

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

i

Rapid Mobile Software Development for Field Data Collection Applications

A Thesis Presented

by

Sushal Penugonda

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Master of Science

in

Computer Engineering

Stony Brook University

May 2016

Sushal
Rectangle

Sushal
Rectangle

ii

Stony Brook University

The Graduate School

Sushal Penugonda

We, the thesis committee for the above candidate for the

Master of Science degree, hereby recommend

acceptance of this thesis.

Fan Ye

Assistant Professor of Electrical and Computer Engineering

Shan Lin
Assistant Professor of Electrical & Computer Engineering

This thesis is accepted by the Graduate School

Charles Taber

Dean of the Graduate School

iii

Abstract of the Thesis

Rapid Mobile Software Development for Field Data Collection Applications

by

Sushal Penugonda

Master of Science

in

Computer Engineering

Stony Brook University

2016

 The purpose of this paper is to describe a template system that can be used to design and

deploy mobile applications for the purposes of collecting large volumes of data. The

implementation referred to in this paper pertains to phone sensor data collected for research

studies in the field of indoor localization conducted at Stony Brook University, however many of

the concepts can be generalized to other applications. The system is described through team

structure, coordination methods, progress evaluation methods, and system integration techniques.

Coordination methods involve a custom implementation of agile development, a version control

software, knowledge transfer methods used among the team members and project transfer

methods. It is important to note that this type of system is developed around a team of students

who have limited time to devote to the project and also a limited but diverse skill set.

iv

Contents
Contents ... iv

List of Figures ... v

List of Tables .. v

Acknowledgments .. vi

1. Introduction ... 1

2. Team Structure .. 2

Agile system used ... 2

Story and Task Tracking .. 7

Responsibilities and expectations ... 10

3. Coordination methods ... 12

Version control software ... 12

Git flow and Integrating Git branches ... 12

training new team members and team leads ... 13

4. System Integration Techniques ... 14

Role of lead ... 14

System testing ... 14

5. Summary ... 19

v

List of Figures
Figure 1. Invision Mockup screen 1 ... 3

Figure 2. Invision Mockup screen 2 ... 3

Figure 3. Invision Mockup screen 3 ... 4

Figure 4. Invision Mockup screen 4 .. 4

Figure 5. Android app screen 3 ... 5

Figure 6. Android app screen 4 .. 6

Figure 7. Android app screen 3, dialog 1 ... 6

Figure 8. Android app screen 3, dialog 2 ... 6

Figure 9. Android app screen 3, dialog 3 ... 7

Figure 10. Task Management Tool 1, Google sheets .. 8

Figure 11. Task Management Tool2, Trello, screen1 .. 9

Figure 12. Task Management Tool2, Trello, screen2 .. 9

Figure 13. Team dynamic .. 11

Figure 14. Git Flow .. 12

Figure 15. Accelerometer testing .. 15

Figure 16. Orientation sensor testing ... 16

List of Tables

Table 1. Testing table .. 15

Table 2. Last minute bugs ... 17

vi

Acknowledgments

I would like to thank my advisor, Fan Ye for the mentorship and patience. I would also like to

thank everyone on my team for their dedication and enthusiasm to our project. I am grateful for

everyone’s patience as we tried numerous techniques to organize our efforts and for their honest

suggestions for this thesis.

1

1. Introduction
 The project we will be discussing was the task to develop two applications, one for

android and another for iOS platforms. The purpose of this app is to collect inertial sensor data

and relay collected data to a centralized file store. There had been an android and iOS app that a

few students had started development on already, and I was handed over the task of developing

them in the beginning of Fall 2015 semester. As the semester proceeded, our team consisted of

three undergraduate students and three master students including myself. I took the place of team

lead and we started developing without a formal structure. Every week our whole team met with

the professor to show him our progress and it was then that we faced many issues. Over time, the

android and iOS dev team deviated in the design of the app, and as a result the morale of the

team diminished which in turn resulted in affecting the performance for the upcoming week.

 Some of the issues we were facing was finding a common time to meet on a weekly

basis, waiting for other students to finish their task before starting yours, having the same

features and user interface elements and functionality on both platforms. Balancing the work

among all the team members, avoiding code developed by many people to be resulted in lava

code. Since the skill set of the team was not proficient in developing for mobile platforms, we

were also met with a very high learning curve, this paper also goes over some ways one could

minimize the effects of research spikes in the development process.

 In this project, the project stakeholders are the people leading the localization research

who will be using the app directly. The stakeholders would like to create consumer grade

applications of these apps to open the data collection aspect to the general public.

2

2. Team Structure

Agile system used

Agile was the workflow of choice because of the flexibility it offers over other

methodologies and the quick turnover rate of a usable product. Although in our case the first few

releases of apps did not have consumers or field testers.

A good agile project consists of three main pillars:

 a task tracking system,

 regular scrum meetings, and team meetings.

 Robust development tools

Development tools are looked at in greater depth in Chapter 3. Cordination methods. During the

course of the project, we used two systems: Google sheets and Trello for task management, each

of these are covered in depth in the later sections. As the project lead I was the sole person

meeting with the stake holders to avoid confusion and to have a slim agenda.

 The main purpose of a scrum meeting is to present to the stakeholder the work that had

been performed in the previous story, get their feedback and incorporate it in the stories ahead

without going over the technical aspects in detail. Soon after the scrum, Our team uses a group

chat application called groupme and we have a discussion with an objective of assigning tasks to

all the developers. It is very important to give stakeholders a clear cut picuture of what you are

proposing and so on multiple occations we used mockup UI to demonstrate what functionality

we were aiming for.

 On a side note the UI was designed in opensource image editing software called GIMP

and was presented using a free online tool called Invision. One could also use Lucidchart to

make wireframe UI mockups. Tools like Invision allows one to rapidly develop a working UI

just from images. Below are the screen shots of the initial app proposal:

3

Figure 1. Invision Mockup screen 1

Figure 2. Invision Mockup screen 2

4

Figure 3. Invision Mockup screen 3

Figure 4. Invision Mockup screen 4

5

Here is a link to the interactactable version of this UI :

https://invis.io/NW60AC25H#/134891088_Map_View. The set of screens after the final

implementation are shown by the set of figures below. Only screen three and four from the figure

above have been implemented but have changed drastically from initial proposal. In cases like

this the team lead needs to ensure that the mockups are kept updated so the developers can

reference to them.

Figure 5. Android app screen 3

https://invis.io/NW60AC25H#/134891088_Map_View

6

Figure 6. Android app screen 4

Figure 7. Android app screen 3, dialog 1

Figure 8. Android app screen 3, dialog 2

7

Figure 9. Android app screen 3, dialog 3

Story and Task Tracking
A story is a time period in which the team accomplishes a meaningful, tangible and

presentable amount of work. In our case we chose a two-week time period as the duration of a

Story. In each story, team members should be assigned at least one task. After completing their

task they should be encouraged to help their teammates complete tasks or research for upcoming

task. Our implementation of agile comprises of stories that are two weeks long, this is sufficient

time for a team of students to devote 12-20 hours for a task.

For the beginning half of the project we were using google sheets – a web-based

worksheet application. Ideally one would also want to track stories along with the lifecycle of

tasks. Categories tracked in a task management tool are as follows:

 Feature related

o Sensors

o Maps

o File Transfer

o UI

 System related

o INFO

o Performance

o Bugs

 Process related

o In Dev

o Dev Review/Testing

o Completed

 Others

8

o Eg: Migrating to SVN

Figure 10. Task Management Tool 1, Google sheets

Later we switched to Trello for task management because of its ease of access and a more user

friendly, customizable design. Below are screen shots of Trello

9

Figure 11. Task Management Tool2, Trello, screen1

Figure 12. Task Management Tool2, Trello, screen2

10

Responsibilities and expectations

As outlined in the previous paragraphs, it is important to stress to new or prospective

team-members the exact amount of hours they are expected to put in and give emphasis on the

task oriented nature of the work. As such, this is one of the few expectations team-members need

to abide by.

Before the beginning of the project it is recommended that the stakeholder meet with at least

the team lead and discuss what each-others expectations are in very specific terms. Some

examples of these expectations are:

 The stakeholder is expected to meet the team lead once, every week for at least 30

minutes to evaluate their progress and advise them on future tasks.

o (On a side note, if such a requirement can’t be met, then agile may not be the best

choice)

 The team lead is expected to be transparent of the issues faced by the developers

 A total of 50 person-hours are expected to put in before December 31st

 A feature is expected to be implemented within 3 weeks of initial request

Ideally this initial discussion would be a written signed by both parties. As such, the team

lead is expected to the best advocate for the rest of the developers. If not, another representative

is expected to be appointed in addition to the lead. The same conversation is to be had between

the developers/team-members and the team lead. The expectations contract would the first place

to start when issues arise such as when a team-member is not completing their work on time or if

the quality of work is poor. Hence, it is absolutely essential to have the contract as detailed as

possible.

It is vital to bridge the gap between stakeholders and developers, as a means of checks and

balances across the board. This can be accomplished by having a less formal scrum meeting once

11

every 2 or 3 stories where developers can present to the stakeholders the work they did. This

time frame also for a significant amount of work to be accomplished. This meeting could focus

on the system integration aspects of the project and help the stakeholder see it as a whole. If

there are surprises in this meeting to either party, something serious needs to be addressed in the

team dynamic of the project.

Figure 13. Team dynamic

Stakeholder(s)

Team Lead(s)
Team-

members

12

3. Coordination methods

Version control software

Code review and commit comments. A centralized working repository works best for all

the mini projects that belong the system. This makes it easier for the person merging the changes

to access updates and for developers to use shared design languages/ resources to keep things

consistent across the board.

Git flow and Integrating Git branches

The branching is inspired from git flow where in each the master branch contains the

most stable version the code. There is a development branch which is used to clone new work

spaces from by developers. Below is a figure that shows a good representation of Git Flow.

Figure 14. Git Flow

13

training new team members and team leads

A rigorous screening process is recommended for recruiting new members into the

project to ensure the quality of resulting product. This would be done by the team – lead in close

conjuncture with the stake holders.

Every new member who is a developer need to be trained in the way the team uses

version control, source code walkthrough and environment setup. This task could be offloaded to

a team-member who is most experienced or who is most likely to work with the new person.

14

4. System Integration Techniques

Role of lead

There can be multiple team leads to handle the work load of the project. Their roles other

than that discussed in the sections above is to keep a close eye on merge requests from

developers at the end of each story. They need to ensure that from the commits, the developer

had accurately captured the delta (changes in code) for an associated task and send back the

unqualified ones with comments to be updated. This is what could make or break the system.

System testing

In a system such as this it is hard to come up with an automated way to check data

validity without processing it on the back end. Since in our case The stake holders were

developing an algorithm that could take inertial phone data and map out an approximate floor

plan. At the time of initially developing the apps, these back end algorithms were not finalized

and so we went with manual checks as outlined by the following table:

Aspect of test Test description Illustration

15

Accelerometer Slide the phone on a flat

surface where the phone is

stationary at the start and end

points

Figure 15

Orientation Move the phone along each

of the three axis and back to

its original position.

Figure 16

GPS Use online services such as

google maps to plot each of

the location data points

NA

Table 1. Testing table

Figure 15. Accelerometer testing

16

Figure 16. Orientation sensor testing

These tests were only pre-elementary and were in no way representative of actual use

case. In the Spring 2016 semester, when the algorithm was ready for testing, the Android app

was giving poor results while the iOS apps were faring very well. Some of the issues we were

having could not have been detected in the development phase but were only discovered thanks

to the technical prowess of one of the researches (stakeholder). Some issues we found and ways

we fixed them are:

17

Bug Reason Fix Person

hours

taken

The orientation

readings from the

android app had

been accumulating a

lot of errors.

The drift is typical of a

compass reading. Which

led us to believe the API

we used was internally

relying on it.

Issue was fixed using a different

API call that called sensor type

ROTATION_GAME_MATRIX.

This call did not rely on the

compass reading as much and

was the most accurate.

20

The timestamps of

the photo in the app

was not exactly the

same as the instant

the photo was taken

The default camera app

was used and as such, its

API did not allow us to

customize the information

we got from it other than

the picture and when the

app was launched

A custom camera activity

fragment was integrated into the

app that allowed us to get shutter

timing information

25

Large amounts of

lag after a few

minutes of

recording

Thread leak was

discovered and sensors

were continuing to collect

information in the

background way after the

sensors were closed

Thread handling was improved 10

Table 2. Last minute bugs

18

As you can see from some of the bugs listed above, it took about 55 man hours in the

final stages of the project lifecycle when we are expected to finish wrapping up the project and

finish testing. So having a testing strategy from the start is important. It is also a good idea to

give live detailed demos to the stake holders after each scrum so the issues can be found early

on. We had tried to use a variety of devices for our testing samples.

19

5. Summary
In conclusion, this workflow has been successful in our particular application mostly

because it has been received well from all parties: stakeholders, team-members and team leads. If

you belong to any of these categories in your project, you are encouraged to try the methodology

if you believe implementing this could benefit your development process to be able to produce

faster results, make well documented code and easy to transfer projects.

