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Abstract of the Dissertation 

An Isoform-free Model for Differential Expression Analysis in RNA-seq Data 

by 

Yang Liu 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

 

Stony Brook University 

2016 

 

Next generation sequencing (NGS) technology has been widely used in biomedical 

research, particularly on those genomics-related studies. One of the NGS applications is high-

throughput mRNA sequencing (RNA-seq), which is usually applied to discover alternative 

splicing events, to evaluate gene expression level and to identify differentially expressed genes. 

Compared with the traditional microarrays, RNA-seq is more efficient and economical. 

Currently, many useful software tools have been developed for RNA-seq differential expression 

(DE) analyses, such as edgeR, DESeq and Cufflinks; however, all these methods either ignore 

the isoforms of mRNA transcript, or rely on the predefined isoform structures, or depend on the 

De Novo isoform reconstruction from the sequencing data, which lead to less accurate inference.  

In this thesis, we developed and implemented a novel splicing-graph based negative 

binomial (SGNB) model for gene differential expression analysis in RNA-seq data. The principle 

of our model is to change the expression comparisons from the unobservable transcript level to 

the observable read type level, according to the fundamental theory of the linear algebra. The 

likelihood ratio test is used for finding DE genes. Computationally, we employed the 

expectation-maximization (EM) and the Newton-Raphson algorithms for parameter estimation.  

The main advantage of our model is that it considers the isoform but does not require the pre-

defined isoform structure and therefore is expected to be more robust and powerful. At the same 

time, our method does not ask for the De Novo procedure, which will save the time and avoid 

errors in reconstructing isoforms.  
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We performed intensive simulations to compare our new method with one of the most 

popular package, edgeR. Under various scenarios we examined, the results showed that our new 

model can achieve better power, while correctly controlling the false discovery rate. We also 

applied our method to a real data set to demonstrate its applicability in practice. 
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Chapter 1 Biological Fundamentals and Next Generation Sequencing 

Genetics is one of the most important components of biology. It is the science of genes, 

heredity and variation in living organisms. By studying the molecular structure and functions of 

genes, people can gain understanding on how genes may affect different biological traits and 

then benefit from it. For example, being aware of the genetic basis of diseases like cancer may 

help us develop new strategies for their prevention and treatment. In this chapter, we will 

introduce essential concepts of gene structure and transcription. 

1.1 The Central Dogma 

In molecular biology, the central dogma is a principle that reveals the relationship among 

DNA, RNA and proteins (Crick, 1970). Briefly, it states that DNA makes RNA that in turn 

makes protein (Figure 1-1). 

 

Figure 1-1: The central dogma of molecular biology. The mRNA first transcribed from DNA and 

then translate to Protein. 

It is well known that proteins are the functional units of the human body, and deregulated 

proteins may cause certain diseases. By the central dogma, the protein malfunction can occur at 

either DNA or RNA level: at the DNA level, mutations that change the nucleotide sequences 

could alter protein sequences; at the RNA level, the alternative splicing (details in 1.2) 

mechanism may induce shifting of the coding sequences, therefore resulting different proteins. 
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Technically, it is much more challenging to study protein instead of DNA/RNA because of 

instability of the protein and easy amplification of the nucleotides. Hence, to understand the 

underlying mechanisms of a biological trait, researchers usually start with the genetic analysis. 

In general, there are four types of deoxy nucleotides, called adenine, cytosine, guanine 

and thymine (uracil in RNA) and abbreviated as A, C, G, T (U), respectively. A and T (or U in 

RNA), and C and G pair each other to form the double-helix structure (Sinden, 1994) (Figure 1-

2). 

 

Figure 1-2: The double-helix DNA structure (Pray, 2008).  
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From DNA to RNA, this step is called transcription, during which the information 

contained in a DNA sequence is transferred to an RNA sequence. The typical structure of an 

mRNA molecule includes 5’ cap, 3’ poly(A) tail, 5’ un-translated region (UTR), 3' UTR and 

coding regions. Only the coding region can be translated into a protein (Figure 1-3). 

 

Figure 1-3: Typical structure of mRNA. Usually an mRNA starts with a 5’cap and follows by 5’ 

UTR, CDS, 3’ UTR and Poly-A tail. (https://en.wikipedia.org/wiki/Messenger_RNA) 

The genetic information embedded in the sequence of nucleotides is arranged into codons, 

each of which consists of three bases and encodes a specific amino acid. The amino acids are the 

basic unit of proteins. The coding region begins with a start codon (AUG) and ends with one of 

the three stop codons (UAA, UAG, UGA), which denote the starting and ending positions for 

translation. Since one codon contains three bases and we have four kinds of bases in total, 

theoretically the number of all possible combinations will be 64, exceeding the total number of 

amino acids (23). The mapping from the codons to amino acids can be described by a function 

illustrated in the graph below (Figure 1-4), and some amino acids may have more than one codon. 

For example, the lysine (lys) can be coded as AAA or AAG. 

https://en.wikipedia.org/wiki/Messenger_RNA
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.  

Figure 1-4: Genetic code table. Each amino acid is corresponding to at least one codon. And 

there are one start codon and three stop codons. 

(http://passel.unl.edu/pages/informationmodule.php?idinformationmodule=956592171&topicord

er=7&maxto=13) 

1.2 Alternative Splicing 

Alternative splicing is a post-transcriptional process that may lead to the generation of 

multiple proteins from single gene coding region. It is an intermediate step when DNA makes 

copy to mRNA. In fact, before mRNAs are produced, the pre-mRNAs are generated from DNA 

first. The pre-mRNAs are then processed to become mRNAs, accompanying the occurrence of 

alternative splicing (Figure 1-5). 

 

http://passel.unl.edu/pages/informationmodule.php?idinformationmodule=956592171&topicorder=7&maxto=13
http://passel.unl.edu/pages/informationmodule.php?idinformationmodule=956592171&topicorder=7&maxto=13
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Figure 1-5: Transcription process in details. DNA first create pre-mRNA, and then pre-mRNA 

makes mRNA during which the alternative splicing occurs.  

The pre-mRNA is a direct copy of the DNA and keeps both exons and introns of a gene. 

However, in mRNA, the introns that do not contain any coding information are excluded and 

only the exons are kept. During the process of intron exclusion, alternative splicing may occur to 

form different mRNA molecules (Figure 1-6). Evolutionally, this mechanism can generate larger 

number of transcripts, which yields better functional variety. 

 

Figure 1-6: Illustration of how a Pre-mRNA is processed into mRNAs. Alternative splicing may 

happen during this procedure resulting in different isoforms. The isoform 1 is generated by 

eliminating all the introns, while the isoform 2 is generated due to one type of alternative 

splicing events, which directly connects exon 1 and exon 3.   

Usually, there are five basic types of alternative splicing events, which are exon skipping, 

mutually exclusive exons, alternative 5’ donor sites, alternative 3’ acceptor sites and intron 

retention (Figure 1-7). 



 

6 

 

 

Figure 1-7: Typical alternative splicing events. The graph shows five different ways in which the 

alternative splicing events can happen. The rectangle with grey background denotes the exon 

while the one with white background denotes the intron.  

The products of the alternative splicing of a pre-mRNA are called isoforms. Although the 

isoforms come from the same gene, the different structures lead to various proteins with different 

functions. A famous example is the CDKN2A gene that, through the alternative splicing 

mechanism, codes two distinct proteins, p16(Ink4) and p19(ARF), which function in two 

important pathways (Ouelle, Zindy, Ashmun, & Sherr, 1995). There are many other examples 

showing that isoforms may play critical roles in the development process (Gauthier, et al., 1999). 

So it is important to identify the isoforms for a gene in a specific tissue and also evaluate their 

expression levels. Through the RNA-seq, this type of analysis becomes feasible. 
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1.3 Introduction of Next Generation Sequencing 

Next generation sequencing (NGS) is a new technology to sequence DNA, which only 

became commercially available in 2004. However, due to its extreme power in fast and cheap 

sequencing, NGS has imposed a big impact on biomedical researches at genomic level. 

Currently, there are three main platforms for the next generation sequencing: the 

Illumina/Solexa Genome Analyzer (GA), the Roche/454 FLX, and the Applied Biosystems 

𝑆𝑜𝐿𝑖𝐷𝑇𝑀 System. Since the Illumina GA is becoming more popular in the research community 

and the data used in this proposal are generated by the Illumina GA, here we will only discuss 

the general workflow for the Illumina GA (Figure 1-8). The other two platforms follow similar 

procedures. 

 

Figure 1-8: NGS workflow. First is to prepare for the sequencing samples. Then the cDNA 

fragments are attached on the surface of the flow cells. Next is to amplify the cDNA fragment 

into clusters. Finally, we sequence these clusters.  



 

8 

 

In general, DNAs are first fragmented through enzymes or sonication, and oligo adapters 

are then attached to these DNA fragments. Through microfluidic cluster station, these fragments 

are attached to the surface of a glass flow cell, which is coated with complementary sequences of 

the adaptors. On the flow cell, DNA fragments are amplified into a cluster through the so-called 

bridge PCR amplification and the inverse strands are washed away. Finally, four different 

fluorescence-labeled nucleotides are added to the flow cell, which have their 3’-OH chemically 

inactivated to ensure that only one base is incorporated per cycle. Images are taken to identify 

the incorporated nucleotide for each cluster and then the fluorescent groups are removed to 

deblock the 3’ end for the next base incorporation cycle. 

At each sequencing step, four color images are obtained corresponding to the four labeled 

nucleotides. An additional step called base calling is needed to identify the bases at each position 

based on the colors (Figure 1-9). 

 

Figure 1-9: Color based sequencing. On the graph, each color denotes a unique type of 

nucleotides. (https://en.wikipedia.org/wiki/DNA_nanoball_sequencing). 

https://en.wikipedia.org/wiki/DNA_nanoball_sequencing


 

9 

 

 

Figure 1-10: Base calling. This graph shows the base calling procedure. The above two small red 

windows show a situation that two colors with similar signal strength level occur simultaneously 

at the same position, which makes base calling ambiguous and may lead to an error. 

(http://www.insilicase.co.uk/guide/GeneScreen.aspx). 

However, sometimes it may be hard to get a sharp image and sequencing errors may 

occur (Figure 1-10). Although the nucleotide called at each position represented the best guess, 

sometimes the ‘best’ calling cannot be easily determined. For example, the strengths of several 

colors might be in a similar level. To take this information into account, a score at each position 

is calculated to estimate the probability of getting an error for each base-call. Commonly, a 

Phred score is used, which reflects the error probabilities by considering four important 

parameters at base calling step (Ewing & Green, 1998). Peak spacing, the ratio of the largest 

peak-to-peak spacing to the smallest peak-to-peak spacing in a window of seven peaks centered 

on the current one; uncalled/called ratio, the ratio of the amplitude of the largest uncalled peak to 

the smallest called peak in a window of seven peaks around the current one; type 2 

uncalled/called ratio, the same as uncalled/called ratio, but using a window of three peaks; peak 

resolution, the number of bases between the current base and the nearest unresolved base times -

1. 

http://www.insilicase.co.uk/guide/GeneScreen.aspx
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The formula to calculate the quality value for each base-call is:  

𝑞 = −10 × 𝑙𝑜𝑔10(𝑝), 

where 𝑝 is the estimated error probability for the base-call. If a base is assigned a quality value of 

30, it means that the base is called incorrectly with the probability 0.001. The high quality score 

values correspond to low error probabilities.  

From the NGS technology, millions of short reads (35—250bp) can be easily generated 

simultaneously. With these short sequences, the next step is to find their positions on the 

reference genome (details in section 3.3). There have been several efficient algorithms for 

mapping high-throughput short reads, such as Bowtie (Langmead, Trapnell, Pop, & Salzberg, 

2009) and MAQ (Li, Ruan, & Durbin, 2008). 

1.4 Applications of Next Generation Sequencing 

Due to this new sequencing technology, we can improve traditional genetic analyses and 

also create many new ways for genome-wide researches. Some typical applications include RNA 

sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq), Methylation-Seq 

and copy number variation sequencing (CNV-seq). Since RNA-seq is the primary focus of this 

thesis, we will give more detailed description of this process. 

RNA-seq refers to use the high-throughput sequencing technologies to sequence the 

complementary DNA (cDNA) reversely transcribed from an RNA. It allows people to perform 

the whole transcriptome sequencing for the purpose of analyzing the transcriptome, and provides 

an efficient way to obtain the information, through millions of short reads, from the mRNA. The 

major interest of this kind of analysis is to evaluate the expression level of genes, to detect 
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differentially expressed genes, to discover the alternative splicing events and to find single-

nucleotide polymorphism.  
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Chapter 2 RNA-seq Data Analyses 

In the previous chapter, we briefly discussed RNA-seq, one of the major applications of 

NGS technology. In this chapter, we will introduce more details about the goals and essential 

steps of analyzing the RNA-seq data. 

2.1 Background and Differential Expression Analysis 

Data generated from RNA-seq contains not only the information of expression levels of 

genes, but also the information of their structures. In this sense, RNA-seq provides more 

information about RNA than the traditional array-based methods. 

For large-scale transcriptome analyses of thousands of genes, microarray-based method 

was first developed to measure their expression levels (Schena, Shalon, Davis, & Brown, 1995). 

Although it was a great success, this type of method has some major limitations, such as 

hybridization and cross-hybridization artifacts, upper bound of the signal strength, and limit of 

the pre-specified genes. These limitations can be easily overcome by RNA-seq. For example, by 

directly mapping millions of short reads to reference genome, RNA-seq provides digital (counts) 

expression information rather than analog signals, so the upper bound of the expression does not 

exist. RNA-seq also provides the chance to discover new genes or novel splicing isoforms of 

transcripts. In addition, because of the dramatic decrease of the sequencing cost, the cost of 

RNA-seq has become comparable to that of microarray-based method. Very importantly, many 

studies have shown that RNA-seq demonstrates the ability to efficiently create high accurate and 

replicable genetic data compared with traditional microarrays (Marioni, Mason, Mane, Stephens, 

& Gilad, 2008; Wang, Gerstein, & Snyder, 2009). Therefore, RNA-seq is gradually replacing 

microarrays and becoming popular among researchers. 



 

13 

 

Differential expression (DE) analysis is one of the most important applications in RNA-

seq data analyses. Suppose we have a set of genes 𝐺𝑒𝑛𝑒 = {𝑔|𝑔 = 1,… , 𝐺}. Given a gene 𝑔 ∈

𝐺𝑒𝑛𝑒, let 𝑘𝑔 denote the copy number of gene 𝑔. Generally, DE study has two goals: One is to 

estimate the copy number 𝑘𝑔, which is the expression level of a specific gene; another is to find 

the genes with a significant changing in the copy numbers between two different conditions, like 

normal and disease. 

2.2 Read Mapping by TopHat 

As shown in section 1.3, results from RNA-seq platform are the four types of colors 

which represent the four types of nucleotides. After the base-calling procedure, these colors are 

converted to the corresponding nucleotides, which are saved in a fastq or fasta file format, 

containing read id, sequence letters and base-calling quality scores. In order to conduct further 

analyses, we need to map the short RNA-seq reads against a reference genome to find their 

locations.  

There exist several fast and accurate mapping algorithms for locating the high-throughput 

short reads, such as MAQ (space seeds based) and Bowtie (Burrows-Wheeler transform based). 

These methods are not ideal for the RNA-seq data, because they ignore splicing junctions. For 

example, given a read across the junction of the exon1 and exon2 of a transcript (Figure 2-1), the 

Bowtie and MAQ would treat it as unmapped read, although it contains important information 

about how exons are joined. In order to map RNA-seq data accurately, typically a software tool 

called TopHat (Trapnell, Pachter, & Salzberg, 2009) is used. It can map reads from splicing 

junctions to the reference genome by local de novo construction of a transcript. 
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Figure 2-1: Splicing junction read. The read is not within an exon, but span two exons. 

Since TopHat uses Bowtie, the Burrows-Wheeler transform based mapping algorithm, in 

its pipeline, we will first introduce Bowtie. 

Let’s consider the Burrows-Wheeler transform (BWT) for a string (Li & Durbin, 2009). 

Let 𝛴 be an alphabet and suppose symbol $ is not present in 𝛴 and is lexicographically smaller 

than all the symbols in 𝛴. A string 𝑋 = 𝑎0𝑎1 …𝑎𝑛−1 is always ended with symbol $ (i.e. 𝑎𝑛−1 =

$) and this symbol only appears at the end. Let 𝑋[𝑖] = 𝑎𝑖 be the 𝑖𝑡ℎ symbol of 𝑋, 𝑋[𝑖, 𝑗] =

𝑎𝑖 …𝑎𝑗 be a substring and 𝑋𝑖 = 𝑋[𝑖, 𝑛 − 1] be a suffix of 𝑋. Let 𝑆 be the suffix array (SA) of 𝑋, 

which is a permutation of the integers 0…𝑛 − 1. 𝑆(𝑖) then denotes the start position of the 𝑖𝑡ℎ 

smallest suffix. The BWT of 𝑋 is a string defined as 𝐵[𝑖] = $ when 𝑆(𝑖) = 0 and 𝐵[𝑖] =

𝑋[𝑆(𝑖) − 1] otherwise. The figure below shows an example (Figure 2-2). 
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Figure 2-2: Burrows-Wheeler transform. The original string is ‘googol$’. The suffix array is 𝑆 =
(6,3,0,5,2,4,1), and the BWT is ‘lo$oogg’ (Li & Durbin, 2009). 

We can easily find that, given a string 𝑊, if it is a substring of 𝑋, the position of each 

occurrence of 𝑊 in 𝑋 will be in an interval in the suffix array. For example, if 𝑊 = ′𝑔𝑜′, all the 

positions of this substring in 𝑋 is in interval [1,2] in suffix array. In general, we can define: 

𝑅(𝑊) = 𝑚𝑖𝑛{𝑘:𝑊 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑓𝑖𝑥 𝑜𝑓 𝑋𝑆(𝑘)} 

𝑅(𝑊) = 𝑚𝑎𝑥 {𝑘:𝑊 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑓𝑖𝑥 𝑜𝑓 𝑋𝑆(𝑘)} 

In particular, if 𝑊 is an empty string, 𝑅(𝑊) = 1 and 𝑅(𝑊) = 𝑛 − 1. The interval 

[𝑅(𝑊), 𝑅(𝑊)] then is called suffix array interval of 𝑊 and the set of positions of all occurrences 

of 𝑊 in 𝑋 is {S(k): 𝑅(𝑊) ≤ 𝑘 ≤ 𝑅(𝑊)} (Li & Durbin, 2009). Ferragina and Manzini (Ferragina 

& Manzini, 2000) have proved that if 𝑊 is a substring of 𝑋 then we can calculate the SA interval 

for a new string 𝑎𝑊 based on the SA interval of 𝑊. That is: 

𝑅(𝑎𝑊) = 𝐶(𝑎) + 𝑂(𝑎, 𝑅(𝑊) − 1) + 1 
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𝑅(𝑎𝑊) = 𝐶(𝑎) + 𝑂(𝑎, 𝑅(𝑊)) 

𝐶(𝑎) is the number of symbols in 𝑋[0, 𝑛 − 2] that are lexicographically smaller than alphabet ′𝑎′ 

and 𝑂(𝑎, 𝑖) is the number of occurrences of ′𝑎′ in 𝐵[0, 𝑖]. We will have 𝑅(𝑎𝑊) ≤ 𝑅(𝑎𝑊) if 𝑎𝑊 

is a substring of 𝑋. With this result, we can find all the positions of occurrence of a short string 

𝑊 in a long string 𝑋 by backward searching. 

Bowtie is an algorithm using this transform and searching backward to map short reads 

against the reference genome. Let 𝐺 denotes the reference genome, which can be treated as a 

long string. And let 𝑟 be a short read. Firstly, Bowtie will calculate the suffix array for reference 

genome 𝐺. Secondly, the BWT string 𝐵 for 𝐺 and array 𝐶(∗) and 𝑂(∗,∗) are calculated. Lastly, 

Bowtie will do the backward searching (Figure 2-3). 

 

Figure 2-3: Backward searching by Bowtie.  

TopHat finds junctions by mapping reads in three steps. In the first step, it maps all reads 

to a reference genome using Bowtie. All reads that are not mapped to the genome are set as 



 

17 

 

‘initially unmapped reads’ or IUM reads. In the second step, TopHat uses the mapped reads to 

generate islands, which can be treated as putative exons. At last, TopHat maps the IUM reads to 

the possible junctions that are built from islands to find splicing junctions (Figure 2-4). 

 

Figure 2-4: TopHat workflow. Firstly, TopHat maps the reads by Bowtie and collects unmapped 

reads. Then it built potential splicing junctions based on mapped reads. Finally, it re-maps the 

unmapped reads to these splicing junctions. 

In step 2, since the consensus may include incorrect base-call due to sequencing errors, 

when TopHat uses mapped reads to generate islands, it will modify them by using bases in the 

reference genome. Because most reads cover the end of an exon will also span splicing junctions, 

few reads will be mapped to the two ends of an exon in step 1. Therefore, for every generated 

island (potential exons), it will lose a small amount of bases on both ends. In order to capture this 

sequence, TopHat adds a small amount of sequence from the reference genome to both ends of 

each island. In step 3, TopHat uses islands to build possible splicing junction patterns. However, 

for the genes transcribed at low levels, there may be gaps for these genes due to low sequencing 

coverage. So TopHat needs to decide whether two islands need to be merged into a single exon. 

Because introns shorter than 70bp are rare in mammalian genomes, TopHat combines two exons 

into a single one if the distance between them is less than 70bp (actually use 6bp in TopHat).  
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TopHat accepts files in Sanger FASTQ format. FASTQ format stores sequences and 

Phred quality scores in a single file (Figure 2-5). 

 

Figure 2-5: Fastq file format. This file saves the raw RNA-seq data which can be used by TopHat. 

For one read, there are four lines to denote its information. The first line is the read id, second is 

the raw sequence, third is a ‘+’ character and the last is the sequencing quality score. 

(https://en.wikipedia.org/wiki/FASTQ_format). 

There are two important output files form TopHat. One is for junctions in BED format 

(Figure 2-6), and another is all accepted hits (include junctions) in BAM format which is a 

compressed binary version of SAM format (Figure 2-7). The SAM stands for Sequencing 

Alignment/Map, which saves the mapping results. 

 

Figure 2-6: BED format. The first column is the name of the chromosome and then are the start 

position of the feature in the chromosome, the ending position of the feature in the chromosome, 

the name of the BED line, the score between 0 and 1000, the strand either “-” or “+”, the starting 

position at which the feature is drawn thickly (for example, the start codon in gene displays), the 

ending position at which the feature is drawn thickly (for example, the stop codon in gene 

displays), the RGB value of the form R,G,B (e.g. 255,0,0), the number of blocks (exons) in the 

BED line, a comma-separated list of the block sizes and a comma-separated list of block starts. 

(https://genome.ucsc.edu/FAQ/FAQformat.html#format1).  

https://en.wikipedia.org/wiki/FASTQ_format
https://genome.ucsc.edu/FAQ/FAQformat.html#format1
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Figure 2-7: SAM format. The first column is the query template/pair name followed by bitwise 

flag, reference sequence name, one-based left most position, mapping quality, extended CIGAR 

string, mate reference sequence name, one-based mate position, inferred template length, query 

sequence, query quality and optional fields. 

2.3 Summarizing the Data 

For the purpose of evaluating gene expression, we need to summarize the output files of 

TopHat. Usually, we summarize the SAM files by counting the number of reads attributed to 

each gene regions based on the chromosome id, start positon and CIGAR string (indicating how 

the reads map to the genome) in the file. We can use HTseq (Anders, Pyl, & Huber, 2015) for 

doing this, which provides different ways for counting RNA-seq reads according to diverse gene 

structure models.  

Suppose we have summarized data into a two-way table, in which rows are the gene 

names, and columns are sample individuals. The cell values of this table will be the number of 

reads mapped to the corresponding gene and individual. One way to make a simple evaluation of 

gene expression level is to calculate RPKM (Mortazavi, Williams, McCue, Schaeffer, & Wold, 

2008) or FPKM. That is, for a gene 𝑔, its RPKM value is defined as below 

𝑅𝑃𝐾𝑀𝑔 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑝𝑝𝑒𝑑 𝑟𝑒𝑎𝑑𝑠 𝑡𝑜 𝑔

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑔(𝑘𝑖𝑙𝑜𝑏𝑎𝑠𝑒) × 𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑝𝑝𝑒𝑑 𝑟𝑒𝑎𝑑𝑠(𝑚𝑖𝑙𝑙𝑖𝑜𝑛)
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RPKM normalizes the raw count number by the length of gene and the total mapped reads. In 

this way, it allows us to compare expression measurements across different genes and different 

experiments.  

Similarly, the FPKM is defined as 

𝐹𝑃𝐾𝑀𝑔 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 𝑡𝑜 𝑔

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑔(𝑘𝑖𝑙𝑜𝑏𝑎𝑠𝑒) × 𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑝𝑝𝑒𝑑 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠(𝑚𝑖𝑙𝑙𝑖𝑜𝑛)
 

The reason of using fragment number rather than the read number is to modify the RPKM for the 

paired-end read. In paired-end data, we will have two mate pairs sequenced from one cDNA 

fragment. FPKM count the two reads that comprise a paired-end read as one fragment, which is 

more accurate than doubling the read number. And also, the normalizing factor ensure that the 

comparisons through genes and experiments are fair. 
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Chapter 3 Overview of Existing Statistical Methods for DE analysis 

In chapter 2, we introduced the RPKM and FPKM, the two popular measurements of 

gene expression level. Although they provide a concise way to evaluate the expression level, 

they still belong to the group of preliminary methods to represent gene expression. In order to get 

more accurate results from DE analysis, we need to employ more complicated statistical models 

to handle the RNA-seq data. In this chapter, we will review several widely-used statistical 

methods for modeling the RNA-seq data. 

3.1 Gene Level Analysis 

The first group of methods is for the DE analysis at gene level, which means that only the 

gene expression level needs to be estimated but the isoform information is ignored. Although 

these methods do not consider the detailed information about the isoform, it actually has pretty 

good performance in practice, so it is still widely used for DE problems nowadays. 

3.1.1 Negative Binomial Model 

For the gene level DE analysis, the most popular distribution used is the negative 

binomial model. Several state-of-arts software packages are based on this distribution, such as 

edgeR (Robinson, McCarthy, & Smyth, 2010), DESeq (Anders & Huber, 2010) and baySeq 

(Hardcastle & Kelly, 2010). Since these packages share the similar probabilistic model and only 

differ in some trivial aspects such as algorithms for parameter estimation, in this section, we only 

give a detailed review on the application of negative binomial model in DE analysis for one of 

them, which is the edgeR package. 
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Let 𝐺𝑆 = {𝑔|𝑔 = 1,2, … , 𝐺} be a set of genes, where 𝐺 is the total number of genes. Let 

𝑘𝑔 and 𝑙𝑔 be the copy number and the length of gene 𝑔 respectively. Let 𝑗 be the sample id and 

𝑋𝑔𝑗 be the number of reads mapped to gene 𝑔 in sample 𝑗.  

Since the RNA sequencing can be treated as a random sampling procedure that the reads 

are independently and uniformly sequenced from every possible nucleotide (Jiang & Wong, 

2009), it can be shown that 𝑋𝑔𝑗  follows a Poisson distribution, 

𝑋𝑔𝑗~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑁𝑗𝜃𝑔) 

where 𝑁𝑗 is the total mapped reads or the library size of sample 𝑗 and 𝜃𝑔 =
𝑘𝑔𝑙𝑔

∑ 𝑘𝑔𝑙𝑔
𝐺
𝑔=1

 is the 

interested expression level parameter before adjusting for the gene length. If we denote 𝑆 =

∑ 𝑘𝑔𝑙𝑔
𝐺
𝑔=1 , which is the transcriptome size, then we have 𝜃𝑔 =

𝑘𝑔𝑙𝑔

𝑆
. We know that the point 

estimation of 𝜃𝑔 is 
𝑋𝑔𝑗

𝑁𝑗
, which means 

𝑘𝑔𝑙𝑔

𝑆

̂
=

𝑋𝑔𝑗

𝑁𝑗
. If we divide both side of 

𝑘𝑔𝑙𝑔

𝑆

̂
=

𝑋𝑔𝑗

𝑁𝑗
 by the length 

of the gene, we will get 
𝑘𝑔

𝑆

̂
=

𝑋𝑔𝑗

𝑁𝑗𝑙𝑔
. It’s clear that the right side, 

𝑋𝑔𝑗

𝑁𝑗×𝑙𝑔
, is just the RPKM and the 

left side, 
𝑘𝑔

𝑆

̂
, is the relative expression level of gene 𝑔. So according to the Poisson model, the 

RPKM is an estimation of the relative expression level. 

However, in reality, the Poisson distribution is not enough to account for the variation 

among the samples. Since usually the sequencing procedure is done on several different 

individuals, the sample variance of 𝑋𝑔𝑗 actually is larger than its sample mean due to the 

biological replication. In order to overcome the issue of over-dispersion, the copy number 𝑘𝑔 can 

be assumed to be a random variable 𝐾𝑔𝑗 with mean 𝑘𝑔. Then we will have a hierarchical model:  
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𝑋𝑔𝑗|𝐾𝑔𝑗~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑁𝑗

𝐾𝑔𝑗𝑙𝑔

𝑆𝑗
) 

𝐾𝑔𝑗~𝐺𝑎𝑚𝑚𝑎(𝜇 = 𝑘𝑔, 𝜙𝑔) 

where  

𝑆𝑗 = ∑ 𝐾𝑔𝑗𝑙𝑔

𝐺

𝑔=1

 

Here  𝑆𝑗 is treated as a fixed number. Then we can get a Gamma-Poisson mixture model. By 

integrating out the 𝐾𝑔𝑗, the marginal distribution of 𝑋𝑔𝑗 is a negative binomial distribution. 

𝑋𝑔𝑗~𝑁𝐵 (𝑁𝑗

𝑘𝑔𝑙𝑔

𝑆𝑗
, 𝜑𝑔) 

The observable variables of this model are 𝑋𝑔𝑗 and 𝑁𝑗. The known parameter is 𝑙𝑔 and the 

parameters that need to be estimated are 𝑘𝑔, 𝑆𝑗 and 𝜑𝑔. It is easy to show that 𝑘𝑔 and 𝑆𝑗 are 

actually not estimable, however, their ratio, that is, 
𝑘𝑔

𝑆𝑗
, is estimable. 

Another important step is the transcriptome size normalization. In the model above, 

although we can compare 
𝑘𝑔0

𝑆𝑗0
 with 

𝑘𝑔1

𝑆𝑗′1

 to detect differential expression, what we really want to 

compare is 𝑘𝑔0 and 𝑘𝑔1. If the denominators 𝑆𝑗0 and 𝑆𝑗′1 are not the same across the different 

samples 𝑗 and 𝑗′, the comparison would not be fair. So we need to normalize the transcriptome 

size.  

The TMM normalization is a popular normalization procedure (Robinson & Oshlack, 

2010). The idea is that, among all the genes that need to be tested, most of them are not 
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differentially expressed. If two individuals share the same copy number of a gene, then 
𝑋𝑔𝑗/𝑁𝑗

𝑋𝑔𝑗′/𝑁𝑗′
 

would be a good estimation of 
𝑆
𝑗′

𝑆𝑗
. So we can set a particular individual to be a baseline sample, 

and calculate the normalization factor 𝑓𝑗 =
𝑆𝑗

𝑆𝑟𝑒𝑓
 for all other samples. Then this factor can be 

applied into the model, which has the following form: 

𝑋𝑔𝑗~𝑁𝐵 (𝑁𝑗

𝑆𝑗

𝑆𝑟𝑒𝑓

𝑆𝑟𝑒𝑓

𝑆𝑗

𝑘𝑔𝑙𝑔

𝑆𝑗
, 𝜑𝑔) = 𝑁𝐵 (𝑁𝑗

𝑆𝑟𝑒𝑓

𝑆𝑗

𝑘𝑔𝑙𝑔

𝑆𝑟𝑒𝑓
, 𝜑𝑔) = 𝑁𝐵(𝑁𝑗

∗𝜃𝑔
∗, 𝜑𝑔) 

where 𝑁𝑗
∗ =

𝑁𝑗

𝑓𝑗
 and 𝜃𝑔

∗ =
𝑘𝑔𝑙𝑔

𝑆𝑟𝑒𝑓
. If we consider about samples under different conditions, then we 

will have the model below 

𝑋𝑔𝑗0~𝑁𝐵(𝑁𝑗
∗𝜃𝑔0

∗ , 𝜑𝑔) 

𝑋𝑔𝑗′1~𝑁𝐵(𝑁𝑗′
∗𝜃𝑔1

∗ , 𝜑𝑔) 

The parameter estimation of edgeR is based on the quantile-adjusted conditional 

maximum likelihood (Robinson & Smyth, 2008) and weighted conditional likelihood (Robinson 

& Smyth, 2007). 

The quantile-adjusted conditional maximum likelihood (quantile-adjusted CML) is used 

to overcome the underestimation problem for estimating parameter 𝜑𝑔. Although the dispersion 

𝜑𝑔 is a nuisance parameter, its estimation still affects the accuracy of estimating 𝜃𝑔. It has been 

shown that by traditional likelihood estimation, especially for a small sample size, 𝜑𝑔 is 

underestimated (Robinson & Smyth, 2008). In this case, the estimation of 𝜃𝑔 is usually 

inaccurate. The quantile-adjusted CML method is first to generate a pseudo data, which have the 
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same library size 𝑁 across all samples, from the real data. In order to make them equivalent to 

the real data, the pseudo data points are set to share the similar quantiles with the corresponding 

real data points. Then the summation of the pseudo data turns out to be a sufficient statistics of 

𝜃𝑔. By conditioning on this sum, we can eliminate 𝜃𝑔 and only keep the 𝜑𝑔 in the likelihood 

function. After estimating 𝜑𝑔 from this conditional likelihood function, we can insert the 

estimated value into the original likelihood function and estimate the parameter 𝜃𝑔. In this way, 

the accuracy of the estimation of 𝜑𝑔 and 𝜃𝑔 is dramatically increased.  

The weighted conditional likelihood method is used to modify the dispersion 𝜑𝑔 for each 

gene. It tries to adjust each 𝜑𝑔 to a common 𝜑 shared by all genes. The idea is to add a weighted 

conditional likelihood through the genes to the likelihood of individual 𝜑𝑔.  

𝑙𝑤(𝜑𝑔) = 𝑙𝑔(𝜑𝑔) + 𝛼𝑙𝑎𝑙𝑙(𝜑𝑔) 

𝑙𝑎𝑙𝑙(𝜑𝑔) = ∑ 𝑙𝑔(𝜑𝑔)

𝐺

𝑔=1

 

where 𝑙𝑔(𝜑𝑔) comes from the quantile-adjusted CML and 𝛼 is the weight. This method is 

extremely useful when there are not enough samples, since it is more reliable to estimate a 

common 𝜑 for all genes than to estimate 𝜑𝑔 separately for each gene. 

By employing the techniques shown above, the edgeR provides a stable and reasonable 

performance in DE analysis and is probably the most widely used package. 

3.2 Transcript Level Analysis 
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The next group of methods for DE analyses is to take the isoform information into 

consideration. That is, instead of estimating the general gene level expression, we try to estimate 

expressions at the transcript level and find the significantly differentially expressed genes 

according to these isoform expressions. These methods can be further categorized into two 

subgroups according to their assumptions: one is to assume all transcript structures are known, 

and another assumes them unknown. Both are illustrated. 

3.2.1 Known Transcript Structure 

With well-defined isoforms, the model aims to obtain the estimators of expression level 

for each isoform. The main challenge is that isoforms of a gene usually have common regions. If 

a read is mapped to these regions, it is hard to tell which isoform the read originally came from. 

In this section, we discuss three types of models that have been proposed to solve this problem, 

which all achieve reasonable estimations of isoform expression levels, but based on different 

statistical models. 

3.2.1.1 Poisson Model 

The first method is the Poisson model (Salzman, Jiang, & Wong, 2011; Jiang & Wong, 

2009). This model can be applied on both single and paired-end RNA-seq data. Since the 

sequencing procedure is independent across genes, we can focus on one gene each time.  

Let 𝐺𝑆 = {𝑔|𝑔 = 1…𝐺} be the set of all genes, where 𝐺 is the total number of genes. Let 

𝑇 = {𝑡𝑖|𝑖 = 1,… , 𝐼} be the set of all transcripts, where 𝐼 is the total number of transcripts. Let 

𝑇𝑔 = {𝑡𝑔𝑖|𝑖 = 1,… , 𝐼𝑔} be the set of all isoforms of gene 𝑔, where 𝐼𝑔 is the total number of 

isoforms of gene 𝑔. Denote 𝑘𝑖 and 𝑙𝑖 as the copies and the length of isoform 𝑖 respectively. Let 
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{ℎ|ℎ = 1, … , 𝐻𝑔} be the set of unique read types that can be sequenced from isoforms of gene 𝑔. 

A read type is identified by the 5′ end for a single end read or both 5′ and 3′ end for a paired end 

read. Given a sample 𝑗, let 𝑋𝑖ℎ be the number of type ℎ read generated from isoform 𝑖 and 𝑋ℎ =

∑ 𝑋𝑖ℎ
𝐼
𝑖=1  be the number of type ℎ read generated from all isoforms. Finally, let 𝑁 denote the 

number of total mapped reads.  

For single-end reads, the uniform sampling model is used, which assumes that each read 

is sequenced independently and uniformly from all possible nucleotides and the read is small 

enough compared with the whole transcriptome. Under this assumption, it can be shown that  

𝑋𝑖ℎ~𝐵𝑖𝑛(𝑁, 𝜃𝑖ℎ) 

where 𝜃𝑖ℎ =
𝑘𝑖

∑ 𝑘𝑖𝑙𝑖
𝐼
𝑖=1

 is the probability of getting a read ℎ after sequencing the sample once. And 

since 𝑁 → ∞ and 𝜃𝑖ℎ → 0, the binomial distribution can be approximated by a Poisson 

distribution 

𝑋𝑖ℎ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑁𝜃𝑖ℎ) 

The distribution of 𝑋ℎ can be derived as a sum of independent Poisson random variable.  

𝑋ℎ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑁 ∑𝜃𝑖ℎ

𝐼𝑔

𝑖=1

) 

The likelihood function is 

𝑓(𝑥1, … , 𝑥𝐻) = ∏
(𝑁 ∑ 𝜃𝑖ℎ

𝐼𝑔
𝑖=1

)
𝑥ℎ

𝑒−𝑛∑ 𝜃𝑖ℎ
𝐼𝑔
𝑖=1

𝑥ℎ!

𝐻

ℎ=1
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The parameter 𝜃𝑖ℎ represents the expression level of each isoform.  

For paired-end reads, the insertion length model is used, which assumes that given the 

length of a paired-end read on isoform 𝑖, the read is sequenced uniformly on this isoform. 

Actually, the information about the insertion length is important. In the sample preparation step 

of the sequencing, there is a step to filter out cDNA fragments with extreme length (too long or 

too short). So only fragments with proper length are left for sequencing. Since a paired-end read 

comes from both side of a fragment, its insertion length should be in a suitable scope. Although 

most of the reads are not uniquely mapped to the isoforms, they are very likely to have different 

insertion lengths on different isoforms. So by considering about the insertion length, it is much 

easier to make sure of the destination of the reads. The model is built by the following steps.  

Let’s denote 𝐴 as getting a read with type ℎ from isoform 𝑖 by sequencing the sample 

once, 𝐵 as getting a read from isoform 𝑖 by sequencing the sample once, and 𝐶 as the read being 

type ℎ given that the read is sequenced from isoform 𝑖. It is obvious that 

𝑃{𝐴} = 𝑃{𝐵 }𝑃{𝐶} =
𝑘𝑖𝑙𝑖

∑ 𝑘𝑖𝑙𝑖
𝐼
𝑖=1

𝑞(𝑙𝑖ℎ)
1

𝑙𝑖 − 𝑙𝑖ℎ
 

where 𝑙𝑖ℎ is the length of type ℎ read on isoform 𝑖 and 𝑞(∙) is the distribution of the read length. 

In reality, we can use an empirical pdf of 𝑞(∙) in the model. So for paired-end read data, the 

model becomes 

𝑋𝑖ℎ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑁, 𝜃𝑖ℎ𝑞(𝑙𝑖ℎ)
𝑙𝑖

𝑙𝑖 − 𝑙𝑖ℎ
) 

where 𝜃𝑖ℎ =
𝑘𝑖

∑ 𝑘𝑖𝑙𝑖
𝐼
𝑖=1

 is the same as in uniform sampling model.  
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Generally, if we set 𝐶𝑖ℎ = 𝑞(𝑙𝑖ℎ)
𝑙𝑖

𝑙𝑖−𝑙𝑖ℎ
 for paired end read and 𝐶𝑖ℎ = 1 for single end 

read, then the model can be written as 

𝑋ℎ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑁 ∑𝐶𝑖ℎ𝜃𝑖ℎ

𝐼𝑔

𝑖=1

) 

And the likelihood function for one sample is 

𝑓(𝑥1, … , 𝑥𝐻) = ∏
(𝑁 ∑ 𝐶𝑖ℎ𝜃𝑖ℎ

𝐼𝑔
𝑖=1

)
𝑥ℎ

𝑒−𝑛∑ 𝐶𝑖ℎ𝜃𝑖ℎ
𝐼𝑔
𝑖=1

𝑥ℎ!

𝐻

ℎ=1

 

The log-likelihood function is 

𝑙(𝜃) = ∑{𝑥ℎ𝑙𝑜𝑔(𝑁𝐶ℎ
𝑇𝜃ℎ) − 𝑁𝐶ℎ

𝑇𝜃ℎ − 𝑙𝑜𝑔(𝑥ℎ!)}

𝐻

ℎ=1

 

where 𝐶ℎ = [𝐶1ℎ, … , 𝐶𝐼𝑔ℎ]
𝑇

 and 𝜃ℎ = [𝜃1ℎ, … , 𝜃𝐼𝑔ℎ]
𝑇

.  

It can be shown that the function 𝑙(∙) is a concave function. Let’s consider about the 

function  

𝑙ℎ(𝜃) = 𝑥ℎ𝑙𝑜𝑔(𝑛𝐶ℎ
𝑇𝜃ℎ) − 𝑛𝐶ℎ

𝑇𝜃ℎ − 𝑙𝑜𝑔(𝑥ℎ!) 

In fact, the Hessian matrix of 𝑙ℎ(∙) has the form 

𝐻𝑖𝑗 =
𝜕2𝑙ℎ(𝜃)

𝜕𝜃𝑖ℎ𝜕𝜃𝑗ℎ
= −

𝑥ℎ𝐶𝑖ℎ𝐶𝑗ℎ

(∑ 𝐶𝑖ℎ𝜃𝑖ℎ
𝐼𝑔
𝑖=1

)
2 

which can be written as  



 

30 

 

𝐻 = −𝑑𝑎𝑎𝑇 

where 𝑎 = [𝐶1ℎ, … , 𝐶𝐼𝑔ℎ]
𝑇

 and 𝑑 = −
𝑥ℎ

(∑ 𝐶𝑖ℎ𝜃𝑖ℎ
𝐼𝑔
𝑖=1

)
2. For any vector 𝑦, we have 

𝑦𝑇𝐻𝑦 = −𝑦𝑇𝑑𝑎𝑎𝑇𝑦 = −𝑑(𝑎𝑇𝑦)𝑇𝑎𝑇𝑦 = −𝑑(𝑎𝑇𝑦)2 ≤ 0 

So the hessian matrix 𝐻 is negative semi-definite, which means the function 𝑙ℎ(𝜃) is concave. 

Since we know that  

𝑙(𝜃) = ∑ 𝑙ℎ(𝜃)

𝐻

ℎ=1

 

So function 𝑙(∙) is also concave, by the theorem that the summation of a group of concave 

functions is still concave. 

Based on this model, statistical inferences can be conducted by solving the maximum 

likelihood estimation (MLE), which is an asymptotically unbiased and consistent if the true 

parameter is in the interior of the parameter space (Lehmann, 1998). However, if the true 

parameter is close to the boundary of the parameter space, the MLE will lose its good properties. 

The author of this model proposed another way to estimate the parameter. They set a prior 

density to 𝜃 and generate random samples from posterior distribution based on importance 

sampling (Liu, 2002). By doing so, the estimation is more robust if the true parameter is indeed 

around the boundary. 

3.2.1.2 Generative Model 

Compared to the Poisson model that summarizes the count number of each type of read, 

the generative model tries to model each individual read directly without summarizing them 



 

31 

 

together. In this method (Li, Ruotti, Stewart, Thomson, & Dewey, 2010), a model is designed to 

solve the mapping uncertainty problem under both gene and isoform levels. 

The generative model is best illustrated with a Bayesian network (Figure 3-1), which 

models the sequencing procedure. 

  

Figure 3-1: Bayesian network of sequencing procedure. 𝑅𝑛 represents the 𝑛𝑡ℎ sequenced read, 

and all the reads are treated as the i.i.d random variables generated from this graph model. 𝐺𝑛, 𝑆𝑛 

and 𝑂𝑛 denote the isoform, start position and orientation of the 𝑛𝑡ℎ read respectively (Li, Ruotti, 

Stewart, Thomson, & Dewey, 2010). 

The complete likelihood function of the random vector (𝑅𝑛, 𝐺𝑛, 𝑆𝑛, 𝑂𝑛) is then: 

𝑝(𝜌, 𝑖, 𝑗, 𝑘; 𝜃) = ∏𝑃(𝐺𝑛 = 𝑖; 𝜃)𝑃(𝑆𝑛 = 𝑗|𝐺𝑛 = 𝑖)𝑃(𝑂𝑛 = 𝑘|𝐺𝑛 = 𝑖)𝑃(𝑅𝑛 = 𝜌|𝐺𝑛 = 𝑖, 𝑆𝑛

𝑁

𝑛=1

= 𝑗, 𝑂𝑛 = 𝑘) 

The value of 𝐺𝑛 is taken from a set of isoforms [0,𝑀]. The value of 𝑆𝑛 is taken from a set of 

positions [1, 𝑙𝑖 − 𝐿 + 1], where 𝑙𝑖 is the length of the isoform 𝑖 and 𝐿 is the read length. The 
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value of 𝑂𝑛 is 0 if the sequence of the 𝑛𝑡ℎ read is the same orientation with its parent isoform and 

is 1 otherwise. 𝑅𝑛 takes a value from the set of sequenced reads {𝜌}. They can be formulated as 

follows: 

𝑝𝐺(𝑖; 𝜃) = 𝑃(𝐺𝑛 = 𝑖; 𝜃) = 𝜃𝑖 

𝑝𝑆|𝐺(𝑗|𝑖) = 𝑃(𝑆𝑛 = 𝑗|𝐺𝑛 = 𝑖) =
1

𝑙𝑖 − 𝐿 + 1
 

𝑝𝑂|𝐺(0|𝑖) = 𝑝𝑂|𝐺(1|𝑖) = 𝑃(𝑂𝑛 = 0|𝐺𝑛 = 𝑖) =
1

2
 

𝑝𝑅|𝐺,𝑆,𝑂(𝜌|𝑖, 𝑗, 𝑘) = 𝑃(𝑅𝑛 = 𝜌|𝐺𝑛 = 𝑖, 𝑆𝑛 = 𝑗, 𝑂𝑛 = 𝑘) = 𝑓(𝑥) =

{
 
 

 
 ∏𝜔𝑡(𝜌𝑡, 𝛾𝑗+𝑡−1

𝑖 )

𝐿

𝑡=1

, 𝑘 = 0

∏𝜔𝑡(𝜌𝑡, �̅�𝑗+𝑡−1
𝑖 )

𝐿

𝑡=1

, 𝑘 = 1

 

The 𝜃𝑖 =
𝑘𝑖𝑙𝑖

∑ 𝑘𝑖𝑙𝑖𝑖
 is the probability of getting a read from isoform 𝑖 after one sequencing. The 

function 𝜔𝑡(𝑎, 𝑏) is the probability that the character of sequenced read at position 𝑡 is 𝑎 given 

that the corresponding character of the reference isoform is 𝑏. 𝜌𝑡 is the character of the read 𝜌 at 

position 𝑡 and 𝛾𝑖 is the sequence of isoform 𝑖, while �̅�𝑖 is the sequence of its reverse 

complement. The function 𝜔𝑡(𝑎, 𝑏) allows the incorporation of sequencing error by setting 

different values at each position along the read. The larger the value of 𝜔𝑡(𝑎, 𝑏) is, the more 

accurate the sequencing procedure is. At the same time, by changing the way of formulating 

𝑝𝑆|𝐺(𝑗|𝑖), the model can deal with the sequencing bias issue. For the illustration purpose, we will 

reduce the complexity of the model and only show how to estimate the parameters in a simple 

version of this model. As mentioned previously, if assuming the sequencing to be a strand-
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specific protocol, then we have 𝑝𝑂|𝐺(0|𝑖) = 1, which means we can ignore the orientation 

problem. Under this situation, 𝑅𝑛 is the observable variable and 𝐺𝑛 and 𝑆𝑛 are the latent 

variables. The marginal distribution of 𝑅𝑛 is given by 

𝑝(𝜌; 𝜃) = ∏𝑝(𝜌𝑛; 𝜃)

𝑁

𝑛=1

= ∏∑𝑝(𝑖, 𝑗; 𝜃)𝑝(𝜌𝑛|𝑖, 𝑗)

𝑖,𝑗

𝑁

𝑛=1

= ∏∑
𝜃𝑖

𝑙𝑖 − 𝐿 + 1
𝑝(𝜌𝑛|𝑖, 𝑗)

𝑖,𝑗

𝑁

𝑛=1

 

where only the 𝜃𝑖 is the unknown parameter and all others are known. It can be shown that it is 

convenient to use EM algorithm to get the MLE of 𝜃. At E step, we compute 

𝑄(𝜃|𝜃(𝑡)) = 𝐸 [∑ 𝑙𝑜𝑔(𝑝(𝜌𝑛, 𝑖, 𝑗; 𝜃))|𝜃(𝑡), 𝜌

𝑁

𝑛=1

] = ∑ 𝐸[𝑙𝑜𝑔(𝑝(𝜌𝑛, 𝑖, 𝑗; 𝜃))|𝜃(𝑡), 𝜌𝑛]

𝑁

𝑛=1

= ∑ 𝑝(𝑖, 𝑗|𝜃(𝑡), 𝜌𝑛)𝑙𝑜𝑔 (
𝜃𝑖

𝑙𝑖 − 𝐿 + 1
𝑝(𝜌𝑛|𝑖, 𝑗))

𝑁

𝑛=1

 

where 

𝑝(𝑖, 𝑗|𝜃(𝑡), 𝜌𝑛) =
𝑝(𝑖, 𝑗; 𝜃(𝑡))𝑝(𝜌𝑛|𝑖, 𝑗)

∑ 𝑝(𝑖, 𝑗; 𝜃(𝑡))𝑝(𝜌𝑛|𝑖, 𝑗)𝑖,𝑗

=
(𝜃𝑖

(𝑡)
/𝑙𝑖 − 𝐿 + 1)𝑝(𝜌𝑛|𝑖, 𝑗)

∑ (𝜃𝑖
(𝑡)

/𝑙𝑖 − 𝐿 + 1)𝑝(𝜌𝑛|𝑖, 𝑗)𝑖,𝑗

 

At M step, we compute the MLE of 𝜃 by setting the partial derivatives to zero. It can be shown 

that the likelihood function of 𝑅𝑛 is a concave function with respect to the parameter 𝜃 by the 

similar argument given in section 3.2.1.1.  

In general, the generative model can not only solve the problem of evaluating isoform 

expression level, but also can take the reads mapped to multiple genomic loci into consideration. 

Moreover, it can also adjust for the sequencing bias and sequencing error, which is typically a 

concern about during the DE analysis. 
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3.2.2 Unknown Transcript Structure 

In this section, we will give a quick summary about DE analysis without pre-defined 

isoform. This problem is conceptually harder, since we need to reconstruct the isoform structures 

first before evaluating their expression levels. The procedure of reconstructing the isoform based 

on the RNA-seq reads is called De Novo assembling. We will illustrate this technique according 

to Cufflinks (Trapnell, et al., 2010), which is a very popular software tool for DE analysis, and 

also show how they estimate the expression level for the assembled isoforms. 

3.2.2.1 De Novo Assembling 

Usually, De Novo assembling is an inevitable step for DE analysis if isoform structures 

are unknown. The basic idea is to construct a graph model by connecting overlapped reads, and 

then seek for trustable routes according to some specific principles. These routes will be the 

assembled isoforms. In details, there are four basic rules followed by Cufflinks assembler. First, 

every valid read must be mapped to at least one assembled isoforms. Second, every assembled 

isoform must be represented by a chain of the valid reads. Third, the number of assembled 

isoforms should be as small as possible while satisfying the first requirement. Last, given the 

assembled isoforms, the statistical model used for estimating expression level must be 

identifiable. Based on these rules, the problem of finding the assemblies is transformed to a 

problem of finding a minimum partition of a partial order, which is the set of reads with a binary 

relation, into chains. This problem in turn can be converted to an even simpler problem of 

finding a maximum matching in a weighted bipartite graph, which shows how the reads are 

connected, based on the Dilworth’s theorem (Dilworth, 1950). 

3.2.2.2 Transcript Abundance Estimation 
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The statistical model used by Cufflinks is also the generative model, but a little bit 

different from the model discussed in section 3.2.1.2. The Cufflinks introduces the distribution of 

the read length into the model, which makes it more powerful to model the paired-end RNA-seq 

data; however, the model doesn’t make the use of the sequencing accuracy and read orientation 

information as shown in the previous generative model.  

Cufflinks models each read independently and mimic the sequencing procedure step-by-

step (Trapnell, et al., 2010). Let’s denote 𝑝𝑟(∙) be the read length distribution, 𝐼𝑡(𝑟) be the length 

of read 𝑟 on transcript 𝑡, 𝑙𝑡 be the length of the transcript 𝑡 and 𝑙𝑡 = ∑ 𝑝𝑟(𝑖)(𝑙𝑡 − 𝑖 + 1)
𝑙𝑡
𝑖=1  be the 

adjusted length of transcript 𝑡. The likelihood function is then: 

𝐿(𝜃|𝑟) = ∏∑𝜃𝑡 (
𝑝𝑟(𝐼𝑡(𝑟))

𝑙𝑡 − 𝐼𝑡(𝑟) + 1
)

𝑇

𝑡=1

𝑛

𝑟=1

 

The 𝜃𝑡 =
𝑘𝑡 𝑙𝑡

∑ 𝑘𝑡 𝑙𝑡
𝑇
𝑡=1

 is the probability of getting a read from transcript 𝑡 after one sequencing. The 

𝑝𝑟(𝐼𝑡(𝑟))

𝑙𝑡−𝐼𝑡(𝑟)+1
 is the probability that the read sequence is 𝑟 given that the read is sequenced from 

transcript 𝑡. For the single end read, the read length is fixed so that 𝑝𝑟(∙) ≡ 1; for the paired end 

read, the read length distribution 𝑝𝑟(∙) can be approximated by the empirical distribution similar 

to section 3.2.1.1.  
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Chapter 4 Splicing Graph-based Negative Binomial Model 

In the previous chapter, we discussed several statistical methods for the DE analysis. 

Some of them ignore the isoform structure, some of them rely on the well-defined isoforms, and 

some of them ask for the De Novo assembling technique. Our research tries to overcome these 

problems by building a powerful, robust and efficient method. In this chapter, we will introduce 

a new isoform-free model for DE analysis and we will show the motivations, the structure and 

the advantages of our model. 

4.1 Motivation 

Our purpose is to develop an efficient and accurate method to detect differentially 

expressed genes under transcript level, but without relying on the pre-defined isoform structure 

and the De Novo assembling procedure. 

For the transcript level analysis, we change the null hypothesis from the gene level 

𝐻01:∑𝑘0𝑖

𝐼𝑔

𝑖=1

= ∑𝑘1𝑖

𝐼𝑔

𝑖=1

 

to the transcript level 

𝐻02: 𝑘0𝑖 = 𝑘1𝑖 , 𝑖 = 1, … , 𝐼𝑔 

The first hypothesis is tested by the gene level analysis tools, such as edgeR and DESeq. 

However, it is not exactly equivalent to ‘the gene being not differentially expressed’. For 

instance, suppose a gene has two isoforms 𝑎 and 𝑏. Under one condition we assume that the copy 

numbers of the isoforms are 𝑘𝑎 = 𝑛 and 𝑘𝑏 = 5𝑛, so that 𝑘𝑎 + 𝑘𝑏 = 6𝑛. Under another 
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condition, we set 𝑘𝑎 = 5𝑛 and 𝑘𝑏 = 𝑛, and so 𝑘𝑎 + 𝑘𝑏 = 6𝑛. This means that based on the first 

null hypothesis, the gene is not differentially expressed, however, the copies of isoforms, 𝑘𝑎 and 

𝑘𝑏, do change a lot across different conditions. Therefore, we need to redefine the hypothesis to 

make the test more powerful. That is, we call a gene is not differentially expressed if and only if 

𝑘0𝑖 = 𝑘1𝑖 for all 𝑖 of the gene.  

Moreover, although we want to perform a global test on all isoforms of one gene, we do 

not want to make any assumption on the isoform structure or use the De Novo assembling 

technique. The reason is that if the model depends on the assumed or assembled isoforms, the 

performance will be related to the accuracy of the isoform structures, which should be less robust 

than an isoform-free model. We will show how to achieve this goal based on the linear algebra 

theory in next section. 

4.2 Statistical Modeling 

In this section, we will illustrate our modeling procedure and the numerical algorithms 

for parameter estimation. 

4.2.1 Notation 

Let 𝐺 be a set of genes to be tested. Given a gene 𝑔 ∈ 𝐺, let 𝑇𝑔 = {𝑡𝑔𝑖|𝑖 = 1, … , 𝐼𝑔} be a 

set of transcripts that can be transcribed from gene 𝑔. In another word, 𝑇𝑔 denotes a set of all 

isoforms related to gene 𝑔. Let 𝑅𝑔 = {𝑟𝑔ℎ|ℎ = 1,… , 𝐻𝑔} denote the set of all unique read types 

that can be sequenced from the isoforms of gene 𝑔 and 𝑅𝑔𝑖 = {𝑟𝑔𝑖ℎ|ℎ = 1,… ,𝐻𝑔𝑖} be the read 

types sequenced from isoform 𝑖 (‘read type’ will be defined later). Denote 𝑘𝑔𝑖 to be the copy 
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number of isoform 𝑖 of gene 𝑔, and 𝑙𝑔𝑖 be its length. Let 𝑗 be the sample id, 𝑙𝑓 be the average 

length of cDNA fragment in our experiment. 

4.2.2 Annotation File Modification and Read Summary 

In order to detect differentially expressed genes at transcript level, we need to summarize 

RNA-seq reads in a more detailed way. For this purpose, we need to use Tophat for read 

mapping, which can identify exon-exon junctions from RNA-seq reads. 

Due to the alternative splicing events (Wang, et al., 2008; Matlin, Clark, & Smith, 2005), 

exons of different isoforms may have overlaps in the annotation file. For example, if an exon has 

an alternative 5′ donor site, there would be two transcripts in the annotation file. One contains 

this exon with its first 5′ donor site and another contains the exon with its second 5′ donor site 

(Bernard, Jacob, Mairal, & Vert, 2014). This will lead to some difficulties when we summarize 

reads into the read types. To avoid this issue, we first construct blocks, which are non-

overlapping DNA segments. This modification needs to be applied gene by gene. Given a gene 

𝑔, let 𝑃𝑂𝑆 = {𝑝𝑜𝑠𝑖|𝑖 = 1,… , 𝐼𝑔
𝑝𝑜𝑠} be the set of all the nucleotide positons within the exon 

regions in the annotation file. And let 𝐸 = {𝑒𝑖|𝑖 = 1, … , 𝐼𝑔
𝑒} be the set of all exons. Our goal is to 

group all nucleotide positions in 𝑃𝑂𝑆 into non-overlapping regions. Let’s denote these regions as 

blocks with notation 𝑏. Let 𝐴𝑝𝑜𝑠 denote the set of all exons that contain position 𝑝𝑜𝑠. We group 

two positions 𝑝𝑜𝑠𝑖 < 𝑝𝑜𝑠𝑗 to the same block if they satisfy: 

𝑎). 𝑝𝑜𝑠𝑗 − 𝑝𝑜𝑠𝑖 = 1.      𝑏). 𝐴𝑝𝑜𝑠𝑖
= 𝐴𝑝𝑜𝑠𝑗

. 

Finally, we index these blocks based on their start and end positions. An example is shown 

below (Figure 4-1). 
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Figure 4-1: Gene annotation modification. Given a gene, its exon regions in the annotation file 

are shown in the figure. We re-group the nucleotide positions based on the rules described above. 

The boxes with white background are the created blocks. 

Once the new annotation file is constructed, we can summarize mapped reads to read 

types based on it.  

Given a single end read, we define a read type to be a chain of ordered index of blocks 

where the read is mapped to, i.e. 1, 1-2, 1-3-5 (Bernard, Jacob, Mairal, & Vert, 2014). The 

summarized data is a two-way table. Each row denotes a read type and each column denotes a 

sample. The cell value is the count number of a read type sequenced from a sample (Figure 4-2).  

 

Figure 4-2: Summarized data table. The cell value is the count number of a specific read type in 

the corresponding sample.   
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For paired-end RNA-seq data, we simply treat it as two single end reads and summarize 

them in the same way as the single-end read. 

4.2.3 Statistical Model for One Sample 

First, let’s consider modeling the count data of read types for one sample. Since the genes 

are independently sequenced, we can perform the analysis gene by gene. For simplicity, we only 

keep the uniquely mapped reads and eliminate reads that are mapped to multiple gene regions. 

Studies have shown that the Poisson distribution can fit the read count well when there exist only 

technical replications (Jiang & Wong, 2009; Salzman, Jiang, & Wong, 2011; Mortazavi, 

Williams, McCue, Schaeffer, & Wold, 2008). According to this, we assume 

𝑋𝑔𝑖 ∝
𝑁𝑐𝑘𝑔𝑖𝑙𝑔𝑖

𝑙𝑓
 

where 𝑋𝑔𝑖 is the number of reads sequenced from isoform 𝑖 of gene 𝑔, and 𝑁𝑐 is the number of 

cells being sequenced. We assume that 𝑋𝑔𝑖 follows a Poisson distribution  

𝑋𝑔𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(
𝑎𝑁𝑐𝑘𝑔𝑖𝑙𝑔𝑖

𝑙𝑓
)  (1) 

They are also independent because each transcript is independently sequenced during the 

experiment. We also assume  

(𝑋𝑔𝑖1, … , 𝑋𝑔𝑖𝐻𝑔𝑖
|𝑋𝑔𝑖)~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑋𝑔𝑖 , 𝑝𝑔𝑖1, … , 𝑝𝑔𝑖𝐻𝑔𝑖

) (2) 

where 𝑋𝑔𝑖ℎ is the number of read type ℎ sequenced from the isoform 𝑖 of gene 𝑔, and 𝑝𝑔𝑖ℎ is the 

probability of getting a read type ℎ after sequencing the isoform 𝑖 once. Usually, 𝑝𝑔𝑖ℎ depends on 

𝑙𝑔𝑖ℎ and the sequencing bias (Hansen, Brenner, & Dudoit, 2010; Roberts, Trapnell, Donaghey, 
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Rinn, & Pachter, 2011; Li, Jiang, & Wong, 2010). 𝑙𝑔𝑖ℎ is the number of all possible start 

positions of read type ℎ on isoform 𝑖 of gene 𝑔. For example, given an isoform, if we let the start 

position of a single-end read go from the left to the right, we will obtain a unique read type at 

each position. So given an isoform, the number of read types is finite and every read type has its 

own set of possible start positions (Figure 4-3). 

 

Figure 4-3: Read types generated from one isoform. When we move a read from left to the right 

on the isoform, we will discover different read types. 𝑙ℎ is the number of the start positions that 

can generate read type ℎ. 

We can model 𝑝𝑔𝑖ℎ as 𝑝𝑔𝑖ℎ =
𝑤𝑔𝑖ℎ𝑙𝑔𝑖ℎ

∑ 𝑤𝑔𝑖ℎ𝑙𝑔𝑖ℎ

𝐻𝑔𝑖
ℎ=1

, where 𝑤𝑔𝑖ℎ accounts for the sequencing bias and 

∑ 𝑤𝑔𝑖ℎ
𝐻𝑔𝑖

ℎ=1 = 1. When 𝑤𝑔𝑖ℎ = 𝑤𝑔𝑖, it represents a special case that the sequencing procedure is 

unbiased, that is, every nucleotide on a transcript is equally likely to be sequenced as a starting 

position of a read (Jiang & Wong, 2009). In order to get (2), we assume  

𝑋𝑔𝑖ℎ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (
𝑎𝑁𝑐𝑝𝑔𝑖ℎ𝑘𝑔𝑖𝑙𝑔𝑖

𝑙𝑓
) , 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑙𝑦 (3) 
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It is clear that 𝑋𝑔𝑖 = ∑ 𝑋𝑔𝑖ℎ
𝐻𝑔𝑖

ℎ=1 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (
𝑎𝑁𝑐𝑘𝑔𝑖𝑙𝑔𝑖

𝑙𝑓
), so that (2) will be held. The observable 

variable 𝑋𝑔ℎ then follows  

𝑋𝑔ℎ = ∑ 𝑋𝑔𝑖ℎ

𝑖∈{𝑖|𝑖 ℎ𝑎𝑠 ℎ}

~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (
𝑎𝑁𝐶 ∑ 𝑝𝑔𝑖ℎ𝑘𝑔𝑖𝑙𝑔𝑖𝑖∈{𝑖|𝑖 ℎ𝑎𝑠 ℎ}

𝑙𝑓
) (4) 

The total number of reads mapped to gene 𝑔 follows:  

𝑋𝑔 = ∑ ∑ 𝑋𝑔𝑖ℎ

𝐻𝑔𝑖

ℎ=1

𝐼𝑔

𝑖=1

~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (
𝑎𝑁𝑐 ∑ 𝑘𝑔𝑖𝑙𝑔𝑖

𝐼𝑔
𝑖=1

𝑙𝑓
) (5) 

The total number of mapped reads of the sample follows 

𝑁 = ∑ 𝑋𝑔

𝐺

𝑔=1

~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (
𝑎𝑁𝑐 ∑ ∑ 𝑘𝑔𝑖𝑙𝑔𝑖

𝐼𝑔
𝑖=1

𝐺
𝑔=1

𝑙𝑓
) (6) 

Let 𝑆 = ∑ ∑ 𝑘𝑔𝑖𝑙𝑔𝑖
𝐼𝑔
𝑖=1

𝐺
𝑔=1  and 𝜃𝑔ℎ =

∑ 𝑝𝑔𝑖ℎ𝑘𝑔𝑖𝑙𝑔𝑖𝑖∈{𝑖|𝑖 ℎ𝑎𝑠 ℎ}

𝑆
, we will have  

(𝑋11, … , 𝑋1𝐻1
, … , 𝑋𝐺1, … , 𝑋𝐺𝐻𝐺

|𝑁) 

~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁, 𝜃11, … 𝜃1𝐻1
, … , 𝜃𝐺1, … , 𝜃𝐺𝐻𝐺

) 

(7) 

By the central limit theory we have 

[
 
 
 
 
 
 
𝑋11

⋮
𝑋1𝐻1

⋮
𝑋𝐺1

⋮
𝑋𝐺𝐻𝐺]

 
 
 
 
 
 

𝐷
→ 𝑁

(

 
 
 
 

[
 
 
 
 
 
 
𝑁𝜃11

⋮
𝑁𝜃1𝐻1

⋮
𝑁𝜃𝐺1

⋮
𝑁𝜃𝐺𝐻𝐺]

 
 
 
 
 
 

, [

𝑁𝜃11(1 − 𝜃11) … −𝑁𝜃11𝜃𝐺𝐻𝐺

⋱
−𝑁𝜃11𝜃𝐺𝐻𝐺

… 𝑁𝜃𝐺𝐻𝐺
(1 − 𝜃𝐺𝐻𝐺

)
]

)
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Since 𝜃𝑔ℎ → 0, 𝑁 → ∞ and 𝑁𝜃𝑔ℎ = 𝜆𝑔ℎ, we have  

[
 
 
 
 
 
 
𝑋11

⋮
𝑋1𝐻1

⋮
𝑋𝐺1

⋮
𝑋𝐺𝐻𝐺]

 
 
 
 
 
 

𝐷
→ 𝑁

(

 
 
 
 

[
 
 
 
 
 
 
𝜆11

⋮
𝜆1𝐻1

⋮
𝜆𝐺1

⋮
𝜆𝐺𝐻𝐺]

 
 
 
 
 
 

, [
𝜆11 … 0

⋱
0 … 𝜆𝐺𝐻𝐺

]

)

 
 
 
 

 

Asymptotically,  𝑋𝑔ℎ can be treated as independent Poisson random variable given the total 

number of mapped reads. 

𝑋𝑔ℎ|𝑁~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑁𝜃𝑔ℎ) (8) 

We will use this conditional distribution as our model, and simply treat 𝑁, the total mapped 

reads, as a constant. 

Based on this model, we can test 𝐻0: 𝜃0𝑔ℎ = 𝜃1𝑔ℎ, ℎ = 1,… ,𝐻𝑔. Testing 𝐻0: 𝜃0𝑔ℎ =

𝜃1𝑔ℎ, ℎ = 1,… ,𝐻𝑔 is equivalent to test 𝐻0: 𝑘0𝑔𝑖 = 𝑘1𝑔𝑖, 𝑖 = 1,… , 𝐼𝑔, with one extra assumption. 

In fact, we can write the relationship between 𝜃𝑔ℎ and 𝑘𝑔𝑖 in a matrix form according to (8).  

𝜃𝑔
⃑⃑⃑⃑ = [

𝜃𝑔1

⋮
𝜃𝑔𝐻𝑔

] = [

𝑝𝑔11 ⋯ 𝑝𝑔𝐼𝑔1

⋮ ⋱ ⋮
𝑝𝑔1𝐻𝑔

⋯ 𝑝𝑔𝐼𝑔𝐻𝑔

]

[
 
 
 
 
𝑘𝑔1𝑙𝑔1

𝑆
⋮

𝑘𝑔𝐼𝑔𝑙𝑔𝐼𝑔

𝑆 ]
 
 
 
 

= 𝑃𝑔𝑘𝑔
⃑⃑⃑⃑  (9) 

Some of 𝑝𝑔𝑖ℎ will be zero in matrix 𝑃𝑔, since it is possible that some isoforms cannot generate 

some of read types. We know that, if the rank of 𝑃𝑔 equals its column number, then 𝐻0: 𝜃0𝑔ℎ =

𝜃1𝑔ℎ, ℎ = 1,… ,𝐻𝑔 ⇔ 𝐻0: 𝑘0𝑔𝑖 = 𝑘1𝑔𝑖, 𝑖 = 1,… , 𝐼𝑔. So we need to make the assumption that the 

column rank of 𝑃𝑔 is full, which is reasonable in most cases. 
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4.2.4 Statistical Model for Multiple Samples 

For multiple samples, we need to consider issues related to biological replications and 

transcriptome size normalization. 

When samples are collected from different individuals, the Poisson model fails to account 

for the large variation among these biological replications (Hansen, Wu, Irizarry, & Leek, 2011; 

Glaus, Honkela, & Rattray, 2012). In this case, the negative binomial model is a more flexible 

for fitting the data and usually performs better than the Poisson model.  

We extend our Poisson model to the negative binomial model and do transcriptome size 

adjustment by using TMM normalization.  

We assume 𝑘𝑔𝑖 in (8) is a random variable rather than a constant. So we have 

𝑋𝑗𝑔ℎ|K𝑗𝑔𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑁𝑗

∑ 𝑝𝑔𝑖ℎ𝐾𝑗𝑔𝑖𝑙𝑔𝑖𝑖∈{𝑖|𝑖 ℎ𝑎𝑠 ℎ}

𝑆𝑗
) (10) 

where 𝑋𝑗𝑔ℎ is the number of read type ℎ sequenced from gene 𝑔 in sample 𝑗. By using TMM 

normalization, we can estimate 
𝑆𝑗

𝑆𝑗′
 for any two samples 𝑗 and 𝑗′. So we select a sample as a 

reference sample 𝑟, and calculate 
𝑆𝑟

𝑆𝑗
 for all 𝑗. Then (10) can be re-formulated as 

𝑋𝑗𝑔ℎ|K𝑗𝑔𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑁𝑗
∗
∑ 𝑝𝑔𝑖ℎ𝐾𝑗𝑔𝑖𝑙𝑔𝑖𝑖∈{𝑖|𝑖 ℎ𝑎𝑠 ℎ}

𝑆𝑟
) (11) 

where 𝑁𝑗
∗ = 𝑁𝑗

𝑆𝑟

𝑆𝑗
 is the normalized library size. If we denote Θ𝑗𝑔ℎ =

∑ 𝑝𝑔𝑖ℎ𝐾𝑗𝑔𝑖𝑙𝑔𝑖𝑖∈{𝑖|𝑖 ℎ𝑎𝑠 ℎ}

𝑆𝑟
, then 

we have 
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𝑋𝑗𝑔ℎ|Θ𝑗𝑔ℎ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑁𝑗
∗Θ𝑗𝑔ℎ) (12) 

We assume that the prior density function of Θ𝑗𝑔ℎ follows a gamma distribution 

Θ𝑗𝑔ℎ~𝐺𝑎𝑚𝑚𝑎(𝛼𝑔ℎ, 𝛽𝑔ℎ) (13) 

with the mean 𝐸[Θ𝑗𝑔ℎ] = 𝛼𝑔ℎ𝛽𝑔ℎ = 𝜃𝑔ℎ =
∑ 𝑝𝑔𝑖ℎ𝑘𝑔𝑖𝑙𝑔𝑖𝑖∈{𝑖|𝑖 ℎ𝑎𝑠 ℎ}

𝑆𝑟
. Then we can get the marginal 

distribution of our data 𝑋𝑗𝑔ℎ by integrating out Θ𝑗𝑔ℎ, which is a negative binomial distribution.  

𝑋𝑗𝑔ℎ~𝑁𝐵(𝑁𝑗
∗𝜃𝑔ℎ, 𝜑𝑔ℎ) (14) 

where 𝜑𝑔ℎ =
1

𝛼𝑔ℎ
. 

4.2.5 Splicing Graph based Parameter Reduction 

Usually, we will have a large number of parameters, which can lead to a high variation in 

the model. In order to make the model more stable and powerful, we need to reduce the number 

of parameters as much as possible. We try to do this according to a splicing graph model. 

Recall the relation between the read type expression and the isoform expression.  

𝜃 𝑔 = [

𝜃𝑔1

⋮
𝜃𝑔𝐻𝑔

] = [

𝑝𝑔11 ⋯ 𝑝𝑔𝐼𝑔1

⋮ ⋱ ⋮
𝑝𝑔1𝐻𝑔

⋯ 𝑝𝑔𝐼𝑔𝐻𝑔

]

[
 
 
 
 
𝑘𝑔1𝑙𝑔1

𝑆
⋮

𝑘𝑔𝐼𝑔𝑙𝑔𝐼𝑔

𝑆 ]
 
 
 
 

= 𝑃𝑔�⃑� 𝑔 

We have shown that if 𝑟𝑎𝑛𝑘(𝑃𝑔) equals the number of its columns, we can convert the test of 

𝑘𝑔𝑖 to the test of 𝜃𝑔ℎ. We know that for a matrix, its column rank equals to its row rank. If we 

sum two rows that are proportional to each other, the row rank will not change, and so is the 
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column rank. So our basic strategy is to aggregate rows in matrix 𝑃𝑔 as many as possible, while 

maintaining the same rank. In this way, we can group several read types to a new read type, 

which leads to a reduction in the number of parameters.  

We have already assumed that 

𝑝𝑔𝑖ℎ = {

𝑤𝑔𝑖ℎ𝑙𝑔𝑖ℎ

∑ 𝑤𝑔𝑖ℎ𝑙𝑔𝑖ℎ
𝐻𝑔𝑖

ℎ=1

, 𝑖𝑓 𝑖 𝑐𝑎𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 ℎ

0,                         𝑖𝑓 𝑖 𝑐𝑎𝑛 𝑛𝑜𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 ℎ

 (15) 

Notice that 𝑙𝑔𝑖ℎ, the number of possible start positions of read type ℎ, only depends on the index 

ℎ. So we have 𝑙𝑔𝑖ℎ = 𝑙𝑔ℎ for all 𝑖. Now let’s figure out that the conditions under which two rows 

in 𝑃𝑔 may be proportional to each other.  

First, consider the unbiased sequencing model, that is 𝑝𝑔𝑖ℎ =
𝑙𝑔ℎ

∑ 𝑙𝑔ℎ

𝐻𝑔𝑖
ℎ=1

=
𝑙𝑔ℎ

𝐿𝑔𝑖
, where 𝐿𝑔𝑖 =

∑ 𝑙𝑔ℎ
𝐻𝑔𝑖

ℎ=1 . For any two read types ℎ and ℎ′, if the set of isoforms that can generate ℎ is the same 

as the set of isoforms that can generate ℎ′, we call these two read types ‘always show together’. 

In other words, if an isoform can provide read type ℎ, it must also be able to provide read type 

ℎ′; if it cannot provide read type ℎ, it also shall not provide read type ℎ′, and vice versa. Under 

this situation, the rows in 𝑃𝑔 for these two read types look like the following 

[
 
 
 
 
𝑙𝑔ℎ

𝐿𝑔1

𝑙𝑔ℎ

𝐿𝑔2

…
𝑙𝑔ℎ

𝐿𝑔𝐼𝑔

𝑙𝑔ℎ′

𝐿𝑔1

𝑙𝑔ℎ′

𝐿𝑔2

…
𝑙𝑔ℎ′

𝐿𝑔𝐼𝑔]
 
 
 
 

 (16) 

which are proportional to each other.  
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For a general case, which 𝑝𝑔𝑖ℎ =
𝑤𝑔𝑖ℎ𝑙𝑔𝑖ℎ

∑ 𝑤𝑔𝑖ℎ𝑙𝑔𝑖ℎ

𝐻𝑔𝑖
ℎ=1

 and 𝐿𝑔𝑖 = ∑ 𝑤𝑔𝑖ℎ𝑙𝑔𝑖ℎ
𝐻𝑔𝑖

ℎ=1 . If we still select 

two read types meet the situation described above, then the rows will be 

[
 
 
 
 

𝑤𝑔1ℎ𝑙𝑔ℎ

𝐿𝑔1

𝑤𝑔2ℎ𝑙𝑔ℎ

𝐿𝑔2
…

𝑤𝑔𝐼𝑔ℎ𝑙𝑔ℎ

𝐿𝑔𝐼𝑔

𝑤𝑔1ℎ′𝑙𝑔ℎ′

𝐿𝑔1

𝑤𝑔2ℎ′𝑙𝑔ℎ′

𝐿𝑔2
…

𝑤𝑔𝐼𝑔ℎ′𝑙𝑔ℎ′

𝐿𝑔𝐼𝑔 ]
 
 
 
 

 (17) 

If we assume 
𝑤𝑔1ℎ

𝑤𝑔1ℎ′
=

𝑤𝑔2ℎ

𝑤𝑔2ℎ′
= ⋯ =

𝑤𝑔𝐼𝑔ℎ

𝑤𝑔𝐼𝑔ℎ′
, then these rows are proportional to each other.  

In conclusion, for the unbiased sequencing model, any two read types that are ‘always 

show together’ represent two linearly dependent rows in 𝑃𝑔; for the general sequencing model, if 

the assumption of the weights is true, this statement is still valid. Therefore, in order to find read 

types whose rows are linearly dependent in 𝑃𝑔, we only need to find read types that always show 

together.   

For this purpose, we can create a splicing graph to help us search for these read types. Let 

𝐵 = {𝑏𝑖|𝑖 = 1,… , 𝐵𝑔} be the set of blocks belonging to gene 𝑔, which comes from the modified 

annotation file. Then a read type is denoted as 𝑏𝑖1𝑏𝑖2 …𝑏𝑖𝑁, where 𝑏𝑖𝑘 ∈ 𝐵 and 𝑏𝑖𝑗
< 𝑏𝑖

𝑗′
 if 𝑗 <

𝑗′. We define a prefix-string of a read type to be any substring starting from the left most block, 

that is 𝑏𝑖1𝑏𝑖2 …𝑏𝑖𝑛, where 𝑛 = 1,2, … ,𝑁. We also define a suffix-string to be any substring 

ending at the right most block, that is 𝑏𝑖𝑛 , 𝑏𝑖𝑛+1
, … , 𝑏𝑖𝑁, where 𝑛 = 1,2, … ,𝑁. We compare read 

types based on lexicographic order. Then two read types can connect to each other if and only if 

there exist a suffix-string in the smaller read type equaling to a prefix-string in the bigger read 

type. Let 𝑃𝑆𝑟 = {𝑎𝑙𝑙 𝑝𝑟𝑒𝑓𝑖𝑥 − 𝑠𝑡𝑟𝑖𝑛𝑔 𝑜𝑓 𝑟𝑒𝑎𝑑 𝑟} and 𝑆𝑆𝑟 = {𝑎𝑙𝑙 𝑠𝑢𝑓𝑓𝑖𝑥 − 𝑠𝑡𝑟𝑖𝑛𝑔 𝑜𝑓 𝑟𝑒𝑎𝑑 𝑟}. 
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So any 𝑟 < 𝑟′ can connect together if and only if 𝑆𝑆𝑟 ∩ 𝑃𝑆𝑟′ ≠ ∅. If 𝑟 < 𝑟′ and they can connect 

to each other, we denote the pair as 𝑟 → 𝑟′. Moreover, given 𝑟 → 𝑟′ and 𝑟 → 𝑟′′, if 𝑟′ < 𝑟′′ and 

𝑟′ → 𝑟′′, we will delete the connection between 𝑟 and 𝑟′′. The splicing graph is a directed graph 

whose path go from the smaller read types to the larger read types. A simple example is shown 

below (Figure 4-4). 

 

Figure 4-4: Splicing graph for parameter reduction. The ‘start’ and ‘end’ nodes are the pseudo 

read types to imply the possible starting and ending read types. There will be a path between two 

read types if they satisfy the connection conditions.  

Notice that, we have two pseudo nodes on the graph, i.e. the ‘start’ and ‘end’. Their function is to 

imply the starting and ending read types (LeGault & Dewey, 2013). Since it is impossible to 

know the real starting and ending read types from RNA-seq data, the path between any read type 

and the ‘start’ or ‘end’ nodes will be a potential path. We can regularize the graph complexity by 

modifying the number of the potential paths, which will result in a different level of parameter 

reduction.  

If two read types have a path between them and the out degree of the smaller read type 

and the in degree of the larger read type both equal to one, then these two read types will always 

show together, i.e. 1-2 and 2 in the graph above. In other word, if ℎ → ℎ′ and the in degree of ℎ 

and the out degree of ℎ′ are one, where ℎ = 𝑏𝑖1 …𝑏𝑖𝑗
…𝑏𝑖𝑘 and ℎ′ = 𝑏𝑖𝑗

…𝑏𝑖𝑘 …𝑏𝑖𝑁, it means that 

there must be some isoforms have the partial structure 𝑏𝑖1 …𝑏𝑖𝑗
…𝑏𝑖𝑘 …𝑏𝑖𝑁 and this partial 

structure is the only one that involves ℎ and ℎ′. That is, ℎ and ℎ′ always show together. So we 
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combine read types satisfying such criterion to a new read type, which will significantly reduce 

the number of parameters in our model. Figure 4-5 shows the reduced version of Figure 4-4. 

   

Figure 4-5: Reduced splicing graph. The number of parameters decrease from 9 to 4. 

 

4.2.6 Parameter Estimation 

We use a combination of the EM and Newton-Raphson algorithms for parameter 

estimation.  

Given a gene 𝑔, let’s denote 𝑒 = 0 or 1 to be the condition id. We then have  

𝑋𝑒𝑗𝑔ℎ|Θ𝑒𝑗𝑔ℎ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑁𝑗
∗Θ𝑒𝑗𝑔ℎ) 

Θ𝑒𝑗𝑔ℎ~𝐺𝑎𝑚𝑚𝑎(𝛼𝑔ℎ, 𝛽𝑒𝑔ℎ) 

where 𝐸[Θ𝑒𝑗𝑔ℎ] = 𝛼𝑔ℎ𝛽𝑒𝑔ℎ =
∑ 𝑝𝑔𝑖ℎ𝑘𝑒𝑔𝑖𝑙𝑔𝑖

𝐼𝑔
𝑖=1

𝑆𝑟
= 𝜃𝑒𝑔ℎ. The marginal distribution of the observable 

variable 𝑋𝑒𝑗𝑔ℎ is  

𝑋𝑒𝑗𝑔ℎ~𝑁𝐵(𝑁𝑗
∗𝜃𝑒𝑔ℎ, 𝜑𝑔ℎ) 

where 𝜑𝑔ℎ =
1

𝛼𝑔ℎ
. The posterior distribution of Θ𝑒𝑗𝑔ℎ is  
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Θ𝑒𝑗𝑔ℎ|𝑋𝑒𝑗𝑔ℎ~𝐺𝑎𝑚𝑚𝑎(𝑋𝑒𝑗𝑔ℎ + 𝜑𝑔ℎ
−1,

𝜃𝑒𝑔ℎ

𝑁𝑗
∗𝜃𝑒𝑔ℎ + 𝜑𝑔ℎ

) 

Then we can have 

𝐸[Θ𝑒𝑗𝑔ℎ|𝑋𝑒𝑗𝑔ℎ = 𝑥𝑒𝑗𝑔ℎ] = (𝑥𝑒𝑗𝑔ℎ + 𝜑𝑔ℎ
−1) (

𝜃𝑒𝑔ℎ

𝑁𝑗
∗𝜃𝑒𝑔ℎ + 𝜑𝑔ℎ

−1) 

𝐸[ln(Θ𝑒𝑗𝑔ℎ) |𝑋𝑒𝑗𝑔ℎ = 𝑥𝑒𝑗𝑔ℎ] = 𝜓(𝑥𝑒𝑗𝑔ℎ + 𝜑𝑔ℎ
−1) + ln (

𝜃𝑒𝑔ℎ

𝑁𝑗
∗𝜃𝑒𝑔ℎ + 𝜑𝑔ℎ

−1)

=
Γ′(𝑥𝑒𝑗𝑔ℎ + 𝜑𝑔ℎ

−1)

Γ(𝑥𝑒𝑗𝑔ℎ + 𝜑𝑔ℎ
−1)

+ ln (
𝜃𝑒𝑔ℎ

𝑁𝑗
∗𝜃𝑒𝑔ℎ + 𝜑𝑔ℎ

−1) 

The hypotheses are 

𝐻0: 𝜃0𝑔ℎ = 𝜃1𝑔ℎ, ℎ = 1,… ,𝐻𝑔,   𝐻1: 𝐻0 𝑖𝑠 𝑛𝑜𝑡 𝑡𝑟𝑢𝑒 

Under 𝐻0 ∪ 𝐻1, the marginal log-likelihood function is 

𝑙𝑋(𝜃𝑒𝑔ℎ, 𝜑𝑔ℎ) = ∑∑ ∑ {log (𝛤(𝑥𝑒𝑗𝑔ℎ + 𝜑𝑔ℎ
−1)) − log (𝛤(𝑥𝑒𝑗𝑔ℎ + 1)) − log (𝛤(𝜑𝑔ℎ

−1))

𝐻𝑔

ℎ=1

𝐽𝑒

𝑗=1

1

𝑒=0

+ 𝑥𝑒𝑗𝑔ℎ log(𝑁𝑗
∗𝜃𝑒𝑔ℎ) − 𝑥𝑒𝑗𝑔ℎ log(𝑁𝑗

∗𝜃𝑒𝑔ℎ + 𝜑𝑔ℎ
−1) − 𝜑𝑔ℎ

−1 log(𝜑𝑔ℎ𝑁𝑗
∗𝜃𝑒𝑔ℎ + 1)} 

The joint log-likelihood function is 
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𝑙𝑋,Θ(𝜃𝑒𝑔ℎ, 𝜑𝑔ℎ)

= ∑∑∑ {𝑥𝑒𝑗𝑔ℎ log(𝑁𝑗
∗) − 𝜑𝑔ℎ

−1 log(𝜑𝑔ℎ) − log (𝛤(𝑥𝑒𝑗𝑔ℎ + 1))

𝐻𝑔

ℎ=1

𝐽𝑒

𝑗=1

1

𝑒=0

− log (Γ(𝜑𝑔ℎ
−1)) − 𝜑𝑔ℎ

−1 log(𝜃𝑒𝑔ℎ) + (𝑥𝑒𝑗𝑔ℎ + 𝜑𝑔ℎ
−1 − 1) log(𝛩𝑒𝑗𝑔ℎ)

− (𝑁𝑗
∗ +

1

𝜑𝑔ℎ𝜃𝑒𝑔ℎ
)Θ𝑒𝑗𝑔ℎ} 

According to the EM algorithm, we have the following procedures. 

E step: 

𝑄(𝜃𝑒𝑔ℎ, 𝜑𝑔ℎ|𝜃𝑒𝑔ℎ
(𝑡) , 𝜑𝑔ℎ

(𝑡)
) = 𝐸Θ|𝑋[𝑙𝑋,Θ(𝜃𝑒𝑔ℎ, 𝜑𝑔ℎ)]

= ∑∑∑ {𝑥𝑒𝑗𝑔ℎ log(𝑁𝑗
∗) − 𝜑𝑔ℎ

−1 log(𝜑𝑔ℎ) − log (𝛤(𝑥𝑒𝑗𝑔ℎ + 1))

𝐻𝑔

ℎ=1

𝐽𝑒

𝑗=1

1

𝑒=0

− log (Γ(𝜑𝑔ℎ
−1)) − 𝜑𝑔ℎ

−1 log(𝜃𝑒𝑔ℎ)

+ (𝑥𝑒𝑗𝑔ℎ + 𝜑𝑔ℎ
−1 − 1) [𝜓 (𝑥𝑒𝑗𝑔ℎ + (𝜑𝑔ℎ

(𝑡))
−1

) + ln(
𝜃𝑒𝑔ℎ

(𝑡)

𝑁𝑗
∗𝜃𝑒𝑔ℎ

(𝑡)
+ (𝜑𝑔ℎ

(𝑡))
−1)]

− (𝑁𝑗
∗ +

1

𝜑𝑔ℎ𝜃𝑒𝑔ℎ
) [(𝑥𝑒𝑗𝑔ℎ + (𝜑𝑔ℎ

(𝑡))
−1

)(
𝜃𝑒𝑔ℎ

(𝑡)

𝑁𝑗
∗𝜃𝑒𝑔ℎ

(𝑡)
+ (𝜑𝑔ℎ

(𝑡))
−1)]} 

M step: 

𝜃𝑒𝑔ℎ
(𝑡+1)

, 𝜑𝑔ℎ
(𝑡+1)

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑒𝑔ℎ,𝜑𝑔ℎ
𝑄(𝜃𝑒𝑔ℎ, 𝜑𝑔ℎ|𝜃𝑒𝑔ℎ

(𝑡) , 𝜑𝑔ℎ
(𝑡)

) 

By setting the partial derivatives to zero, we can update 𝜃 with the formula 
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𝜃𝑒𝑔ℎ
(𝑡+1)

=

∑
(𝑥𝑒𝑗𝑔ℎ + (𝜑𝑔ℎ

(𝑡))
−1

) 𝜃𝑒𝑔ℎ
(𝑡)

𝑁𝑗
∗𝜃𝑒𝑔ℎ

(𝑡) + (𝜑𝑔ℎ
(𝑡))

−1
𝐽𝑒
𝑗=1

𝐽𝑒
 

However, for 𝜑, there is no closed form solution. We will use the Newton-Raphson algorithm to 

calculate the solution of the equation 

(𝐽0 + 𝐽1) 𝑙𝑜𝑔(𝜑𝑔ℎ) − (𝐽0 + 𝐽1) + (𝐽0 + 𝐽1)𝜓(𝜑𝑔ℎ
−1) + 𝐽0 𝑙𝑜𝑔(𝜃0𝑔ℎ

(𝑡+1)
) + 𝐽1𝑙𝑜𝑔(𝜃1𝑔ℎ

(𝑡+1)
)

− ∑∑[𝜓 (𝑥𝑒𝑗𝑔ℎ + (𝜑𝑔ℎ
(𝑡))

−1

) + 𝑙𝑜𝑔(
𝜃𝑒𝑔ℎ

(𝑡)

𝑁𝑗
∗𝜃𝑒𝑔ℎ

(𝑡) + (𝜑𝑔ℎ
(𝑡))

−1)]

𝐽𝑒

𝑗=1

1

𝑒=0

+ ∑(𝜃𝑒𝑔ℎ
(𝑡+1)

)
−1

∑[(𝑥𝑒𝑗𝑔ℎ + (𝜑𝑔ℎ
(𝑡))

−1

)(
𝜃𝑒𝑔ℎ

(𝑡)

𝑁𝑗
∗𝜃𝑒𝑔ℎ

(𝑡) + (𝜑𝑔ℎ
(𝑡))

−1)]

𝐽𝑒

𝑗=1

1

𝑒=0

= 0 

through an iterative formula 

𝜑𝑔ℎ,𝑡+1 = 𝜑𝑔ℎ,𝑡 −
𝑓(𝜑𝑔ℎ,𝑡)

𝑓′(𝜑𝑔ℎ,𝑡)
 

where 

𝑓(𝜑𝑔ℎ) = (𝐽0 + 𝐽1) 𝑙𝑜𝑔(𝜑𝑔ℎ) − (𝐽0 + 𝐽1) + (𝐽0 + 𝐽1)𝜓(𝜑𝑔ℎ
−1) + 𝐽0 𝑙𝑜𝑔(𝜃0𝑔ℎ

(𝑡+1)
) + 𝐽1𝑙𝑜𝑔(𝜃1𝑔ℎ

(𝑡+1)
)

− ∑∑[𝜓(𝑥𝑒𝑗𝑔ℎ + (𝜑𝑔ℎ
(𝑡))

−1

) + 𝑙𝑜𝑔(
𝜃𝑒𝑔ℎ

(𝑡)

𝑁𝑗
∗𝜃𝑒𝑔ℎ

(𝑡) + (𝜑𝑔ℎ
(𝑡))

−1)]

𝐽𝑒

𝑗=1

1

𝑒=0

+ ∑(𝜃𝑒𝑔ℎ
(𝑡+1)

)
−1

∑[(𝑥𝑒𝑗𝑔ℎ + (𝜑𝑔ℎ
(𝑡))

−1

)(
𝜃𝑒𝑔ℎ

(𝑡)

𝑁𝑗
∗𝜃𝑒𝑔ℎ

(𝑡) + (𝜑𝑔ℎ
(𝑡))

−1)]

𝐽𝑒

𝑗=1

1

𝑒=0
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𝑓′(𝜑𝑔ℎ) = (𝐽0 + 𝐽1)𝜑𝑔ℎ
−1 − (𝐽0 + 𝐽1)𝜓

′(𝜑𝑔ℎ
−1)𝜑𝑔ℎ

−2 

Then we can update 

𝜑𝑔ℎ
(𝑡+1)

= 𝜑𝑔ℎ,𝑡+1 

if the iteration satisfies the stopping strategy.    

Under 𝐻0, the marginal likelihood function is 

𝑙𝑋(𝜃𝑔ℎ, 𝜑𝑔ℎ) = ∑∑ ∑ {log (𝛤(𝑥𝑒𝑗𝑔ℎ + 𝜑𝑔ℎ
−1)) − log (𝛤(𝑥𝑒𝑗𝑔ℎ + 1)) − log (𝛤(𝜑𝑔ℎ

−1))

𝐻𝑔

ℎ=1

𝐽𝑒

𝑗=1

1

𝑒=0

+ 𝑥𝑒𝑗𝑔ℎ log(𝑁𝑗
∗𝜃𝑔ℎ) − 𝑥𝑒𝑗𝑔ℎ log(𝑁𝑗

∗𝜃𝑔ℎ + 𝜑𝑔ℎ
−1) − 𝜑𝑔ℎ

−1 log(𝜑𝑔ℎ𝑁𝑗
∗𝜃𝑔ℎ + 1)} 

The joint log-likelihood function is 

𝑙𝑋,Θ(𝜃𝑔ℎ, 𝜑𝑔ℎ) = ∑∑∑ {𝑥𝑒𝑗𝑔ℎ log(𝑁𝑗
∗) − 𝜑𝑔ℎ

−1 log(𝜑𝑔ℎ) − log (𝛤(𝑥𝑒𝑗𝑔ℎ + 1))

𝐻𝑔

ℎ=1

𝐽𝑒

𝑗=1

1

𝑒=0

− log (Γ(𝜑𝑔ℎ
−1)) − 𝜑𝑔ℎ

−1 log(𝜃𝑔ℎ) + (𝑥𝑒𝑗𝑔ℎ + 𝜑𝑔ℎ
−1 − 1) log(𝛩𝑗𝑔ℎ)

− (𝑁𝑗
∗ +

1

𝜑𝑔ℎ𝜃𝑔ℎ
)Θ𝑗𝑔ℎ} 

Again, according to the EM algorithm, we have 

E step: 
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𝑄(𝜃𝑔ℎ, 𝜑𝑔ℎ|𝜃𝑔ℎ
(𝑡)

, 𝜑𝑔ℎ
(𝑡)

) = 𝐸Θ|𝑋[𝑙𝑋,Θ(𝜃𝑔ℎ, 𝜑𝑔ℎ)]

= ∑∑∑ {𝑥𝑒𝑗𝑔ℎ log(𝑁𝑗
∗) − 𝜑𝑔ℎ

−1 log(𝜑𝑔ℎ) − log (𝛤(𝑥𝑒𝑗𝑔ℎ + 1))

𝐻𝑔

ℎ=1

𝐽𝑒

𝑗=1

1

𝑒=0

− log (Γ(𝜑𝑔ℎ
−1)) − 𝜑𝑔ℎ

−1 log(𝜃𝑔ℎ)

+ (𝑥𝑒𝑗𝑔ℎ + 𝜑𝑔ℎ
−1 − 1) [𝜓 (𝑥𝑒𝑗𝑔ℎ + (𝜑𝑔ℎ

(𝑡))
−1

) + ln(
𝜃𝑔ℎ

(𝑡)

𝑁𝑗
∗𝜃𝑔ℎ

(𝑡)
+ (𝜑𝑔ℎ

(𝑡))
−1)]

− (𝑁𝑗
∗ +

1

𝜑𝑔ℎ𝜃𝑔ℎ
) [(𝑥𝑒𝑗𝑔ℎ + (𝜑𝑔ℎ

(𝑡))
−1

)(
𝜃𝑔ℎ

(𝑡)

𝑁𝑗
∗𝜃𝑔ℎ

(𝑡)
+ (𝜑𝑔ℎ

(𝑡))
−1)]} 

M step: 

𝜃𝑔ℎ
(𝑡+1)

, 𝜑𝑔ℎ
(𝑡+1)

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑔ℎ,𝜑𝑔ℎ
𝑄(𝜃𝑔ℎ, 𝜑𝑔ℎ|𝜃𝑔ℎ

(𝑡), 𝜑𝑔ℎ
(𝑡)

) 

We can calculate 𝜃 by  

𝜃𝑔ℎ
(𝑡+1)

=

∑ ∑
(𝑥𝑒𝑗𝑔ℎ + (𝜑𝑔ℎ

(𝑡))
−1

) 𝜃𝑔ℎ
(𝑡)

𝑁𝑗
∗𝜃𝑔ℎ

(𝑡) + (𝜑𝑔ℎ
(𝑡))

−1
𝐽𝑒
𝑗=1

1
𝑒=0

(𝐽0 + 𝐽1)
 

and 𝜑 by  

𝜑𝑔ℎ,𝑡+1 = 𝜑𝑔ℎ,𝑡 −
𝑓(𝜑𝑔ℎ,𝑡)

𝑓′(𝜑𝑔ℎ,𝑡)
 

where  
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𝑓(𝜑𝑔ℎ) = (𝐽0 + 𝐽1) log(𝜑𝑔ℎ) − (𝐽0 + 𝐽1) + (𝐽0 + 𝐽1)𝜓(𝜑𝑔ℎ
−1) + (𝐽0 + 𝐽1) log(𝜃𝑔ℎ

(𝑡+1)
)

− ∑∑[𝜓(𝑥𝑒𝑗𝑔ℎ + (𝜑𝑔ℎ
(𝑡))

−1

) + ln(
𝜃𝑔ℎ

(𝑡)

𝑁𝑗
∗𝜃𝑔ℎ

(𝑡) + (𝜑𝑔ℎ
(𝑡))

−1)]

𝐽𝑒

𝑗=1

1

𝑒=0

+ (𝜃𝑔ℎ
(𝑡+1)

)
−1

∑∑[(𝑥𝑒𝑗𝑔ℎ + (𝜑𝑔ℎ
(𝑡))

−1

)(
𝜃𝑔ℎ

(𝑡)

𝑁𝑗
∗𝜃𝑔ℎ

(𝑡) + (𝜑𝑔ℎ
(𝑡))

−1)]

𝐽𝑒

𝑗=1

1

𝑒=0

 

𝑓′(𝜑𝑔ℎ) = (𝐽0 + 𝐽1)𝜑𝑔ℎ
−1 − (𝐽0 + 𝐽1)𝜓

′(𝜑𝑔ℎ
−1)𝜑𝑔ℎ

−2 

Then we can update 

𝜑𝑔ℎ
(𝑡+1)

= 𝜑𝑔ℎ,𝑡+1 

if the iteration satisfies the stopping strategy. 

4.2.7 Likelihood Ratio Test 

After parameter estimation, we can test the hypothesis by likelihood ratio test (LRT). 

Given a gene 𝑔, the test statistics is 

sup
𝐻0

∑ ∑ 𝑙(𝜃𝑔ℎ, �̂�𝑔ℎ)
𝐻𝑔

ℎ=1
1
𝑒=0

sup
𝐻0∪𝐻1

∑ ∑ 𝑙(𝜃𝑒𝑔ℎ, �̂�𝑔ℎ)
𝐻𝑔

ℎ=1
1
𝑒=0

 

If the true parameters are the interior points of the parameter space, then under 𝐻0, the test 

statistics follows a Chi-square distribution asymptotically with a degree of freedom 𝐻𝑔. 

4.3 Simulation Studies 

In this section, we will compare the performance of our method to that of the edgeR 

based on the simulation studies. The simulated data are generated by an R package ‘polyester’ 
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according to the human transcript FASTA file, ‘Homo_sapiens.GRCh38.cdna.all.fa’, 

downloaded from Ensembl database. For convenience, we set our transcriptome to be only the 

protein coding transcripts on chromosome 1 with a transcript support level 1 or 2, which means 

that these transcripts are with a high confidence level. The number of selected genes is about 

1800. Particularly, for paired-end reads, we ran the edgeR twice, one by treating a paired-end 

reads as two single-end reads and another by treating it as one long read. The detailed simulation 

settings are described below. 

4.3.1 Simulation Settings 

We simulated both single-end and paired-end RNA-seq reads from ‘polyester’. The 

distribution of the transcript copy number follows a negative binomial distribution with 𝜇 = 5 

and 𝜎2 = 10. The fragment length is taken to be 250 base-pair with standard error in 25 base-

pair. The sequencing error is 0.005, which means that the probability of having a wrong 

nucleotide for one position is about 0.5%. We set two different conditions, 0 and 1, and set the 

percentage of differentially expressed genes to be around 30%. For each DE gene, the fold 

changes of its isoforms are selected equally likely from the set {0.25,0.5,1,2,4}. So if the fold 

changes of the isoforms are all selected to be 1 by chance, then that gene will not be treated as a 

differentially expressed gene. We assign equal number of samples to each condition, which vary 

in the set {2, 4,8,16}. We set the read length to be 100 base-pair for the single-end read and set 

both end to be this number for the paired-end read. The coverage is set to be 60 for the single-

end read, so each nucleotide on transcriptome is covered by 60 short reads in average. For 

paired-end reads, each mate pair is treated as two single end reads and the coverage is controlled 

to be 60, too. We use the default setting of the dispersion parameter, which is 
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𝑟𝑒𝑎𝑑𝑠 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 × 𝑓𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 3⁄ . For each simulation setting, we repeated 12 runs to 

make our conclusion more robust.  

4.3.2 Simulation Results 

We first checked the performance of type I error control by simulating the RNA-seq data 

without DE events. In this study, we only ran the simulation once and set 8 samples to both 

conditions. We draw the empirical CDF of the p-value for both single-end reads (Figure 4-6) and 

paired-end reads (Figure 4-7). 
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Figure 4-6: Empirical CDF of p-value for single-end read. The blue dash line is the CDF of 

edgeR and the red solid line is our method SGNB.  
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Figure 4-7: Empirical CDF of p-value for paired-end read. The blue dash line is the CDF of 

edgeR by treating a mate pair read as one long read. The green dot dash line is the CDF of edgeR 

by treating the paired-end read as the single-end read. The red solid line is for our method. 

Theoretically, the plot of valid p-values vs their CDF is expected to follow the diagonal line. For 

the single-end reads, SGNB and edgeR share a similar CDF before p-value reaches 0.5 and 

SGNB is a little bit lower than edgeR after 0.5. For the paired-end reads, SGNB is almost always 
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below the diagonal line, suggesting that our method is more conservative, while edgeR can 

control the type-I error pretty well.  

Next, we checked the hypothesis testing performance under each sample size setting 

through the ROC curves (Figures 4-8, 4-9, 4-10 and 4-11). The ROC curve is draw by plotting 

the true positive rate against the false positive rate. A better model should have a larger area 

under the ROC curve.  
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Figure 4-8: Performance comparisons for single-end read with sample size 2. a). ROC curve. b). 

Sensitivity vs. p-value. c). False Discovery Rate vs. Gene Calling Number. d). False Discovery 

Rate vs. p-value.  



 

62 

 

 

Figure 4-9: Performance comparisons for single-end read with sample size 4. a). ROC curve. b). 

Sensitivity vs. p-value. c). False Discovery Rate vs. Gene Calling Number. d). False Discovery 

Rate vs. p-value. 
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Figure 4-10: Performance comparisons for single-end read with sample size 8. a). ROC curve. b). 

Sensitivity vs. p-value. c). False Discovery Rate vs. Gene Calling Number. d). False Discovery 

Rate vs. p-value. 
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Figure 4-11: Performance comparisons for single-end read with sample size 16. a). ROC curve. 

b). Sensitivity vs. p-value. c). False Discovery Rate vs. Gene Calling Number. d). False 

Discovery Rate vs. p-value. 

As we can see from the graphs above, our method always has a higher ROC curve than the 

edgeR package. That is, we can achieve a higher true positive rate at a fixed p-value level. When 

the sample size is small (i.e. 2), our method has a little bit worse false discovery rate controlled 

by p-value. But when the sample size increases, SGNB becomes better and can beat edgeR after 
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sample size 8. The similar results can be seen for the paired-end read (Figures 4-12, 4-13, 4-14, 

4-15).  

 

Figure 4-12: Performance comparisons for paired-end read with sample size 2. a). ROC curve. b). 

Sensitivity vs. p-value. c). False Discovery Rate vs. Gene Calling Number. d). False Discovery 

Rate vs. p-value. 
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Figure 4-13: Performance comparisons for paired-end read with sample size 4. a). ROC curve. b). 

Sensitivity vs. p-value. c). False Discovery Rate vs. Gene Calling Number. d). False Discovery 

Rate vs. p-value. 
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Figure 4-14: Performance comparisons for paired-end read with sample size 8. a). ROC curve. b). 

Sensitivity vs. p-value. c). False Discovery Rate vs. Gene Calling Number. d). False Discovery 

Rate vs. p-value. 
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Figure 4-15: Performance comparisons for paired-end read with sample size 16. a). ROC curve. 

b). Sensitivity vs. p-value. c). False Discovery Rate vs. Gene Calling Number. d). False 

Discovery Rate vs. p-value. 

Finally, we controlled the type one error rate at 0.05 significant level and calculated the 

corresponding true positive rate under different sample sizes. Then we plotted these true positive 

rates against the sample sizes (Figures 4-16 and 4-17).  
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Figure 4-16: Power vs. sample size for single-end read. The points are the average power 

calculated form the 12 runs and the error bar denotes its 95% CI.   
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Figure 4-17: Power vs. sample size for paired-end read. The points are the average power 

calculated form the 12 runs and the error bar denotes its 95% CI. 

We can see that our method always has higher powers with smaller standard errors. At the same 

time, with the increase of the sample size, both edgeR and SGNB seem like to increase the 

power.  
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Figure 4-18: False discovery rate vs. sample size for single-end read. The points are the average 

false discovery rate calculated from 12 runs and the error bar denotes its 95% CI. 
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Figure 4-19: False discovery rate vs. sample size for paired-end read. The points are the average 

false discovery rate calculated from 12 runs and the error bar denotes its 95% CI. 

For both single-end and paired-end reads, our method has a little bit worse false discovery rate 

when the sample size is small (i.e. 2, 4). However, the performance becomes better when the 

sample size increases, and after sample size 8, SGNB is better than edgeR. 
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Figure 4-20: False positive rate vs. sample size for single-end read. The points are the average 

false positive rate calculated from 12 runs and the error bar denotes its 95% CI.  
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Figure 4-21: False positive rate vs. sample size for paired-end read. The points are the average 

false positive rate calculated from 12 runs and the error bar denotes its 95% CI. 

The performance of controlling false positive rate is similar to false discovery rate. Our method 

is a little bit worse than edgeR before sample size 8 and is better than edgeR after sample size 8. 

From these results, it is clear that under the same sample size and sequencing depth, our 

model is able to achieve a higher power without losing the control of both false positive rate and 

false discovery rate. 
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4.4 Real Data Analysis 

We analyzed a real RNA-seq data by both SGNB and edgeR. The goal is to compare 

gene expression levels in platelet samples from 5 healthy individuals (control group) and 7 ET 

(essential thrombocythemia) patients (study group). Totally 26586 genes were considered. The 

Venn Diagram was created to compare the significant genes called by edgeR and SGNB at 0.05 

significant level (Figure 4-22). 
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Figure 4-22: Venn diagram of significant DE genes. The red area denotes the number of DE 

genes called by SGNB while the blue area is for edgeR. 

Within the 26586 genes, there are 3979 (15%) DE genes called by SGNB and 2662 (10%) DE 

genes called by edgeR. The number of common genes is 1743, which is about 65% of the total 

number of genes called by edgeR. There are 2236 genes detected by SGNB only and 919 genes 

detected by edgeR only. For these genes, it is hard to tell if they are true or not; however, we 
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compared the distribution of the log fold changes of the gene expression level for these genes 

(Figure 4-23). As shown in Figure 4-23 b and c, genes only called by SGNB usually have a 

smaller absolute log-fold change compared with the genes only called by edgeR. It should be a 

reasonable result, since the edgeR is good at detecting the DE genes with a large total amount 

changing, while SGNB is able to detect both total amount and structure changing. That is, 

although the genes only called by SGNB have smaller fold changes in the total amount, they 

might have a significant changing in their isoform structures, which cannot be identified by 

edgeR. It is also possible that we might get some false positives among the genes only called by 

SGNB due to the low sequencing coverage. At the same time, there were genes with a large fold 

change that could be detected by edgeR but not SGNB. The reason might be that SGNB tests 

multiple hypotheses while edgeR only tests one. That is, in some situation, we might loss the 

power due to test the multiple hypotheses.  
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Figure 4-23: Histogram of log fold change. a). The distribution of log fold change of DE genes 

called by both SGNB and edgeR. b). The distribution of log fold change of DE genes called by 

SGNB only. c). The distribution of log fold change of DE genes called by edgeR only. 
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Chapter 5 Discussion and Future Work 

We have shown that, for the purpose of quantifying both the amount and structure 

changing of isoforms, the SGNB is more powerful than edgeR. At the same time, although we 

cannot estimate am expression level for each isoform without a well-defined structure, we can 

give an estimation at gene level by simply summing read type expression levels together. 

However, there are still more work that need to be done with our method.  

Firstly, for one paired-end read, we simply treat it as two single-end reads. By doing so, 

we ignore the information provided by the distribution of the insertion length. According to 

research results from other groups, making a good usage of the insertion length could lead to a 

better model fitting (Salzman, Jiang, & Wong, 2011), since the guessing of where the read comes 

from could be more accurate. So we may try to figure out how to define the read type by taking 

into consideration of the insertion length.  

Secondly, in this work, we only proposed our method for two condition comparisons. Our 

method should be able to be extended for multiple group comparisons. One way is to simply 

write down the likelihood functions under each condition, then multiply them together to get the 

joint likelihood function. We can perform the hypothesis testing based on the likelihood ratio test 

statistics. However, the performance needs to be checked for this extension. We need to show 

that the model can control the type I error and the false discovery rate.  

Finally, our current model is only good for independent samples and it may be extended 

to paired samples. Since paired samples usually yield a higher power, it will be very valuable to 

generalize our method to account for the paired samples.   
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