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Abstract of the Dissertation
Untangling the interactions: Structural basis of nitric oxide regulated cyclic-di-
GMP metabolism in bacteria
by
Tanaya Lahiri

Doctor of Philosophy

in
Chemistry
(Concentration — Chemical Biology)
Stony Brook University

2013

Bacteria use numerous small molecules for cellular signaling. These primary and
secondary messengers act within the cell to relay signal transduction and regulate
distinct pathways. Among these the diatomic gas molecule nitric oxide (NO) and the
nucleotide cyclic-di-GMP play central role in virulence, quorum sensing, and biofilm
formation. In this dissertation, we have focused on the H-NOX (heme-nitric
oxide/oxygen binding) protein in the biofilm—dwelling bacterium Shewanella woodyi
(Sw), which mediates NO-induced biofilm dispersal by modulating the activity of a dual—
functioning diguanylate cyclase/phosphodiesterase enzyme that we have named HaCE,
(H-NOX-associated cyclic-di-GMP enzyme). These enzymes tightly regulate the
intracellular spatio-temporal concentrations of cyclic-di-GMP which is synthesized from

2 molecules of GTP by enzymes called Diguanylate Cyclases (DGC), and gets
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hydrolyzed to pGpG by enzymes called Phosphodiesterases (PDE), in turn controlling
biofilm formation. Thus, H-NOX/HaCE represents a potential drug target for regulating
biofilm formation. This is the first biophysical and structural study of an NO-bound SwH-
NOX/SwHaCE complex. We have shown that SwWH-NOX/SwHaCE associate in a a3,
(heterotetramer) stoichiometry. The SwH-NOX surface residues critical for binding to
SwHaCE have been identified using NMR studies. Fluorescent quenching binding
studies, co-immunoprecipitation and enzyme assays confirm this protein-protein

interface and its importance for H-NOX/HaCE function.

Also described is the role of charged residues that are required for substrate binding
and divalent metal ion coordination in the hydrolysis of cyclic-di-GMP by PDE domains
found in bi-functional enzymes with an N-terminal DGC domain. Previously published
crystal structures of active PDE enzymes indicate a TIM-barrel type of fold for the
catalytic domain. The catalytic pocket, situated towards the C-terminus, contains an
unstructured loop, called “loop 6”, which is conserved in this family of enzymes. In this
work, the role of these conserved residues has been elucidated using mutational
studies combined with biophysical studies and enzymatic analysis to show how

structure affects enzyme function.
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CHAPTER 1: INTRODUCTION

1.1 Signaling in bacteria via protein-protein interactions and role of

gasotransmitters

Signaling networks in all organisms are composed of modular proteins that function in a
cohesive, signal-dependent manner. At the molecular level, this behavior can include
conformational changes, interactions with other modular units, change in enzyme function and
changes at the genomic level. In other words, signal transduction relays can reflect at the
transcriptional, translational as well as post-translational level. Gas molecules have been known
to play important roles as signaling molecules in both mammals and bacteria. Nitric oxide (NO)
signaling is well established in mammals, where it plays functional roles in physiological
processes such as vasodilation, smooth muscle relaxation and neuronal signaling[1]. Soluble
guanylyl cyclase (sGC) is the only known mammalian sensor of NO, with biochemical studies

showing that the alpha-subunit of sGC binds NO at picomolar concentrations[2].
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Figure 1-1: Schematic of NO production and diffusion in mammalian cells. NO synthesized by
endothelial NOS diffuses out to neighboring cells, where it can bind to the mammalian NO
sensor, sGC, which has a heme subunit in the p subunit.

sGC contains 4 domains in each monomeric subunit (o, ) — HNOB domain (heme nitric oxide
binding), PAS domain (Per/Art/Sim), CC domain (coiled-coil) and catalytic cyclase domain
(catalyzes cyclization of GTP to cGMP). The HNOB domain in the 3 subunit binds a heme
(heme B) cofactor, known as H-NOX (heme nitric oxide/oxygen binding domain); this can bind
gas molecules (NO, CO, 0O;) as ligands[2]. The o and p monomer subunits function as
heterodimers to catalyze the cyclization of GTP to cGMP, an intracellular secondary messenger
molecule in mammals. NO-binding to the  heme subunit results in an upregulation in the
activity of the cyclase domain, which is mediated via interactions through the coiled-coil domain

and the PAS domain[3, 4] (fig 1-1).
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Interestingly, homologs of the N-terminal heme containing H-NOX domain that binds NO were
found in bacterial genomes[5, 6]. Since then, many bacterial genomes have been characterized
and found to encode an H-NOX gene, often as a stand-alone protein or fused to output domains

(fig 1-2).

H-NOX Histidine kinase

/

Diguanylate cyclase

H-NOX Chemotaxis protein

/

Figure 1-2: Genomic arrangement of bacterial H-NOX domains. Many H-NOX proteins are co-
cistronic with enzymes such as diguanylate cyclases, phosphodiesterases, histidine kinases
and response regulators.

1.2 Bacterial H-NOX and association with co-cistronic enzymes

Many bacterial genomes have annotated genes encoding the H-NOX domain containing
protein[6]. This domain, which senses NO in mammals, was predicted to have a similar function
in bacteria. The characterized bacterial H-NOX proteins (Thermoanaerobacter tengcogenesis
(Tt), Nostoc sp.) show high sequence and structural similarity with the mammalian member,
which is part of sGC. The predicted heme-binding pocket containing histidine and proline as the

distal and axial ligands, respectively, is conserved in the bacterial H-NOXs (fig 1-3).
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Figure 1-3: Sequence alignment of bacterial H-NOX domain containing proteins to identify
conserved residues. The H-NOX proteins used for alignment are: Vibrio fischeri, Shewanella
woodyi, Agrobacterium vitis, Caulobacter cresentus, Shewanella oneidensis, Nostoc species,
Thermoanaerobacter tengcogensis. The green triangles represent residues that are required for
certain folds and are part of the heme pocket but are not absolutely conserved. The red
triangles represent residues that form the heme pocket and are required for heme binding.

Bacterial H-NOX domains have also been shown to bind various gas ligands - O,, NO and
CQ[5]. Certain bacterial H-NOX proteins that bind both O, and NO, like TtH-NOX, contain a
tyrosine that can provide additional hydrogen binding in the heme pocket for O, binding[5].
However, H-NOX binds NO most sensitively and specifically while discriminating against other

ligands; this further defines its role as a sensitive and specific NO sensor (fig 1-4, 1-5).
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Figure 1-4: Close-up of the O,-bound heme pocket from Tt H-NOX. The ligand binding residues
are highlighted: L144, H102 and P115.

Figure 1-5: Close-up of the NO-bound heme pocket from Nostoc H-NOX. The ligand binding
residues are highlighted: W74, M144, H105 and P118 (adapted from Ma et al[7].).
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In bacterial genomes, H-NOX domain containing proteins are often found in the same operon as
other enzymes — such as histidine kinases, diguanylate cyclases and phosphodiesterases|8].
These enzymes participate in various signal - regulated pathways such as two-component
signaling, biofilm formation and virulence. This co-cistronic arrangement hints towards the
possible regulation of such enzymes via NO-sensing, as these enzymes could be associating
with NO-bound H-NOX to regulate various pathways (fig 1-6). These include two-component
systems, where NO-bound H-NOX regulates the activity of a histidine kinase[9-11]. This further
affects the phosphorelay downstream to a response regulator, which may be involved in
transcriptional regulation. NO-bound H-NOX can also associate with enzymes called
diguanylate cyclases (DGC)/phosphodiesterases (PDE) that are collectively called H-NOX
associated cyclic-di-GMP processing enzymes (HaCE). These enzymes are involved in the
synthesis/degradation of a small messenger molecule cyclic-di-GMP, which participates in
multiple metabolic pathways[12, 13]. NO-bound H-NOX can modulate enzymatic activity to
regulate the intracellular concentration of this metabolite, thus directly influencing in-vivo signal
relay. Recently, NO-bound H-NOX has also been shown to impact bacterial group behavior,

which is imperative to quorum sensing and biofilm formation[14-16].
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Figure 1-6: NO sensing in bacteria. Exogenous NO diffuses through outer membrane and binds
to the bacterial NO sensor, which is a homologue of the N-terminal HNOB heme-bound subunit
of sGC. The NO-bound H-NOX can further affect functional proteins.

1.3  Signal regulated group behavior in bacteria

Bacteria display amazing adaptive abilities by probing their environment and reacting
accordingly by making subtle or distinct changes to their lifestyle. Some of the traits of these
lifestyles are planktonic, free-swimming state, where the cells can glide freely across surfaces in
pursuit of nutrients[17, 18]. This is very distinct from the surface-adhered state prevalent in a

biofilm, where the cells accumulate together to form a macrocolony engulfed in a layer of matrix
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consisting of polysaccharides, extracellular DNA and proteins (fig 1-7). Biofilm formation offers
an evolutionary advantage in terms of protection, camouflage and symbiosis[19], and there are
definite pathways that regulate these changes. Specific signals help to gather the “quorum” —
composed of a group of bacteria, which can then start the attachment process and then mature

into a macrocolony.

. Extracellular matrix: exo-
Planktonic, polysaccharides (EPS),
H H extracellular DNA,
~ ~ free SWImmmg proteins, molecules
~ bacteria

Initial Irreversible Maturation Maturation and
attachment attachment (microcolony) dispersal
(macrocolony)

Figure 1-7: A biofilm consists of bacterial colonies engulfed in a polysaccharide matrix attached
to a surface. The initial attachment to a surface is followed by irreversible attachment, when the
bacteria start losing their flagella. Next, the cells accumulate to form a microcolony, which
matures into a macrocolony, surrounded by a polysaccharide matrix. Often, a few cells in the
biofilm can regain their flagella to exit the biofilm and recolonize on a different surface.

Several bacteria are responsive to environmental signals that either promote or disperse biofilm
by regulating secondary pathways[17]. Recent literature provides evidence for the emergence of
NO as a dispersal agent of bacterial biofilms[20-22]. Several studies show that exposure to low
nanomolar concentrations of NO causes detachment and release of bacteria from surfaces.
This has often been correlated to change in secondary messenger concentration, cyclic-di-GMP

(c-di-GMP) within the cell via modulation of the DGC/PDE activity[23-27] (fig 1-8).
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Figure 1-8: Small molecules like exogenous NO and intracellular cyclic-di-GMP play regulatory
roles in biofilm formation. Increased levels of cyclic-di-GMP are associated with increased
biofilm, whereas NO has been shown to initiate dispersal.

Studies from our lab and other labs examine the role of NO in biofilm dispersal, which includes
microbiology studies and identification of proteins that contribute to this pathway. In Shewanella
woodyi (Liu et. al.), NO was shown to decrease cyclic-di-GMP concentrations by modulating the
activity of an H-NOX associated bi-functional enzyme HaCE (H-NOX associated cyclic-di-GMP
processing enzymes). Increased PDE activity leading to lower intracellular cyclic-di-GMP levels
was correlated with reduced biofilm formation. Also, biofiim formation in Ahnox and Ahace
strains were shown to be unaffected by NO, confirming the role of NO/H-NOX/HaCE in this

bacteria.
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Figure 1-9: In Shewanella woodyi, Fe(ll)-unligated H-NOX upregulates the diguanylate cyclase
activity of SwHaCE, causing an increase in the intracellular cyclic-di-GMP levels and increased
biofilm formation. NO-bound H-NOX increases the phosphodiesterase activity of SwHaCE,
decreasing cyclic-di-GMP levels in the bacteria, leading to decreased biofilm formation.

1.4 HaCE proteins in bacteria: importance and role in signal transduction

Over recent years cyclic-di-GMP has been implicated in various signal transduction pathways
such as virulence, quorum sensing, biofilm formation and flagellar motor movement. Often, a
primary environmental stimulus causes a change in the intracellular concentration of cyclic-di-
GMP[28]. Many receptor proteins are sensitive to this flux of c-di-GMP and respond by (a)
altering gene expression - silence transcription of polysaccharide genes (pel and psl)[24, 29],
(b) inhibit flagellar motor assembly[30, 31] and (c) activate virulence genes[32-34]. Together,

this is part of a multi-layer signaling relay that initiates cellular response (fig 1-10).

Introduction: An overview of concepts and designs 10



O lons, nutrients, proteins,
carbohydrates,

0,N0.CO_ o gQ High 0O Op (§ Swombiory antbit

Light temperature

levels

00

Input signal
+ Cell-cell
signals (QS) Sensor
Signal
transduction
Subcellular © I
\DPW' ofcdi-g © Amplification
GMP
Transcription
/l regulators l\ Target
Flagellum 4 N\,
Motility
Secretion system
Fimbriae, pili Virulence
Polysaccharides
Adhesion
@ PAS V¥ QS signal receptor O Other receptor
[\ PDE {] C-di-GMP receptor- Histidine kinase
effector complex ‘ sensor
c-di-GMP receptor
( (eg. PilZ) P Ib Response regulator Transmembrane receptor
with diverse intracellular
() DGC {} BLUF signaling module

Figure 1-10: Multi-level signaling cascade regulated by cyclic-di-GMP (adapted from review by
Hengge, R.[35]).

There are mainly 2 classes of enzymes that control the concentration of c-di-GMP in the cell —
diguanylate cyclases (DGCs) and phosphodiesterases (PDEs). DGCs or GGDEF-motif
containing domains synthesize one molecule of c-di-GMP from 2 molecules of GTP, and

produce 2 molecules of inorganic pyrophosphate (PP;) as a side product (fig 1-11).
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Figure 1-11: Reaction scheme for synthesis of cyclic diguanylate phosphate from 2 molecules
of GTP by diguanylate cyclase domains. The bond being made is indicated in red.

PDEs or ExL-motif containing domains hydrolyze c-di-GMP to the linear pGpG (fig1-12).
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Figure 1-12: Reaction scheme for hydrolysis of cyclic diguanylate phosphate to pGpG by
phosphodiesterase domains. The bond being broken is indicated in red.
Other domains, called HD-GYPs, hydrolyze c-di-GMP to pGpG and ultimately to GMP.
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Other than these enzymes, some receptors with novel c-di-GMP binding folds have been
identified — PilZ, degenerate GGDEF and EAL-containing domains (FimX) and RNA
aptamers[36]. These receptors sequester c-di-GMP within the cell, and, together with these

enzymes, maintain the spatio-temporal distribution of c-di-GMP within the cell.

It has been recently discovered that bacterial genomes encode multiple copies of GGDEF and
EAL domain containing proteins[6]. This genomic distribution hints towards a flux of c-di-GMP
concentration rather than a steady state concentration. Bioinformatics analyses show that
several of these enzymes contain a regulatory domain — heme-bound PAS, light sensing
domain BLUF, oxygen sensing heme-bound domain, NO sensing H-NOX domain and
phosphate sensing transmembrane domains[37]. Although most of these regulatory domains
have been shown to regulate the activity of the enzymatic domains in a signal-dependent
manner, causing phenotypic changes in the cell, the molecular mechanism of signal

transduction is still being established.

1.5 Enzymatic regulation of other GGDEF-EAL proteins during signal

transduction

Published crystal structures for several characterized GGDEF and EAL domains provide an
insight into the mechanism of catalytic activity. The diguanylate cyclase from P. fluorescens,
WspR, has been well characterized. The N-terminal of WspR has a REC domain that is
phosphorylated by a kinase, causing distinct conformation and oligomerization changes in the
protein to affect the cyclase activity[38, 39]. In another diguanylate cyclase containing response
regulator protein, PleD, it was shown that phosphorylation affects cyclase activity by long-range
conformational perturbations[40, 41]. Similar signal induced enzymatic activity studies have also

been undertaken for PDE domains. For a BluF domain associated PDE domain, it was shown
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that blue light sensed by the BluF domain induced structural changes in the phosphodiesterase
domain to affect enzymatic activity[42, 43]. This enzymatic activity was further implicated in
phenotypic change in Acenitobacter baumanii, where it was shown that blue light regulates
biofilm formation. However, the various factors that control the activity of these enzymes are still
being identified. Even more intriguing is the presence of multiple proteins encoding GGDEF-ExL
di-domain protein. Preliminary studies have indicated that this could be part of a product
inhibition regulatory loop to check the activities of individual enzymatic domains. A study of one
such bi-functional enzyme showed that higher concentrations of GTP, the substrate for the
cyclase domain, enforced allosteric control on the phosphodiesterase activity of the enzyme[44].
These detailed enzymatic analyses indicate a rigorous and stringent mechanism to synchronize
the hydrolysis and synthesis of cyclic-di-GMP within the cell, creating subcellular pools for

specific functions.

1.6  Signal transfer via heme distortion and ligand binding in H-NOX proteins

Crystal structures of H-NOX in both Fe(ll) unligated form, Fe(ll)-NO bound form and the Fe(ll)-
CO bound form indicate substantial shifts in the protein conformation as a function of ligand
binding[45]. In the sGC and other bacterial H-NOX domains, it has been established that upon

binding NO, the distal histidine ligand disassociates to form a 5-coordinate complex (fig1-13).

Introduction: An overview of concepts and designs 14



Figure 1-13: NO-bound heme from Ns H-NOX; the disassociated His-heme bind is shown as
broken lines.

It has been shown that the disassociation of histidine causes long-range conformational
changes to affect the cyclase activity of sGC. In a recent study[4], Underbakke et al. have
mapped the interactions between individual domains of sGC to determine the path of signal
transfer, starting from binding of NO to the sGC H-NOX, leading to the enhanced activation of
the cyclase domain. The model described involves direct interactions between the sGC PAS
and H-NOX domain upon NO-binding that translate into long distance perturbations. Some of

these interaction surfaces include the N-terminal helices (aB-aC ) of the H-NOX domain.

Crystal structures of NO-bound H-NOX show the heme to be highly distorted, corresponding to
the activated state of sGC. This distortion is accompanied by conformational shifts in the N-
terminal helical region of H-NOX. Similar studies have been done in bacterial H-NOX
proteins[45], where NO was shown to cause heme bending and rotational shift in N-terminal

helices. CO-binding caused similar heme pivoting and bending, but with less shift in N-terminal
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helices. The general hypothesis is that signal-binding event (NO) is transduced via these
perturbations at the N-terminal helices, which can interact with output domains and modulate
their function by protein-protein interactions. This completes the signal relay to affect a cellular

function.

1.7 Hypothesis and Overview of projects undertaken in this dissertation.
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Figure 1-14: Overview of projects and system undertaken in this thesis.

In chapter 2, we have determined the molecular basis of NO-regulated SwH-NOX/SwHaCE
protein - protein interaction. Our lab has previously shown that depending on the ligation state,
SwH-NOX differentially regulates the diguanylate cyclase and phosphodiesterase activity of the
bi-functional enzyme SwHaCE. The NO-dependent regulation of this bi-functional enzyme leads

to a decrease in intracellular cyclic-di-GMP concentrations, causing biofilm dispersal. Thus, this
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protein complex regulates biofilm dispersal in Shewanella woodyi through an NO-dependent
mechanism.

In this work, we have elucidated the interaction surface of the SwH-NOX/SwHaCE protein
complex, determined the oligomeric state and identify the role of binding surface in the

enzymatic regulation of SwHaCE activity.

The SwH-NOX shares significant homology with other characterized bacterial H-NOX and the
mammalian sGC H-NOX domain. A homology model generated by structural alignment
indicates that the fold is similar to the one observed for other H-NOX protein structures, and the

essential heme binding residues (H104, P115) are conserved (fig 1-14).

Figure 1-15: Structural alignment of SwH-NOX (cyan) and NO-bound NsH-NOX (mustard
yellow), generated using PyMoL. The secondary structural elements (helices and sheets) are
also shown. The NO-bound structure of NsH-NOX (PDB ID: 200C[7]) was used as template.
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We used uniformly labeled ("°N, "*C) SwH-NOX Fe(l1)-CO to assign about 75% of the backbone
resonances in a 2D-HSQC spectra for SWH-NOX. The spectra for "N, "*C—labeled SwH-NOX
Fe(l1)-CO by itself was compared to a 1:1.25 molar mix containing "°N, "*C—labeled SwH-NOX
Fe(ll)-CO and unlabeled SwHaCE. To accomodate for the size of the large protein complex, we
used N, *C TROSY-HSQC for higher resolution. Chemical shift perturbation (CSP) studies
were used to identify backbone resonances for residues that showed tremendous shift in the
presence of SwHaCE, and were found to reside in the N-terminal helices of SwWH-NOX (fig 1-

15).
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Figure 1-16: Scheme for mapping protein-protein interaction sites using chemical shift
perturbation (CSP) studies.

The oligomeric state of this complex, as determined by sedimentation equilibrium, was found to
be heterotetrameric. This is the first stoichiometric characterization of a H-NOX/HaCE

axb, complex.

In chapter 3, the functional characterization of catalytic residues and loop 6, an important

structural feature of PDE domains, is described for the PDE domain from the bi-functional
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enzyme SwHaCE. In this study, we have elucidated the role of the conserved active site
residues in the hydrolysis of cyclic-di-GMP. We have also explored the catalytic role of loop 6, a
conserved structural loop required for catalysis. These mutants were shown to completely
abolish PDE activity, confirming their role in catalysis. We have analyzed point mutations of
these residues using oligomerization studies to determine affect on structure. Using enzyme
assays, we have shown that SwH-NOX Fe(ll) upregulates the cyclase activity of these mutants
similar to WT SwHaCE, indicating that mutating the active site residues does not affect H-

NOX/HaCE binding.

In chapter 4, we have determined the in-vivo effects of NO and cis-2-decenoic acid as biofilm
dispersal molecules. Individually, NO and DSF are known to disperse biofilms. In this study, we
have compared the synergistic vs. additive effects of NO and DSF together as biofilm dispersal
agents. We have investigated 3 species — Shewanella woodyi, Shewanella oneidensis and

Pseudomonas aeruginosa, to compare the effects on biofilm dispersal.

In chapter 5, we offer a discussion about preliminary structural studies (SAXS) of the H-
NOX/HaCE complex from Shewanella woodyi. The SAXS studies have been designed to
extract information on the association of NO-bound H-NOX vs. Fe(ll)-unligated H-NOX with
HaCE. This sho