ1, the likelihood-ratio test which rejects H0 in favor
of H1 when

Λ(x) =
L(x | θ0)

L(x | θ1)
≤ c (3.25)

where

P (Λ(X) ≤ c | H0) = α (3.26)

the likelihood-ratio test given above is most powerful at significance level α
for a threshold c.

3.4 Empirical Results on Index

Table 3.1, 3.2, 3.3, 3.4 show the fitting result from ARIMA(1, 0, 1) - IGARCH
(1, 0, 1)- Gaussian, ARIMA(1, 0, 1) - IGARCH (1, 0, 1)- GH and FARIMA(1,
d, 1) - FIGARCH (1, d0, 1)- GH.

Then we run likelihood-ratio test on ARIMA-IGARCH-GH (H1) against
ARIMA-IGARCH-Gaussian (H0) and FARIMA-FIGARCH-GH (H1) against
ARIMA-IGARCH-GH (H0). The output h = 1 indicates that there is strong
evidence suggesting that the unrestricted model (H1) fits the data better than
the restricted model (H0). Table 3.5 presents likelihood-ratio test result.

From the table, we can see, in all period and all frequency, ARIMA-IGARCH-
GH is better than ARIMA-IGARCH-Gaussian, indicating in intraday level,
returns have a non-gaussian behavior for certain. On the other hand, FARIMA-
FIGARCH-GH outperforms ARIMA-IGARCH-GH in longer frequency,10 -
minutes frequency at turbulent period and 10 - min, 30 - min frequency in
calm period. This indicates

• return series is more persistent in calm period than turbulent period.
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• for very high frequency, no matter calm or turbulent period, return
series shows less persistency.

It maybe able to be explained from market participants’ behaviors. For
example, the less persistency in higher frequency suggests a larger noise-
information ratio in higher frequency, which makes trading signal harder to
be detected and market more efficiency. The larger persistency in calm period
may come from attention bias and overreaction during calm period.

We then calculate the Hurst exponent for the original return series and the
residual of ARIMA-IGARCH and FARIMA-FIGARCH, on both original
and square level. From Table 3.6, 3.7, we can see, the persistency of return
mainly comes from the variance level, and FIGARCH can greatly removes
the persistency in variance.

3.5 Empirical Results on Stocks

For a further investigation , we will look into the long-range dependence of
cross-sectional stocks. We group stocks based on two characteristics: Capital
size and P/E ratio. Thus, we pick and sort stocks into 4 groups, that is,
{Large Capital(20% quantile), Small Capital(20% quantile)}×{High P/E(20%
quantile), Low P/E(20% quantile)}. For each group, 9-14 stocks are selected.
The results of the likelihood ratio test for long-range-dependence model are
summarized in Table 3.8. Crossing all stocks and time periods, generalized
hyperbolic innovation assumption is all accepted comparing to Gaussian
innovation.

Fractional integrated models are preferred more in large-capital high-PE
stocks comparing to small-capital low-PE ones when time period is calm.
When time period is turbulent, the fractional integration is not as signification
as calm period, and no stock cross-sectionally prefers long-range dependence
than others. 5-min and 10-min returns has stronger long-range dependence
comparing to 1-min and 30-min samplings.
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Table 3.8: Number of rejections of H0.

Time Horizon
Sampling

Frequency

ARIMA-IGARCH-GH

against

ARIMA-IGARCH-Gaussian

FARIMA-FIGARCH-GH

against

ARIMA-IGARCH-GH

Large Cap

High P/E

(14 stocks)

Turbulent Period

(2008-July-01

-2008-Dec-31)

1min 14 100% 4 28.57%

5min 14 100% 6 42.86%

10min 14 100% 11 78.57%

30min 14 100% 7 50%

Calm Period

(2013-Jan-02

-2013-June-28)

1min 14 100% 12 85.71%

5min 14 100% 13 92.86%

10min 14 100% 14 100%

30min 14 100% 13 92.86%

Small Cap

High P/E

(9 stocks)

Turbulent Period

(2008-July-01

-2008-Dec-31)

1min 16 100% 2 12.5%

5min 16 100% 8 50%

10min 16 100% 12 75%

30min 16 100% 10 62.5%

Calm Period

(2013-Jan-02

-2013-June-28)

1min 16 100% 8 50%

5min 16 100% 14 97.5%

10min 16 100% 16 100%

30min 16 100% 11 68.75%

Large Cap

Low P/E

(9 stocks)

Turbulent Period

(2008-July-01

-2008-Dec-31)

1min 9 100% 3 33.33%

5min 9 100% 3 33.33%

10min 9 100% 7 77.78%

30min 9 100% 7 77.78%

Calm Period

(2013-Jan-02

-2013-June-28)

1min 9 100% 6 66.67%

5min 9 100% 8 88.89%

10min 9 100% 9 100%

30min 9 100% 8 88.89%

Small Cap

Low P/E

(11 stocks)

Turbulent Period

(2008-July-01

-2008-Dec-31)

1min 11 100% 5 45.45%

5min 11 100% 5 45.45%

10min 11 100% 8 72.73%

30min 11 100% 7 63.64%

Calm Period

(2013-Jan-02

-2013-June-28)

1min 11 100% 7 62.64%

5min 11 100% 10 90.91%

10min 11 100% 10 90.91%

30min 11 100% 9 81.82%
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