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Abstract of the Dissertation

Complexity Estimates and Reductions to Discounting
for Total and Average-Reward Markov Decision Processes and
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by

Jefferson Huang

Doctor of Philosophy

in

Applied Mathematics and Statistics

(Operations Research)

Stony Brook University

2016

Recently there has been a resurgence of interest in the complexity of
algorithms for Markov decision processes (MDPs) and stochastic games.
Much of this work was inspired by recent groundbreaking results on the
complexity of policy iteration algorithms for MDPs under the Blum-Shub-
Smale (BSS) model of computation. In particular, for discounted MDPs
with a fixed discount factor, Yinyu Ye showed that the number of arith-
metic operations needed by two classic variants of policy iteration can be
bounded above by a polynomial in the number of state-action pairs only.

A natural question is whether a similar complexity estimate exists for
the value iteration algorithm, which is another classic approach to com-
puting optimal policies for MDPs. Our first main contribution is a nega-
tive answer to this question. Using a deterministic MDP with four state-
action pairs, we show that under the BSS model there is no upper bound
on the number of iterations needed by value iteration to return an opti-
mal policy. We also show that the same example implies the same result
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for a broad class of so-called optimistic policy iteration algorithms, which
includes algorithms of interest to the reinforcement learning community
such as λ-policy iteration and modified policy iteration.

Another natural question is whether Ye’s approach can yield results
for MDPs under other optimality criteria. Our second main contribution
is a formulation of conditions, which to our knowledge are the most gen-
eral ones known, under which MDPs and two-player zero-sum stochastic
games with Borel state and action spaces can be reduced to discounted
ones. For undiscounted total-reward MDPs and stochastic games, the
transformations we formulate are based on an idea due to Alan Hoffman.
For average-rewards, the transformations are extensions to Borel state and
action spaces of one proposed recently for finite stochastic games. In ad-
dition to implying the existence of ε-optimal policies for total and average
rewards, these reductions lead to estimates of the number of arithmetic
operations needed to compute optimal policies for such models with fi-
nite state and actions sets, as well as complexity estimates for computing
ε-optimal policies for MDPs with Euclidean state and action spaces.
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Preface

Recently there has been a resurgence of interest in the complexity of
algorithms for Markov decision processes (MDPs) and stochastic games;
the latter can be viewed as a generalization of the former to allow for mul-
tiple decision-makers. Much of this work was inspired by Yinyu Ye’s [121]
groundbreaking results on the complexity of policy iteration algorithms
for MDPs under the Blum-Shub-Smale (BSS) model of computation. In
particular, for discounted MDPs with a fixed discount factor, Ye showed
that two classic variants of policy iteration run in polynomial time un-
der the BSS model. This answers an important special case of the more
general question of whether there is an algorithm for linear programming
that runs in polynomial time under the BSS model. The latter is a long-
standing open problem in optimization and complexity theory; see e.g.
Tardos [109] and Smale [108]. Hansen et al. [51] subsequently showed via
a refinement of Ye’s analysis that two-player zero-sum stochastic games of
perfect information can also be solved in polynomial time under the BSS
model, using a game-theoretic generalization of policy iteration.

A natural question is whether a similar complexity estimate exists for
the value iteration algorithm, which is another classic approach to com-
puting optimal policies for MDPs and stochastic games. The first main
contribution of this dissertation is a negative answer to this question. In
fact, using a deterministic MDP with four state-action pairs, we show that
under the BSS model there is no upper bound (polynomial or otherwise)
on the number of iterations needed by the value iteration algorithm to re-
turn an optimal policy. We also show that the same example implies an
analogous result for a broad class of so-called optimistic policy iteration
algorithms, which are designed to combine advantageous aspects of both
value and policy iteration. This class includes algorithms of interest to the
reinforcement learning community, such as λ-policy iteration and modi-
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fied policy iteration.
Another natural question is whether Ye’s approach can lead to results

for MDPs under other optimality criteria. The second main contribution of
this dissertation is motivated by the idea, which has been known since the
1960s, that certain undiscounted total-reward and average-reward MDPs
can be reduced to discounted ones. We provide conditions, which to our
knowledge are the most general ones known, under which MDPs and
two-player zero-sum stochastic games with Borel state and action spaces
can be reduced to discounted ones. For undiscounted total-reward MDPs
and stochastic games, the transformation that we formulate is based on an
idea that Pete Veinott [115] attributed to Alan Hoffman. For the average-
reward criterion, the transformation is an extension to Borel state and ac-
tion spaces of a transformation proposed by Akian & Gaubert [1]. These
reductions lead, via recent work on discounted MDPs, to estimates of the
number of arithmetic operations needed to compute optimal policies for
MDPs and games with finite state and actions sets, as well as ε-optimal
policies for MDPs with Euclidean state and action spaces.

For transient MDPs and games with transition kernels that are not nec-
essarily substochastic, we also provide model formulations that allow for
randomized history-dependent policies. To our knowledge, this has not
been done rigorously before. Application areas of such models include
pursuit-evasion games [88] and controlled branching processes [90].
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Chapter 1

Model Description & Literature
Survey

In this introductory chapter, we set the notation to be used in the se-
quel for the decision models that we will consider, and provide a review of
relevant literature. In Section 1.1, we define the Markov decision process
(MDP) (Section 1.1.1) and stochastic game (Section 1.1.2) models. In Sec-
tion 1.2, we review the literature on the computational complexity of ob-
taining optimal policies for MDPs and stochastic games, including work
on both upper bounds (Section 1.2.2) and lower bounds (Section 1.2.3).
Finally, in Section 1.3 we review prior work on reducing undiscounted
MDPs and stochastic games to discounted ones.

1.1 Description of the Decision Models

We begin by recalling some definitions that will be used to define the
models considered in the sequel. It is assumed that the reader is familiar
with the basics of general topology and measure-theoretic probability; see
e.g. [83] and [63], respectively.

A Polish space is a separable topological space that is completely metriz-
able. Given a Polish space S, let B(S) and P(S) respectively denote the
Borel σ-algebra on S and the set of all probability measures on (S,B(S)).
A function f : S → R on a Polish space S is universally measurable if for
every p ∈ P(S) there is a Borel function fp : S → R such that f(s) = fp(s)
for p-almost every s; see e.g. [10, Lemma 7.27]. For Polish spaces S and
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T , a universally (resp. Borel-) measurable stochastic kernel on T given S is a
function κ : S× P(T) → [0, 1] such that κ(·|s) is a probability measure on
(S,B(S)) for s ∈ S, and κ(B|·) is a universally (resp. Borel-) measurable
function for B ∈ B(T).

For any sets S, T we use the convention (S)0 × T := T . Further, unless
stated otherwise, all products of families {Sα : α ∈ Λ} of topological spaces
are endowed with their corresponding product topologies and product σ-
algebras defined by the Borel σ-algebras on the spaces Sα, α ∈ Λ.

1.1.1 Markov Decision Processes (MDPs)

A Markov decision process (MDP) is defined by a tuple (X, A, {A(x) :
x ∈ X}, r,p). The elements of this tuple are associated with a controlled
stochastic system as follows. On each time step t = 0, 1, . . . , the decision-
maker observes the current state xt ∈ X of the system, selects an available
action at ∈ A(xt) ⊆ A, and earns a reward r(xt,at). The actions per-
formed by the decision-maker affect the system she is controlling in the
following way: if the state of the system is xt ∈ X at time t and action
at ∈ A(xt) is performed, then the state she will observe at time t+ 1 be-
longs to the (measurable) subset B of X with probability p(B|xt,at).

Remark 1. Throughout, we assume that the one-step reward function r :
Gr(A)→ R is bounded.

More precisely, we consider the usual framework of MDPs with possi-
bly uncountable state and action spaces; see e.g. [10], [25], [53]. Namely,
the state space X and action space A are Borel subsets of Polish spaces. Fur-
thermore, the set of available actions A(x) when the current state is x ∈ X is
a nonempty Borel-measurable subset of A, and the set

Gr(A) := {(x,a) : x ∈ X,a ∈ A(x)}

is a Borel subset of X×A. Finally, the one-step reward function r : Gr(A)→
R is Borel-measurable, and p is a Borel-measurable stochastic kernel on X

given Gr(A) which defines the transition probabilities.

Policies. The decision-maker controls the system via a policy, according
to which actions can be selected randomly based on the entire observed
history of the system up to the current time step. To define the notion
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of a policy, for t = 0, 1, . . . let Ht := (X ×A)t ×X denote the space of
histories up to time step t. A decision rule for time step t is defined by
a universally measurable stochastic kernel πt on A given Ht, where for
each ht := x0a0 · · ·at−1xt ∈ Ht the support of the probability measure
πt(·|ht) is A(xt). A policy is a sequence π = {πt}

∞
t=0 of decision rules; when

the decision-maker follows a given policy π, and the observed history up
to time step t is ht, she selects an action belonging to the set B ∈ B(A)
with probability πt(B|ht). Let Π denote the set of all policies.

Deterministic Stationary Policies. An important class of policies is the
class of so-called deterministic stationary policies, which is identified with
the class of universally measurable selectors of the correspondence x 7→
A(x). More precisely, a policy π ∈ Π is a deterministic stationary policy if
there is a universally measurable function φ from X to A where φ(x) ∈
A(x) for all x ∈ X and πt(·|ht) = δφ(xt)(·) for t = 0, 1, . . . and all ht =
x0a0 · · ·at−1xt ∈Ht, in which case we identify πwith φ. Hence, when the
decision-maker follows the deterministic stationary policy φ, she selects
the action φ(x) whenever the system is in state x. Let F denote the set of
all deterministic stationary policies.

Probability Spaces Associated with Policies. When the initial state is
x ∈ X and the decision-maker follows the policy π ∈ Π, the observed
sequence of state-action pairs can be viewed as a realization of a discrete-
time stochastic process. To make this statement precise, let H∞ := (X×
A)∞ denote the space of trajectories of the MDP, and for t = 0, 1, . . . define
the random variables ξt and υt for ω = x0a0x1a1 · · · ∈H∞ by ξt(ω) := xt
and υt(ω) := at. According to [10, Proposition 7.45], for every initial state
x ∈ X and policy π ∈ Π there is a unique probability measure Pπx on H∞,
called a strategic measure, that satisfies the following conditions:

1. Pπx(H∞) = 1;

2. Pπx(ξ0 = x) = 1;

3. Pπx(υt ∈ B|ht) = πt(B|ht) for all B ∈ B(A), ht ∈Ht, and t = 0, 1, . . . ;

4. Pπx(ξt+1 ∈ B|ht,at) = p(B|xt,at) for all B ∈ B(X), ht = x0a0 · · · xt ∈
Ht, and t = 0, 1, . . . ;
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For x ∈ X and π ∈ Π, the expectation operator corresponding to Pπx is
denoted by Eπx .

Optimality Criteria. The relative attractiveness of policies is usually as-
sessed via a chosen optimality criterion that is defined in terms of strate-
gic measures; see e.g. [34]. Two commonly used criteria are expected total
rewards and long-run expected average rewards per unit time; see e.g.
[43, Chapter 6] and [9], respectively. For definitions of the former see Sec-
tions 2.1 and 3.2, and for a definition of the latter see Section 4.2.

1.1.2 Two-Player Zero-Sum Stochastic Games

A two-player zero-sum stochastic game can be viewed as a generaliza-
tion of MDPs that allows for two decision-makers. In particular, instead of
a single decision-maker selecting actions that affect the rewards earned
and the trajectory of the system, the actions selected by two decision-
makers, referred to as players, jointly affect the reward earned by one of
them (i.e. the cost incurred by the other) and the distribution of the subse-
quent state.

More precisely, a two-player zero-sum stochastic game is defined by a tu-
ple (X, A1, A2, {A1(x) : x ∈ X}, {A2(x) : x ∈ X}, r,p) where, analogously
to the case of an MDP, X is the state space, A is the action space, and Ai(x)
is the set of available actions for player i = 1, 2 when the system is in state
x ∈ X. If the system is in state x ∈ X and players 1 and 2 select ac-
tion a1 ∈ A1(x) and a2 ∈ A2(x), respectively, then player 2 pays player
1 r(x,a1,a2) and the distribution of the next state is given by the proba-
bility measure p(·|x,a1,a2) on X. Here we also assume that X and A are
Borel subsets of Polish spaces, that for i = 1, 2 the sets Ai(x) for x ∈ X are
nonempty Borel subsets of Ai, and that the set

Gr(A1 ×A2) := {(x,a1,a2) : x ∈ X,ai ∈ Ai(x), i = 1, 2}

is a Borel subset of X×A1 ×A2. In addition, player 1’s payoff function r :
Gr(A1 ×A2)→ R is Borel-measurable, and the transition probabilities are
defined by the Borel-measurable stochastic kernel p on X given Gr(A1 ×
A2).

Remark 2. Throughout, we also assume that player 1’s one-step payoff
function r : Gr(A1 ×A2)→ R is bounded.

8



Strategies. Both players control the system via strategies, according to
which actions can be selected randomly based on the entire observed his-
tory of the system up to the current time step. More precisely, here we let
Ht := (X×A1 ×A2)t ×X for t = 0, 1, . . . denote the space of histories up
to time step t. For player i = 1, 2, a decision rule for time step t is defined
by a universally measurable stochastic kernel πit on Ai given Ht, where
for each ht := x0a

1
0a

2
0 · · ·a1

t−1a
2
t−1xt ∈ Ht the support of the probability

measure πit(·|ht) is Ai(xt). For i = 1, 2 a strategy for player i is a sequence
πi = {πit}

∞
t=0 of decision rules; when player i follows a given strategy πi,

and the observed history up to time step t is ht, she selects an action be-
longing to the set B ∈ B(Ai) with probability πit(B|ht). Let Πi denote the
set of all strategies for player i, for i = 1, 2.

Stationary Strategies. For stochastic games we will consider conditions
under which stationary strategies are at least nearly optimal in some sense.
A strategy πi for player i = 1, 2 is stationary if there is a universally mea-
surable stochastic kernel ϕi on Ai given X satisfying πit(·|ht) = ϕi(·|xt)
for t = 0, 1, . . . and all ht = x0a

1
0a

2
0 · · ·a1

t−1a
2
t−1xt ∈ Ht, in which case

we identify πi with ϕi. When player i follows the stationary strategy ϕi,
she selects an action belonging to the set B ∈ Ai with probability ϕi(B|x)
whenever the system is in state x. For i = 1, 2, let Φi denote the set of all
stationary strategies for player i. In addition, a stationary strategy ϕi for
player i = 1, 2 is deterministic if for every x ∈ X the measure π(·|x) is a
Dirac measure; let Fi denote the set of all deterministic stationary strate-
gies for player i.

Probability Spaces Associated with Strategy Pairs. Let H∞ := (X ×
A1 ×A2)∞ denote the space of trajectories of the stochastic game, and for
t = 0, 1, . . . define the random variables ξt, υ1

t , and υ2
t forω = x0a

1
0a

2
0 · · · ∈

H∞ by ξt(ω) := xt, υ1
t(ω) := a1

t , and υ2
t(ω) := a2

t . By [10, Proposi-
tion 7.45], for every initial state x ∈ X and pair of strategies π1 ∈ Π1 and
π2 ∈ Π2 there is a unique probability measure Pπ

1π2
x on H∞ that satisfies

the following conditions:

1. Pπ
1π2
x (H∞) = 1;

2. Pπ
1π2
x (ξ0 = x) = 1;
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3. for i = 1, 2, Pπ
1π2
x (υit ∈ B|ht) = πit(B|ht) for all B ∈ B(Ai), ht ∈ Ht,

and t = 0, 1, . . . ;

4. Pπ
1π2
x (ξt+1 ∈ B|ht,a1

t ,a
2
t) = p(B|xt,a1

t ,a
2
t) for all B ∈ B(X), ht =

x0a
1
0a

2
0 · · · xt ∈ Ht, and t = 0, 1, . . . ;

For x ∈ X, π1 ∈ Π1, and π2 ∈ Π2, let Eπ
1π2
x denote the expectation operator

corresponding to Pπ
1π2
x .

Optimality Criteria. Two commonly used optimality criteria for stochas-
tic games involve total and long-run expected average payoffs. For defi-
nitions of the former see Sections 5.1 and 6.2, and for a definition of the
latter see Section 7.2.

1.2 Complexity of MDPs & Games

In this section, we provide a review of the literature on the complexity
of computing optimal policies for MDPs and stochastic games. In Sec-
tion 1.2.1, we describe two models of computation that have been used in
deriving complexity estimates for MDPs and stochastic games, and the no-
tion of a polynomial-time algorithm. In Section 1.2.2, we review the liter-
ature on upper bounds for the complexity of computing optimal policies,
including upper bounds for models with special structure such as ergodic
MDPs and stochastic games and deterministic MDPs, and for MDPs with
sensitive discount optimality criteria. Finally, in Section 1.2.3 we consider
lower bounds on the complexity of computing optimal policies.

1.2.1 Models of Computation

The computational complexity of algorithms is typically analyzed in
terms of the amount of resources (e.g. time, space) that the algorithm
needs, as a function of the size of the input. Classically, inputs to the al-
gorithm of interest are taken to be numbers represented by finite strings
of symbols, and the algorithm itself is formalized as a Turing machine; see
e.g. [107, Part Three] and [14, Section 1.3]. This is often referred to as the
Turing model of computation.
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More recently, Blum et al. [15] (see also [14]) proposed a model of com-
putation that accommodates algorithms operating on real numbers (or
more generally, on elements of a ring). This model, referred to as the Blum-
Shub-Smale (BSS) model of computation, was designed to provide a rigorous
foundation for the analysis of algorithms used in the field of numerical
analysis (e.g. Newton’s method), and can be viewed as a generalization of
the classical theory of computation. For algorithms operating on real num-
bers, the BSS model is also referred to as the arithmetic model of computation;
see e.g. [48, p. 32].

Polynomial-Time Algorithms

The resource that we are primarily interested in is time, which is typi-
cally measured via the number of elementary operations (e.g. the number
of arithmetic operations) required by the algorithm of interest. A central
notion in the analysis of the time complexity of algorithms is that of a
polynomial-time algorithm, which is a formalization of the intuitive idea of
an “efficient algorithm” that originated from the work of Cobham [16] and
Edmonds [27]. In particular, a polynomial-time algorithm is an algorithm
where the required number of elementary operations for an input of size
S is bounded above by a polynomial in S. A polynomial-time algorithm is
also referred to as a polynomial algorithm, or as an algorithm that runs in
polynomial time. We say that a problem can be solved in polynomial time if
there exists a polynomial algorithm that, given any instance of that prob-
lem, computes a solution to the problem.

Turing Model. Under the Turing model of computation, an algorithm is
polynomial if the total number of steps taken by its corresponding Turing
machine can be bounded above by a polynomial function of the total bit-
size of the input data. In other words, under this model of computation
the elementary operations are the steps taken by the corresponding Turing
machine, and the size S of an input is taken to be the total number of bits
needed to represent that input. Hence the Turing model can be used to
study algorithms operating on rational inputs, for example, but may not
be appropriate when the inputs are taken to be any real numbers. One
common way to derive upper bounds in this setting is to upper bound the
number of arithmetic operations multiplied by the maximum number of
bits needed to encode any input number; see e.g. [14, p. 19]. Polynomial

11



algorithms under the Turing model are also called weakly polynomial; see
e.g. [104, p. 48].

BSS Model. Under the BSS model of computation, an algorithm is poly-
nomial if the total number of arithmetic operations that the algorithm re-
quires in order to terminate can be bounded above by a polynomial func-
tion of the total number of input elements. For example, if an algorithm
operating on real numbers takes any n× n real matrix as input, then the
number of input elements for any given input is n2. If a polynomial algo-
rithm under the BSS model is such that, for rational inputs, the amount of
space needed1 can be bounded above by a polynomial in the total bit-size
of the inputs, then it is also called strongly polynomial; see e.g. [48, p. 32]
and [104, p. 47].

1.2.2 Upper Bounds

In this section, we provide a review of the literature on upper bounds
for the complexity of computing an optimal policy. In Chapter 2, we de-
scribe the work of Feinberg & Huang [38] in detail.

Linear Programming

It has been known since almost the beginning of the development of
the theory of MDPs that many important classes of these models can be
solved via linear programming; see e.g. Kallenberg [64] and the references
contained therein. According to the work of Khachiyan [68], it follows that
these classes of models, which include discounted and average-reward
MDPs, can be solved in polynomial time.

The study of interior-point methods for linear programming, which
was stimulated by the work on Karmarkar [65], has led to improved com-
plexity estimates; for example, by considering a combinatorial interior-
point method, Ye [120] was the first to show that discounted MDPs with
a fixed discount factor can be solved in polynomial time under the BSS

1Here, the amount of space needed is taken to be the maximum length of any string
that appears on the tape of the algorithm’s corresponding Turing machine while it com-
putes the output; see e.g. [48, p. 24].
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model of computation. In addition, Alagoz et al. [2] have obtained empir-
ical evidence, using randomly generated problems and a real-life problem
arising in healthcare, indicating that interior-point methods perform fa-
vorably compared to policy iteration.

Value Iteration

To our knowledge, the only published upper bounds for value itera-
tion are for discounted MDPs. In this case, Tseng [112] showed that when
the discount factor is fixed, the classic value iteration algorithm is weakly
polynomial. In particular, each iteration can be performed in strongly
polynomial time, and the total number of iterations can be bounded above
by

nL+n log2 n

1 −β
,

wheren is the total number of states, L is the total bit-size of the input data,
and β is the discount factor. This can be used to show that Howard’s [62]
policy iteration algorithm is also weakly polynomial; see e.g. [74].

Policy Iteration

While the weak polynomiality of Howard’s policy iteration (PI) follows
from Tseng’s [112] result on value iteration, this conclusion was actually
reached by Meister & Holzbaur [78] in a paper published four years ear-
lier. In particular, they showed that the number of iterations required by
Howard’s PI is bounded above by a constant times nL/[− log(β)], where
n is the number of states, L is the total bit-size of the input data, and β is
the discount factor. Since each iteration of Howard’s PI can be performed
in strongly polynomial time, it follows that this algorithm is weakly poly-
nomial.

A breakthrough result on the complexity of policy iteration and the
question of whether MDPs or, more generally, linear programming prob-
lems can be solved in strongly polynomial time was published in 2011
[121]. In that paper, Yinyu Ye improved on his earlier result [120] on the
solvability of discounted MDPs with a fixed discount factor in strongly
polynomial time. In particular, this was done by showing that both the
version of policy iteration corresponding to using the simplex method
with Dantzig’s pivoting rule, as well as Howard’s [62] classic variant of
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policy iteration, actually have a superior iteration bound compared to the
combinatorial interior-point method proposed in [120].

Ye’s work subsequently led to a number of improvements and general-
izations. Hansen et al. [51] both improved Ye’s [121] bound for Howard’s
policy iteration algorithm, and showed that the same bound applies to the
strategy iteration algorithm, proposed by Rao et al. [93], when it is used
to solve discounted two-player zero-sum stochastic games of perfect infor-
mation. This solved a long-standing open problem regarding the complex-
ity of computing Nash equilibria for such discounted games. According to
Andersson & Miltersen [7] the complexity of solving such games is closely
related to the complexity of solving a number of other classes of games,
including simple stochastic games [17], mean-payoff games of perfect in-
formation on graphs [28], and parity games [29]. More recently, Akian &
Gaubert [1] improved on Hansen et al.’s [51] iteration bound, and used
this result along with techniques from nonlinear Perron-Frobenius theory
to derive a new iteration bound for the Hoffman-Karp algorithm [57] for
solving a certain class of two-player zero-sum average-payoff stochastic
games of perfect information.

Scherrer [103] improved on Ye’s [121] and Hansen et al.’s [51] complex-
ity estimates even further. Namely, it turns out that for discounted MDPs
with a fixed discount factor, the number of iterations required by the sim-
plex method with Dantzig’s pivoting rule is linear in the number of state-
action pairs m times the number of state n, and the number required by
Howard’s [62] policy iteration algorithm is linear in m. The latter agrees
with what has been observed empirically about policy iteration; see [121].

Another research direction regarding upper bounds on the complex-
ity of computing optimal policies for MDPs was initiated by Mansour &
Singh [76] who, for discounted MDPs, derived the first nontrivial (but still
exponential) iteration bound for policy iteration that does not depend on
the discount factor. In particular, for any discounted MDP with n states
and at most k actions per state, Howard’s policy iteration terminates with
an optimal policy after at most 13kn/n iterations. Recently, Hollanders et
al. [59] made the first progress in this direction since the work of Mansour
& Singh. Using an abstract formulation of policy iteration, it was shown
that for both discounted and average-reward MDPs, Howard’s policy it-
eration requires at most

k

k− 1
· k
n

n
+
kn

n2
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iterations to return an optimal policy, where again n denotes the number
of states and k denotes the maximum number of actions available at any
state.

Finally, we remark that Ye’s [121] method of analyzing the complex-
ity of policy iteration has been generalized to a wider class of linear pro-
gramming problems. Kitahara & Mizuno [70] showed that if every basic
feasible solution of a linear program with m variables and n constraints
is bounded above and below by γ and δ, respectively, then the simplex
method with Dantzig’s pivoting rule terminates after at most

m
⌈
n · γ
δ

(
m · γ

δ

)⌉
iterations. Ye’s [121] result on the simplex method with Dantzig’s rule
follows as a special case, because the linear programming formulation of
discounted MDPs with discount factor β that is analyzed in [121] has m
variables and n constraints, and every basic feasible solution of this linear
program is bounded above by γ = (1 − β)−1 and bounded below by 1.
Another corollary that is observed in [70] is that, for linear programs with
totally unimodular constraint matrices2 and integral right-hand side vec-
tor b, the total number of iterations required by the simplex method with
Dantzig’s rule is at most

mdn‖b‖1 lnn‖b‖1e, (1.1)

where ‖ · ‖1 denotes the L1 norm. This bound (1.1) applies to the linear pro-
gramming formulations of the shortest path problem, the max-flow prob-
lem, and weighted bipartite matching; see [87, Section 13.2].

Models with Special Structure

The work of Ye [121] has also inspired a number of results on the com-
plexity of computing optimal policies for MDPs and stochastic games with
transition probabilities having certain special properties.

Ergodic MDPs & Games. An assumption on the transition probabilities
that is often considered in the context of the average-reward criterion is
the condition that the Markov chains associated with the deterministic

2i.e. the determinant of every square nonsingular submatrix is 1 or −1.
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stationary policies are ergodic in some sense. For surveys of the kinds of
assumptions that have been considered in the literature, see e.g.[33], [110],
and [55]. One of the first complexity results in this direction was actually
obtained a few years prior to Ye’s [121] groundbreaking paper. Namely,
Zadorojniy et al. [123] showed for MDPs that if all of the Markov chains in-
duced by deterministic stationary policies are both irreducible and satisfy
a so-called coupling property, then optimal policies can be computed in
strongly polynomial time under both the discounted and average-reward
criteria3. More recently, Feinberg & Huang [36] used Ye’s [121] results
and a reduction of certain average-reward MDPs to discounted ones due
to Ross [95, 94] to show that MDPs modeling maintenance and replace-
ment problems with a fixed failure probability can be solved in strongly
polynomial time using policy iteration for average-reward MDPs. Akian
& Gaubert [1] subsequently generalized the complexity estimates in Fein-
berg & Huang [36] to stochastic games and a more general ergodicity con-
dition, using methods from nonlinear Perron-Frobenius theory.

Deterministic MDPs. A number of strongly polynomial algorithms ex-
ist for MDPs where the state transitions occur deterministically. For de-
terministic average-reward MDPs, the problem of computing an optimal
policy is reducible to the problem of finding a minimum mean-weight cy-
cle in a directed graph, and hence is solvable in strongly polynomial time
using the algorithm proposed by Karp [66]. For the discounted-reward
criterion, strongly polynomial algorithms have been proposed by Ander-
sson & Vorobyov [8] and Madani et al. [75]. On the other hand, Post &
Ye [91] showed that the classic simplex method with Dantzig’s pivoting
rule is strongly polynomial for discounted deterministic MDPs, regard-
less of the discount factor. Post & Ye’s result was further improved by
Hansen et al. [50], who also showed that the minimum cost to time ratio
cycle problem is also solvable in strongly polynomial time.

3Here the discount factor is not necessarily fixed. In addition, we remark that the
algorithm proposed by Zadorojniy et al. [123] was later shown by Even & Zadorojniy [31]
to be equivalent to using the simplex method with the Gass-Saaty shadow vertex pivoting
rule.
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Sensitive Discount Optimality Criteria

There has also been some recent progress on the complexity of com-
puting policies that are optimal under so-called sensitive discount op-
timality criteria, which generalize the average-reward criterion; see e.g.
Veinott [116]. In his PhD thesis under Veinott, O’Sullivan [86] showed for
the first time that Blackwell-optimal policies (see e.g. [61]), which have a
number of attractive properties including being average-reward optimal
and optimal under the discounted reward criterion for all discount factors
sufficiently close to 1, can be computed in polynomial time. This was done
by introducing a new algorithm that involves a reduction of the original
problem to a sequence of linear programs.

On the other hand, it is unknown whether the classic policy iteration
algorithm for computing optimal policies under sensitive discount opti-
mality criteria (as well as Blackwell-optimal policies) proposed by Miller
& Veinott [80] (see also [116]) is a polynomial-time algorithm. In particu-
lar, the best known upper bound for this algorithm, which follows from
the work of Hollanders et al. [59], is exponential in the number of states.

1.2.3 Lower Bounds

In this section, we provide a review of the literature on lower bounds
for the complexity of computing an optimal policy. In Chapter 2, we de-
scribe the work of Feinberg & Huang [37] and Feinberg et al. [39] in detail.

Value Iteration

To our knowledge, the only published lower bounds on the time com-
plexity of value iteration are for the discounted-reward criterion, which is
defined in Section 2.1 for MDPs and in Section 5.1 for two-player zero-sum
stochastic games.

Consider a discount factor β ∈ [0, 1). In an early survey of complexity
estimates for value and policy iteration algorithms for MDPs, Littman et
al. [74] provide an example of an MDP where value iteration requires at
least

1
2(1 −β)

· log
1

1 −β
(1.2)
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iterations to compute the optimal policy. This indicates that in general, it
is not possible to derive an upper bound on the time complexity of value
iteration that does not depend on the discount factor. In particular, it is
not possible to remove the dependence on (1 − β)−1 of the upper bound
for value iteration derived by Tseng [112]; see Section 1.2.2.

The discounted MDP that Littman et al. [74] used to prove their lower
bound (1.2) on the time complexity of value iteration consists of four state-
action pairs. Recently, by modifying the one-step reward associated with
one of the actions, Feinberg et al. [39] showed that the number of itera-
tions required by a broad class of so-called optimistic policy iteration al-
gorithms to compute the optimal policy can grow arbitrarily quickly. Their
result holds when the discount factor is fixed, and applies to value itera-
tion, modified policy iteration [92], and λ-policy iteration [12]. In particu-
lar, it follows that unlike certain classic versions of policy iteration [121],
the value iteration algorithm is not strongly polynomial; see also Feinberg
& Huang [37]. In fact, the computational complexity of any of the afore-
mentioned optimistic policy iteration algorithms is unbounded in the BSS
model [15] of computation.

We remark that, since MDPs can be viewed as special cases of stochas-
tic games, the preceding lower bounds also apply to value iteration for
such games. In particular, they apply to the classical total-payoff two-
player zero-sum stochastic game considered by Shapley [105]. For an
example of a so-called simple stochastic game for which value iteration
requires an exponential number of iterations to return a vector within a
constant factor of the optimal value vector, see Condon [18].

Linear Programming & Policy Iteration

It has been known since at least the 1970s that there is a close relation-
ship between policy iteration algorithms and the simplex method for solv-
ing linear programming problems. In particular, for discounted and cer-
tain average-reward MDPs there is a one-to-one correspondence between
rules for updating actions during policy iteration and pivoting rules for
the simplex method applied to a certain linear program; see e.g. Mine &
Osaki [81, Sections 2.4, 3.5] and Kallenberg [64, pp. 67-68, 122].

Beginning with the seminal work of Klee & Minty [71], who showed
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that the simplex method with Dantzig’s [21, p. 98] pivoting rule4 can re-
quire an exponential number of iterations, many deterministic pivoting
rules have been shown to take exponential time in the worst case; see e.g.
Amenta & Ziegler [4] and Todd [111]. Similarly, many versions of pol-
icy iteration have been shown to have exponential iteration lower bounds.
To our knowledge, the first such lower bound is due to Melekopoglou &
Condon [79], who showed that the version of policy iteration correspond-
ing to applying the simplex method with Bland’s [13] pivoting rule can
require an exponential number of iterations to compute an optimal policy
under both the discounted and average-reward criteria. For the versions
of policy iteration for undiscounted total and average-reward MDPs that
use Howard’s rule for updating actions5, Fearnley [32] showed that an ex-
ponential number of iterations may be required. By modifying Fearnley’s
example, Hollanders et al. [58] showed that for a suitably large discount
factor, policy iteration with Howard’s rule may also require an exponential
number of iterations. In addition, Friedmann [46, 47] obtained superpoly-
nomial (namely, subexponential) lower bounds on the required number of
iterations taken by versions of policy iteration for discounted MDPs corre-
sponding to the simplex method with Zadeh’s [122] pivoting rule and with
Cunningham’s [20] pivoting rule, respectively. We remark that Friedmann
et al. [45] derived analogous superpolynomial lower bounds on the num-
ber of iterations taken by Dantzig’s [21] random-edge pivoting rule Ma-
toušek et al.’s [77] random-facet pivoting rule for discounted MDPs with
a certain discount factor.

On the other hand, for discounted MDPs with a fixed discount fac-
tor, the best known lower bound on the number of iterations required by
Howard’s [62] policy iteration in the worst case are linear in the num-
ber of states; see the example due to John Tsitsiklis in [102] and Ander-
sson et al. [6]. Hence the (strongly) polynomial upper bounds for both
Howard’s policy iteration and the simplex method with Dantzig’s pivot-
ing rule, which we describe in Section 1.2.2, are not known to be tight. It is
interesting to note that, while Dantzig’s classic pivoting rule served as the
first example of an exponential pivoting rule [71], it also served as one of
the first action switching rules that was shown to turn policy iteration into
a polynomial-time algorithm under the BSS model of computation [121].

4Pivot the variable with the most negative reduced cost into the basis.
5For each state, switch to the action with the most negative reduced cost.
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1.3 Reductions to Discounted Models

In this section, we provide a review of the literature on reducing the
problem of solving undiscounted-reward MDPs and stochastic games to
the problem of solving discounted ones. In Section 1.3.1 we consider the
total reward criterion, while in Section 1.3.2 we consider average rewards.

1.3.1 of Total-Reward Models

A reduction of so-called transient MDPs, under the total reward crite-
rion, to discounted MDPs is implicit in the work of Veinott [115]. There,
a so-called positive similarity transformation based on ideas due to Alan
Hoffman was used to reduce a transient MDP, where the (not necessar-
ily substochastic) spectral radii of the transition matrices corresponding
to the deterministic stationary policies are all less than one, to a transient
MDP with substochastic transition matrices. The associated reduction to a
discounted problem is made explicit in Kallenberg [64, pp. 75-77].

The transformation given in Veinott [115] has also been used to study
MDPs with unbounded reward functions. Wessels [118] considered the
convergence of value iteration for total-reward MDPs with discrete state
sets where, for every deterministic stationary policy, the associated one-
step reward function and transition matrix are bounded with respect to
some weighted supremum norm. The model studied by Wessels [118] is
also referred to as contracting; see e.g. [114], [113, p. 100]. The weight func-
tion used in Veinott [115] is also a special case of a kind of bounding func-
tion that van Hee and Wessels [114] call strongly excessive. In [114], char-
acterizations of the existence of strongly excessive functions for MDPs are
given in terms of the random drift through a partition of the state space,
the lifetime distribution of the process under the Markov policies, and the
spectral radii of the transition matrices induced by the Markov policies.
van der Wal [113, Section 5.2] shows that for infinite-horizon total rewards,
three sets of assumptions related to contracting MDPs are equivalent to the
assumption that the MDP is discounted.

1.3.2 of Average-Reward Models

To our knowledge, the first reduction of average-reward MDPs to dis-
counted ones is due to Sheldon Ross. In [95] a transformation is provided
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for MDPs with discrete state sets that, when there is a state to which the
process transitions with probability at least α > 0 under any action, allows
one to compute an optimal policy under the average-reward criterion by
solving a discounted MDP. Ross also provided an analogous transforma-
tion and result in [94] for MDPs with standard Borel state space and finite
action sets. For a textbook treatment, see Ross [96, pp. 98-99]. Gubenko
& Štatland [49] subsequently showed for MDPs with standard Borel state
and action spaces that under a minorant condition on the transition prob-
abilities, which generalizes the condition considered by Ross [94], a re-
duction of the original average-cost MDP to a discounted one is possible;
see also Dynkin & Yushkevich [25, pp. 186-188]. More recently, Akian &
Gaubert [1] showed that a reduction of average-payoff two-player zero-
sum stochastic games with perfect information is possible under a condi-
tion that is more general than the one considered by Ross [95].

Gubenko & Štatland [49] also showed that a reduction to a kind of dis-
counted MDP is possible when the transition probabilities satisfy a so-
called majorant condition. Namely, in this case the resulting discounted
MDP has a negative discount factor that belongs to the interval (−1, 0).
Hence, while the associated optimality operator still defines a contraction
mapping, this mapping no longer has the monotonicity property that has
played a central role in the study of the structure of sequential decision
problems that was initiated by Denardo [22]; for a modern treatment with
some extensions, see Bertsekas [11]. In particular, the techniques used
by Ye [121], Hansen et al. [51], and Scherrer [103] to analyze discounted
MDPs with a discount factor that lies on the interval (0, 1) do not apply.
To our knowledge, besides the work of Gubenko & Štatland [49] there are
no other published results on discounted MDPs with a negative discount
factor. We remark, however, that the work of Ames and Ginsburg [5] on
iterative algorithms for nonlinear partial differential equations, where the
same kind of oscillatory contraction mapping arises, may be relevant.
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Part I

Markov Decision Processes
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Chapter 2

Discounted MDPs

In this chapter, we review some results on discounted MDPs. In Sec-
tion 2.1, discounted-reward optimality criterion is defined, and in Sec-
tion 2.2 we state some results on the existence and characterization of op-
timal policies that will be used in Chapters 3 and 4. Finally, Section 2.3
provides results on the complexity of computing optimal and ε-optimal
policies for discounted MDPs. In particular, Section 2.3.1 contains state-
ments of some known results on the complexity of computing optimal
policies, Section 2.3.2 contains the statements and proofs of our results on
optimistic policy iteration, Section 2.3.3 contains the resulting corollaries
for modified policy iterations and value iteration, and Section 2.3.4 con-
tains the statement and proof of our result on the complexity of computing
ε-optimal policies.

2.1 Optimality Criterion

Let β denote the discount factor. When the initial state is x ∈ X and the
decision-maker follows the policy π ∈ Π, the total expected β-discounted
reward earned is

vπβ(x) := Eπx

∞∑
t=0

βnr(ξt,υt).

A policy π∗ ∈ Π is β-optimal if vπ∗β (x) = supπ∈Π v
π
β(x) =: vβ(x) for all x ∈ X.
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2.2 Existence of Optimal Policies

For x ∈ X, consider the sets

Aβ(x) :=

{
a ∈ A(x) : vβ(x) = r(x,a) +β

∫
X

vβ(y)p(dy|x,a)
}

. (2.1)

The statement of Theorem 2, which is due to Feinberg et al. [41] and pro-
vides general sufficient conditions for the existence of β-optimal policies
that are deterministic stationary, makes use of a few additional definitions.

Definition 1 (K-sup-compactness [40]). The one-step reward function r is
K-sup-compact if for every nonempty compact K ⊆ X, the sets

{(x,a) ∈ (K×A)∩Gr(A) : r(x,a) > λ}, λ ∈ R,

are compact.

Proposition 1. The one-step reward function r : Gr(A)→ R is K-sup-compact
if and only if

(i) r is upper semicontinuous, and

(ii) for any sequence {xk} in X that converges to some x ∈ X, any sequence {ak}
in A where ak ∈ A(xk) for all k and {r(xk,ak)} is bounded below has an
accumulation point belonging to A(x).

Proof. Recall that X is a Borel subset of a Polish space, and hence is metriz-
able. Since any metrizable space is compactly generated (see e.g. [83,
Lemma 46.3]), the proposition follows from [40, Corollary 2.2].

Definition 2 (Weak continuity). The transition probabilities p are weakly
continuous if for every bounded continuous function f : X → R the map-
ping

(x,a) 7→
∫

X

f(y)p(dy|x,a)

is continuous on Gr(A).

24



Theorem 2 ([41, Theorem 2]). Suppose r : Gr(A) → R is bounded above and
K-sup-compact, and p is weakly continuous. Then

(i) the value function vβ is upper semicontinuous and satisfies

vβ(x) = max
a∈A(x)

[
r(x,a) +β

∫
X

vβ(y)p(dy|x,a)
]

, x ∈ X; (2.2)

(ii) there is a β-optimal deterministic stationary policy;

(iii) a deterministic stationary policy φ ∈ F is β-optimal if and only if φ(x) ∈
Aβ(x) for all x ∈ X, where Aβ is defined by (2.1).

Remark 3. In order for the conclusions of Theorem 2 to hold, the one-step
rewards r need not be bounded below. If r is bounded, however, then the
K-sup-compactness of r implies that the all action sets A(x), x ∈ X, are
compact; see [40, Theorem 2.1(ii)].

Theorem 3 ([54, Section 8.5]). Suppose r : Gr(A) → R is bounded and upper
semicontinuous,A(x) is compact for all x ∈ X, and p is weakly continuous. Then

(i) the value function vβ is the unique bounded upper semicontinuous function
that satisfies (2.2);

(ii) statements (ii) and (iii) of Theorem 2 hold.

To state Theorem 4 below, we say that the set-valued mapping x 7→
A(x) is compact-valued if A(x) is compact for all x ∈ X, and is continuous
if for every open subset V of A the sets {x ∈ X : A(x) ⊆ V} and {x ∈ X :
A(x)∩ V 6= ∅} are open subsets of X.

Theorem 4 ([52, Theorem 2.8]). Suppose r : Gr(A) → R is bounded and con-
tinuous, the set-valued mapping x 7→ A(x) is compact-valued and continuous,
and p is weakly continuous. Then

(i) the value function vβ is the unique bounded continuous function that satis-
fies (2.2);

(ii) statements (ii) and (iii) of Theorem 2 hold.
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2.3 Complexity Estimates

In this section, we assume that the state and action sets are finite, with
the exception of Section 2.3.4 where the state and action sets are possibly
uncountable Euclidean spaces. When the state set X and the action set
A are finite, let m :=

∑
x∈X |A(x)| denote the total number of state-action

pairs and let n := |X| denote the total number of states.
To describe the algorithms that we will consider, it is convenient to

define some operators on the set of all functions f : X → R, i.e. the set of
all elements of R|X|. For f : X→ R, let

Taβf(x) := r(x,a) +β
∑
y∈X

p(y|x,a)f(y), a ∈ A(x), x ∈ X

and define the optimality operator by

Tβf(x) := max
a∈A(x)

Taβf(x), x ∈ X.

In addition, for f : X→ R and φ ∈ F we define

T
φ
β f(x) := T

φ(x)
β f(x) x ∈ X.

Asymptotic Notation. A common way to state complexity estimates for
algorithms is via asymptotic notation. Given two real-valued functions f
and g on the natural numbers, the statement f(n) ∈ O(g(n)) means that
there is a constant C ∈ R satisfying f(n) 6 Cg(n) for all sufficiently large
natural numbers n; when f(n) ∈ O(g(n)), we say that f(n) is O(g(n)).
Here, f usually denotes the number of elementary operations needed for
the algorithm to terminate for an input of size n.

2.3.1 Policy Iteration (PI)

In this section, we state the best known complexity estimates for policy
iteration, which are due to Scherrer [103]. These estimates will be used to
provide complexity estimates for total-reward MDPs in Chapter 3 and for
average-reward MDPs in Chapter 4, via reductions to discounted MDPs.

Scherrer [103] obtained improved complexity estimates for the two ver-
sions of policy iteration that were considered by Ye [121]. One version,
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which was stated in the first monograph on MDPs, is due to Howard [62].
To state it, define the set-valued mapping G from the set of all functions on
the state set X to the set of all deterministic stationary policies F by

G(f) := {φ ∈ F : Tφβ f = Tβf} for f : X→ R. (2.3)

Given f : X→ R, a deterministic stationary policyφ ∈ G(f) is called greedy
with respect to f.

Howard’s PI
Input: V0 : X→ R.
Output: Optimal policy φ∗ ∈ F.

1: Set j = 1.
2: Select a policy φj ∈ G(Vj−1)

3: if vφjβ = Tβv
φj
β then

4: return φ∗ = φj
5: else
6: Set Vj+1 = v

φj
β and j = j+ 1.

7: go to line 2.

The other version of policy iteration that Ye [121] considered corre-
sponds to applying the simplex method with Dantzig’s pivoting rule to
a certain linear program. To state it, for f : X→ R let

xf := arg max
x∈X

[Tβf(x) − f(x)],

where ties are broken arbitrarily, and define the set-valued mapping D

from the set of all functions on the state set X and the set of all determin-
istic stationary policies F, to the set F, by

D(f,ψ) := {φ ∈ F : φ(xf) ∈ arg max
a∈A(xf)

[Taβf(xf) − f(xf)],φ(x) = ψ(x)∀x 6= xf}

for f : X → R and ψ ∈ F. Observe that xf is the state x that has the action
a for which the quantity

r(x,a) +β
∑
y∈X

p(y|x,a)f(y) − f(x)
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is the most positive, and any φ ∈ D(f,ψ) is obtained by switching the
action ψ(xf) to some action a ∈ A(xf) maximizing Taβf(xf) − f(xf), and
letting φ be identical to ψ for all of the remaining states.

Simplex-PI
Input: V0 : X→ R.
Output: Optimal policy φ∗ ∈ F.

1: Set j = 1.
2: Select a policy φj ∈ D(Vj−1)

3: if vφjβ = Tβv
φj
β then

4: return φ∗ = φj
5: else
6: Set Vj+1 = v

φj
β and j = j+ 1.

7: go to line 2.

Theorem 5. [[103, Theorems 3,4]]

(i) The number of iterations required by Howard’s PI is

O

(
m

1 −β
log

1
1 −β

)
(2.4)

(ii) The number of iterations required by Simplex-PI is

O

(
nm

1 −β
log

1
1 −β

)
(2.5)

Proposition 6. Each iteration of Howard’s PI and Simplex-PI requires at most
O(mn+n3) arithmetic operations.

Proof. Both Howard’s PI and Simplex-PI require the computation of vφjβ
for every iteration j, which may require O(n3) arithmetic operations if
Gaussian elimination is used. Both the computation of a greedy policy
φj ∈ G(Vj−1) and a policy φj ∈ D(Vj−1) can be accomplished by comput-
ing, for every state-action pair (x,a) ∈ Gr(A), the quantity

r(x,a) +β
∑
y∈X

p(y|x,a)Vj−1(y);

hence a total ofO(mn) arithmetic operations are needed in both cases.

28



Corollary 7. For discounted MDPs with a fixed discount factor, both Howard’s
PI and Simplex-PI are polynomial under the BSS model of computation.

Proof. This follows from Theorem 5 and Proposition 6.

2.3.2 Optimistic PI

While policy iteration has attractive complexity estimates, the fact that
computing vφjβ for every iteration j involves the solution of the linear sys-
tem of equations

(I−βPφj)f = rφj , f ∈ Rn,

where Pφj(x,y) := p(y|x,φj(x)) and rφj(x) := r(x,φj(x)) for x,y ∈ X,
can make the algorithm infeasible in practice when the number of states
is large. Namely, a total of O(n3 + n2m) arithmetic operations may be
needed if Gaussian elimination is used. On the other hand, every itera-
tion of the classic value iteration algorithm can be executed usingO(n2m)
arithmetic operations.

These two properties of policy and value iteration have led to the de-
velopment of so-called optimistic policy iteration algorithms. These algo-
rithms are intended to combine the attractive iteration complexity of pol-
icy iteration with the attractive per-iteration complexity of value iteration,
by replacing the computation of vφjβ on every iteration j with an approx-
imation of it. A classic optimistic policy iteration algorithm is modified
policy iteration, which is due to Puterman & Shin [92], involves iteratively
applying the operator Tφjβ a certain number nj of times to the approxima-

tion of vφj−1
β obtained in the previous iteration. Another optimistic pol-

icy iteration algorithm, which is of interest to the reinforcement learning
community (see Bertsekas & Tsitsiklis [12, Section 2.3.1]) is called λ-policy
iteration or temporal difference-based policy iteration. In addition, value iter-
ation can also be considered as a certain kind of optimistic policy iteration
algorithm; namely, it corresponds to the version of modified policy itera-
tion where nj = 1 for all j.

To define optimistic policy iteration, recall the definition of a greedy
policy with respect to an f : X→ R given by (2.3), and let N̄ := {1, 2, . . . }∪
{∞}.
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Optimistic PI

Input: V0 : X→ R and a N̄-valued stochastic sequence {Nj}
∞
j=1 with asso-

ciated probability measure Q and expectation operator E.
Output: Optimal policy φ∗ ∈ F.

1: Set j = 1.
2: Select a policy φj ∈ G(Vj−1)

3: if vφjβ = Tβv
φj
β then

4: return φ∗ = φj
5: else
6: Set Vj+1 = E[(Tφjβ )NjVj] and j = j+ 1.
7: go to line 2.

Theorem 8. Consider any discount factor β ∈ (0, 1). If V0 ≡ 0 and Q(Nj <∞) > 0 for j = 1, 2, . . . , then for any positive integer N there exists a determin-
istic MDP with four state-action pairs for which optimistic PI requires at leastN
iterations to return an optimal policy.

Proof. To prove the theorem, we consider a family deterministic MDPs pa-
rameterized by R ∈ R. For each of these MDPs, the state set is X = {1, 2, 3}
and the action sets areA(1) = {λ, ρ} andA(2) = A(3) = {σ}. For R ∈ (0,∞),
the one-step reward for action λ in state 1 is r(1, λ) = R ∈ R, and the re-
maining one-step rewards are r(1, ρ) = r(2,σ) = 0 and r(3,σ) = 1. Finally
the transition probabilities are defined by p(2|1, λ) = p(3|1, ρ) = p(2|2,σ) =
p(3|3,σ) = 1. See Figure 2.1 below.

2 1 3
R 0

0 1

Figure 2.1: A deterministic MDP; each arrow corresponds to an action.

Note that E[βNj ] > 0 for every j ∈N; since

Q{Nj <∞} =

∞∑
n=0

Q{Nj = n} > 0

implies that there is an n0 ∈N such that P{Nj = n0} > 0, we have

E[βNj ] =
∞∑
n=1

βnQ{Nj = n} > β
n0Q{Nj = n0} > 0.
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Given N, let R satisfy

β

1 −β
> R >

β(1 −
∏N−1
i=1 E[βNi ])

1 −β
.

Then the unique optimal policy is characterized by taking action ρ (i.e.
“going right”) in state 1. Moreover, this policy is obtained on iteration j
only if r(1, λ) +βVj−1(2) 6 r(1, ρ) +βVj−1(3), i.e. only if

R 6 βVj−1(3) = β ·

(
1 −
∏j−1
i=1 E[βNi ]

1 −β

)
.

But for j = 1, 2, . . .N,

R >
β(1 −

∏N−1
i=1 E[βNi ])

1 −β
>
β(1 −

∏j−1
i=1 E[βNi ])

1 −β
.

Hence for j = 1, 2, . . . ,N, the policy φj ∈ G(Vj−1) is not optimal.

Corollary 9. Under the BSS model of computation, there is no upper bound on
the number of iterations needed by optimistic policy iteration to return an optimal
policy.

Proof. If such a bound exists, then it would follow that the number of iter-
ations needed by optimistic PI to compute the optimal policy for the MDP
defined in the proof of Theorem 8 is some constant N for any value of R,
contradicting Theorem 8.

2.3.3 λ-PI, Modified PI, & Value Iteration

The results in Section 2.3.2 also apply to the variants of optimistic pol-
icy iteration mentioned in Section 2.3.2. We first state the λ-policy iteration
algorithm, which is due to Bertsekas & Tsitsiklis [12, Section 2.3.1].
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λ-PI
Input: V0 : X→ R and λ ∈ (0, 1).
Output: Optimal policy φ∗ ∈ F.

1: Set j = 1.
2: Select a policy φj ∈ G(Vj−1).
3: if vφjβ = Tβv

φj
β then

4: return φ∗ = φj.
5: else
6: Set Vj+1 = (1 − λ)

∑∞
n=0 λ

n(T
φj
β )nVj and j = j+ 1.

7: go to line 2.

Next, we recall the modified policy iteration algorithm, which was pro-
posed by Puterman & Shin [92].

Modified PI
Input: V0 : X→ R and a sequence {nj}

∞
j=1 of nonnegative integers.

Output: Optimal policy φ∗ ∈ F.
1: Set j = 1.
2: Select a policy φj ∈ G(Vj−1).
3: if vφjβ = Tβv

φj
β then

4: return φ∗ = φj.
5: else
6: Set Vj+1 = (T

φj
β )njVj and j = j+ 1.

7: go to line 2.

To our knowledge, the idea of iteratively applying the optimality operator
Tβ to an initial function V0 was first considered by Shapley [105] in the
context of stochastic games. Below we state a version of value iteration
that is known to return an optimal policy in a finite number of iterations;
see e.g. Bertsekas [11, Proposition 2.3.1].
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Value Iteration
Input: V0 : X→ R.
Output: Optimal policy φ∗ ∈ F.

1: Set j = 1.
2: Select a policy φj ∈ G(Vj−1).
3: if vφjβ = Tβv

φj
β then

4: return φ∗ = φj.
5: else
6: Set Vj+1 = TβVj and j = j+ 1.
7: go to line 2.

Corollary 10. For λ-policy iteration, modified policy iteration, and value itera-
tion, under the BSS model of computation there is no upper bound on the number
of iterations needed to return an optimal policy.

Proof. First, λ-policy iteration corresponds to the special case of optimistic
policy iteration where eachNj is a geometrically distributed random vari-
able with parameter λ. Next, modified policy iteration corresponds to
the version of optimistic policy iteration where each Nj is a degenerate
random variable. Finally, value iteration corresponds to the special case
of modified policy iteration where Nj ≡ 1 for all j. Hence λ-PI, modi-
fied PI, and value iteration are each special cases of optimistic PI where
Q(Nj < ∞) = 1 for j = 1, 2, . . . ; hence the corollary follows from Theo-
rem 8.

2.3.4 Computing ε-Optimal Policies

In this section, we consider the complexity of computiong ε-optimal
policies for total and average-reward MDPs, with Euclidean state and ac-
tion spaces, that satisfy certain Lipschitz-type assumptions. Throughout
this section, we assume that A(x) ≡A for all x ∈ X.

Preliminaries

We first recall some relevant definitions from metric space topology
and the convergence of probability measures.
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Product Metric. Recall that if (X, ρX) and (Y, ρY) are metric spaces, then
the product topology on X× Y is induced by the metric ρX×Y where

ρX×Y((x1,y1), (x2,y2)) := max{ρX(x1, x2), ρY(y1,y2)}

for (x1,y1), (x2,y2) ∈ X× Y. A function u : X× Y → R is Lipschitz continu-
ous on X× Y with modulus Lu if there is a constant Lu <∞ that satisfies

|u(x1,y1) − u(x2,y2)| 6 LuρX×Y((x1,y1), (x2,y2))

for all (x1,y1), (x2,y2) ∈ X× Y.

Total Variation Distance. Given a set S and a σ-algebra Σ on S, the to-
tal variation distance between two probability measures ν1 and ν2 on the
measurable space (S,Σ) is

ρTV(ν1,ν2) := sup
{∣∣∣∣∫

S
f(x)ν1(dx) −

∫
S
f(x)ν2(dx)

∣∣∣∣ : f : S→ [−1, 1] Borel
}

.

Lemma 11. Let ν1, ν2 be probability measures on the measurable space (S,Σ). If
f : S→ R is bounded and Borel-measurable, then∣∣∣∣∫

X

f(x)ν1(dx) −

∫
X

f(x)ν2(dx)

∣∣∣∣ 6
(

sup
x∈X

|f(x)|

)
· ρTV(ν1,ν2).

Proof. See [106, p. 432, Lemma 1] and [53, 172, 185].

Complexity Estimate

The complexity estimate that we derive for discounted MDPs is based
on the recent work of Saldi et al. [99], [100], [101]. In particular, in [99] rates
of convergence of optimal policies for approximating MDPs with finite
action sets are derived, and in [100] analogous results are obtained for
MDPs with finite state sets. Combining the results in [99] and [100] leads
to estimates of the size of a finite state and action MDP that are sufficient to
define to an ε-optimal policy for the original MDP. The rate of convergence
results in [99] and [100] that we will use rely on the following assumption.
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Assumption L. The MDP is such that

(a) there exist positive integers dX and dA such that the state space X is a com-
pact subspace of RdX and the action space A is a compact subspace of RdA ;

(b) the one-step reward function r : X ×A → R is bounded and Lipschitz-
continuous with modulus Lr;

(c) there is a constant Lp <∞ satisfying

ρTV(p(·|x1,a1),p(·|x2,a2)) 6 LpρX×A((x1,a1), (x2,a2))

for all (x1,a1), (x2,a2) ∈ X×A.

Remark 4. Assumption L(c) implies that the transition probabilities p are
continuous in total variation, i.e. any sequence {(xk,ak)}∞k=0 in X×A that
converges to (x,a) ∈ X×A satisfies

lim
n→∞ ρTV(p(·|xk,ak),p(·|x,a)) = 0.

This implies that p is also weakly continuous; see e.g. [42, Theorem 2.5].

Remark 5. Recall that a subset S of a metric space is totally bounded if for
every ε > 0 there exists a finite collection of open balls of radius ε that
cover S, and that if S is compact then S is totally bounded. In particular,
for any compact S ⊆ Rd there exists a sequence {Sk}

∞
k=1 of finite Sk ⊆ S

satisfying |Sk| = k for all k such that, for some α ∈ [0,∞),

max
s1∈S

min
s2∈Sk

‖s1 − s2‖2 6 α(1/k)1/d, k = 1, 2, . . .

where ‖ · ‖2 denotes the Euclidean norm.

When Assumption L(i) holds, we define the finite sets Xk for k =
1, 2, . . . by substituting X for S in Remark 5. The finite sets Ak for k =
1, 2, . . . are defined analogously. In addition, let

αX := inf
{
α > 0 : max

x1∈X
min
x2∈Xk

‖x1 − x2‖2 6 α(1/k)1/dX , |Xk| = k ∀k
}

(2.6)

and

αA := inf
{
α > 0 : max

a1∈A
min
a2∈Ak

‖a1 − a2‖2 6 α(1/k)1/dA , |Ak| = k ∀k
}

. (2.7)
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Theorem 12. Suppose Assumptions L and HT hold. Then the number of arith-
metic operations needed to compute an ε-β-optimal policy is at most a constant
times ⌈(

2MX,β

ε

)dX

⌉4

·

⌈(
2MA,β

ε

)dA

⌉2

· 1
1 −β

log
1

1 −β
, (2.8)

where

MX,β :=
2αX

1 −β

[(
(2 +β)βLp +

β2 + 4β+ 2
(1 −β)2

)
· Lr

1 −βLp
+

2Lr
1 −β

]
and

MA,β :=
αA

1 −β

[
Lr −βLp‖r‖∞ +

(
2β‖r‖∞Lp

1 −β

)]
,

where ‖r‖∞ := sup(x,a)∈X×A |r(x,a)|.

Proof. Consider the the MDP where the original action set is replaced with
the finite action set Ak∗ where

|Ak∗ | = k
∗ :=

⌈(
2MA,β

ε

)dA

⌉
.

Let vβ,k∗ denote the value function for this MDP. By Theorem 3, this MDP
has a deterministic stationary optimal policy φ∗. According to Saldi et
al. [99, Theorem 4.1], it follows that

vβ(x) − vβ,k∗(x) 6MA,β(1/k∗)1/dA 6 ε/2, x ∈ X. (2.9)

Next, following [100], consider the MDP with finite state set Xn∗ where

|Xn∗ | = n
∗ :=

⌈(
2MX,β

ε

)dX

⌉
.

Let the finite action set be An∗ , and define the one-step rewards rn∗ and
transition probabilities pn∗ as follows. Take any probability measure νn∗
on (X,B(X)) that assigns positive measure to the sets

Sn∗(xn∗) :=

{
x ∈ X : arg min

y∈Xn∗
‖x− y‖ = xn∗

}
, xn∗ ∈ Xn∗ ,

36



and let

rn∗(xn∗ ,ak∗) :=
∫
Sn∗(xn∗)

r(x,ak∗)νn∗(dx), (xn∗ ,ak∗) ∈ Xn∗ ×Ak∗ ,

and
pn∗(yn∗ |xn∗ ,ak∗) :=

∫
Sn∗(xn∗)

p(Sn∗(yn∗)|x,ak∗)νn∗(dx)

for xn∗ ,yn∗ ∈ Xn∗ and ak∗ ∈Ak∗ .
Let vβ,n∗,k∗ denote the value function for the MDP defined n the pre-

ceding paragraph, let φn∗,k∗ denote a deterministic optimal policy for that
MDP, and consider the deterministic stationary policy φε for the original
MDP defined by

φε(x) := φn∗,k∗(arg minxn∗∈Xn∗
‖x− xn∗‖2).

According to [100, Theorem 5.2], we have

vβ,k∗(x) − v
φε
β (x) 6MX,β(1/n∗)1/dX 6 ε/2, x ∈ X. (2.10)

Hence it follows from (2.9) and (2.10) that

vβ(x) − v
φε
β (x) 6 ε/2 + ε/2 = ε, x ∈ X.
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Chapter 3

Reduction of Transient MDPs

In this chapter, we provide a formulation of transient MDPs that allows
for the consideration of randomized history-dependent policies. To our
knowledge, previous work on transient MDPs whose transition kernels
are not necessarily substochastic only considers optimality over Markov
policies; see [90].

In Section 3.1, we provide an alternative formulation of the usual no-
tion of transience, and describe some application areas in Section 3.1.1.
In Section 3.2 we define the total-reward optimality criterion for transient
MDPs. Next, in Section 3.3 we define a transformation of the original tran-
sient MDP to a discounted one, and show how it can lead to the existence
and characterization of deterministic stationary optimal policies in Sec-
tion 3.4. Finally, in Section 3.5 we provide complexity estimates for con-
structing the HV transformation (Section 3.5.1), computing a deterministic
stationary optimal policy (Section 3.5.2, and computing an ε-optimal pol-
icy (Section 3.5.3).

3.1 Transience Assumption

Consider a nonnegative real-valued Borel-measurable discount function
α on Gr(A). In the sequel, we assume that α satisfies the following as-
sumption, which generalizes the case of constant discounting considered
in Chapter 2 where α ≡ β ∈ [0, 1).
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Assumption T (Transience). There is a constant K > 1 satisfying

Eφx

∞∑
t=0

t−1∏
k=0

α(ξk,υk) 6 K <∞ for all x ∈ X, φ ∈ F. (3.1)

To state the following proposition, recall that a subset E of a Polish space S
is analytic if there is a Polish space T and a set B ∈ B(S× T) such that E is
the projection projSB of B into S. A function f : S → R on a Polish space S
is upper (resp. lower) semianalytic if for every λ ∈ R the set {s ∈ S : f(s) > λ}
(resp. {s ∈ S : f(s) 6 λ} is an analytic subset of S.

Proposition 13. If Assumption T holds, then there is an upper semianalytic
function µ : X→ [1,∞) that is bounded above by K and satisfies

µ(x) > 1 +α(x,a)
∫

X

µ(y)p(dy|x,a) for all (x,a) ∈ Gr(A). (3.2)

Proof. Consider the operator U defined for bounded upper semianalytic
functions u : X→ [0,∞) by

Uu(x) := sup
A(x)

[
1 +α(x,a)

∫
X

u(y)p(dy|x,a)
]

, x ∈ X. (3.3)

Let u0 ≡ 0, and for n = 1, 2, . . . let un = Uun−1. Note that for each n > 0,
un is upper semianalytic (see e.g. [10, Propositions 7.47] and 1 ≡ u1 6
un 6 un+1. Letting µ(x) := limn→∞ un(x) > 1 for x ∈ X, it follows from
[10, Lemma 7.30] that µ is upper semianalytic. We will show that µ 6 K

and µ = Uµ.
We first show that un 6 K for all n > 0. Note that u0 ≡ 0 6 K. Next,

suppose un 6 K for some n > 0 and consider an arbitrary ε > 0. For
φ ∈ F, define the operator Qφ for bounded upper semianalytic functions
u : X→ [0,∞) by

Qφu(x) := α(x,φ(x))
∫

X

u(y)p(dy|x,φ(x)), x ∈ X,

let Q0
φu := u, and for n = 1, 2, . . . let Qnφu := Qφ(Q

n−1
φ u). Since K > 0,

according to the definition of U there is a φε ∈ F satisfying

1 +Qφεun(x) > Uun(x) −
ε

K
for each x ∈ X.
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Let ũ0 := un, and for N = 1, 2, . . . let ũN := 1 +QφεũN−1. Then, letting
e(x) := 1 for x ∈ X,

ũN(x) =

N−1∑
i=0

Qiφεe(x) +Q
N
φεun(x) for each N > 1, x ∈ X. (3.4)

By Assumption T,
∑∞
i=0Q

i
φεe 6 K. Since un is bounded, it follows that

QNφεun(x)→ 0 for each x ∈ X. LettingN→∞ on both sides of (3.4) gives

lim
N→∞ ũN(x) =

∞∑
i=0

Qiφεe(x) 6 K for each x ∈ X. (3.5)

Next, we claim that

ũN(x) > un+1(x) −
ε

K

N−1∑
i=0

Qiφεe(x) for each N > 1, x ∈ X. (3.6)

To prove (3.6), first note that for x ∈ X

ũ1(x) = 1 +Qφεũ0(x)

= 1 +Qφεun(x) > Uun(x) −
ε

K
= un+1(x) −

ε

K
Q0
φεe(x).

Now suppose (3.6) holds for some N > 1. Then for x ∈ X

ũN+1(x) = 1 +QφεũN(x) > 1 +Qφεun+1(x) −
ε

K

N−1∑
i=0

Qi+1
φε e(x)

> 1 +Qφεun(x) −
ε

K

N−1∑
i=0

Qi+1
φε e(x) (3.7)

> Uun(x) −
ε

K
−
ε

K

N∑
i=1

Qiφεe(x)

= un+1(x) −
ε

K

(N+1)−1∑
i=0

Qiφεe(x),
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where (3.7) holds since un 6 un+1. Hence (3.6) holds by induction. Letting
N→∞ on both sides of (3.6), it follows from (3.5) that

K > un+1(x) −
ε

K

∞∑
i=1

Qiφεe(x) > un+1(x) − ε for each x ∈ X, (3.8)

where the rightmost inequality holds because of Assumption T. Since ε >
0 was arbitrary, this means un+1 6 K. By induction, un 6 K for all n =
0, 1, . . . . Therefore, µ 6 K.

To complete the proof, note that since un ↑ µ, Lebesgue’s monotone
convergence theorem implies that for x ∈ X and a ∈ A(x)∫

X

un(y)p(dy|x,a) ↑
∫

X

µ(y)p(dy|x,a) as n→∞.

Since un ↑ µ implies that Uun = un+1 ↑ µ, for x ∈ X

µ(x) = lim
n→∞Uun(x) = 1 + lim

n→∞ sup
A(x)

∫
X

un(y)p(dy|x,a)

= 1 + sup
n>0

sup
A(x)

∫
X

un(y)p(dy|x,a)

= 1 + sup
A(x)

lim
n→∞

∫
X

un(y)p(dy|x,a) = Uµ(x).

The following proposition, which states that the sequence {un}n>0 de-
fined in the proof of Proposition 13 converges uniformly, will be used to
prove the continuity of µ under certain assumptions. This in turn will be
used to ensure that the transition probabilities defined by the HV trans-
formation, which is defined in Section 3.3, are weakly continuous if the
original transition probabilities are weakly continuous.

Proposition 14. Suppose Assumption T holds, and consider the operator U de-
fined by (3.3). Then the sequence {un}n>0 where u0 ≡ 0 and un := Uun−1 for
n = 1, 2, . . . converges uniformly.

Proof. According to Proposition 13, Assumption T implies that there exists
an upper semianalytic function µ : X → [1,∞) that is bounded above by
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the constant K < ∞ that satisfies (3.2). We claim that for any bounded
measurable functions f and g on X,

sup
x∈X

|Uf(x) −Ug(x)|

µ(x)
6

(
K− 1
K

)
sup
x∈X

|f(x) − g(x)|

µ(x)
. (3.9)

To prove (3.9), note that the positivity of µ implies

f(x) 6 g(x) + µ(x) · sup
x∈X

|f(x) − g(x)|

µ(x)
for all x ∈ X.

Hence for x ∈ X, it follows from the nonnegativity of α(x,a) and (3.2) that

Uf(x) 6 Ug(x) +

[
sup
A(x)

α(x,a)
∫

X

µ(y)p(dy|x,a)

]
· sup
x∈X

|f(x) − g(x)|

µ(x)

6 Ug(x) + [µ(x) − 1] · sup
x∈X

|f(x) − g(x)|

µ(x)

6 Ug(x) + µ(x) · K− 1
K
· sup
x∈X

|f(x) − g(x)|

µ(x)
,

so
Uf(x) −Ug(x)

µ(x)
6

(
K− 1
K

)
sup
x∈X

|f(x) − g(x)|

µ(x)
for all x ∈ X.

By reversing the roles of f and g, (3.9) follows.
According to (3.9), for n = 0, 1, . . .

sup
x∈X

|un+1(x) − un(x)|

µ(x)
6

(
K− 1
K

)n
sup
x∈X

|u1(x) − u0(x)|

µ(x)
6

(
K− 1
K

)n
. (3.10)

Hence, letting ‖f‖∞ := supx∈X |f(x)| denote the supremum norm of the
function f, for any nonnegative integersm,nwherem > n,
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‖um − un‖∞ 6 K · sup
x∈X

|um(x) − un(x)|

µ(x)

6 K ·
m−n−1∑
k=0

sup
x∈X

|un+k+1(x) − un+k(x)|

µ(x)

6 K ·
m−n−1∑
k=0

(
K− 1
K

)n+k
6 K ·

(
K− 1
K

)n ∞∑
k=0

(
K− 1
K

)k
= K2 ·

(
K− 1
K

)n
.

This means {un}n>0 is a Cauchy sequence with respect to the supremum
norm in the space of bounded functions B(X) on X. Since B(X) is a Banach
space, it follows that {un}n>0 converges uniformly.

3.1.1 Applications

The case where the discount function αmay be greater than one under
some states and actions is relevant to the study of the control of certain
population processes, which have variously been referred to as branching
Markov decision chains (e.g. [98], [97]), Markov population decision chains (e.g.
[117], [26]) and controlled multitype branching processes (e.g. [89], [90]). For
such models, the usual approach has been to consider MDPs where the
transition probabilities are replaced with so-called transition rates q(·|x,a)
for x ∈ X and a ∈ A(x), which are nonnegative and may take on values
greater than one.

Note that, equivalently to considering transition rates q(·|x,a), one can
consider an MDP with transition probabilities p(·|x,a) and discount func-
tion α : X→ [0,∞). In particular, given an MDP in the latter form, we can
let q(·|x,a) := α(x,a)p(·|x,a) for x ∈ X and a ∈ A(x); conversely, given a
controlled multitype branching process with transition rates q(·|x,a), we
can let α(x,a) := q(X|x,a) and p(·|x,a) := q(·|x,a)/q(X|x,a) for x ∈ X

and a ∈ A(x). Assumption T can then be interpreted as the condition
that, regardless of the initial population and the actions selected, the total
number of individuals that are subsequently born is finite.
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The decision process associated with a controlled multitype branching
process proceeds as follows. At each decision epoch, the decision-maker
controls a finite population of individuals, each of which is in some state
x ∈ X. For each individual that is in state x ∈ X, the decision-maker se-
lects an action a ∈ A(x) to perform, whereupon a reward r(x,a) is earned.
Further, if the action a is selected for an individual in state x, at the next
decision epoch that individual will have given birth to a random number
of individuals of different types, independently of the other individuals.
In particular, for every Borel subset B of X, the expected number of indi-
viduals whose states belong to B is q(B|x,a); when q(B|x,a) 6 1 for all
x ∈ X and a ∈ A(x), one obtains the standard MDP model as a special
case. The goal is to control the population in a way that maximizes the
expected total reward earned over either a finite or infinite horizon.

Such models are applicable in a diverse array of contexts. For exam-
ple, Pliska [89] describes their relevance to the control of infinite particle
systems, marketing, and population genetics. A number of other refer-
ences to applications are given in Eaves & Veinott [26] and Etessami &
Yannakakis [30]; in particular, the latter provides an indication of the rel-
evance of controlled multitype branching processes to problems in com-
puter science. We remark that branching processes, which were first re-
ferred to as such by Kolmogorov and Dmitriev [73], have been used to
study populations in the contexts of biology and demography, as well as
various physical phenomena such as cosmic-ray cascades; see e.g. [82, Sec-
tion 1.1].

3.2 Optimality Criterion

When the initial state is x ∈ X and the decision-maker follows the
policy π ∈ Π, the total expected α-discounted reward earned is

vπα(x) := Eπx

∞∑
t=0

t−1∏
k=0

α(ξk,υk)r(ξt,υt).

For ε > 0, a policy π∗ ∈ Π is ε-α-optimal if vπ∗α (x) > supπ∈Π v
π
β(x) − ε for

all x ∈ X. A 0-α-optimal policy is called α-optimal, and we refer to the
function on X defined by supπ∈Π v

π
β(x) =: vα(x), for x ∈ X, as the α-value

function.
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3.3 Hoffman-Veinott (HV) Transformation

We now define a transformation based on an idea that Veinott [115]
attributes to Alan Hoffman; we therefore refer to the transformation as the
Hoffman-Veinott (HV) transformation.

By Proposition 13, there is an upper semianalytic function µ : X →
[1,∞) that is bounded above by K < ∞ and satisfies (3.2). Objects asso-
ciated with the transformed MDP will be indicated by a tilde. The state
space is X̃ := X ∪ {x̃}, where x̃ 6∈ X is a reward-free absorbing state that is
isolated from X. Letting ã denote the only action available at state x̃, the
action space is Ã := A ∪ {ã} and for x ∈ X̃ the set of available actions is
unchanged if x ∈ X, namely

Ã(x) :=

{
A(x), if x ∈ X,
{ã}, if x = x̃.

Define the one-step rewards r̃ by

r̃(x,a) :=

{
µ(x)−1r(x,a), if x ∈ X, a ∈ A(x),
0, if (x,a) = (x̃, ã).

To complete the definition of the discounted MDP, choose a discount factor

β̃ ∈
[
K− 1
K

, 1
)

,

and let

p̃(B|x,a) :=


α(x,a)
β̃µ(x)

∫
B µ(y)p(dy|x,a), if B ∈ B(X), x ∈ X, a ∈ A(x),

1 −
α(x,a)
β̃µ(x)

∫
X µ(y)p(dy|x,a), if B = {x̃}, x ∈ X, a ∈ A(x),

1 if B = {x̃}, x = x̃, a = ã.

(3.11)

Note that Lebesgue’s monotone convergence theorem implies that p̃(·|x,a)
is a probability measure on (X̃,B(X̃)) for each x ∈ X̃ and a ∈ Ã(x). Also,
p̃(B|·) is a lower semianalytic function for each B ∈ B(X); see [10, Propo-
sition 7.48].

Since Ã(x̃) is a singleton, the sets of policies for these two models coin-
cide. Given x ∈ X̃ and π ∈ Π, let Ẽπx denote the expectation operator for
the β̃-discounted MDP with state space X̃, action space Ã, sets of available
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actions Ã, one-step rewards r̃, and transition probabilities p̃. Let ṽπ
β̃
(x) de-

note the β̃-discounted reward incurred under the policy πwhen the initial
state of this MDP is x ∈ X̃, and let ṽβ̃(x) := supπ∈Π ṽ

π
β̃
(x) for x ∈ X̃.

3.4 Existence of Optimal Policies

We now consider conditions under which the HV transformation leads
to the existence of (deterministic stationary) optimal policies for the tran-
sient MDP under the optimality criterion defined in Section 3.2.

Given π ∈ Π, the following proposition relates the α-discounted re-
wards incurred in the original MDP with those incurred in the MDP with
a constant discount factor defined by the HV transformation. In particular,
for every x ∈ X the total reward earned in the original and transformed
model when the initial state is x differ by the constant µ(x).

Proposition 15. Suppose Assumption T holds. Then vπ(x) = µ(x)ṽπ
β̃
(x) for

each π ∈ Π and x ∈ X.

Proof. For x ∈ X,

Ẽπx |r̃(x0,a0)| =
∫

Ã |r̃(x,a0)|π0(da0|x) =
∫

A
|r(x,a0)|
µ(x) π0(a0|x) =

Eπx |r(x0,a0)|
µ(x) .

In addition, for x ∈ X and t = 1, 2, . . . , since r̃(x̃, ã) = 0

Ẽπx |β̃
tr̃(xt,at)| =

∫
Ã

∫
X̃

· · ·
∫

Ã

∫
X̃

∫
Ã

|β̃tr̃(xt,at)|πn(dat|xa0 · · · xt)p̃(dxt|xt−1,at−1) · · ·

· · ·π1(da1|xa0x1)p̃(dx1|x,a0)π0(da0|x)

= β̃t
∫

A

∫
X

· · ·
∫

A

∫
X

∫
A

|r(xt,at)|
µ(xt)

πn(dat|xt)
α(xt−1,at−1)

β̃µ(xt−1)
µ(xt)p(dxt|xt−1,at−1) · · ·

· · ·π1(da1|x1)
α(x,a0)

β̃µ(x)
µ(x1)p(dx1|x,a0)π0(da0|x)

=
1
µ(x)

∫
A

∫
X

· · ·
∫

A

∫
X

∫
A

|r(xt,at)|α(xt−1,at−1) · · ·

· · ·α(x,a0)πn(dat|xa0 · · · xt)p(dxt|xt−1,at−1) · · ·
· · ·π1(da1|xa0x1)p(dx1|x,a0)π0(da0|x)

=
1
µ(x)

Eπx

∣∣∣∣∣
t−1∏
k=0

α(xk,ak)r(xt,at)

∣∣∣∣∣ .
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Since r is bounded, the boundedness of µ by Proposition 13 implies that r̃
is also bounded. Hence

∞∑
t=0

1
µ(x)

Eπx

∣∣∣∣∣
t−1∏
k=0

α(xk,ak)r(xt,at)

∣∣∣∣∣ =
∞∑
t=0

Ẽπx |β̃
tr̃(xt,at)| <∞

which (see e.g. [63, Theorem 9.2]) implies that vπ(x)/µ(x) = ṽπ
β̃
(x).

To state the main assumption in this section, recall that the set-valued
mapping x 7→ A(x), x ∈ X, is continuous if for every open subset V of A

the sets {x ∈ X : A(x) ⊆ V} and {x ∈ X : A(x)∩ V 6= ∅} are open.

Assumption W.

(i) the bounded one-step reward function r : Gr(A)→ R is continuous;

(ii) A(x) is compact for each x ∈ X, and the multifunction x 7→ A(x) is con-
tinuous;

(iii) the transition probabilities p are weakly continuous;

(iv) the discount function α : Gr(A)→ R is continuous.

Lemma 16. Suppose Assumption T and statements (ii)-(iv) of Assumption W
hold. Then there exists a continuous function µ : X → [1,∞) that is bounded
above by K and satisfies (3.2)

Proof. Recall the operator U defined by (3.2) in the proof of Proposition 13.
Letting u0 ≡ 0, and un := Uun−1 forn = 1, 2, . . . , it was shown that {un}n>0
increases to an upper semianalytic function µ that is bounded above by K
and satisfies (3.2). Note that the continuity of α(x,a) in (x,a) ∈ Gr(A)
and the weak continuity of p(·|x,a) in (x,a) ∈ Gr(A) imply that (x,a) 7→
α(x,a)

∫
X f(y)p(dy|x,a) is continuous in (x,a) ∈ Gr(A) for any bounded

continuous f : X → R. Hence the Berge Maximum Theorem (see e.g.
[3, Theorem 17.31]) implies that for n = 1, 2, . . . the bounded function un
is continuous. Since {un} in fact converges uniformly to µ according to
Proposition 14, it follows that µ is also continuous.

Lemma 17. Suppose Assumptions T and W hold. Then the discounted MDP
defined by the HV transformation satisfies the hypotheses of Theorem 4.
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Proof. Lemma 16 and statement (i) of Assumption W imply that r̃(x,a) is
bounded and continuous in (x,a) ∈ {(x,a) : x ∈ X̃,a ∈ Ã(x)}. In addi-
tion, statement (ii) of Assumption W implies that Ã(x) is compact for each
x ∈ X̃, and the isolatedness of x̃ implies that x 7→ Ã(x) is continuous; see
e.g. [3, Theorems 17.20, 17.21]. Next, note that the continuity of µ implies
that p̃(B|·) is a measurable function on {(x,a) : x ∈ X̃,a ∈ Ã(x)} for each
B ∈ B(X̃); see e.g. [10, Proposition 7.29]. In addition, for any bounded
continuous function f : X̃ → R, since x̃ is isolated from X Lemma 16 and
statements (iii)-(iv) of Assumption W imply that∫

X̃

f(y)p̃(dy|x,a) =
α(x,a)
β̃µ(x)

∫
X

f(y)µ(y)p(dy|x,a) +
[

1 −
α(x,a)
β̃µ(x)

∫
X

µ(y)p(dy|x,a)
]
f(x̃)

is continuous in (x,a) ∈ {(x,a) : x ∈ X̃,a ∈ Ã(x)}.

To state Theorem 18 below, for x ∈ X consider the sets of actions

A∗α(x) :=
{
a ∈ A(x)

∣∣ vα(x) = c(x,a) +α(x,a)
∫

X vα(y)p(y|x,a)
}

which, as will be shown, characterizes the set of optimal actions for that
state.

Theorem 18. Suppose the original MDP with discount function α(x,a) satisfies
Assumptions T and W. Then:

(i) the value function vα = µṽβ̃ is the unique bounded continuous function
that satisfies the optimality equation

vα(x) = max
A(x)

[
r(x,a) +α(x,a)

∫
X

vα(y)p(dy|x,a)
]

, x ∈ X; (3.12)

(ii) there is a stationary α-discounted cost optimal policy;

(iii) a policy φ ∈ F is α-discounted cost optimal if and only if φ(x) ∈ A∗α(x) for
all x ∈ X, and

A∗α(x) =

{
a ∈ A(x)

∣∣∣∣ ṽβ̃(x) = r̃(x,a) + β̃
∫

X̃

ṽβ̃(y)p̃(y|x,a)
}

(3.13)

for x ∈ X; in other words, the sets of optimal actions for the original MDP
and for the transformed MDP with a constant discount factor coincide.
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Proof. By Lemma 17, the transformed discounted MDP satisfies the hy-
potheses of Theorem 4. Hence the conclusions of Theorem 4 hold for the
transformed MDP.

Proposition 15 implies that vα = µṽβ̃. According to Lemma 16 and The-
orem 2, µ > 0 is continuous and ṽβ̃ is continuous, which means vα is also
continuous. Further, since ṽβ̃(x̃) = 0, (7.10) follows from Theorem 4. To
show that vα is the unique bounded continuous function satisfying (3.12),
note that if the bounded continuous function u : X → R satisfies (3.12)
then the bounded continuous function u/µ satisfies the optimality equa-
tion (2.2) for the β̃-discounted MDP defined by the HV transformation.
According to Theorem 4, this implies that u = µṽβ̃ = vα. Hence (i) holds.

Next, according to Theorem 4 there is a φ∗ ∈ F that is β̃-optimal for
the transformed MDP. By Proposition 15, vφ∗

α = µṽφ∗
β̃

= µṽβ̃ = vα, so φ∗ is
α-discounted cost optimal for the original MDP. Therefore (ii) holds.

It follows from the definitions of X̃, Ã, r̃, β̃, and p̃ that (3.13) holds.
Suppose φ ∈ F is α-discounted cost optimal for the original MDP. Then
v
φ
α = vα, so since vφα(x) = c(x,φ(x)) + α(x,φ(x))

∫
X v

φ
α(y)p(dy|x,a) for

every x ∈ X, it follows that φ(x) ∈ A∗α(x) for all x ∈ X. Conversely, if
φ(x) ∈ A∗α(x) for all x ∈ X, then according to Theorem 4 and (3.13) the
policy φ is β̃-optimal for the transformed MDP. By Proposition 15, this
means φ is α-discounted cost optimal for the original MDP. Hence (iii)
holds.

Corollary 19. Suppose Assumption T and Assumption W hold. Then any al-
gorithm that computes an optimal policy for the discounted MDP defined by the
HV transformation is an algorithm for the original α-discounted cost MDP.

3.5 Complexity Estimates

In this section, we provide complexity estimates related to applying the
HV transformation. In Section 3.5.1, we provide an upper bound on the
number of arithmetic operations needed to compute a function µ for the
HV transformation. Then, in Section 3.5.2 we consider the computation
of optimal policies for finite transient MDPs. Finally, in Section 3.5.3 we
consider the computation of ε-optimal policies for transient MDPs with
Euclidean state and action spaces satisfying certain Lipschitz-type condi-
tions. We remark that, according to Veinott [116], Assumption T can be

49



checked in strongly polynomial time.

3.5.1 Constructing the Transformation

Note that, given a suitable function µ, the MDP defined by the HV
transformation can be constructed with a number of arithmetic operations
that is polynomial in the number of state-action pairs m of the original
MDP. The following theorem provides an estimate of the complexity of
computing a function µ that can be used for the HV transformation.

Theorem 20. Suppose the state set X and action set A are finite, and that As-
sumption T holds. Then the number of arithmetic opterations needed to compute
a function µ satisfying the hypotheses of Proposition 13 is

O((n2m+n3)mK logK).

Proof. To compute a function satisfying the hypotheses of Proposition 13,
it suffices to compute a bounded nonnegative function µ that satisfies

µ(x) = max
a∈A(x)

1 +α(x,a)
∑
y∈X

p(y|x,a)µ(y)

 (3.14)

for all x ∈ X. Let q(y|x,a) := α(x,a)p(y|x,a) for x,y ∈ X and a ∈ A(x),
and consider the Markov decision process with state set X, action setsA(x)
for x ∈ X, transition rates q(y|x,a) for x,y ∈ X and a ∈ A(x), and one-
step rewards identically equal to one. According to Assumption T, this
MDP is transient; see [23, Hypothesis 1]. Hence it follows from [23, The-
orem 2] that the number of arithmetic operations needed, to compute a
nonnegative function that is bounded above by K and satisfies (3.14), is
O((n2m+n3)mK logK).

3.5.2 Computing Optimal Policies

The results in both [121] and [23] were obtained without reducing the
original problem to a discounted one. On the other hand, Corollary 19
makes the complexity results on discounted MDPs obtained by Ye [121],
Hansen et al. [51], and Scherrer [103] immediately applicable to the study
of algorithms for transient MDPs. In particular, Corollary 19 implies that
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an optimal policy for the original transient MDP can be computed by solv-
ing the linear program (LP)

minimize
∑
x∈X̃

∑
a∈Ã(x)

r̃(x,a)zx,a

such that
∑
a∈Ã(x)

zx,a − β̃
∑
y∈X̃

∑
a∈Ã(y)

p̃(x|y,a)zy,a = 1 for all x ∈ X̃,

zx,a > 0 for all x ∈ X̃, a ∈ Ã(x).

(3.15)

Letm :=
∑
x∈X |A(x)| denote the total number of state-action pairs, and let

n = |X| denote the total number of states. If β̃ = (K− 1)/K and K > 1,
then Scherrer’s [103] results imply that the LP (3.15) can be solved using
O(mK logK) iterations of the block-pivoting simplex method correspond-
ing to Howard’s policy iteration algorithm, or in O(mnK logK) iterations
using the simplex method with Dantzig’s rule. If K = 1, then β̃ = 0 and
the problem can be solved by simply selecting, for each x ∈ X, an action
maximizing r(x,a) over a ∈ A(x).

Remark 6. If Assumption T holds, it holds with the same upper bound K if
the values q(y|x,a) := α(x,a)p(y|x,a) are replaced with βq(y|x,a), where
β ∈ (0, 1]. Hence the number of arithmetic operations needed to compute
an optimal policy for a discounted MDP with transition rates q(y|x,a) sat-
isfying Assumption T can be bounded by a polynomial inm that does not
depend on the discount factor β ∈ (0, 1]. The bounds provided in the pre-
vious paragraph are applicable to all discount factors β ∈ (0, 1]. If β = 0,
the discounted problem becomes a one-step problem, which is equivalent
to a problem with K = 1; this case was discussed at the end of the previous
paragraph.

3.5.3 Computing ε-Optimal Policies

In this section, we assume that the original transient MDP satisfies sev-
eral Lipschitz-type assumptions.
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Assumption LT. The MDP is such that

(a) there exist positive integers dX and dA such that the state space X is a com-
pact subspace of RdX and the action space A is a compact subspace of RdA ;

(b) the one-step reward function r : X ×A → R is bounded and Lipschitz-
continuous with modulus Lr;

(c) there is a constant Lp <∞ satisfying

ρTV(p(·|x1,a1),p(·|x2,a2)) 6 LpρX×A((x1,a1), (x2,a2))

for all (x1,a1), (x2,a2) ∈ X×A;

(d) the discount function α : X×A→ R is bounded and Lipschitz-continuous
with modulus Lα.

Proposition 21. Suppose Assumptions LT and HT hold. Then there exists a
Borel-measurable function µ : X→ [1,∞) that is bounded above by K and satis-
fies

µ(x) = max
a∈A

[
1 +α(x,a)

∫
X

µ(y)p(dy|x,a)
]

, for all x ∈ X. (3.16)

Proof. Consider the operator U defined for nonnegative bounded Borel-
measurable functions u on X by

Uu(x) := sup
a∈A

[
1 +α(x,a)

∫
X

u(y)p(dy|x,a)
]

, x ∈ X.

Let u0 :≡ 0, and for t = 1, 2, . . . let ut := Uut−1. To prove the propo-
sition, we first verify that for t = 1, 2, . . . the function ut > 1 is Borel-
measurable. Then, we show that the Borel-measurable function

µ := lim
t→∞ut

satisfies 1 6 µ 6 K and (3.16).
Clearly u1 ≡ 1 is Borel-measurable. Next, suppose ut is Borel for some

t > 1. Since the continuity in total variation of p implies that p is setwise
continuous, it follows that the mapping

(x,a) 7→ α(x,a)
∫

X

ut(y)p(dy|x,a)
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is continuous on X×A. By [56, Theorem 2], it follows that ut+1 is Borel-
measurable.

Since 1 ≡ u1 6 ut 6 ut+1 for each t > 1, the sequence {ut}
∞
n=0 increases

to a Borel-measurable function

µ := lim
n→∞ut > 1.

Moreover, since Uut = ut+1 ↑ µ, Lebesgue’s monotone convergence theo-
rem implies that

µ(x) = lim
t→∞Uut(x) = 1 + lim

t→∞ sup
a∈A

α(x,a)
∫

X

ut(y)p(dy|x,a)

= 1 + sup
a∈A

lim
t→∞α(x,a)

∫
X

ut(y)p(dy|x,a) = Uµ(x)

for x ∈ X;

(3.17)
this will be used to verify (3.16).

Next, we show that ut 6 K for each t > 0; since ut ↑ µ, it follows
that µ 6 K. First, note that u0 ≡ 0 6 K. Next, suppose ut 6 K for some
t > 0. For φ ∈ F, define the operator Qφ for bounded Borel-measurable
functions u : X→ [0,∞) by

Qφu(x) := α(x,a)
∫

X

u(y)p(dy|x,φ(x)), x ∈ X.

Letting e(x) := 1 for x ∈ X, by [56, Theorem 2], there exists a φt ∈ F

satisfying
e+Qφtut = Uut. (3.18)

Consider ũ0 := ut and, for T = 1, 2, . . . let ũT := e+QφtũT−1. Then, letting
Q0
φt
u := u and Qi

φt
u := Qφt(Q

i−1
φt
u) for i = 1, 2, . . . and any bounded

Borel-measurable u : X→ [0,∞),

ũT =

T−1∑
i=0

Qiφte+Q
t
φtut for T = 1, 2, . . . . (3.19)

Since Assumption HT holds and ut 6 K, it follows from (3.19) that

lim
T→∞ ũT =

∞∑
i=0

Qiφte 6 K. (3.20)

53



We claim that ut+1 = ũ1 which, by (3.20), implies that un+1 6 K. This
claim holds because, by (3.18),

ũ1 = e+Qφtũ0 = e+Qφtut = Uut = ut+1.

Hence it follows by induction that ut 6 K for each n > 0, which implies
that µ 6 K.

Finally, (3.16) holds as a consequence of (3.17) and [56, Theorem 2],
because the transition probabilities p(·|x,a) are setwise continuous, and µ
is a bounded Borel-measurable function.

In what follows, we denote the supremum norm of a real-valued func-
tion f on a Polish space S by ‖f‖∞.

Proposition 22. If Assumptions LT and T hold, then there exists a Lipschitz-
continuous function µ : X→ [1,∞) with modulus Lµ := K(‖α‖∞Lp + Lα) that
is bounded above by K and satisfies

µ(x) > 1 +α(x,a)
∫

X

µ(y)p(dy|x,a) for all (x,a) ∈ X×A.

Proof. According to Proposition 21, Assumption T implies that there exists
a Borel-measurable function µ : X → [1,∞) that is bounded above by K
and satisfies

µ(x) = max
a∈A

[
1 +α(x,a)

∫
X

µ(y)p(dy|x,a)
]

, (x,a) ∈ X×A; (3.21)

For (x,a) ∈ X×A, let u(x,a) :=
∫

X µ(y)p(dy|x,a). Then it follows from
Lemma 11 and Assumption LT that for (x1,a1) and (x2,a2) belonging to
X×A,

|u(x1,a1) − u(x2,a2)| =

∣∣∣∣∫
X

µ(y)p(dy|x1,a1) −

∫
X

µ(y)p(dy|x2,a2)

∣∣∣∣
6

(
sup
x∈X

µ(x)

)
· ρTV(p(·|x1,a1),p(·|x2,a2))

6 KLpρX×A((x1,a1), (x2,a2)). (3.22)

Next, let uα(x,a) := 1 + α(x,a)u(x,a) for (x,a) ∈ X×A. Since α : X×
A → R is Lipschitz-continuous with modulus Lα, it follows from (3.22)
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that for (x1,a1), (x2,a2) ∈ X×A,

|uα(x1,a1) − uα(x2,a2)| = |α(x1,a1)u(x1,a1) −α(x2,a2)u(x2,a2)|

6 |α(x1,a1)u(x1,a1) −α(x1,a1)u(x2,a2)|

+ |α(x1,a1)u(x2,a2) −α(x2,a2)u(x2,a2)|

6 ‖α‖∞|u(x1,a1) − u(x2,a2)|

+K|α(x1,a1) −α(x2,a2)|

6 (‖α‖∞KLp +KLα)ρX×A((x1,a1), (x2,a2)).
(3.23)

Next, consider any x1, x2 ∈ X. By (3.21), there is an action a∗1 ∈ A

satisfying uα(x1,a∗1) = µ(x1). Further, from (3.23) it follows that

µ(x1) − µ(x2) = uα(x1,a∗1) − µ(x2)

6 uα(x1,a∗1) − uα(x2,a∗1)
6 (‖α‖∞KLp +KLα)ρX×A((x1,a∗1), (x2,a∗1))
= (‖α‖∞KLp +KLα)ρX(x1, x2).

Reversing the roles of x1 and x2 gives

|µ(x1) − µ(x2)| 6 (‖α‖∞KLp +KLα)ρX(x1, x2).

Lemma 23. If the function µ : X → [1,∞) is Lipschitz-continuous with mod-
ulus Lµ, then the mapping x 7→ 1/µ(x) is Lipschitz-continuous with the same
modulus.

Proof. Since µ > 1, for x1, x2 ∈ X∣∣∣∣ 1
µ(x1)

−
1

µ(x2)

∣∣∣∣ = |µ(x1) − µ(x2)|

µ(x1)µ(x2)
6 |µ(x1) − µ(x2)| 6 LµρX(x1, x2).

Consider the MDP with state space X, action space A, one-step re-
wards r̃(x,a) := r(x,a)/µ(x) for (x,a) ∈ X×A, and transition dynamics
defined by the Borel-measurable substochastic kernel p̃ on X given X×A

where

p̃(B|x,a) :=
α(x,a)
β̃µ(x)

∫
B
µ(y)p(dy|x,a), (x,a) ∈ X×A, B ∈ B(X).
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Proposition 24. If Assumptions LT and T hold, then r̃ is bounded and Lipschitz-
continuous on X×A with modulus

Lr̃ := max{1, ‖r‖∞}(Lr + Lµ), (3.24)

where Lµ := K(‖α‖∞Lp + Lα).
Proof. The boundedness of r̃ follows from the boundedness of c and µ. For
(x1,a1), (x2,a2) ∈ X×A,

|r̃(x1,a1) − r̃(x2,a2)| =

∣∣∣∣r(x1,a1)

µ(x1)
−
r(x2,a2)

µ(x2)

∣∣∣∣
6

∣∣∣∣r(x1,a1)

µ(x1)
−
r(x2,a2)

µ(x1)

∣∣∣∣+ ∣∣∣∣r(x2,a2)

µ(x1)
−
r(x2,a2)

µ(x2)

∣∣∣∣
=

1
µ(x1)

· |r(x1,a1) − r(x2,a2)|+ |r(x2,a2)| ·
∣∣∣∣ 1
µ(x1)

−
1

µ(x2)

∣∣∣∣
6 [max{1, ‖r‖∞(Lc + Lµ)}ρX×A((x1,a1), (x2,a2)),

where the second inequality follows from Lemma 23.

Proposition 25. If Assumptions LT and HT hold, then p̃ satisfies

ρTV(p̃(·|x1,a1), p̃(·|x2,a2)) 6 Lp̃ρX×A((x1,a1), (x2,a2))

for all (x1,a1), (x2,a2) ∈ X×A, where

Lp̃ := max
{
K,
‖α‖∞K
K− 1

}(
K(‖α‖∞Lµ +KLα)

K− 1
+KLp

)
. (3.25)

Proof. Consider any Borel-measurable g : X → [−1, 1]. Note that for
(x,a) ∈ X×A,∫

X

g(y)p̃(dy|x,a) =
α(x,a)
β̃µ̃(x)

∫
X

g(y)µ(y)p(dy|x,a).

Hence for (x1,a1), (x2,a2) ∈ X×A,∣∣∣∣∫
X

g(y)p̃(dy|x1,a1) −

∫
X

g(y)p̃(dy|x2,a2)

∣∣∣∣
=

∣∣∣∣α(x1,a1)

β̃µ̃(x1)

∫
X

g(y)µ(y)p(dy|x1,a1) −
α(x2,a2)

β̃µ̃(x2)

∫
X

g(y)µ(y)p(dy|x2,a2)

∣∣∣∣ .
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Consider the functions u1,u2 on X×A defined for (x,a) ∈ X×A by

u1(x,a) := α(x,a)/(β̃µ(x))

and
u2(x,a) :=

∫
X

g(y)µ(y)p(dy|x,a).

Since β̃ = (K− 1)/K, the function u1 is bounded by ‖α‖∞K/(K− 1). Fur-
ther, by Lemma 23 and the Lipschitz-continuity of α, the function u1 is
Lipschitz-continuous on X×A with modulus

Lu1 := K(‖α‖∞Lµ +KLα)/(K− 1).

Further, u2 is bounded by K and is Lipschitz-continuous on X×A with
modulus Lu2 := KLp; the latter holds because for (x1,a1), (x2,a2) ∈ X×A,

|u2(x1,a1) − u2(x2,a2)| =

∣∣∣∣∫
X

g(y)µ(y)[p(dy|x1,a1) − p(dy|x2,a2)]

∣∣∣∣
6 KρTV(p(·|x1,a1),p(·|x2,a2))

6 KLpρX×A((x1,a1), (x2,a2)).

It follows that for any g : X→ [−1, 1] and (x1,a1), (x2,a2) ∈ X×A,∣∣∣∣∫
X

g(y)p̃(dy|x1,a1) −

∫
X

g(y)p̃(dy|x2,a2)

∣∣∣∣
= |u1(x1,a1)u2(x1,a1) − u1(x2,a2)u2(x2,a2)|

6 K|u1(x1,a1) − u1(x2,a2)|

+
‖α‖∞K
K− 1

|u2(x1,a1) − u2(x2,a2)|

6 max
{
K,
‖α‖∞K
K− 1

}
(Lu1 + Lu2)ρX×A((x1,a1), (x2,a2)).

Hence

ρTV(p̃(·|x1,a1), p̃(·|x2,a2)) 6 Lp̃ρX×A((x1,a1), (x2,a2))

for (x1,a1), (x2,a2) ∈ X×A.

When Assumption LT(i) holds, define the finite sets Xk for k = 1, 2, . . .
by substituting X for S in Remark 5. The finite sets Ak for k = 1, 2, . . . are
defined analogously. In addition, let

αX := inf
{
α > 0 : max

x1∈X
min
x2∈Xk

‖x1 − x2‖2 6 α(1/k)1/dX , |Xk| = k ∀k
}

(3.26)
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and

αA := inf
{
α > 0 : max

a1∈A
min
a2∈Ak

‖a1 − a2‖2 6 α(1/k)1/dA , |Ak| = k ∀k
}

.

(3.27)

Theorem 26. Suppose Assumptions LT and HT hold. Then the number of arith-
metic operations needed to compute an ε-optimal policy is at most⌈(

2MX

ε

)dX

⌉4

·

⌈(
2MA

ε

)dA

⌉2

·K logK, (3.28)

where

MX := 2αXKLr̃

[
2K+

7K2 − 6K+ 1 + Lp̃(3 − 4
K + 1

K2 )

1 − Lp̃ +
Lp̃
K

]
and

MA := αAK

[
Lr̃ − ‖r‖∞Lp̃

(
2K− 3 +

1
K

)]
;

here αX and αA are respectively defined by (3.26) and (3.27), Lr̃ and Lp̃ are
respectively defined by (3.24) and (3.25).

Proof. According to Propositions 24 and 25, the MDP defined by the HV
transformation satisfies the hypotheses of Assumption L. Hence the the-
orem follows by applying Theorem 12 to the β̃-discounted MDP defined
by the HV transformation.
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Chapter 4

Reduction of Average-Reward
MDPs

In this chapter, we consider the reduction of average-reward MDPs to
discounted ones. In Section 4.1, we describe the hitting time assump-
tion that will be used in the reduction, and in Section 4.1.1 we describe
some application areas where the assumption is relevant. In Section 4.2
we define the average-reward optimality criterion, and in Section 4.3 we
define a transformation of the original MDP to a discounted one. This
leads to complexity estimates for computing optimal policies for finite
average-reward MDPs (Section 4.5) and for computing ε-optimal policies
for average-reward MDPs with Euclidean state and action spaces that sat-
isfy certain Lipschitz-type conditions.

4.1 Hitting Time Assumption

For x ∈ X, let τx denote the hitting time to state x after time 0, which
is also referred to as the first return time to state x. In particular, τx(ω) :=
inf{t > 1 : ξt(ω) = x} forω = x0a0 · · · ∈H∞.

Assumption HT. There is a special state ` ∈ X and a constant L > 1 satisfying

Eφx τ` 6 L <∞ for all x ∈ X, φ ∈ F. (4.1)

In words, Assumption HT means that under every deterministic station-
ary policy, the expected time until the process transitions to state ` from
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any initial state is bounded above by L.

Proposition 27. Suppose Assumption HT holds. Then there exists an upper
semianalytic function µ : X → [1,∞) that is bounded above by K̄ := L+ 1 and
satisfies

µ̄(x) > 1 +

∫
X\{`}

µ̄(y)p(dy|x,a) for all (x,a) ∈ Gr(A). (4.2)

Proof. For (x,a) ∈ Gr(A), let

q(B|x,a) :=
p(B \ {`}|x,a)
p(X \ {`}|x,a)

, B ∈ B(X), (4.3)

and α(x,a) := p(X \ {`}|x,a). Note that 0 6 q(B|x,a) and q(X|x,a) = 1
for (x,a) ∈ Gr(A). Moreover, Lebesgue’s monotone convergence theo-
rem implies that for each (x,a) ∈ Gr(A) the set function B 7→ q(B|x,a) is
countably additive. Also, since p is a stochastic kernel on X given Gr(A),
for each B ∈ B(X) the mapping (x,a) 7→ q(B|x,a) is Borel-measurable.
Hence q is a stochastic kernel on X given Gr(A). In addition, the map-
ping (x,a) 7→ p(X \ {`}|x,a) = α(x,a) is Borel-measurable by [10, Proposi-
tion 7.29].

Replace the transition probabilities p with q, and for x ∈ X and π ∈ Π
letQπx and Eπx respectively denote the corresponding strategic measure and
expectation operator for the resulting MDP. By Assumption HT and the
definition of q, for x ∈ X and (φ1,φ2) ∈ F1 ×F2

∞ > K̄ := L+ 1 >
∞∑
n=0

Qφx {τ` > n} =

∞∑
n=0

Eφx

n−1∏
k=1

α(xk,ak).

According to Proposition 13, it follows that there is an upper semianalytic
function µ̄ : X→ [1,∞) that is bounded above by K̄ and satisfies

µ̄(x) > 1 +α(x,a)
∫

X

µ̄(y)q(dy|x,a) = 1 +

∫
X\{`}

µ̄(y)p(dy|x,a)

for all (x,a) ∈ Gr(A).
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4.1.1 Applications

An important type of problem where MDPs satisfying Assumption HT
are relevant is the problem of finding good maintenance and/or replace-
ment policies for systems, such as manufacturing equipment, where the
time of failure may be unknown. For such systems, it is often reasonable
to assume that, regardless of its initial condition and what the decision-
maker does, the time until the system fails is bounded above by a con-
stant. This holds, for example, if it is assumed that at every decision epoch
the probability that the system fails is at least a constant γ > 0, regardless
of what the decision-maker does. Such a problem is studied in Dynkin &
Yushkevich [25, pp. 188-193], where the time until the system transitions
to the state of having just been replaced is bounded above by L := 1/γ.
The models of a stochastically deteriorating systems that are considered in
Klein [72] and Derman [24] also satisfy this assumption. Such models are a
special case of discrete-state MDPs with a so-called minorant; see [25, Sec-
tion 10] As was shown by Ross [95], the problem of solving such average-
reward MDPs can be reduced to solving a related discounted MDP; see
also [25, Section 10].

Alternatively, it may be more appropriate to assume that regardless of
what the initial state is and what the decision-maker does, the probability
that the system fails inN steps, for some positive integerN, is bounded be-
low by a constant γ > 0. In this case, for any initial state, the time until the
system fails is bounded above by L := N/γ, regardless of what actions are
selected. Kim & Thomas [69] consider such an equipment failure model,
which is noted to be relevant to the maintenance of standby equipment
such as emergency power supplies for hospitals, emergency response ve-
hicles, and military defense equipment. MDPs that model such systems
are special cases of MDPs satisfying what Hordijk [60, Chapter 11] refers
to as the simultaneous Doeblin condition.
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4.2 Optimality Criterion

When the initial state is x ∈ X and the decision-maker follows the
policy π ∈ Π, the expected long-run average reward earned is

wπ(x) := lim inf
T→∞ 1

T
Eπx

T−1∑
t=0

r(ξt,υt).

For ε > 0, a policy π∗ ∈ Π is ε-optimal if wπ∗(x) > supπ∈Πw
π(x) for all

x ∈ X. A 0-optimal policy is called optimal, and we refer to the function on
X defined by supπ∈Πw

π(x) =: w(x), for x ∈ X, as the value function.

4.3 Akian-Gaubert (AG) Transformation

Objects associated with the discounted MDP will be indicated by a hor-
izontal bar. The state space is X̄ := X ∪ {x̄}, where x̄ 6∈ X is a reward-free
absorbing state that is isolated from X. Letting ā denote the only action
available at state x̄, the action space is Ā := A ∪ {ā} and for x ∈ X̄ the set
of available actions is unchanged if x ∈ X, namely

Ā(x) :=

{
A(x), if x ∈ X,
{ā}, if x = x̄.

Define the one-step rewards r̄ by

r̄(x,a) :=

{
µ̄(x)−1rz(x,a), if x ∈ X, a ∈ A(x),
0, if (x,a) = (x̄, ā).

To complete the definition of the discounted MDP, choose a discount factor

β̄ ∈
[
K̄− 1
K̄

, 1
)

,

and let

p̄(B|x,a) :=


1

β̄µ̄(x)

∫
B µ̄(y)p(dy|x,a), B ∈ B(X \ {`}), x ∈ X, a ∈ A(x),

1
β̄µ̄(x)

[µ̄(x) − 1 −
∫

X\{`} µ̄(y)p(dy|x,a)], B = {`}, x ∈ X, a ∈ A(x)
1 − 1

β̄µ̄(x)
[µ̄(x) − 1], B = {x̄}, x ∈ X, a ∈ A(x)

1, B = {x̄}, (x,a) = (x̄, ā).
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Lebesgue’s monotone convergence theorem implies that p̄(·|x,a) is a prob-
ability measure on (X̄,B(X̄)) for each x ∈ X̄ and a ∈ Ā(x). Also, p̄(B|·)
is a lower semianalytic function on {(x,a) : x ∈ X̄,a ∈ Ā(x)} for each
B ∈ B(X̄); see [10, Proposition 7.48].

Since Ā(x̄) is a singleton, the sets of policies for these two models co-
incide. Given x ∈ X̄ and π ∈ Π, let Ēπx denote the expectation opera-
tor for the β̄-discounted MDP with state space X̄, action space Ā, sets of
available actions Ā, one-step rewards r̄, and transition probabilities p̄. Let
v̄π
β̄
(x) denote the β̄-discounted reward incurred when the initial state of

the transformed MDP is x ∈ X̄ and the policy π is used.

Remark 7. Ross [95] [94] considered MDPs satisfying the special case of
Assumption HT where there is a constant α such that

p({`}|x,a) > α > 0 for all x ∈ X, a ∈ A(x),

and introduced a transformation of the transition probabilities that can
be used to reduce the average-reward MDP to a discounted one. In fact,
Ross’s [95] [94] transformation can be viewed as a special case of the AG
transformation. Namely, taking µ̄ ≡ K̄ = 1/α, the resulting transition
probabilities are the same in both cases and the one-step rewards differ by
a factor of α.

4.4 Existence of Optimal Policies

The proofs of Proposition 29 and Theorem 32 below rely on the follow-
ing lemma.

Lemma 28. If a bounded measurable function f : X̄→ R satisfies f(x̄) = 0, then
for any x ∈ X and a ∈ A(x)

r̄(x,a) + β̄
∫

X̄

f(y)p̄(dy|x,a)

=
1
µ(x)

[
r(x,a) +

∫
X

µ(y)[f(y) − f(`)]p(dy|x,a) + [µ(x) − 1]f(`)
]

.

Proof. According to the definition of r̄, β̄, for x ∈ X and a ∈ A(x)
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r̄(x,a) + β̄
∫

X̄

p̄(dy|x,a)f(y) =
r(x,a)
µ(x)

+
1
µ(x)

∫
X\{`}

µ(y)f(y)p(dy|x,a)

+
1
µ(x)

[
µ(x) − 1 −

∫
X\{`}

µ(y)p(dy|x,a)

]
f(`)

=
1
µ(x)

[
r(x,a) +

∫
X

µ(y)[f(y) − f(`)]p(dy|x,a) + [µ(x) − 1]f(`)
]

.

For φ ∈ F, the following proposition relates the average rewards in-
curred in the original MDP with the discounted rewards incurred in the
MDP constructed using the AG transformation.

Proposition 29. Let φ ∈ F be a stationary policy and hφ(x) := µ̄(x)[v̄φ
β̄
(x) −

v̄
φ

β̄
(`)] for x ∈ X. Then

v̄
φ

β̄
(`) + hφ(x) = r(x,φ(x)) +

∫
X

hφ(y)p(dy|x,φ(x)), x ∈ X. (4.4)

Further, if the one-step rewards c are bounded, then wφ ≡ v̄φ
β̄
(`).

Proof. Since the state x̄ in the discounted MDP defined by the AG trans-
formation is reward-free and absorbing, (4.4) follows from the fact that

v̄
φ

β̄
(x) = r̄(x,φ(x)) + β̄

∫
X̄

v̄
φ

β̄
(y)p̄(dy|x,φ(x)), x ∈ X,

and Lemma 28. Next, suppose c is bounded. Iterating (4.4) gives

Nv̄
φ

β̄
(`) + hφ(x) = Eφx

N−1∑
n=0

r(xn,an) + Eφx h
φ(xN) (4.5)

for x ∈ X, N = 1, 2, . . . . Since r and µ̄ are bounded, the function hφ(x) =
µ̄(x)[v̄φ

β̄
(x) − v̄φ

β̄
(`)] is bounded as well. The equality wφ ≡ v̄φ

β̄
(`) then fol-

lows by dividing both sides of (4.5) by N and letting N→∞.

Lemma 30. Suppose Assumption HT holds with an isolated state `, and As-
sumption W holds. Then there exists a continuous function µ̄ : X→ [1,∞) that
is bounded above by K̄ := L+ 1 and satisfies (4.2).
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Proof. This follows by applying Lemma 16 to the transient MDP with state
space X, action space A, sets of available actions A(x) for x ∈ X, one-step
rewards identically equal to one, transition probabilities q defined by

q(B|x,a) :=
p(X \ {`}|x,a)
p(X \ {`}|x,a)

, B ∈ B(X), (x,a) ∈ Gr(A),

and discount function α defined by

α(x,a) := p(X \ {`}|x,a), (x,a) ∈ Gr(A).

Remark 8. According to the theory of positive dynamic programming
(see e.g. [35]), the function µ̄ constructed in the proof of Lemma 30 sat-
isfies µ̄(x) = supπ∈Π Eπx inf{n > 1 : xn = `} for all x ∈ X. This func-
tion may not be continuous if the state ` satisfying Assumption HT is not
isolated. For example, let ` ∈ (0, (

√
5 − 1)/2) and consider the Markov

chain with state space X := [0, `] and transition kernel P(·|x) defined by
P({`}|0) := 1, P({`}|`) := 1 − `, P({0}|`) := `, and for x ∈ (0, `), P({0}|x) := x,
P({x}|x) := x2, and P({`}|x) := 1 − x − x2. It is straightforward to verify
that P(·|x) is weakly continuous in x ∈ X. Hence statements (ii)-(iii) of As-
sumption W hold for the corresponding MDP with a single available ac-
tion for every state (where the rewards, since they do not play a role here,
may be defined arbitrarily). In addition, since µ̄(0) = 1, µ̄(x) = (1 − x)−1

for x ∈ (0, 1), and µ̄(`) = 1 + `, Assumption HT holds for state ` and the
constant L := (1− `)−1. Therefore the hypotheses of Lemma 30 hold except
for the isolatedness of `. However, for any sequence {xn}n>0 in [0, `) that
converges to `, limn→∞ µ̄(xn) = (1 − `)−1 > 1 + ` = µ̄(`).

Lemma 31. Suppose Assumptions HT holds with an isolated state `, and As-
sumption W holds. Then the discounted MDP defined by the AG transformation
satisfies Assumption W.

Proof. Lemma 30 and Assumption W imply that r̄(x,a) is bounded and
continuous in (x,a) ∈ {(x,a) : x ∈ X̄,a ∈ Ā(x)}. In addition, statement
(ii) of Assumption W and the isolatedness of x̄ imply that x 7→ Ā(x) is
compact-valued and continuous; see e.g. [3, Theorems 17.20, 17.21]. Next,
note that the measurability of µ̄ implies that p̄(B|·) is a measurable func-
tion on {(x,a) : x ∈ X̄,a ∈ Ā(x)} for each B ∈ B(X̄); see e.g. [10, Proposi-
tion 7.29]. In addition, for any bounded continuous function f : X̄ → R,
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since the states x̄, ` are isolated and µ̄ is continuous on X, Lemma 30 and
the weak continuity of the transition probabilities p imply that∫

X̄

f(y)p̄(dy|x,a) =
1

β̄µ̄(x)

∫
X\{`}

f(y)µ̄(y) +
1

β̄µ̄(x)

[
µ̄(x) − 1 −

∫
X\{`}

µ̄(y)p(dy|x,a)

]
f(`)

+

[
1 −

1
β̄µ̄(x)

[µ̄(x) − 1]
]
f(x̄)

is continuous in (x,a) ∈ {(x,a) : x ∈ X̄,a ∈ Ā(x)}.

For x ∈ X, and a constant w and function h : X → R satisfying the
average-reward optimality equation (4.6) given in the statement of Theo-
rem 32 below, consider the sets of actions

A∗av(x) :=

{
a ∈ A(x)

∣∣∣∣ w+ h(x) = r(x,a) +
∫

X

h(y)p(dy|x,a)
}

, x ∈ X.

Theorem 32. Suppose the original MDP satisfies Assumption HT with an iso-
lated state `, and Assumption W holds. Then:

(i) the constant w = v̄β̄(`) and the bounded function h(x) = µ(x)[v̄β̄(x) −
v̄β̄(`)], x ∈ X, satisfy the optimality equation

w+ h(x) = max
A(x)

[
r(x,a) +

∫
X

h(y)p(dy|x,a)
]

, x ∈ X, (4.6)

and v̄β̄(`) is the optimal average reward for each initial state.

(ii) there is a stationary average-reward optimal policy;

(iii) any φ ∈ F satisfying φ(x) ∈ A∗av(x) for all x ∈ X is average-reward
optimal, and

A∗av(x) =

{
a ∈ A(x)

∣∣∣∣ v̄β̄(x) = r̄(x,a) + β̄
∫

X̄

v̄β̄(y)p̄(dy|x,a)
}

(4.7)

for x ∈ X.

Proof. Lemma 31 implies that the conclusions of Theorem 4 hold for the
transformed MDP. In particular, there is a stationary β̄-optimal policy for
the transformed MDP.

By applying Lemma 28 to the optimality equation for the β̄-discounted
MDP defined by the AG transformation, it follows that w = v̄β̄(`) and

66



h(x) = µ̄(x)[v̄β̄(x) − v̄β̄(`)], x ∈ X, satisfy (4.6). Note that, since the MDP
satisfies Assumption HT and Assumption W, it also satisfies Assumptions
(B) and (W∗) in [41]. Hence, according to [41, Theorem 3], Proposition 29
implies that the optimal average reward for each state is infφ∈Fw

φ ≡
infφ∈F v̄

φ

β̄
(`) = v̄β̄(`), so (i) holds.

Let φ∗ ∈ F be a β̄-optimal policy for the transformed MDP. According
to Proposition 29 and the previous paragraph, wφ∗ ≡ v̄

φ∗
β̄
(`) = v̄β̄(`) ≡

infφ∈Fw
φ = infπ∈Πwπ, which means φ∗ is average-reward optimal for the

original MDP. Hence (ii) holds.
Lemma 28 implies that (4.7) holds. Moreover, since the function h is

bounded, it follows that any φ ∈ F satisfying φ(x) ∈ A∗av(x) for all x ∈ X

is average-reward optimal; see e.g., [53, Theorem 5.2.4]. Therefore (iii)
holds.

Corollary 33. Suppose Assumption HT holds with an isolated state, and As-
sumption W hold. Then any algorithm that computes a stationary optimal policy
for the discounted MDP defined by the AG transformation is an algorithm for the
original average-reward MDP.

4.5 Complexity Estimates

In this section, we provide complexity estimates related to applying
the AG transformation. In Section 4.5.1 we provide an upper bound on
the number of arithmetic operations needed to compute a function µ̄ for
the AG transformation. Then, in Section 4.5.2 we consider the computa-
tion of optimal policies for finite average-reward MDPs. Finally, in Sec-
tion 4.5.3 we consider the computation of ε-optimal policies for transient
MDPs with Euclidean state and action spaces satisfying certain Lipschitz-
type conditions. We remark that, according to Feinberg & Yang [44], check-
ing whether Assumption HT holds can be done in strongly polynomial
time.

4.5.1 Constructing the Transformation

Note that, given a suitable function µ̄, the MDP defined by the AG
transformation can be constructed using a number of arithmetic opera-
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tions that is polynomial in the number of state-action pairs m of the orig-
inal MDP. The following theorem provides an estimate of the complexity
of computing a funtion µ̄ that can be used for the AG transformation.

Theorem 34. Suppose the state set X and action set A are finite, and that As-
sumption HT holds. Then the number of arithmetic operations needed to compute
a function µ satisfying the hypotheses of Proposition 27 is

O((n2m+n3)mL logL).

Proof. To compute a function satisfying the hypotheses of Proposition 27,
it suffices to compute a bounded nonnegative function µ̄ that satisfies

µ̄(x) = max
a∈A(x)

1 +
∑

y∈X\{`}

p(y|x,a)µ̄(y)

 , for all x ∈ X. (4.8)

Let
q(y|x,a) := 1X\{`}(y)p(y|x,a)

for x,y ∈ X and a ∈ A(x), and consider the Markov decision process
with state set X, action sets A(x) for x ∈ X, transition rates q(y|x,a) for
x,y ∈ X and a ∈ A(x), and one-step rewards identically equal to one. Ac-
cording to Assumption HT, this MDP is transient; see [23, Hypothesis 1].
Hence it follows from [23, Theorem 2] that the number of arithmetic oper-
ations needed, to compute a nonnegative function that is bounded above
by K̄ := L+ 1 and satisfies (4.8), is O((n2m+ n3)mK̄ log K̄) = O((n2m+
n3)mL logL).

4.5.2 Computing Optimal Policies

For a finite state and action MDP that satisfies Assumption HT, Corol-
lary 33 implies that a stationary average-reward optimal policy can be
computed by solving the LP

minimize
∑
x∈X̄

∑
a∈Ā(x)

r̄(x,a)zx,a

such that
∑
a∈Ā(x)

zx,a − β̄
∑
y∈X̄

∑
a∈Ā(y)

p̄(x|y,a)zy,a = 1 for all x ∈ X̄,

zx,a > 0 for all x ∈ X̄, a ∈ Ā(x).

(4.9)
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Recall thatm =
∑
x∈X |A(x)| and n = |X|. If K̄ = L+ 1 > 1, Scherrer’s [103]

bounds imply that the LP (4.9) can be solved using O(mK̄ log(K̄)) itera-
tions of the block-pivoting simplex method corresponding to Howard’s
policy iteration algorithm, or in O(mnK̄ log(K̄)) iterations using the sim-
plex method with Dantzig’s rule. Observe that K̄ = L + 1 = 1 means
that L = 0, i.e. the only state ` is absorbing under each stationary pol-
icy, and a stationary policy φ is average-reward optimal if and only if
r(`,φ(`)) = min{r(`,a) : a ∈ A(`)}.

4.5.3 Computing ε-Optimal Policies

The following is a generalization, to infinite state and action spaces, of
a transformation introduced in [1]. Let

β̄ := (K− 1)/K,

and consider the MDP with state space X, action space A, one-step re-
wards r̄(x,a) := r(x,a)/µ(x) for (x,a) ∈ X×A, and transition dynamics
defined by the Borel-measurable substochastic kernel p̄ on X given X×A

where

p̄(B|x,a) :=

{
1

β̄µ(x)

∫
B µ(y)p(dy|x,a) if B ∈ B(X \ {`}), (x,a) ∈ X×A,

1
β̄µ(x)

[µ(x) − 1 −
∫

X\{`} µ(y)p(dy|x,a)] if B = {`}, (x,a) ∈ X×A,

Proposition 35. If Assumptions L and HT hold, then the one-step reward func-
tion r̄ is bounded and Lipschitz-continuous on X×A with modulus

Lr̄ := max{1, ‖r‖∞}(Lr +KLp). (4.10)

Proof. The boundedness of r̄ follows from the boundedness of c and µ. For
(x1,a1), (x2,a2) ∈ X×A,

|c̄(x1,a1) − c̄(x2,a2)| =

∣∣∣∣r(x1,a1)

µ(x1)
−
r(x2,a2)

µ(x2)

∣∣∣∣
6

∣∣∣∣r(x1,a1)

µ(x1)
−
r(x2,a2)

µ(x1)

∣∣∣∣+ ∣∣∣∣r(x2,a2)

µ(x1)
−
r(x2,a2)

µ(x2)

∣∣∣∣
=

1
µ(x1)

· |r(x1,a1) − r(x2,a2)|+ |r(x2,a2)| ·
∣∣∣∣ 1
µ(x1)

−
1

µ(x2)

∣∣∣∣
6 [max{1, ‖r‖∞}(Lc + Lµ)]ρX×A((x1,a1), (x2,a2)),

where the second inequality follows from Lemma 23.
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Proposition 36. If Assumptions L and HT hold, then p̄ satisfies

ρTV(p̄(·|x1,a1), p̄(·|x2,a2)) 6 Lp̄ρX×A((x1,a1), (x2,a2))

for all (x1,a1), (x2,a2) ∈ X×A, where

Lp̄ := max
{

2(K+ 1),
K

K− 1

}(
2K+

K2

K− 1

)
Lp. (4.11)

Proof. Consider any Borel-measurable g : X → [−1, 1]. Note that for
(x,a) ∈ X×A,∫

X

g(y)p̄(dy|x,a) =
1

β̄µ̄(x)

∫
X\{`}

[g(y) − g(`)]µ(y)p(dy|x,a) +
[

1 −
µ(x) − 1
β̄µ(x)

]
[g(x̄) − g(`)].

Hence for (x1,a1), (x2,a2) ∈ X×A,∣∣∣∣∫
X

g(y)p̄(dy|x1,a1) −

∫
X

g(y)p̄(dy|x2,a2)

∣∣∣∣
=

∣∣∣∣∣ 1
β̄µ̄(x1)

∫
X\{`}

[g(y) − g(`)]µ(y)p(dy|x1,a1) +

[
1 −

µ(x1) − 1
β̄µ(x1)

]
[g(x̄) − g(`)]

−
1

β̄µ̄(x2)

∫
X\{`}

[g(y) − g(`)]µ(y)p(dy|x1,a1) −

[
1 −

µ(x2) − 1
β̄µ(x2)

]
[g(x̄) − g(`)]

∣∣∣∣∣
=

∣∣∣∣∣ 1
β̄µ̄(x1)

(∫
X\{`}

[g(y) − g(`)]µ(y)p(dy|x1,a1) + g(x̄) − g(`)

)

−
1

β̄µ̄(x2)

(∫
X\{`}

[g(y) − g(`)]µ(y)p(dy|x2,a2) + g(x̄) − g(`)

)∣∣∣∣∣ .
Consider the functions u1,u2 on X ×A where u1(x,a) := 1/[β̄µ(x)]

and u2(x,a) :=
∫

X\{`}[g(y) − g(`)]µ(y)p(dy|x,a) + g(x̄) − g(`). Since β̄ =

(K − 1)/K, u1 is bounded by K/(K − 1) and, by Lemma 23, is Lipschitz-
continuous on X×A with modulus K2Lp/(K− 1). Further, u2 is bounded
by 2(K+ 1) and is Lipschitz-continuous on X×A with modulus 2KLp; the
latter holds because for (x1,a1), (x2,a2) ∈ X×A,

|u2(x1,a1) − u(x2,a2)| =

∣∣∣∣∣
∫

X\{`}
[g(y) − g(`)]µ(y)[p(dy|x1,a1) − p(dy|x2,a2)]

∣∣∣∣∣
6

∣∣∣∣∫
X

2µ(y)[p(dy|x1,a1) − p(dy|x2,a2)]

∣∣∣∣
6 2KρTV(p(·|x1,a1) − p(·|x2,a2))

6 2KLpρX×A((x1,a1), (x2,a2)).
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It follows that for any g : X→ [−1, 1] and (x1,a1), (x2,a2) ∈ X×A,∣∣∣∣∫
X

g(y)p̄(dy|x1,a1) −

∫
X

g(y)p̄(dy|x2,a2)

∣∣∣∣
= |u1(x1,a1)u2(x1,a1) − u1(x2,a2)u2(x2,a2)|

6 |u1(x1,a1)u2(x1,a1) − u1(x2,a2)u2(x1,a1)|

+ |u1(x1,a2)u2(x1,a1) − u1(x2,a2)u2(x2,a2)|

6 2(K+ 1)|u1(x1,a1) − u1(x2,a2)|

+ [K/(K− 1)]|u2(x1,a1) − u2(x2,a2)|

6 max
{

2(K+ 1),
K

K− 1

}(
2K+

K2

K− 1

)
LpρX×A((x1,a1), (x2,a2));

Hence

ρTV(p̄(·|x1,a1), p̄(·|x2,a2)) 6 Lp̄ρX×A((x1,a1), (x2,a2))

for (x1,a1), (x2,a2) ∈ X×A.

When Assumption L(i) holds, we define the finite sets Xk for k =
1, 2, . . . by substituting X for S in Remark 5. The finite sets Ak for k =
1, 2, . . . are defined analogously. In addition, let

αX := inf
{
α > 0 : max

x1∈X
min
x2∈Xk

‖x1 − x2‖2 6 α(1/k)1/dX , |Xk| = k ∀k
}

(4.12)

and

αA := inf
{
α > 0 : max

a1∈A
min
a2∈Ak

‖a1 − a2‖2 6 α(1/k)1/dA , |Ak| = k ∀k
}

. (4.13)

Theorem 37. Suppose Assumptions L and HT hold. Then the number of arith-
metic operations needed to compute an ε-optimal policy is at most⌈(

MX

ε

)dX

⌉3

·

⌈(
2MA

ε

)dA

⌉2

·K logK, (4.14)

where

MX := 2αXKLr̄

[
2K+

7K2 − 6K+ 1 + Lp̄(3 − 4
K + 1

K2 )

1 − Lp̄ +
Lp̄
K

]
and

MA := αAK

[
Lr̄ − ‖c‖∞Lp̄

(
2K− 3 +

1
K

)]
;
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here αX and αA are respectively defined by (4.12) and (4.13), Lc̄ and Lp̄ are
respectively defined by (4.10) and (4.11).

Proof. According to Propositions 35 and 36, the MDP defined by the AG
transformation satisfies the hypotheses of Assumption L. Hence the theo-
rem follows by applying Theorem 12 to the β̄-discounted MDP defined by
the AG transformation.
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Part II

Two-Player Zero-Sum Stochastic
Games

73



Chapter 5

Discounted Stochastic Games

In this chapter, we review some definitions and results for two-player
zero-sum discounted stochastic games with Borel state and action spaces.
In Section 5.1, the optimality criterion for discounted stochastic games is
defined. Then, in Section 5.2 we state conditions under which both players
have ε-optimal stationary strategies, and in Section 5.2.1 conditions are
given under which both players have optimal stationary strategies.

5.1 Optimality Criterion

Consider a discount factor β ∈ [0, 1). When the initial state is x ∈ X

and players 1 and 2 follow the strategies π1 ∈ Π1 and π2 ∈ Π2, respectively,
the expected total discounted payoff that player 1 receives from player 2 is

vπ
1π2

β (x) := Eπ
1π2

x

∞∑
t=0

βnr(ξt,υ1
t ,υ

2
t).

Define the lower value function ∗vβ : X→ R by

∗vβ(x) := sup
π1∈Π1

inf
π2∈Π2

vπ
1π2

β

and the upper value function ∗vβ : X→ R by

∗vβ(x) := inf
π2∈Π2

sup
π1∈Π2

vπ
1π2

β .
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According to the minimax inequality stated in Proposition 38 below,

∗vβ(x) 6
∗vβ(x) for all x ∈ X.

If ∗vβ = ∗vβ =: vβ, then vβ is called the β-discounted value of the discounted
stochastic game.

Proposition 38 (Minimax inequality). Let Y and Z be any sets. Then for any
f : Y ×Z→ R,

sup
y∈Y

inf
z∈Z

f(y, z) 6 inf
z∈Z

sup
y∈Y

f(y, z).

Proof. Observe that

f(y0, z0) 6 sup
y∈Y

f(y, z0) for all (y0, z0) ∈ Y ×Z.

Hence every y0 ∈ Y satisfies infz∈Z f(y0, z) 6 infz∈Z supy∈Y f(y, z), so

sup
y∈Y

inf
z∈Z

f(y, z) 6 inf
z∈Z

sup
y∈Y

f(y, z).

For ε > 0, a strategy π1
∗ ∈ Π1 is ε-β-optimal for player 1 if

inf
π2∈Π2

v
π1
∗,π2

β (x) > ∗vβ(x) − ε for all x ∈ X,

and π2
∗ ∈ Π2 is ε-β-optimal for player 2 if

sup
π1∈Π1

v
π1,π2

∗
β (x) 6 ∗vβ(x) + ε for all x ∈ X.

For both players, a 0-β-optimal strategy is called β-optimal.

5.2 Existence of ε-Optimal Strategies

The following assumption is a sufficient condition for the maximizing
player to have an ε-optimal stationary strategy, and for the minimizing
player to have an optimal stationary strategy, under the discounted-payoff
criterion.
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Assumption P2.

(i) A2(x) is compact for all x ∈ X;

(ii) r(x,a1, ·) is lower semicontinuous on A2(x) for all x ∈ X and a1 ∈ A1(x);

(iii) for each B ∈ B(X), x ∈ X, and a1 ∈ A1(x), the function p(B|x,a1, ·) is
continuous on A2(x);

(iv) for each x ∈ X and a1 ∈ A1(x), the function α(x,a1, ·) is continuous on
A2(x).

For probability measures ν1,ν2 on A1 and A2, respectively, define the
operator Lβ(ν1,ν2) for bounded upper semianalytic functions f : X → R

by

Lβ(ν
1,ν2)f(x) :=

∫
A2

∫
A1

(
r(x,a1,a2) +β

∫
X

f(y)p(dy|x,a1,a2)

)
ν1(da1)ν2(da2)

for x ∈ X, and for (ϕ1,ϕ2) ∈ Φ1 ×Φ2 let

Lϕ
1ϕ2

β f(x) := Lβ(ϕ
1(x),ϕ2(x))f(x), x ∈ X.

Further, define the optimality operators for bounded upper semianalytic
functions f : X→ R by

Lϕ
2

β f(x) := sup
ϕ1∈Φ1

Lϕ
1ϕ2

β f(x), ϕ2 ∈ Φ2, x ∈ X

and
Lβf(x) := inf

ϕ2∈Φ2
Lϕ

2

β f(x), x ∈ X.

Theorem 39 ([85, Theorem 5.3]). Suppose Assumption P2 holds with α ≡ β ∈
[0, 1). Then player 1 has an ε-β-optimal stationary strategy for any ε > 0, and
player 2 has a β-optimal stationary strategy. Further, the game has a β-value vβ
which is bounded, upper semianalytic, and uniquely satisfies

vβ(x) = Lβvβ(x) for all x ∈ X. (5.1)
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5.2.1 Existence of Optimal Strategies

Under the following assumption, it can be shown that both players
have stationary optimal strategies under the discounted-payoff criterion.

Assumption P1.

(i) A1(x) is compact for all x ∈ X;

(ii) r(x, ·,a2) is upper semicontinuous on A1(x) for all x ∈ X and a1 ∈ A1(x);

(iii) for each B ∈ B(X) and x ∈ X, the function p(B|x, ·,a2) is continuous on
A1(x);

(iv) for each x ∈ X and a2 ∈ A2(x), the function α(x, ·,a2) is continuous on
A1(x).

Theorem 40 ([84, Theorems 5.1, 5.3, 5.4]). Suppose both Assumptions P1
and P2 hold. Then both players have β-optimal stationary strategies that are
Borel-measurable. Further, the discounted game has a β-value vβ, which is Borel-
measurable and satisfies (5.1).
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Chapter 6

Reduction of Transient Stochastic
Games

In this chapter, we consider the reduction of so-called transient stochas-
tic games, under the total-payoff criterion, to discounted ones. In Sec-
tion 6.1, the transience assumption is stated, and in Section 6.2 the opti-
mality criterion that we consider for such games is defined. Next, a trans-
formation to a discounted stochastic game is given in Section 6.3, which
extends an idea of Alan Hoffman (Veinott [115]) to a two-player setting.
This transformation is shown to lead to the existence of ε-optimal strate-
gies for both players in Section 6.4, and to the existence of optimal strate-
gies for both players in Section 6.4.1.

6.1 Transience Assumption

Let α : Gr(A1 ×A2) → [0,∞) denote a Borel-measurable discount func-
tion that satisfies the following assumption.

Assumption T (Transience). There is a constant K > 1 satisfying

Eφ
1φ2

x

∞∑
t=0

t−1∏
k=0

α(ξk,υ1
k,υ2

k) 6 K <∞ (6.1)

for all x ∈ X and (φ1,φ2) ∈ F1 ×F2.
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Observe that Assumption T generalizes the case of constant discount-
ing considered in Chapter 5, where α ≡ β ∈ [0, 1).

Proposition 41. If Assumption T holds, then there is an upper semianalytic
function µ : X→ [1,∞) that is bounded above by K <∞ and satisfies

µ(x) > 1+α(x,a1,a2)

∫
X

µ(y)p(dy|x,a1,a2) for all (x,a1,a2) ∈ K. (6.2)

Proof. Consider the operator U defined for bounded upper semianalytic
functions u : X→ [0,∞) by

Uu(x) := sup
a1∈A1(x)

sup
a2∈A2(x)

[
1 +α(x,a1,a2)

∫
X

u(y)p(dy|x,a1,a2)

]
, x ∈ X.

(6.3)
Let u0 :≡ 0, and for n = 1, 2, . . . let un := Uun−1. Note that for each
n > 0, un is upper semianalytic (see e.g. [10, Proposition 7.47, 7.48]) and
1 ≡ u1 6 un 6 un+1. Letting µ(x) := limn→∞ un(x) > 1 for x ∈ X, it
follows from [10, Lemma 7.30] that µ is upper semianalytic. We will show
that µ 6 K and µ = Uµ.

We first show that un 6 K for all n > 0. Note that u0 ≡ 0 < K.
Next, suppose un 6 K for some n > 0 and consider an arbitrary ε >
0. For (φ1,φ2) ∈ F1 × F2, define the operator Qφ1φ2 for bounded upper
semianalytic functions u : X→ [0,∞) by

Qφ1φ2u(x) := α(x,φ1(x),φ2(x))

∫
X

u(y)p(dy|x,φ1(x),φ2(x)), x ∈ X,

let Q0
φ1φ2u := u, and for n = 1, 2, . . . let Qn

φ1φ2u := Qφ1φ2(Qn−1
φ1φ2u). Since

K > 0, according to [10, Propositions 7.47, 7.48, 7.50] there exist φ1
ε ∈ F1

and φ2
ε ∈ F2 satisfying

1 +Qφ1
εφ

2
ε
un(x) > Uun(x) −

ε

K
for each x ∈ X.

Let ũ0 := un, and for N = 1, 2, . . . let ũN := 1 +Qφ1
εφ

2
ε
ũN−1. Then, letting

e(x) := 1 for x ∈ X,

ũN(x) =

N−1∑
i=0

Qi
φ1
εφ

2
ε
e(x) +QN

φ1
εφ

2
ε
un(x) for each N > 1, x ∈ X. (6.4)
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By Assumption T,
∑∞
i=0Q

i
φ1
εφ

2
ε
e 6 K. Since un is bounded, it follows that

QN
φ1
εφ

2
ε
un(x) → 0 for each x ∈ X. Letting N → ∞ on both sides of (6.4)

gives

lim
N→∞ ũN(x) =

∞∑
i=0

Qi
φ1
εφ

2
ε
e(x) 6 K for each x ∈ X. (6.5)

Next, we claim that

ũN(x) > un+1(x) −
ε

K

N−1∑
i=0

Qi
φ1
εφ

2
ε
e(x) for each N > 1, x ∈ X. (6.6)

To prove (6.6), first note that for x ∈ X

ũ1(x) = 1 +Qφ1
εφ

2
ε
ũ0(x) = 1 +Qφ1

εφ
2
ε
un(x)

> Uun(x) −
ε

K
= un+1(x) −

ε

K
Q0
φ1
εφ

2
ε
e(x).

Now suppose (6.6) holds for some N > 1. Then for x ∈ X

ũN+1(x) = 1 +Qφ1
εφ

2
ε
ũN(x) > 1 +Qφ1

εφ
2
ε
un+1(x) −

ε

K

N−1∑
i=0

Qi+1
φ1
εφ

2
ε
e(x)

> 1 +Qφ1
εφ

2
ε
un(x) −

ε

K

N−1∑
i=0

Qi+1
φ1
εφ

2
ε
e(x) (6.7)

> Uun(x) −
ε

K
−
ε

K

N∑
i=1

Qi
φ1
εφ

2
ε
e(x) (6.8)

= un+1(x) −
ε

K

(N+1)−1∑
i=0

Qi
φ1
εφ

2
ε
e(x),

where (6.7) holds since un 6 un+1. Hence (6.6) holds by induction. Letting
N→∞ on both sides of (6.6), it follows from (6.5) that

K > un+1(x) −
ε

K

∞∑
i=1

Qi
φ1
εφ

2
ε
e(x) > un+1(x) − ε for each x ∈ X, (6.9)

where the rightmost inequality holds because of Assumption T. Since ε >
0 was arbitrary, this means un+1 6 K. By induction, un 6 K for all n =
0, 1, . . . . Therefore, µ 6 K.
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To complete the proof, note that since un ↑ µ, Lebesgue’s monotone
convergence theorem implies that for x ∈ X, a1 ∈A1, and a2 ∈A2,∫

X

un(y)p(dy|x,a1,a2) ↑
∫

X

µ(y)p(dy|x,a1,a2) as n→∞.

Since un ↑ µ implies that Uun = un+1 ↑ µ, for x ∈ X

µ(x) = lim
n→∞Uun(x) = 1 + lim

n→∞ sup
a1∈A1(x)

sup
a2∈A2(x)

∫
X

un(y)p(dy|x,a1,a2)

= 1 + sup
n>0

sup
a1∈A1(x)

sup
a2∈A2(x)

∫
X

un(y)p(dy|x,a1,a2)

= 1 + sup
a1∈A1(x)

sup
a2∈A2(x)

lim
n→∞

∫
X

un(y)p(dy|x,a1,a2)

= Uµ(x).

6.2 Optimality Criterion

When the initial state is x ∈ X and players 1 and 2 follow the strategies
π1 ∈ Π1 and π2 ∈ Π2, respectively, the total expected α-discounted payoff
that player 1 receives from player 2 is

vπ
1π2

α (x) := Eπ
1π2

x

∞∑
t=0

t−1∏
k=0

α(ξk,υ1
k,υ2

k)r(ξt,υ
1
k,υ2

k).

Define the lower value function ∗vα : X→ R by

∗vα(x) := sup
π1∈Π1

inf
π2∈Π2

vπ
1π2

α (x)

and the upper value function ∗vα : X→ R by

∗vα(x) := inf
π2∈Π2

sup
π1∈Π1

vπ
1π2

α (x).
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According to Proposition 38,

∗vα(x) 6
∗vα(x) for all x ∈ X.

If ∗vα = ∗vα =: vα, then vα is called the α-discounted value of the stochastic
game.

For ε > 0, a strategy π1
∗ ∈ Π1 is ε-α-optimal for player 1 if

inf
π2∈Π2

v
π1
∗,π2

α (x) > ∗vα(x) − ε for all x ∈ X,

and π2
∗ ∈ Π2 is ε-α-optimal for player 2 if

sup
π1∈Π1

v
π1,π2

∗
α (x) 6 ∗vα(x) + ε for all x ∈ X.

For both players, a 0-α-optimal strategy is called α-optimal.

6.3 Hoffman-Veinott (HV) Transformation

We first describe a transformation of the original game to a discounted-
payoff game with a constant discount factor less than one, which we call
the HV (Hoffman–Veinott) transformation. Objects associated with the trans-
formed game will be denoted by a tilde. The state space is X̃ := X ∪ {x̃},
where x̃ 6∈ X is a payoff-free absorbing state. Letting ã denote the only
action available to players 1 and 2 at state x̃, the action space for player
i = 1, 2 is Ãi := Ai ∪ {ã}. For x ∈ X̃ the set of available actions for player
i = 1, 2 is unchanged if x ∈ X, namely

Ãi(x) :=

{
Ai(x), if x ∈ X,
{ã}, if x = x̃,

(6.10)

and let K̃ := {(x,a1,a2) : x ∈ X̃,ai ∈ Ãi(x), i = 1, 2}
Define the payoff function for player 1 (i.e. the payment function for

player 2) by

r̃(x,a1,a2) :=

{
µ(x)−1r(x,a1,a2), if (x,a1,a2) ∈ K,
0, if (x,a1,a2) = (x̃, ã, ã).
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To complete the definition of the discounted-payoff game, choose a dis-
count factor

β̃ ∈
[
K− 1
K

, 1
)

,

and let

p̃(B|x,a1,a2) :=


α(x,a1,a2)

β̃µ(x)

∫
B µ(y)p(dy|x,a1,a2), if B ∈ B(X), (x,a1,a2) ∈ K,

1 −
α(x,a1,a2)

β̃µ(x)

∫
X µ(y)p(dy|x,a1,a2), if B = {x̃}, (x,a1,a2) ∈ K,

1, if B = {x̃}, (x,a1,a2) = (x̃, ã, ã).

Lebesgue’s monotone convergence theorem implies that p̃(·|x,a1,a2) is a
probability measure on (X̃,B(X̃)) for each (x,a1,a2) ∈ K̃. In addition,
according to Proposition 41 and [10, Proposition 7.46], for each B ∈ B(X̃)
the function p̃(B|·) is universally measurable.

Since ã is the only action available to players 1 and 2 in state x̃, the sets
of all strategies of each player for the β̃-discounted game and the original
α-discounted game coincide. Given x ∈ X̃ and (π1,π2) ∈ Π1 × Π2, let
Ẽπ

1π2
x denote the expectation operator (defined via [10, Proposition 7.45])

associated with the discounted-payoff game, and

ṽβ̃(x,π1,π2) := Ẽπ
1π2

x

∞∑
n=0

β̃nr(xn,a1
n,a2

n).

Given an initial state x ∈ X̃, let

∗ṽβ̃(x) := sup
π1∈Π1

inf
π2∈Π2

ṽβ̃(x,π1,π2), ∗ṽβ̃(x) := inf
π2∈Π2

sup
π1∈Π1

ṽβ̃(x,π1,π2).

For ε > 0, a strategy π1
∗ ∈ Π1 is ε-β̃-optimal for player 1 if

inf
π2∈Π2

ṽβ̃(x,π1
∗,π

2) > ∗ṽβ̃(x) − ε

for all x ∈ X̃; π2
∗ ∈ Π2 is ε-β̃-optimal for player 2 if

sup
π1∈Π1

ṽβ̃(x,π1,π2
∗) 6 ∗ṽβ̃(x) + ε

for all x ∈ X̃. A 0-β̃-optimal policy for either player is called β̃-optimal. If
∗ṽβ̃ = ∗ṽβ̃ =: ṽβ̃, then ṽβ̃ is the β̃-discounted value of the game.
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Proposition 42. If Assumption T holds, then vα(x,π1,π2) = µ(x)ṽβ̃(x,π1,π2)

for each x ∈ X and (π1,π2) ∈ Π1 ×Π2.

Proof. For x ∈ X,

Ẽπ
1π2

x |r̃(x0,a1
0,a2

0)| =

∫
Ã2

∫
Ã1

|r̃(x,a1
0,a2

0)|π
1
0(da

1
0|x)π

2
0(da

2
0|x)

=

∫
A2

∫
A1

|r(x,a1
0,a2

0)|

µ(x)
π1

0(da
1
0|x)π

2
0(da

2
0|x) =

Eπ
1π2
x |r(x0,a1

0,a2
0)|

µ(x)
.

For x ∈ X and t = 1, 2, . . . , let hn := xa1
0a

2
0 . . . xn. Since r̃(x̃, ã, ã) = 0,

Ẽπ
1π2

x |β̃tr̃(xt,a1
t ,a

2
t)| =

∫
Ã2

∫
Ã1
· · ·
∫

X̃

∫
Ã2

∫
Ã1

|β̃tr̃(xt,a1
t ,a

2
t)|π

1
t(da

1
t |ht)π

2
t(da

2
t |ht)p̃(dxt|xt−1,a1

t−1,a2
t−1) · · ·

· · ·π1
0(da

1
0|x)π

2
0(da

2
0|x)

= β̃t
∫

A2

∫
A1
· · ·
∫

X

∫
A2

∫
A1

|r(xt,a1
t ,a

2
t)|

µ(xt)
π1
t(da

1
t |ht)π

2
t(da

2
t |ht)

α(xt−1,a1
t−1,a2

t−1)

β̃µ(xt−1)
µ(xt)p(dxt|xt−1,a1

t−1,a2
t−1) · · ·

· · ·π1
0(da

1
0|x)π

2
0(da

2
0|x)

=
1
µ(x)

∫
A2

∫
A1
· · ·
∫

X

∫
A2

∫
A1

|r(xt,a1
t ,a

2
t)|π

1
t(da

1
t |ht)π

2
t(da

2
t |ht)α(xt−1,a1

t−1,a2
t−1)p(dxt|xt−1,a1

t−1,a2
t−1) · · ·

· · ·π1
0(da

1
0|x)π

2
0(da

2
0|x)

=
1
µ(x)

Eπ
1π2

x

∣∣∣∣∣
n−1∏
k=0

α(xk,a1
k,a2

k)r(xt,a
1
t ,a

2
t)

∣∣∣∣∣ .
Since r is bounded, the boundedness of µ by Proposition 13 implies that r̃
is also bounded. Hence

∞∑
t=0

1
µ(x)

Eπ
1π2

x

∣∣∣∣∣
t−1∏
k=0

α(xk,a1
k,a2

k)r(xt,a
1
t ,a

2
t)

∣∣∣∣∣
=

∞∑
t=0

Ẽπ
1,π2

x |β̃tr̃(xt,a1
t ,a

2
t)| <∞,

which (see e.g. [63, Theorem 9.2]) implies that

vα(x,π1,π2)/µ(x) = ṽβ̃(x,π1,π2).

Corollary 43. Suppose Assumption T holds. Then for ε > 0, a strategy for
player 1 (resp. player 2) is ε-α-optimal for the original α-discounted game if
and only if that strategy for player 1 (resp. player 2) is ε-β̃-optimal for the β̃-
discounted game defined by the HV transformation. Further, the former game has
a value if and only if the latter game has one.
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Proof. This follows from Proposition 42 and the fact that µ(x) > 1 for all
x ∈ X.

Remark 9. Corollary 43 implies that in order to compute a pair of opti-
mal strategies for the α-discounted game, it suffices to compute a pair of
optimal strategies for the β̃-discounted game defined by the HV transfor-
mation.

Lemma 44. Suppose the conclusions of Proposition 41 hold with a Borel function
µ. Then

(i) r̃ : K̃→ R is bounded and Borel-measurable,

(ii) p̃ is a Borel-measurable stochastic kernel on X̃ given K̃, and

(iii) if Assumption P2 holds, then the stochastic game defined by the HV trans-
formation also satisfies Assumption P2 with α ≡ β̃.

Proof.

(i) This follows from the boundedness and Borel-measurability of both
r and µ.

(ii) Fix (x,a1,a2) ∈ K̃. By Proposition 41, 0 6 p̃(B|x,a1,a2) 6 1 for all
B ∈ B(X̃). Since Lebesgue’s monotone convergence theorem implies
that the set function

B 7→
∫
B
µ(y)p(dy|x,a1,a2), B ∈ B(X),

is countably additive, it follows that p̃(·|x,a1,a2) is a probability mea-
sure on (X̃,B(X̃)).

Next, fix B ∈ B(X̃). Let δx denote the Dirac measure on (X̃,B(X̃))
sitting at x ∈ X̃, and let 1B denote the indicator function on X̃ for
B ∈ B(X̃). Note that for (x,a1,a2) ∈ K̃,

p̃(B|x,a1,a2) = 1X(x)

(
α(x,a1,a2)

β̃µ(x)

∫
B\{x̃}

µ(y)p(dy|x,a1,a2) +[
1 −

α(x,a1,a2)

β̃µ(x)

∫
X

µ(y)p(dy|x,a1,a2)

]
δx̃(B)

)
+ 1{x̃}(x)δx̃(B).
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Hence, according to the Borel-measurability of µ and [10, Proposi-
tion 7.29], the mapping (x,a1,a2) 7→ p̃(B|x,a1,a2) on K̃ is Borel-
measurable.

(iii) According to the definition of the HV transformation, Ã2(x) is com-
pact for all x ∈ X̃. Further, Assumption P2 and Proposition 41 im-
ply that r̃ is bounded on K̃ and r̃(x,a1, ·) is lower semicontinuous on
Ã2(x) for all x ∈ X̃ and a1 ∈ Ã1(x). Finally, note that for any bounded
Borel-measurable f : X̃→ R,

∫
X̃

f(y)p̃(dy|x,a1,a2) = 1X(x)

(
α(x,a1,a2)

β̃µ(x)

∫
B\{x̃}

f(y)µ(y)p(dy|x,a1,a2) +[
1 −

α(x,a1,a2)

β̃µ(x)

∫
X

µ(y)p(dy|x,a1,a2)

]
f(x̃)

)
+ 1{x̃}(x)f(x̃);

hence Assumption P2(iii) and [53, Proposition C.4] imply that for
each B ∈ B(X̃), x ∈ X̃, and a1 ∈ Ã1(x), the function p̃(B|x,a1, ·) is
continuous on Ã2(x).

Recall that a measure ν1 is absolutely continuous with respect to another
measure ν2 on the same measurable space, written ν1 � ν2, if every ν2-
null set is also ν1-null.

Assumption AC. There is a ν ∈ P(X) such that

p(·|x,a1,a2)� ν for all (x,a1,a2) ∈ K. (6.11)

Proposition 45. Suppose Assumptions T and AC hold. Then there is a Borel-
measurable function µν : X → [1,∞) that is bounded above by 2K and satisfies
(6.2).

Proof. According to Proposition 41, there is an upper semianalytic µ : X→
[1,∞) that is bounded above by K and satisfies (6.2). Let Q denote the set
of all rational numbers, and let QK := {q ∈ Q : 1 6 q 6 K}. Since every
analytic set is universally measurable (see e.g. [10, p. 171]), the sets

U(q) := {x ∈ X : µ(x) > q} q ∈ Q,

are universally measurable. By [10, Lemma 7.26], this implies that for each
q ∈ Q there is a Borel subset B(q) of X satisfying ν(U(q)4B(q)) = 0.
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Noting that µ(x) = sup{q ∈ QK : x ∈ U(q)} for x ∈ X, let

gν(x) :=

{
sup{q ∈ QK : x ∈ B(q)} if x ∈ B(q),
1 if x ∈ X \B(q).

Observe that gν > 1 is bounded above by K. Also, letting

fq(x) :=

{
q if x ∈ B(q),
1 otherwise,

we have gν(x) = supq∈QK
fq(x) for x ∈ X; hence gν is Borel-measurable.

Further, since

N := {x ∈ X : gν(x) 6= µ(x)} ⊆
⋃
q∈QK

[U(q)4B(q)],

the function gν is ν-almost everywhere equal to µ. Letting 1N denote the
indicator function for the set N, define µν by

µν(x) := gν(x) +K1N(x), x ∈ X.

Consider (x,a1,a2) ∈ K. If x 6∈ N, then (6.2) and Assumption AC imply
that

µν(x) = gν(x) > 1 +α(x,a1,a2)

∫
X

gν(y)p(dy|x,a1,a2)

= 1 +α(x,a1,a2)

∫
X

µν(y)p(dy|x,a1,a2).

On the other hand, if x ∈ N then

1+α(x,a1,a2)

∫
X

µν(y)p(dy|x,a1,a2)

= 1 +α(x,a1,a2)

∫
X

µ(y)p(dy|x,a1,a2)

6 µ(x) 6 gν(x) +K = µν(x).
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6.4 Existence of ε-Optimal Strategies

For (ϕ1,ϕ2) ∈ Φ1 ×Φ2, define the operators Tϕ
1ϕ2

α , Tϕ
2

α , and Tα for
bounded upper semianalytic functions u on X by

Tϕ
1ϕ2

α u(x) :=

∫
A2

∫
A1

(
r(x,a1,a2) +α(x,a1,a2)

∫
X

u(y)p(dy|x,a1,a2)

)
ϕ1(da1|x)ϕ2(da2|x),

Tϕ
2

α u := supϕ1∈Φ1 Tϕ
1ϕ2

α u, and Tαu := infϕ2∈Φ2 Tϕ
2

α u.

Theorem 46. Suppose Assumptions T, AC, and P2 hold. Then player 1 has
an ε-α-optimal stationary strategy for any ε > 0, and player 2 has an α-optimal
stationary strategy. Further, the game has an α-value vα which is bounded, upper
semianalytic, and uniquely satisfies

vα(x) = Tαvα(x), x ∈ X. (6.12)

Proof. By Lemma 44, the discounted stochastic game with α ≡ β̃ ∈ [0, 1)
defined by the HV transformation satisfies Assumption P2. Hence the con-
clusions of Proposition 39 hold for this game. According to Corollary 43, it
follows that player 1 has an ε-α-optimal stationary strategy, and player 2
has an α-optimal stationary strategy, for the original α-discounted game.

In addition, Proposition 39 and Corollary 43 also imply that vα = µṽβ̃ is
the value of the original α-discounted game, which by (5.1) satisfies (6.12).
Moreover, vα is bounded by the boundedness of µ and ṽβ̃, and is upper
semianalytic by Proposition 45 and [10, Lemma 7.30(4)]. To show that vα
is the unique bounded function satisfying (6.12), suppose u is a bounded
function that satisfies (6.12). Then u/µ is a bounded function that satisfies
(5.1) with β = β̃; by Proposition 39, this implies that u = µṽβ̃ = vα.

6.4.1 Existence of Optimal Strategies

Lemma 47. Suppose the conclusions of Proposition 41 hold with a Borel function
µ. If Assumption P1 holds, then the stochastic game defined by the HV transfor-
mation also satisfies Assumption P1 with α ≡ β̃.

Proof. This follows mutatis mutandis from the proof of statement (iii) of
Lemma 44.
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Proposition 48. Suppose Assumptions T, P1 and P2 hold. Then there is a Borel-
measurable function µ : X → [1,∞) that is bounded above by K and satisfies
(6.2).

Proof. Recall the operator U defined by (6.3). Letting u0 ≡ 0 and un :=
Uun−1 for n = 1, 2, . . . , it was shown that {un}n>0 increases to an upper
semianalytic function µ that is bounded above by K and satisfies (6.2).

We now show by induction that for n = 1, 2, . . . the function un is
Borel-measurable, from which the Borel-measurability of µ = limn→∞ un
follows. First, note that u1 ≡ 1 is Borel-measurable. Next, suppose that for
some n > 1 the function un is Borel-measurable. For (x,a1,a2) ∈ K, let

ηn(x,a1,a2) := 1 +α(x,a1,a2)

∫
X

un(y)p(dy|x,a1,a2).

Consider any λ ∈ R. According to [10, Proposition 7.29], the function ηn :
K → R is Borel-measurable, which means the set Dηn(λ) := {(x,a1,a2) ∈
K : ηn(x,a1,a2) > λ} is Borel. Further, the continuity of α(x, ·, ·) and
p(B|x, ·, ·) for B ∈ B(X) imply that for x ∈ X the function ηn(x, ·, ·) on
A1(x)×A2(x) is continuous. This means that Dηn(λ) has closed x-sections
for x ∈ X, and that

{x ∈ X : un+1(x) > λ} = {x ∈ X : ηn(x,a1,a2)

> λ for some (a1,a2) ∈ A1(x)×A2(x)}

= projXDηn(λ).

As the compactness of A1(x) and A2(x) for x ∈ X imply that K ⊇ Dηn(λ)
has compact x-sections for x ∈ X, it follows from the Arsenin-Kunugui
Theorem (see e.g. [67, Theorem 35.46]) that {x ∈ X : un+1(x) > λ} is Borel.
Hence un+1 is also Borel-measurable.

Theorem 49. Suppose Assumptions T, P1, and P2 hold. Then both players have
α-optimal stationary strategies that are Borel-measurable. Further, the game has
an α-value vα, which is Borel-measurable and satisfies (6.12).

Proof. According to Proposition 48, it follows from Lemma 47 and state-
ment (iii) of Lemma 44 that the discounted stochastic game with α ≡ β̃ ∈
[0, 1) defined by the HV transformation satisfies Assumptions P1 and P2.
Hence the conclusions of Proposition 40 hold for this game. According to
Corollary 43, it follows that both players have α-optimal stationary strate-
gies. The existence and Borel-measurability of the value vα follow mutatis
mutandis from the proof of Theorem 46.
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6.5 Complexity Estimates

In this section, we provide complexity estimates related to applying
the HV transformation for stochastic games. In Section 6.5.1, we provide
an upper bound on the number of arithmetic operations needed to com-
pute a function µ for the HV transformation. Then, in Section 6.5.2 we
provides estimates for the number of arithmetic operations needed to com-
pute a pair of optimal strategies for two-player zero-sum transient stochas-
tic games with perfect information.

6.5.1 Constructing the Transformation

Note that, given a suitable function µ, the two-player zero-sum stochas-
tic game defined by the HV transformation can be constructed with a num-
ber of arithmetic operations that is polynomial in the total number of state-
action triples m of the original game. The following theorem provides an
estimate of the complexity of computing a function µ that can be used for
the HV transformation.

Theorem 50. Suppose the state set X and action sets Ai, i = 1, 2, are finite, and
that Assumption T holds. Then the number of arithmetic opterations needed to
compute a function µ satisfying the hypotheses of Proposition 41 is

O(mK logK),

wherem :=
∑
x∈X |A1(x)| · |A2(x)|.

Proof. To compute a function satisfying the hypotheses of Proposition 41,
it suffices to compute a bounded nonnegative function µ that satisfies

µ(x) = max
(a1,a2)∈A1(x)×A2(x)

1 +α(x,a1,a2)
∑
y∈X

p(y|x,a1,a2)µ(y)

 (6.13)

for all x ∈ X. Let q(y|x,a1,a2) := α(x,a1,a2)p(y|x,a1,a2) for x,y ∈ X

and (a1,a2) ∈ A1(x)×A2(x), and consider the Markov decision process
with state set X, action sets A(x) := A1(x)×A2(x) for x ∈ X, transition
rates q(y|x,a) for x,y ∈ X and a ∈ A(x), and one-step rewards identically
equal to one. According to Assumption T, this MDP is transient; see [23,
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Hypothesis 1]. Hence it follows from [23, Theorem 2] that the number
of arithmetic operations needed, to compute a nonnegative function that
is bounded above by K and satisfies (6.13), is at most a constant times
mK logK.

6.5.2 Computing Optimal Strategies

Assumption PI. The stochastic game is one of perfect information, i.e. there exist
disjoint sets X1, X2 ⊆ X such that |A2(x)| = 1 for all x ∈ X1 and |A1(x)| = 1
for all x ∈ X2.

Note that each state of a perfect-information stochastic game can be
viewed as being controlled by only one of the players. For i = 1, 2, let
ni := |Xi| andmi :=

∑
x∈Xi |A

i(x)| respectively denote the total number of
states that player i controls and the total number of actions in those states.
Further, let n := n1 +n2 andm := m1 +m2.

Theorem 51. Suppose the state set X and action sets Ai, i = 1, 2, are finite, and
that Assumptions T and PI hold. Then both players have α-optimal deterministic
stationary strategies, and the number of arithmetic operations needed to compute
a pair of such strategies is

O
((

(n3
1 +n

2
1m1)m1K logK+n3 +m2n

2
2

)
·mK lognK

)
.

Proof. Consider the strategy iteration algorithm for discounted stochastic
games described by Rao et al. [93]; see also Hansen et al. [51, Algorithm 2].
Beginning with an arbitrary deterministic stationary strategy φ2

0 ∈ F2 for
the minimizing player, each iteration k = 0, 1, . . . of the algorithm gener-
ates a deterministic stationary strategy φ1

k ∈ F1 for the maximizing player
and a new strategy φ2

k+1 ∈ F2 for the minimizing player as follows.
First, φ1

k is computed by solving the discounted total-reward Markov
decision process obtained by fixing player 2’s strategy to φ0

k; when the
discount factor is β ∈ (0, 1), according to Scherrer [103, Theorem 3] the
number of arithmetic operations needed to accomplish this as at most a
constant times (n3

1 + n
2
1m1)m1(1 − β)−1 log(1 − β)−1. Next, the total dis-

counted payoff function vφ
1
kφ

2
k

β for the maximizing player is computed by
solving an n×n system of linear equations; the number of arithmetic op-
erations needed for this is at most a constant times n3 via e.g. Gaussian
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elimination1. The last step on iteration k consists of selecting a new deter-
ministic stationary strategyφ2

k+1 ∈ F2 for the minimizing player satisfying

φ2
k+1(x) ∈ arg min

a2∈A2(x)

r(x,φ1
k,a2) +β

∑
y∈X

p(y|x,φ1
k,a2)v

φ1
kφ

2
k

β (y)


for all x ∈ X; here the required number of arithmetic operations is at most
a constant times m2n

2
2. Moreover, according to Hansen et al. [51, Theo-

rem 7.5], the total number of iterations of the strategy iteration algorithm
needed to return a pair of optimal deterministic stationary strategies is at
most a constant timesm(1 −β)−1 log(1 −β)−1. Hence the total number of
arithmetic operations needed to compute a pair of optimal deterministic
stationary strategies is at most a constant times(

(n3
1 +n

2
1m1)

m1

1 −β
log

1
1 −β

+n3 +m2n
2
2

)
· m

1 −β
log

n

1 −β
. (6.14)

According to Theorem 50, the number of arithmetic operations needed
to compute a function µ that is bounded above by K <∞ for the Hoffman-
Veinott transformation is at most a constant times mK logK. In addition,
with β := (K− 1)K−1, the number of arithmetic operations needed to com-
pute a pair of optimal deterministic stationary strategies for the resulting
discounted stochastic game is at most a constant times (6.14). Hence the
total number of arithmetic operations needed is at most a constant times

mK logK+
(
(n3

1 +n
2
1m1)m1K logK+n3 +m2n

2
2

)
·mK lognK;

the theorem then follows from Proposition 42.

1Alternatively, using Williams’ [119] improvements on Coppersmith & Wino-
grad’s [19] algorithm, on the order of n2.3727 arithmetic operations are needed.
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Chapter 7

Reduction of Average-Payoff
Stochastic Games

In this chapter, we consider the reduction of certain two-player zero-
sum average-payoff stochastic games to discounted ones. In Section 7.1
we state the hitting time assumption that will be used in the reduction,
and in Section 7.2 we define the average-payoff optimality criterion. In
Section 7.3 we use the hitting time assumption to construct a discounted-
payoff stochastic game. The existence of ε-optimal strategy pairs is con-
sidered in Section 7.4, and the existence of optimal strategy pairs is consid-
ered in Section 7.4.1. Finally, complexity estimates for computing optimal
strategy pairs are given for two-player zero-sum average-payoff stochastic
games of perfect information in Section 7.5.

7.1 Hitting Time Assumption

For x ∈ X, let τx denote the hitting time to state x after time 0, which
is sometimes called the first return time to state x. In particular, τx(ω) :=
inf{t > 1 : ξt(ω) = x} forω = x0a

1
0a

2
0 · · · ∈ H∞.

Assumption HT. There is a special state ` ∈ X and a constant L > 1 satisfying

Eφ
1φ2

x τ` 6 L <∞ (7.1)

for all x ∈ X and (φ1,φ2) ∈ F1 ×F2.
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Proposition 52. Suppose Assumption HT holds. Then there is an upper semian-
alytic function µ̄ : X→ [1,∞) that is bounded above by K̄ := L+ 1 and satisfies

µ̄(x) > 1 +

∫
X\{`}

µ̄(y)p(dy|x,a1,a2) for all (x,a1,a2) ∈ K. (7.2)

Proof. For (x,a1,a2) ∈ K, let

q(B|x,a1,a2) :=
p(B \ {`}|x,a1,a2)

p(X \ {`}|x,a1,a2)
, B ∈ B(X), (7.3)

and α(x,a1,a2) := p(X \ {`}|x,a1,a2). Note that 0 6 q(B|x,a1,a2) and
q(X|x,a1,a2) = 1 for (x,a1,a2) ∈ K. Moreover, Lebesgue’s monotone
convergence theorem implies that for each (x,a1,a2) ∈ K the set function
B 7→ q(B|x,a1,a2) is countably additive. Also, since p is a stochastic kernel
on X given K, for each B ∈ B(X) the mapping (x,a1,a2) 7→ q(B|x,a1,a2)
is Borel-measurable. Hence q is a stochastic kernel on X given K. In ad-
dition, the mapping (x,a1,a2) 7→ p(X \ {`}|x,a1,a2) = α(x,a1,a2) is Borel-
measurable by [10, Proposition 7.29].

Replace the transition probabilities p with q, and for x ∈ X and any
pair (π1,π2) ∈ Π1×Π2 of strategies for players 1 and 2, letQπ

1π2
x and Eπ

1π2
x

respectively denote the corresponding strategic measure and expectation
operator for the resulting stochastic game. By Assumption HT and the
definition of q, for x ∈ X and (φ1,φ2) ∈ F1 ×F2

∞ > K̄ := L+ 1 >
∞∑
n=0

Qφ
1φ2

x {τ` > n} =

∞∑
n=0

Eφ
1φ2

x

n−1∏
k=1

α(xk,a1
k,a2

k).

According to Proposition 41, it follows that there is an upper semianalytic
function µ̄ : X→ [1,∞) that is bounded above by K̄ and satisfies

µ̄(x) > 1 +α(x,a1,a2)
∫

X µ̄(y)q(dy|x,a1,a2) = 1 +
∫

X\{`} µ̄(y)p(dy|x,a1,a2)

for all (x,a1,a2) ∈ K.

7.2 Optimality Criterion

When the initial state is x ∈ X and players 1 and 2 follow the strategies
π1 ∈ Π1 and π2 ∈ Π2, respectively, the expected long-run average payoff
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that player 1 receives from player 2 is

wπ
1π2

(x) := lim inf
T→∞ 1

T
Eπ

1π2

x

T−1∑
t=0

r(ξt,υ1
t ,υ

2
t).

Define the lower value function ∗w : X→ R by

∗w(x) := sup
π1∈Π1

inf
π2∈Π2

wπ
1π2

(x), x ∈ X.

and the upper value function ∗w : X→ R by

∗w(x) := inf
π2∈Π2

sup
π1∈Π1

wπ
1π2

(x), x ∈ X.

7.3 Akian-Gaubert (AG) Transformation

We now describe a transformation to a discounted game, which we
call the Akian-Gaubert (AG) transformation. Objects associated with the dis-
counted game will be indicated by a horizontal bar. The state space is
X̄ := X ∪ {x̄}, where x̄ 6∈ X is a cost-free absorbing state. Letting ā denote
the only action available to players 1 and 2 at state x̄, the action space for
player i is Āi := Ai ∪ {ā}, i = 1, 2, and for x ∈ X̄ the set of available actions
is unchanged if x ∈ X, namely for i = 1, 2

Āi(x) :=

{
Ai(x), if x ∈ X,
{ā}, if x = x̄.

Define the payoff function r̄ for player 1 (i.e. the payment function for
player 2) by

r̄(x,a1,a2) :=

{
µ̄(x)−1r(x,a1,a2), if x ∈ X, a1 ∈A1, a2 ∈A2,
0, if (x,a) = (x̄, ā).

To complete the definition of the discounted game, choose a discount fac-
tor

β̄ ∈
[
L− 1
L

, 1
)

,

and let
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p̄(B|x,a1,a2) :=


1

β̄µ̄(x)

∫
B µ̄(y)p(dy|x,a1,a2), B ∈ B(X \ {`}), x ∈ X, a1 ∈A1, a2 ∈A2,

1
β̄µ̄(x)

[µ̄(x) − 1 −
∫

X\{`} µ̄(y)p(dy|x,a1,a2)], B = {`}, x ∈ X, a1 ∈A1, a2 ∈A2,

1 − 1
β̄µ̄(x)

[µ̄(x) − 1], B = {x̄}, x ∈ X, a1 ∈A1, a2 ∈A2,

1, B = {x̄}, (x,a1,a2) = (x̄, ā, ā).

Since Āi(x̄) is a singleton for i = 1, 2, the sets of all strategies available to
each player for the discounted-payoff game and the original game coin-
cide. Given x ∈ X̄ and (π1,π2) ∈ Π1 ×Π2, let Ēπ

1π2
x denote the expectation

operator associated with the discounted-payoff game and

v̄β̄(x,π1,π2) := Ēπ
1π2

x

∞∑
n=0

β̄nr̄(xn,a1
n,a2

n).

Given an initial state x ∈ X̄, let

∗v̄β̄(x) := sup
π1∈Π1

inf
π2∈Π2

v̄β̄(x,π1,π2), ∗v̄β̄(x) := inf
π2∈Π2

sup
π1∈Π1

v̄β̄(x,π1,π2).

For ε > 0, a strategy π1
∗ ∈ Π1 is ε-β̄-optimal for player 1 if v̄β̄(x,π1

∗,σ2) >
∗v̄β̄(x) − ε for all x ∈ X̄ and σ2 ∈ Π2, and π2

∗ ∈ Π2 is ε-β̄-optimal for player 2
if v̄β̄(x,σ1,π2

∗) 6 ∗v̄β̄(x)+ ε for all x ∈ X̄ and σ1 ∈ Π1. A 0-optimal strategy
is called optimal. If ∗v̄β̄ = ∗v̄β̄ =: v̄β̄, then v̄β̄ is the β̄-discounted value of the
game.

For (ϕ1,ϕ2) ∈ Φ1 ×Φ2 and β ∈ [0, 1], define the operators Tϕ
1ϕ2

β , Tϕ
2

β ,
and Tβ for bounded upper semianalytic functions u on X by

Tϕ
1ϕ2

β u(x) :=
∫

A2

∫
A1

(
r(x,a1,a2) +β

∫
X u(y)p(dy|x,a1,a2)

)
ϕ1(da1|x)ϕ2(da2|x),

Tϕ
2

β u := supϕ1∈Φ1 Tϕ
1ϕ2

β u, and Tβu := infϕ2∈Φ2 Tϕ
2

β u. For the stochastic

game defined by the AG transformation, the operators T̄ϕ
1ϕ2

β , T̄ϕ
2

β , and T̄β
are defined analogously.

Proposition 53. Consider (ϕ1,ϕ2) ∈ Φ1 ×Φ2, and let

h(x,ϕ1,ϕ2) := µ̄(x)[v̄β̄(x,ϕ1,ϕ2) − v̄β̄(`,ϕ
1,ϕ2)]

for x ∈ X. If r is bounded, then w(·,ϕ1,ϕ2) ≡ v̄β̄(`,ϕ1,ϕ2).

Proof. Since the state x in the stochastic game defined by the AG transfor-
mation is payoff-free and absorbing for both players, and
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v̄β̄(x,ϕ1,ϕ2) = T̄1v̄β̄(x)

for x ∈ X̄, it follows from the definition of h(·,ϕ1,ϕ2) that for x ∈ X,

v̄β̄(`,ϕ
1,ϕ2) + h(x,ϕ1,ϕ2) = T1h(x). (7.4)

Iterating (7.4) gives

Nv̄β̄(`,ϕ
1,ϕ2) + h(x,ϕ1,ϕ2) = Eϕ

1ϕ2
x

∑N−1
n=0 r(xn,a1

n,a2
n) + Eϕ

1ϕ2
x h(xN,ϕ1,ϕ2) (7.5)

for N = 1, 2, . . . and x ∈ X. Since r and µ̄ are bounded, h(·,ϕ1,ϕ2) is
bounded as well; hence the equality w(·,ϕ1,ϕ2) ≡ v̄β̄(`,ϕ

1,ϕ2) follows
by dividing both sides of (7.5) by N and letting N→∞.

7.4 Existence of ε-Optimal Strategies

Proposition 54. Suppose Assumption P2 holds, consider any β ∈ [0, 1), and let
u be any bounded upper semianalytic function on X. Then for any ε > 0 there
exist stationary strategies ϕ1

ε ∈ Φ1 and ϕ2
∗ ∈ Φ2 satisfying

sup
ϕ1∈Φ1

T
ϕ1ϕ2

∗
β u 6 Tβu 6 inf

ϕ2∈Φ2
T
ϕ1
εϕ

2

β u+ ε. (7.6)

Proof. Suppose u is bounded below by M > −∞. Letting u := u −M,
it follows from [85, Theorem 5.1] xthat there exist ϕ1

ε ∈ Φ1 and ϕ2
∗ ∈ Φ2

satisfying

sup
ϕ1∈Φ1

T
ϕ1ϕ2

∗
β u 6 Tβu 6 inf

ϕ2∈Φ2
T
ϕ1
εϕ

2

β u+ ε,

from which (7.6) follows by the definition of u.

Lemma 55. Let u be any bounded upper semianalytic function on X, and con-
sider any ε > 0.

(i) If player 1 has a strategy ϕ1
ε ∈ Φ1 satisfying infϕ2∈Φ2 T

ϕ1
εϕ

2

1 u > T1u− ε,
then

inf
π2∈Π2

w(·,ϕ1
ε,π2) > inf

x∈X
[T1u(x) − u(x)] − ε. (7.7)
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(ii) If player 2 has a strategyϕ2
ε ∈ Φ2 satisfying supϕ1∈Φ1 T

ϕ1ϕ2
ε

1 u 6 T1u+ ε,
then

sup
π1∈Π1

w(·,π1,ϕ2
ε) 6 sup

x∈X

[T1u(x) − u(x)] + ε. (7.8)

Proof. For i = 1, 2, a strategy πi for player i is a Markov strategy if for
n = 0, 1, . . . there is a universally measurable stochastic kernel ϕit on Ai

given X satisfying πin(·|hn) = ϕin(·|xn) for all hn = x0a
1
0a

2
0 · · · xn ∈ Hn;

each such ϕin is called a decision rule for player i. Let ΠiM denote the set of
all Markov strategies for player i = 1, 2.

According to the sufficiency of Markov policies for discrete-time MDPs
(see e.g. [35, Corollary 6.1]), it suffices to prove that the infimum in (7.7)
and the supremum in (7.8) respectively hold when Π2 and Π1 are replaced
with Π2

M and Π1
M, respectively.

(i) Consider any sequence {ϕ2
n}
∞
n=1 of decision rules for player 2. Since

infϕ2∈Φ2 T
ϕ1
εϕ

2

1 u > T1u− ε, it follows that

T
ϕ1
εϕ

2
1

1 u > u+ T1u− u− ε > u+ inf
x∈X

[T1u(x) − u(x)] − ε.

Further, if Tϕ
1
εϕ

2
n

1 · · · Tϕ
1
εϕ

2
1

1 u > u + n infx∈X[T1u(x) − u(x)] − nε for
some positive integer n, then

T
ϕ1
εϕ

2
n+1

1 T
ϕ1
εϕ

2
n

1 · · · Tϕ
1
εϕ

2
1

1 u > T
ϕ1
εϕ

2
n+1

1 u+n inf
x∈X

[T1u(x) − u(x)] −nε

> T1u− ε+n inf
x∈X

[T1u(x) − u(x)] −nε

> u+ (n+ 1) inf
x∈X

[T1u(x) − u(x)] − (n+ 1)ε.

It follows that for any initial state x ∈ X, any Markov strategy σ2 ∈
Π2
M for player 2, and any positive integer N,

E
ϕ1
εσ

2

x

N−1∑
n=0

r(xn,a1
n,a2

n) > E
ϕ1
εσ

2

x

[
N−1∑
n=0

r(xn,a1
n,a2

n) + u(xN)

]
− sup
x∈X

u(x)

> u(x) +N inf
x∈X

[T1u(x) − u(x)] −Nε− sup
x∈X

u(x).
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Therefore the boundedness of u implies that for any initial state x ∈
X and any Markov strategy σ2 for player 2,

w(x,ϕ1
ε,σ2) > lim inf

N→∞
u(x) − supx∈X u(x)

N
+ inf
x∈X

[T1u(x) − u(x)] − ε

= inf
x∈X

[T1u(x) − u(x)] − ε.

(ii) Consider any sequence {ϕ1
n}
∞
n=1 of decision rules for player 1. Since

supϕ1∈Φ2 T
ϕ1ϕ2

ε
1 u 6 T1u+ ε, it follows that

T
ϕ1

1ϕ
2
ε

1 u 6 u+ T1u− u+ ε 6 u+ sup
x∈X

[T1u(x) − u(x)] + ε.

Further, if Tϕ
1
nϕ

2
ε

1 · · · Tϕ
1
1ϕ

2
ε

1 u 6 u+ n supx∈X[T1u(x) − u(x)] + nε for
some positive integer n, then

T
ϕ1
n+1ϕ

2
ε

1 T
ϕ1
nϕ

2
ε

1 · · · Tϕ
1
1ϕ

2
ε

1 u 6 T
ϕ1
n+1ϕ

2
ε

1 u+n sup
x∈X

[T1u(x) − u(x)] +nε

6 T1u+ ε+n sup
x∈X

[T1u(x) − u(x)] +nε

6 u+ (n+ 1) sup
x∈X

[T1u(x) − u(x)] + (n+ 1)ε

It follows that for any initial state x ∈ X, any Markov strategy σ1 ∈
Π1
M for player 1, and any positive integer N,

E
σ1ϕ2

ε
x

N−1∑
n=0

r(xn,a1
n,a2

n) 6 E
σ1ϕ2

ε
x

[
N−1∑
n=0

r(xn,a1
n,a2

n) + u(xN)

]
− inf
x∈X

u(x)

6 u(x) +N sup
x∈X

[T1u(x) − u(x)] +Nε− inf
x∈X

u(x).

Therefore the boundedness of u implies that for any initial state x ∈
X and any Markov strategy σ1 for player 1,

w(x,σ1,ϕ2
ε) 6 lim inf

N→∞ u(x) − infx∈X u(x)

N
+ sup
x∈X

[T1u(x) − u(x)] + ε

= sup
x∈X

[T1u(x) − u(x)] + ε.
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Proposition 56. Suppose the bounded function u on X satisfies

sup
x∈X

[T1u(x) − u(x)] = inf
x∈X

[T1u(x) − u(x)] =: ρ,

and that for any ε > 0 there exist ϕ1
ε ∈ Φ1 and ϕ2

∗ ∈ Φ2 satisfying

sup
ϕ1∈Φ1

T
ϕ1ϕ2

∗
1 u 6 T1u 6 inf

ϕ2∈Φ2
T
ϕ1
εϕ

2

1 u+ ε. (7.9)

Then player 1 has an ε-optimal strategy ϕ1
ε for any ε > 0, ϕ2

∗ is optimal for
player 2, and the average-payoff stochastic game has a value w ≡ ρ.

Proof. Since infϕ2∈Φ2 T
ϕ1
εϕ

2

1 u > T1u− ε, Lemma 55(i) implies that

inf
π2∈Π2

w(·,ϕ1
ε,π2) > ρ− ε. (7.10)

Since a ϕ1
ε ∈ Φ1 satisfying (7.9) exists for any ε > 0, it follows that

sup
π1∈Π1

inf
π2∈Π2

w(·,π1,π2) > ρ. (7.11)

Also, since supϕ1∈Φ1 T
ϕ1ϕ2

∗
1 u 6 T1u, Lemma 55(ii) implies that

sup
π1∈Π1

w(·,π1,ϕ2
∗) 6 ρ. (7.12)

Hence
inf
π2∈Π2

sup
π1∈Π1

w(·,π1,π2) 6 ρ. (7.13)

Combining (7.11) and (7.13) with the fact that

sup
π1∈Π1

inf
π2∈Π2

w(·,π1,π2) 6 inf
π2∈Π2

sup
π1∈Π1

w(·,π1,π2),

it follows that

ρ = sup
π1∈Π1

inf
π2∈Π2

w(·,π1,π2) = inf
π2∈Π2

sup
π1∈Π1

w(·,π1,π2) =: w

is the value of the average-payoff game. Further, (7.10) implies that player
1 has an ε-optimal strategy ϕ1

ε ∈ Φ1 for any ε > 0, while (7.12) implies
that ϕ2

∗ ∈ Φ2 is optimal for player 2.
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Lemma 57. Suppose the conclusions of Proposition 52 hold with a Borel function
µ̄. Then

(i) r̄ : K̄→ R is bounded and Borel-measurable,

(ii) p̄ is a Borel-measurable stochastic kernel on X̄ given K̄, and

(iii) if Assumption P2 holds, then the stochastic game defined by the AG trans-
formation also satisfies Assumption P2 with α ≡ β̄.

Proof.

(i) This follows from the boundedness and Borel-measurability of both
r and µ̄.

(ii) Fix (x,a1,a2) ∈ K̄. By Proposition 52, 0,6 p̄(B|x,a1,a2) 6 1 for all
B ∈ B(X̄). Since Lebesgue’s monotone convergence theorem implies
that the set function

B 7→
∫
B\{`}

µ(y)p(dy|x,a1,a2), B ∈ B(X),

is countably additive, it follows that p̄(·|x,a1,a2) is a probability mea-
sure on (X̄,B(X̄)).

Next, fix B ∈ B(X̄). Let δx denote the Dirac measure on (X̄,B(X̄))
sitting at x ∈ X̄, and let 1B denote the indicator function on X̄ for
B ∈ B(X̄). Note that for (x,a1,a2) ∈ K̄,

p̄(B|x,a1,a2) = 1X(x)

(
1

β̄µ̄(x)

[∫
B\{`}

µ̄(y)p(dy|x,a1,a2)

+

(
µ̄(x) − 1 −

∫
X\{`}

µ̄(y)p(dy|x,a1,a2)

)
δ`(B)

]
+

(
1 −

µ̄(x) − 1
β̄µ̄

)
δx̄(B)

)
+ 1{x̄}(x)δx̄(B).

Hence, according to the Borel-measurability of µ̄ and [10, Proposi-
tion 7.29], the mapping (x,a1,a2) 7→ p̄(B|x,a1,a2) on K̄ is Borel-
measurable.

(iii) According to the definition of the AG transformation, Ā2(x) is com-
pact for all x ∈ X̄. Further, Assumption P2 and Proposition 52 im-
ply that r̄ is bounded on K̄ and r̄(x,a1, ·) is lower semicontinuous on
Ā2(x) for all x ∈ X̄ and a1 ∈ Ā1(x). Finally, note that for any bounded
Borel-measurable f : f̄ : X̄→ R,
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p̄(B|x,a1,a2) = 1X(x)

(
1

β̄µ̄(x)

[∫
B\{`}

f(y)µ̄(y)p(dy|x,a1,a2)

+

(
µ̄(x) − 1 −

∫
X\{`}

µ̄(y)p(dy|x,a1,a2)

)
f(`)

]
+

(
1 −

µ̄(x) − 1
β̄µ̄

)
f(x̄)

)
+ 1{x̄}(x)f(x̄);

hence Assumption P2(iii) and [53, Proposition C.4] imply that for
each B ∈ B(X̄), x ∈ X̄, and a1 ∈ Ā1(x), the function p̄(B|x,a1, ·) is
continuous on Ā2(x).

Theorem 58. Suppose Assumptions HT, AC, and P2 hold. Then player 1 has
an ε-optimal stationary strategy for any ε > 0, and player 2 has an optimal
stationary strategy. Further, the game has a value w ≡ v̄β̄(`) which, along with
h(x) := µ̄(x)[v̄β̄(x) − v̄β̄(`)] for x ∈ X, satisfies

w+ h(x) = T1h(x) (7.14)

for x ∈ X.

Proof. By Lemma 57, the discounted stochastic game with α ≡ β̄ ∈ [0, 1)
defined by the AG transformation satisfies Assumption P2. Hence the con-
clusions of Proposition 39 hold for this game.

In particular, v̄β̄ = T̄β̄v̄β̄ is a bounded upper semianalytic function on
X̄. According to Proposition 54, this implies that for any ε > 0 there exist
stationary strategies ϕ1

ε ∈ Φ1 and ϕ2
∗ ∈ Φ2 satisfying

sup
ϕ1∈Φ1

T̄
ϕ1ϕ2

∗
β̄

v̄β̄ 6 T̄β̄v̄β̄ = v̄β̄ 6 inf
ϕ2∈Φ2

T̄
ϕ1
εϕ

2

β̄
v̄β̄ + ε. (7.15)

By the definitions of the AG transformation, w, and h, it follows from
(7.15) that

sup
ϕ1∈Φ1

T
ϕ1ϕ2

∗
1 h 6 w+ h 6 inf

ϕ2∈Φ2
T
ϕ1
εϕ

2

1 h+ ε. (7.16)

But since v̄β̄ = T̄β̄v̄β̄ implies that w+ h = T1h, and h is bounded by the
boundedness of r̄, it follows from Proposition 56 that player 1 has an ε-
optimal strategy ϕ1

ε for any ε > 0, ϕ2
∗ is optimal for player 2, and the

average-payoff stochastic game has a value w ≡ v̄β̄(`).
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7.4.1 Existence of Optimal Strategies

Proposition 59. Suppose the bounded function u on X satisfies

sup
x∈X

[T1u(x) − u(x)] = inf
x∈X

[T1u(x) − u(x)] =: ρ,

and that there exist ϕ1
∗ ∈ Φ1 and ϕ2

∗ ∈ Φ2 satisfying

sup
ϕ1∈Φ1

T
ϕ1ϕ2y
1 u 6 T1u 6 inf

ϕ2∈Φ2
T
ϕ1
∗ϕ

2

1 u. (7.17)

Then ϕ1
∗ and ϕ2

∗ are optimal for players 1 and 2, respectively, and the average-
payoff stochastic game has a value w ≡ ρ.

Proof. This follows from Lemma 55.

Proposition 60. Suppose Assumptions HT, P1, and P2 hold. Then there is a
Borel-measurable function µ̄ : X → [1,∞) that is bounded above by K̄ := L+ 1
and satisfies (7.2).

Proof. This follows from Proposition 48 by considering the stochastic game
with transition probabilities q defined by (7.3) and discount function α :=
p(X \ {`}|·).

Lemma 61. Suppose the conclusions of Proposition 52 hold with a Borel function
µ̄. If Assumption P1 holds, then the stochastic game defined by the AG transfor-
mation also satisfies Assumption P1 with α ≡ β̄.

Proof. This follows mutatis mutandis from the proof of statement (iii) of
Lemma 57.

Theorem 62. Suppose Assumptions HT, P1, and P2 hold. Then both players
have optimal stationary strategies that are Borel-measurable. Further, the game
has a valuew ≡ v̄β̄(`) which, along with h(x) := µ̄(x)[v̄β̄(x)− v̄β̄(`)] for x ∈ X,
satisfies (7.14).

Proof. By Lemmas 57 and 61, the discounted stochastic game with α ≡ β̄
defined by the AG transformation satisfies Assumptions P1 and P2. Hence
the conclusions of Proposition 40 hold for this game. In addition, accord-
ing to [84, Lemmas 4.3, 5.6] there exist Borel-measurable ϕ1

∗ ∈ Φ1 and
ϕ2
∗ ∈ Φ2 satisfying

sup
ϕ1∈Φ1

T̄
ϕ1ϕ2

∗
β̄

v̄β̄ 6 T̄β̄v̄β̄ 6 inf
ϕ2∈Φ2

T̄ϕ
1
∗ϕ

2
v̄β̄.
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Since v̄β̄ is bounded, it follows from the definition of the AG transforma-
tion and Proposition 59 and thatϕ1

∗ andϕ2
∗ are optimal for players 1 and 2,

respectively, and that average-payoff game has a valuew ≡ v̄β̄(`). Further,
the definition of the AG transformation and the fact that v̄β̄ = T̄β̄v̄β̄ imply
that (7.14) holds with w ≡ v̄β̄(`) and h.

7.5 Complexity Estimates

In this section, we provide complexity estimates related to applying the
AG transformation for stochastic games. In Section 7.5.1, we provide an
upper bound on the number of arithmetic operations needed to compute
a function µ̄ for the AG transformation. Then, in Section 7.5.2 we pro-
vides estimates for the number of arithmetic operations needed to com-
pute a pair of optimal strategies for two-player zero-sum average-payoff
stochastic games with perfect information.

7.5.1 Constructing the Transformation

Note that, given a suitable function µ̄, the two-player zero-sum stochas-
tic game defined by the AG transformation can be constructed with a num-
ber of arithmetic operations that is polynomial in the total number of state-
action triples m of the original game. The following theorem provides an
estimate of the complexity of computing a function µ̄ that can be used for
the AG transformation.

Theorem 63. Suppose the state set X and action sets Ai, i = 1, 2, are finite,
and that Assumption HT holds. Then the number of arithmetic operations needed
to compute a function µ satisfying the hypotheses of Proposition 52 is at most a
constant timesmK̄ log K̄, where K̄ := L+ 1.

Proof. To compute a function satisfying the hypotheses of Proposition 52,
it suffices to compute a bounded nonnegative function µ̄ that satisfies

µ̄(x) = max
(a1,a2)∈A1(x)×A2(x)

1 +
∑

y∈X\{`}

p(y|x,a1,a2)µ̄(y)

 , x ∈ X. (7.18)

Let
q(y|x,a1,a2) := 1X\{`}(y)p(y|x,a1,a2)
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for x,y ∈ X and (a1,a2) ∈ A1(x)×A2(x), and consider the Markov deci-
sion process with state set X, action sets A(x) := A1(x)×A2(x) for x ∈ X,
transition rates q(y|x,a) for x,y ∈ X and a ∈ A(x), and one-step rewards
identically equal to one. According to Assumption HT, this MDP is tran-
sient; see [23, Hypothesis 1]. Hence it follows from [23, Theorem 2] that
the number of arithmetic operations needed, to compute a nonnegative
function that is bounded above by K̄ := L+ 1 and satisfies (7.18), is at most
a constant timesmK̄ log K̄.

7.5.2 Computing Optimal Strategies

Theorem 64. Suppose the state set X and action sets Ai, i = 1, 2, are finite, and
that Assumptions HT and PI hold. Then both players have optimal deterministic
stationary strategies, and the number of arithmetic operations needed to compute
a pair of such strategies is at most a constant times(

(n3
1 +n

2
1m1)m1K̄ log K̄+n3 +m2n

2
2

)
·mK̄ lognK̄,

where K̄ := L+ 1.

Proof. Recall from the proof of Theorem 51 that for any discount factor
β ∈ (0, 1), the total number of arithmetic operations needed to compute a
pair of β-optimal deterministic strategies is at most a constant times(

(n3
1 +n

2
1m1)

m1

1 −β
log

1
1 −β

+n3 +m2n
2
2

)
· m

1 −β
log

n

1 −β
. (7.19)

According to Theorem 34, the number of arithmetic operations needed to
compute a function µ that is bounded above by K̄ := L+ 1 <∞ for the AG
transformation is at most a constant timesmK̄ log K̄. In addition, with β :=
(K̄− 1)K̄−1, the number of arithmetic operations needed to compute a pair
of optimal deterministic stationary strategies for the resulting discounted
stochastic game is at most a constant times (7.19). Hence the total number
of arithmetic operations needed is at most a constant times

mK̄ log K̄+
(
(n3

1 +n
2
1m1)m1K̄ log K̄+n3 +m2n

2
2

)
·mK̄ lognK̄,

and the theorem follows from Theorem 62 and Proposition 53.
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