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Abstract of the Dissertation

Quantitative Study of Protein Folding and Conformational Switch with

Molecular Dynamics Simulation and Multi-Dimensional Spectroscopy

by

Zaizhi Lai

Doctor of Philosophy

in

Chemistry

Stony Brook University

2014

This dissertation presents the quantitative approaches towards the study of dynam-

ics and nonlinear spectroscopy of protein folding and conformational switches. Molecular

dynamics (MD) simulations and two-dimensional spectroscopy computations were em-

ployed in the investigation of two protein systems: Glutamine-binding protein (GlnBP)

and the Trp-cage. GlnBP is one of the periplasmic binding proteins that carry small

ligands from the periplasmic space into the cytoplasmic space. In the process of the con-

formational transition, GlnBP exhibits two stable states, that is, the ligand-free open state

and the ligand-bound closed state. Traditionally, the potential energy shape in the molec-

ular dynamics simulation is one basin. In this work we applied a structure-based two-well

potential energy model to study the properties of the kinetics and statistical distributions

for the conformational transition of GlnBP. The analysis shows that below the melting

temperature, the open and closed basin of attractions emerge and the kinetic analysis
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through the mean and distribution of the first passage time as well as the auto-correlation

function implies the complexity and the hierarchical structure of the underlying energy

landscape. The multi-dimensional diffusion dynamics of GlnBP conformational change

were also investigated in this work. We found that the diffusion is anisotropic and in-

homogeneous. The directional and positional dependence of diffusion have significant

impacts on the protein conformational kinetics: the dominant kinetic path of confor-

mational change is shifted from the naively expected steepest descent gradient paths.

The kinetic transition barrier with considering coordinate-dependent diffusion coefficient

is shifted away from the transition barrier without considering the coodinate-dependent

effect.

This work also proposes the use two-dimensional infrared spectroscopy(2DIR) and

two-dimensional ultraviolet spectroscopy(2DUV) to characterize the folding mechanism

of the mini-protein Trp-cage. In this study the Trp-cage was folded by atomistic MD

simulation and intermediate conformational ensembles were clustered along the dominant

folding pathway of energy landscape. The nonchiral and chiral two-dimensional coherent

spectra were calculated for the intermediate and folded states of the mini-protein. A direct

structure-spectra relationship was determined by the analysis of conformational proper-

ties. The structural origins of diagonal and off-diagonal peaks in the 2DIR spectrum were

identified for the folded and intermediate conformational ensembles in the folding mech-

anism and isotope-labeling was used to reveal residue-specific information. Besides, the

complexity of 2DUV signals decreases as the conformational entropy decreases during the

folding process, implying that the approximate entropy of the signals provides a quanti-

tative marker of the protein folding status. These works support the implementation of

computational techniques in conjunction with experimental two-dimensional spectroscopy
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to study the folding mechanism of proteins.
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Chapter 1 Introduction

1.1 Protein and Protein folding

Proteins are heteropolymer chain biomolecules, built by the assembly of the twenty

amino acids occurring in nature through the chemically stable peptide bond. Proteins

perform and control most functions in almost all living organisms, which include assisting

molecules to cross cell membranes, transmitting information between specific cells and

organs, catalyzing biochemical reactions, transporting and storing of a variety of nutri-

tion elements, regulating the activity of the immune system etc. In order to perform their

biological functions, proteins have to fold their unique and stable three-dimensional struc-

tures, also known as the native conformations. The process in which a protein reaches its

native conformation starting form the loosen structure or random coil is called protein

folding, which is a complicated process that has attracted the attentions of scientists for

more than half of a century. Protein folding is one of the important processes in the

genetic central dogma. Solving the problem of protein folding has important academic

significance. Moreover, protein misfolding is often the root cause of diseases. As such

proteins are the primary target of pharmaceuticals developed for the treatment of human

disease. Specifically, the activity of misfolded proteins has been implicated in diseases

including Alzheimers, Diabetes, Parkinsons1–3, etc. Although numerous efforts have been

made to investigate this problem, the mechanism of this physical chemistry process re-

mains elusive. There are essentially two prospects involving in this incompletely resolved

problem:(a) the thermodynamic question of how a native structure results from the inter-
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atomic forces acting on an amino acid sequence; (b) the kinetic problem of how a native

structure can fold so fast. Let us consider a protein which has only 100 amino acids and

assume that there are only three possible orientations per residue, we obtain 3100 possible

conformational states. If one assumes that an jump from one conformation to the another

one requires 100 picoseconds, although we exclude the inaccessible conformation due to

steric reason, it still would take around 1027 years which is longer than the age of universe

to randomly explore all other conformations before acquiring the native state. However,

in reality, typical folding times range from microseconds to seconds. This puzzle is known

as Levinthals paradox4.

1.2 Anfinsen Assumption

How can proteins reach their native state among the abundant diversity of confor-

mational space? The first attempt to address this question came from Anfinsen, whose

studies on the re-folding of ribonuclease5 showed that protein sequences under physiolog-

ical conditions can automatically find their native state by minimizing the free energy.

Anfinsen assumption5 suggests that all the information for protein folding is coded in its

amino acid sequence and the native state exists as the state in normal physiological con-

ditions which minimizes its Gibbs free energy globally. This means that the native state

is a unique minimum determined by the amino acid sequence as well as the environment

it is in. Anfinsen’s assumption gives the thermodynamic aspect of protein folding and has

an enormous impact on molecular biology. Yet, kinetically, the question remains. The

Anfinsen assumption does not tell how a protein folds in a reasonable biological timescale.

Thus, the study of protein folding should focus on finding a physically based underlying

mechanism responsible for guiding the process thermodynamically and kinetically.
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1.3 Energy Landscape Theory

The theory of the energy landscape6–9 provides not only a simply way of understand-

ing why the Levinthal paradox is not a real problem, but also a conceptual framework

for understanding the various scenarios of protein folding and other molecular motions,

for instance, protein binding. According to this theory, protein folding proceeds on the

a moderately rough energy surface, whose major features are the local minimum and the

overall funnel shape sloping toward the folded state. Random hetero-polymer, that is,

a polypeptide chain consisting of random amino acid sequences, may have either a very

rugged energy landscape with too many local minima or a very flat energy landscape10.

Such proteins can either easily trap in a local minima and cannot jump out or never

find the global minimum when walking randomly on the flat energy surface. Therefore,

because of evolution, the real proteins always contain optimized sequences so that they

can fold rapidly and efficiently into native conformational states11. In order to fold in

the reasonably biological time, proteins should have funnel-like energy landscape11. Al-

though the energy landscapes are high dimensional, they are usually projected into the

two dimensions in which the vertical axis represents the energy and the horizontal axis

represents the conformational entropy, as shown in the figure 1.1. The energy landscape

model is widely considered as the most realistic model for protein folding. It provides a

quantitative description of protein conformational space including the native state, various

unfolded or denatured states, and folding intermediate state.



Figure 1.1: A rugged funnel-like free energy landscape that describes the detailed processes

and various intermediates in the folding reaction. The width of the funnel represents the

conformational entropy; the depth of the funnel represents the change in energy between

the denatured and native states. This figure is from reference12.

1.4 Protein Binding

In addition to the problem of protein folding, another fundamental principle of bi-

ological processes is the molecular recognition and binding. Essentially, proteins need to

interact with other molecules such as peptides, ligands, and substrates in order to perform

their functions. Thus, a better understanding of biological processes requires the study

of both the protein folding mechanism and also the mechanism of protein-ligand bind-

ing. Protein folding and binding are similar processes because of their common essence:

the recognition and organization/reorganization of amino acides. The difference between

folding and binding is the presence and absence of the chain connectivity between their
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components, leading to two different terms, i.e., the intramolecular and the intermolecular

recognition. Therefore, the energy landscape theory may provide a consistent theoretical

framework to describe the mechanisms of protein folding and binding. In this thesis, we

will use the energy landscape theory to investigate the mechanisms of protein folding and

the protein binding process with large conformational switches.

1.5 Molecular Dynamic Simulation

1.5.1 Equations of Motions in Molecular Dynamic

Although the a sophisticated theoretical framework to study protein folding, binding

or other molecular motions has been provided, we still need the quantitative studies to

demonstrate the theories and connect to experiments. Computer simulations provide a

bridge between microscopic length and time scales and the macroscopic world. Basically

there are two main families of computer simulation techniques: Molecular Dynamics(MD)

and the Monte Carlo(MC). In this thesis we use the MD simulation approach. Based on

the empirical potential energy functions, the motion of a system is simulated through

step-by-step calculation of particles interactions, coordinates and velocities according to

the classical Newtonian equation:

mi
d2ri
dt2

= Fi, i = 1, 2, ..., N. (1.1)

Fi = −∂U

∂ri
, i = 1, 2, ..., N. (1.2)

where N is the number of atoms, ri is the vector of Cartesian coordinates of the i-th atom,

Fi is vector of forces acting on the i-th atom, and U is empirical potential energy and

also called force field in the molecular dynamic simulation.
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1.5.2 Force Field

The force field plays a key role in a molecular dynamic simulation. In Equation 1.2,

the potential forces are calculated by using the empirical potential functions, which can be

provided by some mature software such as CHARMM(Chemistry at Harvard Molecular

Mechanics)13, AMBER(Assisted Model Building with Energy Refinement)14 and so on.

In this thesis, the systems were studied by both CHARMM and AMBER software. Force

field functions and parameter sets are derived from both experimental work and high-level

quantum mechanical calculations. The design and parameterization of force fields for use

in protein simulations is a complex task, involving many decisions concerning which data

to emphasize in the fits. There are some review papers in this field15,16. The commonly

used protein force fields incorporate a relatively simple potential energy function:

U =
∑
bonds

Kb(b− b0)
2 +

∑
angles

Kθ(θ − θ0)
2

+
∑

dihedrals

Kϕ[cos(nϕ+ δ) + 1]2

+
∑

nonbondpairs

(
A

r12ij
− C

r6ij
+ 4πϵo

qiqj
rij

) (1.3)

The first three summations are over bonds (1-2 interactions), angles (1-3 interactions),

and dihedrals (1-4 interactions). The dihedrals term can also include so-called improper

torsions, where the four atoms defining the angle are not all connected by covalent bonds.

The last term includes the dispersion and exchange repulsion forces that are represented

by a Lennard-Jones 6-12 potential; this is often called the ”van der Waals” term. The elec-

trostatic interaction assumes partial charges qi on each atom that interact via Coulombs

law. If all the atoms of a protein are simulated by using the above potential energy func-

tion, we call it an all-atom model17. Although currently workers have developed powerful

computational resources, the simulations of protein molecular dynamic are still very time-
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consuming. When running a folding or unfolding trajectory, we usually need to run tens

of millions of steps, and for each step, we need to solve the Equations1.1 and 1.2 for thou-

sands of atoms in a general protein, when the all-atom model is considered. If we further

explicitly consider the solvent effect, the simulations may become impossible for a large

protein system. To overcome this limitation, we can the implicit-solvent model18, which

does not explicitly include the solvent molecules in the simulation but rather implicitly

considers the whole solvent as a continuum. This approach can dramatically reduce the

computational time. However, the computations are still expensive. Therefore, many

coarse-grained or simplified models have been developed to study large and interesting

molecular systems.

1.5.3 Reduced Models

Reduced, simplified or course-grained models of proteins in which each amino acid is

represented by a few interaction sites, provide an extension of the timescale of simulations

compared with that of all-atom model. The general simplified models usually consider

a single interaction site per residue, and the potentials between the sites are Lennard-

Jones types or other simpler contact potentials. The energy surfaces that are produced

by the simplified potential functions may not offer as many details as all-atom models do,

nevertheless, the reduced models have made significant contributions to our understanding

of molecular structure and function19–21. One of the reduced models is the structure-base

model22(also called Go model) in which the potentials for those pairs of residues in contact

in the native structure are attractive and those between other pairs repulsive. This model

is based on the assumption that the native-state structure largely determines the process

of folding or functional motion. In this thesis, part of the work is to apply a modified

7



structure-base model to study the protein binding process.

1.6 Two-Dimensional Spectroscopy

The MD simulation has provided a very useful tool to study the biological molecular

at atomic level, yet to further connect the theories and experiments, development of other

tools is necessary. Multidimensional nonlinear spectroscopy23–26 is a powerful tool for

the study of vibrational and electronic excitations of molecular. It can provide detailed

information on the dynamics and structure with high temporal and spatial resolution

by using femtosecond laser pulse sequences that interact with the molecule and gener-

ate coherent nonlinear signals, which include the rich information about the couplings

between different parts of the molecule, providing a multidimensional view of molecular

structure, interactions, and motion processes. Multidimensional spectroscopy techniques

provide a novel tool for studying protein folding. Moreover, studying the dynamical pro-

cess of the big systems will further inspire development of new methods and techniques

of multidimensional nonlinear optical spectroscopy. Here we apply the techniques of mul-

tidimensional nonlinear optical spectroscopy, including two-dimensional infrared(2DIR),

two-dimensional ultraviolet(2DUV) to investigate the folding process on the energy land-

scape. Details of muiltidimensional spectroscopy will be described in the fourth and fifth

chapters.

1.7 Summary

In Chapter 1 the background of protein folding and some methods and tools which

will be used in this thesis was introduced. Levinthal paradox was derived from the problem

of protein folding. Anfinsen explained the thermodynamic aspect of this paradox and
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proposed the Anfinsen assumption, which suggested that the process of protein folding

is controlled by minimizing free energy globally. However, Anfinsen assumption did not

explain the kinetical aspect of the paradox. The theory of free energy landscape provides

a consistent and sophisticated theoretical framework for explaining the protein folding

thermodynamically and kinetically. To quantitatively study the free energy landscape, in

the thesis, we used the methods of molecular dynamics simulation and two-dimensional

spectroscopy.
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Chapter 2 Investigating Protein Conformational Transition

with a Double-Well Model

2.1 Abstract

The structure of the glutamine-binding protein (GlnBP) from Escherichia coli is rep-

resentative of periplasmic binding proteins. A large functional conformational transitions

in the Glutamine-binding protein (GlnBP) are very important to bind and transfer the

ligand Glutamine. Upon ligand binding, the GlnBP changes conformation such that it is

subsequently recognized by a specific inner membrane transporter. A functional GlnBP

has two stable states, that is, open state and closed state. Here a structure-based double-

well model is applied to investigate the kinetic and dynamic properties of the GlnBP

conformational transition. Free energy landscape essentially is a function of temperature.

To investigate the various behaviors at different temperatures, the underlying free energy

landscape of the conformational transition with different temperatures are constructed

and the analysis shows that, below the melting temperature, they have two basins cor-

responding to the open state and the closed state of the protein, respectively. We also

investigated the first passage time distribution and the auto-correlation function to probe

the kinetic properties of the conformational switch. The complicated kinetic implies the

complexity and the hierarchical structure of the underlying energy landscape. The contact

maps of the structures are built up to probe the structural evolution of the conformational

transition. Finally, the ϕ values of the residues are calculated to illustrate the important

residues of the transition state.
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2.2 Introduction

Many proteins need to process large conformational transitions between different sta-

ble states to perform their biological functions. The flexibility and plasticity of a protein

allows it to bind ligands, form oligomers, and perform mechanical work. Current exper-

iments, including X-ray diffraction and NMR spectroscopy, are able to characterize the

structure of a biomolecule. The dynamical properties of a biomolecule can be probed by

spectroscopic techniques27,28. Although they may provide exact static structures or infor-

mation on the local environment surrounding the probe, global time-dependent structural

information is also difficult to be obtained directly by experiments, providing fewer details

on the dynamic and kinetics of conformational transitions. To more fully understand the

mechanism of ligand-induced conformational change one would also like to characterize

the structural dynamics of the transition. The gap between theory and experiment can

be filled by the computational simulations which potentially provide full time-dependent

structural information on biomolecules. In the last couples of decades, advances in com-

putational science have been significant development, modeling the whole processes of

protein motions, including binding and folding, at all-atom level for the large systems.

Most processes of interest occur on time scales (microsecond to second) inaccessible to

standard all-atom molecular dynamics simulations. One approach to overcome the prob-

lem of long-time scales in simulation is to use a simplified model. We propose to achieve

a long-time molecular dynamics simulation by describing the protein interactions in a

coarse grained way at the residue level in which the water molecules are not explicitly

included and native interactions are preferred.

Functional conformational transitions require a biomolecule to have at least a pair
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of conformational states. For the conformational transition, one important question is

how to describe numerous sub-conformations fluctuating around the two stable states

and the transition between them. The natural and simple way of modeling is so-called

energy landscape theory6–9, which was originally applied to solve the problem of protein

folding: the underlying energy landscape is funnel-like which leads the faster kinetics

and promises the thermal stability and specificity. In a perfect funneled landscape, the

global characteristics of the structural heterogeneity in the transition state ensemble seems

mostly determined by the native structure. The structure-base model22 was proposed to

emphasize the importance of the native structure by generalizing structure-base type in-

teractions22, that is, the attraction interactions are assigned to the pair of the residues

that interact in the native structure and repulsive interactions are endowed to the other

contacts. The model was expected to provide useful information about the topology of the

energy landscape and, from the previous studies29–31, has been proven to be an effective

model and consistent with many experiments. In our work, a new interaction was consid-

ered in the standard structure-based model to simulate the large conformational changes

and to study the dynamic and kinetic properties controlled by the underlying multiple-

basin energy landscape of proteins. The new interaction forms a two-well potential. One

corresponds to the open state and the other corresponds to the closed state.

GlnBP was used as the model protein to simulate the conformational transitions.

Two reference structures were supplied by X-ray crystallography32,33, as shown in Fig.

2.1(a) and Fig.2.1(b). GlnBP contains a single polypeptide chain of 226 residues. The

tertiary structure of GlnBP consists of 35 percent α-helix and 37 percent β-sheet. The

GlnBP is composed of two similar globular domains. The large domain includes two

separate peptide segments, residues 1 to 84 and residues 186 to 226, and the small domain
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includes residues 90 to 180. These two domains are linked by toe peptide hinges, which are

residues 85 to 89 and residues 181 to 185.These two domains look like two arms that can

open and close thus binding and releasing the ligand Glutamine. For the ligand-free open

structure of the GlnBP, the PDB code is 1GGG; for the ligand-bound closed structure of

the GlnBP, the PDB code is 1WDN.

2.3 Model

As described above, the GlnBP has two stable states and it is reasonable to use a

two-well model to simulate this system. In our simulations, we used a modified potential

energy U34 for a given protein conformation Γ:

Uwhole(Γ,Γ1,Γ2) =
N−1∑
bonds

Kb(bi − b0i)
2 +

N−2∑
angles

Kθ(θi − θ1i)
2(θi − θ2i)

2

+
N−3∑

dihedrals

Kϕ[cos(ϕi −
ϕ1i + ϕ2i

2
)− cos(

ϕ1i − ϕ2i

2
)]2

+
nonnative∑
|i−j|>3

ϵ

(
M

rij

)12

+
native∑
|i−j|>3

Vnat(rij) (2.1)

Where Γ1(Γ2) represents the native open(closed)state. The first three terms describe the

bond lengths, the bond angles and the torsion angles, respectively. For the bond term,

since the change between the open state and closed state is small, a single harmonic po-

tential was used; for the angle and dihedrals term, the changes between the two states

are so significant that the two-well from potential were applied to calculate the interac-

tions. The fourth term and fifth term give the non-bond interaction potential and the

native interaction, respectively. M is a constant number. In principle, the parameters

of each term can be calculated and fitted by quantum chemical calculations15, or can

be calibrated from the experimental data of NMR35, X-ray36, B-factor37 and so on. For

convenient, in our study, we applied the similar values that have been used in the several
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(a) Unbound-open structure

(b) Bound-closed structure

Figure 2.1: (a)The unbound-open structure of GlnBP. The region with the green color

is the large domain of GlnBP, and the region with the yellow color is the small domain.

The hinge region is labeled by blue color. (b) The bound-closed structure of GlnBP. The

green region and yellow region represent the large domain and the small domain of GlnBP,

respectively. The hinge region is labeled by the blue color, and the ligand glutamine is

marked by the red color.
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folding studies6,34,38. The explicit representation of the native interactions(the fifth term)

is following39. 

ϵ1Z(r)(Z(r)−a) with Z(r)=( r1
r )

k
if r<r1

CY (r)n
Y (r)n

2 −(rh−r1)
2n

2n +ϵ2 with

 Y (r)=(r−rh)
2

C=
4n(ϵ1+ϵ2)

r2−rh

if r1≤r<rh

−B
Y (r)−h1

Y (r)m+h2
with


B=ϵ1m(r2−rh)

2(m−1)

h1=
ϵh(m−1)(r2−rh)2

m(ϵh+ϵ2)

h2=
ϵ2(m−1)(r2−rh)2m

ϵh+ϵ2

if rh≤r<r2

ϵ2
[
5( r2r )

12
−6( r2r )

10
]
if r2≤r

(2.2)

where m=5, k=8, and n=1. The smooth and continuous curve can be obtained by using

these parameters, as shown in Fig.3.1. Using this format of potential energy was inspired

by the work of Margaret et al39 in which the authors applied a phenomenological two-well

model to the study the water desolvation effects in the protein folding, and such effects

exhibit multi-minimum feature in terms of potential energy. Their results are consistent

with experiments well, implying the model could be proper for studying the problems of

multi-minimum. Also, this two-well model has been applied to study the conformational

dynamics of adenylate kinase and obtained well results34. The two stable states of GlnBP

correspond to the two wells of potential formula. The first well corresponds to the closed

structure, and the second well corresponds to the open structure. It is worth to mention

that this two-well model is microscopic since it represents the interaction between every

two residues. This is different from other types of the two-well models40–43. Kei-ichi

Okazaki et al 41,42 considered the topological characteristic of the energy landscape of

proteins and created two independent structure-based potentials and connected them

smoothly to make a double-well model. The same spirit can be found in the work of Best

et al 40. Comparing to these models, one important feature of our model is to consider the

microscopic situation of each contact pair. According to the known structures, we specified

the form of interaction for each pair. In this work, we actually used the mixture of single-
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well model and two-well model to illustrate the profile of the GlnBP’s conformational

switch. Three situations were distinguished in our work due to the distance between

two residues in the open state ropenij and closed state rcloseij . When ropenij equals rcloseij , the

interactions between the residue i and j have no difference in the open state and closed

state. Therefore, a single-well potential is applied to the residues i and j, as shown in

Fig.2.2(a); when 0 < |ropenij − rcloseij | < 2Å, which means the differences in the open state

and closed state are not very significant, a two-well potential with a shallow barrier is

applied to the residues i and j, and the form of this kind of two-well potential is very

similar to the single well, as shown in Fig.2.2(b); in the case |ropenij − rcloseij | > 2Å, we use

the two-well potential with a significant barrier, as shown in Fig.2.2(c). We can use the

CSU software44 to calculate the native contact pairs of the open and the close states.

After assigning different groups of residues with different shapes of two-well models,

we need to fix the shape of the two wells. There are three parameters ϵ1, ϵ2, and ϵb that we

should choose to decide the form of the two-well potential, as shown in Fig.2.2(c). The ϵ1

represents the depth of the first well. This depth mainly controls the melting temperature

of the protein. The ϵ2 is the depth of the second well. The difference between ϵ1 and ϵ2,

that is, ∆ϵ = |ϵ1 − ϵ2|, controls relative stability of the two states. The last parameter

ϵb is the energy barrier between the two states. In our model, the melting temperature

is close to 355K. So from the calibration of the simulations, we set ϵ1to 0.58 kcal/mol.

For convenience, we adjusted these two parameters so that the conformational switch

happened between the open state and the closed state occurs in a reasonable time. First

we kept on changing the value of ∆ϵ until the protein spends almost equal time in each

state. Then we gradually increased the value of ϵb to control the transitions within the

reasonable computation time. In this work, ∆ϵ was set to 0.12 kcal/mol and ϵb was set
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a significant barrier. ϵ1 is the depth of the first well; ϵ2 is the depth of the second well;
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Those well shapes are just the schematic representation.
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to 0.35 kcal/mol. After all these models and parameters were set up, we embedded these

models into a modified AMBER software and ran the MD simulations.

2.4 Methods and Results

In order to study the different behaviors of the GlnBP at different temperatures,

the simulations were performed at four temperatures. In our model, the GlnBP began to

melt at 355K. Besides the melting temperature, the other three temperatures chosen were

275K, 310K, and 336K. For each of these four temperatures, fifty AMBER trajectories

with 50 million steps for each trajectory were simulated in order to obtain the reliable

statistical calculation. Typical simulation trajectories for these four temperatures are

shown in Fig.2.3. In Fig.2.3(d), one can observe that the protein begins to melt at 355K.

Also, below the melting temperature, we can see the reversible transition between two

states. The conformational switch occurs very rapidly, without any intermediate state.

In other words, the breaking of the contacts in the initial structure and formation of

the contacts in the finial structure occur almost at the same time. This observation is

consistent with the previous study41. The RMSDs of the two states exhibit that the

protein in the open state has greater conformational fluctuation than that in the closed

state. This implies that, with the ligand binding, the protein-ligand complex may be more

stable than the ligand-unbound structure. Interestingly, from Fig.2.3(a) to Fig.2.3(c), one

can observe that the protein prefers to stay in closed state at low temperature and biases

to the open state at high temperature. This phenomenon can also be observed clearly in

Fig.2.4(a), which describes quantitatively the percentage of staying in the open state or

the closed state of the protein at different temperatures. At 275K, the protein has not

enough energy so that the frequency of transition is low, and the protein remains in the

18



closed state for 80% of the simulation time. At 310K, the protein spends almost the same

time in the both states. When the temperature reaches 336K, the conformational change

occurs frequently and the open state is dominant. The essential properties of the protein

determines its thermodynamical behavior. In the two-well potential, the closed state

has lower energy than the open state. At high temperature, the thermal energy of the

protein can break all of the ligand-induced contacts quickly when they are formed. At low

temperature, the protein has not enough energy to break the ligand-induced contacts. In

other words, the protein has difficulty surmounting the first barrier ϵ1. Therefore, most of

the time it is trapped into the first well at low temperature. As the temperature increases,

the energy of the protein increases, and it has more possibilities to cross the barrier, so

the percentage of staying in the open state increases. Additionally, from Fig.2.4(b), one

can see that, at high temperature, the average residence time in the closed state is shorter

than that of the open state, and the average residence time of both states rises when the

temperature decreases.

The free energy was considered as a function of RMSD1 and RMSD2, and obtained

by F = −log(P ), where P was the statistical population obtained from all fifty trajecto-

ries for each temperature. The two-dimensional free energy profiles, as shown in Fig.2.5,

were constructed by the trajectories with the temperature 275K, 310K, 336K and 355K.

In Fig.2.5(a), Fig.2.5(b), and Fig.2.5(c), there are two local minimum in each profile cor-

responding to the open state (right basin)and the closed state(left basin) of the protein.

In Fig.2.5(a), there are very few conformations connecting the two basins, implying the

transition is very rare at this low temperature. And the basin of the closed state is deeper

than that of the open state, which suggests the protein prefers dwelling in the closed state

at low temperature. In Fig.2.5(b), the depth of the two minima are almost the same and
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(a) (b)

(c) (d)

Figure 2.3: Typical trajectories of the simulations at temperature (a) 250K, (b) 310K,

(c) 336K and (d) 355K. The red color represents the RMSD to the closed state, and the

green color represents the RMSD to the open state. The unit of RMSD is angstrom.
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the height of the single free-energy barrier between the two minima equals to 4.4 kBT .

One feature of this free energy landscape is that the right basin corresponding to the

open state is broader than the left basin corresponding to the closed state, suggesting the

relatively larger conformational fluctuation in the open state. The other distinct feature

of the free energy profile in Fig.2.5(d) is that it has a long “tail”, which is caused by the

large values of root mean square deviation, suggesting the melting state at this tempera-

ture. The steepness of the basins is also an interesting topological property on the energy

landscape. In Fig.2.5(b), the left basin is steeper than the right basin. This topological

characteristic illustrates the following transition dynamic. When the conformational tran-

sition commences from the open state, it will undergo relatively more extensive pathway

to reach the transition state then downhill to closed state rapidly on the energy surface.

The autocorrelation function c(k), where k is the simulation time step, could be a

good property to represent the dynamical motion of the conformation switch. We can

either use the closed state or open state to calculate the auto-correlation function. They

give basically the same results. Therefore, we just show the results for the closed state.

The formula that we used to calculate the c(k) is following:

c(k) =

∑n−1
t=1 (xt − ⟨x⟩)(xt+k − ⟨x⟩)∑n−k

t=1 (xt − ⟨x⟩)2
(2.3)

where xt is the value of the RMSD from the native state at time t, and ⟨x⟩ is the average

RMSD value of the whole trajectory. Using the above formula to calculate the c(k)

requires large n, the number of the data. Therefore, we simulated long trajectories with

500 million steps at 310K to calculate the auto-correlation function c(k).

Fig.2.7 shows the auto-correlation function in the linear coordinates and the semi-

logarithmic coordinates, respectively. In the semi-logarithmic coordinates, y value is log-

arithmic, and x value remains linear. We see from the Fig.2.7(a) that the auto-correlation
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Free energy profile(T=275K)
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Free energy profile(T=310K)
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Free energy profile(T=336K)
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Free energy profile(T=355K)
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Figure 2.5: The free energy profile of the conformational transition of GlnBP at temper-

atures (a) 250K, (b) 310K, (c) 336K and (d) 355K. The x and y axis are the RMSDs to

the closed structure and open structure, respectively. The unit of RMSD is angstrom.
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function decays with time interval k. Also, we can clearly observe from Fig.2.7(b) that

the decaying obeys the exponential behavior at the short time limit, k < 1200. When

k > 1200, the decaying deviates the single exponential function. The multiexponential

function can fit the auto-correlation function well in the semi-logarithmic coordinates, in-

dicating that the kinetic of the whole conformation-transition process is multiexponential.

Since the kinetics can be considered as a good probe to the underlying energy landscape,

the multiexponential kinetics implies the complexity of the energy landscape. When a

complex system with these characteristics diffuses on the corresponding underlying energy

landscape from one state to the other, it will depend on a series of sub-processes. The

conformational switch can be recognized as a consequence of these many sub-processes,

all of which make the transition possible45,46.

We next investigated the first passage time (FPT) of the conformational transition

since the kinetics of the transition between the open state and closed state can be char-

acterized by the first passage time (FPT)distribution of the open state, P (To), where

To is the dwell time of the open state, and closed state, P (Tc), where Tc is the closed

residence time, states, respectively. In particularly, the mean first passage times of the

open state and closed state, that is, ⟨To(c)⟩ ∝
∫∞
0

TP (To(c))dT , are significant quanti-

fiers of the transition kinetics. Specially, they determine the mean opening (closing)rates

ro(c) ∝ ⟨Tc(o)⟩−1. Furthermore, one may connect the distribution of the FPT to the other

kinetic properties, such as the barrier of the transition, controlled by the underlying en-

ergy landscape. Fig.3.11 shows the first passage time distributions for the open state and

closed state at temperature 275K, 310K, 336K. The first passage time distributions P (T )

take the asymptotic form P (To(c)) ∝ exp(−λo(c)To(c)) for large To(c), where the λo(c) are

the exponents corresponding to the open state and closed state, respectively. From the
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Figure 2.6: The distributions of the first passage time of the different temperatures. The x
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Fig.3.11, one can observe that at high temperature, the difference between the value of

mean FPT and the maximal point of the FPT distribution is much smaller than that at

low temperature, which means, for the low temperature, the FPT distribution provides

more detailed description about the kinetic properties of the conformational transition.

As the temperature increases, both λo and λc increase, suggesting the rate of the confor-

mational switch increases. Yet we should note that those fittings may be influenced by

the barrier parameter of the two-well model, and that could be an interesting topic in

future.

Our simulations also can catch the structural changes during the process of confor-

mational switch. The residue contact pairs of three different structures on the pathway

from the open state to the close state were analyzed by the residue contact map34. First,

we chose three points (states) on the pathway of the conformational transition on the free

energy landscape. These three points are closed state, open state and transition state and

the probabilities of the contact pairs are calculated in the different states. The probability

means how closely a specific pair is to its native distances (open state or closed state).

The formula used is P k
ij = nk

ij/n
k, where P k

ij represents the probability of the pair ij in the

state k, nk is the number of the conformations around the state k, and nk
ij is the weight

of the pair ij at the state k. The weight was calculated by the distances of the pair ij in

the conformations around the state k.

Fig.2.8 shows three contact maps and their corresponding structures. In the contacts

maps Fig.2.8(b), Fig.2.8(d), and Fig.2.8(f), each point represents one contact between two

residues. A point with red color means the corresponding contact is near to its closed

native contact, and a point with blue color implies the corresponding contact is close to its

open native contact. The distances of three pairs of residues (10-115, 50-118, 68-157) to
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Figure 2.7: Autocorrelation function distribution of conformational transition. (a) The

distribution of autocorrelation function in Cartesian coordinates system. The single-

exponential function is applied to fit the data for comparing. (b) The distribution of

autocorrelation function in Semi-logarithmic coordinates system in which y value is log-

arithmic, and x value remains linear. A multi-exponential function is applied to fit the

data.
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illustrate the meaning of points in the contact maps. The residues Asp10 and Lys115 and

the distance between them are marked by the red color; the residues Phe50 and Thr118

and the distance between them are labeled by the purple color; the residues Gly68 and

Asp157 and the distance between them are labeled by the orange color. In the contact

maps Fig.2.8(b), (d), and (f), each plot has three points enclosed by rectangles. They cor-

respond to the three contacts (10-115, 50-118, 68-157). From the open state to the closed

state, the distances of two contacts decrease, and the color of the corresponding points in

the contact maps change from blue to red. For comparison, the points under the diagonal

in each contact map represent the contacts of the structure of the closed state. From the

Fig.2.8(b) to Fig.2.8(f), we can see that the interaction between two groups of residues,

which are located in the region 10-75 and region 115-160, changes significantly when con-

formational transition occurs. These two groups of residues form forceps of the protein

to clamp the ligand when it comes in. Specially, there are some interesting residues in

these two groups. Previous study33has shown that when GlnBP closes, the ligand (Glu-

tamine) is stablized by the residues included in the large domain(Asp10, Ala67, Gly68,

Thr70, Arg75) and the small domain(Lys115, Gly119, His156, Asp157). Our simulations

show that when conformational transition occurs, Asp157 gets close to Thr70 and Gly68.

These three residues stabilize the α-amino group of the ligand33. The simulations show

that Asp157 moves faster to Thr70 than Gly68. Additionally, the residues Thr70, Arg75

and Gly119 interacting with the α-carboxyl group of the ligands also migrate together.

Arg75, Thr70 approach to Gly119 very rapidly. At the transition state, they have formed

contacts which are very similar with that of the closed state. The van der Waals interac-

tion plays an important role. The simulations imply that, in the process of the transition,

Phe13 comes near to Lys115, Ile139, His156, Asp 157 and Asn160. Simultaneously, Phe50
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forms contacts with Ser116, Gly117, Thr118, Pro137 and Asn138. An interesting charac-

teristic of the binding is the “doorkeeper”33 formed by residues Asp10 and Lys115, which

lock the ligand within the binding pocket. The simulations also capture this feature.

Additionally, Asp10 may form a contact with Asn138 as well in the conformational tran-

sition. Another interesting feature of the contacts formation is that, from open state to

closed state, most of the important contacts form slowly before the transition state, and

after transition state, the contacts form more quickly. It implies that basin of the closed

state on the energy landscape is steeper than that of the open state, as shown in Fig.2.5.

In experiments, ϕ values provide an approach to quantify the strength of native

interactions in the transition state47,48. Through calculating the ϕ value of a specific

residues, one may know its importance in the protein dynamic processes, such as protein

folding, conformational transition, and so on.The ϕ values of each residues of the protein

in the transition state are shown in the Fig.2.9. Since we are interested in the residues

which have significant effect on the transition state, we only exhibited the residues with

high ϕ values. It should note that ϕ values obtained from simulations of the simplified

model may not correlate well with the experimental values. In our work, the following

formula49 was used to calculate the simulated ϕ values. ϕi =
⟨ni⟩tran−⟨ni⟩open
⟨ni⟩closed−⟨ni⟩open , where⟨ni⟩ is

the average value of the number of contacts for residue i, and tran, open, closed subscripts

represent the transition state, open state and closed state, respectively. We can see that

some important residues have high ϕ value at the transition state. Thr70, Arg75, and

Gly119 play important role in stabilizing the ligand, and their ϕ value are 0.74, 0.77

and 0.71, respectively. Gln183 and Tyr185 from the second hinge may also participate

in the conformational transition. Their ϕ values are 0.80 and 0.79, respectively. Other

residues with high ϕ values, such as Thr72 (ϕ value 0.88), Tyr86 (ϕ value 0.86), Asp122
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(d) Contact map for transition state

(e) Closed state
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(f) Contact map for closed state

Figure 2.8: Residues contact maps and the corresponding structures on the pathway from

the open state to the closed state. The plots (b),(d), and (f) in right column show the

contact maps of the open state, transition state and closed state, respectively. The plots

(a),(c),and (e) in the left column represent the corresponding structures.
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(ϕ value 0.87), Leu162 (ϕ value 0.75), and Lys166 (ϕ value 0.80), can be observed in the

simulations, implying that these residues may be involved in the conformational transition

as well and play important roles.

2.5 Discussion and Conclusion

In this work, a developed structure-based two-well model was applied to study the

properties of the kinetics and statistics distributions for the conformational transition

of the GlnBP, which is one of periplasmic binding proteins which carries small ligands

form the periplasmic space into the cytoplasmic space. In the process of conformational

transition, the GlnBP exhibits two stable states, that is, ligand-free open state and ligand-

bound closed state, implying that the protein may go through two distinct local minimum

on the potential surface. We constructed the free-energy landscapes of the conformational

transition with different temperatures and analyzed their topological characteristics. Two

basins were observed on the free-energy landscapes at the temperatures under the melting

point. One corresponds to the open state, the other represents the closed state. In our

simulation, there was no detectable intermediate state in the process of conformational

transition. The topological properties of the free-energy landscape shows that the protein

prefers to stay in closed state at low temperature and tends to dwell in open state at

high temperature. We also studied the first passage time distribution. Both of the closed

and open dwelling times exhibit the Gamma distribution. With the different tempera-

tures, the scale parameters λo and λc of the Gamma distributions decrease or increase

monotonously. The analysis of the autocorrelation coefficient shows that the conforma-

tional transition may be the multi-exponent process, which implies the complexity and

hierarchical structure of the underlying energy landscape. Finally, the contact maps and
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Figure 2.9: (a) ϕ-values of residues with high value. (b) A typical structure in transtion
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small domain (Gly119, Asp122, Lys166) and the hinge region (Gln183, Try185, Tyr86)

are marked by red color. These residues are close to the ligand pocket in the complex

GlnBP-Gln33
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ϕ value of each residue were carried out to illustrate the structural evolution and the

important residues in the conformational transition. Some residues that are critical for

binding and stabilizing the ligand show high ϕ values and significant transient between

the open state and the closed state. The model in work of Kei-ichi Okazaki et al 41,42 has

been further developed to deal with four states, that is, unbound open state, bound open

state, unbound closed state, and bound closed state, of the protein. They found that

binding ligand could induce in the shape of the energy landscape.

Although there are various benefits by using coarse-grained models, current coarse-

grained methodologies still may not be as predictive as all-atom simulations. The valida-

tion of associated force-fields is still not very advanced. Intrinsically, the parameterization

of coarse-grained force-fields is still difficult related to the fact that complex and diverse

interactions must be described by a small number of parameters. Improving the predic-

tivity and accuracy of coarse-grained approaches is still a stimulating challenge that needs

more efforts from scientists.

2.6 summary

In chapter 2 a two-well model is employed to investigate the conformational switches

of Glutimine-binding protein. Specifically, this work models the GlnBP’s transition be-

haviors at different temperatures and also investigate the kinetical parts, such as first

passage time and correlation function, to uncover the complexity and hierarchical struc-

ture of GlnBP’s underlying free energy landscape. The primary tool facilitating an residue

level description used in this study is molecular dynamics simulation the fundamentals of

which are discussed in Chapter 1.
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Chapter 3 Two-Dimensional Coordinate-Dependent Diffu-

sion of a Conformational Switch

3.1 Abstract

Diffusion on a low-dimensional free-energy surface is a successful model for the mo-

tion dynamics of single-domain proteins. Complicating the interpretation of both sim-

ulations and experiments is the expectation that the effective diffusion coefficient will

in general depend on the position along the reaction coordinate, and this dependence

may vary for different coordinates. The multidimensional diffusion dynamics of protein

conformational change was explored in this work and we found in general the diffusion

is anisotropic and inhomogenous. The directional and positional dependence of diffusion

has significant impacts on the protein conformational kinetics: the kinetic transition state

with considering the coordinate-dependent diffusion is shifted away from the transition

state without coordinate-dependent effect. Also, the dominant kinetic path of confor-

mational change is shifted from the naively expected steepest descent gradient paths.

Furthermore, the effective kinetic energy barrier height determining the kinetic rate of

the conformational change is shifted away from the one estimated from the thermody-

namic free energy barrier. The shift of the transition state in position and value will

modify the ϕ value analysis for identification of hot residues and interactions responsible

for conformational dynamics.

34



3.2 Introduction

According to the energy landscape theory, the complex chemical reactions, such

as conformational dynamics, can be properly modeled as a diffusive motion of a few

collective reaction coordinates that represent the progress from the initial basin to the

final basin of states. In such a diffusive model, the diffusion coefficient (DC) is often

coordinate-dependent50–66. The origin of the coordinate-dependent diffusion is the fact

that the underlying energy landscape is multidimensional in nature. Since the diffusion

coefficient is a quantitative measure of the ability of local escape, the projection of the

high-dimensional landscape into one or a few collective coordinates will in general lead

to a dependence of the diffusion coefficient50. The local barrier distribution changes

along the progression of conformational changes or reaction coordinates. At different

coordinates, there will be different local characteristics of the conformational landscape

reflected through the coordinate-dependent diffusion. In the previous studies56–59,61,62,

the position-dependent diffusion coefficient along one reaction coordinate has been esti-

mated on the energy landscape of protein folding. However, the energy landscape of the

dynamic processes is complex and multidimensional. The energetic character of the local

environments (local energy barriers) varies along the different coordinates. Therefore, the

use of two or more collective reaction coordinates may provide us with more information

when we study the complexity of the diffusive dynamics on the energy landscape. Also,

studying two-dimensional diffusion can provide some insights of interaction between the

diffusion along the different reaction coordinates. Such interaction may influence the ki-

netic aspects, such as barrier, transition state, and pathway of the conformational motion,

providing much more information than the situation in one dimension.
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In those approaches, umbrella samplings with a harmonic bias on one reaction co-

ordinate were often used to collect the simulation sampling locally. However, the energy

landscape of the biological dynamic processes is multidimensional and often rough. At

each position on the energy landscape which is not necessarily smooth, the distribution

of the energy barrier caused by the roughness of the local energy landscape can exhibit

inherent inhomogeneous and anisotropic properties along the collective coordinates(or di-

rections), implying the diffusion at this position may show different values along different

directions and become inhomogeneous along the coordinates. The anisotropic property

of diffusion is not just a theoretical curiosity. The experiments of diffusive dynamics of

ligand binding67, anisotropic ion mobility in ion channel68, and the diffusion on the cell

surface69 have been performed to understand the characteristics of the diffusive dynamics

along the directions of reaction coordinates.

Biological function is often linked with the associated conformational changes, such

as ligand binding32,33. Transitions between different conformational states are the key for

the biological function of many biomolecules. A natural theoretical framework to formalize

these kinetic processes is provided by the energy landscape landscape theory6–9. According

to this theory8,9, the protein folding is driven by a decrease in free energy, which is

dictated by a mechanism of entropy-enthalpy compensation. The requirement for lowering

free energy while reducing conformational space determines that the energy landscape

of a protein folding should be funnel-like. Analogously, the spontaneous protein-ligand

association also lowers the free energy of the system composed of protein, ligand, while

reducing the entropy, which is similar to the protein folding. The topology of the energy

landscape determines the thermodynamic stability, the dynamic behavior of biochemical

processes, and the function. The relationship between stability, dynamics and function
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as well as the structure of the protein can be quantitatively understood by the detailed

description of the energy landscape. The energy landscape theory has been successful

in explaining qualitatively and quantitatively, the process of protein folding in which

one important concept emerged as the underlying funneled landscape which controls the

kinetic and thermal stability of folding. The conformational transition involves the large-

amplitude conformational switches between two or more native structures70–72, suggesting

the underlying energy landscape should accordingly have the multi-basin topography.

In this work, we continue using the structure-based model with the double-well

potential34 to model the conformational dynamics of the GlnBP and investigate its multi-

dimensional diffusive dynamics on the underlying energy landscape. Results show that

the anisotropic and inhomogeneous diffusion and its impacts on protein conformational

kinetic in terms of the dominant kinetic paths away from the steepest descent gradient

one, shift of the transition state and the change of the kinetic barrier height.

3.3 Model and Methods

3.3.1 Molecular Modeling of Protein Conformational Change

Similar to the previous work, the potential energy U for a given protein conformation

Γ in the simulation was given by the Equation2.1. The schematic representation of the

potential is shown in Fig.3.1. We can see that this is a microscopic model which includes

the two minima between any two contact residues, one for the open and the other for

the closed structure. The first well corresponds to the closed structure, and the second

well corresponds to the open structure. The details of how to set the parameters of the

double-well potential has been described above. Briefly, in this chapter, the simulation

temperature was fixed at 315K and the three parameters ϵ1, ∆ϵ = |ϵ1 − ϵ2|,and ϵh were
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set to 0.58 kcal/mol, 0.11 kcal/mol and 0.35 kcal/mol, respectively.
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Figure 3.1: Schematic representation of the two-well potential. ϵ1 is the depth of the first

well; ϵ2 is the depth of the second well; ϵh is the height of the barrier. In this paper,

|ϵ1| > |ϵ2|.

3.3.2 Diffusion Calculation of Protein Conformational Change

For investigating the multidimensional diffusion behaviors, a single diffusion coeffi-

cient parameter is not sufficient and the diffusion should be quantified by diffusion coef-

ficient (DC) tensor given by the formula73,74,

[
D11 D12

D21 D22

]
= Cov(Q1, Q2)/τcorr (3.1)

Q1 and Q2 are the fractions of native contact (FNC) to the closed state and open state,

respectively. The diagonal elements of DC tensor scale diffusion along Q1 and Q2, giving

the auto-correlation of the same coordinates; off-diagonal elements quantify diffusion along
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Q1 and Q2 in a coupled way, giving cross correlation of the different coordinates. The

numerator Cov(Q1, Q2) is the covariance matrix of the reaction coordinates, and the

denominator τcorr is the correlation time of the reaction coordinates Q1 and Q2 and can

be obtained by the formula defined as,

C(Q1, Q2, k) =

∑
t(Q1,t − ⟨Q1⟩)(Q2,t+k − ⟨Q2⟩)

[
∑

t(Q1,t − ⟨Q1⟩)2]1/2[
∑

t(Q2,t − ⟨Q2⟩)2]1/2
(3.2)

where Q1,t(Q2,t) is the FNC relative to the closed(open)state at time t. ⟨Q1⟩(⟨Q2⟩) is the

average of the fraction of native contact to the closed (open) state for a whole trajectory

as the result of the MD simulations with structure-base model22 When only one variable

is considered, the covariance matrix reduces to the variance and the correlation function

is substituted by the auto-correlation function.

We employed a harmonic bias potential to restrain the simulation at a specific posi-

tion on the free energy landscape and calculate the local diffusion coefficients. The biasing

potential was defined as,

Vbias(Q1, Q2) = K(Q1 −Q∗
1)

2 +K(Q2 −Q∗
2)

2 (3.3)

where Q1, Q2 are the reaction coordinates that can be calculated by the Eq.3.4, as defined

below, Q∗
1 and Q∗

2 are the specific values on the free energy surface, and K is the strength

of the bias.

According the principles of MD simulation, one needs to calculate the first derivative

of the potential in the simulations. Therefore, a good designed biasing potential which

has a well-defined first derivative should be considered when including this potential as a

function of reaction coordinates. To avoid the discontinuity in Q1 and Q2, we defined the

reaction coordinates to be a continuous exponential function

Q1 =
1

N1

∑
contact

ae−(r−rnat
1 )2/b (3.4)
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Q2 =
1

N2

∑
contact

ae−(r−rnat
2 )2/b (3.5)

where r is the distance of a contact in the MD simulation, rnat1 is the distance of this

contact in the closed state, rnat2 is the distance of this contact in the open state, N1 is the

number of all native contacts in the closed state(open state), and N2 is the number of all

native contacts in the open state. The constants a = 1 and b = 10 were chosen so that Q1

and Q2could decay from one to zero reasonably when the difference between r and rnat1 or

rnat2 increases. When all the parameters were set, we can implement the Eq.3.3 and Eq.2.1

into AMBER software and run MD simulations.

3.3.3 Analytical model of stochastic diffusion dynamics of the

protein conformational dynamics

A projection of the true high-dimensional dynamics of folding onto a single or more

coordinates leads to a dependence of the diffusion coefficient on position along that co-

ordinate. The diffusive dynamics of protein conformational change is intrinsically multi-

dimensional involving many residues as illustrated by the molecular dynamics simulation

and the analysis of the underlying energy landscape performed in previous studies and

in this work34,75. We can model the high dimensional diffusive dynamics of the protein

conformational dynamics in a coarse-grained way to capture the essence. With a few key

reaction coordinates, such as native contact number Q or RMSD for structure displace-

ments, we can study the diffusive dynamics of the protein conformational dynamics in

these reduced dimensions.

From the stochastic view of diffusion behavior, we considered the Brownian dynamics

with an underlying potential.

mQ̈ = −γQ̇−∇U(Q) + ξ(t) (3.6)
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where Q is a multi-dimensional vector (two dimensional in our study) (Q1, Q2), U(Q) is

two dimensional free energy, and ξ(t) is a Gaussian white noise with zero average. The

term on the left side in the Eq.3.6 is the inertial term which is damped on a time-scale

t ≥ m/γ = τD. Therefore, the inertial term can be ignored when t ≫ τD
76–78. The protein

folding, binding and conformational dynamics are in this over-damped regime. Combined

with the Einstein relationship of the fluctuation-dissipation theorem, the Eq.3.6 becomes

Langevin equation and can be re-written as

dQ

dt
= −D(Q)

kBT
∇U(Q) + ξ(t) (3.7)

where D(Q) is the position-dependent diffusion coefficient and ξ(t) is a Gaussian white

noise which obeys the fluctuation-dissipation relation, < ξ(t)ξ(t′) >= 2Dδ(t− t′), where δ

is a Dirac delta function. Furthermore, in order to consider the important physical effects

of the systems that follow the over-damped Langevin equation, we can use the follow-

ing effective Langevin equation with the special consider of position dependent diffusion

coefficients:

Q̇ = −D(Q)

kBT
∇U(Q) + (1− α)∇ ·D(Q) + ξ(t) (3.8)

where ξ(t) is a Gaussian noise and D(Q) is the diffusion coefficient which depends on the

variable Q. The different values of α define the different stochastic calculuses. α = 0, for

instance, represents an Ito Calculus, and α = 1/2 leads to a Stratonovich Calculus.

The above effective Langiven equation is intrinsically describe the stochastic dynam-

ics and thus less useful in contrast to the case in the deterministic Newtonian dynamics.

Instead, the probability distribution pattern can capture the essence of the stochastic dy-

namics. Furthermore the time evolution of the probability distribution of the observables

is predictable and follows the corresponding linear Fokker-Planck equation. So the more
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appropriate and full quantification of stochastic dynamics is realized by the probability

distribution. Any choice of α in the addition of the term (1− α)∇ ·D(Q) of the specific

effective Langevin equation satisfy the same probability distribution evolution equation

namely the Fokker-Planck equation.

∂

∂t
P (Q, t) = ∇ · [D(Q) · ( 1

kBT
∇U(Q) +∇)P (Q, t)] (3.9)

A well-known solution of the Fokker-Planck is the Boltzmann’s distribution in the long-

time limit:

P (Q, t)
∣∣
t→∞ = const.× exp

(
−U(Q)

kBT

)
(3.10)

The Ito convention α = 0 was chose to discuss the path integral framework in this chapter.

The mean first passage time (MFPT) of the protein conformational transition was

also considered in this chapter. The MFPT from any state to a specific final state usually

obeys the following adjoint diffusion equation79

f · ∇τ +∇τ ·Q · ∇τ = −1 (3.11)

where τ is mean first passage time. The system should satisfy the absorbing boundary

condition τ = 0 at the given final space position and the reflecting the boundary conditions

n · τ = 0 on the outer boundary of system. Through solving this partial differential

equation, the MFPT from open state to closed state (or from closed state to open state)

can be calculated.

The detailed process of the protein conformational dynamics can also be character-

ized by the analysis of kinetic paths. To quantify the kinetic paths, we will use a path

integral method76,77. In Ito convention, the path integral representation of the conditional
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probability P (Qf , t | Qi, 0) that can be formulated as the following form76,77,

P (Qf , t | Qi, 0) = D0Exp(−U(Qf )− U(Qi)

2kBT
)

∫ Qf

Qi

D̂QExp [−S(Q)] , (3.12)

where the action function S(Q) is,

S(Q) =

∫ t

0

dτ

(
1

4
Q̇ ·D−1(Q) · Q̇+ Veff (Q)

)
(3.13)

In the Eq.3.13, the effective potential Veff (Q) can be written as

Veff (Q) =
1

4
f ·D−1(Q) · f + 1

2
∇ · f (3.14)

where f = −D(Q)
kBT

∇U(Q)+∇·D(Q). The integral over D̂Q in the Eq.3.12 represents the

sum over all possible paths with the boundary conditions Qi at time t = 0 and Qf at time

t. Different pathways have different weights. The most probable pathway comes from

the minimize the action S(Q) and decides the optimal protein conformational transition

pathways. In the Hamilton-Jacobi(HJ) description76,77,80,81, the dominant pathways with

given boundary condition can be obtained by minimizing the following effective action

SHJ along a one-dimensional line,

SHJ =

∫ Qf

Qi

p · dQ =

∫ Qf

Qi

√
Eeff + Veff (Q)dl (3.15)

where p is a general momentum , dl =
√

dQ ·D−1(Q) · dQ is an infinitesimal length in

Q space, and

Eeff =
1

4
Q̇ ·D−1(Q) · Q̇− Veff (Q) (3.16)

The jump time of the protein conformational transition can be determined by the following

relationship

t =

∫ Qf

Qi

dl√
4(Eeff + Veff (Q))

(3.17)

The effective energy Veff is defined in the Eq.3.15. The jump time gives a quantitative

measure of the prefactor of the kinetic rate81.
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3.4 Results and Discussions

3.4.1 Free Energy Landscape of Conformation Dynamics

Fig.3.2(a) shows the two-dimensional free energy profiles which is considered as a

function of the native contacts relative to the close state, Q1 and the native contacts

relative to the open state, Q2. It is obtained by F = −log(P ), where P is the statistical

population obtained from the histograms of all the trajectories in the MD simulations

with the confinement parameter K = 0. There are two local minima that correspond to

the open state (upper left basin)and the closed state(lower right basin) of the protein,

respectively. This result is consistent with the second chapter of this thesis. If projecting

the 2D free energy surface onto the one-dimensional reaction coordinate along a curve

represented by the black dash line in Fig.3.2(a), we can obtain the one-dimensional free

energy profile, as shown in Fig.3.2(b), which clearly shows the two minima separated by

a solitary free-energy barrier. The minimum with low Q value (< 0.55)corresponds to

the open state, and the other minimum with high Q values (> 0.55)represents the closed

state. This energy landscape was obtained by K = 0. Yet, the value of K should not be

equal to zero when studying the diffusive behaviors along the one- and two-dimensional

free energy profile.

3.4.2 Diffusion with different values of parameter K

The value of K should be large enough so that the sampling can be constrained on a

specific regime on the free energy surface. Meanwhile, the value ofK must be in a range in

which the quasi-harmonic approximation is valid and diffusion coefficient is independent

onK. From the view of the energy landscape, if the biasing strength is small, which means
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Figure 3.2: (a)Two-dimensional free-energy profile of the conformational transition of

GlnBP. The two points were marked as c and g, and their diffusion coefficients will be

compared in the two-dimensional situation. They locate on the edges of the free energy

profile, and their positions are around (Q1, Q2)=(0.5,0.4) and (0.55, 0.5), respectively.

The black-dash line presents an artificial pathway that crosses the two basins and barrier.

(b) One-dimensional free-energy profile along the black-dash line in (a).
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the sampling is performed on the large region of the free energy landscape, the diffusion

coefficients calculated from such simulations can not represent the diffusive behavior on

that constrained point. To determine the value of K, we scanned the range of K from 1

to 120 to test the several points (Q1, Q2) which locate in the open state and closed state

on the 2D energy surface.

Fig.3.3(a) displays the relationship between the diffusion coefficient and the biasing

strength K of the points (0.25, 0.75), (0.30, 0.75), and (0.35, 0.75) which locate in the

open state on the free energy surface. A number of features are worth noticing. First, the

diffusion coefficient along the Q2 (top three lines) is larger than the diffusion coefficient

along the Q1 (bottom three lines) for K > 10. Second, as Q1 increases, the values of

DC along the Q1 increase for each K. Interestingly, one can find the opposite behavior

of the DC along the Q2 for K > 10. Third, the values of DC are very similar in the

region K > 10. In other words, the DC is independent of K when K > 10. In the region

K < 10, however, the values of DC increase rapidly as K increases. When K is small,

the simulation could not be fixed on the narrow regime on the free energy landscape. The

correlation function decays slowly to zero. In other words, the scale time of the correlation

function is long when the biasing strength is small. As the biasing strength enhanced,

the simulation is constrained to the narrower region, and the scale time of the correlation

function decreases and finally gets close to the characteristic relaxation time of that point,

which is independent of K. Therefore, the value of K should be larger than 10.

On the other side, overlarge biasing strength K may freeze the system, especially for

the closed state which is less flexible and more compact than the open state. The points

(0.75, 0.27),(0.80, 0.27), and (0.85, 0.27) are in the closed state, and the relationship

between the diffusion coefficients and the K of these points are shown in Fig.3.3(b).
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Many characteristics and trends of these data points can be observed. Interestingly, the

DC along Q1 are larger than the DC along Q2 for each K. These observations are in

contrast to the points in the open state. Besides, the values of DC along Q2 are nearly

the same with the different Ks. In other words, the DC along Q2 is independent of K. In

addition, as Q1 increases, the values of DC along Q2 increase for each K. In contrast, the

values of DC along Q1 decrease as Q1 increases for each K. Importantly, the DC along

Q1 is independent of K. In the region of K < 60, the values of DC are very similar, In

the region of K > 60, however, the values of DC start to significantly increase when K

increases, suggesting that the value of K being more than 60 is improper. To make sure

K is strong enough to constrain the simulations, we chose K = 60 in our model. The

simulations below on the different points of the energy landscape also justify that K = 60

is proper for the simulations. Therefore, the following results in this chapter are all with

K = 60, unless specified otherwise.

3.4.3 Diffusion Coefficient in Effective One Dimension of Con-

formational Dynamics

First we investigated the diffusive behavior along the Q1 and Q2, respectively, as

shown in Fig.3.2(b). To describe the process of dynamical conformational change of

proteins along one dimension, the reaction coordinate or order parameter is not only very

useful for the experiments82,83 but also for the theoretical studies50–53,56,57. Recently, some

studies82 have shown that the diffusion coefficient in the protein folding process varied

strongly along the reaction coordinate when the folding dynamics was projected onto a

1D coordinate and described as a diffusive process. This property was not only in the

protein folding process. When describing the diffusive behavior of the conformational
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switch along the 1D reaction coordinate, one can find that the diffusion coefficient is

significantly position-dependent as well, as shown in the Fig. 3.4.

Furthermore, the diffusion coefficient shows very different behaviors along the differ-

ent directions (Q1 or Q2) on the main conformational change pathway. In Fig.3.4, The

red-solid line represents the diffusion coefficient along Q1, the fraction of native contact

(FNC) to the closed state, and the green-dash line exhibits the diffusion coefficient along

Q2, the FNC to the open state. First we discuss the red-solid line. When Q increases

from 0 to 0.55, which corresponds to the open basin, the diffusion coefficient along Q1 first

increases, then decreases. One can find a maximum when Q is around 0.3, corresponding

to the bottom of the open-state basin on the free energy profile. In the closed-state basin,

where Q extends from 0.55 to 1, as shown in Fig.3.2(b), there is another maximum of

the diffusion coefficient along Q1 when Q is around 0.8, corresponding to the bottom of

the closed-state basin. The maximum in the closed-state basin is larger than the one in

the open-state basin. Interestingly, the values of DC along Q2 are larger than the ones of

DC along Q1 in the open-state basin, and the opposite phenomenon can be observed in

the closed-state basin, as shown in Fig.3.4. However, these two types of DC both have a

minimum when Q is around 0.55, which corresponds to the barrier of the free energy land-

scape. On the main thermodynamic gradient pathway of the conformational change, DC

shows the different behaviors in the different directions (Q1 or Q2). In the Q1 direction,

there is a faster diffusion from the closed state towards the open state. However, on the

Q2 direction, the diffusion from the closed state to the open state is slower, implying the

different local escape time or diffusion. The origin of the different behaviors is because of

projecting the multidimensional energy profile into a few dimensions, or coordinates.
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Figure 3.3: (a) The diffusion coefficient with different K values for the points in the open-

state basin. (b) The diffusion coefficient with different K values for the points in the

closed-state basin. The unit of the diffusion coefficient is cm2s−1.
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3.4.4 Diffusion Coefficient in Two Dimensions of Conformational

Dynamics

Fig.3.5 shows the 2D position-dependent DCs, which can be calculated by the Eq.3.1.

The diagonal elements of diffusive tensor D11 and D22 are shown in Fig.3.5(a) and

Fig.3.5(d), respectively. To describe the properties of the diffusion tensor on the energy

landscape, we separate the energy surface into three parts, that is, the open-state region,

the barrier region, and the closed-state region. They are marked as “open”,“barrier”,

and “close”, respectively, in Fig.3.5. Along the edge1 around the open-state basin, as

shown in Fig.3.5(a), the value of D11 increases slightly from the open-state region to the

barrier region; after entering the closed-state basin, the value of D11 climbs up sharply

and then descends, forming a maximum value around the closed region. Along the edge2,

the values of D11 show the similar tendency. Interestingly, although these two edges show

the same tendency, the value of D11 at the point c (∼ 4.3× 10−3) is larger than that at

the point g (∼ 2.9 × 10−3). Given the free energy barrier, the rates of diffusion along the

pathways that are close to the point c are larger than the ones that are near to the point

g, implying that the dynamic process of the key ligand binding of the GlnBP prefers to

go through the pathways near to the point c on the free energy landscape. From the 1D

diffusive profile, it is difficult to obtain this property, implying the 2D diffusive profile

carries more detailed information regarding the diffusive dynamic of the conformational

switches on the energy landscape.

The shape of the D22 is showed in Fig.3.5(d). On the open-state basin of the free

energy surface, the values of the D22 gradually increases and then declines to the barrier

domain. The maximal value of the D22 locates at the bottom region of the open-state
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basin. When turning into the closed-state basin, the values of the D22 bounce from the

minimum value in the barrier region, and slowly ascends to bottom region of the closed-

state basin. Although the overall change of the D22 on the free energy landscape follows

the above tendency, on the different points on the free energy landscape, the small but

important differences can be observed. The value of D22 at point c (∼ 4.6× 10−3) is larger

than one of the point g(∼ 2.0× 10−3). This phenomenon is similar to the D11. The DC

along the Q1 direction, (D11), reveals significant differences compared to the DC along

the Q2 direction, (D22), on the free energy landscape. In the open-state basin, the surface

of the D11 is flat, as shown in the Fig.3.5(a), which implies the values of the DC along

the Q1 direction are very similar in this basin, yet the surface of the D22 in the open-state

basin is bending, as shown in the Fig.3.5(d), suggesting the obvious variation of the D22

in this area. In contrast, in the closed-state basin,the surface of the D22 is flat, while

the surface of the D11 is bending. Moreover, the highest value of the D11 for the overall

free energy landscape can be found at the bottom area of the closed-state basin, but for

the D22, the maximal value locates in the open-state basin. Although the D11 and D22

exhibit the opposite behaviors in the two basins, they show the similar properties around

the barrier area. Both of them have minimal values locating in the barrier area. Also, for

both D11 and D22, the value on the point c is larger than the value of the point g on the

free energy landscape. The configurational diffusion coefficient describes the ruggedness

of the underlying free energy landscape and is also influenced by the shape of the entire

free energy landscape. In the realistic dynamics, the underlying free energy landscape

is not smooth, and has local distribution of barriers. Therefore, the diffusion tensor is

highly anisotropic. In other words, many possible escape-time scales may coexist. For

the realistic dynamics the diffusion anisotropic can be particularly pronounced along the
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lower-edge direction on the free energy landscape. When projecting the open-state basin

into Q1 and Q2 coordinates in Fig.3.4, one may observe that the length of the open-state

basin in the Q2 coordinate is longer compared to the Q1 coordinate, implying the protein

has more mobility along the Q2 direction than that along the Q1 direction in the open-

state basin. The strong anisotropy in this region will dynamically lead the DC along Q2

to be dominant. Therefore the DC value along Q2, that is, D22, is larger than the D11,

the DC value along the Q1 in the open-state basin.

Fig.3.5(b)and (c) show the off-diagonal element of the DC tensor D12 and D21,

respectively. From these two plots, one can find that the values of the D12 and D21 are

almost the same. Physically, the off-diagonal elements of the diffusion tensor arise from

the interaction of the gradient-induced fluxes. Take a orthogonal field configuration as

an example. A density flux in the Q2 direction will cause the flux in the Q2 direction.

This flux will interact with field and induce the flux in the other orthogonal direction, for

instance, Q1 direction. Therefore, a gradient in the Q2 direction can cause a flux in the

Q2 direction, described by D22, and also induce a flux in the Q1 direction, described by

D12, whose negative values imply that the flux caused by the gradient in the Q2 direction

may have opposite direction of the Q1 coordinate. In the barrier region in the Fig.3.5(b),

the maximal value of the D12 can be found, implying the interaction between the fluxes

induced by the gradients in the Q1 and Q2 directions respectively are strong. This strong

interaction may have effective influence on the thermodynamic free energy and shift the

position and height of the barrier so that the actual kinetic paths of the conformational

switch may not go through the thermodynamic transition state but pass through the

effective transition state determined by both kinetic diffusion and thermodynamics. This

may be verified by the properties of the D11 and D22 around the barrier region. In the
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Figure 3.4: Diffusion coefficent along the one-dimensional free energy profile in Fig.3.2(b).

Red line represents the diffusion coefficient along the Q1 direction, and green line repre-

sents the diffusion coefficient along the Q2 direction. The unit of diffusion coefficient is

cm2s−1.

Fig.3.5(a), the value of the D11 at point c is larger than the one at point g and the

same behavior can be found for the D22 in the Fig.3.5(d), implying the conformation

transition may not pass the thermodynamic transition state on the energy landscape, but

pass through the pathway which is close to the point c around the barrier region.
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Figure 3.5: Two-dimensional diffusion coefficient (a) D11, (b)D12, (c)D21, and (d)D22 on

the free energy landscape. Three regions were labeled as ”open”, ”close“, and ”barrier”,

respectively. In the subfigures (a) and (d), two edges were represented by the red dash

lines. The edge on which the point c of the Fig.3.2(a) locates was marked as ”edge 1“,

and the edge on which the point g of the Fig.3.2(a) locates was labeled as ”edge 2”. The

unit of the diffusion coefficient is cm2s−1.

3.4.5 The Influence of Inhomogeneous and Anisotropic Diffu-

sion on the Kinetic Paths, Rates, and Barrier

Fig.3.6 shows the dominant conformational transition pathways on the free energy

landscape. It is well known that the most probable pathway should follow the steepest

descent gradient of the underlying free energy landscape going through the saddle point

in a constant diffusion coefficient, which is illustrated by the red line in the Fig.3.6. In

the calculation of most probable pathway, the second-order error decays rapidly with

exponential scale, so in terms of first-order approximation, the pathway obtained here is
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accurate. After taking into the account of the effects of spatial-dependent diffusion, the

dominant kinetic pathway, represented by the black line in the Fig.3.6, shifts from the red

line, implying the spatial diffusion shifts the position of the effective kinetic free energy

barrier away from the thermodynamic saddle point or transition state. In other words,

the dominant conformational transition pathways with the coordinate-dependent diffusion

coefficient deviating from the ones of the naively expected steepest descent gradient paths

and not going through the saddle point.

Figure 3.6: Conformational transition pathways on the free energy profile. Red line is the

transition pathway without spatial-dependent diffusion effect; The pathway with black

line considers the spatial-dependent diffusion effect.

In order to figure out how the spatial diffusion influences the effective free energy

barrier height, we should work out the conformational transition time τ by solving the
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adjoint Fokker-Planck diffusion Eq.3.14. When the diffusion coefficient is constant, the

rate is proportional to the exponential of the free energy barrier height τc = τ0exp[
δU
kBT

];

when the effect of the spatial diffusion is considered, the rate should be calculated by the

effective barrier height τeff = τ0exp[
δUeff

kBT
], where τ0 is a constant which is not sensitive

to the coordinate. We assume the similar value of τ0 for τc and τeff for simplicity here.

Combining these two rate equations and eliminating the τ0, one can obtain δUeff =

kBT ln(τeff/τc) + δU . According to MD simulations, the thermodynamic free energy

barrier from closed state to open state is U ∼ 2.6kT, and from open state to closed

state is U ∼ 3.0. The transition time τc of the conformation change from close state to

open state is 756ps (from open to close is 624ps) with the constant diffusion coefficient

around 1.8× 103 ps which was calculated at the bottom of the thermodynamic close state

basin. When the spatial and anisotropic diffusion is considered, the transition time τeff

from close state to open is 1562ps(from open to close is 1136ps). Therefore, the effective

kinetic barrier δUeff from close to open conformation transition due the presence of spatial

and anisotropic diffusion is around 3.33kT (from open to close is 3.6 kT), which is larger

than the thermodynamics barrier height around 2.6(from open to close is 3.0)kT . The

kinetic barrier from close conformation to open conformation transition is shifted from

the original thermodynamic barrier by by 0.73kT, and the barrier shift from the open

state to close state is 0.6 kT. Therefore, the transition time is slower when the spatial

and anisotropy in diffusion are taken into consideration. As we can see both the barrier

position and height are shifted due to the spatial and anisotropic diffusion. The effective

barrier caused by the spatial and directional diffusion is significant.

The ϕ value of a residue is defined as the ratio of the change in kinetic speed of

conformational change and thermodynamic stability upon mutations and the ϕ value
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analysis has been widely used in the protein folding and conformational dynamics to

identify the important residues and interactions responsible for the underlying mechanisms

and function34,47,72,75,84. Quantitatively, the ϕ value of a residue is defined as the ratio of

the change in difference between the free energy of transition state and initial reactant

state versus the change in difference between the free energy of final product state and

initial reactant state upon the mutation of this particular residue. The kinetic barrier

under constant diffusion is the same as the thermodynamic barrier. However, when the

diffusion becomes spatial dependent and anisotropic, the kinetic barrier starts to deviate

from the thermodynamic barrier both in position and in value as shown above. Therefore

the corresponding ϕ value analysis should be modified and carried out using the kinetic

barrier rather than the thermodynamic barrier.

3.5 Conclusion

We developed a two-dimensional diffusion model to estimate the diffusion coefficients

of the GlnBP on the energy landscape. In the previous studies50–53,56,57,60,61, the position-

dependent diffusion folding dynamics along one reaction coordinate has been studied.

However, the energy landscape of the dynamic processes is complex and multidimensional.

The energetic character of the local environments (local energy barriers) varies along the

different coordinates. Therefore, two or more collective reaction coordinates are often

needed to study the complexity of the diffusive dynamics on the energy landscape. In

this work, two-dimensional position-dependent diffusion coefficient on the free energy

landscape of the conformational switch of the GlnBP was investigated by a structure-

based two-well model.

After calculating the 2D diffusion coefficient tensor, we found that the local DC on
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the energy landscape is anisotropic, which is very hard to be found in a one dimensional

diffusion study.The diagonal elements D11 and D22 of the DC tensor exhibited almost

opposite behaviors. In the open-state basin, the surface of D11 was flat, but the surface

of D22 was nonflat. One can find the maximal value of the D22 in the open-state basin.

In comparison, in the closed-state basin, the surface of D11 was non-flat, but the surface

of D11 was flat, and the highest value of the D11 is located in the closed-state basin.

Although with opposite trends of the DC in two different basins, similar behaviors at

the barrier region of the energy landscape were observed. Around the barrier region,

both the D11 and D22 have the lowest values. Also, interestingly, the value of the D11

at point c on the free energy landscape is higher than that at point g. One also can

observe the similar shape of the D22. For the off-diagonal elements D12 and D21 of

the DC tensor, their maximal values are located in the barrier region, suggesting the

correlation between the two direction-dependent diffusion is strong. The anisotropy and

inhomogeneous coordinate dependent diffusion can shift the thermodynamic pathway of

the conformational transition of the protein away from the naively expected steepest

descent gradient path on the free energy landscape. Furthermore, the dominant kinetic

paths do not necessarily go through the transition state. Both the position and the value

of the barrier height are shifted by the inhomogeneous and anisotropic diffusion. The

inhomogeneous and anisotropic diffusion will therefore modify the phi value analysis for

identification of hot residues for conformational change dynamics34,47,72,84.

The diffusion analysis has been carried out for folding with only one stable state

(funnel) and with one reaction coordinate. Qualitative and semi-quantitative discus-

sions on the effects of spatial diffusion on kinetics have been carried out57,60,61. Our

multi-dimensional diffusion studies here enrich the qualitative and quantitative pictures
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obtained in previous studies in several ways. First, we now can consider diffusions not

only in one dimension but also in higher dimensions. Second, we can now explore the

effects of anisotropy not only from the differences of the diagonal elements of the diffusion

but also from the couplings among diagonal elements and off-diagonal elements of the

diffusion. Third, we can quantify the effects of the multidimensional anisotropic spatial

inhomogeneous diffusion on the dominant kinetic paths explicitly. This can not be real-

ized in one dimension. Fourth, we can also quantify the effects of the multi-dimensional

anisotropic spatial inhomogeneous diffusion on the kinetics: the position as well as the

height shift of the associated kinetic barrier. Fifth, even for one stable state as in the case

of the protein folding funnel, we can now begin to explore the effects of anisotropy and

inhomogeneity of multidimensional diffusion on the dynamics.

Reduced representation models, may neglect some components that influences the

accuracy of simulation of the proteins. Nevertheless, previous studies51–54 have shown

that coarse-grained model have significant impact on the protein model study. Compare

to the limitation of the computational resource, the error of using the simplified model is

sustainable. The effects of one dimensional spatial dependent diffusion on the conforma-

tional dynamics of protein folding has been investigated experimentally82. Our current

study provides a basis for further experimental studies on the two dimensional diffusive

dynamics on the molecular conformational changes. In the future work, we will consider

some other systems to study the multi-dimensional diffusive dynamics on the biomolecular

energy landscape.
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3.6 Summary

In this chapter, we further use the two-well model that was applied in the Chapter

2 to investigate the two-dimensional diffusive characteristics of GlnBP on its free energy

landscape. The behaviors of anisotropy and inhomogeneous coordinate-dependent diffu-

sion are found and such diffusive properties can shift the thermodynamic pathway of the

conformational transition of the protein away from the naively expected steepest descent

gradient path on the free energy landscape. Furthermore, the dominant kinetic paths do

not necessarily go through the transition state. Both the position and the value of the

barrier height are shifted by the inhomogeneous and anisotropic diffusion.
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Chapter 4 Exploring Trp-cage Folding with Two-dimensional

Infrared Spectroscopy

4.1 Abstract

Probing the underlying free energy landscape, pathways, and mechanism is the key

for understanding protein folding in theory and experiment. Recently time-resolved two-

dimensional infrared (2DIR) with femto-second laser pulses, has emerged as a promising

tool to investigate the dynamical process of protein folding on fast timescales. In this work,

we calculated 2DIR spectroscopy of Trpcage structures along the free energy profile. Non-

chiral and chiral 2DIR signals illustrate the variation of the spectrographic patterns when

the protein evolves on the underlying free energy landscape. Isotope-labeling is used to

reveal the residue-specific information. We showed that the high resolution structural sen-

sitivity of 2DIR can differentiate the ensemble evolution of the protein, and thus provides

a microscopic picture of the folding process. This work provides a protocol for applying

multidimensional IR spectroscopy to study protein folding

4.2 Introduction

Protein folding is one of the most fundamental problems in modern molecular biology.

According to the current view, protein folding is envisioned to proceed along a moderately

rough funnel-like energy landscape6,38. Many local minima on the energy landscape form

due to the competition between the “downhill” pathway towards the native state and the

accumulation of misfolded and/or partially folded states. The important issues of folding
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pathways have been explored from both theoretical and experimental perspectives85–87.

Uncovering the detailed folding mechanism requires methods that can monitor the struc-

tures at high temporal and spatial resolution. Many conventional spectroscopic methods

can only provide averaged information due to the lack of high temporal resolution. For

example, atomic resolution structures can be directly determined by NMR spectroscopy,

but only on around microsecond timescales. Nanosecond measurements in NMR are based

on the frequency dependence of relaxation rates and are therefore indirect.

Two-dimensional infrared (2DIR) spectroscopy23–26,88–99 is a novel approach we can

apply to study transient molecular structure and dynamics. As a vibrational spectroscopy,

it can investigate the vibrations of chemical bonds and how the vibrations interact with

one another. 2DIR spectroscopy spreads a vibrational spectrum over two frequency axes,

allowing to reveal structural and kinetic correlations91,92. Compare to linear, absorption

spectroscopy, the obvious advantages of 2DIR is the feature of correlating excitation and

emission frequencies to allow for a separation of homogenous and inhomogeneous line

shape components, and to give rise to structurally sensitive cross-peaks. Cross peaks in

the spectrum encode the couplings and orientation between vibrations. Modeling this

spectrum reveals a structure in terms of connectivity, distance or orientation between

molecules. Meanwhile, since the measurement is made with a picosecond or faster laser,

which captures information on molecular structure in solution on a time scale fast com-

pared to most dynamics, it offers an effective avenue to directly reveal protein folding

dynamics which accompany the conformational changes in the pico- to nanosecond time

scale. 2DIR spectroscopy achieves its time resolution through the use of femtosecond

pulse sequences that interact with the protein and generate coherent nonlinear signals,

which are generated by three laser pulses with wavevectors k1, k2, k3. The coherent
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signal field is emitted along the phase-matching directions k4 = ±k1 ± k2 ± k3 and is

detected by interference with a fourth “local-oscillator” pulse with wavevector k4. The

pulses interact with the protein and produce a coherent nonlinear signal which depends

on three time delays S(t3, t2, t1). A two-dimensional Fourier transform generates a 2DIR

spectrum S(Ω3, t2,Ω1), where Ω3 and Ω1 are the frequency conjugates to t3 and t1, re-

spectively. By choosing different polarization configurations, one can obtain non-chiral

(i.e. xxxx ) and chirality-induced (CI) (i.e. xxxy) signals26, where ijkl represents the

polarization configuration of the four pulses in chronological order. The corresponding

one-dimensional analogue of two-dimensional chirality-induced signals is circular dichro-

ism spectra100. Compare to the CD spectra, the CI 2D signals can exhibit the corre-

lations between different parts of a protein through enhancing cross-peak contributions

and delegate them to structural characters. The cross-peaks are very sensitive to the sec-

ondary structure variation, and the chiral configuration between different chromophores

can be determined from the signs of the corresponding cross-peaks. Although CI 2DIR

spectroscopy has not yet been implemented experimentally as the signal fields are much

weaker than nonchiral 2DIR signals, the cross peaks in the CI 2D signals are explicitly

coordinate-dependent and are therefore particularly sensitive to structural changes.

The amide I band, primarily associated with the peptide bond carbonyl stretch, is

the most widely studied by the 2DIR technique because it is sensitive to the hydrogen

bonding, dipole-dipole interactions, and geometry of the peptide backbone, thus provid-

ing a good indicator of secondary structure and dynamics. The cross-peaks (off-diagonal

features) of the amide bands carry signatures of intra- and intermolecular couplings. Site-

specific isotope-labeling, where the frequency of the amide I transition is modified by sub-

stituting 12C=16O by 13C=16O or 13C=18O can be used to isolate structurally important
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residues, providing site specific information on peptide folding98. 2DIR has been success-

fully applied to study many chemical and biological processes such as hydrogen bonding

dynamics101, fast chemical exchange in molecular complexes102, and protein folding90.

In this work, we calculated the of 2DIR spectroscopy signatures of the ultrafast

folding process of the 20-residue Trp-cage peptide (Asn1-Leu2-Tyr3-Ile4-Gln5-Trp6- Leu7-

Lys8-Asp9-Gly10-Gly11 -Pro12-Ser13-Ser14-Gly15-Arg16-Pro17-Pro18-Pro18-Ser20), which

is one of the fastest folding mini-proteins. Although the Trp-cage is small and relatively

simple, the mechanism of its folding remains elusive. Recent UV-resonance raman exper-

iments103 show that the Trp-cage is not a simple two-state miniprotein. Additionally, the

folding time determined by tryptophan fluorescence and recent 2D 1H NMR spectra ex-

periment suggests downhill folding mechanism104. On the other hand, some studies105,106

have suggested that it follows a simple two-state folding mechanism. It is very interesting

that even for such a small system we still have conflicting views of its folding mechanism.

we generated its folding free energy landscape by the molecular dynamics (MD) simula-

tions. The observations of the conformational evolution on the folding pathway through

2DIR spectroscopy provide a detailed picture of the structure and dynamics of the peptide

along the pathway and the folding mechanism.

4.3 Methods

4.3.1 Molecular dynamics (MD) simulations

We carried out all the MD simulations and part of the analysis using AMBER 10

software package14 with the AMBER ff99SB protein force field107. A constant temperature

of 315 K was maintained in the MD simulations. An Generalized Born implicit solvation

model108 with a collision frequency of 1 ps−1 was used to simulate the solvent environment.
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The SHAKE algorithm109 was used to constrain covalent bonds involving hydrogen atoms.

The time step was set to 2 fs. 50 trajectories were simulated for 200 ns each. The initial

structure of each trajectory was given by an extended conformation and the different

atom velocities from a Gaussian distribution were assigned to the different trajectories to

start the simulations. The total 10 µs simulations provided enough data to construct the

free energy landscape (FEL). Five folding states were chosen along the dominant folding

pathway from the unfolded state to the folded state on the FEL. For each folding state,

200 snapshots around that location were harvested to calculate the 2DIR signals.

4.3.2 Calculation of 2DIR spectra

The effective vibrational Hamiltonian of the system was needed to calculated first,

and the details of the calculations can be found somewhere else25. After constructing the

vibrational Hamiltonian, absorptive 2DIR spectra were simulated for non-chiral (xxxx )

and CI (xxxy) polarization configurations. The 2DIR spectra were computed using the

quasiparticle approach based on the nonlinear exciton equations110–113, as implemented

in SPECTRON114. Absorptive signals were defined as the addition of the rephasing

(kI = −k1 + k2 + k3) and non-rephasing (kII = k1 − k2 + k3) spectra. Homogeneous

broadening was set to 5.5 cm−1 for all transitions. All signals were calculated in the

inhomogeneous limit by averaging over 200 configurations extracted from each location

on the FEL. For each snapshot, the simulated peptide was explicitly resolvated with

TIP3P water model115 and equilibrated for 10 ps. The explicitly solvated and equilibrated

structure was used to compute all the signals. We assumed short impulsive pulses and

t2=0.
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4.4 Results and Discussion

4.4.1 Folding Mechanism

The free energy landscape of the Trp-cage folding is shown in the Fig.4.1. One axis is

root mean square deviation (RMSD) and the other is radius of gyration (Rg). According

to the statistic physics, the free energy is determined by calculating F =-log(P), where P is

the population obtained from the 10 µs MD simulated data, including 50 MD trajectories

of 200 ns each. The FEL reveals several interesting features of the folding mechanism.

First, it is smooth and there are no apparent thermodynamic barriers or intermediate

states, implying that it may follow a downhill folding mechanism. In addition, there is

an obvious dominant pathway connecting the unfolded to the folded state (black curve

in Fig. 4.1). We have calculated the 2DIR spectra at five locations along the folding

pathway, L1, L25, L50, L75, and L100. Before L50, the peptide structure does not change

significantly and retains the extended linear or coil structure. After the peptide passes

L50, the folding process seems to accelerate and the peptide rapidly reaches the folded

state.

We next calculated the average number of hydrogen bonds at each location to il-

lustrate the folding process (Table 4.1). The number of hydrogen bonds in the entire

peptide and particularly the α-helix region (residues 1-9) abruptly increases between L25

and L50, The α-helix hydrogen bonds increment is largely caused by the increasing num-

ber of inter-α-helix rather than intra-α-helix hydrogen bonds. At the same time, the

number of hydrogen bonds in the coil region shows a large increase while the number of

hydrogen bonds in the “other” region only increases slightly. These observations suggest

that the α-helix tends to form hydrogen bonds with the coil region to form a “two-strand”
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Figure 4.1: Free energy profile of Trp-cage folding vs the RMSD and the radius of gyration

(Rg). (top). Five structures along the folding pathway are labeled L1, L25, L50, L75,

and L100. The corresponding structures are shown (bottom). Trp6 and Pro18 are shown

by stick representation.
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Location Whole peptide Whole α-Helix Intra α-Helix Inter α-Helix Coil

1 0.89 0.62 0.58 0.04 0.23

25 2.27 1.65 1.06 0.58 0.57

50 6.12 4.84 1.95 2.88 3.49

75 7.76 5.22 2.56 2.66 3.70

100 8.33 5.48 3.03 2.45 2.82

Table 4.1: The average number of hydrogen bonds of the whole peptide and its parts for

L1, L25, L50, L75, and L100. The hydrogen bonds were calculated using VMD116 with an

acceptor-donor distance cutoff of 3.5 Å and an acceptor-donor-hydrogen angle cutoff of 30

degrees. Residues 1-9 and 15-19 were defined as the α-helix and coil region, respectively,

to calculate the corresponding hydrogen bonds. Intra α-helix includes hydrogen bonds

among the α-helix region and inter α-helix includes hydrogen bonds between the α-helix

region and all other residues.

structure between L25 and L50. The formation of this “two-strand” structure can dra-

matically reduce the conformational searching in the huge configuration space and help

the peptide fold into its correct native structure. After L50, the number of intra-α-helix

hydrogen bonds continues to increase smoothly, implying the growth of the α-helix. In-

terestingly, the number of inter-α-helix hydrogen bonds decreases when moving from L50

to L100, indicating that residues 1-9 tend to form hydrogen bonds among themselves,

out-competing the inter-α-helix hydrogen bonds as the α-helix gradually grows.

We also present the couplings between the ranges of α-helix region and the coil

region (residues 15-19) in Fig.4.2 to demonstrate the structural changes that occur during

folding. There is almost no coupling between these two groups at L1 and L25, yet the two

groups become strongly coupled at L50. This is consistent with the analysis of hydrogen

bond above which suggests there are few hydrogen bonds between the “two strands” (N-

terminal α-helix region and C-terminal coil region) at L1 and L25 but the hydrogen bonds
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Figure 4.2: Average coupling between residues 1-9 and residues 15-19 in cm−1.

increase after L50. Furthermore, at L75, the coupling between these two groups changes,

indicating an orientational rearrangement. Comparing L75 and L100, the coupling pattern

remains largely the same, however, with the larger magnitudes. This indicates that the

structural changes between L75 and L100 involves only minor rearrangements. Also, the

transition dipole couplings between residues are shown in Fig.4.3. At both L1 and L25,

the couplings are weak and primarily nearest-neighbor. This is indicative of the random

coil structure at these locations. At L50, the α-helix extending from residues 2 to 9 has

formed as seen by the strong positive nearest neighbor coupling and the strong negative

1-3 coupling in this region94. The same coupling pattern was observed in simulations of

the Villin headpiece, which contains three α-helices94. At L75, we observe the formation

of the short 310-helix-like structure from residues 11 to 14. This can be seen by the

strong positive nearest-neighbor coupling in this region. At L100, the system has reached

the native state and we see the N-terminal α-helix and the 310-helix-like structure from

residues 11 to 14.
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Figure 4.3: Average transition dipole couplings among the different amide I vibrational

modes for L1, L25, L50, L75, and L100.

4.4.2 2DIR Spectra of Peptide Folding

Unless specified otherwise, in the following simulations, we considered an isotopomer

of the Trp-cage where the Trp6 and the Pro18, which is an important link that sta-

bilizes the native state117, were 13C=18O isotope labeled. To account for the isotope-

labeling, the field free frequency of the isotope-labeled amide I modes is red-shifted by

65 cm−1compared to the unlabeled modes25. The double isotope-labeling scheme is used

to obtain information on the local dynamics of Trp6 and Pro18, which are on opposite

“strands” of the peptide. Therefore, their coupling may provide information on the for-

mation of the tertiary structure of the peptide.
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Linear Absorption and Nonchiral 2DIR spectra

Fig.4.4(a) shows the amide I absorption spectra of the five FEL locations. The

amide I absorption of the unlabeled group results in a single peak, The peak intensity

decreases from L1 to L50 and then increases from L50 to L100, which indicates that the

ordered structures, including the linear extended structure and folded structures, tend to

enhance the intensity. The maximum red-shifts from 1650 cm−1at L1 and L25 to 1640

cm−1at L100. This is due to the formation of the secondary structure and hydrogen

bonds, as shown in Table 4.1, which weakens the C=O bond and reduces its vibrational

frequency88. The 10 cm−1redshift is consistent with recent one-dimensional time-resolved

IR experiments on the Trp-cage118. Since the contributions from the isotope-labeled

residues are much weaker than those from the unlabeled residues, we enlarge the spectral

region corresponding to isotope-labeled amide I modes in Fig.4.4(b)-(f). There are two

bands in the isotope-labeled region of the linear absorption spectrum. One is near 1560-

1570 cm−1, and the other is around 1580-1590 cm−1. To determine the origins of these

two bands, we have calculated the projected density of states94 which shows that the

higher frequency band in the isotope-labeled region originates from Pro18 while the lower

frequency band originates from Trp6, as shown in Fig.4.4(b)-(f).

The absorptive 2DIR nonchiral spectra are displayed in Fig.4.6. All spectra are

dominated by an inhomogeneously (diagonally) broadened peak centered near (-1640,

1640) cm−1. The diagonal L100 peak is red-shifted by ≈ 10 cm−1compared to L1, con-

sistent with the linear absorption spectrum and the previous study97. The similarity of

the 2DIR nonchiral spectra of the unlabeled amide groups indicates that the nonchiral

signals are not very sensitive to protein secondary structure motifs without the use of
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Figure 4.4: (a) Amide I absorption spectra for L1, L25, L50, L75, and L100 where Trp6

and Pro18 are isotopically labeled. (b)-(f) Isotope-labeled region of the linear absorption

spectra and projected density of states for L1, L25, L50, L75, and L100.
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peak intensities are displayed in red.

site-specific isotope-labeling. The 2DIR nonchiral spectra in the region of the isotope-

labeled residues shows some interesting features during folding (Fig.4.6). Starting at L50,

two isotope-labeled bands clearly begin to emerge at approximately (-1570,1570) cm−1and

(-1590,1590) cm−1. The band around (-1570,1570) cm−1gradually increases from L50 to

L100 and the intensities of the band around 1590 cm−1are almost unchanged from L50

to L100. After the two bands appear at L50, the cross peak at (-1570 cm−1, 1590cm−1)

emerges. At L1 and L25, this cross peak is extremely weak and the coupling between the

two isotope-labeling residues is nearly zero, as shown in Fig.4.5. At L50, the magnitude of

the coupling increases by nearly an order of magnitude while the cross peak intensity also

increases. Between L50 to L100, both the coupling and the cross peak intensity continue

to increase. It should be noted that the couplings at L50 and L75 have both positive and

negative values due to the varying relative orientation between Trp6 and Pro18, while at
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Figure 4.6: Isotope-labeled nonchiral (xxxx) 2DIR kI + kII amide I spectra for L1, L25,

L50, L75, and L100. Trp6 and Pro18 are isotopically labeled.

L100, the coupling is always positive as the relative orientation of the two strands has

been stabilized.

VCD and CI 2DIR Spectra

The vibrational circular dichroism (VCD) and CI 2DIR spectra are shown in Figs.

4.7 and 4.8, respectively. The unlabeled amide I band in the VCD spectra has one negative

and one positive peak (Fig.4.7(a)). However, these peaks are red-shifted as the peptide

moves from L1 to L100. At L25, the VCD signal nearly vanishes due to the cancellation of

various random coil configurations upon ensemble averaging. After the formation of the

compact form at L50, the VCD intensity ascends from L50 to L100. The isotope-labeled
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Figure 4.7: (a) VCD spectra for L1, L25, L50, L75, and L100 with Trp6 and Pro18

both isotopically labeled. (b) Isotope-labeled region of the vibrational circular dichroism

spectra with Trp6 and Pro18 both labeled. (c) Isotope-labeled region of the VCD spectra

with only Trp6 labeled. (d) Isotope-labeled region of the VCD spectra with only Pro18

labeled

band of the VCD spectra is shown for three different isotopomers in Fig.4.7(b)-(d). To

determine the contributions of Trp6 and Pro18 to the VCD spectrum, we calculated the

VCD spectra of the isotopomers where only Trp6 (Fig. 4.7c) or Pro18 (Fig.4.7d) are

labeled. In the double-labeled spectrum (Fig.4.7(b)), the peak is redshifted from 1600

cm−1at L1 to 1565 cm−1at L100. At L50, L75, and L100, the single-labeled spectra of

Trp6 closely resemble the double-labeled spectra, demonstrating that Trp6 dominates the

double-labeled spectrum after L50. However, at L1 and L25, the double-labeled spectra

is dominated by the contribution of Pro18, resulting in a peak at ≈ 1590-1600 cm−1.
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For the CI 2DIR spectra, one should consider two types of chirality in proteins. One

is related to global structure and the other is associated with the local chirality originating

from the individual vibrational modes. In this work we consider the former because it

dominates the response in extended systems26. The Fig.4.8 displays the absorptive chiral

signals of five states. The chiral spectra (Fig.4.8) show two inhomogeneously broad-

ened diagonal peaks that are surrounded by four symmetrically distributed cross peaks.

The stronger diagonal peak is initially located at (-1645,1645) cm−1and redshifts to (-

1630,1630) cm−1during folding, while the weaker peak is initially located at (-1625,1625)

cm−1and redshifts to (-1610,1610) cm−1. Both peaks contain contributions from several

highly delocalized transitions which cannot be assigned to specific sites. The cross peak of

these two transitions is seen at approximately (-1620,1645) cm−1and is related to the cou-

pling between these two classes of delocalized transitions. We note that in the non-chiral

spectra, there was only a single diagonal peak for the unlabeled amide I band, presenting

an obvious advantage for CI 2DIR.

During folding, the cross peaks are also red-shifted along the diagonal, similar to the

diagonal peaks. At L1 and L25, the four cross peaks are weak. When the peptide evolves to

L50, the intensities of the four cross peaks increase due to the increased coupling caused

by the relatively compact conformation. After L50, the peak locations remain similar

while the intensities of the four cross peaks increase(Fig.4.8(d) and (e)). The increase

in the intensities of the cross peaks is caused by the increased coupling between residues

(Fig.4.3). Another interesting feature is the isotope-labeled band around 1560-1590 cm−1.

At L1 and L25, this band is extremely weak due to the cancellation of contributions from

various random coil configurations, as in the VCD spectra. After L50, a weak band

appears that gradually enhances and red-shifts as the peptide folds, indicating that the
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Figure 4.8: Isotope-labeled chirality-induced (xxxy) 2DIR spectra for L1, L25, L50, L75,

and L100.
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two isotope-labeled residues, Trp6 and Pro18, get close to each other and maintain a

particular relative orientation from L75 to L100.

4.5 Conclusions

The folding of a 20-residue peptide Trp-cage was simulated to build up the FEL

which suggests one dominant pathway that connects the unfolded and native state. We

demonstrated that valuable conformational information about the structural evolution on

the folding pathway can be revealed by multidimensional IR spectroscopy. The amide I

absorption, VCD, non-chiral 2DIR, and CI 2DIR spectra were simulated to structurally

illustrate the characters of the folding process. The spectra were calculated for an iso-

topomer where Trp6 and Pro18 were 13C=18O labeled. The linear absorption spectra

shows a 10 cm−1redshift of the unlabeled amide I band, consistent with experimental

results. In the isotope-labeled region of the linear absorption, there are two peaks around

1560 cm−1and 1590 cm−1, which are caused by Trp6 and Pro18, respectively. The diagonal

peak of the unlabeled amide I band in the 2DIR xxxx spectrum redshifts 10cm−1during

folding. The cross peak intensity between the 13C=18O labeled Trp6 and Pro18 amide

I transitions increases during folding. The intensity of this cross-peak is correlated with

the coupling between these two groups and is indicative of the formation of the peptide’s

tertiary structure, which is consistent with the analysis of transition dipole coupling and

hydrogen bonds. The VCD spectra reveal the two peaks for the unlabeled amide I band

which is redshifted during the folding. The overall intensity of the VCD spectra increases

during the folding because the cancellation of various random coil conformations upon

ensemble averaging of the signals. The isotope-labeled band reveals two peaks around

1560 cm−1and 1600 cm−1which are red-shifted, similar to the linear absorption. The CI
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2DIR spectra show two distinct diagonal peaks for the unlabeled amide I band, whereas

the non-chiral spectra only show a single diagonal peak in this region. Strengthening of

the cross peaks of the unlabeled amide I band can be observed during folding which is

directly correlated with the increase in coupling.

One should consider that the accuracy of the parameters in MD simulation soft-

ware(in our case is AMBER) could influence the 2D spectra. The study of another

peptide named Beta3s119 has shown that the under-stabilization of PPII conformatons120

in MD simulations of unfolded peptides may cause random coil structure to display a

positive couplet. The simulations indicate that only 2 percents of conformations exist in

the PPII state at random-coil structure. Newer force fields which have been optimized to

accurately calculate properties for unfolded peptides.

Hamm et al. had measured 2DIR signals of a photoswitchable isotope-labeled α-

helix92 whose structure is very similar to the Trp-cage in the folded state. Our simulation

results are consistent with their findings for the changes between the folded and unfolded

conformations. They also found the two bands for some residues in the isotope-labeled

region. Note that the folding time scale in our simulations is not necessary the real experi-

mental folding time scale since the Generalized Born solvent model was applied to run the

simulations and this implicit solvent model reduced the folding time dramatically. Never-

theless, the conformational transition of the folding process and corresponding spectrum

changes are our main concern, and the implicit solvent model and spectrum calculations

have proven to give reasonable results in previous studies26,94,108. While CI 2DIR experi-

ments have yet to be performed, our simulations show that CI 2DIR measurements may

reveal changes in cross peaks which may be difficult to see in non-chiral 2DIR measure-

ments.
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4.6 Summary

In Chapter 4 the free energy landscape and two-dimensional spectroscopy are em-

ployed in the study of the folding mechanism of Trp-cage. Here we models the free energy

landscape generated by the molecular dynamics simulation and calculate the signatures

of 2DIR spectra towards the structural identification and characterization of the interme-

diate state ensemble a critical component of the folding pathway. The tools we use here

are molecular dynamics simulation and two-dimensional infrared spectroscopy.
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Chapter 5 Probing the Peptide Trp-cage Folding with Two

Dimensional Ultraviolet Spectroscopy

5.1 Abstract

Ultraviolet (UV) spectra of proteins originate from the electronic excitations of their

backbone chromophore and aromatic side chains and thus provide a sensitive probe of

the secondary structures. Recently developed femtosecond lasers allow the multidimen-

sional spectroscopy to be extended into the UV regime. Two-dimensional UV (2DUV)

techniques, with short pulses, provide a promising tool to study the structures and dy-

namics of proteins. We combined 2DUV spectroscopy and molecular dynamics generated

free energy profiles to simulate the protein electronic transitions and UV photon echo

signals to monitor the peptide folding process of a mini-protein Trp-cage. The ultraviolet

signals illustrate the variation of the 2D correlation plots when the protein evolves along

the underlying free energy landscape. The complexity of signals decreases as the confor-

mational entropy decreases during the folding process. We show that the approximate

entropy (ApEn) of the signals, which is accessible by both theoretical calculations and

experiments, provides a quantitative indicator of the protein folding status.

5.2 Introduction

Theoretical and experimental studies have provided considerable insights into the

protein folding process. However, monitoring protein folding dynamics is still challeng-

ing. Experiments on the kinetics and thermodynamics of folding do not usually provide
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atomic-level structural changes, and thus, the microscopic dynamics characterizing the

folding process. Computer simulations performed at various levels of complexity, from

simple lattice models to all-atom models, fill in some of the gaps in our knowledge of pro-

tein folding. Unfortunately, because of the current computational capacity, most folding

processes of interest occur on timescales (microsecond to second) that are inaccessible to

standard all-atom molecular dynamics (MD) simulations121,122. Therefore, faster folders

may be used to overcome this limitation. In recent years, many fast-folding proteins have

been characterized to fill this need. With modern supercomputers, long simulation times

with fast-folding protein may provide the first direct insight into the mechanism of protein

folding. According to the current view, protein folding is envisioned to proceed along a

moderately rough energy landscape, the major features of which are the local minima and

overall funnel-like downhill slope toward the native state123.

Optical spectroscopy is a powerful tool to probe the structural details and transfor-

mation of biological molecules124–127. Experimental techniques, including linear optical,

Raman, fluorescence spectroscopy X-ray scattering and Laue diffraction, have been widely

used to detect proteins structures128–130. However, experimental methods often lack the

time resolution for monitoring the whole folding dynamics and structural information at

high resolution to observe the ultrafast protein processes, and they result in indirect infor-

mation about the structures along the folding pathway on the free energy surface of pro-

teins. Recent simulation advances in multidimensional correlation spectroscopy127,129,130,

which provides much higher time resolution, has emerged as a new probe to investi-

gate the mechanism of protein folding. The technique employs sequences of laser pulses

to probe the electronic or vibrational degrees of freedom and detects correlated events

during controlled time intervals. The resulting multi-point correlation functions contain
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detailed structural and dynamics information. Studies so far have shown some success in

the IR, near-IR, and visible spectral regions, however, extension to the UV domain is in

its infancy. New, intense, and stable femtosecond lasers with high repetition rates allow

multidimensional spectroscopy to be extended into the UV range, whose advantages over

2DIR come through shorter pulse durations and higher quality polarization control131.

Therefore, the study of 2DUV on protein dynamic could give us a new window to investi-

gate the mechanism of folding. The 2DUV signals require the computation of the system

Hamiltonian, including the environment at the quantum mechanics (QM) level, which

is extremely expensive. Traditionally, some empirical methods, such as the dipole ap-

proximation and the map method132 have been applied to reduce computational cost, yet

these methods require empirically fitted parameters. The EHEF (excitation Hamiltonian

with electrostatic fluctuations) algorithm133, free from empirical parameters, provides an

efficient approach to calculate the accurate system Hamiltonian involving the environ-

ment at the QM level. Herein, we report first principles simulation of 2DUV spectra

of the protein folding based on EHEF algorithms. Additionally, we have applied the

chirality-induced pulses technique to probe the structural changes of a protein. Signals

with carefully designed chirality- induced polarization configurations have high sensitivity

to protein structural evolution. Although 2DUV techniques have been used to study the

protein molecules131, the studies have only focused on the near-native states or simply

single trajectory of folding, and applying 2DUV spectra to monitor the whole process

based on the ensemble pathway is still rare.
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5.3 Model and Methods

In this work, we continued to use the peptide Trp-cage as the model protein to il-

lustrate the simulations of 2DUV spectroscopy of the folding process. The Trp-cage is a

fast folder and thus is one of the good modeling systems used to study the folding mech-

anism134. It contains 20 residues with the sequence ”NLYIQWLKDGG PSSGRPPPS”.

The settings of molecular simulations were similar to the Chapter 4. Briefly, the initial

structures were the extended amino-acid chains. 50 200ns trajectories were ran with dif-

ferent initial conditions at 315 K. The 10-µs simulations were enough for building the free

energy landscape, which was calculated as F =-log(P), where P was the population ob-

tained from all the 10-µs MD simulated data, as shown in the inset graph of Fig. 5.1 (A).

100 state points along the folding pathway on the energy landscape denoted L1, L2, . . .,

L100, were selected on the FEL. We chose 200 sub-conformations (MD snapshots) around

each state point. The variation of RMSD (root mean square deviation) and Rg (Radius

of gyration) along the folding path are shown in Fig. 5.1 (B) and (C), respectively.

The Hamiltonian calculation of the system includes the electronic transition of chro-

mophores including peptide unit, benzene, phenol, and indole can be modeled by the

Frenkel exciton Hamiltonian with the Heitler-London approximation, and details of the

calculations can be found somewhere else135,136.

After computing the Hamiltonian of the system, 2DUV calculations were performed

for the non-chiral (xxxx, xyyx, and xyxy) and the chirality-induced (xxxy) pulse polar-

ization configurations after the Hamiltonian was calculated. Chiral 2D signals record

interferences among transitions at different parts of the whole protein, and thus provide

richer spectral features compared to their non-chiral counterparts. The signals are dis-
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played on a non-linear scale that interpolates between logarithmic for small values and

linear for large values thus revealing both the strong and weak features.

5.4 Results and Discussion

The Trp-cage folding is a packing process from a strand to a compact cage, and the

evolution of tertiary structure can be characterized by the protein packing density137. We

computed the packing density as the average of the number of residue’s Cα atoms within

a 9 Angstrom radius of the Cα atom of a given residue. The evolution of the inverse of

packing density displayed in Fig. 5.1 (C) is consistent with the Rg. The packing density

is closely related to the protein conformation entropy, and its evolution suggests that

the Trp-cage conformation entropy decreases along the packing (folding) process. This

observation is consistent with the concept of energy landscape.

The circular dichroism (CD) spectrum is the standard one dimensional spectroscopic

technique widely used for identifying protein secondary structures. In Fig.5.2, we depicted

the structures of 5 states: L1, L25, L50, L75, and L100 and the corresponding computed

CD signals. The CD spectrum of L100 with the final folded structure agrees well with the

experiment138 of the folded Trp-cage peptide. From L1 to L100, the CD signals reflect the

variation of secondary structural elements. The negative feature at ∼56000 cm−1(∼180

nm) and positive signals at ∼43000 cm−1(∼230 nm) marked ‘RC’ are typical of a random

coil. They are in L1 yet reverse in L75 and L100, since the decrease of random coil, as

shown in Fig. 5.1 (D). Besides, the helix structures increase from L1 to L100, so the CD

from 53000 to 58000 cm−1(∼190 to 170 nm) marked ‘H’ changes from negative to positive.

The couplings between electronic transitions and structural variations significantly

affect the 2D photo echo signal. 2DUV xxxx (non-chiral) and xxxy (chiral) spectra of the
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Figure 5.1: (A) From the unfolded strand to folded cage structure of a Trp-cage protein

(PDB code: 1L2Y). The backbone trace is shown as a ribbon, the side chains are depicted

with wires. The RMSD (B), Rg (C), and inverse of packing density (D) along the free

energy landscape of Trp-cage folding process (from L1 to L100). The inset in (B) shows

the free energy landscape, which is the same as the one in Chapter 4.
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Figure 5.2: Structure (A) and CD spectra (B) of 5 states (from top to bottom:L1, L25,

L50, L75, L100) along the trp-cage folding process. Spectra are averaged over 100 MD

snapshots for each state. We labeled CD signals of the random coil and Helix as ‘RC’

and ‘H’, respectively. Black dotted CD curve is from experiment Exp1138 for the folded

trp-cage protein.
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chosen 5 states are displayed in the right and middle column of Fig. 5.3, respectively. From

L1 to L100, all non-chiral 2DUV spectrum have strong diagonal peaks ∼52000 cm−1 and

relatively weak cross-peaks distributed symmetrically around the diagonal peaks. The di-

agonal peaks are stronger than the cross-peaks indicating that the electrostatic interaction

between the different amides is weaker than the amide transition energy. The similarity

of the 2D nonchiral spectra indicates the signals are not sensitive to protein secondary

structure motifs In contrast, the xxxy signals vary significantly as the peptide moves from

L1 to L100. The unfolded states L1 and L25 have negative diagonal peaks at from 48000

to 56000 cm−1, which are typical region for random coil and strand structural motifs131.

A helical structure normally produces positive diagonal signals in that region131. These

observations imply that from L50 to L100, the increased helical structure reduces the neg-

ative signals and induces additional positive peaks at the diagonal part. The xxxy chiral

signals also reflect the tertiary structure. As expected from the decrease of conforma-

tional entropy in the folded structure, the xxxy spectral pattern becomes more compact

and simple, decreasing the signal complexity. The number of peaks (marked with white

dots in Fig. 5.2) in the xxxx and xxxy spectra of the five states are plotted in Fig. 5.4 (A).

The number of xxxx peaks remains similar during the folding. The xxxy peak number

decreases from L1 to L50, and remains flat from L50 to L100, implying a trend similar

to the variation of Rg and the inverse of packing density. The previous study139 showed

that the approximate entropy (ApEn)140 provides a good measure for the complexity of

2D signals. In the subfigure of Fig. 5.4 (B) we display a scanning line perpendicular

to the diagonal of the 2D contour map, starting from the bottom left (lower energy) to

the upper right (higher energy) corner. The projections of the xxxy signals of state L1

and L100 along this line are depicted in Fig. 5.4 (B), showing that the L1 signals have
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richer structures (such as more peaks) than the ones of L100. Fig. 5.4 (C) depicts the

variation of ApEn values of xxxy spectra during the folding process. The xxxy ApEn

decreases considerably as the peptide moves from L1 to L50, and keeps almost the same

from L50 to L100, consistent with the evolution of Rg and the inverse of packing density

(conformational entropy) shown in Fig. 5.1 (C) and (D).

Chiral signals are harder to measure due to their very weak intensities. The technique

of difference spectroscopy between two non-chiral spectra with different polarizations can

cancel the single exciton contributions such that the correlations of transitions are retained

and better resolved. The computed 2DUV xyyx-xyxy difference spectra of our five states

are displayed in the right column of Fig. 5.3. The signal complexity is reduced as we

move from L1 to L50. This may also be seen from the number of 2DUV xyyx-xyxy

spectral peaks (marked with white dots in Fig. 5.3), and the ApEn values shown in Fig.

5.4 (A) and (C). The change of the complexities of difference spectra thus also provide a

quantitative indicator of the decrease of protein conformational entropy during the folding

process.

5.5 Conclusion

Lately, the multidimensional time-resolved ultrafast spectroscopy has provided a

powerful tool in investigating protein folding. Herein we presented a study of the peptide

folding of Trp-cage by combining the multidimensional UV spectroscopy. We applied a

new technique of computing the system Hamiltonian at the QM level and CI pulses to

calculate the 2DUV spectra of the structures, which were chose from the pathway of the

underlying free energy landscape. Atomistic MD simulations using the AMBER force field

were applied to sample the conformations and build up the underlying free energy surface.
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Figure 5.3: From left to right: 2DUV xxxx, xxxy, and xyyx-xyxy spectra of 5 states (from

top to bottom:L1, L25, L50, L75, L100) along the trp-cage folding process. Spectra are

averaged over 100 MD snapshots for each state. The scale bar is plotted at the right top

edge, and signal peaks are marked by white square dots.
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Figure 5.4: The evolution of the number of 2DUV peaks (A) and ApEn (B) during the

Trp-cage folding process. Spectra are averaged over 200 MD snapshots for each state.

(C): 2DUV xxxy signal evolution curves of states L1 and L100 along the scanning line

given in the inset of (C). Purple circles highlight the multiple-peak patterns.

We demonstrated that 2DUV signals are sensitive to the change of peptide secondary and

tertiary structure, and especially useful in probing the global structural changes. The

complexity of 2DUV spectra of peptide backbone as measured by the ApEn is a potential

good indicator for the conformational entropy, and provides a quantitative index of folding

status with the same accuracy as the calculated RMSD and Rg values. The RMSD and

Rg can only be extracted from the known atomic structures at every time point, which

require huge computation resources for most proteins and are not accessible to any exist-

ing experimental techniques. As 2DUV signals are becoming feasible127,129,130,141, protein

folding can be measured by the ApEn value of 2DUV chiral signals. Our results provide

a direct connection between the experiment and theoretical calculations. Ongoing and

future experiments can test the predictions of the calculations. By directly connecting

2D spectroscopy experiments with molecular simulations, we can uncover the underly-

ing mechanisms of folding and see how the folding process actually occurs in time by
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monitoring the folding pathways.

5.6 Summary

A QM/MM protocol is applied to simulate the 2DUV spectra of the folding of Trp-

cage peptide. 2DUV signals are demonstrated that they are sensitive to the change

of peptide secondary and tertiary structure and especially useful in probing the global

structural changes. The complexity of 2DUV spectra of peptide backbone as measured

by their number of the peaks is a good indicator for the conformational entropy and

provides a quantitative index of folding status with the same accuracy as the calculated

RMSD and Rg values. 2DUV can offer a fast experimental measurement and theoretical

verification of the protein folding state.
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Chapter 6 Summary

The energy landscape theory provides an essential framework for understanding pro-

tein folding and binding and has been widely used to interpret the folding and binding pro-

cesses. The theory assumes a funnel-like shape of the surface, which is sufficiently biased

to direct the folding or binding so that they can happen on the experimental time scale.

The work presented in this dissertation provides insights into the protein folding and bind-

ing through the Glutermine-binding protein and Trp-cage model systems by investigating

their underlying free energy landscape. The whole thesis has two major parts. In the

first part, we applied a course-grained model (residue level) and a developed microscopic

two-well potential energy model to explore the thermodynamic landscape, kinetics, and

structural evolution of the conformational transition of Glutermine-binding protein. Fur-

thermore, the multi-dimensional coordinate-dependent diffusion dynamics on the energy

landscape of GlnBP was investigated as well. In the second part, the all-atom molecular

dynamics simulations and the effective and novel two-dimensional spectroscopies, includ-

ing two-dimensional infrared spectroscopy and two-dimensional ultraviolet spectroscopy,

were combined to study the folding mechanism of a peptide, Trp-cage. We will summarize

the details of those work below.

6.1 Applying a two-well model to study the conformational switches

of GlnBP

GlnBP exhibits the ligand-free open state and ligand-bound closed state during the

process of ligand binding. Therefore, a microscopy potential energy model with two wells
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was used to describe the conformational transition of GlnBP. The free energy landscapes

of the conformational transition at different temperatures were built and analyzed. Two

basins were observed on the free energy landscapes and the topological properties of the

free energy landscape show that at low temperature most of the time the protein prefers

to stay in the closed state. As temperature increases, the protein tends to cross the en-

ergy barrier and dwell in the open state. The kinetic aspects of the transition were also

investigated by calculating the mean and distribution of the first passage time and also

the correlation function. Both the closed- and open staying times exhibit the Γ distribu-

tion. The complexity and hierarchical structure of the underlying energy landscape was

illustrated by the analysis of the autocorrelation function.

We further developed the umbrella sampling with two harmonic biasing to perform

constrained simulations for estimating the diffusion coefficients. After calculating the

2D diffusion coefficient tensor, we found that the local DC on the energy landscape is

anisotropic. The anisotropy and inhomogeneous coordinate dependent diffusion can shift

the thermodynamic pathway of the conformational transition of the protein away from

the naively expected steepest descent gradient path on the free energy landscape. Fur-

thermore, the dominant kinetic paths do not necessarily go through the transition state

that does not consider the effect of coodinate-dependent diffusion. Both the position and

value of the barrier height are shifted by the inhomogeneous and anisotropic diffusion.

The inhomogeneous and anisotropic diffusion will therefore modify the ϕ value analysis

for identification of hot residues for conformational change dynamics. Glutamine bind-

ing protein is a relatively simple system which only includes the open and closed states,

and the intermediate state is rarely observed. Our results suggest that for more complex

systems that have intermediate states, the anisotropic and inhomogeneous diffusion may
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also have significant influences on the kinetic and dynamic properties. This could be an

interesting topic in future.

6.2 Two-dimensional spectroscopy of Trp-cage folding

In this part of work, we illustrated that two-dimensional infrared spectroscopy and

two-dimensional ultraviolet spectroscopy can be used to monitor the conformational evo-

lution on the folding free-energy landscape of Trp-cage. First, the folding of Trp-cage was

simulated to build up the free energy landscape, which suggests one dominant pathway

that connects the unfolded and native state. For the 2DIR spectroscopy, the simulated

linear absorption spectra, nonchiral spectra, and chirality-induced 2DIR spectra illustrate

the conformational changes during folding. In our simulations, the chiral 2DIR spectra

displayed a very strong feature, indicating the formation of the folded state. In the nonchi-

ral signals the formation of the folded state is seen as a similar pattern in the spectra.

Comparing the chiral and nonchiral 2DIR spectra, we have found that the chiral signals

are more sensitive when the structural changes. However, these signals are much weaker

than their nonchiral counterparts and have not yet been observed in experiment. In the

chiral 2DIR experiments, a typical box-car or pumpprobe geometry may be used. A

highly sensitive detector could be achieved by upconverting the signal to the visible and

detecting using a charge-coupled device142. For the 2DUV spectroscopy, its signals are

sensitive to the change of peptide secondary and tertiary structure and especially useful in

probing the global structural changes. We found that the complexity of 2DUV spectra of

peptide backbone could be a promising indicator folding status. Coherent 2D experiments

are now possible, but require state of the art technology. In future, the 2D spectroscopy

experiments can test the models and the models also can provide the guidance for the
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experiments. In our future work, we may study the systems which have multi-pathways.

It would be interesting if we compare the spectra on the different pathways.
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