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Abstract of the Dissertation

Weighted-Least-Squares Based Essentially
Non-Oscillatory Schemes on Unstructured Meshes

by

Hongxu Liu

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2016

Essentially non-oscillatory schemes and their variants, such as ENO and WENO,
are widely used high-order schemes for solving partial differential equations
(PDEs), especially hyperbolic conservation laws with piecewise smooth solu-
tions. For structured meshes, these techniques can achieve high order accuracy
for smooth functions while being non-oscillatory near discontinuities. For un-
structured meshes, which are needed for complex geometries, similar schemes
are required but they are much more challenging to design, especially for finite
different schemes. We propose a new family of non-oscillatory schemes, called
WLS-ENO, in the context of solving hyperbolic conservation laws using both
finite volume and finite difference methods over unstructured meshes. WLS-
ENO is derived based on Taylor series expansion and solved using a weighed
least squares formulation. Unlike other non-oscillatory schemes, the WLS-ENO
does not require constructing sub-stencils, and hence it provides a more flexible
framework and is less sensitive to mesh quality. We present both finite difference
and finite volume schemes under the same framework and analyze the accuracy
and stability. We show that finite volume WLS-ENO schemes can achieve bet-
ter accuracy and stability than WENO finite volume schemes, and WLS-ENO
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finite difference schemes are accurate, stable and more efficient than finite vol-
ume schemes. We present numerical results in 1-D, 2-D and 3-D for a number
of benchmark problems and also report some comparisons against WENO if
applicable.
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Chapter 1

Introduction

Many physical phenomena, such as waves, heat conduction, electrodynamics, elas-

ticity, etc., can be modeled by partial differential equations. With the development

of computer technology, many numerical methods have been designed to solve

these kinds of problems over the past decades. Among these there are finite differ-

ence methods and their generalizations, finite volume methods, and finite element

methods.

In thesis, we consider the problem of reconstructing a piecewise smooth func-

tion, in the context of finite volume methods for hyperbolic conservation laws.

Given a geometric domain Ω ⊆ Rd, suppose u is a time-dependent piecewise

smooth function over Ω, such as a density function. For any connected region τ ,

the d-dimensional conservation law can be written in the form

ˆ
τ

∂u(x, t)

∂t
dx = −

ˆ
∂τ

F (u) · da, (1.0.1)

where ∂τ is the boundary of τ , and F is a function of u, corresponding to the flux.
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A finite volume method solves the problem by decomposing the domain Ω

into cells {τi | i = 1, . . . , N}. Let |τi| denote the volume of τi and ui(t) =

1
|τi|

´
τi
u(x, t) dx, the average of u over τi. We obtain an equation

dui(t)

∂t
= − |τi|

ˆ
∂τi

F (u) · da, (1.0.2)

for each τi. The boundary integral requires using numerical quadrature for the

flux. The integration of the flux requires reconstructing u from the cell averages

u(t) in an accurate and stable fashion, and then evaluating the reconstruction at the

quadrature points along the cell boundaries. For stability, F ·n is typically replaced

by a numerical flux, such as the Lax-Friedrichs flux,

F · n =
1

2

[(
F
(
u−
)

+ F
(
u+
))
· n− α

(
u+ − u−

)]
, (1.0.3)

where u− and u+ are the values of u inside and outside the cell τi. The parameter

α is a constant, and it should be an upper bound of the eigenvalues of the Jacobian

of u in the normal direction.

In this context, we formulate the mathematical problem addressed in this paper

as follows: Given the cell averages ui of a piecewise smooth function u(x) for

cell τ1, τ2, . . . , τN , let hi be some length measure of cell τi. Find a polynomial

approximation ũi(x) of degree at most p− 1 over τi, such that

‖ũi(x)− ui(x)‖ = O(hpi ), x ∈ τi. (1.0.4)

In other words, ũi(x) is a pth order accurate approximation to u(x) inside τi. In

the context of hyperbolic conservation laws, u(x) in (1.0.4) is equal to u(x, t) in
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(1.0.1) at a given t. For the facet between two cells, these reconstructions give

us two values u− and u+, which can then be substituted into (1.0.3) to calculate

the numerical flux. These reconstructions must be accurate, and also must lead to

stable discretization of the hyperbolic conservation laws when coupled with some

appropriate time integration schemes, such as TVD Runge-Kutta schemes [12].

This reconstruction problem is decidedly challenging, because hyperbolic con-

servation laws can produce non-smooth solutions. An approximation scheme for

smooth functions may lead to oscillations that do not diminish as the mesh is re-

fined, analogous to the Gibbs phenomena. Such oscillations would undermine the

convergence of the solutions. The ENO (Essentially Non-Oscillatory) and WENO

(Weighted Essentially Non-Oscillatory) schemes [16, 32, 34] have been successful

in solving this problem. In a nutshell, the WENO schemes use a convex combina-

tion of polynomials constructed over some neighboring cells, with higher weights

for cells with smoother solutions and lower weights for cells near discontinuities.

As a result, these methods can achieve high-order accuracy at smooth regions while

being non-oscillatory near discontinuities. These reconstructions can be integrated

into both finite volume and finite difference methods. With years of development,

finite volume WENO schemes have been applied to both structured and unstruc-

tured meshes and higher dimensions [15, 20, 22, 31, 35, 37]. Various attempts have

been applied to improve the weights for WENO reconstruction [1, 14, 29, 45]. Also,

they have used WENO schemes in many applications, such as shock vortex inter-

action [13], incompressible flow problems [44], Hamilton-Jacobi equations [17],

shallow water equations [23], etc.

Along the path of applying WENO schemes on unstructured meshes, tremen-

dous effort has been made to improve the robustness of the schemes. Early attempts

3



[15] work well for most unstructured meshes, but some point distributions may lead

to negative weights and in turn make the schemes unstable. An extension was pro-

posed in [31] to mitigate the issue, but it still had limited success over complicated

geometries due to inevitably large condition numbers of their local linear systems.

More recently, several different partition techniques were proposed to improve sta-

bility, such as [26], which uses a hybrid of two different reconstruction strategies to

achieve better results. The technique was adopted in [4, 7, 48] for further develop-

ment.

Finite difference method is another type methods that widely used for solving

conservation laws, which can be expressed in the differential form as

∂u(x, t)

∂t
+ ∇ · F = 0, (1.0.5)

where u can be scalar or vector, F is a flux vector, and ∇· denotes the diver-

gence operator. The finite difference methods were traditionally limited to struc-

tured meshes. WENO finite difference schemes are claimed to be applicable for

only structured and smooth varying meshes [32]. Otherwise, it can be proven that

no schemes higher than 2nd order can be conservative on unstructured meshes [32].

Spectral difference [25, 38] is another type of finite difference method which can

be used on unstructured meshes. It is conservative due to the proper location of

the solution points and flux points. It can also deliver high order accuracy and high

efficiency. However, the initial setting requires that the solution points follow the

same pattern in each element. Thus we cannot apply this method on unstructured

meshes with initial condition available only on the nodes.

Since unstructured meshes are often necessary for complex geometries in solv-
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ing PDEs, a finite difference method that can truly be applied on unstructured mesh

and started with simple initial setting (such as given function values on nodes) is

becoming a demanding task. Another motivation for developing new finite differ-

ence type schemes for conservation law is that when comparing finite difference

schemes and finite volume schemes, we observed, as well as many researchers [4],

that finite difference schemes are more efficient for a given accuracy, or in another

words they are more accurate per degree of freedom, especially in higher dimen-

sions. This is because on a given mesh in two and three dimensions, there are more

elements than vertices. This makes finite volume approach more accurate, but at the

expense of higher computational cost. Thus, node-based finite difference scheme is

more preferable than finite volume scheme.

In this thesis, we propose two new families of schemes over unstructured meshes.

We refer to the schemes as WLS-ENO, or Weighted-Least-Squares based Essentially

Non-Oscillatory schemes for both finite volume and finite difference methods. Un-

like the WENO scheme, our approach uses a generalized finite difference (GFD)

formulation based on weighted least squares, rather than a weighted averaging of

traditional finite differences. The GFD method is derived rigorously from Taylor

series, and hence can deliver the same order of accuracy as traditional finite differ-

ences. In WLS-ENO, the convexity requirement is satisfied automatically, since the

weights are specified a priori. These properties enable a more systematic way to

construct non-oscillatory schemes. We also adapt the weights based on the func-

tions so that they can deliver accurate and stable results for smooth conditions,

as well as maintain non-oscillatory properties near discontinuities. Unlike WENO

schemes for finite volume methods, our schemes work well on unstructured meshes

and does not depend on mesh quality. They can be easily designed for high or-
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der schemes in higher dimensions. Unlike WENO finite difference schemes, our

schemes can also be applied on unstructured meshes, which makes them more suit-

able for real world problems where unstructured meshes are needed and disconti-

nuities are presented in a node based fashion, such as underexpanded supersonic jet

and free shear layer [6], Hamilton-Jacobi Equations [2], and shallow water prob-

lems [43].

The remainder of the thesis is organized as follows. In Chapter 2, we review

background knowledge about WENO schemes for finite volume and finite differ-

ence methods and spectral difference. Chapter 3 introduces the general framework

of WLS-ENO schemes for both finite volume and generalized finite difference

method in 1D, 2D and 3D. In Chapter 3, we analyze the accuracy and stability

of the proposed schemes and compares them against WENO and its previous gen-

eralization to unstructured meshes. Chapter 5 presents some numerical experiments

for both structured and unstructured meshes. Finally, Chapter 6 concludes the paper

with a discussion about the future work.
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Chapter 2

Background and Related Work

In this chapter, we will review some of the previous finite difference and finite

volume schemes used to solve hyperbolic conservation laws, including WENO

schemes for finite difference and finite volume, spectral difference methods and

some numerical methods for hyperbolic conservation laws. These methods will be

used to design our new framework and schemes for both finite volume and finite

difference methods.

2.1 ENO and WENO Schemes

2.1.1 WENO Reconstructions in 1-D

In the context of finite volume methods, the basic idea of WENO is to first construct

several stencils for each cell and local polynomials over these stencils, so that the

cell averages of these polynomials are the same as the given values. Then, a WENO

scheme uses a convex combination of these polynomials to obtain a reconstruction

of the function, where the weights for each stencil are controlled by a smoothness

7



indicator. We briefly describe the WENO scheme on a uniform 1-D grid below, and

refer readers to [32] for more detail.

Given a 1-D domain [a, b], suppose we have a uniform grid with nodes

a = x 1
2
< x 3

2
< x 5

2
< · · · < xN− 1

2
< xN+ 1

2
= b. (2.1.1)

We denote ith cell
[
xi− 1

2
, xi+ 1

2

]
as τi for i = 1, 2, . . . , N . Its cell center is xi =

1
2

(
xi− 1

2
+ xi+ 1

2

)
, and its cell size is hi = xi+ 1

2
− xi− 1

2
. The cell average of a

function u(x) over τi is then

ui =
1

∆xi

ˆ x
i+1

2

x
i− 1

2

u(x) dx, i = 1, 2, . . . , N. (2.1.2)

For each cell τi, our goal is to reconstruct a piecewise polynomial approximation

ũi(x) of degree at most p− 1, such that it approximates u(x) to pth order accuracy

within τi, i.e.,

ũi(x) = u(x) +O(hp), x ∈ τi, i = 1, . . . , N, (2.1.3)

where h = min{hi | 1 ≤ i ≤ N}.

To find such a polynomial, a WENO scheme first selects p sub-stencils about τi,

each containing p cells. Consider a particular sub-stencil

Sj(i) = {τi−j, . . . , τi−j+p−1} , (2.1.4)

and let φi,j(x) be a polynomial approximation of u over Sj(i), obtained by requiring

the integral of φi,j(x) over each cell in the sub-stencil to be equal to that of ui(x).

8



If the pth derivative of u is bounded over the sub-stencil Sj(i), then φi,j(x) satisfies

(2.1.3). However, if u(x) has discontinuities within the sub-stencil, then φi,j(x) may

be oscillatory. The WENO scheme then constructs a non-oscillatory approximation

by taking a convex combination of φi,j(x)

ũi(x) =
∑
j

ωjφi,j(x), (2.1.5)

where ωj = αj/
∑p−1

k=0 αk and is chosen such that ωj approaches zero for sub-

stencils with discontinuities. A typical choice of αj is

αj = dj/ (ε+ βj)
2 , (2.1.6)

where dj is a nonnegative coefficient such that

ũi(x) =

p−1∑
j=0

djφi,j(x) = u
(
xi+ 1

2

)
+O(h2p−1). (2.1.7)

The parameter ε is a small parameter, such as ε = 10−6, introduced to avoid in-

stability due to division by zero or too small a number. The non-negativity of di

is important for stability purposes. The βj is the smoothness indicator. If u(x) is

smooth over the sub-stencil Sj(i), then βj = O(h2); otherwise, βj = O(1). A

typical choice of βj , as introduced in [32], is

βj =

p−1∑
k=1

ˆ x
i+1

2

x
i− 1

2

h2k−1

(
∂kφj(x)

∂xk

)2

dx, (2.1.8)

where the h2k−1 term is introduced to make βj independent of the grid resolution.
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For example, in the simplest case where p = 2,

β0 = (ui+1 − ui)2 ,

β1 = (ui − ui−1)2 .

(2.1.9)

Alternative smoothness indicators have been proposed in [1, 3, 14, 30, 46].

2.1.2 WENO Schemes on 2-D and 3-D Structured Meshes

Originally developed in 1-D, the WENO schemes can be generalized to structured

meshes in 2-D and 3-D. Here, we give a brief overview of the reconstructions in

2-D, which generalize to 3-D in a relatively straightforward manner.

Consider an Nx-by-Ny structured grid, and let τij denote the cell (i, j) in the

grid, where i = 1, 2, . . . , Nx and j = 1, 2, .., Ny. Suppose the cell averages of a

function u(x, y),

uij =
1

∆xi∆yj

ˆ y
j+1

2

y
j− 1

2

ˆ x
i+1

2

x
i− 1

2

u (x, y) dxdy, (2.1.10)

are given. We would like to find

ũij(x, y) =

p−1∑
r=0

p−1∑
s=0

arsx
rys, (2.1.11)

where ars are the coefficients to be determined so that ũij approximates u to pth

order accuracy over τij .

Similar to the 1-D case, a WENO scheme first constructs polynomial approxi-

mations over a selection of sub-stencils and then computes a convex combination

10



of these approximations. Consider a particular sub-stencil

Slm (i, j) = {τIJ : i− l ≤ I ≤ i− l + p− 1, j −m ≤ J ≤ j −m+ p− 1} .

(2.1.12)

Let φijlm(x, y) denote a polynomial reconstruction of u over Slm (i, j), whose inte-

gration over each cell in Slm (i, j) is equal to the given cell average. The function

φijlm(x, y) approximates u(x, y) over τij to pth order accuracy for smooth func-

tions. To obtain a non-oscillatory reconstruction for non-smooth functions, the

WENO scheme computes ũij as

ũij(x, y) =
∑
l

∑
m

ωlmφijlm(x, y). (2.1.13)

The weights ωlm are chosen so that the order of accuracy of ũij is maximized for

smooth functions, and then further augmented based on similar smoothness in-

dicators as in 1-D, so that the weights would approach zero for the sub-stencils

with discontinuities. For stability, it is important that the weights are nonnegative,

which imposes some constraints to the selection of stencils. For more detail, see

[22, 32, 41].

2.1.3 ENO and WENO Schemes on Unstructured Meshes

Besides structured meshes, WENO can also be generalized to unstructured meshes.

Typically, these schemes are also constructed from some convex combination of

lower-order schemes on sub-stencils. However, compared to structured meshes,

it is much more challenging to construct stable WENO schemes on unstructured

meshes, because it is difficult to satisfy the convexity requirement. Some WENO
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schemes have been proposed for 2-D [15, 22, 31, 41] and 3-D [20, 35, 37, 44, 47].

Below, we briefly review these generalizations, focusing on three different types.

The first type of WENO reconstruction, as proposed in [15], uses a combina-

tion of high-order polynomials computed from low-order polynomials over sub-

stencils. For example, to obtain a third-order reconstruction, the scheme would

first construct linear approximations over several sub-stencils by requiring the cell

averages of the polynomials to be equal to the given cell averages, and then com-

pute a quadratic polynomial from a weighted average of these linear polynomials.

This technique works for unstructured meshes, even for meshes with mixed types

of elements. However, depending on the mesh, the weighted average may not form

a convex combination, and the linear system for calculating the weights may be

ill-conditioned.

The second type of WENO reconstruction is similar to the first type, except

that it compromises the order of accuracy of the convex combination, by allowing

convex combination to be the same degree polynomials as those for the sub-stencils.

Compared to the first type, this construction is less sensitive to mesh quality than

the first type at the cost of lower accuracy. Therefore, it is often used as a fallback

of the first type for robustness [26].

The third type of WENO reconstruction builds the reconstructions in a hierar-

chical fashion. An example is the approach in [41], which first finds the smoothest

linear reconstructions over the first-layer three-cell stencils, and then use these lin-

ear reconstructions to build quadratic reconstructions over the second-layer stencils.

This approach can be applied iteratively to construct higher-order reconstructions.

However, as shown in [41], the accuracy of the reconstruction may not improve as

the degree of the polynomial increases, especially near boundaries.
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Besides the above WENO schemes, we also note some recent development of

the Central ENO (CENO) schemes [4, 5], based on least squares approximations.

CENO schemes require limiters for linear reconstructions to preserve monotonicity.

Our proposed WLS-ENO schemes differ from the WENO and CENO reconstruc-

tions, in that the WLS-ENO schemes utilize a weighed least squares formulation,

do not require limiters, and are insensitive to mesh quality due to adaptive stencils.

2.2 WENO and Spectral Difference Schemes

2.2.1 WENO Schemes for Finite Difference Method

WENO finite difference schemes have been successful for many decades. Based on

the simple framework, we are able to use WENO finite difference schemes for a lot

of problems on structured grid with both high accuracy and efficiency. Suppose we

have a structured mesh in 1D domain [a, b],

a = x1 < x2 < x3 < · · · < xN−1 < xN = b, (2.2.1)

and we define xi+ 1
2

= (xi + xi+1) /2, ui = u (xi). The conservation law in 1-D has

the following form

dui
dt

+
df (ui)

dx
= 0, i = 1, 2, ..., N (2.2.2)

The derivative of function f (x) is approximated in a conservative form and f (x)

is considered as the cell average of another function g. What we need is to ap-

proximate g to high order accuracy at cell boundary xi+ 1
2

and xi− 1
2
. This is where
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WENO schemes are used to maintain high accuracy and non-oscillatory property.

The key idea for WENO finite difference schemes is as follows. The scheme is

composed of weighted average of several sub-stencils, and the weights are properly

computed so that they approach to a constant if the function is smooth within sub-

stencils, and approach to zero if discontinuities occur. In this way, we can maximize

the use of the function values for smooth points to achieve high order accuracy and

avoid as much as possible the use of discontinuous points. For example, suppose we

have three approximated values g(k)
i , k = 1, 2, 3 for xi+ 1

2
from three sub-stencils.

The fifth order WENO finite difference schemes have the following form

ĝi =
3∑

k=1

wkg
(k)
i (2.2.3)

with

wk =
ak∑3
j=1 aj

, ak =
dk

(ε+ βk)
2 , k = 1, 2, 3 (2.2.4)

where dk is a constant such that the weighted sum of the g(k)
i is fifth order accuracy,

βk is the smoothness indicator, which measures the smoothness within each sub-

stencils, and ε is a small constant to avoid the denominator to become zero. One

advantage of this non-linear weight is that it can capture the discontinuities within

sub-stencils and diminish the influence of discontinuities so that non-oscillatory

solutions can be achieved. For more details, please refer to [28, 33].

2.2.2 Spectral Difference Method

The spectral difference method has been around for a few decades [25, 38]. It

works well on both structured and unstructured grid. It can achieve high order
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accuracy with high efficiency. The basic idea is that it places solution points in

every element of unstructured mesh in the same pattern, so that the scheme looks

the same for every element if converted to a reference element. In this way, high

efficiency can be achieved. Also, the order of accuracy depends on the number of

solution points placed in each element and the conservation is preserved because of

the proper positions of these solution points. Thus, for computations starting with

proper placement of solution points, it may be by far the best method we can use.

However, for real world problem, the solutions points may not be properly placed

and spectral difference method may not be an option for these problems.

Figure 2.1 showed the placement of solution points and flux points. The solution

points are represented as black dots and flux points are circles. The basic framework

for spectral difference method is as follows. Suppose we are given function values

at the solution points. We first build a polynomial for each element by interpolating

the function values at solution points within the element. Then, we evaluate the

polynomial at flux points, where we need to compute the fluxes. The fluxes are

calculated through normal and tangential vectors of the edge of the element. This is

because the normal component of the flux vector on each edge should be the same

for two elements sharing the same edge. After obtaining the fluxes, we use the

fluxes on each edge to compute the derivatives. Finally, we use TVD time stepping,

such as TVD Runge-Kutta method.

To deal with discontinuities, the spectral difference method exploited minmod

limiters to suppress oscillations. If the evaluated values on the flux points are be-

yond certain range, the values are limited. Similar technique has been adopted by

the discontinuous Galerkin method [8] and the spectral volume method [39, 40].

Also, it can be proved that for the configuration of the solution points and flux
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(a) 1st order. (b) 2nd order. (c) 3rd order.

Figure 2.1: Placement of solution points and flux points.

points, the schemes are conservative. For more details, please refer to [25, 38].
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Chapter 3

Weighed-Least-Squares Based ENO

Schemes

In this chapter, we present the general framework for solving conservation laws

with discontinuities and propose two classes of essentially non-oscillatory schemes

based on the framework, referred to as WLS-ENO finite volume schemes and WLS-

ENO finite difference schemes. In the context of finite volume methods, the schemes

reconstruct a function u(x) over each cell, given the cell averages of u, denoted

by u, for all the cells. For each point along cell boundaries, the reconstructions

then provide two values, u− and u+, which can then be used in (1.0.3) to calculate

fluxes. Unlike WENO schemes, the WLS-ENO finite volume scheme does not

use weighted averaging of functional approximations over sub-stencils. Instead, it

computes the reconstruction over each cell based on weighted least squares with

an adaptive stencil. It can achieve optimal accuracy for smooth functions, stability

around discontinuities, and insensitivity to mesh quality.

WLS-ENO finite difference schemes are designed solving the conservative form
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of hyperbolic conservation laws. They are based on the same weighted least squares

framework and can be applied on complex geometries with unstructured meshes.

The accuracy, stability and efficiency can be achieved by the following steps. Sup-

pose we are given a mesh with function values at the nodes. We first define a control

volume for each node. The control volumes of all nodes cover the entire computa-

tional domain. For each control volume, we define flux points, which are the points

where we compute the fluxes. For different schemes, we may use different patterns

of flux points. The function values are computed at flux points using stencils for

each node in a weighed least squares sense. Then, we apply numerical fluxes like

Lax-Friedrichs flux to obtain the fluxes. Next, we compute the flux derivates by the

fluxes we just obtained. Finally, TVD time stepping is applied so we can get the

function values at the next time step.

We will present the derivations as well as the implementation of WLS-ENO

finite volume schemes in 1-D,2-D and 3-D over structured and unstructured meshes.

The derivations of WLS-ENO finite difference schemes will also be introduced in

1-D and 2-D.

3.1 Weighted-Least-Squares Based ENO Schemes for

Finite Volume Method

3.1.1 WLS-ENO Schemes for Finite Volume in 1-D

We first derive the WLS-ENO schemes in 1-D. Suppose we are given a grid

a = x 1
2
< x 3

2
< x 5

2
< · · · < xN− 1

2
< xN+ 1

2
= b, (3.1.1)
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and the cell averages ui of a function u(x) over each cell τi, i = 1, 2, . . . , N . For

generality, we assume the grid is non-uniform, with varying cell sizes. Below, we

first describe how to reconstruct u from ui for smooth functions, and then augment

the method to handle discontinuities.

WLS-Based Reconstruction for Smooth Functions

Without a loss of generality, let us consider the reconstruction of u over τi at its

boundary point xi+ 1
2
. To achieve pth order accuracy, we need to construct a poly-

nomial approximation of degree at least p − 1. We choose a stencil with n cells to

perform the reconstruction, where n ≥ p.

Suppose there are l cells to the left of τi in the stencil. The full stencil is given

by the set

S(i) = {τi−l, . . . , τi−l+n−1} . (3.1.2)

From Taylor series expansion, we can approximate function u(x) at point xi+ 1
2

to

pth order accuracy by

u(x) =

p−1∑
k=0

u(k)(xi+ 1
2
)

k!

(
x− xi+ 1

2

)k
+O(hp), (3.1.3)

where h denotes the average edge lengths. The cell average over τj in the stencil

can be approximated by

uj =

p−1∑
k=0

u(k)(xi+ 1
2
)

k!
(
xj+ 1

2
− xj− 1

2

) ˆ x
j+1

2

x
j− 1

2

(
x− xi+ 1

2

)k
dx+O(hp)

=

p−1∑
k=0

u(k)(xi+ 1
2
)

(k + 1)!

[(
xj+ 1

2
− xi+ 1

2

)k+1

−
(
xj− 1

2
− xi+ 1

2

)k+1
]

+O(hp).

19



Given uj at the jth cells in S(i), we then construct an n× p linear system

Av ≈ u, (3.1.4)

where

aJK =
1

K!

[(
xi−l+J− 1

2
− xi+ 1

2

)K
−
(
xi−l+J− 3

2
− xi+ 1

2

)K]
(3.1.5)

for J ≡ j + l + 1 − i ∈ [1, n] and K ≡ k + 1 ∈ [1, p], u is composed of the

cell averages uj , and v is composed of the derivative of function u at xi+ 1
2
, i.e.,

vK = u(k)(xi+ 1
2
).

Eq. (3.1.4) in general is a rectangular linear system, and we can solve it using

a weighted least squares formulation. In particular, we assign a different weight to

each cell. Let W denote a diagonal matrix containing these weights. The problem

can be written in matrix form as

min ‖WAv −Wu‖2. (3.1.6)

The weights allow us to assign different priorities to different cells. For example,

we may give higher weights to the cells closer to Ii. We solve this weighted least

squares problem using QR factorization with column pivoting, as we will describe

in more detail in Section 3.3. Since the method is derived based on Taylor series

expansions directly, this WLS-based reconstruction can deliver the same order of

accuracy as interpolation-based schemes for smooth functions, as we demonstrate

in Section 4.1.2. For discontinuous functions, these weights can also allow us to

suppress the influence of cells close to discontinuities, as we discuss next.
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WLS-ENO for Discontinuous Functions

To apply WLS-ENO schemes to discontinuous functions, we modify the weighting

matrix W in (3.1.6). The main idea is to assess the smoothness of the function

within each cell of the stencil, and then define the weights correspondingly. By

letting the weights be far smaller for the cells near discontinuities than those away

from discontinuities, we can then effectively suppress oscillations.

We first construct a non-smoothness indicator of the function, analogous to

those used in WENO schemes. Specifically, for the jth cell in the stencil for Ii,

with j = i− l + J , we can define the indicator for cell Ij as

βj =


(uj − ui)2 + εh2 j 6= i

min {βj−1, βj+1} j = i

, (3.1.7)

where ε is a small constant, such as ε = 10−2, introduced to avoid the indicator

being too close to zero, and h is some measure of average edge length. Note that

βj = O(h2) if u is smooth at τj and βj = O(1) near discontinuities. Therefore,

it captures the non-smoothness of the function. We therefore refer to β as a non-

smoothness indicator, although its counterpart in WENO is called the “smoothness

indicator.”

We then define the weights based on βj . To suppress oscillations, it is desirable

to use smaller weights for cells at discontinuities. Therefore, we make the weights

in W to be inversely proportional to βj when j 6= i, and make the value larger for
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βi. Specifically, we choose

ωj =


1/βj j 6= i

α/βj j = i

, (3.1.8)

where α > 1, such as α = 1.5. It is easy to see that ωj is O(1/h2) if the function

is smooth around cell i and ωq = O(1) if the function is discontinuous in the cell.

After computing the weights, we substitute them into (3.1.6) to compute the recon-

struction. Note that unlike the weights in WENO, we do not need to normalize the

weights by dividing them by the sum of the weights. As we will demonstrate in Sec-

tion 4.1.2, this approach effectively suppresses the oscillations near discontinuities,

similar to WENO schemes.

3.1.2 Generalization of WLS-ENO Schemes to 2-D and 3-D

The WLS-ENO reconstruction can be generalized to 2-D and 3-D, for evaluating

the values at quadrature points along the cell boundaries. Similar to 1-D, we derive

the higher-dimensional version of the linear system (3.1.4) over each cell based on

Taylor series expansion, and then solve it based on weighted least squares.

Let us first consider the scheme in 2-D. First, we choose n cells with index

i1, i2, . . . , in as the stencil for cell τi. Let (xi, yi) denote its centroid. From the 2-

D Taylor series expansion, we can approximate u(x, y) about (xi, yi) to pth order

accuracy by

u(x, y) =

p−1∑
q=0

k+l=q∑
k,l≥0

∂qu (xi, yi)

∂xk∂yl
(x− xi)k (y − yi)l

k!l!
+O (‖δ‖p) , (3.1.9)
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where δ = max {|x− xi| , |y − yi|} . Thus, the cell averages over the jth cell τj can

be approximated by

uj =
1

k!l! |τj|

p−1∑
q=0

k+l=q∑
k,l≥0

∂qu (xi, yi)

∂xk∂yl

¨
τj

(x− xi)k (y − yi)l dxdy +O (‖δ‖p)

(3.1.10)

for j = i1, . . . , in, where |τj| denotes the area of τj . Therefore, we obtain n equa-

tions from the n cells in the stencil about τi, which can then be solved using the

weighted least squares formulation (3.1.6).

The construction in 3-D is based on the 3-D Taylor series expansion about a

centroid (xi, yi, zi) of the ith cell τi,

u(x, y, z) =

p−1∑
q=0

k+l+m=q∑
k,l,m≥0

∂qu (xi, yi, zi)

∂xk∂yl∂zm
(x− xi)k (y − yi)l (z − zi)m

k!l!m!
+O (‖δ‖p) ,

(3.1.11)

where δ = max {|x− xi| , |y − yi| , |z − zi|} . Then the cell averages over the jth

cell τj in the stencil for τi can be approximated by

uj =
1

k!l!m! |τj |

p−1∑
q=0

k+l+m=q∑
k,l,m≥0

∂qu (xi, yi, zi)

∂xk∂yl∂zm

˚
τj

(x− xi)k (y − yi)l (z − zi)m dxdydz+O (‖δ‖p)

(3.1.12)

for j = i1, . . . , in, where |τj| denotes the volume of τi. We can then solve the

resulting least squares problem using weighted least squares.

To determine the weights in (3.1.6), we define the non-smoothness indicator βj

similar to (3.1.7), and then define the weights ωj as in (3.1.8). As in 1-D, it is easy to

show that βj = O(h2) if u is smooth at τj and βj = O(1) near discontinuities, and

therefore the weights can effectively suppress the effect of cells near discontinuities.

After solving the linear system and obtaining the polynomial approximation, we can
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Figure 3.1: Examples of 1-ring, 1.5-ring and 2-ring neighborhood of a triangle.

then evaluate u(x, y) at the quadrature points along the boundary for computing the

numerical fluxes.

One remaining question is the selection of the stencils. For the reconstruction

over triangular meshes in 2-D, we adopt the strategy in [18] to define k-ring neigh-

bor cells, with 1/2-ring increments:

• The 1/3-ring neighbor cells are the cells that share an edge with a cell.

• The 1-ring neighbor cells of a cell are those that share at least one vertex with

the center cell.

• For any positive integer k, the (k+1)-ring neighborhood of a cell is the union

of k-ring neighborhood and 1-ring neighbors of its k-ring neighbor cells. The

(k + 1/2)-ring neighborhood is the union of k-ring neighborhood and 1/2-ring

neighbors of the k-ring neighbor cells.

Figure 3.1 illustrates the neighborhood definitions up to 2 rings. The 1/2-ring incre-

ment allows finer granularity in the increment of the stencil sizes.

For the reconstruction over tetrahedral meshes in 3-D, the standard k-ring neigh-

bors grow very rapidly. To allow finer granularity, we define k-ring neighbor cells
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with 1/3-ring increments, similar to those defined in [9]:

• The 1/3-ring neighbor cells of a cell are the cells that share at least one face

with the center cell.

• The 2/3-ring neighbor cells of a cell are the cells that share at least one edge

with the center cell.

• The 1-ring neighbor cells of a cell are the cells that share at least one vertex

with the center cell.

• For any positive integer k, the (k + 1/3)-ring neighborhood of a cell is the

union of the k-ring neighborhood and the 1/3-ring neighbors of its k-ring

neighbor cells. The (k + 2/3)-ring neighborhood is the union of the k-ring

neighborhood and the 2/3-ring neighbors of the k-ring neighbor cells.

With the above definitions, we adaptively choose the k-ring neighborhood, so that

the number of cells in a stencil is approximately equal to 1.5 to 2 times the number

of coefficients in the Taylor polynomial. This adaptive strategy allows the WLS-

ENO scheme to be less dependent on mesh quality than WENO schemes.

The above strategy works well in practice for most cases. However, on poor-

quality meshes, some k-ring neighborhoods may be nearly one-sided, which may

cause the least-squares approximation to be closer to extrapolation along some di-

rections. This may cause the reconstructed value to fall beyond the maximum and

minimum values of the cell averages in the neighborhood, and in turn lead to os-

cillations. This rarely happens in 1-D or 2-D, but we do observe it in practice for

some 3-D meshes. This issue could be mitigated by using limiters, analogous to

the approach in [27] for multidimensional reconstructions on unstructured meshes.
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However, we resolve the issue by adapting the stencil as follows. First, after the re-

construction, we check whether the reconstructed values are between the maximum

and minimum values in the neighborhood. If not, we compute the plane that passes

through the centroid xi of τi and is orthogonal to∇u at xi. Next, we select a subset

of the cells from an enlarged stencil to ensure the new stencil is well balanced on

the two sides of the plane. Because of the smoothing nature of least squares, we find

that the new polynomial approximation typically falls within the range on balanced

stencils.

3.2 Weighted-Least-Squares ENO Finite Difference

Schemes

In this section we will describe the basic framework of weighted-least-squares

based ENO schemes for finite difference. This framework allows us to work on

complex geometries with unstructured meshes. The schemes utilize the Taylor se-

ries expansions and weighted-least-squares approximations in a generalized finite

difference setting, which are accurate, stable and efficient.

Suppose we are given a mesh with function values at the nodes. We first define

a control volume for each node. The control volumes of all nodes cover the entire

computational domain. For each control volume, we define flux points, which are

the points where we compute the fluxes. For different schemes, we may use dif-

ferent patterns of flux points. The procedure for WLS-ENO schemes is as follows.

We first compute the function values at flux points using stencils for each node in a

weighed least squares sense. Second, we apply numerical fluxes like Lax-Friedrichs
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flux to obtain the fluxes. Then we compute the flux derivates by the fluxes we just

obtained. Finally, TVD time stepping is applied so we can get the function values

at the next time step. In the following, we provide more details of various schemes

for in both 1D and 2D cases.

3.2.1 WLS-ENO Schemes in 1-D

Suppose we are given a grid

a = x1 < x2 < x3 < · · · < xN−1 < xN = b, (3.2.1)

and the function u (x) at each node xi, i = 1, 2, ..., N . The mesh can be either struc-

tured or unstructured(i.e. not equally spaced). We first define the control volume

for each node. For any point not on the boundary xi, i = 2, 3, ..., N − 1, we define

the control volume as

Vi =
[
xi− 1

2
, xi+ 1

2

]
, (3.2.2)

where xi− 1
2

= (xi−1 + xi) /2.

WLS-Based Reconstruction for Smooth Functions

Here for each node, we are aiming at approximating the function values within its

control volume to certain order of accuracy. Without loss of generality, suppose we

want to achieve pth order accuracy. To do this, we need to choose a stencil with n

points and construct a polynomial of degree at least p − 1. We require that n ≥ p

and the stencil is chosen symmetrically with respect to the node. For example, for
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degree 2, we choose a five-point stencil which has the following form

S (i) = {xi−2, xi−1, xi, xi+1,xi+2} , (3.2.3)

For degree 3 and degree 4 schemes, the stencil we choose has seven points,

S (i) = {xi−3, xi−2, xi−1, xi, xi+1,xi+2, xi+3} , (3.2.4)

For degree 5, we choose 9 points as our stencil,

S (i) = {xi−4, xi−3, xi−2, xi−1, xi, xi+1,xi+2, xi+3, xi+4} , (3.2.5)

Suppose there are l points to the left of xi in the stencil, we have the following form,

S (i) = {xi−l, xi−l+1, ..., xi−l+n−1} . (3.2.6)

The polynomial we need is computed by Taylor series expansion and weighted least

squares formulation. In detail, we can approximate a function u(x) at point xi to

pth order accuracy by

u(x) =

p−1∑
k=0

u(k)(xi+ 1
2
)

k!
(x− xi)k +O(hp). (3.2.7)

Substituting each function value within the stencil, we can form a linear system

Av ≈ u, (3.2.8)

where A is a Vandermonde matrix, v is composed of the derivatives of the function
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u(x) at xi+ 1
2
, divided by the factorials, and u contains all the function values in

the stencil. Furthermore, by solving this linear system, we are able to get all the

function derivatives, which will allow us to evaluate the function value at any point

in the control volume to high order accuracy.

To make our schemes stable, we need to apply weights for the rows of the linear

system. For smooth functions, we define the weights as follows

ωj =


1/βj j 6= i

α/βj j = i

, with βj =


(xj − xi)2 j 6= i

min
{
βj−1, βj+1

}
j = i

, (3.2.9)

where α is a constant and added here for stability reason. For degree 2 and 5

schemes, α is chosen as 1.5. For degree 3 and 4, α = 0.25.

In general, let W denote a diagonal matrix containing these weights, we solve

the weighted least squares formulation, which has the form

min ‖WAv −Wu‖2. (3.2.10)

This problem can be solved by QR factorization with column pivoting, as we will

describe in more detail in Section 3.3. After solving this problem, we obtain the

derivatives of the function value at xi, which can be used to approximate any point

within the control volume. One thing to note is that once we solved the linear

system, we can compute the coefficients of each node in the stencil so that we can

save them for the same process we need later during our computation and improve

the efficiency greatly. In detail, suppose we calculated the pseduinverse of the linear
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system, then

u (x) ≈
[
1, x− xi, ..., (x− xi)p−1]v (3.2.11)

≈
[
1, x− xi, ..., (x− xi)p−1] (WA)+ Wu (3.2.12)

≈ cu (3.2.13)

where c is the coefficient vector for the nodes in the stencil.

WLS-ENO for Flux Derivatives

After obtaining the function values and their derivatives, we need to compute the

fluxes at flux points. For degree 2 scheme, we define flux point on the boundary of

the control volume (3.2.2). For the schemes higher than 2, the flux points are the

Gaussian-Lobatto points. Since the control volumes are connected, for flux points

on the boundary of each control volume, we may have two different approximate

values from left and right sides of the boundary point. We define u− and u+ to

be the values calculated from left and right respectively. We use numerical flux to

make our schemes stable. In this paper, Lax-Fridriches scheme is adopted, i.e.,

f =
1

2

[
f
(
u−
)

+ f
(
u+
)
− α

(
u+ − u−

)]
, (3.2.14)

where α = maxu |f ′(u)|. Once we have all the fluxes ready for each control vol-

ume, we solve the linear system as what we did before except that the Taylor series

expansion is done for all the flux points within control volumes and we do not apply

any weights. By solving the linear system, we can get flux derivatives. Again, this

can be accelerated if we save the coefficients for each flux point within the stencil
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so that we do not need to compute the coefficients over and over again for smooth

conditions.

WLS-ENO for Discontinuous Functions in 1-D

The above technique works well for smooth conditions. For functions with disconti-

nuities, we need to make some modifications to maintain non-oscillatory properties.

First, for stencils near discontinuities. we gradually lower the degree of polynomi-

als down to linear polynomials in our approximation to suppress oscillation. Also,

we need to control the weights across discontinuities so that we maximize the use of

smooth points and avoid the influence of discontinuous points. In detail, we apply

the following weights to each row of the linear system (3.2.8)

ωj =
1

βj
, with βj =


(fj − fi)2 + ε j 6= i

min {βj−1, βj+1} j = i

, (3.2.15)

where ε is a small number to avoid the denominator to be zero. In this paper,

ε = 10−6. In fact, this set of weights give us more influence at the smooth points

and less influence at discontinuous points, which makes the scheme stable and non-

oscillatory, similar to WENO.

To obtain flux derivatives, we follow a similar technique. We use the same

polynomial to construct a linear system as before except that we do not apply any

weights. Each row of the linear system corresponds to a function value at flux

points. The linear system is solved at each node to get flux derivatives.

To apply our strategies to various situations, we need some indicator to detect

discontinuities. Here we design the non-differential indicator for each point of the

computational domain. It can indicate whether a function is discontinuous at a
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particular point or not. The non-differential indicator has the form

αi =


1, if

∣∣∣∣(fi − fi−1)
2
(
xi+1−xi

xi−xi−1

)2
− (fi+1 − fi)2

∣∣∣∣ > min
{
(fi − fi−1)

2
, (fi+1 − fi)2

}
0, otherwise

.

(3.2.16)

In fact, it is easy to see that if the function is smooth at point xi, the left-hand side

of the inequation is a higher order term than either term of the right-hand side. If

the function is smooth on every point in the stencil, we use the technique in section

3.2.1 for reconstruction. Otherwise, we modify the weights for the linear system

(3.2.8) to capture discontinuities

3.2.2 Generalization of WLS-ENO Schemes to 2-D

Our 1-D scheme can be generalized to unstructured meshes in 2-D. First, we intro-

duce the concept of control volumes for each node on the mesh. Figure 3.2 shows

an example of an unstructured mesh and the control volume of a node. The bound-

ary of the control column consists of edges that connect the centroids of triangles

and middle points of the edges linking to the central node. All control volumes

should cover the whole computational domain.

The stencil we choose is adopted from [18]. Basically, we choose k-ring neigh-

borhood with 1/2-ring increments:

• The 1-ring neighbor faces of a vertex v are the faces incident on v, and the

1-ring neighbor vertices are the vertices of these faces.

• The 1.5-ring neighbor faces are the faces that share an edge with a 1-ring

neighbor face, and the 1.5-ring neighbor vertices are the vertices of these

faces.
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(a) An example of unstructured mesh. (b) An example of control volume

Figure 3.2: An example of an unstructured mesh and a control volume.

Figure 3.3: Examples of 1-ring, 1.5-ring and 2-ring neighborhood of a vertex.

• For an integer k ≥ 1, the (k + 1)-ring neighborhood of a vertex is the union

of the 1-ring neighbors of its k-ring neighbor vertices, and the (k + 1.5)-ring

neighborhood is the union of the 1.5-ring neighbors of the k-ring neighbor

vertices.

Figure 3.3 illustrates the neighborhood definitions up to 2 rings.

After selecting our stencil, we are able to build the linear system similarly as in
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1-D case. The Taylor series expansion in 2-D has the form

u(x, y) =

p−1∑
q=0

k+l=q∑
k,l≥0

∂qu (xi, yi)

∂xk∂yl
(x− xi)k (y − yi)l

k!l!
+O (‖δ‖p) , (3.2.17)

where X i = (xi, yi) is the central node, δ = max {|x− xi| , |y − yi|}. p is the order

of accuracy. Substituting all the vertices in the equation (3.2.17), we can obtain a

linear system in the form of

Bv ≈ u (3.2.18)

where B is the generalized Vandermonde matrix in 2-D. Again, we need to apply

the weights for each row of the linear system to make our scheme stable. In this

paper, we demonstrate the weights degree 2 and 3 schemes. Basically, we assign

different weights for different rings. We define R0 as the set of central node, R1 as

the set of 1-ring vertices, Ri, i ≥ 2 as the set of vertices on the ith ring. The weights

for smooth condition have the form as follows

ωj =


2, Xj ∈ R0

1.5, Xj ∈ R1

0.1, Xj ∈ R2 ∪R3

, (3.2.19)

Again, we use the same technique as in 1-D case to solve this weighted least squares

problems and obtain the function derivatives at the central node. We save the coef-

ficients for each node in the stencil for efficiency.
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(a) Flux points for degree 2 scheme. (b) Flux points for degree 3 scheme

Figure 3.4: Flux points for degree 2 and 3 schemes.

WLS-ENO for Flux Derivatives in 2-D

After building the polynomials, we focus on the computation of fluxes. The fluxes

are computed on flux points within the control volume. Here, we explain the place-

ment of flux points for degree 2 and 3 schemes. For degree-2 scheme, the flux

points are placed in the middle of each boundary edge of control volume. For de-

gree 3 scheme, we also add the corner points on the boundaries.

Figure 3.4 demonstrates the position points for degree 2 and 3 schemes. Ob-

viously, when computing the function values on flux points, we have at least two

different approximations from two control volumes sharing the same edge. At the

corner, we have actually three different values. We employ a one-dimensional Rie-

mann solver such as Lax-Friedrichs flux in the normal direction of each edge and

require that the normal component of the flux vector across each edge are identical

for two control volumes sharing the same edge. Suppose we define uL and uR as
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two values from the current control volume and its neighbor receptively, we have

F · n =
1

2
{[F (uL) + F (uR)] · n− α (uR − uL)} (3.2.20)

where n is the normal direction, α is taken as an upper bound for the eigenvalues

of the Jacobian. For tangential direction l, since it does not affect conservation

property, we determine its component of flux vector as

F · l =
1

2
{[F (uL) + F (uR)] · l} (3.2.21)

For flux points in the middle of edges of the control volume, we combine equation

(3.2.20) and (3.2.21) to solve for fluxes. For corner points where we may have two

different normal directions n1 and n2, we use equation (3.2.20) with two different

normals to get the fluxes.

Now we are ready to compute the flux derivatives on vertices. As in 1-D case,

we build our linear system for all the fluxes within the control volume and solve the

least squares problem to get the first order derivatives. The degree of the polynomial

we use depends on the order of accuracy of function values from the previous step.

Basically, we approximate the flux on the central vertex to the same order accuracy

in Taylor series as we can obtain from reconstruction.

WLS-ENO for Discontinuous Functions in 2-D

Above strategy works well for smooth functions. For discontinuous functions, how-

ever, we need to design similar technique to suppress oscillations. To deal with
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discontinuity, we solve the linear system (3.2.18) with different weights as follows

ωj =
1

βj
, with βj =


(uij − ui)2 + ‖X i −X ij‖2 j 6= i

min {βj, j 6= i} j = i

, (3.2.22)

Also, we lower our approximated polynomials according to the number of dis-

continuous points in the stencil. Typically, the number of continuous points should

be 1.5 to 2 times bigger than the number of unknowns in the system. This can help

us suppress oscillation and achieve good results.

In order to detect discontinuities, we need to define the non-differential indica-

tor. For any vertex X i in the domain and the vertices in its one-ring neighborhood

Si = {X ij, j = 1, 2, ..., k}, we have the form

(ui − uij)2 =

(
∂u

∂x
(xij − xi) +

∂u

∂y
(yij − yi)

)2

+O
(
‖δ‖3) . (3.2.23)

To design a non-differential indicator, we need to eliminate the second order terms

in (3.2.23). Therefore, suppose we assign each vertex in the one-ring neighborhood

a coefficient Cij, j = 1, 2, ..., k, they need to satisfy

Dc = 0 (3.2.24)

where D is a 3-by-k matrix and D1j = (xij − xi)2,D2j = (xij − xi) (yij − yi),

D3j = (yij − yi)2, c = [Ci1, Ci2, ..., Cik]
T . In this way, we can expect that

k∑
j=1

Cij (ui − uij)2 (3.2.25)
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is a higher order term than any terms in the lefthand side of (3.2.23). Thus we define

our non-differential indicator as

αi =


1, if

∑k
j=1Cij (ui − uij)2 > min {err1, err2, ..., errk}

0, otherwise

, (3.2.26)

where errj = (ui − uij)2 + ‖X i −X ij‖2 , j = 1, 2, ..., k. To obtain these coeffi-

cients, we solve the following problem

min
C

k∑
j=2

(Cij − Ci1)2 (3.2.27)

such that equation (3.2.24) is satisfied and

k∑
j=1

|Cij| = 1. (3.2.28)

This can help us identify discontinuities. The problem need to be solved only once

for efficiency.

For time stepping, we use TVD Runge-Kutta method. TVD Runge-Kutta method

is a typical method for solving hyperbolic conservation laws explicitly. Basically,

an n-stage Runge-Kutta method for the ODE ut = L(u) has the general form of

k0 = u(t), (3.2.29)

ki =
i−1∑
j=0

(αijkj + βij∆tL(kj)) , i = 1, . . . , n, (3.2.30)

where ki is the intermediate solution after the ith stage, and u(t+∆t) = kn. A total
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variation diminishing (TVD) Runge-Kutta method should satisfy the condition that

all the coefficients αij and βij are nonnegative. The CFL coefficient of such a

scheme is given by

c = min
i,k
{αik/βik}. (3.2.31)

Specifically, what we use in this section and Chapter 5 is the third-order TVD

Runge-Kutta scheme, given by

k1 = u+ ∆tL (u) , (3.2.32)

k2 =
3

4
u+

1

4
k1 +

1

4
∆tL (k1) , (3.2.33)

k3 =
1

3
u+

2

3
k2 +

2

3
∆tL(k2), (3.2.34)

for which the CFL coefficient is c = 1.

3.2.3 WLS-ENO Schemes for Euler System

For Euler system, the reconstruction step can be performed in either component by

component fashion or characteristic decomposition fashion. The first technique has

the advantage of efficiency but may not detect discontinuities as good as character-

istic decomposition. However, the computational cost of characteristic decompo-

sition is much higher than component-wise fashion. Throughout our experiments,

we only use component-wise reconstruction for efficiency purpose.
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3.3 Implementation Details

In this section we describe some of implementation details needed for our frame-

work, including data structure and the solution for the weighted least squares prob-

lems.

3.3.1 Data Structure for Neighborhood Search

To support our framework and the construction of stencils in 2-D and 3-D, we

use the data structured introduced in [11], which is called Array-based Half-Facet

(AHF) data structure, to store the mesh information. In AHF, the term facet repre-

sents lower dimensional mesh entities. For example, in 2-D the facets are the edges,

and in 3-D the facets are the faces. Every facet in a manifold mesh consists of two

half-facets oriented in opposite direction. These two half-facets are called sibling

half facets. On the boundary, half-facets have no siblings. We refer half-facets as

half-edges and half-faces in 2-D and 3-D respectively. In order to store mesh in-

formation, we identify each half-facet by a two tuple: the element ID and a local

facet ID within the element. For example in 2-D, we store element connectivity,

sibling half-edges, and a mapping from each node to an incident half-edge. In 3-D,

we store element connectivity, sibling half-faces, and a mapping from each node to

an incident half-face. In this way, we can do neighborhood queries for a node in

constant time. For more details, please refer to [11].

3.3.2 Solution of Weighted Least Squares Problems

In this paper, we solve weighted least squares problems by OR factorization with

column pivoting. The basic idea is the following. Suppose we are aiming at finding
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the solution that minimize

min
d
‖WAv −Wu‖2 . (3.3.1)

where W is the weighting matrix in (3.2.18). To improve the condition number

of A, we scale the columns of the matrix WA ([18, 19]), and solve the following

problem instead

min
d
‖WASd−Wu‖2 . (3.3.2)

where d ≡ S−1x. S = diag (1/ ‖ã1‖2 , 1/ ‖ã2‖2 , . . . , 1/ ‖ãn‖2), where ãi is the

ith column vector of WA. We perform reduced QR factorization with column

pivoting to the matrix WAS:

WASE = QR. (3.3.3)

Here E is chosen so that the diagonal of R is in decreasing order. If WAS has

full rank, then its pseudoinverse is

(WAS)+ = ER−1QT . (3.3.4)

Otherwise, the pseudoinverse is computed as

(WAS)+ = E1:k,1:rR
−1
1:r,1:r(Q1:m,1:r)

T , (3.3.5)

where r the numerical rank of R. In this way, we can truncate the higher order

terms in WAS for best-possible accuracy whenever possible.
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Chapter 4

Accuracy and Stability Analysis of

WLS-ENO

In this chapter, we will analyze the accuracy as well as the stability of WLS-ENO

for both finite volume and finite difference methods by solving hyperbolic conser-

vation laws.

4.1 Accuracy and Stability of WLS-ENO

4.1.1 Accuracy of WLS-ENO for Finite Volume Method

First, we analyze the WLS-ENO schemes and show that they can achieve the ex-

pected order of accuracy for smooth functions.

Theorem 1. Given a mesh with a smooth function f . Let W be a diagonal ma-

trix containing all the weights for the cells. A and S are the matrices in (3.3.2).

Suppose the cell average of f is approximated with an error O(hp) and the matrix

42



WAS has a bounded condition number. The degree-(p− 1) cell average weighed

least squares fitting approximates qth order derivatives of function f to O(hp−q).

For simplicity, we only prove the theorem in 2-D. The analysis also applies to

1-D and 3-D.

Proof. The 2-D Taylor series expansion about the point (xi, yi) reads

f(x, y) =

p−1∑
q=0

j+k=q∑
j,k≥0

fjk
j!k!

(x− xi)j(y − yi)k +O (‖δx‖p) , (4.1.1)

where δx = [x− xi, y − yi]T . The cell average of f(x, y) over some cell τi can be

written as

1

|τi|

¨
τi

f(x, y) dxdy =
1

|τi|

p−1∑
q=0

j+k=q∑
j,k≥0

fjk
j!k!

¨
τi

(x−xi)j(y−yi)k dxdy+O (‖δx‖p) .

(4.1.2)

Let v denote the exact derivatives of function f , ṽ the numerical solution from the

WLS fitting. Let r = u−Av. By assumption, each component of r is O (‖δx‖p).

The error of coefficients has the relationship WA (ṽ − v) ≈Wr. The error of d

can then be written as

WASδd ≈Wr. (4.1.3)

By solving this least squares problem, we have δd = (WAS)+ Wr. Since the

function f is smooth, all the diagonal entries in W areO(1/ ‖δx‖2). Under the as-

sumption that WAS has a bounded condition number κ, all the component of δd

are O(κ ‖δx‖p−2). For a qth order partial derivative of function f , the correspond-

ing column in WA is O(‖δx‖q−2), so is the 2-norm of the column. Therefore, the

qth order derivatives of function f are approximated to O(hp−q).
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From this theorem, we can conclude that the degree-(p− 1) WLS-ENO recon-

struction delivers a pth order accurate reconstruction for smooth functions.

4.1.2 Accuracy of WLS-ENO for Finite Difference Method

The accuracy of WLS-ENO schemes are guaranteed by Taylor series expansion and

weighted least squares approximations. We prove the following theorem to show

that they can achieve the expected order of accuracy for smooth functions.

Theorem 2. Given a mesh with a smooth function f . Let W be a diagonal matrix

containing all the weights for the vertices. A and S are the matrices in (3.3.2). Sup-

pose f is approximated with an error O(hp) and the matrix WAS has a bounded

condition number. The degree-(p − 1) weighed least squares fitting approximates

qth order derivatives of function f to O(hp−q).

This theorem is similar to the proposition 1 in [19]. The idea is that since the

residue of the linear system is high order term, and WAS has a bounded condition

number, the difference between numerical and exact solution must also be a high

order term. By this observation we can conclude that all the derivatives can be

approximated to expected order of accuracy. We refer to readers to [19] for the

proof. From this theorem, we can conclude that the degree-(p − 1) WLS-ENO

reconstruction delivers a pth order accurate reconstruction for smooth functions.

We also emphasize that this theorem does not limit to 2 dimensional space and it

works for 1D and 3D.
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4.2 Stability Analysis of WLS-ENO

For the WLS-ENO to be practically useful, it is important that it enables a stable

discretization for hyperbolic conservation laws, when coupled with a proper time-

integration scheme. In the following, we analyze two fifth-order WLS-ENO finite

volume schemes and degree 3 and 5 WLS-ENO finite difference schemes on struc-

tured mesh for a model problem in 1-D, based on a modified von Neumann stability

analysis. We show that the WLS-ENO finite volume and finite difference schemes

have larger stability regions than the WENO scheme on structured meshes. We will

further demonstrate its stability for higher dimension problems in Chapter 5.

4.2.1 von Neumann Stability Analysis in 1-D

We consider one dimensional wave equation

ut + ux = 0, x ∈ [0, 1], t > 0 (4.2.1)

with the periodic boundary condition

u(x, 0) = u0(x), x ∈ [0, 1]. (4.2.2)

Suppose we have a structured grid 0 = x0 < x1 < · · · < xN = 1 with xi =

i∆x , xi+ 1
2

= (xi + xi+1) /2 and ∆x = 1/N . For different type of schemes, we

use different formulation for flux derivatives. For the finite volume method, we

integrate the above wave equation and divide it by the length of the cell, and obtain

du(xi, t)

dt
= − 1

∆xi

(
f
(
u
(
xi+ 1

2
, t
))
− f

(
u
(
xi− 1

2
, t
)))

, (4.2.3)
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where

u (xi, t) =
1

∆xi

ˆ x
i+1

2

x
i− 1

2

u(x, t) dx. (4.2.4)

We approximate (4.2.3) by the following conservative scheme

du(xi, t)

dt
= − 1

∆xi

(
f̂i+ 1

2
− f̂i− 1

2

)
, (4.2.5)

where the numerical flux f̂i+ 1
2

is replaced by the Lax-Friedrichs flux (1.0.3), with

α = maxu |f ′(u)|. For this particular problem, f̂i+ 1
2
− f̂i− 1

2
= u−

i+ 1
2

− u−
i− 1

2

.

For finite different schemes, We discretize the wave equation and obtain the semi-

discretization
d

dt
uj (t) = − 1

4x
L (uj−r, ..., uj+s) . (4.2.6)

Next, we explain von Neumann stability analysis with finite difference method.

The analysis for finite volume schemes can be similarly derived. By von Neumann

stability analysis, the semi-discrete solution can be written in a discrete Fourier

series form

uj(t) =

N/2∑
k=−N/2

ûk(t)e
iωkj∆x, ωk ∈ R. (4.2.7)

According to the superposition principle, we can use only one term in the series for

analysis

uj(t) = ûk(t)e
ijθk , θk = ωk∆x, (4.2.8)

where k = −N/2, . . . , N/2. We assume that the numerical flux can be expressed

by the following form

L (uj−r, ..., uj+s) = z (θk)ui, (4.2.9)
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where the complex function z (θk) is the Fourier symbol.

Let uni = ui(t
n) be the numerical solution at time level tn = n∆t. We denote

the amplification factor g by substituting (4.2.8) into the fully-discrete system and

obtain

un+1
i = g(ẑk)u

n
i , ẑk = −σz (θk) , k = −N/2 . . . N/2, (4.2.10)

where σ = ∆t/∆x. The linear stability domain of an explicit time-stepping scheme

is thus St = {ẑ : |g (ẑ)| ≤ 1}. Also, the discrete spectrum S of a spatial discretiza-

tion scheme can be defined as

S = {−z (θk) : θk ∈ 0,∆θ, 2∆θ, . . . , 2π} , ∆θ = 2π∆x. (4.2.11)

The stability limit is thus the largest CFL number σ̃ such that the rescaled spectrum

σ̃S lies inside the stability domain

σ̃S ∈ St. (4.2.12)

For the third-order Runge-Kutta scheme, the amplification factor is given by

g (z̃) = 1 + z̃ +
1

2
z̃2 +

1

6
z̃3. (4.2.13)

The boundary of the stability domain ∂St = {z̃ : |g(z̃)| = 1} can be determined by

setting g(z̃) = eiφ and solving the following equation

z̃3 + 3z̃2 + 6z̃ + 6− 6eiφ = 0. (4.2.14)
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Figure 4.1 showed the stability domain in solid blue curves.

4.2.2 Stability Analysis for WLS-ENO Finite Volume Schemes

Fifth-Order WLS-ENO Scheme with Five Cells

Let us first consider a fifth-order scheme for a cell τi, with five cells

Si = {τi−2, τi−1, τi, τi+1, τi+2} , (4.2.15)

where τi is the interval
[
xi− 1

2
, xi+ 1

2

]
. For this stencil, the coefficient matrix in

(3.1.4) is given by

A =



1 −5∆x
2

19∆x2

6
−65∆x3

24
211∆x4

120

1 −3∆x
2

74x2
6

−15∆x3

24
31∆x4

120

1 −∆x
2

∆x2

6
−∆x3

24
∆x4

120

1 ∆x
2

∆x2

6
∆x3

24
∆x4

120

1 3∆x
2

7∆x2

6
15∆x3

24
31∆x4

120


. (4.2.16)

Since A is nonsingular, the weights do not affect the solution. The solution is given

by

u−
i+ 1

2

=
2

60
ui−2 −

13

60
ui−1 +

47

60
ui +

27

60
ui+1 −

3

60
ui+2. (4.2.17)

This is mathematically equivalent to the fifth-order WENO scheme without the non-

linear weights. Also, the flux reads

u−
i+ 1

2

−u−
i− 1

2

= − 2

60
ui−3 +

15

60
ui−2−

60

60
ui−1 +

20

60
ui+

30

60
ui+1−

3

60
ui+2. (4.2.18)
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Substituting it into (4.2.8), we get

z (θk) =
16

15
sin6

(
θk
2

)
+i

(
−1

6
sin (2θk) +

4

3
sin (θk) +

16

15
sin5

(
θk
2

)
cos

(
θk
2

))
.

(4.2.19)

The discrete spectrum is shown in Figure 4.1(left).

Given the spectrum and the stability domain, the CFL number of this scheme

can be computed by finding the largest rescaling parameter σ, so that the rescaled

spectrum still lies in the stability domain. Using interval bisection, we find that the

CFL number is σ = 1.44 for the fifth-order five-cell scheme.

Fifth-Order WLS-ENO Scheme with Seven Cells

Next, let us consider a least-squares fitting for τi using seven cells

Si = {τi−3, τi−2, τi−1, τi, τi+1, τi+2, τi+3} . (4.2.20)

The coefficient matrix in (3.1.4) is given by

A =



1 −7∆x
2

37∆x2

6
−175∆x3

24
781∆x4

120

1 −5∆x
2

19∆x2

6
−65∆x3

24
211∆x4

120

1 −3∆x
2

74x2
6

−15∆x3

24
31∆x4

120

1 −∆x
2

∆x2

6
−∆x3

24
∆x4

120

1 ∆x
2

∆x2

6
∆x3

24
∆x4

120

1 3∆x
2

7∆x2

6
15∆x3

24
31∆x4

120

1 5∆x
2

19∆x2

6
65∆x3

24
211∆x4

120



. (4.2.21)
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If ε = 0, from (3.1.7) and (3.1.8), we obtain the weights

w1 ≈ 1
9∆x2

, w2 ≈ 1
4∆x2

, w3 ≈ 1
∆x2

, w4 ≈ 1.5
∆x2

, w5 ≈ 1
∆x2

w6 ≈ 1
4∆x2

, w7 ≈ 1
9∆x2

(4.2.22)

Solving the weighted least squares system, we obtain the following scheme

u−
i+ 1

2

=
1226983

9489680
ui−3 −

963431

47447340
ui−4 −

13515169

94894680
ui−1 +

66771

87380
ui+

38388551

94894680
ui+1 −

93404

11861835
ui+2 −

348299

31631560
ui+3.

Therefore, the flux reads

u−
i+ 1

2

− u−
i− 1

2

=− 1226983

94894680
ui−4 +

630769

18978936
ui−3 +

3862769

31631560
ui−2

− 17205695

18978936
ui−1 +

6824951

18978936
ui +

13045261

31631560
ui+1

+
59533

18978936
ui+2 −

348299

31631560
ui+3.

Substituting it into (4.2.8), we get

z (θk) = p (θk) + iq (θk) , (4.2.23)

where

p (θk) = −0.0129 cos (4θk) + 0.0222 cos (3θk) + 0.1253 cos (2θk)

−0.4942 cos (θk) + 0.3596,
(4.2.24)
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Figure 4.1: Rescaled spectra and stability domains of fifth-order WLS-ENO with
five (left) and seven (right) cells.

and

q (θk) = 0.0129 sin (4θk)− 0.0442 sin (3θk)− 0.1190 sin (2θk) + 1.3190 sin (θk) .

(4.2.25)

The discrete spectrum is shown in Figure 4.1(right). The CFL number is computed

in the same way as the above scheme. For this scheme with seven cells, we obtain

σ = 1.67. Therefore, the seven-cell fifth-order WLS-ENO scheme has a larger

stability region than the five-cell counterpart, which is mathematically equivalent to

the fifth-order WENO scheme without nonlinear weights.

4.2.3 Stability Analysis for WLS-ENO Finite Difference Schemes

Degree 3 WLS-ENO scheme

Next, let us consider degree 3 WLS-ENO scheme with the stencil

Si = {xi−3, xi−2, xi−1, xi, xi+1, xi+2, xi+3} , (4.2.26)

51



The linear system is given by

A =



1 −34x 94x2 −274x3

1 −24x 44x2 −84x3

1 −4x 4x2 −4x3

1 0 0 0

1 4x 4x2 4x3

1 24x 44x2 84x3

1 34x 94x2 274x3



. (4.2.27)

Again, we solve this linear system with the weights (3.2.9) and compute the func-

tion values on flux points

u−
i+ 1

2

=− 441573

22003808
ui−3 −

241521

5500952
ui−2 +

6030169

22003808
ui−1 +

3447

60784
ui

+
17617119

22003808
ui+1 −

304489

11001904
ui+2 −

874659

22003808
ui+3.

Suppose we define u∗1 and u∗2 to be the approximated value at flux point −
√

1
5

and√
1
5

respectively, we have

u∗1 =− 0.0423ui−3 − 0.0459ui−2 + 0.6761ui−1 + 0.0625ui

+ 0.4334ui+1 − 0.0518ui+2 − 0.0320ui+3.
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u∗2 =− 0.0320ui−3 − 0.0518ui−2 + 0.4334ui−1 + 0.0625ui

+ 0.6761ui+1 − 0.0459ui+2 − 0.0423ui+3.

Therefore, the flux reads

L =0.25ui− 1
2
− 0.25ui+ 1

2
− 2.7951u∗1 + 2.7951u∗2

=− 0.0050ui−4 + 0.0229ui−3 + 0.0630ui−2 − 0.7329ui−1

+ 0.1860ui + 0.4715ui+1 + 0.0135ui+2 − 0.0189ui+3.

Substituting it into (4.2.8), we get

Re (z (θk)) = −0.0401 cos (x)4 + 0.0159 cos (x)3 + 0.1931 cos (x)2

−0.25 cos (x) + 0.1045

Im (z (θk)) = 1.2045 sin (x)− 0.0495 sin (2x)− 0.0418 sin (3x) + 0.005 sin (4x)

(4.2.28)

The stability region and its discrete spectrum is shown in Figure 4.2 (left). The

CFL number is computed in the same way as the above scheme. For this scheme,

we obtain σ = 1.65. As a comparison, the CFL number for 3rd order WENO

finite difference scheme is 1.63. We can see that degree 3 WLS-ENO scheme has a

comparable CFL number.
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Figure 4.2: Rescaled spectrum and stability domains of degree 3 WLS-ENO
scheme (left) and degree 5 WLS-ENO scheme (right).

Degree 5 WLS-ENO Scheme

Let us first consider a degree 5 WLS-ENO scheme for a point xi, with its stencil

S (i) = {xi−4, xi−3, xi−2, xi−1, xi, xi+1,xi+2, xi+3, xi+4} , (4.2.29)

According to (3.2.8) , the system has the following form

A =



1 −4∆x 16∆x2 −64∆x3 256∆x4 −1024∆x5

1 −3∆x 9∆x2 −27∆x3 81∆x4 −243∆x5

1 −2∆x 4∆x2 −8∆x3 16∆x4 −32∆x5

1 −∆x ∆x2 −∆x3 ∆x4 −∆x5

1 0 0 0 0 0

1 ∆x ∆x2 ∆x3 ∆x4 ∆x5

1 2∆x 4∆x2 8∆x3 16∆x4 32∆x5

1 3∆x 9∆x2 27∆x3 81∆x4 243∆x5

1 4∆x 16∆x2 64∆x3 256∆x4 1024∆x5



. (4.2.30)
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Suppose the function is smooth within the stencil. By applying the constant

weights (3.2.9), we can approximate the function values on the flux points of the

boundary

u−
i+ 1

2

=− 0.0021ui−4 + 0.0092ui−3 + 0.0042ui−2 − 0.1291ui−1 + 0.6803ui

+ 0.4689ui+1 − 0.0196ui+2 − 0.0158ui+3 + 0.0040ui+4.

We define u∗i , i = 1, 2, 3, 4 to be the flux points in the control volume, we can obtain

the flux

L =− 0.125ui− 1
2

+ 0.125ui+ 1
2

+ 0.509u∗1 − 4.433u∗2 + 4.433u∗3 − 0.509u∗4

=0.0003ui−5 − 0.009ui−4 + 0.0290ui−3 + 0.0513ui−2 − 0.6641ui−1

+ 0.0264ui + 0.6240ui+1 + 0.0351ui+2 − 0.0308ui+3 + 0.0078ui+4.

Substituting it into (4.2.8), we get

Re (z (θk)) =0.0041 cos5 (x)− 0.0072 cos4 (x)− 0.0126 cos3 (x) + 0.0395 cos2 (x)

− 0.0332 cos (x) + 0.0093.

Im (z (θk)) =− 2.5832× 10−4 sin (5x) + 0.0164 sin (4x)− 0.598 sin (3x)

− 0.0865 sin (2x) + 1.2880 sin (x) .

After obtaining the spectrum and the stability domain, we rescale the spectrum

so that it touches the stability domain and the rescaling factor is 1.3145. In com-
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parison, the CFL number for 5th order WENO scheme is 1.43. Figure 4.2 (right)

shows the stability region and the discrete spectrum.

Here we omit the stability analysis of degree 2 and 4 schemes because they

follow the same procedure. We just emphasize that they both can enable a relatively

large stability domain.
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Chapter 5

Numerical Experiments

In this chapter, we present some numerical experiments of both WLS-ENO finite

volume and finite difference schemes in 1-D, 2-D and 3-D, and compare it against

WENO schemes on both structured and unstructured meshes when applicable. For

all the numerical test, we use third-order TVD Runge-Kutta for time integration.

5.1 Numerical Experiments for WLS-ENO Finite Vol-

ume Schemes

5.1.1 1-D Results

We first show some results in 1-D, for the reconstruction of a piecewise smooth

function as well as the solutions of PDEs, including a linear wave equation, Burg-

ers’ equation, and the Euler equations.
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Reconstruction of Discontinuous Functions

We first test WLS-ENO for the reconstruction of a 1-D discontinuous function,

given by

v(x) =


sin(πx)

cos(πx)

0 ≤ x ≤ 0.6

0.6 < x ≤ 1

. (5.1.1)

This function is discontinuous at x = 0.6 but smooth everywhere else within the

interval [0, 1]. We performed grid convergence study under grid refinement, starting

from an equidistant grid with 32 grid cells. For the WLS-ENO, we used degree-four

polynomials over seven-cell stencil, which according to our theory should deliver

fifth-order accuracy in smooth regions and fourth-order accuracy near discontinu-

ities. As a point of reference, we also perform the reconstruction using the fifth-

order WENO scheme, which is fifth-order accurate in smooth regions and third-

order accurate near discontinuities. Figure 5.1 shows the L∞-norm error for the

reconstructed values at the grid points that are one cell away from the discontinu-

ity. It can be seen that both WLS-ENO and WENO delivered fifth-order accuracy,

but WLS-ENO is more accurate. When including the grid points near discontinu-

ities, as can be seen in Figure 5.2, WLS-ENO achieved fourth-order convergence,

whereas the fifth-order WENO reduced to third order, as predicted by their respec-

tive theoretical analyses.
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Figure 5.1: Convergence of fifth-order
WENO and WLS-ENO away from dis-
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Figure 5.2: Convergence of fifth-order
WENO and WLS-ENO near discontinu-
ity.

1-D Wave Equation

To test the effectiveness of WLS-ENO for solving hyperbolic PDEs, we first solve

a simple linear wave equation

ut + ux = 0, −1 ≤ x ≤ 1, (5.1.2)

with periodic boundary conditions. Similar to the reconstruction problem, we use

WLS-ENO with degree-four polynomials over seven cells. To assess the accuracy

for smooth solutions, consider the smooth initial condition

u(x, 0) = sin(πx), (5.1.3)

for which the solution remains smooth over time. We assess the order of accuracy of

the solutions at t = 1 under grid refinement, and compare the errors against the fifth-

order WENO. Figure 5.3 shows the results for uniform and non-uniform grids. For
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Figure 5.3: Convergence of fifth-order WENO and WLS-ENO for wave equation
at t = 1 on 1-D grids.

uniform grids, similar to the results of reconstruction, both WLS-ENO and WENO

delivered fifth-order convergence under grid refinement, and the solution of WLS-

ENO is more accurate. For non-uniform grids, we used the WENO reconstruction

in [32], which converged at a slower rates, and was about an order of magnitude

less accurate than WLS-ENO on the finest grid.

To demonstrate the accuracy and stability of WLS-ENO for discontinuous so-

lutions, we change the initial condition to be a piecewise smooth function

u(x, 0) =


sin(πx) −1 ≤ x < −0.2 ∪ 0.3 < x ≤ 1

0.5 −0.2 ≤ x ≤ 0.3

, (5.1.4)

as shown in Figure 5.4(a). Figure 5.4(b) shows the solution at t = 0.5 using WLS-

ENO. The results show that the WLS-ENO scheme well preserved the sharp feature

and maintained the non-oscillatory property.

60



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

(a) Initial condition.

x

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

u
(
x
)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Exact

WLS-ENO

(b) Numerical solution at t = 0.5.

Figure 5.4: Discontinuous initial condition (left) and numerical solution with fifth-
order WLS-ENO (right) at t = 0.5 for the linear wave equation.

1-D Burgers’ Equation

Next, we test WLS-ENO with the 1-D Burgers’ equation,

∂u

∂t
+ u

∂u

∂x
= 0, 0 ≤ x ≤ 2π, (5.1.5)

with periodic boundary conditions and the initial condition

u(x, 0) = 0.3 + 0.7 sin(x), 0 ≤ x ≤ 2π. (5.1.6)

Although the initial condition is smooth, a discontinuity develops at time t = 1.4.

To assess the order of accuracy, Figure 5.5(a) shows the solutions from the fifth-

order WLS-ENO, compared with the fifth-order WENO under grid refinement at

time t = 1, starting from a grid with 64 grid points. The results show that both

WLS-ENO and WENO delivered fifth-order accuracy, while WLS-ENO is more

accurate. Figure 5.5(b) shows the numerical solution from WLS-ENO overlaid

on top of the exact solution at t = 1.4. We can see that the WLS-ENO scheme
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Figure 5.5: Comparison of WENO and WLS-ENO schemes for 1-D Burgers’ equa-
tion at t = 1 (left) and numerical solution with WLS-ENO (right) at t = 1.4.

approximated the solution very well.

1-D Euler Equations

The above tests demonstrate the accuracy and stability of WLS-ENO for 1-D bench-

mark problems. For a more realistic problem, we consider the 1-D Euler equations


ρ

ρv

E


t

+


ρv

ρv2 + p

v (E + p)


x

= 0, (5.1.7)

with the equation of state for ideal polytropic gas

E =
p

γ − 1
+

1

2
ρv2, (5.1.8)

where ρ denotes the gas density, v the velocity, p the pressure, E the energy, and

γ = 1.4 a constant specific to air. We perform characteristic decomposition [21]

and solve the conservation law characteristic-wise using the fifth-order WLS-ENO
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scheme on an unstructured (i.e., non-uniform) grid. In more detail, if we introduce

the speed of sound c by

c =

√
γp

ρ
, (5.1.9)

and enthalpy H by

H =
E + p

ρ
, (5.1.10)

we have the eigenvalue decomposition for the Jacobian as

R−1(u)f ′(u)R(u) = Λ(u), (5.1.11)

where

f ′(u) =


0 1 0(

γ−3
2

)
v2 (3− γ)v γ − 1(

γ−1
2

)
v3 − vH H − (γ − 1)v2 γv

 , (5.1.12)

Λ(u) =


v − c

v

v + c

 , (5.1.13)

and

R(u) =


1 1 1

v − c v v + c

H − cv 1
2
v2 H + cv

 . (5.1.14)

63



x
-5 -4 -3 -2 -1 0 1 2 3 4 5

D
e
n
si
ty

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Exact

WLS-ENO

(a) Density.

x

-5 -4 -3 -2 -1 0 1 2 3 4 5

P
r
e
s
s
u
r
e

0

0.2

0.4

0.6

0.8

1

1.2

Exact

WLS-ENO

(b) Pressure.

x
-5 -4 -3 -2 -1 0 1 2 3 4 5

V
e
lo
c
it
y

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Exact

WLS-ENO

(c) Velocity.

Figure 5.6: Solutions of 1-D Euler equations at t = 1 with fifth-order WLS-ENO
on non-uniform grid.

Sod’s Problem We first compute the density, velocity and pressure with the initial

condition given by Sod’s problem [32]

(ρL, vL, pL) = (1, 0, 1) , (ρR, vR, pR) = (0.125, 0, 0.1) . (5.1.15)

Figure 5.6 shows the numerical solutions at t = 1 compared against the exact so-

lution. The results matched the exact solution very well and were non-oscillatory

near discontinuities.

Interacting Blast Waves Next, we consider the 1-D blast wave problem [42],

which has the initial condition

(ρ, u, P ) =


(1, 0, 1000) 0 ≤ x < 0.1

(1, 0, 0.01) 0.1 ≤ x < 0.9

(1, 0, 100) 0.9 ≤ x < 1

, (5.1.16)

and reflective boundary conditions at both sides. For this test, sharp resolution of

discontinuities is critical for the accuracy of the overall flow solution. Figure 5.7
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Figure 5.7: Solutions of 1-D interacting blast waves at t = 0.038 with fifth-order
WLS-ENO.

shows the result using fifth-order WLS-ENO scheme at t = 0.038, which agreed

with the exact solution very well.

5.1.2 2-D Results

We now present results of WLS-ENO with 2-D unstructured meshes for problems

with smooth or piecewise smooth solutions, including the wave equation, Burgers’

equation, and the Euler equations with two different initial conditions.

2-D Wave Equation

As in 1-D, we first consider the wave equation,

ut + ux + uy = 0, (5.1.17)

with periodic boundary conditions and the initial condition

u0(x, y) = sin
(π

2
(x+ y)

)
, −2 ≤ x ≤ 2, −2 ≤ y ≤ 2. (5.1.18)
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Figure 5.8: Sample unstructured triangu-
lar mesh for solving 2-D wave equation.
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Figure 5.9: Errors in numerical solutions
of 2-D wave equation with WENO and
WLS-ENO at t = 1.

For this problem, the solution remains smooth over time. We solve the problem

using third-order WLS-ENO scheme and third-order WENO scheme. Figure 5.9

shows the errors at t = 1, and it can be seen that both methods achieved only second

order convergence. This convergence rate is expected, because the derivatives can

only be approximated to second-order accurate by polynomial approximations over

nonuniform unstructured meshes without symmetry. When applying WLS-ENO

on a uniform mesh, such as that shown in Figure 5.10, it would deliver the conver-

gence rate one order higher due to error cancellation, similar to WENO and other

finite difference methods, as illustrated with the fourth-order WLS-ENO scheme

and fourth-order WENO scheme in Figure 5.11. Note that on uniform meshes,

WLS-ENO may be slightly less accurate than WENO because it uses a larger sten-

cil.
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Figure 5.10: Sample uniform triangular
mesh for solving 2-D wave equation.
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Figure 5.11: Errors in numerical solu-
tions of 2-D wave equation with WENO
and WLS-ENO on uniform meshes.

2-D Burgers’ Equation

For piecewise smooth solutions, we solve the 2-D Burgers’ equation

ut +

(
u2

2

)
x

+

(
u2

2

)
y

= 0 (5.1.19)

over [−2, 2]2, with periodic boundary conditions and the initial condition

u0(x, y) = 0.3 + 0.7 sin
(π

2
(x+ y)

)
. (5.1.20)

Although the initial condition is smooth, discontinuities develop over time. Fig-

ure 5.12(left) shows the exact solution at t = 0.5, when the solution becomes

discontinuous, and Figure 5.12(right) shows the result of fourth-order WLS-ENO

scheme under non-uniform grid refinement. It can be seen that the overall solution

remained accurate as discontinuities developed.
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Figure 5.12: Exact (left) and numerical solutions (right) with fourth-order WLS-
ENO for 2-D Burgers’ equation at t = 0.5.

2-D Euler Equations

The 2-D Euler equations have the following form



ρ

ρu

ρv

E


t

+



ρu

ρu2 + p

ρuv

u (E + p)


x

+



ρv

ρuv

ρv2 + p

v (E + p)


y

= 0, (5.1.21)

where

E =
p

γ − 1
+

1

2
ρ
(
u2 + v2

)
. (5.1.22)

In our tests, we use γ = 1.4 as in 1-D, and use characteristic decomposition to split

variables as described in [15]. WLS-ENO is then applied to each of the character-

istic field.

Vortex Evolution Problem This is one of the few problems that has exact solu-

tions for the compressible Euler equations. The test case involves the convection of

an isentropic vortex in inviscid flow, and it tests the ability of numerical schemes to

capture vortical flows. We consider an idealized setting over [0, 10]2 with periodic
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Figure 5.13: Convergence result of ρ for 2-D vortex evolution problem with fifth
order WLS-ENO on triangular meshes.

boundary conditions. The mean flow is ρ∞ = 1, p∞ = 1, and (u∞, v∞) = (1, 1).

For the initial condition, we place an isentropic vortex to the mean flow field. The

perturbation values are given by

(δu, δv) =
β

2π
e

1−r2

2 (−y, x) , (5.1.23)

δT = −(γ − 1) β2

8γπ2
e1−r2 (5.1.24)

where (x, y) = (x− 5, y − 5), r2 = x2 + y2, and the vortex strength β = 5. The

exact solution of this problem convecting the vortex along the diagonal direction.

We used fifth-order WLS-ENO scheme and computed the results up to t = 1. Fig-

ure 5.13 shows the result, which achieved the expected convergence rate.

Explosion Test Problem In this test, we solve the 2-D explosion test [10, 20],

which solves the Euler equations over a unit disk centered at the origin. The initial
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condition is given by

(ρ, u, v, p)T =


(1, 0, 0, 1)T

√
x2 + y2 ≤ 0.2

(0.125, 0, 0.1)T
√
x2 + y2 > 0.2

. (5.1.25)

We triangulated the unit disk with meshes similar to that in Figure 5.8, and ran the

test up to t = 0.1 to ensure that the explosion waves do not reach the boundary. To

obtain a reference solution, note that this problem is mathematically equivalent to

the axisymmetric Euler equations [36]

∂

∂t


ρ

ρu

E

+
∂

∂r


ρu

ρu2 + p

u (E + p)

 = −d− 1

r


ρu

ρu2

u (E + p)

 , (5.1.26)

where r is the radial coordinate. We solved this 1-D problem on a very fine mesh

composed of 4,000 grid points and use its solution as the reference. Figures 5.14

and 5.15 show the numerical solution for the density at t = 0.1 with the third-order

WLS-ENO scheme. The results agreed very well with the 1-D solutions.

5.1.3 3-D Results

One advantage of WLS-ENO is that it generalizes to 3-D in a straightforward fash-

ion. We present some numerical results over unstructured meshes in 3-D, including

the wave equation, Burgers’ equation, and the Euler equations.
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Figure 5.14: Numerical solution of ρ
for 2-D explosion test with third-order
WLS-ENO at t = 0.1.
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Figure 5.15: Numerical solution of ρ
along x axis of 2-D explosion test with
third-order WLS-ENO vs. 1-D solution
at t = 0.1.

3-D Wave Equation

We first solve the 3-D linear wave equation

ut + ux + uy + uz = 0 (5.1.27)

over [−2, 2]3, with periodic boundary conditions and the initial condition

u(x, y, z, 0) = sin
(π

2
(x+ y + z)

)
. (5.1.28)

We solve the problem using WLS-ENO over a series of unstructured meshes,

where the coarsest mesh is depicted in Figure 5.16. Figure 5.17 shows the errors

with third-order and fourth-order WLS-ENO schemes under mesh refinement. It is

clear that both schemes achieved the convergence rate close to three, and the error

of fourth-order WLS-ENO scheme was about half of that of the third-order scheme.
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Figure 5.16: Sample unstructured mesh
for solving 3-D wave equations.
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Figure 5.17: Convergence of third-
and fourth-order WLS-ENO schemes for
wave equation on tetrahedral meshes.

3-D Burgers’ Equation

In this test, we solve the 3-D nonlinear Burgers’ equation

ut +

(
u2

2

)
x

+

(
u2

2

)
y

+

(
u2

2

)
z

= 0 (5.1.29)

over [−2, 2]3, also with periodic boundary conditions and the initial condition

u (x, y, z, 0) = 0.3 + 0.7 sin
(π

2
(x+ y + z)

)
. (5.1.30)

Similar to the 2-D case, discontinuities develop at t = 0.5. Figure 5.18 shows a 1-D

cross section of the numerical solutions along x = y and z = 0 with third-order

and fourth-order WLS-ENO schemes at t = 0.5, overlaid with the exact solution.

Both solutions are non-oscillatory. In contrast, the third-order WENO scheme in
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[47] was unstable over a non-uniform unstructured mesh. On a tetrahedral mesh

obtained by decomposing a structured mesh, WLS-ENO and WLS-ENO achieved

comparable accuracy for the problem.
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Figure 5.18: 1-D cross-sections of 3-
D Burgers’ equation using third- and
fourth-order WLS-ENO schemes at t =
0.5.
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Figure 5.19: Convergence of third-
and fourth-order WLS-ENO for Burg-
ers’ equation at t = 0.5 away from sin-
gularities.

3-D Euler Equations

As our final test, we solve the 3-D version of the explosion test [10, 20]. The 3-D

Euler equations have the form

Ut +
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= 0, (5.1.31)
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where

U =



ρ

ρu

ρv

ρw

E


, F =



ρu

ρu2 + p

ρuv

ρuw

u (E + p)


, G =



ρv

ρuv

ρv2 + p

ρvw

v (E + p)


, H =



ρw

ρuw

ρvw

ρw2 + p

w (E + p)


,

(5.1.32)

and

E =
p

γ − 1
+

1

2
ρ
(
u2 + v2 + w2

)
. (5.1.33)

As in 1-D and 2-D, we chose γ = 1.4. The computational domain is a unit ball

centered at the origin, which we tessellate with a tetrahedral mesh. The initial

condition of this problem is given by

(ρ, u, v, w, p)T =


(1, 0, 0, 0, 1)T

√
x2 + y2 + z2 ≤ 0.2

(0.125, 0, 0, 0, 0.1)T
√
x2 + y2 + z2 > 0.2

. (5.1.34)

We solved the problem in a component-by-component fashion up to t = 0.1, and

obtained a reference solution by solving the 1-D problem (5.1.26). Figures 5.20 and

5.21 show the numerical solutions of the density at t = 0.1, which agreed with the

1-D solutions very well.

74



Figure 5.20: Cross section of numerical
solution of ρ in xy plane of 3-D explo-
sion test with third-order WLS-ENO at
t = 0.1.
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Figure 5.21: Numerical solution of ρ
along x axis of 3-D explosion test with
third-order WLS-ENO vs. 1-D solution
at t = 0.1.

5.2 Numerical Experiments for WLS-ENO Finite Dif-

ference Schemes

5.2.1 1-D Results

We first solve hyperbolic problems in 1-D for both structured and unstructured

mesh, including a linear wave equation, Burgers’ equation, and Euler equations.

1-D Wave Equation

The first problem we solve is a simple hyperbolic linear wave equation

ut + ux = 0, −1 ≤ x ≤ 1, (5.2.1)
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Figure 5.22: WLS-ENO schemes for 1-D wave equation at t = 1 on structured grid
(left) and unstructured grid (right).

with periodic boundary conditions. We use WLS-ENO schemes from degree 2 to

degree 5 on both structured and unstructured mesh. To obtain the accuracy for

smooth solutions, we consider the following smooth initial condition

u(x, 0) = sin(πx), (5.2.2)

We assess the order of accuracy of the solutions at t = 1 under grid refinement.

Figure 5.22 shows the results for uniform and non-uniform grids. For even degree

schemes, they achieved the accuracy with the same order as their degrees. However,

for odd degree schemes, they achieved one order higher than the order of degree

they use. This is due to error cancellation.

We further compared the efficiency of this scheme with the well-known WENO

schemes for finite difference and WLS-ENO finite volume schemes [24]. From

Figure 5.23 we can see that WLS-ENO3 and WLS-ENO5 for GFD are as efficient

as 3rd order and 5th orderWENO schemes for finite difference respectively and all

the finite difference schemes are more efficient than WLS-ENO scheme for finite
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Figure 5.23: Timing comparison in 1D.

volume. However, WLS-ENO enjoys the benefit of being applicable to unstruc-

tured meshes. Another thing to notice is that errors for high order schemes tend to

decrease faster than low order schemes.

1-D Burgers’ Equation

Next, we use WLS-ENO schemes to solve 1-D Burgers’ equation,

∂u

∂t
+ u

∂u

∂x
= 0, 0 ≤ x ≤ 2π, (5.2.3)
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Figure 5.24: Numerical solutions of WLS-ENO schemes for 1D Burger’s equation.

with periodic boundary conditions and the following initial condition

u(x, 0) = 0.3 + 0.7 sin(x), 0 ≤ x ≤ 2π. (5.2.4)

The solution can develop discontinuities at time t = 1.4. To assess the order of

accuracy, Figure 5.24(a) and Figure 5.24(b) shows the degree 3 and 5 WLS-ENO

schemes for both structured and unstructured mesh at t = 1 when the function

is still smooth. We can see the convergence is similar to 1-D wave equation. Fig-

ure 5.24(c) shows the numerical solutions from WLS-ENO with the exact solution at

t = 1.4. We can see that WLS-ENO schemes maintained non-oscillatory property

and approximated the solution very well.

1-D Euler Equations: Sod’s Problem

We have shown the accuracy and stability of WLS-ENO schemes for 1-D scalar

problems. To assess the performance for 1-D system, we consider the 1-D Euler
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Figure 5.25: Solutions of 1-D Euler equations at t = 1 by WLS-ENO schemes on
non-uniform grid.

equation 
ρ

ρv

E


t

+


ρv

ρv2 + p

v (E + p)


x

= 0, (5.2.5)

with the equation of state for ideal polytropic gas

E =
p

γ − 1
+

1

2
ρv2, (5.2.6)

where ρ denotes the gas density, v the velocity, p the pressure, E the energy, and

γ = 1.4 a constant specific to air. We solve this problem using the degree 3 and

5 WLS-ENO schemes on an unstructured (i.e., non-uniform) grid and compare the

results with exact solution. The initial condition of Sod’s problem [32] is given by

(ρL, vL, pL) = (1, 0, 1) , (ρR, vR, pR) = (0.125, 0, 0.1) (5.2.7)

Figure 5.25 shows the numerical solutions against the exact solution at t = 1. It

demonstrates the good approximation of numerical solutions to the exact solution

and non-oscillation near discontinuities.
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Figure 5.26: Solutions of 1-D interacting blast waves at t = 0.038 by fifth order
WLS-ENO.

Interacting Blast Waves

This is a test problem specially designed by Woodward and Collela [42] to illustrate

the strong relationship between the accuracy of the overall flow solution and the

sharp resolution of discontinuities. It has the following the initial condition:

(ρ, u, P ) =


(1, 0, 1000) 0 ≤ x < 0.1

(1, 0, 0.01) 0.1 ≤ x < 0.9.

(1, 0, 100) 0.9 ≤ x < 1

(5.2.8)

Reflective boundary conditions are applied at both sides. For this example, we

use degree 3 and 5 WLS-ENO schemes and plot the results at time t = 0.038.

Figure 5.26 shows excellent agreement of the numerical solution with the exact

solution.

5.2.2 2-D Results

For 2-D cases, we use degree 2 and 3 WLS-ENO schemes with unstructured meshes

for problems with smooth or piecewise smooth solutions, including the wave equa-
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tion, Burgers’ equation, and the Euler equations with two different initial condi-

tions.

2-D Wave Equation

As in 1-D, we first consider the wave equation,

ut + ux + uy = 0, (5.2.9)

with periodic boundary conditions and the initial condition

u0(x, y) = sin
(π

2
(x+ y)

)
, −2 ≤ x ≤ 2, −2 ≤ y ≤ 2. (5.2.10)

This is a test for accuracy purpose. We solve the problem using degree 2 and 3

WLS-ENO schemes as mentioned in Section 3.2.2. Figure 5.28 shows the errors at

t = 1. We can see that the schemes achieved 2nd and 3rd order accuracy respec-

tively, as expected.

We also did the timing comparison against 3rd order WENO scheme with de-

gree 2 and 3 WLS-ENO schemes. From Figure 5.29 we can see that the slopes for

3rd order WENO scheme and degree 2 WLS-ENO scheme are basically the same,

except that WLS-ENO for generalized finite difference is faster. Also, WLS-ENO

for finite volume is the slowest. This is because the linear system is bigger than

WENO schemes and it needs to solve the system every time for each stencil. An-

other thing to notice is that higher order scheme is more efficient than lower order

scheme. This is important if we want to obtain solutions within certain accuracy.
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Figure 5.27: A sample unstructured tri-
angular mesh for solving 2-D wave equa-
tion.
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Figure 5.28: Errors of solutions of 2-D
wave equation with WLS-ENO at t = 1.
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Figure 5.29: Timing comparison in 2D.
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Figure 5.30: Exact solution (left) and numerical solution (right) with degree 2 and
3 WLS-ENO schemes for the 2-D Burgers’ equation at t = 0.5.

2-D Burgers’ Equation

For piecewise smooth solutions, we solve the 2-D Burgers’ equation

ut +

(
u2

2

)
x

+

(
u2

2

)
y

= 0 (5.2.11)

over [−2, 2]2, with periodic boundary conditions and the initial condition

u0(x, y) = 0.3 + 0.7 sin
(π

2
(x+ y)

)
. (5.2.12)

Although the initial condition is smooth, discontinuities develop over time. Fig-

ure 5.30(left) shows the exact solution at t = 0.5, when the solution becomes dis-

continuous, and Figure 5.30(right) shows results of the 1-D cross-sections along

x = y. We can see that the schemes approximate the exact solution and maintain

non-oscillatory property very well.
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2-D Vortex Evolution Problem

This is a test to demonstrate the accuracy of WLS-ENO schemes for Euler systems,

which have the following form



ρ

ρu

ρv

E


t

+



ρu

ρu2 + p

ρuv

u (E + p)


x

+



ρv

ρuv

ρv2 + p

v (E + p)


y

= 0, (5.2.13)

where

E =
p

γ − 1
+

1

2
ρ
(
u2 + v2

)
. (5.2.14)

The test case involves the convection of an isentropic vortex in inviscid flow.

We consider an idealized problem: The mean flow is ρ∞ = 1, p∞ = 1, (u∞, v∞) =

(1, 1). As an initial condition, an isentropic vortex with no perturbation in entropy

(δS = 0) is added to the mean flow field. The perturbation values are given by

(δu, δv) =
β

2π
e

1−r2

2 (−y, x) , (5.2.15)

δT = −(γ − 1) β2

8γπ2
e1−r2 (5.2.16)

where (x, y) = (x− 5, y − 5), r2 = x2 + y2, and the vortex strength β = 5. The

computational domain is taken as [0, 10] × [0, 10], extended periodically in both

directions. The exact solution of this problem is simply a vortex convecting with

the speed (1, 1) in the diagonal direction. In this example, we use degree 2 and 3

WLS-ENO schemes and compute the results up to t = 1. Figure 5.31 shows that
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Figure 5.31: Density errors in 2-D Vortex Evolution problem by WLS-ENO
schemes on triangular meshes.

the results achieved the expected convergence rate.

2-D Explosion Test Problem

In this test, we solve the Euler equation with the initial condition

(ρ, u, v, p)T =


(1, 0, 0, 1)T

√
x2 + y2 ≤ 0.2

(0.125, 0, 0.1)T
√
x2 + y2 > 0.2

. (5.2.17)

We solve the problem on a domain of a unit disk centered at the origin, triangulated

with meshes similar to that in Figure 5.27. We run the test up to t = 0.1 to ensure

that the explosion wave do not reach the boundary.

Because of symmetry, this example is equivalent to the spherical one dimen-

sional Euler equation with source terms [36],

∂

∂t


ρ

ρu

E

+
∂

∂r


ρu

ρu2 + p

u (E + p)

 = −d− 1

r


ρu

ρu2

u (E + p)

 , (5.2.18)

85



Figure 5.32: Numerical solution of 2-D
explosion test by WLS-ENO scheme at
t = 0.1.
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Figure 5.33: Numerical solution along
x = y by WLS-ENO schemes versus an-
alytic solution at t = 0.1.

where r is the radial coordinate. Thus, as a reference solution, we solve this 1-D

problem on a very fine mesh composed of 4000 grid points and compare it with our

numerical solution. Figures 5.32 and 5.33 show that the numerical solutions agree

with the exact solutions very well.

86



Chapter 6

Conclusion and Further Work

In this paper, we introduced a new family of essentially non-oscillatory schemes,

called WLS-ENO, in the context of both finite volume and finite difference methods

for solving hyperbolic conservation laws. These new schemes can solve both the

conservation form and the differential form of conservation laws and can be applied

to both structured and unstructured meshes, which enables a wider range of appli-

cations than WENO schemes. In contrast, WENO for finite difference schemes can

only be applied to structured meshes. The basic framework of WLS-ENO schemes

includes Taylor series expansions and a weighted least squares formulation. We

showed that over structured meshes, WLS-ENO delivers similar and even better

accuracy compared to WENO, while enabling a larger stability region. For unstruc-

tured meshes, we showed that WLS-ENO enables accurate and stable solutions. Its

accuracy and stability are rooted in the facts that the convexity requirement is sat-

isfied automatically in WLS-ENO, and the stencil can be adapted more easily to

ensure the stability of the approximations. We presented detailed analysis of WLS-

ENO in terms of accuracy in 1-D and 2-D, and its stability for hyperbolic conser-
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vation laws in 1-D. We also assessed the WLS-ENO with a large collection of test

problems in 1-D, 2-D, and 3-D, including wave equations, Burgers’ equation, and

the Euler equations with fairly complicated initial conditions. Our numerical re-

sults demonstrated that WLS-ENO is accurate and stable over unstructured meshes

for very complex problems. We also did timing comparison with WENO to test

the efficiency. The comparison demonstrated that the WLS-ENO schemes for gen-

eralized finite difference is as fast as WENO schemes in 1-D and even faster than

WENO in 2-D.

As we see from above, WLS-ENO provides a more general tool for dealing

with piecewise smooth functions over unstructured meshes for engineering appli-

cations involving complex geometries. For future works, we intend to improve

the efficiency of WLS-ENO finite volume schemes by developing a hybrid method

that utilizes the traditional WENO on structured meshes in the interior and utilizes

WLS-ENO over unstructured meshes near complex boundaries. For WLS-ENO fi-

nite difference schemes, we plan to extend WLS-ENO schemes to 3D and solve

more complicated problems like shallow water problems [43] and Hamilton Jacobi

problems [2] to test the performance. Also, the schemes use local variables only,

which makes it ideal for parallelization. We will explore it in the future.
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