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Abstract of the Dissertation

Estimation and Detection of Network
Variation in Intraday Stock Market

by

Shanshan Li

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2016

The last few years have witnessed an exponential growth in the collection

and analysis of financial market data. Investigating the interactions between

the dynamics of the financial system and extracting useful information from

these multivariate data streams can help us in improving our understanding

of the underlying backbone in the financial market. These massive noisy data

sets require the application of suitable and efficient dependency measurements

for their analysis in a real-time environment. And that is why network analysis

has emerged recently, which is a plausible representation helps interpret the

hidden interconnection between the elements in large datasets. However, most

frequently used methods in this area have certain limitations, such as the com-
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putational complexity or the assumption of a temporally invariant network.

This thesis has two major purposes: firstly, to construct time-varying net-

works by presenting two new approaches to dynamically measure symmetric

and asymmetric interactions; and secondly, to detect the structural breaks in

the high dimensional time series of the financial market.

Building on previous work, we propose two computationally efficient ap-

proaches based on partial correlation network and vector autoregressive adja-

cency network. Since both of these estimators are under the high-dimension-

low-sample-size setting, we develop a penalized kernel smoothing method for

the problem of selecting non-zero elements of the time-varying matrix. The

network structures of multivariate financial time series are established for the

first time for such estimators and displayed in a graphical representation. Fur-

thermore, we consider the problem of efficient financial surveillance aimed

at prompt detection of structural breaks in the market. Assuming the model

evolves in a piece-wise constant fashion, we study four types of detection rules,

including statistical process control chart, generalized likelihood ratio detec-

tion rule, a detection method based on an extension of Shiryaev’s Bayesian

single change point model and a sequential detection rule for multiple change

points. The efficiency of the proposed methods is demonstrated on both sim-

ulation studies and the empirical analysis focusing primarily on the intraday

stock market. Our findings shed a new light on uncovering the hidden inter-

actions between the financial dynamics and present new insight into market

structure and market stability.
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Part I

Time-Varying Network Analysis of Price and

Volume Change in Intraday Stock Market
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Chapter 1

Introduction

1.1 Market Macrostructure

Market macrostructure studies the price formation process, and how this

process is affected by the organization of the market. Normally, we analyze

trades and price dynamics when there are significant turbulences too place in

the market. The certain significant events induce a temporary raise or drop

in the willingness and ability of financial institutions to hold assets such as

stocks and bonds. Alternatively, an aggregate turbulence in market can reflect

events which affect the overall financial markets of a category of institutions,

for instance, funds experiencing large outflows or losses, banks incurring large

losses in Berndt (2005), or specialists building extreme positions in Comerton

(2010).

One important feature in financial market is the existence of an observed

correlation, no matter positive or negative, between the price movements of

different financial variables. It can be dated back as early as in 1895, the Pear-

son correlation coefficient provides information about the similarity in the price
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change behavior of a given pair of stocks. It is a well known empirical fact in

Markowitz (1952) that there exists a high degree of correlation between the

synchronous time evolution of a group of equity returns. Nowadays, techni-

cal analysts of market data believe that both trading price and volume data

provide indicators of future price movement. In particular, Brown and Jen-

nings(1989) considered rational expectation models in which a single financial

dynamic does not reveal the underlying information but a sequence of financial

variables does. They demonstrated that technical analysis of price patterns

may be valuable because stock markets behave as complex dynamic systems,

and as such, it is critical to investigate the dependencies between the dynamics

of the system variables. It is common to connect such interactions with the no-

tion of correlation. Indeed, much effort is dedicated to study and understand

such stock cross-correlations in an attempt to extract maximum market latent

information which is embedded in the interactions between the market vari-

ables to gain insights into the underlying structure and dynamics of financial

markets, see Forbes and Rigobon (2002), Embrechts (2002), Campbell (2008),

Krishan (2009), Podobnik (2009), Aste (2010) and Huang (2013).

1.2 Network Analysis

Nowadays, giant datasets are collected with lots of empirical information

about the functioning of almost every field of study, at a cost much lower than

a few decades ago, for instance biotechnology in McBride (2012), medical

science in Groves (2013), and in particular, business and economics study in

Einav and Levin (2013).
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One can be interested in the existing linkages between any different

elements, namely stock market returns of S&P 500, inflation rates in top

economies and so on, which are included in a collection of the dataset. And

that is the reason why network analysis has emerged in recent years. Espe-

cially after financial crisis of 2007, there are a number of researchers make

contributions on network estimation including Billio (2012), Diebold and Yil-

maz (2014, 2015) and Hautsch and Schaumburg (2014). Network analysis is

used to help interpret the hidden interconnections between different elements

in large dataset. With the application of proper statistical tools, analysts

can not only get the statistical results about the big dataset, but also plot

the interconnections in a graphical representation that eases the explanation

of the real market observations. That is to say, network analysis allows us

to construct graphs representing the reality behind those complex empirical

datasets.

In mathematics, the traditional way of representing networks is using

graphs, which can be generally defined as a collection of nodes connected by

lines. Here we will introduce a bit of graph theory. A graph is an ordered pair

as following:

G = (V ; ǫ) (1.1)

The first one represents nodes while the second one is the edge connecting

nodes. In our study, we consider two main characteristics of a network: direc-

tionality and weight. First, If an edge from node i to node j is different from

an edge from j to i, then the graph is directed. On the other hand, if all the

links between nodes don’t have a particular direction, then the graph is undi-
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rected. Next, The difference between weighted and unweighted networks has

been represented with the relative weight of each edge. In weighted networks,

the thickness of the edge depends on the intensity of the correlation between

two nodes. As described later on, due to the specific resources and purpose of

our study, we use undirected and weighted graphs for partial correlation net-

works while directed and weighted graphs for vector autoregressive adjacency

networks.

The graphical representation of a network has been shown in what is

known as the adjacency matrix A. It is the compact representation of a net-

work in the formation of a matrix. If vertices i and j are connected by an edge,

then the Aij element has a value different form zero. In the case of weighted

graphs, Aij can take any value as the network represent does not stand for

just the existence of a linkage, but also identifies the weight of it.

As briefly introduced in the above section, the final aim of network analy-

sis is to represent large data collection as a network with which would be easier

for us to interpret the linkages between different elements. In this article, our

data collection is a multivariate time series, which consists of sequences of

values of several contemporaneous variables changing as time goes by. That

is to say, we will apply network analysis using values of a determined number

of variables taken in successive periods of time. In our study, the stock prices

and trading volumes at different time points for each stock can be regarded as

a time series. Without loss of generality, we suppose that we have N variables

for T periods of time. So the input data will be

5



yt =




yt1

yt2

...

ytN




for t = 1, ...T (1.2)

And the final output of the network analysis of the particular multivariate

time series could be displayed in a graph, in which all the target stocks are

represented by nodes and the interconnections between them are plotted as

the edges linking the nodes.

In our research, we consider two kinds of network model: partial cor-

relation network and vector autoregressive adjacency network. Building on

previous work, we propose two computationally efficient approaches under

the high-dimension-low-sample-size setting. We develop a penalized kernel

smoothing method for the problem of selecting non-zero elements of the time-

varying matrix. As the size of samples T and the number of variables N

increase, the computation cost turns out to be a serious problem. So we

formulate a novel algorithm named Multi-Active-Shooting(MAS) algorithm.

As far as we know, it is the first time that this algorithm is used to solve

the regression problem with dataset of hundreds of dimensions. The network

structures of multivariate financial time series are established for the first time

for such estimators and displayed in a graphical representation. Hence, we

confirm the efficiency and validity of our proposed methods, especially in the

case of presenting cross-sectional interconnections between stocks in financial

market. Our findings shed a new light on uncovering the hidden interactions
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between the financial dynamics and present new insight into market structure

and market stability.

1.3 Outline

The rest of the thesis is organized as follows. In Chapter 2, we explain

the characteristics of the studied models, including partial correlation network

in Section 2.1 and VAR adjacency network in Section 2.2, from the basic idea

up to the features of the model behind it. Afterwards, in Chapter 3, we give

full details about the proposed methods with kernel smoothing approach in

Section 3.1 and computational efficient algorithms to estimate interconnections

between elements in large data sets, including partial correlation network in

Section 3.2 and VAR adjacency network in Section 3.3. In Chapter 4, we

performed an illustrated simulation in order to show the power and efficiency

of the model presented in Section 4.1. Moreover, the proposed models are

put into practice by analyzing a relatively large dat set of real world data,

with the objective of assessing whether the proposed statistical instrument is

valid and useful when applied to a real multivariate time series in Section 4.2.

Also, a summary of the main results and proposal about the future work are

given in Section 4.3. In short, the findings all along this part of thesis suggest

the partial correlation network and VAR adjacency network both perform well

under the assumption of sparsity of data. They are shown to be very valid

tools to represent cross-sectional interconnections in between elements in large

data sets and allow us to observe and analyze the existing linkages that could

have been omitted otherwise.

7



Chapter 2

Two Models to Estimate Network Variation

2.1 Partial Correlation Network

To study the relationship between two stock returns, say yi and yj, the

common method is to calculate the Pearson correlation coefficient:

ρPearson(i, j) =
(yi − µi) × (yj − µj)

σi × σj
(2.1)

where µ∗ represents average value of y∗ and σ∗ denotes the standard deviation.

Despite the useful information provided by investigating the correlation

coefficient, it is unable to represent information about whether a third vari-

able would actually influence the observed relationship between these two given

variables. That is to say, in some cases, a strong correlation coefficient does not

necessarily mean strong direct relation between two variables. As we know,

two financial dynamics in the same market can be affected by common macroe-

conomic force or investor psychological factors, such as bandwagon effect. It

is well known that there exists significant cross-correlation between the syn-
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chronous time evolution of a pair of variables, for instance stock returns and

trading volumes. To solve this problem, we introduce partial correlation co-

efficient, which quantifies the correlation between variables when conditioned

on one or several other variables, to get rid of the common driving factors.

Suppose that (y1, ...yp)
T has a joint distribution with mean µ and covari-

ance Σ, in which Σ is a p by p positive definite matrix. Denote the partial

correlation between yi and yj by ρij(1 ≤ i < j ≤ p). εi and εj are re-

spectively the prediction errors of the linear predictors of yi and yj based on

y−(i,j) = {yk : 1 ≤ k 6= i, j ≤ p}. Thus, yi is expressed as

yi =
∑

j 6=i

βijyj + εi (2.2)

where

var(εi) =
1

σii
(2.3)

cov(εi, εj) =
σij

σiiσjj
(2.4)

βij = −σij
σii

= ρij ×
√
σjj
σii

(2.5)

Here we define concentration matrix K ≡ Σ−1 by (σij)p×p. And the partial

correlation ρij is denotes as

ρij = Corr(yi, yj|y−(i,j)) = − σij√
σii × σij

In our article, we primarily deal with the particular case of high-dimension-
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low-sample-size. In other words, the number of variables, namely p, is always

larger than the sample size, namely n. This high-dimension-low-sample-size

assumption of the partial correlation network model is named as the sparsity

of data set. Sparsity refers to the fact that the given network is not complete.

That is to say, not every node is connected with any other nodes in the dataset.

As we know, a zero element in the correlation matrix indicates the absence

of an edge between the certain two variables, hence the correlation matrix

of a sparse network consists of a great number of zeros. Actually, this kind

of sparse networks have been studied in many areas, e.g. genetics networks,

social networks and so on. It is widely believed that most stock variable pairs

are not directly interacting with each other, so we assume that the data from

stock market can also be considered as sparse.

Based on the relationship between ρij and βij, we conclude that the prob-

lem of searching for nonzero partial correlations can be regarded as a model

selection problem under the regression setting in equation 2.2. Even if the

number of variables is much larger than the sample size, we can still solve

the problem with effective methods in a suitable range. In our research, we

take advantage of Lasso for detecting pairs of stocks having nonzero partial

correlations among a large dataset, by imposing the l1 penalty item on the

associated loss function to solve the problem.

Lasso, stands for Least Absolute Shrinkage and Selection Operator, pre-

sented by Robert (1996), has been a very effective tool to obtain the esti-

mations of correlations. It allows to shrink the number of nonzero estimated

coefficients low enough to end up with a sparse network. We consider the

10



common setup for linear regression: we have a response variable yi and a pre-

dictor vector y−(i), in which y−(i) = {yk : 1 ≤ k 6= i ≤ p}. Lasso estimators are

calculated as following:

βlasso = arg min
β

p∑

i=1

(yi − yT−(i)β)2 + λ

p−1∑

i=1

| βi | λ ≥ 0 (2.6)

Thus, the Lasso estimators βlasso are those coefficients that minimize the

l1 form of errors in the regression of each element on all the others. The

estimators are calculated in a similar way to ordinary least squares(OLS) es-

timators, but take absolute values in the penalty item instead of squares. By

shrinking some of the estimated coefficients to exact zeros, it perfectly fit for

our purpose of ending up with a sparse network.

There is another great thing about Lasso estimation. We take into ac-

count the parameter denoted as λ, which controls for the amount of shrinkage

in the estimation procedure. In other words, with proper λ, Lasso estima-

tion selects the variables which better explain the linkage between them. It

shrinks the estimator βi corresponding to the certain variable which is not so

explanatory to exact zero, while keeping the parameter of the worthy vari-

ables different from zero. In short, Lasso estimator turns out to be an optimal

instrument for estimating the existence of partial correlations for the reason

that it allows to shrink non-useful coefficients of the regression model to zeros

and select worthy ones that can be used to represent sparse networks of mul-

tivariate time series, even in a scenario where there are much more variables

than observations. Therefore, we introduce Lasso in the set up of our model.
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In our research, we have n observations of p stocks over a time period.

Each observation at a certain time point can be regarded as a sample in the

above problem settings. Thus, we suppose Y k = (yk1 , y
k
2 , ..., y

k
p)T for k =

1, ..., n. Denote the sample of the ith variable as Yi = (y1i , y
2
i , ..., y

p
i )T for i =

1, ..., p. Based on equation 2.2, we propose to estimate the partial correlation

ρij by the following loss function:

Ln(P, σ, Y ) =
1

2

(
p∑

i=1

ωi‖ Yi −
∑

j 6=i

βijYj ‖
2

)

=
1

2

(
p∑

i=1

ωi‖ Yi −
∑

j 6=i

ρij ×
√
σjj
σii
Yj ‖

2
)

(2.7)

where

σ = {σii}pi=1 (2.8)

Y = {Y k}nk=1 (2.9)

ω = {ωi}pi=1 (2.10)

P = (ρ1,2, ..., ρ(p−1),p)T (2.11)

As stated above, we impose an l1 penalty item in the penalized loss function

for estimating the partial correlation P:

 Ln(P, σ, Y ) = Ln(P, σ, Y ) + λ ‖P‖l1

= Ln(P, σ, Y ) + λ
∑

1≤i<j≤p

| ρij | (2.12)

In this way, we formulate an Lasso-like regression which is performed sep-
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arately for each variable on the rest of the variables. The outcome of the

application of this model is the matrix containing the estimations of the par-

tial correlations between variables. Also, the network graphs related to the

certain partial correlation matrix have a simple and intuitive way to interpret-

ing potentially complex and large dataset into a plain and clear representation

of vertices and edges showing the existence or not of the interconnections in

between the variables from a multivariate time series.

Although the above partial correlation network analysis has the advan-

tage of easing the interpretation to representing the dependency between a

large number of stocks over a short time period, it has an important draw-

back. The model is based on the interconnections between stocks only at the

limited period of time, which may be regarded as contemporaneous depen-

dence in some cases. Therefore, partial correlation network has limitations

in the case of time series processes exhibiting serial dependence or spillover

effect. Also, partial correlation network model comes out with the undirected

partial correlation matrices. However, we may want to look into the relation-

ship between the stocks with direction. In the next section, we will introduce

vector autoregressive adjacency network to capture the lead or lag effects in

the multivariate time series.

2.2 Multivariate Autoregressive Adjacency Network

As stated by Andrews and Monahan (1992), multivariate time series pro-

cess can be represented as a Vector Autoregression (VAR) model with suitable

time lags. For such processes, the long run covariance matrix is in a closed
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form whose inverse is available. In this section, we propose a novel network

definition for multivariate time series which attempts to overcome the limita-

tions of partial correlations.

Suppose that we have X t = (xt1, ..., x
t
p)

′

as the t−th observed vector over

the time period (1, ..., n), which is a vector autoregressive process of d, denoted

as V AR(d). It satisfies the recursion

X t =
d∑

k=1

AkX
t−k + Vt, t = 1, ..., n (2.13)

where A1, ..., Ad are p × p matrices of autoregression coefficients, k denotes

the number of time lags. Vt are p−variate normal distribution with mean

µV and covariance matrix ΣV . Moreover, we assume that Vt is unrelated to

Xs for s < t. We can see that given large number of variables p and time

lags d, we have to make the estimation of parameters for a total number of

p2d, which is greater than the number of observations np. Additionally, as

there may be a number of structural changes occurred in financial dynamics

time series, the effective number of observations used for parameter estimation

would be much smaller than the whole period 1, ..., n. Thus, we still have to

work out the method in high-dimension-low-sample-size settings. From the

partial correlation network model, we take advantage of Lasso estimation for

shrinking low enough the number of variables. And we select the dominant

variables which are more valuable in interpretation of the network and get

rid of the ones with less influence on the parameters. Therefore, here we also

formulate a Lasso-type estimation for VAR adjacency network.
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Let X be an n×p matrix of observations and S = 1
n
X TX be the associated

covariance matrix. And X t is corresponding to the t−th time point in X

while X t
i be the i−th column. Under the general weighted lasso penalty, the

estimation of adjacency matrix is formulated by the following l1 regularized

problems, for k = 1, ..., d:

Âk = arg min
θ

‖ X 1:n−k − X k+1:nθk ‖2 +λ

p∑

j=1

| θkj | ωk
j (2.14)

In this way, we have constructed an directed coefficient network which has

similar representation as in partial correlation network. In the next section, we

implement an iterative algorithm to complete the estimation of VAR adjacency

matrix.
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Chapter 3

Computational Efficient Methods in

Time-Varying Network Analysis

3.1 Kernel Smoothing Approach

In this section, we introduce a class of regression techniques that achieve

flexibility in estimating the regression function, say f(X), by using only those

observations close to the target point x0. In such a way, the resulting estimated

function f̂(X) is smoothed. This localization is achieved via a weighting func-

tion of kernel Kλ(x0, xi), which assigns a weight to xi based on its distance

from x0. Recall Nadaraya-Watson kernel-weighted average

f̂(x0) =

∑N
i=1Kλ(x0, xi)yi∑N
i=1Kλ(x0, xi)

(3.1)

with the Epanechnikov quadratic kernel

Kλ(x0, x) = D

( | x− x0 |
λ

)
(3.2)
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with

Dt =





3
4
(1 − t2) if | t |≤ 1

0 otherwise

(3.3)

Thus, we have progressed from the raw moving average to a smoothly vary-

ing locally weighted average by using kernel weighting. Furthermore, locally

weighted regression solves a separate weighted least square problem at each

target point x0:

min
α(x0),β(x0)

N∑

i=1

Kλ(x0, xi)[yi − α(x0) − β(x0)xi]
2 (3.4)

The estimate is then f̂(x0) = α̂(x0) + β̂(x0)x0. Without stopping local linear

fits, we can fit local polynomial fits of any degree d,

min
α(x0),βj(x0), j=1,...,d

N∑

i=1

Kλ(x0, xi)[yi − α(x0) −
d∑

j=1

βj(x0)xi]
2 (3.5)

with solution f̂(x0) = α̂(x0) +
∑d

j=1 β̂j(x0)x
j
0. Since local linear fits can help

bias dramatically at the boundaries at a modest cost in variance, we will apply

this kernel smoother to the regression function of both the partial correlation

network model and VAR adjacency model as noted in the previous section.
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3.2 Proposed Method 1: Estimation of Partial Corre-

lation Network

3.2.1 Implementation with MAS algorithm

In this section, we present a two-step iterative algorithm to estimate the

parameters P and σ noted in the loss function in equation 2.12. The main

idea is to specify an initial value for σ(initial) at first, and then obtain P by

minimizing the loss function of equation 2.12. We implement the iteration of

the stated two-step procedure until the updated parameters are converged to

the previous ones. The implementation details are given in the following.

Recall that we have multivariate normal distributed observations Y k =

(yk1 , y
k
2 , ..., y

k
p)T for k = 1, ..., n. Denote the sample of the ith variable as

Yi = (y1i , y
2
i , ..., y

p
i )

T for i = 1, ..., p. Then we denote Ỹi =
√
ωiYi, i = 1, ..., p

with predefined ω. There is also another advantage in our model that we can

make use of prior knowledge of the network structure by assigning different

weights ωi to different variables. Normally we take ωi = 1
var(εi)

with consid-

eration in the residual variances of the variables. Here we want to add kernel

smoother. Hence, we assume ωi = Kλ(i−τ)
∑

i
′
∈τn

Kλ(i
′
−τ)

. τ stands for the target

point which is in the form of x0 as stated in equation 3.5. Moreover, we take

σ̂ii = 1
(n−1)

∑n
k=1(y

k
i −ȳi)2

, which is the sample variance of yi, as the initial value

of σii. Since we have setup the initial value of σ and variable weight ω, we
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now denote

Y = (Ỹ
′

1 , Ỹ
′

2 , ..., Ỹ
′

n)T , (3.6)

K̃i,j = (0, ..., 0,

√
σ̃jj

σ̃ii
Ỹ T
j , 0, ..., 0,

√
σ̃ii

σ̃jj
Ỹ T
i , 0, ..., 0)T (3.7)

where σ̃ii = σii

ωi
for i = 1, ..., p. Then we rewrite the l1 penalized loss function

in equation 2.12 as

min
P

=‖ Y − KP ‖2 +λ ‖ P ‖l1 (3.8)

where K = (K1,2, ...,Kp−1,p). As the size of samples n and the number of

variables p increases, the computation cost turns out to be a serious problem.

So we make use of active-shooting approach in Peng (2009), which is proved to

be a very computational efficient algorithm. In the following empirical study,

we make a modification of active-shooting to deal with stock variables of more

than 200 tickers. Here we name it Multi-Active-Shooting(MAS) algorithm.

As far as we know, it is the first time that this algorithm is used to solve the

regression problem with dataset of hundreds of dimensions. We present details

of the MAS algorithm as below.

Recall the loss function with respect to P as in equation 3.8. Firstly, with

given weights w and initialized σ, we have known Y as well as K. Thus, for

j = 1, ..., p:

P
(initial)
j = arg min

Pj

{
‖ Y − PjKj ‖2 +λ

∑

j

| Pj |
}

= sign(YTKj)
(| YTKj | −λ)+

KT
j

Kj (3.9)
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where Pj = (0, ..., 0, ρ1j, 0, ....0, ρhj, 0, ..., 0, ρjj, 0, ..., 0)T for 1 ≤ h ≤ j, and

Kj = (0, ..., 0,K1,j, 0, ....0,Kh,j, 0, ..., 0,Kj,j, 0, ..., 0)T for 1 ≤ h ≤ j. (.)+ is

used to take only the positive elements in the matrix.

Then, we update Pj recursively until the distance between the current

one and the previous one lies in a certain limit, which is decided by the tuning

parameter λ. In the updated formulation, we define active set as Λ := {k :

Pk 6= 0}. Thus, for each k ∈ Λ, we have

P
(current)
i = P

(previous)
i , i 6= k (3.10)

P
(current)
k = arg min

Pk

{
‖ Y −

∑

i 6=k

P
(previous)
i Ki − PkKk ‖2 +λ

∑

k

| Pk |
}

= sign

(
ε(previous)

TKk

KT
kKk

+ P
(previous)
k

)
× (3.11)

(
| ε

(previous)TKk

KT
kKk

+ P
(previous)
k | − λ

KT
kKk

)

+

where ε(previous) = Y −KP(previous). And we repeat the updating process until

P(current) is converged to P(previous) in acceptable range.

With the help of MAS algorithm, we obtain the updated P̂(current). Then

we update σ as following:

1

(σ̂ii)(current)
=

1

n
‖ Yi −

∑

j 6=i

P̂
(current)
ij Yj ‖2 (3.12)

Therefore, we calculate P̂(current) and (σ̂ii)(current) in each iteration until they

converge. However, as stated before, the performance of this model depends

much on the choice of the tuning parameter λ. We will next discuss about
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estimation of the tuning parameter.

3.2.2 Tuning Parameter

The tuning parameter λ controls for the amount of shrinkage in the esti-

mation procedure. So λ can be seen as the penalty to pay when constructing

a sparse network from empirical data which is not sparse enough. First, in

the case λ takes a value equals to zero, then no shrinkage is produced and the

estimators are exactly the same as in the ordinary least square case. Second,

in the case λ takes a value big enough, all the lasso estimators might be shrunk

to zeros so that there is no estimator different from zero. Thus, only when

we pick a suitable λ, we could have a appropriate number of parameters been

shrunk to zero.

In practice, different values of λ are estimated for the partial correlation

networks, and afterwards, information criteria like AIC (Akaike Information

Criterion) or BIC (Bayesian Information Criterion) are applied to determine

the optimal value of λ. In general, BIC is preferred to AIC due to its simplicity

and computational easiness. According to Zou (2007), we make use of BIC

criterion for selecting the tuning parameter for the sake of computational sim-

plicity. For a predefined λ, we have estimators calculated using the above pro-

cedures and denoted as P̂λ = {ρ̂ijλ : 1 ≤ i < j ≤ p} and σ̂λ = {σ̂ii
λ : 1 ≤ i ≤ p}.

Recall equation 2.2, we denote the residual sum of squares as:

RSSi(λ) =
n∑

k=1


yki −

∑

j 6=i

ρ̂ijλ

√
σ̂jj
λ

σ̂ii
λ

ykj




2

(3.13)
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For the i−th regression, we have

BICi(λ) = n× log(RSSi(λ)) + log n×
∑

j 6=i

eij (3.14)

where eij = 0 if ρ̂ijλ = 0, and eij 6= 0 if ρ̂ijλ 6= 0. Therefore, we minimize

BIC(λ) =
∑p

i=1BICi(λ) to decide which λ is our choice in the model.

3.3 Proposed Method 2: Estimation of VAR Adjacency

Network

3.3.1 Implementation with Recursive Pathwise Approach

In this section, we first present an iterative algorithm for estimation of the

VAR adjacency matrix. In the recursive procedure, we apply kernel smoothers

and deduct a pathwise approach to the sparse regression model. Moreover,

we discuss the selection of initial parameters and related parameter tuning

process.

Firstly, we assume that the initial value of VAR coefficient is represented

as Ak
(initial), suppose that k8d = 1, ..., d− 1, and for k = 1, ..., d:

Rk(initial) = X n −
∑

j∈k8d

Ak
(initial)X n−j (3.15)

Then, we calculate the updated estimator recursively until convergence, for
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k = 1, ..., d:

Â
(cur)
k = arg min

θ
‖ Rk(pre) −X n−kθk

(pre) ‖2 +λ

p∑

j=1

| θkj
(pre) | (3.16)

During the recursive calculation, the penalized regression function at k−

stage can be regarded as a general Lasso optimization problem. Thus, we

utilize kernel smoother and rewrite the updated function simply as:

arg min

p∑

i=1

D

( | ti − tk |
hλ(X tk

i )

)
‖ Rk − X n−kθk ‖2 +λ

p∑

j=1

| θkj | (3.17)

Consider a coordinate descent step for solving the above problem, see

Friedman (2007). That is, suppose that we have estimates θ̃0 and θ̃l for l 6=

j, and we wish to partially optimize with respect to θj . Denote by R, the

objective function in equation 3.4. We would like to compute the gradient at

θj = θ̃j , which only exists if θ̃j 6= 0. If θ̃j > 0, then

∂R

∂θj
|θ=θ̃= −2 ×

p∑

i=1

D

( | ti − tk |
hλ(X tk

i )

)
Xij(R

k
i − X n−k

i θk) + λ (3.18)

A similar expression exists if θ̃j < 0, and θ̃j = 0 is treated separately. Simple

calculation shows that the coordinate-wise update has the form

S

(
−2 ×

p∑

i=1

D

( | ti − tk |
hλ(X tk

i )

)
Xij(R

k
i − R̃k

i

(j)
), λ

)
→ θ̃j (3.19)

where

R̃k
i

(j)
= θ̃0 +

∑

l 6=j

Xilθ̃l (3.20)
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is the fitted value excluding the contribution from Xij , and hence Rk
i − R̃k

i

(j)

the partial residual for fitting θj . S(z, γ) is the soft thresholding operator with

value 



z − γ if z > 0 and γ <| z |

z + γ if z < 0 and γ <| z |

0 if γ ≥ | z |

(3.21)

Thus, with smoothing on time period, we compute the simple autoregres-

sive coefficient and apply soft threshold to take care of the lasso contribution

to penalty, and then utilize a proportional shrinkage for the penalty. Fur-

thermore, we move on to the selection of initial value and tuning process of

parameters.

3.3.2 Selection of Initial Value and Tuning Parameter

According to Wang (2006), to obtain the consistent estimator for the

iterative process, we introduce the ordinary least squares(OLS) estimator as

an initial value for the adjacency matrix Ak, in which k denotes the number

of time lags:

Â
(initial)
k =

X n−k:nTX n

X n−k:nTX n−k:n
(3.22)

With the assumption of Vt in equation 2.13 is independent of Xi, it is proved

that Â
(initial)
k is a consistent estimator of initialized parameter.

To complete the whole iteration process, we need to select the tuning pa-

rameters as well. Recall that BIC performs better than the other information
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criterion, we formulate BIC-type parameter in the case of k time lags as:

BIC(λ) = log

[
p∑

i=1

D

( | ti − tk |
hλ(X tk

i )

)
‖ Rk

i − X n−k
i θk ‖2

]
+

logn

n
Λ(θ̂) (3.23)

where Λ(.) stands for the number of nonzero elements in the matrix. Now

we have completed both of the implementation of methods for estimating the

partial correlation network and VAR adjacency network. We will illustrate the

performance of our proposed method in both simulation study and real data

analysis in the next section.
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Chapter 4

Numerical Study and Result

4.1 Illustrated Simulation

In order to check the performance of the proposed method to estimate

partial correlation and VAR coefficient networks, we process with an illustrated

simulation. Based on the assumption of sparsity, we randomly create a true

network with 10 elements and a total of 9 edges, see Figure 4.1. Therefore,

the concentration matrix is a 10×10 matrix. Though it doesn’t refer to a very

big dataset, it is just a simple simulation to perform and allows us to analyze

and get meaningful results.

First, we create n random observations from a multivariate normal dis-

tribution. The number of variables is 10 and their covariance matrix used to

generate those n observations is the inverse of the concentration matrix pre-

viously defined in the above. Then, our proposed method is used to generate

a concentration matrix from the random observations and the previously de-

fined λ. Finally, we get the adjacency matrix after several iterations. We then
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Figure 4.1: Ture Network Plot with 10 nodes and 9 edges

evaluate each method at a series of different values of the tuning parameter

λ. Our target is to present how the evolution of λ would effect the shrinkage

results of the variables, which are indicated as the numbers of edges left in the

plots.

In our simulation, we study for four different sample sizes

n = {50; 100; 150; 200}. The tuning parameter λ is assumed as proportional

to the sample size, to take values from λ = 0.00 × n to λ = 1.00 × n with

interval of 0.05. Since the simulation is a random process, it must be done a

great number of times in order to get accurate and unbiased results. To reach

that end, for each pair of λ and sample size values, we calculate the network

estimator for 1000 times. In order to analyze the results obtained from the

simulation, one graph will be represented to study the characteristics of the

regression model. Figure 4.2 will show how changes in the penalty value affect

the sparsity of the estimated network.
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Figure 4.2: How does λ affect the shrinkage result

From Figure 4.2, we can see that there is a positive relationship between

the penalty value λ and shrinkage result, in other words is the sparsity. When

λ increased, the total number of edges left decreases, so the estimated network

becomes sparser, moving from far much more than the number of true edges

to less than it when the penalization is too large. When the penalty value is

zero, the number of edges found is 45 = 10×9
2

for every sample size, which is

the maximum possible number of existing edges in a network of 10 variables.

On the other hand, when the penalty is 1.00 × n, sparsity converges again for

all sample sizes at a level below the true number of the edges in the network.

What’s more, for different sample sizes, it is observed that for large values of

n, the estimated networks become very sparse and the number of edges found

decrease to the number of true edges through a mild path. On the other hand,

in the case n is lower, the estimated networks become sparser following a steep

path until the true number of edges is reached, and once in there, the number
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of edges estimated decreases below the optimal value faster than with the large

sample sizes as λ increases.

4.2 Empirical Analysis

4.2.1 Data Description

The S&P 500 index is probably the most commonly referenced U.S eq-

uity benchmark for determining the state of the overall economy. S&P Dow

Jones Indices updates the components of the S&P 500 periodically, typically

in response to acquisitions, or to keep the index up to date as various com-

panies grow or shrink in value. Between 1/1/2005 and 1/1/2015, 188 index

components were replaced by other components. In our paper, we propose to

track the performance of the largest and most dominant American companies

included in the index. So, we pick 223 stocks as our target stocks, which have

been included in the index for 12 years, from the year 2002 till the year 2013.

Through Daily TAQ (Trade and Quote), which provides us with FTP

access to all trades and quotes for all issues traded on NYSE in all the trading

days, we download the 1-minute stock data using our own target stock lists. So

our dataset includes associated key financial dynamics such as time of trading,

stock price, market capitalization in the certain time period.

Before we apply the model to our data, we should ensure that the supplied

data is clean, correct and useful. In our raw data, there are included 1-minute

price, time of trading and trading volume of all the 223 stocks. However,

there are some issues worthy of our attention. Firstly, we have, inevitably, lost
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some data on the certain trading time points during one month. Secondly,

the 1-minute trading volume should be within a certain range, to make sure

that the future calculation will not spill over. So before the application of our

theoretical method, we have to process with data loss and data cleaning.

For every one of our target stocks, there are no more than 2 percent

of data left blank. To deal with the data loss, we use linear interpolation

to fill the gap in our raw data. For instance, if there is no record at the

certain time during a trading day, then we will use two closest stock prices

and trading volumes to get the estimated value. To calculate the weighted

average as unknown prices and trading volumes, the weights are inversely

related to the distance from the known points to the unknown point. In this

way, we successfully get all the data at all the time points filled.

In both of two proposed methodologies, we use an iterative algorithm

to calculate the estimated parameters of partial correlation matrix and VAR

adjacency matrix. So we have to get rid of those trading volume records which

are beyond the limit of acceptability or fairness. First, all the trading volume

data should be positive. Secondly, the value of trading volume should not

exceed a certain range, since unreasonable large value will limit the calculation

of partial correlation matrix and VAR adjacency matrix. Without loss of

common sense, we eliminate those 1-minute trading volumes whose values are

negative or more than 1 million.

After processing with the raw data, we have more concerns before ap-

plication of real data to our model. In our article, we will use 30 minute as

interval of two neighbor records. That is to say, we calculate the average values

30



of stock prices and trading volumes in half an hour. During one trading day,

whose trading period last from 9:30 in the morning till 4:00 in the afternoon,

we have 14 records of prices and trading volumes for every target stock.

Furthermore, to have a better understanding of the macrostructure of the

stock market, we choose two measurements to do the quantitative research:

stock returns and volume-price trend indicators. Stock return is a traditional

measurement of a company’s performance over time. Here we use single period

return. Next, to measure the balance between a stock’s demand and supply,

we introduce volume-price trend (VPT), which is a technical analysis indicator

to relate price and volume in the stock market. VPT is based on a running

cumulative volume that adds or subtracts a multiple of the percentage change

in share price trend and current volume, depending upon the investment’s

upward or downward movements. We have the formula as following:

V PT = V PTpre + volume× pricecur − pricepre
pricepre

= V PTpre + volume× return (4.1)

Thus, we use stock returns and VPT indicators as our measurements to eval-

uate the performance of target stocks and stock market balance.

In this way, we have both of two kinds of financial dynamics related to

intraday stock market, which are set up in good quality and reasonable range.

In the following section, we will deduct two empirical studies with our proposed

methods. In Chapter 4.2.2, we choose the data in September of year 2013 as

a simple test sample. For September 2013, we have 20 trading days. Thus, we
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have 280 records of stock prices and trading volumes for 223 target stocks in

the whole. And in Chapter 4.2.3, we challenge our methods with the data over

time period from April 2013 to September 2013, which has 1786 time points

in total. That is to say, we apply our network analysis with 223 variables of

1786 observations. As far as we know, this is the first time that one deals

with such high dimensional time-varying network in such long period of time

to interpret the hidden dependency in the view of the whole stock market.

4.2.2 Empirical Study 1

In the previous section, we have achieved the associated trading data of

223 target stocks. For September 2013, we have 279 30-minute stock returns for

every stock. Thus, our real dataset is composed of 223 variables containing 279

time points for each one, standing as a reasonable size for our estimations to

end up with significant results. The procedure to reach the estimated network

is based on calculating the partial correlation matrices and VAR adjacency

matrices of the dataset and plotting its network.

Firstly, we import the 223 × 279 matrix, in which each column is named

with the time points and each row is named with the stock symbol. Go through

each time point, we apply kernel smoother on time to get the estimated partial

correlation matrices and VAR adjacency matrices which are generated by our

proposed methods respectively. Here, we choose 30 as the moving window

size. Afterwards, we use Qgraph package in R program to plot each network

on each time point. Thus, we have 279 plots of partial correlation networks

and VAR adjacency networks of stock returns. Here in this article, we picked
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4 of them at different Tuesday in September 2013. The interval of these 4

figures are the same, which is 14 × 5 = 70. One thing to mention, we choose

VAR coefficient network with one time lag in empirical study. See Figure

4.3 for the output of partial correlation network analysis. In the pictures,

each node represents a stock and each edge represents a partial correlation

between two stocks. As well as in Figure 4.4, each node represents a stock and

each edge represents a VAR(1) coefficient between two stocks. Green edges

indicate positive correlations while red edges indicate negative correlations.

And the width and color of the edges correspond to the absolute value of the

correlations: the higher the correlation, the thicker and more saturated is the

edge.

As mentioned in previous section, there are quantitative methods such

as BIC and AIC which enable us to find out the optimal λ for the model. In

practice, the penalty value of the real data application has been chosen on the

results obtained from several trials. That is to say, the tuning process has been

based on observing the networks from a wide range of λ values and choosing the

one that looks more efficient for our study. For instance, we take the adjacency

matrix at the first time point of September 2013, if we choose λ = 7e−6, the

VAR(1) adjacency network at time 9:30 am on September 3rd, 2013 is shown

in Figure 4.5(a); while if λ = 7e−5 is chosen, then the corresponding VAR(1)

adjacency network at exact the same time, is shown in Figure 4.5(b).

From Figure 4.5(a), we can see that the choice of λ = 7e−6 must be

too small, since the shrinkage of Lasso doesn’t have much effect on coefficient

matrix. We can almost read no useful information from the redundant VAR(1)
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(a) (b)

(c) (d)

Figure 4.3: Partial Correlation Network of Stock Return at 9:30am on (a)September

3rd, 2013; (b)September 10th; (c)September 17th; (d)September 24th. (From left

to right, top to down)
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(a) (b)

(c) (d)

Figure 4.4: VAR(1) Adjacency Network of Stock Return at 9:30am on (a)September

3rd, 2013; (b)September 10th; (c)September 17th; (d)September 24th. (From left

to right, top to down)
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(a) (b)

Figure 4.5: The VAR(1) Adjacency Network at time 9:30 am on September 3rd,

2013 when (a)λ = 7× e
−6; (b) λ = 7× e

−5

adjacency network in Figure 4.5(a). For Figure 4.5(b), we can read clear

information of the significant adjacency matrix between two stocks. So the

choice of λ = 7e−5 is a good one. In practice, remind that the analysis of

the causes behind the nature of the dependency matrices is not a goal of our

project, therefore the selection of the optimal λ is not a crucial point in our

study, as long as we are working in a close interval from it.

Furthermore, we are interested in maximum eigenvalue of the dependency

matrix at the certain time point. In this part, we take the partial correlation

matrix in September 2013 for instance. For the time being, the change of

maximum eigenvalues is shown in Figure 4.6(a), while the percentage of the

maximum eigenvalue over the sum of all the eigenvalues in the partial corre-

lation matrix is shown in Figure 4.6(b).

As we know, the maximum eigenvalue changes through time. So it could

be regarded as a time series data. Here we fit this time series data with AR(1)
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(a) (b)

Figure 4.6: Partial Correlation Matrix in September 2013: (a)Maximum Eigenval-

ues; (b)The Percentage of Maximum Eigenvalues

model. The autocorrelation plot is shown in Figure 4.7(a) while the partial

autocorrelation plot is shown in Figure 4.7(b).

Moreover, we want to have a general look at the performance of the

maximum eigenvalue time series with respect to different λ. We chose 20

values of λ, which are respectively 1e−3, 3e−3, 5e−3, 7e−3, 9e−3, 1e−4, 3e−4,

5e−4, 7e−4, 9e−4, 1e−5, 3e−5, 5e−5, 7e−5, 9e−5, 1e−6, 3e−6, 5e−6, 7e−6, 9e−6.

Next, we draw the 3 dimension surface of the results, from different angles.

See Figure 4.8. With the help of 3-dimension version plots, we have a full view

of how the change of penalty parameter λ influence the maximum eigenvalue

over the time period.

From the above 3D version plots of maximum eigenvalues with different

λ, we can see that there are some peak points. Specially at the 121st time

point and 165th time point. We are interested in such points so that we track
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(a) (b)

Figure 4.7: Partial Correlation Matrix in September 2013: (a)ACF plots of
maximum eigenvalues; (b)PACF plots of maximum eigenvalues

Figure 4.8: Three dimension plot of maximum eigenvalues with different λ
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back to these two exact times. For the 121st time point, it refers to 1:30pm

on September 13rd, 2013; while the 165th time points refers to 2:30pm on

September 18th, 2013. Tracking back to that date, a meeting of the Federal

Open Market Committee was held in the offices of the Board of Governors of

the Federal Reserve System in Washington, D.C., on Tuesday, September 17,

2013, at 1:00 p.m. and continued on Wednesday, September 18, 2013, at 8:30

a.m.

4.2.3 Empirical Study 2

In the previous section, we have tested our proposed methods to estimate

both of time-varying partial correlation network and VAR adjacency network

with 223 target stock returns in September 2013. The results are presented

in different kinds of network plots and several related statistics plots. In this

section, we will deduct a more complicated and comprehensive empirical study

as well as some insightful concluding remarks.

Except for stock returns, we introduce VPT, which is believed to be

another widely used indicator of macro market structure. Moreover, we have

1785 30-minute stock returns and 1785 30-minute VPTs for every stock. Thus,

our real dataset is composed of 223 variables containing 1785 time points for

each one, standing as a reasonable size for our estimations to end up with

significant results. The procedure to reach the estimated network is based on

calculating the partial correlation matrices and VAR adjacency matrices for

both stock returns and VPT indicators and plotting their network.
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Network Plots

Firstly, we import the 223×1785 matrix, in which each column is named

with the time points and each row is named with the stock symbol. Go through

each time point, we apply kernel smoother weighted on time to get the esti-

mated partial correlation matrix and VAR adjacency matrix which are gen-

erated by our proposed methods respectively. In this section, we choose 50

as the moving window size. Afterwards, we also use Q-graph package to plot

each network on each time point. Hence, we have 1785 plots of partial cor-

relation networks and VAR adjacency networks of stock returns and VPTs.

The procedure of dependency matrix estimation and the associated network

plots is the same as we did in Chapter 4.2.2. However, we apply two matrix

estimation methods we proposed on two kinds of financial dynamics, stock re-

turns and VPTs. Therefore, for each time point, we have four network plots.

Furthermore, we display more plots indicating how maximum eigenvalues and

the related maximum eigenvectors change through time.

Firstly, we picked 6 time points for each month in the year 2013. The

interval of these 6 figures are the same, which is 300, which indicates approx-

imately 21 and a half trading days. As stated above, we have four different

network plots including two proposed methods applied on two kinds of stock

indicators. See Figure 4.9, Figure 4.10, Figure 4.11 and Figure 4.12. In the

pictures, each node represents a stock and each edge represents a partial corre-

lation or VAR(1) coefficient between two stocks. Green edges indicate positive

correlations while red edges indicate negative correlations. And the width and

color of the edges correspond to the absolute value of the correlations: the
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larger is the correlation, the thicker and more saturated is the edge.
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Figure 4.9: VAR Adjacency Network of Stock Return Plot at time: (a)1, (b)301,

(c)601, (d)901, (e)1201, (f)1501. (From left to right, top to bottom)
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Figure 4.10: VAR Adjacency Network of Stock VPTs plot at time: (a)1, (b)301,

(c)601, (d)901, (e)1201, (f)1501. (From left to right, top to down)
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Figure 4.11: Partial Correlation Network Stock Return plot at time: (a)1, (b)301,

(c)601, (d)901, (e)1201, (f)1501. (From left to right, top to down)
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Figure 4.12: Partial Correlation Network Stock VPT plot at time: (a)1, (b)301,

(c)601, (d)901, (e)1201, (f)1501. (From left to right, top to down)
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The VAR(1) adjacency network for stock returns and VPTs of six time

points evenly distributed from April 2013 to September 2013 are respectively

plotted in Figure 4.9 and Figure 4.10. While The partial correlation network

for stock returns and VPTs of six time points evenly distributed from April

2013 to September 2013 are respectively plotted in Figure 4.11 and Figure

4.12. To make a fair comparison with these networks, we make use of same

penalty parameter λ in all the four dimension shrinkage process. Also, the

order of the tickers are fixed in all the network plots.

First, we take a look in the number of edges left after dimension shrinkage

process in each method. As we know, the number of edges left is an indicator

of how much the shrinkage method works on selecting dominant variables.

If the number of edges is too great, the network plotting will be presented

in a messy way and difficult to discover the most important dependencies in

it. If the number of edges is too small, it indicates that we have done too

much on variable shrinkage and may lose the useful information. From the

comparison of Figure 4.9 and Figure 4.10 with Figure 4.11 and Figure 4.12,

we see that under the assumption of the same penalty parameter, proposed

method 1 for partial correlation network has better performance in dimension

shrinkage than proposed method 2 for VAR adjacency network. Also, the stock

returns network has less response on the dimension shrinkage than VPTs in

both proposed estimation methods. Moreover, the number of edges changes

through time. Great number of edges means that there are strong dependencies

between the stocks in the whole market. As shown in Figure 4.9, it is clear to

see that strong VAR(1) coefficients between stock returns took place in May,
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June and August. And in Figure 4.12, it is clear to see that strong partial

correlation between stock VPTs took place in April, May and September.

Secondly, we consider the color and thickness of the edges in the network

plots. As we know, the red lines refer to the negative dependency between two

nodes, while the green lines refer to the positive relationship. In a general look,

the green lines are much more than red lines, which shows that the positive

dependencies between stocks are much more than the negative ones. This

result indicates that there exists common driven force in the macro market, so

that the stocks returns and VPTs increase or decrease in the same direction

simultaneously. Also, at the same time point, all the four networks plots

indicate almost the same distribution of red and green colors. See Figure 4.9

and Figure 4.12 for instance, red lines are more significant than green lines in

the beginning of May 2013. In fact, after comparison of four sets of networks,

we can see that the ratio of red lines to green lines changes in the same trend

in all network plots.

Furthermore, we focus on some special tickers of great interest at the

certain time point. In Figure 4.9, we summarize interesting tickers: HUM in

health care sector in April; PBI in industrial sector, CAH in health care sector

and BBY consumer discretionary sector in May; PLD and SLG which are both

in real estate sector in June; JCP in service sector in August; APA in energy

sector in September. In Figure 4.12, we summarize interesting tickers: PNC in

financial sector in April; CAH in health care sector in May; HRB in financial

sector in September. One may want to track back to the corresponding date

to investigate if there is any significant event took place at the certain time
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point with that company.

Eigenvalue and Eigenvector Plots

As stated in the previous section, we are interested in the eigenvalues

and the associated eigenvectors at the certain time point. For each time point,

we have four output plots: VAR(1) adjacency network estimation with stock

returns as in Figure 4.13, Figure 4.17 and Figure 4.21; VAR(1) adjacency

network estimation with VPTs as in Figure 4.14, Figure 4.18 and Figure 4.22;

partial correlation network estimation with stock returns as in Figure 4.15,

Figure 4.19 and Figure 4.23; and partial correlation network estimation with

VPTs as in Figure 4.16, Figure 4.20 and Figure 4.24. In each set of plots, we

choose six time points evenly distributed from April 2013 to September 2013

respectively.

Among of these pictures, absolute value of eigenvalues for 223 tickers

are plotted in Figure 4.13 for VAR(1) adjacency network with stock returns,

Figure 4.14 for VAR(1) adjacency network with VPTs, Figure 4.15 for partial

correlation network with stock returns, and Figure 4.16 for partial correlation

network with VPTs. With the comparison of Figure 4.13 and Figure 4.9,

Figure 4.14 and Figure 4.10, Figure 4.15 and Figure 4.11, and Figure 4.16 and

Figure 4.12, we find that when there are more edges in network plots, which

indicates that the tickers are more influenced by each other in the market, the

number of single points in eigenvalues plots increases almost in each model.

For each set of plots, there are less than ten tickers represented by single

point, which means that eigenvalues are almost zeros for most of the tickers.

48



This indicates that our dimension shrinkage methods work well in four net-

works through time by leaving only a few of tickers, which are the ones of

interest. In this way, one can ignore most of the tickers and only focus on the

ones with great eigenvalues. However, since the absolute value of eigenvalues

for each ticker at the certain time is too small, we want to take a look at what

is the proportion of the tickers with great eigenvalues. Thus, we introduce the

plots of eigenvalue percentages in the following.
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Figure 4.13: VAR Adjacency Network Stock Return eigenvalue plot at time: (a)1,

(b)301, (c)601, (d)901, (e)1201, (f)1501. (From left to right, top to down)
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Figure 4.14: VAR Adjacency Network Stock VPT eigenvalue plot at time: (a)1,

(b)301, (c)601, (d)901, (e)1201, (f)1501. (From left to right, top to down)
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Figure 4.15: Partial Correlation Network Stock Return eigenvalue plot at time:

(a)1, (b)301, (c)601, (d)901, (e)1201, (f)1501. (From left to right, top to down)
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Figure 4.16: Partial Correlation Network Stock VPT eigenvalue plot at time: (a)1,

(b)301, (c)601, (d)901, (e)1201, (f)1501. (From left to right, top to down)
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Next, we move on to calculate the percentage of each eigenvalue over the

sum of all eigenvalues. The percentage of maximum eigenvalue also indicates

how large the proportion of the stock with maximum eigenvalue is compared

to the other stocks. In the following pictures, the percentage of eigenvalues for

223 tickers are plotted in Figure 4.17 for VAR(1) adjacency network with stock

returns, Figure 4.18 for VAR(1) adjacency network with VPTs, Figure 4.19

for partial correlation network with stock returns, and Figure 4.20 for partial

correlation network with VPTs. It is with no doubt that the distribution

of eigenvalue percentages is the same as absolute eigenvalues. One thing to

mention, once the percentage of the maximum eigenvalue is greater than 0.5,

then the related ticker is of great interest. See Figure 4.17 for instance, the

percentage of eigenvalue of ticker HUM is more than 80%, which is also a

node with a lot of edges which can be found out in Figure 4.9. We find that

almost all tickers of interest have a large proportion over the sum of eigenvalue

percentages, which means that the ticker with maximum eigenvalue might be

a hidden driven force of the whole market.
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Figure 4.17: VAR Adjacency Network Stock Return eigenvalue percent plot at

time: (a)1, (b)301, (c)601, (d)901, (e)1201, (f)1501. (From left to right, top to

down)
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Figure 4.18: VAR Adjacency Network Stock VPT eigenvalue percent plot at time:

(a)1, (b)301, (c)601, (d)901, (e)1201, (f)1501. (From left to right, top to down)
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Figure 4.19: Partial Correlation Network Stock Return eigenvalue percent plot at

time: (a)1, (b)301, (c)601, (d)901, (e)1201, (f)1501. (From left to right, top to

down)
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Figure 4.20: Partial Correlation Network Stock VPT eigenvalue percent plot at

time: (a)1, (b)301, (c)601, (d)901, (e)1201, (f)1501. (From left to right, top to

down)
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Furthermore, we look into the eigenvectors related to maximum eigen-

value. Among of the following pictures, the eigenvectors related to the maxi-

mum eigenvalue for 223 tickers are plotted in Figure 4.21 for VAR(1) adjacency

network with stock returns, Figure 4.22 for VAR(1) adjacency network with

VPTs, Figure 4.23 for partial correlation network with stock returns, and Fig-

ure 4.24 for partial correlation network with VPTs. From this set of plots,

we find that as the value of maximum eigenvalue increases, the distribution of

the related eigenvectors get more condense, most of whose value are zeros, see

Figure 4.21 and Figure 4.22. On the other hand, if the value of the maximum

eigenvalue is not significantly larger than the other eigenvalues, the distribu-

tion of the related eigenvectors get very scattered, see Figure 4.23 and Figure

4.24.
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Figure 4.21: VAR Adjacency Network Stock Return eigenvector plot at time: (a)1,

(b)301, (c)601, (d)901, (e)1201, (f)1501. (From left to right, top to down)
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Figure 4.22: VAR Adjacency Network Stock VPT eigenvector plot at time: (a)1,

(b)301, (c)601, (d)901, (e)1201, (f)1501. (From left to right, top to down)
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Figure 4.23: Partial Correlation Network Stock Return eigenvector plot at time:

(a)1, (b)301, (c)601, (d)901, (e)1201, (f)1501. (From left to right, top to down)
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Figure 4.24: Partial Correlation Network Stock VPT eigenvalvector plot at time:

(a)1, (b)301, (c)601, (d)901, (e)1201, (f)1501. (From left to right, top to down)
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Maximum Eigenvalues Evolve through Time

In the previous part, we compare four different models at a certain time

point. Now we consider the change of maximum eigenvalues over the whole

time period from April 2013 to September 2013. See Figure 4.25 for the com-

parison of maximum eigenvalues, Figure 4.26 for the comparison of maximum

eigenvalues quantile, and Figure 4.27 for the comparison of maximum eigen-

vectors quantile.

Among these plots, Figure 4.25(a) shows how the maximum eigenvalues of

VAR(1) adjacency stock return matrix change as time goes by, Figure 4.25(b)

shows the evolution of maximum eigenvalues of VAR(1) adjacency VPT ma-

trix, Figure 4.25(c) shows the evolution of maximum eigenvalues of partial

correlation stock return matrix, and Figure 4.25(d) shows the evolution of

maximum eigenvalues of partial correlation VPT matrix. From the four plots,

we summarize some time points of interest, which are (80) in April, (485) in

May, (725) and (805) on June, (1055) and (1185) on July, (1235) and (1405)

in August, (1625) in September. Actually, in the next part of thesis, we will

carry out change point detection methods over the same dataset and consider

if these points of interest are the structural breaks over the whole time period.

Moreover, we have another two sets of figures plotted named with quan-

tile, which means that we take the 95%, 50% and 5% quantile respectively

from the distribution of the eigenvalues and eigenvectors related to the max-

imum eigenvalues. Figure 4.26(a) shows how the 95%, 50% and 5% quantile

of eigenvalues of VAR(1) adjacency stock return matrix change as time goes

by, Figure 4.26(b) shows the evolution of the 95%, 50% and 5% quantile of
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eigenvalues of VAR(1) adjacency VPT matrix, Figure 4.26(c) shows the evo-

lution of the 95%, 50% and 5% quantile of eigenvalues of partial correlation

stock return matrix, and Figure 4.26(d) shows the evolution of the 95%, 50%

and 5% quantile of eigenvalues of partial correlation VPT matrix. Also, see

Figure 4.27(a) shows how the 95%, 50% and 5% quantile of eigenvectors re-

lated to the maximum eigenvalue of VAR(1) adjacency stock return matrix

change as time goes by, Figure 4.27(b) shows the evolution of the 95%, 50%

and 5% quantile of eigenvectors related to the maximum eigenvalue of VAR(1)

adjacency VPT matrix, Figure 4.27(c) shows the evolution of the 95%, 50%

and 5% quantile of eigenvectors related to the maximum eigenvalue of partial

correlation stock return matrix, and Figure 4.27(d) shows the evolution of the

95%, 50% and 5% quantile of eigenvectors related to the maximum eigenvalue

of partial correlation VPT matrix.
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(a) (b)

(c) (d)

Figure 4.25: The Evolution of Maximum Eigenvalues for (a)VAR Adjacency Net-

work Stock Return; (b)VAR Adjacency Network Stock VPT; (c)Partial Correlation

Network Stock Return; (d)Partial Correlation Network Stock VPT. (From left to

right, top to down)
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(a) (b)

(c) (d)

Figure 4.26: The Evolution of Maximum Eigenvalues Quantile for (a)VAR Adja-

cency Network Stock Return; (b)VAR Adjacency Network Stock VPT; (c)Partial

Correlation Network Stock Return; (d)Partial Correlation Network Stock VPT.

(From left to right, top to down)
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(a) (b)

(c) (d)

Figure 4.27: The Evolution of Maximum Eigenvector Quantile for (a)VAR Adja-

cency Network Stock Return; (b)VAR Adjacency Network Stock VPT; (c)Partial

Correlation Network Stock Return; (d)Partial Correlation Network Stock VPT.

(From left to right, top to down)
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4.3 Concluding Remark and Future Work

Throughout this part of thesis, two computational efficient methods are

proposed to estimate both time-varying partial correlation networks and VAR

adjacency network under the assumption of sparsity. We offer two thorough

sets of methodologies including recursive algorithm, parameter tuning, and

smoothing method for the estimation of networks. Moreover, after the set-

ting of the theoretical deduction and data processing, we carry out simulation

study and two empirical studies. Hence, we confirm the efficiency and validity

of our proposed methods, especially in the case of presenting cross-sectional

interconnections between stocks in financial market.

We have applied our proposed methods to 30-minute stock returns and

VPTs over the time period from April 2013 to September 2013 and presented

different kinds of output plots to discover the dependency network in the whole

market, including partial correlation network and VAR adjacency network. It

is proved that our methods work well in estimation both the directed and

undirected time-varying network and can help us in interpretation of market

stability and liquidity. As far as we know, this is the first time that one deals

with such high dimensional time-varying network in such long period of time

to interpret the hidden dependency in the view of the whole stock market.

However, it is just a start in this topic. In the future work, we plan to include

more time periods in our dataset and investigate more details about the tickers

of interest as well as connecting them with the significant events took place in

the real world.
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Part II

Detection Rules of Network Variations in

Intraday Stock Market
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Chapter 5

Introduction

5.1 Motivation for Financial Surveillance

As stated by the former researchers: “Finance is, as it were, the stomach

of the country, from which all the other organs take their tone.” It expressed

the importance of finance for the economy. Nowadays, financial markets play a

more and more important role in economic growth. However, financial markets

not always play a positive role in our society. Therefore, it is important for

every one of financial market participants to ensure the quality of the markets

and the fair access to it. Generally speaking, market efficiency and market

integrity principles mean a lot for the whole society. The market efficiency

states the condition where all market participants have the ability to transact

easily at low costs, while the market integrity describes the ability to trans-

act in a fair and informed market where prices reflect all publicly available

information, see Rydge (2006).

Indeed, continuous monitoring and surveillance is in strong need to en-

sure the normal operation of financial market systems. In fact, the structure
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of the financial markets has changed significantly and unfortunately, market

efficiency and market integrity principles have been suffered a lot over the past

40 years. Firstly, market structural breaks are caused by several reasons, such

as changes in the number and type of trading orders, the number and type of

financial products and so on. However, the explosive growth of financial prod-

ucts and overwhelming developed financial market have not been matched by

appropriate surveillance systems to allow regulators and market participants

to collect and uncover information on market activities. For most people,

the structural breaks in the market are difficult to forecast and figure out.

Nowadays, transactions are more easy to made and the related costs decrease

dramatically. Thus, improved connectivity and convenience to the markets

also imply increased complexity and contagious effects especially when things

go wrong. In fact, the economic crises, including the latest and still ongo-

ing global financial recession started in 2008, make it important and urgent

to formulate efficient methods for continuous financial surveillance, see Frisen

(2008).

According to Cumming (2008), monitoring and surveillance systems in

the financial market are far less understood and much less efficient than one

could expect. Both academic researchers and market participants have taken

active interest and trials to the development of this field. Polansky (2004)

stated in his paper that “market surveillance is defined to encompass the

processes and technologies that support the detection and investigation of

potential trading rule violations, whether defined in statute or marketplace

rules” and “the components of market monitoring and surveillance can be
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broken down into detection, investigation and enforcement tasks, which are

supported by different processes and technologies”.

In our research, we primarily focus on the “detection” task in financial

market surveillance. As stated in the first part of thesis, the amount of data

collected in financial markets has been growing exponentially during the last

few years, compared with other fields. The information overload makes it very

difficult to handle even intraday databases since one single stock may have

huge amount of trades in a day. Therefore, finding an appropriate way to

statistically analyze and extract useful information from this huge amount of

data is very important for financial surveillance, according to Ngai (2011). In

previous part of thesis, we present two new approaches to dynamically estimate

symmetric and asymmetric dependency network between stocks. In this part

of thesis, we consider the problem of efficient financial surveillance aimed at

prompt detection of structural breaks in multivariate normal distributed time

series in macromarket. Assuming the model evolves in a piece-wise constant

fashion, we carry out a detailed literature review and analytical comparison

about all the detection rules in the next section.

5.2 Literature Review of Detection Methods

In this section, we provide an overview of the detection methods of se-

quential change points assuming unknown pre- and post-change distributions.

We cover almost all major formulations of the stochastic structural break

model and pay particular attention to the cutting-edge advances in each.

The problem of change detection is comprised of three elements: a stochas-
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tic process under observation, a change-point at which the statistical properties

of the process suffer a change, and a decision mechanism whose target is to

detect this structural change by making use of the statistical properties of the

ongoing process. If the change is observed by the decision mechanism before

the change actually takes place, we call it a false alarm event. The main

idea of change-point detection is to implement algorithm which can be applied

to detect the change-point as soon as possible, and continue to move on for

the next change-point. There are a lot of important applications in change-

point detect problem, including quality control engineering, financial markets,

intrusion detection in computer networks and security systems and so on.

The subject of change-point detection began to emerge in 1920s for the

sake of quality control. Earliest results date back to the work of Shewhart

(1931), Wald(1947) and Page (1954). Shewhart proposed to use a control chart

to detect a change-point, in which the statistics taken in real time are plotted

on a chart and an alarm is raised when the first time the statistics fall outside

some pre-defined control limits. The statistics in control chart are calculated

with a function of only the measurements at that time. However, it may re-

sult in a loss of information in the past. Page(1954) stated that a weighted

sum (moving average chart) or a cumulative sum of the past statistics can be

applied in the control chart to detect the change more efficiently. Studied by

Shiryaev(1963), under the further assumption that the change-point time is a

random variable with a known geometric distribution, one obtains an optimal

algorithm on minimizing the expected detection delay over all stopping times.

This is the first time when change-point detection method is formulated in the
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Bayesian framework. As suggested by Roberts(1966), an algorithm called the

Shiryaev-Roberts algorithm is obtained by taking a limit on Shiryaevs Bayesian

solution as the geometric parameter of the change point goes to zero. How-

ever, it is originally impossible to obtain an comprehensive algorithm which

can work efficiently over all possible values of the change-point. Therefore,

a minimax approach is required. According to Lorden(1971), the first min-

imax theory is proposed in which detection delay is obtained by taking the

supremum over all possible change-point of a worst-case delay over all possible

observations. Pollak(1985) modified Lordens minimax theory by replacing the

double maximization by a single maximization over all possible change-point

of the detection delay conditioned on the change point. As pointe out by Lai

(1998), Lorden’s highly conservative worse-case expected deal is related to the

lower bound imposed on the average run length as a false alarm criterion.

Motivated by fault detection in control systems, Lai(1995, 2000) proposed a

new evaluation criteria which not only involve expected delay but also the

stead-state false alarm probability.

We consider in the case where the pre- and post-change of multivariate

observations are not pre-defined. In other words, the theoretical setup of the

change-point detection problem is for a series of observations in which, condi-

tioned on the change point, the observations are independent and identically

distributed with some unknown distribution before the change point, and in-

dependent and identically distributed with some other unknown distribution

after the change point. Mei(2008)’s discussions of this topic are considered

too simple for the surveillance application, according to Frisen(2008). The
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bayesian approach developed by Lai and Xing (2009), involves a class of hid-

den Markov models that have tractable filters, which can be approximated by

parallel recursive algorithms. With the application of Elliott (2005)’s general

jump Markov model, one can generalize to multiple change-point. And for re-

alizing the assumption of unknown pre- and post-change distribution, one can

replace the density function by a parametric family and a sequence of positive

i.i.d random variables. In Xing (2012), he provided a general framework for

multiple change-point in complex system and the related recursive algorithms.

Recently, it has been an widely interested research topic to detect on

structural breaks . Kehoe1(2001) evaluate changes of stock market liquidity

after the policy change date with the application of the test in Perron(1997)’s

paper on structural breaks. Also it has been realized that the structural breaks

have contribution to weakening risk management in Noel (2008). Thus, it is

more obvious of the importance and advantages of detection on structural

breaks. In Xing (2012)’s model, credit rating transition matrices process

as piecewise homogeneous Markov chains with unobserved structural breaks.

Their proposed models provide explicit formulas for the posterior distribution

of the time-varying rating transition matrices, the probability of structural

break at each time point and prediction of transition matrices in the presence

of possible structural breaks.

Motivated by the surveillance model of credit rating system in Xing(2012),

we conduct research on detecting the structural breaks in intraday stock mar-

ket using high dimensional multivariate normal distributed data in the market.

In more details, the contributions of our research can be summarized in several
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different aspects. First, in contrast to the most frequently used measurements

for change-point detection, we offer statistical techniques for sequentially de-

tecting a structural change in a multidimensional time-varying data process.

Instead of trying to identify an unknown structural break point in the past,

we aim at providing a decision rule about whether we would observe a change-

point at the current time. Second, the thesis extends the existing literature of

four types of detection rules on multivariate data, including statistical process

control chart, generalized likelihood ratio detection rule, a detection method

based on an extension of Shiryaev’s Bayesian single change point model and

a sequential detection rule for multiple change points initiated by Xing(2012)

and apply the modified methods to the high dimension of observations in mul-

tivariate normal distribution. Third, we make use of the conjugacy property

of Inverse Wishart family and study the efficiency of the proposed methods on

both simulation studies and the empirical analysis focusing primarily on the

intraday stock market.

5.3 Outline

The thesis is organized as follows. Chapter 6 presents stochastic struc-

tural break model and the associated detection rules on single change point

and multiple change points: Chapter 6.1 present the statistical process con-

trol chart detection method; Chapter 6.2 describes generalized likelihood ra-

tio (GLR) detection rule; Chapter 6.3 describes the extension of Shiryaev’s

Bayesian change-point and detection rule; Chapter 6.4 shows a sequential de-

tection full for multiple structural breaks. In Chapter 7, we carry out the
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simulation studies of four detection methods proposed: all the change point

generating processes are listed in Chapter 7.1; eight different scenarios are

described in details in Chapter 7.2; a discussion about how the theoretical

thresholds are chosen is given in Chapter 7.3; and Chapter 7.4 presents the

simulation results of four detection rules to illustrate the performance of our

proposed detection rule and carry out a detailed theoretical and analytical

comparison of our proposed approaches to detect the change-point. In Chap-

ter 8, we present the performance of different detection rules with real dataset:

we state the hyper-parameter selection procedure in Chapter 8.1.1; and thresh-

old determined method s are given in Chapter 8.1.2; Chapter 8.2 summarize

our results in comparison with the concluding remarks of Part 1.
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Chapter 6

Stochastic Structural Break Model and

Associated Detection Rules

In this section, to detect the structural breaks in multivariate normal

distributed data stream, we present four different kinds of methods including

statistical process control chart detection method, generalized likelihood ratio

detection rule, detection method based on an extension of Shiryaev’s Bayesian

single change-point model and a sequential detection rule for multiple struc-

tural breaks. We take advantage of the above methods to formulate novel

surveillance models in detecting structural breaks of time-varying multivariate

normal distributed dataset.

6.1 Statistical Process Control Chart Detection Method

The methods of statistical process control (SPC) are frequently used in

order to detect changes in model parameters of multivariate time series. The

applications of SPC can be found in different kinds of fields, such as quality
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control in production, risky indicators of macroeconomics and environmental

evaluations. The main idea of statistical process control is to detect variations

during an ongoing process from a predefined process, as soon as a change-point

took place. The most important tools of SPC are control charts, which were

introduced for the first time by Shewhart(1982), for the original purpose of

surveillance in production process. A Shewhart-type control chart works for

controlling the mean of an industrial process based on the so called Maha-

lanobis distance statistic.

A typical control chart is consisted of the control statistic and the control

limits. The observed incoming data stream is examined in the form of control

statistic sequentially. If at a certain time point, the control statistic holds

within the control limits, we conclude that the process is still in control and

the procedure will move on to the next time point. If the control statistic

exceeds the control limit, the procedure stops for the reason that the process

is thought to be out of control.

In our research, we consider a special control chart based on the expo-

nentially weighted moving average(EWMA) statistic, which is proposed for

the first time by Roberts(1959) using the exponential smoothing method.

Lowry(1992) extended the application of multivariate EMWA charts to mon-

itoring the multivariate time series, which has the form as following:

Zt = (I − R)Zt−1 +Rτt, t ≥ 1 (6.1)

where Zt is the n dimensional vetor of EWMA statistic at time t, I denotes the
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n× n dimensional identity matrix, τt is the vector of the observed parameter

at time t and R = diag[αi]1≤i≤n is a diagonal weighting matrix with elements

indicating a smoothing parameter for the ith component of the vector τt.

Schmid and Tzothchev(2004) formulated a one-factor Cos Ingersoll Rox

(CIR) model, which is a celebrated model of the general approach to mod-

eling the term-structure. They transformed the multivariate statistics into a

univariate quantity with the application of multivariate EWMA recursion. In

other words, they presented a univariate statistic and then applied the EWMA

recursion to it. The EWMA statistic is also based on the Mahalanobis distance

denoted as Tt:

Tt = (τt − µt)
TΣ−1

t (τt − µt) (6.2)

where µt refers to the mean value of τt and Σt denotes the covariance of τt.

Thus the EWMA statistic is given by

Zt = (1 − α)Zt−1 + αTt, t ≥ 1 (6.3)

In our research, we make use of the above control statistic to sequen-

tially detect a single change-point. We choose one-factor version of the CIR

model and build up suitable statistics for uncovering the structural changes

in the parameters of the model. Suppose that we have multivariate normal

distributed observations at time t, written as X t
1, ..., X

t
n ∼ N(µ,Σt). Then

based on equation 6.3, we modify the decision statistic Zt based on an EWMA
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recursion on singular value decomposition (SVD) of M(Σ) as following:

Zt = (1 − α)Zt−1 + αM(Σ)t, t ≥ 1 (6.4)

with 0 < α ≤ 1 being the smoothing parameter, where the SVD metric for a

covariance matrix P is defined as

M(Σ)t =
1

n

n∑

i=1

√
ei[(Σt − I)′(Σt − I)] (6.5)

in which I is the n × n identity matrix and ei(.) is the ith eigenvalue of the

matrix.

Combining the above models, we derive a simple change-point detection

rule, with a change-point at t, but not before tp as

T = inf {t > tp : Zt > θ} (6.6)

A signal is provided when Zt > θ, where θ > 0 stands for the control limit.

If the Zt statistic holds within the rejection area, the observed process is

considered to be out of control at time t. Alternatively, if the Zt statistic lies

in the the acceptance area, the observed process is considered to be in control

at time t. The acceptance and the rejection areas are one-sided interval decided

by a critical value θ. And average run length (ARL), which denotes the average

number of observations until a “false” signal is obtained, is the most important

criterion to determine the control limit. θ is chosen such that the ARL of the

control chart is a fixed value.
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From the above, we have formulated a control chart to detect the change-

point in multivariate time series dataset. However, there are some differences

in the purpose of control chart and that of change-point detection. Control

chart has typically been focused more on detecting changes as quickly as pos-

sible, while in change-point detection, the focus is usually on estimating the

time when a most significant change takes place in the process.

6.2 Generalized Likelihood Ratio (GLR) Detection Rule

Let the observations, X1, X2, ..., Xn, be independent random vectors with

a common density function f0 for t < v, and another common density func-

tion f1 when t ≥ v. To solve the problem of optimal sequential detection of

the change-time v, Shiryaev (1978) proposed Bayesian approach by putting a

geometric prior distribution on v and assume that there is a loss of c for each

observation taken at or after v and a loss of 1 for a false alarm before v. Us-

ing optimal stopping theory, he proved that when a change has occurred, the

Bayes rule would trigger an alarm as soon as the posterior probability exceeds

some fixed threshold. Since

P {v ≤ n|X1, ..., Xn} = Rp,n/(Rp,n + p−1) (6.7)

where p is the parameter of the geometric distribution P {v = n} = p(1−p)n−1

and

Rp,n =
n∑

k=1

n∏

i=k

{ f1(Xi)

(1 − p)f0(Xi)
}, (6.8)
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the Bayes rule declares that at time

N(γ) = inf {n ≥ 1 : Rp,n ≥ γ} (6.9)

that a change has occurred. Roberts(1966) introduced the case of p = 0 in

equation 6.9 and formulated the Shiryaev-Roberts rule, which can be expressed

as

Ñ(γ) = inf

{
n ≥ 1 :

n∑

k=1

n∏

i=k

f1(Xi)

f0(Xi)
≥ γ̃

}
(6.10)

Pollak(1985) also proved that when p → 0, it is asymptotically Bayes risk

efficient. Instead of the Bayesian approach, Lorden(1971) used the minimax

approach of minimizing the worse-case expected delay

Ē1(T ) = sup
v≥1

ess supE[(T − v + 1)+|X1, ..., Xv−1] (6.11)

over the class Fγ of all rules T satisfying the constraint E0(T ) ≥ γ on the

expected duration to false alarm. It is shown that as γ → ∞, Page’s (1954)

CUSUM rule

τ = inf

{
n ≥ 1 : max

1≤k≤n

n∑

i=k

log(
f1(Xi)

f0(Xi)
) ≥ c

}
(6.12)

with choosing c so that E0(τ) = γ, is asymptotically minimax as the following

Ē1(τ) ∼ inf
T∈Fγ

Ē1(T ) ∼ log γ

E1{log f1(Xt)
f0(Xt)

}
(6.13)
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Note that equation 6.12 essentially replaces
∑n

k=1 in equation 6.10 by max
1≤k≤n

,

which can be regarded as using maximum likelihood to detect the unknown

change-point.

Without assuming both of the pre- and post-change density functions to

be specified in advance, Lai and Xing (2009) supposed the observations belong

to a multivariate exponential family with density function

fθ(x) = exp
{
θ
′

x− ψ(θ)
}

(6.14)

They proposed to replace the likelihood ratio statistic in the CUSUM rule by

the generalized likelihood ratio (GLR) statistic, which results in GLR rule for

testing the null hypothesis of no change-point, versus the alternative hypoth-

esis of a single change-point prior to n but not before n0. Thus, the GLR

statistic based on X1, ..., Xn is

max
n0≤k≤n

{
sup
θ

k∑

i=1

log fθ(Xi) + sup
θ̃

n∑

i=k+1

log fθ̃(Xi) − sup
λ

n∑

i=1

log fλ(Xi)

}

= max
n0≤k≤n

{
kL(X1,k) + (n− k)L(Xk+1,n) − nL(X1,n)

}
(6.15)

where

Y m,n =

n∑

i=m

Yi/(n−m+ 1), (6.16)

L(µ) = sup
θ

{
θTµ− ψ(θ)

}
=
{
θTµµ− ψ(θµ)

}
(6.17)

and θµ = (▽ψ)−1(µ), ▽ denotes the gradient vector of partial derivatives. In
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equation 6.15, sup
λ

is related to maximizing likelihood under the null hypoth-

esis, and sup
θ

and sup
θ̃

are obtained by maximizing the likelihood under the

hypothesis of a single change-point occurring at k + 1. For a simple represen-

tation, let

g(α, x, y) = αL(x) + (1 − α)L(y) − L(αx + (1 − α)y) (6.18)

Therefore, we can rewrite the CUSUM rule in equation 6.12 by taking the

GLR statistics as in equation 6.15 instead of the likelihood ratio statistics,

which results in the GLR rule for detecting a change in θ of the multivariate

exponential family when the pre- and post-parameters are unknown:

N̂ = inf

{
n > n0 : max

n0≤k<n
ng(k/n,X1,k, Xk+1,n) ≥ c

}
(6.19)

Let us now suppose that we have an independently, identically distributed

data set D = X1, ..., Xn sampled from a multivariate normal distribution

N(µ,Σ). We want to make a quick detection of the change-point in this data

stream. According to the above GLR detection rule, we form the log likelihood

function by taking the logarithm of the product of n Gaussians, which is:

l(D|µ,Σ) = −n
2

log |Σ| − 1

2

n∑

i=1

(xi − µ)TΣ−1(xi − µ) + const (6.20)

Taking the derivative with respect to µ and setting it to zero, we have the
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maximum likelihood estimate of the mean:

µ̂ =
1

n

n∑

i=1

Xi (6.21)

Similarly, we can also obtain the maximum likelihood estimate of the covari-

ance matrix:

Σ̂ =
1

n

n∑

i=1

(Xi − µ̂)T (Xi − µ̂) (6.22)

Thus, we have the maximum log likelihood function based on D = X1, ..., Xn

as

l1,n = −n
2

log |Σ̂| − 1

2
Tr(Σ̂−1 1

n

n∑

i=1

(Xi − µ̂)T (Xi − µ̂))

= −n
2

log | 1
n

n∑

i=1

(Xi −
1

n

n∑

i=1

Xi)
T (Xi −

1

n

n∑

i=1

Xi)| −
1

2
Tr(nIn)

= −n
2

log | 1
n

n∑

i=1

(Xi −
1

n

n∑

i=1

Xi)
T (Xi −

1

n

n∑

i=1

Xi)| −
1

2
n2 (6.23)

Here |.| denotes the determinant of the matrix and Tr(.) refers to the trace of

the matrix. In general case, the GLR statistic function L(X̄i,j) can be written

as

L(X̄i,j) = −j − i+ 1

2
log | 1

j − i + 1

j∑

r=i

(Xr − X̄i,j)
T (Xr − X̄i,j)| −

1

2
(j− i+ 1)2

(6.24)

Rewrite the GLR statistics in equation 6.19, we can get the GLR detection

method especially in the case of multivariate normal distribution.

We have presented the GLR approach in the case of multivariate normal
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distributed time series. However, as pointed out by Lai (2008), it is much more

natural to adopt a full Bayesian change-point model to detect the unknown

change-point time with the unknown pre- and post- change parameters. In

the next section, we will provide a full Bayesian framework to estimate the

change-point time without specified parameters in advance.

6.3 Detection Method Based on an Extension of Shiryaev’s

Bayesian Single Change-Point Model

Lai and Xing (2010) used a mixing distribution which can be regarded as a

Bayesian approach to handle the unspecified pre- and post-change parameters.

The generalization form of the extension of Shiryaev’s Bayesian change-point

model and detection rule is proposed as following: for the multiparameter

exponential family as defined in equation 6.14, let π be a prior density function

on Θ :=
{
θ :
∫
eθ

′

Xdω(X) <∞
}

given by

π(θ; a0, µ0) = c(a0, µ0)exp
{
a0µ

′

0
θ − a0ψ(θ)

}
, θ ∈ Θ (6.25)

where

1/c(a0, µ0) =

∫

Θ

exp
{
a0µ

′

0
θ − a0ψ(θ)

}
dθ

µ0 ∈ (▽ψ)(Θ) (6.26)
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According to Diaconis and Ylvisaker (1979), the posterior density of θ given

the observations X1, ..., Xn drawn from fθ is

π(θ; a0 + n, (a0µ0 +

n∑

i=1

Xi)/(a0 + n)) (6.27)

Moreover,

∫

Θ

fθ(X)π(θ; a, µ)dθ =
c(a, µ)

c(a+ 1, (aµ+ X)/(a+ 1))
(6.28)

Suppose the change-time v and the pre- and post-change values of parameters

are unknown. And for t < v, the parameter θ is the value of θ0 and θ1 for t ≥ v.

Following Shiryaev(1978), Lai and Xing(2010) used the Bayesian approach

that assumes v to be geometric with parameter p but constrained to be larger

than n0, and θ0, θ1 are independent and identically distributed of equation

6.25, and are also independent of v. Since πn = P{v ≤ n|X1, ...Xn} is no

longer Markovian in the setting of unknown pre- and post-change parameters,

Zacks(1991) suggested using dynamic programming to find the stopping rule.

Thus, Lai and Xing(2010) introduced a modification of Shiryaev’s rule. Let

Ft denote the σ-field generated by X1, ..., Xt. Let

π0,0 = c(a0, µ0) (6.29)

πi,j = c(a0 + j − i+ 1, a0µ0 +

j∑

t=i

Xt)/(a0 + j − i+ 1) (6.30)
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For n0 < i < n,

P {v = i|Fn} ∝ p(1 − p)i−1
π2
0,0

π1,i−1πi,n
, (6.31)

P {v > n|Fn} ∝ p(1 − p)n
π0,0
π1,n

(6.32)

It is known that the sum of all the probabilities in equation 6.31 is 1. So we

have

P (v ≤ n|v ≥ n∗ − kp,Fn) =

n∑

i=n−kp

P (v = i|Fn)∑n
i=n−kp

P (v = i|Fn) + P (v > n|Fn)

(6.33)

In this way, we can express P {n0 < v ≤ n|Fn} =
∑n

i=n0+1 P {v = i|Fn} in

terms of πi,j . Therefore, the Shiryaev’s stopping rule for unknown pre- and

post-change parameters can be modified in the form of equation 6.9 with re-

placement of Rp,n =
∑n

i=n0+1
π0,0π1,n

(1−p)n−iπ1,iπi,n
. With suitable choice of kp, ηp

and np, the modified stopping rule is proved to be asymptotically optimal as

p→ 0, which is

N = inf {n > np : P (v ≤ n|v ≥ n− kp,Fn) ≥ ηp} (6.34)

Combining with equation 6.33 and equation 6.34, we obtain the modified

Shiryaev’s rule for detecting a change in θ of the multivariate exponential

family when the pre- and post-parameters are unknown:

N = inf



n > np :

n∑

i=n−kp

π0,0π1,n
(1 − p)n−i+1π1,iπi,n

≥ γp



 (6.35)
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Specifically in our research, we introduce Inverse Wishart distribution,

which is frequently used as the prior on the covariance matrix parameter Σ of

a multivariate normal distribution. Note that the inverse gamma distribution

is the conjugate prior for the variance parameter σ2 of a univariate normal

distribution, while the Inverse Wishart distribution extends conjugacy to the

multivariate normal distribution.

Consider X1, ...Xn be i.i.d observations from a k−variate normal distribu-

tion N(µ,Σ). If we put an Inverse Wishart prior distribution on the parameter

Σ such that

Σ ∼ IWk(Ψ, n0) (6.36)

After the new observations have been collected, which is represented by Xi, ..., Xj.

And ni,j denotes the number of observations, which is j− i+ 1. The posterior

distribution of Σ will also be Inverse Wishart distributed as

Σ|Di,j ∼ IWk(Ψ + Si,j, n0 + ni,j) (6.37)

where Si,j is the sample sums of squares matrix Si,j :=
∑j

r=i(Xr − X̄)((Xr −

X̄)T . And Di,j is a simpler representation of the incoming observationsXi, ..., Xj.

Given Di,j, the posterior distribution of Σ is written as Σi,j . In fact, n0 essen-

tially acts as the number of observations we had observed prior to collecting

the data, or, alternatively, the number of observations on which our prior sums

of squares matrix Ψ is based.

Now it can be characterized as following: letRl = max {tm−1|Im = 1, m ≤ l},

which represents the most recent structural break up to time tl−1. From the
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above, given Rl = tm−1 and Dtm−1,tl, we can get the conditional distribu-

tion of Σtm−1,tl, which is IW (Ψ + Stm−1,tl, n0 + ntm−1,tl). Let pm,l = P (Rl =

tm−1|Dtm−1,tl). Then the posterior distribution of Σtl−1,tl given D0,tl can be

expressed as a mixture of Inverse Wishart distributions,

Σtl−1,tl|D0,tl ∼
l∑

i=1

pi,lIW (Ψ0 + Sti−1,tl , n0 + nti−1,tl) (6.38)

where the mixture weight is recursively calculated by pm,l = p∗m,l/
∑l

i=1 p
∗
i,l, in

which

p∗m,l =





p
fl,l
f0,0

if m = l

(1 − p)pm,l−1
fm,l

fm,l−1
if m ≤ l − 1

(6.39)

the terms fm,l and f0,0 above are expressed as following:

fm,l =
2(n0+ntm−1,tl

)p/2Γk((n0 + ntm−1,tl)/2)

|Ψ + Stm−1,tl |(n0+ntm−1,tl
)/2

,

f0,0 =
2n0p/2Γk(n0/2)

|Ψ|n0/2
(6.40)

The proof of the above posterior distributions can be briefly expressed as

following: Let f(.|D(0,tl]) denote the density function of Σtl−1,tl given D(0,tl].

We have

f(Σtl−1,tl |D(0,tl])) ∼ f(Σtl−1,tl,D(tl−1,tl]|D(0,tl−1])

= pf(Σtl−1,tl,D(tl−1,tl]|D(0,tl−1], Il = 1) +

(1 − p)f(Σtl−1,tl ,D(tl−1,tl]|D(0,tl−1], Il = 0) (6.41)
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in which

pf(Σtl−1,tl ,D(tl−1,tl]|D(0,tl−1], Il = 1)

= p∗l,lf(Σtl−1,tl|D(0,tl], Il = 1)

= p∗l,lIW (Ψ0 + Stl−1,tl , n0 + ntl−1,tl) (6.42)

where

p∗l,l = pf(D(tl−1,tl]|D(0,tl−1], Il = 1)

= p

∫
f(D(tl−1,tl]|Σtl−1,tl)g(Σtl−1,tl)dΣtl−1,tl

= pfl,l/f0,0 (6.43)

and

(1 − p)f(Σtl−1,tl ,D(tl−1,tl]|D(0,tl−1], Il = 0)

= (1 − p)

l−1∑

m=1

P (Rl−1 = tm−1|D(0,tl−1], Il = 0) ×

f(Σtl−1,tl,D(tl−1,tl]|Rl−1 = tm−1,D(0,tl−1], Il = 0)

=
l−1∑

m=1

p∗m,lf(Σtl−1,tl |Rl−1 = tm−1,D(0,tl], Il = 0)

=

l−1∑

m=1

p∗m,lIW (Ψ0 + Stm−1,tl , n0 + ntm−1,tl) (6.44)
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where

p∗m,l = (1 − p)pm,l−1f(D(tl−1,tl]|Rl−1 = tm−1,D(0,tl−1], Il = 0)

= (1 − p)pm,l−1

f(D(tm−1,tl]), Rl = tm−1

f(D(tm−1,tl−1]), Rl−1 = tm−1

= (1 − p)pm,l−1fm,l/fm,l−1 (6.45)

Combining the above model with the rule in equation 6.35, let Ft dente the

σ-field generated by I1, I2, ..., It. Let m be the time of change point, the

associated detection rule for testing the null hypothesis of no change-point,

versus the alternative hypothesis of a single change-point to n but not before

n0 is

N = inf {n > np : P (v ≤ n|v ≥ n− kp,Fn) ≥ γp} (6.46)

and

P {v = r|Fn} ∝ p(1 − p)r−1f1,r−1fr,l/f
2
0,0, (6.47)

P {v > n|Fn} ∝ p(1 − p)nf1,l/f0,0 (6.48)

we can use equation 6.47 to rewrite equation 6.46 in the form

N = inf



n > np :

n∑

i=n−kp

f1,i−1fi,n
(1 − p)n−i+1f0,0f1,n

≥ γp



 (6.49)
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6.4 A Sequential Detection Rule for Multiple Struc-

tural Breaks

In the above section, we tried to use a mixing Inverse Wishart distribution

to represent the posterior distribution of the covariance matrix parameter of

a multivariate normal distributed time series when the pre- and post- change

of it are both unknown. However, as pointed out by Zacks(2006), it might not

be convenient if one has to keep all the observations when doing sequential

surveillance. So in this section, we introduce a sequential detection rule for

multiple structural breaks which does not have to keep all past observations

and the posterior probability can be calculated by explicit recursive formulas.

Consider a multivariate normal distribution model (X1, ..., Xn) ∼ N(0,Σt), in

which Σ ∼ IW (Ψ, n0). Suppose the parameter vector Σt may come across

with changes for t > 1, the indicator variables

It := 1θt 6=θt−1
(6.50)

are independent Bernoulli random variables with P (It = 1) = p. According to

Yao (1984), when a parameter changes at time t, in other words, It = 1, the

changed parameter θt is assumed to be derived from π as in equation 6.29. Let

Di,j denote the observations Xi, ..., Xj, and Kt refer to the most recent change

time up to t, which is, Kt = max{s ≤ t : Is = 1}, and f(.|.) as the conditional
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densities, such that

f(Σt|D1,t) =

t∑

i=1

pi,tf(Σt|Di,t, Kt = i) (6.51)

where pi,t = P (Kt = i|Dt). In the last section, we have showed that the Inverse

Wishart distribution is a popular conjugate family for estimation of covariance

matrices, so that

f(Σt|Di,t, Kt = i) = IW (Ψ + Si,t, n0 + ni,t) (6.52)

where Si,j is the sample sum of square matrix for j ≥ i. Combining equation

6.51 with equation 6.52, we obtain that

f(Σt|Dt) =

t∑

i=1

pi,tIW (Ψ + Si,t, n0 + ni,t) (6.53)

As we know,
∑t

i=1 pi,t = 1, so the recursive formula can be characterized as

pi,t ∝ p∗i,t =





pf(Xt|It = 1) if i = t

(1 − p)pi,t−1f(Xt|Di,t−1, Kt) if i ≤ t− 1

(6.54)

when combining f(Xt|Di,t−1, Kt = i) =
∫
fθt(X)f(θt|Di,t−1, Kt = i)dθt with

equation 6.53 and equation 6.54 yields

p∗i,t =





p
IW0,0

IWi,t
if i = t

(1 − p)pi,t−1
IWi,t−1

IWi,t
if i ≤ t− 1

(6.55)
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From the above section, we have

IWi,j =
|Ψ + Sti−1,tj |(n0+nti−1,tj

)/2

2(n0+nti−1,tj
)p/2Γk((n0 + nti−1,tj )/2)

, (6.56)

IW0,0 =
|Ψ|n0/2

2n0p/2Γk(n0/2)
(6.57)

Note that
∑t

t−m pi,t is the posterior mean number of change-point in the time

interval between t−m and t given D1,t.

According to Lai and Xing (2008), for small p, we can use bounded

complexity mixture(BCMIX) approximation for the recursive formulas to get

Σt|D1,t. We suppose that there are M(p) components. The most recent m(p)

(m(p) < M(p)) weights ps,l( with l − m(p) < s ≤ l) are kept. Then the

posterior density can be obtained as following.

Let κt−1(p) be the set of indices i for which pi,t−1 is kept at stage t − 1,

then we have {t−1, ..., t−m(p)} ⊂ κt−1(p). At stage t, define p∗i,t as in equation

6.55 for i ∈ {t} ∪ κt−1(p) and it /∈ {t, ..., t−m(p) + 1} such that

p∗it,t = min
{
p∗j,l : j ∈ κt−1(p), j ≤ t−m(p)

}
(6.58)

here choosing it to be the minimizer farthest form t if there are two or more

minimizers. Define κt(p) = {t} ∪ (κt−1(p) − {it}) and let

pi,t = (p∗i,t/
∑

p∗j,l
j∈κt(p)

), l ∈ κt(p) (6.59)

Recall that Lai, Liu and Xing (2009) has proposed a modified Shiryaev’s
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rule to detect a change-point occurred in the time interval between n − k(p)

and n, declaring at time n if

n∑

i=n−k(p)

pin ≥ ηp (6.60)

With the combination of equation 6.60 and equation 6.59, and suitable choice

of k(p), ηp and np, we obtain the modified Shiryaev’s rule for sequentially

detecting multiple change points in the time interval between n− k(p) and n

when the pre- and post-parameters are unknown:

N = inf



n > np :

n∑

i=n−k(p)

pi,n ≥ ηp



 (6.61)
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Chapter 7

Simulation Study and Result

In this section, we present the simulation studies of four detection meth-

ods proposed in the last section. All the change-point generating process is

listed in Chapter 7.1. Then eight different scenarios are considered in Chapter

7.2. Furthermore, we discuss about how the theoretical thresholds are chosen

in Chapter 7.3. In Chapter 7.4, we present the simulation results of four de-

tection rules with a multivariate normal distributed time series with 10 stock

returns, and a more computational complicated model with 20 stocks, whose

covariance matrix is Inverse Wishart distributed.

7.1 Data Generation

For the p−stock (p = 10, 20) multivariate normal distribution model, we

assume that there are p multivariate distributed time series of stock returns

over the sample time period (0, 300). We consider an evenly spaced partition

in the time period of (0, 300), 0 = t0 < t1 < ... < tn = 300 and let each

time period be 1. So there are totally 300 time periods in our model. In each
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scenario, 1000 simulations of the returns of these p stocks are generated to

detect the change-point time.

The parameters of structural breaks in this model is generated as follow-

ing:

Step 1. Pre-specify the change-point time. In our study, to avoid the

influence from the previous found change-point in the sequential detection

methods, we assume that there are more than 80 time periods between adja-

cent structural breaks. In our study, there are less than 4 as the number of

structural breaks for each simulation. The details of the change-point time

will be given in the scenarios statement.

Step 2. Generate samples of Inverse Wishart distributed matrix to obtain

different covariance matrix parameters. Suppose that we have an initialized In-

verse Wishart distribution as IWp(Ψ, n0). According to Sawyer(2007), we cre-

ate samples from Inverse Wishart distribution, which denote as Σ(1),Σ(2), ...,Σ(n).

Afterwards, we take Σ(k)(1 ≤ k ≤ n) as the covariance matrix of multivariate

normal distribution, which is

Xi, ..., Xj ∼ N(0,Σ(k)) (7.1)

Then using the conjugacy of the Inverse Wishart distribution, and noting the

posterior distribution of the covariance matrix parameter Σ|Xi, ..., Xj as Σi,j ,

we have

Σi,j ∼ IWp(Ψ + Si,j, n0 + ni,j) (7.2)

Where Si,j is the sample sums of squares matrix Si,j :=
∑j

r=i(Xr − X̄)((Xr −
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X̄)T . And ni,j is the number of incoming observations Xi, ..., Xj.

7.2 Scenarios Statement

In this section, we consider four scenarios which are: no change-point

model, single change-point model, two change points model, and multiple

change points model. The detailed description of the scenarios generating

process will be given. For each scenario, we run 1000 simulations to evaluate

the performance of all the four detection rules.

Scenario 1. No change-point model. The data are generated from a

constant parameter model. In other words, we use a constant Σ(1) as the

covariance matrix of multivariate normal distribution to generate all the ob-

servation vectors (X0, ..., X300) ∼ N(0,Σ(1)). This model will also be regarded

as null hypothesis in critical value determined section.

Scenario 2. Single change-point model. The data are generated from a

single change-point model with a change-point at t = 100. The covariance

matrix parameter to generate the multivariate normal distributed vector are:

Σ(1) for 0 ≤ t < 100, and Σ(2) for 100 ≤ t ≤ 300. Thus, we have X0, ..., X99 ∼

N(0,Σ(1)) and X100, ..., X300 ∼ N(0,Σ(2)).

Scenario 3. Two change points model. The data are generated from a

two change-point model with the first change-point at t = 100, and the second

change-point at t = 200. The covariance matrix parameter to generate the

multivariate normal distributed vector are: Σ(1) for 0 ≤ t < 100, Σ(2) for

100 ≤ t < 200 and Σ(3) for 200 ≤ t ≤ 300. Thus, we have X0, ..., X99 ∼

N(0,Σ(1)), X100, ..., X199 ∼ N(0,Σ(2)) and X200, ..., X300 ∼ N(0,Σ(3)).
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Scenario 4. Multiple change-point model. Different from the above mod-

els, we don’t specify the change-point times in advance in this model. Firstly,

we have to simulate a Poisson process with a constant rate η during the time

period (0, 300), such that {τm − τm−1} ∼ exp(η), in which τi is the time

when a structural break takes place. Then, we follow the similar data gen-

erating process as the above. Since we have stated that we take at most 3

change-point in our model, so the covariance matrix parameter to generate

the multivariate normal distributed vector are: Σ(1) for 0 ≤ t < τ1, Σ(2) for

τ1 ≤ t < τ2, Σ(3) for τ2 ≤ t ≤ τ3 and Σ(4) for τ3 ≤ t ≤ τ4. Thus, we have

X0, ..., Xτ1 ∼ N(0,Σ(1)), Xτ1 , ..., Xτ2 ∼ N(0,Σ(2)), Xτ2 , ..., Xτ3 ∼ N(0,Σ(3))

and Xτ3 , ..., Xτ4 ∼ N(0,Σ(4)).

Scenario 5 ∼ Scenario 8. To testify the performance of our detection

rules in higher dimension, we consider a set of more computational complicated

data stream with 20 stocks. All the data generating process and simulation

setup will be the same as Scenario 1 ∼ Scenario 4.

The prior Inverse Wishart distributed matrix parameter Ψ is created from

the covariance matrix of 10 stock returns in April 2013, noted as Ψ10, which

is listed in Table 7.1.

The prior Inverse Wishart distributed matrix parameter Ψ is created from

the covariance matrix of 20 stock returns in April 2013, noted as Ψ20, which

is listed in Table 7.2.
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Table 7.1: Covariance Matrix of 10 Stock Returns in April 2013
1.29 -3.e-2 1.23e-1 1.85e-2 -2.69e-2 7.e-1 3.76e-1 4.24e-2 1.33e-1 2.52e-2

-3.e-2 3.14e-2 -6.44e-3 2.07e-2 4.26e-2 4.98e-2 3.31e-3 3.55e-2 -1.57e-2 3.18e-2

1.23e-1 -6.44e-3 1.45e-1 2.23e-3 1.04e-2 1.07e-1 -5.13e-2 5.43e-3 -1.22e-3 4.05e-2

1.85e-2 2.07e-2 2.23e-3 5.83e-2 9.49e-2 1.14e-1 3.94e-2 5.69e-2 -4.71e-3 8.13e-3

-2.69e-2 4.26e-2 1.04e-2 9.49e-2 3.01e-1 2.17e-1 3.66e-2 9.65e-2 -4.19e-2 7.54e-3

7.e-1 4.98e-2 1.07e-1 1.14e-1 2.17e-1 1.21 1.61e-1 1.28e-1 3.32e-2 7.25e-2

3.76e-1 3.31e-3 -5.13e-2 3.94e-2 3.66e-2 1.61e-1 3.02e-1 3.98e-2 5.e-2 -2.76e-2

4.24e-2 3.55e-2 5.43e-3 5.69e-2 9.65e-2 1.28e-1 3.98e-2 9.57e-2 -9.68e-3 4.05e-2

1.33e-1 -1.57e-2 -1.22e-3 -4.71e-3 -4.19e-2 3.32e-2 5.e-2 -9.68e-3 5.93e-2 -5.91e-3

2.52e-2 3.18e-2 4.05e-2 8.13e-3 7.54e-3 7.25e-2 -2.76e-2 4.05e-2 -5.91e-3 1.16e-1

Table 7.2: Covariance Matrix of 20 Stock Returns in April 2013
1.3 -3.5e-2 1.2e-1 1.9e-2 -2.6e-2 7.9e-1 3.7e-1 4.2e-2 1.3e-1 2.5e-2 -2e-2 1.3e-1 3.6e-2 2e-2 8e-2 5.9e-2 1.1e-1 2.5e-1 7.2e-2 3.6e-3

-3.5e-2 3.1e-2 -6.4e-3 2.7e-2 4.2e-2 4.9e-2 3.3e-3 3.5e-2 -1.5e-2 3.1e-2 4.8e-3 -1.4e-2 1.1e-2 1.5e-2 5.4e-3 1.8e-3 3e-3 1.2e-2 9.1e-3 2.4e-2

1.2e-1 -6.4e-3 1.5e-1 2.2e-3 1e-2 1e-1 -5.1e-2 5.4e-3 -1.2e-3 4e-2 9.1e-3 6.4e-2 -2.4e-2 4.1e-2 3.1e-2 2.8e-3 2.7e-2 1e-2 2.7e-2 2e-2

1.9e-2 2.1e-2 2.2e-3 5.8e-2 9.4e-2 1.1e-1 3.9e-2 5.6e-2 -4.7e-3 8.1e-3 1.7e-2 3.4e-3 1.6e-2 4.4e-3 2.7e-2 2e-2 2.2e-2 2.9e-2 1.6e-2 3e-2

-2.7e-2 4.3e-2 1e-2 9.4e-2 3e-1 2.1e-1 3.6e-2 9.6e-2 -4.1e-2 7.5e-3 3.9e-2 -3.7e-2 3e-2 7.9e-3 4.5e-2 1.5e-2 3e-2 -1.6e-3 -3e-3 5.5e-2

7.9e-1 5e-2 1.1e-1 1.1e-1 2.1e-1 1.2 1.6e-1 1.2e-1 3.3e-2 7.2e-2 4.9e-2 1.5e-2 -3e-2 2e-2 9.8e-2 4.9e-2 1.3e-1 7.9e-2 9.5e-2 1.1e-1

3.7e-1 3.3e-3 -5.1e-2 3.9e-2 3.6e-2 1.6e-1 3e-1 3.9e-2 5e-2 -2.7e-2 -1.2e-2 2.5e-2 6e-2 -3.6e-2 1.9e-2 3.6e-2 2.1e-2 1.1e-1 1.2e-2 -4e-2

4.2e-2 3.6e-2 5.4e-3 5.6e-2 9.6e-2 1.2e-1 3.9e-2 9.5e-2 -9.6e-3 4e-2 1.7e-2 1e-2 3.7e-2 4.5e-2 2.7e-2 2.1e-2 2.4e-2 6.3e-2 3.3e-2 4.5e-2

1.3e-1 -1.6e-2 -1.2e-3 -4.7e-3 -4.19-2 3.3e-2 5e-2 -9.6e-3 5.9e-2 -5.9e-3 4.8e-3 3.2e-2 8.5e-4 -1.1e-2 2.1e-2 2.7e-2 1.6e-2 4.7e-2 2.3e-2 -1.1e-2

2.5e-2 3.2e-2 4.1e-2 8.1e-3 7.5e-3 7.2e-2 -2.7e-2 4e-2 -5.9e-3 1.1e-1 3.9e-3 -1.2e-2 1.1e-3 7.1e-2 8.3e-3 -1.9e-3 1.2e-2 3.3e-2 3e-2 3.9e-2

-2e-2 4.8e-3 9.1e-3 1.7e-2 3.9e-2 4.9e-2 -1.2e-2 1.7e-2 4.8e-3 3.9e-3 2.5e-2 1.5e-2 -2.7e-3 5.5e-3 2.1e-2 1.1e-2 1.1e-2 -2.9e-3 1.2e-2 1e-2

1.4e-1 -1.4e-2 6.4e-2 3.4e-3 -3.7e-2 1.5e-2 2.5e-2 1e-2 3.2e-2 -1.2e-2 1.5e-2 1.2e-1 -3.6e-3 2e-2 2.5e-2 2.2e-2 1.6e-2 6.7e-2 4.1e-2 -5.7e-3

3.7e-2 1.1e-2 -2.4e-2 1.6e-2 3e-2 -3e-2 6e-2 3.7e-2 8.5e-4 1.1e-3 -2.7e-3 -3.6e-3 6.3e-2 1.6e-2 1.4e-2 1e-2 5.9e-3 2.2e-2 -2.7e-3 3.7e-3

2.1e-2 1.6e-2 4.2e-2 4.4e-3 7.9e-3 2e-2 -3.6e-2 4.5e-2 -1.1e-2 7.1e-2 5.5e-3 2e-2 1.6e-2 8.1e-2 5.2e-3 8.3e-3 1.6e-2 5.1e-2 2.5e-2 2.8e-2

8.1e-2 5.5e-3 3.1e-2 2.7e-2 4.5e-2 9.8e-2 1.9e-2 2.7e-2 2.1e-2 8.3e-3 2.1e-2 2.5e-2 1.4e-2 5.2e-3 6.9e-2 2.4e-2 2.9e-2 4.8e-2 1.8e-2 1.6e-2

6e-2 1.8e-3 2.9e-3 2e-2 1.5e-2 4.9e-2 3.6e-2 2.1e-2 2.7e-2 -1.9e-3 1.1e-2 2.2e-2 1e-2 8.3e-3 2.4e-2 5e-2 2.8e-2 6.3e-2 2.2e-2 8.1e-3

1.1e-1 3.1e-3 2.8e-2 2.2e-2 3e-2 1.3e-1 2.1e-2 2.4e-2 1.6e-2 1.2e-2 1.1e-2 1.6e-2 5.9e-3 1.6e-2 2.9e-2 2.8e-2 3.6e-2 4e-2 2e-2 2e-2

2.6e-1 1.3e-2 1.1e-2 2.9e-2 -1.6e-3 7.9e-2 1.1e-1 6.3e-2 4.7e-2 3.3e-2 -2.9e-3 6.7e-2 2.2e-2 5.1e-2 4.8e-2 6.3e-2 4e-2 3.1e-1 5.1e-2 -8.4e-3

7.2e-2 9.2e-3 2.8e-2 1.6e-2 -3e-3 9.5e-2 1.2e-2 3.3e-2 2.3e-2 3e-2 1.2e-2 4.1e-2 -2.7e-3 2.5e-2 1.8e-2 2.2e-2 2e-2 5.1e-2 4.8e-2 2.1e-2

3.7e-3 2.4e-2 2.1e-2 3e-2 5.5e-2 1.1e-1 -4e-2 4.5e-2 -1.1e-2 3.9e-2 1e-2 -5.7e-3 3.7e-3 2.8e-2 1.6e-2 8.1e-3 2e-2 -8.4e-3 2.1e-2 7.5e-2

103



7.3 Critical Value Determined Procedure

In our study, the critical value, which is akin to the threshold θ in equa-

tion 6.6, c in equation 6.19, γp in equation 6.49 and ηp in equation 6.61 are

determined by using Monte Carlo simulation. For each detection rule, we cal-

culate the associated statistics under null hypothesis of no change-point based

on the data of Scenario 1 and Scenario 5 for 1000 times. Then we take the

95%, 97% and 98% quantile of the 1000 statistics as the thresholds in four

detection rules. The details of the critical value determined procedure is listed

seperately as following.

7.3.1 Statistical Process Control Chart Detection Method

As stated in the above section, Scenario 1 and Scenario 5 are generated

under the hypothesis of no change-point during the time period (0, 300). Since

we do the simulation for 1000 times, the constant covariance matrices are

separately Σ1,Σ2, ...,Σ1000, using which we can calculate the statistics under

the null hypothesis denoted as Z
(1)
300, Z

(2)
300, ..., Z

(1000)
300 . From equation 6.6, we

have the recursive formula as following:

Z
(i)
t = (1 − α)Z

(i)
t−1 + α

1

p

p∑

i=1

√
ei(Σi − I)′(Σi − I)), 1 ≤ t ≤ 300 (7.3)

in which I is the p × p identity matrix and ei(.) is the ith eigenvalue of the

matrix. And the covariance matrix stays constant over the time period. The

smoothing parameter α is related to the quantile we choose in advance. Thus,

we have 1000 statistics under no change-point hypothesis. In the following
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study, we take 95%, 97% and 98% quantile of the distribution of Z
(i)
300 as the

thresholds for statistical process control chart detection method, which simply

noted as Rule 1.

7.3.2 Generalized Likelihood Ratio (GLR) Detection Rule

Similarly, for 1000 simulations, the constant covariance matrices are sep-

arately Σ1,Σ2, ...,Σ1000. So the observations vector generated with constant

Σi are written as

X
(i)
1 , ..., X

(i)
300 ∼ N(0,Σi) (7.4)

We denote the statistics under the null hypothesis as G(1), G(2), ..., G(1000).

From equation 6.15, we have

G(i) = max
n0≤k≤T

{
kL(X1,k) + (T − k)L(Xk+1,T ) − nL(X1,T )

}
, T = 300 (7.5)

where L(X i,j) is the maximum log likelihood as stated in equation 6.24. Thus,

we have 1000 statistics under no change-point hypothesis. In the following

study, we take 95%, 97% and 98% quantile of the distribution of G(i) as the

thresholds for generalized likelihood ratio (GLR) detection rule, which simply

noted as Rule 2.
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7.3.3 Detection Method Based on an Extension of Shiryaev’s

Bayesian Single Change-Point Model

Similarly, using the constant covariance matrices Σ1,Σ2, ...,Σ1000, we gen-

erate X
(i)
1 , ..., X

(i)
300 for 1000 simulations. We denote the statistics under the

null hypothesis as V (1), V (2), ..., V (1000). From equation 6.49, we have

V (i) =

T∑

r=T−kp

f1,r−1fr,T
(1 − p)T−r+1f0,0f1,T

, T = 300 (7.6)

where fi,j is referred to equation 6.40. Thus, we have 1000 statistics under

no change-point hypothesis. In the following study, we take 95%, 97% and

98% quantile of the distribution of V (i) as the thresholds for detection method

based on an extension of Shiryaev’s Bayesian single change-point model, which

simply noted as Rule 3.

7.3.4 A Sequential Detection Rule for Multiple Struc-

tural Breaks

With the constant covariance matrices Σ1,Σ2, ...,Σ1000, we generate

X
(i)
1 , ..., X

(i)
300 for 1000 simulations. We denote the statistics under the null

hypothesis as

W (1),W (2), ...,W (1000). From equation 6.61, we have

W (i) =

T∑

i=T−k(p)

pi,T , T = 300 (7.7)
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where pi,j is given in equation 6.60 and equation 6.59. Thus, we have 1000

statistics under no change-point hypothesis. In the following study, we take

95%, 97% and 98% quantile of the distribution of W (i) as the thresholds for

detection method based on a sequential detection rule for multiple structural

breaks, which simply noted as Rule 4.

7.4 Simulation Results

In the previous sections, we generate 4 scenarios respectively for 10− and

20−variate normal distributed stock returns for 1000 simulations over time

period of (0, 300). In this part, we present the simulation results to compare

the performance of the four detection rules in different dimensions.

7.4.1 Statistics Plot of Scenario 2

Firstly, we take a general look at the path of the statistics in four detection

rules changing over time period with Scenario 2, which is the single change-

point model.

From Figure 7.1, we can see that all the detection methods work well on

detecting the change-point at t = 100. The statistics in Rule 1 has a delay

around 40, which is much bigger than the ones in Rule 3 and Rule 4, both of

which are less than 20. The statistics in Rule 2 has the best performance since

the delay of detection point is the least one. However, these results are just

from one simulation. We will show the results of 1000 simulations to compare

the stable and average performance in next part.
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(a) (b)

(c) (d)

Figure 7.1: When taking the 95% quantile, the value of statistics of different meth-

ods change over time in (a)Rule 1; (b)Rule 2; (c)Rule 3; (d)Rule 4. (From left to

right, top to down)
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7.4.2 Detailed Comparison of Detection Rules

Table 7.3 compares the performance of the four methods for the single

change-point model with change-point time at t = 100. We choose np = 10

and kp = 20 in the detection method of the extension of Shiryaev’s Bayesian

single change-point model and k(p) = 20 in the sequential detection rule for

multiple structural breaks. To get rid of the influence of the previous change-

point, once a change-point time is detected, the data before this time point

is not included for next change-point detection. For each detection method,

we list the expected detection delay based on 1000 simulations, as well as the

related standard errors are shown in the parentheses.

Table 7.3: Expected Detection Delays for Scenario 2 (Single Change-point
Model)

Quantile Detection Rule Change-Point time t=100 Detected Number
95% Rule 1 35.25(24.75) 687

Rule 2 48.03(20.79) 916
Rule 3 5.497(6.597) 976
Rule 4 12.92(19.53) 913

97% Rule 1 32.70(17.57) 647
Rule 2 44.61(20.21) 842
Rule 3 5.505(6.834) 964
Rule 4 3.365(8.269) 945

98% Rule 1 31.61(18.64) 666
Rule 2 43.62(19.15) 843
Rule 3 5.638(7.073) 959
Rule 4 3.087(7.937) 946

In Table 7.3, the third column is the expected detection delay of t = 100,

and the associated standard error is given in the following parentheses. The

expected delay is in the form of E[τ − t|τ ≤ 300], where τ is the delayed
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detected time, and t denotes the true change-point time. Based on 1000 sim-

ulations, the total number of change-point that we can detect is listed in the

fourth column, which is noted as detected number. Except for the expected

detection delay and the associated standard errors, detected number is also

an important indicator to value the performance of the detection rules. Here

we want to introduce two kinds of detection error. The first one is the er-

ror when not able to detect change-point when it does have, and the second

one is falsely detecting the change-point when it does not have. Usually, the

second kind of error takes place before the first time of change-point occurs.

So the detected number in the fourth column of the table is equivalent to the

theoretical change-point number minus the number of the second kind of error.

From this comparison, we can see that Rule 1 and Rule 2 shows a great

value of expected detection delay with very large variance. Rule 3 and Rule 4

have both acceptable expected detection delay and low standard errors.

For the comparison of Rule 2, Rule 3 and Rule 4, we have more detailed

analysis based on Scenario 3 (two change-point model) and Scenario 4 (two

change-point model). See Table 7.4 and Table 7.5.

In Table 7.4, the change-point times are t1 = 100 and t2 = 200, the

theoretical change-point number for each change-point is 1000. It is clearly

to see that detection Rule 2 has a worse expected detection delay and the

standard error comparing with the other two detection rules. Both Rule 3

and Rule 4 have acceptable expected delays and the related standard error.

However, Rule 4 has much better performance especially at t2. In Rule 3, the

expected detection delay found after first change-point occurred is more than
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Table 7.4: Expected Detection Delays for Scenario 3 (Two Change-point
Model)

Rule 2 Rule 3 Rule 4
Quantile = 95%
Expected Delay at t1 33.68(18.04) 3.478(7.350) 4.572(11.51)
Detected Number at t1 344 913 896
Expected Delay at t2 44.54(20.29) 25.44(10.97) 8.799(15.20)
Detected Number at t2 865 996 932
Quantile = 97%
Expected Delay at t1 32.31(16.46) 3.412(6.685) 2.782(6.597)
Detected Number at t1 334 890 947
Expected Delay at t2 43.49(21.00) 24.09(11.56) 4.319(8.415)
Detected Number at t2 877 998 978
Quantile = 98%
Expected Delay at t1 38.85(18.10) 2.792(5.851) 2.560(7.179)
Detected Number at t1 280 889 957
Expected Delay at t2 46.17(20.09) 26.59(10.06) 4.277(9.524)
Detected Number at t2 860 1000 988

20, while the expected delays are less than 5 in Rule 4. Therefore, we know

that Rule 4 is more solid and performs well even after the first change-point.

For a comprehensive analysis of this table, the result of Rule 4 is the best.

Table 7.5 shows the results for the multiple change-point based on Scenario 4.

We can get almost the same results as in Table 7.4. For this multiple change-

point model, the detected number of change-point is acceptable for all the

three change-point, which shows that our detection methods have stable per-

formance even in the case of detecting multiple change-point.

To more simply and intuitively compare for Rule 2, Rule 3 and Rule 4,

we also present some figures to show the performance of different detection

methods with different scenarios.

Figure 7.2 plots the detected time of Rule 2, Rule 3 and Rule 4 for
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Table 7.5: Expected Detection Delays for Scenario 4 (Three Change-point
Model)

Rule 2 Rule 3 Rule 4
Quantile = 95%
Expected Delay at τ1 29.38(13.12) 5.485(7.610) 4.392(9.576)
Detected Number at τ1 424 989 935
Expected Delay at τ2 31.45(14.58) 20.68(10.40) 5.253(10.64)
Detected Number at τ2 921 997 960
Expected Delayat τ3 34.49(14.06) 25.54(8.417) 7.899(10.99)
Detected Number at τ3 925 1000 964
Quantile = 97%
Expected Delay at τ1 27.28(13.88) 3.324(4.690) 4.266(10.10)
Detected Number at τ1 466 889 938
Expected Delay at τ2 31.57(14.67) 19.60(10.87) 5.348(9.627)
Detected Number at τ2 931 999 976
Expected Delay at τ3 34.40(14.77) 25.22(9.014) 6.173(10.74)
Detected Number at τ3 912 1000 986
Quantile = 98%
Expected Delay at τ1 29.22(13.60) 2.403(4.316) 4.372(8.891)
Detected Number at τ1 435 892 949
Expected Delay at τ2 33.01(13.72) 19.91(9.464) 6.250(11.00)
Detected Number at τ2 926 999 963
Expected Delay at τ3 33.50(14.58) 24.66(8.301) 6.694(11.37)
Detected Number at τ3 922 999 984
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Figure 7.2: Plots of Detected Change Points for Scenario 2: single change–
point model with change-point at t = 100 in Rule2, Rule3 and Rule4

Scenario 2. We can see that the green dots which represent the result of Rule

4 are closest to the line of change-point time at t = 100, and the red dots are

farthest among the three rules. It is the same as the results shown in Table

7.3 that Rule 3 and Rule 4 over performance Rule 2 in this scenario.

Figure 7.3 Plots the detection results for Scenario 3. And we can get the

same results with Table 7.4. In this figure, the green dots which represent

Rule 4 and the blue dots which represent Rule 3 show very acceptable results

for change time at t1 = 100. And at t2 = 200. The green dots representing

Rule 4 have much better performance than the other two rules. The red dots

for Rule 2 is still the farthest line among three detection rules.

Figure 7.4 plots the detection results for Scenario 4. And we can get

the same result with Table 7.5. In this figure, the green dots which represent

Rule 4 and the blue dots which represent Rule 3 show acceptable results for
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Figure 7.3: Plots of Detected Change Points for Scenario 3: two change-point
model with change-point at t1 = 100 and t2 = 200 in Rule2, Rule3 and Rule4

Figure 7.4: Plots of Detected Change Points for Scenario 4: three change-point
model with change-points at t1 = τ1, t2 = τ2 and t3 = τ3 in Rule2, Rule3 and
Rule4
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change time at t1 = τ1, t2 = τ2 and t3 = τ3. But after the occurrence of the

first change-point, the blue dots and red dots are getting much farther than

the green dots. The red dots for Rule 2 is still the farthest line among three

detection rules.

7.4.3 More Complicated Simulation Study with 20 Stocks

Furthermore, we move on to a more computational complicated model

with a higher dimension. Similar with the case of 10 stock returns, we gen-

erate 20-variate normal distributed vectors over time period (0,300) for 1000

simulations. We choose p = 0.01, np = 10 and kp = 20 in Rule 3 and k(p) = 30

in Rule 4. To ensure sequentially detecting the change-point, we get rid of the

data before the detection of next change-point once the previous change-point

is found. All the simulations are considered based on the threshold for 95%,

97% and 98% quantile in the distribution of statistics calculated with null

hypothesis.

We also use some tables to compare the performance of the four detection

methods. Here we consider two extra indexes: the false alarm rate and the

accurate rate. Firstly, the false alarm rate is the one that represents the

number of second type error as mentioned over 1000 simulations. Secondly, we

define the accurate rate as the number of correct detection result which reaches

exactly at the change-point time over the total simulation number 1000. Also,

we pre-specify all the time points we detect before t = 150 as the first change-

point detected number, while all the change-point detect after t = 150 belong

to the second change-point detected number. From this assumption, if there
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is no change-point detected before t = 150, then there is zero detected number

for the first change-point.

Table 7.6: False Alarm Rate and Expected Detection Delays for Scenario 6

(Single Change-point Model)
False

Quantile Detection Expected Detected Alarm Accurate
Delay Number Rate Rate

95% Rule 1 30.11(16.53) 622 37.8% 25.6%
Rule 2 42.80(18.02) 958 4.2% 15.6%
Rule 3 0.0(0.0) 965 3.5% 96.5%
Rule 4 0.809(0.259) 851 14.9% 63.9%

97% Rule 1 25.01(16.09) 682 31.8% 35.0%
Rule 2 47.70(19.52) 852 14.8% 4.0%
Rule 3 0.0(0.0) 951 4.9% 95.1%
Rule 4 1.210(0.522) 873 12.7% 63.0%

98% Rule 1 28.16(17.20) 696 30.4% 31.9%
Rule 2 48.71(19.18) 847 15.3% 3.4%
Rule 3 0.0(0.0) 959 4.1% 95.9%
Rule 4 1.154(0.536) 896 10.4% 66.2%
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Table 7.7: False Alarm Rate and Expected Detection Delays for Scenario 7

(Two Change-point Model)
Rule 2 Rule 3 Rule 4

Quantile = 95%
Expected Delay at t1 38.37(18.03) 0.0(0.0) 0.791(0.187)
Detected Number at t1 299 997 969
False alarm Rate att1 70.1% 0.3% 3.1%
Accurate Rate at t1 3.9% 96.5% 82.7%
Expected Delay at t2 46.32(19.63) 2.404(1.733) 0.754(0.182)
Detected Number at t2 865 998 991
False Alarm Rate at t2 13.5% 0.2% 0.9%
Accurate Rate at t2 4.9% 87.8% 85.3%
Quantile = 97%
Expected Delay at t1 32.20(17.42) 0.0(0.0) 0.769(0.185)
Detected Number at t1 342 999 975
False Alarm Rate at t1 65.8% 0.1% 2.5%
Accurate Rate at t1 8.7% 95.5% 83.6%
Expected Delay at t2 43.46(20.46) 0.904(0.0) 0.821(0.230)
Detected Number at t2 849 1000 997
False alarm rate at t2 15.1% 0% 0.3%
Accurate Rate at t2 8.5% 88.7% 84.5%
Quantile = 98%
Expected Delay at t1 37.93(17.83) 0.0(0.0) 0.765(0.186)
Detected Number at t1 272 999 977
False alarm rate at t2 72.8% 0.1% 2.3%
Accurate Rate at t1 3.80% 97.20% 84.10%
Expected Delay at t2 45.99(28.94) 0.4(0.0) 0.785(0.220)
Detected Number at t2 851 1000 989
False alarm rate at t2 14.9% 0% 1.1%
Accurate Rate at t2 3.90% 90.00% 85.50%
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From Table 7.6, Table 7.7 and Table 7.8, which are the results for Scenario 6,

Scenario 7 and Scenario 8, we can see that both Rule 3 and Rule 4 give ac-

ceptable false alarm rate and low expected delay. The results of Rule 2 either

have very high false alarm rate or high expected detection delay. There is no

missing change-point detected in each simulation of all the detection rules. In

fact, in the case of both 10−variate data and 20−variate data, Rule 3 and Rule

4 have better performance than that in Rule 2. One thing to mention, Rule

3 has better performance than Rule 4 when it comes to the higher dimension

case.

To more simply and intuitively compare for Rule 2, Rule 3 and Rule 4,

we also present some figures to show the performance of different detection

methods with different scenarios.

Figure 7.5: Plots of Detected Change Points for Scenario 6: single change–
point model with change-point at t = 100 in Rule2, Rule3 and Rule4

Figure 7.5, Figure 7.6 and Figure 7.7 plots the detection results for
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Table 7.8: False Alarm rate and Expected Detection Delays for Scenario 8

(three change-point model)
Rule 2 Rule 3 Rule 4

Quantile = 95%
Expected Delay at τ1 32.82(13.60) 0.0(0.0) 1.534(0.749)
Detected Number at τ1 371 999 963
False alarm rate at τ2 62.9% 0.1% 3.7%
Accurate Rate at τ1 4.2% 94.7% 64.8%
Expected Delay at τ2 35.25(14.54) 1.512(0.0) 1.928(0.821)
Detected Number at τ2 913 1000 983
False alarm rate at τ2 8.7% 0% 1.7%
Accurate Rate at τ2 4.3% 89.2% 62.4%
Expected Delay at τ3 35.60(14.16) 4.246(0.0) 1.739(0.823)
Detected Number at τ3 913 1000 978
False alarm rate at τ2 8.7% 0% 2.2%
Accurate Rate at τ3 4.5% 80.7% 63.5%
Quantile = 97%
Expected Delay at τ1 31.80(13.95) 0.0(0.0) 1.629(0.805)
Detected Number at τ1 375 1000 973
False alarm rate at τ2 62.5% 0% 2.7%
Accurate Rate at τ1 5% 95.4% 63.7%
Expected Delay at τ2 34.41(14.33) 0.0(0.0) 1.397(0.671)
Detected Number at τ2 915 1000 976
False alarm rate at τ2 8.5% 0% 2.4%
Accurate Rate at τ2 4.1% 90.2% 67.5%
Expected Delay at τ3 37.38(14.71) 0.0(0.0) 1.493(0.681)
Detected Number at τ3 907 1000 990
False alarm rate at τ2 9.3% 0% 1%
Accurate Rate at τ3 3.10% 83.7% 66.5%
Quantile = 98%
Expected Delay at τ1 29.22(13.60) 0.0(0.0) 1.548(0.581)
Detected Number at τ1 435 999 964
False alarm rate at τ2 56.5% 0.1% 3.6%
Accurate Rate at τ1 9.1% 95.8% 63.8%
Expected Delay at τ2 33.21(13.76) 0.0(0.0) 1.603(0.756)
Detected Number at τ2 926 999 993
False alarm rate at τ2 7.4% 0.1% 0.7%
Accurate Rate at τ2 9.1% 91.4% 65.7%
Expected Delay at τ3 33.50(14.58) 0.0(0.0) 1.525(0.730)
Detected Number at τ3 922 1000 983
False alarm rate at τ2 7.8% 0% 1.7%
Accurate Rate at τ3 10.3% 83.5% 66.8%
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Figure 7.6: Plots of Detected Change Points for Scenario 3: two change-point
model with change-point at t1 = 100 and t2 = 200 in Rule2, Rule3 and Rule4

Figure 7.7: Plots of Detected Change Points for Scenario 8: three change-point
model with change-points at t1 = τ1, t2 = τ2 and t3 = τ3 in Rule2, Rule3 and
Rule4
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Scenario 6, Scenario 7 and Scenario 8. And we can get almost the same re-

sults with the low dimension figures. In these figures, the green dots which

represent Rule 4 and the blue dots which represent Rule 3 show very accept-

able results at change-point times. The red dots for Rule 2 is still the farthest

line among three detection rules.
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Chapter 8

Real Data Analysis

In this section, we use exactly the same empirical data set as in Chapter

4.2.3. Thus, we assume 223−variate normal distributed observations

X1, ..., XT , T = 1786 over time period from April 2013 to September 2013.

Specifically, Xi takes the value of both stock returns and VPTs. We present

the hyper-parameter selection in Chapter 8.1.1 and threshold determined in

Chapter 8.1.2. In Chapter 8.2, we present the performance of different de-

tection rules and summarize our results in comparison with the concluding

remarks of Part 1.

8.1 Parameter Initialization

8.1.1 Prior Distribution Determined using EM Algo-

rithm

In our study, we use Expectation Maximization (EM) algorithm to esti-

mate the prior parameters in the model. Let Xi = (xi,1, xi,2, ..., xi,223) be the
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vector of 223 stock returns at time t = i. As stated above, the covariance

matrix of these multivariate Gaussian vector follows Inverse Wishart distribu-

tion: Σ ∼ IW223(Ψ, n0). By the independence assumption, the log likelihood

function for (Ψ, n0) is given by

l(Ψ, n0|Xs, ..., Xt) = log f(Xs, ..., Xt|Ψ, n0)

= log

t∏

i=s

∫ |Ψ|n0/2Γ223(
n0+ni

2
)

|Ψ + Ss,t|
n0+ni

2 Γ223(
n0

2
)

(8.1)

=
t∑

i=s

[
n0

2
log |Ψ| − n0 + ni

2
log |Ψ + Si| + log

Γ223(
n0+ni

2
)

Γ223(
n0

2
)

]

Where Si = XT
i Xi and the studied sample size is n0. We now compute the

expectation step of the EM algorithm. Let ∆i = Σ−1
i and Θ = Ψ−1, then we

equivalently have that

∆i ∼Wp(Θ, n0) (8.2)

Si|∆i ∼Wp(∆
−1
i , ni) (8.3)

Since the conjugacy holds for both Inverse Wishart and Wishart distribution,

then we have

∆i|Si ∼Wp((Θ
−1 + Si)

−1, n0 + ni) (8.4)

With knowing that the expectation of the Wishart distribution,

E[∆i|Si] = (n0 + ni)(Θ
−1 + Si)

−1 (8.5)
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The maximization step, in which the log likelihood l(Θ|∆s, ...,∆t) is maxi-

mized and the estimate Θ̂ = 1
(t−s+1)n0

∑t
i=s ∆i. Then, let Θ̂(m) be the current

estimate of Θ. This yields the updating estimate as

Θ̂(m+1) =
1

(t− s+ 1)n0

t∑

i=s

(n0 + ni)(Θ̂
−1
(m) + Si)

−1 (8.6)

In this way, we can get the Ψ̂, which is the estimate calculated by repeated

iteration of equation 8.6.

8.1.2 Threshold Determined from Simulation Data

From the description of the real data set in Chapter 4.2.3, we have totally

T = 1786 time points of 30 minutes returns and VPTs of 223 stocks from April

2013 to September 2013. To determine the thresholds for different detection

rules in the real data analysis, we first partition the data set into two parts. For

the first part, we make use of the first 500 observations X1, ..., X500 and follow

EM algorithm in the above section to estimate the initial values of the prior

parameters. In the second part, we decide the thresholds with the application

of simulated data which are created from the prior distribution. Afterwards,

we testify the performance of detection rules using the second part of the data.

Follow the data generating procedures in Seciton 7.1, we first obtain

an estimation prior of Ψ500 based on the observations during time period

t = 1, ..., 500. Then, we generate 1000 groups of simulated time series whose

covariance matrix follow Inverse Wishart distribution with prior parameter

Ψ500. With 1000 simulation data, we have a 95%, 97% and 98% quantile criti-
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cal value for all four detection rules, namely Zi in equation 7.3, Gi in equation

7.5, Vi in equation 7.6 and Wi in equation 7.7. Then we detect the real data

using Rule 1, Rule 2, Rule 3 and Rule 4 for the time period t = 1, ..., 501, and

check if there is a change-point at t = 501.

Then we repeat the process for t = 502, ..., 1786 following the same steps

as in t = 501. If there is a change-point occurred at time t, the data before t

is supposed to be deleted from the data set for the following detection, to get

rid of the influence from the previous structural break.

8.2 Concluding Remarks and Future Work

8.2.1 Empirical Study Results

In this section, we present plots of how change-point detection statistics

in each rule under null hypothesis change through time. Then, we summarize

the structural breaks found in the market by using our detection rules and

compare the detection results with the ones in Chapter 4.2.3. Moreover, we

consider about the shortcomings in our methods and discuss about the future

plan.

Firstly, in order to have a general knowledge about how the statistics in

each rule change over the whole time period, we plot a set of figures under the

assumption of no change-point. As stated in Chapter 4.2.3, we introduce two

kinds of financial dynamics as indicators of the macro market, which are stock

returns and VPTs. From the simulation study in Chapter 7, we conclude that

Rule 1 has the worst performance compared to the other three detection rules.
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Thus, we only consider Rule 2, Rule 3 and Rule 4 in empirical study. Among

the following figures, Figure 8.1 is the application of Rule 2 with stock returns,

Figure 8.2 is the application of Rule 3 with stock returns, Figure 8.3 is the

application of Rule 4 with stock returns, Figure 8.4 is the application of Rule

2 with stock VPTs, Figure 8.5 is the application of Rule 3 with stock VPTs,

and Figure 8.6 is the application of Rule 4 with stock VPTs.

From Figure 8.1, Figure 8.2 and Figure 8.2, we can see that there are

approximately three change-point in each detection. For Rule 2, there are

peaks at 476, 1169 and 1752. For Rule 3, the peaks are at 782, 1222 and

1691. For Rule 4, the peaks are at 824 and 1176. Considering that there are

expected delays or false alarm occurred in the detection, the second change

point detected in Rule 2, Rule 3 and Rule 4 are almost in the same time period.

Also, the third change-point found in Rule 3 and Rule 4 are in the same time

zone. In the case of VPTs dataset, we make a comparison of Figure 8.1 with

Figure 8.4, Figure 8.2 with Figure 8.5, Figure 8.3 with Figure 8.6. It is quite

obvious that the change-point detection results in stock returns are almost the

same as the ones with VPTs.

Furthermore, recall the plots of maximum eigenvalue evolution in Chapter

4.2.3 of Part 1, we make a comparison of the change of maximum eigenvalue

through time, see the red lines in Figure 8.7, with the change of detection

statistics in Rule 2, see the blue lines in Figure 8.7. Both of them are based on

stock returns dataset. It shows that in both plots, there are significant changes

around 480 and 1190. This result may show that there are connections in the

results calculated in Part 1 with the ones in this part of thesis. Therefore, we
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Figure 8.1: Plots of Statistics in Rule 2 for S&P 500 Intraday Stock Returns
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Figure 8.2: Plots of Statistics in Rule 3 for S&P 500 Intraday Stock Returns
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Figure 8.3: Plots of Statistics in Rule 4 for S&P 500 Intraday Stock Returns
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Figure 8.4: Plots of Statistics in Rule 2 for S&P 500 Intraday Stock VPTs
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Figure 8.5: Plots of Statistics in Rule 3 for S&P 500 Intraday Stock VPTs
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Figure 8.6: Plots of Statistics in Rule 4 for S&P 500 Intraday Stock VPTs
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move on to compare these two sets of results in details.
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Figure 8.7: Comparison of Detection Statistics and Maximum Eigenvalues
Calculated with Stock Returns from April 2013 to September 2013

Then, we list all the structural breaks detected in Table 8.1 by applying

determined thresholds with 98% quantile in Chapter 8.1.2. Also, we include

the time points of interest we obtained in the first part of thesis. In fact,

the time points of interest are those maximum eigenvalues which are the local

optimums through time. From the Table 8.1, we can see that some of the

time points of interest found with our proposed estimation methods are almost

simultaneously with the change-point detected with our proposed change-point

detection rules.
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Table 8.1: Structural Breaks Detected in Part 2 and Time Points of Interest
Found in Part 1

Structural Breaks
Rule 2 Stock Returns 489, 1155, 1689

VPTs 481, 811, 1150, 1708
Rule 3 Stock Returns 430, 782, 1064, 1281, 1655

VPTs 446, 781, 1139, 1285, 1677
Rule 4 Stock Returns 461, 720, 809, 1148

VPTs 479, 723, 838, 1160
Maximum Eigenvalue Stock Returns 455, 729, 1179

VPTs 469, 750, 1093, 1121

8.2.2 Summary and Future Plan

In this part of thesis, we make use of four kinds of change-point detection

rules to find out the structural breaks in multivariate normal distributed data

stream over a time period. Then, we carry out a detailed theoretical and

empirical comparison of our proposed approaches to detect the change-point

with high dimensional dataset. Moreover, we compare the structural breaks

we find using these detection rules with the ones in Part 1.

However, there are still limitations in this part of empirical study. Con-

sidering the complexity of computation, we only take a half year of intraday

stock returns and VPTs in real data analysis. However, it is difficult to make

a conclusion about the structural breaks for the whole market in such a rel-

atively short period of time. In future study, one may want to take a longer

time period to detect the structural breaks for the whole financial market

and has to overcome the computation complexity in the study. What’s more,

since we have found that some of the time points of interest found in Part 1
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are almost simultaneously with the change-point detected in Part 2, one may

get interested in discovering the relationship between these time points with

significant events took place in the real world.
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