

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

i

Exploration of statistical learning strategies and their applications

on medical image data for computer-aided diagnosis

A Dissertation Presented

by

Yifan Hu

to

The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

Jan 2017

ii

Stony Brook University
The Graduate School

 Yifan Hu

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Wei Zhu, PhD – Dissertation Advisor

Professor of Applied Mathematics and Statistics

Song Wu, PhD - Chairperson of Defense

Associate Professor of Applied Mathematics and Statistics

Yi Gao, PhD - Committee Member

Assistant Professor of Biomedical Informatics

Keli Xiao, PhD - Committee Member

Assistant Professor of Finance

This dissertation is accepted by the Graduate School

Charles Taber

Dean of the Graduate School

iii

Abstract of the Dissertation

Exploration of statistical learning strategies and their applications

on medical image data for computer-aided diagnosis

by

Yifan Hu

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2017

Machine learning addresses the question of how computer make decisions and predictions

automatically through existing experiences and data, which has become an increasingly

important topic with the advent of modern data science and automated big data analysis. Several

algorithms are widely used in machine learning. However, each classifier, inevitably, has certain

inadequacy for which we hope to compensate. To address these issues, this study first introduces

the necessary theoretical background and principles for machine learning and those typical

classifiers. Based on these classifiers, this paper attempts to (1) use bagging/boosting to improve

the simple classifier, and, (2) find some combination strategies to make use of the advantage of

each classifier. The second part of this paper is to verify the robustness of these innovative ideas

via multiple datasets. First, several common datasets are analyzed with the results compared

between our new algorithm and those typical classifiers. Overall, we can obtain some gains in

terms of the AUC value in virtually every dataset with the new algorithm and significant gains in

most dataset. Secondly, we apply these algorithms to a real-life image data classification

problem. The pipeline of this project includes 3D texture feature amplification, feature

extraction via KL-transform, feature selection and classification. Finally, we gladly report that

significant improvements have been achieved through both the new feature selection method and

the new classification algorithm.

iv

To my family

v

Contents
List of Figures .. vi
List of Tables ... viii
List of Acronyms ... ix
Acknowledgements ... x
Chapter 1. Backgrounds and typical classification algorithms .. 1

1.1 Classification and classifier .. 1
1.2 Related topics of classification: overfitting and underfitting 2
1.3 Related topics of classification: cost function, regularization and parameter

estimation ... ……….……………………………………………………………………4

1.4 Related topics of classification: bias-variance tradeoff 5

Chapter 2. Brief introduction to some typical classifiers and their ideas 6

2.1 Support vector machine (SVM) .. 8

A Linear classifier in separable case... 8
B Model complexity and Kernel function .. 10

C Non-separable cases and regularization——soft margin classification ... 12

2.2 Decision tree and random forest ... 13

A Classification and regression tree (CART) ... 13
B Random forest ... 18

2.3 K nearest neighbor (KNN) .. 19

Chapter 3. Introduction to evaluation method: ROC curve .. 21
3.1 Confusion matrix .. 21

3.2 ROC curve and AUC value ... 22
Chapter 4. Innovative ideas and new classification models .. 25

4.1 An improvement of KNN: location index .. 25
4.2 Introduction to classifier combination .. 28

4.3 An embedded strategy: RF embedded location index 29

4.4 An ensemble exploration: LI forest .. 31
4.5 Mixture classifier with classifiers selection based on AUC value 32

Chapter 5. Application I: Experiments and discussion on some open-source data 36
5.1 Database and experiment design for experimental studies 36

5.2 Results of experiments on LI classifier and the mixture classifier 37
5.3 Results of experiments on RF embedded location index 39
5.4 Results of experiments on LI forest .. 41

Chapter 6. Application II: Diagnosis of Colon Cancer ... 43

6.1 Introduction ... 43

6.2 Methods... 45

6.3 Experimental Design and Results ... 53
6.4 Discussion and Future Work ... 62

6.5 Conclusion .. 63

Selected publications .. 64
Bibliography ... 65

vi

List of Figures

Figure 1.1. Illustration of overfitting and underfitting of a regression example

Figure 1.2. The gap between training and test error as the complexity of the model change.

Figure 1.3. The illustration of bias-variance tradeoff when the model complexity changed.

Figure 2.1. (a) data can be separated by many hyperplanes (b) the optimal hyperplane provided

by SVM

Figure 2.2. A simple 1D case that we cannot find a threshold to classify the data into 2 classes.

Figure 2.3. A separable case by mapping the 1D data into 2D space.

Figure 2.4. Illustration of slack variables and the support vectors.

Figure 2.5. A simple data set of 11 observations with 2 features.

Figure 2.6. The Geometric demonstration of a CART.

Figure 2.7. Illustration of an example of overfitting in the construction of CART.

Figure 2.8. Illustration of the overfitting problem when the size of CART becomes large.

Figure 2.9. An comparison of the boundary between single CART and Random Forest.

Figure 2.10. An illustration of how KNN works.

Figure 2.11. The impact of different K in KNN algorithm.

Figure 3.1. The construction of the ROC curve.

Figure 3.2. A comparison of two ROC curves from two models under the same coordinates.

Figure 4.1. Intuitively, the two sets of test points in (a) and (b) should belongs to different

classes (red in (a) and blue in (b)). However, they will be classified to red under kNN scheme

when k=5.

Figure 4.2. The red points are three test points, the green points (label=1) and the blue points

(label=0) are training points.

Figure 4.3. The diagram structure about the classifier combination.

Figure 4.4. Different types of points in a dataset.

Figure 4.5. The flowchart and structure about the LI forest classifier.

Figure 4.6. The flowchart of the mixture classifier with classifier selection.

Figure 5.1. How data are separated and the experimental design.

Figure 6.1. An illustration of five typical polyps, which were randomly selected from the

database in this work. (H) – hyperplastic and (A) – adenomatous.

Figure 6.2. Illustration of the 2D Haralick method for extraction of texture features with image

pixel size unit of d = 1 and four directions in an image slice.

Figure 6.3. The 3D resolution cells or image voxels for one center voxel in 13 directions. The

direction Ai (i=1, 2, …, 13) is equivalent to (x, y, z), which is a direction in the 3D coordinates.

The center point is A0 = (1.5, 1.5, 1.5) and the 13 arrows beginning from this point is

represented as A0+k* Ai, where k does not equals to 0.

Figure 6.4. An illustration of two different polyp types (of H and A) and their corresponding

endoscopic views and image slices, where the image slices are crossing the lines in the

endoscopic views, respectively. The sizes of the two polyps are around 10mm. The three slices

from left to right are intensity, gradient and curvature images.

vii

Figure 6.5. Steps for semi-automatic extraction of VOI: (a): A report of polyp detected by a

radiologist or a CADe algorithm (indicated by an arrow). (b): An endoscopic view of the polyp

illustrated using the CTC software (V3D Colon, Viatronix Inc., Stony Brook, NY, USA). (c): A

manual outline of the polyp on a 2D image slice (green circle), where the air voxels (red part

within the outlines circle) is removed by our automatic air-cleaning algorithm.

Figure 6.6. Plots of AUC values vs. selected number of features, which were ordered by the RF-

embedded feature selection.

Figure 6.7. The averaged ROC curves of the results from the three methods corresponding to

their highest AUC values.

viii

List of Tables

Table 3.1. The definition of TP, FP, TN and FN in confusion matrix.

Table 5.1. Databases for experiments of testing the classification algorithms.

Table 5.2(a). Averaged AUC information of LI, RF, SVM and mixture classifier algorithms for

imbalanced data.

Table 5.2(b). Averaged AUC information of LI, RF, SVM and mixture classifier algorithms for

balanced data.

Table 5.3. Wilcoxon signed-rank test between mixture classifier and its 3 components. (Yes: the

result of mixture classifier is significantly larger (P-value<0.1). No: the result of mixture

classifier is not significantly larger.)

Table 5.4(a). Averaged AUC information of 100 runs under LI, RF and LIRF algorithm for

imbalanced data.

Table 5.4(b). Averaged AUC information of 100 runs under LI, RF and LIRF algorithm for

balanced data.

Table 5.5. Wilcoxon signed-rank test between LIRF classifier and its 2 components. (Yes: the

result of LIRF is significantly larger (P-value<0.1). No: the result of LIRF is not significantly

larger.)

Table 5.6(a). Averaged AUC information of 100 runs under LI and LI forest algorithm for

imbalanced data.

Table 5.6(b). Averaged AUC information of 100 runs under LI and LI forest algorithm for

balanced data.

Table 5.7. Wilcoxon signed-rank test between LI and LI forest classifier. (Yes: the result of LI

forest is significantly larger (P-value<0.1). No: the result of LI forest is not significantly larger.)

Table 6.1. Averaged AUC information of the 100 runs before and after KL-transform.

Table 6.2. Wilcoxon signed-rank test between the AUC of the post-KL features and the

corresponding pre-KL and Haralick features.

Table 6.3. Sensitivity-specificity pairs corresponding to the averaged ROC curves of the three

methods in Fig. 7.

Table 6.4. Averaged AUC information of the 100 runs before and after KL-transform.

Table 6.5. Highest averaged AUC information of the 100 runs.

ix

List of Acronyms

1D one-dimensional

2D two-dimensional

3D three-dimensional

AUC area under the curve

C4.5 a software extension

CADe computer-aided detection

CADx computer-aided diagnosis

CART classification and regression tree

CHAID Chi-square automatic interaction detector

CM co-occurrence matrix

CRC colorectal carcinoma

CTC computed tomography colonography

FN false negative

FP false positive

FPR false positive rate

ID3 iterative dichotomiser 3

KKT condition Karush–Kuhn–Tucker conditions

KL-transform Karhunen-Loeve Transform

KNN K nearest neighbor

LDA linear discriminant analysis

LI location index

LIRF location index embedded random forest

MARS multivariate adaptive regression splines

OC optical colonoscopy

OOB error out-of-bag error

RBF radial basis function

ROC receiver operating characteristic

SVM support vector machine

TN true negative

TP true positive

TPR true positive rate

VOI volume of interest

wKNN weighted K nearest neighbor

x

Acknowledgements

First of all, I would like to thank my dissertation adviser, Prof. Wei Zhu, for his patient

guidance, brilliant ideas, and financial support during my PhD study. Indeed, this dissertation

would never have been completed without her enthusiasm, dedication and support. I would also

like to thank my dissertation committee – Prof. Song Wu, Prof. Yi Gao, and Prof. Keli Xiao for

their precious time and valuable suggestions.

I would also like to thank current and previous members of the Laboratory for Imaging

Research and Informatics (IRIS lab), especially for Prof. Jerome Liang and his software

packages on computer-aided diagnosis; Dr. Bowen Song, Dr. Yan Liu, Dr. Hao Zhang, Dr. Hao

Han and Dr. Lihong Li, for their helpful discussions on my research work; Priya Bhattacharji for

her assistance on clinical data management. Finally, I would like to thank my parents, other

family members and friends, for their love, encouragement and support in my life.

This work was supported in part by the NIH/NCI under grant #CA143111 and #CA082402.

1

Chapter 1 . Backgrounds and typical classification algorithms

 Evolved from the study of pattern recognition and computational learning theory in artificial

intelligence, machine learning (T. Mitchell 1997, C. Bishop 2006, I. Goodfellow et al. 2016) is

defined as a “field of study that gives computers the ability to learn without being explicitly

programmed”. The main task of machine learning is to develop the algorithms that can learn

from and make predictions on data. In order to make data-driven predictions or decisions

expressed as outputs, machine learning algorithms will build a model from a sample of input

observations generally referred to as the training set.

 Based on the nature of the learning “signal” or “feedback” available to a learning system, we

can typically divide the machine learning problem into two main categories: supervised learning

and unsupervised learning. The most fundamental difference between these two categories is

that the supervised learning is to infer a function that maps features to labels given labeled data

while the unsupervised learning is to infer a function to describe hidden structure from unlabeled

data. In this thesis, we will focus on the research of the classification problem, which is

supervised learning problem.

1.1 Classification and classifier

 Based on a set of labeled training examples, the classification problem aims to classify new

observations into a given set of categories (labels). An observation/data includes two parts: a

label/category in ℝ1 and a feature vector in ℝ𝑛. The algorithm, which can map the input feature

vector into the output categories of new observations, is considered as “classifier”. The classifier

could be a mathematical function, or some sophisticated data structure, like the decision tree.

Mostly, we can just consider the model (classifier) as 𝑓: ℝn ↦ {1, … , k} and sometimes the

output can also be a distribution over the classes. When k=2, we call the problem binary

classification and when k>2, we call the problem multiclass classification. My research mainly

focuses on the binary classification.

 In many applications, the classification algorithms often achieve a much more accurate result

than human rules and experiences because people are incapable of grasping complicated

relationships and explaining what they know while the classification models can easily do so.

Thus, classification algorithms have become increasingly popular in many fields such as:

2

 Medical image analysis (e.g., pathology diagnosis of the cancer)

 Text categorization (e.g., spam filtering)

 Computer vision (e.g., face detection)

 Natural-language processing (e.g., spoken language understanding)

 Bioinformatics (e.g., classify proteins according to their function)

 Market segmentation (e.g., predict if customer will respond to promotion)

 We can see from the applications above that the classification algorithms help us make a

prediction or decision about the new cases/observations/test data. Therefore, the primary goal of

a classification algorithm is to achieve a higher and more accurate prediction results on test data.

In the beginning, the measures precision and recall are popular metrics used to evaluate the

quality of a classification algorithm. But more recently, Receiver operating characteristics (ROC)

curves have been widely used to evaluate the tradeoff between true positives (TP) and false

positives (FP) rates of classification algorithms. In this thesis, we only consider the ROC curves

and the Area Under the Curve (AUC) values as the evaluation measures, which will be briefly

introduced in the next chapter.

 Another interesting property of machine learning is the so called “no free lunch” theorem (D.

Wolpert 1997). This theorem states that there is no one machine learning model that performs

best for every problem. Therefore, for each particular data set or problem, we should try multiple

models and choose the one works best on it. Furthermore, it is also important to consider the

trade-offs between speed, complexity and accuracy of different models and find a proper one for

your data set. I list many classical and widely used classification algorithms in the following:

Linear classifiers

o Logistic regression

o LDA

o Naïve Bayes classifier

 SVM

 KNN

 Decision trees

o Random forest

 Neural networks

o Deep learning

 Details for these algorithms will be illustrated in Chapter 2.

1.2 Related topics of classification: overfitting and under fitting

 The key idea in machine learning and classification is that the model we fit by the training set

must perform well on the test set, which should not contribute in building the model. Therefore,

this model should have the ability of “generalization”. That is to say, in a good machine learning

3

and classification model, we not only want to make the training error small, but also hope the

performance on the test set can be similar to that of the training set. That is, the gap between the

training error and the test error is small. Large training and/or test error would lead to

“underfitting” and “overfitting”. Underfitting means that your fitted model is not so good that

results in a high training error. Overfitting means that although you fit your training set very well,

the gap between the training and test errors is too large. Below is an example for underfitting and

overfitting in Figure 1.1.

Figure 1.1. Illustration of overfitting and underfitting of a regression example

 In this regression example we can see that both the fit by 2-degree and 10-degree function for

the training set (9 points) have small training errors, however, the test error for the fit by 10-

degree function is huge, where the overfitting happens. Generally, when it comes to the relation

between model complexity and errors, the training and test errors behave differently as shown in

Figure 1.2:

Figure 1.2. The gap between training and test errors as the complexity of the model changes.

4

 Therefore, how to choose a model with proper complexity becomes an important topic in

machine learning and classification algorithm. One popular method in classification algorithm is

known as regularization, which will be discussed in the next section.

1.3 Related topics of classification: cost function, regularization and parameter estimation

 Before we talk about the idea of regularization, it is proper to firstly introduce the concept of

cost function in machine learning and classification algorithms. Cost function, sometimes also

called loss function, is to evaluate the difference between your prediction and the truth. Thus, we

will always encounter an optimization problem that seeks to minimize a cost function. In the

fitting example of Figure 1, we can express the cost function as J = ∑ (𝑓(𝑥𝑖) − 𝑦𝑖)29
𝑖=1 . Then

when we fit the model by a polynomial function with degree 1, 2 and 9, respectively, the

parameters for the polynomial function will be easy to calculate by setting the partial derivatives

of J with respect to these parameters to be 0. After developing the models, we can calculate the

training and testing errors for each model and find that the overfitting occurs when we fit the

model with 9-degree polynomial function. Actually, the Occam’s razor reveals that among

competing hypotheses, the one with the fewest assumptions should be selected. In the fitting

example, we notice that the quadratic fit and the 9-degree fit have the similar performance on the

training set. Thus, the Occam’s razor indicates that the quadratic model should be chosen as our

model. Naturally, we wonder if there is a strategy to help us avoid the overly complex model and

choose the simpler model automatically. The answer lies in the method of regularization.

 Simply, we can interpret the regularization as a way to penalize the complexity of our model.

For example, we set the penalized term called regularizer equals to 𝐶 ∗ 𝜔𝑇𝜔, where 𝜔 is the

parameter of the polynomial function and 𝐶 is a constant, and the cost function becomes

J(𝜔) = ∑ (𝑓(𝑥𝑖) − 𝑦𝑖)
29

𝑖=1 + 𝐶 ∗ 𝜔𝑇𝜔. This example only shows us the L-2 norm regularizer,

but there are also many other types of regularizers applied in different algorithms such as the L-1

norm and the L-inf norm regularizers. It is obvious that the larger the 𝐶 we choose to construct

the cost function, the simpler the model we hope to develop. Actually, the penalized cost

function does not help us to achieve the optimized (lowest) training error, however, the added

penalized term provides us a way to find a model with proper complexity that makes its

generalization error low and thus avoid the overfitting.

 For a given 𝐶, we can solve the optimization problem min J(𝜔) and figure out the parameter 𝜔.

So, it is important to decide how to figure out a proper 𝐶 because a higher 𝐶 might lead to an

underfitting model with higher training error while a lower 𝐶 will cause the overfitting problem.

Since this parameter 𝐶 helps us adjust the generalization error, cross-validation (S. Arlot 2010)

is a common and useful strategy to solve this problem. Since we have all the information of the

training set, cross-validation could help us estimate how accurately a predictive model will

perform and generalize to an independent dataset in the following strategies:

5

1. Leave-p-out cross-validation: divide the (original) training set into a validation set of p

observations and the rest as the (cross-validation) training set. Under this strategy, it

requires to learn and validate C(n,p) times, where n is the size of the (original) training

set. For each constructed model, you can evaluate the performance and eventually choose

the optimal model with lowest prediction error.

Special case: Leave-one-out cross-validation.

2. K-fold cross-validation: divide the (original) training set into k equal sized subsamples,

each time we consider 1 subsample as the validation set and k-1 subsamples as the (cross-

validation) training set. Under this strategy, then it takes k times to learn and validate and

find the optimal model.

 In short, since the most important goal for a good classification algorithm is the prediction

accuracy, we need some tools like regularization and cross-validation help us build a model with

good generalization property instead of only building a perfect model on the training set.

1.4 Related topics of classification: bias-variance tradeoff (S. Vijayakumar 2007)

 As we mentioned above, the true model between the observation and the label can be

interpreted as a functional and noisy relation: 𝒚 = 𝑓(𝒙) + 𝜺, where the noise 𝜺 has mean 0 and

variance 𝜎2. And our task is to fit a machine learning or classification model 𝑓(𝒙) as well as

possible. Thus, the mean squared error between the truth and the prediction needs be as small as

possible, that is to say, our target is a model that minimizes the following function: E[(𝒚 −

𝑓(𝒙))2].

 This function can be decomposed as follows:

E [(𝒚 − 𝑓(𝒙))
2

] = E[𝒚2] + E[𝑓(𝒙)2] − 2E[𝒚𝑓(𝒙)]

= (Var(𝒚) + (E[𝒚])2) + (Var (𝑓(𝒙)) + (E[𝑓(𝒙)])
2

) − 2E[𝒚𝑓(𝒙)]

≜ Var(𝒚) + Var (𝑓(𝒙)) + (𝑓(𝒙) − E[𝑓(𝒙)])
2

= E[(𝒚 − E[𝒚])2] + Var (𝑓(𝒙)) + (Bias (𝑓(𝒙)))
2

= E [(𝒚 − 𝑓(𝒙))
2

] + Var (𝑓(𝒙)) + (Bias (𝑓(𝒙)))
2

= E[𝜺2] + Var (𝑓(𝒙)) + (Bias (𝑓(𝒙)))
2

= Var(𝜺) + (𝐸[𝜺])2 + Var (𝑓(𝒙)) + (Bias (𝑓(𝒙)))
2

= 𝜎2 + Var (𝑓(𝒙)) + (Bias (𝑓(𝒙)))
2

Where 𝑓(𝒙) is deterministic so E[𝒚] = 𝑓(𝒙) and 𝒚 and 𝑓(𝒙) are independent, then ≜ is because

6

(E[𝒚])2 + (E[𝑓(𝒙)])
2

− 2E[𝒚𝑓(𝒙)] = (E[𝒚])2 + (E[𝑓(𝒙)])
2

− 2E[𝒚]E[𝑓(𝒙)]

= (E[𝒚] − E[𝑓(𝒙)])
2

= (𝑓(𝒙) − E[𝑓(𝒙)])
2

Thus, the structure of the mean squared error is the combination of bias of the model, variance of

the model and the irreducible error. Generally, a complex model might have low bias but high

variance on the data set while a simple model has high bias but low variance.

Figure 1.3. The illustration of bias-variance tradeoff when the model complexity changed.

 From this figure 1.3 above, it is clear that there is a tradeoff between Bias2 and variance since

we are required to achieve the lowest (Bias2 + variance).

 In this thesis, I will introduce one smart way to reduce the variance without increase the bias,

which is the bagging (Bootstrap Aggregation) method proposed by Leo Breiman (L. Breiman

1994) and applied it on his famous work——random forest.

 The idea of the bagging method is as follows:

 Suppose we fit a model 𝑓(𝒙) on training set and fit another n uncorrelated models:

𝑓1̂(𝒙), … , 𝑓𝑛̂(𝒙) such that 𝑓𝑖̂(𝒙) ≈ 𝑓(𝒙) , then we have Var (
∑ 𝑓𝑖̂(𝒙)𝑛

𝑖=1

𝑛
) =

1

𝑛2
∑ Var(𝑓𝑖̂(𝒙))𝑛

𝑖=1 ≈

1

𝑛
Var(𝑓(𝒙)).

 However, we only have one training set and need built multiple models from it. Breiman

provided us the solution that we can use the bootstrap sample to build a model each time. A

bootstrap sample of size k is approached by picking one sample from a data set with replacement

for k times. In this way, we can build 𝑓1̂(𝒙), … , 𝑓𝑛̂(𝒙) by n bootstrap models and take the average

of them to be the final model. Although the reduction factor of variance from Var(𝑓(𝒙)) will

7

definitely larger than
1

𝑛
 because these models are correlated, we can still get a lower variance

compare with the origin model 𝑓(𝒙).

8

Chapter 2 . Brief introduction to some typical classifiers and their

ideas

 In this section, I will introduce and analyze 3 kinds of classifiers with totally different

properties: SVM (V. Vapnik and A. Chervonenkis 1963), RF (L. Breiman 1994) and KNN(T.

Cover and P. Hart 1967).

2.1 SVM

A. Linear classifier in separable case

 For a binary classification problem, we are asked to learn a classifier such that

𝑓(𝒙𝑖) = {
≥ 0 𝑦𝑖 = +1
< 0 𝑦𝑖 = −1

 (2.1)

for a given training data (𝒙𝑖, 𝑦𝑖) with 𝒙𝑖 ∈ ℝ𝑑 and 𝑦𝑖 ∈ {−1,1}, and 𝑓(𝒙) = 0 is the hyperplane

that separates those two classes.

 Let us first consider the simplest case: linear separator trained on separable data (and the

general case is the nonlinear separator on non-separable data).

 In this case, we need to find a linear function 𝑓(𝒙) = 𝒘𝑻𝒙 + 𝑏 to separate the data into two

classes: 𝒚 = sign(𝒘𝑻𝒙 + 𝑏) which indicates that 𝒚 = +𝟏 𝒐𝒓 − 𝟏.

(a) (b)

Figure 2.1. (a) data can be separated by many hyperplanes (b) the optimal hyperplane provided

by SVM

9

 However, from figure 2.1(a), it is easy to see that there are many hyperplanes (in 2-D space,

the hyperplane is 1-D lines) that can classify those points correctly so we must decide an optimal

hyperplane among them.

 For a hyperplane 𝒘𝑻𝒙 + 𝑏 = 𝟎, the distance between a data point and the hyperplane is

𝑟 =
|𝒘𝑻𝒙𝒊+𝑏|

‖𝒘‖
. Thus, here we define the support vectors to be the data point that is closest to the

hyperplane (for example the circled points in figure 2.1(b)) and the margin 𝜌 is the sum of the

two distances (two classes) between the support vector to the hyperplane. So the basic idea of

SVM is to find a hyperplane that can maximize the margin.

 From Figure 2.1(b), suppose all data points satisfy:

{
𝒘𝑻𝒙𝒊 + 𝑏 ≤ −1, 𝑖𝑓 𝑦𝑖 = −1

𝒘𝑻𝒙𝒊 + 𝑏 ≥ 1, 𝑖𝑓 𝑦𝑖 = 1
 (2.2)

which is equivalent to 𝑦𝑖(𝒘𝑻𝒙𝒊 + 𝑏) − 1 ≥ 0 and all support vectors are located on 𝒘𝑻𝒙𝒊 + 𝑏 =

±1. (Note: It supposes to be 𝑦𝑖(𝒘𝑻𝒙𝒊 + 𝑏) −
ρ

2
≥ 0, but both sides of the inequality can be

divided by
ρ

2
 and make it to be 𝑦𝑖(𝒘𝑻𝒙𝒊 + 𝑏) − 1 ≥ 0).

 Then the margin equals to 2𝑟 = 2
|𝒘𝑻𝒙𝒊+𝑏|

‖𝒘‖
=

2

‖𝒘‖
 . Since we hope the margin to be as large as

possible, we can build the cost function and the optimization problem becomes:

 Find 𝒘, 𝑏 such that Ψ(𝒘) =
𝟏

𝟐
𝒘𝑻𝒘 is minimized, given 𝑦𝑖(𝒘𝑻𝒙𝒊 + 𝑏) − 1 ≥ 0 satisfies on all

points (𝒙𝑖, 𝑦𝑖).

 In order to solve this optimization problem, we use the generalized Lagrange multipliers:

ℒ(𝒘, 𝑏, 𝜶) =
𝟏

𝟐
𝒘𝑻𝒘 − ∑ 𝛼𝑖(𝑦𝑖(𝒘𝑻𝒙𝒊 + 𝑏) − 1)𝒏

𝒊=𝟏 (2.3)

and the problem becomes:

𝑝∗ = min𝒘Ψ(𝒘) = min𝒘,𝑏,𝜶ℒ(𝒘, 𝑏, 𝜶) = min𝒘,𝑏max𝜶𝒊≥0ℒ(𝒘, 𝑏, 𝜶) (2.4)

(notice (2.4), please see the reference (K. Bennett 2000, A. Ng’s lecture notes) for more details

and here is a corollary that only non-zero 𝛼𝑖 correspond to support vector 𝒙𝒊 , otherwise

min𝒘Ψ(𝒘) ≠ min𝒘,𝑏,𝜶ℒ(𝒘, 𝑏, 𝜶))

 Now we consider the dual problem of this problem:

𝑑∗ = max𝜶𝒊≥0min𝒘,𝑏ℒ(𝒘, 𝑏, 𝜶)

10

and we know that when all of the KKT condition (H. Kuhn and A. Tucker 1951) are satisfied, we

can have 𝑝∗ = 𝑑∗. Then let’s find the dual form of the problem:

{
∇𝒘ℒ(𝒘, 𝑏, 𝜶) = 𝒘 − ∑ 𝛼𝑖𝑦𝑖𝒙𝒊

𝒏
𝒊=𝟏 = 𝟎

∇𝑏ℒ(𝒘, 𝑏, 𝜶) = ∑ 𝛼𝑖𝑦𝑖
𝒏
𝒊=𝟏 = 0

 ⟹ {
𝒘 = ∑ 𝛼𝑖𝑦𝑖𝒙𝒊

𝒏
𝒊=𝟏

∑ 𝛼𝑖𝑦𝑖
𝒏
𝒊=𝟏 = 0

 (2.5)

 Plug this result back to (2.3), we get the dual problem:

 max𝜶ℒ(𝜶) = ∑ 𝛼𝑖𝑦𝑖
𝒏
𝒊=𝟏 −

1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝒊 ∙ 𝒙𝒋

𝒏
𝒊=𝟏 (2.6)

where 𝛼𝑖 ≥ 0, 𝑖 = 1, … , 𝑛 and ∑ 𝛼𝑖𝑦𝑖
𝒏
𝒊=𝟏 = 0

After we test the KKT condition, we can solve this dual problem as our result (with 𝛼𝑖 we can

get the 𝒘 by equation (2.5) and 𝑏 = 𝑦𝑖 − 𝒘𝑻𝒙𝒊 for any 𝛼𝑖 > 0).

B. Model complexity and Kernel function

 From equation (2.5), we notice that the solution of 𝛼𝑖 will depend on the features (𝒙𝒊) of each

data. In the example in last section, we have a lucky case that we achieve a hyperplane to

separate the 2D data. Unfortunately, in most problems it is so hard that we cannot find such a

hyperplane to separate the data perfectly.

 For example: try to find a hyperplane of the following 10 points:

Figure 2.2. A simple 1D case that we cannot find a threshold to classify the data into 2 classes.

 The reason why we fail to classify the 10 points is that we only have one feature and then we

can only build a very simple model based on it. In the regression example in Chapter 1, we can

get a higher accuracy with fitting a higher polynomial function (a more complex model).

Likewise, here we introduce the kernel function in SVM to enhance our model complexity.

 Let’s first consider an example correspond to Figure 2.2:

11

Figure 2.3. A separable case by mapping the 1D data into 2D space.

 In this example, we can easily find the hyperplane by mapping the 1D data into a higher

feature space with function 𝛷(𝑥) = (𝑥, 𝑥2). Therefore, we may want to learn from some features

𝛷(𝑥) instead of applying SVM on the original input features. To do so, we can simply replace 𝒙

in our previous algorithm with 𝜱(𝒙) and solve the following problem:

max𝜶ℒ(𝜶) = ∑ 𝛼𝑖𝑦𝑖
𝒏
𝒊=𝟏 −

1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝜱(𝒙𝒊) ∙ 𝜱(𝒙𝒋)𝒏

𝒊=𝟏 (2.7)

where 𝛼𝑖 ≥ 0, 𝑖 = 1, … , 𝑛 and ∑ 𝛼𝑖𝑦𝑖
𝒏
𝒊=𝟏 = 0

 Since in the dual problem we only consider the inner product 〈𝒙𝒊, 𝒙𝒋〉 and 〈𝜱(𝒙𝒊), 𝜱(𝒙𝒋)〉, we

can define the corresponding Kernel function (B. Boser et al. 1992) to be: 𝐾(𝒙𝒊, 𝒙𝒋) = 𝜱(𝒙𝒊) ∙

𝜱(𝒙𝒋)

 In practice, computing the high-dimensional 𝜱(𝒙) consume too many time and we usually

compute 𝐾(𝒙𝒊, 𝒙𝒋) directly instead, which takes only O(n) time. Thus, we hope to find a function

𝐾: ℝ𝑛 × ℝ𝑛⟶ℝ which can be written as 𝐾(𝒙𝒊, 𝒙𝒋) = 𝜱(𝒙𝒊) ∙ 𝜱(𝒙𝒋). Actually, if the function 𝐾

satisfy the Mercer’s condition (J. Mercer 1909), then 𝐾(𝒙𝒊, 𝒙𝒋) would be a valid kernel such that

𝐾(𝒙𝒊, 𝒙𝒋) = 𝜱(𝒙𝒊) ∙ 𝜱(𝒙𝒋).

 Here are some famous and widely used kernels in SVM as follows:

 Linear: 𝐾(𝒙𝒊, 𝒙𝒋) = 𝒙𝒊
𝑇𝒙𝒋 where 𝒙𝒊 ⟶ 𝜱(𝒙𝒊) and 𝜱(𝒙𝒊) is 𝒙𝒊 itself.

 Polynomial of power 𝑝: 𝐾(𝒙𝒊, 𝒙𝒋) = (1 + 𝒙𝒊
𝑇𝒙𝒋)𝑝, where 𝜱(𝒙𝒊) has (𝑛+𝑝

𝑝
) dimensions.

 Radial basis function (RBF, Gaussian): 𝐾(𝒙𝒊, 𝒙𝒋) = 𝑒−𝛾‖𝒙𝒊−𝒙𝒋‖
2

, where 𝜱(𝒙𝒊) has

infinite dimensions (due to the Taylor’s expansion of 𝐾(𝒙𝒊, 𝒙𝒋) has infinite terms)

 Other functions: sigmoid: 𝐾(𝒙𝒊, 𝒙𝒋) = tanh(𝜅𝒙𝒊
𝑇𝒙𝒋 − 𝛿), …

12

In this thesis, we will use the RBF kernel since the RBF kernel can map the data into infinite

dimension and choose a proper complexity by adjusting the parameters, which is able to adapt

different data sets.

C. Non-separable cases and regularization——soft margin classification (C. Cortes and V.

Vapnik 1995)

Since RBF kernel can map your data into an infinite feature space, you can train a very

complex and accurate model on your training data. However, we still need to consider about the

overfitting problem here.

For most data set, even after applying the kernel mapping, the constraints for all the data:

 {
𝒘𝑻𝒙𝒊 + 𝑏 ≤ −1, 𝑖𝑓 𝑦𝑖 = −1

𝒘𝑻𝒙𝒊 + 𝑏 ≥ 1, 𝑖𝑓 𝑦𝑖 = 1
 (2.8)

is still too strict, that is to say, we have to undertake the risk of overfitting if we try to develop a

perfect model. It will be sure that a set of “complex” data corresponds to a complex perfect

fitting model. Thus, we can relax the constraints by introducing slack variables 𝜉𝑖 ≥ 0, 𝑖 =

1, … , 𝑛, and the constraints become:

{
𝒘𝑻𝒙𝒊 + 𝑏 ≤ −1 + 𝜉𝑖, 𝑖𝑓 𝑦𝑖 = −1

𝒘𝑻𝒙𝒊 + 𝑏 ≥ 1 − 𝜉𝑖, 𝑖𝑓 𝑦𝑖 = 1
 (2.9)

Figure 2.4. Illustration of slack variables and the support vectors.

 And then the problem becomes:

Primal problem: Find 𝒘, 𝑏 such that Ψ(𝒘) =
𝟏

𝟐
𝒘𝑻𝒘 + 𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1 is minimized, given 𝑦𝑖(𝒘𝑻𝒙𝒊 +

𝑏) ≥ 1 − 𝜉𝑖 satisfies on all points (𝒙𝑖, 𝑦𝑖).

13

Dual problem: max𝜶ℒ(𝜶) = ∑ 𝛼𝑖𝑦𝑖
𝒏
𝒊=𝟏 −

1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝒊 ∙ 𝒙𝒋

𝒏
𝒊=𝟏 where 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, … , 𝑛

and ∑ 𝛼𝑖𝑦𝑖
𝒏
𝒊=𝟏 = 0

 Here 𝐶 is a parameter to be decided by user. A larger 𝐶 corresponds to a higher slack penalty

to the cost function, in this case, the model cannot bear a large 𝜉𝑖, however, oppositely, a small 𝐶

lead to a large 𝜉𝑖 and bring in many misclassified examples.

 In practice, for example, when using the RBF kernel, we encounter two parameters: 𝐶 and 𝛾

which need to be tuned. Here 𝛾 defines how far the influence of a single training point reaches. A

low 𝛾 will have a far influence (think about the normal distribution, low 𝛾 means large variance).

It indicates that even the point far from the hyperplane will have relatively high influence to the

hyperplane and make the hyperplane smoother if 𝛾 is small. On the contrary, a large 𝛾 will lead

to an irregular hyperplane. Both of these two parameters control the complexity of the model.

Therefore, as we told before, the best way to tune these parameters is cross-validation and use

grid search to find the optimal parameter.

2.2 Decision tree and random forest

A. Decision tree and Classification and Regression tree (CART)

 A decision tree (R. Quinlan 1985) is a tree-like data structure which goal is trying to achieve

perfect classification with minimal number of decisions. It contains three components: internal

nodes, branches and leaf nodes. Each internal node splits the instance space into two or more

sub-spaces according to one feature (attribute). The branches extending from an internal node

represent a function or splitting criteria which is depending on the feature in the internal node.

Each leaf node, which has exactly one incoming branch and no outgoing branch, represents the

classification result (a class label). Thus, when a test point is classified by a decision tree, the

path from root to leaf will be the classification rule and the final label will be the classification

result. So we just need to build a decision tree with our training set and then apply the tree on the

test set to get the result (label).

 There are many kinds of decision trees: ID3 (R. Quinlan 1986), C4.5 (R. Quinlan 1993),

CHAID (G. Kass 1980), MARS (J. Friedman 1991) and CART (L. Breiman 1984). The main

difference between them is the splitting criteria. CART is one kind of decision trees and a widely

used algorithm, which is also the elementary of the random forest algorithm. Next I will explain

how to build a CART based on an example training set.

 Suppose we have the following dataset with label “defaulted (Y)” and “not defaulted (N)” and

two features “years at current job” and “number of payment missed”:

14

Figure 2.5. A simple data set of 11 observations with 2 features

 Now we have the information of our training set (𝒙𝑖, 𝑦𝑖) and encounter some problems in the

construction of the tree:

 Each internal node will be split based on one feature, how do we decide the feature?

 How to split based on one feature and how many branches will be split?

 When should we stop splitting?

 In CART, we usually do a binary split on each node. Suppose we want to split the instances

based on feature 𝑗 and these features are 𝐹 = {𝑥1𝑗, 𝑥2𝑗 , … , 𝑥𝑛𝑗}. For a binary splitting, if this

feature is a continuous feature, we will first sort them and get a best split 𝐶 with {𝑥𝑖𝑗 ≥ 𝐶} and

{𝑥𝑖𝑗 < 𝐶}. If it is a categorical feature, then we will find two feature subsets 𝐹1, 𝐹2 ∈ 𝐹 where

𝐹1 ∪ 𝐹2 = 𝐹 and 𝐹1 ∩ 𝐹2 = ∅ with the best split. So the question is how to determine the

threshold 𝐶 and 𝐹1, 𝐹2.

 The splitting criteria is called the Gini index/Gini impurity (C. Gini 1912) which is defined as

 𝐼(𝑡) = ∑ 𝑝𝑗(1 − 𝑝𝑗)𝑚
𝑗=1 = 1 − ∑ 𝑝𝑗

2𝑚
𝑗=1 (2.10)

where 𝐼(𝑡) is the Gini index at node 𝑡 and 𝑝𝑗 is the proportion of observations with class 𝑗 in the

data set at node 𝑡.

 From the formula, the Gini index is a measure of misclassification rate if we randomly choose

and label an observation. The larger the Gini index is, the higher misclassification rate the

dataset will have. Since our goal is to classify all the data correctly, we should consider about a

good strategy that can decrease the Gini index from the original Gini index quickly.

 Naturally, let us think about the “best split” for each node. As we discussed above, the best

split should have a maximum reduction of the Gini index on the node. Because of the binary

0 2 4 6 8 10
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

years at current job

n
u
m

b
e
r

o
f

p
a

ym
e

n
t

m
is

s
e
d

15

splitting for each node, the change of the Gini index at each splitting which is called

information gain (T. Mitchell 1997) is:

∆𝐼(𝑡) = 𝐼(𝑡) − 𝑝𝑙𝐼𝑙(𝑡) − 𝑝𝑟𝐼𝑟(𝑡) (2.11)

and we need compute the split where max ∆𝐼(𝑡) reaches. Now we go back to the credit example

and build the CART on it.

 We begin with the root node which include all samples in training set and compute the Gini

index of the root node: 𝐼(𝑡) = 1 − ∑ 𝑝𝑗
2𝑚

𝑗=1 = 1 − (
8

11
)

2

− (
3

11
)

2

= 0.3967 . (8 N and 3 Y)

Since all features are continuous, we consider each feature one by one and rank each feature. For

the first feature 𝑥1, we have 0.25 < 0.75 < 1 < 1.75 < 3 < 4 < 5 < 7 < 8 < 9, so we have 9

splits: {𝑥1 ≤ 0.25 and 𝑥1 > 0.25},…, {𝑥1 ≤ 8 and 𝑥1 > 8}. For the second feature 𝑥2, we have

0 < 1 < 2 < 3 < 4, so we have 4 splits: {𝑥2 ≤ 0 and 𝑥2 > 0},…, {𝑥2 ≤ 3 and 𝑥2 > 3}. In total

there could be 13 different splits and now we need find which split provides us the maximum

information gain. For one example of {𝑥1 ≤ 3 and 𝑥1 > 3}, ∆𝐼(𝑡) = 0.3967 −
6

11
(1 − (

1

6
)

2

−

(
5

6
)

2

) −
5

11
(1 − (

2

5
)

2

− (
3

5
)

2

) = 0.0270 . For the other example of {𝑥2 ≤ 1 and 𝑥2 > 1} ,

∆𝐼(𝑡) = 0.3967 −
8

11
(1 − (

1

8
)

2

− (
7

8
)

2

) −
3

11
(1 − (

1

3
)

2

− (
2

3
)

2

) = 0.1164. After you compare

13 splits, you can find max ∆𝐼(𝑡) = 0.1164 and its corresponding split is {𝑥2 ≤ 1 and 𝑥2 > 1}.

 Thus we can do this step recursively on each node until once the data in one node only belongs

to a single class, where the Gini index of that node is 0. For the example above, the full CART

will be:

𝐼𝑙(𝑡) = 0.2188

𝐼𝑟(𝑡) = 0.4444

∆𝐼 𝑡 = 0.1164

𝐼(𝑡) = 0.3967 8N, 3Y

7N, 1Y 1N, 2Y

𝑥2 ≤ 1 𝑥2 > 1

16

Figure 2.6. The Geometric demonstration of a CART.

 Clearly, a CART will split the space into several rectangular-like areas and do classification

by the training points inside each area and the Gini index (or other splitting criteria) gives you

the optimal strategy to split. However, this method is also easy to have the overfitting problem.

For the following instance in Figure 2.6,

Figure 2.7. Illustration of an example of overfitting in the construction of CART

 These two noisy points in training set will have impact on the whole rectangular-like area

though that area should have the same class as their neighbor rectangular areas. Usually, you

cannot construct a decision tree until data in every leaf node only belongs to one class. It will not

only have the overfitting problem but also cost too many time to do it, though the accuracy of

training set will improve under a large tree.

All Gini index is 0

in each node

𝐼𝑙 𝑡 = 0.2188

𝐼𝑟(𝑡) = 0.4444

𝐼(𝑡) = 0.3967 8N, 3Y

7N, 1Y

7N

N

1Y

Y

1N, 2Y

1N

N

2Y

Y 0 2 4 6 8 10
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

years at current job

n
u
m

b
e
r

o
f

p
a

ym
e

n
t

m
is

s
e
d

17

Figure 2.8. Illustration of the overfitting problem when the size of CART becomes large

 To avoid this overfitting problem, many strategies have been developed as follows:

 Add a regularizer on the cost function J = ∑ (𝑦𝑖̂ − 𝑦𝑖)2𝑛
𝑖=1 , like the number of nodes or

depths of CART.

 Stopping criteria, like 𝑑𝑒𝑝𝑡ℎ < 𝐶 or ∆𝐼(𝑡) < 𝐶

 Pruning decision trees, like reduced error pruning and minimal cost complexity pruning

 Ensemble methods with bagging strategy, like random forest algorithm.

 With these tools applied to CART, it becomes more robust and has many advantages:

 Simpler to build and interpret.

 It is a non-parametric algorithm that means you do not need to train any parameters of the

tree like 𝐶 in SVM.

 This algorithm can handle both continuous and categorical data.

 However, there are still many limitations of the CART algorithm, like:

 It is instable because sometimes the structure of the tree will be totally different even we

perturb one data a little bit, which also make the variance large.

 The decision boundaries are not smooth. CART only provides us the rectangular-like

boundary while the boundaries of continuous data are usually curves.

 Some nearby data, which should have similar properties, could be labeled different under

CART.

18

 Therefore, we need some strategies that can overcome these limitations and then the random

forest, an ensemble method with bagging and random selecting features idea, is design based on

CART to solve the problems.

B. Random forest

 In order to overcome the large variance and unsmooth boundary, a genius “bagging” algorithm

was proposed by Breiman -- Bagging (L. Breiman 1994), which is the abbreviation of bootstrap

aggregating. It is a powerful idea that makes use of several subsets to build the model and then

takes the majority vote as the final result.

 Bagging algorithm: Suppose we have a binary classification training set 𝑇 with 𝑁 samples

1. Construct a bootstrap sample: pick one sample from 𝑇 with replacement and repeat this

for 𝑚 times (usually 𝑚 = 𝑁), pick out the not repeating samples together to be the

bootstrap sample 𝑇′.

2. Construct a CART without pruning based on 𝑇′.

3. Repeat 1-2 steps for a large number of times 𝑀 and get 𝑀 CARTs.

4. For each observation in test set, we compute 𝑀 results of the label from 𝑀 CARTs.

5. Regard the majority voting of the 𝑀 results as the final results.

Figure 2.9. An comparison of the boundary between single CART and Random Forest

 Meanwhile, since we average (majority voting) the result, we not only get rid of some random

event, but also make the boundary to be smoother and this boundary will be more reasonable.

 Although bagging is an algorithm with so many good properties, random forest algorithm

further expands the bagging idea into a more robust algorithm. Compared with bagging

19

algorithm, RF is a more “random” algorithm on features (variables) and further makes use of the

out-of-bag sample (the data not included in bootstrap sample) as the validation data to test how

good the random features you choose.

 Random forest algorithm (A. Liaw and M. Wiener 2002): Suppose we have a binary

classification training set 𝑇 with 𝑁 samples and 𝑀 features.

1. Construct a bootstrap sample 𝑇′.

2. Build a CART with 𝑇′ without pruning. When constructing the CART and splitting each

node, randomly pick 𝑚 ≪ 𝑀 features and find a best splitting based on these 𝑚 features

(these features can be sampled with or without replacement).

3. For a constructed tree, compute the out-of-bag error. It is achieved by testing each out-of-

bag sample with the CART and figuring out the misclassification rate, which is the OOB

error.

4. Repeat step 1-3 for a large number of times like 500 or 1000.

5. Choose a proper 𝑚 , usually the initial 𝑚0 = √𝑀 . For each 𝑚 , we can compute a

corresponding OOB error. Then do right test for the OOB error of 𝑚𝑖+1 = 2 ∗ 𝑚𝑖 until

𝑂𝑂𝐵𝑚𝑖+1
> 𝑂𝑂𝐵𝑚𝑖

 and left test for the OOB error of 𝑚𝑗+1 =
1

2
∗ 𝑚𝑗 until 𝑂𝑂𝐵𝑚𝑗+1

>

𝑂𝑂𝐵𝑚𝑗
. Finally, the optimal 𝑚 = arg{𝑚𝑖,𝑚𝑗} min (𝑂𝑂𝐵𝑚𝑖

, 𝑂𝑂𝐵𝑚𝑗
).

6. For each test point, we compute a label for each tree (CART) and regard the majority

voting as the final classification result.

Random forest has many advantages. Firstly, compared with the bagging method, the trees in

the RF have less correlation because of the randomness on features. Thus, the reduction of the

variance from the CART becomes larger. Secondly, overall, random forest can make use of all

information of the training set, meanwhile, it decrease the complexity of the model comparing

with CART. Thirdly, RF did not simply randomly choose and use a feature but still consider the

best splitting, which is a feature selection idea. Simply speaking, RF not only utilizes all features

but also considers the importance of all features.

2.3 K-Nearest Neighbor (KNN)

 KNN is one of the simplest machine learning algorithms, which is a type of instance-based

learning. The KNN model is just the training dataset itself and the classification result is

computed by a distance based measure from the dataset.

 Since we have the data of the training set and its distribution in the feature space, the KNN

idea is to decide the class of a test point by comparing the similarity between it and its neighbors

in the feature space. Here K is a user-defined hyper-parameter. With a given K and a test point,

we are easy to find the K-nearest neighbors of the test point. Then we define the similarity as that

20

the class of the test point is the same as the most frequent class among its K neighbors. (usually

we use the Euclidean distance here, sometimes we can also try Manhattan or Minkowski distance)

For example in the following figure, we can easily see that the class of the test point only

depends on its K neighbors:

Figure 2.10. An illustration of how KNN works

 However, there is still a problem that how to determine the optimal “K” because different K

show the different properties in the classifier. A small “K” like K=1 often make the boundary too

fine and complex, which lead to the overfitting problem while a large K can achieve a smooth

boundary but may include too many training points from other class which is harmful to predict.

In practice, we usually play a cross-validation on the training set in order to obtain an optimal K.

Figure 2.11. The impact of different K in KNN algorithm

21

Chapter 3 . Introduction to the evaluation method: ROC curve

 Given a dataset and several classifiers, since we have the prediction labels and the actual

labels of the test set, we might want to know which classifier has the best performance on the

dataset. Therefore, an evaluation method and an evaluation score are required for us to compare

the performance of each classifier.

3.1 Confusion matrix

 Based on the information of predication and actual labels, we can build a confusion matrix (S.

Stehman 1997) like this (positive and negative can be interpreted as class 1 and class 2):

 Total Prediction Information
Predicted Positve Predicted Negative

Total Actual

Information
Actual Positve True Positive

(TP)

False Negative

(FN)
Actual Negative False Positive

(FP)

True Negative

(TN)

Table 3.1. The definition of TP, FP, TN and FN in confusion matrix

 From this confusion matrix, a lot of measures can be calculated like the accuracy:

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (3.1)

 Accuracy is a simple measure for the performance of a classifier. Intuitively, we might think

the higher the accuracy is, the better the classifier will be. However, this accuracy measure has

some limitations.

 Firstly, accuracy does not work well on imbalanced data. Let us consider this medical

diagnosis classification problem. Suppose we can 5 people with cancer and 995 healthy people,

classifier 1 classifies 5 people with cancer correctly but misclassifies 10 healthy people as the

cancer people and classifier 2 only misclassifies 1 cancer people as healthy people. Then we find

the accuracy of classifier 2 is 999/1000=0.999 which is far larger than the accuracy of classifier 1

(990/1000=0.99). Although the accuracy of classifier 2 is larger, the only one mistake is fatal. In

22

another aspect, classifier 1 has the accuracy on cancer people is 100% and healthy people is

98.99% while classifier 2 only has the accuracy on cancer people is 80% and healthy people is

100%.

 Thus, we need consider more measures rather than simply use the accuracy and then we try

the following measures: sensitivity, specificity, precision, F1 score, Matthews correlation

coefficient and so on. Each of them will compute the accuracy based on certain focus in your

prediction. For the cancer example, you might care more about the accuracy on cancer prediction

so that you prefer the sensitivity =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 as your evaluation method. However, most of the

measures still cannot reflect the trade-off between the performances on two classes.

The second limitation comes from the output of a classifier. Before we only discussed the

binary output 0 or 1 as the decisions, however, the output for each data point can also be a

probability/score between 0 and 1. For example, we can define this score in random forest as

𝑝𝑥=1 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑒𝑒𝑠 𝑣𝑜𝑡𝑒 𝑡𝑜 1

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑒𝑒𝑠
, and in KNN as 𝑝𝑥=1 =

𝑇𝑜𝑡𝑎𝑙 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑤𝑖𝑡ℎ 𝑐𝑙𝑎𝑠𝑠 1

𝑇𝑜𝑡𝑎𝑙 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
. In both

cases, a default threshold equals 0.5 is set to determine the binary output that the output is 1

when 𝑝𝑥=1 ≥ 0.5 and 0 when 𝑝𝑥=1 < 0.5. However, whether the default threshold is proper is a

big question. Considering a very imbalanced data set and the KNN model, since most training

samples belong to one class, a majority vote of the K neighbors will tend to be that class.

Moreover, the outputs of some classifiers like the logistic regression are values between 0 and 1,

where you have to choose a threshold value and this value will have a large impact on the

measures we mentioned before. Actually, an output of probabilities has more information than

the binary results. For example, suppose we have two test points in a RF algorithm with 𝑝1 = 1

and 𝑝2 = 0.51, in a binary output strategy we may simply classify them into the same class,

however, we must notice that the difference of the score at least reflects the properties of point 2

is closer to the other class than point 1.

3.2 ROC curve and AUC value

 The Receiver operating characteristics (ROC) curve and the Area Under the Curve (AUC)

provide us the measure that solve these two limitations (T. Fawcett 2006, B. Song 2014). Differ

ing from those single measures, ROC curve is a graphical plot that illustrates the performance of

a binary classifier system as its discrimination threshold is varied, that is to say, this curve

includes the performance of the classifier at each threshold. In a ROC curve, the true positive

rate (sensitivity, 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
) is plotted in function of the false positive rate (1-specificity,

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
) for different threshold settings. In order to construct the ROC curve, we first rank

the scores of the test set and since we know the corresponding score for each point, we can

23

compute the TPR and FPR as the coordinate for each point one by one as the threshold and

finally connect all the coordinates into a curve.

Figure 3.1. The construction of the ROC curve

 When you compare two models based on the performance on a data set, you can plot two ROC

curves like this:

Figure 3.2. A comparison of two ROC curves from two models under the same coordinates

The ideal case is that the curve of model B is above the curve of model A, which means that

given the same FPR level by two models, we can always get a higher TPR by model B than

model A. That is to say, model B has a better performance than model A in this data set.

24

However we have to notice that most cases we only get two curves like those in the figure that

would cross each other rather than one curve always top the other. Thus, the AUC value is

designed here to compare the overall performance between models. AUC value is not only equal

to the area under the curve but can also be considered as the probability that a classifier will rank

a randomly chosen positive instance higher than a randomly chosen negative one. (T. Fawcett

2006, Hanley and McNeil 1982) Usually we will regard the model with higher AUC as the better

model. Furthermore, another advantage of the ROC curve is that in some special problem like

the cancer detection problem, the doctor might have a strict requirement on the FPR. Thus, we

can choose the best model and the threshold according to the requirement value with the ROC

curve. In this paper, all evaluation and comparison for the classifiers will be based on the AUC

value.

In order to apply the ROC analysis on the classifier evaluation, each data point will be

assigned a score/probability by a classifier, rather than only be assigned a binary label. In RF and

KNN, the probabilities for class i are easily defined as P(𝑦 = 1|𝑥) =
𝑣𝑜𝑡𝑖𝑛𝑔𝑠 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 1

𝑡𝑜𝑡𝑎𝑙 𝑣𝑜𝑡𝑖𝑛𝑔𝑠
 and

P(𝑦 = 1|𝑥) =
𝑤𝑖𝑡ℎ 𝑐𝑙𝑎𝑠𝑠 1 𝑜𝑓 𝐾 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝐾 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
. For the SVM classifier, it is not that easy to produce a

calibrated value because only the hyperplane is calculated from the SVM. In such cases, Platt (J.

Platt 1999) proposed a strategy that can produce probabilities of each sample according to the

signed distance between the sample and the hyperplane:

P(𝑦 = 1|𝑥) =
1

1+exp (𝐴∗𝑓(𝑥)+𝐵)
 (3.2)

where 𝑓(𝑥) is the distance between point 𝑥 and the hyperplane, 𝐴 and 𝐵 are two parameters

estimated by the maximum likelihood method that optimizes on the same training set.

25

Chapter 4 . Innovative ideas and new classification models

4.1 An improvement of KNN: location index (Y. Hu et al. 2014, Y. Hu et al. 2015)

KNN is a simple and smart idea but not a robust classifier. It has several shortcomings. First

and foremost, KNN classifier only considers the impact of K neighbors for each test point but

totally ignore the impact of distance between the neighboring point and the test point. Intuitively,

a nearer neighbor should have larger impact on the test point than a farther neighbor. Moreover,

the KNN algorithm also suffers from the scale of the dataset and the curse of dimension, whose

time cost is O(nd+kn).

(a) (b)

Fig. 4.1. Intuitively, the two sets of test points in (a) and (b) should belongs to different

classes (red in (a) and blue in (b)). However, they will be classified to red under kNN

scheme when K=5.

A better model should reflect the information of the distance from the test point to each

neighbor. Thus, the weighted KNN (T. Mitchell 1997) is designed to solve this problem and the

weight for each neighbor is the reciprocal of the distance between this neighbor and the test point,

which can be interpreted as a locally regression based on its K neighbors. However, this

algorithm also features two limitations: 1. It needs to train a proper “K”; 2. It is a very time-

consuming algorithm just like KNN. As illustrated in section 2.3, a small “K will lead to a fine

and complex boundary which often accompany with the overfitting problem while a large “K”

26

make the boundary too smooth to underfit the model. In a highly imbalanced dataset, it could

even encounter the case that the large class will always dominate whatever K you choose. Then

no K will be proper and KNN will not work.

Therefore, the location index or LI in our work is defined as follows, based on mainly the idea

of “weighted KNN” classifier (wKNN) (T. Mitchell 1997) and the idea of the Newton‘s law of

universal gravitation. Similar to the law of universal gravitation, we assume that each training

point, instead of the K neighbors, will have impact on the test point and this impact will be

proportional to the label of the training point and inversely proportional to the square of the

distance between them. Then given the distribution of the training set, it is easy to compute a

location index for everywhere. That is to say, we can imagine that the training set determines a

distribution for the space and each point in the space has a density score that is the location index.

Before computing the location index, we should first normalize each feature to the same scale

like [0,1]. Otherwise, it means that you put some weights on each features because the distance

depends on each of your features and the feature with large scale will dominate the final output.

Definition 1: Location index

 For each test point x, the LI of x is a score or posterior probability 𝑝𝑥 =
∑

𝑦𝑗

𝑑(𝑥𝑗,𝑥)2𝑗

∑
1

𝑑(𝑥𝑗,𝑥)2𝑗

 .

 In the formula above, yj (0 or 1) is the label of each training point, xj is the feature vector of

each training point and d(.) is the Euclidean distance between the test point x and training point xj.

 Actually, this score is a linear combination of the labels of the training set and the weight for

each label yj is the

1

𝑑(𝑥𝑗,𝑥)2

∑
1

𝑑(𝑥𝑗,𝑥)2𝑗

, which is the same as one of the weighted KNN classifiers.

 Many obvious properties can be seen from the LI by the following, see also Figure 4.1:

1. If the label of all training point is 0, the score for this test point will be 0. If the label of all

training point is 1, the score for this test point will be 1. Then the score for each test point

will between 0 and 1.

2. The nearer the training point is to the test point, the larger the weight of that training point

is. The further the training point is from the test point, the smaller the weight of that

training point is.

3. Reflect the location of the test point, whether it is located at a “boundary” area (the score

is far from 0 or 1) or “non-boundary” area. (the score is near 0 or 1) .

4. This index is continuous in the space, then it will have less variance than kNN/wKNN

model.

27

Fig. 4.2. The red points are three test points, the green points (label=1) and the blue points

(label=0) are training points.

For a simple example as shown above by Figure 4.2, the location index 𝑝𝐴 = 0.6046, the

location index 𝑝𝐵 = 0.4652, and the location index 𝑝𝑐 = 0.2281. This result shows that the

larger the location index for a test point is, the more points with the class 1 label are surrounding

this test point. Actually, similar to the logistic regression algorithm, the location index classifier

is a continuous mapping f: ℝ𝑛+1 → [0,1] . Thus, unlike the KNN or wKNN that are

discontinuous, the LI model will have less variance while not raise the bias of the prediction. The

boundary of two classes: 𝑓(𝑥0) = 𝑝𝑥0
 is smooth and accuracy which divide the space into two

classes: class=1 where 𝑓(𝑥) > 𝑝𝑥0
 and class=0 where 𝑓(𝑥) < 𝑝𝑥0

. Furthermore, the most

important property of this classifier is that this location index can better reflect the surrounding

information of each point because KNN and wKNN only focus on the nearest neighbors but

ignore the distances to the farther neighbors.

 Furthermore, the LI itself can serve as a good classifier, since the input is just the training set

and the output score is the index value for each test point: 𝑝(𝑥|𝑦 = 1) = 𝑝𝑥 and 𝑝(𝑥|𝑦 = 0) =
1 − 𝑝𝑥. After obtaining all the scores, it could be evaluated by the ROC (receiver operating

characteristics) analysis and the AUC (area under the ROC curve) value. Compared to the

wKNN classifier, the LI model does not need to find the optimal “K”, nor the K nearest

neighbors, which transpires into computational efficiency that cut down the time cost from

O(nd+kn) to O(nd). For a large dataset, we can apply the parallel computing or Map-Reduce on

the dataset to compute the location index easily. Moreover, location index can be naturally

generalized to multiclass classification problem where 𝑝𝑥∈𝐶𝑘
=

∑
𝛿(𝑦𝑗∈𝐶𝑘)

𝑑(𝑥𝑗,𝑥)2𝑗

∑
1

𝑑(𝑥𝑗,𝑥)2𝑗

. (if 𝑦𝑗 ∈ 𝐶𝑘 , 𝛿(𝑦𝑗 ∈

𝐶𝑘) = 1, otherwise, 𝛿(𝑦𝑗 ∈ 𝐶𝑘) = 0)

 Based on the results of the experiments on several data sets, we can argue that this LI model is

an algorithm as robust as the SVM and the RF.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

B

A

C

28

4.2 Introduction to classifier combination (J. Kittler et al. 1998, S.Tulyakov et al. 2008)

The classifier combinations problem try to construct models and derive combination rules via

logic and statistics. Not only the combined experts are classifiers, the result of the combination is

also a classifier. As we mentioned before, the outputs of classifiers can be represented as vectors

of scores where the dimension of vectors is equal to the number of classes. Similar to the neural

network as Fig. 4.3 shows, we can consider the outputs of each individual classifier as a set of

new features waiting for further rules to classify them, which is the classifier combination. As a

result, the combination problem can be defined as a problem of optimizing the combination

function accepting N-dimensional score vectors from M classifiers and outputting N final

classification scores.

Fig. 4.3. The diagram structure about the classifier combination.

Usually a lot of information can be obtained from each individual classifier, such as

predicted labels, rank of the confidences (score) and the predicted measures (score). Derived

from these information, many combination strategies have been explored by scientists:

 Elementary combination schemes on measurement level: sum-rule, product-rule, …

 Ensemble methods: bagging and boosting.

 Locality based combination methods.

 Other methods: majority voting, combination schemes on rank level, Dempster-

Shafer theory of evidence, …

In this chapter, I will explore three innovative classifier combination methods based on the

first three ideas above, respectively. In section 4.3, I will introduce the RF embedded location

29

index which is the locality base combination method. In section 4.4, I will apply the ensemble

method on LI and finally in section 4.5, I will explore a new combination rule on measurement

level.

4.3 An embedded strategy: RF embedded location index (Y. Hu et al. 2015)

 From the example of Figure 4.4, it can be seen that there are two types of points:

1. Points located inside one class (like points inside green and blue areas), which should be

classified correctly.

2. Points located on the boundary between two classes (like points inside red area) are pretty

hard to classify.

Fig. 4.4. Different types of points in a dataset.

 Thus, we are wondering whether it is helpful to conduct with these two types of points

differently and then the RF embedded location index (LIRF) is designed under this divide and

conquer idea.

 According to the property of the location index, the points in the green area will have the

output near 1 and in the blue area near 0 and points inside these areas should be classified

correctly. Therefore, the location index is a proper and accurate classifier to express these points

due to the geometric sense. However, it is still hard to determine the class of “boundary” points

(like points in red area) by LI because of some reasons like the irregular distribution of the

classes or the noisy points.

Therefore, our idea is to classify those two types of points differently. For each test point, we

first decide which type the point is. This step could be performed by computing its LI value. As

we mentioned before, a threshold value α can help us to divide the space into two parts: 𝑓(𝑥) >
α and 𝑓(𝑥) < α. So, we can tune a pair of parameters (α, 𝛽) and express those 2 types of points

in the space. If the LI is very large (𝛽 ≤ 𝑓(𝑥) ≤ 1) or small (0 ≤ 𝑓(𝑥) ≤ α), the point belongs to

type-1; else if (α < 𝑓(𝑥) < 𝛽) the point belongs to type-2 points set. Then we can directly

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

B

A

C

30

classify type-1 points by LI and classify type-2 points by another classifier. This method will

work because for the same dataset, different classifiers will have different boundaries and

boundary points, where the most errors come from. That is to say, the boundary points with LI

are not really to be boundary points with other classifiers. Therefore, I use another robust

classifier RF as the second component of this combination strategy.

Since LI will be more robust on classifying type-1 data and RF is good at conducting with

type-2 data, based on the all the dataset, we propose to embed the LI into the RF algorithm to

improve the RF performance on classifying the type-1 points, where RF might sometimes have

unsatisfactory performance. The proposed location index embedded Random Forest (LIRF)

algorithm is presented below:

Location index embedded Random Forest classifier

1. Divide our dataset 𝐻 into training set 𝐻1 and test set 𝐻2.

2. Build a RF model by the training set.

3. Decide two threshold parameters: α and β. (α > 𝛽)

For each test point

{

Calculate the LI of the test point.

If 𝐿𝐼 > 𝛼 or 𝐿𝐼 < 𝛽

Final score of the test point = location index of the test point

Else

Calculate a score 𝑝 of the test point with the RF model.

Final score of the test point = (𝛼 − 𝛽) ∗ 𝑝 + 𝛽.

End

}

4. Perform the ROC analysis with all the scores and compute

the AUC value.

From the algorithm, it is easy to conclude that the worst case of LIRF classifier will be the

maximum of LI and RF, because when α = β, LIRF will be degenerate to LI and when α =
1, β = 0, LIRF will be degenerate to RF. The crucial step of this algorithm is the “embedding”,

where I keep the LI score unchanged and map the RF score from [0,1] to (α, 𝛽). This step

indicates that we firstly decide how much we trust the LI classifier and then use the RF to modify

and reorder the result of the boundary points by LI. Thus, a good pair of parameters leads to a

good result. Then the most important task of this classifier is to find a proper pair of the

parameters (α, 𝛽). Since different datasets will have different class distributions, the optimal pair

of parameters will be different. In order to obtain this optimal value, we can use the cross-

validation strategy and a grid-search (because you need to find two parameters) and choose the

parameters that make the average AUC the highest.

This is also a good classifier on the imbalanced problem because most imbalanced parts of the

test set are cut off and classified correctly by LI and a more balanced dataset will be taken into

consider by the RF, where less errors exist.

4.4 An ensemble exploration: LI forest (Y. Hu et al. 2016)

31

 When we solve a problem with a large dataset and high-dimensional feature space, similar as

the decision tree, the LI classifier also encounters the problems that the model might be too

complex or too time consuming to build (O(nd)). Beside the speed issue, the variance can also be

decreased by the ensemble methods. Therefore, I also explore an ensemble algorithm based on

the LI classifier, which is the LI forest.

We can apply the ensemble strategy here because of three reasons: 1. LI is a non-parametric

classifier, which means we do not need to tune any parameters before we construct the LI model.

(So that it is hard to apply a likewise strategy on SVM.) 2. LI is such a simple idea that the

parallel computing is easily applied on the ensemble algorithm. 3. The running time decreases a

lot when we use the ensemble algorithm.

Thus, similar to the RF strategy based on the CART, the idea of the LI forest is firstly take

“random” on both data and features on building small LI model, and then ensemble them

together to be a “forest”. We will see how this ensemble method is designed:

Location index forest classifier

Part I: construct a series of LI model with the training set

(𝑵 observations, 𝑴 features)

1. Conduct a feature selection (ranking) with RF and rank the importance of all features by

training set.

2. Divide the training set into a bootstrap sample and validation sample for K times and then

combine them as the LI forest.

3. Decide how many features 𝑚 should we use in the LI forest:

a. For each LI model, we use the initial value 𝑚0 =
𝑀

2

b. Each time we choose a subset 𝑀∗ features (In the experiment, 𝑀∗ =
𝑀′

3
) from the total

𝑀′ (𝑀′) features and choose the optimal feature without replacement according to the

feature ranking. This step will be done 𝑚 times to construct the feature set for each LI

model.

c. Then obtain the average 𝐴𝑈𝐶 = 𝑓(𝑚𝑖) from the validation set. (Since we can compute

an AUC from each validation sample.)

d. Perform a series of left tests: 𝑚𝑖+1 =
1

2
𝑚𝑖 and choose the feature set based on step a

and b. Once 𝑓(𝑚𝑖+1) < 𝑓(𝑚𝑖) , 𝑚𝑙𝑒𝑓𝑡 = 𝑚𝑖

e. Perform a series of right tests: 𝑚𝑖+1 =
1

2
(𝑚𝑖 + 𝑀) and choose the feature set based on

step a and b. Once 𝑓(𝑚𝑖+1) < 𝑓(𝑚𝑖) , 𝑚𝑟𝑖𝑔ℎ𝑡 = 𝑚𝑖

f. Let 𝑚 = argmax𝑚𝑙𝑒𝑓𝑡,𝑚𝑟𝑖𝑔ℎ𝑡
 (𝑓(𝑚𝑙𝑒𝑓𝑡), 𝑓(𝑚𝑟𝑖𝑔ℎ𝑡))

4. The LI forest model is constructed by K bootstrap samples and for each sample, we use 𝑚

features. (Note: 𝑚 features between different LI model are different.)

Part II: Compute the result by constructing the model with tuned parameter

1. Construct a new LI forest with K LI models where each LI model include all training

points and 𝑚 features, the step for these features are the same as Part I.

32

2. For each test point, one probability will be computed by each LI model and the averaged

probability will be the final score for this test point.

Fig. 4.5. The flowchart and structure about the LI forest classifier.

 This Location index forest classifier has several improvements based on the location index

classifier. Firstly, it has a feature selection step and the high-importance feature will have a high-

usage, which means we put different weights on different features. In a single LI classifier,

different training points are weighted while it is very hard to give some meaningful weights on

different features. If we just make use of some features with high importance, the loss of

information will be unavoidable. Secondly, as we discussed before about the ensemble method,

similar to the RF model, this LI forest model can also have a lower bias and variance than the LI

model, though the bias and variance is small in LI model. Thirdly, when it comes to a big dataset,

this classifier can still have good performance. On the one hand, we can easily apply the parallel

computing algorithms not only to build a large amount of trees but also to compute the location

index. Since we do not need to consider about the neighbors, we can use “the stochastic ideas”

that choose a small sized training and validation sets randomly instead of using the bootstrap

samples, and then construct more small single LI models by parallel algorithms in order to keep

the accuracy.

4.5 Mixture classifier with classifier selection based on the AUC value (Y. Hu et al. 2014, M.

Ma et al. 2014)

 We have learned and interpreted several classifiers by now, and some of which are similar,

like the tree based algorithms, which share a similar data structure and the main difference

between them is the splitting strategies. However, most of them show us many different

Training
set

Bootstrap
sample 1

Validation
sample 1

Feature
set 1

AUC 1

Training
set

Bootstrap
sample 2

Validation
sample 2

Feature
set 2

AUC 2

...
Training

set

Bootstrap
sample K

Validation
sample K

Feature
set K

AUC K

33

properties (B. Song, etc. 2011). In this section, we will explore a mixture strategy based on many

selected classifiers by the AUC value.

Actually, the whole dataset can be divided into two parts by every classifier according to the

output value: 1. boundary points (output far from 0 or 1) and 2. points far from the boundary

(output near 0 or 1). And we also discuss the theoretical background about each classifier in

chapter 2: SVM is a kernel based algorithm, RF is a tree based data structure and LI is a

distance-based algorithm. Furthermore, the cost functions of them are also different from each

other. The cost function of SVM is an optimization problem while the RF is about the GINI

index. Therefore, the boundaries and output schemes are totally different for different classifiers.

Then it leads to that the “boundary” points are different for each classifier. However, in some

easy cases like points in green area in Fig 4.3, a robust classifier will not misclassify them (with

high score for every classifier), like SVM, RF, LI, ANN (P. Werbos 1975), etc, otherwise there

will be a huge error for the classification result. Then the mainly differences will occur when it

comes to the boundary points from each classifier.

As we know, we can interpret the output score of a classifier as the confidence of a point be

classified to class 1/0. Based on this, we should attempt to design a combination strategy, which

could not only promise the score of the easy case still be with high confidence after combination,

but also a reasonable measurement could be obtained from this combination strategy. Before a

lot of methods are widely used by scientists like sum-rule, product-rule and maximum-rule,

which means we take the sum/product/maximum of all the output scores for each individual

classifier. However, those outputs have, in general, neither the same range and scale nor the

same distribution, which the classifier with a larger scale may dominate in the combination score.

For example, one output is (0.9, 0.4, 0.3) and the other is (0.3, 0.5, 0.4). Two classifiers have

more confidence that the latter one is more likely to be class 1 than the former case while the

result of both the sum rule and the product rule will be dominated by the first classifier. In order

to solve this problem, I modify the product-rule and add a penalty term that helpd to balance the

“domination”.

In product-rule, 𝑝𝑥=1 = 𝑝1𝑝2𝑝3 . Without loss of generality, suppose p1 is the dominated

classifier, then I balanced it by adding a term includes (1 − 𝑝1), which is (1 − 𝑝1)𝑝2𝑝3, because

if p1 is an extreme value, (1 − 𝑝1) will also be an extreme value. And in order to keep the

symmetry for each individual, the total penalty term is (1 − 𝑝1)𝑝2𝑝3 + 𝑝1(1 − 𝑝2)𝑝3 +

𝑝1𝑝2(1 − 𝑝3) . Finally, the output score is 𝑝𝑥=1 = 𝑝1𝑝2𝑝3 + (1 − 𝑝1)𝑝2𝑝3 + 𝑝1(1 − 𝑝2)𝑝3 +

𝑝1𝑝2(1 − 𝑝3).

This method also make use of the “majority voting” idea. For a test point, if at least two of

three classifiers hint this point to be 1 with high confidence, then this point should have a high

score after combination and we hope the final score can reflect this. Thus, 𝑝1𝑝2𝑝3 means the

score that 3 of them vote to class 1, and (1 − 𝑝1)𝑝2𝑝3 means method 1 votes to class 0 and the

other 2 vote to class 1, and so on. Even though those outputs are not independent with each other,

34

we still use this formula to estimate the final score. This “majority voting” idea also indicates

that we should put odd number of classifiers into combination in order to obtain the majority.

Another issue is that sometimes too many less-predictive component classifiers in the

combination may bring too many errors for the combination. For example, classifier 1 is robust

and the other two are not, where all the misclassified points from classifier 1 are also

misclassified by the other two. Then the other two classifiers will only take into some errors into

the combination classifier. In this paper, we only use 3 classifiers to obtain the combination and

compare the result with the sum and product rule because we don’t have the classifier selection

step in these two rules.

Thus, in this algorithm, I firstly do a classifier selection by the training set, which means I

evaluate each classifier by a cross-validation strategy and choose two or three robust classifiers

by AUC from training set into the combination step. Based on the 3 AUCs from the training set,

we think that if the second largest value is larger than the mean of them, then these 3 value

include “2 good” and “one bad”. (like 0.9, 0.89, 0.85), otherwise (0.9, 0.86, 0.85), we are going

to use the best one twice and the second largest one as the hedge classifier. (0.9, 0.9, 0.86).

Mix classifier with classifier selection via AUC

Part I: Select the classifier

1. Perform a leave-one-out cross validation on training set with SVM, RF

and LI, respectively.

2. From step 1, we obtain 3 scores, which is the probability that the data is

classified as 1, for each data in training set: 𝑝𝑠𝑣𝑚, 𝑝𝑟𝑓 and 𝑝𝑙𝑖

3. With scores of all data obtained in step 2, we can compute 𝐴𝑈𝐶𝑠𝑣𝑚 ,

𝐴𝑈𝐶𝑟𝑓 and 𝐴𝑈𝐶𝑙𝑖

4. Rank the scores and the second largest of the scores is A, and the mean

of the scores is B.

5. If A>B, we choose all the classifiers to build our mixture classifier, else

we choose two times of classifier with largest score and one time of

classifier with second largest score.

Part II: mixture classifier

1. Use 3 classifiers we choose from Part I. (Maybe two of them are same

classifiers)

2. For each data in test set, compute 3 scores 𝑝1, 𝑝2 and 𝑝3 with classifiers

in step 1.

3. The final score of the data is 𝑝𝑥=1 = 𝑝1𝑝2𝑝3 + (1 − 𝑝1)𝑝2𝑝3 + 𝑝1(1 −
𝑝2)𝑝3 + 𝑝1𝑝2(1 − 𝑝3).

 In part I of this classifier, we apply the leave-one-out cross validation on the training set to

evaluate the performance on the training set for each classifier. Therefore, these results can be

compared to show which classifier has a good performance on a specific dataset. However, a

higher performance of AUC in training set does not mean everything. On the one hand, the

35

performance in training set might be different from the performance in test set. On the other hand,

even the classifier with a bad performance of AUC might perform better in some data point than

other classifiers do. Thus, we design this mixture algorithm that can both complement each other

and avoid the bad components/classifiers. The core idea of the mixture is the majority voting,

which computes the probability that most components of the mixture classifier vote to class 1. In

the meantime, we hope at least 2 of 3 classifiers are “good”, which is judged by comparing the

second largest AUC and the mean AUC of 3 classifiers. Otherwise, we will give the better

classifier a higher weight. Then when selecting 3 different classifiers, since they have such

different properties, we can regard their results as “nearly independent” to each other. So it is

easy to have 𝑝𝑥=1 = 𝑝1𝑝2𝑝3 + (1 − 𝑝1)𝑝2𝑝3 + 𝑝1(1 − 𝑝2)𝑝3 + 𝑝1𝑝2(1 − 𝑝3 , which means the

probability of at least 2 of 3 classifiers vote to class 1. When only selecting 2 classifiers, we need

consider different weights on them. Firstly, 𝑝𝑥=1
′ = 𝑝1

2𝑝2 + 𝑝1
2(1 − 𝑝2) = 𝑝1

2 and 𝑝𝑥=0
′ =

(1 − 𝑝1)2𝑝2 + (1 − 𝑝1)2(1 − 𝑝2) = (1 − 𝑝1)2 , here we put more weight on the more important

classifier. Since we hope 𝑝𝑥=1 + 𝑝𝑥=0 = 1 and the score is balanced by 𝑝2 , we let 𝑝𝑥=1 =

𝑝𝑥=1
′ + 2𝑝1(1 − 𝑝1)𝑝2 and 𝑝𝑥=0 = 𝑝𝑥=0

′ + 2𝑝1(1 − 𝑝1)(1 − 𝑝2) , which indicate that the

second term and the final score are also weighted by 𝑝2.

 Finally, we have the expression for the mixture classifier with 3 components: 𝑝𝑥=1 =

𝑝1𝑝2𝑝3 + 𝑝1(1 − 𝑝2)(1 − 𝑝3) + (1 − 𝑝1)𝑝2(1 − 𝑝3) + (1 − 𝑝1)(1 − 𝑝2)𝑝3 . (In two

components case, we just let 𝑝1 = 𝑝2)

Fig. 4.6. The flowchart of the mixture classifier with classifier selection.

 This algorithm also shares some ideas from neural network classifier. Our input are a large

amount of features, then we serve the classifiers as the mapping function between the first and

second layers and map the features into two or three features in the second layer. Finally, we

make use of the property of the features in second layer and the majority voting idea to obtain the

final score.

36

Chapter 5 Application I: Experiments and discussion on some open-

source data

In this chapter, I applied the algorithms introduced in chapter 4 on some open-source data (M.

Lichman 2013) and compared the performance of those methods with widely used classifiers

SVM and RF.

5.1 Database and experiment design for experimental studies

All databases used in this chapter are from the UCI Machine Learning Repository as follows:

Table 5.1. Databases for experiments of testing the classification algorithms

I selected almost all the dataset (in total 14) in UCI which satisfy the following conditions:

 The dataset are used for a binary classification algorithm.

Dataset name Area Dataset

size

Size of

class 1

Size of

class 2

Imbalance

ratio

Size of

feature

vector

Climate Model

Simulation

Crashes

Physical 540 494 46 10.739 18

Ecoli Life 336 143 193 1.350 8

Fertility Life 100 88 12 7.333 10

Glass

Identification

Physical 214 163 51 3.196 10

Heart Disease Life 270 120 150 1.25 14

Hill-Valley Physical 1212 612 600 1.02 100

Ionosphere Physical 351 225 126 2.024 34

Connectionist

Bench

Physical 208 97 111 1.144 60

Breast Cancer

Wisconsin

(Diagnostic)

Life 569 212 357 1.684 32

Wholesale

customers

Business 440 142 298 2.099 8

LSVT Voice

Rehabilitation

Life 126 84 42 2 309

Steel Plates

Faults

Physical 1941 1268 673 1.884 27

Parkinsons Life 195 147 48 3.063 23

Spect_heart Life 267 212 55 3.855 22

37

 The dataset do not include missing values.

 Most features of the dataset are integer and real features.

 The number of instances is less than 2000.

The databases are from many areas like physics, geography, medicine, material science,

agronomy, business, etc and all of them have been tested and published by scholars and scientists.

Moreover, there are also some imbalanced dataset and dataset with more features than instances.

Thus, in this chapter we will attempt to argue the robustness of classifier based on that it has a

better classification performance on most dataset.

In the classification task, we use all the data and features in each dataset. Then for each

experiment on one dataset, the division of training and testing datasets was randomized 100

times equally for the purpose of increasing statistical confidence or minimizing the “random” (or

statistical variation). In the division, the two classes were equally distributed in training and

testing sets, which means that the number of class 1 observations and class 2 observations were

the same in both datasets, respectively. Finally, The 100 classification outcomes were averaged

for the final result.

Fig. 5.1. How data are separated and the experimental design.

5.2 Results of experiments on LI classifier and the mixture classifier

 Table 5.2(a) and 5.2(b) illustrates the classification results of 3 different individual algorithms:

LI, SVM, RF and 4 different mixture models over 100 runs of experiments based on the

imbalanced and balanced data, respectively.

We can first observe that the LI classifier is quiet robust that it is hard to argue whether SVM

or RF is better than LI classifier because each of them has a better performance on some dataset

but fail on the other. With a not bad performance, the other advantage of LI is that this algorithm

takes less time than SVM and RF, which need tune some parameters before constructing the

model, especially for the large dataset. We can further apply some parallel computing or map-

reduce algorithms on it, which are hard to apply on SVM and RF.

Dataset name LI result SVM result RF result Sum-rule Product-

rule

Mixture

without

classifier

selection

Mixture

Total
dataset

Divide 100
times:

• Training set

• Test set

100 AUC
values

Average
AUC

38

Climate

Model

Simulation

Crashes

0.9323 0.9449 0.8847 0.9414 0.9413 0.9422 0.9451

Fertility 0.6749 0.5973 0.6429 0.6457 0.6441 0.6523 0.6468

Glass

Identification
0.9795 0.9547 0.9810 0.9819 0.9819 0.9822 0.9822

Parkinsons 0.9603 0.9182 0.9534 0.9560 0.9557 0.9561 0.9561

Ionosphere 0.9516 0.9739 0.9728 0.9774 0.9795 0.9777 0.9777

Wholesale

customers
0.9579 0.9499 0.9548 0.9591 0.9557 0.9585 0.9593

LSVT Voice

Rehabilitation
0.84 0.8815 0.8633 0.8883 0.8871 0.8888 0.8897

Spect_heart 0.8490 0.7986 0.8381 0.8384 0.8385 0.8379 0.8379

Table 5.2(a). Averaged AUC information of LI, RF, SVM and mixture classifier algorithms for

imbalanced data.

From table 5.2, 5 of 8 imbalanced datasets show some gains after the mixture combination

method while all the balanced datasets obtain gains with the mixture combination. Moreover,

compared with two typical combination rules, the mixture classifier strategy (without the

classifier selection) is better than the sum-rule and product-rule for most cases, and further the

selection step help to choose more important classifiers into the mixture strategy, which is also

indicated by the results.

Dataset name LI result SVM result RF result Sum-rule Product-

rule

Mixture

without

classifier

selection

Mixture

Ecoli 0.9860 0.9889 0.9889 0.9892 0.9895 0.9897 0.9897

Heart Disease 0.8865 0.8998 0.8976 0.9046 0.9050 0.9049 0.9049

Connectionist

Bench
0.8989 0.9127 0.9067 0.9213 0.9210 0.9212 0.9220

Breast Cancer

Wisconsin

(Diagnostic)

0.9883 0.9947 0.9898 0.9942 0.9940 0.9946 0.9949

Table 5.2(b). Averaged AUC information of LI, RF, SVM and mixture classifier algorithms for

balanced data.

39

Thus, regarded as 3 strong classifiers, LI, SVM and RF are selected to construct the mixture

classifier. Compared with its 3 components, the mixture classifier achieves the largest AUC

value in most datasets (9 in 12, 2 of them take too much times). Furthermore, we also play a

Wilcoxon signed-rank test between mixture classifier and its components. The results are

illustrated in Table 5.3 as follows:

Table 5.3. Wilcoxon signed-rank test between mixture classifier and its 3 components. (Yes: the

result of mixture classifier is significantly larger (P-value<0.1). No: the result of mixture

classifier is not significantly larger.) Dataset with blue is the imbalanced data and yellow is the

balanced data.

 Table 5.3 shows us that, in most dataset, the AUC of mixture classifier is at least significantly

larger than the AUC values of two of its components. Therefore, it indicates that the mixture

classifier has a stable and consistent performance on most datasets. Because of the no free lunch

theorem, we have no idea on which is the best algorithm for a specific task. However, the

mixture classifier will first do a rough selection on single classifiers to delete some bad

classifiers on the dataset and then combine the selected classifiers as a more robust classifier,

which can beat its component.

5.3 Results of experiments on RF embedded location index

 It is shown from table 5.4(a) and 5.4(b) that some AUC gains can be obtained from the LIRF

classifier for all the dataset except the climate dataset. This result also hints that the LI classifier

can classify the type 1 points introduced in chapter 4.2 perfectly, and then the divide and conquer

strategy works. Moreover, the speed of this algorithm is as fast as RF, so that we can make use of

it on

Mixture classifier LI SVM RF

Climate Model Simulation

Crashes

Yes No Yes

Ecoli Yes No No

Fertility No Yes No

Glass Identification Yes Yes No

Heart Disease Yes No Yes

Parkinsons No Yes No

Ionosphere Yes Yes Yes

Connectionist Bench Yes Yes Yes

Breast Cancer Wisconsin

(Diagnostic)

Yes No Yes

Wholesale customers No Yes Yes

LSVT Voice Rehabilitation Yes Yes Yes

Spect_heart No Yes Yes

40

some large dataset.

Table 5.4(a). Averaged AUC information of 100 runs under LI, RF and LIRF algorithm on

imbalanced data.

Dataset name LI result RF result LIRF

Ecoli 0.9860 0.9889 0.9890

Heart Disease 0.8865 0.8986 0.9019

Hill_valley 0.6144 0.5949 0.6152

Connectionist Bench 0.8989 0.9054 0.9077

Steel_plates 0.8119 0.8747 0.8761

Breast Cancer

Wisconsin

(Diagnostic)

0.9883 0.9898 0.9907

Table 5.4(b). Averaged AUC information of 100 runs under LI, RF and LIRF algorithm on

balanced data.

 In addition to the improvement on the AUC value, we can also notice that the result of LIRF is

significantly larger than the result of its two components in 6 dataset of 14 from table 5.5. A

more interesting fact is that the result of 5 of 8 datasets with LIRF show a significant gain both

from LI and RF. Thus, I will argue that this embedded classifier is robust when dealing with the

imbalanced data. For other datasets, the results of LIRF are still significantly larger than the

result of RF. The only insufficiency of LIRF is that we need a grid search to find optimal

parameters for different dataset and it consume some times.

LIRF LI RF

Climate Model Simulation Crashes No Yes

Ecoli Yes No

Fertility No Yes

Glass Identification Yes Yes

Heart Disease Yes No

Hill_valley No Yes

Ionosphere Yes Yes

Dataset name LI result RF result LIRF

Climate Model Simulation Crashes 0.9323 0.8847 0.9323

Fertility 0.6749 0.6398 0.6755

Glass Identification 0.9795 0.9807 0.9874

Ionosphere 0.9516 0.9725 0.9774

LSVT Voice Rehabilitation 0.8400 0.8643 0.8745

Parkinsons 0.9549 0.9410 0.9551

Connectionist Bench 0.8989 0.9054 0.9077

Spect_heart 0.8490 0.8367 0.8541

Wholesale Customers 0.9579 0.9549 0.9597

41

LSVT Voice Rehabilitation Yes Yes

Parkinsons No Yes

Connectionist Bench Yes No

Spect_heart Yes Yes

Steel_plates Yes No

Breast Cancer Wisconsin

(Diagnostic)

Yes Yes

Wholesale Customers Yes Yes

Table 5.5. Wilcoxon signed-rank test between LIRF classifier and its 2 components. (Yes: the

result of LIRF is significantly larger (P-value<0.1). No: the result of LIRF is not significantly

larger.) Dataset with blue is the imbalanced data and yellow is the balanced data

5.4 Results of experiments on LI forest

 Table 5.6 shows that the average classification results over LI and LI forest, respectively. An

obvious improvement of classification accuracy is obtained in 12 of 14 dataset after we use the

ensemble method on LI classifier. Then a Wilcoxon signed-rank test was performed and the

result is shown in Table 5.7 by comparing the AUC values before and after we use the ensemble

method, where the P-value of most dataset <0.1, indicating the LI forest classifier is more robust

in classification task than the LI itself. Especially in the balanced dataset, we can always observe

a significant improvement after we use the ensemble method, which means the variance of the

model brings more errors into the classification than the imbalance of the dataset does. Moreover,

when applying the parallel computing on the LI forest algorithm, the speed is much faster than

the LI, which is another advantage of the LI forest algorithm.

Table 5.6(a). Averaged AUC information of 100 runs under LI and LI forest algorithm with

imbalanced data.

Dataset name LI result LI forest result

Ecoli 0.9860 0.9861

Heart 0.8865 0.8947

Hill_valley 0.6144 0.6257

Connectionist Bench 0.8989 0.9080

Breast Cancer Wisconsin

(Diagnostic)

0.9883 0.9912

Dataset name LI result LI forest result

Climate Model Simulation

Crashes

0.9323 0.9480

Glass 0.9795 0.9786

Ionosphere 0.9516 0.9643

LSVT 0.84 0.9152

Parkinsons 0.9549 0.9570

Steel_plates 0.8119 0.8167

Wholesale 0.9579 0.9591

42

Table 5.6(b). Averaged AUC information of 100 runs under LI and LI forest algorithm with

balanced data.

LI forest LI

Climate Model Simulation Crashes Yes

Ecoli No

Glass No

Heart Yes

Hill_valley Yes

Ionosphere Yes

LSVT Yes

Parkinsons No

Connectionist Bench Yes

Steel_plates Yes

Breast Cancer Wisconsin (Diagnostic) Yes

Wholesale No

Table 5.7. Wilcoxon signed-rank test between LI and LI forest classifier. (Yes: the result of LI

forest is significantly larger (P-value<0.1). No: the result of LI forest is not significantly larger.)

Dataset with blue is the imbalanced data and yellow is the balanced data.

43

Chapter 6 Application II: Diagnosis of Colon Cancer

6.1 INTRODUCTION

According to the recent statistics from American Cancer Society (ACS), colorectal carcinoma

(CRC) is the third most commonly diagnosed cancer and the second leading cause of cancer-

related death in the United States (ACS 2014). It was estimated that 142,820 new cases would

be diagnosed with 50,830 dying from the disease in 2014. Fortunately, most CRC arises from

colorectal polyps, and the process could take 5-15 years for malignant transformation into cancer.

Thus, early detection and removal of the polyps before or during the malignant transformation

will effectively decrease the incidence rate of CRC (B. Levin et al. 2008).

Clinical optical colonoscopy (OC) is currently the gold standard for detection and removal of

the polyps. Because of its invasive nature, OC would demand a prohibitory resource to screen

the large population with age over 50 (J. Liang and R. Richards 2010). Computed tomography

colonography (CTC) has been under development over the past decades to relieve the burden of

OC for the screening purpose and has shown comparable performance to OC with computer-

aided detection (CADe) of the polyps sized 8mm and larger (C. Johnson et al. 2008).

With an increasing number of polyps as detected by the CTC screening, the need for removal

of the detected polyps will increase and eventually would also demand a great resource to reduce

the incidence rate of CRC. Fortunately, in the screening population of age 50 and older, a

significant amount of the polyps are non-neoplastic, named hyperplastic (H) (D. Lieberman et al.

2005, P. Pickhardt and D. Kim 2009), which are abnormal growths with no risk. Removal of

these growths would gain nothing, but will consume a great resource.

Efforts have been devoted to differentiate H from adenomatous (A) (or neoplastic) polyps in

both OC and CTC fields by the measures of polyp size and surface characteristics, and the gain is

limited, e.g. in the studies (P. Pickhardt and D. Kim 2009, P. Pickhardt et al. 2013), where CTC

was performed for polyp screening and followed by OC to resect the found polyps, more than 20%

44

resections were hyperplastic. Fig. 6.1 illustrates five typical examples of polyps, of which two

are H and three are A polyps. From the screenshots of endoscopic views of these polyps, it is

clear the differentiation task is quite challenging if only the shape, surface property and size of

the polyps are considered. More information is needed.

 H H

 A A A

Fig. 6.1 An illustration of five typical polyps, which were randomly selected from the database

in this work. (H) – hyperplastic and (A) – adenomatous.

By the CTC screening, fully three-dimensional (3D) volume image data (also including the

size and surface characteristics) are readily available not only for the purpose of polyp detection

(by either human observer or computer observer–CADe) but also for the possibility of polyp

differentiation and other clinical tasks beyond the detection purpose. This study aims to explore

the feasibility of differentiating H from A polyps (by a computer-aided diagnosis–CADx

strategy) using texture features derived from the 3D volumetric data.

While many texture features have been extracted and applied for various clinical purposes, e.g.

(G. Castellano et al. 2004, C. Showalter et al. 2006, J. Yao et al. 2011), the feature extraction

method of Haralick et al. (R. Haralick et al. 1973) is attractive, because it gives a series of

texture measures about the image intensity correlations among the image pixels on an image

slice. Because of its attractiveness, efforts have been devoted to expand the Haralick’s method

from 2D domain into 3D space to compute the texture measures among the image voxels and

apply the 3D models for the CADe and CADx tasks (C. Philips et al. 2008, B. Song et al. 2014).

An important issue in the expansion is how to handle the spatial variation of computing the

texture measures from the 2D domain to the 3D space where the shapes and orientations of the

45

polyp volumes can change dramatically. This study presents a simple idea to handle this spatial

variation.

To our knowledge, most (if not all) texture features are derived from intensity images. In

producing the intensity images, various efforts have been devoted to smooth the image except at

the objects’ borders in the image, because of inconsistence in acquired data due to noise and

other measurement errors. During the piecewise smoothing, texture features would be sacrificed.

To compensate for this loss, we have proposed a way to amplify the textures, similar to the

spatial scale magnification in microscopy, by performing derivative operations on the intensity

image (B. Song et al. 2014). This study will incorporate the simple idea of derivative

amplification operations with the simple idea of handling spatial variation as an integrated

adaptive approach to extract the volumetric texture features for the ultimate goal of

differentiating H from A polyps.

The remainder of this paper is organized as follows. In Section II, a review of the Haralick

method and its expansion from 2D to 3D space is given, followed by a presentation of our

strategy of handling the 3D spatial variation. Then, a description of incorporating our texture

amplification strategy to extract texture features in the derivative space is detailed. In Section

III, experimental design for evaluating the extracted volumetric texture features is outlined and

the results are reported with comparison to the previous method. Finally, discussion and

conclusions are given in Section IV.

6.2 Methods

II.A. Review of the 2D Haralick Method for Texture Feature Extraction

In 1973, Haralick et al. introduced a method for texture feature extraction from 2D intensity or

gray-level image (R. Haralick et al. 1973). By this method, a co-occurrence matrix (CM) is first

defined and then applied to capture the gray-level correlations among resolution cells or image

pixels in a 2D image slice. In implementation, a total of 14 texture measures along a direction

through the image slice are calculated from the CM. The 14 texture measures are listed in (R.

Haralick et al. 1973). A total of four directions (0, 45, 90 and 135 degrees) are defined on the

image plane which are sufficient to span over the image slice, see Fig 6.2. Assuming a similarity

among the four directions, an average of each of the 14 measures over the four directions is

computed as the corresponding texture feature, resulting in a total of 14 mean features.

Additionally, the range of each of the 14 measures is also computed as another texture feature to

reflect spatial variation, resulting in a total of 14 range features. Thus, a total of 28 texture

features (14 means and 14 ranges) are obtained, which are usually called Haralick features in the

literature. The definition of the CM and the computation of the average and range over the

directions together reflect the core idea of the Haralick method. The core idea is called Haralick

model hereafter.

46

0
o
/180

o

90
o
/270

o

45
o
/225

o135
o
/315

o

center

θ

Fig. 6.2 Illustration of the 2D Haralick method for extraction of texture features with image

pixel size unit of d = 1 and four directions in an image slice.

II.B. Expansion of the Haralick Model from 2D to 3D Space

As mentioned above, because of the attractive nature in using the CM to capture the gray-level

correlations, a great effort has been devoted to expand the Haralick model from 2D plane domain

to 3D volume space (B. Song et al. 2014). Similar to the selection of the four directions (from

the 8 neighbors) in the 2D case of Fig. 6.2, a total of 13 directions (from the 26 neighbors) in the

3D space can be selected as shown by Fig. 6.3. Along each direction, 14 texture measures can be

computed using the CM as defined by the Haralick model. Using the same philosophy as the

Haralick model did, the average and range values of each of the 14 measures over the 13

directions can be computed as the 3D texture features, resulting in a total of 28 features (G.

Zhang et al. 2012). The computed mean and range features are called 3D-Haralick features

hereafter (in contrast to the 2D-Haralick features from a 2D image slice) or simply intensity

features. While the mean and range can reflect some degree of the spatial variation of the texture

measures along the 13 directions, a more adaptive strategy is desirable, e.g. Philips et al. (C.

Philips et al. 2008) analyzed the directional variation on the CM measures within the liver. In

this study, we explore an adaptive approach to extract and select the 3D texture features as

detailed in the section of Feature Extraction below, instead of taking the mean and range

features as the Haralick model did.

47

Fig. 6.3 The 3D resolution cells or image voxels for one center voxel in 13 directions. The

direction Ai (i=1, 2, …, 13) is equivalent to (x, y, z), which is a direction in the 3D coordinates.

The center point is A0 = (1.5, 1.5, 1.5) and the 13 arrows beginning from this point is

represented as A0+k* Ai, where k does not equals to 0.

II.C. Expansion of Volumetric Texture Measures

While the 14 texture measures of the Haralick model were designed to reflect some statistics or

information about the pixel and pixel correlation, more measures can be designed to reflect a

complete picture about the correlation. In this study, we introduce the following 16 new texture

measures, which can be computed from each CM in the 3D space. (It is noted that the

definitions of the notations in these new measures are the same as that of the 14 measures :

Feature number Description

15
,

max (,)
i j

f p i j 15. Maximum probability.

16
,

median (,)
i j

f p i j
16. Median probability.

17
,

firstquantile (,)
i j

f p i j
17. First quantile

probability

18
,

thirdquantile (,)
i j

f p i j 18. Third quantile

probability

 

2

2

1 1 1 1

19 2 2

(,) (,)
g g g gN N N N

i j i j

g g

p i j p i j

f
N N

   

 
 
  
 
  
 

 

19. Deviation of

probability.

20

1 1

(*) (,)
g gN N

i j

f i j p i j
 

 20. Autocorrelation.

0

2

4

-1
0 1

2
3

4

0

0.5

1

1.5

2

2.5

3

3.5

x

y

z

A1 = (1, 0, 0); A2 = (0, 1, 0); A3 = (0, 0, 1); A4

= (1, 1, 0);

A5 = (1, -1, 0); A6 = (1, 1, 1); A7 = (1, 0, 1); A8

= (1, -1, 1);

A9 = (0, -1, 1); A10 = (-1, -1, 1); A11 = (-1, 0, 1); A12

= (-1, 1, 1);

A13 = (0, 1, 1).

48

21

1 1

() (,)
g gN N

x y

i j

f i j p i j 
 

   
21. Cluster average.

2

22

1 1

() (,)
g gN N

x y

i j

f i j p i j 
 

   
22. Cluster variance.

3

23

1 1

() (,)
g gN N

x y

i j

f i j p i j 
 

   
23. Cluster shade.

4

24

1 1

() (,)
g gN N

x y

i j

f i j p i j 
 

   
24. Cluster prominence.

25

1 1

(,)
g gN N

i j

f i j p i j
 

  25.Dissimilarity.

26

(,)

1 / g

p i j
f

i j N


 
 26. Inverse difference.

27

(,)

1

p i j
f

i j


 

27.Homogeneity II.

 
28

2

max ,

HXY HXY
f

HX HY




 
1

2
29 (1 exp 2.0(1))f HXY HXY   

1

30

0

()
gN

x y

i

f ip i







 

28. Information measures

of correlation III.

29. Information measures

of correlation IV.

30. Difference average.

II.D. Texture Amplification

As mentioned above in the section of Introduction, when reconstructing the intensity images

from acquired noise data, especially low-dose CT data, efforts have been devoted to ensure

image smoothness except on the borders of objects in the image, sacrificing more or less textures

in the reconstructed images. Performing derivative operations across the intensity image, similar

to an amplification process, is a simple way to enhance or recover the textures. For example, in

the 1
st
 derivative or gradient image, the voxels on the border of an object will have maximal

values while the voxels within the object (or a very flat area) will have nearly zero values; and

other voxels will have values ranging from nearly zero to the maximum value. Intuitively, in the

2
nd

 and higher derivative images, those voxels on the gradient regions in the intensity image will

have non-zero values while others will have zero value. In this paper, we adopted our previous

study (B. Song et al. 2014) to include only the 1
st
- and 2

nd
- order derivative images to test our

adaptive approach to handle the spatial variation in extracting the 3D texture features. The

details of computing the derivative images are given in the reports (K. Engal et al. 2006, O.

Monga and S. Benayoun 1991). Fig. 6.4 shows the different texture pattern characteristics in the

three images of the original intensity, 1
st
- and 2

nd
- order derivatives about H and A polyps.

49

(H)

(A)

Fig. 6.4. An illustration of two different polyp types (of H and A) and their corresponding

endoscopic views and image slices, where the image slices are crossing the lines in the

endoscopic views, respectively. The sizes of the two polyps are around 10mm. The three slices

from left to right are intensity, gradient and curvature images.

Given the acquired 3D intensity image I, and the computed 1st-order derivative (or gradient)

image Ig and the 2nd-order derivative (or curvature) image Ic, the 3D-expanded texture feature

extraction can be performed as follows.

II.E. Feature Extraction

Given the 3D gradient and curvature images, we can compute the 30 texture measures (14

from Haralick et al. and 16 new ones from section II.C above) from the defined CM along each

direction in each image as we did for the intensity image (in section II.B above), resulting in a

vector of dimension of 2×30 = 60. By including the texture measures from the intensity image,

we obtain a vector of dimension of 3×30 = 90. Repeating the calculation along all the 13

directions, we obtain a total of 13 vectors with a dimension of 90. By adopting the Haralick

model of taking the average and range values of each of the 90 measures over the 13 directions

as the texture features, we obtain total of 180 3D-texture features. These 180 3D-texture features

(including 60 3D-Haralick features from the intensity image, 60 3D-features from the gradient

50

image -- named gradient features, and 60 3D-features from the curvature image, -- named

curvature features) are treated as the reference or baseline for comparison purpose in order to

show the gain by the proposed adaptive approach in this study.

As we mentioned above that because of the spatial variation of polyp shapes and orientations

in the 3D space, the average and range may not adequately reflect the entire volumetric texture

features if the polyp shape is deviated from a sphere (such deviation is common in reality).

Instead of computing the average and range of each texture measure over the 13 directions as the

3D-texture features, we would rather take an adaptive approach to address the spatial variation of

the calculated CM measures over the 13 directions for the volumetric texture features of each

polyp. In this exploratory study, we take the well-known principal component analysis, as an

example, to address the spatial variation. Specifically, we take the Karhunen–Loève (KL)

transform (R. Dony 2001) on the 13 vectors along the angular axis of the 13 directions. In the

KL domain, a new set of 13 directions (or 13 ordered eigenvectors) are obtained which are less

dependent on the 3D shape orientation of the polyp in the original 3D patent space. We

hypothesize that such adaptive approach will improve the feature extraction and analysis and,

therefore, improve the classification or differentiation performance. The experiments of this

study will be designed to test this hypothesis. In the KL domain, the volumetric texture features

are selected along the 13 ordered eigenvectors. More details on the KL transform procedure are

given below, followed by feature selection and classification.

The key procedure in the KL transform is to use an orthogonal transformation to convert a set

of observations into a new coordinate system with uncorrelated variables. In the new coordinate

system, the mean squared error between the given set of observations and their projections on the

new coordinates is minimized. Moreover, a high degree of redundant data is compressed into a

more compact form after the removal of the correlation between the observations. Suppose we

have M variables and each variable can be described by N observations. Let the observations be

represented as N column vectors,
1 2, , , Nx x x , each of which has M elements or variables,

making up the M row vectors. For this M×N matrix, named X, its covariance matrix, named T,

can be computed. Since T is a symmetric matrix, an eigen decomposition can be perform on the

matrix: T VDV  , where  is the transpose operator, D is a diagonal matrix with all the

eigenvalues of T and each column in V is the eigenvector correspond to the eigenvalue in D.

After the eigen decomposition, a new M×N matrix can be calculated, Y V X , which includes

N new observations
1 2, , , Ny y y described by M new variables.

For each polyp, the observations or the CM texture measures in our case are obtained on the 13

directions or variables, so M = 13. Along each direction, 30 texture measures are computed from

the intensity, gradient image and curvature images, respectively, so N = 3×30 = 90. If

considering only one image for feature selection and analysis, e.g. intensity image, gradient

image or curvature image, respectively, N = 30 (Int, Gra, or Cur). If considering two images, e.g.

intensity image+gradient image, or intensity image+curvature image, or gradient

51

image+curvature image, N = 60 (combinations of Int_Gra, Int_Cur, and Gra_Cur). If all the

three images are considered together, N = 90 (Int_Gra_Cur).

Since a main goal in this study is to explore adaptive approach to address the spatial variation,

instead of taking the average and range on the CM texture measures, therefore, our focus now is

on the KL-transformed CM texture measures. The gain by the KL transform is that the KL

operation relieves the correlation of the CM measures along the 13 directions. Without any a

priori knowledge on the spatial variation of the CM measures, we take the KL transformed CM

measures as our new volumetric texture features, and then develop a suitable feature selection

and classification strategy to analyze the more compact-formatted texture features for the

ultimate goal of differentiating hyperplastic from adenomatous polyps.

Finally, all the algorithms introduced in Chapter 4 will be tested here to show the improvement

based on each feature dataset.

II.F. Feature Selection and Classification

After the KL operation, we obtain a new set of features with dimension of 13×N. For single

image scenario N = 30, we have 390 features in 13 groups, and each group has 30 features. The

13 groups are called eigenvectors and are orderly arranged according to their eigenvalues in a

decreasing manner. For the scenario of two image combinations N = 60, we have 780 features in

13 groups, and each group or each eigenvector has 60 features. For the scenario of all three

image combined N = 90, we have 1,170 features in 13 groups, and each group or each

eigenvector has 90 features. For each scenario, we adopt the Random Forest (RF) strategy (L.

Breiman et al. 2001), which has the advantage in solving the problems without any a priori

knowledge on the problem, to select and classify the de-correlated and more compact-formatted

features.

II.F.1 Feature Selection

RF is a popular and efficient algorithm for classification and regression problems as described

by Breiman. Since the key problem in feature selection is the computation of the importance of

the features, the RF algorithm provides us a model which is not only efficient in computation but

also low over-fitting errors in accuracy.

In this application, we employ a function of the R-package “randomForest” [50] to construct

the “forest” and select the importance order on the tree notes. An average of the total decrease in

node impurities over all trees is computed, which is measured by the Gini impurity. According

to the CART algorithm in (L. Breiman et al. 1984), Gini impurity is a measure that reflects the

mislabeled rate of a random element in the set:

2

1 1

() (1) 1
m m

i i i

i i

GINI t p p p
 

     (6.1)

52

where
ip is the probability that element t is correctly labeled as i . Each time, the Gini impurity

of a node is greater than or equal to the sum of the Gini impurity of its two descendent nodes.

With this property, the importance of the node t is calculated as:

1 1

(,) (,)

Im()

n n

des

i i

GINI t i GINI t i

t
n

 




 

 (6.2)

where (,)GINI t i is the Gini impurity for node t of i -th tree, and
dest is the descendent nodes of t .

By the above RF-embedded feature selection, we rank the importance of each feature in a

decreasing order. The first feature in the order is most importance and the last one is least

importance by the importance measure of Eq.(6.2).

Starting from the first feature on the order, we add the next ranked important feature to have a

feature vector of dimension 2 and then perform classification on the feature vector to generate a

measure of area under the curve (AUC) of the receiver operating characteristic (ROC). By

repeating the two steps of (i) adding next ranked feature on the order into the current feature

vector and (ii) performing classification on the new feature vector of increased dimension (by 1)

until reaching the maximum dimension (i.e. all features in the order have been added together),

we obtain a plot of feature dimension vs. its corresponding AUC measure. From the plot, the

feature vector with largest AUC value is the best feature vector and its dimension is called

intrinsic dimension. The classification operation is detailed below.

II.F.2 Feature Classification

Similar as feature selection, the RF strategy can be adopted for feature classification. In this

study, we employ the R-package “randomForest” (A. Liaw and M. Wiener 2002) again to serve

the purpose of feature classification, called RF-embedded feature classification (M. Ma et al.

2014, B. Song et al. 2012). For each classification experiment, since we have divided the data

into training and testing datasets, we could build a classifier model with the training dataset

information and then evaluate the model by the testing dataset. More details are given below.

As mentioned above in the Abstract, in total we have 384 polyp samples (half of them will be

selected to be training set, i.e. 192 polyp samples of 26 H and 166 A), 390 features (in the

scenario of individual images: Int / Gra / Cur), 780 features (in the scenario of two image

combinations: Int_Gra / Int_Cur / Gra_Cur), and 1,170 features (in the scenario of all image

combined: Int_Gra_Cur) for each polyp. By dividing the 384 polyp samples as training (192

polyp samples) and testing (192 polyp samples) datasets (the corresponding features of these

samples are also divided), we first build up a RF model with the following parameters (1,000

trees and m features used in each tree):

53

_ 1000n trees

m M






 (6.3)

where M is the total number of features in a feature set, and then adjust the parameter mtry in (A.

Liaw and M. Wiener 2002) until the Out-of-bag error (OOB error) stabilize to a low value. Here

for each tree we only use a bootstrap sample set of the whole training dataset and the OOB error

could be calculated via the other part of the training dataset. The feature set is a feature vector,

selected from the features in the KL domain by the above described RF-embedded feature

selection.

After building the RF model of Eq.(6.3) with training dataset, we could generate a single

score (or posterior probability) for each test point based on the same RF model of Eq.(6.3) where

the feature set is the testing dataset. The final classification decision is obtained by a majority

vote law on all the classification trees (and an estimation of the probability of each class can also

be deduced by calculating the proportion of each decision on all the classification trees). It is

known that RF is an ensemble method and is constructed by a multitude of decision trees. Since

each single decision tree can generate a result (0 or 1) during the classification, the final score of

the test point will be decided by the votes (over all the trees in the forest).

Given the obtained scores, the ROC analysis can be used to obtain the AUC values for

quantitative evaluation of the classification. By performing the ROC analysis on the scores, we

can obtain the information about the best selection of feature subset and the highest AUC value

of classification in all the three scenarios. The experimental design and outcomes are reported

below.

6.3 Experimental Design and Results

III.A. Revision of the Original 14 Haralick Texture Measures

By examining the list of the original 14 Haralick texture measures, some discrepancies were

found. The corresponding corrections and modifications are then made as follows.

Firstly, two typographical errors may have occurred in the 7
th

 and 14
th

 measures. In the 7
th

measure of Sum of Variance,
2 2

7 82
() ()

gN

x yi
f i f p i


  was given in (R. Haralick et al. 1973).

It is obvious that the expectation of
6f in (R. Haralick et al. 1973) should be used for

2 2

7 62
() ()

gN

x yi
f i f p i


  , instead of the entropy measure of

8f in (R. Haralick et al. 1973). By

the 14
th

 measure of Maximum Correlation Coefficient,
1

* 2
14 (econd largest eigenvalue of)f s Q where

1

(,) (,)
(,)

() ()

gN

k x y

p i k p j k
Q i j

p i p k

 , in (R. Haralick et al. 1973), it would reflect the correlation between

the i-th row and the j-th column of the CM. Since the CM is symmetric, the correlation

54

coefficient matrix Q(.) should be a symmetric matrix. So, a correction is made such that

1

(,) (,)
(,)

() ()

gN

k x y

p i k p j k
Q i j

p i p j

 .

Secondly, for the 4
th

 measure of Sum of Squares or Variance,
, 2

4 , 1
() (,)

g gN N

i j
f i p i j


  , in

(R. Haralick et al. 1973), the definition of  is missing, which poses an ambiguity in the

interpretation of the “Variance”. Therefore, this measure is modified into a covariance measure

in (R. Haralick et al. 1973):
,

4 , 1
()() (,)

g gN N

x yi j
f i j p i j 


   .

III.B. Database for Experimental Studies

The above presented 3D volumetric texture features are extracted from the original intensity

and high-order (gradient and curvature) images of a CTC database of 352 scans from 176

patients. The patient studies were performed during the time period from 2009 to 2013 by a

standard CTC protocol (ACR 2005), i.e. a low-volume cathartic bowel preparation, oral fecal

tagging, without IV contrast, and multi-detector CT scanners in adherence. The image data were

acquired in helical mode with collimations of 1.0–3.0mm, pitch of 1–2, reconstruction intervals

of 1.0–1.5mm, and modulated tube current–time products of 50-200mAs and tube voltages of

80-120kVp. The indication for CTC was screening for CRC in all individuals. The protocol was

approved by appropriate ethical committee, and the studies were performed in accordance with

the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

All patients gave their informed consent prior to their inclusion in the study and their identities

were removed before the images were processed by the proposed texture extraction algorithms.

Each patient was scanned at two positions, e.g. supine and prone, resulting in total of 352 scans.

Due to some factors like the gravity, the two scans at supine and prone positions from the same

patient might incur some changes in polyp shape and size, and thus these two scans were

considered as two different datasets. The 352 scans include a total of 384 polyp datasets (polyp

sizes  8mm: 52 are H and the rest 332 are A polyps according to their path reports, where the

group A includes all types of adenomas: 32 serrated adenomas (SA), 200 tubular adenomas (TA),

67 tubulovillous adenomas (VA), 30 asenocarcinomas (AC) (C. Do et al. 2012). The clinical

task here is to differentiate the 52 H from the 332 A polyps.

III.C. Semi-automatic Operation for Volume of Interests

Before performing the CADx task of differentiating a polyp’s subtypes, that polyp should have

been detected by a radiologist expert or a CADe pipeline with labeled coordinate (x,y,z) of that

polyp in the CTC volume image data. For each detection with the labeled location (x,y,z), a

volume of interest (VOI) for that polyp was first obtained so that texture features can be

extracted from the VOI to determine its subtype. For that purpose, a semiautomatic technique,

similar to those reported procedures (P. Pickhardt et al. 2013), was applied to extract the VOI.

55

The semiautomatic technique can be outlined as follows. Firstly the detected polyp is roughly

outlined manually on the 2D image slices according to the reported detection location (x,y,z)

using a software, e.g. the CTC software (V3D Colon, Viatronix Inc., Stony Brook, NY, USA),

and then an automatic air-cleaning algorithm, which is based on the segmentation results, is

applied to the outlined volume to remove air voxels for an air-free 3D polyp VOI. Fig. 6.5

illustrates an example where the steps for the VOI extraction are shown. From the obtained VOI,

texture features are extracted as described above.

 a b c

Fig. 6.5. Steps for semi-automatic extraction of VOI: (a): A report of polyp detected by a

radiologist or a CADe algorithm (indicated by an arrow). (b): An endoscopic view of the polyp

illustrated using the CTC software (V3D Colon, Viatronix Inc., Stony Brook, NY, USA). (c): A

manual outline of the polyp on a 2D image slice (green circle), where the air voxels (red part

within the outlines circle) is removed by our automatic air-cleaning algorithm.

III.D. Experimental Outcome

In this section, we will first evaluate the RF-embedded feature selection and then perform the

RF-embedded feature classification on the newly extracted volumetric texture features with

comparison to the baseline (or reference) volumetric texture features.

III.D.1. Performance of Feature Selection

From the Haralick’s original 14 and the newly presented 16 texture measures in section II.C

above, we have the baseline texture measures or pre-KL texture measures:

(1) 13×30 = 390 texture measures from the intensity image (Int); 390 measures from the

gradient image (Gra), and 390 measures from the curvature image (Cur);

(2) 2×390 = 780 measures from each combinations of Int_Gra, or Int_Cur, or Gra_Cur;

(3) 3×390 = 1,170 measures from the combination of all the three images (Int_Gra_Cur).

The above pre-KL texture measures are also called pre-KL texture features hereafter. By

computing the mean and range values of the above baseline measures over the 13 directions as

the Haralick texture features, we have:

(1) 60 Haralick texture features from each of the images, Int, Gra, or Cur;

(2) 120 Haralick texture features from each combination of Int_Gra, or Int_Cur, or Gra_Cur;

56

(3) 180 Haralick texture features from the combination of all the three images (Int_Gra_Cur).

By applying the KL transform on the above baseline measures (or pre-KL texture features)

along the 13 directions, we have the following corresponding features in the KL domain or post-

KL texture features:

(1) 390 post-KL texture features from each of the images, Int, Gra, or Cur;

(2) 780 post-KL texture features from the combinations of Int_Gra, or Int_Cur, or Gra_Cur;

(3) 1,170 post-KL features from the combination of all the three images (Int_Gra_Cur).

Since there is no prior information on the ordering of the pre-KL texture features, the RF-

embedded feature selection was performed randomly without any preference on any feature.

After performing the selection, the features are ranked by their importance in a decreasing order

for the three scenarios above: (1) 390 features for each individual image, (2) 780 measures for

each two-image combination; and (3) 1,170 measures for all three image combination. For the

post-KL features, the above presented RF-embedded feature selection was performed in the same

way as in the selection of the pre-KL features.

To show the performance of the ranked features, different feature sets or feature vectors were

selected along the ordering, as described by the last paragraph of section II.F.1. The division of

training and testing datasets was randomized 100 times for the purpose of increasing statistical

confidence or minimizing the “random” (or statistical variation). In the division, the H and A

polyps were equally distributed in training and testing sets, which means that the number of H

and A polyps were the same in both datasets, respectively. Moreover, for each randomized case,

which is one of 100 independent experiments, the training dataset was only used for feature

selection and modeling, and the testing dataset was used for evaluation. Then the above

presented RF-embedded classification in section II.F.2 was applied to each randomized case.

The 100 classification outcomes were averaged for the final result. The final results can be

plotted as a ROC curve for that selected feature set. The AUC value under that ROC curve is

usually taken as a quantitative measure on the classification performance and, therefore, was

used to indicate the quantitative measure on the repeated experimental outcomes. After all

feature sets are processed, a plot can be drawn for the relationship between the AUC values and

the selected feature sets. The plot is expected to increase from the feature set of smallest number

of features (usually 1) up to reaching a peak at an optimal number of features (called intrinsic

feature dimension), and then the plot generally drops down until the total feature set (including

all features) was used. The higher the plot peak is, the richer the information embedded inside

the features.

57

Fig. 6.6. Plots of AUC values vs. selected number of features, which were ordered by the RF-

embedded feature selection.

0 10 20 30 40 50 60
0.55

0.6

0.65

0.7

0.75

Int

Number of features added

A
U

C
 v

a
lu

e

Post-KL features

Haralick features

Pre-KL features

0 10 20 30 40 50 60

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

Gra

Number of features added

A
U

C
 v

a
lu

e

Post-KL features

Haralick features

Pre-KL features

0 10 20 30 40 50 60
0.55

0.6

0.65

0.7

0.75

0.8

Cur

Number of features added

A
U

C
 v

a
lu

e

Post-KL features

Haralick features

Pre-KL features

0 20 40 60 80 100 120
0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

Number of features added

A
U

C
 v

a
lu

e

IntGra

Post-KL features

Haralick features

Pre-KL features

0 20 40 60 80 100 120
0.65

0.7

0.75

0.8

IntCur

Number of features added

A
U

C
 v

a
lu

e

Post-KL features

Haralick features

Pre-KL features

0 20 40 60 80 100 120

0.66

0.68

0.7

0.72

0.74

0.76

GraCur

Number of features added

A
U

C
 v

a
lu

e

Post-KL features

Haralick features

Pre-KL features

0 20 40 60 80 100 120 140 160 180
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Number of features added

A
U

C
 v

a
lu

e

IntGraCur

Post-KL features

Haralick features

Pre-KL features

58

Fig. 6.6 shows the RF-embedded feature selection performance on the pre-KL features, the

Haralick features (i.e. the mean and range over the 13 directions), and the post-KL features for

three scenarios: (1) individual images of Int, Gra or Cur; (2) two image combinations of IntGra,

IntCur, or GraCur; and (3) all three images together of IntGraCur. For each scenario, the

performances of the three feature extraction methods were compared as shown by Fig. 6.6. It is

observed that the performances of the three methods diversified quickly along the ordered

feature sets. All the curves started by increasing the AUC value and then decreased the AUC

value after reaching their maximum at the peak. This outcome indicates that the RF selection is

effective. Except for the Gra feature set, the curves of the post-KL features are always on the top.

Furthermore, the post-KL features reached higher AUC values than the other two types of the

pre-KL features and the Haralick features in all the three scenarios of individual images and

combinations of multiple images. This experimental outcome indicates the gain by the proposed

adaptive approach to addressing the spatial variation of polyp volume orientation in the patient

space and the texture amplification of CT images. The pre-KL features did not perform better

than the Haralick features for a possible reason that the latter have much small number of

features for classification (a gain in curse of dimensionality and computing efficiency). In other

words, the texture measures from the 13 directions are correlated, and the selection of the mean

and range of the texture measures over the 13 direction as the features is a reasonable choice.

However, the simple KL operation is shown to be much better than the selection of the mean and

range.

III.D.2. Performance of Feature Classification

The procedure of feature classification was described in the section II.F.2 above.

Table 6.1 shows the average classification results (AUC values) over 100 runs of the features

extracted from the three methods. An obvious improvement of classification accuracy after

considerations of the polyp orientation variation by the KL transform and the texture

amplification by the derivative operation is seen for all the three scenarios of individual image

and combinations of images. Moreover, a significant test was performed as shown in Table 6.2

by comparing the AUC values with and without considerations of the polyp orientation variation

and texture amplification, where all of the P-values are <0.05, indicating that the proposed

feature extraction model is significantly better than the Haralick feature extraction model. From

Table 6.1, it can be seen that the gain by the use of the KL transform for the polyp orientation

variation is (0.8016-0.7553)/0.7553=6% over the Haralick’s average method. The gain by the use

of the derivative operations for texture amplification is (0.8016-0.7288)/0.7288=10% for the KL

transformed features. The performance in differentiating non-risk group (H) from the risk group

(A) reached an AUC value of 0.8016 by the proposed adaptive approach.

TABLE 6.1. Averaged AUC information of the 100 runs before and after KL-transform

59

Group AUC information

 Pre-KL Features Haralick Features Post-KL Features

Intensity 0.6716±0.0399 0.7105±0.0334 0.7288±0.0404

Gradient 0.6789±0.0384 0.7244±0.0348 0.7339±0.0368

Curvature 0.7057±0.0421 0.6693±0.0394 0.7369±0.0377

Int_Gra 0.7346±0.0369 0.7414±0.0443 0.7613±0.0393

Int_Cur 0.7330±0.0369 0.7421±0.0379 0.7862±0.0399

Gra_Cur 0.7082±0.0351 0.7270±0.0343 0.7528±0.0401

Int_Gra_Cur 0.7487±0.0436 0.7553±0.0377 0.8016±0.0352

 Format: mean ± standard deviation

TABLE 6.2: Wilcoxon signed-rank test between the AUC of the post-KL features and the

corresponding pre-KL and Haralick features

Post-KL

features
Int Gra Cur Int_Gra Int_Cur Gra_Cur Int_Gra_C

ur
Haralick

features
<<0.05 0.0176 <<0.05 <<0.05 <<0.05 <<0.05 <<0.05

Pre-KL

features
<<0.05 <<0.05 <<0.05 <<0.05 <<0.05 <<0.05 <<0.05

The p-value is the result of the Wilcoxon signed-rank test because the normality

assumption for t-test is not hold.

Since all the three feature extraction methods can reach their peak AUC values, their

corresponding averaged ROC curves are plotted as shown by Fig. 6.7. The threshold averaging

or operating point selection strategy was used to obtain the curves (T. Fawcett 2006, B. Song et

al. 2014). The curves are consistent with the AUC values in Table 6.1. From these curves, it is

seen that the post-KL features reached a higher sensitivity value, under the same specificity, than

the other two methods. That is to say, the post-KL features could provide a better classification

result than the other two methods.

60

Fig. 6.7. The averaged ROC curves of the results from the three methods corresponding to their

highest AUC values.

From the average ROC curves, different sensitivity-specificity paired values can be generated.

Table 6.3 shows the average specificity levels for different fixed sensitivity levels and feature

groups, based on the 52 H polyps and the 332 A polyps. For example, if we choose 0.75

sensitivity level for the post-KL feature group, its corresponding specificity will reach 0.6859.

As a result, by employing a simple RF classifier, the number of correctly classified A polyps is

249 (of 332) and the number of H polyps is 35.67 (of 52) on an average. It is obvious that a

higher specificity with the post-KL features can be always achieved for each fixed sensitivity

value in the table, which indicates that the post-KL features do perform better than the other two

feature extraction methods.

TABLE 6.3. Sensitivity-specificity pairs corresponding to the averaged ROC curves of the

three methods in Fig. 6.7.

Group Corresponding specificity with different sensitivity

level

 Sen=0.6 Sen=0.7 Sen=0.8 Sen=0.9

Post-KL features 0.8533 0.7509 0.6123 0.3955

Haralick features 0.8196 0.7009 0.5375 0.2884

Pre-KL features 0.7839 0.6594 0.4891 0.2865

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Average ROC curves

1-Specificity

S
e
n
s
it
iv

it
y

Post-KL features

Pre-KL features

Original measures

61

TABLE 6.4: Averaged AUC information of the 100 runs before and after KL-transform

Group AUC information

 Pre-KL

Features

Haralick Features Post-KL Features

Intensity 0.6295±0.0355 0.6855±0.0387 0.6998±0.0443

Gradient 0.6664±0.0329 0.7188±0.0376 0.7354±0.0421

Curvature 0.6544±0.0430 0.6376±0.0456 0.6801±0.0384

Int_Gra 0.7358±0.0388 0.7442±0.0410 0.7454±0.0379

Int_Cur 0.7300±0.0377 0.7389±0.0360 0.7601±0.0436

Gra_Cur 0.7021±0.0391 0.7005±0.0368 0.7436±0.0421

Int_Gra_Cur 0.7415±0.0351 0.7538±0.0383 0.7723±0.0413

 Format: mean ± standard deviation

In addition to the above investigations on the variation of polyp orientations and the texture

amplification for the low tissue contrast CT images, we further performed experiments to show

the gain by the 16 new texture measures of section II.C. The results are illustrated in Table 6.4,

which have the similar notations as Table 6.1. The highest AUC values are shown in Table 6.5.

TABLE 6.5. Highest averaged AUC information of the 100 runs

 Post-KL

features

Haralick

features

Pre-KL

features

30 measures 0.8016 0.7553 0.7487

14 measures 0.7723 0.7538 0.7415

By comparing Table 6.1 and Table 6.4, we can see that most of the feature sets have some

gains by adding the 16 new texture measures into the corresponding feature sets. Using the post-

KL feature extraction method as an example, the gain is (0.8016-0.7723)/0.7723=3.8% . The p-

value under the Wilcoxon signed-rank test is less than 0.05, which indicates that adding the 16

new texture measures could provide more information than the original 14 texture measures.

TABLE 6.6. Algorithms comparison about the averaged AUC information of the 100 runs

 SVM RF LI LIRF LI forest

KL 0.7345 0.8016 0.7821 0.8087 0.7904

Haralick 0.6584 0.7553 0.7582 0.7689 0.7628

 The results in Table 6.6 shows that we obtain the best classification result with the LIRF. In the

meantime, both of the LI forest results are better than the LI result, as well as the time-

consuming.

62

6.4 Discussion and Future Work

The spatial variation of polyp volume in the patient space is a common situation, thus an

adaptive approach to address the variation is desired. The use of KL transform to address the

variation in this exploratory study is just a simple example. Similarly, image reconstruction

usually takes some penalties to smooth data noise, resulting in some loss of textures. The use of

the derivative operation to amplify the textures is another simple example. Extracting more

texture measures from the polyp volume is always desired. The addition of the 16 new texture

measures in this study has shown a noticeable gain. Exploring other strategies for the spatial

variation, texture amplification and extraction of more new texture measures are our future

research interests.

Since screening the large population is the main purpose of developing CTC, the newly

proposed technologies above remain the same screening purpose while aiming to advance the

current CTC paradigm of detection-only capability to a new paradigm of not only detection but

also characterization of the detections. By deviating from the screening purpose, efforts have

been devoted to differentiating neoplastic from non-neoplastic lesions (polyps and masses) by

the use of intravenous (IV) contrast-enhanced CTC protocol (F. Ng et al. 2013). The gain by the

IV-contrast-enhanced CT image textures is at the cost of the complication of IV related

procedure, which would compromise the screening purpose. An alternative attempt of gaining

more CT image texture information is to use energy spectral CT (EsCT) (B. Schaeffer et al. 2014)

at the cost of increased radiation dose to the patient. Reducing the dose while retaining the EsCT

image textures has been a topic of our research interests (Y. Liu 2014).

The database in this study includes polyps of size 8mm and larger. The size threshold of 8mm

was chosen because it is currently believed to be clinically desired (P. Pickhardt and D. Kim

2009). Ideally, we would like to perform the classification on polyps with different size ranges,

such as from (a) 5mm to 10mm, (b) 10mm to 15mm, (c) 15mm to 20mm, (d) 20mm to 30mm,

and (e) 30mm and larger, where the size could be included as a feature in the feature set.

Increasing the number of polyps and performing the classification on different polyp size ranges

are another research interest of our future research effort.

By current CTC protocol, a patient is usually scanned at two positions of supine and prone,

resulting in two sets of image data. Because the body turns over from supine to prone position,

the entire colon changes significantly in shape, orientation and size due to mainly the gravity.

Since the two image datasets are two statistically independent observations from a source, which

changes significantly, researchers in the CTC field usually treat the varying source in the two

datasets as two different sources, particularly when the number of sources is small (i.e. small

sample size). In theory, there may be some bias in treating the same source as two different ones

in the situation. However, for bi-classification, this concern would be relieved because the

sample numbers of both hyperplastic and adenomatous polyps are doubled and the relative bias

63

would be small. This hypothesis would be tested when the number of sources (or sample size) is

large. This is one of our future research topics.

The simplicity and effectiveness of RF decision are attractive in theory and applications. In

this study, RF was used for feature selection and classification separately. Integrating RF with

ROC analysis for simultaneous feature selection and classification is another research interest of

our future research effort.

6.5 Conclusion

 In this chapter, we first introduced some new texture measures according to the Haralick’s 3D

model, and then took the well-known principal component analysis or KL transform, as an

example, to explore an adaptive idea to address the spatial variation of polyp volume orientation

in the patient space, and further integrated a mathematical derivative operation, as an example,

for texture amplification to address the compromise of texture loss due to noise smoothing in

many state-of-the-art CT image reconstruction algorithms. While the adaptive ideas and the

tools (of mathematical derivatives, KL transform and two innovative classification methods)

used to realize the ideas for enhancing textures and stabilizing spatial variations are simple, their

impacts to the clinical task of differentiating hyperplastic from adenomatous polyps are

significant as evidenced by the above reported experiments, which rendered a gain in AUC value

(i) from 0.7723 to 0.8087 by addition of 16 new texture measures; (ii) from 0.7553 to 0.8087 by

the variation stabilization operation; (iii) from 0.7288 to 0.8087 by the texture amplification

operation; (iv) from 0.8016 to 0.8087 by LIRF classifier. The differentiation capability of AUC

= 0.8087 indicates quantitatively the feasibility of advancing CTC toward personal healthcare for

preventing colorectal cancer. The ideas can be applied to other applications, such as

differentiation of lung nodule malignancy.

64

Selected Publications

 Hu Y, Liang Z, Song B, Han H, Pickhardt P, Zhu W, Zhang H Barish M and Lascarides C

(2016). "Texture feature extraction and analysis for polyp differentiation via computed

tomography colonography.'' IEEE Transactions on Medical Imaging, DOI:

10.1109/TMI.2016.2518958, in press.

 Hu Y, Han H, Pickhardt P, Zhu W, and Liang Z (2015). " New Texture Features for

Improved Differentiation of Hyperplastic Polyps from Adenomas via Computed

Tomography Colonoscopy.'' IEEE Nuclear Science Symposium and Medical Imaging

Conference Record.

 Zhang H, Han H, Liang Z, Hu Y, Liu Y, Moore W, Ma J, and Lu H (2015). "Extracting

information from previous full-dose CT scan for knowledge-based Bayesian reconstruction

of current low-dose CT images.'' IEEE Transactions on Medical Imaging, DOI:

10.1109/TMI.2015.2498148, in press.

 Ma M, Li L, Han H, Hu Y, Gu D and Liang Z (2015), “Adaptive kernel based multiple

kernel learning for computer-aided polyp detection in CT colonography,” Geometry,

Imaging and Computing, vol. 2, no. 1, pp. 23-45.

 Hu Y, Song B, Zhu W, and Liang Z (2015). "An integrated classifier for computer-aided

diagnosis of colorectal polyps based on random forest and location index strategies" Proc.

SPIE Medical Imaging, in press. (oral)

 Hu Y, Song B, Pickhardt P, and Liang Z (2014). "Distance weighted 'inside disc' classifier

for computer-aided diagnosis of colonic polyps" Proc. SPIE Medical Imaging, vol.9414.

(oral)

65

Bibliography

American College of Radiology (ACR) (2005), “ACR practice guideline for the performance of

CTC in adults”, ACR Practical Guideline, 29: 295-298

American Cancer Society (ACS) (2014), “Cancer facts & figures 2014”, ACS, Atlanta, 2014.

S. Arlot and A. Celisse (2010). "A Survey of Cross-validation Procedures for Model

Selection." Statistics Surveys, 4: 40-79.

K. Bennett and E. Bredensteiner (2000), “Duality and geometry in svm classifiers”, Proceedings

of the 17th International Conference on Machine Learning, 57-64.

C. Bishop (2006), “Pattern Recognition and Machine Learning”, New York: Springer

B. Boser, I. Guyon and V. Vapnik (1992), “A training algorithm for optimal margin classifiers”,

Proceedings of the Fifth Annual Workshop of Computational Learning Theory, 5: 144–152

L. Breiman, J. Friedman, R. Olshen and C. Stone (1984). “Classification and regression trees”,

Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software

L. Breiman (1996), "Bagging Predictors", Machine Learning, 24(2): 123-40.

G. Castellano, L. Bonilha, L. Li, and F. Cendes (2004), “Texture analysis of medical images”,

Clinical Radiology, 59(12): 1061-1069.

C. Cortes and V. Vapnik (1995), “Support vector networks”, Machine Learning, 20:273–297

T. Cover and P. Hart (1967), “Nearest neighbor pattern classification”, IEEE transactions on

Information Theory, 13.

C. Do, C. Bertrand, J. Palasse, et al. (2012), “A new biomarker that predicts colonic neoplasia

outcome in patients with hyperplastic colonic polyps,” Cancer Prevention Research, 5: 675-684.

K. Engel, M. Hadwiger, J. Kniss, et al. (2006), Real-Time Volume Graphics, A K Peters, Ltd,

Wellesley, MA.

66

T. Fawcett (2006), “An introduction to ROC analysis”, Pattern Recognition Letters, 27: 861-

874.

J. Friedman (1991), “Multivariate adaptive regression splines (with discussion)”, Annals of

Statistics, 19: 1–141.

C. Gini (1912), “Variabilita e mutabilita”, Studi Economico-Giuridici Fac. Giuris- prudenza

Univ. Cagliari, A. III, parte II.

I. Goodfellow, Y. Bengio, and A. Courville (2015), “Deep Learning”.

R. Haralick, K. Shanmugam, and I. Dinstein (1973), “Textural features for image classification”,

IEEE Transactions on Systems Man and Cybernetics, 3(6): 610-621.

Y. Hu, B. Song, P. Pickhardt and Z. Liang (2014). "Distance weighted 'inside disc' classifier for

computer-aided diagnosis of colonicpolyps" Proc. SPIE Medical Imaging, vol.9414.

Y. Hu, B. Song, M. Ma and Z. Liang (2014). "A mixture classifier for computer-aided diagnosis

of polyp malignancy for CT colonography." IEEE Nuclear Science Symposiumand Medical

Imaging Conference Record.

Y. Hu, B. Song, W. Zhu and Z. Liang (2015). " An integrated classifier for computer-aided

diagnosis of colorectal polypsbasedon random forest and location index strategies" Proc. SPIE

Medical Imaging.

Y. Hu, H. Han, P. Pickhardt, W. Zhu and Z. Liang (2015). " New Texture Features for Improved

Differentiation of Hyperplastic Polyps from Adenomas via Computed Tomography

Colonoscopy.'' IEEE Nuclear Science Symposium and Medical Imaging Conference Record.

C. Johnson, M. Chen, A. Toledano, et al. (2008), “Accuracy of CTC for detection of large

adenomas and cancers”, New England Journal of Medicine, 359(12): 1207-1217.

G. Kass (1980), “An exploratory technique for investigating large quantities of categorical

data”, Applied Statistics, 29(2):119-127.

H. KUHN and A. TUCKER (1951), "Nonlinear Programming", Proceedings of the Second

Berkeley Symposium on Mathematical Sta- tistics and Probability, 481-492

Z. Liang and R. Richards (2010), “Virtual colonoscopy v.s. optical colonoscopy”, Expert

Opinion on Medical Diagnostics Journal, 4(2): 149-158 (

http://informahealthcare.com/toc/edg/4/2).

A. Liaw and M. Wiener (2002), “Classification and regression by randomForest”, R

News, 2: 18–22.

http://informahealthcare.com/toc/edg/4/2

67

D. Lieberman, J. Holub, G. Eisen, et al. (2005), “Prevalence of polyps greater than 9 mm in a

consortium of diverse clinical practice settings in the United States”, Clinical Gastroenterology

and Hepatology, 3(8): 798-805.

Y. Liu (2014), “Image reconstruction theory and implementation for low-dose CT”, Ph.D

Dissertation, Stony Brook University, NY, USA.

M. Ma, B. Song, Y. Hu, X. Gu, and Z. Liang (2014), “Random forest based computer-aided

detection of polyps in CTC”, Conference Record of IEEE NSS-MIC, in CD-ROM.

J. Mercer (1909), “Functions of positive and negative type and their connection with the theory

of integral equations”, Philosophical Transactions of the Royal Society, London A 209: 415-446.

T. Mitchell (1997), “Machine Learning”, New York: McGraw-Hill.

O. Monga and S. Benayoun (1991). “Using partial derivatives of 3D images to extract typical

surface features”, Computer vision and image understanding, pp. 171-189.

F. Ng, B. Ganeshan, R. Kozarski, et al. (2013), “Assessment of primary colorectal cancer

heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a

biomarker of 5-year survival”, Radiology, 266(1): 177-184.

C. Philips, D. Li, D. Raicu, J. Furst (2008), “Directional invariance of co-occurrence matrices

within the liver”, Intl Conf on Biocomputation, Bioinformatics, and Biomedical Technologies, in

CD-ROM.

P. Pickhardt, B. Levin, and J. Bond (2008), “Screening for nonpolypoid colorectal neoplasma”,

Journal of the American Medical Association, 299(23): 2743-2744.

P. Pickhardt and D. Kim (2009), “CRC screening with CTC: key concepts regarding polyp

prevalence, size, histology, morphology, and natural history”, American Journal of

Roentgenology, 193(1): 40-46. doi: 10.2214/AJR.08.1709.

P. Pickhardt, D. Kim, B. Pooler, et al. (2013), “Assessment of volumetric growth rates of small

colorectal polyps with CTC: a longitudinal study of natural history”, Lancet Oncology, 14(8):

711-720.

R. Quinlan (1993), “C4.5: Programs for Machine Learning”, Morgan Kaufmann

R. Quinlan (1986), “Induction of Decision Trees”, Machine Learning, 1(1): 81-106.

B. Schaeffer, T. Johnson, T. Mang, et al. (2014), “Dual-energy CTC for preoperative ‘one-stop’

staging in patients with colonic neoplasia”, Academic Radiology, 21(12): 1567-1572.

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Lieberman%20DA%22%5BAuthor%5D&itool=Email.EmailReport.Pubmed_ReportSelector.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Holub%20J%22%5BAuthor%5D&itool=Email.EmailReport.Pubmed_ReportSelector.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Eisen%20G%22%5BAuthor%5D&itool=Email.EmailReport.Pubmed_ReportSelector.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://dl.acm.org/citation.cfm?id=637969&CFID=684212754&CFTOKEN=50330418

68

C. Showalter, B. Clymer, B. Richmond, and K. Powell (2006), “Three-dimensional texture

analysis of cancellous bone cores evaluated at clinical CT resolutions”, Osteoporos Int., 17: 259-

266.

B. Song, G. Zhang, H. Lu, et al. (2014), “Volumetric texture features from higher-order images

for diagnosis of colon lesions via CTC”, International Journal of Computer Assisted Radiology

and Surgery, 9: 1021-1032.

B. Song, G. Zhang, W. Zhu, and Z. Liang (2012), “A study on random forests for computer-

aided detection in CTC”, The 26
th

 Intl Congress and Exhibition on Computer Assisted Radiology

and Surgery (CARS), Intl. J. CARS, vol. 7, (Suppl): pp. S273.

B. Song, G. Zhang, W. Zhu, Z. Liang (2014), “ROC operating point selection for classification

of imbalanced data with application to computer-aided polyp detection in CTC”, International

Journal of Computer Assisted Radiology and Surgery, 9: 79-89.

S. Stehman (1997). "Selecting and interpreting measures of thematic classification

accuracy", Remote Sensing of Environment, 62 (1): 77–89.

SVM lecture notes: http://cs229.stanford.edu/notes/cs229-notes3.pdf

V. VAPNIK and A. CHERVONENKIS (1964), “A note on one class of

perceptrons”, Automation and Remote Control, 25.

S. Vijayakumar (2007). "The Bias–Variance Tradeoff", University Edinburgh Lecture notes.

D. Wolpert and W. Macready (1997). "No Free Lunch Theorems for Optimization", IEEE

Transactions on Evolutionary Computation, 1(1): 67-82.

J. Yao, A. Dwyer, and D. Mollura (2011), “Computer-aided diagnosis of pulmonary infections

using texture analysis and support vector machine classification”, Academic Radiology, 18(3):

306-314.

G. Zhang, B. Song, H. Zhu, Z. Liang (2012), “Computer-aided diagnosis in CTC based on bi-

labeled classifier”, The 26
th

 Intl Congress and Exhibition on Computer Assisted Radiology and

Surgery, Intl. J. CARS, vol. 7 (Suppl): pp. S274.

http://cs229.stanford.edu/notes/cs229-notes3.pdf
http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf

