
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



Beam Energy and System-size
Dependence of the Space-time

Extent of the Pion Emission Source
Produced in Heavy-Ion Collisions

A Dissertation Presented

by

Alex Mwai
to

The Graduate School
in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Chemistry

(Chemical Physics)

Stony Brook University

December 2014



©Copyright by

Alex Mwai

2014

All Rights Reserved



Stony Brook University

The Graduate School

Alex Mwai
We, the dissertation committee for the above candidate for the Doctor of Philosophy

degree, hereby recommend acceptance of this dissertation.

Roy Lacey - Dissertation Advisor

Professor, Department of Chemistry

Jiangyong Jia - Chairperson of Defense

Associate Professor, Department of Chemistry

Trevor Sears

Professor, Department of Chemistry

Derek Teaney

Associate Professor, Department of Physics and Astronomy

This dissertation is accepted by the Graduate School.

Charles Taber

Dean of the Graduate School

ii



Abstract of the Dissertation

Beam Energy and System-size
Dependence of the Space-time

Extent of the Pion Emission Source
Produced in Heavy-Ion Collisions

by

Alex Mwai

Doctor of Philosophy

in

Chemistry

(Chemical Physics)

Stony Brook University

2014

The primary goal of high-energy nuclear physics is to develop a thorough understanding
of the QCD phase diagram: Its different phases, their boundaries, and the physics they
define. Heavy-ion collisions reproduce at a microscale the conditions necessary to initiate
the phase transitions of nuclear matter that are only possible at extreme temperatures
(T ) and baryon chemical potential (µB).
An important probe utilized in studies of the hot and dense matter created in heavy-

ion collisions is the method of Hanbury-Brown and Twiss interferometry. The technique
is useful in providing measurements in space and time of the pion emission sources at
freeze-out. One enduring question of interest in studies of the QCD phase diagram is the
position in T and µB coordinates of the QCD Critical End Point (CEP) as well as the
onset of deconfinement, as predicted by model calculations. According to these models,
the Equation of State (EoS) should soften in the vicinity of the CEP and/or a first order
phase transition. The expanding hot and dense system is sensitive to changes in the EoS.
A softening of the EoS will therefore be reflected in measurements of the final size in
space-time of the pion emission source. Another question is how small can a system be
before we see a turn-off of hydrodynamically driven final-state effects.
In this thesis, detailed HBT measurements obtained using the PHENIX detector at the

Relativistic Heavy Ion Collider (RHIC) are presented for three beam collision energies
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(√sNN = 39, 62, and 200 GeV) and three collision species (d + Au, Cu + Cu, and
Au+Au). The measurements are studied for their dependence on collision geometry and
transverse mass (mT ), and observations are made on how the small asymmetric system,
d + Au, compares to the A + A systems for these dependencies. In addition, newly
observed universal scaling patterns with the initial transverse size, R̄, and 1/√mT for
both RHIC HBT measurements and the Pb+Pb collision system at √sNN = 2.76 TeV are
discussed. Finally, observations of non-monotonic behavior in the excitation functions of
HBT measurements are presented in detail and their significance reflected on. The results
presented here provide a valuable extension to the current understanding of the dynamics
of the hot and dense systems produced in heavy-ion collisions.
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1. Introduction

1.1. Standard Model
The standard model is a theory of physics that provides a unified account of all the
interactions of matter and the forces of nature, with the exception of gravity. It has
proven to be highly successful, withstanding even the toughest of scrutiny. The Standard
Model has 17 named particles – 12 fermions and 5 bosons, of which the Higgs boson
discovered in 2012 is the most recent. All the elementary particles that are the building
blocks of matter are fermions which can be described using Fermi-Dirac statistics. Other
elementrary particles are the force carriers which mediate interactions between matter
and are subject to Bose-Einstein statistics (Bosons).

1.2. Quantum Chromodynamics
Quantum Chromodynamics (QCD) is a non-abelian gauge theory of strong interaction,
describing how the elementary particles, quarks, interact by exchange of the gauge bosons
for the strong force, gluons. These strong interactions are only possible because both
quarks and gluons carry color charge, which is analogous to electric charge. But unlike
the chargeless photon which mediates electromagnetic interactions but cannot interact
with another photon, a gluon is able to interact with another gluon. This characteristic
makes QCD interactions a lot more complex and gives rise to very interesting features.
One distigushing property of the QCD theory is asymptotic freedom. The interaction
strength between two quarks is defined in terms of a coupling constant, αs, as:

αs = g2
s/4π (1.1)

where gs is the QCD gauge coupling. Asymptotic freedom describes how the interaction
strength diminishes as the separation between the two quarks grows smaller and will
asymptotically approach zero at very small separations (this corresponds to higher ener-
gies and momentum). Eqn. 1.1 describes this logarithmic decrease which is as a result of
gluon self-coupling, leading to an anti-screening i.e., effective color charge increases with
distance [110].
Another very important distinguishing characteristic of QCD is color-confinement,

manifest at low energy. As you try to separate a quark-antiquark pair by pulling them
apart, their interaction becomes increasingly stronger as their separation distance in-
creases. Past a certain distance, the energy applied to separating the quark-antiquark
pair will go into forming a new quark-antiquark pair. This is the reason we cannot ob-
serve free quarks in the lab (i.e., at macroscopic distances) since at such distances, quarks
and gluons are bound in color singlet states or hadrons [110].
Over the years, several theoretical methods have been developed to provide a quanti-

tative test of the validity of QCD. Two of the most important are Lattice QCD (LQCD)
and Perturbative QCD (PQCD). At high energies, corresponding to high temperatures
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and or baryon-chemical potential, QCD is solved through the application of PQCD and
calculations based on this perturbative approach have provided some of the most precise
validations of the theory [104] . At lower energies, there is an increase in the coupling
constant which renders PQCD inaccurate [87]. In these regimes of energy (~ <1 GeV),
LQCD, which involves approximations of Euclidean space-time on a hypercubic lattice, is
a more viable option since it does not rely on the small parameter expansions of PQCD.
LQCD currently allows for the most precise determination of αs [64].

Figure 1.1.: The conjectured QCD phase diagram

One of the central conjectures of the QCD theory is the QCD phase diagram. The QCD
phase diagram defines the state of a system of strongly interacting matter in terms of
the thermodynamic parameters of temperature (T ) and baryon chemical potential (µB).
It shows the different phases of the system for a set of T and µB, the physics defining
these phases, and the boundaries that separate them [106]. The current QCD phase
diagram includes input from model calcuations, PQCD and LQCD calculations, as well
as deductions from experiment. The goal of high-energy nuclear physics is to develop a
thorough understanding of the QCD phase diagram.

1.3. QCD Phase Diagram
One of QCD’s most spectacular predictions is the existence of a phase of nuclear matter
where the quarks and gluons are deconfined, forming a plasma of mostly liberated quarks
and gluons or QGP[54, 47] . The prediction of this deconfined state of matter at high
temperatures and/or baryon-chemical potential followed from the work of Wilczek, Gross,
and Politzer in describing asymptotic freedom, work for which they were awarded the
Nobel Prize in physics in 2004. Based on theoretical calculations, the transition from
hadronic matter to QGP is supposed to occur when the energy density of the medium is
comparable to that inside a proton [66] .
Figure 1.2 shows LQCD calculations for the change in the energy density with temper-

ature. The critical temperature is found to be Tc = 173 ± 15 MeV and the critical energy
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Figure 1.2.: Temperature dependence of the energy density, ε, scaled to T 4 for SPS, RHIC,
and LHC energies. These calculations, based on LQCD, are done for different
number of flavors. A rapid increase in ε(T ) is evident at T ≈ 160 MeV which
is the critical temperature. This increase occurs over a very narrow change
in temperature and can be explained as a change in the degrees of freedom
of their medium, signaling a phase transition [66].

density ε = 0.7 ± 0.3 GeV/fm3[87] . The change in the energy density, starting at T
= Tc ~ 160 MeV, occurs over a very short range in temp of about 20 MeV. This sharp
increase in the energy density can be interpreted as a change in the degrees of freedom of
the medium, as it goes from a confined to a deconfined state. Assuming a hadronic gas
of three very light pions (π+, π−, π0), and therefore a total of three degrees of freedom.
The equation of state for this hadronic gas phase becomes:

p = 3π2

90 T
4 (1.2)

for T & Mπ
2 where p is the pressure, T is the temperature and Mπ is the pion mass.

At higher temperatures, past Tc, we have a collection of quarks and gluons. The
gluons provide eight colors and two spin degrees of freedom for 8 × 2 = 16 total degrees
of freedom. For the quarks, we will have 2-3 flavors or nf , with each flavor carrying an
equal number of quarks and antiquarks (2 degrees of freedom). In addition, we have 2
degrees of freedom from spin and 3 from color. The total degrees of freedom contribution
from quarks is nf × 2 × 2 × 3 × 7/8 = 21-32 degrees of freedom. The 7/8 factor is
introduced to account for the difference between Bose-Einstein and Fermi-Dirac statistics
[42]. The degrees of freedom in this phase will be the sum from the contributions of the
quarks and gluons, i.e,

16 + 21
2 nf (1.3)

The Equation of State for this deconfined phase of quarks and gluons is:

p = π2

90(16 + 21
2 nf ) (1.4)
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We therefore find that there is a dramatic increase in the degrees of freedom going from
the hadronic gas at T < Tc to the deconfined quarks and gluons at T > Tc [66].
While the change in the energy density is abrupt, the medium’s pressure shows a

smooth and gradual increase over the same range in temperature. The speed of sound
given by:

c2
s = dP/dε (1.5)

Therefore becomes very small over this temperature range (c2
s → 0).

Figure 1.3.: Temperature dependence of the system’s pressure, scaled to T 4. This is
studied for the same number of flavors as Fig. 1.2. The scaled pressure
dependence shows a smooth rise, rather than a sudden increase, at Tc [66].

The experimental verification of QGP at RHIC has been one of the defining moments
of high energy nuclear physics. At RHIC energies, the QGP formed is now believed to be
a strongly coupled QGP (sQGP) as opposed to the weakly coupled QGP (wQGP) which
would be formed at much higher temperatures.
While there is an overwhelming body of experimental evidence for the formation of

QGP at high T and/or µB, the transitions are not very well understood. Calculations
based on Lattice QCD show that at high T and small µB (µB→0), there is a smooth
crossover transition from hadronic gas to QGP [46] . Theoretical calculations on the
other hand show that at low T (T→0) and high µB, the system experiences a first-
order phase transition [36, 40]. This would suggest that the first-order phase transtion
line must end somewhere, and this would be the critical point of second order, and of
the 3-D Ising universality class [68]. To theoretically determine the critical point, one
would need to calculate the QCD partition function to establish the end of the first-order
phase transtion line. These calculations have been hampered by several limitations in the
capability of our current theoretical methods which leaves the experimental approach as
the only viable way to establishing the location of the QCD Critical End Point (CEP)
[106].

4



1.4. Relativistic Heavy Ion Collisions and BES
To experimentally probe the QCD phase diagram, we collide heavy ions at ultrarela-
tivistic speeds. This allows us to recreate at a microscale the conditions of temperature
and density necessary to induce the hypothesized phase transition from hadronic matter
to QGP. The first facility capable of colliding heavy ions was the Alternating Gradient
Synchotron (AGS) at Brookhaven National Laboratory. Later, the Super Proton Syn-
chrotron at CERN was able to achieve heavy ion collisions at up to √sNN = 18 GeV.
The commisioning of the Relativistic Heavy Ion Collider in 2000 as the first heavy ion
collider meant that researchers were now able to probe the phase diagram at even greater
temperatures. RHIC makes use of the old AGS facility as an injector, allowing for even
more intense beams to be collided. The newly commissioned Large Hadron Collider at
CERN has ushered a new era in heavy ion studies, with energies of up to 5.5 TeV per
nucleon pair attainable.

1.4.1. The Bjorken scenario of the space-time evolution of
relativistic heavy-ion collisions in the central-rapidity region

Figure 1.4.: Space-time evolution of a heavy ion collision at mid-rapidity.

Formation: As the ions are are accelerated to ultrarelativistic speeds, they are flat-
tened, resembling pancakes, on the center of mass system as a result of Lorentz contrac-
tion. The crossing time for the two nuclei is very short and is given by:

τcross = 2R/γ (1.6)

where γ is the Lorentz factor and R is the nuclei radius [87].
After crossing, the two pancakes recede from each other at a speed c. The inital energy

density of the receding colliding ions can be estimated to be about 1-10 GeV/fm3, not
taking into account any collisions from hadrons produced and assuming an initial time, T0,
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of about 1 fm/c which can be viewed as the time it takes to establish the initial conditions.
The formation time is comparable to the time-scale of the strong interaction. Once these
initial conditions are established, they remain invariant under Lorentz transformation
[42].

Thermalization: The particles produced will interact at the initial energy density,
reaching thermal equilibrium in (Ttherm > T0) for Ttherm ~5-10 fm/c. If thermal equilib-
rium is attained early, say at Ttherm<1 fm/c (or Ttherm < T0), then the system will exhibit
collective flow and there will be formation of QGP [66].

Hydrodynamic expansion: Once thermal equilibrium has been attained, the system
undergoes a fluid-like expansion. The initial expansion will be longutidinal, due to the
larger pressure gradient in that direction as opposed to the transverse. The time depen-
dence of the energy density can be given as ε 1/tn where 1 <= n <= 4/3. The lifetime
of the longutidinal hydrodynamic expansion is of the order of R, where R is the nuclei
radius (~7 fm/c).

3-D Expansion: Following the longitudinal expansion is a relatively short-lived 3-D
expansion (about T0 ~ 0.3 fm/c ) and cool-off ending in freeze-out. This is thought to
occur when the mean-free-path, λ, is comparable to R or at an energy density of ε ∼
0.075 GeV/fm3 [87]. Inelastic collisions end earlier than elastic collisions. The system
will therefore undergo chemical freeze-out first which has the effect of fixing the total
particle yield. Kinetic freeze-out then follows when elastic collisions end, thereby fixing
the total momentum distribution of the particles [79].

1.4.2. BES
While theory has not been able to determine the exact location of the CEP, studies have
been able to narrow it down to a region in T and µB that is accessible at RHIC collision
energies [62, 101]. The basic premise is that at different collision energies, resulting hot
and dense systems will traverse different trajectories as they cool down and eventually
hadronize. Assuming ideal hydrodynamics, these trajectories are isentropic, and they
trace a constant baryon per entropy ratio [33]. This means that one can experimentally
search for the critical end point by colliding heavy ions at different collision energies–
varying by small steps–and looking for key signatures that would denote a change in the
reaction dynamics of the system.
The presence of a critical point would be characterized by a divergence in the correlation

length, ξ, which can be thought of as a measure of the distance from the CEP (ξ →∞ ).
This would in turn lead to an increase in fluctuations in the derivatives of thermodynamic
functions. The divergences of the derived quantities act as powers or critical exponents
of the correlation length[107].
It has been argued though that due to a phenomena known as critical slowing down,

where the long wavelength dynamics are slowed down near the CEP, the growth of the
correlation length is limited to ξfreeze−out ~ 3 fm [39]. This will have the effect of reducing
the magnitude of related fluctuations which are proportional to ξfreeze−out. For this
reason, the higher moments of ξfreeze−out like the third order skeweness and fourth order
kurtosis (ξ9/2

freeze−out and ξ7
freeze−out respectively) provide more sensitivity to the CEP [105].

On the other hand, the focusing effect as shown in Fig. 1.6, where the CEP behaves
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Figure 1.5.: The QCD phase diagram showing the energies so far undertaken by RHIC as
part of the Beam Energy Scan program phase 1 (BES 1), as well as their the-
orized reaction trajectories (yellow curves). Black solid markers are estimates
for the T : µB coordinates at freeze-out.

as an attractor of close by reaction trajectories, would provide an added advantage to
experimentalists. This is because different collision energies with reaction trajectories
close to the CEP will be drawn to it and therefore one does not necessarily need to
narrow down to a specific collision energy so as to find the CEP.

1.5. Signatures of CEP
As mentioned above, event-by-event fluctuations in the derived quantities of thermody-
namic observables as a function of temperature provide some of the direct evidence of the
CEP and much of the experimental efforts have focused on different fluctuation measure-
ments. Another set of indirect probes look for the expected softening of the Equation of
State EoS in the vicinity of the CEP or for a first-order phase transition. The following
discussion will focus more on a few of these probes.

1.5.1. Flow measurements
In heavy-ion collisions, spatial anistropy resulting from the overlap geometry of collision
creates a pressure gradient which in turn leads to an azimuthal anisotropy in the mo-
mentum distribution of emitted particles. This azimuthal anisotropy in momentum-space
is a manifestation of collective expansion behavior known as flow. Experimentally, we
measure anisotropic flow from the distribution of momenta with respect to the reaction
plane. This is characterized by the following form:
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Figure 1.6.: Calculated trajectories in the T : µB phase space of QCD for the case of no
CEP (solid line) and with a CEP (dotted and dashed-dotted) illustrating the
focusing effect [32].

E
d3N

d3p
= 1

2π
d2N

pTdpTdy
(1 + 2

∞∑
n=1

υncos[n(ϕ− ψRP )]) (1.7)

Where E is the energy of the particle, N is the total number of particles, p is the
momentum, pT is the transverse momentum, y is the rapidity, ϕ is the azimuthal angle
of the particle, and ψRP is the reaction plane angle. The Fourier decomposition yields
the Fourier coefficients υn. υ1 is known as the directed flow, υ2 is the elliptical flow, and
υ3 is the triangular flow. As mentioned previously, a system going through a first-order
phase transtion will show a softening of the EoS. Directed flow is formed early in the
evolution of the systems since it arises from the pressure generated during the crossing
of the two nuclei, and only affects particles in the forward and backward rapidity region
[73]. Model calculations predict a dip in the υ1 excitation function due to a reduction in
directed flow as a result of the softening of the EoS, which could be used as a signature
for first-order phase transition [98] .
Elliptic flow, which is formed much later than directed flow, has been especially well

studied at RHIC as a signature of collective effects in the hot-dense medium and has been
shown to be proportional to the initial spatial anisotropy [80, 88, 111]. Like directed flow,
elliptic flow will also be sensitive to changes in the EoS which drive the dynamics of the
system, and is expected to show non-monotonic behavior in its √sNN dependence as the
system traverses a first-order phase transition [78].
Part of the appeal of elliptic flow coefficients is their sensitivity to transport coefficients

such as the specific shear viscosity to entropy density ratio, η/s, that describe the dy-
namics of the system [82]. Flow measurements have been utilized to extract estimates of
η/s by relativistic viscous hydrodynamic fits to experimental data [99, 53]. The η/s once
extracted can be studied for its dependence on µB and T , to provide estimates for the
location of the CEP in µB and T phase space. The QCD critical end point, as mentioned
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in section 1.3 is of the 3-D Ising model universality class, and as such will display critical
properties that are characteristic of all physical systems of this universality class. It is
therefore expected that η/s will show a similar trend in the transition from hadronic
matter to QGP at a CEP as that shown by molecular systems of the same universality
class. Molecular systems, such as those of helium, water and nitrogen for example, show
that the η/s has a minimum at the critical point when plotted for its dependence in tem-
peratue at fixed pressure values (one of which is the critical pressure where the minimum
is observed) [55].

Figure 1.7.: η/s as a function of temperature for water. Each curve represents an isobaric
curve, with the critical pressure at 22.06 MPa and the other two curves at
10 MPa and 100 MPa. A rapid change can be seen at the isobar below the
critical pressure while η/s shows a minimum at the critical point [55].

Studies of the excitation function of υ2(pT ) also indicate a flat dependence from √sNN
62-200 GeV which would suggest a softening of the EoS, as well as relatively small values
of average η/s over this range in √sNN [81].

1.5.2. Measurements of the system size at freeze-out
One would expect that an increase in collision energy would lead to a monotonic increase
in the lifetime of the system as well as its emission duration. A system evolving through a
mixed phase at lower energy however, or traversing a critical point, would show dramatic
changes in the excitation functions of its system size in space and time. For example,
due to the reduced pressure gradient, c2

s ∼ 0 and the system would show a reduced final
geometric transverse size but an enhanced emission duration as the system slows down
[75, 97]. Measurements of the collision energy and system size dependence of emission
sources can therefore help locate the CEP or the onset of deconfinement.
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Figure 1.8.: The υ2(pT ) excitation function showing a flat dependence for √sNN = 62-200
GeV. The inset shows the (4π)η/s dependence on µB [81].

1.5.3. Turn-off of hydrodynamic-driven final-state effects
The small systems of p+ p and p(d) +A have routinely been applied in heavy-ion studies
to provide benchmarks for expected signatures of QCD matter created in the A + A
systems [8, 13]. The elementary collisions of p + p allow for the characterization of
particle productions processes in the abscence of both initial and final-state effects while
the asymmetric (d)p+A systems allow for the separation of initial and final state effects.
It is expected that the (d)p + A systems would show the same initial state effects as
A + A collisions but collective effects will be largely absent since the systems are not
large enough and are too short-lived for the formation of QGP [100, 21, 13].
Recent results for high-multiplicity p + p and (d)p + A collision systems where these

small systems are seen to exhibit signatures usually associated with collective phenomena
in A+A systems has led to a revival of interest in them, beyond their use as calibration
tools for A+A collisions. These results, and the new challenges they present are discussed
in this section.

Ridge structure

Two particle angular correlations have been a very useful tool in the study of particle
production and collective effects in heavy-ion collisions [4, 28, 6, 2]. Typically, it involves
building distributions of the relative separation of two particles in φ and η (i.e., ∆φ, ∆η)
where φ is the azimuthal angle and η is the pseudorapidity defined as:

η = −ln(tan(θ/2)) (1.8)

with θ, the polar angle, defined in the counter-clockwise beam direction [52].
In minimum-bias p+p and p(d)+A collision systems, the “near-side” (∆φ ≈ 0; ∆η ≈ 0)

is dominated by a large peak attributed to jets. Jets are a stream of hadrons contained in
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a narrow cone, resulting from hard scattering processes within the medium. The “away-
side” (∆φ ≈ π) also show similar structure, from fragmentation in the recoiling jets and
momentum conservation. This peak is seen to be broader in ∆η due to longitudinal
momentum distribution [2].

Figure 1.9.: A comparison of two-particle angular correlations for (a) p+ p, (b) Cu+Cu,
and (c) Au+Au collision systems at

√
s = 200 GeV. The p+ p collisions are

minimum bias while the Cu+Cu and Au+Au collisions are selected for the
most central 0–10% [28].

In addition to the jet-like features, the A + A systems are also found to have broader
ridge-like structures that extend over ∆η in the near-side and away-side. The long-range
structures are unrelated to the jet-like effects and have been attributed to flow [28].
Recently, similar structures have also been reported in high-multiplicity p + p, p + Pb,
and d+ Au collisions [3, 16, 76].

(a) Ridge structures for high-multiplicity p+p
collisions at √sNN = 5.02 TeV [76].

(b) Ridge structures for high-multiplicity p+Pb
collisions at

√
s = 7 TeV [52].

Figure 1.10.: Ridge structures as seen at ∆φ ≈ 0 and ∆φ ≈ π for a wide range in ∆η

In A+A collisions, the long-range (in ∆η) correlations can be characterized using the
components of a Fourier decomposition to the distribution as given by the expression:

dNpairs

d∆φ ∝ 1 +
∑

2υn∆(paTpbT )cos(n∆φ) (1.9)
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where Npairs is the total number of pairs, υn∆ is the nth harmonic order coefficient,
and piT are the transverse momenta of the particles in the pair.
Using the second Fourier coefficient, υ2, to quantify the magnitude of elliptic flow, it

has been found that the d + Au and p + Pb systems both show a strong υ2 signal, as
well as mass-ordering for identified particles in the υ2 dependence on pT . Mass-ordering
comes about from the greater influence of flow on the momenta of heavier particles [45].

Figure 1.11.: The measured υ2(pT ) for identified particles at (a) RHIC for d+Au at
√
s

= 200 GeV and (b) LHC p+Pb at
√
s = 5.02 TeV. They both show a strong

elliptic flow signature as well as mass-ordering [17].

While these results can be explained using the viscous hydrodynamic model (for ex-
ample, see [17, 3]), alternative models that argue for inital-state effects have also been
proposed. The Color Glass Condensate (CGC) model, for instance, proposes that the
observed effects are as a result of quantum interference resulting from gluon saturation at
very high parton densities [58, 59]. To provide for model constraints and help establish
the role of final-state effects in th evolution of small asymmetric systems, one can utilize
a different probe that is known to be sensitive to hydrodynamic-like final-state effects.
One such probe is the size in space and time at freeze-out of the particle emitting system.
The dependence on the collision geometry and transverse mass of the size of the system
at freeze-out is well studied for A + A collisions, and is known to exhibit characteristic
patterns that can be attributed to hydrodynamic-driven final-state effects [85, 22, 23].

1.5.4. Interferometry
Hanbury-Brown Twiss is a technique of intensity interferometry that utilizes quantum
interference between identical particles to measure the size in space and time, as well as
the shape, of the hot and dense systems formed from heavy-ion collisions. It measures the
so called region of homogeneity–an emission region for correlated particles with the same
transverse momentum–at freeze-out and has been extensively used in studies of heavy-
ion collisions [22, 15, 1]. HBT does not only reveal the geometry of the particle emitting
system but also describes the influence of space-momentum correlations resulting from
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collective flow effects on the final shape and size at freeze-out. Using the HBT method
to obtain detailed measurements of the extent in space and time of pion emission sources
for different beam energies and collision systems, this thesis will focus on two objectives:

1. Obtaining a comparison of the final system size dependence on collision geometry
and expansion dynamics for d+Au and Au+Au collision systems to determine the
influence of hydrodynamic driven final-state effects in small asymmetric systems.

2. An analysis of the excitation functions of the final system size and derived quantities
in search of the QCD critical point and/or the onset of deconfinement.
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2. HBT theory
The first application of two particle intensity interferometry was in radio-astronomy by
Hanbury-Brown and Richard Twiss in the 1950’s. Using mirrors to collect stellar light
into photomultiplier tubes, they were able to observe an interference pattern analogous
to the interference patterns of the Young’s experiment. Unlike amplitude interferometry,
the method now commonly known as Hanbury-Brown Twiss interferometry (HBT) is
based on the correlation effects from fluctuations in the measured intensities of a beam
of particles at two detectors. These intensity fluctuations encode information about the
size of the source and are therefore useful in the imaging of stellar objects [69]. In
the late 1950’s Goldhaber et al. independently applied the same technique of intensity
interferometry to particle physics. In the process of comparing the mass distributions of
like and unlike charge pion-pairs, they observed that there was an angular correlation in
the same-charge pion pairs. As identical bosons, the same-charge pion pairs are subject to
Bose-Einstein statistics and therefore an enhancement will be observed at small relative
momentum [63].

2.1. HBT model

Figure 2.1.: Illustration of an intensity interferometry experiment.

Consider two random source, X1 and X2 separated by a distance R. The two sources
emit identical particles independently (at x1 and x2 respectively), and these particles
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are then picked up by two detectors d1 and d2 a distance L away from the sources and
separated by a distance h. The probability amplitude for the detection of the two identical
particles is:

ψ12 = 1√
2
{
Me−ip1(d1−x1)e−ip2(d2−x2) ±Ne−ip1(d2−x1)e−ip2(d1−x2)

}
(2.1)

Where M is A(p1, d1)A(p2, d2) and N is A(p1, d2)A(p2, d1)
The probability density of detecting two particles with momentum p1 and p2 for a

normalized space-time distribution of the emission source ρ(x) is given by:

P2(p1, p2) = P (p1)P (p2)
∫
d4x1d

4x2|A(p1, p2)|2ρ(x1)ρ(x2) = P (p1)P (p2)
[
1± |ρ̃(q)|2

]
(2.2)

where ρ(q) =
∫
d4xρ(x)eix(p2−p1) is the Fourier transform of ρ(x).

The single particle probability density is:

P (p) =
∫
d4xρ(x)|ψ(p)|2 (2.3)

where ψ(p) = A(p, d)e−ip(d−x).
The two-particle correlation can therefore be expressed in the form:

C2(p1, p2) = P2(p1, p2)
P (p1)P (p2) = 1± |ρ̃(q)|2 (2.4)

Assuming the source density has a Gaussian profile,

ρ(x) = 1
4π2R4 exp

(
− x2

2R2

)
(2.5)

with R as the Gaussian width, and with its Fourier transform as:

ρ(q) = 1
4π2R4 exp

(
−q

2R2

2

)
(2.6)

which is also a Gaussian distribution, the correlation function can be expressed in the
form:

C2(p1, p2) = 1± e−q2R2 (2.7)

The above derivation assumes a static extended source. While this might be a good
approximation for stellar objects, the rapidly expanding systems produced in heavy-ion
collisions require a description that takes into account the resulting space-momentum
correlations.

2.2. HBT in dynamic systems
For heavy-ion collisions, the behavior of pions produced can be described by the Klein-
Gordon equation for the pion Heisenberg field, φ(x), as [65]:

(�+m2
π)φ(x) = Ĵ(x) (2.8)
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Ĵ(x) is the nuclear current operator while mπ is the pion rest mass. This equation
is not easy to deal with since Ĵ(x) is coupled to φ(x), the pion field. However, we can
make some presumptions that allow us to make estimates for Ĵ(x). For high multiplicity
nucleus-nucleus collisions, the expectation is that at chemical freeze-out, the production
of pions is going to be small as compared to the nucleon number and therefore Ĵ(x)
remains mostly unchanged by the emission [65].
This approximation allows us to replace Ĵ(x) by its expectation value J(x) which is a

space-time function. The solution for the equation giving the final pion state is then the
coherent state |J〉, i.e.,

|φ(x)〉 = |J〉 (2.9)

|J > has several properties, the most relevant to this discussion been that it is an
eigenstate of the annihilation operator [93].

â(~p)|J〉 = iJ̃(~p)|J
〉

(2.10)

where the on-shell Fourier transform of J(x), J̃(~p), is defined as:

J̃(~p) =
∫ d4x√

(2π)32Ep
exp[i(Ept− ~p.~x)]J(x) (2.11)

J(x) for a classical current can be thought of as a collection of independent source
currents with a position defined as xi and momenta pi, i.e.,

J(x) =
∑

eiφie−ipi.(x−xi)J0(x− xi) (2.12)

If φi are random phases, then the source is chaotic. Its Fourier transform on-shell is
given by:

J̃(~p) =
∑

eiφieipi.xi J̃0(p− pi) (2.13)

where J̃0(p − pi) is the Fourier transform of J0(x), the individual source currents and
is described as:

J̃0(p− pi) =
∫ d4x√

(2π)32Ep
ei(p−pi).xJ0(x) (2.14)

Based on the solution for the final pion state, the probability of producing a single
particle from position x with momentum p can be described by the equation:

P1(~p) = E
dN

d3p
= E

〈
J |a†(~p)a(~p)|J

〉
(2.15)

This single-particle distribution is normalized to the average number of particles per
event, 〈N〉,

∫ d3p

E
P1(p) = 〈N〉 (2.16)

The probability of producing a pair of particles is given by:
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P2(~p1, ~p1) = E1E2
dN

d3p1d3p2
= E1E2

〈
J |a†(~p1)a†(~p2)a(~p1)a(~p2)|J

〉
(2.17)

With the distribution normalized to the average number of pairs per event, 〈N(N − 1)〉
[71]. The two-particle probability distribution can be expanded using the generalized
Wick theorem so that,

P2(~p1, ~p2) = 〈N(N − 1)〉
〈N〉2

(P1(~p1)P1(~p2)± |S̄(~p1, ~p2)|2).S̄(~p1, ~p2) (2.18)

is a covariant quantity defined as:

S̄(~p1, ~p2) =
√
E1E2

〈
a+
~p1
a~p2

〉
(2.19)

and whose Fourier transform is the emission function [49],

S̄(~p1, ~p2) = S̃(~q, ~K) =
∫
d4xe−iq.xS(x,K) (2.20)

The off-shell average momentum of the pair is defined as:

~K = 1
2(~p1 + ~p2) (2.21)

whereK0 = 1
2(E1+E2) and p0

i = Ei =
√
m2 + ~p2

i . The off-shell relative pair momentum
is:

q = (p1 − p2) (2.22)

The mass-shell constraint Since q and K are off-shell, they satisfy the orthogonality
relationship [71]:

q.K = p2
1 − p2

2 = 0 (2.23)

In the same manner, the single-particle distribution can be described in terms of the
Wigner density emission function:

P1(~p) = E
dN

d3p
=
∫
d4xS(x,K) (2.24)

The correlation function can be described as the ratio of the two-particle probability
distribution to the one-particle probability distributions,

C(~p1, ~p2) = Π P1(~p1, ~p2)
P1(~p1)P2(~p2) = Π

〈
J |a†(~p1)a†(~p2)a(~p1)a(~p2)|J

〉
〈J |a†(~p1)a(~p1)|J〉 〈J |a†(~p2)a(~p2)|J〉 (2.25)

Π is the normalization given by: 〈N〉2
〈N(N−1)〉

Using the generalized Wick’s theorem expansion in equation 2.18 and substituting with
equations 2.17 and 2.24, we get:
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C(~p1, ~p2) = Π

〈
J |a†(~p1)a(~p1)|J

〉 〈
J |a†(~p2)a(~p2)|J

〉
+
〈
J |a†(~p1)a(~p2)|J

〉 〈
J |a†(~p2)a(~p1)|J

〉
〈J |a†(~p1)a(~p1)|J〉 J 〈|a†(~p2)a(~p2)|J〉

(2.26)

= 1 +
|
〈
J |a†(~p1)a(~p2)|J

〉
|2

〈J |a†(~p1)a(~p1)|J〉 〈J |a†(~p2)a(~p2)|J〉 (2.27)

= 1 + |
∫
d4xS(x,K)eiq.x|2∫

d4xS(x, p1)
∫
d4xS(x, p2) (2.28)

Assuming that we have a smooth momentum dependence for the emission function,
i.e., that the single-particle distributions have an exponential dependence on the energy,
we can put K on shell and make the estimate K0 w EK =

√
m2 +K2, setting ~p1= ~p2 =

~K for small q. This allows us to replace the form in equation 2.26 with,

C(~q, ~K) = 1 + |
∫
d4xS(x,K)eiq.x|2
|
∫
d4xS(x,K)|2 (2.29)

Consequently, measuring the correlation function C(~q, ~K), we are able to study the
emission function, S(x,K), which carries information about the space-time extent of the
system.

Estimating to a Gaussian The emission function can be approximated to a Gaussian
and written as [50]:

S(x,K) = N(−→K )S(x̄(−→K ), K) exp
[
−1

2 x̃
µ(−→K )Bµν(

−→
K )x̃ν(−→K )

]
+ δS(x,K) (2.30)

where x̄µ(−→K ) = 〈xµ〉 = xµ− x̄µ(−→K ) and (B−1)µν(
−→
K ) = 〈x̃µx̃ν〉. 〈...〉 denote averages

and the space-time coordinates, x̃µ, are defined with respect to the emission center, x̄(K).
δS(x,K), which is a correction term, is neglected since it has no influence on the half-
width of the correlation function from which we extract the spatial-temporal information
of the source [109].
Introducing this form to equation 2.29 gives:

C(−→K, ~q) = 1 + exp
[
−qµqν 〈x̃µx̃ν〉 (

−→
K )

]
(2.31)

Where the space-time variances 〈x̃µx̃ν〉 have only a −→K dependence. These are the so
called lengths of homogeneity, that is, they describe the source-width emitting particles
with momentum −→K . Therefore the HBT measurements obtained are comparable to the
actual dimensions of the emission sources only if it is static since then there is an abscence
of any space-momentum correlations that tend to “shrink” the actual size as illustrated
in Figure 2.2.
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Figure 2.2.: Lengths of homogeneity as measured using HBT. The size of the homogeneity
region is dependent on the average momenta of the pair. Therefore studying
the dependence of HBT radii with respect to kT can provide insight into the
dynamics of the system.

Figure 2.3.: Schematic diagram of the Bertsch-Pratt 3D parameterization of q.
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2.2.1. Bertsch-Pratt parameterization
The onshell approximation allows us to solve for q0 so that

q0 = −→β .−→q (2.32)

where β ≈
−→
K
EK

and therefore:

q0 = βxqx + βyqy + βzqz (2.33)

thereby eliminating the temporal component from equation 2.31. Note that the approxi-
mation β ≈

−→
K
EK

is only valid where |−→q | << EK [50]. The Besch-Pratt parameterization
has been adopted as a standard in HBT analysis. In this parameterization, q is decom-
posed into its three components on the Cartesian coordinate system. These are out, side,
and long where long is defined in the beam direction or z, out is defined parallel to the
average transverse momentum of the pair, kT ,

kT = (p
1
T + p2

T

2 ) (2.34)

piT is the transverse momentum of a particle in the pair.
and side is perpendicular to both long and out.
We fit the correlation function in 2.31 with the form:

C(−→K, ~q) = 1 + exp

−∑
i,j

R2
ij(
−→
K )qiqj

 (2.35)

Here, i, j are out, side, and long and R2
ij can be expressed in term of the variances as:

R2
ij(
−→
K ) =

〈
(x̃i − βit̃)(x̃j − βj t̃)

〉
−
〈
x̃i − βit̃

〉 〈
x̃j − βj t̃

〉
(2.36)

Rewriting equation 2.35:

C(−→q ,−→K ) = 1± λexp
[
−q2

outR
2
out(
−→
K )− q2

sideR
2
side(
−→
K )− q2

longR
2
long(
−→
K )−X

]
(2.37)

X = 2qoutqsideR2
os(
−→
K )− 2qoutqlongR2

ol(
−→
K )− 2qsideqlongR2

sl(
−→
K) (2.38)

Here we introduce λ, the chaoticity parameter which quantifies coherence effects and
the contribution to the correlation function of secondary pions from long-lived resonance
decays [65]. λ is two for a fully chaotic source and one for a fully coherent source. As-
suming a system with azimuthal symmetry, the correlation function will have cylindrical
symmetry so that qside = −qside and we can eliminate the two cross terms R2

os and R2
sl

which both go to zero. The function then reduces to:

C(−→q ,−→K ) = 1± λexp
[
−q2

outR
2
out(
−→
K )− q2

sideR
2
side(
−→
K )− q2

longR
2
long(
−→
K )− T

]
(2.39)

with T as 2qoutqlongR2
ol(
−→
K ).

and where,
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R2
out(
−→
K ) =

〈
(x̃− βT t̃)2

〉
(2.40)

R2
side(
−→
K ) =

〈
ỹ2
〉

(2.41)

R2
long(
−→
K ) =

〈
(z̃ − βlt̃)2

〉
(2.42)

R2
ol(
−→
K ) =

〈
(x̃− βT t̃)

〉 〈
(z̃ − βlt̃)

〉
(2.43)

As can be seen from these expressions of the lengths of homogeneity, we are able to
extract both space and time information about the emitting system from HBT measure-
ments.
In this analysis, the Longitudinal co-moving system (LCMS) was selected as the ref-

erence frame. In this frame, −→q is defined on the rest frame of the pion pair. This
means that the reference frame is different for each pair. Since p1

z + p2
z = 0 in the

LCMS frame, the relative energy is zero and the magnitude of the relative momentum is
Lorentz-invariant [94]. Choosing the LCMS as the reference frame allows for the elimi-
nation of the remaining cross-term in equation 2.39 due to reflection symmetry along z
at midrapidity.

2.2.2. Analytical parameterization: Blastwave model
The blastwave model provides a link between the measured HBT parameters and physical
observables of the system at freeze-out. It makes several assumptions in its application
[96]:
(1) The model approximates a high-energy expanding source as an extended cylindrical

source, dominated by a boost-invariant longitudinal flow.
(2) At freeze-out, the particles all decouple at the same time, and this happens instan-

taneously (4τ = 0).
Based on the blastwave model, we can derive expressions for the measured HBT radii,

in the LCMS frame, relating them to physical observables of the system [51, 72].

R2
out =

R2
geom

1 + mT

T
v2 + 1

2( T
mT

)2β2
T τ

2
0 (2.44)

R2
side =

R2
geom

1 + mT

T
v2 (2.45)

R2
long = τ 2 T

mT

K2(mT

T
)

K1(mT

T
) (2.46)

Where Rgeom is the geometrical size of the system in the transverse, T is the tempera-
ture of the system at freeze-out, v is the transverse flow, βT the pair’s transverse velocity,
and τ0 the expansion time of the system. K2 and K1 are modified Bessel functions and
mT is the transverse mass defined as:

mT =
√
kT +mπ (2.47)

Since R2
side only encodes the spatial information about the system while R2

out carries
information about the transverse size as well as the emission duration of the system,
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R2
out−R2

side ∝ ∆τ 2 and both R2
out−R2

side and the ratio Rout/Rside have traditionally been
used as proxies for the emission duration.

2.3. Final State Interactions (FSI)
The derived equation 2.39 for the two-particle correlation function is made with the
assumption that the particles do not experience any final state interactions. In reality,
that is hardly the case. There are two possible sources of FSI influence on the Bose-
Einstein signal: The strong interaction and the Coulombic interactions.

2.3.1. FSI contribution from strong interactions
The contribution of the strong force to the FSI in proton-proton correlation functions has
been shown to be significant, providing an attractive force that counteracts the Coulombic
repulsion of same-charge pairs [43]. In the case of two-pion correlations, the range of
the repulsive s-wave interaction, ~0.2 fm, is much smaller than the average interaction
distance of pion pairs (about 5 fm) and therefore the effects of the strong force are
negligible in pion-pion correlations [44]. For this reason, strong interactions were not
considered in the corrections applied in the study detailed here.

2.3.2. Coulomb interactions
The Coulomb effect plays a significant role in pion-pion interactions, especially at small
q. Understanding these interactions and correcting for them is an important part of the
analysis of Bose-Einstein correlations. At small q, Coulomb interactions between the
pions in a pair have the effect of accelerating them relative to each other, consequently
decreasing the same-charge pion-pair distribution at small q. This is observed as a dip
in the correlation function.

Estimation of the Coulomb interaction

In the center-of-mass (CM) system, the Schroedinger equation for the Coulomb wave
functions is given as [37]:

(∇2

2m − E + e2

r
)ψc(−→q ,−→r ) = 0 (2.48)

Where q is the relative momentum of the pair, r is their position, ψc is their relative
wave function, and E describes the particle energy in the CM frame where E = q2/2mred

and mred is the reduced mass, (m1m2/m1 +m2).
In the CM frame, the solution to this equation is [94]:

φ(−→q ,−→r ) = Γ(1 + iγ)e−πγ/2eiqrΦ(−iγ; 1; iqr − i−→q .−→r ) (2.49)

Here, γ = me2/q and Φ is the confluent hypergeometric function.
The symmetrized Coulomb wave function is then:

ψr(−→q ,−→r ) = 1√
2

(ψc(−→q ,−→r ) + ψc(−→q ,−−→r )) (2.50)

and the strength of the Coulomb interaction can be calculated from:
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Pc(−→p 1,
−→p 2) = 1

2

∫
d3rρ(−→r )|ψr(−→q ,−→r )|2 (2.51)

This expression would normally be integrated numerically but since the source function
is not known beforehand, one has to make approximations.
One approximation is based on the assumption that the pair of identical particles are

produced in a relative Coulomb state at zero separation, and can therefore be approxi-
mated to come from a point-source [37]. The square of the Coulomb wave function then
reduces to the Gamow factor,

|ψc(0)| = ( 2πη
e2πη − 1) (2.52)

η is the dimensionless Sommerfeld factor,

η = z1z2e2

vrel
(2.53)

Here, z1e and z2e are particle charges and vrel is their relative velocity calculated as
q/mred.
The Coulomb corrected function is obtained from dividing the measured correlation

function by the Gamow factor,

C2(−→p 1,
−→p 2) = Cmeasured

2 (−→p 1,
−→p 2)G−1(η) (2.54)

For same charge particles, the suppression effect of the Gamow factor tends to 2πηe−2πη

at small q (q → 0).
While the point-source approximation is computationally desirable, it overestimates

the Coulomb interactions in heavy-ion collions. For heavy-ion collisions, it is necessary
to take the extended source approach where we integrate the Coulomb wave function
iteratively, with initial estimates obtained by application of the Gamow factor.
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3. The experiment

3.1. RHIC
The Relativistic Heavy-Ion Collider (RHIC) located on the Brookhaven National Labo-
ratory campus is a Department of Energy run facility for studies in nuclear physics, and
currently one of only two collider facilities doing research in heavy-ion collisions.
RHIC was commissioned in 2000 together with four detectors: BRAHMS, PHENIX,

PHOBOS, and STAR. The BRAHMS and PHOBOS detectors have as of this date wound
up operations [11, 34, 70].

Figure 3.1.: Aerial view of the RHIC facility with overlays to show the positions of the
four detectors and the auxiliary accelerator facilities.

With its commissioning, RHIC has two main physics objectives:
(1) Study the phase diagram and investigate the phase transitions of hadronic matter

to QGP as well as identify and study the properties of QGP.
(2) As the only collider able to collide spin-polarized protons due to the addition of

Siberian Snakes, investigate the proton spin structure over different beam energies.
The RHIC facility consists of the collider rings and its complimentary set of detectors,

as well as the Alternating Gradient Synchotron, the Tandem Van de Graff, and the
Booster which act as heavy-ion injectors. For proton-proton collisions, polarized protons
are injected from the Proton Linac. With its design, RHIC is able to operate over a
wide range of beam energies and particle species. Due to the two collider rings being
completely autonomous and therefore able to run at different magnetic fields, the RHIC
facility is also able to uniquely collide beams of unequal species, for example deuterium
and gold, and therefore provides for an opportunity to study asymmetric systems [67].
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3.1.1. Acceleration process for Au+Au collisions
• The Pulsed Spitter Ion Source at the Van de Graff provides beams of negatively

charged gold ions.

• These ions are stripped off some of their electrons to give them a positive charge
and an acceleration.

• The ions then enter the Booster Synchotron where they are stripped of more elec-
trons and accelerated to give them a +32 charge and an energy of 95 MeV/u

• Before injection into the AGS, the ions are stripped off even more electrons, leaving
them with a charge of +77. They then enter the AGS where they are accelerated
to 10.8 GeV/u which is the RHIC rings injection energy.

• On exiting AGS, the ions are stripped off the remaining electrons giving them a
charge of +79. Transfer to the RHIC rings is achieved through the AGS-to-RHIC
Beam Transfer Line.

• At the collider, the ion beams are injected into either beam lines labeled “blue” or
“yellow”. This is done through a switching magnet. Each ring carries 60 bunches
with 1×109 ions/bunch and with 63.9 m spacing between bunches.

• Two Radio Frequency (RF) systems are used at RHIC:

1. A 28 MHz RF system to get the bunches from AGS and accelerate them to
full energy.

2. A 197 MHz RF system for storage and collision

It takes about two minutes from injection to achieve top energy. After each injection cycle,
each ring has about 6×1010 ions for gold (and about 6×1012 for protons and deuterons) .

3.1.2. STAR
The Solenoidal TrackerAt RHIC (STAR), Figure 3.2, is one of two currently operational
detectors at RHIC, designed to study and characterize the properties of QGP. It is a
solenoidal detector of full azimuthal symmetry (∆φ = 2π) and its large acceptance makes
it well suited for performing measurements of hadron production at large solid angle, with
the Time Projection Chamber (TPC) able to provide up to 4π solid angle tracking for
charged hadrons.
While the TPC provides the primary 3-D tracking capability (∆φ = 2π azimuthal

coverage; |η| ≤ 1.8 in pseudorapidity), the Silicon Vertex Detector (SVT) is also used in
the tracking of particles with short lifetimes and the Forward TPC (FTPC) allows for
tracking of charged particles at forward rapidity (2.5< |η| < 4) [9].

3.1.3. PHENIX
The Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) is one of the
other major experiments at RHIC and the focus of this work. Complementary to the
STAR detector with regard to its physics objectives, the PHENIX detector consists of
three magnetic spectrometers for the measurement of direct probes of heavy-ion collisions.
A more detailed discussion of the PHENIX detector is provided in section 3.2.
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Figure 3.2.: The STAR detector at RHIC showing the main subsystems.

3.2. The PHENIX Experiment
The PHENIX experiment is a multinational collaboration comprising of more than 500
scientists and engineers from 56 institutions in 12 countries. Its primary physics objective
is to identify and study the characteristics of QGP as well as the phase transitions leading
to its formation. In addition, the PHENIX experiment aims to develop an understanding
of the proton’s spin.
To meet its physics objectives, the experiment utilizes the PHENIX detector–a highly

sophisticated and versatile multisystem detector, with the ability to measure a wide
range of particles at very good energy and momentum resolution. Figures 3.3a and 3.3b
show the PHENIX detector configurations for RHIC Run-year 2007 and 2010 respectively
whose results are covered in this work.

(a) PHENIX run-7 detector con-
figuration

(b) PHENIX run-10 detector config-
uration

Figure 3.3.: PHENIX detector configurations for some of the analysis covered in this
thesis.
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The detector discussion is organized in the following manner: Section 3.2.1 dicusses
the global (inner) detectors. These comprise of the Beam Beam Counter (BBC) and the
Zero Degree Calorimeter (ZDC) which provide measurements for event characterization
and are also an integral part of the PHENIX Level-1 trigger for data acquisition. Section
3.2.2 is a discussion of the magnet system, with particular emphasis on the Central
Magnets which provide the field for the central arm spectrometers. Section 3.2.2 gives
a detailed discussion of the subystems that constitute the central arm spectrometers.
These subystems include the Drift Chamber and the Pad Chamber that provide tracking
information, and the Electromagnetic Calorimeter, Time-of-Flight detector, and Ring
Imaging Cherenkov detector used for particle identification. The muon spectrometers
found at forward rapidity as well as other subsystems that make up the central arm
spectrometer, but not utilized in this analysis, will not be discussed. Additional details
on the PHENIX susbsystems can be found at [18]

3.2.1. Global subsystems
Beam Beam Counter (BBC)

The BBC, as shown in Figure 3.4, consists of two identical counters, one on the north
side and the other on the south side around the beam pipe at the collision points. They
cover 3.0 < |η < 3.9 in pseudorapidity and ∆φ = 2π in azimuthal, and are located about
1.44 m from the center of the interaction [27].

Figure 3.4.: The Beam Beam Counter.

The role of the BBC is to provide the start time for events in time-of-flight measure-
ments. The precision of these measurements is especially important for obtaining a clean
hadron PID and the BBC has very good timing resolution of 52± 4 ps. Figure 3.5 shows
how T0 and the Z-vertex are determined by taking into account the hit times recorded
in BBC North and BBC South. The BBC is also used to provide measurements of the
collision vertex point along the beam which then become the starting point for charged
particle tracking. In addition, the detector is an important part of the Level-1 trigger
used to select for events of interest before they are digitized.

Z − V ertex = TS−TN

2 ×c ; T0 = TS+TN−2L/c
2

where TS and TN are the arrival times at the south and north counters respectively. L is
the separation distance from the interaction point (1.44 m) and c is the speed of light.
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Figure 3.5.: Cartoon showing the determination of T0 and Z − vertex using the BBC.

Determination of centrality Using the charge sum measured in the BBC, we are able
to determine the collision centrality and define the centrality classes as described in the
analysis section.

Design Each of the counters is made up of 64 PhotoMultiplier Tubes (PMT). Each of
these PMTs carries a 3 cm quartz on its head which acts as a Cherenkov radiator. Its
total outer diameter is 30 cm and it has an inner diameter of 10 cm. For this dimensions,
we are able to get 15 particles per BBC element for a Au+Au collision at √sNN = 200
GeV.

Zero Degree Calorimeter

Situated about 18 m from the interaction point, and with a horizontal acceptance of ±5
cm, the ZDC is a hadron calorimeter designed to measure neutron fragments of heavy-ion
collisions within a θ ≤ 2 mrad cone of the beam in both directions (Figure 3.6) . In this
so called zero degree region, the energy contribution from other particles is insignificant
as compared to that from free “spectator” neutrons. The total energy measured is used
in the determination of multiplicity. The ZDC’s sensitivity to fragmentation neutrons of
collision therefore makes it useful as a minimum bias event trigger and for measurements
of luminosity. The detector can also be used in centrality determination since there is a
strong correlation between the neutron multiplicity and the collision geometry [20].

3.2.2. Magnet System
The PHENIX magnet system comprises of three sub-systems all with full azimuthal
coverage (∆φ = 2π). These are:
(1) Central Magnets providing a magnetic field at the interaction vertex.
(2) The north and (3) south Muon Magnets which provide a magnetic field for muon

studies at forward rapidity [31].
Figure 3.7 is a schematic of the magnets while Figure 3.8 shows their fieldmap.

Central Magnet

This is an axial magnet sitting at |η| < 0.35 pseudorapidity and with a polar angle
coverage of 70◦ < θ < 110◦. Weighing more than 500 tons and rising to a height of 9 m,
the central magnet consists of warm iron yokes and water-cooled copper coils wrapped
around a cylindrical surface. It provides an integral field of ablut 0.8 Tesla-meter at 90◦to
the beam line.
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(a) Cross-section view of the ZDC along the beam.

(b) Top view of the ZDC location with respect to the Dipole Magnets.

Figure 3.6.: Schematic diagrams of the Zero Degree Calorimeter.

(a) Schematic diagram of the PHENIX mag-
nets.

(b) A Vertical Slice view of the PHENIX mag-
nets as seen along the beam axis.

Figure 3.7.: Central and Muon PHENIX magnets.
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Figure 3.8.: Central and Muon magnets field map.

North and south Muon Magnets

The north and south Muon Magnets are 355 ton (248 ton for south) radial magnets
consisting of solenoid coils wound around a tapered piston. With a height of 10 m, the
north(south) magnet covers 1.1 < |η| < 2.4 (−2.2 < |η| < −1.1) in pseudorapidity and
10◦ < |θ| < 37◦ (12◦ < |θ| < 37◦) in polar angle. Each magnet provides a field integral of
about 0.75 Tesla-meter at 15◦ to the beam line.

3.2.3. Central Arm Subsystems
The central spectrometer consists of subsystems used for charged particles tracking and
identification of both hadrons and leptons. Covering |η| = 3.5 in pseudorapidity, the
magnetic field of the central arm is provided by the central magnet discussed in section
3.2.2.

Tracking systems

In PHENIX, the tracking information is provided by two susbystems: The Drift Chamber
(Figures 3.9, 3.10, and 3.11) and the Pad Chambers (Figures 3.12 and 3.13). These two
subsystems allow for accurate momentum determination of charged particles as well as
providing position information used in track reconstruction and in the PHENIX Level-2
trigger [19].

Drift Chamber (DC)

The DCs are cylindrically shaped multiwire detectors found on both east and west
PHENIX central arms. They are found between 2.0 m and 2.46 m in radial distance
from the interaction point, 1.8 m in the z direction, and with a combined ∆φ = π in
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azimuthal coverage. The DCs determine the transverse momentum of charged particles
by making accurate measurements of their trajectory in the r − φ plane. This informa-
tion is then used to determine the invariant mass of particle pairs. In addition, the DCs
also provide initial tracking position information used to reconstruct tracks through the
various subsystems.

Figure 3.9.: Schematic diagram of the Drift Chamber.

Design and operation Each DC is made up of a titanium frame to which is attached a
five-mil Al-mylar window, effectively defining a cylindrical gas volume as shown in Figure
3.9. Each gas volume consists of 20 equal-sized sectors of ∆φ = 4.5◦ in azimuthal. In
each sector are six types of radially aligned modules in the sequence X1, U1, V1, X2, U2,
and V2. A single module carries four anode and four cathode wire nets. The X1 and X2
wire cells, each with 12 anode wires, make precise measurements in the r − φ direction
and are therefore aligned parallel to the beam. To obtain z direction measurements, U1,
V1, U2, and V2 wires with stereo angles of 6◦ with respect to the X wires are utilized.
This stereo angle was selected to be comparable to the z resolution of the Pad Chambers
for better tracking efficiency. The chambers are filled with a working gas mixture of 50%
argon and 50% ethane, chosen due to its low diffusion coefficient, uniform drift velocity,
and high gas gain.
The Drift Chambers tracks particles by measuring the drift time of electrons formed

from gas ionization when a charged particle passes through it. The signal created is read
out by electronic circuit cards located on each sector. Each sector carries 4 ASD/TMC
cards. The ASD (Amplification, Shaping, and Discrimination) is the analog part of the
card that receives the charge signal from the wires. The TMC (Time Memory Cell) is
the digital part responsible for time digitization of the signal. The ASD/TMC cards are
controlled by one Front End Module (FEM) card mounted on top of them.

Tracking Au + Au collisions are high multiplicity events and the typical occupancy in
each of the DCs is about 200 tracks. To effectively determine tracks from the numerous
hits to the detector, PHENIX utilizes a tracking algorithm based on the Hough transform
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Figure 3.10.: DC wire configuration as shown for one sector and seen from the side (top)
in the left (right) schematic diagrams.

of the φ and α for every single combination in hits. φ and α are as defined in Figure 3.11.
These values are binned in a Hough array and a 2-D histogram generated. Each of these
binned combinations is a viable track candidate. A true track is expected to have many
hits in the detector, therefore tracks are selected from the 2-D histogram by looking for
a local maxima that meets the requirements of a set threshold value.

Figure 3.11.: A schematic diagram of the DC in the r − φ plane, describing the α and φ
space variables used in the Hough transform. Hits in the DC are shown as
small open circles.

Pad Chambers (PC)

The PCs consist of three layers of pixel detectors – PC1, PC2, and PC3 – on both central
arms east and west. PC1 is found right behind the DC and in front of the Ring-Imaging
Cherenkov detector (RICH), PC2 is located immediately behind RICH, but only on the
west arm, and PC3 is found in front of the Electromagnetic Calorimeter (EMCal) in both
east and west arms (see Figures 3.3a and 3.3b).
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Each of the PC layers is made up of a gas volume containing a mixture of argon and
ethane in which is suspended a single plane of anode bound by two cathode planes.

Figure 3.12.: Expanded schematic of PC1 showing the various components.

One of the cathodes is a solid block of copper while the other consists of an array of
pixels. Each single pixel is connected to eight others making a pad with the signal from
each pad read out by a single discriminant. A hit on the detector creates an avalanche in
the anode and the resulting current is read out by the Readout Cards (ROCs). The ROCs
are controlled by FEMs found at the edge of the detector. Each hit triggers a response in
three neighboring pads. The track can then be uniquely identified by tracking it to three
neighboring pixels in what is known as a cell. A track is only accepted if an avalanche is
detected in all three pixels of the cell. The PCs architecture is described in Figure 3.12
while Figure 3.13 shows the layout of the pad and cell.
Within the PHENIX experiment, the PCs play several crucial roles. PC1 provides the

z coordinate needed in measurements of the 3-D momentum vector for tracks as well
as tracking of charged particles to RICH and the EMCal in e+ and e− PID. PC2 and
PC3 provide for track matching necessary in suppressing products of particle decay and
secondary interactions [89].

Particle Identification (PID)

The Time-of-Flight detectors (TOF) at PHENIX are composed of two separate systems.
The TOF in the central east arm and the TOF-West in the central west arm. They
both provide for a charged hadron PID over a wide pT range, and with very good timing
resolution.

TOF

Located 5.1 m from the collision vertex, the TOF detector is based on scintillator tech-
nology. It covers π/4 in azimuthal and 70◦ ≤ θ ≤ 110◦ in pseudorapidity, and has a
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(a) A pad consists of nine interconnected pixels.

(b) Three pixels constitute a cell where
each pixel in a cell is connected to a
different but adjoining channel.

Figure 3.13.: Pad and pixel geometry of the Pad Chamber.
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timing resolution of 100 ps. This very good timing resolution allows for a clean π/K PID
up to 2.4 GeV/c and K/proton PID up to 4.0 GeV/c at 4 σ.
The detector is composed of 10 panels oriented in the r − ϕ direction with each panel

carrying 96 slats which are the functional units of the system. Each slat, shown in Figure
3.14, consists of a plastic scintillator with read out PMTs on each end. The slats are
glued to a honeycomb scafford made of carbon fiber to provide the necessary support
[26].

Figure 3.14.: Schematic drawing of a slat for the TOF detector.

Timing Mechanism The time-of-flight is obtained from precise measurements of start/stop
time. The start time, T0, is provided by the BBC. Figure 3.15 shows how the time-of-flight
is measured using the TOF detector.

Figure 3.15.: Details of the timing mechanism in the TOF detector.

TOF = ((T1 + T2)− L/v)
2

Yposition = T1 − T2

2 v

T1 and T2 are obtained from PMT1 and PMT2 respectively. L is the slat length and v
is the speed of light in the scintillator. T0 is the start time obtained from the BBC.

TOF-West

The TOF-West detector installed for RHIC Run-2006 is a Multi-Gap Resistive Plate
Chamber (MRPC) located on the west central arm of the PHENIX detector, about
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4.8 m from the collision vertex. It consists of two subsectors: The first subsector at
−6.3◦ < φ < 3.5◦ in azimuthal coverage is located behind the Aerogel detector. The
position of this subsector allows for efficient PID coordination with the Aerogel. The
second subsector is located at 11.5 < φ < 26 in azimuthal, a position that is especially
important for jet correlation studies since it allows for measurements of back-to-back
jet particles at high pT . TOF-West provides for an intrinsic timing resolution of 69 ps
(acounting for σ = 40 ps timing resolution of the BBC, which provides the start time).
With this excellent timing resolution π/K separation to 3 GeV/c and K/p separation to
5 GeV/c can be obtained.

Structure and Operation The TOF-West detector is made up of 128 MRPC chambers
with four strips per chamber. Each gaseous ion chamber is partitioned into six parallel
gaps by five glass plates. A schematic diagram of an MRPC is shown in Figure 3.16.

Figure 3.16.: A cross-sectional view of the TOF-West MRPC.

A working gas mixture of R-134a (Freon) at 90% volume, iosbutane (5% by volume),
and sulfur hexafluoride (5% by volume) occupies the chamber.
When a particle hits the detector, it induces an avalanche of charge separation and a

current is transmitted between the pad anode and cathode. The raw signal generated
is carried, through a six-inch twisted pair cable, to the Front End Electronics (FEE)
attached to the outside of the gas volume. One FEE board provides low-level signal
processing for all eight channels of one MRPC chamber. The primary role of the FEEs
is to amplify the signal before it is transmitted to the FEM. The TOF-West FEMs
are similar to those in the TOF detector and they provide signal discrmination and
digitization before the signal is passed on to PHENIX data acquisition [86].

Electromagnetic Calorimeter (EMCal)

The Electromagnetic Calorimeter or EMCal is located 5.1 m from the collision vertex.
Consisting of a total of six sectors, the EMCal primary role is to measure the spatial
position of photons and electrons. It is also used in measuring the hadronic energy at
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mid-rapidity and is an integral part of the PHENIX Level-1 trigger due to its ability to
trigger at high pT for photons and electrons.

Figure 3.17.: The PHENIX detector with the PbSc and PbGl sectors highlighted in red.

The EMCal sits at |η|= 0.375 pseudorapidity and covers ∆φ = 90◦× 2 in azimuthal.
The west arm (∆φ = 90◦) consists of four sectors of the Lead Scintillator (PbSc) sampling
calorimeter. The east arm is made up of two PbSc sectors (∆φ = 45◦) and two Lead-Glass
(PbGl) calorimeter sectors. This combination of two complimentary technologies with
significantly varying properties provides for different systematics and therefore a necessary
cross-check for physics results [30]. Figure 3.17 shows the location of the EMCal relative
to the other subsystems in the PHENIX detector.

Lead-Scintillator (PbSc) PbSc is a sampling calorimeter consisting of alternating slabs
of 1.5 mm lead absorber and 4.0 mm scintillator forming one sampling cell. The scintilla-
tor is made through injection molding from a mixture of polystyrene, 1.5 % p-terphenyl
which is a fluorescent additive, and the organic scintillator p-bis[2-(5-phenyloxazollyl)]-
benzene or POPOP at 0.01%. A single PbSc tower contains 66 layers of these cells with
a wavelength-shifting, fibre-optic cable running through them and connected to PMT
tubes at the end of the tower, as shown in Figure 3.18.
Four towers are grouped together to form a module, and 36 of these modules are then

attached to a support scaffold forming a supermodule which is readout by one FEM.
One sector comprises of 18 supermodules. The PbSc has an intrinsic timing resolution
of σ = 100 ps for electromagnetic showers and σ = 270 ps for hadronic showers. It has
energy resolution capabilities of 8% at 1 GeV. In general, the PbSc provides better timing
capabilities and better linearity in response as compared to the PbGl.

Lead-Glass (PbGl) The PbGl is a homogeneous lead-glass Cherenkov radiation detec-
tor. There are two PbGl sectors located in the east central arm behind TOF and covering

37



Figure 3.18.: Diagram of the parts of a PbSc tower, including the sampling cells and the
PMTs attached to its end.

a total of ∆φ = 45◦ in azimuthal. The functional unit of the PbGl detector is a 40 mm
× 40 mm × 400 mm Pb-Glass tower wrapped in alumnized mylar foil, and then encased
in a shrink tube. A single PMT is attached at the end of the tower. Twenty-four towers
are glued together to form a supermodule, and 192 supermodules form one sector of the
PbGl. Figure 3.19 shows the parts of a PbGl tower while Figure 3.20 shows how the
towers are put together to form a supermodule.

Figure 3.19.: A schematic diagram of a PbGl tower and its parts.

Like the PbSc, the PbGl sectors of the EMCal are designed for the identification of
electrons and protons. Charged particles incident on the detector generate Cherenkov
radiation which is then collected by the PMTs. Distinguishing hadrons from electrons
and protons is facilitated by the fact that the detector only collects Cherenkov light and
hadrons have a Cherenkov threshold momenta (27, 36, and 241 MeV for muons, pions,
and protons respectively) and will therefore cease to produce any Cherenkov radiation
when their momenta falls under those thresholds. The PbGl provides for an energy
resolution of 5.95%

√
E (GeV) and an intrinsic timing resolution of σ = 100 ps for both

electromagnetic showers and hadronic showers . While the PbSc sectors excel in timing
measurements, the PbGl sectors provide for better energy measurements.
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Figure 3.20.: A PbGl supermodule showing the arrangement of towers and PMTs.

The Ring-Imaging Cherenkov Detector (RICH)

The RICH detector is the primary electron PID detector at PHENIX. It consists of two
identical detectors in the west and east arms, sitting right behind PC1 at a radial region
2.575 < r < 4.1 m. As a threshold gas Cherenkov detector, RICH is designed to allow for
e/π separation below the working gas Cherenkov threshold. This threshold is 4.9 GeV/c
for a CO2 radiator and 3.5 GeV/c for ethane. It can identify electrons from 0.02–4.9
GeV/c in momentum and it aims to keep the misidentification of hadrons as e+ and e−
to less than 1 per 104. The detector consists of a 40 m3 gas vessel filled with either CO2

or ethane at 1 atm. The gas volume has entrance and exit windows of 8.9 m2 and 21.6
m2 respectively made of 125 µm alumnized kapton and covered in absorber sheet. Each
of the gas volumes has two arrays of spherical mirrors for a total of 48 panels and a total
reflective surface in each detector of 20 m2. The array of mirrors focus the generated
Cherenkov radiation on to two arrays of PMTs. The cutaway diagram in Figure 3.21
shows the various parts of the RICH detector.
When e+ and e− enter the gas volume, they induce the creation of Cherenkov radiation.

This radiation is reflected by the mirrors and focused on to the PMTs in a ring-like
fashion. In conjunction with the PHENIX tracking system, an electron is identified from
a match in its direction in the tracking system and that in the ring, as determined from
the ring position. In this study, the RICH detector was used to suppress the misidentified
electrons by applying a RICH based e+/e− veto cut [26].

3.2.4. The PHENIX Data Acquisition (DAQ) and Online System
The PHENIX DAQ and online system, outlined in Figure 3.22, is responsible for taking
the digitized signals from the Front End Modules associated with the different subsystems
and processing them to wholesome events available for physics analysis. It is a fully
pipelined system designed to digitize, transfer, and record event signals continously. This
makes it a highly versatile system able to accomodate detector upgrades in luminosity
[95].
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Figure 3.21.: RICH detector cutaway diagram showing its various components.

Figure 3.22.: The PHENIX on-line system.
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Data Flow

Figure 3.23 is a block diagram of the data flow in PHENIX. In synchrony with the
RHIC beam clock, the Front End Electronics (FEE) accept raw analog signals from
their respective subsystems and convert them into digital event fragments at all beam
crossings. The data is buffered long enough for the Level-1 trigger (LVL1) to accept
or reject a signal. The accepted data fragments are then transferred to the Front End
Modules (FEM). The primary role of the FEMs is to collect the digitized data after the
LVL1 trigger and format it in preparation for transfer to the Data Collection Module
(DCM). Four FEMs are connected to one DCM. Transfer of the data from the FEMs to
the DCMs located in the Counting House is achieved by fibre optic cable.
Once the uncompressed event fragments are received by the DCMs, they are reformat-

ted and checked for errors. The DCMs are also responsible for performing zero suppression
on the data. From the DCMs, the data fragments are sent to the Event Builder (EvB)
where they are assembled to complete events. During this prcoess, the Level-2 trigger
(LVL2) selects for desired events, consequently reducing the total number of accepted
events by a factor of six. The final accepted full events are logged and monitored by the
PHENIX On-Line Control Monitoring (ONCS).

Figure 3.23.: Block diagram showing data flow in PHENIX.

Event Builder (EvB)

The final task of putting together the event data fragments to full events is done by the
PHENIX Event Builder. The Level-2 trigger, which is tasked with reducing the data rate
to one that is disk-archivable, also operates under the EvB. The EvB can handle data
input at a rate of 12.5 kHz and perform event aggregation at a rate of 500 Mbyte/s.

The PHENIX trigger system

The PHENIX Level-1 and Level-2 triggering systems evolved from the need to main-
tain the high interaction rate at the PHENIX detector while still been able to make
measurements, especially in the low pT region that is characterized by huge backgrounds.

41



LVL1 Trigger

The LVL1 trigger is a fully pipelined triggering system with the primary role of reducing
the number of events passed on to DAQ to a manageable data rate. This is accomplished
by only selecting events that are of interest and also by excluding empty beam crossings.
It consists of two different systems: The Local Level 1 (LL1) interacts directly with the
BCC, ZDC, EMCal, MUID, and RICH subsystems. Input data from these detectors is
bit-reduced and transferred to the second system, the Global Level 1 (GL1), which puts
together the data so as to arrive at a trigger decision. LV1 trigger decisions are generated
every 106 ns with an adjustable latency of 40 beam crossings.

LVL2 Trigger

The LVL2 trigger runs as part of the EvB. It is designed to reduce the data rate to that
which can be written to disk. This is about 35 Mbyte/s for archiving, down from about
224 Mbyte/s . The LVL2 trigger does this by only accepting events that are deemed to
be of physics importance. The selected events, as well as a sample of the minimum bias
events, are then written to disk, together with the trigger decisions.
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4. Analysis

4.1. Run summary

Run Run year Species
√
s GeV No. of events Trigger efficiency (%)

Run-5 2005 Cu+ Cu 200 800 M 92
Run-7 2007 Au+ Au 200 4.0 B 92
Run-8 2008 d+ Au 200 1.85 B 88
Run-10 2010 Au+ Au 39 200 M 86
Run-10 2010 Au+ Au 62 550 M 86

Table 4.1.: Data summary for the datasets used in this analysis.

Table 4.1 is a summary of the datasets used in this study from RHIC Run-year 2005,
2007, 2008, and 2010 [57, 91, 92, 61].

4.2. Centrality Calibration

Figure 4.1.: Cartoon depiction of how the experimental observable sum of charges (Nch)
is related to the MC Glauber obtained variables of Npart and b after defining
the centrality classes.

In heavy-ion collision studies, results are regularly expressed as a function of the colli-
sion geometry of the two nuclei. Unfortunately, none of the parameters used to charac-
terize the collision geometry can be measured directly. Centrality definition is the process
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by which we connect the experimental observables sensitive to the impact parameter to
the desired collision geometry parameters obtained by modeling so as to get a measure
of the centrality of a collision. The experimental observable in this case is the number
of charged particles as measured from the charge sum in the BBC. The parameters ob-
tained from theoretical models are the number of participants (Npart) and the number of
binary collisions (Ncoll). The determination of centrality, and the relationship between
the experimental measurables and the model derived parameters is shown in Figure 4.1.
Several different methods have been used in PHENIX for centrality determination :

• Applying perpendicular cuts to the BBC charge sum vs ZDC energy sum plot also
known as the perp method.

• Until Run-5, the clock method was used extensively in PHENIX. For this method,
we define a fixed origin, usually defined as (BBC, ZDC) = (0.2, 0) and calculate
the angle φ relative to this point for a given value of ZDC, BBC. Centrality classes
are determined by dividing the full φ range into equal count bins with the upper
limit as the minimum bias trigger .

• Since Run-7, the BBC percentile method has been the preferred method of centrality
definition in PHENIX, and the method used for the results presented here. With
the BBC percentile method, centrality is defined by only cutting in the BBC charge
sum to give bins with the same number of events. The application of the method
for centrality definition is discussed in more detail in section 4.2.2.

The BBC percentile method uses the Negative Binomial Distribution (NBD) to relate
the Glauber model derived parameters to the hits recorded in the BBC.
There are several steps involved in the determination of centrality. In brief, these are:

1. Run a Monte Carlo (MC) Glauber model for minimum bias events to calculate Npart

and Ncoll.

2. Obtain the integrated BBC total charge distribution for minimum bias events for
the entire run.

3. Estimate the trigger efficiency by fitting the total multiplicity from contributions
from each Npart, both in the data and the model, with a Negative Binomial Distri-
bution (NBD).

4. Use the trigger efficiency value to set the upper limit of the centrality range, and
define the centrality classes by dividing the BBC total charge distribution into
equal-sized bins.

5. Use the defined centrality to estimate Glauber model parameters for each centrality
bin.

These steps are covered in more detail in the following sections.

4.2.1. Monte Carlo Glauber Simulation
The MC Glauber simulation is built on a couple of assumptions. One assumption is
that the total geometric cross-section is a good approximation of the total inelastic cross-
section. Another assumption is that the colliding nuclei travel in straight line trajectories,
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and that the inelastic nucleon-nucleon collisions are independent of the nucleon’s collision
history. These assumptions are not intended to provide a complete picture of the dynam-
ics of heavy-ion collisions, but rather a scaffold for the study of the collision geometry,
without introducing medium effects.
For this analysis, MC Glauber simulation was used in two instances. First, MC Glauber

simulation was used to generate the Npart distribution used to extract the trigger effi-
ciency. Once the centrality classes had been defined, MC Glauber simulation was applied
again to determine the geometric quantities Npart, Ncoll, and R for each centrality class.
R is the initial transverse size of the system, defined as:

1
R

=
√√√√ 1
σ2
x

+ 1
σ2
y

(4.1)

with σx and σy as the rms widths of the distribution [41].

How it works Nuclei are assigned a random impact parameter based on the distribution

dN

db
= 2πb (4.2)

where N is the number of events and b is the impact parameter
Once the impact parameter is determined, each nucleon is assigned a position vector

based on the nuclear density distribution as described by the Woods-Saxon function:

ρ(r) = ρ0

1 + e
r−R

a

(4.3)

Where r is the distance to the center of gravity of the nucleus, a is the diffusion
parameter, and ρ0 is some normalization.
Two nucleons are allowed to collide if the distance of separation between them, d, is

such that:

d ≤
√
σNNinel/π (4.4)

σNNinel is the total inelastic nucleon-nucleon cross section.
A nucleon is considered a participant if it undergoes at least one inelastic nucleon-

nucleon collision. One thing to note too is that the model as was applied in the deter-
mination of Npart in this analysis allows for overlap between the nucleons in the colliding
nucleus. The case without any nucleon overlap was used in the estimation of the system-
atc errors.

4.2.2. Trigger Efficiency
Au+Au collisions at PHENIX are very high multiplicity events. Nevertheless, the lower
multitplicity at peripheral collisions means that there will be cases where no hits are
registered in the trigger detectors which in turn leads to dropped events. The trigger
efficiency will therefore decline in the more peripheral events. Calculation of the trigger
efficiency is a necessary and crucial step in centrality determination. The trigger efficiency
value is consequently used as the upper limit of centrality for inclusive minimum bias
events.
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For all the runs, the Negative Binomial Distribution (NBD) was used to make an
estimate of the trigger efficiency. The method was employed based on the following
assumptions:

• Each participant nucleon creates particles independently. One can therefore treat
the multiplicity for each event as a linear summation from the contribution of each
nucleon.

• It is assumed that the distribution is independent of the pseudorapidity and there-
fore the only dependence is that on centrality.

• The slope of the the Npart distribution from real data is similar to that obtained
from the MC Glauber model.

• Hits contribution from each nucleon obey NBD statistics.

Minimum bias events were used to determine the trigger efficiency under the following
trigger conditions:

• Two or more hits in both BBC north and BBC south

• Two or more hits in both ZDC north and ZDC south

• A ZDC vertex cut of |z| < 30 cm

Summary of the steps in trigger efficiency calculation

To determine the trigger efficiency, the Npart distribution for each beam energy is obtained
using Monte Carlo Glauber as detailed in section 4.2.1. Using this Npart distribution, the
number of hits associated with each participant are generated by applying the NBD. The
total number of hits in the detector is simply a summation of the hits contribution from
all the participants, i.e.,

Nhits =
Npart∑
i=1

ni (4.5)

where ni is the number of hits contribution from the ith participant.
The simulated distribution for a particular detector is compared to the measured dis-

tribution and the trigger efficiency is expressed as:

ε = total Nhits from data
total Nhits from simulation (4.6)

Run-5 This was the first application of the BBC method for centrality determination as
opposed to the previously used CLOCK method. The trigger efficiency was determined
from the distribution of the number of hits in both BBC North and BBC South and
found to be 92% ± 0.65. Figure 4.2 shows the BBC distribution and the calculated
trigger efficiency.

Run-7 The trigger efficiency in Run-7 was calculated from the hits distribution in BBC
North and BBC South and found to be 92% ± 0.4 (stat) ± 1.6 (sys). The BBC distri-
butions can be seen in Figure 4.3.
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Figure 4.2.: (Left panel) Distribution of the total number of hits in the BBC detector,
with the NBD fit shown in red. (Right panel) the trigger efficiency calculated
from the total number of hits in the BBC for Run-5 Cu + Cu

√
sNN = 200

GeV.

Figure 4.3.: (Left panel) A comparison of the simulated hits distribution to the real data
for the BBC in Au + Au

√
sNN = 200 GeV. (Right panel) trigger efficiency

from taking the rations of the real data to the simulated data. The dip at
small Nhit is due to a drop in efficiency in the real data.

Figure 4.4.: (Left panel) BBC distribution of the total number of hits. (Right panel) The
trigger efficiency as obtained using BBC South in Run-8 d + Au

√
s = 200

GeV.
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Run-8 For Run-8, the trigger efficiency was determined using only BBC South and
found to be 88% ± 2.0. This determination is shown in Figure 4.4

Run-10 For Run-10, the trigger efficiency was found by averaging the response from
PC1, PC3, Reaction Plane in (RXNin), and Reaction Plane out (RXNout). As men-
tioned previously, one of the assumptions made in the NBD method is that there is no
pseudorapidity dependence on the hits distribution for real events. From studies done,
it was found that the low energy runs BBC hits distributions shows a pseudorapidity
dependence. For this reason, the BBC was excluded from studies of the trigger efficiency
for √sNN = 39 GeV and 62 GeV. Tables 4.2 and 4.3 provides a summary of the trigger
efficiency values, and their averages for √sNN = 39 GeV and 62 GeV respectively while
Figures 4.5 and 4.6 show a comparison of the simulated hits distribution to the real data
in PC1.

Figure 4.5.: (Left panel) A comparison of the simulated hits distribution to the real data
for PC1 in Au + Au

√
sNN = 62 GeV. (Right panel) trigger efficiency from

taking the ratio of the real data to the simulated data. The trigger effi-
ciency was determined from the avergage efficiency values of PC1, PC3, and
Reaction Plane in and out.

Detector χ2/ndf Trigger Efficiency

PC1 1.53 85.84± 0.23
PC3 1.73 84.72± 0.84
RXNIn 1.35 86.03± 0.14
RXNOut 1.35 86.09± 0.20
Mean 85.67± 0.56

Table 4.2.: Trigger efficiency values calculated for √sNN = 62 GeV using the NBD
method.

Centrality classes determination

To determine the centrality classes, the trigger efficiency is rounded off to the nearest
integer and used as the upper limit for the total number of bins. The BBC charge
distribution, taken as a sum of the north and south arms minimum bias events, is divided
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Figure 4.6.: (Left panel) A comparison of the simulated hits distribution to the real data
for PC1 in Au + Au

√
sNN = 39 GeV. (Right panel) trigger efficiency from

taking the ratio of the real data to the simulated data. The trigger effi-
ciency was determined from the avergage efficiency values of PC1, PC3, and
Reaction Plane in and out.

Detector χ2/ndf Trigger Efficiency

PC1 1.40 85.16± 0.31
PC3 1.18 85.56± 0.36
RXNIn 1.06 85.59± 0.26
RXNOut 2.54 87.41± 0.25
Mean 85.90± 0.86

Table 4.3.: Trigger efficiency values calculated for √sNN = 39 GeV using the NBD
method.
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into bins with equal number of events. Therefore the total number of bins, Nbins, is such
that Nbins = Trigger Efficiency.
Since the BBC charge distribution is known to vary with the collision vertex, the

centrality classes are defined for different z vertex values. For Run-7 and Run-10, the
vertex was divided into 12 bins in 5 cm increments from -30 cm to +30 cm.

Determination of Glauber Parameters

Once the centrality classes are defined, MC Glauber simulation is used to obtain the
geometric quantities < Npart >, < Ncoll >, and <R> at each centrality class, and for
each run. Figure 4.7 shows a representative distribution of Npart and R as obtained in
different centrality bins. < ... > here denotes that this is the averaged quantity for all
events. Tables 4.4, 4.5, and 4.6 gives a summary of the input parameters used for the
simulation.

Radius Diffuseness Inelastic nucleon−
nucleon cross−

section

Total nucleon−
nucleon cross−

section

4.21 fm 0.598 fm 42 mb 40 mb

Table 4.4.: Woods-Saxon input parameters used in MC Glauber simulation for Run-5
Cu+ Cu

√
sNN = 200 GeV.

Radius Diffuseness Inelastic nucleon−
nucleon cross−

section

Total nucleon−
nucleon cross−

section

6.38 fm 0.54 fm 34 mb 40 mb

Table 4.5.: Woods-Saxon input parameters used in MC Glauber simulation for Run-7 and
Run-10 Au+ Au.

Radius Diffuseness Inelastic nucleon−
nucleon cross−

section

Total nucleon−
nucleon cross−

section

6.38 fm 0.54 fm 42 mb 40 mb

Table 4.6.: Woods-Saxon input parameters used in MC Glauber simulation for Run-8
Au + Au

√
s = 200 GeV with the deuteron described using a Hulthén wave

function [74].

Tables 4.7, 4.8, 4.9, 4.10, and 4.11 show the Glauber parameters for Run-5, Run-7, and
Run-10 in 10% centrality bins, as well as Run-8 in 20% centrality bins.

4.3. Event Selection
For the analysis detailed in this thesis, events were selected with the following global
parameters of centrality and collision vertex.
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(a) Npart as determined for 10% centrality bins. (b) R as determined for 10% centrality bins.

Figure 4.7.: MC Glauber parameters for different centrality bins (shown in color) in Au+
Au Run-7 √sNN =200 GeV.

Centrality bin % < Npart > < Ncoll >

0–10 98.2 (2.4) 182.7 (20.7)
10–20 73.6 (2.5) 121.1 (13.6)
20–30 53.0 (1.9) 76.1 (8.5)
30–40 37.3 (1.6) 47.1 (5.3)
40–50 25.4 (1.3) 28.1 (3.4)
50–60 16.7 (0.9) 16.2 (1.9)
60–70 10.4 (0.6) 9.0 (1.0)
70–80 6.4 (0.5) 4.9 (0.6)
80–92 3.6 (0.3) 2.4 (0.3)

Table 4.7.: Glauber parameters for √sNN = 200 GeV Cu + Cu in Run-5. Systematic
errors are shown in parentheses.

Centrality bin % < Npart > < Ncoll >

0–20 15.6 (0.9) 14.9 (1.1)
20–40 11.1 (0.6) 10.4 (0.7)
40–60 7.7 (0.4) 6.9 (0.5)
60–88 4.2 (0.3) 3.2 (0.4)

Table 4.8.: Glauber parameters for
√
s = 200 GeV d + Au in Run-8. Systematic errors

are shown in parentheses.
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Centrality bin % < Npart > < Ncoll >

0–10 325.8 (3.81) 960.2 (96.14)
10–20 236.1 (5.517) 609.5 (59.81)
20–30 167.6 (5.811) 377.6 (36.39)
30–40 115.5 (5.841) 223.9 (23.2)
40–50 76.15 (5.502) 124.6 (14.94)
50–60 47.07 (4.726) 63.9 (9.359)
60–70 26.72 (3.669) 29.75 (5.41)
70–80 13.67 (2.492) 12.55 (2.822)
80–90 6.153 (1.359) 4.688 (1.252)

Table 4.9.: Glauber parameters for √sNN = 200 GeV Au + Au in Run-7. Systematic
errors are shown in parentheses.

Centrality bin % < Npart > < Ncoll >

0–10 319.6 (4.093) 843 (100.5)
10–20 229.7 (4.501) 535.8 (58.1)
20–30 163.8 (4.99) 337.2 (32.89)
30–40 113.4 (4.711) 203.3 (20.07)
40–50 74.64 (3.659) 114.3 (11.83)
50–60 45.19 (3.358) 57.78 (6.693)
60–70 24.06 (2.559) 25.2 (3.538)
70–86 8.034 (0.7579) 6.608 (0.7984)

Table 4.10.: Glauber parameters for √sNN = 62 GeV Au + Au in Run-10. Systematic
errors are shown in parentheses.

Centrality bin % < Npart > < Ncoll >

0–10 316.6 (4.346) 777.2 (94.99)
10–20 227.2 (5.273) 496.7 (54.84)
20–30 161.7 (5.377) 313.8 (31.91)
30–40 112.2 (4.491) 191 (21.16)
40–50 73.77 (4.181) 108.1 (12.74)
50–60 44.83 (3.17) 55.39 (6.291)
60–70 23.68 (3.298) 24.15 (4.385)
70–86 7.71 (1.362) 6.198 (1.404)

Table 4.11.: Glauber parameters for √sNN = 39 GeV Au + Au in Run-10. Systematic
errors are shown in parentheses.
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4.3.1. Run-5 200 GeV Cu+ Cu

• Centrality range: 0–92%

• |bbcz|<30cm

4.3.2. Run-7 200 GeV Au+ Au

• Centrality range: 0–92%

• |bbcz|<30cm

4.3.3. Run-8 200 GeV d+ Au

• Centrality range: 0–88%

• |bbcz|<30cm

4.3.4. Run-10 39 GeV and 62 GeV Au+ Au

• Centrality range: 0–86%

• |bbcz|<30cm

4.4. Track Selection
4.4.1. Background rejection by matching cuts
Once tracks are reconstructed in the DC and PC1, as detailed in section chapter 3, they
are projected to the outer detectors. To suppress background (resulting from ghost tracks
and other erroneously reconstructed tracks), a requirement is made that each projected
track should have an associated cluster hit in the outer detectors. This process is known
as track matching.
To obtain the associated hit on a projected track, an area around the intersection point

is scanned for possible track hits. The track hit closest to the projected track becomes
the the associated track. A matching distribution is built from the difference between the
projected hit and the associated hit. This is done in both the φ and z coordinates. The
mean and width of the distribution are extracted using a Gaussian fit and parameterized
as a function of pT . From the fit parameters of the mean and width of the matching
distribution, sigmalized variables are calculated as:

sdz = dz− < dz >

σdz
(4.7)

sdphi = dphi− < dphi >

σdphi
(4.8)

Radial cuts in σ were applied in PC3, TOF , and EMC to suppress background. The
radial cut is defined as :
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σdet =
√

(sdphi)2 + (sdz)2 (4.9)

where σdet denotes the sigma value for a particular detector. Therefore, for example,
σPC3 is calculated from pc3sdphi and pc3sdz.

4.4.2. Summary of track selection cuts
Run-5 200 GeV Cu+ Cu and Run-7 200 GeV Au+ Au

• pT cut: 0.3–1.0 GeV/c

• Drift Chamber fiducial cut: |zed|< 75 cm is applied to the DC to remove edge
effects

• RICH veto cut: n0≤ 3. This cut is applied in the RICH detector to suppress
electrons misidentified as hadrons; n0 refers to the number of phototubes that fired
in the ring area.

• Matching cut:

– PC3: ≤2.0 σPC3 radial matching
– EMC: ≤2.0 σEMC radial matching

• Tower cut for EMC (no two tracks with the same tower number for pairs)

• Sector cut in EMC (track pairs were selected within the same sector)

Run-8 200 GeV d+ Au

• pT cut: 0.3–1.0 GeV/c

• Drift Chamber fiducial cut: |zed|< 75 cm

• RICH veto cut: n0≤ 3.

• Matching cut:

– PC3: ≤3.0 σPC3 radial matching
– EMC: ≤3.0 σEMC radial matching

• Tower cut for EMC

• Sector cut in EMC

Run-10 62 GeV Au+ Au

• pT cut: 0.3–1.0 GeV/c

• Drift Chamber fiducial cut: |zed|< 75 cm

• RICH veto cut: n0≤ 3

• Matching cut:
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– PC3: ≤2.5 σPC3 radial matching
– TOF: ≤2.0 σTOF radial matching

• Track selection from TOF east only

• Slat cut (no two tracks with the same slat number for pairs)

Run-10 39 GeV Au+ Au

• pT cut: 0.3–1.0 GeV/c

• Drift Chamber fiducial cut: |zed|< 75 cm

• RICH veto cut: n0≤ 3

• Matching cut: ≤2.5 σTOF radial matching in TOF

• Track selection from TOF east only

• Slat cut

4.5. PID
In PHENIX, PID determination is based on the simultaneous measurement of the mo-
mentum in the DC and the time-of-flight in the TOF or EMC detectors.
Particles were identified from the calculated mass-squared (m2) distribution

m2 = p2[(ct
L

)2 − 1] (4.10)

Where p is the particle momentum; t is the time-of-flight as measured by either the
TOF detector or the EMC, and where the start time, T0, is provided by the BBC; L is
the length of the time-of-flight as measured from the collision vertex to the hit position
in the PID detector; c is the speed of sound.
Pions were then selected for using the number of standard deviations (σmeasured) from

which the m2 deviated from the presumed ideal m2 of the pion.

σ2
measured ≡ |m2

measured −m2
centroid| (4.11)

m2
centroid is the mass-squared distribution centroid position for the pion peak and

σ2
measured is the width of the distribution which defines the resolution of the mass-squared

distribution. σ2
measured depends on both the momentum and resolution σp of the DC as

well as the timing resolution, σtof , of either TOF or EMC. σp is a combination of the
intrinsic angular momentum, σα, as well as the angular displacement, σs, resulting from
multiple scattering of particles within the detector.
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4.5.1. PID in TOF
In the TOF detector, the time-of-flight was used to calculate the mass-square distribution
(see eqn 4.10). This distribution was then fit with a Gaussian to extract σmeasured(p), the
momentum dependent mass-squared resolution, as well as the centroids for pion, kaon,
and protons. The momentum dependent mass-squared sigma was parameterized with the
following form:

σ2
m2 = σ2

α2

K2
1

(4m4p2) + σ2
s

K2
1

[4m4(1 + m2

p2 )] +
σ2
tofc

2

L2 4p2(m2 + p2) (4.12)

from this paramaterization, the timing resolution, σtof , was found to be about 120 ps.
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Figure 4.8.: m2 distribution and PID for √sNN = 39 GeV Au+ Au.

In this analysis, the TOF detector was used for PID in Run-10 39 and 62 GeV. The m2

plots for the two energies, which demonstrate very good particle separation, are shown
in Figures 4.8 and 4.9.

4.5.2. PID in EMC
To obtain the m2 resolution for EMC and consequently the PID, it is necessary to first
know the timing resolution for hadrons. The process involved three main corrections to
the EMC measured time-of-flight, tEMC :

1. Run-by-run correction This involved shifting the centroid of the difference be-
tween the measured time-of-flight to the expected time-of-flight for pions to zero
∆trun−by−run = tEMC − t(expected for π). The ∆t distribution was fitted with a
Gaussian and the Gaussian centroid was used as the run-by-run correction to tEMC .

2. Time slewing (time walk) correction Time slewing is a feature commonly found in
timing detection systems where there is a variation of the output time signal with
the input signal amplitude. To correct for this, the difference was found between the
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Figure 4.9.: m2 distribution and PID for √sNN = 62 GeV Au+ Au.

time-of-flight, corrected for run-by-run variation, and the expected time-of-flight,
i.e., ∆tslewing = tEMC(run corrected) − t(expected for π). This distribution was
fit with a Gaussian to extract the centroid that was then used as a correction to
tEMC .

3. Momentum correction on tEMC A momentum dependent distribution of the timing
offset was obtained after applying the slewing correction, i.e, ∆t(p) = tEMC(slewingcorr.)−
t(exp. for π). This distribution was also fit with a Gaussian to extract the centroid
and parameterized to obtain the momentum dependent timing correction. The final
corrected tEMC is given by tcorrectedEMC = tEMC(with slewing corr.) − fp, where fp is
the momentum dependent correction.

Using the corrected tEMC , the mass-squared distribution was obtained using equation
4.10. This distribution was fit with triple Gaussians for the pion, kaon, and proton peaks
to get the mass-squared centroid and the resolution, σmeasured. Particles were selected
using a 2.0 σmeasured cut for pions and with an additional 3.0 σmeasured rejection cut for
kaons to ensure a clean PID.
Figures 4.10, 4.11, and 4.12 show m2 plots for 200 GeV Cu+Cu, Au+Au, and d+Au

with PID in the EMC. Very good particle separation was obtained in all three systems

4.6. Correlation Functions
In experiment, the Bose-Einstein signal is obtained by taking the ratio of the two-particle
inclusive spectra to the product of the two single-particle inclusive spectra. The two-
particle inclusive spectra is obtained from pairing same-charge pions taken from the
same event. For the single-particle inclusive spectra, we applied the mixing technique. In
this method, events used in building the two-particle inclusive spectra are pushed into a
pool, classified by their centrality and vertex. Same charge pions are then selected and

57



0

500

1000

1500

2000

2500

3000

3500

4000

4500

3
10×

Charge*Mom (GeV/c)
1 0.5 0 0.5 1

)
2

 (
G

e
V

2
m

0.5

0

0.5

1

1.5

 = 200 GeV Cu+CuNNs Distribution and PID, 2m  = 200 GeV Cu+CuNNs Distribution and PID, 2m

Figure 4.10.: m2 distribution and PID for √sNN = 200 GeV Cu+ Cu.
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Figure 4.11.: m2 distribution and PID for √sNN = 200 GeV Au+ Au.
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Figure 4.12.: m2 distribution and PID for √sNN = 200 GeV d+ Au.

paired from different events within the same centrality and vertex class. Once all possible
combinations are exhausted from the pool, additional events are added and this is done
iteratively for all events utilized for the analysis.
For all energies and collision systems in this study, events were mixed in centrality bins

of 5% and bbcz-vertex bins of 3 cm, for a pool depth of 10 events.

C(q) = Nreal

Nmixed
where Nreal is the same-sign charged real pair distribution and Nmixed is

the same-sign charged mixed pairs distribution.
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Figure 4.13.: Representation of the real and mixed events distribution. Right most panel
is the correlation function C2(q)

4.6.1. Track pair-cut analysis
To remove spurious correlations and other anomalies that degrade the Bose-Einstein
signal, it was important to do a thorough analysis of the detection efficiency in different
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subsystems. Details of how inefficiencies both in detection as well as track reconstruction,
and how they were accounted for, are provided in this section.

Track splitting

While the track reconstruction algorithm is highly efficient, it will on occasion reconstruct
a track multiple times. These duplicated tracks, known as ghost tracks, share the same
physical characteristics as the real track. Particle pairs with ghost tracks will therefore be
highly correlated which leads to an artificial enhancement of the Bose-Einstein correlation
signal. Since the pairs formed from ghost tracks congregate at small phase-space, one
can study, identify, and remove these tracks by building 2-D correlation functions in the
∆φ:∆z space. ∆φ is the difference in φ between the tracks in a pair and ∆z is the
difference in their z-coordinate.

∆zDC = |zDC(track 1) −zDCtrack 2|
∆φDC = |φDC(track 1) −φDCtrack 2|
A detailed study of the ∆φDC :∆zDC correlation functions was done for the three ener-

gies and three collision systems studied to identify and remove ghosting. For each energy
and collision system, several cuts were studied for their effect on the resulting correlation
function. The idea was to apply cuts such that one sufficiently suppresses the ghosting
without in the process also suppressing the desired Bose-Einstein signal. The selected
cuts in DC are shown in Figures 4.14, 4.15, 4.16, 4.17, and 4.18, while details of the
contribution of the different pair-cuts to the systematics are given in section 4.8.
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Figure 4.14.: DC ∆φDC :∆zDC correlation function in √sNN = 39 GeV Au + Au before
cuts (left) and with the selected cut (right).

The studies were done for different centrality selections but there was no strong cen-
trality dependence found in any of the energies or collision systems. The ∆φDC :∆zDC
cuts are therefore applied uniformly across all centralities.

Track Merging

Due to limitations in the detector resolution, tracks that are very close together and
therefore below the resolving capability of the detector will sometimes be reconstructed
as a single track. This is referred to as track merging and it has the effect of artificially
depressing the Bose-Einstein signal.
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Figure 4.15.: DC ∆φDC :∆zDC correlation function in √sNN = 62 GeV Au + Au before
cuts (left) and with the selected cut (right).
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Figure 4.16.: DC ∆φDC :∆zDC correlation function in √sNN = 200 GeV Au+Au before
cuts (left) and with the selected cut (right).
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Figure 4.17.: DC ∆φDC :∆zDC correlation function in √sNN = 200 GeV Cu+Cu before
cuts (left) and with the selected cut (right).
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Figure 4.18.: DC ∆φDC :∆zDC correlation function in √sNN = 200 GeV d + Au before
cuts (left) and with the selected cut (right).

Detector inefficiency was investigated in the DC, PC, TOF (for √sNN = 39 and 62
GeV Au+ Au), and EMC (for √sNN = 200 GeV Au+ Au, Cu+ Cu, and d+ Au).

Tracking inefficiency in PC1 In the Pad Chamber, inefficiency was assessed using
∆RPC1 which is defined as the relative difference in the track projections to PC1 for the
particles in the pair.

∆RPC1 =
√

(pPC1x1 − pPC1x2)2 + (pPC1y1 − pPC1y2)2 + (pPC1z1 − pPC1z2)2

(4.13)
Where pPC1xi, pPC1yi, and pPC1zi are the track projections to PC1 using the

cartesian coordinate system.
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Figure 4.19.: PC1 ∆R correlation function in √sNN = 39 GeV Au+Au before applying
pair-cuts (left) and with pair-cuts (right).

To get the ∆RPC1 correlation function, foreground and background pair distributions
in ∆RPC1 are built for the same classes in centrality and vertex. Once the optimum
cut is identified, it is applied both in the same-event distribution as well as the mixed
event distribution to ensure same acceptance. ∆RPC1 correlation functions for √sNN =
39 Au + Au (Fig. 4.19), √sNN = 62 Au + Au (Fig. 4.20), √sNN = 200 Au + Au (Fig.
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Figure 4.20.: PC1 ∆R correlation function in √sNN = 62 GeV Au+Au before applying
pair-cuts (left) and with pair-cuts (right).
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Figure 4.21.: PC1 ∆R correlation function in √sNN = 200 GeV Au+Au before applying
pair-cuts (left) and with pair-cuts (right).
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Figure 4.22.: PC1 ∆R correlation function in √sNN = 200 GeV Cu+Cu before applying
pair-cuts (left) and with pair-cuts (right).
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4.21), and √sNN = 200 Cu + Cu (Fig. 4.22) show the discussed effects of merging seen
as a dip in the correlation functions without cuts. A ghosting enhancement can also be
seen at small ∆RPC1 on the same plots. Appropriate cuts were applied to get rid of both
effects, as is shown in the rightmost plots in the above mentioned figures.

Tracking inefficiency in EMC For √sNN = 200 GeV Run-5 Cu + Cu, √sNN = 200
GeV Run-7 Au+Au, and √sNN = 200 GeV Run-8 d+Au analysis, the EMC was used
for the particle identification. To remove autocorrelation and instances where tracks are
part of the same cluster leading to ghosting, a requirement was made that the tracks
making a pair would have to be from different towers.
In the EMC, inefficiency was investigated by studying the correlation function in the

∆φEMC :∆zEMC space.
∆φEMC and ∆zEMC are defined as:
∆φEMC = |φEMC(track 1) −φEMCtrack 2|
∆zEMC = |zEMC(track 1) −zEMCtrack 2|
φEMC is the phi coordinate of the hit as recorded in the EMC while zEMC is its z

coordinate.
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Figure 4.23.: ∆φEMC :∆zEMC correlation function in √sNN = 200 GeV Au + Au before
applying pair-cuts (left) and with pair-cuts (right).

As with the other pair-cuts investigated, the ∆φEMC :∆zEMC cuts were studied ex-
tensively in different ranges, as well as for their centrality dependence. No centrality
dependence was found and therefore the cuts are applied uniformly across all centrality
selections. Figures 4.23, 4.24, and 4.25 show the before pair-cuts (leftmost plots) and
after pair-cuts (rightmost plots) ∆φEMC :∆zEMC correlation functions for √sNN = 200
GeV Au+ Au, √sNN = 200 GeV Cu+ Cu, and √sNN = 200 GeV d+ Au respectively.

Tracking inefficiency in TOF Pions for the low energy runs of √sNN = 39 and 62
GeV were identified in the TOF detector. To account for tracking inefficiency, studies
were done of ∆RTOF which is the relative difference in the track projections to the TOF
detector, i.e.
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Figure 4.24.: ∆φEMC :∆zEMC correlation function in √sNN = 200 GeV Cu + Cu before
applying pair-cuts (left) and with pair-cuts (right).
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Figure 4.25.: ∆φEMC :∆zEMC correlation function in √sNN = 200 GeV d + Au before
applying pair-cuts (left) and with pair-cuts (right).
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Figure 4.26.: ∆RTOF correlation function in √sNN = 39 GeV before applying pair-cuts
(left) and after applying pair-cuts (right).
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Figure 4.27.: ∆RTOF correlation function in √sNN = 62 GeV before applying pair-cuts
(left) and after applying pair-cuts (right).

∆RTOF =
√

(pTOFx1 − pTOFx2)2 + (pTOFy1 − pTOFy2)2 + (pTOFz1 − pTOFz2)2

(4.14)
Where pTOFxi, pTOFyi, and pTOFzi are the projections to TOF of single tracks in

the cartesian coordinate system.
Figures 4.26 and 4.27 show the ∆RTOF correlation function before and after applying

cuts to remove the inefficiency at small ∆RTOF .

Run-5 200 GeV Cu+ Cu summary of pair-cuts

• Drift Chamber cuts: |∆φ| < 0.005 rad for |∆zed| < 60 cm and |∆φ| < 0.05 rad for
|∆zed| < 5 cm

• PC1 cuts: ∆RPC1< 9 cm

• EMC cuts: ∆φEMC : ∆zed:|∆φEMC | < 0.02 rad for |∆zed| < 8 cm

Run-7 200 GeV summary of pair-cuts

• Drift Chamber cuts: |∆φ| < 0.02 rad for |∆zed| < 60 cm and |∆φ| < 0.06 rad for
|∆zed| < 5 cm

• PC1 cuts: ∆RPC1< 7 cm

• EMC cuts: ∆φEMC : ∆zed:|∆φEMC | < 0.03 rad for |∆zed| < 11 cm

Run-8 200 GeV d+ Au summary of pair-cuts

• Drift Chamber cuts: |∆φ| < 0.005 rad for |∆zed| < 60 cm and |∆φ| < 0.03 rad for
|∆zed| < 5 cm

• EMC cuts: ∆φEMC : ∆zed:|∆φEMC | < 0.02 rad for |∆zed| < 10 cm
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Run-10 62 GeV summary of pair-cuts

• Drift Chamber cuts: |∆φ| < 0.015 rad for |∆zed| < 60 cm; |0.04| rad for |∆zed| < 5
cm

• PC1 cuts: ∆RPC1< 7 cm

• TOF cuts: ∆RTOF< 13 cm

Run-10 39 GeV summary of pair-cuts

• Drift Chamber cuts: |∆φ| < 0.015 rad for |∆zed| < 60 cm, |0.03| rad for |∆zed| < 5
cm

• PC1 cuts: ∆RPC1< 8 cm

• TOF cuts: ∆RTOF< 12 cm

4.7. Coulomb Correction
At small separations, in the order in which we see significant Bose-Einstein effects, Final
State Interactions (FSI) also become significant. In the case of same-charge two-pion
intereference, FSI are dominated by Coulomb repulsion, strong interactions been negli-
gible (see discussion on this in the introduction section). Coulomb repulsion serves to
suppresss the Bose-Einstein signal and therefore must be corrected for.
In this analysis, we use a commonly applied procedure to correct for Coulomb inter-

action at small q [38]. The Coulomb correction is calculated by integrating the squared
Coulomb wave function from an assumed Gaussian source. More precisely, we assume
our pion source is a volume with a Gaussian distribution and a radius of 5 fm. Pion pairs
are assigned random positions in this volume and the Coulomb strength between each
pair is calculated using the Coulomb wave function. We then integrate and average over
a given number of points in the volume, in this case 20 points. Previous studies have
found that these number of sampling points provided a sufficient measure of the Coulomb
strength [60]. The Coulomb strength is calculated in the pair center-of-mass frame and
therefore takes as inputs an estimate of Rinv (5 fm) as well as qinv. The qinv values were
obtained by generating a histogram with the mean values of qinv calculated for each bin
of qside, qout, and qlong.
The correction factor is taken as the ratio of the pair distribution in qinv with the

Coulomb correction to a similar pair distribution in qinv without the Coulomb correction.

The core-halo model

Studies have shown that the pion emitting source can be considered as consisting of two
parts: The core and the halo [56]. The core is made up of primary pions that are products
of the hydrodynamic evolution of the system followed by re-scattering. Surrounding the
core is the halo which consists of pion products from the decay of long-lived resonances
like K0, η, η′, and ω. Due to their extended mean-decay-length (>20 fm), the halo is
characterized by pions of similar momentum found over a very large volume [90]. The
core-halo model becomes crucial in the application of the Coulomb correction to the
correlation function.
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Sinyukov correction procedure

In past HBT studies, the Coulomb effect was accounted for by applying the correction
factor uniformly over the measured correlation function in the so called full Coulomb
correction method i.e.,

C(q) = K(q)Cmeasured(q) (4.15)

K(q) is the correction factor that only depends on q and Cmeasured(q) is the measured
correlation function.
Based on the core-halo model, one can argue that the pions produced as decay prod-

ucts of long-lived resonances experience an insignificant Coulomb force due to their wide
separation. Applying the Coulomb correction uniformly over all pions therefore overcor-
rects for the Coulomb effect. λ, the chaoticity parameter can be treated in terms of the
multiplicity contribution from the core as compared to that from the halo [90],

λ = < ncore >
2

< ntotal >2 (4.16)

Consequently, the correlation can be decomposed into two parts:

Cmeasured
2 = Ccore

2 + Chalo
2 (4.17)

C2(q) = N [(λ(1 +G(q)))Fc + (1− λ)] (4.18)

G(q) = exp(−R2
invq

2
inv) (4.19)

Fc is the Coulomb correction part, applied only to the core, and dependent on q, while
N is a normalization factor. Figure 4.28 shows an example plot of the Coulomb correction
function.
These correction was originally proposed by Sinyukov and is the method used in the

Coulomb correction in this study [103].

4.8. Systematic Uncertainity
4.8.1. Pair-cut selection
As mentioned in section 4.6.1, a detailed study of the pair-cuts was done to arrive at the
optimal set of cuts used in this analysis. The importance of this cannot be overstated:
An insufficient cut that leaves residual ghosting or merging effects will artificially enhance
or suppress the Bose-Einstein signal. On the other hand, too large a cut will suppress
the signal and reduce the statistics available for the analysis.
The pair-cuts were applied using an inside-out approach, meaning that cuts were first

applied to the inner detector before being applied to the outer detector. These was
accomplished in the following order:

DC → PC1→ EMC/TOF
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Figure 4.28.: FCoul correction function used in the fit function.

Since the DC cuts are applied first, they have the biggest influence on the control of
ghosting and merging effects as discussed in section 4.6.1, and a detailed analyis of their
effect was of paramount importance.
The approach to the pair-cuts analysis was to select in small increments for cuts in

both ∆φ and ∆z, and study the resulting HBT radii until there was little to no change,
within statistical error. The study was done independently for each of the three energies
and collision systems.

4.8.2. Systematic error from pair-cuts
The systematic error from pair-cuts was evaluated by varying the cut as detailed in section
4.8.1. The systematic error was calculated by taking the difference in the extracted radii
from the largest cut studied to that of the selected cut. This procedure was adopted for
the evaluation of the systematic error contribution from cuts in all the detectors.

4.8.3. Systematic error from matching
Errors were studied by varying the matching cut from 2.0 σ in EMC and 2.5 σ in TOF
to 1.0 σ in both EMC and TOF . In all three beam energies, the contribution of the
systematic errors from track matching was about 3% on average.

4.8.4. Systematic errors from PID selection
Systematic errors from PID were determined by varying the pion selection from a 2.0 σ
to a 1.0 σ. As with the pair-cut errors, the errors from PID selection were calculated by
taking the difference of the extracted radii at 2.0 σ to that at 1.0 σ. These errors were
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found to be very small, only to about 2% in the different beam energies and collision
systems.
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Figure 4.29.: Systematic error analysis for √sNN = 39 GeV, 62 and 200 GeV Au+ Au.
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5. Results and Discussion

5.1. Consistency Checks

5.1.1. Consistency check between TOF and EMC for Au+ Au at√
sNN = 200 GeV
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Figure 5.1.: Comparison of HBT measurements for pions identified in TOF , EMC east,
and EMC west at √sNN = 200 GeV.

While the TOF east detector provides for better PID capability due to its higher timing
resolution, it has a limited acceptance (π/4 in azimuthal) as compared to the EMC. A
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comparison between the results from the two subsystems is a necessary check to ensure
confidence in the physics results. Figure 5.1 shows HBT radii from pions identified in the
two PbSc arms of the EMC, and compared to HBT radii from PID in the TOF east
detector. Due to acceptance and callibrations problems with the TOF west detector, it
was not utilized for this analysis. Results from both arms of the EMC compared to the
TOF east detector show a very good match.

5.1.2. Consistency check with previous PHENIX results for Au+ Au
at √sNN = 200 GeV
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Figure 5.2.: Comparsion of the N1/3
part dependence of different PHENIX results at √sNN

= 200 GeV.

Figure 5.2 compares Au + Au at √sNN = 200 GeV results from this analysis with
PHENIX results from previous studies [22]. A very good match, within systematic error,
is found between the two sets of PHENIX results. The increased statistics from the RHIC
Run-year 2007 data allowed for a more detailed study of the different dependencies.

5.1.3. Consistency check with previous PHENIX results for Cu+ Cu
at √sNN = 200 GeV

In figure 5.3, a comparison is done for Cu + Cu at √sNN = 200 GeV results from this
analysis and a previous study done at PHENIX (AN Note 565). Both sets of results are
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Figure 5.3.: Comparison of these results with previous PHENIX results for Cu + Cu at√
sNN = 200 GeV.

from RHIC Run-year 2005 but a re-analysis was necessary so as to re-evaluate the cuts
as well as obtain new binning for a comparison with the Au + Au data. An excellent
match is found in all the HBT parameters to within systematic error.

5.2. Final-State Effects
5.2.1. Collision centrality dependence
The extracted HBT radii was studied for the initial collision geometry dependence in the
form of the cube root of the number of participants, N1/3

part, which acts as a proxy for the
initial radius [85].
The Cu + Cu collision system is a much smaller system than the Au + Au (Cu mass

number = 63.546 and Au mass number = 196.966) which not only presents a different
collision geometry but also the possibility of different expansion dynamics.
Figure 5.4 compares the Au+Au and Cu+Cu collision systems dependence on N1/3

part at
the same energy of √sNN = 200 GeV and a < kT > = 0.53 GeV/c. Cu+Cu demonstrates
the same linear dependence with N1/3

part as seen in the Au+Au system as well as the same
magnitude for similar Npart values [7].
In Figure 5.5, a similar comparison of the d + Au and Au + Au systems for the HBT

radii dependence on N1/3
part is made (panels (a)–(c)).

A comparison of the d + Au and Au + Au systems is especially helpful in providing
model constraints to the role of hydrodynamic-driven final-state re-scattering effects in
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Figure 5.4.: HBT radii for Cu+ Cu and Au+ Au at √sNN = 200 GeV.

the smaller d+A and p+A systems. Here again, a linear increase with N1/3
part is observed

for the d+Au system but with Au+Au showing a much larger size. While the transverse
size shows similar slopes in the two systems, a slight change in the Rlong slope for d+Au
is observed. This difference in slopes can be attributed to differences in longitudinal
dynamics between the d+Au and Au+Au systems. The difference in magnitude between
the two systems at similar Npart values suggests that Npart might not be the best variable
for studies of initial size in small asymmetric systems.
Panel (d) shows the (dN/dη)1/3 dependence of the transverse size, Rside, for Au+Au,

d + Au, and p + p (at 7 TeV) systems. dN/dη is a measure of the number of charged
particles at mid-rapidity and therefore studying the HBT radii dependence on (dN/dη)1/3

provides insight into how the final system size is connected to the particle density at freeze-
out [48]. Here too, a linear dependence of Rside with (dN/dη)1/3 is observed in the three
systems but with a difference in their magnitudes. The scaling of Rside with multiplicity
is not at all unexpected since Npart also scales with multiplicity [85]. Similar trends in
the (dN/dη)1/3 dependence have been demonstrated for A+A and p+p collision systems
[25, 7].

5.2.2. mT dependence
Studies of the HBT radii dependence on the transverse mass, mT , can provide us with
insight into the expansion dynamics that influence a system.
In this section, I present and discuss the mT dependence of Au + Au, Cu + Cu, and

d+Au systems at √sNN = 200 GeV. Studying these three collision systems would allow
us to develop an understanding of the role of the system size in the dynamics of the
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Figure 5.5.: Comparison of the N1/3
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system. One expectation, for instance, is that a smaller system will have a comparably
smaller expansion rate. The d+Au most central collisions are comparable to peripheral
Au + Au collisions while the Cu + Cu most central events are comparable, with regard
to the number of participants, to the mid-central Au + Au collisions. The expectation
therefore is that one will see a smooth scaling with the system size. In addition, been
able to compare for the different collision systems at the same energy, and using the same
detector, reduces any systematics that might arise from a collision energy dependence or
detector-specific anomalies. There are several questions of interest: (1) Do we find the
same trends duplicated across different sized systems? (2) What is the origin of any final
system size dependence on mT for different systems? (3) How much of an influence does
the system size play in the expansion dynamics?

Cu+ Cu versus Au+ Au
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Figure 5.6.: HBT radii dependence in mT for Cu + Cu and Au + Au systems at √sNN
= 200 GeV and 0–30% in centrality.

Figure 5.6 shows the mT dependence of Cu + Cu and Au + Au systems at √sNN =
200 GeV, taken for the most central 0–30% events (Npart= 75.12 and 243.16 for Cu+Cu
and Au+ Au respectively). Both systems show a decrease of Rout, Rside, and Rlong with
mT but with the Cu + Cu system showing a much smaller size. This can also be seen
in the freeze-out volume dependence on mT as well as the Rout/Rside ratio for the two
systems as shown in Figures 5.7 and 5.8 respectively. As previously discussed, Rside

carries information about the transverse geometric size while Rout encodes information
about both the transverse size and the emission duration. The Rout/Rside ratio has
therefore been widely used as a proxy measure of ∆τ [22, 1, 14]. Cu + Cu is also found
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Figure 5.9.: HBT radii dependence in mT for Cu + Cu and Au + Au systems at √sNN
= 200 GeV and similar Npart values.
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Figure 5.11.: Rout/Rside ratio for Cu+Cu and Au+Au at √sNN = 200 GeV and similar
Npart.

to show a smaller freeze-out volume but a comparable very short emission duration as
the Au+ Au system.
In Figure 5.9, is a comparison of the two systems’ HBT radii at similar Npart values,

corresponding to the most central 0–10% centrality events in Cu+Cu and mid-central 30–
40% centrality events in Au+Au. Within error, the two systems show strong similarities
both in size and trend which suggests that regardless of the collision species, comparable
initial geometry at collision will give rise to similar expansion dynamics and final system
size at freeze-out. This again is strongly emphasised by the very good match seen in the
freeze-out volume in Figure 5.10, as well as the Rout/Rside ratio in Figure 5.11 which in
both systems is flat to slightly declining at the higher mT values.

d+ Au versus Au+ Au

Figure 5.12 is a plot of the HBT radii for d+Au and Au+Au collision systems at √sNN
= 200 GeV, and at comparable Npart values. Both energies show a similar decline of the
HBT radii with increasing mT , with the size of the radii in d + Au smaller. To get a
more quantitative measure of how the two systems compare, blast-wave fits were made
to Rside to extract the geometrical radius, Rgeom, and to Rlong to extract the expansion
time, τ0, using the following functions:

Rside = Rgeom/
√

(1 + β2(mT/T )) (5.1)

Rlong = τ0

√
(T/mT )[(K2(mT/T ))/(K1(mT/T ))] (5.2)
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Figure 5.12.: mT dependence of HBT parameters from Au+Au (60–88% centrality) and
d + Au (0–10% centrality) at √sNN = 200 GeV, obtained at comparable
Npartvalues. Solid and dashed lines are blast-wave fits to the data.
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where β is the expansion velocity, T is the freeze-out temperature, and K1 and K2
are modified Bessel functions. T and β were obtained from blast-wave fits to the pT
spectra for identified hadrons [108]. These input values are summarized in table 5.1.
Table 5.2 shows the extracted values for Rgeom and τ0. These values quantitatively show
that d+Au has a smaller transverse freeze-out size as well as a shorter system expansion
time as compared to Au+ Au.

d+ Au Au+ Au
T (GeV) 0.118 ± 0.02 0.123 ± 0.02
β (c) 0.42 ± 0.03 0.38 ± 0.08

Table 5.1.: Temperature (T ) and expansion velocity (β) input parameters for blast-wave
fits to figure 5.12.

d+ Au Au+ Au
τ0 (fm/c) 3.2 ± 0.04 ± 0.4 (syst) 3.8 ± 0.04 ± 0.3 (syst)
χ2/ndf 26/5 24/5

Rgeom (fm) 2.2 ± 0.03 ± 0.2 (syst) 2.8 ± 0.03 ± 0.2 (syst)
χ2/ndf 6/5 4/5

Table 5.2.: Rgeom and τ0 extracted values for d + Au and Au + Au at √sNN = 200 GeV
from blast-wave fits to Figure 5.12.

In Figure 5.13, the Rout/Rside ratio (panel (a)) and the freeze-out volume (panel (b))
are calculated at the same Npart value as in Figure 5.12. Just as in Figures 5.8 and 5.11,
the freeze-out volume is obtained as the product Rside × Rout × Rlong. In panel (a), we
find that the Rout/Rside ratio displays the same dependence in mT as found with the
Au+Au and Cu+Cu systems at the same beam collision energy, i.e., a flat dependence
at low mT values that tapers to a gentle decrease at higher mT values. A comparison
of the freeze-out volume of the two systems as in panel (b) shows that Au + Au has a
much larger system size as also seen with the HBT radii. Despite this, the fall-off of the
freeze-out volume with mT is the same in both d + Au and Au + Au as is emphasised
by the ratio in panel (c). The obvious similarities in patterns between the d + Au and
Au+Au systems is a strong indication that the expansion dynamics of the d+Au system
are driven by the same final state-rescattering effects that are well understood for the
bigger A+ A systems [85, 22, 23, 1].
The initial transverse size, R, has previously been shown to be proportional to the

expansion time, τ [102, 83]. Since the final system size as measured using HBT is as
a result of contributions from the initial size, the system expansion, and the effects of
space-momentum correlations, it is expected that the final transverse size should scale as
a function of R. Figure 5.14 explores this theme by looking at the scaling of (a) Rside

with respect to R for Pb+Pb, Au+Au, and d+Au collision systems and (b) Rinv scaling
with R for Pb + Pb and p + Pb. Note that the dashed lines are linear fits to the data.
In all systems, it is found that there is a linear scaling of the final size with R. Similar
scaling patterns with R for collective anistropic flow have also been reported in other
studies [84, 83]. The d+Au and Au+Au systems at RHIC energies and the p+Pb and
Pb + Pb systems at LHC energies were observed to have comparable slopes, suggesting
similar expansion rates. The difference in slopes between the RHIC results and LHC
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Figure 5.13.: A comparison of the Rout/Rside ratio as well as the freeze-out volume (Rout×
Rside ×Rlong) for Au+ Au and d+ Au at √sNN = 200 GeV.

Figure 5.14.: Rside scaling with R for Pb+Pb, Au+Au, and d+Au collision systems. (b)
Rinv scaling with R for Pb + Pb and p + p collision systems at LHC beam
energies. The ALICE and STAR data were obtained from Refs. [1][15] and
[5] respectively.
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results can be attributed to the difference in expansion rates at the higher LHC energies.
The observed similarities between the d(p) + A and A + A systems is a reaffirmation of
the previous conclusion that hydrodynamic-driven final-state effects play a key role in
the evolution of small asymmetric systems.

5.3. Scaling Patterns
In this section, I present results for three different beam energies – √sNN = 39, 62, and
200 GeV – as well as three collision systems: Cu+Cu, Au+Au, and Pb+Pb. Using these
results, I will discuss various scaling properties observed to be universal across different
energies and collision systems. As was shown in Fig. 5.14, the final transverse size (Rside)
scales with R at a fixed mT . This argument can be extended to all the HBT radii at each
mT bin since the three radii have the system lifetime, τ , in common and τ is proportional
to the initial size. Similarly, since the final size is also related to the space-momentum
correlations, scaling of the HBT radii with mT would also be expected.

5.3.1. N 1/3
part dependence
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Figure 5.15.: N1/3
part dependence of Rout, Rside, and Rlong for Au + Au collisions at three

beam energies of √sNN = 39, 62, and 200 GeV at < kT >= 0.53 GeV/c.

Figure 5.15 shows the N1/3
part dependence of Au+Au collisions at three beam energies of√

sNN = 39, 62, and 200 GeV. All three energies show an approximate linear dependence
with N1/3

part.
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To understand these results, it is instructive to look at how the freeze-out density varies
with changes in centrality and collision energy. The pion free path at freeze-out, λπf , is
defined as:

λπf = 1
ρfσ

= Vf
Nσ

(5.3)

Where ρf is the density at freeze-out, σ is the pion total cross section, Vf is the freeze-
out volume, and N is the number of particles within the freeze-out volume [12]. At a
fixed energy, studies have shown that λf is constant at about 1 fm. This suggests that
the freeze-out density is also a constant. Since the multiplicity scales with the number
of participants [29], it is expected that the HBT radii will also increase linearly with the
same number of participants, which is what Figure 5.15 demonstrates. This findings are
consistent with previous results for different collision systems [12, 10, 22].
Across the three energies, the results do not show a strong beam energy dependence.

At RHIC energies, the chemical composition of the fireball does not vary much since it
is meson-dominated, as compared to the lower AGS/SPS energies where we find a much
bigger baryon fraction [12, 85]. For this reason, λf will largely remain constant at RHIC
energies and the freeze-out densities will reach asymptotic values. In addition, we see very
little increase in the number of participants at each centrality for the Au+Au collisions
going from 39 to 200 GeV (at 0–10% centrality, Npart = 316.6 for 39 GeV and 325.8 for
200 GeV). These two factors could explain the lack of a strong beam energy dependence
in the Au+ Au collisions at the three beam energies shown in Figure 5.15.

5.3.2. mT dependence
Figure 5.16 shows the mT dependence of the Au+Au system at 39, 62, and 200 GeV for
the most central 0–30% centrality events. All three energies show the previously observed
decrease of HBT radii with an increase in mT [1, 24, 35].
Collective effects or flow introduce space-momentum correlations to the system. Due

to these space-momentum correlations, high kT particles tend to be emitted more from
the surface of the source. Since HBT radii measure regions of homogeneity (region where
particles are emitted with the same average kT ), the HBT radii, both in the transverse and
longitudinal directions, will be seen to decrease with kT as pairs with large kT are emitted
from smaller regions of homogeneity [93, 96]. The results also show a much stronger fall-off
with kT of the longitudinal HBT radius as compared to the transverse radii. These can be
attributed to the expected boost-invariant expansion in the longitudinal direction, which
in turn would make the longitudinal geometric size much larger than the size measured
in HBT.
Across the three energies, no strong beam energy dependence was observed, within

error, either in magnitude or in trends, suggesting that the dynamics of expansion do not
vary much within the three energies compared here.

The Rout/Rside ratio for Au+ Au 39, 62, and 200 GeV

Figure 5.17 shows the Rout/Rside dependence on mT for Au+Au collisions at 39, 62, and
200 GeV. The ratios for 39 and 62 GeV are comparable to within error while 200 GeV is
systematically lower across the whole mT range studied. All three energies show a gentle
decrease of the Rout/Rside ratio with an increase in mT .
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Figure 5.16.: Dependence of HBT radii on mT for Au+Au
√
sNN = 39, 62, and 200 GeV

for the most central 0–30% centrality.
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Vf for Au+ Au collisions: 39, 62, and 200 GeV

The freeze-out volume, Vf , is estimated as the product of Rout, Rside, and Rlong. As
expected, Vf shows a decrease with mT in all three energies to within systematic error.
No large variations in the magnitude were observed between 39, 62, and 200 GeV. This
observation again can be tied to the little increase in the number of participants going
across the three energies as the freeze-out densities remain constant.

5.3.3. √mT dependence
Figure 5.19 is a comparison of PHENIX and STAR results for HBT radii dependence
on 1/√mT at two centrality selections, and for 39, 62, and 200 GeV Au + Au collisions.
The results show an almost linear dependence on 1/√mT for Rout, Rside, and Rlong. A
very good match is also found between the PHENIX and STAR results. Combining
the results from the two experiments serves two primary functions: (1) It allows for an
extended mT coverage by leveraging the PHENIX data. STAR results terminate at mT

= 0.52 GeV/c but combining the two sets of data allows the coverage to be extended
to 1.0 GeV/c. (2) The two detectors have different systematics, and therefore a good
match in measurements made for the same parameters builds confidence that the relevant
experiment-specific systematics have been sufficiently addressed.
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Figure 5.19.: A comparison of PHENIX and STAR HBT radii dependence on 1/√mT

(GeV/c)1/2 for Au+ Au collisions at √sNN = 39,62, and 200 GeV, and for
two Npart values of 350 and 225.
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Figure 5.20.: Panels (a)–(c) show HBT radii R dependence for four mT cuts at √sNN =
200 GeV in Au+Au and Cu+Cu collision systems. The centrality selection
in Cu + Cu corresponds to 0–10%, 10–20%, 20–30%, and 30–40%. Those
in Au+Au are 0–5%, 5–10%, 10–15%, 15–20%, 20–30%, 30–40%, 40–50%,
50–60%, and 60–70%. The dashed and dotted curves are linear fits to the
data, and the slopes extracted from these fits, Si, are plotted in panel (d)
as a function of 1/√mT (GeV/c)1/2 for Rside, Rout, and Rlong.

Figure 5.21.: Panels (a)–(c) show HBT radii R dependence for four mT cuts at √sNN =
2.76 TeV in the Pb+Pb collision system for measurements done at the LHC
[77]. Similar to Figure 5.20, the dashed and dotted curves are linear fits to
the data, and the slopes extracted from these fits, Si, are plotted in panel
(d) as a function of 1/√mT (GeV/c)1/2 for Rside, Rout, and Rlong.
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5.3.4. R dependence
In Figure 5.20, a comparison of Cu + Cu and Au + Au for Rout, Rside, and Rlong is
made for a dependence on R (panels a, b, and c). Both systems show similar scaling
patterns with R. Their magnitudes are also similar at the same mT bins and R. Slopes
of the scaling curves are seen to decrease with an increase in mT which is an indication of
the influence of space-momentum correlations resulting from collective expansion effects.
Similar scaling patterns are also seen in Figure 5.21 (a, b, c) for LHC data at 2.76 TeV
which show a larger HBT size. The increase in size from RHIC energies to LHC energies
can be attributed to an increase in τ and < cs > rather than an increase in the initial
geometry, going from Au+Au to Pb+Pb (the change in R between Au+Au and Pb+Pb
is only 5%).
In Figure 5.20 (d) and 5.21 (d), plots for the slopes extracted from the linear fits to

Figure 5.20 (a, b, and c) and Figure 5.21 (a,b, and c) respectively are shown. These
slopes are found to scale with 1/√mT in both systems. The dependence on 1/√mT also
reveals that the space momentum correlation do not act uniformly on all three HBT radii
but are strongest in Rlong and weakest in Rside. Equally important is the observation
that the complete set of measurements for dependence in centrality and mT at different
energies can be scaled into one curve.

5.4. Search for CEP and/or Onset of Deconfinement
Central to understanding the QCD phase diagram is identifying the location of the phase
boundaries, as well as the QCD Critical End Point (CEP) in the temperature (T ) versus
baryon chemical potential (µB) plane. As previously discussed in the introduction, close
to the CEP, it is expected that significant changes in the dynamic as well as static
properties of the medium will be evident. One such change in the dynamic properties is
the slowing down of the system expansion such that there is a drastic reduction in the
expansion speed, <cs> (i.e., <cs>→0). An emitting system that is thus slowed down will
be able to emit for longer and will therefore show an increase in ∆τ . Since Rout encodes
information about the emission of the system, this would be reflected in an Rout that is
larger than Rside. To identify such changes, it is imperative that we are able to access a
wide range of reaction trajectories on the T : µB plane. This is only possible through a
beam energy scan.
As mentioned before, the final size measured at freeze-out consists of contributions

from the initial system size, the increase in size due to expansion, and the reduction in
size attributed to the effects of space-momentum correlations. The need to account for
the initial size when studying the expansion dynamics of the system in HBT can clearly
be seen in Figures 5.22, 5.23, and 5.24. Here, plots for the Rout/Rside ratio dependence on√
sNN , for the range 7.7 GeV to 2.76 TeV, and the same ratio after subtracting the initial

size,
√

2 R ((Rout-
√

2 R)/(Rside-
√

2 R)) are shown for 0–5% centrality and for three mT

selections. Non-monotonic behavior is evident over a small √sNN range after removal of
the initial size. These effects would otherwise be suppressed in the Rout/Rside ratios due
to the contribution from the initial size. The non-monotonic behavior is also strongest at
low mT values since at those values, there is a smaller contribution of space-momentum
correlations.
To investigate further the signs of non-monotonic behavior observed in Figures 5.22,

5.23 and 5.24, the quantities R2
out - R2

side are plotted for the same dependence on √sNN
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Figure 5.22.: (a) Rout/Rside and (b) (Rout -
√

2 R)/(Rside -
√

2 R) dependence on √sNN
for 0–5% centrality and mT = 0.19 GeV. Rout/Rside (Rout/Rside ∝ ∆τ )
includes the effects of the initial size while in (Rout -

√
2R)/(Rside -

√
2R),

this contribution is accounted for by subtracting the initial size, estimated
to be

√
2R at very central collisions. The combined PHENIX and STAR

data points are extracted from fits to the mT dependence in Figure 5.19.

Figure 5.23.: (a) Rout/Rside and (b) (Rout -
√

2 R)/(Rside -
√

2 R) dependence on √sNN
for 0–5% centrality and mT = 0.26 GeV.
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Figure 5.24.: (a) Rout/Rside and (b) (Rout -
√

2 R)/(Rside -
√

2 R) dependence on √sNN
for 0–5% centrality and mT = 0.33 GeV.

Figure 5.25.: (a) R2
out - R2

side and (b) (Rside -
√

2 R)/Rlong dependence on √sNN for 0–
5% centrality and mT = 0.19 GeV. R2

out - R2
side is proportional to ∆τ 2 while

(Rside -
√

2R)/Rlong is proportional to < cs >. The combined PHENIX and
STAR data points are extracted from fits to the mT dependence in Figure
5.19.
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Figure 5.26.: (a) R2
out - R2

side and (b) (Rside -
√

2R)/Rlong dependence on
√
sNN for 0–5%

centrality and mT = 0.26 GeV.

Figure 5.27.: (a) R2
out - R2

side and (b) (Rside -
√

2R)/Rlong dependence on
√
sNN for 0–5%

centrality and mT = 0.33 GeV.
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(the range 7.7 GeV to 2.76 TeV). R2
out - R2

side here is used as a proxy for ∆τ 2 but with
greater sensitivity than the Rout/Rside ratio. (Rside -

√
2 R)/Rlong is proportional to

< cs >. Figures 5.25, 5.26, and 5.27 show this dependence for 0–5% centrality events
and three mT selections. R2

out - R2
side shows a maximum at a narrow √sNN range with

a complimentary minimum in (Rside -
√

2 R)/Rlong for the same range in √sNN . This
non-monotonic behavior suggests that the beam energies studied might be sampling from
reaction trajectories in the vicinity of the CEP. Furthermore, the strength of the non-
monotonic behavior is observed to increase at lower mT values due to the suppression of
space-momentum correlations contributions at these mT values. Additional energy scans
as proposed for the RHIC Beam Energy Scan Phase II (BES II), with emphasis on this
narrow energy region, might help pin-point the exact location of the CEP.
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6. Conclusion
Two-pion interferometry measurements using the Hanbury-Brown and Twiss method, ap-
plied to different collision systems and beam energies, are presented in this thesis. These
measurements are important in extracting the space-time extent of the pion emission
sources created in heavy-ion collisions at RHIC. In this work, HBT measurements were
made with two objectives in mind: (1) Develop an understanding of the contribution of
hydrodynamic-driven final-state effects to the expansion dynamics of small asymmetric
systems and (2) look for universal scaling patterns in dependencies of HBT measure-
ments, and use these measurements to search for signatures of the CEP and/or onset of
deconfinement.
A study of the Npart dependence of A+A collisions, comparing Cu+Cu and Au+Au

systems, revealed that Rout, Rside, and Rlong show a linear dependence with Npart. This
scaling property is attributed to the increase in multiplicity with increasing Npart. The
Cu + Cu and Au + Au systems were also found to to have both the same trend and
same magnitude at similar Npart for all HBT radii. There was no strong beam energy
dependence observed for the three energies of √sNN = 39, 62 and 200 GeV in Au+Au.
At RHIC energies, the pion mean free path at freeze-out, λπf , remains constant while
the freeze-out densities reach asymptotic levels. These, and the little increase in Npart

across energies would explain the lack of a strong energy dependence. A comparison of
d+Au and Au+Au HBT radii for Npart dependence found that the two systems have the
same increasing trend with an increase in Npart, but with a slight change in the slope for
Rlong. This difference in slope was attributed to a change in the longitudinal expansion
dynamics. The difference in magnitude between the d + Au and Au + Au HBT radii at
the same Npart suggests that Npart might not be the ideal parameter for studies of the
initial geometry in small systems.
The mT dependence of HBT parameters was also studied in this analysis. The rapid

expansion of the hot and dense systems emanating from heavy-ion collisions introduces
space-momentum correlations that are manifest in the final size of the pion emitting
source. Studies of the mT dependence of HBT measurements allow for a detailed inves-
tigation of the dynamics of these hot and dense systems. These analysis found that the
three beam energies and three collision systems studied demonstrate a decrease in size
with increasing mT . This behavior has been reported before, and is indicative of a radi-
ally expanding system. For a static source, HBT measurements would be a true measure
of the actual geometric size of the system. On the contrary, an expanding source, as
previously mentioned, introduces space-momentum correlations such that the HBT mea-
surements represent not the geometric size but the widths of a region in the source that
is emitting pion pairs of the same average momentum. It was found too that as a result
of the stronger longitudinal flow, Rlong shows a stronger mT dependence as compared to
Rside and Rout. A comparison of the A+A systems of Cu+Cu and Au+Au found that
that at the same selection in Npart, the two systems were comparable both in magnitude
and slope for their dependence inmT . A similar comparison between d+Au and Au+Au,
and with quantitative values of the size of the system extracted using blast-wave fits to
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the HBT radii, found that the d + Au system has both a smaller geometric transverse
size (Rgeom) as well as a shorter emission duration. Despite the smaller size, the d + Au
system was found to show a similar pattern to Au+Au in its mT dependence. Previously,
the small d+A and p+ p systems have been considered too small and too short-lived for
significant medium effects to form. The results presented here are a strong indication that
even in these small systems, the role of final state re-scattering effects in the evolution of
the hot and dense medium cannot be overlooked.
A detailed comparison of the HBT radii for Au + Au and Cu + Cu at √sNN = 200

GeV, as well as Pb+ Pb at √sNN = 2.76 TeV (measured at LHC) found that the three
collision systems show similar scaling with R̄. The Au+Au and Cu+Cu systems HBT
radii were found to have the same magnitude in their R̄ dependence for the same mT

slices. In addition, the study found that the slopes extracted from linear fits to the R̄
dependence at each mT bin showed scaling with 1/√mT , highlighting the important role
of space-momentum correlations in the final freeze-out geometry.
A primary objective of this analysis was to study the excitation functions of HBT

parameters in different collision systems for non-monotonic behavior that would be sug-
gestive of a phase transition and/or the prescence of the QCD Critica End Point (CEP).
Towards this goal, an analysis of the R2

out − R2
side and (Rside -

√
2 R)/Rlong excitation

functions was made. Rout carries information about the transverse geometric size of the
system as well it emission duration. Rside only encodes information about the transverse
geometric size. For this reason, R2

out − R2
side is proportional to ∆τ 2. Similarly, the ratio

(Rside -
√

2R)/Rlong is proportional to the mean expansion speed, 〈cs〉. In the√sNN range
of 7.7 GeV - 2.76 TeV and 0-5% in centrality, the study found that R2

out − R2
side shows

a maximum while (Rside -
√

2 R)/Rlong shows a complimentary minimum over a small√
sNN range. According to model calculations based on thermodynamics, a softening of

the Equation of State (EoS) in the vicinity of a CEP or phase transition will lead to a
drastic slowing down in the expansion of the system. This will in turn lead to an increase
in the emission duration and a decrease in 〈cs〉 which tends to zero. The observed non-
monotonic behavior in the excitation functions of R2

out − R2
side and (Rside -

√
2R)/Rlong

points to dramatic changes happening in the system dynamics over a narrow range in
beam collision energy. This could be indicative of reaction trajectories that traverse the
QCD critical-end-point and/or the onset of deconfinement. It is the author’s opinion that
further measurements are needed over this small energy range of interest that might help
pin-point the exact location of the CEP. The proposed RHIC Beam Energy Scan Phase
II (BES II) might provide for such an opportunity.

95



Bibliography
[1] K. Aamodt et al. Two-pion Bose-Einstein correlations in central Pb-Pb collisions at√

sNN = 2.76 TeV. Phys.Lett., B696:328–337, 2011. doi: 10.1016/j.physletb.2010.
12.053.

[2] K. Aamodt et al. Harmonic decomposition of two-particle angular correlations
in Pb-Pb collisions at √sNN = 2.76 TeV. Phys.Lett., B708:249–264, 2012. doi:
10.1016/j.physletb.2012.01.060.

[3] Betty Abelev et al. Long-range angular correlations on the near and away side in
p-Pb collisions at √sNN = 5.02 TeV. Phys.Lett., B719:29–41, 2013. doi: 10.1016/
j.physletb.2013.01.012.

[4] Betty Bezverkhny Abelev et al. Long-range angular correlations of π, K and p
in p-Pb collisions at √sNN = 5.02 TeV. Phys.Lett., B726:164–177, 2013. doi:
10.1016/j.physletb.2013.08.024.

[5] Betty Bezverkhny Abelev et al. Freeze-out radii extracted from three-pion cumu-
lants in pp, p–Pb and Pb–Pb collisions at the LHC. Phys.Lett., B739:139–151,
2014. doi: 10.1016/j.physletb.2014.10.034.

[6] B.I. Abelev et al. Long range rapidity correlations and jet production in high energy
nuclear collisions. Phys.Rev., C80:064912, 2009. doi: 10.1103/PhysRevC.80.064912.

[7] B.I. Abelev et al. Pion Interferometry in Au+Au and Cu+Cu Collisions at RHIC.
Phys.Rev., C80:024905, 2009. doi: 10.1103/PhysRevC.80.024905.

[8] Alberto Accardi, N. Armesto, M. Botje, S.J. Brodsky, B. Cole, et al. Hard probes
in heavy ion collisions at the LHC: PDFs, shadowing and pA collisions. 2004.

[9] K.H. Ackermann et al. STAR detector overview. Nucl.Instrum.Meth., A499:624–
632, 2003. doi: 10.1016/S0168-9002(02)01960-5.

[10] L. Adamczyk et al. Beam energy dependent two-pion interferometry and the freeze-
out eccentricity of pions in heavy ion collisions at STAR. 2014.

[11] M. Adamczyk et al. The BRAHMS experiment at RHIC. Nucl.Instrum.Meth.,
A499:437–468, 2003. doi: 10.1016/S0168-9002(02)01949-6.

[12] D. Adamova et al. Universal pion freezeout in heavy ion collisions. Phys.Rev.Lett.,
90:022301, 2003. doi: 10.1103/PhysRevLett.90.022301.

[13] J. Adams et al. Evidence from d + Au measurements for final state suppression of
high p(T) hadrons in Au+Au collisions at RHIC. Phys.Rev.Lett., 91:072304, 2003.
doi: 10.1103/PhysRevLett.91.072304.

96



[14] J. Adams et al. Azimuthally sensitive HBT in Au + Au collisions at √sNN =
200-GeV. Phys.Rev.Lett., 93:012301, 2004. doi: 10.1103/PhysRevLett.93.012301.

[15] J. Adams et al. Pion interferometry in Au+Au collisions at √sNN = 200-GeV.
Phys.Rev., C71:044906, 2005. doi: 10.1103/PhysRevC.71.044906.

[16] A. Adare et al. Quadrupole Anisotropy in Dihadron Azimuthal Correlations in
Central d+Au Collisions at √s

NN
= 200 GeV. Phys.Rev.Lett., 111(21):212301,

2013. doi: 10.1103/PhysRevLett.111.212301.

[17] A. Adare et al. Measurement of long-range angular correlation and quadrupole
anisotropy of pions and (anti)protons in central d+Au collisions at √s

NN
= 200

GeV. 2014.

[18] K. Adcox et al. PHENIX detector overview. Nucl.Instrum.Meth., A499:469–479,
2003. doi: 10.1016/S0168-9002(02)01950-2.

[19] K. Adcox et al. PHENIX central arm tracking detectors. Nucl.Instrum.Meth.,
A499:489–507, 2003. doi: 10.1016/S0168-9002(02)01952-6.

[20] Clemens Adler, Alexei Denisov, Edmundo Garcia, Michael J. Murray, Herbert Stro-
bele, et al. The RHIC zero degree calorimeter. Nucl.Instrum.Meth., A470:488–499,
2001. doi: 10.1016/S0168-9002(01)00627-1.

[21] S.S. Adler et al. Absence of suppression in particle production at large transverse
momentum in √sNN = 200-GeV d + Au collisions. Phys.Rev.Lett., 91:072303, 2003.
doi: 10.1103/PhysRevLett.91.072303.

[22] S.S. Adler et al. Bose-Einstein correlations of charged pion pairs in Au + Au
collisions at √sNN = 200-GeV. Phys.Rev.Lett., 93:152302, 2004. doi: 10.1103/
PhysRevLett.93.152302.

[23] S. Afanasiev et al. Source breakup dynamics in Au+Au Collisions at √sNN = 200-
GeV via three-dimensional two-pion source imaging. Phys.Rev.Lett., 100:232301,
2008. doi: 10.1103/PhysRevLett.100.232301.

[24] M.M. Aggarwal et al. An Experimental Exploration of the QCD Phase Diagram:
The Search for the Critical Point and the Onset of De-confinement. 2010.

[25] M.M. Aggarwal et al. Pion femtoscopy in p+p collisions at
√
s = 200 GeV.

Phys.Rev., C83:064905, 2011. doi: 10.1103/PhysRevC.83.064905.

[26] M. Aizawa et al. PHENIX central arm particle ID detectors. Nucl.Instrum.Meth.,
A499:508–520, 2003. doi: 10.1016/S0168-9002(02)01953-8.

[27] M. Allen et al. PHENIX inner detectors. Nucl.Instrum.Meth., A499:549–559, 2003.
doi: 10.1016/S0168-9002(02)01956-3.

[28] B. Alver et al. System size dependence of cluster properties from two-particle angu-
lar correlations in Cu+Cu and Au+Au collisions at √sNN = 200-GeV. Phys.Rev.,
C81:024904, 2010. doi: 10.1103/PhysRevC.81.024904.

97



[29] E. Andersen et al. Strangeness enhancement at mid-rapidity in Pb Pb collisions
at 158-A-GeV/c. Phys.Lett., B449:401–406, 1999. doi: 10.1016/S0370-2693(99)
00140-9.

[30] L. Aphecetche et al. PHENIX calorimeter. Nucl.Instrum.Meth., A499:521–536,
2003. doi: 10.1016/S0168-9002(02)01954-X.

[31] S.H. Aronson et al. PHENIX magnet system. Nucl.Instrum.Meth., A499:480–488,
2003. doi: 10.1016/S0168-9002(02)01951-4.

[32] M. Asakawa, S. A. Bass, B. Müller, and C. Nonaka. Transverse velocity dependence
of the proton-antiproton ratio as a signature of the qcd critical point. Phys. Rev.
Lett., 101:122302, Sep 2008. doi: 10.1103/PhysRevLett.101.122302. URL http:
//link.aps.org/doi/10.1103/PhysRevLett.101.122302.

[33] Masayuki Asakawa and Chiho Nonaka. Critical end point and its consequences.
Nucl.Phys., A774:753–756, 2006. doi: 10.1016/j.nuclphysa.2006.06.130.

[34] B.B. Back et al. The PHOBOS detector at RHIC. Nucl.Instrum.Meth., A499:
603–623, 2003. doi: 10.1016/S0168-9002(02)01959-9.

[35] B.B. Back et al. Transverse momentum and rapidity dependence of HBT correla-
tions in Au + Au collisions at √sNN = 62.4-GeV and 200-GeV. Phys.Rev., C73:
031901, 2006. doi: 10.1103/PhysRevC.73.031901.

[36] A Barducci, R Casalbuoni, S De Curtis, Raoul Gatto, and Giulio Pettini. Chiral-
symmetry breaking in qcd at finite temperature and density. Physics Letters B,
231(4):463–470, 1989.

[37] Gordon Baym and Peter Braun-Munzinger. Physics of Coulomb corrections
in Hanbury-Brown-Twiss interferometry in ultrarelativistic heavy ion collisions.
Nucl.Phys., A610:286C–296C, 1996. doi: 10.1016/S0375-9474(96)00363-6.

[38] I.G. Bearden, H. Boggild, J. Boissevain, J. Dodd, B. Erazmus, et al. High-energy
Pb + Pb collisions viewed by pion interferometry. Phys.Rev., C58:1656–1665, 1998.
doi: 10.1103/PhysRevC.58.1656.

[39] Boris Berdnikov and Krishna Rajagopal. Slowing out-of-equilibrium near the QCD
critical point. Phys.Rev., D61:105017, 2000. doi: 10.1103/PhysRevD.61.105017.

[40] Jürgen Berges and Krishna Rajagopal. Color superconductivity and chiral sym-
metry restoration at non-zero baryon density and temperature. Nuclear Physics
B, 538(1–2):215 – 232, 1999. ISSN 0550-3213. doi: http://dx.doi.org/10.
1016/S0550-3213(98)00620-8. URL http://www.sciencedirect.com/science/
article/pii/S0550321398006208.

[41] R.S. Bhalerao, Jean-Paul Blaizot, Nicolas Borghini, and Jean-Yves Ollitrault. El-
liptic flow and incomplete equilibration at RHIC. Phys.Lett., B627:49–54, 2005.
doi: 10.1016/j.physletb.2005.08.131.

[42] J. D. Bjorken. Highly relativistic nucleus-nucleus collisions: The central rapidity
region. Phys. Rev. D, 27:140–151, Jan 1983. doi: 10.1103/PhysRevD.27.140. URL
http://link.aps.org/doi/10.1103/PhysRevD.27.140.

98

http://link.aps.org/doi/10.1103/PhysRevLett.101.122302
http://link.aps.org/doi/10.1103/PhysRevLett.101.122302
http://www.sciencedirect.com/science/article/pii/S0550321398006208
http://www.sciencedirect.com/science/article/pii/S0550321398006208
http://link.aps.org/doi/10.1103/PhysRevD.27.140


[43] H. Boggild et al. Two proton correlations near mid-rapidity in p + Pb and S +
Pb collisions at the CERN SPS. Phys.Lett., B458:181–189, 1999. doi: 10.1016/
S0370-2693(99)00614-0.

[44] M.G. Bowler. Extended Sources, Final State Interactions and Bose-Einstein Cor-
relations. Z.Phys., C39:81, 1988. doi: 10.1007/BF01560395.

[45] Piotr Bozek, Wojciech Broniowski, and Giorgio Torrieri. Mass hierarchy in identified
particle distributions in proton-lead collisions. Phys.Rev.Lett., 111:172303, 2013.
doi: 10.1103/PhysRevLett.111.172303.

[46] Frank R. Brown, Frank P. Butler, Hong Chen, Norman H. Christ, Zhihua Dong,
Wendy Schaffer, Leo I. Unger, and Alessandro Vaccarino. On the existence of a
phase transition for QCD with three light quarks. Phys. Rev. Lett., 65:2491–2494,
Nov 1990. doi: 10.1103/PhysRevLett.65.2491. URL http://link.aps.org/doi/
10.1103/PhysRevLett.65.2491.

[47] N. Cabibbo and G. Parisi. Exponential hadronic spectrum and quark liberation.
Physics Letters B, 59(1):67 – 69, 1975. ISSN 0370-2693. doi: http://dx.doi.org/
10.1016/0370-2693(75)90158-6. URL http://www.sciencedirect.com/science/
article/pii/0370269375901586.

[48] Z. Chajecki. Pion interferemetry from p + p to Au + Au in STAR. 2005.

[49] Scott Chapman and Ulrich W. Heinz. HBT correlators: Current formalism ver-
sus Wigner function formulation. Phys.Lett., B340:250–253, 1994. doi: 10.1016/
0370-2693(94)01277-6.

[50] Scott Chapman, J. Rayford Nix, and UlrichW. Heinz. Extracting source parameters
from Gaussian fits to two particle correlations. Phys.Rev., C52:2694–2703, 1995.
doi: 10.1103/PhysRevC.52.2694.

[51] Scott Chapman, Pierre Scotto, and Ulrich W. Heinz. A New cross term in the
two particle HBT correlation function. Phys.Rev.Lett., 74:4400–4403, 1995. doi:
10.1103/PhysRevLett.74.4400.

[52] Serguei Chatrchyan et al. Observation of long-range near-side angular correlations
in proton-lead collisions at the LHC. Phys.Lett., B718:795–814, 2013. doi: 10.1016/
j.physletb.2012.11.025.

[53] A.K. Chaudhuri. Centrality dependence of elliptic flow and QGP viscosity. J.Phys.,
G37:075011, 2010. doi: 10.1088/0954-3899/37/7/075011.

[54] J. C. Collins and M. J. Perry. Superdense matter: Neutrons or asymptotically free
quarks? Phys. Rev. Lett., 34:1353–1356, May 1975. doi: 10.1103/PhysRevLett.34.
1353. URL http://link.aps.org/doi/10.1103/PhysRevLett.34.1353.

[55] Laszlo P. Csernai, Joseph.I. Kapusta, and Larry D. McLerran. On the Strongly-
Interacting Low-Viscosity Matter Created in Relativistic Nuclear Collisions.
Phys.Rev.Lett., 97:152303, 2006. doi: 10.1103/PhysRevLett.97.152303.

99

http://link.aps.org/doi/10.1103/PhysRevLett.65.2491
http://link.aps.org/doi/10.1103/PhysRevLett.65.2491
http://www.sciencedirect.com/science/article/pii/0370269375901586
http://www.sciencedirect.com/science/article/pii/0370269375901586
http://link.aps.org/doi/10.1103/PhysRevLett.34.1353


[56] T. Csorgo, B. Lorstad, J. Schmid-Sorensen, and Andras Ster. Partial coherence
in the core/halo picture of Bose-Einstein n-particle correlations. Eur.Phys.J., C9:
275–281, 1999. doi: 10.1007/s100529900024.

[57] A. Drees, L. Ahrens, J. Alessi, M. Bai, D. Barton, et al. Summary of the RHIC
performance during the FY07 heavy ion run. Conf.Proc., C070625:722, 2007.

[58] Kevin Dusling and Raju Venugopalan. Azimuthal collimation of long range rapidity
correlations by strong color fields in high multiplicity hadron-hadron collisions.
Phys.Rev.Lett., 108:262001, 2012. doi: 10.1103/PhysRevLett.108.262001.

[59] Kevin Dusling and Raju Venugopalan. Comparison of the color glass condensate
to dihadron correlations in proton-proton and proton-nucleus collisions. Phys.Rev.,
D87(9):094034, 2013. doi: 10.1103/PhysRevD.87.094034.

[60] Akitomo Enokizono. Space-time evolution of hot and dense matter probed by Bose-
Einstein correlation in Au+ Au collisions at √sNN = 200 GeV. 2004.

[61] C.J. Gardner, N.P. Abreu, L. Ahrens, J.G. Alessi, M. Bai, et al. Setup and Perfor-
mance of RHIC for the 2008 Run with Deuteron and Gold Collisions. Conf.Proc.,
C0806233:WEPP011, 2008.

[62] R.V. Gavai and Sourendu Gupta. QCD at finite chemical potential with six time
slices. Phys.Rev., D78:114503, 2008. doi: 10.1103/PhysRevD.78.114503.

[63] Gerson Goldhaber, Sulamith Goldhaber, Won-Yong Lee, and Abraham Pais. In-
fluence of Bose-Einstein statistics on the anti-proton proton annihilation process.
Phys.Rev., 120:300–312, 1960. doi: 10.1103/PhysRev.120.300.

[64] Rajan Gupta. Introduction to lattice QCD: Course. pages 83–219, 1997.

[65] M. Gyulassy, S.K. Kauffmann, and L.W. Wilson. Pion Interferometry of Nuclear
Collisions. 1. Theory. Phys.Rev., C20:2267–2292, 1979. doi: 10.1103/PhysRevC.
20.2267.

[66] Miklos Gyulassy and Larry McLerran. New forms of QCD matter discovered at
RHIC. Nucl.Phys., A750:30–63, 2005. doi: 10.1016/j.nuclphysa.2004.10.034.

[67] H. Hahn, E. Forsyth, H. Foelsche, M. Harrison, J. Kewisch, et al. The RHIC design
overview. Nucl.Instrum.Meth., A499:245–263, 2003. doi: 10.1016/S0168-9002(02)
01938-1.

[68] M. A. Halasz, A. D. Jackson, R. E. Shrock, M. A. Stephanov, and J. J. M.
Verbaarschot. Phase diagram of QCD. Phys. Rev. D, 58:096007, Sep 1998.
doi: 10.1103/PhysRevD.58.096007. URL http://link.aps.org/doi/10.1103/
PhysRevD.58.096007.

[69] R. Hanbury Brown and R.Q. Twiss. A Test of a new type of stellar interferometer
on Sirius. Nature, 178:1046–1048, 1956. doi: 10.1038/1781046a0.

[70] M. Harrison, T. Ludlam, and S. Ozaki. RHIC project overview. Nucl.Instrum.Meth.,
A499:235–244, 2003. doi: 10.1016/S0168-9002(02)01937-X.

100

http://link.aps.org/doi/10.1103/PhysRevD.58.096007
http://link.aps.org/doi/10.1103/PhysRevD.58.096007


[71] Ulrich W. Heinz. Hanbury-Brown/Twiss interferometry for relativistic heavy ion
collisions: Theoretical aspects. 1996.

[72] M. Herrmann and G.F. Bertsch. Source dimensions in ultrarelativistic heavy ion
collisions. Phys.Rev., C51:328–338, 1995. doi: 10.1103/PhysRevC.51.328.

[73] Norbert Herrmann, Johannes P. Wessels, and Thomas Wienold. Collective flow
in heavy-ion collisions. Annual Review of Nuclear and Particle Science, 49(1):
581–632, 1999. doi: 10.1146/annurev.nucl.49.1.581. URL http://dx.doi.org/10.
1146/annurev.nucl.49.1.581.

[74] L. Hulthén and M. Sugawara. Handbuch der Physik, volume 39. Springer-Verlag,
1957.

[75] C.M. Hung and Edward V. Shuryak. Hydrodynamics near the QCD phase tran-
sition: Looking for the longest lived fireball. Phys.Rev.Lett., 75:4003–4006, 1995.
doi: 10.1103/PhysRevLett.75.4003.

[76] Vardan Khachatryan et al. Observation of Long-Range Near-Side Angular Cor-
relations in Proton-Proton Collisions at the LHC. JHEP, 1009:091, 2010. doi:
10.1007/JHEP09(2010)091.

[77] Adam Kisiel. Overview of the femtoscopy studies in Pb Pb and p p collisions at
the LHC by the ALICE experiment. PoS, WPCF2011:003, 2011.

[78] Peter F. Kolb, Josef Sollfrank, and Ulrich W. Heinz. Anisotropic transverse flow
and the quark hadron phase transition. Phys.Rev., C62:054909, 2000. doi: 10.1103/
PhysRevC.62.054909.

[79] Lokesh Kumar. Systematics of kinetic freeze-out properties in high energy collisions
from STAR. Nuclear Physics A, (0):–, 2014. ISSN 0375-9474. doi: http://dx.
doi.org/10.1016/j.nuclphysa.2014.08.085. URL http://www.sciencedirect.com/
science/article/pii/S0375947414003455.

[80] Roy Lacey. PHENIX Measurements of Higher-order Flow Harmonics in Au+Au
collisions at √sNN = 200 GeV. J.Phys., G38:124048, 2011.

[81] Roy A. Lacey, N.N. Ajitanand, J.M. Alexander, P. Chung, J. Jia, et al. An Estimate
for the location of QCD critical end point. 2007.

[82] Roy A. Lacey, Rui Wei, N.N. Ajitanand, and A. Taranenko. Initial eccentricity
fluctuations and their relation to higher-order flow harmonics. Phys.Rev., C83:
044902, 2011. doi: 10.1103/PhysRevC.83.044902.

[83] Roy A. Lacey, Yi Gu, X. Gong, D. Reynolds, N.N. Ajitanand, et al. Is anisotropic
flow really acoustic? 2013.

[84] Roy A. Lacey, D. Reynolds, A. Taranenko, N.N. Ajitanand, J.M. Alexander, et al.
Acoustic scaling of anisotropic flow in shape-engineered events: implications for
extraction of the specific shear viscosity of the quark gluon plasma. 2013.

101

http://dx.doi.org/10.1146/annurev.nucl.49.1.581
http://dx.doi.org/10.1146/annurev.nucl.49.1.581
http://www.sciencedirect.com/science/article/pii/S0375947414003455
http://www.sciencedirect.com/science/article/pii/S0375947414003455


[85] Michael Annan Lisa, Scott Pratt, Ron Soltz, and Urs Wiedemann. Femtoscopy
in relativistic heavy ion collisions. Ann.Rev.Nucl.Part.Sci., 55:357–402, 2005. doi:
10.1146/annurev.nucl.55.090704.151533.

[86] Brian Love. The Design, Implementation and Performance of the PHENIX Time-
of-Flight West Detector.

[87] Gines Martinez. Advances in Quark Gluon Plasma. 2013.

[88] H. Masui. Anisotropic flow in √sNN = 200 GeV Cu+Cu and Au+Au collisions at
PHENIX. Nucl.Phys., A774:511–514, 2006.

[89] J.T. Mitchell et al. Event reconstruction in the PHENIX central arm spectrometers.
Nucl.Instrum.Meth., A482:491–512, 2002. doi: 10.1016/S0168-9002(01)01512-1.

[90] T. Mizoguchi and M. Biyajima. An Improved formulation for three charged par-
ticles correlations in terms of Coulomb wave functions with degree of coherence.
Phys.Lett., B499:245–252, 2001. doi: 10.1016/S0370-2693(01)00048-X.

[91] Christoph Montag and Alexei Fedotov. RHIC Low Energy Acceleration. PoS,
CPOD2013:044, 2013.

[92] F. Pilat et al. Operations and Performance of RHIC as a Cu-Cu Collider. In
Particle Accelerator, IEEE Conference, 2005. doi: 10.1109/PAC.2005.1591791.

[93] S. Pratt. Pion Interferometry for Exploding Sources. Phys.Rev.Lett., 53:1219–1221,
1984. doi: 10.1103/PhysRevLett.53.1219.

[94] S. Pratt. Coherence and Coulomb Effects on Pion Interferometry. Phys.Rev., D33:
72–79, 1986. doi: 10.1103/PhysRevD.33.72.

[95] M.L. Purschke, S.C. Adler, E. Desmond, L. Ewell, J. Haggerty, et al. The PHENIX
online computing system. IEEE Trans.Nucl.Sci., 47:51–55, 2000. doi: 10.1109/23.
846116.

[96] Fabrice Retiere and Michael Annan Lisa. Observable implications of geometrical
and dynamical aspects of freeze out in heavy ion collisions. Phys.Rev., C70:044907,
2004. doi: 10.1103/PhysRevC.70.044907.

[97] Dirk H. Rischke and Miklos Gyulassy. The Time delay signature of quark - gluon
plasma formation in relativistic nuclear collisions. Nucl.Phys., A608:479–512, 1996.
doi: 10.1016/0375-9474(96)00259-X.

[98] Dirk H. Rischke, Yaris Pursun, Joachim A. Maruhn, Horst Stoecker, and Walter
Greiner. The Phase transition to the quark - gluon plasma and its effects on
hydrodynamic flow. Heavy Ion Phys., 1:309–322, 1995.

[99] Paul Romatschke and Ulrike Romatschke. Viscosity information from relativistic
nuclear collisions: How perfect is the fluid observed at RHIC? Phys. Rev. Lett., 99:
172301, Oct 2007. doi: 10.1103/PhysRevLett.99.172301. URL http://link.aps.
org/doi/10.1103/PhysRevLett.99.172301.

102

http://link.aps.org/doi/10.1103/PhysRevLett.99.172301
http://link.aps.org/doi/10.1103/PhysRevLett.99.172301


[100] C.A. Salgado, J. Alvarez-Muniz, F. Arleo, N. Armesto, M. Botje, et al. Proton-
Nucleus Collisions at the LHC: Scientific Opportunities and Requirements. J.Phys.,
G39:015010, 2012. doi: 10.1088/0954-3899/39/1/015010.

[101] Christian Schmidt. QCD thermodynamics at zero and non-zero density. Nucl.Phys.,
A820:41C–48C, 2009. doi: 10.1016/j.nuclphysa.2009.01.017.

[102] Edward Shuryak and Ismail Zahed. High-multiplicity pp and pA collisions: Hydro-
dynamics at its edge. Phys.Rev., C88(4):044915, 2013. doi: 10.1103/PhysRevC.88.
044915.

[103] Yu.M. Sinyukov, R. Lednicky, J. Pluta, B. Erazmus, and S.V. Akkelin. Coulomb
corrections for interferometry analysis of expanding hadron systems. 1997.

[104] M.A. Stephanov. QCD phase diagram: An Overview. PoS, LAT2006:024, 2006.

[105] M.A. Stephanov. Non-Gaussian fluctuations near the QCD critical point.
Phys.Rev.Lett., 102:032301, 2009. doi: 10.1103/PhysRevLett.102.032301.

[106] Mikhail A. Stephanov. QCD phase diagram and the critical point.
Prog.Theor.Phys.Suppl., 153:139–156, 2004. doi: 10.1142/S0217751X05027965.

[107] Misha A. Stephanov, K. Rajagopal, and Edward V. Shuryak. Event-by-event fluc-
tuations in heavy ion collisions and the QCD critical point. Phys.Rev., D60:114028,
1999. doi: 10.1103/PhysRevD.60.114028.

[108] Boris Tomasik. Blast wave snapshots from RHIC. 2003.

[109] Urs Achim Wiedemann, Pierre Scotto, and Ulrich W. Heinz. Transverse momentum
dependence of Hanbury-Brown-Twiss correlation radii. Phys.Rev., C53:918–931,
1996. doi: 10.1103/PhysRevC.53.918.

[110] Frank Wilczek. Asymptotic freedom: From paradox to paradigm.
Proc.Nat.Acad.Sci., 102:8403–8413, 2005. doi: 10.1103/RevModPhys.77.857.

[111] Li Yi. Azimuthal anisotropy measurements by STAR. Nuclear Physics A, 926(0):
198 – 204, 2014.

103



A. Correlation functions
These are the projected 3-D correlation functions used in extracting the HBT parameters
discussed in this thesis. The fit lines are from the Sinyukov function.
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Figure A.1.: Au+ Au
√
sNN = 39 GeV correlation functions: qout

A.2. Au + Au
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sNN = 62 GeV correlation functions

A.3. Au + Au
√
sNN = 200 GeV correlation functions

A.4. Cu + Cu
√
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A.5. d + Au
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sNN = 200 GeV correlation functions
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Figure A.2.: Au+ Au
√
sNN = 39 GeV correlation functions: qside
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Figure A.3.: Au+ Au
√
sNN = 39 GeV correlation functions: qlong
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Figure A.4.: Au+ Au
√
sNN = 62 GeV correlation functions: qout
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Figure A.5.: Au+ Au
√
sNN = 62 GeV correlation functions: qside
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Figure A.6.: Au+ Au
√
sNN = 62 GeV correlation functions: qlong
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Figure A.7.: Au+ Au
√
sNN = 200 GeV correlation functions: qout
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Figure A.8.: Au+ Au
√
sNN = 200 GeV correlation functions: qside
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Figure A.9.: Au+ Au
√
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Figure A.11.: Cu+ Cu
√
sNN = 200 GeV correlation functions: qside
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Figure A.12.: Cu+ Cu
√
sNN = 200 GeV correlation functions: qlong
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Figure A.13.: d + Au
√
sNN = 200 GeV correlation functions: 0–10% and 10–20% cen-

trality.
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Figure A.14.: d + Au
√
sNN = 200 GeV correlation functions: 20–30% and 30–60% cen-

trality.
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