
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



A New Stochastic Regime Switching Model with

Time-varying Regression Coefficients and Error Variances

A Dissertation presented

by

Xiaojin Dong

to

The Graduate School in Partial Fulfillment of the Requirements for the

Degree of

Doctor of Philosophy

in

Applied Mathematics and Statistics

(Concentration - Statistics)

Stony Brook University

May 2016



Stony Brook University

The Graduate School

Xiaojin Dong

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Haipeng Xing – Dissertation Advisor
Associate Professor, Department of Applied Mathematics and Statistics

Peifen Kuan – Chairperson of Defense
Assistant Professor, Department of Applied Mathematics and Statistics

Wei Zhu
Professor & Deputy Chair, Department of Applied Mathematics and Statistics

Keli Xiao
Assistant Professor, College of Business, Stony Brook University

This dissertation is accepted by the Graduate School.

Charles Taber
Dean of the Graduate School

ii



Abstract of the Dissertation

A New Stochastic Regime Switching Model with

Time-varying Regression Coefficients and Error Variances

by

Xiaojin Dong

Doctor of Philosophy

in

Applied Mathematics and Statistics

(Concentration - Statistics)

Stony Brook University

2016

Since the publication of Hamilton’s (1989) seminal work on Markov switch-

ing model, a large number of applications have been found in economics and

finance. The classical Markov switching models characterize the estimation

of parameters in finite state, limited by the pre-specified number of regimes,

thus it is restrictive in empirical studies. In this thesis, we develop a stochas-

tic regime switching model, where the model parameters are both categorical

and continuous. By assuming conjugate priors and defining stochastic regime

switching variables, we derive recursive filtering and smoothing algorithms to
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estimate the regimes and develop closed-form recursive Bayes estimates of the

regression parameters. Moreover, bounded complexity mixture (BCMIX),

an approximation scheme, is derived to increase the computation efficiency

substantially and yet this method is comparable to the Bayes estimates in

statistical efficiency. Hyperparameters are estimated via expectation and

maximization procedure and presented in closed form solutions. Intensive

simulation studies show that lower order of bounded complexity mixture

procedure is as efficient as Bayes estimates and that estimation performs

well on moderate large transition probability scenarios. A comparative sim-

ulation study shows that classical Markov switching models have a tendency

to overestimate the transition probabilities. We used our model to analyze

several US economic data, such as unemployment rate, industrial production

and manufacturing and trade inventory, to show our model is more suit-

able than classical regime switching models in analyzing business cycles of

economic time series data.
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Chapter 1

Introduction

Many economic and financial time series display prominent features such as

heavy tails, skewness, excess kurtosis and multimodality. Outside of time se-

ries domains, observations that possess the aforementioned features are often

generated from different sub-populations. Suppose that a random variable y

given the kth sub group follows a distribution p(·|θk) indexed by a parameter

set θk and if the probability of being in the kth sub group is denoted by ηk,

the marginal distribution of Y takes the form of the mixture density

p(y) = η1p(y|θ1) + · · ·+ ηKp(y|θK) (1.1)

K is the number of sub groups. Equation (1.1) is a basic construction of a

standard finite mixture model considered by Everitt and Hand (1981) and

Titterington et al. (1985). The important assumptions for finite mixture
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models are that y1, . . . , yN are independent and the sub group indicator

(S1, . . . , SK) follows a standard discrete distribution.

It is widely acknowledged that a normal economy often experiences dis-

ruptive events such as economic contraction, economic expansion, or govern-

mental policy change. These disruption may generate different dynamics for

a time series that is of interest to econometricians. Traditional linear time

series models fail to capture the structural changes in the inherent data gen-

erating process; nonlinearity shown in mixture model (1.1) seems to explain

such a process reasonably better. For example, Quandt (1958, 1972) intro-

duced a regime switching regression allowing the observations to be generated

by distinct regression equations with probability λ1, λ2, . . .. This model as-

sumes the regime indicators at time t are independent of what the system was

in the past and also assumes that the observations are regressed on exogenous

variables only. Unfortunately, these models are not able to make an inference

on regime status for the observation at each time point. The estimation of

regime status is often of great use and interest to econometricians.

To deal with broader time series underpinning structural change, one

may relax two conditions in the standard mixture model. First, allow yt to

be dependent on past values, enabling the model to capture autocorrelation.

Second, specify a Markov probability law about the regime indicator, making

the inference of regime status feasible. Such a model, called Markov switching

model, was introduced into econometrics by Goldfeld and Quandt (1973).

As an extension of the work of Quandt (1972), their model allows explicit
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dependency between the regime indicator St to be a two-state Markov chain,

whereas Quandt (1972) assumes that St is an i.i.d. random sequence.

Markov switching models have many applications in engineering time

series under the name “hidden Markov model”. It was an important tool

in speech and pattern recognition developed in 1980’s; see a good survey

by Rabiner and Juang (1986) and Ghahramani (2001). The term “hidden

Markov” originates from the fact that the observation yt was generated by a

process where the state St of yt is unobserved and the fact that the unob-

served state satisfies the Markov property. The hidden Markov model is also

known by other names, such as Markov mixture model, which is preferred

by biologists (P. Albert, 1991). Frühwirth-Schnatter (2006) gives a compre-

hensive overview about Markov mixture model. The term Markov switching

model or regime-switching model is preferred by economists to analyze eco-

nomic time series; see Neftçi (1984), J. Hamilton (1990) and Krolzig (1997).

I will follow economics convention in this thesis.

1.1 The Basic Markov Switching Concept

Markov switching models form a very flexible class of nonlinear time se-

ries models and are able to capture many features of marginal distributions

of practical time series such as asymmetry, nonnormaility with fat tails or

multimodality to a greater extent than non-Markov mixture models. By in-

troducing Markov properties into hidden state St in equation (1.1), Markov
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switching model allows more data dependence. In its simplest structure,

although the observed process Yt is uncorrelated when hidden state St is

known, the autocorrelation in the marginal distribution of Yt and also the

squared process Y 2
t exist. The mathematical details about the moments of

Markov switching models are explored thoroughly by Timmermann (2000).

A time series y1, y2, . . . , yT is a realization of a stochastic process {Yt}t≥1

and each Yt is governed by an unobserved state St where St has K states and

follows a Markov distribution with transition matrix P . An example distribu-

tion of St would be a K-state first order Markov chain whose transition matrix

is {pij}, i, j = 1, 2, . . . , K where pij = P (St = j|St−1 = i) with
∑K

j=1 pij = 1.

Let θk be the parameter associated with St = k, k = 1, 2, . . . , K. Given St,

conditional distribution of Yt is generated from a specific distribution family:

Yt|St = k ∼ fθ(·|θk) (1.2)

There are many variations of this model with respect to the nature of stochas-

tic process {Yt}t≥1 and properties of Markov chain St. As far as Markov chain

St is concerned, commonly seen properties include order, reducibility, peri-

odicity and homogeneity which directly affect the definition of the transition

matrix and the initial distribution of the chain. For example, the transition

probabilities of a rth order K state Markov chain are denoted as

P (St = kt|St−1 = kt−1, · · · , St−r = kt−r),
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where kt = 1, 2, · · · , K and
∑K

i=1 P (St = i|St−1 = kt−1, · · · , St−r = kt−r) = 1.

Reducibility is related to whether St has the ability to leave the current state

in the chain. A two-state and first order transition matrix such asp11 1− p11

0 1


is an example of a reducible Markov chain, i.e. once the chain reaches state 2,

it remains there with no possibility of returning to state 1 again. A periodic

Markov chain switches between states in a periodic manner given an initial

state S0. In a first order Markov chain with transition matrix

0 1

1 0

 ,
given initial state S0 = 1, St = 1 at time t = 3, 5, 7 . . . , with probability

1 and St = 2 at time t = 2, 4, 6, . . . , with probability 1 and so on. Such a

Markov chain has period 2 and does not converge.

The aforementioned transition probabilities depend only on the order of

the states in the Markov chain which is named homogeneous (time invariant)

Markov chain. The inhomogeneous (time-varying) Markov chain arises from

the fact that conditional distribution of St depends not only on recent values

of St−1, St−2, . . ., but also on exogenous variables or history of Yt. Let

Ωt = {z1, z2, · · · , zt,y1,y2, · · · ,yt} (1.3)
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where zi’s are exogenous variables. The transition probability of an inhomo-

geneous Markov chain can be defined as

P (St = k|St−1, St−2, . . . ,Ωt−1, zt)

The Markov switching models with time-varying transition probabilities are

discussed by Diebold et al. (1994), Filardo (1998) and Peria (2002).

In business cycle analysis, numerous research discovers that a business

cycle is asymmetric and exhibits a pattern of recession, rapid growth af-

ter recession and normal growth and back to recession. See references in

Acemoglu and Scott (1997); Kim and Nelson (1998); J. Hamilton and Raj

(2002); Chauvet et al. (2002). This research has also indicated that the du-

rations of the states are not the same. Therefore, certain Markov properties

would not be appropriate for business cycle analysis. The recurrent nature

of economic activity invalidates a reducible chain; asymmetry disqualifies a

periodic chain. The widely used assumption for hidden Markov chain in

economic time series analysis is defined in the following:

Assumption 1.1. St is an irreducible, aperiodic, first order homogeneous

Markov chain starting from its ergodic distribution π = (π1, π2, · · · , πK).

Y1, Y2, . . . , YT can be discrete-valued or continuous-valued time series.

Given the state St, Yt may come from any parametric family. This thesis

mainly focuses on reviewing and modelling the continuous-valued time series

with the Markov chain defined in assumption 1.1, which appears in section
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1.2. Readers interested in discrete-valued time series generated by a hid-

den Markov chain may refer to MacDonald and Zucchini (1997). Equation

(1.2) indicates that Yt’s are independent if St is known. However, in prac-

tice, Yt may be also correlated with its own lags, with exogenous variables,

or even with history of St. The exact relation is determined by the model

specification of Yt discussed in section 1.2. The relation also determines the

complexity of statistical inference discussed in section 1.3.

1.2 Major Markov Switching Models

It is true that the autocorrelation of marginal distribution of Yt can be cap-

tured under basic Markov switching model (1.2) via only specifying a Markov

chain of the hidden state. The conditional distribution of Yt is not necessarily

always uncorrelated. To relax the assumption in equation (1.2), Let

P (yt|St, St−1, . . . ,Ωt−1, zt, Θ) (1.4)

be the conditional density of Yt depending on endogenous or exogenous vari-

ables or more lagged hidden states, where Θ includes all the model parame-

ters and Ωt is defined in (1.3).

It is widely acknowledged that J. Hamilton (1989)’s seminal paper pop-

ularizes the application of Markov switching model in economic time series

analysis. He introduced a two-state Markov chain in the mean level in an
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autoregressive model in the analysis of log difference of GNP data:

Yt − µSt = φ1(Yt−1 − µSt−1) + · · ·+ φp(Yt−p − µSt−p) + εt, (1.5)

where εt ∼ N(0, σ2). Later this model was extended to allow changing states

of autoregressive coefficients and error variance in the form of

Yt = φSt,0 + φSt,1Yt−1 + · · ·+ φSt,pYt−p + εt, (1.6)

where εt ∼ N(0, σ2
St

), by Holst et al. (1994) and McCulloch and Tsay (1994).

When St takes K states, equation (1.6) is usually denoted as MS(K)-AR(p)

which describes a Markov switching autoregressive model with K states and

autoregressive order p.

Equation (1.5) and (1.6) relies on only endogenous variables, i.e. the his-

tory of Yt. Other regression models may only depend on exogenous variables

zt such as

Yt = z′tβSt + εt, (1.7)

where variance of εt can be homoscedastic as σ2 or heteroscedastic as σ2
St

and coefficient βt’s are state dependent. The most general form of Markov

regression model may allow both endogenous and exogenous regressors and

the coefficients of the regressors can be partly state dependent and partly

state independent and the variance of error term can be either homoscedas-

tic or heteroscedastic. Some authors name this general form as a Markov

8



switching dynamic regression model (Frühwirth-Schnatter, 2006). However,

I do not distinguish the terms in the following discussion.

Markov switching concept has also been utilized in autoregressive con-

ditional heteroscedastic (ARCH) model introduced by Engle (1982) and in

the generalized autoregressive conditionally heteroscedastic (GARCH) model

by Bollerslev (1986) to capture the volatility clustering in financial time se-

ries analysis. Numerous researchers have proposed Markov switching ARCH

models. The basic idea is

Yt =
√
γSthtεt,

h2
t = 1 +

α1

γSt−1

Y 2
t−1 + · · ·+ αm

γSt−m
Y 2
t−m,

(1.8)

formulated by J. Hamilton and Susmel (1994). Other formulations and vari-

ation in model details can be seen in Cai (1994), Gray (1996), Wong and Li

(2001) and Kaufmann and Frühwirth-Schnatter (2002). Francq et al. (2001)

consider a GARCH(m,n) model where all coefficients are allowed to switch:

Yt = σtεt, εt ∼ N(0, 1)

σ2
t = γSt + αSt,1y

2
t−1 + · · ·+ αSt,my

2
t−m + δSt,1σ

2
t−1 + · · ·+ δSt,nσ

2
t−n

(1.9)

In such a model, conditional density of Yt depends on the whole history of

St. See application of Markov switching GARCH in stock market returns in

Dueker (1997) and exchange rate time series data in Klaasen (2002).

There is always challenge in statistical inference when Yt relies on the
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whole history of hidden state. State-space representation is flexible and al-

lows reconstructing a complex Markov switching model into two equations:

transition and observation equations. The fundamental purpose of writing in

such a form is to make Yt conditionally independent given unobserved state

variable St, i.e.

p(y1, . . . , yT |s1, . . . , sT ) =
T∏
t=1

p(yt|st)

and to make state variable a first-order Markov chain, i.e.

p(s1, . . . , sT ) =
T∏
t=2

p(st|st−1)p(s1)

Kim (1994) developed simple filter and smoother to make the estimation of

Markov switching state-space model easier and widely applicable. See also

Kim and Nelson (1999).

1.3 Statistical Inference of Markov Switching

Models

Apart from the model specification, there are additional three important

issues in the statistical inference of a Markov switching model. First, mod-

eling requires the knowledge of the number of state K in the hidden chain.

Second, state-specific parameters θk, k = 1, · · · , K and probabilities in tran-

sition matrix are unknown and need to be estimated from the data. Finally,
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the estimation of the probability of the state at a time point, P (St = k) for

t = 1, · · · , T tells which hidden state Yt belongs to.

Although the Markov structure and state dependent parameters in the

regression model bring more flexibility in feature of Yt, the challenge is that

the more complex the model structure, the more difficult the statistical in-

ference. The most commonly used methods to estimate parameters are max-

imum likelihood estimation and Bayesian estimation, both of which rely on

conditional likelihood. For example

f(Yt|Ωt−1, zt; Θ) =
K∑
i=1

f(Yt|St = i,Ωt−1, zt; Θ)P (St = i|Ωt−1, zt; Θ) (1.10)

where Ωt is defined in (1.3) and Θ includes all the model parameters. Equa-

tion (1.10) is also called one-step ahead forecast of yt which is a mixture

of a density family weighed by one-step forecast of probability of the hid-

den states. The second piece of right hand side of (1.10) is an intermediate

step of filtering estimation of probability of St, the answer to the third issue

discussed in detail below.

Hamilton did a great contribution to the statistical inference of Markov

switching regression model. In his 1989 paper, he developed an iterative

method to estimate probabilities of hidden states at time t given all the

information available at time t. The byproduct of this procedure is a likeli-

hood function which can be used to estimate other model parameters. Here

I present a short summary of his algorithm along with the reference to Kim
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and Nelson (1999).

Let yt be a univariate or a vector-valued observed variable and zt be an

exogenous variable, either univariate or multidimensional for t = 1, 2, . . . , T .

yt is governed by a finite discrete hidden state St as in assumption 1.1 with

K states. St is uncorrelated with zt, notationally,

P (St = j|St−1 = i, St−2 = it−1, · · · , zt,Ωt−1) = P (St = j|St−1 = i) = pij

(1.11)

where Ωt is defined in (1.3) and
∑K

j=1 pij = 1 for i, j = 1, 2, . . . , K. Condi-

tional distribution of yt depends on the specification of regression model and

error distribution and has the general form of

f(yt|St, St−1, · · · , zt,Ωt−1; Θ) (1.12)

if the regression model parameters are collected into α, and transition prob-

abilities pij’s into λ and Θ = (α, λ). For example, let yt be univariate

and

yt = βSt,0 + βSt,1yt−1 + βSt,2zt + εt, εt ∼ N(0, σ2
St)

Then (1.12) is reduced to

f(yt|St = j, zt,Ωt−1; Θ) =
1√

2πσj
exp
{
− (yt − βj,0 − βj,1yt−1 − βj,2zt)2

2σ2
j

}

for j = 1, 2, . . . , K.
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The ultimate goal of Hamilton’s iterative algorithm is to estimate P (St|Ωt; Θ).

For simplicity and the ease of comprehension, I present this algorithm in

terms of the regression model where yt is uncorrelated with lags of St except

St and St−1 in the following five steps.

step 1: Compute the joint distribution of (St, St−1) given all the informa-

tion available at t− 1 and also by (1.11):

P (St, St−1|Ωt−1; Θ) = P (St|St−1,Ωt−1; Θ)P (St−1|Ωt−1; Θ)

= P (St|St−1)P (St−1|Ωt−1; Θ)

(1.13)

step 2: Compute the joint distribution of yt, St, St−1 given all the informa-

tion available at time t− 1.

f(yt, St, St−1|Ωt−1; Θ) = f(yt|St, St−1,Ωt−1; Θ)P (St, St−1|Ωt−1; Θ)

(1.14)

The last two terms come from (1.12) and step 1 respectively.

step 3: We then have

f(yt|Ωt−1; Θ) =
K∑
i=1

K∑
j=1

f(yt, St = j, St−1 = i|Ωt−1; Θ) (1.15)

the conditional distribution of yt given all information available at t−1

and all the model parameters.
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step 4: By Bayes’ theorem and with the information in step 2 and 3, we

can update joint distribution of St, St−1 by adding yt to the available

information.

P (St, St−1|Ωt; Θ) =
f(yt, St, St−1|Ωt−1; Θ)

f(yt|Ωt−1; Θ)

=
f(yt|St, St−1,Ωt−1; Θ)P (St, St−1|Ωt−1; Θ)

f(yt|Ωt−1; Θ)

(1.16)

step 5: Marginalize St in previous step.

P (St|Ωt; Θ) =
K∑
i=1

P (St, St−1 = i|Ωt; Θ) (1.17)

Equation (1.17) is called filtered probability of St. Filtered estimation

refers to the estimation of St conditional on the information up to time t.

An alternative important way to estimate probability of St is by smoothing

which refers to the estimation of St conditional on all the information in the

sample i.e.

P (St|ΩT ,Θ) for t ≤ T.

To obtain this smoothed probability distribution, one needs to know the

filtered probability as in (1.17) and the smoothed probability distribution

P (St+1|ΩT ,Θ). A comprehensive derivation of full sample smoother is given

in J. Hamilton 1989’s paper, as well as in other good references such as

J. D. Hamilton (1994), Kim (1994), Kim and Nelson (1999) and Scott (2002).

To start the algorithm, we need to provide an initial value P (S0|Ω0,Θ)
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which is the ergodic distribution of St if the Markov chain follows assumption

1.1. For a first order irreducible and aperiodic Markov chain, the ergodic

distribution is a function of transition probabilities in (1.11). The general

form of ergodic distribution is derived in detail in J. D. Hamilton (1994,

p. 684). In case of permanent regime change (e.g. reducible chain) , one

may consider an independent initial distribution such as discrete uniform

distribution, i.e. P (St = k) = 1
K
, for all k = 1, 2, . . . , K.

The byproduct of this iterative algorithm is the convenience of writing

the likelihood function by (1.15):

L(Θ; Ωt) =
T∏
t=1

f(yt|Ωt−1; Θ)

whose log likelihood function is

l(Θ; Ωt) =
T∑
t=1

ln
(
f(yt|Ωt−1; Θ)

)
. (1.18)

The estimation of model parameters can be made based on (1.18). Ap-

parently, calculating likelihood is inevitable in this iterative algorithm. A

succinct matrix representation of this algorithm is given in J. D. Hamilton

(1994, p. 692 – 696). The algorithm documented above is convenient for

computational purpose.

Typically, we may apply Maximum likelihood estimation (MLE) method

to make an inference about model parameters based on (1.17) and (1.18). It
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has been proven that MLE is consistent, asymptotically normal with vari-

ance equal to the inverse of Fisher information matrix: See Casella and

Berger (2001). An excellent review of the asymptotic properties of ML esti-

mator for hidden Markov models can be seen in Cappé et al. (2005, Chap-

ter, 12). However, the likelihood function of Markov switching models is

often featured with multiple local optima, essential singularities and even

occasionally unbounded functional values, which causes trouble in numerical

optimization. Popular numerical methods such as steepest ascent, Newton-

Raphson or Davidon-Fletcher-Powell may suffer from numerical instability

and fail to produce valid sample Hessian in the case of non-concave objective

functions. Therefore under MLE method, research in practice has often been

limited to simpler models, lower dimension and a small number of regimes.

An alternative method to estimate model parameters is the Expectation-

Maximization (EM) algorithm, originally motivated by Dempster et al. (1977)

and extended and specialized by J. Hamilton (1990) for Markov switching

model. EM algorithm has the principal advantage over MLE methods for its

numerical robustness despite the ill chosen starting values. Good initial val-

ues are preferred and experimenting multiple initial values is recommended

among practitioners. J. Hamilton (1990, section 3) proved that using com-

plete data density in expectation step and maximizing such an expectation

yield exactly the maximum likelihood estimates. Further benefit of EM al-

gorithm includes a potential application to a large vector system. Ideally,

after EM algorithm, the solution of parameter estimation has an analytical
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form, whereas in many case, maximization of the function in E-step ends up

with the numerical optimization where the same trouble as in MLE is likely

to occur.

In no conflict with the nondifferentiability of the likelihood function,

Bayesian methods have become attractive to estimate Markov switching

models since they can allow flexible relationship between parameters in var-

ious hidden states, are easier to implement and computationally feasible.

Besides, exploration of posterior distributions of the parameters can provide

more information than first and second moments that MLE can only provide.

Conjugate priors exist for very few model specifications and most analysis of

posterior distributions relies on Markov chain Monte Carlo (MCMC) method.

Gibbs sampling by J. H. Albert and Chib (1993) is rather straightforward to

use in data augmentation and conditioning in a Markov switching autoregres-

sive model. Chib (1996) extended their method to general Markov switch-

ing models. See other references in McCulloch and Tsay (1994), Kaufmann

(2000) and Chauvet et al. (2002). Care must be taken to choose prior dis-

tributions to avoid improper posterior. Inappropriate prior may also cause

biased posterior estimates. MCMC can be very expensive for large dimen-

sional complex models.

So far, Hamilton’s iterative algorithm turned out to be a prevalent solu-

tion to the third issue in statistical inference of Markov switching models.

The advent of various techniques in MLE, EM algorithm and Bayesian esti-

mation in current literature provides possible solutions to the second issue.
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Inevitably no method is universally superior to the others. To choose a good

estimation method is always a daunting task because the practitioners need

to consider the aspects of model complexity, data size, and the available com-

putational resource as a whole. In a large vector system, the estimation of

parameters may include a combination of different methods at different stage

of the estimation. In this thesis, the proposed model uses Bayesian method

to estimate the model parameters and EM algorithm to estimate the prior

parameters as in section 2.6.

The first and foremost inferential issue of Markov switching model is the

estimation of number of regimes that has to be addressed the last simply

because the current research of testing the number of regimes relies on the

conditional log-likelihood which can be only computed after the model pa-

rameters are estimated. J. Hamilton (1996) pointed out the challenge of

testing on Markov switching models. He proposed tests on other aspects

of model misspecification but did not test on number of regimes. Testing

on number of regimes involves inference for an overfitting mixture model

which presents a non-regular condition with the true parameter lying in a

nonidentifiable subset of the larger parameter space. Thus the condition for

the standard (LR) test statistic, Wald test statistic or the score test statistic

fails to hold. Based on Hamilton’s 1989 model, Hansen (1992) approximated

the LR statistic under non-regular condition using empirical process theory;

Garcia (1998) derived analytically the asymptotic null distribution of the

LR test by treating transition probabilities as nuisance parameters; Cho and
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White (2007) derived limiting distribution for quasi LR statistics for various

special cases of mixture models. Besides, AIC, BIC and marginal likelihood

have been used to deal with model selection problems (not limited to esti-

mation of number of regimes) for Markov switching models; See Wang and

Puterman (1999) and Frühwirth-Schnatter (2004). There is more room to

be explored in these areas in future research.

1.4 Contributions of this thesis

In this dissertation, I continue to explore the Markov switching regression

model where the regressors can be endogenous and exogenous. The model

parameters (including the variance) are still determined by the outcomes of a

discrete-state Markov chain. The first contribution of this model is that the

regression parameters (including error variance) are no longer piecewise con-

stants for each regime, which has not been discussed in the current literature

to my best knowledge. This is accomplished by bringing in an additional

assumption that the joint distribution of the model parameters relies on an

indicator variable of whether the regime changes from a previous time point.

This new assumption makes the model parameters to be related to regimes

but not entirely restricted by the regime, in other words, the space of model

parameter is continuous and infinite even under the same regime. For a par-

ticular regime, the number of sets of parameters to be estimated is related

to the number of transitions the system has made from other regimes to
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the specified one. This contribution is non-trivial, because this model gives

more flexibility to handle the difference within a regime. It has the great

advantage in economic application simply because, for example, the levels

and variations of economic down (up) turn may not necessarily be the same

in different time periods. Thus a small number of regimes in this model can

explain a complex time series data that would have to be otherwise analyzed

by a large number of regimes under the traditional Markov switching models.

The second innovation of this model is the specification of a regime rel-

evant stochastic time variable. This new variable describes the most recent

change-of-regime time point before or after a particular time point at which

the hidden regime assumes a particular state. Lai et al. (2005) and Lai and

Xing (2011) delved the similar concept in non-Markovian regime switching

models and derived the recursive formula for its probability distribution. In-

voked by their ideas, we derived the recursive formula for the distribution

of this new variable in Markovian environment. The introduction of this

time variable and its probability distribution bring further simplification in

parameter estimation. With the conjugate prior assumption, Bayesian esti-

mates of model parameters and the error variance have closed form solutions;

prior estimates via EM algorithm all have explicit solutions; the estimation

of the regime at each time point is the byproduct of the recursive formula,

so is the marginal likelihood function.
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1.5 Outline

This thesis is planned as follows. Chapter 2 proposes a stochastic regime

switching model where both the regression coefficients and the error variance

depend on a Markov chain. Inference on the regime status and model param-

eters is derived based on the Bayesian framework and EM algorithm is also

discussed to estimate hyperparameters in this chapter. Chapter 3 explores

the simulation studies to compare and contrast the accuracy and the effi-

ciency of Bayes and BCMIX estimation method for various series length and

various transition probabilities. BCMIX estimation is compared with the

estimation from the classical Markov switching model. This chapter also an-

alyzes the effectiveness of EM algorithm on hyperparameters and the impact

of hyperparameter estimation on the model parameters. Real data analysis

of the proposed model is given in chapter 4 for 3 economic time series data:

unemployment rate series, industrial production series and real manufactur-

ing and trade inventory series. A comparison analysis with classical Markov

switching regression model is also given in the end of this chapter. Conclud-

ing remarks are given in chapter 5. Lengthy proofs and formula derivations

are shown in Appendix A.
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Chapter 2

A New Regime Switching

Regression Model and Its

Inference

2.1 A New Regime Switching Regression Model

Assume that {yt} is a univariate stochastic process that follows

yt = x′tβt + σtεt, εt ∼ N(0, 1), (2.1)

where xt is a (d×1) vector that may include both endogenous (history of yt)

and exogenous variables and accordingly βt is a (d× 1) regression parameter

vector. Parameters βt and σt depend on the hidden state St that satisfies
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the following assumptions:

(A1) {St = 1, . . . , K|t ≥ 0} follows a first order, irreducible and reversible

Markov chain with the transition matrix

P =



p11 p12 . . . p1K

p21 p22 . . . p2K

...
...

...
...

pK1 pK2 . . . pKK


(2.2)

(A2) Define S1 6= S0. Let τt = (2σ2
t )
−1 and define θt := (βt, τt), then

θt = 1{St=St−1}θt−1 + 1{St 6=St−1}(Zt, γt),

where Zt|γt, St = k ∼ N
(
z(k), V

(k)

2γt

)
whose distribution is denoted as

f
(k)
0,0 and γt|St = k ∼ Gamma(g(k), λ(k)) denoted as h(k)

0,0 and z(k),V (k), g(k)

and λ(k) are hyperparameters ∀ k = 1, . . . , K .

Assumption (A1) indicates that this Markov chain has the stationary

probability distribution π′ = (π1, . . . , πK) and π has the following relation

with the transition matrix P .

π′P = π′ (2.3)

As is well known in a classical Markov switching model, the distribution

of model parameters depends on which hidden state the system is on at a
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particular time point and so model parameters are piecewise constants and

each of them is limited to the number of regimes specified in the system.

Assumption (A2) brings new features into model (2.1) and sheds light on

some Markov property for model parameters. In (A2), the distribution of θt

relies not only on the regime state at a particular time point, but also on the

state of the previous time point. For example, the system may be on state

k at time t1 and may have been through regime changes for some time, but

at a future time t2 the system may switch back to state k. At time t2, the

distribution of model parameters is from the same family distribution as in

time t1, however, the values of these parameters may not necessarily be the

same, since (A2) allows the regeneration of the parameters at every regime

switching point. Although the number of regimes is limited to K, the true

values of each parameter are not limited. They are related to the number

of switching to a particular state, which is uncertain in the whole stochastic

process. In short, parameters are not necessarily piecewise constants at each

regime, but piecewise constant between the adjacent regime changes.

To make the above concept more concrete, Figure 2.1 presents the state

change and the corresponding parameter values in a simple two-state system.

The process has been in state 1 until t1 and been through the change to state

2 for some time and come back to state 1 again at t2. However, the value of

βSt until t1 is not the same as that between t2 and t3, though both βt’s are

in state 1, due to the regeneration mechanism in assumption (A2).
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Figure 2.1: Illustration of the regime changes (upper panel) and the values
of single parameter βSt at each regime (lower panel) in a two-state system.

0 t1 t2 t3 t4 T

St = 1

St = 2

0 t1 t2 t3 t4 T

βt St = 1

St = 1
St = 1

St = 2
St = 2

Besides, Bayesian estimation is used to estimate βt and σt based on the

prior assumptions in (A2). Since the number of pieces of the parameters to

be estimated is uncertain in this model, ML estimation fails to carry the task

with an unknown number of parameters. Bayesian method makes it viable

along with the definition of a new random time variable in equation (2.5),

motivated by the idea of Lai et al. (2005, 2008); Lai and Xing (2011), with

which the filter and smoother of the model parameters can be derived in the

following sections.
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2.2 Forward Filtering Estimation of Parame-

ters

The goal of this section is to estimate the model parameters βt and σt and

probabilities of the regimes at each time t given all the historical information

at time t. Such a time related inference is usually called the forward filtering

estimation. First we need to define notations and useful variables. Let

yij = (yi, . . . , yj), xij = (xi, . . . ,xj),

Ft = (x1t,y1t), Fij = (xij,yij) (2.4)

A new random variable describing the time index of the most recent regime

change is defined as J (k)
t , notationally,

J
(k)
t := max{i ≤ t : Si−1 6= Si = · · · = St = k} (2.5)

To be more specific, the system is in state k at time t, J (k)
t is the time

index that the system moves onto state k from other states most recently at

or before time t. Figure 2.2 shows that at time s, the system is on state 2, the

most recent index to move to state 2 is J (2)
s = t1 and similarly, J (1)

t = t2 for

system on state 1 at time t. To estimate a system where the change points

are unknown, there is no way to be certain of J (k)
t . So the range of J (k)

t is

1, . . . , t. The probability of J (k)
t = i given all information available at time t
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Figure 2.2: Illustration of J (k)
t for a concrete two-state system

0 Tt1 s t2 t

St = 1

St = 2

St = 1

St = 2

Js
(2) = t1 Jt

(1) = t2

is defined as

ξ
(k)
i,t := P (J

(k)
t = i|Ft), (2.6)

Equation (2.6) is a short notation of P (J
(St)
t = i, St = k|Ft), a joint distri-

bution of the state and the most recent time to change. In addition, the

probability of the regime at each time given all information available at time

t, i.e. P (St = k|Ft), is actually
∑t

i=1 P (J
(St)
t = i, St = k|Ft). Thus there

is a simple relation between the filtering estimation of the regime and ξ
(k)
i,t

defined below.

ξ
(k)
t := P (St = k|Ft) =

t∑
i=1

ξ
(k)
i,t (2.7)

where 1 ≤ i ≤ t and 1 ≤ k ≤ K.

Next, we estimate (βt, σt) via the posterior distribution of (βt, τt), given

all the information available at t since τt = (2σ2
t )
−1 defined in (A2) is easier to
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work with. By definitions in (2.5), (2.6), the posterior distribution of (βt, τt)

is

f(βt, τt|Ft) =
K∑
k=1

t∑
i=1

f(βt, τt, J
(k)
t = i|Ft)

=
K∑
k=1

t∑
i=1

f(βt|τt, J
(k)
t = i,Ft)f(τt|J (k)

t = i,Ft)ξ(k)
i,t (2.8)

which is a weighted average of conditional posterior distributions of βt and

τt given J
(k)
t = i.

By Bayes’ theorem, the first term in the right hand side of equation (2.8)

is

f(βt|τt, J
(k)
t = i,Ft) =

f(y1t|βt, τt, J
(k)
t = i,x1t)f(βt|τt, J

(k)
t = i,x1t)

f(y1t|τt, J
(k)
t = i,x1t)

∝ f(yit|βt, τt, J
(k)
t = i,x1t)f(βt|τt, J

(k)
t = i,x1t)

Since the information before time i is irrelevant to the most recent changes

to state k, the estimation of βt uses only the most recent t − i + 1 pieces

of information. Also because conditional yr’s are independent under the last

regime change, the above equation can be further simplified to

f(βt|τt, J
(k)
t = i,Ft)

∝
t∏
r=i

exp
{
− τt(yr − x′rβt)2

}
exp
{
− τt

(
βt − z(k)

)′(
V (k)

)−1(
βt − z(k)

)}
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∝ exp
{
− τtβ′t

( t∑
r=i

xrx
′
r + (V (k))−1

)
βt + 2τtβ

′
t

( t∑
r=i

xryr +
(
V (k)

)−1
z(k)
)}

∝ exp
{
τt
(
βt − z

(k)
i,t

)′(
V

(k)
i,t

)−1(
βt − z

(k)
i,t

)}

where (
V

(k)
i,j

)−1
=

j∑
r=i

xrx
′
r + (V (k))−1, (2.9)

and

z
(k)
i,j = V

(k)
i,j

( j∑
r=i

xryr +
(
V (k)

)−1
z(k)

)
(2.10)

In short, the conditional distribution of βt given τt, J
(k)
t = i and Ft follows a

normal distribution with mean z(k)
i,t and variance V

(k)
i,t

2τt
, notationally,

βt|τt, J
(St)
t = i, St = k,Ft ∼ N

(
z

(k)
i,t ,

V
(k)
i,t

2τt

)
with p.d.f. f (k)

i,t (2.11)

By property of marginal distribution and again with Bayes’ theorem, the

second item in the right hand side of equation (2.8) is shown to be

f(τt|J (k)
t = i,Ft)

=

∫
f(τt,βt,y1t|J

(St)
t = i, St = k,x1t)

f(y1t|J
(St)
t = i, St = k,x1t)

dβt

∝
∫
f(yit|τt,βt, J

(k)
t = i,x1t)f(βt|τt, J

(k)
t = i,x1t)dβtf(τt|J (k)

t = i,x1t)

∝ τ
g(k)+ t−i+1

2
−1

t exp
{
−
( 1

λ(k)
−
(
z

(k)
i,t

)′(
V

(k)
i,t

)−1
z

(k)
i,t +

t∑
r=i

y2
r + (z(k))′

(
V (k)

)−1
z(k)
)
τt

}
.
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Let

g
(k)
i,j := g(k) +

j − i+ 1

2
(2.12)

and

1

λ
(k)
i,j

:=
1

λ(k)
−
(
z

(k)
i,j

)′(
V

(k)
i,j

)−1
z

(k)
i,j +

j∑
r=i

y2
r + (z(k))′

(
V (k)

)−1
z(k). (2.13)

Thus, the conditional distribution of τt given J
(k)
t and Ft follows a Gamma

distribution with shape parameter g(k)
i,t and rate parameter λ(k)

i,t . Notationally,

τt|J (St)
t = i, St = k,Ft ∼ Gamma

(
g

(k)
i,t , λ

(k)
i,t

)
with p.d.f. h(k)

i,t (2.14)

The posterior distribution of (βt, τt) in equation (2.8) is then a mixture of

well defined distributions with weights ξ(k)
it defined in (2.6). If ξ(k)

it is known,

the posterior means of the estimator would have closed form solutions. ξ(k)
it is

so crucial in the parameter estimation that we call this quantity the forward

weight. It turns out there is a recursive formula for the forward weight. Let

us begin with the expansion of the definition of ξ(k)
it as follows:

ξ
(k)
i,t = P (J

(St)
t = i, St = k|Ft)

=
K∑
l=1

P (J
(St)
t = i, St = k, St−1 = l|Ft)

=
K∑
l=1

f(yt, J
(St)
t = i, St = k, St−1 = l|Ft−1)/f(yt|Ft−1)
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=
K∑
l=1

f(yt|J (k)
t = i, St−1 = l,Ft−1)P (J

(St)
t = i|St = k, St−1 = 1,Ft−1)×

P (St = k|St−1 = l,Ft−1)P (St−1 = l|Ft−1)/f(yt|Ft−1) (2.15)

To simplify the above expression, we must understand the relationship be-

tween the state at time t and t− 1 and conditional probability of J (St)
t at or

before time t. For l 6= k, indicating that the last jump occurs at time t, then

P (J
(St)
t = i|St = k, St−1 = l,Ft−1) =


1 i = t

0 i < t

(2.16)

Due to first order Markov property P (St = k|St−1 = l,Ft−1) = P (St =

k|St−1 = l) = plk and with the definition (2.7),

ξ
(k)
i,t ∝ f(yt|J (k)

t = i,Ft−1)
∑
l 6=k

plkξ
(l)
t−1 (2.17)

for only i = t, 0 otherwise. If l = k, the most recent jump must occur

before time t and event J (St)
t = i|St = k, St−1 = l,Ft−1 is equivalent to event

J
(St−1)
t−1 = i|St−1 = k,Ft−1, i.e.

P (J
(St)
t = i|St = k = St−1,Ft−1) = P (J

(St−1)
t−1 = i|St−1 = k,Ft−1) i < t

(2.18)
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Then for i < t with pkk = P (St = k|St−1 = k,Ft−1) and definition (2.6),

ξ
(k)
i,t ∝ f(yt|J (k)

t−1 = i,Ft−1)P (J
(St−1)
t−1 = i|St−1 = k,Ft−1)pkkP (St−1 = k|Ft−1)

= f(yt|J (k)
t−1 = i,Ft−1)pkkP (J

(St−1)
t−1 = i, St−1 = k|Ft−1)

= f(yt|J (k)
t−1 = i,Ft−1)pkkξ

(k)
i,t−1 (2.19)

To continue with the recursive formula of ξki,t, we prove in Theorem 1 and

2 in Appendix A that

f(yt|J (St)
t = t, St = k,Ft−1) = π−

1
2
φ

(k)
t,t

φ
(k)
0,0

(2.20)

and

f(yt|J (St−1)
t−1 = i, St−1 = k,Ft−1) = π−

1
2
φ

(k)
i,t

φ
(k)
i,t−1

(2.21)

Where

φ
(k)
0,0 :=

∣∣V (k)
∣∣ 12 Γ(g(k))(λ(k))g

(k)

(2.22)

φ
(k)
i,j :=

∣∣V (k)
i,j

∣∣ 12 Γ(g
(k)
i,j )(λ

(k)
i,j )g

(k)
i,j ∀1 ≤ i, j ≤ t (2.23)

and V (k)
i,j , g

(k)
i,j and λ(k)

i,j are defined in (2.9), (2.12) and (2.13).

In summary the working recursive forward weight formula for ξ(k)
i,t is

ξ
(k)∗
i,t :=


φ
(k)
t,t

φ
(k)
0,0

∑
l 6=k plkξ

(l)
t−1 i = t

φ
(k)
i,t

φ
(k)
i,t−1

pkkξ
(k)
i,t−1 i < t

(2.24)
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which can be normalized to

ξ
(k)
i,t =

ξ
(k)∗
i,t∑K

k=1

∑t
i=1 ξ

(k)∗
i,t

(2.25)

At this stage, we are able to estimate the regression parameters and

regime status. First, with (2.8), (2.11) and (2.25), the filtering estimation of

βt is defined as the posterior mean of βt, which can be easily shown as

β̂t|t := E
[
βt|Ft

]
=

∫ ∫
βtf(βt|τt,Ft)f(τt|Ft) dβt dτt

=

∫ ∫ K∑
k=1

t∑
i=1

βtf(βt|τt, J
(k)
t = i,Ft)f(τt|J (k)

t = i,Ft)ξ(k)
i,t dβt dτt

=
K∑
k=1

t∑
i=1

z
(k)
i,t ξ

(k)
i,t (2.26)

and the posterior variance-covariance of βt is shown below and proved in

Theorem 3 in Appendix A.

Σβt|Ft =
K∑
k=1

t∑
i=1

(
V

(k)
it

2λ
(k)
it

(
g

(k)
it − 1

) + z
(k)
it (zkit)

′
)
ξ

(k)
it

−
K∑
k=1

t∑
i=1

z
(k)
it ξ

(k)
it

( K∑
k=1

t∑
i=1

z
(k)
it ξ

(k)
it

)′
(2.27)

Second, the filtering estimation of σt, defined as the posterior mean of σt is

σ̂t|t := E[σt|Ft]
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=

∫
σtf(σt|Ft) dσt

=

∫
σt

K∑
k=1

t∑
i=1

f(σt|J (St)
t = i, St = k,Ft)f(J

(St)
t = i, St = k|Ft) dσt

=
K∑
k=1

t∑
i=1

ξ
(k)
i,t E(σt|J (k)

t = i,Ft)

Since posterior τt is a gamma distribution defined in (2.14), σt is related to τt

by the assumption (A2) and also by using properties of gamma distribution

in Theorem 7 in Appendix A, the following holds.

σ̂t|t =
K∑
k=1

t∑
i=1

ξ
(k)
i,t (2λ

(k)
i,t )−

1
2

Γ(g
(k)
i,t − 1

2
)

Γ(g
(k)
i,t )

(2.28)

The variance of posterior σt is shown below and proved also in Theorem 3 in

Appendix A.

Σσt|Ft =
K∑
k=1

t∑
i=1

ξ
(k)
it

2λ
(k)
it

(
g

(k)
it − 1

)
−

(
K∑
k=1

t∑
i=1

ξ
(k)
it

(
2λ

(k)
it

)− 1
2

Γ
(
g

(k)
it − 1

2

)
Γ
(
g

(k)
it

) )2

(2.29)

To complete this section, it is worth mentioning how to make the inference on

the regime. Being at state k at time t can be viewed as a Bernoulli random

variable. Thus the posterior mean of St = k is the estimated P (St = k|Ft)
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defined in equation (2.7) which is the sum of forward weight (2.25), i.e.,

E
[
I{St=k}|Ft

]
= ξ

(k)
t , for each k = 1, . . . , K (2.30)

Naturally the variance of St at state k is

V ar
(
I{St=k}|Ft

)
= ξ

(k)
t (1− ξ(k)

t ), for each k = 1, . . . , K (2.31)

2.3 Backward Filtering Estimation of Parame-

ters

Since Markov chain {St} is reversible from assumption (A1), there exits

a backward transition probability matrix Q defined similar to (2.2) with

transition probabilities qij’s. The transition probabilities qij are related to

forward transition probabilities by

qij = P (St−1 = j|St = i) =
P (St−1 = j, St = i)

P (St = i)

=
P (St−1 = j)P (St = i|St−1 = j)

P (St = i)
=
πj
πi
pji (2.32)

The stationary probability distribution of the reverse chain is denoted by π̃

related to Q in a similar manner as in (2.3). Estimation of the parameters

at time t based on information from t to a future time index T is called the

backward filtering estimation. If we focus on the system from t to T and read
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the time index backward from T to t, it would not be difficult to understand

the mechanism of backward filtering is the mirror image of that of forward

filtering.

Now we use notations yt,T , xt,T , and Ft,T defined the same as in (2.4)

and define the most recent jump to the state k at time t from other state in

reverse time order as

R
(k)
t := min{j ≥ t : k = St = · · · = Sj−1 6= Sj} (2.33)

Figure 2.3 gives an example of R(k)
t in a two-state system. For example, at

time t the system is in state 1 and R(1)
t is the most recent switching index from

state 2 viewing time index backwards from T to 1. This index is obviously

t3 indicated by arrow on the graph.

Figure 2.3: Illustration of R(k)
t for a concrete two-state system

0 Tt1 s t2 t t3

St = 1

St = 2

St = 1

St = 2

Rs
(2) = t2 Rt

(1) = t3

Very similar to the definition in (2.6), the probability of R(k)
t = j given
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information from T to t is called backward recursive weight and defined as

η
(k)
t,j := P (R

(St)
t = j, St = k|Ft,T ) = P (R

(k)
t = j|Ft,T ) (2.34)

and this quantity is also very important in the statistical estimation. In the

same spirit of (2.7), the backward filtering estimation of the regime P (St =

k|Ft,T ) is the sum of the backward weights for all j ≥ t, i.e.

η
(k)
t = P (St = k|Ft,T ) =

T∑
j=t

η
(k)
t,j (2.35)

The goal of this section is again to estimate the posterior distributions of

βt and σt and the probability of the system is on a certain regime at a given

time point based on the information from t through T . A backward weight

recursive formula is derived for the purpose of achieving this goal. For every

step or formula presented below, readers may find counterparts in section

2.2. Lengthy proofs are skipped to keep this thesis readable. Key results are

presented with relevant explanations.

Like equation (2.8), posterior distribution of model parameters is a mix-

ture of the product of the conditional distributions of βt and σt weighted by

backward weights.

f(βt, τt|Ft,T ) =
K∑
k=1

T∑
j=t

f(βt|τt, R
(k)
t = j,Ft,T )f(τt|R(k)

t = j,Ft,T )η
(k)
t,j (2.36)

37



It can be shown that for j ≥ t,

f(βt|τt, R
(k)
t = j,Ft,T )

∝ f(yt,j|βt, τt, R
(k)
t = j,xt,T )f(βt|τt, R

(k)
t = j,xt,T )

∝ exp
{
− τtβ′t

( j∑
r=t

xrx
′
r + (V (k))−1

)
βt + 2τtβ

′
t

( j∑
r=t

xryr +
(
V (k)

)−1
z(k)
)}

∝ exp
{
τt
(
βt − z

(k)
t,j

)′(
V

(k)
t,j

)−1(
βt − z

(k)
t,j

)}

where V (k)
i,j and z(k)

i,j are defined in (2.9) and (2.10) respectively. The condi-

tional posterior distribution of βt is a normal distribution, i.e,

βt|τt, R
(k)
t = j,Ft,T ∼ N

(
z

(k)
t,j ,

V
(k)
t,j

2τt

)
(2.37)

Similarly,

f(τt|R(k)
t = j,Ft,T )

=

∫
f(τt,βt,yt,T |Rk

t ,xt,T )

f(yt,T |R
(k)
t = j,xt,T )

dβt

∝
∫
f(yt,j|τt,βt, R

(k)
t = jxt,T )f(βt|τt, R

(k)
t = j,xt,T )f(τt|R(k)

t = j,xt,T )dβt

∝ τ
j−t+1

2
t exp

{
− τt

(
−
(
z

(k)
t,j

)′(
V

(k)
t,j

)−1
z

(k)
t,j +

j∑
r=t

y2
r + (z(k))′

(
V (k)

)−1
z(k)
)}

· τ g
(k)−1

t exp
{
− τt
λ(k)

}
∝ τ

g
(k)
t,j −1

t exp
{
− τt

λ
(k)
t,j

}
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where g(k)
i,j and λ(k)

ij are defined in (2.12) and (2.13) respectively. The condi-

tional posterior of τt is a gamma distribution, i.e.,

τt|R(St)
t = j, St = k,Ft,T ∼ Gamma

(
g

(k)
t,j , λ

(k)
t,j

)
(2.38)

Next, to find the recursive formula for backward weight, η(k)
t,j can be ex-

panded as, similar to equation (2.15),

η
(k)
t,j =

K∑
l=1

P (R
(St)
t = j, St = k, St+1 = l|Ft,T )

=
K∑
l=1

f(yt|R(k)
t = j,Ft+1,T )P (R

(St)
t = j|St = k,Ft+1,T )qlkη

(l)
t+1/f(yt|Ft+1,T )

If l 6= k, by definition of R(St)
t , the nearest switch after time t must be at

time t and be impossible at other times, so

P (R
(St)
t = j|St = k, St+1 = l,Ft+1,T ) =


1 j = t

0 j > t

(2.39)

If l = k, then switch time j must be greater than t and so event R(St)
t =

j|St = k = St+1,Ft+1,T is equivalent to event R(St+1)
t+1 = j|St+1 = k,Ft+1,T ,

i.e.

P (R
(St)
t = j|St = k, St+1 = l,Ft+1,T ) = P (R

(St+1)
t+1 = j|St+1 = k,Ft+1,T )

(2.40)
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Also with the fact that P (R
(St+1)
t+1 = j|St+1 = k,Ft+1,T )P (St+1 = k|Ft+1,T ) =

P (R
(k)
t+1 = j|Ft+1,T ),

η
(k)
t,j ∝


f(yt|R(k)

t = j,Ft+1,T )
∑

l 6=k qlkη
(l)
t+1 j = t,

f(yt|R(k)
t+1 = j,Ft+1,T )qkkη

(k)
t+1,j j > t

(2.41)

It can be proved, technically similar to the proofs in Theorem 1 and 2 in

Appendix A, that

f(yt|R(k)
t = t,Ft+1,T ) = π−

1
2
φ

(k)
t,t

φ
(k)
0,0

(2.42)

and

f(yt|R(k)
t+1 = j,Ft+1,T ) = π−

1
2
φ

(k)
t,j

φ
(k)
t+1,j

(2.43)

where φ(k)
0,0 and φ

(k)
i,j are defined in equation (2.22) and (2.23) respectively

for any i, j ∈ 1, 2, . . . , T . The recursive formula for the working backward

weights is

η
(k)∗
t,j :=


φ
(k)
t,t

φ
(k)
0,0

∑
l 6=k qlkη

(l)
t+1 j = t

φ
(k)
t,j

φ
(k)
t+1,j

qkkη
(k)
t+1,j j > t

(2.44)

whose normalized version is

η
(k)
t,j =

η
(k)∗
t,j∑K

k=1

∑T
j=t η

(k)∗
t,j

(2.45)

Similar to the proofs of equation (2.26) and (2.28), the estimation of βt and
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σt are their posterior means in the context of backward filtering, i.e.

β̂t|t,T =
K∑
k=1

T∑
j=t

z
(k)
t,j η

(k)
t,j (2.46)

and

σ̂t|t,T =
K∑
k=1

T∑
j=t

η
(k)
t,j (2λ

(k)
t,j )−

1
2

Γ(g
(k)
t,j − 1

2
)

Γ(g
(k)
t,j )

(2.47)

respectively. The posterior variances of βt and σt are

Σβt|FtT =
K∑
k=1

T∑
j=t

(
V

(k)
tj

2λ
(k)
tj

(
g

(k)
tj − 1

) + z
(k)
tj (zktj)

′
)
η

(k)
tj

−
K∑
k=1

T∑
j=t

z
(k)
tj η

(k)
tj

( K∑
k=1

T∑
j=t

z
(k)
tj η

(k)
tj

)′
(2.48)

and

Σσt|FtT =
K∑
k=1

T∑
j=t

η
(k)
tj

2λ
(k)
tj

(
g

(k)
tj − 1

)
−

(
K∑
k=1

T∑
j=t

η
(k)
tj

(
2λ

(k)
tj

)− 1
2

Γ
(
g

(k)
tj − 1

2

)
Γ
(
g

(k)
tj

) )2

(2.49)

Proofs are skipped but interested readers may refer to the proofs in Theorem

3 in Appendix A. Similar to (2.30) and (2.31), the inference of the regime

can be presented by

E
[
I{St=k}|FtT

]
= η

(k)
t , for each k = 1, . . . , K (2.50)
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and

V ar
(
I{St=k}|FtT

)
= η

(k)
t (1− η(k)

t ), for each k = 1, . . . , K (2.51)

2.4 Predictive Estimation of Parameters

In this section, we discuss two types of predictive estimation, forward and

backward prediction. As its name indicates, the information related to the

interesting statistical quantities is not available at the time of interest. The

estimation of the properties of the parameters at time t given all information

available from 0 to time t−1 is called forward predictive estimation or forecast

which has practical implication in time series data analysis. In particular the

probability distribution of βt and τt given information up to t− 1 is

f(βt, τt|Ft−1)

=
K∑
k=1

K∑
l=1

t∑
i=1

f(βt, τt|J
(k)
t = i, St−1 = l,Ft−1)P (J

(St)
t = j|St = k, St−1 = l,Ft−1)·

P (St = k|St−1 = l,Ft−1)f(St−1 = l|Ft−1)

=
K∑
k=1

K∑
l=1,l 6=k

f(βt, τt|J
(St)
t = t, St = k, St−1 = l,Ft−1)plkξ

(l)
t−1+

K∑
k=1

t−1∑
i=1

f(βt, τt|J
(St−1)
t−1 = i, St = St−1 = k,Ft−1)pkkξ

(k)
i,t−1
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where we use the relation in equation (2.16) and (2.18) in section 2.2 to

simplify P (J
(St)
t = j|St = k, St−1 = l,Ft−1)P (St = k|St−1 = l,Ft−1)f(St−1 =

l|Ft−1) for cases l 6= k and l = k respectively. Also if l 6= k, the regime

change must occur at time t and the system regenerates at time t. The joint

distribution of (βt, τt), given J
(St)
t = t, St = k 6= St−1 = l and Ft−1 is the

product of a normal and a gamma distribution with all prior parameters, i.e.

f(βt, τt|J
(St)
t = t, St = k 6= St−1 = l,Ft−1) = f

(k)
0,0 h

(k)
0,0,

based on the assumption (A2). On the other hand, when l = k,

f(βt, τt|J
(St−1)
t−1 = i, St = St−1 = k,Ft−1)

= f(βt|τt, J
(k)
t−1 = i,Ft−1)f(τt|J (k)

t−1 = i,Ft−1)

Since β’s are in the same state k at time t−1 and t, and information at time

t is not available, the estimation of β at time t would be the same as that at

t−1 based on the information available at t−1. Thus βt|τt, J
(k)
t−1 = i,Ft−1 ∼

N
(
z

(k)
i,t−1,

V
(k)
i,t−1

2τt

)
by (2.11) and τt|J (k)

t−1 = i,Ft−1 ∼ Gamma
(
g

(k)
i,t−1, λ

(k)
i,t−1

)
by (2.14). Accordingly,

f(βt, τt|J
(St−1)
t−1 = i, St = St−1 = k,Ft−1) = f

(k)
i,t−1h

(k)
i,t−1

The three important quantities in the forward predictive estimation set-
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ting are shown below. The forecast of βt is

β̂t|t−1 :=
K∑
k=1

K∑
l=1,l 6=k

z(k)plkξ
(l)
t−1 +

K∑
k=1

t−1∑
i=1

z
(k)
i,t−1pkkξ

(k)
i,t−1 (2.52)

and the forecast of σt is

σ̂t|t−1 :=
K∑
k=1

K∑
l=1,l 6=k

(2λ(k))−
1
2

Γ(g(k) − 1
2
)

Γ(g(k))
plkξ

(l)
t−1

+
K∑
k=1

t−1∑
i=1

(2λ
(k)
i,t−1)−

1
2

Γ(g
(k)
i,t−1 − 1

2
)

Γ(g
(k)
i,t−1)

pkkξ
(k)
i,t−1 (2.53)

and finally the forecast of the probability of the regime is

P (St = k|Ft−1) =
K∑
l=1

P (St = k|St−1 = l,Ft−1)P (St−1 = l|Ft−1)

=
K∑
l=1

plkξ
(l)
i,t−1 (2.54)

The second type of prediction in this section is the backward prediction

which appears to be impractical in reality since time does not travel from

future to the past. But it has useful theoretical properties and is an essential

technical step in smoothing estimation that will be discussed in the next

section. Like backward filtering in section 2.3, viewers read the time sequence

from a future time T to the current time t of interest, and the difference in

backward prediction is that the information at t is not available. We derive
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the joint distribution of (βt, τt) given Ft+1,T , i.e.,

f(βt, τt|Ft+1,T )

=
K∑
k=1

K∑
l=1

T∑
j=t

f(βt, τt|R
(k)
t = j, St+1 = l,Ft+1,T )f(R

(St)
t = j|St = k, St+1 = l,Ft+1,T )·

f(St = k|St+1 = l,Ft+1,T )f(St+1 = l|Ft+1,T )

=
K∑
k=1

K∑
l=1,l 6=k

f
(k)
0,0 h

(k)
0,0qlkη

(l)
t+1 +

K∑
k=1

T∑
j=t+1

f
(k)
t+1,jh

(k)
t+1,jqkkη

(k)
t+1,j (2.55)

The above result uses the fact in equation (2.39) and (2.40), the fact that

the conditional distribution of βt given R
(k)
t+1 and Ft+1,T is N

(
z

(k)
t+1,j,

V
(k)
t+1,j

2τt

)
and the fact that the conditional distribution of τt given R

(k)
t+1 and Ft+1,T is

Gamma
(
g

(k)
t+1,j, λ

(k)
t+1,j

)
.

The backward prediction of the parameters are of no practical interest

and therefore omitted in this section. But the usage of their probability

distribution is fully realized in the next section.

2.5 Smoothing Estimation of Parameters

Suppose the observations are available from 0 to T , but the parameters to

be estimated is at time t (t ≤ T ). The estimation of parameters at time

t (t ≤ T ) using all the information available up to T is called smoothing

estimation. In this section we are interested in the posterior distribution

of βt and σt given FT and the posterior probabilities of the regime, i.e.,
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P (St = k|FT ) for k = 1, . . . , K.

By applying Bayes’ theorem and Markov property, the following equation

holds.

f(βt, τt|FT ) ∝
K∑
k=1

f(βt, τt, St = k|Ft)f(βt, τt, St = k|Ft+1,T )

f(βt, τt, St = k)
(2.56)

This result states that a "two-sided" conditional density of parameters is

proportional to the product of the two "one-sided" conditional densities di-

vided by its prior density (Yao, 1984, proposition 4.2). These two conditional

probabilities are actually forward filter estimates of the parameters and the

backward prediction of the parameters. By Markov property, y1 depends on

y2, y2 depends on y3, . . ., yt−1 depends on yt, and also given state St = k, yt

is independent of yt+1, yt+2, . . . , yT . Thus given the state and the parameters

at time t, Ft and Ft+1,T are independent.

Proof. By property of conditional probability and Bayes’ theorem

f(βt, τt|FT ) =

∑K
k=1 f(Ft,Ft+1,T |βt, τt, St = k)f(βt, τt, St = k)

f(FT )

By Markov property and independence of y1, . . . , yt and yt+1, yT given the

state at t, the above is

∑K
k=1 f(Ft|βt, τt, St = k)f(Ft+1,T |βt, τt, St = k)f(βt, τt, St = k)

f(FT )
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Using Bayes’ theorem again, the above is further expanded into

1

f(FT )

K∑
k=1

f(βt, τt, St = k|Ft)f(Ft)
f(βt, τt, St = k)

·

f(βt, τt, St = k|Ft+1,T )f(Ft+1,T )

f(βt, τt, St = k)
· f(βt, τt, St = k)

Finally,

f(βt, τt|FT ) ∝
K∑
k=1

f(βt, τt, St = k|Ft)f(βt, τt, St = k|Ft+1,T )

f(βt, τt, St = k)

where f(Ft), f(Ft+1,T ) and f(FT ) are constant.

Similar to section 2.2 and 2.3, the joint density of (βt, τt) given FT is a

mixture of the product of a normal and gamma distribution as follows:

f(βt, τt|FT )

=
K∑
k=1

t∑
i=1

T∑
j=t

f(βt, τt, St = k, J
(St)
t = i, R

(St)
t = j|FT )

=
K∑
k=1

t∑
i=1

T∑
j=t

f(βt|τt, St = k, J
(St)
t = i, R

(St)
t = j,FT )

· f(τt|St = k, J
(St)
t = i, R

(St)
t = j,FT ) · P (St = k, J

(St)
t = i, R

(St)
t = j|FT )

(2.57)

Define smoothing weight as

α
(k)
itj = P (St = k, J

(St)
t = i, R

(St)
t = j|FT ) (2.58)
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It turns out that α(k)
itj is a derived statistic from ξ

(k)
i,t and η(k)

t,j . The smoothed

probability of the regime can be naturally defined as

α
(k)
t := P (St = k|FT ) =

t∑
i=1

T∑
j=t

α
(k)
itj (2.59)

We will show that equation (2.56) and (2.57) are equivalent up to a nor-

malizing constant. Let us begin with the expression on the right hand side

of equation (2.56).

f(βt, τt, St = k|Ft)f(βt, τt, St = k|Ft+1,T )

f(βt, τt, St = k)

=

∑t
i=1 f(βt, τt, St = k, J

(k)
t = i|Ft)

∑T
j=t+1 f(βt, τt, St = k,R

(k)
t+1 = j|Ft+1,T )

f(βt|τt, St = k)f(τt|St = k)P (St = k)

=

(∑t
i=1 f

(k)
i,t h

(k)
i,t ξ

(k)
i,t

)(∑K
l=1,l 6=k f

(k)
0,0 h

(k)
0,0qlkη

(l)
t+1 +

∑T
j=t+1 f

(k)
t+1,jh

(k)
t+1,jqkkη

(k)
t+1,j

)
f

(k)
0,0 h

(k)
0,0πk

=
t∑
i=1

f
(k)
i,t h

(k)
i,t ξ

(k)
i,t

K∑
l=1,l 6=k

qlkη
(l)
t+1

πk
+
qkk
πk

t∑
i=1

T∑
j=t+1

f
(k)
i,t h

(k)
i,t f

(k)
t+1,jh

(k)
t+1,j

f
(k)
0,0 h

(k)
0,0

ξ
(k)
i,t η

(k)
t+1,j

where we use (2.8), (2.11), (2.14) in forward filtering in seciton 2.2 and equa-

tion (2.55) in backward prediction in section 2.4. It is proven in Theorem 4

of Appendix A that

f
(k)
i,t f

(k)
t+1,j

f
(k)
0,0

·
h

(k)
i,t h

(k)
t+1,j

h
(k)
0,0

=
φ

(k)
0,0φ

(k)
i,j

φ
(k)
i,t φ

(k)
t+1,j

f
(k)
i,j h

(k)
i,j (2.60)

Interested readers are encouraged to go through the proofs as understanding

the steps may help to comprehend many derivation in this chapter. Finally
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the posterior distribution of βt and τt given all the information at T is

f(βt, τt|FT ) ∝
K∑
k=1

t∑
i=1

(
ξ

(k)
i,t

K∑
l=1,l 6=k

qlkη
(l)
t+1

πk
f

(k)
i,t h

(k)
i,t

+
qkk
πk

T∑
j=t+1

φ
(k)
0,0φ

(k)
i,j

φ
(k)
i,t φ

(k)
t+1,j

ξ
(k)
i,t η

(k)
t+1,jf

(k)
i,j h

(k)
i,j

)
(2.61)

From the above equation, if we define a recursive formula for working smooth

weight as

α
(k)∗
itj :=


ξ

(k)
i,t

∑
l 6=k

qlkη
(l)
t+1

πk
i ≤ t = j

ξ
(k)
i,t qkkη

(k)
t+1,j

πk
· φ

(k)
0,0φ

(k)
i,j

φ
(k)
i,t φ

(k)
t+1,j

i ≤ t < j ≤ T

(2.62)

and the normalized version is

α
(k)
itj =

α
(k)∗
itj∑K

k=1

∑t
i=1

∑T
j=t+1 α

(k)∗
itj

(2.63)

then equation (2.57) is simplified to

f(βt, τt|FT ) =
K∑
k=1

t∑
i=1

T∑
j=t

f
(k)
i,j h

(k)
i,j α

(k)
itj (2.64)

Similar to (2.26), (2.28), (2.46) and (2.47) in forward and backward filtering

estimation in section 2.2 and 2.3, smoothing estimation of βt is defined as

the posterior mean, i.e.

β̂t|T :=
K∑
k=1

t∑
i=1

T∑
j=t

α
(k)
itj z

(k)
i,j (2.65)
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and the smoothing estimation of σt is its posterior mean as well defined as

σ̂t|T :=
K∑
k=1

t∑
i=1

T∑
j=t

α
(k)
itj (2λ

(k)
i,j )−

1
2

Γ
(
g

(k)
i,j − 1

2

)
Γ
(
g

(k)
i,j

) (2.66)

Their posterior variances are

Σβt|FT =
K∑
k=1

t∑
i=1

T∑
j=t

(
V

(k)
ij

2λ
(k)
ij

(
g

(k)
ij − 1

) + z
(k)
ij (zkij)

′
)
α

(k)
itj

−
K∑
k=1

t∑
i=1

T∑
j=t

z
(k)
ij α

(k)
itj

( K∑
k=1

t∑
i=1

T∑
j=t

z
(k)
ij α

(k)
itj

)′
(2.67)

and

Σσt|FT =
K∑
k=1

t∑
i=1

T∑
j=t

α
(k)
itj

2λ
(k)
ij

(
g

(k)
ij − 1

)
−

(
K∑
k=1

t∑
i=1

T∑
j=t

α
(k)
itj

(
2λ

(k)
ij

)− 1
2

Γ
(
g

(k)
ij − 1

2

)
Γ
(
g

(k)
ij

) )2

(2.68)

Finally, the regime at each time t can be estimated by

E
[
I{St=k}|FT

]
= α

(k)
t =

t∑
i=1

T∑
j=t

α
(k)
itj , for each k = 1, . . . , K (2.69)

and

V ar
(
I{St=k}|FT

)
= α

(k)
t (1− α(k)

t ), for each k = 1, . . . , K (2.70)
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2.6 Estimation of Hyperparameters

In previous sections, the estimation of βt, τt and probability of the regime

are all based on the assumption that the priors z(k), V (k), g(k), λ(k) and the

transition probabilities pij are initially given for every i, j, k ∈ 1, . . . , K. In

this section, we discuss the issues of how to estimate these prior parame-

ters. The parameter that is of no direct interest but essential in the model

estimation is called a nuisance parameter or hyperparameter.

It turns out that the likelihood function is the byproduct in the derivation

of recursive forward weight. By equation (2.15) and (2.17), for l 6= k and

i = t,

ξ
(k)
i,t =

1

f(yt|Ft−1)
f(yt|J (St)

t = t, St = k,Ft−1)
K∑

l=1,l 6=k

plkξ
(l)
t−1.

Likewise by equation (2.15) and (2.19), for l = k and i < t,

ξ
(k)
i,t =

1

f(yt|Ft−1)
f(yt|J (St−1)

t−1 , St−1 = k,Ft−1)pkkξ
(k)
i,t−1.

Since
∑K

k=1

∑t
i=1 ξ

(k)
i,t = 1 and also with equation (2.20) and (2.21), the con-

ditional likelihood of yt given Ft−1 is

f(yt|Ft−1) =
K∑
k=1

( t−1∑
i=1

π−
1
2
φ

(k)
i,t

φ
(k)
i,t−1

pkkξ
(k)
i,t−1 + π−

1
2
φ

(k)
t,t

φ
(k)
0,0

∑
l 6=k

plkξ
(l)
t−1

)
(2.71)

Equation (2.71) is a function of hyperparameters θ = (P, z(k),V (k), g(k), λ(k) k =
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1, 2, . . . , K), where P is a k × k Markov chain transition probability matrix,

z(k) is a d × 1 vector, g(k) and λ(k) are scalars and V (k) is a d × d ma-

trix. In transition matrix P , we only estimate pkl for l 6= k then pkk =

1 −
∑

l 6=k pkl ∀k = 1, . . . , K. Stationary probability of this Markov Chain

π′ = (π1, π2, . . . , πK) can be calculated by (2.3) under assumption (A2),

therefore excluded from the estimation. Covariance matrix V (k) is symmet-

ric and only the upper triangle of matrix needs to be estimated. The total

number of hyperparameters to be estimated is (K+d2+d+3)K
2

accordingly.

Notice that yt’s are dependent, the likelihood function of yt is f(yt, t =

1, 2, . . . , T |θ,x1t) 6=
∏T

t=1 f(yt|θ,x1t). But yt’s are independent given infor-

mation at and before t− 1, i.e. likelihood function

f(yt, t = 1, 2, . . . , T |θ,x1t) = f(y1)
T∏
t=2

f(yt|Ft−1,θ) (2.72)

Maximum likelihood (ML) estimation is difficult to implement, simply be-

cause its log likelihood form is very complex. The solution is to resort to

Expectation-Maximization (EM) algorithm for a simpler likelihood function.

In the following discussion, we show that by EM algorithm every hyperpa-

rameter has a closed form solution.

Since βt, τt and St are unobserved, we treat them as latent variables, so

the complete data likelihood function can be written as

Lc(θ|yt,βt, τt, St, t = 1, · · · , T ) = f(yt,βt, τt, St, t = 1, . . . , T |θ)
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= f(yt,βt, τt|St, t = 1, . . . , T )P (St, t = 1, . . . , T )

=
( T∏
t=1

f(yt|βt, τt, St)f(βt|τt, St)f(τt|St)
) T∏
t=2

P (St|St−1)P (S1)

=
( T∏
t=1

K∑
k=1

1{St=k}f(yt|βt, τt, St = k)f(βt|τt, St = k)f(τt|St = k)
)
·

T∏
t=2

K∑
k=1

K∑
l=1

1{St=k,St−1=l}P (St = k|St−1 = l)P (S1 = l)

=
T∏
t=1

( K∑
k=1

1{St=k}f(yt|βt, τt, St = k)f
(k)
0,0 (βt)h

(k)
0,0(τt)

)
·

T∏
t=2

( K∑
k=1

K∑
l=1

1{St=k,St−1=l}plkπ
(1)
l

)

θ is omitted for easy representation. We know that yt’s are dependent, so are

βt’s and St for t = 1, . . . , T . yt|βt’s and βt, τt|St’s are independent for t =

1, . . . , T respectively which yields the first product of the second line. Since

{St} is a Markov Chain, P (St, t = 1, . . . , T ) =
∏T

t=2 P (St|St−1)P (S1). Based

on the model assumption that S1 6= S0, P (S1 = l) =
∑K

r 6=l P (S1 = l| S0 =

r)P (S0 = r). This quantity depends on an initial state probability and initial

transition probabilities which possibly differ from Markov chain transition

matrix P since the probability of self transition is zero. The estimation of

the initial transition probability model is not the concern of this model, so

we can assume an arbitrary initial value for P (S1 = l) and let it be π(1)
l . This

explains the second product of the second line. Third line holds, because at

each time t there is only one state of St and St−1 for state k from 1, . . . , K.

Indicator function is used to guarantee there is only one f(βt|St) and only
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one P (St|St−1) at each time t. Finally, it can be shown that βt, τt|St = k are

i.i.d with density f (k)
0,0 (βt)h

(k)
0,0(τt) regardless of the state St−1. Then complete

data log likelihood function can be written as

lc(θ) = log L(θ|yt,βt, τt, St, t = 1, · · · , T )

=
T∑
t=1

log
( K∑
k=1

1{St=k}f(yt|βt, τt, St = k)f
(k)
0,0 (βt)h

(k)
0,0(τt)

)
+

T∑
t=2

log
( K∑
k=1

K∑
l=1

1{St=k,St−1=l}plkπ
(1)
l

)
=

T∑
t=1

{ K∑
k=1

1{St=k}logf(yt|βt, τt, St = k) +
K∑
k=1

1{St=k}

(
log f (k)

0,0 (βt) + log h(k)
0,0(τt)

)}

+
T∑
t=2

K∑
k=1

K∑
l=1

1{St=k, St−1=l}
(
log plk + log π(1)

l

)
=

T∑
t=1

K∑
k=1

{
1{St=k}

(
− 1

2
log π +

1

2
log τt − τt(yt − β′txt)2

)
+ 1{St=k}

(
− d

2
log π +

d

2
log τt −

1

2
log |V (k)| − τt(βt − z(k))′(V (k))−1(βt − z(k))

)
+ 1{St=k}

(
− log Γ

(
g(k)
)
− g(k) log

(
λ(k)
)

+
(
g(k) − 1

)
log τt −

τt
λ(k)

)}
T∑
t=2

K∑
k=1

K∑
l=1

(
1{St=k, St−1=l} log (plk) + 1{St=k,St−1=l}log π

(1)
l

)

2.6.1 Expectation Step

Take expectation of the above complete data log likelihood function with

respect to latent variables βt, St and τt given hyperparameters at previous
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iteration and all observations of yt and xt for t = 1, . . . , T .

E
(
lc(θ)|FT ,θold

)
=

T∑
t=1

K∑
k=1

{
− 1 + d

2
( log π)E

[
1{St=k}|FT ,θold

]
+

1 + d

2
E
[
1{St=k}( log τt)|FT ,θold

]
− E

[
1{St=k}τt(yt − β′txt)2|FT ,θold

]
− 1

2
log|V (k)|E

[
1{St=k}|FT ,θold

]
− E

[
1{St=k}τt(βt − z(k))′(V (k))−1(βt − z(k))|FT ,θold

]
−
(
log Γ

(
g(k)
)

+ g(k) log
(
λ(k)
))
E
[
1{St=k}|FT ,θold

]
+
(
g(k) − 1

)
E
[
1{St=k}( log τt)|FT ,θold

]
− 1

λ(k)
E
[
1{St=k}(τt)|FT ,θold

]}
+

T∑
t=2

K∑
k=1

K∑
l=1

(
logplk + logπ(1)

l

)
E
[
1{St=k, St−1=l}|FT ,θold

]
(2.73)

Continue to simplify (2.73), we need to compute the following six quanti-

ties: E
[
1{St=k}|FT ,θold

]
, E
[
1{St=k, St−1=l}|FT ,θold

]
, E
[
1{St=k}logτt|FT ,θold

]
,

E
[
1{St=k}τt|FT ,θold

]
, E
[
1{St=k}τt(yt−β′txt)2|FT ,θold

]
, and E

[
1{St=k}τt(βt−

z(k))′(V (k))−1(βt − z(k))|FT ,θold
]
. By equation (2.59),

E
[
1{St=k}|FT ,θold

]
= P (St = k|FT ,θold) =

t∑
i=1

T∑
j=t

α
(k)
itj = α

(k)
t . (2.74)

E
[
1{St=k, St−1=l}|FT ,θold

]
= P (St = k, St−1 = l|FT ,θold). It is proved in

Theorem 5 in Appendix A, that
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P (St = k, St−1 = l|FT ,θold) =


φ
(k)
t,t ξ

(l)
t−1

φ
(k)
0,0

plk
πk

∑K
r=1 qrkη

(r)
t+1

/
At k 6= l∑t−1

i=1

φ
(k)
i,t ξ

(k)
i,t−1

φ
(k)
i,t−1

pkk
πk

∑K
r=1 qrkη

(r)
t+1

/
At k = l

(2.75)

whereAt =
∑K

l=1

(∑K
k 6=l

φ
(k)
t,t ξ

(l)
t−1

φ
(k)
0,0

plk
πk

∑K
r=1 qrkη

(r)
t+1+

∑t−1
i=1

φ
(k)
i,t ξ

(k)
i,t−1

φ
(k)
i,t−1

pkk
πk

∑K
r=1 qrkη

(r)
t+1

)
.

This posterior of joint states is a special case of a general framework shown

in Theorem 6 in Appendix A. Since conditional distribution of τt given

St = k, J
(k)
t = i, R

(k)
t = j,FT is Gamma

(
g

(k)
i,j , λ

(k)
i,j

)
from equation (2.64), by

Theorem 8 and using the notation ψ(x) referring to Γ′(x)
Γ(x)

, we have

E
[
1{St=k}(log τt)|FT ,θold

]
=

t∑
i=1

T∑
j=t

P (J
(St)
t = i, R

(St)
t = j, St = k|FT ,θold)E

[
logτt|St = k, J

(St)
t = i, R

(St)
t = j,FT ,θold

]
=

t∑
i=1

T∑
j=t

α
(k)
itj

( d

dg(k)
ij

log Γ(g
(k)
ij ) + log λ(k)

ij

)
=

t∑
i=1

T∑
j=t

α
(k)
itj

(
ψ(g

(k)
ij ) + log λ(k)

ij

)

Similarly,

E
[
1{St=k}τt|FT ,θold

]
=

t∑
i=1

T∑
j=t

α
(k)
itj g

(k)
ij λ

(k)
ij .

Next,

E
[
1{St=k}τt(yt − β′txt)2|FT ,θold

]
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=
t∑
i=1

T∑
j=t

P (St = k, J
(St)
t = i, R

(St)
t = j|FT ,θold)

· E
[
τt(yt − β′txt)2|St = k, J

(St)
t = i, R

(St)
t = j,FT ,θold

]
=

t∑
i=1

T∑
j=t

α
(k)
itjE

[
E
[
(yt − β′txt)2|τt, St = k, J

(St)
t = i, R

(St)
t = j,FT ,θold

]
· τt
∣∣St = k, J

(St)
t = i, R

(St)
t = j,FT ,θold

]
=

t∑
i=1

T∑
j=t

α
(k)
itjE

[
E
[
y2
t − 2β′txtyt + x′tβtβ

′
txt|τt, St = k, J

(St)
t = i, R

(St)
t = j,FT ,θold

]
· τt
∣∣∣St = k, J

(St)
t = i, R

(St)
t = j,FT ,θold

]

In additional to conditional distribution of τt, βt
∣∣τt, St = k, J

(St)
t = i, R

(St)
t =

j,FT ,θold ∼ N
(
z

(k)
i,j ,

V
(k)
i,j

2τt

)
by (2.64),

E
[
βt|τt, St = k, J

(St)
t = i, R

(St)
t = j,Ft,θold

]
= z

(k)
i,j ,

E
[
βtβ

′
t|St = k, J

(St)
t = i, R

(St)
t = j,FT ,θold

]
=
V

(k)
i,j

2τt
+ z

(k)
i,j

(
z

(k)
i,j

)′
and

E
[
τt
∣∣St = k, J

(St)
t = i, R

(St)
t = j,FT ,θold

]
= g

(k)
ij λ

(k)
i,j

Then,

E
[
1{St=k}τt(yt − β′txt)2|FT ,θold

]
=

t∑
i=1

T∑
j=t

α
(k)
itj

((
y2
t − 2z

(k)
i,j
′xtyt + x′tz

(k)
i,j z

(k)
i,j
′xt
)
g

(k)
ij λ

(k)
ij +

1

2
x′tV

(k)
i,j xt

)
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Finally, by properties of matrix expectation in Theorem 9 in Appendix A,

E
[
1{St=k}τt(βt − z(k))′

(
V (k)

)−1
(βt − z(k))|FT ,θold

]
=

t∑
i=1

T∑
j=t

P (St = k, J
(St)
t = i, R

(St)
t = j|FT ,θold)

· E
[
τt(βt − z(k))′

(
V (k)

)−1
(βt − z(k))|St = k, J

(St)
t = i, R

(St)
t = j,FT ,θold

]
=

t∑
i=1

T∑
j=t

α
(k)
itjE

[
E
[(
β′t
(
V (k)

)−1
βt − β′t

(
V (k)

)−1
z(k) − z(k)′(V (k)

)−1
βt + z(k)′(V (k)

)−1
z(k)
)∣∣∣

τt, St = k, J
(St)
t = i, R

(St)
t = j,FT ,θold

]
· τt
∣∣St = k, J

(St)
t = i, R

(St)
t = j,FT ,θold

]
=

t∑
i=1

T∑
j=t

α
(k)
itjE

[
τttr
(
(V (k))−1V

(k)
i,j /2τt

)
+ τtz

(k)
i,j
′(V (k))−1z

(k)
i,j − τtz

(k)
i,j
′(V (k)

)−1
z(k)

− τtz(k)′(V (k)
)−1
z

(k)
ij + τtz

(k)′(V (k)
)−1
z(k)
∣∣St = k, J

(St)
t = i, R

(St)
t = j,FT ,θold

]
=

t∑
i=1

T∑
j=t

α
(k)
itj

(
tr
(
(V (k))−1V

(k)
i,j /2

)
+ g

(k)
ij λ

(k)
ij z

(k)
i,j
′(V (k))−1z

(k)
i,j − g

(k)
ij λ

(k)
ij z

(k)
i,j
′(V (k)

)−1
z(k)

− g(k)
ij λ

(k)
ij z

(k)′(V (k)
)−1
z

(k)
ij + g

(k)
ij λ

(k)
ij z

(k)′(V (k)
)−1
z(k)

)
(2.76)

where

E
[
β′t
(
V (k)

)−1
βt|St = k, J

(St)
t = i, R

(St)
t = j,FT ,θold

]
= tr

(
(V (k))−1V

(k)
i,j /2τt

)
+ z

(k)
i,j
′(V (k))−1z

(k)
i,j .
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2.6.2 Maximization Step

Find (plk), for l 6= k and z(k), V (k), g(k) and λ(k) that maximize the expected

complete data log likelihood function (2.73) in E-step. The only term related

to plk is E
[
1{St=k,St−1=l}|FT ,θold

]
, then

∂E
[
lc(θ)|FT ,θold

]
∂plk

=

∂

(∑T
t=2

∑K
k=1

∑K
l=1 P (St = k, St−1 = l|FT ,θold) log plk

)
∂plk

To find plk that maximize f(·) along with constraint
∑K

k=1 plk = 1, we

consider using Lagrange multiplier. The constraint is denoted by g(·) =∑K
k=1 plk = 1. In this technique, if there is a function f(·) subject to a con-

straint g(·) = constant, introduce parameter λ so that 5f(·) = λ 5 g(·).

Gradient is taken with respect to variables such as plk in this case and λ.

Solve plk’s and λ

T∑
t=2

P (St = k, St−1 = l
∣∣FT ,θold) = λplk ∀l, k = 1, 2, . . . , K

Therefore

λ =
K∑
r=1

T∑
t=2

P (St = r, St−1 = l
∣∣FT ,θold)

and

plk =

∑T
t=2 P (St = k, St−1 = l

∣∣FT ,θold)∑K
r=1

∑T
t=2 P (St = r, St−1 = l

∣∣FT ,θold)
∀l, k = 1, 2, . . . , K
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The term related to z(k) in (2.73) is
∑T

t=1

∑K
k=1E

[
1{St=k}τt(βt−z(k))′(V (k))−1(βt−

z(k))|FT ,θold
]
and with expression (2.76),

∂E
[
lc(θ)|FT ,θold

]
∂z(k)

=
T∑
t=1

t∑
i=1

T∑
j=t

α
(k)
itj

(
− 2g

(k)
ij λ

(k)
ij

(
V (k)

)−1
z

(k)
i,j + 2g

(k)
ij λ

(k)
ij

(
V (k)

)−1
z(k)
)

Setting the above equation to 0, then

T∑
t=1

t∑
i=1

T∑
j=t

α
(k)
itj g

(k)
ij λ

(k)
ij

((
V (k)

)−1
z

(k)
i,j −

(
V (k)

)−1
z(k)
)

= 0

=⇒
T∑
t=1

t∑
i=1

T∑
j=t

α
(k)
itj g

(k)
ij λ

(k)
ij

(
z

(k)
i,j − z(k)

)
= 0

=⇒ z(k) =

∑T
t=1

∑t
i=1

∑T
j=t α

(k)
itj g

(k)
ij λ

(k)
ij z

(k)
i,j∑T

t=1

∑t
i=1

∑T
j=t α

(k)
itj g

(k)
ij λ

(k)
ij

The term related to V (k) in (2.73) is

T∑
t=1

K∑
k=1

1

2
log |V (k)−1|E[1{St=k}|FT ,θold]

−
T∑
t=1

K∑
k=1

E
[
1{St=k}τt(βt − z(k))′(V (k))−1(βt − z(k))|FT ,θold

]
=

T∑
t=1

K∑
k=1

1

2
log |V (k)−1|α(k)

t

−
T∑
t=1

K∑
k=1

t∑
i=1

T∑
j=t

α
(k)
itj

(
tr
(
(V (k))−1V

(k)
i,j /2

)
+ g

(k)
ij λ

(k)
ij z

(k)
i,j
′(V (k))−1z

(k)
i,j
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− g(k)
ij λ

(k)
ij z

(k)
i,j
′(V (k)

)−1
z(k) − g(k)

ij λ
(k)
ij z

(k)′(V (k)
)−1
z

(k)
ij + g

(k)
ij λ

(k)
ij z

(k)′(V (k)
)−1
z(k)

)

By Theorem 10, the partial derivative with respect to a vector V (k)−1 is then

∂E
[
lc(θ)|FT ,θold

]
∂
(
V (k)

)−1

=
1

2

(
2V (k) − diag (V (k))

) T∑
t=1

α
(k)
t −

T∑
t=1

t∑
i=1

T∑
j=t

α
(k)
itj

(
V

(k)
ij − diag (V

(k)
i,j /2)

+ g
(k)
ij λ

(k)
ij z

(k)
i,j z

(k)
i,j
′ − g(k)

ij λ
(k)
ij z

(k)
i,j z

(k)′ − g(k)
ij λ

(k)
ij z

(k)z
(k)
ij
′ + g

(k)
ij λ

(k)
ij z

(k)z(k)′
)

Set the above expression to zero, thus

V (k) − diag (V (k)/2) =
1∑T

t=1 α
(k)
t

T∑
t=1

t∑
i=1

T∑
j=t

α
(k)
itj

(
V

(k)
ij − diag (V

(k)
i,j /2)

+ g
(k)
ij λ

(k)
ij z

(k)
i,j z

(k)
i,j
′ − g(k)

ij λ
(k)
ij z

(k)
i,j z

(k)′ − g(k)
ij λ

(k)
ij z

(k)z
(k)
ij
′ + g

(k)
ij λ

(k)
ij z

(k)z(k)′
)

The term relating to g(k) in (2.73) is

−
T∑
t=1

K∑
k=1

(
log Γ

(
g(k)
)

+
(
g(k)
)
log
(
λ(k)
))
α

(k)
t

+
T∑
t=1

K∑
k=1

(
g(k) − 1

)
E
[
1{St=k}( log τt)|FT ,θold

]

Taking first derivative with respective to g(k) yields the following equation.

∂E
[
lc(θ)|FT ,θold

]
∂g(k)

61



=
T∑
t=1

(
− ψ(g(k))− log (λ(k))

)
α

(k)
t +

T∑
t=1

E
[
1{St=k} log τt|FT ,θold

]
=

T∑
t=1

(
− ψ(g(k))− log (λ(k))

)
α

(k)
t +

T∑
t=1

t∑
i=1

T∑
j=t

α
(k)
itj

(
ψ
(
g

(k)
ij

)
+ log

(
λ

(k)
ij

))

Set the above equation to zero, then

ψ(g(k)) + log
(
λ(k)
)

=
1∑T

t=1 α
(k)
t

T∑
t=1

t∑
i=1

T∑
j=t

α
(k)
itj

(
ψ
(
g

(k)
ij

)
+ log

(
λ

(k)
ij

))

Finally, find λ(k) that maximize (2.73).

∂E
[
lc(θ)|FT ,θold

]
∂λ(k)

= −g
(k)

λ(k)

T∑
t=1

α
(k)
t +

1

λ(k)2

T∑
t=1

E
[
1{St=k}(τt)|FT ,θold

]
= −g

(k)

λ(k)

T∑
t=1

α
(k)
t +

1

λ(k)2

T∑
t=1

t∑
i=1

T∑
j=t

α
(k)
itj g

(k)
ij λ

k
ij

Set the above equation to zero and solve for λ(k)

λ(k) =

∑T
t=1

∑t
i=1

∑T
j=t α

(k)
itj g

(k)
ij λ

(k)
ij

g(k)
∑T

t=1 α
(k)
t

=⇒ log λ(k) = log
( T∑
t=1

t∑
i=1

T∑
j=t

α
(k)
itj g

(k)
ij λ

(k)
ij

)
− log

(
g(k)
)
− log

( T∑
t=1

α
(k)
t

)

Plug log λ(k) into the equation that estimates g(k) and solve for g(k).
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ψ(g(k))− log
(
g(k)
)

=
1∑T

t=1 α
(k)
t

T∑
t=1

t∑
i=1

T∑
j=t

α
(k)
itj

(
ψ
(
g

(k)
ij

)
+ log

(
λ

(k)
ij

))

− log
( T∑
t=1

t∑
i=1

T∑
j=t

α
(k)
itj g

(k)
ij λ

(k)
ij

)
+ log

( T∑
t=1

α
(k)
t

)
Estimation of hyperparameters all has closed form solutions. Given the

initial prior values, hyperparameters can be updated by the following formula

which are a summary of M-step.

plk,new =

∑T
t=2 P (St = k, St−1 = l|FT ,θold)∑K

r=1

∑T
t=2 P (St = r, St−1 = l|FT ,θold)

∀l, k ∈ 1, 2, . . . , K

(2.77)

z(k)
new =

∑T
t=1

∑t
i=1

∑T
j=t α

(k)
itj g

(k)
ij λ

(k)
ij z

(k)
i,j∑T

t=1

∑t
i=1

∑T
j=t α

(k)
itj g

(k)
ij λ

(k)
ij

(2.78)

V (k)
new− diag (V (k)

new/2) =
1∑T

t=1 α
(k)
t

T∑
t=1

t∑
i=1

T∑
j=t

α
(k)
itj

(
V

(k)
i,j − diag (V

(k)
i,j /2)+

g
(k)
ij λ

(k)
ij z

(k)
i,j z

(k)
i,j
′ − g(k)

ij λ
(k)
ij z

(k)
i,j z

(k)
new
′ − g(k)

ij λ
(k)
ij z

(k)
newz

(k)
ij
′ + g

(k)
ij λ

(k)
ij z

(k)
newz

(k)
new
′
)

(2.79)

ψ(g(k)
new)− log

(
g(k)
new

)
=

1∑T
t=1 α

(k)
t

T∑
t=1

t∑
i=1

T∑
j=t

α
(k)
itj

(
ψ
(
g

(k)
ij

)
+ log

(
λ

(k)
ij

))

− log
( T∑
t=1

t∑
i=1

T∑
j=t

α
(k)
itj g

(k)
ij λ

(k)
ij

)
+ log

( T∑
t=1

α
(k)
t

)
(2.80)
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λ(k)
new =

1

g
(k)
new
∑T

t=1 α
(k)
t

T∑
t=1

t∑
i=1

T∑
j=t

α
(k)
itj g

(k)
ij λ

(k)
ij (2.81)

2.7 Bounded Complexity Mixture (BCMIX) Ap-

proximation

The estimation of regression parameters and hyperparameters in Section 2.2

- 2.6 heavily relies on the filtering recursive weights ξ(k)
i,t , η

(l)
t,j and a derived

smoothing weight α(r)
itj . Since every of the indice i, j, t must go through time

1 to T , these weights need to be computed in polynomial time and require

roughly T 2 or T 3 memory space. Regression parameters estimated based on

these recursive weights are called Bayes estimators. To increase the compu-

tational efficiency, we consider an approximation procedure with lower order

computational complexity, yet comparable to the Bayes estimates in statis-

tical efficiency. These procedures are discussed in earlier works by Lai et al.

(2005), Lai et al. (2008) and Lai and Xing (2011) are modified to adapt to

the models in this thesis.

For forward filtering weights, only a fixed number M of weights are kept

at every time t and amongM weights, m of most recent weights with respect

to the evaluation time t are preserved. Usually m is between 1 (inclusive)

and M (exclusive). The remaining M − m weights are the largest weights

before m + 1. Concretely, let K(k)
t−1 be the set of indices for which ξ

(k)
i,t−1 in

(2.25) is kept at stage t − 1 for regime k. There are M elements in set
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K(k)
t−1 including most recent index set {t − m, t − m + 1, . . . , t − 1}. When

a new observation at time t arrives, the new index set denoted by K(k)
t is

updated to include index t and thus the most recent m indice in K(k)
t are

{t−m+ 1, t−m+ 2, . . . , t−1, t}. The remaining M −m indices are selected

by exclusion. Let r be an index in K(k)
t−1 with r ≤ t − m where ξ(k)

r,t is the

minimum, i.e.

arg min
r

{ξ(k)
r,t |r ∈ K

(k)
t−1 and r ≤ t−m} (2.82)

If there are more than one element in (2.82), choose the index farthest away

from t. Now the updated index set is

K(k)
t = {t} ∪ K(k)

t−1 \ {r}. (2.83)

Quantity in equation (2.25) is modified to

ξ
(k)
i,t where i ∈ K(k)

t (2.84)

In practice, we modify the quantity ξ(k)∗
i,t first and normalize it to ξ(k)

i,t . The

estimation of regression parameters using (2.84) is called the BCMIX ap-

proximation to the forward filtering estimation.

Likewise, BCMIX approximation of backward filtering estimation of re-

gression parameters can be easily constructed based on the modified back-

ward recursive weights in equation (2.45). The total number of indices kept

at each time t is M where m (1 ≤ m < M) of them are the most re-
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cent indices reading time sequence backward. Let K̃(k)
t+1 be a set of indices

j for which η
(k)
t+1,j is kept at time t + 1 for regime k. Again, K̃(k)

t+1 includes

{t+ 1, t+ 2, . . . , t+m} and other indices updated from its previous step. At

time t, the updated index set is

K̃(k)
t = {t} ∪ K̃(k)

t+1 \ {r} (2.85)

where r is the index farthest away from time t if the result is not unique from

the following equation:

arg min
r

{η(k)
t,r |r ∈ K̃

(k)
t+1 and r ≥ t+m}. (2.86)

Since smoothing recursive weight α(k)
itj is a derived statistics based on ξ(k)

i,t

and η
(k)
t,j , BCMIX approximation to α

(k)
itj can use the index set defined in

equations (2.83) and (2.85). Readers can also easily compute the posterior

mean and variance of βt and σt in three estimation scenarios (forward and

backward filtering and smoothing) by keeping track of indices in K(k)
t and

K̃(k)
t . I will not belabor the process.

The BCMIX procedure reduces the computation time and memory space

to O(TM) in filtering estimation and reduces to O(TM2) in smoothing esti-

mation. Efficiency can be achieved for M � T . The accuracy and efficiency

of BCMIX approximation clearly depend on the magnitude of M and m; If

they are too small, important weights may be discarded at too early a stage

and thus accuracy is sacrificed; if too large, time and memory space is com-
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promised. In Section 3.2 and 3.3, we will discuss the effect of M and m on

statistical inference and compare the BCMIX results with Bayes’ estimates.

2.8 Computational Issues

As we can see from previous sections in this chapter, recursive updating the

statistics has repeatedly occurred in the statistical inference in our model. To

increase the computational efficiency in programming, one needs to imple-

ment dynamic programming which recursively calls the results from previous

steps. Failure to apply dynamic programming scheme may increase the com-

putation time substantially.

The estimation algorithm of this model is coded in C++ with the aid

of TNT1and BOOST2 library. Summary statistics, figures and tables are

generated from R and MatLab. Simulation studies in Chapter 3 have been

implemented on Stampede cluster provided by Texas Advanced Computing

Center3 (TACC). TACC Stampede system is a 10 PFLOPS(PF) Dell Linux

Cluster based on 6400+ Dell PowerEdge server nodes, in which I use normal

compute nodes and large memory nodes. Normal compute nodes (one server

in the cluster) contain two 8-core 2.7 GHz Intel Xeon E5-2680 processors

and 32 GB of DDR3 memory. Large memory nodes contain 4 E5-4650 8-core

processors and 1024GB of DDR3 memory. Programs are operated in multiple
1http://math.nist.gov/tnt/
2http://www.boost.org/
3https://www.tacc.utexas.edu/
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cores and multiple nodes in serial parallel. The following table presents an

rough estimation of memory space required and running time for a single

series estimation of a certain length. Operating multiple codes and multiple

nodes in parallel can save computational time to within 24 hours for one

panel of simulation, which would otherwise take over a hundred days in a

dual-core PC with similar hardware configuration.

Table 2.1: Memory usage and running time for a single series with EM
updating only once on Stampede cluster

Series Length Memory required (GB) Node type Run time/node(min)
2000 8 Normal 1
3000 32 Large 2.11
4000 32 Large 3.12
5000 64 Large 5.24
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Chapter 3

Simulation Studies

3.1 Diagnostics

To evaluate the goodness of fit of the estimated parameters, we propose

the following 5 diagnostic statistics. Sum of squared errors (SSE) is a way

to assess the performance of model parameter βt. For model (2.1), SSE is

defined as

SSE :=
1

T

T∑
t=1

(yt − x′tβ̂t)2 (3.1)

Another useful statistic to evaluate the performance of βt estimates is L2

norm. L2 norm measures the difference between the true parameters and the

estimated parameters and is defined as

L2 =
1

T

T∑
t=1

‖βt − β̂t‖ (3.2)
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Traditional SSE as a metric for model fitness is also an estimator of

variance of random errors which cannot be explained by the regression model.

It is inefficient to use SSE to evaluate model (2.1) because the error variances

are estimated in the model. We propose a new metric called sum of squares of

standardized errors (SSSE) to reflect that fact that the only error unexplained

follows a standard normal distribution and all the rest of the information is

explained by the model. SSSE is defined as

SSSE :=
1

T

T∑
t=1

(
yt − x′tβ̂t

σ̂t

)2

(3.3)

An interesting statistic that assesses the accuracy of both β̂t and σ̂t is

named Kullback-Leibler (KL) divergence. KL divergence measures the dif-

ference between the true model in (2.1) and the estimated one by comparing

their probability distributions. Let us define θt = (βt, σt). KL divergence

proved in Theorem 11 in Appendix A is

KL(θt, θ̂t) =
1

2

((
x′t(βt − β̂t)

)2

σ̂2
t

+
σ2
t

σ̂2
t

− 1− log
(
σ2
t

σ̂2
t

))

for every time point t = 1, . . . , T . Then KL divergence for a time series is

KL =
1

T

T∑
t=1

KL(θt, θ̂t) (3.4)

Ideally KL equals zero, if the estimated model is the same as the true model.

In practice, the closer the KL values to zero the better the model fit.
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The third important quantity in the estimation is the inference on the

regime. Depending on the methods chosen, we have forward estimation of the

regime in equation (2.7), or backward estimation in (2.35) or the smoothing

estimation as in (2.59). These quantities are the estimated probabilities of

system on a certain regime, whose values are between 0 and 1 theoretically.

We may use a naive Bayesian classifier to classify the regimes. St equals

to the state whose probability estimated is the largest. For example, in

smoothing estimation, the estimated probability is from (2.59), i.e. α(k)
t =∑t

i=1

∑T
j=t α

(k)
itj , then the estimated regime at time t is

Ŝt = arg max
k

{α(k)
t }

for k = 1, . . . , K. Notice that there is only one regime at each time point. To

evaluate the goodness of classification, we compute a rate called identification

ratio (IR) to represent the percentage of correctly classified regime in a time

series:

IR :=

∑T
t=1

∑K
k=1 1{Ŝt=k ∩ St=k}

T
(3.5)

where 1 is an indicator function and St is the true state. IR is also easy to

define in the context of forward, backward estimation and so on, therefore

omitted.

In Monte Carlo simulation, we compare and contrast the means and stan-

dard errors of the above statistics. To keep this dissertation manageable, we

only present the results by smoothing estimation.
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3.2 Comparison of Bayes and BCMIX Estima-

tion

The goal of this section is to compare the two estimation methods (Bayes

and BCMIX) and show that BCMIX is an efficient estimation method. In

addition, the simulation setting is constructed so that the model estimates

can be compared with the results from piecewise linear regression models

which will be discussed later in this section. We begin with a simple model,

yt = βtyt−1 + σtεt (3.6)

The data are generated from a two-regime system by the following prior

parameters. γ(k)
t = 1

2(σ
(k)
t )2
∼ Gamma (g(k), λ(k)) where g(1) = 2.5, g(2) = 1.2,

λ(1) = 0.8, λ(2) = 1. β(k)
t is generated from a truncated normal distribution

N

(
z(k), V

(k)

2γ(k)

)
where z(1) = 0.3, z(2) = −0.3, V (1) = 0.16, V (2) = 0.16 and

|β(k)
t | < 1 so that the series is stationary. 500 series are generated and each

with length T=1000.

In a comprehensive Bayesian statistical analysis, hyperparameters need to

be estimated first and then used to estimate model parameters which will be

discussed in later section. Since the purpose of this section is to compare the

effects of piece-wise linear regression, BAYES method and BCMIXmethod on

the parameter estimation, the estimation begins with true prior parameters.

Also in this simulation, the regime switching points are manually fixed.
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Thus Markov transition probability matrix P is not used to generate the data.

However, there is still a need to choose a proper P to make the estimation

more reasonable. It is expected that the more transition points in a series, the

larger transition probability would be between the two states. Because the

expected number of switches from state 1 to state 2 is
∑T

t=1 P (St = 2|St =

1)P (St = 1) =
∑1000

t=1 p12 × π1 and in the same vain the expected number of

switches from state 2 to state 1 is
∑1000

t=1 p21 × π2, different prior transition

probabilities are chosen for the following scenarios. Assume the series begin

with state 1.

Scenario 1 Single change point at t = 501. St = 1 for 1 ≤ t ≤ 500 and St =

2 for 501 ≤ t ≤ 1000. Assume p11 = 0.998, p12 = 0.002, p21 = 0.002 and

p22 = 0.998.

Scenario 2 Two transition points at t = 351 and t = 701. St = 1 for

1 ≤ t ≤ 350 and 701 ≤ t ≤ 1000; St = 2 for 351 ≤ t ≤ 700. Assume

p11 = 0.998, p12 = 0.002, p21 = 0.002 and p22 = 0.998.

Scenario 3 Three transition points at t = 251, t = 501 and t = 751. St = 1

for 1 ≤ t ≤ 250 and 501 ≤ t ≤ 750; St = 2 for 251 ≤ t ≤ 500 and

751 ≤ t ≤ 1000. Assume p11 = 0.996, p12 = 0.004, p21 = 0.004 and

p22 = 0.996.

Scenario 4 Four transition points at t = 201, 401, 601, and 801. St = 1 for

1 ≤ t ≤ 200, 401 ≤ t ≤ 600 and 801 ≤ t ≤ 1000; St = 2 for 201 ≤ t ≤
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400, and 601 ≤ t ≤ 800. Assume p11 = 0.996, p12 = 0.004, p21 = 0.004

and p22 = 0.996.

Scenario 5 Five transition points at t = 201, 351, 501, 651 and 801. St = 1

for 1 ≤ t ≤ 200, 351 ≤ t ≤ 500 and 651 ≤ t ≤ 800; St = 2 for

201 ≤ t ≤ 350, 501 ≤ t ≤ 650 and 801 ≤ t ≤ 1000. Assume p11 =

0.994, p12 = 0.006, p21 = 0.006 and p22 = 0.994.

Table 3.1 shows the means and standard errors of 500 simulations in each

scenario for the five diagnostic statistics discussed in section 3.1. The re-

sults of least square regression are shown in the column titled by "Oracle";

results of Bayes estimation titled by "Bayes" and those of BCMIX estima-

tion titled by "BCMIX" in the last four columns of every subtable. Bayes

method uses comprehensive recursive weights whereas BCMIX method uses

the selected weights depending on M and m. In this simulation, we choose

M = 15, 20, 30, 40 and m = 10, 10, 15, 20 corresponding to previous M .

Table 3.1a shows that means of KL statistics in Bayes method are no

larger than those in BCMIX method for every scenario, the difference is very

small. In fact in scenario 1 and 2, BCMIX is just as good as Bayes, where

all yields the same KL statistics; in scenario 3 to 5, when M = 15, m = 10,

KL statistics of BCMIX are only 0.0002 or 0.0003 higher (roughly 2.3% to

2.8% more) than those of Bayes. As M and m increase, KL of BCMIX

converges to that of Bayes. When M = 40, m = 20, BCMIX estimation

is almost the same as Bayes estimation, comparing the third and the last
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column of Table 3.1a. Standard errors of KL statistics are as small as the

order of 10−4 and become smaller when M and m increase. This confirms

the fact that BCMIX is an efficient alternative of Bayes method. In addition,

as the number of regime switching increases from one to five (scenario 1 to

5), mean KL statistics increase correspondingly. This pattern is reasonable,

because the more switches, the more parameters to estimate, and thus the

bigger estimation errors. Since model (3.6) is in linear regression form and

data between the two change points are generated from the same probability

distribution, least square estimation is an ideal choice for this simple linear

regression. Least square regression, though infeasible when the change points

are unknown, is a good benchmark to compare how well the proposed method

behaves. It is not surprising that among all scenarios mean KL statistics and

standard errors under "Oracle" are the smallest, an indication that β̂t and

σ̂t are closer to the true parameter values. KL statistics by Bayes or BCMIX

are twice of those of "Oracle". The overall mean KL statistics are small and

close to zero, a sign of good model fit.

To evaluate the performance of β̂t alone, Table 3.1b and 3.1c shows the

means and standard errors of SSE and L2 norm respectively. In both tables,

Bayes method shows the smallest statistics compared with BCMIX method

except one case (scenario 1 in Table 3.1c) due to possible errors in random

sampling. In BCMIX method, as M and m increase, the means and stan-

dard errors of both statistics become smaller for every scenario. It is logic

to induce that BCMIX estimates converge to Bayes estimates. The differ-
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ence caused by Bayes and BCMIX is also small. For example, in 3.1b, the

results of BCMIX(20, 10) are only 0.0001 to 0.0002 higher (roughly 0.009%

to 0.02% more) than those of Bayes; and in Table 3.1c, except scenario 1,

the results of BCMIX(40, 20) are more than its Bayes counterparts by less

than 0.0001 (roughly no more than 0.2%). The overall L2 statistics become

larger when the number of switches goes up from one to five (scenario 1 to

5). This pattern does not apply to SSE statistics, simply because (3.1) mea-

sures the mean errors which are not constant and stochastically generated by

a gamma distribution in model specification. The overall magnitude of the

errors relies on the random generation mechanism associated with the com-

puter software. In general SSE and L2 statistics do not give a panorama of

the model performance.

Like KL statistic, the invented SSSE statistic, whose means and stan-

dard errors are shown in Table 3.1d, evaluates the estimation of both model

parameters βt and σt. This statistic is specially designed for the proposed

model in this thesis, and uses the estimated σt at each time t = 1, . . . , T ,

which is not applicable for least squares linear regression. SSSE is also an

estimate of the error in a standard normal distribution, thus the closer this

statistic to 1, the better the model performance. Table 3.1d shows that all

the means are greater than 0.96 with standard errors at the order of 10−4.

When the number of changes increase from one to five (scenario 1 to 5),

the mean statistics are further away from 1. The largest of this statistic is

almost 0.99, achieved in one change point setting. For scenario 2 to 5, means
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of BCMIX(15, 10) slightly drop and the standard errors increase a couple of

units than those under Bayes but still in the same order of 10−4; asM and m

increase, SSSE statistics regain and standard errors drop towards the levels

in Bayes. Interesting though, when (M,m) = (40, 20), the mean statistics

appear to be even closer to 1 and the standard errors are still slightly larger

than those in Bayes method. The improvement in BCMIX estimation may

be taken as a confirmation that BCMIX is an efficient method for Bayes. Or

this improvement could be possibly spurious due to the fact that the more

errors in a statistical estimation tend to boost the diagnostic statistics.

The last diagnostic statistic to be discussed in this section is the iden-

tification ratio (IR) defined in (3.5). Unlike any of the previous statistics,

IR evaluates the performance of the inference in the regime, i.e. the per-

centage of regimes that are correctly classified. From Table 3.1e, in the

two-change-point setting (scenario 2), IR is as high as 99%; whereas in the

five-change-point setting (scenario 5), IR is roughly 3% lower. For a fixed

series length, when the number of change points increases, the IR statistics

naturally drop, because the estimation is rather fuzzy around every change

point. Thus the more change points, the more errors in the estimation, and

the lower IR values. From column 2 to column 6 (Table 3.1e), the mean IR

statistics for each scenario first drop in BCMIX(15, 10) by about 0.1% and

then regain to Bayes levels in BCMIX(20, 10). In BCMIX setting, standard

errors show a pattern of decreasing to the levels in Bayes method with the

increasingM andm. Within BCMIX framework alone, for every scenario the
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means of IR statistics increases a little and standard errors decrease when

(M,m) changes from (15, 10) to (40, 20) and eventually stabilize for large

M and m. This results again confirm that BCMIX is an efficient method to

Bayes.

As discussed earlier, BCMIX method is computationally efficient and

from the analysis of Table 3.1, BCMIX is also statistically efficient com-

pared to Bayes method. The last question to answer before the closure of

this section is the choice of M and m in BCMIX. Though the larger M

and m the better estimation, computational time is proportional to M in

the order of O(TM) in forward or backward filtering and in the order of

O(TM2) in smoothing estimation where T is the series length. Let us re-

Table 3.1: Monte Carlo means of diagnostic statistics by Oracle, Bayes and
BCMIX methods. Standard errors are shown in parenthesis.

Scenarios Oracle Bayes BCMIX
(15, 10) (20, 10) (30, 15) (40, 20)

Scenario 1 0.0020 0.0033 0.0033 0.0033 0.0033 0.0033
(6.4e-05) (1.0e-04) (1.0e-04) (1.0e-04) (1.0e-04) (1.0e-04)

Scenario 2 0.0031 0.0070 0.0070 0.0070 0.0070 0.0070
(7.6e-05) (1.3e-03) (1.3e-03) (1.3e-03) (1.3e-03) (1.3e-03)

Scenario 3 0.0039 0.0081 0.0083 0.0082 0.0082 0.0082
(8.7e-05) (2.8e-04) (2.9e-04) (2.9e-04) (2.8e-04) (2.8e-04)

Scenario 4 0.0050 0.0107 0.0110 0.0108 0.0107 0.0107
(1.0e-04) (3.1e-04) (3.2e-04) (3.1e-04) (3.1e-04) (3.1e-04)

Scenario 5 0.0061 0.0132 0.0135 0.0133 0.0132 0.0132
(1.2e-04) (3.3e-04) (3.5e-04) (3.4e-04) (3.4e-04) (3.4e-04)

(a) Kullback-Leibler (KL) divergence
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Table 3.1: Continued:

Scenarios Oracle Bayes BCMIX
(15, 10) (20, 10) (30, 15) (40, 20)

Scenario 1 0.8625 0.8616 0.8617 0.8617 0.8617 0.8617
(9.8e-02) (9.8e-02) (9.8e-02) (9.8e-02) (9.8e-02) (9.8e-02)

Scenario 2 1.0437 1.0426 1.0427 1.0427 1.0427 1.0426
(2.4e-01) (2.4e-01) (2.4e-01) (2.4e-01) (2.4e-01) (2.4e-01)

Scenario 3 2.1695 2.1677 2.1679 2.1679 2.1678 2.1678
(1.1e+00) (1.1e+00) (1.1e+00) (1.1e+00) (1.1e+00) (1.1e+00)

Scenario 4 1.6482 1.6460 1.6461 1.6461 1.6461 1.6461
(7.2e-01) (7.2e-01) (7.2e-01) (7.2e-01) (7.2e-01) (7.2e-01)

Scenario 5 0.9745 0.9709 0.9712 0.9711 0.9711 0.9710
(7.8e-02) (7.8e-02) (7.8e-02) (7.8e-02) (7.8e-02) (7.8e-02)

(b) Sum of Squared Error (SSE)

Scenarios Oracle Bayes BCMIX
(15, 10) (20, 10) (30, 15) (40, 20)

Scenario 1 0.0327 0.0361 0.0358 0.0357 0.0358 0.0358
(7.8e-04) (7.7e-04) (7.8e-04) (7.8e-04) (7.7e-04) (7.7e-04)

Scenario 2 0.0402 0.0443 0.0447 0.0446 0.0445 0.0444
(7.7e-04) (7.9e-04) (8.3e-04) (8.1e-04) (8.0e-04) (8.0e-04)

Scenario 3 0.0438 0.0519 0.0528 0.0523 0.0520 0.0520
(7.6e-04) (8.1e-04) (8.9e-04) (8.5e-04) (8.3e-04) (8.3e-04)

Scenario 4 0.0503 0.0598 0.0610 0.0603 0.0599 0.0598
(7.8e-04) (8.6e-04) (9.4e-04) (9.1e-04) (8.8e-04) (8.8e-04)

Scenario 5 0.0547 0.0667 0.0680 0.0671 0.0669 0.0668
(7.7e-04) (8.8e-04) (9.9e-04) (9.4e-04) (9.2e-04) (9.1e-04)

(c) L2 norm
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Table 3.1: Continued

Scenarios Bayes BCMIX
(15, 10) (20, 10) (30, 15) (40, 20)

Scenario 1 0.9891 0.9893 0.9893 0.9894 0.9894
(2.7e-04) (3.3e-04) (3.0e-04) (2.9e-04) (2.8e-04)

Scenario 2 0.9822 0.9817 0.9821 0.9824 0.9824
(3.4e-04) (5.3e-04) (4.7e-04) (3.7e-04) (3.6e-04)

Scenario 3 0.9760 0.9747 0.9758 0.9762 0.9762
(3.8e-04) (6.0e-04) (5.0e-04) (4.3e-04) (4.2e-04)

Scenario 4 0.9697 0.9674 0.9692 0.9699 0.9700
(4.0e-04) (6.5e-04) (5.1e-04) (4.4e-04) (4.2e-04)

Scenario 5 0.9640 0.9622 0.9636 0.9642 0.9642
(4.5e-04) (7.0e-04) (6.0e-04) (5.1e-04) (4.9e-04)

(d) Sum of Squares of Standardized Error (SSSE)

Scenarios Bayes BCMIX
(15, 10) (20, 10) (30, 15) (40, 20)

Scenario 1 0.9835 0.9802 0.9807 0.9844 0.9845
(4.0e-03) (4.4e-03) (4.6e-03) (4.1e-03) (4.0e-03)

Scenario 2 0.9851 0.9867 0.9871 0.9872 0.9867
(1.9e-03) (2.0e-03) (2.0e-03) (2.0e-03) (1.9e-03)

Scenario 3 0.9751 0.9700 0.9728 0.9765 0.9763
(2.8e-03) (3.6e-03) (3.1e-03) (2.7e-03) (2.7e-03)

Scenario 4 0.9730 0.9687 0.9713 0.9725 0.9731
(2.1e-03) (2.7e-03) (2.3e-03) (2.2e-03) (2.1e-03)

Scenario 5 0.9606 0.9540 0.9572 0.9576 0.9588
(2.8e-03) (3.3e-03) (3.1e-03) (3.0e-03) (2.9e-03)

(e) Identification Ratio (IR)
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view Table 3.1a again. In each scenario of 1 or 2, means and standard errors

are all the same for both Bayes and BCMIX methods. In scenario 3 to 5,

the mean statistics improve by 0.0001 or 0.0002 points and standard errors

either remain the same or become slightly smaller from BCMIX(15, 10) to

BCMIX(20, 10) setting. As M and m increase, the improvement is barely

conspicuous. Besides, the estimates under BCMIC(20, 10) are just as good

as those under Bayes. Similar phenomena apply to Table 3.1b. In Table

3.1c, mean statistic drops by 0.0005, 0.0007 and 0.0009 and the standard

error drops by 0.01, 0.3 and 0.5 of 10−4 in scenario 3-5 when comparing

BCMIX(15, 10) with BCMIX(20, 10) setting. When comparing BCMIX(20,

10) with BCMIX(30, 15) the mean statistics decrease by 0.0003, 0.0004 and

0.0002 and standard errors decrease by 0.2, 0.3 and 0.2 of order 10−4 in the

same scenarios. This result shows that the improvement of the estimation is

bigger from BCMIX(15, 10) to BCMIX(20, 10) than from BCMIX(20, 10) to

BCMIX(30, 15). The analysis of Table 3.1d and 3.1e is similar and therefore

omitted. In general (M,m) = (20, 10) is a good choice for BCMIX method.

We will use BCMIX(20, 10) in larger simulation environment in the following

sections.
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3.3 Estimation with Estimated Hyperparame-

ters

The simulation in this section is very similar to that in section 3.2 in ways of

fixed position switching points and the series length. The difference is that

we choose a little complex model and estimate the hyperparameters with EM

algorithm defined in section 2.6. First an AR(1) model is defined as

yt = αt + βtyt−1 + σtεt (3.7)

The true series are generated by the prior values such as z(1)′ = (0.3, 0.5)

, z(2)′ = (−0.2, −0.5) and V (1) = V (2) =

0.16 0

0 0.16

 and g(1) = 2.5,

g(2) = 1.2, λ(1) = 0.8 and λ(2) = 1. We use EM algorithm to estimate prior

values z, V , g, λ and transition matrix P . The initial prior values are

chosen as follows: z =

 0.2 0.4

−0.2 −0.3

, V =

0.5 0

0 0.5

, g =

(
3 1.5

)
,

λ =

(
1 2

)
, and P =

0.99 0.01

0.01 0.99

 We consider the following 7 fixed

change-point scenarios.

Scenario 1 There is only one transition point at t = 501. St = 1 for

1 ≤ t ≤ 500 and St = 2 for 501 ≤ t ≤ 1000.

Scenario 2 There are two transition points at t = 351 and t = 701. St = 1
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for 1 ≤ t ≤ 350, St = 2 for 351 ≤ t ≤ 700 and St = 1 for 701 ≤ t ≤

1000.

Scenario 3 There are three transition points at t = 251, t = 501 and t =

751. St = 1 for 1 ≤ t ≤ 250 and 501 ≤ t ≤ 750; St = 2 for 251 ≤ t ≤

500 and 751 ≤ t ≤ 1000.

Scenario 4 There are four transition points at t = 201, 401, 601, and 801.

St = 1 for 1 ≤ t ≤ 200, 401 ≤ t ≤ 600 and 801 ≤ t ≤ 1000; St = 2 for

201 ≤ t ≤ 400 and 601 ≤ t ≤ 800.

Scenario 5 There are five transition points at t = 201, 351, 501, 651 and

801. St = 1 for 1 ≤ t ≤ 200, 351 ≤ t ≤ 500 and 651 ≤ t ≤ 800; St = 2

for 201 ≤ t ≤ 350, 501 ≤ t ≤ 650 and 801 ≤ t ≤ 1000.

Scenario 6 There are six transition points at t = 141, 281, 421, 561, 701 and

851. St = 1 for 1 ≤ t ≤ 140, 281 ≤ t ≤ 420, 561 ≤ t ≤ 700,

851 ≤ t ≤ 1000; St = 2 for 141 ≤ t ≤ 280, 421 ≤ t ≤ 560 and

701 ≤ t ≤ 850.

Scenario 7 There are eight transition points at t = 111, 221, 331, 441, 551, 661, 771

and 881. St = 1 for 1 ≤ t ≤ 110, 221 ≤ t ≤ 330, 441 ≤ t ≤ 550,

661 ≤ t ≤ 770 and 881 ≤ t ≤ 1000; St = 2 for 111 ≤ t ≤ 220,

331 ≤ t ≤ 440, 551 ≤ t ≤ 660 and 771 ≤ t ≤ 880.

Section 3.2 has proven that BCMIX method is as efficient as the time

consuming Bayes method. Thus table 3.2 shows only the results of BCMIX
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method in comparison with "Oracle" (least squares linear regression when

the change points are known). As a confirmation of the results in section 3.2,

the diagnostic statistics in Table 3.2 become stable when BCMIX parameters

M andm become larger. The statistics in BCMIX method are also very close

to the statistics under "Oracle" if applicable under all scenarios and settings.

In general KL statistics are very close to zero and SSSE and IR statistics are

close to one, which are indicators of good model fit. Readers interested in

the in-depth analysis of Table 3.2 may refer to section 3.2 for details. We

avoid the repetition of the similar analysis.

Instead in this section, we focus on graphical presentations of the estima-

tion and model fit. Figure 3.1 shows the estimation of the model parameters

and the regime status in comparison with the true parameters from selected

series in each scenario. Every sub figure in Figure 3.1 has 5 plots. The

first plot is a simulated time series; the rest regards to the estimation of

αt, βt, σt and P (St = 2). The true parameters are indicated by solid red

line; the estimates by solid black line and the confidence intervals are shown

by dashed blue line. Here we choose a typical 95% confidence interval com-

puted by mean estimate plus/minus 1.96 times the standard deviation of the

parameter.

Take Figure 3.1c for example. The top figures shows the simulated time

series yt generated by model (3.7). For 1 ≤ t ≤ 250, yt was at regime St = 1

and was generated by (αt, βt, σt) = (0.251, 0.499, 0.563) plus a Gaussian noise

(variance equals 1). The estimated α̂t’s (solid black in the second plot) at
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this period are time-varying and a little overestimated than the true value,

and their confidence intervals (dashed blue) merely cover the true parameter.

As far as βt is concerned, the estimated β̂t’s (solid black in the third plot)

are all below the true value 0.499 and the confidence intervals (dashed blue)

are a little off the true parameter value. σt estimation seems to be good

during this period, as the estimates are all close to 0.563 and the confidence

intervals include this true value. For regime status, the bottom plot shows

the probability that the regime is at state 2 and this value would be either 0

or 1 if the true regime is known. For t from 1 through 250, the true state is 1,

and thus the probability of the regime at 2 is 0 (solid red). In a two-regime

system, the regime at time t belongs to the state whose probability is larger

than 0.5 according to naive Bayesian classifier. The estimation of the regime

P̂ (St = 2) (solid black) is close to zero during and thus the estimated state

is 1 during this period.

Furthermore, for time period between 251 and 500, the true regime is

2 and true (αt, βt, σt) = (−0.435, −0.396, 0.584); for t between 501 and

750, true regime is 1 and true (αt, βt, σt) = (0.415, 0.355, 0.409) and fi-

nally for t from 751 to the end of the series, the true regime is again 2

and true (αt, βt, σt) = (−0.025, −0.415, 0.467). In each of the three sub

periods, the estimated α̂t, β̂t, σ̂t and P̂ (St = 2) are close to their true coun-

terparts and their confidence intervals include the corresponding true pa-

rameters with no exception. When the series is making a transition from
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Figure 3.1: Selected series from each scenario: the true parameters (solid red)
and estimates (solid black) by BCMIX(20, 10) and 95% confidence intervals
(dashed blue).
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Figure 3.1: Continued
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Figure 3.1: Continued
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Figure 3.1: Continued

0 200 400 600 800 1000

−
4

−
3

−
2

−
1

0
1

2
3

0 200 400 600 800 1000

−1.0

−0.5

0.0

0.5

1.0

0 200 400 600 800 1000

−1.0

−0.5

0.0

0.5

1.0

0 200 400 600 800 1000

0.0

0.5

1.0

1.5

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0
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Figure 3.1: Continued
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(e) Selected series yt from scenario 5 (top), αt (second), βt (third), σt (fourth) and P (St = 2)
(bottom)
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Figure 3.1: Continued
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(f) Selected series yt from scenario 6 (top), αt (second), βt (third), σt (fourth) and P (St = 2)
(bottom)
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Figure 3.1: Continued
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(g) Selected series yt from scenario 7 (top), αt (second), βt (third), σt (fourth) and P (St = 2)
(bottom)
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Table 3.2: Monte Carlo means of diagnostic statistics by Oracle and BCMIX
methods. Standard errors are shown in parenthesis.

Scenarios Oracle BCMIX
(15, 10) (20, 10) (30, 15) (40, 20)

Scenario 1 0.0031 0.0044 0.0044 0.0044 0.0044
(8.0e-05) (1.3e-04) (1.3e-04) (1.3e-04) (1.3e-04)

Scenario 2 0.0045 0.0068 0.0068 0.0068 0.0068
(9.4e-05) (2.0e-04) (2.0e-04) (2.0e-04) (2.0e-04)

Scenario 3 0.0061 0.0102 0.0102 0.0102 0.0102
(1.1e-04) (2.8e-04) (2.8e-04) (2.8e-04) (2.8e-04)

Scenario 4 0.0077 0.0126 0.0126 0.0126 0.0126
(1.3e-04) (3.5e-04) (3.5e-04) (3.5e-04) (3.5e-04)

Scenario 5 0.0093 0.0155 0.0155 0.0154 0.0154
(1.4e-04) (4.3e-04) (4.4e-04) (4.4e-04) (4.4e-04)

Scenario 6 0.0110 0.0186 0.0186 0.0186 0.0186
(1.5e-04) (5.7e-04) (5.7e-04) (5.7e-04) (5.7e-04)

Scenario 7 0.0140 0.0237 0.0236 0.0236 0.0235
(1.9e-04) (6.9e-04) (6.9e-04) (6.9e-04) (6.9e-04)

(a) Kullback-Leibler (KL) divergence

Scenarios Oracle BCMIX
(15, 10) (20, 10) (30, 15) (40, 20)

Scenario 1 1.1060 1.1047 1.1046 1.1045 1.1044
(2.7e-01) (2.7e-01) (2.7e-01) (2.7e-01) (2.7e-01)

Scenario 2 0.8299 0.8281 0.8281 0.8280 0.8280
(2.1e-01) (2.1e-01) (2.1e-01) (2.1e-01) (2.1e-01)

Scenario 3 1.0344 1.0323 1.0322 1.0322 1.0321
(1.5e-01) (1.5e-01) (1.5e-01) (1.5e-01) (1.5e-01)

Scenario 4 0.9507 0.9481 0.9480 0.9479 0.9478
(1.3e-01) (1.3e-01) (1.3e-01) (1.3e-01) (1.3e-01)

Scenario 5 1.1145 1.1113 1.1112 1.1112 1.1111
(1.1e-01) (1.1e-01) (1.1e-01) (1.1e-01) (1.1e-01)

Scenario 6 0.8585 0.8550 0.8550 0.8550 0.8549
(5.9e-02) (5.9e-02) (5.9e-02) (5.9e-02) (5.9e-02)

Scenario 7 0.8858 0.8809 0.8809 0.8809 0.8808
(5.9e-02) (5.9e-02) (5.9e-02) (5.9e-02) (5.9e-02)

(b) Sum of squared Errors (SSE)
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Table 3.2: Continued.

Scenarios Oracle BCMIX
(15, 10) (20, 10) (30, 15) (40, 20)

Scenario 1 0.0509 0.0522 0.0522 0.0523 0.0524
(1.3e-03) (1.2e-03) (1.2e-03) (1.2e-03) (1.2e-03)

Scenario 2 0.0575 0.0603 0.0602 0.0603 0.0603
(1.1e-03) (1.1e-03) (1.1e-03) (1.1e-03) (1.1e-03)

Scenario 3 0.0707 0.0740 0.0740 0.0740 0.0741
(1.7e-03) (1.5e-03) (1.5e-03) (1.5e-03) (1.5e-03)

Scenario 4 0.0786 0.0830 0.0829 0.0830 0.0830
(1.8e-03) (1.6e-03) (1.6e-03) (1.6e-03) (1.6e-03)

Scenario 5 0.0866 0.0912 0.0912 0.0912 0.0912
(1.5e-03) (1.4e-03) (1.4e-03) (1.4e-03) (1.4e-03)

Scenario 6 0.0901 0.0964 0.0963 0.0962 0.0962
(1.1e-03) (1.1e-03) (1.1e-03) (1.1e-03) (1.1e-03)

Scenario 7 0.1041 0.1105 0.1102 0.1101 0.1101
(1.4e-03) (1.4e-03) (1.4e-03) (1.4e-03) (1.4e-03)

(c) L2 norm

Scenarios BCMIX
(15, 10) (20, 10) (30, 15) (40, 20)

Scenario 1 0.9946 0.9945 0.9943 0.9941
(2.3e-04) (1.9e-04) (1.9e-04) (2.0e-04)

Scenario 2 0.9911 0.9911 0.9910 0.9909
(2.0e-04) (1.7e-04) (1.6e-04) (1.6e-04)

Scenario 3 0.9860 0.9858 0.9857 0.9856
(2.1e-04) (2.0e-04) (2.0e-04) (2.0e-04)

Scenario 4 0.9813 0.9810 0.9809 0.9809
(2.3e-04) (2.2e-04) (2.2e-04) (2.2e-04)

Scenario 5 0.9764 0.9762 0.9761 0.9761
(2.6e-04) (2.3e-04) (2.3e-04) (2.3e-04)

Scenario 6 0.9716 0.9715 0.9714 0.9714
(2.7e-04) (2.4e-04) (2.3e-04) (2.3e-04)

Scenario 7 0.9626 0.9623 0.9623 0.9622
(2.9e-04) (2.6e-04) (2.5e-04) (2.5e-04)

(d) Sum of Squares of Standardized Errors (SSSE)
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Table 3.2: Continued.

Scenarios BCMIX
(15, 10) (20, 10) (30, 15) (40, 20)

Scenario 1 0.9934 0.9936 0.9924 0.9926
(2.3e-03) (2.3e-03) (2.5e-03) (2.5e-03)

Scenario 2 0.9933 0.9927 0.9941 0.9944
(1.6e-03) (1.8e-03) (1.6e-03) (1.5e-03)

Scenario 3 0.9949 0.9949 0.9953 0.9951
(8.5e-04) (8.7e-04) (7.1e-04) (7.5e-04)

Scenario 4 0.9946 0.9942 0.9938 0.9934
(4.4e-04) (5.9e-04) (7.3e-04) (8.0e-04)

Scenario 5 0.9926 0.9920 0.9922 0.9922
(7.1e-04) (8.6e-04) (8.0e-04) (8.1e-04)

Scenario 6 0.9906 0.9911 0.9918 0.9918
(1.1e-03) (8.9e-04) (5.0e-04) (5.1e-04)

Scenario 7 0.9881 0.9885 0.9886 0.9888
(7.2e-04) (6.6e-04) (6.3e-04) (6.0e-04)

(e) Identification Ratio (IR)

one regime to the other, the estimation shows a little fuzziness. In the

bottom plot of Figure 3.1c, the estimated P̂ (St = 2) experiences changes

from 0.005, 0.16, 0.25, 0.41, 0.71, to 0.95 for time t = 246, 247, 248, 249, 250

and 251. It takes five time steps for the estimation to correctly identify the

change point. This phenomenon is prominent in the estimations of all other

parameters. But in general the estimation adjusts quickly to the change.

Misclassification around the transition areas may also explain why IR statis-

tics are always less than 1 in Table 3.2e.

In the series where there are more transition points (Figure 3.1d to 3.1g),

the estimates are still close to their true corresponding parameters and the
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confidence intervals include the true parameters most of the time. Although

the more transition points are in a fixed length series, the less accurate the

estimation is, usually accompanied by more fuzziness around the transition

points and wider confidence intervals.

3.4 Simulation with Large Series

To continue with the AR(1) model defined in (3.7), this section explores the

simulation with longer series and with stochastic change points generated by

specified Markov transition probabilities. The true simulation parameters

z, V , g and λ are the same as used for model (3.7) in Section 3.3, except for

the Markov probability transition matrix P , defined as P =

1− p p

q 1− q


for a two-regime system. p is the probability of making transition from state

1 to state 2; q is the reverse. For every pair of (p, q) in the following scenarios,

500 series are simulated for series lengths equal to 2000, 3000, 4000 and 5000

respectively.

Scenario 1 p = 0.002, q = 0.002

Scenario 2 p = 0.004, q = 0.004

Scenario 3 p = 0.008, q = 0.008

Scenario 4 p = 0.016, q = 0.016

Scenario 5 p = 0.016, q = 0.032
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Scenario 6 p = 0.032, q = 0.032

Scenario 7 p = 0.05, q = 0.05

Scenario 8 p = 0.075, q = 0.075

Scenario 9 p = 0.1, q = 0.1

Scenario 10 p = 0.2, q = 0.2

The number of regime changes in each simulated series is regulated by p

and q. Unlike previous simulations, the number of regime changes is stochas-

tic and the positions of the change points are also random. The larger the

transition probabilities are, the more transition points are anticipated in a

simulated series. The estimation starts with the same initial prior as in Sec-

tion 3.3 and proceed with the estimation of forward, backward, and smooth-

ing recursive weights by BCMIX (20, 10) methods and then estimate hy-

perparameters via EM algorithm. This process repeats until EM algorithm

converges. At the end of the last EM iteration, we compute the estimated

βt, σt and probability of the regime at every time point. In principle EM

algorithm should be run until convergence, whereas in this simulation EM

algorithm is run once by choosing good initial prior values. The choice of

initial prior values will be fully discussed in the next section.

The major issue encountered in long series estimation is the computation

cost. In fact selecting an example model in the entire simulation studies has

taken the computational resources and time into consideration. On the one
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hand, the theoretical settings need to be complex and comprehensive enough

to compare and contrast methods; on the other hand the computational

resources are utilized at their (almost) optimal conditions. This is also the

reason we stick with AR(1) model, although higher order AR models or

models involving exogenous variables are quite feasible to implement, but

a little challenging for intensive simulation on long series. Computational

issues encountered in this thesis have been discussed in Section 2.8.

3.4.1 Goodness of Fit of BCMIX Method

The goal of this subsection is to understand the impact of the series length

and the magnitude of transition probabilities on the estimation of model

parameters by analyzing KL, SSSE, L2 and IR statistics . In Table 3.3a, it

is obvious that for a fixed series length, both the means and standard errors

of KL statistics increase when the transition probabilities increase (larger p

and q pairs). Likewise, for a fixed transition probability pair (a particular

scenario), the means of KL statistics have a tendency to decrease when the

series become longer for the first 5 scenarios and show a little up and down

patterns as series length increases for the last 5 scenarios. But when the

series reach 4000 and 5000 long, the differences of means are only 1 to 6

units at the order of 10−4. The standard errors of KL statistics decrease as

the series length increases from 2000 to 5000 across all scenarios, indicating

that the estimation becomes stabilized when the series becomes larger.

The means of L2 statistics in Table 3.3c increase as (p, q) pairs become
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larger in each column. Row-wise, they may have a tendency to decrease in

most scenarios, but may stay flat or rise up a little for some scenarios. The

standard errors become larger for series making more transitions within a

fixed series length and become smaller for longer series within each scenario.

The highest standard error is located at the upper left corner of the table

and the lowest standard error at bottom right corner. The means of SSSE

statistics in Table 3.3b decrease and standard errors increase as the number

of transition points increase for a particular series length. Since this statistic

is an estimation of the variance of the standard normal distribution, values

closer to 1 indicate better fit. Under each scenario, the mean statistics de-

crease first and go up a little again, but their values remain almost the same

up to the third digit after the decimal point. The standard errors of SSSE

statistics do decrease as series length increases for every scenario.

The identification ratio (IR) in Table 3.3d signals no significant improve-

ment as the series length increases. This statistic remains as high as 99%

for scenario 1 to 6 for all series length. The standard errors tend to decrease

within each row. Clearly, in each column of Table 3.3d, the mean statistics

decrease when there are more transition points in the series. Up to scenario

6 (p = 0.032, q = 0.032), the model correctly identifies the regime status

99% of the time. Even in the worst case (scenario 10) the model can still

classify 92%−93% of the regimes correctly. Interesting though, the standard

errors go down first till scenario 5 or 6 and then up a little again within each

column, showing that model may reach its peak performance at a moderate
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large number of change points in a series.

Overall, the model behaves more stable when the series is longer and

estimates better for longer series in some cases, but series length appears

not to be a deciding advantage for using this model. The clear message

Table 3.3: Monte Carlo means of diagnostic statistics by BCMIX (20, 10)
method. Standard errors are shown in parenthesis.

(p, q) 2000 3000 4000 5000
(0.002, 0.002) 0.0037(1.3e-4) 0.0034(1.0e-4) 0.0033(7.8e-5) 0.0031(7.2e-5)
(0.004, 0.004) 0.0053(1.4e-4) 0.0052(1.4e-4) 0.0050(1.1e-4) 0.0052(9.9e-5)
(0.008, 0.008) 0.0094(2.2e-4) 0.0092(1.8e-4) 0.0092(1.5e-4) 0.0089(1.4e-4)
(0.016, 0.016) 0.0134(3.0e-4) 0.0129(1.9e-4) 0.0125(1.6e-4) 0.0124(1.3e-4)
(0.016, 0.032) 0.0183(2.9e-4) 0.0187(2.5e-4) 0.0182(2.0e-4) 0.0181(1.7e-4)
(0.032, 0.032) 0.0249(3.8e-4) 0.0241(2.5e-4) 0.0237(2.2e-4) 0.0243(2.3e-4)
(0.050, 0.050) 0.0345(4.4e-4) 0.0342(3.6e-4) 0.0337(2.6e-4) 0.0338(2.5e-4)
(0.075, 0.075) 0.0514(4.6e-4) 0.0522(4.5e-4) 0.0511(3.4e-4) 0.0517(3.2e-4)
(0.100, 0.100) 0.0937(7.2e-4) 0.0922(5.9e-4) 0.0920(5.0e-4) 0.0922(4.3e-4)
(0.200, 0.200) 0.1322(7.2e-4) 0.1359(6.7e-4) 0.1366(6.1e-4) 0.1363(5.2e-4)

(a) Kullback-Leibler (KL) Divergence

(p, q) 2000 3000 4000 5000
(0.002, 0.002) 0.9947(1.9e-4) 0.9944(1.6e-4) 0.9941(1.2e-4) 0.9943(1.0e-4)
(0.004, 0.004) 0.9918(1.8e-4) 0.9912(1.4e-4) 0.9907(1.1e-4) 0.9906(9.2e-5)
(0.008, 0.008) 0.9839(1.9e-4) 0.9824(1.9e-4) 0.9824(1.8e-4) 0.9830(1.3e-4)
(0.016, 0.016) 0.9769(1.8e-4) 0.9756(1.7e-4) 0.9759(1.4e-4) 0.9761(1.2e-4)
(0.016, 0.032) 0.9664(2.3e-4) 0.9648(2.1e-4) 0.9654(1.7e-4) 0.9653(1.6e-4)
(0.032, 0.032) 0.9551(2.5e-4) 0.9537(2.2e-4) 0.9538(1.8e-4) 0.9539(1.6e-4)
(0.050, 0.050) 0.9371(2.8e-4) 0.9348(2.4e-4) 0.9353(2.1e-4) 0.9349(2.0e-4)
(0.075, 0.075) 0.9015(3.6e-4) 0.9012(2.9e-4) 0.9012(2.7e-4) 0.9014(2.4e-4)
(0.100, 0.100) 0.8284(4.6e-4) 0.8278(4.0e-4) 0.8292(3.4e-4) 0.8283(3.1e-4)
(0.200, 0.200) 0.7655(4.0e-4) 0.7568(3.9e-4) 0.7570(3.4e-4) 0.7570(3.2e-4)

(b) Sum of Squares of Standardized Errors (SSSE)
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Table 3.3: Continued

(p, q) 2000 3000 4000 5000
(0.002, 0.002) 0.0410(8.7e-4) 0.0395(7.0e-4) 0.0390(5.9e-4) 0.0374(5.0e-4)
(0.004, 0.004) 0.0507(8.1e-4) 0.0504(7.1e-4) 0.0486(5.4e-4) 0.0493(5.3e-4)
(0.008, 0.008) 0.0642(7.3e-4) 0.0668(6.7e-4) 0.0657(5.8e-4) 0.0649(4.9e-4)
(0.016, 0.016) 0.0787(8.5e-4) 0.0787(6.2e-4) 0.0777(5.5e-4) 0.0769(4.7e-4)
(0.016, 0.032) 0.0940(8.0e-4) 0.0944(6.1e-4) 0.0917(5.5e-4) 0.0926(4.8e-4)
(0.032, 0.032) 0.1082(8.0e-4) 0.1073(6.2e-4) 0.1057(5.3e-4) 0.1066(5.0e-4)
(0.050, 0.050) 0.1278(7.8e-4) 0.1270(6.5e-4) 0.1251(5.3e-4) 0.1266(4.5e-4)
(0.075, 0.075) 0.1567(7.8e-4) 0.1560(6.3e-4) 0.1544(5.3e-4) 0.1548(4.9e-4)
(0.100, 0.100) 0.2067(7.2e-4) 0.2064(6.4e-4) 0.2049(5.1e-4) 0.2058(4.6e-4)
(0.200, 0.200) 0.2505(7.0e-4) 0.2519(5.6e-4) 0.2504(5.0e-4) 0.2516(4.4e-4)

(c) L2 norm

(p, q) 2000 3000 4000 5000
(0.002, 0.002) 0.9961(1.5e-3) 0.9961(1.4e-3) 0.9976(5.4e-4) 0.9968(1.0e-3)
(0.004, 0.004) 0.9936(2.3e-3) 0.9973(6.1e-4) 0.9966(8.7e-4) 0.9973(4.8e-4)
(0.008, 0.008) 0.9947(8.4e-4) 0.9889(1.6e-3) 0.9927(1.2e-3) 0.9954(6.1e-4)
(0.016, 0.016) 0.9937(5.5e-4) 0.9931(9.3e-4) 0.9946(2.8e-4) 0.9945(2.9e-4)
(0.016, 0.032) 0.9926(3.5e-4) 0.9919(3.7e-4) 0.9918(3.6e-4) 0.9921(2.8e-4)
(0.032, 0.032) 0.9890(4.3e-4) 0.9886(4.5e-4) 0.9889(3.3e-4) 0.9893(2.5e-4)
(0.050, 0.050) 0.9840(5.0e-4) 0.9834(4.5e-4) 0.9841(3.7e-4) 0.9838(3.2e-4)
(0.075, 0.075) 0.9742(5.1e-4) 0.9736(4.5e-4) 0.9738(4.2e-4) 0.9737(3.6e-4)
(0.100, 0.100) 0.9505(6.5e-4) 0.9501(5.4e-4) 0.9503(4.5e-4) 0.9491(4.1e-4)
(0.200, 0.200) 0.9276(6.5e-4) 0.9249(5.4e-4) 0.9252(5.0e-4) 0.9243(4.1e-4)

(d) Identification Ratio (IR)

conveyed by this simulation study is that larger transition probabilities seem

to jeopardize all the evaluation metrics. As far as this simulation study is

concerned, the model may be best suited for a Markov chain with moderate

large transition probabilities. When it comes to the comparison with existing

research models, this model still perform better than the traditional Markov
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switching model in the cases such as scenario 9 or 10, which will be discussed

in the end of this section.

3.4.2 Analysis of Hyperparameter Estimation

Table 3.4 and Table 3.5 show the means and standard errors of hyperparam-

eters from 500 simulations for each scenario and each series length. Among

all the estimations, the most interesting and widely concerned statistics are

Markov chain transition probabilities, i.e. p and q in this simulation study.

In Table 3.4d, regardless of the series length, the estimated p and q are

almost the same under each scenario. For example in scenario 1, p’s are

estimated to be 0.002, exactly the same as their true prior counterpart for

all series lengths; in scenario 2 q’s are estimated to be 0.003 or 0.004 a lit-

tle smaller than the true prior 0.004, but the estimation is consistent across

series length. The estimation also appears to be reasonable in a way that

estimated p and q become larger as the true transition probabilities become

larger within a fixed series length. It may appear that on average the model

has a tendency to underestimate the transition probabilities. For example,

in scenario (0.032, 0.032), the estimated (p, q)’s are only (0.009, 0.009) or

(0.01, 0.01); in scenario (0.2, 0.2), the estimated p and q’s are about 0.066 or

0.067. However, the underestimation is spurious and the reason is explained

by the mechanism to generate the series.

For a first order Markov chain, it is not difficult to prove that the expected

number of transition points from state 1 to state 2 is simply the number of
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cases that the series at state 2 at time t and at state 1 at time t−1. Let X be

the number of such transitions, then X =
∑T

t=1 I{St=2,St−1=1}, the expected

value of X is

EX =
T∑
t=1

P (St = 2, St = 1) =
T∑
t=1

pP (St−1 = 1) ≈ Tpq

p+ q
(3.8)

Approximation occurs due to ignoring the initial state. Similarly, the ex-

pected number of transitions from state 2 to state 1 can be proven to be the

same. The total number of expected transitions in a series is the sum of the

two values.

In this simulation study, the series is controlled to stay at one regime for

at least 10 time points before it is allowed to move on to another regime. This

intervention seems to be realistic, because economic interruption is not likely

to occur at very adjacent periods. The controlled simulation scheme signifi-

cantly lowers the number of change points for each scenario than the theory

would predict. Table 3.6 computes the expected number of change points

based on equation (3.8) and the practical average number of change points

in the simulated series for every scenario and every T = 2000, 3000, 4000 and

5000. For scenario (0.05, 0.05) of T = 2000, the expected number of change

points is 100, whereas in practice there are roughly 25 changes on average.

The estimated (p, q) is (0.013, 0.012) reflecting the fact that 25% of the ex-

pected change points correspond to the estimation of 25% of the theoretical

probability 0.05. Viewing Table 3.6 in another way, in series T = 4000 and
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scenario (0.1, 0.1), the observed average number of change points is 137.4

(Table 3.6b), a little higher than 128 in T = 4000 and scenario (0.032, 0.032)

(Table 3.6a). The estimated (p, q) is (0.043, 0.042) (Table 3.4d) for scenario

(0.05, 0.05) reflects the fact that the series are actually generated from lower

probability scenario. In general, the estimation of (p, q) is very good, re-

flecting the true nature of Markov chain. It is worth mentioning earlier that

the traditional Markov switching models tend to overestimate the transition

probabilities. A comparison analysis will be given in the next subsection.

For completeness, the estimation of other hyperparameters is also pro-

vided in Table 3.4. A separate section will focus on the estimation of prior

parameters, so the discussion here may fall short. g seems to be exaggera-

tively overestimated for shorter series and low transition probabilities. In the

line of the first scenario, g(1) is estimated to be between 21.72 for T = 5000

and 168.14 for T = 2000, when the true value of g(1) is 2.5. But as the tran-

sition probabilities become larger, the estimation become stabilized and the

estimates seem to converge to the values not far from their true priors. At

the bottom line of Table 3.4a, g(1) converges to 2.6 or 2.7 and g(2) converges

to about 1.5 and their true values are 2.5 and 1.2 respectively. λ estimates

in Table 3.4b behave similarly, but the values are moving in a different direc-

tion. They begin small for shorter series with low transition probabilities and

gradually increase and then become stable for larger transition probability

scenarios. λ(1) converges to a value between 1.2 and 1.3 while the true prior

is 0.8; and λ(2) converges to around 0.7 or 0.8 when the true value is 1. z
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of Table 3.4c seems to be the only estimates that are genuine reflection of

the true prior values for every transition probability scenario and every series

length. In Table 3.5 V̂ (k)
11 ’s are small in low probability scenario and increase

and stabilize around 0.15 or 0.16, close to the true value 0.16. V̂ (1)
22 converges

to around 0.15 and V̂
(2)

22 converges to 0.09 when both true values are 0.16.

The estimation on the off diagonal of V̂ (k) has no major issues since these

values are small and close to 0, the true prior value.

The quick observation from Table 3.4 and 3.5 does not indicate a rela-

tionship between performance of the hyperparameter estimation and series

length. As transition probabilities become larger, however, the estimation

seems to be more reasonable, particular for Table 3.4a and 3.4b. Except for

the estimation of (p, q) pair which is of primary interest, there is no conclusive

criterion to evaluate the prior estimation. The fact that the hyperparameter

estimation does not converge to the true value in the simulation does not

necessarily indicate a modeling failure. The major concern is the collective

effect of hyperparameters on the estimation of regression parameters. In a

hyperplane, a good combination of hyperparameters may result in good es-

timation about model parameters. See Section 3.5.2 for more discussions

about the effect of hyperparameter estimation on model parameters.
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Table 3.4: Monte Carlo means of the estimated hyperparameters via EM
algorithm. Standard errors are shown in parenthesis.

(p, q) 2000 3000 4000 5000
ĝ1 ĝ2 ĝ1 ĝ2 ĝ1 ĝ2 ĝ1 ĝ2

(0.002, 0.002) 168.14 177.28 77.97 112.91 28.28 40.69 21.72 27.51
(1.1e+1) (8.0) (8.2) (7.9) (3.8) (4.8) (2.3) (5.6)

(0.004, 0.004) 40.01 55.13 15.32 18.58 9.02 5.91 5.66 3.65
(4.3) (4.4) (1.4) (2.1) (7.0e-1) (5.0e-1) (3.1e-1) (2.6e-1)

(0.008, 0.008) 8.49 7.82 5.76 4.17 4.52 2.75 3.87 2.19
(5.6e-1) (9.1e-1) (3.0e-1) (3.1e-1) (1.7e-1) (1.0e-1) (1.2e-1) (6.0e-2)

(0.016, 0.016) 5.65 3.25 4.51 2.45 3.63 2.11 3.24 1.89
(2.7e-1) (1.5e-1) (1.7e-1) (9.6e-2) (1.0e-1) (5.8e-2) (7.6e-2) (3.9e-2)

(0.016, 0.032) 3.96 2.33 3.49 2.03 3.05 1.80 2.99 1.68
(1.3e-1) (8.8e-2) (9.0e-2) (5.2e-2) (5.8e-2) (3.7e-2) (5.3e-2) (2.7e-2)

(0.032, 0.032) 3.55 1.98 3.10 1.79 2.94 1.68 2.82 1.60
(8.8e-2) (4.8e-2) (6.4e-2) (3.0e-2) (5.1e-2) (2.5e-2) (3.9e-2) (2.1e-2)

(0.050, 0.050) 3.24 1.78 2.89 1.64 2.76 1.64 2.68 1.54
(6.3e-2) (3.9e-2) (4.5e-2) (2.1e-2) (3.6e-2) (2.1e-2) (3.0e-2) (1.5e-2)

(0.075, 0.075) 2.99 1.54 2.81 1.47 2.69 1.54 2.64 1.51
(4.3e-2) (2.0e-2) (3.1e-2) (1.5e-2) (2.7e-2) (1.4e-2) (2.3e-2) (1.2e-2)

(0.100, 0.100) 2.82 1.40 2.68 1.52 2.70 1.51 2.62 1.48
(2.6e-2) (1.2e-2) (2.1e-2) (1.1e-2) (1.9e-2) (1.0e-2) (1.5e-2) (8.6e-3)

(0.200, 0.200) 2.81 1.38 2.68 1.52 2.68 1.49 2.63 1.48
(1.9e-2) (8.7e-3) (1.5e-2) (8.8e-3) (1.5e-2) (7.4e-3) (1.3e-2) (6.5e-3)

(a) True g(1) = 2.5 and g(2) = 1.2

(p, q) 2000 3000 4000 5000
λ̂1 λ̂2 λ̂1 λ̂2 λ̂1 λ̂2 λ̂1 λ̂2

(0.002, 0.002) 0.386 0.076 0.521 0.210 0.757 0.334 0.805 0.425
(3.8e-2) (9.6e-3) (3.3e-2) (2.0e-2) (4.1e-2) (2.3e-2) (4.3e-2) (2.8e-2)

(0.004, 0.004) 0.632 0.250 0.816 0.408 0.871 0.495 1.021 0.586
(3.7e-2) (2.1e-2) (3.8e-2) (2.5e-2) (3.7e-2) (2.9e-2) (3.5e-2) (2.6e-2)

(0.008, 0.008) 0.891 0.479 1.019 0.528 1.039 0.536 1.105 0.617
(3.6e-2) (2.6e-2) (3.4e-2) (2.3e-2) (2.9e-2) (1.8e-2) (2.8e-2) (2.0e-2)

(0.016, 0.016) 0.976 0.547 1.017 0.597 1.129 0.622 1.211 0.629
(3.2e-2) (2.2e-2) (2.8e-2) (2.0e-2) (2.5e-2) (1.7e-2) (2.5e-2) (1.5e-2)

(0.016, 0.032) 1.102 0.627 1.125 0.621 1.222 0.669 1.206 0.678
(2.7e-2) (2.1e-2) (2.3e-2) (1.8e-2) (2.1e-2) (1.4e-2) (2.0e-2) (1.4e-2)

(0.032, 0.032) 1.106 0.651 1.211 0.644 1.237 0.670 1.251 0.682
(2.3e-2) (1.7e-2) (2.2e-2) (1.4e-2) (2.0e-2) (1.2e-2) (1.7e-2) (1.1e-2)

(0.050, 0.050) 1.113 0.698 1.229 0.663 1.285 0.660 1.272 0.690
(2.0e-2) (1.6e-2) (1.8e-2) (1.2e-2) (1.6e-2) (1.1e-2) (1.4e-2) (9.4e-3)

(0.075, 0.075) 1.140 0.751 1.192 0.768 1.282 0.685 1.281 0.693
(1.6e-2) (1.2e-2) (1.3e-2) (1.0e-2) (1.4e-2) (8.3e-3) (1.1e-2) (7.6e-3)

(0.100, 0.100) 1.138 0.827 1.279 0.696 1.258 0.680 1.288 0.700
(1.0e-2) (8.9e-3) (1.1e-2) (7.0e-3) (8.8e-3) (6.3e-3) (8.4e-3) (5.9e-3)

(0.200, 0.200) 1.083 0.845 1.267 0.682 1.272 0.690 1.284 0.696
(7.4e-3) (7.1e-3) (8.0e-3) (5.4e-3) (7.6e-3) (4.9e-3) (7.3e-3) (4.7e-3)

(b) True λ(1) = 0.8 and λ(2) = 1
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Table 3.4: Continued
(p, q) 2000 3000 4000 5000

(0.002, 0.002)
z(1) 0.3018 0.5060 0.2967 0.4987 0.3096 0.4959 0.3081 0.4971

(6.9e-3) (6.5e-3) (5.8e-3) (5.8e-3) (4.9e-3) (4.8e-3) (4.6e-3) (4.6e-3)

z(2) -0.2289 -0.4608 -0.2318 -0.4365 -0.2530 -0.4608 -0.2377 -0.4672
(2.0e-2) (1.4e-2) (1.5e-2) (1.1e-2) (1.0e-2) (9.3e-3) (9.3e-3) (8.2e-3)

(0.004, 0.004)
z(1) 0.3072 0.5055 0.3119 0.5027 0.3065 0.4970 0.3136 0.5007

(5.5e-3) (5.1e-3) (4.6e-3) (4.3e-3) (4.0e-3) (3.7e-3) (3.5e-3) (3.4e-3)

z(2) -0.2652 -0.4505 -0.2421 -0.4426 -0.2526 -0.4685 -0.2469 -0.4638
(1.3e-2) (1.0e-2) (9.6e-3) (8.6e-3) (8.1e-3) (7.1e-3) (6.6e-3) (6.0e-3)

(0.008, 0.008)
z(1) 0.3018 0.4927 0.3099 0.5038 0.3100 0.4982 0.3129 0.5053

(4.0e-3) (3.9e-3) (3.3e-3) (3.4e-3) (2.9e-3) (2.9e-3) (2.6e-3) (2.6e-3)

z(2) -0.2339 -0.4520 -0.2403 -0.4837 -0.2463 -0.4762 -0.2425 -0.4732
(8.1e-3) (7.4e-3) (6.3e-3) (5.2e-3) (5.5e-3) (4.7e-3) (4.9e-3) (4.5e-3)

(0.016, 0.016)
z(1) 0.3026 0.4919 0.3047 0.5057 0.3096 0.4982 0.3125 0.5050

(3.2e-3) (3.1e-3) (2.8e-3) (2.5e-3) (2.3e-3) (2.2e-3) (2.1e-3) (2.0e-3)

z(2) -0.2428 -0.4637 -0.2470 -0.4759 -0.2285 -0.4743 -0.2355 -0.4791
(6.3e-3) (5.4e-3) (5.1e-3) (4.3e-3) (4.2e-3) (3.5e-3) (3.6e-3) (3.4e-3)

(0.016, 0.032)
z(1) 0.3076 0.4923 0.3084 0.5032 0.3109 0.5021 0.3146 0.5030

(2.5e-3) (2.7e-3) (2.2e-3) (2.0e-3) (1.8e-3) (1.8e-3) (1.7e-3) (1.7e-3)

z(2) -0.2515 -0.4561 -0.2422 -0.4767 -0.2386 -0.4825 -0.2332 -0.4773
(4.9e-3) (4.4e-3) (4.0e-3) (3.4e-3) (3.3e-3) (3.1e-3) (2.9e-3) (2.6e-3)

(0.032, 0.032)
z(1) 0.3033 0.4909 0.3096 0.5042 0.3119 0.4990 0.3102 0.5030

(2.2e-3) (2.2e-3) (1.8e-3) (1.7e-3) (1.5e-3) (1.5e-3) (1.4e-3) (1.3e-3)

z(2) -0.2421 -0.4607 -0.2439 -0.4863 -0.2373 -0.4795 -0.2343 -0.4791
(4.1e-3) (3.7e-3) (3.4e-3) (3.1e-3) (2.8e-3) (2.5e-3) (2.5e-3) (2.2e-3)

(0.050, 0.050)
z(1) 0.3031 0.4909 0.3094 0.5023 0.3099 0.5010 0.3135 0.5016

(1.8e-3) (1.8e-3) (1.5e-3) (1.4e-3) (1.3e-3) (1.2e-3) (1.2e-3) (1.2e-3)

z(2) -0.2344 -0.4598 -0.2374 -0.4798 -0.2377 -0.4793 -0.2363 -0.4798
(3.3e-3) (3.2e-3) (2.7e-3) (2.2e-3) (2.3e-3) (2.1e-3) (2.1e-3) (1.8e-3)

(0.075, 0.075)
z(1) 0.2985 0.4808 0.3002 0.4807 0.3133 0.4989 0.3115 0.5033

(1.4e-3) (1.4e-3) (1.2e-3) (1.1e-3) (1.1e-3) (9.8e-4) (9.3e-4) (9.3e-4)

z(2) -0.2317 -0.4574 -0.2326 -0.4578 -0.2402 -0.4828 -0.2382 -0.4782
(2.6e-3) (2.2e-3) (2.0e-3) (1.8e-3) (1.8e-3) (1.6e-3) (1.7e-3) (1.4e-3)

(0.100, 0.100)
z(1) 0.2910 0.4699 0.3109 0.5022 0.3140 0.5008 0.3162 0.5006

(8.8e-4) (9.4e-4) (9.0e-4) (9.4e-4) (8.2e-4) (8.2e-4) (7.5e-4) (7.0e-4)

z(2) -0.2314 -0.4487 -0.2389 -0.4801 -0.2442 -0.4788 -0.2433 -0.4795
(1.7e-3) (1.5e-3) (1.6e-3) (1.3e-3) (1.4e-3) (1.2e-3) (1.2e-3) (1.1e-3)

(0.200, 0.200)
z(1) 0.2807 0.4633 0.3112 0.5033 0.3128 0.5031 0.3146 0.5028

(7.4e-4) (7.3e-4) (8.1e-4) (8.7e-4) (7.1e-4) (7.9e-4) (7.2e-4) (7.6e-4)

z(2) -0.2265 -0.4374 -0.2432 -0.4824 -0.2420 -0.4779 -0.2419 -0.4748
(1.2e-3) (1.2e-3) (1.2e-3) (1.2e-3) (1.0e-3) (1.1e-3) (9.7e-4) (9.6e-4)

(c) True z(1) = (0.3, 0.5) and z(2) = (−0.2, −0.5)
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Table 3.4: Continued

(p, q) 2000 3000 4000 5000
p̂ q̂ p̂ q̂ p̂ q̂ p̂ q̂

(0.002, 0.002) 0.002 0.011 0.002 0.004 0.002 0.003 0.002 0.003
(5.7e-5) (2.0e-3) (6.8e-5) (8.1e-4) (6.1e-5) (7.0e-5) (5.9e-5) (1.0e-4)

(0.004, 0.004) 0.003 0.004 0.003 0.003 0.003 0.003 0.003 0.003
(7.2e-5) (4.0e-4) (4.6e-5) (7.0e-5) (6.7e-5) (5.0e-5) (4.0e-5) (4.1e-5)

(0.008, 0.008) 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
(6.4e-5) (7.9e-5) (6.2e-5) (1.1e-4) (4.0e-5) (7.2e-5) (5.0e-5) (4.7e-5)

(0.016, 0.016) 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005
(5.3e-5) (6.7e-5) (4.8e-5) (6.0e-5) (3.9e-5) (4.4e-5) (3.3e-5) (4.1e-5)

(0.016, 0.032) 0.007 0.008 0.007 0.008 0.007 0.008 0.007 0.008
(5.0e-5) (5.7e-5) (4.7e-5) (5.7e-5) (4.0e-5) (4.4e-5) (3.6e-5) (4.6e-5)

(0.032, 0.032) 0.009 0.009 0.010 0.010 0.010 0.010 0.010 0.010
(5.2e-5) (5.8e-5) (4.9e-5) (6.3e-5) (4.5e-5) (4.8e-5) (4.1e-5) (4.2e-5)

(0.050, 0.050) 0.013 0.012 0.014 0.014 0.014 0.014 0.014 0.014
(6.3e-5) (6.3e-5) (6.4e-5) (6.9e-5) (5.5e-5) (6.1e-5) (4.8e-5) (5.4e-5)

(0.075, 0.075) 0.024 0.024 0.024 0.024 0.022 0.022 0.022 0.022
(8.7e-5) (8.1e-5) (6.9e-5) (7.0e-5) (6.5e-5) (6.6e-5) (6.1e-5) (6.0e-5)

(0.100, 0.100) 0.044 0.045 0.043 0.043 0.043 0.042 0.043 0.042
(1.3e-4) (1.2e-4) (1.2e-4) (1.2e-4) (9.7e-5) (9.9e-5) (8.6e-5) (9.1e-5)

(0.200, 0.200) 0.057 0.058 0.066 0.067 0.066 0.067 0.066 0.067
(1.1e-4) (1.2e-4) (1.9e-4) (1.9e-4) (1.7e-4) (1.7e-4) (1.7e-4) (1.8e-4)

(d) True (p, q) pairs are indicated in the first column

Table 3.5: Monte Carlo mean of estimated V̂ by EM algorithm. Standard
error are shown in parenthesis. True v(k)

11 = v
(k)
22 = 0.16 and v(k)

12 = v
(k)
21 = 0,

for k = 1, 2.
(p, q) 2000 3000 4000 5000

(0.002, 0.002)

V (1)

0.0452 -0.0041 0.0696 -0.0025 0.0781 -0.0013 0.0943 -0.0015
(3.7e-3) (1.1e-3) (4.2e-3) (1.5e-3) (3.5e-3) (1.3e-3) (4.9e-3) (1.3e-3)
-0.0041 0.0480 -0.0025 0.0703 -0.0013 0.0817 -0.0015 0.0846
(1.1e-3) (3.6e-3) (1.5e-3) (4.1e-3) (1.3e-3) (3.6e-3) (1.3e-3) (3.3e-3)

V (2)

0.0204 0.0006 0.0521 -0.0008 0.0847 -0.0007 0.0939 0.0026
(2.3e-3) (4.6e-4) (4.2e-3) (1.1e-3) (4.9e-3) (1.4e-3) (5.4e-3) (1.3e-3)
0.0006 0.0171 -0.0008 0.0325 -0.0007 0.0544 0.0026 0.0648
(4.6e-4) (1.7e-3) (1.1e-3) (2.6e-3) (1.4e-3) (3.0e-3) (1.3e-3) (3.5e-3)
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(0.004, 0.004)

V (1)

0.0799 -0.0040 0.1023 -0.0007 0.1105 -0.0034 0.1134 -0.0039
(4.5e-3) (1.4e-3) (4.3e-3) (1.4e-3) (3.9e-3) (1.3e-3) (3.7e-3) (1.3e-3)
-0.0040 0.0837 -0.0007 0.0978 -0.0034 0.1052 -0.0039 0.1187
(1.4e-3) (4.4e-3) (1.4e-3) (3.9e-3) (1.3e-3) (3.4e-3) (1.3e-3) (3.5e-3)

V (2)

0.0653 0.0004 0.0957 0.0010 0.1077 0.0028 0.1167 0.0020
(4.4e-3) (1.1e-3) (4.7e-3) (1.3e-3) (4.7e-3) (1.1e-3) (4.5e-3) (1.2e-3)
0.0004 0.0411 0.0010 0.0636 0.0028 0.0714 0.0020 0.0857
(1.1e-3) (2.8e-3) (1.3e-3) (3.0e-3) (1.1e-3) (2.8e-3) (1.2e-3) (3.0e-3)

(0.008, 0.008)

V (1)

0.1146 -0.0080 0.1125 -0.0005 0.1216 0.0001 0.1242 -0.0026
(4.3e-3) (1.4e-3) (3.6e-3) (1.2e-3) (3.5e-3) (1.4e-3) (3.1e-3) (9.8e-4)
-0.0080 0.1125 -0.0005 0.1085 0.0001 0.1249 -0.0026 0.1202
(1.4e-3) (4.0e-3) (1.2e-3) (5.5e-3) (1.4e-3) (5.0e-3) (9.8e-4) (2.8e-3)

V (2)

0.0982 0.0005 0.1002 -0.0021 0.1173 0.0003 0.1244 -0.0016
(4.3e-3) (1.3e-3) (3.4e-3) (9.3e-4) (3.4e-3) (9.4e-4) (3.3e-3) (8.6e-4)
0.0005 0.0756 -0.0021 0.0709 0.0003 0.0794 -0.0016 0.0937
(1.3e-3) (3.3e-3) (9.3e-4) (2.7e-3) (9.4e-4) (2.1e-3) (8.6e-4) (2.3e-3)

(0.016, 0.016)

V (1)

0.1280 -0.0049 0.1257 -0.0035 0.1297 -0.0033 0.1371 -0.0036
(3.7e-3) (1.1e-3) (3.0e-3) (1.0e-3) (2.7e-3) (8.6e-4) (2.5e-3) (8.3e-4)
-0.0049 0.1221 -0.0035 0.1176 -0.0033 0.1257 -0.0036 0.1332
(1.1e-3) (3.2e-3) (1.0e-3) (3.5e-3) (8.6e-4) (2.4e-3) (8.3e-4) (2.5e-3)

V (2)

0.1134 0.0003 0.1219 0.0007 0.1324 -0.0008 0.1309 0.0001
(3.7e-3) (1.1e-3) (3.6e-3) (8.9e-4) (3.2e-3) (8.6e-4) (2.8e-3) (7.3e-4)
0.0003 0.0918 0.0007 0.0868 -0.0008 0.0910 0.0001 0.0968
(1.1e-3) (2.9e-3) (8.9e-4) (2.1e-3) (8.6e-4) (2.0e-3) (7.3e-4) (1.9e-3)

(0.016, 0.032)

V (1)

0.1266 -0.0071 0.1327 -0.0057 0.1402 -0.0058 0.1380 -0.0047
(2.7e-3) (1.1e-3) (2.6e-3) (8.2e-4) (2.5e-3) (7.8e-4) (2.0e-3) (7.2e-4)
-0.0071 0.1380 -0.0057 0.1250 -0.0058 0.1253 -0.0047 0.1326
(1.1e-3) (2.9e-3) (8.2e-4) (2.4e-3) (7.8e-4) (2.1e-3) (7.2e-4) (2.2e-3)

V (2)

0.1282 -0.0004 0.1397 0.0001 0.1369 -0.0008 0.1371 -0.0013
(3.3e-3) (9.3e-4) (3.2e-3) (7.7e-4) (2.4e-3) (7.2e-4) (2.1e-3) (5.8e-4)
-0.0004 0.1032 0.0001 0.0970 -0.0008 0.0936 -0.0013 0.0980
(9.3e-4) (2.5e-3) (7.7e-4) (2.0e-3) (7.2e-4) (1.6e-3) (5.8e-4) (1.5e-3)

(0.032, 0.032)

V (1)

0.1345 -0.0076 0.1387 -0.0080 0.1425 -0.0077 0.1449 -0.0076
(2.6e-3) (8.9e-4) (2.3e-3) (7.3e-4) (2.1e-3) (6.6e-4) (1.9e-3) (6.2e-4)
-0.0076 0.1449 -0.0080 0.1311 -0.0077 0.1353 -0.0076 0.1353
(8.9e-4) (2.5e-3) (7.3e-4) (2.1e-3) (6.6e-4) (1.8e-3) (6.2e-4) (1.6e-3)

V (2)

0.1347 0.0004 0.1333 0.0008 0.1389 0.0000 0.1392 -0.0008
(2.9e-3) (8.3e-4) (2.4e-3) (6.3e-4) (2.1e-3) (6.1e-4) (1.8e-3) (5.3e-4)
0.0004 0.1043 0.0008 0.0949 0.0000 0.0977 -0.0008 0.1020
(8.3e-4) (2.2e-3) (6.3e-4) (1.6e-3) (6.1e-4) (1.5e-3) (5.3e-4) (1.3e-3)
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(0.050, 0.050)

V (1)

0.1435 -0.0075 0.1408 -0.0097 0.1412 -0.0106 0.1456 -0.0104
(2.2e-3) (7.6e-4) (1.8e-3) (6.3e-4) (1.7e-3) (5.2e-4) (1.5e-3) (4.7e-4)
-0.0075 0.1473 -0.0097 0.1413 -0.0106 0.1389 -0.0104 0.1373
(7.6e-4) (2.0e-3) (6.3e-4) (1.7e-3) (5.2e-4) (1.5e-3) (4.7e-4) (1.4e-3)

V (2)

0.1408 -0.0006 0.1383 0.0001 0.1388 0.0001 0.1450 -0.0007
(2.6e-3) (6.9e-4) (1.9e-3) (5.2e-4) (1.8e-3) (4.7e-4) (1.7e-3) (4.4e-4)
-0.0006 0.1109 0.0001 0.0977 0.0001 0.0961 -0.0007 0.1002
(6.9e-4) (1.8e-3) (5.2e-4) (1.4e-3) (4.7e-4) (1.1e-3) (4.4e-4) (1.0e-3)

(0.075, 0.075)

V (1)

0.1489 -0.0078 0.1468 -0.0086 0.1522 -0.0135 0.1503 -0.0133
(1.7e-3) (5.6e-4) (1.4e-3) (4.5e-4) (1.3e-3) (3.9e-4) (1.2e-3) (3.8e-4)
-0.0078 0.1548 -0.0086 0.1538 -0.0135 0.1382 -0.0133 0.1425
(5.6e-4) (1.6e-3) (4.5e-4) (1.2e-3) (3.9e-4) (1.2e-3) (3.8e-4) (1.1e-3)

V (2)

0.1489 0.0015 0.1515 0.0004 0.1466 -0.0005 0.1437 -0.0001
(2.0e-3) (5.9e-4) (1.6e-3) (4.5e-4) (1.4e-3) (3.5e-4) (1.2e-3) (3.2e-4)
0.0015 0.1149 0.0004 0.1180 -0.0005 0.0932 -0.0001 0.0986
(5.9e-4) (1.3e-3) (4.5e-4) (1.1e-3) (3.5e-4) (8.7e-4) (3.2e-4) (8.5e-4)

(0.100, 0.100)

V (1)

0.1494 -0.0087 0.1584 -0.0196 0.1639 -0.0194 0.1584 -0.0191
(1.1e-3) (3.8e-4) (1.4e-3) (3.7e-4) (1.0e-3) (3.2e-4) (9.1e-4) (2.9e-4)
-0.0087 0.1568 -0.0196 0.1441 -0.0194 0.1397 -0.0191 0.1431
(3.8e-4) (1.0e-3) (3.7e-4) (1.0e-3) (3.2e-4) (8.7e-4) (2.9e-4) (7.8e-4)

V (2)

0.1534 0.0009 0.1490 0.0004 0.1479 0.0005 0.1545 0.0001
(1.3e-3) (3.9e-4) (1.3e-3) (2.9e-4) (1.1e-3) (2.4e-4) (1.0e-3) (2.2e-4)
0.0009 0.1239 0.0004 0.0948 0.0005 0.0952 0.0001 0.0937
(3.9e-4) (9.0e-4) (2.9e-4) (8.7e-4) (2.4e-4) (7.7e-4) (2.2e-4) (7.0e-4)

(0.200, 0.200)

V (1)

0.1478 -0.0089 0.1614 -0.0224 0.1634 -0.0230 0.1608 -0.0226
(7.6e-4) (2.6e-4) (9.0e-4) (3.1e-4) (8.8e-4) (2.9e-4) (7.7e-4) (2.9e-4)
-0.0089 0.1565 -0.0224 0.1451 -0.0230 0.1446 -0.0226 0.1450
(2.6e-4) (7.2e-4) (3.1e-4) (7.9e-4) (2.9e-4) (6.4e-4) (2.9e-4) (6.2e-4)

V (2)

0.1508 0.0013 0.1513 0.0002 0.1526 0.0008 0.1527 0.0005
(8.5e-4) (2.6e-4) (8.9e-4) (1.9e-4) (7.7e-4) (1.8e-4) (7.5e-4) (1.5e-4)
0.0013 0.1288 0.0002 0.0914 0.0008 0.0931 0.0005 0.0935
(2.6e-4) (7.3e-4) (1.9e-4) (8.1e-4) (1.8e-4) (7.5e-4) (1.5e-4) (7.2e-4)

3.4.3 Comparison with Classical Markov Switching Model

Base on the analysis in the simulation studies so far, our model has success-

fully detected the switching points in the simulated series and provides good

estimation about regression parameters. The accomplishment would not be
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Table 3.6: Theoretical average number of change points for different (p, q)
scenarios and practical average number of change points based on 500 simu-
lations in each (p, q) scenario for T = 2000, 3000, 4000 and 5000. Standard
errors are shown in parenthesis.

(p, q) 1000 2000 3000 4000 5000

(0.002, 0.002) 2 4 6 8 10
(0.004, 0.004) 4 8 12 16 20
(0.008, 0.008) 8 16 24 32 40
(0.016, 0.016) 16 32 48 64 80
(0.016, 0.032) 22 43 64 84 107
(0.032, 0.032) 32 64 96 128 160
(0.050, 0.050) 50 100 150 200 250
(0.075, 0.075) 75 150 225 300 375
(0.100, 0.100) 100 200 300 400 500
(0.200, 0.200) 200 400 600 800 1000

(a) Theoretical mean change points

(p, q) 2000 3000 4000 5000
(0.002, 0.002) 1.9(0.04) 2.9(0.04) 4.2(0.05) 5.1(0.06)
(0.004, 0.004) 3.2(0.04) 5.0(0.05) 7.0(0.05) 8.8(0.06)
(0.008, 0.008) 6.1(0.05) 9.4(0.06) 12.8(0.07) 16.0(0.07)
(0.016, 0.016) 9.0(0.04) 13.7(0.05) 18.4(0.06) 23.2(0.07)
(0.016, 0.032) 13.3(0.06) 20.1(0.07) 26.9(0.08) 33.8(0.09)
(0.032, 0.032) 17.8(0.06) 26.8(0.07) 35.8(0.08) 45.0(0.08)
(0.050, 0.050) 24.9(0.06) 37.5(0.07) 50.1(0.08) 62.8(0.09)
(0.075, 0.075) 37.7(0.07) 56.9(0.09) 75.9(0.10) 95.0(0.11)
(0.100, 0.100) 68.6(0.12) 103.2(0.15) 137.4(0.17) 172.0(0.19)
(0.200, 0.200) 104.8(0.11) 157.5(0.13) 210.0(0.14) 262.7(0.17)

(b) Practical average number of change points

more convincing without a comparison with the classical Markov switching

(MS) regression models, hence the topic of this subsection.

To compare with model (3.7), the same regression construction is chosen
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for the classical MS model defined as

yt = αSt + βStyt−1 + σStε, (3.9)

where ε ∼ N(0, 1) and St follows a two-state first order Markov chain with

p = P (St = 2|St−1 = 1) and q = P (St = 1|St−1 = 2) for all t. Regression pa-

rameters rely on regime status and no prior is assumed for these parameters,

so Bayesian method would not be applicable. Final estimation includes two

pieces of α, β, and σ for 2 regimes, the Markov transition probabilities and

the probabilities of the regime at each time point. The number of estimates

are much smaller than that of our model.

Two statistical packages (MatLab and R) written by Perlin (n.d.-a, n.d.-b)

are available to implement the ideas in model (3.9). Interested readers may

download the packages from the url provided in the reference section. In both

packages maximum likelihood estimation (MLE) method is used to estimate

the parameters; EM estimation is not available in these packages.

To make the comparison convincing, model (3.9) uses the same data

as in Section 3.4 that were generated from model (3.7) resulting in 500

simulated series in each of 10 transition probability scenarios and each of

four series lengths (T = 2000, 3000, 4000 and 5000). These data are loaded

into R or MatLab in the proper format and the estimates recorded include

α̂k, β̂k, σ̂k, p̂, q̂ and P̂ (St = k) for k = 1, 2 and t = 1, . . . , T . We compute the

diagnostic statistics such as KL divergence, SSSE, L2 norm and identification
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ratio based on the recorded statistics to compare with the statistics in Table

3.3.

Classical MS models assume that the level of parameters is a constant

within a certain regime. In a two-regime system, model (3.9) can estimate

only two pieces of α’s, β’s and so on. However, data were generated by a

process where the levels of regression parameters are stochastic within each

regime, so a two-state MS model is not ideal to capture the variations within

the regime. Naturally KL statistics are not anticipated to perform well in

this case. Table 3.7a shows that KL statistics are much larger and more

volatile than those in Table 3.3a in all scenarios out of all series lengths. The

mean KL statistics can be as high as 100 times more than those estimated

by our model. Likewise, since L2 norm measures the difference between the

true and the estimated regression coefficients, it would not be difficult to

understand why L2 statistics in Table 3.7c have higher means and standard

errors than the corresponding cells in Table 3.3c. SSSE statistics seem to

be a controversial metric for the comparison of two models. SSSE can be

decomposed into SSSEs by regimes for both models and further decomposed

into pieces within a regime if using our model. For a particular regime, SSSE

statistics by model (3.9) seem to be the averaging effect of the pieces of SSSEs

by our model (3.7) in the same regime. To be more specific, β̂1 in model (3.9)

possibly represents the average of the β̂t’s for those Ŝt = 1 under model (3.7).

The high values in Table 3.7b are not necessarily the sign of good fit.
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Table 3.7: Monte Carlo means of diagnostic statistics for the classical Markov
switching model. Standard errors are shown in parenthesis.

(p, q) 2000 3000 4000 5000
(0.002, 0.002) 0.3317(1.6e-02) 0.3618(1.5e-02) 0.4271(1.5e-02) 0.4313(1.4e-02)
(0.004, 0.004) 0.3593(1.3e-02) 0.4271(1.7e-02) 0.4690(1.3e-02) 0.5095(1.7e-02)
(0.008, 0.008) 0.4110(1.5e-02) 0.5213(1.8e-02) 0.5459(1.6e-02) 0.5735(1.7e-02)
(0.016, 0.016) 0.4785(1.4e-02) 0.5618(1.6e-02) 0.5754(1.4e-02) 0.6260(1.5e-02)
(0.016, 0.032) 0.5342(1.6e-02) 0.5934(1.6e-02) 0.6204(1.4e-02) 0.6190(1.4e-02)
(0.032, 0.032) 0.5411(1.4e-02) 0.6011(1.3e-02) 0.6177(1.3e-02) 0.6498(1.2e-02)
(0.050, 0.050) 0.5616(1.2e-02) 0.6087(1.3e-02) 0.6158(1.1e-02) 0.6460(1.1e-02)
(0.075, 0.075) 0.5619(9.9e-03) 0.5887(9.4e-03) 0.6153(8.8e-03) 0.6228(9.2e-03)
(0.100, 0.100) 0.5397(7.7e-03) 0.5581(7.4e-03) 0.5540(6.9e-03) 0.5507(7.0e-03)
(0.200, 0.200) 0.4947(4.7e-03) 0.5000(4.5e-03) 0.5096(4.5e-03) 0.5039(4.5e-03)

(a) Kullback-Leibler Divergence (KLD)

(p, q) 2000 3000 4000 5000
(0.002, 0.002) 0.9856(2.1e-02) 0.9367(1.2e-02) 0.9117(1.3e-02) 0.9177(1.2e-02)
(0.004, 0.004) 0.9229(1.4e-02) 0.8869(1.3e-02) 0.8844(1.2e-02) 0.8515(1.3e-02)
(0.008, 0.008) 0.9025(1.1e-02) 0.8350(1.2e-02) 0.8438(1.4e-02) 0.8139(1.1e-02)
(0.016, 0.016) 0.8613(1.2e-02) 0.8336(1.2e-02) 0.8210(1.2e-02) 0.8086(1.2e-02)
(0.016, 0.032) 0.8695(1.2e-02) 0.8081(1.2e-02) 0.8028(1.2e-02) 0.7796(1.1e-02)
(0.032, 0.032) 0.8250(1.2e-02) 0.7952(1.1e-02) 0.8003(1.1e-02) 0.7760(1.1e-02)
(0.050, 0.050) 0.7986(1.2e-02) 0.7798(1.1e-02) 0.7751(1.0e-02) 0.7395(1.0e-02)
(0.075, 0.075) 0.7955(9.8e-03) 0.7949(1.0e-02) 0.7578(9.2e-03) 0.7651(1.0e-02)
(0.100, 0.100) 0.8267(8.3e-03) 0.8144(8.4e-03) 0.8168(8.2e-03) 0.8252(7.7e-03)
(0.200, 0.200) 0.8680(5.8e-03) 0.8696(5.9e-03) 0.8718(5.6e-03) 0.8655(6.0e-03)

(b) Sum of Squares of Standardized Error (SSSE)
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Table 3.7: Monte Carlo means of diagnostic statistics for estimates from tra-
ditional Markov Switching Model. Standard errors are shown in parenthesis.

(p, q) 2000 3000 4000 5000
(0.002, 0.002) 0.4169(1.3e-02) 0.4719(1.4e-02) 0.5177(1.1e-02) 0.5221(1.2e-02)
(0.004, 0.004) 0.4750(1.3e-02) 0.5074(1.1e-02) 0.5634(1.1e-02) 0.5717(1.1e-02)
(0.008, 0.008) 0.5006(9.5e-03) 0.5702(9.9e-03) 0.5944(1.1e-02) 0.6352(1.8e-02)
(0.016, 0.016) 0.5573(9.7e-03) 0.6154(1.0e-02) 0.6194(9.2e-03) 0.6731(1.0e-02)
(0.016, 0.032) 0.5914(9.6e-03) 0.6272(9.5e-03) 0.6588(9.5e-03) 0.6694(9.7e-03)
(0.032, 0.032) 0.5983(8.5e-03) 0.6587(8.9e-03) 0.6849(9.6e-03) 0.7166(1.0e-02)
(0.050, 0.050) 0.6381(9.1e-03) 0.6815(8.7e-03) 0.6896(8.9e-03) 0.7191(8.7e-03)
(0.075, 0.075) 0.6503(8.1e-03) 0.6813(8.7e-03) 0.7096(8.2e-03) 0.7203(8.9e-03)
(0.100, 0.100) 0.6355(7.4e-03) 0.6575(7.3e-03) 0.6570(6.8e-03) 0.6599(7.3e-03)
(0.200, 0.200) 0.5932(5.0e-03) 0.5900(4.4e-03) 0.6014(4.8e-03) 0.5959(4.4e-03)

(c) L2

(p, q) 2000 3000 4000 5000
(0.002, 0.002) 0.6282(1.7e-02) 0.6456(1.6e-02) 0.6331(1.6e-02) 0.6365(1.6e-02)
(0.004, 0.004) 0.6667(1.6e-02) 0.6681(1.6e-02) 0.6379(1.6e-02) 0.6185(1.6e-02)
(0.008, 0.008) 0.6156(1.7e-02) 0.6410(1.5e-02) 0.6551(1.5e-02) 0.6459(1.5e-02)
(0.016, 0.016) 0.6372(1.5e-02) 0.6236(1.5e-02) 0.6302(1.4e-02) 0.6111(1.4e-02)
(0.016, 0.032) 0.6380(1.5e-02) 0.6638(1.4e-02) 0.6403(1.3e-02) 0.6702(1.3e-02)
(0.032, 0.032) 0.6400(1.4e-02) 0.6000(1.3e-02) 0.6112(1.3e-02) 0.5933(1.3e-02)
(0.050, 0.050) 0.6228(1.3e-02) 0.6044(1.2e-02) 0.5942(1.2e-02) 0.6051(1.2e-02)
(0.075, 0.075) 0.6002(1.3e-02) 0.6020(1.2e-02) 0.6000(1.2e-02) 0.5980(1.1e-02)
(0.100, 0.100) 0.6114(1.2e-02) 0.6032(1.2e-02) 0.6104(1.2e-02) 0.6197(1.2e-02)
(0.200, 0.200) 0.6310(1.3e-02) 0.6351(1.3e-02) 0.6211(1.3e-02) 0.6517(1.2e-02)

(d) Identification Ratio (IR)
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Table 3.8: Monte Carlo means of estimated p̂, q̂ by Classical Markov switch-
ing regression model. Standard errors are shown in parenthesis.

(p, q) 2000 3000 4000 5000
p̂ q̂ p̂ q̂ p̂ q̂ p̂ q̂

(0.002, 0.002) 0.0695 0.0800 0.0866 0.0731 0.0678 0.0573 0.0743 0.0564
(6.6e-03) (6.2e-03) (7.6e-03) (4.7e-03) (5.8e-03) (3.8e-03) (6.7e-03) (4.2e-03)

(0.004, 0.004) 0.0735 0.0707 0.0691 0.0510 0.0847 0.0590 0.0810 0.0579
(6.4e-03) (5.4e-03) (6.5e-03) (3.1e-03) (6.0e-03) (3.7e-03) (6.5e-03) (4.2e-03)

(0.008, 0.008) 0.0725 0.0558 0.0897 0.0600 0.0854 0.0596 0.0836 0.0599
(5.9e-03) (4.0e-03) (6.2e-03) (3.6e-03) (5.4e-03) (3.5e-03) (5.1e-03) (3.5e-03)

(0.016, 0.016) 0.0859 0.0548 0.0968 0.0614 0.0982 0.0656 0.0999 0.0658
(5.6e-03) (3.3e-03) (5.9e-03) (2.8e-03) (5.6e-03) (3.4e-03) (5.3e-03) (2.8e-03)

(0.016, 0.032) 0.0965 0.0687 0.1092 0.0714 0.1091 0.0749 0.1239 0.0738
(5.7e-03) (4.1e-03) (6.4e-03) (3.3e-03) (5.3e-03) (3.2e-03) (7.0e-03) (3.2e-03)

(0.032, 0.032) 0.0964 0.0691 0.1114 0.0820 0.1110 0.0787 0.1235 0.0869
(4.9e-03) (3.3e-03) (6.1e-03) (3.5e-03) (5.4e-03) (3.5e-03) (6.1e-03) (3.9e-03)

(0.050, 0.050) 0.1227 0.0747 0.1443 0.0830 0.1330 0.0846 0.1362 0.0931
(6.8e-03) (3.2e-03) (7.5e-03) (3.6e-03) (6.2e-03) (3.7e-03) (6.8e-03) (3.6e-03)

(0.075, 0.075) 0.1373 0.0861 0.1476 0.0949 0.1539 0.1023 0.1593 0.0981
(6.9e-03) (3.7e-03) (7.6e-03) (3.7e-03) (7.1e-03) (3.8e-03) (8.1e-03) (3.5e-03)

(0.100, 0.100) 0.1506 0.1136 0.1507 0.1149 0.1523 0.1137 0.1667 0.1098
(8.3e-03) (4.3e-03) (8.5e-03) (3.8e-03) (8.6e-03) (3.8e-03) (9.7e-03) (3.6e-03)

(0.200, 0.200) 0.1289 0.1186 0.1262 0.1148 0.1330 0.1159 0.1418 0.1155
(7.0e-03) (3.2e-03) (7.3e-03) (3.0e-03) (7.2e-03) (2.6e-03) (8.5e-03) (2.8e-03)

It is not entirely fair to evaluate the fitness of a model by applying it to

a process generated by a different model. But one of the major concerns in

regime switching modelling is the statistical inference of the regimes. The

percentages of the regimes correctly identified are systematically 30% higher

in Table 3.3d than those in Table 3.7d, which shows that our model is su-

perior in this regard. I cannot leave this section without mentioning the

estimation of transition probabilities. We have argued in Section 3.4.2 why

the estimated transition probabilities should be lower and how much they

should be. Estimation of p and q in Table 3.8 are higher than those in Table
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3.4d. This simulation seems to prove the current suspicion that the classi-

cal Markov switching models have a tendency to overestimate the transition

probabilities.

3.5 Analysis of EM Algorithm

Although Expectation-Maximization (EM) algorithm has been proven ma-

ture in theory, there are many challenges in applications. EM algorithm is

model-specific, and for any changes in the model specification, practitioners

have to derive a set of new EM estimators. Due to this reason, current sta-

tistical software is not well equipped with EM algorithm analysis. At the

maximization step, EM algorithm may still rely on other optimization algo-

rithms if the closed form solutions do not exit. In this case, EM algorithm

loses its advantage to the classical maximum likelihood estimation method

which optimizes the likelihood function directly. EM algorithm has also been

proven to converge slowly and need more computation time to reach more

"accurate" results.

The application of EM algorithm in our model is an innovative one. For

one thing, the solutions to EM algorithm have an explicit form and for the

other EM algorithm is used to estimate the nuisance parameters and not

directly to the model parameters of primary interest. In this simulation,

we will discuss the effect of initial prior values on the performance of EM

algorithm, explore the properties and the speed of convergence and give some
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practical advice on the choice of initial prior values.

We continue to use model (3.7) restated here.

yt = β0,t + β1,tyt−1 + σtεt

where βi,t and σt depend on a two-state Markov chain. To save computation

time, we choose series length T = 1000. 500 series are generated with prior

values g′ = (2.5, 1.2), λ′ = (0.8, 1), z =

 0.3 0.5

−0.2 −0.5

, V (1) = V (2) =

0.16 0

0 0.16

 and transition matrix P =

1− p p

q 1− q

, where p and q

are specified in the following scenarios.

Scenario 1 p = 0.004, q = 0.004

Scenario 2 p = 0.01, q = 0.01

Scenario 3 p = 0.04, q = 0.08

Scenario 4 p = 0.05, q = 0.05

Scenario 5 p = 0.1, q = 0.1

Like in Section 3.4, the positions and the number of change points are reg-

ulated by the Markov chain transition matrix defined above and therefore

stochastic. Again we restrict the time interval between two adjacent change

points to be no less than 20 to facilitate visual presentation of model esti-

mates.
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Although mathematically, convergence of a function ought to be well

explored in the entire domain, there is no easy solution to an exhaustive

search as far as multidimensional parameter space is concerned. There are

16 prior parameters to be estimated in this model. However for a statistical

question, we can evaluate the practical meaning of the parameters which

may restrict their practical range. For example, we are interested in a time

series where there are a few switches in a certain time interval. So p or q,

the probability of making a transition from state 1(2) to state 2(1) would be

reasonably less than 0.5. In addition, it makes little sense to assume extreme

variance for prior distribution. Variance and covariance of βt is ratio of

prior V and another random variable τt whose mean is the product of g and

λ. For a fixed V , large values of g and λ, may yield a small variance and

covariance, and vice versa. For fixed g and λ, larger V yields larger variance

and covariance and vice versa. In practice, extreme values are usually avoided

and we will take a good balance of V , g and λ into consideration. The

characteristic of stationary AR(1) model also has restrictions on β whose

mean is the prior z. Thus, I choose the following 6 different sets of priors.

Initial prior 1

g =

2.8

1.5

, λ =

 1

1.2

, P =

0.95 0.05

0.05 0.95

, V (1) = V (2) =

0.15 0

0 0.15


and z =

 0.2 0.4

-0.2 -0.4


Initial prior 2
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g =

0.5

0.3

, λ =

 1

1.2

, P =

0.8 0.2

0.2 0.8

, V (1) = V (2) =

0.9 0

0 0.9


and z =

 0.2 0.4

−0.2 −0.4


Initial prior 3

g =

4

5

, λ =

3

4

, P =

0.6 0.4

0.4 0.6

, V (1) = V (2) =

2 0

0 2

 and

z =

−1 −1

0.5 0.5


Initial prior 4

g =

5

4

, λ =

3

4

, P =

0.8 0.2

0.2 0.8

, V (1) = V (2) =

2 0

0 2

 and

z =

 1 −0.9

−1 0.8


Initial prior 5

g =

0.1

0.2

, λ =

20

10

, P =

0.7 0.3

0.3 0.7

, V (1) = V (2) =

10 0

0 10


and z =

 1 2

−1 −2


Initial prior 6

g =

3

4

, λ =

2

1

, P =

0.9 0.1

0.1 0.9

, V (1) = V (2) =

1 0

0 1

 and
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z =

−1 −2

2 1


Prior 1 is chosen very close to the true prior parameters. Prior 2 slightly

decrease g, and increase (p, q) and V . The true z1 and z2 are positive for

state 1 and negative for state 2. In prior 1 and prior 2, z1 and z2 have the

same sign as their true prior counterpart. Prior 3 chooses a little larger g

and λ and reverses signs for (z1, z2) for different states. Prior 4 is similar to

prior 3 except that z2 is negative for state 1 and positive for state 2. Prior

5 is special in very large V . Prior 6 is similar to prior 3 and the values are

closer to the true prior values.

3.5.1 Analysis of Hyperparameter Estimation

When there are only a couple of change points as in scenario 1, the estimated

g(k) may explode as the number of iteration increases depending on the choice

of initial priors shown in Figure 3.2a and 3.2b; likewise the estimated λ(k)

may have a chance to converge to zero shown in Figure 3.2c and 3.2d. In

larger (p, q) scenarios, g(k) and λ(k) always converge to a constant regardless

of the choice of initial prior values. The reason of aberrant estimation of

g(k) and λ(k) in the low transition probability series may be the fact that

there is little information in the data to estimate parameters in a complex

multidimensional space. The less the number of change points in a series,

the less information EM algorithm can uses to estimate in a multidimen-
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sional space, thus the less accurate the estimates. However, in such cases,

the multiplication of g and λ converges to to a constant that is reasonably

closer to its true prior counterpart. This raises a question of the lack of pa-

rameter identifiability, i.e. there is a function of the parameters that data do

not yield almost any information about. One possible solution is to reduce

the number of parameters. In current model, the prior distribution of σt is

determined by Gamma(g, λ) and hidden states. If hidden states cannot be

avoided, the choice is to reduce the number of parameters associated with

the distribution of σt. T and Chi-square distributions are determined by one

parameter, which may be the candidate choice in this case. However, these

prior distributions may defeat the desirable property of conjugation that are

provided by Gamma-Normal pair and used in the current model estimation.

Thus caution must be taken if one wants to pursue other prior distributions.

Despite the fact that EM algorithm does not estimate g and λ well in low

frequent switching series, ĝ does converge when the series switches regimes

more frequently. If it ever converges, it converges fast and usually within 15

iterations. ĝ1 converges to a constant, not necessarily the exact true prior,

but reasonably closer to the truth. Figure 3.3 – 3.6 (a) show that solid

black (prior 1), dashed grey (prior 2) and long dashed blue (prior 5) lines

are much closer to solid red line (true prior values) and these lines become

stable within 10 iterations. Figure 3.3 – 3.6 (b) show that dotted magenta

(prior 3), dash-dot green (prior 4) and short-long dashed orange (prior 6)

lines seem to be closer the the true prior values, but these lines take more

122



iterations to stabilize than the black, grey and blue lines do. In general prior

1, 2, 5 gives better ĝ estimates in scenarios 2–5. Similarly EM estimation

of λ̂ works fine in more frequent switching series, i.e. it converges fast and

converges to a value reasonably closer to the true prior value, shown in (c)

and (d) of Figure 3.3 – 3.6. All prior estimates become stable eventually,

but solid black, dashed grey and long dashed blue lines converge faster than

other lines. So initial prior 1, 2 and 5 tend to give better estimates of λ for

all scenarios except the first one.

Transition probability in general converges fast for all scenarios. When

transition probabilities are very small as in scenario 1, the estimation is very

much close to the truth, although prior 3 (dotted magenta) gives a much

higher estimates shown in Figure 3.2e. When the true transition probabili-

ties are larger as in scenario 3, 4 and 5, the estimates tend to be lower than

the true prior values. This result confirms the previous findings in Section

3.4.2 due to the fact the practical average of number of change points gen-

erated in the simulation is always lower than the theoretical counterparts.

Thus it is not sensible to conclude that the model tends to underestimate

transition probabilities. Although different initial priors may result in differ-

ent converging values, estimates from initial prior 1, 2, 5 tend to converge

to the same value, while initial prior 3, 4 and 6 yield a slightly different

converging constant. Prior 1, 2, 5 and 6 are better initial values in a way

that these estimates tend to converge faster, within 5 iterations, whereas by

initial prior 3 and 4, p̂ or q̂ takes longer steps to converge, as shown in the
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Figure 3.2 – 3.6 (e) and (f).

In the estimation of variance and covariance matrix, the trouble also arises

in the low frequent switching scenario. In these cases, V̂
(k)

has a tendency to

converge to a zero matrix. When a nearly singular matrix occurs at a given

iteration, the subsequent estimation of other parameters requires the inverse

or the determinant of V̂
(k)

, whose values may be not a number (NaN) or

infinity produced by most of computer software. Thus the entire estimation

terminates. In scenario 1, the estimation of covariance matrix is sensitive to

initial prior choices. If a covariance matrix converges to zero, it can happen

as fast as within 10 iterations shown in Figure 3.2 (g) – (l). Covariance

matrices converges in all other scenarios. The estimates via prior 1, 2 and

5 share similarities; whereas those by prior 3, 4 and 6 seem to be close to

each other. Again estimation of V become stable faster by prior 1, 2, 5 and

6 than those by initial prior 3, 4, shown in Figure 3.2 – 3.6 (g) – (l).

With no surprise ẑ in general converges and converges fast like other prior

estimates do. Even in questionable scenario 1, ẑ converges to reasonable

values. What is special in this estimation is that the signs of the estimates

are associated with the initial prior choices. Since true z is positive for state

1 and negative for state 2, ideally the estimates of the z should follow the

same sign for different states. However if the signs of initial z are chosen the

opposite of the true prior for all states, the estimates end up with the wrong

signs. For example, in initial prior 6 where z(1) are given negative values and

z(2) are given the positive values instead, ẑ(1) eventually stabilizes at around
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(−0.34,−0.60)′ and ẑ(2) comes out about (0.36, 0.80)′ shown in Figure 3.3m

– 3.3p. In another sign experiment as in prior 4, z(k)
1 has the same sign as

their true prior counterpart, z(k)
2 is given the opposite sign, i.e. negative for

state 1 and positive for state 2. Figure 3.3m – 3.3p show that after more

number of iterations, ẑ(1) converges to (−0.34,−0.60)′ and ẑ(2) to (0.36, 0.80)′

as well. On the other hand, if the signs of initial priors are the same as those

of their true prior counterpart, the estimation ends up with the right signs

and better estimates in a way that these estimates are much closer to the

true prior values. In Figure 3.3m – 3.3p , Solid black, dashed grey and long

dashed blue lines converge within 5 iterations and those lines are closer to the

true value (solid red line). In summary, estimates of ẑ by initial prior 1, 2, 5

tend to converge fast and converge to the values that are closer to the truth,

and on the contrary, the estimates of ẑ by initial prior 3, 4, and 6 converge

slower and converge to values with the opposite signs of the true prior values

for most of the case. These findings are more prominent in more frequent

switching series that are generated by scenario 3, 4, and 5, and shown in

Figure 3.4m - 3.4p, Figure 3.5m - 3.5p and Figure 3.6m - 3.6p.

EM algorithm has the property to increase the log likelihood for every

iteration. Figure 3.2 – 3.6 (q) shows that log likelihood function becomes

stable as the number of iterations increases in general except for scenario 1.

The discussion of prior estimation in EM algorithm has always been difficult

for low frequent switching series, such as in scenario 1 with no exception of log

likelihood function. Log likelihood function estimated by prior 3 in scenario
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1 is diverging possibly because ĝ is diverging. Log likelihood may decrease

for some iterations in scenario 2 is still a bit of puzzle shown in Figure 3.3q.

Log likelihood by initial prior 1 (solid black), prior 2 (dashed grey), prior

5 (long dashed blue) and prior 7 (short-long dashed orange) converges the

fastest within 10 iterations; log likelihood by initial prior 3 (dotted magenta)

and 4 (dash-dotted green) converges the slowest within 20 iterations as shown

in Figure 3.4q, 3.5q and 3.6q. This may prove a widely acknowledged fact

that the EM algorithm finds a local maximum of a latent variable model

likelihood. In addition, we observe that there are multiple solutions to the

same maximized likelihood value. Which solution is the best, in another

word, which initial prior is optimal cannot be determined by evaluating prior

estimates alone. I will discuss this issue in the next subsection.

We conclude this subsection by giving some practical advices on how to

implement EM algorithm. EM algorithm works better when the data are

informative, i.e. more structural changes. Prior estimation is less sensitive

to the initial g, λ, P and V , but sensitive to the signs of initial z. We have

seen in many cases that initial prior 1, 2 and 5 produce similar output, initial

prior 3, 4, and 6 converge a little slower and may produce another similar

output. The major difference among two groups are the signs of z. If the

initial z has the same sign as the true parameter, the algorithm converges

faster and the estimates are likely to be closer to the true values. Running EM

algorithm is expensive, especially when there are so many parameters. Each

parameter may have its own rate of convergence. My observation is that if
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Figure 3.2: The estimated prior parameters ĝ, λ̂, p̂, q̂ and V̂
(1)

in the first
60 iterations of the EM algorithm from a selected series. The true (p, q) =
(0.004, 0.004)
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Figure 3.2: Continued. The estimated prior parameters V̂
(2)

and ẑ and log
likelihood in the first 60 iterations of EM algorithm from a selected series.
The true (p, q) = (0.004, 0.004)
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Figure 3.3: The estimated prior parameters ĝ, λ̂, p̂, q̂ and V̂
(1)

in the first
60 iterations of the EM algorithm from a selected series. The true (p, q) =
(0.01, 0.01)
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Figure 3.3: Continued. The estimated prior parameters V̂
(2)
, ẑ and log

likelihood in the first 60 iterations of EM algorithm from a selected series.
The true (p, q) = (0.01, 0.01)
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Figure 3.4: The estimated prior parameters ĝ, λ̂, p̂, q̂ and V̂
(1)

in the first
60 iterations of the EM algorithm from a selected series. The true (p, q) =
(0.04, 0.08)
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Figure 3.4: Continued. The estimated prior parameters V̂
(2)
, ẑ and log

likelihood in the first 60 iterations of EM algorithm from a selected series.
The true (p, q) = (0.04, 0.08)
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Figure 3.5: The estimated prior parameters ĝ, λ̂, p̂, q̂ and V̂
(1)

in the first
60 iterations of the EM algorithm from a selected series. The true (p, q) =
(0.05, 0.05)
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Figure 3.5: Continued. The estimated prior parameters V̂
(2)

and ẑ and log
likelihood in the first 60 iterations of EM algorithm from a selected series.
The true (p, q) = (0.05, 0.05)
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Figure 3.6: The estimated prior parameters ĝ, λ̂, p̂, q̂ and V̂
(1)

in the first
60 iterations of the EM algorithm from a selected series. The true (p, q) =
(0.1 0.1)
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Figure 3.6: Continued. The estimated prior parameters V̂
(2)
, ẑ and log

likelihood in the first 60 iterations of EM algorithm from a selected series.
The true (p, q) = (0.1, 0.1)
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EM algorithm converges, it converges fast usually within 10 to 15 iterations.

Therefore hyperparameters estimated by 15th iteration is chosen to further

estimate the regression parameters in the next subsection. In addition, it is

still a good practice to begin the estimation with several random initial prior

values.

3.5.2 Analysis of Model Parameters

The estimation of hyperparameters is an intermediate step to estimate the

model parameters of primary interest, i.e. the probability of hidden state and

the regression parameters βt and σt at each time point. As mentioned before,

we choose to estimate model parameters in each series by EM algorithm with

15 iterations for 6 different sets of initial priors. We begin with the evaluation

of the impact of initial priors on the estimated probabilities of the hidden

state. By assumption all the series begin with state 1 and at some point in

time jump to state 2 and may switch back to state 1 and so forth. Since there

are only two states and the estimated probabilities of two different states

must sum up to one, it is sufficient to analyze one of the estimates such as

the probabilities of state 2. Figure 3.7 – 3.11 (b) show the probabilities of

being in state two estimated from 6 different sets of initial priors. Remember

that the true probabilities of state 2 (solid red) begin with zero in all figures.

0.5 line (dashed blue) is used to distinguish two states. As we can see from

these figures, our model may mislabel the states for some initial prior values.
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Figure 3.7: The selected time series and the estimated regression parameters
using priors after 15 iterations in EM algorithm. True (p, q) = (0.004, 0.004)
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Figure 3.8: The selected time series and the estimated regression parameters
using priors after 15 iterations in EM algorithm. True (p, q) = (0.01, 0.01)
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Figure 3.9: The selected time series and the estimated regression parameters
using priors after 15 iterations in EM algorithm. True (p, q) = (0.04, 0.08)
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Figure 3.10: The selected time series and the estimated regression parameters
using priors after 15 iteration in EM algorithm. True (p, q) = (0.05, 0.05)
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Figure 3.11: The selected time series and the estimated regression parameters
using priors after 15 iterations in EM algorithm. True (p, q) = (0.1, 0.1)
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Table 3.9: Monte Carlo mean of diagnostic statistics based on 500 simulations
using hyperparameters estimated at the 15th EM iteration for different (p, q)
scenarios and different initial prior values. Standard errors are shown in
parenthesis.

(p, q) Prior1 Prior2 Prior3 Prior4 Prior5 Prior6

(0.004, 0.004) 0.0155 0.0171 0.0367∗ 0.0228 0.0164 0.0155∗∗

(5.5e-04) (5.7e-04) (2.6e-03) (1.2e-03) (5.7e-04) (5.5e-04)

(0.010, 0.010) 0.0286 0.0296 0.0412 0.0349 0.0291 0.0285
(6.2e-04) (6.8e-04) (1.5e-03) (9.4e-04) (6.4e-04) (6.1e-04)

(0.040, 0.080) 0.0757 0.0756 0.0823 0.0785 0.0756 0.0757
(8.8e-04) (8.8e-04) (1.2e-03) (1.0e-03) (8.9e-04) (8.9e-04)

(0.050, 0.050) 0.0730 0.0730 0.0793 0.0769 0.0730 0.0730
(9.4e-04) (9.4e-04) (1.3e-03) (1.1e-03) (9.4e-04) (9.4e-04)

(0.100, 0.100) 0.0942 0.0942 0.0959 0.0968 0.0942 0.0944
(9.2e-04) (9.2e-04) (9.9e-04) (1.1e-03) (9.2e-04) (9.3e-04)

(a) Kullback-Leibler (KL) divergence
(p, q) Prior1 Prior2 Prior3 Prior4 Prior5 Prior6

(0.004, 0.004) 0.9840 0.9787 0.9348∗ 0.9672 0.9825 0.9837∗∗

(7.8e-04) (1.1e-03) (3.9e-03) (1.7e-03) (8.8e-04) (7.7e-04)

(0.010, 0.010) 0.9598 0.9579 0.9318 0.9485 0.9592 0.9597
(7.8e-04) (9.4e-04) (2.4e-03) (1.3e-03) (8.3e-04) (7.8e-04)

(0.040, 0.080) 0.8706 0.8705 0.8578 0.8655 0.8705 0.8705
(8.1e-04) (8.1e-04) (1.5e-03) (1.1e-03) (8.1e-04) (8.1e-04)

(0.050, 0.050) 0.8762 0.8760 0.8640 0.8705 0.8761 0.8761
(8.1e-04) (8.1e-04) (1.5e-03) (1.2e-03) (8.1e-04) (8.1e-04)

(0.100, 0.100) 0.8350 0.8349 0.8309 0.8325 0.8350 0.8349
(7.1e-04) (7.1e-04) (1.0e-03) (9.8e-04) (7.1e-04) (7.1e-04)
(b) Sum of Squares of Standardized Error (SSSE)

(p, q) Prior1 Prior2 Prior3 Prior4 Prior5 Prior6

(0.004, 0.004) 0.0771 0.0804 0.1104∗ 0.0872 0.0790 0.0769∗∗

(1.4e-03) (1.5e-03) (3.7e-03) (1.7e-03) (1.4e-03) (1.3e-03)

(0.010, 0.010) 0.1130 0.1139 0.1290 0.1192 0.1137 0.1127
(1.4e-03) (1.5e-03) (2.2e-03) (1.6e-03) (1.5e-03) (1.4e-03)

(0.040, 0.080) 0.1875 0.1870 0.1938 0.1902 0.1870 0.1873
(1.2e-03) (1.2e-03) (1.5e-03) (1.3e-03) (1.2e-03) (1.2e-03)

(0.050, 0.050) 0.1868 0.1867 0.1933 0.1910 0.1866 0.1870
(1.2e-03) (1.2e-03) (1.5e-03) (1.4e-03) (1.2e-03) (1.2e-03)

(0.100, 0.100) 0.2135 0.2134 0.2152 0.2163 0.2134 0.2138
(1.2e-03) (1.2e-03) (1.3e-03) (1.3e-03) (1.2e-03) (1.2e-03)

(c) L2 norm
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Table 3.9: Continued
(p, q) Prior1 Prior2 Prior3 Prior4 Prior5 Prior6

(0.004, 0.004) 0.9869 0.8997 0.2656∗ 0.4177 0.9393 0.0120∗∗

(2.5e-03) (7.8e-03) (1.1e-02) (1.6e-02) (6.6e-03) (2.6e-03)

(0.010, 0.010) 0.9790 0.9323 0.2426 0.5095 0.9592 0.0165
(2.4e-03) (6.0e-03) (9.5e-03) (1.6e-02) (4.7e-03) (1.4e-03)

(0.040, 0.080) 0.9588 0.9592 0.0773 0.6070 0.9588 0.0410
(1.1e-03) (1.1e-03) (4.6e-03) (1.9e-02) (1.1e-03) (1.1e-03)

(0.050, 0.050) 0.9608 0.9608 0.0833 0.6920 0.9603 0.0392
(1.0e-03) (1.0e-03) (5.5e-03) (1.8e-02) (1.1e-03) (1.0e-03)

(0.100, 0.100) 0.9464 0.9463 0.0592 0.7835 0.9463 0.0540
(1.0e-03) (1.0e-03) (2.1e-03) (1.5e-02) (1.0e-03) (1.0e-03)

(d) Identification Ratio (IR)

For example, in Figure 3.7b, by initial prior 4 and 6, the series is estimated to

start with state 2 and then at the time point where the series is supposed to

change from state 1 to state 2 it switches to state 1. The same is true for the

second change point, i.e. the transition position is almost correctly detected,

but from the wrong state to another wrong state. State misidentification

occurs for other scenarios of (p, q) as well. Although our model may mislabel

the states by certain initial priors, the estimation of regression parameters,

such as β̂t and σ̂t in Figure 3.7 - 3.11 (c)- (e) is not affected as much by the

choice of initial prior values. For example, in Figure 3.10c, solid red line is

true β0,t, all other lines estimated by different initial priors tend to overlap

with each other and the estimation is close enough to the true parameter

values. The same is true for estimation of β1,t and σt for all scenarios.

Figure 3.7 - 3.11 only present the results of a few selected time series. To

understand the large scale impact of initial prior values on the estimation of
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model parameters, we still resort to the diagnostics in Monte Carlo simula-

tion. Table 3.9 computes Kullback-Leibler (KL) divergence, sum of squares

of standardized error (SSSE), L2 norm and identification ratio (IR) to com-

pare the goodness of fit for each set of initial prior values in every scenario.

Star ∗ in Table 3.9 indicates that in scenario (0.004, 0.004), the model is un-

able to produce the estimates by initial prior 3 for series 213, 294, 347, and

443 among 500 series, thus these series are eliminated for diagnostic analysis.

Diagnostics labelled by double star ∗∗ exclude the series 141, 213, 247, 294,

347 and 443 that fail to produce the results by initial prior 6. It is clear that

in Table 3.9 prior 3 and prior 4 produce the largest KLD’s (a) and L2 norm

(c) and the smallest SSSE (b) for every (p, q) scenario. IR statistics are the

worst by prior 3, 4 and 6, which confirms the previous results of mislabelling.

In summary Monte Carlo simulation further confirms the results of the anal-

ysis in selected individual series that prior 1, 2 and 5 are better initial values

and the signs of prior mean z are crucial in the choice of good initial priors.
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Chapter 4

Real Data Analysis

4.1 Unemployment Rate

We will apply model (2.1) to several economic time series with various autore-

gressive orders and series lengths. We begin with the data "Unemployment

Rate: Aged 15-64: All Persons for the United States" available from the web-

site of Federal Reserve Bank of St. Louis at https://research.stlouisfed

.org/fred2/series/LRUN64TTUSM156S. Unemployment rate is an impor-

tant statistical indicator to measure the strength of the job market and eco-

nomic health. Such time series have been analyzed constantly in econometric

research and business cycle analysis. Figure 4.1a presents the monthly un-

employment rate in percent from January 1970 to March 2015. The shaded

areas indicate economic recession periods identified by The National Bureau

of Economic Research (NBER). Table 4.1 lists the beginning and the ending
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months that the US economy is in recession according to NBER statistics

from 1970 to 2015. The shortest recession period lasts only 4 months and the

longest lasts 16 months. The periods between the end of a recession and the

beginning of the next recession are the economic growth periods that may

be called "expansion" in economic terms. The fact that expansion periods

are usually longer than recession periods is a typical example of asymmetry

between regimes in a time series analysis.

Table 4.1: NBER recession periods from January 1970 to December 2015

Recession periods Starting date Ending date
1 1970-01 (1970:Q1) 1970-11 (1970:Q4)
2 1973-12 (1973:Q4) 1975-03 (1975:Q1)
3 1980-02 (1980:Q1) 1980-07 (1980:Q3)
4 1981-08 (1981:Q3) 1982-11 (1982:Q4)
5 1990-08 (1990:Q3) 1991-03 (1991:Q1)
6 2001-04 (2001:Q2) 2001-11 (2001:Q4)
7 2008-01 (2008:Q1) 2009-06 (2009:Q2)

The shaded vertical bars in Figure 4.1a are equivalent to the above 7

recession periods. Clearly this time series is non-stationary. The unemploy-

ment rate goes up when the economy is in recession and comes down in

expansion. In recession period 2 (the second shaded bar), the level of un-

employment rate rises from 4.7 percent to 9.2 percent; whereas in recession

period 4 (the fourth shade bar) it begins with 7.3 percent and reaches as high

as 11.3 percent. To make this series stationary, at least within the periods

of recession or expansion, we take the difference. Thus the new series fitting

for the model analysis is yt = y′t − y′t−1 where y′t is the original unemploy-
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Figure 4.1: Unemployment rate series, NBER recessions in shaded areas
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ment rate at time t. As can be seen from Figure 4.1b, the transformed series

roughly scatters around 0. Obviously, overall difference in recession periods

are much higher than that in expansion periods. For example, the differ-

ence in recession period 5 seems to be lower than that in recession period 7.

Without background recession areas, it would be very difficult to visualize

the pattern change at the transition between recession and expansion. One of

the main tasks of this study is to find the periods of recession and expansion

by analyzing unemployment rate time series alone.

A two-regime model yt = β0,t+β1,tyt−1 +σtεt is chosen to estimate the se-

ries in Figure 4.1b, where εt ∼ N(0, 1). In practice, the EM algorithm is run

a limited number of times. After several trial runs, the initial prior parame-

ters are chosen to be g(1) = 2, g(2) = 3, λ(1) = 2, λ(2) = 1, z(1)′ = (0.2, 0.4),

z(2)′ = (−0.2,−0.4), V (1) = V (2) =

2 0

0 2

, and P =

0.99 0.01

0.01 0.99

. After

25 iterations, the estimated hyperparameters are ĝ(1) = 39.61, ĝ(2) = 4.05,

λ̂(1) = 0.93, λ̂(2) = 5.03, ẑ(1)′ = (−0.0354,−0.1034), ẑ(2)′ = (0.0884, 0.2585),

V̂
(1)

=

 0.0035 −0.0028

−0.0028 0.4768

, V̂
(2)

=

 0.2144 −0.0328

−0.0328 0.3436

, and P̂ =

0.98 0.02

0.05 0.95

. The smoothing estimation of βi,t and σt are shown in Fig-

ure 4.2 (b) – (d) in solid black, accompanied by 95% confidence intervals in

dashed green lines and the regime estimation in (a).

Figure 4.2a shows that the estimated probabilities of series being in state
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1 begins around zero from March 1970, which means state 1 is impossible to

represent any economic status this period belongs to. Since the year 1970 is in

recession measured by NBER, we may infer that state 1 represents economic

expansion and state 2 represents economic recession. The simple criterion to

identify the state is to use the 0.5 threshold. The US economy is in recession

(state 2) if the estimated P (St = 1) < 0.5 according to our model. The

estimated recession periods are shown in Table 4.2. The beginning and the

ending dates of some of the estimated recession periods may differ a few

months from the NBER statistics. Whenever our model successfully detects

the changes, the estimated P (St = 1) has to experience a gradual transition

from 1 to 0 or 0 to 1. If P (St) is estimated to be around 0.5 in the process

of transition, the regime the time series belongs to at time t is actually

undetermined. The simple 0.5 threshold may cause the slight difference in

Table 4.1 and Table 4.2. In general, our model estimation of recession periods

by a single series agrees very well with NBER statistics, which take many

economic factors into consideration.

Table 4.2: Estimated recession periods for unemployment rate series

Periods Starting date Ending date
1 1970-03 1971-01
2 1974-05 1975-06
3 1979-12 1980-07
4 1981-08 1983-01
5 1990-06 1992-06
6 2000-12 2002-04
7 2008-03 2009-10
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Estimation of other model parameters takes the regimes into considera-

tion automatically – no manual work is needed to assign regimes in order to

write down the estimated equations like classical MS models. In fitted equa-

tion ŷt = β̂0,t + β̂1,tyt−1, β̂i,t at every time point t is shown in Figure 4.2 (b)

and (c). β̂0,t’s are not a constant for all estimated recession (or expansion)

periods, neither are β̂1,t’s. In Figure 4.2 (d), σ̂t behaves similarly. The confi-

dence intervals (dashed green line) shows that the estimation is reasonable.

Confidence intervals are wider around the transition points and narrower in-

side the recession (expansion) periods, indicating that the estimation is less

certain when the model is in the process of detecting a switch. Finally, the

probability of making a transition from expansion to recession is estimated

to be 0.02 and from recession to expansion is estimated to be slightly higher

at 0.05. These estimates are reasonable for the current series length and the

number of switches estimated.

Figure 4.2: Estimated model parameters for unemployment rate series
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(a) Estimated P (St = 1) (solid black)
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Figure 4.2: Continued
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(b) Estimated β0 (solid black) and 95% confidence intervals (dashed green)
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(c) Estimated β1 (solid black) and 95% confidence intervals (dashed green)
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(d) Estimated σ (solid black) and 95% confidence intervals (dashed green)

152



4.2 Industrial Production: Manufacturing

The second economic series we will analyze is that of industrial production:

manufacturing series available from the website of Federal Reserve Bank of

St. Louis at https://research.stlouisfed.org/fred2/series/IPGMFSQ.

This series is very short with 176 quarterly observations from 1972:Q1 to

2015:Q4, shown in Figure 4.3a. Table 4.1 also shows NBER recession periods

by quarters from 1972 to 2015. Series in (a) has an increasing trend and

drops slightly during the recession periods. To make the series stationary,

we difference the series by y′t−y′t−1 (y′t is the original series) resulting in Figure

4.3b. The differences center around zero and seem to have larger negative

values in shaded areas and small positive values in non-shaded areas.

We choose to fit the following model to the quarterly data:

yt = β0,t + β1,tyt−1 + β2,tyt−2 + β3,tyt−3 + β4,tyt−4 + σtεt

where yt is the difference in Figure 4.3b and εt ∼ N(0, 1). Let K = 2

representing two regimes in the economy (recession and expansion). Since

βt is a 5-dimensional vector, the prior mean is also a 5-dimensional vector

and the prior variance is a 5×5 matrix. There are 46 hyperparameters to be

estimated in total. Comparing with the number of observations available for

modelling, the number of parameters to be estimated in this model is huge.

After 60 iterations of the EM algorithm, the hyperparameters are estimated

to be ĝ(1) = 538.59, ĝ(2) = 127.95, λ̂(1) = 0.0029, λ̂(2) = 0.0047, p̂ = 0.04,
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Figure 4.3: Industrial production: manufacturing series, NBER recessions
are shown in shaded areas
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q̂ = 0.19, ẑ(1) = (0.4927, 0.4335,−0.0931, 0.0327,−0.0467)′,

ẑ(2) = (−0.3827, 0.7727,−0.5576, 0.1365,−0.4260)′,

V̂
(1)

=



0.0066 −0.0019 −0.0003 7.2e− 5 0.0005

−0.0019 0.0036 −0.0010 0.0001 −0.0007

−0.0003 −0.0010 0.0026 −0.0010 −1.2e− 6

7.2e− 5 0.0001 −0.0010 0.0024 −0.0009

0.0005 −0.0007 −1.2e− 6 −0.0009 0.0389


,

and

V̂
(2)

=



0.0058 0.0025 0.0009 2.7e− 5 0.0003

0.0025 0.3026 −0.0025 −0.0008 −0.0004

0.0009 −0.0025 0.0069 −0.0018 0.0013

2.7e− 5 −0.0008 −0.0018 0.0050 −0.0016

0.0003 −0.0004 0.0013 −0.0016 0.0052


.

Figure 4.4a shows the estimated probabilities of regimes being in state

1. We still use the criterion that the series is in regime 1 if the estimated

P (St = 1) > 0.5. The estimates in Figure 4.4a begin high close to 0.85

in expansion period (non-shaded area). Thus we may name regime 1 as

expansion and regime 2 as recession. By 0.5 threshold, the estimated reces-

sion periods from Figure 4.4a are 1974:Q3 - 1975:Q1, 1980:Q1 - 1982:Q4,

1990:Q3 - 1991:Q1, 2000:Q3 - 2002:Q1 and 2008:Q1 - 2009:Q1. Compar-
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Figure 4.4: Estimated model parameters of industrial production series
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Figure 4.4: Continued
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(d) Estimated β2,t (solid black) and 95% confidence intervals (dashed green)
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Figure 4.4: Continued
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(g) Estimated σt (solid black) and 95% confidence intervals (dashed green)

ing with Table 4.1, the first estimated recession period begins two quarters

later than NBER statistics. The second estimated recession period joins two

recession periods 1980:Q1-1980:Q3 and 1981:Q3-1981:Q4 in NBER record

into one recession period. Since there are only 3 observations in between

the two recession periods, little information is known to estimate two regime

changes in three quarters. The third and fifth estimated recession periods

coincide with NBER statistics and the fourth recession period is estimated

to be longer, beginning 3 quarters earlier and ending one quarter later than

the NBER record. In general our estimation of recession periods agrees well

with the NBER statistics. Other estimates including β̂0,t, β̂1,t, β̂2,t, β̂3,t, β̂4,t

and σ̂t and their confidence intervals are shown in Figure 4.4 (b) to (g) re-

spectively. 95% confidence intervals show that β0,t and β1,t are significantly

different from zero in each regime and β2,t, β3,t and β4,t in recession periods

are significantly different from zero. In addition, the estimated βi’s are not
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necessarily the same in the same regime. For example, in expansion period

(1991:Q2 - 2000:Q2) β4,t is estimated to be around 0.1 on average; whereas

in 2009:Q2 - 2015:Q2, it is estimated to be −0.1 on average.

4.3 Real Manufacturing and Trade Inventory

The third and the last economic series we will analyze is that of real manufac-

turing and trade inventory from 1968:Q4 to 2015:Q4. It can be downloaded

from the website of Federal Reserve Bank of St. Louis at https://research

.stlouisfed.org/fred2/series/INVCQRMTSPL. This series is also short

with only 189 quarterly observations. Figure 4.5a shows that this series in-

creases from 460,330 to 1,754,238 and drops slightly at the recession periods

indicated in the shaded areas. It is a convention to transform the aggre-

gated values by continuously compounded rate of change to make the series

stationary. Continuously compounded rate of change can be computed as

yt = 100 × ln y′t
y′t−1

, shown in Figure 4.5b where y′t is the original inventory

series. yt ranges between -3 and 3. When series is in recession period, the

values tends to be more negative and vice versa.

To choose a proper model, I have tried models with various autoregressive

orders from 1 to 4. Only AR(4) model is able to successfully find all recession

periods, other models either detect no regime switching or detect the change

points partially . For quarterly economic time series, it is usually reasonable

to consider annual effects in the AR(4) model. Therefore we use the following
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Figure 4.5: Real manufacturing and trade inventory series, NBER recessions
are shown in shaded areas
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model for the manufacturing and trade inventory series:

yt = β0,t + β1,tyt−1 + β2,tyt−2 + β3,tyt−3 + β4,tyt−4 + σtεt

where εt ∼ N(0, 1) and yt is the continuously compounded rate of change.

After a careful selection of initial prior values and running 40 iterations

in EM algorithm, the estimated hyperparameters are as follows: ĝ(1) =

19.05, ĝ(2) = 24.21, λ̂(1) = 0.10, λ̂(2) = 0.47, p̂ = 0.05, q̂ = 0.30, ẑ(1)′ =

(0.6503, 0.2506, 0.1263, 0.0840,−0.1841),

ẑ(2)′ = (−1.1808, 0.1167,−0.3183, 0.5983,−0.5424),

V̂
(1)

=



0.0144 −0.0056 0.0022 −0.0013 −0.0027

−0.0056 0.0327 −0.0134 −0.0005 −0.0067

−0.0022 −0.0013 0.0327 −0.0024 −0.0001

−0.0013 −0.0005 −0.0024 0.0050 −0.0013

−0.0027 −0.0067 −0.0001 −0.0013 0.0195


,

and
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V̂
(2)

=



4.4641 0.9154 −0.3267 0.0103 −0.1364

0.9154 4.9120 0.0498 0.0381 0.0579

−0.3267 0.0498 0.5340 −0.0118 0.0451

0.0103 0.0381 −0.0118 0.07440 −0.0352

−0.1364 0.0579 0.0451 −0.0352 0.3937


.

Figure 4.6a shows the estimated probabilities of series being in regime 1.

The estimated probabilities begins low in 1970:Q1 and rise up quickly to 1 in

1970:Q4. Since NBER labels period 1969:Q4 – 1970:Q4 as recessio, We may

induce that regime 1 represents economic expansion and regime 2 represents

economic recession. Our model predicts 7 recession periods listed in more

details in Table 4.3 by comparing estimated P (St = 1) (Figure 4.4a) with

threshold 0.5.

Table 4.3: Estimated recession periods from manufacturing and trade inven-
tory series

Recession periods Starting date Ending date
1 1970:Q1 1970:Q4
2 1975:Q1 1975:Q2
3 1980:Q1 1980:Q3
4 1982:Q1 1983:Q1
5 1990:Q4 1991:Q2
6 2001:Q1 2001:Q4
7 2008:Q1 2009:Q3

Seven recession periods are clearly detected by the model. The second

estimated recession period seems to begin and end later and shorter than

162



Figure 4.6: Estimated model parameters of manufacturing and trade inven-
tory series
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(b) Estimated β0,t (solid black) and 95% confidence intervals (dashed green)
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(c) Estimated β1,t (solid black) and 95% confidence intervals (dashed green)
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Figure 4.6: Continued
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(d) Estimated β2,t (solid black) and 95% confidence intervals (dashed green)
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(e) Estimated β3,t (solid black) and 95% confidence intervals (dashed green)
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(f) Estimated β4,t (solid black) and 95% confidence intervals (dashed green)

164



Figure 4.6: Continued
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(g) Estimated σt (solid black) and 95% confidence intervals (dashed green)

NBER record in Table 4.1. The fourth estimated recession period begins

two quarter later and end one quarter later. The rest of the estimated

recession periods are very similar to NBER statistics. The discrepancy is

inevitable, since our estimation is based on single economic series, whereas

NBER statistics are the results of collective consideration. Estimation of

regression parameters and their confidence intervals are shown in Figure 4.6

(b) – (g). Clearly the estimates in different regimes are quite different, and

they are not piece-wise constants even within the same regimes. The analysis

of parameter estimation would be very similar to those in Section 4.1 and

4.2 and thus the discussion is omitted here. The proposed model has wide

application in detecting regime changes in economic series analysis.
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4.4 Comparison with Classical Markov Switch-

ing Models

In this section, we compare Hamilton’s classical regime switching model with

our model and show that our model is more sensitive to regime changes

and work better for more complicated models. To achieve the desirable

comparison, we re-analyze data series in Section 4.1 - 4.3 in classical MS

models with the same number of regimes, i.e. K = 2 and with the same order

in the autoregressive equation. For unemployment rate series we choose

yt = β0,k + β1,kyt−1 + εt.

For industrial production series and real manufacturing and trade inventory

series we choose the following regression equation:

yt = β0,k + β1,kyt−1 + β2,kyt−2 + β3,kyt−3 + β4,kyt−4 + εt.

In both equations, εt ∼ N(0, σ2
k) and k is the kth regime. A MatLab package

written by Perlin (n.d.-a) is used to conduct the statistical analysis to the

transformed series in Figure 4.1b, 4.3b and 4.5b. This package is download-

able from the url provided in the reference. A typical maximum likelihood

estimation (MLE) method is used to estimate the model parameters. No

hyperparameters or EM algorithm are needed in this model.

Figure 4.7 shows the estimated smoothing probabilities in regime 1, i.e.
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estimated P (St = 1) for each time t for series from Figure 4.1b, 4.3b and

4.5b. The classical regime switching model also uses Bayesian classifier to

classify the regime status according to the estimated smoothing probabili-

ties. If the estimated P (St = 1) > 0.5 at time t, the series is at regime

1; otherwise the series is at regime 2. To determine which regime repre-

sents recession or expansion, a comparison is made between the beginning

few regime estimates with the beginning white or shaded area in each plot

in Figure 4.7. The shaded areas are again the recession periods reported

by NBER. If the series begins with regime 1 in a white area, regime 1 is

chosen for expansion periods; if the regime begins with regime 1 in a shaded

area, regime 1 represents recession periods. Henceforth, regime 1 represents

recession in unemployment rate series, and regime 1 is chosen to represent

expansion periods for industrial production series and inventory series. It is

obvious to understand such choices from Figure 4.7 (a)- (c).

The estimated equation for unemployment rate series (difference) in re-

cession periods is

ŷt = −0.02575− 0.0238yt−1, with σ̂recession = 0.04823

(0.0386) (0.0088)

And the estimated equation in expansion periods is

ŷt = 0.6274− 0.05389yt−1, with σ̂expansion = 0.01402
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(0.029) (0.0778)

The values in parenthesis are the standard errors of corresponding estimators

such as β̂0 and β̂1 in each regime. β1 is not significant different from zero for

expansion periods at 5% level. According to Figure 4.7a, classical MS model

also successfully detects recession periods in unemployment rate data. The

estimated recession periods are presented in Table 4.4. Recession periods 1, 5

and 6 are estimated to be closer to NBER report in Table 4.1 in classical MS

model. Estimation of period 7 is much wider than our model estimation in

Table 4.2 and NBER record too. Estimation of other recession periods is very

similar to our model estimation. The transition probability from recession to

expansion is estimated to be 0.08 (higher than our model estimate 0.05) and

from expansion to recession to be 0.02 (the same as our model estimate).

Table 4.4: The estimated recession periods in Classical MS model for unem-
ployment rate series.

Recession periods Starting date Ending date
1 1970-03 1970-12
2 1974-04 1975-07
3 1980-01 1980-07
4 1981-07 1984-06
5 1990-07 1991-03
6 2001-06 2002-01
7 2008-03 2011-01

Classical MS model behaves a little different for industrial production

series. The number of recession periods is much less than our model esti-
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mation in Section 4.2. Comparing the estimated probabilities with 0.5 in

Figure 4.7b, the estimated recession periods are 1974:Q4-1975:Q1, 1982:Q2,

2001:Q1, 2001:Q3 and 2008:Q1-2009:Q1. The estimated probability in re-

cession is 0.57 in 2001:Q1 and 0.52 in 2001:Q3, not a strong indication that

the regime is in recession. These probabilities can be also interpreted as

the fuzziness in the expansion regime. Thus it is reasonable to draw a con-

clusion that there are only 3 non-controversial estimated recession periods:

1974:Q4-1975:Q1, 1982:Q2 and 2008:Q1-2009:Q1.

The estimation of regression coefficients relies on the identification of

the regime. For expansion (regime 1) periods 1973:Q2-1974:Q3, 1975:Q2-

1982:Q1, 1982:Q3 - 2007:Q4 and 2009:Q2 - 2015:Q4, the fitted equation is

ŷt = 0.4010 + 0.5362yt−1 − 0.1927yt−2 + 0.1069yt−3 − 0.1202yt−4

(0.0679) (0.077) (0.0970) (0.0813) (0.0612)

where σ̂1 = 0.4087. For recession (regime 2) periods mentioned above, the

fitted equation is

ŷt = 0.49 + 1.3297yt−1 + 0.2708yt−2 − 0.7682yt−3 − 0.7232yt−4

(0.1577) (0.4109) (0.8502) (0.8512) (0.3612)

where σ̂2 = 1.9449. The standard errors are given in parenthesis. The

probability of switching from expansion to recession is estimated to be 0.04
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and from recession to expansion is 0.37. It seems that the model is over

parametrized, because the only significant coefficients are the ones for yt−1

in both regimes by constructing 95% confidence interval via standard errors.

When a simpler model MS(2)-AR(1) is run and tested, the regression co-

efficients behave better and transition probabilities become a little smaller.

Nevertheless, there is no improvement in the estimation of regimes. The es-

timation of the smoothed probabilities of the regime in this simpler model

looks very similar to Figure 4.7b thus not reported here.

The application of classical MS model on real manufacturing and trade

inventory series shows that in expansion periods (regime 1) the estimated

equation is

ŷt = 0.6493− 0.294yt−1 + 0.1148yt−2 + 0.0918yt−3 − 0.2188yt−4

(0.0773) (0.0788) (0.0756) (0.0745) (0.0616)

with estimated standard deviation σ̂1 = 0.2812 (0.038) and in recession pe-

riods, the estimation is

ŷt = −1.2544− 0.1634yt−1 + 0.044yt−2 + 0.408yt−3 + 0.6775yt−4

(0.3411) (0.2117) (0.2271) (0.2155) (0.2629)

with estimated standard deviation σ̂2 = 0.5876 (0.1880). The coefficients for

yt−4 are significant for both regimes confirming the validity of auto regression
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Figure 4.7: Estimation of smoothed probabilities of the series being in state
1 from the classical MS model for three real data series in Figure 4.1b, 4.3b
and 4.5b
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(b) Industrial production: manufacturing
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(c) Real manufacturing and trade inventory

171



of order 4. The transition probability from expansion to recession is estimated

to be 0.05 and from recession to expansion is 0.25. However this model fails

to detect the first recession period in the first shaded area shown in Figure

4.7c.

In summary, comparing Figure 4.2a, 4.4a and 4.6a with Figure 4.7 (a) –

(c), our model seems to detect more recession periods and the estimation of

the recession periods are closer to NBER dating scheme than the classical

MS model. Besides, in a two-regime classical MS model, there are only two

sets of estimated parameters for each regime. However, the estimation of

model parameters in our model is not restricted by the number of regimes.

Our model gives more flexibility to estimate the parameters even in the same

regime. First the values of model parameters are estimated at each time

point and thus not a constant within a regime. Second, no manual work of

identifying the regime is needed to write the fitted equation. The transition

probabilities between the regimes in our model tend to be estimated no more

than classical MS estimates in most of the cases. As also shown in the

simulation study, the classical MS model has a tendency to overestimate the

transition probabilities between the regimes. So our model estimation of

transition probabilities is more accurate. Finally our model seems to work

better in more complex modeling environment.
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Chapter 5

Conclusions

In this dissertation we proposed a new stochastic regime switching model

(2.1) with innovative assumptions (A1) and (A2) where the prior distribu-

tion of regression parameters depends on a finite state Markov chain St as

well as the chain status at previous time, i.e. St−1. Prior distribution of re-

gression parameters is no longer piece-wise constant within the same regime;

but rather is regenerated at every switch toward a particular regime. Thus

the posterior means and variances are time-varying throughout the process,

accompanied by the estimation of regime status. In particular this system

can automatically detect unknown number of switches, switching location

and estimate the switching magnitude for every regression parameter. Un-

der Bayesian inference framework, the posterior means and standard errors

all have closed form solutions.

One major element in statistical inference of this model is the definition

173



and derivation of the recursive weights. Forward, backward and smooth-

ing recursive weights are derived on demand for three popular estimation

methods, i.e. forward filtering, backward filtering and smoothing methods.

Posterior means and variances of the parameters are thus estimated in the

aforementioned context. Hyperparameters in this model are estimated by

Expectation-Maximization (EM) procedure. To increase the computational

efficiency, Bounded Complexity Mixture (BCMIX) algorithm is derived and

implemented in simulation studies. This approximation scheme is proven to

have lower computational complexity, yet comparable to Bayes estimation in

statistical efficiency. Simulation studies have shown that regime switching

identification ratio is as high as 99% for low switching series regardless of

series length and with more frequent switching series, the estimation errors

are smaller for longer series. Our simulation studies also show that classi-

cal Markov switching models have a tendency to overestimate the transition

probabilities than our model estimates.

Finally, our model has successfully applied to three important economic

time series: unemployment rate, industrial production and manufacturing

and trade inventory. In comparison with classical MS model, our model is

more sensitive in detecting regime changes. The dating of recession periods

by our model may serve as a benchmark for NBER historical records and

can provide valuable information for economic policy making.
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Appendix A

Theorem 1. Derive f(yt|J (k)
t = t,Ft−1)

Proof.

f(yt|J (St)
t = t, St = k,Ft−1)

=

∫ ∫
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=

∫ ∫
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Theorem 2. Derive f(yt|J (k)
t−1 = i,Ft−1)

Proof.
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∫ ∫
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∫ ∫
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V
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z
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)}
· exp

{
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(
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(k)
i,t )′
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V

(k)
i,t

)−1
z

(k)
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+ (z
(k)
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(
V

(k)
i,t−1

)−1
z

(k)
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t

)}
dβtf(τt|J (k)

t−1 = i,Ft−1) dτt
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= π−
1
2

∣∣V (k)
i,t−1

∣∣− 1
2
∣∣V (k)

i,t

∣∣ 12 ∫ τ
1
2
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t

)} 1

Γ
(
g

(k)
i,t−1

)(
λ
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τ
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i,t−1−1
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− τt

λ
(k)
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Similarly, we also need to show that

g
(k)
i,t = g

(k)
i,t−1 +

1

2
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1

λ
(k)
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=
1

λ
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2
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2
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2
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i,t−1

)−1
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=
1
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(
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=
1

λ
(k)
i,t

Continue with derivation of f(yt|J (k)
t−1 = i,Ft−1) again.

= π−
1
2

∣∣V (k)
i,t−1

∣∣− 1
2
∣∣V (k)

i,t
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∫
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Theorem 3. Show the variance of posterior βt and σt in forwarding filtering

estimation.

Proof. By steiner’s rule

V ar(βt|Ft) = E
[
βtβ

′
t|Ft

]
− E

[
β|Ft

](
E
[
β|Ft

])′

E
[
βtβ

′
t|Ft

]
=

∫
βt

βt

(∫
τt

f(βt, τt|Ft)dτt
)
β′tdβt

=

∫
βt

βt

(∫
τt

K∑
k=1

t∑
i=1

f(βt|τt, J
(k)
t = i,Ft)f(τt|J (k)
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(k)
t = i|Ft)dτt
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β′tdβt

=
K∑
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i=1

∫
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(∫
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βtf(βt|τt, J
(k)
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)
f(τt|J (k)

t = i,Ft)ξ(k)
it dτt

It turns out that
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∫
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]
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(k)
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[
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By equation (2.11),
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and also by (2.14),

E
[
βtβ

′
t|Ft

]
=
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By equation (2.26),
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Proof.

V ar(σt|Ft) = E[σ2
t |Ft]−

(
E[σt|Ft]

)2
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where

E[σ2
t |Ft] =

∫
σ2
t f(σ2
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t =
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and by equation (2.14) and Theorem 7 in Appendix A,
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Theorem 4. Show that f
(k)
i,t f

(k)
t+1,j

f
(k)
0,0

·h
(k)
i,t h

(k)
t+1,j

h
(k)
0,0

can be simplified to φ
(k)
0,0φ

(k)
i,j

φ
(k)
i,t φ

(k)
t+1,j

f
(k)
i,j h

(k)
i,j .

Proof. First

f
(k)
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(k)
t+1,j
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Theorem 5. Derive P (St = k, St−1 = l|FT ,θold).

Proof. Without loss of generality, θold is omitted in the proof.

P (St = k, St−1 = l|FT )

=
P (St = k, St−1 = l,FT )

f(FT )

=
f(Ft|St = k, St−1 = l)f(Ft+1,T |St = k, St−1 = l)P (St = k, St−1 = l)

f(FT )

=
P (Ft, St = k, St−1 = l)

P (St = k, St−1 = l)

P (Ft+1,T , St = k, St−1 = l)
hhhhhhhhhh
P (St = k, St−1 = l)

hhhhhhhhhh
P (St = k, St−1 = l)

f(FT )

=
P (Ft, St = k, St−1 = l)P (Ft+1,T , St = k, St−1 = l)

f(FT )P (St = k, St−1 = l)

=
f(yt|St = k, St−1 = l,Ft−1)P (St = k, St−1 = l,Ft−1)

f(FT )P (St = k, St−1 = l)

· P (St−1 = l|St = k,Ft+1,T )P (St = k,Ft+1,T )

=
f(yt|St = k, St−1 = l,Ft−1)P (St = k|St−1 = l,Ft−1)P (St−1 = l|Ft−1)f(Ft−1)

f(FT )
hhhhhhhhhh
P (St−1 = l|St = k)P (St = k)

·
hhhhhhhhhh
P (St−1 = l|St = k)P (St = k|Ft+1,T )f(Ft+1,T )

=
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(l)
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f(Ft−1)f(Ft+1,T )
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=
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· f(Ft−1)f(Ft+1,T )

f(FT )

=
f(yt|St = k, St−1 = l,Ft−1)plkξ

(l)
t−1

∑K
i=1 qikη

(i)
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(i)
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In the derivation above, we use the fact that St−1 given St does not depend on

Ft+1,T by property of reversible Markov Chain; Bayes’ theorem; P (Ft−1|θold),

f(Ft+1,T |θold) and f(FT |θold) are constants and that Given St = k, Ft and

Ft+1,T are conditionally independent.

Next calculate f(yt|St = k, St−1 = l,Ft−1)

P (yt|St = k, St−1 = l,Ft−1)

=
t∑
i=1

P (yt, J
(St)
t = i|St = k, St−1 = l,Ft−1)

=
t∑
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P (yt|J (St)
t = i, St = k, St−1 = l,Ft−1)P (J
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When k 6= l, use the facts in (2.16) and (2.20)

P (yt|St = k, St−1 = l,Ft−1) = P (yt|J (St)
t = t, St = k,Ft−1) · 1

= π−
1
2
φ

(k)
t,t

φ
(k)
0,0
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When k = l, by the facts in (2.18) and (2.21)

P (yt|St = k, St−1 = l,Ft−1)

=
t−1∑
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In summary

P (St = k, St−1 = l|FT ,θold) =


φ
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φ
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)

Theorem 6. Assume that

(1) The Markov Chain {St ∈ {1, 2, . . . , K}|t ≥ 0} is irreducible, and fol-

lows the transition probability matrix A = (aij)1≤i,j≤K, i.e. aij =

P (St = j|St−1 = i);

(2) Given St which defines various regimes, (βt, νt) = (β(St), ν(St));

(3) The Markov chain {St, t ≥ 0} has a stationary distribution π =
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(π1, . . . , πK)T . With this assumption, a reversible Markov chain for

{St} can be defined as a chain with transition probability matrix Ã =

(ãij)1≤i,j,≤K, where ãij = P (St = j|St+1 = i) = ajiπj/πi

Denote that p(k)
t = P (St = k|F1t) (1 ≤ k ≤ K), p̃(k)

t = P (St = k|Ft,T ),

φt,k = P (yt|St = k), pt = (p
(1)
t , . . . , p

(K)
t )′, φt = (φ1(yt), . . . , φK(yt))

′ and

Ak is the kth column of the transition matrix A and similarly Ãk is the kth

column of the transition matrix Ã.The smoothing estimate of {St} given Fn

can be written as

P (St = k|Fn) =
p

(k)
t Ã′kp̃t+1/πk∑K
i=1 p

(i)
t Ã

′
ip̃t+1/πi

(A.1)

and the smoothing estimate of transition probability is

P (St = j|St−1 = i,Fn) =
φt,jaijÃ

′
j p̃t+1

πj

/
C1 (A.2)

P (St = j, St−1 = i|Fn) =
φt,jaijp

(i)
t−1Ã

′
j p̃t+1

πj

/
C2 (A.3)

where C1 and C2 are the normalizing constants.

C1 =
P (St−1 = i|Fn)f(Fn)

p
(i)
t−1f(Ft−1)f(Ft+1,n)

or C1 =
K∑
k=1

φt,kaikÃ
′
kp̃t+1

πk

and

C2 =
f(Fn)

f(Ft−1)f(Ft+1,n)
or C2 =

K∑
k=1

K∑
l=1

φt,kalkp
(l)
t−1Ã

′
kp̃t+1

πk
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Proof.

P (St = j|St−1 = i,Fn)

=
P (St = j, St−1 = i,Ft,Ft+1,n)

f(Fn)P (St−1 = i|Fn)

=
f(Ft|St = j, St−1 = i)f(Ft+1,n|St = j, St−1 = i)P (St = j, St−1 = i)

f(Fn)P (St−1 = i|Fn)

(by indepdence of Ft and Ft+1,n given St = j)

=
P (Ft, St = j, St−1 = i)P (Ft+1,n, St = j, St−1 = i)P (St = j, St−1 = i)

P (Fn)P (St−1 = i|Fn)P (St = j, St−1 = i)P (St = j, St−1 = i)

=
P (Ft, St = j, St−1 = i)P (Ft+1,n, St = j, St−1 = i)

P (Fn)P (St−1 = i|Fn)P (St = j, St−1 = i)

=
f(yt|St = j, St−1 = i,Ft−1)P (St = j, St−1 = i,Ft−1)

f(Fn)P (St−1 = i|Fn)

· P (St−1 = i|St = j,Ft+1,n)P (St = j,Ft+1,n)

P (St−1 = i|St = j)P (St = j)

=
f(yt|St = j)P (St = j|St−1 = i,Ft−1)P (St−1 = i|Ft−1)f(Ft−1)

f(Fn)P (St−1 = i|Fn)

P (St−1 = i|St = j)P (St = j,Ft+1,n)

P (St−1 = i|St = j)P (St = j)

=
f(yt|St = j)P (St = j|St−1 = i)P (St−1 = i|Ft−1)f(Ft−1)

f(Fn)P (St−1 = i|Fn)

P (St−1 = i|St = j)P (St = j|Ft+1,n)f(Ft+1,n)

P (St−1 = i|St = j)P (St = j)

=
φt,jaijp

(i)
t−1P (St = j|Ft+1,n)

f(St−1 = i|Fn)πj

f(Ft−1)f(Ft+1,n)

f(Fn)

=
φt,jaijp

(i)
t−1

∑K
l=1 P (St = j, St+1 = l|Ft+1,n)

P (St−1 = i|Fn)πj

f(Ft−1)f(Ft+1,n)

f(Fn)

=
φt,jaijp

(i)
t−1

∑K
l=1 P (St = j|St+1 = l,Ft+1,n)P (St+1 = l|Ft+1,n)

f(St−1 = i|Fn)πj

f(Ft−1)f(Ft+1,n)

f(Fn)
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=
φt,jaijp

(i)
t−1

∑K
l=1 ãlj p̃

l
t+1

P (St−1 = i|Fn)πj

f(Ft−1)f(Ft+1,n)

f(Fn)

=
φt,jaijÃ

′
j p̃t+1

πj

p
(i)
t−1f(Ft−1)f(Ft+1,n)

P (St−1 = i|Fn)f(Fn)

Since f(Ft−1)f(Ft+1,n)

f(Fn)
is a constant and p(i)

t−1, P (St−1 = i|Fn) does not depend

on j, thus also a constant. Then

P (St = j|St−1 = i,Fn) ∝
φt,jaijÃ

′
j p̃t+1

πj

and

P (St = j, St−1 = i|Fn) = P (St = j|St−1 = iFn)P (St−1 = i|Fn)

=
φt,jaijÃ

′
j p̃t+1

πj

p
(i)
t−1f(Ft−1)f(Ft+1,n)

hhhhhhhhP (St−1 = i|Fn)f(Fn)

hhhhhhhhP (St−1 = i|Fn)

∝
φt,jaijp

(i)
t−1Ã

′
j p̃t+1

πj

This formula is correct because we can show the following relation. Let

c0 = f(Ft−1)P (Ft+1,n)

f(Fn)

P (St = k|Fn) =
K∑
l=1

P (St = k, St−1 = l|Fn)

=
K∑
l=1

P (St = k|St−1 = l,Fn)P (St−1 = l|Fn)
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=
K∑
l=1

φt,kalkp
(l)
t−1Ã

′
kp̃t+1

πkP (St−1 = l|Fn)
· c0P (St−1 = l|Fn)

(from formular (2) with constant C1)

=
K∑
l=1

φt,kalkp
(l)
t−1Ã

′
kp̃t+1

πk
· c0

=
φt,k

∑K
l=1 alkp

(l)
t−1Ã

′
kp̃t+1

πk
· c0

=
P (yt|St = k)P (St = k|Ft−1)Ã′kp̃t+1

πk
· c0

=
P (yt|St = k,Ft−1)P (St = k|Ft−1)Ã′kp̃t+1

πk
· c0

=
P (yt, St = k|Ft−1)Ã′kp̃t+1

πk
· c0

=
P (St = k|Ft)f(yt|Ft−1)Ã′kp̃t+1

πk
· c0

=
p

(k)
t Ã′kp̃t+1

πk
· f(yt|Ft−1)c0

∝ p
(k)
t Ã′kp̃t+1

πk

Theorem 7. If Let X = 1
2Y 2 and X ∼ Gamma (g, λ), then

E(Y 2) =
1

2λ(g − 1)
, E(Y ) = (2λ)−

1
2

Γ(g − 1
2
)

Γ(g)

and

var(Y ) =
1

2λ(g − 1)
−

Γ2(g − 1
2
)

2λΓ2(g)
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Proof. Let pdf of X be fX(x) = 1
Γ(g)λg

xg−1 exp
{
x
λ

}
, and

dx

dy
= − 1

Y 3

, then pdf of Y is

fY (y) =
1

Γ(g)λg
2−g+1Y −2g−1 exp

{ 1

2λY 2

}
∀y > 0

EY =

∫ ∞
0

yfY (y)dy =

∫ ∞
0

1

Γ(g)λg
2−g+1Y −2(g− 1

2
)−1 exp

{ 1

2λY 2

}
dy

=
Γ(g − 1

2
)λg−

1
2

Γ(g)λg
2−g+12g−

1
2
−1 =

Γ(g − 1
2
)

Γ(g)
(2λ)−

1
2

EY 2 =

∫ ∞
0

y2fY (y)dy =

∫ ∞
0

1

Γ(g)λg
2−g+1Y −2(g−1)−1 exp

{ 1

2λY 2

}
dy

=
Γ(g − 1)λg−1

Γ(g)λg
2−g+12g−2 =

1

2λ(g − 1)

var(Y ) = EY 2 − (EY )2 =
1

2λ(g − 1)
−

Γ2(g − 1
2
)

2λΓ2(g)

Theorem 8. Suppose that X follows Gamma distribution with parameters
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α and β with density function

f(x;α, β) =
1

Γ(α)βα
xα−1e−

x
β

Show that

E
[
logX

]
=

d
dα

log Γ(α) + logβ

Proof. First consider the definition of Gamma function and its derivative, if

Gamma function is defined as

Γ(α) =

∫ ∞
0

yα−1e−ydy

whose derivative is

dΓ(α)

dα
=

∫ ∞
0

(logy)yα−1e−ydy

Then

E[logX] =

∫ ∞
0

( log x)
1

Γ(α)βα
xα−1e−

x
β dx

Let y = x
β
then dx = βdy

E[logX]

=
1

Γ(α)βα

∫ ∞
0

( log y + log β)yα−1βα−1e−yβdy

=
1

Γ(α)

(∫ ∞
0

( log y)yα−1e−ydy +

∫ ∞
0

( log β)yα−1e−ydy
)
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=
1

Γ(α)

dΓ(α)

dα
+ log β

=
d
dα

log Γ(α) + log β

Theorem 9. Theorems about matrix expectations

E
[
XX ′

]
= ΣX + E(X)(EX)′

E(X ′AX) = tr
(
AΣX

)
+ (EX)′A(EX)

Theorem 10. If A is a symmetric matrix and Aij is the i, jth cofactor of A,

then
∂ log (|A|)

∂A
= 2A−1 − diag (A−1)

If A is a symmetric matrix and B is an arbitrary matrix and AB meaningful,

then
∂tr(AB)

∂A
= B +BT − diag(B)

extracted from Bilmes (1998) 1.

Theorem 11. Suppose under true model yt ∼ N (x′tβt, σ
2
t ) and under the

estimated model, yt ∼ N (x′tβ̂t, σ̂
2
t ). Let θt = (βt, σt), Kullback-Leibler

1A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estima-
tion for Gaussian Mixture and Hidden Markov Models, International Computer Science
Institute
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(KL) divergence is

KL(θt, θ̂t) =
1

2

((
x′t(βt − β̂t)

)2

σ̂2
t

+
σ2
t

σ̂2
t

− 1− log
(
σ2
t

σ̂2
t

))

Proof. By definition of KL divergence, i.e. Eθt

[
log fθt (yt)

f
θ̂t

(yt)

]
, and let f(yt) be

fθt(yt) for short

KL =

∫ ∞
−∞

fθt(yt)

[
log

σ̂t
σt
− (yt − x′tβt)2

2σ2
t

+
(yt − x′tβ̂t)2

2σ̂t

]
dyt

= log
σ̂t
σt
− 1

2σ2
t

[ ∫
y2
t f(yt)dyt − 2x′tβt

∫
ytf(yt)dyt + (x′tβt)

2

∫
f(yt)dyt

]
+

1

2σ̂2
t

[ ∫
y2
t f(yt)dyt − 2x′tβ̂t

∫
ytf(yt)dyt + (x′tβ̂t)

2

∫
f(yt)dyt

]
= log

σ̂t
σt
− 1

2σ2
t

(
(x′tβt)

2 + σ2
t − 2(x′tβt)

2 + (x′tβt)
2
)

+
1

2σ̂2
t

(
σ2
t + (x′tβt)

2 − 2x′tβ̂tx
′
tβt + (x′tβ̂t)

2
)

=
1

2

((
x′t(βt − β̂t)

)2

σ̂2
t

+
σ2
t

σ̂2
t

− 1− log
(
σ2
t

σ̂2
t

))
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