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Abstract of the Dissertation

Task Scheduling in Modern Data

Center: Task Placement and

Resource Allocation

by

Li Shi

Doctor of Philosophy

in

Computer Engineering

Stony Brook University

2016

In modern data centers, the wide use of virtualization techniques has enabled

dynamic resource allocation in the form of virtual machines and virtual net-

works. With such an ability, scheduling tasks, including both computing

tasks and data transfer tasks, comprises (a) placing tasks on servers or net-

work paths and (b) allocating a certain amount of resources to each task.

In such a context, minimizing the completion time of the tasks, as a critical

goal on many task processing platforms, requires joint consideration of both

task placement and resource allocation. While many approaches have been

proposed in the area of scheduling tasks in data centers, few of them consider
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the two factors together, which lead the inefficiency of these approaches. In

this dissertation, we study the problem of task scheduling in data centers

and propose solutions that jointly consider task placement and resource al-

location. We start from a fundamental problem: how to optimally allocate

resource according to determined task placements. We formulate this prob-

lem as a convex optimization problem and develop an analytical solution.

Based on the solution of this problem, we further study three more complex

problems: (a) Energy-aware scheduling of embarrassingly parallel jobs and

resource allocation in cloud; (b) Coflow scheduling in data centers: routing

and bandwidth allocation; (c) Scheduling of independent flows in data cen-

ters: routing and bandwidth allocation. Each of these problems is formulated

as a Non-linear Mixed Integer Programming problem. Offline algorithms and

online schedulers that jointly consider task placement and resource allocation

are proposed to solve these problems. We compare the proposed solutions

with existing approaches through simulations and demonstrate the superior

performance of the proposed solutions.
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Chapter 1

Introduction

In recent decades, high performance computers, high speed networks and

large-scale storage systems have changed the world. A huge amount of data

can be collected via high speed networks, stored in large-scale storage sys-

tems and processed by high performance computers. By performing millions

times of computing on such a large volume of data every second, we can test

a hypothesis, solve a complex mathematical problem, or find a trend hidden

behind the input data in a short time. This kind of data processing has

been applied on many different areas, like physics, biology, medicine, man-

ufacturing, advertising, and finance, and has greatly changed the world we

live.

In such a context, improving the processing capability is always a crit-

ical goal. While scientists and engineers keep developing better individual

devices, for example, processors with higher clock frequency and network

cable with higher bandwidth, uniting multiple machines together and mak-

ing them work in parallel is another important way invented to improve the

1



processing capability. Usually, we call such a processing system as a par-

allel/distributed computing system which is composed of computing nodes

(processors/servers) that are interconnected by networks. User tasks are

executed simultaneously on these nodes and input/output data are moved

among these nodes through the network. Examples of such parallel comput-

ing system include computing clusters, computing grids and recently data

centers.

In a parallel computing system, it is common that multiple user tasks are

waiting to be executed and a scheduling system is required to schedule those

tasks. Those tasks can be computing tasks executed on computing nodes and

can also be data transfer tasks which should be routed through some paths.

Some of those tasks can belong to the same user or the same user job, in

which case the scheduling objective can be minimizing the makespan of those

tasks. On the other hand, some other tasks can belong to different users or

different user jobs, in which case the scheduling objective can be minimizing

the total execution time of those tasks. How to efficiently schedule those

tasks in different types with different objectives is a critical problem to solve

in the parallel computing environment.

In traditional platforms, like computing clusters and grids, we usually

consider the resources used to execute user tasks as static or consider the

way of allocating resources to user tasks as static. For example, computing

tasks place on the same computing node are usually sequentially executed [1]

and hence each task gets the whole available computing resources on that

node when the task is executed. For another example, when executing data

transfer tasks, i.e., transferring data from the source to the destination of

2



those tasks along some selected paths, the available bandwidth of physical

links in the network are shared between data transfers (i.e., flows) in a best ef-

forts manner. In such traditional parallel computing systems, task scheduling

is more about determining a task placement with a specific objective. Such

task scheduling problem has been well studied [1–12].

However, in modern data centers, the task scheduling problem becomes

much more complex because of the wide use of modern virtualization tech-

niques which has enabled dynamic resource allocation. Through virtualiza-

tion techniques, a data center administrator is able to dynamically allocate

computing resource to tasks in the form of Virtual Machines (VMs) with a

flexible amount of computing resources while keeping the provisioned VMs

isolated and interference free from each other. In this way, computing tasks

placed on the same computing node can be simultaneously executed on their

own VM with guaranteed share of the computing resources of the underlying

computing node. Through virtualization techniques, a data center admin-

istrator is also able to dynamically provide specific bandwidth guarantees

(i.e., allocated bandwidth) in the form of Virtual Networks to concurrent

data transfers that are sharing same links [13–17]. In this way, we can ac-

tively prevent bandwidth competition and provide guaranteed performance

to these data transfers.

While the advanced technique of dynamic resource allocation brings sig-

nificant benefits, it also changes the scope of the task scheduling problem

which includes both task placement and resource allocation now. In such a

new paradigm, how to efficiently schedule tasks is an important but chal-

lenging problem. To solve the task scheduling problem, we need to answer
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three questions:

1. How to optimally allocate resources to tasks with pre-determined task

placement plan?

2. How to place tasks and allocate resources to a set of tasks in an offline

scenario?

3. How to address multiple tasks in online scheduling?

Naturally, these three questions are in a progressive relationship. By answer-

ing the previous question, we essentially reduce the complexity of the later

question. However, when scheduling a large amount of tasks in a large data

center in the real world, there exists a vast amount of possible task place-

ment and for each task task placement there are very many ways to allocate

resources. Searching the optimal solution in such a huge solution space is

not an easy problem to solve. The problem becomes even more complex,

when we consider more constraints, like energy consumption, resource usage

limitation, heterogeneity of the computing nodes, and etc.

While several approaches have been proposed to schedule either comput-

ing tasks or data transfer tasks in data centers [18–30], none of them consider

task placement and resource allocation together. Motivated by this, in this

paper, we focus on the task scheduling problem in the new environment of

modern data centers with joint consideration of task placement and resource

allocation. We start from studying a general resource allocation problem

in which the task placement has been pre-determined. Subsequently, based

on the solution of the general resource allocation problem, we further study

three more complex and practical task scheduling problems.
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1.1 Our Main Contributions and Dissertation

Organization

In this section, we introduce our main contributions made in this dissertation.

In Chapter 2, we study the general problem of optimal resource allocation

with pre-determined task placement. In this problem, the task placement for

a set of input tasks has been already determined and we are required to

allocate the available resources to those tasks. We consider two variants

of this problem in which two different (but both common) objectives are

considered. We formulate these two variants as convex optimization problems

with generalized linear constraints and present an analytical solution of one

of the two variants.

In Chapter 3, we focus on the problem of scheduling embarrassingly par-

allel jobs composed of a set of independent tasks and consider energy con-

sumption during scheduling. Our goal is to determine a task placement plan

and a resource allocation plan for such jobs in a way that minimizes the

Job Completion Time (JCT). We formulate the problem of scheduling a sin-

gle job as a Non-linear Mixed Integer Programming problem and present

a relaxation with an equivalent Linear Programming problem. We further

propose an algorithm named TaPRA and its simplified version TaPRA-fast

that solve the single job scheduling problem. Lastly, to address multiple

jobs in online scheduling, we propose an online scheduler named OnTaPRA.

By comparing with the start-of-the-art algorithms and schedulers via sim-

ulations, we demonstrate that TaPRA and TaPRA-fast reduce the JCT by

40%-430% and the OnTaPRA scheduler reduces the average JCT by 60%-
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280%. In addition, TaPRA-fast can be 10 times faster than TaPRA with

around 5% performance degradation compared to TaPRA, which makes the

use of TaPRA-fast very appropriate in practice.

In Chapter 4, we study how to schedule the coflows composed of a set of

flows transferring data between two stages of a job. We focus on this prob-

lem and jointly consider routing and bandwidth allocation. We formulate the

coflow scheduling problem as a Mixed Integer Non-linear Programming prob-

lem and present its relaxed convex optimization problem. We further propose

two algorithms, CoRBA and its simplified version: CoRBA-fast, that jointly

perform routing and bandwidth allocation for a given coflow while minimizes

the CCT. Through both offline and online simulations, we demonstrate that

CoRBA reduces the CCT by 40%-500% compared to the state-of-the-art al-

gorithms. Simulation results also show that CoRBA-fast can be tens of times

faster than all other algorithms with around 10% performance degradation

compared to CoRBA, which makes the use of CoRBA-fast very applicable in

practice.

In Chapter 5, we focus on scheduling independent flows with the goal of

minimizing their total transfer time (TTT) and also jointly consider rout-

ing and bandwidth allocation. We first study the problem of scheduling a

single set of flows and formulate this problem as a Non-linear Mixed Integer

Programming problem. We further present a relaxation with an equivalent

convex optimization problem. We propose two algorithms, FRoBA and its

simplified version: FRoBA-fast, that jointly perform routing and bandwidth

allocation for a given set of flows. Lastly, to address multiple flows in online

scheduling, we propose an online scheduler named OnFRoBA whose goal is

6



to minimize the average Flow Completion Time (FCT). By comparing with

the start-of-the-art algorithms and schedulers via simulations, we demon-

strate that FRoBA and FRoBA-fast reduce the TTT by 60%-250% and the

OnTaPRA scheduler reduces the average FCT by 10%-40%.

In Chapter 6, we discuss about our future work and in Chapter 7, we

present our conclusion.
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Chapter 2

Optimal Resource Allocation

with Pre-determined Task

Placement

In this chapter, we study the problem of optimal resource allocation (Op-

tRA) with predetermined task placement. In this problem, a set of tasks

have been placed on a set of processing units and we are required to allo-

cate the available resources of the processing units to those tasks with some

specific optimization objective. Note that as the first problem studied in

this dissertation, the solution of the OptRA problem has critical usage when

solving the task placement and resource allocation problem. It essentially

reduces the dimension of the task scheduling problem: For any determined

task placement plan, we can calculate the corresponding optimal resource

allocation plan. In the following, we formally define the OptRA problem.
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2.1 Problem Definition

We now introduce input, output, objective function and constraints consid-

ered in the problem.

Input. The input contains a set of processing units and a set of tasks. The

set of processing units is defined as P = {P1, P2, . . . , PM} in which Pj is the

jth processing units. The available resources of processing unit Pj is denoted

by Cpj .

The set of tasks is defined as T = {T1, T2, . . . , TN} in which Ti is the ith

task. We further denote the load of the task Ti by Loadi and assume that

the execution time of task Ti on a processing unit with a certain amount of

allocated resources rti , denoted by etti , is

etti =
Loadi
rti

. (2.1)

Output. The output of the OptRA problem contains a resource allocation

plan which indicates the amount of resources allocated to each task. We

denote denote the resource allocation plan by ~r = {rt1 , . . . , rtN} in which rti

is the amount of resources allocated to Ti.

Resource Availability Constraints. When determining the resource al-

location plan, we consider the resources availability constraints which are

limitations on the total amount of resource that can be allocated to the input

tasks on a processing unit or a subset of processing units. Such constraints

are usually enforced by system administrator to maintain proper sharing of

resources among multiple sets of tasks belong to different users. For example,
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there can be limitations on the total amount of compute resources that can

be allocated to a user’s tasks on a specific rack, or there can be limitations

on the total amount of bandwidth that can be allocated to the data transfers

belong to a user job on a specific link.

In this dissertation, we focus on those linear resource availability con-

straints that can be presented as

N∑
i=1

Aikrti ≤ Bk, k = 1, . . . , K, (2.2)

where Aik is the coefficient of rti in the kth constraint; Bk is the total re-

sources allowed to be allocated in the kth constraint.

Objectives. We consider two typical objectives in task scheduling problems

and therefore formulates two variants of the OptRA problem:

1. OptRA-Makespan. In this problem, our objective is to minimize the

makespan of the input tasks, i.e., the completion time of the last finished

task. Let the completion time of task Ti be etti , based on Equation (2.1),

the objective function is

Minimize max
i=1,...,N

{
etti

∣∣ etti =
Loadi
rti

}
. (2.3)

2. OptRA-Total. In this problem, our objective is to minimize the overall

execution time of the input tasks. Based on Equation (2.1), the objective

function is

Minimize
N∑
i=1

etti =
N∑
i=1

Loadi
rti

. (2.4)
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In the following, we solve these two variants of the OptRA problem respec-

tively.

2.2 The OptRA-Makespan Problem

Based on the objective and constraints introduced in Section 2.1, we can

present the OptRA-Makespan problem as

OptRA-Makespan

Variables

• rti : resources allocated to task ti.

• etti : the execution time of task ti.

Constants

• N : the number of tasks in the set T .

• K: the number of constraints in the problem.

• Loadi: the load of task ti.

• Aik: coefficient of variable rti in the kth constraint.

• Bk: the total resources allowed to be allocated in the kth constraint.

Objective:

Minimize max
i=1,...,N

{
etti

∣∣ etti =
Loadi
rti

,

}
. (2.5)
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Subject to

N∑
i=1

Aikrti ≤ Bk, k = 1, . . . , K, (2.6)

rti ≥ 0, i = 1, . . . , N. (2.7)

We next show that the OptRA-Makespan problem is a convex optimization

problem. Because the functions in (2.6) and (2.7) are all affine on rti and

thus convex, we only need to show the objective function (2.5) is also convex

on rti . Note that the function etti is convex, because its second derivative

is nondecreasing when rti is larger than 0. Therefore, according to [31], the

objective function, i.e., the pointwise maximum function of etti , is also a

convex function. As a result, the OptRA-Makespan problem is a convex

optimization problem.

2.2.1 Analytical Solution and Fast Optimal Algorithm

While existing convex optimization algorithms [31] can be used to solve the

OptRA problem, we develop an analytical solution which is more efficient.

Specifically, we define a vector ~r∗ = {r∗1, r∗2, . . . , r∗N} with

r∗i = min
j∈Ri

{
Li∑N

k=1AkjLk
Bj

}
, i = 1, . . . , N, (2.8)

where Ri is the set of constraints in which the coefficient of variable cti is not

zero. We now show that this vector ~r∗ is an optimal solution of the OptRA

problem. First of all, we have the following lemma.
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Lemma 1. Assume that for the vector ~r∗ defined in Equation 2.8, task p

has the largest finish time, i.e., et∗p = Lp/r
∗
p = maxi=1,...,N{et∗i }. Also assume

that r∗p obtains the minimum value when constraint u is considered, i.e.,

r∗p = min
j∈Rp

{
Lp∑N

k=1AkjLk
Bj

}
=

Lp∑N
k=1AkuLk

Bu. (2.9)

Then every variable ci that is subjected to constraint u, i.e., Aiu 6= 0, obtains

the minimum value when constraint u is considered, i.e.,

r∗i = min
j∈Ri

{
Li∑N

k=1AkjLk
Bj

}
=

Li∑N
k=1AkuLk

Bu. (2.10)

Proof. To begin with, we assume that there exists a variable r∗q with Aqu 6= 0,

which gets the minimum value when constraint v (other than constraint u)

is considered, i.e.,

r∗q = min
j∈Rq

{
Lq∑N

k=1AkvLk
Bj

}
=

Lq∑N
k=1AkvLk

Bv. (2.11)

Next, we define r′q as

r′q =
Lq∑N

k=1AkuLk
Bu. (2.12)

Based on Equations (2.11) and (2.12), we have

r′q > r∗q (2.13)

et′q =
Lq
r′q

<
Lq
r∗q

= et∗q. (2.14)
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On the other hand, putting Equations (2.9) and (2.12) together, we have

et∗p =
Lp
r∗p

=

∑N
k=1AkuLk
Bu

=
Lq
r′q

= et′q. (2.15)

Now using the Inequity (2.14) and Equation (2.15), we get

et∗p = et′q < et∗q, (2.16)

which conflicts with the assumption that et∗p = maxi=1,...,N{et∗i }. Therefore,

there does not exist a variable r∗q and a constraint v that satisfies the Equation

(2.11). As a result, we have proved the lemma.

Based on Lemma 1, we have the following theorem.

Theorem 1. The vector ~r∗ defined in Equation 2.8 is an optimal solution of

the OptRA problem.

Proof. Assume that et∗p = Lp/r
∗
p = maxi=1,...,N{et∗i } and r∗p obtains the min-

imum value when constraint u is considered. Then, according to Lemma 1,

there exists

r∗i =
Li∑N

k=1AkuLk
Bu, ∀i that Aiu 6= 0. (2.17)

Based on this equation, for every i with Aiu 6= 0, we have

et∗i =
Li
r∗i

=

∑N
k=1AkuLk
Bu

=
Lp
r∗p

= et∗p. (2.18)

Now assume that instead of ~r∗, a vector ~r′ is the optimal solution of the
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problem. Also assume that et′q = Lq/r
′
q = maxi=1,...,N{et′i}. Then, we have

et′q < et∗p. (2.19)

Using Equation (2.18), Equation (2.19) and the assumption that et′q =

maxi=1,...,N{et′i}, we can obtain

et′i ≤ et′q < et∗p = et∗i , ∀i that Aiu 6= 0. (2.20)

Intuitively, we then have

r′i > r∗i , ∀i that Aiu 6= 0. (2.21)

On the other hand, from Equation (2.17), we can get

N∑
i=1

Aiur
∗
i = Bu. (2.22)

Putting Inequity (2.21) and Equation (2.22) together, we have

N∑
i=1

Aiur
′
i > Bu (2.23)

which conflicts with the assumption that ~r′ is a feasible solution. As a result,

there does not exist a feasible solution that is better than ~r∗. Therefore, the

vector ~r∗ defined in Equation (2.8) is an optimal solution of the OptRA

problem.

We develop an algorithm, named Optimal Resource Allocation (ORAl-
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Algorithm 1 Optimal Resource Allocation (ORAlloc)

1: function ORAlloc(Aij,Bj,Li)
2: for i← 1 to N do r∗i ←∞
3: for j ← 1 to R do
4: for i← 1 to N do Lsum ← Lsum + AijLi
5: for i← 1 to N do
6: if Li

Lsum
Bj ≤ r∗i then r∗i ← Li

Lsum
Bj

7: end for
8: end for
9: for i← 1 to N do et∗i ← Li/r

∗
i end for

10: return {r∗i , et∗i }
11: end function

loc), to calculate the optimal solution (2.8). The algorithm iterates through

every task ti; for each task, it calculates the term Li∑N
k=1 AkjLk

Bj for every con-

straint and assign the minimum value among all terms to r∗i . Pseudocode of

ORAlloc is shown in Algorithm 1. Straightforwardly, the runtime complexity

of ORAlloc is O
(
N ·R

)
.

2.3 The OptRA-Total Problem

Based on the objective and constraints introduced in Section 2.1, we can

present the OptRA-Total problem as

OptRA-Total

Variables

• rti : resources allocated to task ti.

• etti : the execution time of task ti.

Constants
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• N : the number of tasks in the set T .

• K: the number of constraints in the problem.

• Loadi: the load of task ti.

• Aik: coefficient of variable rti in the kth constraint.

• Bk: the total resources allowed to be allocated in the kth constraint.

Objective

Minimize
N∑
i=1

Loadi
rti

, (2.24)

Subject to

N∑
i=1

Aikrti ≤ Bk, k = 1, . . . , K, (2.25)

rti ≥ 0, i = 1, . . . , N. (2.26)

We next show that the OptRA-Total problem is a convex optimization prob-

lem. We observe that the function Loadi/rti is convex, because its second

derivative is nondecreasing when rti is larger than 0. Therefore, according

to [31], the objective function, as the sum of a convex function, is also a

convex function. In addition, the functions in constraints (2.25) and (2.26)

are all affine on rti and thus convex. As a result, the OptRA-Total problem is

a convex optimization problem which can be efficient solved by using convex
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algorithms introduced in [31].
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Chapter 3

Energy-aware Scheduling of

Embarrassingly Parallel Jobs

and Resource Allocation in

Cloud

3.1 Introduction

In recent years, we have witnessed a dramatic increasing use of cloud comput-

ing techniques as it enables on-demand provisioning of computing resources

and platforms for users [32]. In a cloud system, users can easily access the

required computing resources, while the underlying infrastructure (i.e., data

centers composed of physical servers,) is hidden from them and user jobs are

executed on Virtual Machines (VMs) whose location is unknown from these

users. By deploying the applications or executing the jobs in a cloud, cloud
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Figure 3.1: Job Execution Model.

users are able to avoid the cost and responsibility of purchasing, setting up,

and maintaining the hardware and software infrastructures and thereby focus

more on their missions [33].

In contrast to cloud users’ unawareness of the infrastructures hidden be-

hind the cloud, cloud providers have full control of the infrastructure. By

widely using modern virtualization techniques, cloud providers can flexibly

place jobs on suitable physical servers and dynamically allocate computing

resources to user jobs in the form of VMs while keeping the provisioned VMs

isolated and interference free from each other. As a large number of user

jobs can be simultaneously executed in a cloud, one of the cloud provider’s

important responsibilities is to properly schedule these jobs and determine

an appropriate sharing of resources among these user jobs.
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As a cloud provider, scheduling user jobs in a way that minimizes their

completion time is very important: With smaller job completion times, the

cloud can execute more user jobs; For public clouds, this means generating

more profit, while for private clouds, this means higher throughout and there-

fore usually higher productivity. However, scheduling jobs while minimizing

their completion time can be a challenging problem in clouds.

In this paper, we study the job scheduling problem and focus on schedul-

ing embarrassingly parallel jobs which are composed of a set of independent

tasks with very minimal or no data synchronization. A large number of

applications belong to this type of jobs. Examples include distributed re-

lational database queries, Monte Carlo simulations, BLAST searches, para-

metric studies, and image processing applications such as ray tracing [34]. To

execute an embarrassingly parallel job, each of its tasks is placed on a physi-

cal server and executed in a VM created for that task. The completion time

of this job is the completion time of the last finished task, i.e., the makespan

of that set of tasks. Fig. 3.1 shows the execution model of an embarrassingly

parallel job. Scheduling such a job includes determining a task placement

plan that indicates the servers to execute each task in the job and a resource

allocation plan that indicates the amount of computing resources allocated

to each task.

To schedule embarrassingly parallel jobs with the goal of minimizing the

Job Completion Time (JCT), we need to answer three questions:

1. How to optimally allocate computing resources to a job with pre-determined

task placement plan?

2. How to place tasks and allocate resources for one job?
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3. How to address multiple jobs in online scheduling?

Naturally, these three questions are in a progressive relationship. By answer-

ing the previous question, we essentially reduce the complexity of the later

question. While several approaches has been proposed to schedule indepen-

dent tasks in data centers [35–42], none of them consider task placement and

resource allocation together. Motivated by this, in this chapter, we focus on

the problem of scheduling embarrassingly parallel jobs and propose solutions

to the three questions shown above.

Moreover, we consider the energy consumption for executing a job dur-

ing the scheduling procedure. Along with the rapidly increasing number

of cloud users, more and more large-scale data centers comprising tens of

thousands of servers are built recently, which leads tremendous amount of

energy consumption with huge cost [43]. High energy consumption also re-

duces system reliability and has negative impacts on the environment [44].

Consequently, reducing the total energy consumption of a cloud is highly

desirable. While some approaches [45–47] with the objective of reducing the

total energy consumption of a cloud have been proposed, in this chapter, we

focus on scheduling jobs with the goal of minimizing their completion time

but constrain the total energy consumed for executing a job.

In summary, our main contributions include

• We formally define the problem of scheduling embarrassingly parallel jobs.

We derive a job energy consumption model based on the existing VM

power model proposed by other researchers and then formulate the energy

consumption constraint. We also formulate the resource availability con-

straints which limit the amount of resources that can be used by a job.
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(Section 3.3)

• We formulate the problem of optimal resource allocation with pre-determined

task placement (OptRA) as a convex optimization problem and present an

analytical solution of this problem. (Section 3.4.1)

• We study the problem of scheduling a single embarrassingly parallel job

(SJS) and formulate it as a Non-linear Mixed Integer Programming (NLMIP)

problem. We propose a relaxation in which the tasks are assumed to be

divisible and transform it to a Linear Programming (LP) problem. (Sec-

tion 3.4.2)

• We propose an algorithm named Task Placement and Resource Allocation

(TaPRA) and its simplified version TaPRA-fast that solve the SJS problem

based on the solution of the relaxed problem. (Section 3.4.3)

• We propose an online scheduler named OnTaPRA to address multiple jobs

in online scheduling. The OnTaPRA scheduler periodically schedules all

jobs in the waiting queue by using Shortest Job First (SJF) scheduling

policy. For work conservation, it distributes residual capacity of servers to

running tasks. (Section 3.5)

• We evaluate the performance of the proposed TaPRA algorithm and On-

TaPRA scheduler through simulations. In offline simulations, we compare

the TaPRA algorithm with some existing algorithms. The simulations

results show that the TaPRA and TaPRA-fast algorithm can achieve 40%-

430% smaller JCT than the existing algorithms. In online simulations, we

compare the OnTaPRA scheduler with some existing schedulers. The sim-
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Figure 3.2: Example of scheduling a embarrassingly parallel job in cloud.

ulations results show that the OnTaPRA scheduler can achieve 60%-280%

smaller average JCT that the existing schedulers. In addition, the re-

sults also show that TaPRA-fast can be 10 times faster than TaPRA with

around 5% performance degradation compared to TaPRA, which makes

the use of TaPRA-fast very applicable in practice (Section 3.6)

3.1.1 An Example

To illustrate the job scheduling problem, consider the example shown in

Fig. 3.2, in which we need to schedule an embarrassingly parallel job com-

posed of four tasks (t1, t2, t3, t4) onto three servers (s1, s2, s3) in a data

center. Let the available computing resources (for example, the number of

24



CPU cores) on three servers be (35, 10, 30) and load of the four tasks be

(100, 200, 400, 500). 1 We further consider a resource availability constraint:

the total computing resources allocated to this task set in each rack cannot

exceed 30. Fig. 3.2 also shows two schedules: Schedule A with JCT of 33.33

and Schedule B with JCT of 20. Schedule B has smaller JCT because it

proportionally allocates computing resources to tasks. In this way, the max-

imum task execution time, i.e., the JCT, is efficiently reduced. From this

example, we can see that task placement plan and resource allocation plan

together determine the JCT. We can achieve the minimum JCT only if we

find out the optimal solution on both of them.

However, when the problem scale is large in practice, there exists a vast

amount of possible task placement plans and for each placement plan there

are very many ways to allocate resources. Searching for the optimal solution

in such a huge solution space is not an easy problem to solve. This prob-

lem becomes even more complex, when we consider the energy consumption

limitation.

3.2 Related Work

A significant amount of research has focused on task/job scheduling and

resource allocation in clouds. In this section, we discuss some of the re-

search works that we consider most relevant to our problem from the fol-

lowing aspects: (1) Approaches focusing on scheduling performance, like

1We temporarily omit the meaning of quantified computing power and task load and
simply assume that the execution time of a task is inversely proportional to the amount
of resources allocated to the task.
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response time, makespan, and completion time; (2) Energy-aware scheduling

approaches which set the scheduling goal as minimizing energy consumption

or consider the energy consumption during scheduling; (3) Online schedul-

ing approaches which focus on proposing an online scheduler or scheduling

policy.

Approaches Focusing on Scheduling Performance. This type of ap-

proaches mainly focus on optimizing the time-related performance, like re-

sponse time, makespan or completion time [35–42]. Comprehensive surveys

about task scheduling and resources scheduling in this category can be found

in [35,36]. Zuo et al. [37] propose a multi-objective Ant Colony Algorithm to

solve the task scheduling problem. This algorithm considers the makespan

and the user’s budget costs as constraints of the optimization problem. Tang

et al. [39] propose a self-adaptive scheduling algorithm for MapReduce jobs.

The algorithm decides the start time point of each reduce task dynamically

according to each job context, including the task completion time and the

size of map output. Tsai et al. [40] propose a hyper-heuristic scheduling

algorithm which dynamically determines which low-level heuristic is to be

used in find better candidate solutions for scheduling tasks in cloud. Verma

et al. [41] propose an improved Genetic Algorithm which uses the outputs of

Max-Min and Min-Min as initial solutions to scheduling independent tasks.

Gan et al. [42] propose a Genetic Simulated Annealing algorithm to opti-

mize the makespan of a set of tasks, in which Simulated Annealing is used

to optimize each offspring generated by the Genetic algorithm. However,

all these proposed approaches consider the computing resources allocated to

each task as static. Without benefiting from dynamic resource allocation, the
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efficiency of these approaches in solving the task scheduling problem may be

diminished.

Energy-aware Task Scheduling. Energy-aware task scheduling has also

been given great attention [22, 23, 47–50]. Shen et al. [48] propose a genetic

algorithm to achieve adaptive regulations for different requirements of energy

and performance in cloud tasks. In this algorithm, two fitness functions for

energy and task completion time are designed for optimizations. Zhao et

al. [49] propose an energy and deadline aware task scheduling method which

models the data-intensive tasks as binary trees.The proposed method aims

to schedule Directed Acyclic Graph (DAG)-like workflows. In contrast, in

this chapter, we focus on embarrassingly parallel jobs composed of indepen-

dent tasks. Hosseinimotlagh et al. [23] propose a VM scheduling algorithm

that allocates resources to VMs in a way that the optimal energy level of

the host of those VMs is reached. The proposed algorithm assumes that

the VMs are pre-mapped onto a host and focuses on allocating resources

to the VMs. In contrast to this algorithm, our algorithms determine the

task placement. Wu et al. [22] develop a scheduling algorithm for the cloud

datacenter with a DVFS technique. The algorithm schedules one job at a

time and does not consider about co-scheduling between jobs. In addition,

this algorithm pre-defines several frequency ranges with corresponding volt-

age supply and determines a specific range for the job. Mhedheb et al. [47]

propose a thermal-aware VM scheduling mechanism that achieves both load

balance and temperature balance with the final goal of reducing energy con-

sumption. Mhedhed et al. analyze the impact of VM migration on energy

consumption and utilize the VM migration technique in the proposed mech-
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anism to lower the host temperature. Xiao et al. [50] propose a system that

dynamically combine VMs running different types of workloads together to

improve the overall utilization of resources and reduce the number of running

servers, which reduces the energy consumption. The goal of these introduced

energy-aware approaches is to minimize the energy consumption in clouds. In

contrast, in this chapter, we consider the energy consumption as a constraint

and set our goal as minimizing the job completion time.

Online Scheduling. How to address multiple tasks/jobs in online schedul-

ing is also an important question which has attracted a lot attention [44,51–

54] Shin et al. [51] modify the conservative backfilling algorithm by utiliz-

ing the earliest deadline first and largest weight first policies to address the

waiting jobs according to their deadline. The objective of this algorithm is

to guarantee the job deadline while improving resource utilization, which is

different from the our objective in this paper. Zhu et al. [44] design a rolling-

horizon scheduling architecture for real-time task scheduling in clouds, which

includes an energy consumption model and an energy-aware scheduling al-

gorithm. However, in the proposed architecture, the tasks are scheduled

separately. In contrast, in this chapter, we addresses tasks belonging to one

job together to minimize the job compltion time. Liu et al. [52] propose an

online scheduler that allows VMs to obtain extra CPU shares when blocked

by I/O interrupted recently and thereby reduces the energy-efficiency losses

caused by I/O-intensive tasks. Ge et al. [54] propose an GA-based task

scheduler which evaluates all the waiting tasks and uses a genetic algorithm

to schedule these tasks with the goal of achieving better load balance.
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3.3 Problem Definition

In this paper, we consider scheduling jobs composed of independent tasks

in a data center comprising heterogeneous servers. To schedule such a job,

we are required to place each of its tasks onto a server and launch a VM

with certain amount of computing capacity to execute that task. We now

introduce input, output, objective function and constraints considered in the

problem.

3.3.1 Input

The input contains user jobs submitted by users at different times and a data

center with a set of heterogeneous servers used to execute those jobs.

Job. A job J comprise a set of independent tasks. It is defined as J =

{T1, T2, . . . , TN} in which Ti is the ith independent task of that job. The

load Loadi of the task Ti is defined as the execution time of Ti, when it is

placed on a unit-efficiency server and executed on a VM with unit computing

capacity.

Data Center. The data center used to execute user jobs is defined as

DC = {S1, S2, . . . , SM} in which Sj is the jth server in the data center. The

available computing resources of server Sj is denoted by Csj .

Due to the heterogeneity of servers, different severs may have different

efficiencies of executing the same task [12]. To model such heterogeneity, we

denote the efficiency of executing task Ti on server Sj by λij (λij ∈ (0, 1]).

Correspondingly, when a task Ti is placed on a server Sj with efficiency λij

and executed on a VM with computing power cti , the execution time of Ti,
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denoted by etti , is

etti =
Loadi
λijcti

. (3.1)

3.3.2 Output

For each input job, the output contains a task placement plan and a resource

allocation plan.

Task placement plan. A task placement plan indicates the servers to

execute the input job’s tasks. We use binary variables xij to present such

a plan. Specifically, if task Ti is placed on server Sj, the value of xij is 1;

otherwise its value is 0. We can express it as

xij =

 1, if Ti is placed on Sj,

0, otherwise.
(3.2)

Resource allocation plan. A resource allocation plan indicates the amount

of computing resources allocated to each task, i.e., the computing capacity

allocated to the VM created to execute the tasks. We denote the set of VMs

by VM = {VMt1 , . . . , V MtM}, where VMti is the VM created to execute

task Ti, and denote the resource allocation plan by ~c = {ct1 , . . . , ctN} in

which cti is the amount of computing resources allocated to VMti .

3.3.3 Objective

Single job scheduling. When scheduling a single job, our objective is

to determine a task placement plan and a resource allocation plan while

minimizing the job completion time (JCT). Because a job is not completed
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until all its tasks finish, the JCT essentially equals the completion time of

the last finished task. Let the completion time of task Ti be etti , based on

Equation (3.1), the objective function is

Minimize max
i=1,...,N

{
etti

∣∣ etti =
Loadi∑M

j=1 xijλijcti

}
. (3.3)

Online scheduling. In online scheduling, multiple jobs arrive in a time

sequence and we are required to schedule all these jobs. In this situation,

our objective is to minimize the average completion time of these jobs, i.e.,

the average JCT.

3.3.4 Constraints

Task placement constraints. Because each task should be placed on only

one server, we have the following constraint:

M∑
j=1

xij = 1, i = 1, . . . , N. (3.4)

Resource availability constraints. When allocating resources to the tasks

of a job, there may be limitations on the total amount of computing resource

that can be allocated to that job on a server or a subset of servers. Such

constraints are usually enforced by system administrator to maintain proper

sharing of resources among multiple jobs belong to different users. We can
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Table 3.1: List of constants and variables.

Constants
Name Description
J the input embarrassingly parallel job
Ti the ith independent task of job J

Loadi the load of the task Ti
Sj the jth server in the data center
Csj the available computing resource on server Sj
VMti the VM executing task Ti
αVMti

the power model constant of VMti

λij the efficiency of executing task Ti on server Sj
Ajk the coefficient in the kth availability constraint for Sj
Bk the total allowed resources in the kth availability constraint
Xij the determined placement between task Ti and server Sj
EMAX the maximum allowed energy consumption

Variables
Name Description
xij the placement relationship between task Ti and server Sj
cti the amount of computing resources allocated to Ti
csj the total amount of resources allocated to the job on Sj
etti the completion time of task Ti
lij the load of sub-task Tij
ctij the amount of resources allocated to sub-task Tij
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formulate these constraints as

M∑
j=1

Ajk

N∑
i=1

xijcti ≤ Bk, k = 1, . . . , R. (3.5)

where
∑N

i=1 xijcti is the total computing capacity allocated to the input jobs

on server Sj; Ajk is the coefficient in the kth constraint; Bk is the total

resources allowed to be allocated in the kth constraint.

Energy consumption constraints. As the energy cost can contribute a

significant part of operating cost of a data center [43], the system adminis-

trator may also limit the total amount of energy that can be consumed by a

job. To formulate this energy consumption constraint, we first consider the

VM power model and energy consumption model.

VM Power Model. Power modeling for VMs in data centers has attracted

significant attention [55–58]. While both linear and non-linear power model

are proposed, the linear model is the most widely used method in the estima-

tion of power consumption [58], whose accuracy has been proved [55–57]. The

linear VM power model have also been used in many existing task scheduling

and resource allocation approaches [33,44,48,59].

In the linear model, the total power consumption Ps of a physical server is

composed of the static power Pstatic and the dynamic power Pdynamic. While

Pstatic is usually constant regardless of whether VMs are running or not, as

long as the server is turned on, Pdynamic is consumed by VMs running on the

server. Suppose that n VMs are running on a server, then the server power
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consumption Ps is

Ps = Pstatic +
n∑
i=1

PVMi
, subject to

n∑
i=1

cVMi
≤ Cs, (3.6)

in which Cs is the total computing capacity of the server; PVMi
and cVMi

are

the power consumption and the computing capacity of VM i. PVMi
can be

further decomposed into power of components such as CPU, memory, disk

and IO devices [56], thus it can be calculated as

PVMi
= PCPU

VMi
+ PMemory

VMi
+ PDisk

VMi
+ P IO

VMi
. (3.7)

In this paper, we mainly focus on the power consumption of CPU utilized

by a VM, because the CPU utilization of a VM is directly related to the

execution time of tasks running on that VM. Therefore, we approximate the

VM power consumption by the CPU power consumption of a VM, following

similar setting in existing work [33]. A utilization based VM power model

then is

PVMi
= PCPU

VMi
= αVMi

· cVMi
, (3.8)

where PVMi
is the power consumption of VMi, cVMi

is the amount of com-

puting resources allocated to the VM and αVMi
is model specific constant,

following similar model proposed in previous work [56,58].

Based on the VM power model (3.8), the energy consumed by VM VMti ,

denoted by EVMti
, is

EVMti
= PVMti

· etti = αVMti
cti · etti =

αVMti
Loadi∑M

j=1 xijλij
. (3.9)
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Let Etotal denote the total energy consumption of the input job and EMAX

denote the maximum energy consumption allowed, the energy consumption

constraint is

Etotal =
N∑
t=1

EVMti
=

N∑
i=1

αVMti
Loadi∑M

j=1 xijλij
<= EMAX . (3.10)

3.4 Scheduling a Single Job with Indepen-

dent Tasks

In this section, we focus on scheduling a single job. We start from its sub-

problem: Optimal Resource Allocation with Pre-determined Task Placement

(OptRA).

3.4.1 Optimal Resource Allocation with Pre-determined

Task Placement (OptRA)

In the OptRA problem, the task placement plan has already been deter-

mined, i.e., the value of xij is known. For convenience and clarity, we use

Xij to indicate the determined task placement plan. Our goal is to allocate

computing resources to these tasks while minimizing the JCT.

With the determined task placement, the objective (3.3) becomes

Minimize max
i=1,...,N

etti ∣∣ etti =

Loadi∑M
j=1Xijλij

cti

 . (3.11)
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The resource availability constraints (3.5) become

N∑
i=1

M∑
j=1

XijAjkcti ≤ Bk, k = 1, . . . , R. (3.12)

We can then formulate the OptRA problem as

OptRA

Minimize max
i=1,...,N

{
etti

∣∣ etti =
Lti
cti

}
, (3.13)

Subject to

N∑
i=1

Pikcti ≤ Bk, k = 1, . . . , R, (3.14)

cti ≥ 0, i = 1, . . . , N, (3.15)

Lti =
Loadi∑M
j=1Xijλij

, Pik =
M∑
j=1

XijAjk. (3.16)

Remarks:

• While Lti and Pik are used to simplify the formulation of the problem,

Lti also stands for the equivalent load of Ti considering the execution

efficiency of the server on which Ti is placed; Pik is the coefficient of Ti

in the kth availability constraint.

• Task placement constraints (3.4) and energy consumption constraints

(3.10) are not included in OptRA, as they are only related with the

variable xij whose value is already determined in the above problem.
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We observe that the constraints (3.14) and (3.15) are all affine on cti . Mean-

while, the function etti is convex, because its second derivative is nonde-

creasing when ci is larger than 0. Therefore, according to [31], the objective

function, i.e., the pointwise maximum function of etti , is also a convex func-

tion. As a result, OptRA is a convex optimization problem.

3.4.1.1 Analytical Solution

While existing convex optimization algorithms [31] can be used to solve the

OptRA problem, we develop an analytical solution which is more efficient.

Specifically, we define a vector ~c∗ = {c∗1, c∗2, . . . , c∗N} with

c∗i = min
k∈Ri

{
Lti∑N

j=1 PjkLtj
Bk

}
, i = 1, . . . , N, (3.17)

where Ri is the set of constraints in which the coefficient of variable ci is not

zero. We now show that this vector ~c∗ is an optimal solution of the OptRA

problem. We have the following lemma and theorem.

Lemma 2. Assume that for the vector ~c∗ defined in Equation 3.17, task p

has the largest finish time, i.e., et∗p = Ltp/c
∗
p = maxi=1,...,N{et∗i }. Also assume

that c∗p obtains the minimum value when constraint u is considered,

c∗p = min
k∈Rp

{
Ltp∑N

j=1 PjkLtj
Bk

}
=

Ltp∑N
j=1 PjuLtj

Bu. (3.18)

then every ci subjected to constraint u, i.e., Piu 6= 0, obtains the minimum
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value when constraint u is considered, i.e.,

c∗i = min
k∈Ri

{
Lti∑N

j=1 PjkLtj
Bk

}
=

Lti∑N
j=1 PjuLtj

Bu. (3.19)

Proof. To begin with, assume that there exists a variable c∗q with Pqu 6= 0,

which gets the minimum value when constraint v (other than constraint u)

is considered, i.e.,

c∗q = min
k∈Rq

{
Ltq∑N

j=1 PjkLtj
Bk

}
=

Ltq∑N
j=1 PjvLtj

Bv. (3.20)

Next, we define c′q as

c′q =
Ltq∑N

j=1 PjuLtj
Bu. (3.21)

Based on Equations (3.20) and (3.21), we have

et′q =
Ltq
c′q

<
Ltq
c∗q

= et∗q. (3.22)

On the other hand, based on Equation (3.18), we have

et∗p =
Ltp
c∗p

=

∑N
j=1 PjuLj

Bu

=
Ltq
c′q

= et′q. (3.23)

Now using the Inequality (3.22) and Equation (3.23), we get

et∗p = et′q < et∗q, (3.24)
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which conflicts with the assumption that et∗p = maxi=1,...,N{et∗i }. Therefore,

there does not exist a variable c∗q and a constraint v that satisfies the Equation

(3.20). As a result, we have proved the lemma.

Theorem 2. The vector ~c∗ defined in Equation 3.17 is an optimal solution

of the OptRA problem.

Proof. Assume that et∗p = Ltp/c
∗
p = maxi=1,...,N{et∗i } and c∗p obtains the min-

imum value when constraint u is considered. Then, according to Lemma 2,

there exists

c∗i =
Lti∑N

j=1 PjuLj
Bu, ∀i that Pju 6= 0. (3.25)

Based on this equation, for every i with Piu 6= 0, we have

et∗i =
Lti
c∗i

=

∑N
j=1 PjuLtj
Bu

=
Ltp
c∗p

= et∗p. (3.26)

Now assume that instead of ~c∗, a vector ~c′ is the optimal solution of the

problem. Also assume that et′q = Ltq/c
′
q = maxi=1,...,N{et′i}. Together with

Equation (3.26), we have

et′i ≤ et′q < et∗p = et∗i , ∀i that Piu 6= 0. (3.27)

Naturally, we have

c′i > c∗i , ∀i that Piu 6= 0. (3.28)
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On the other hand, from Equation (3.25), we can get

N∑
i=1

Piuc
∗
i = Bu. (3.29)

Putting Inequity (3.28) and Equation (3.29) together, we have

N∑
i=1

Piuc
′
i > Bu, (3.30)

which conflicts with the assumption that ~c′ is a feasible solution. As a result,

there does not exist a feasible solution that is better than ~c∗. Therefore, the

vector ~c∗ defined in Equation (3.17) is an optimal solution of the OptRA

problem.

Note that the analytical solution (3.17) has important usage when schedul-

ing a single job. It essentially reduces the dimension of the problem: For any

determined task placement plan, we can use Equation (3.17) to calculate the

corresponding optimal resource allocation plan.

3.4.2 Formulation of the Single Job Scheduling Prob-

lem and Its Solvable Relaxation

We now study the Single Job Scheduling (SJS) problem in which we are

required to determine the task placement plan and resource allocation plan

for an input job. The task execution model of the input job has been shown

in Fig. 3.1.

Based on the objective and constraints introduced in Section 3.3, the SJS
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problem can be formulated as

SJS

Minimize max
i=1,...,N

{
etti

∣∣ etti =
Loadi∑M

j=1 xijλijcti

}
, (3.31)

Subject to

N∑
i=1

αVMti
Loadi∑M

j=1 xijλij
≤ EMAX , (3.32)

M∑
j=1

Ajk

N∑
i=1

xijcti ≤ Bk, k = 1, . . . , R, (3.33)

M∑
j=1

xij = 1, i = 1, . . . , N, (3.34)

xij = 0 or 1, i = 1 . . . , N, j = 1, . . . ,M, (3.35)

cti ≥ 0, i = 1, . . . , N. (3.36)

Remarks:

• The objective (3.31) and constraints (3.32)-(3.34) are formally defined

in Section 3.3.

• Constraints (3.35) and (3.36) are domain constraints.

Naturally, the SJS problem is a NLMIP problem which is hard to solve

directly. To solve this problem, we first propose a solvable relaxation and
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then determine a solution of the SJS problem based on the solution of the

relaxation.

3.4.2.1 A Relaxation of the SJS problem and An Equivalent Lin-

ear Programming Problem

Because the SJS problem is a NLMIP problem, a straightforward relaxation

is relaxing the binary variable xij to a real variable. However, due to the

term xijcti , this relaxation is a NLP problem which is still hard to solve.

To obtain a solvable relaxation, we assume that the tasks of the input job

are divisible [60–62] and each task Ti is divided into M sub-tasks and placed

on M servers respectively. Let tij denote the sub-task of Ti placed on server

Sj and let lij denote the load of tij. A VM is then created for each sub-task

placed on each server. Fig. 3.3 shows this execution model.

Furthermore, let VMtij denote the VM created by server Sj to execute

sub-task tij and let ctij denote the amount of resources allocated to VMtij .

The SJS problem is now relaxed to a problem of determining the value of lij

and ctij with the goal of minimizing the JCT. We name this new problem as

SJS-Relax-Divisible.

The execution time of sub-task tij, denoted by ettij , is

ettij =
lij

λijctij
. (3.37)

The energy consumed for executing tij is

Etij = PVMtij
· ettij = αVMtij

ctij · ettij = αVMtij
· lij
λij

. (3.38)
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Figure 3.3: Job Execution Model for SJS-Relax-Divisible.

The total resources allocated by server Sj, i.e., csj , is

csj =
N∑
i=1

ctij . (3.39)

Based on the above equations, the SJS-Relax-Divisible problem can be for-

mulated as

SJS-Relax-Divisible

Minimize max
i=1,...,N
j=1,...,M

{
ettij

∣∣ ettij =
lij

λijctij

}
, (3.40)
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Subject to

N∑
i=1

M∑
j=1

αVMtij
· lij
λij
≤ EMAX , (3.41)

M∑
j=1

Ajk

N∑
i=1

ctij ≤ Bk, k = 1, . . . , R, (3.42)

M∑
j=1

lij = Loadi, i = 1, . . . , N, (3.43)

ctij ≥ 0, lij ≥ 0, i = 1, . . . , N, j = 1, . . . ,M. (3.44)

Remarks:

• The objective (3.40) is to minimize the maximum execution time of all

sub-tasks, which also minimizes the completion time of the input job.

• Constraints (3.41) and (3.42) are energy consumption constraints and

resource availability constraints.

• Constraints (3.43) ensure that the total load of all sub-tasks of Ti equals

to the load of task Ti, and constraints (3.44) are domain constraints.

We observe that in the SJS-Relax-Divisible problem, all constraints are

affine and the objective is the pointwise maximum of NM ratios of affine

functions. Therefore, this problem is a Generalized Linear Fractional Pro-

gramming (GLFP) problem, which can be solved as a sequence of LP feasi-

bility problems [31].

However, solving a GLFP problem can be time-consuming as it needs to
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solve a set of LP feasibility problems. To avoid this, we further transform

the SJS-Relax-Divisible problem into an equivalent LP problem.

An Equivalent LP Problem: SJS-Relax-LP. The transformation starts

from defining variable T as the JCT, i.e.,

T = max
i=1,...,N
j=1,...,M

{
lij

λijctij

}
. (3.45)

Substituting T into the objective function, we have

Minimize T

T ≥ lij
λijctij

, i = 1, . . . , N, j = 1, . . . ,M. (3.46)

Further define variable pij as

pij = ctij · T, (3.47)

and then reformulate the constraints (3.46) as

λij · pij ≥ lij, i = 1, . . . , N, j = 1, . . . ,M. (3.48)

On the other hand, by substituting pij into constraints (3.42), we have

M∑
j=1

Ajk

N∑
i=1

pij ≤ Bk · T, k = 1, . . . , R. (3.49)

Integrating all transformations shown above together, we obtain an equiva-

lent problem, named SJS-Relax-LP, as shown below.
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SJS-Relax-LP

Minimize T (3.50)

Subject to

λij · pij ≥ lij, i = 1, . . . , N, j = 1, . . . ,M, (3.51)

N∑
i=1

M∑
j=1

αVMtij
· lij
λij
≤ EMAX , (3.52)

M∑
j=1

Ajk

N∑
i=1

pij ≤ Bk · T, k = 1, . . . , R, (3.53)

M∑
j=1

lij = Loadi, i = 1, . . . , N, (3.54)

pij ≥ 0, lij ≥ 0, i = 1, . . . , N, j = 1, . . . ,M. (3.55)

Naturally, the SJS-Relax-LP problem is a Linear Programming problem as

its objective function and all constraints are linear. Therefore, it can be

efficiently solved by linear programming algorithms.

3.4.3 The Task Placing and Resource Allocation (TaPRA)

Algorithm and Its Simplified Version: TaPRA-

fast

Based on the relaxation SJS-Relax-LP, we propose an algorithm, called Task

Placing and Resource Allocation (TaPRA), to solve the SJS problem.
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Algorithm 2 The TaPRA Algorithm

1: function TaPRA(Ajk,Bk,Loadi,EMAX)
Phase I:

2: Solve SJS-Divisible and get {lij, pij}
Phase II:

3: for each Ti ∈ J do
4: u← argmaxk=1,...,M{lik};
5: xij ← 1 if j == u; otherwise, xij ← 0;
6: end for
7: Get {cti , etti} using Equation (3.17); Update Etotal;
8: if Etotal > EMAX then call REC;

Phase III:
9: while true do

10: Tmax ← {Ti | etti == JCT};
11: for each Ti ∈ Tmax do
12: TMvalid ← {all valid TMij};
13: if TMvalid == ∅ then continue;
14: TMiu ← argminTMij∈TMvalid

{new etti};
15: Perform TMiu and update {cti , etti}; break;
16: end for
17: if no task movement is performed then break;
18: end while
19: return xij and cti
20: end function

The TaPRA algorithm has three phases. In the first phase, TaPRA ob-

tains a solution of the SJS-Relax-LP problem; in the second phase, it de-

termines an initial solution of the SJS problem based on the solution of the

SJS-Relax-LP problem; in the last phase, it utilizes a local search proce-

dure to further optimize the obtained initial solution. Algorithm 2 shows the

pseudocode of TaPRA.

We now introduce the details of each phase.

Phase I: Solve the relaxed problem. The TaPRA algorithm starts from
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solving the relaxed LP problem SJS-Relax-LP. Let the solution of SJS-Relax-

LP be T , lij, and pij.

Phase II: Obtain an initial solution of the SJS problem. In this phase,

TaPRA obtains an initial solution of the SJS problem from the solution of

SJS-Relax-LP in two steps:

• First, it determines the value of variable xij, i.e., obtaining the task

placement plan. Specifically, for each task Ti, TaPRA selects sub-task

tiu that gets the largest portion of Ti and assigns task Ti to server su.

Such assignment can be presented as

xij =


1, if j = argmax

k=1,...,M

{
lik
}

0, otherwise

, i = 1, . . . , N. (3.56)

The intuition is that if a server gets a larger portion of task Ti, the

result may be “closer” to the optimal solution by assigning Ti to that

server.

• Second, the TaPRA algorithm determines the value of cti , i.e., the

resource allocation plan. Because the task placement has been de-

termined in the first step, the SJS problem is naturally reduced to

the OptRA problem. Therefore, the TaPRA algorithm simply utilizes

Equation (3.17) to determine the value of cti .

However, in some cases, the assignment (3.56) may lead to a violation of

the energy consumption constraint (3.32), because the server that gets the

largest percentage of a task may not be the one with the highest efficiency

to execute that task, i.e., consumes the least energy to execute that task.
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Algorithm 3 Reduce Energy Consumption (REC)

1: function REC(xij,cti ,Ajk,Bk,Loadi,EMAX ,Etotal)
2: while Etotal > EMAX do
3: List H ← {};
4: for each ti ∈ J & each Sj ∈ DC do
5: TMij ← {Ti, ssrci , sj,∆Eij,∆JCTij};
6: if ∆Eij < 0 then add TMij into H;
7: end for
8: TMuv ← argminTMij∈H{∆JCTij};
9: xu,ssrcu ← 0 and xuv ← 1;

10: Get {cti , etti} using Equation (3.17); Update Etotal;
11: end while
12: end function

To resolve the problem, the TaPRA algorithm utilizes a procedure called

Reduce Energy Consumption (REC) to reduce total energy consumption

by performing task movement. A task movement is moving a task from one

server to another server and is defined by TMij = {Ti, ssrci , sj,∆Eij,∆JCTij},

where task Ti is moved from the original server ssrci to server Sj; ∆Eij and

∆JCTij are the difference of total energy consumption and JCT respectively

between the two task placements. The REC procedure runs in iterations.

In each iteration, it finds out all task movements that can reduce the to-

tal energy consumption and performs the one with the smallest ∆JCTij.

If the new task placement satisfies the energy consumption constraint, the

REC procedure stops; otherwise, it starts the next iteration. Algorithm 3

describes the REC procedure.

Phase III: Local search. In this phase, the TaPRA algorithm utilizes

a local search procedure to further improve the initial solution obtained in

phase II.
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In this local search procedure, TaPRA runs in iterations. In each it-

eration, it starts with identifying all tasks with the largest execution time

and putting them into a set named Tmax. Subsequently, TaPRA iteratively

considers each task in the set Tmax. For each task Ti ∈ Tmax, the TaPRA

algorithm calculates all valid task movements (i.e., the energy consumption

constraint is not violated and the execution time of Ti is reduced after per-

forming the movement.) and put them into a set TMvalid; it then selects

the task movement which reduces the execution time of task Ti most; in the

following, TaPRA performs the selected task movement and update xij and

cti . If a task movement is performed, the TaPRA algorithm starts a new

iteration of phase III.

If the TaPRA algorithm cannot improve the execution time of any tasks

in Tmax in some iteration, it then finishes and returns the current solution

xij and cti , as it cannot improve the JCT anymore.

3.4.3.1 TaPRA-fast: A Simplified Version of TaPRA

The TaPRA algorithm begins with solving the SJS-Relax-LP problem which

is a LP problem. When the problem’s scale is large enough, solving this

problem can be time-consuming. On the other hand, we observe that the

local search procedure in the TaPRA algorithm can be used to optimize

any feasible schedules. With such observations, we propose TaPRA-fast, a

simplified version of TaPRA with less time complexity.

TaPRA-fast has two phases: First, it obtains an initial solution; Second, it

utilizes the local search procedure used in the TaPRA algorithm to optimize

the initial solution. To obtain an initial solution, the TaPRA-fast algorithm
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Algorithm 4 Online scheduler: OnTaPRA

1: procedure OnTaPRA(Current time curT )
2: Add all jobs arriving at curT to Qwait;
3: Tfinish ← all tasks finishing at curT ;
4: if Tfinish 6= ∅ then
5: Release all computing resources allocated to Tfinish;
6: Call the DRC procedure;
7: end if
8: if curT mod ∆Tschedule == 0 then
9: Release resource allocated in last DRC call;

10: Use a scheduling policy to schedule jobs in Qwait;
11: Call the DRC procedure;
12: end if
13: end procedure

places each task Ti on the server with the highest efficiency on executing this

task, i.e., λij. Subsequently, TaPRA-fast calculates cti and JCT based on

the determined task placement.

3.5 Online Scheduling

In the previous section, we have studied how to schedule a single job com-

posed of a set of independent tasks with the goal of minimizing its completion

time and have proposed algorithms to solve this problem.

However, in practice, jobs arrive the system in a time sequence and in

a long term view, our goal is to minimize the average JCT of all arrived

jobs. With this goal, it may be inefficient to address each of the arrived jobs

individually. Motivated by this, we propose an online scheduler named On-

TaPRA, which periodically schedules all arrived jobs together. Algorithm 4

shows the main logic of OnTaPRA.
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Online Scheduler: OnTaPRA. The OnTaPRA scheduler puts each ar-

rived job into a waiting queue Qwait and keeps track of the waiting time of

each job in Qwait.

The OnTaPRA scheduler periodically schedule all jobs in the waiting

queue together. To schedule the jobs in Qwait, the OnTaPRA scheduler uses

a scheduling policy named Shortest Job First (SJF) which is introduced later.

While all scheduled jobs are placed on corresponding servers according their

task placement plan, those jobs that fail to be scheduled stay in Qwait.

After the jobs in the waiting queue are scheduled and placed on the

servers, there may be residual computing capacity on those servers. These

residual resources are actually wasted, as no job can utilize these computing

resources until the next call of scheduling algorithm. To follow the work

conservation rule, the OnTaPRA scheduler further uses a procedure named

Distribute Residual Capacity (DRC) to temporarily distribute the residual

computing capacity of each server to the tasks running on that server. In

this way, all computing resources of a server will be in use as long as there

are tasks running on it. On the other hand, in the next round of scheduling,

that residual capacity temporarily distributed will be recollected and treated

as the available capacity of the servers. The details of the DRC procedure

are introduced later.

Moreover, whenever a task finishes, the computing resource allocated to

that task will be released and temporarily distributed to other tasks on the

same server by using the DRC procedure.

Scheduling Policy: Shortest Job First (SJF). The OnTaPRA scheduler

uses the Shortest Job First (SJF) scheduling policy to address all jobs in
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Algorithm 5 The SJF Scheduling Policy

1: procedure SJF(Current Waiting Queue Qwait)
2: Qnew

wait ← ∅;
3: while Qwait 6= ∅ do
4: Perform the MAR test;
5: if test fails then Add Qwait to Qnew

wait; break;
6: for each job Jk ∈ Qwait do
7: Calculate {xkij, ckTi , JCTk} using TaPRA;
8: if fails then Move Jk from Qwait to Qnew

wait;
9: end for

10: Ju ← argminJk∈Qwait
{JCTk};

11: Execute Ju; Remove Ju from Qwait;
12: end while
13: Qwait ← Qnew

wait;
14: end procedure

Qwait. (Line 10 of Algorithm 4).

The SJF scheduling policy runs in iterations. In each iteration, the SJF

policy begins with a test named Minimum Available Resource (MAR)

which checks the total amount of available computing capacity in the data

center (denoted by Ctotal
avai ). If Ctotal

avai is lower than a certain percentage (de-

noted by Max Percent) of the total computing capacity of all servers (de-

noted by Ctotal
DC ), i.e., if the following condition is satisfied:

Ctotal
avai ≤Max Percent · Ctotal

DC , (3.57)

the test fails and the SJF policy stops scheduling all jobs current in Qwait.

The intuition here is that when the amount of available resource is small,

a job may get little resource allocated and thereby have a extremely long

completion time. In such cases, it may be a better choice to keep the job
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Algorithm 6 The DRC procedure

1: procedure DRC
2: for each server Sj ∈ DC do
3: Cresi

sj
← residual capacity of Sj;

4: Tsj ← tasks on Sj; Lsj ← total load of Tsj ;
5: for each Ti ∈ Tsj do cti ← cti + Cresi

sj
· Lti

Lsj
;

6: end for
7: end procedure

waiting until more resources become available.

If the SJF policy passes the MAR test, it sorts the jobs in Qwait in the

decreasing order of their waiting time and calculates the JCT by using the

TaPRA algorithm for each job Ji. If a job cannot be scheduled, that job is

moved to a new waiting queue Qnew
wait. Subsequently, the job with the smallest

JCT is executed according to its schedule and removed from Qwait. In the

following, SJF updates the available computing capacity of the servers and

starts a new iteration. Once the waiting queue Qwait becomes empty, the

SJF scheduling policy set the new waiting queue Qnew
wait as current Qwait and

finishes. Algorithm 5 shows the SJF scheduling policy.

Work Conservation: Distribute Residual Capacity (DRC). The DRC

procedure iterates all servers. For each server Sj, the residual capacity of Sj

is proportionally distributed to all tasks running on Sj according the load of

those tasks.

Because the residual resource is not utilized by any job, by distributing

these resources, we essentially avoid resource wastage, improve the system

utilization, and further accelerate the job completion. On the other hand,

such distribution of resource is temporary: Once new jobs arrive, the dis-
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tributed resource is recollected and can be allocated to newly arrived jobs.

Note that current virtualization techniques already support dynamic scaling

of CPU and RAM for VMs [63]. Algorithm 6 shows the DRC procedure.

3.6 Performance Evaluation

3.6.1 Performance of the TaPRA Algorithm

In this section, we evaluate the TaPRA algorithm through offline simula-

tions. In the following, we present our simulation setup, evaluation metrics,

comparing algorithms and simulation results.

3.6.1.1 Simulation Setup

In each single run of the simulation, we randomly generate an input job, a

set of servers, and a set of scheduling constraints. The TaPRA algorithm is

then called to schedule the job on the given servers.

Job. We randomly generate an input job with N independent tasks. The

load Loadi of each task Ti follows a uniform distribution in the range of

(0, 3600] seconds.

Data Center. For the data center, we use a FatTree [64] architecture. A

y-array FatTree architecture contains y pods. Each pod contains y/2 racks

and each rack has y/2 servers. As a result, there are in a total of y3/4 servers.

In the simulation, we modeled the available resource of each server Sj,

i.e., Csj , by the number of virtual CPUs (vCPUs) that can be hosted by

that server. Specifically, Csj follows a uniform distribution between 0 and 10
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vCPUs.

The efficiency matrices λij follows a uniform distribution in the range of

[0.1, 1]. Because it is unlikely that the execution efficiency of a task is lower

than 0.1 in a modern data center environment, we exclude the range (0, 0.1)

from the possible value of execution efficiency, following similar setups found

in existing work [12].

Resource Availability Constraints. A y-array FatTree architecture con-

tains y pods. We generate one resource availability constraint for each pod.

Specifically, for pod k, we denote the set of servers in this pod by SPodk .

For each server Sj ∈ SPodk , we set the coefficient AjPodk as 1; for all other

servers, we set AjPodk as 0. Subsequently, we calculate the total available

resources in pod k, denoted by CPodk , using the following equation

CPodk =
∑

Sj∈SPodk

Csj . (3.58)

We then generate the following constraint for pod k

M∑
j=1

AjPodk

N∑
i=1

xijcti ≤ BPodk = βpod · CPodk , (3.59)

where βpod is a constant belonging to (0, 1]. Using this way, we generate y

constraints corresponding to y pods.

Following a similar approach, we generate y2/2 + 1 constraints for the

y2/2 racks plus the whole data center in the y-array FatTree architecture.

Therefore, we have 1 + y + y2/2 resources availability constraints for each

single run of the simulation. In the simulations, we set βDC , βpod and βrack
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as 0.2, 0.2 and 0.3 respectively.

Energy Consumption Constraint. To generate the maximum energy

consumption EMAX , we first calculate the total task load Loadtotal, which

equals to
∑N

i=1 Loadi. Furthermore, we set the constant αVMi
as 1 for each

VMi.

Because the execution efficiency is no larger than 1, according to Equa-

tion 3.10, the minimum possible energy consumption equals to Loadtotal.

We then determine EMAX by using a uniform distribution in [Loadtotal, 1.1 ·

Loadtotal].

Each data point in our simulation results is an average of 50 simulations

performed on an Intel 2.5 GHz processor.

3.6.1.2 Evaluation Metrics

We use three metrics to evaluate our algorithms.

JCT. Because minimizing JCT for the input job is our objective, JCT is the

most important metric.

Total allocated resources (vCPUs). This metric is the sum of the re-

sources allocated to each task of the input job, which is also the total number

of vCPUs allocated to the input job, according to our simulation setup. This

metric shows how well an algorithm utilizes the available resources and is

useful when analyzing the simulation results.

Running time. Running time of an algorithm is also important. It gives a

sense of the scalability of that algorithm.
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3.6.1.3 Comparison Algorithms

We compare our algorithms with three other algorithms.

Min-Min. The Min-Min algorithm is a classic scheduling algorithm. It

runs in iterations. In each iteration, for each unplaced task, it calculates the

expected JCT of placing that task on each server and adds the placement with

the minimum expected JCT into a set M. Subsequently, Min-Min selects

and performs the placement with the smallest minimum expected JCT. It

then starts a new iteration until all the tasks are placed.

MM-GA. Kumar et al. [41] proposed an improved genetic algorithm to

schedule a set of independent tasks with the goal of minimizing the makespan.

In that algorithm, the scheduling results of Max-Min and Min-Min are added

into the initial population of the genetic algorithm. We use a modified version

of this algorithm in which only the result of Min-Min is added into the initial

population and we name this algorithm as MM-GA.

GSA. Gan et al. [42] proposed a genetic simulated annealing (GSA) algo-

rithm which merged simulated annealing into a genetic algorithm. In each

generation, the GSA algorithm generates a set of offspring using crossovers

and mutations and then uses a simulated annealing procedure to further

optimize those offspring.

Note that the above three algorithm are modified to consider the energy

consumption constraint. Specifically, if a schedule generated by these algo-

rithms violates the energy consumption constraint, the REC procedure is

called to reduce the energy consumption for that schedule.
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(a) JCT (b) Total allocated resources

(c) Running time

Figure 3.4: Performance of TaPRA when scheduling a job with different
numbers of tasks on a FatTree data center with 128 servers.

3.6.1.4 Evaluation Results of TaPRA and TaPRA-fast

Performance with Increasing Number of Tasks. In this simulation,

we study how TaPRA and TaPRA-fast performs as the number of tasks in

the job J increases from 40 to 200. We use a 8-array FatTree data center

containing 128 servers.

Fig. 3.4(a) shows the JCT generated by each algorithm. While the JCT

generally increases along with the expansion of the input job, TaPRA gen-
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(a) JCT (b) Total allocated resources

(c) Running time

Figure 3.5: Performance of TaPRA when scheduling a job with 100 tasks on
a FatTree data center with different numbers of servers.

erates the smallest JCT. When the input job contains 200 tasks, the JCT

of TaPRA is 100% smaller than that of Min-Min, 50% smaller than that of

MM-GA, and 30% smaller than that of GSA. Meanwhile, TaPRA-fast gen-

erates almost the same JCT compared to TaPRA. Fig. 3.4(b) shows that the

amount of resources allocated by each algorithm. We observe that when the

number of tasks is small, TaPRA and TaPRA-fast allocate the largest amount

of resources. When the number of tasks becomes large, all of the algorithms

allocate similar amount of resources, however, TaPRA and TaPRA-fast gen-
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erate much smaller JCT than Min-Min, MM-GA, and GSA. This observation

shows that TaPRA and TaPRA-fast utilizes the available resources more ef-

ficiently. We attribute this to the analytical solution (3.17) proposed for

the OptRA problem, which is used by TaPRA and TaPRA-fast to optimally

allocate resource for any given task placement plan.

At last, Fig. 3.4(c) shows the algorithm running time. TaPRA and

TaPRA-fast have much smaller running time than other algorithms. Specif-

ically, when the job contains 100 tasks, the running time of TaPRA and

TaPRA-fast is about 6 seconds, while that of GSA is 180 seconds and that

of Min-Min and MM-GA is around 4500 seconds.

Performance with Increasing Number of Servers. In this simulation,

we demonstrate how our algorithms perform as the number of servers in

the FatTree data center increases from 54 to 432, i.e., the number of pods

increases from 6 to 12. We fix the number of tasks in the job at 100.

Fig. 3.5(a) shows the JCT of TaPRA and TaPRA-fast We can see that

the JCT of TaPRA is similar to that of TaPRA-fast, 80% smaller than that

of GSA, 260% smaller than that of MM-GA, and 430% smaller than that of

Min-Min. Fig. 3.5(b) shows the total amount of resources allocated by each

algorithm. We observe that when the size of the data center is small, all

algorithms allocate similar amount of resources, but when the data center

becomes larger (containing more servers), TaPRA and TaPRA-fast allocate

more resources than other algorithms. When the data center contains 432

servers, TaPRA and TaPRA-fast allocate around 15% more resources than

GSA and about 40% more resoureces than Min-Min and MM-GA. One pos-

sible reason is that TaPRA and TaPRA-fast are able to generate better task
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placement plan with more available resources to be allocated.

At last, Fig. 3.5(c) shows the algorithm running time. When the data

center contains 12 pods (i.e., 432 servers), the running time of TaPRA is

33 seconds, while that of TaPRA-fast, GSA, Min-Min, and MM-GA is 15

seconds, 1000 seconds, 4700 seconds, and 4800 seconds respectively.

Summary. In offline simulations, we examine the performance of TaPRA

and TaPRA-fast when scheduling a single input job. Generally, TaPRA and

TaPRA-fast are able to place tasks in a way that more resources can be

allocated and are able to utilize the allocated resources better. Benefiting

from these properties, TaPRA and TaPRA-fast reduce the JCT by 40%-430%

compared to the state-of-the-art algorithms. Moreover, the running time of

these two algorithms are about 30 times faster than GSA and more than 200

times faster than Min-Min and GSA, which makes them more applicable in

practice.

3.6.2 Performance of the OnTaPRA Scheduler

In this section, we examine the performance of the OnTaPRA scheduler

through online simulations.

3.6.2.1 Simulation Setup

An online simulation starts from an initial state without any ongoing job.

Subsequently, jobs start to arrive and the scheduler is called to schedule those

jobs. Jobs stop arriving at a certain time. Once all jobs are scheduled, the

online simulation finishes.
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Data Center. A 6-array FatTree architecture with 54 servers is used in the

simulation. The initial computing capacity of each server is 10 vCPUs.

Jobs. Jobs arrive at a rate following a Poisson distribution with µ =

0.15/second and stop arriving at 3600 seconds.

Based on statistics of traces of workloads running on an 12000-server

Google compute cell over a period approximately a month long, in May

2011 [65], we set the number of tasks in a job using a Weibull distribution [66]

with scale parameter A = 0.5 and scale parameter B = 0.8. The maximum

number of tasks in a job is set to 70. The task load follows a uniform

distribution in (0, 1000] seconds. The efficiency matrices λij are generated

using the same approach used in the offline simulations.

Constraints. The resources availability constraints and energy consumption

constraints of a job Ji are generated whenever the scheduler is to schedule

that job, using the same approach used in the offline simulations. Specially,

we set βDC , βpod, and βrack as 0.2, 0.2, and 0.3 respectively.

Each data point in the results is an average of 10 simulations performed

on an Intel 2.5GHz processor.

3.6.2.2 Evaluation Metrics

Average Online JCT. The online JCT (JCTon) of a job Ji is the length of

the time period between the arriving time and the completion time of that

job. It composed of the total waiting time of this job (denoted by JWT )

and the offline JCT (JCToff ) generated by the scheduling algorithm, i.e.,

JCTon = JWT + JCToff . (3.60)
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Total Running Time. Total running time is the running time of a scheduler

from the beginning of a simulation to the end.

3.6.2.3 Comparison Schedulers and Algorithms

We compare OnTaPRA with three other schedulers.

FCFS. The First Come First Serve (FCFS) scheduler is a classic scheduler

which is still widely used in many scheduling systems because it is easily

deployed and runs fast. In our simulations, whenever a job arrives the system,

the FCFS scheduler address all waiting jobs in the decreasing order of their

waiting time. If a job cannot be scheduled, it stays in the waiting queue;

otherwise, it is executed according to the scheduling result. If the FCFS

scheduler is DRC enabled, it then uses the DRC procedure to allocate residual

capacity.

Smallest Load First (SLF). The SLF scheduler periodically address the

jobs in Qwait in the increasing order of their total load. We believe that

generally a job’s completion time is positively related to its total load, i.e.,

a small total load means a short JCT. Therefore, the SLF scheduler may

be a good approximation of the SJF scheduling policy. By comparing to

the SLF scheduler, we can better examine the performance of the OnTaPRA

scheduler. The SLF scheduler can use the DRC procedure to allocate residual

capacity.

Largest Load First (LLF). The LLF scheduler is a scheduler that peri-

odically addresses the jobs in the waiting queue in the descending order of

their total load, which is opposite to the SLF scheduling policy used in the

OnTaPRA scheduler. The LLF schedule can also use the DRC procedure to
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(a) DRC Enabled.

(b) DRC Disabled.

Figure 3.6: Average JCT generated by different schedulers in online simula-
tions.

allocate residual capacity.

Comparison Algorithms. To make the comparison more comprehensive,

each scheduler uses four different algorithms to schedule the arrived jobs,

including TaPRA, TaPRA-fast, MM-GA and GSA. Min-Min is not included

as MM-GA is guaranteed to be no worse than Min-Min.
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3.6.2.4 Evaluation Results of OnTaPRA

Fig. 3.6 and Fig. 3.7 show the simulation results of each combination of

schedulers and scheduling algorithms. Note that the MM-GA and GSA al-

gorithms are not used by OnTaPRA, as their running time is relatively large;

when using them, the running time of OnTaPRA is too large to be practical.

To examine the impact of the DRC procedure, we also perform simulations

for each scheduler without the DRC procedure. In the figures, the term

“NDRC” appended after the scheduler name indicates that the scheduler is

DRC disabled.

Fig. 3.6 shows the average JCT generated by each scheduler and Fig. 3.7

shows the running time of each scheduler. Based on the results, we have

several observations:

Impact of Schedulers. Generally, the OnTaPRA scheduler generates the

smallest average JCT. In the DRC enabled simulations, when using TaPRA

or TaPRA-fast, the average JCT generated by OnTaPRA is about 60%

smaller compared to the SLF and FCFS scheduler and about 170% smaller

than the LLF scehduler. When compared to other schedulers using MM-GA

or GSA, OnTaPRA reduces the average JCT by 100%-280%. In the DRC

disabled simulations, when using TaPRA or TaPRA-fast, OnTaPRA gener-

ates 5%, 80%, and 234% smaller average JCT compared to SLF, FCFS, and

LLF respectively.

We can also see that when using TaPRA or TaPRA-fast, while SLF per-

forms similar to FCFS and about 80% better than LLF in DRC enabled

simulations, it performs 80% better than FCFS and 225% better than LLF.

But when using MM-GA or GSA, SLF performs worse than FCFS and LLF
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in DRC enabled simulations. These results show that the performance of

SLF can be impacted by the DCR procedure and the scheduling algorithm.

Whereas, the OnTaPRA scheduler always performs the best.

Impact of Scheduling Algorithm. Generally, TaPRA and TaPRA-fast

show better performance than MM-GA and GSA, while TaPRA is about

5% better than TaPRA-fast. In DCR enabled simulations, TaPRA and

TaPRA-fast reduces the average JCT by nearly 80% and 140% compared

to MM-GA and GSA in the SLF and FCFS scheduler respectively, while in

the LLF scheduler, TaPRA and TaPRA-fast performs actually worse than

MM-GA and GSA. We attribute this to the better performance of TaPRA

and TaPRA-fast on allocating resources because of which the LLF scheduler

allocates most of the available resources to the larger jobs and therefore in-

creases the completion time of the jobs with smaller load. We have similar

observation in DRC disabled observations: TaPRA and TaPRA-fast performs

40%-150% better than MM-GA and GSA in the SLF and FCFS schedulers

but worse than MM-GA and GSA in the LLF scheduler.

However, we can also see that the LLF scheduler performs worst among

all schedulers; whereas, the OnTaPRA scheduler with TaPRA or TaPRA-fast

performs the best.

Impact of the Distribute Residual Capacity (DRC) Procedure. The

DRC procedure temporarily distributes the residual capacity of servers to the

running tasks to accelerate the completion of running jobs. We can see that

the DCR procedure has signification impact on the average JCT. Without

the DCR procedure the average JCT generated by OnTaPRA, SLF, FCFS,

and LLF is increased by 70%, 15%, 110%, and 120% respectively.

67



(a) DRC Enabled.

(b) DRC Disabled.

Figure 3.7: Running time of different schedulers in online simulations.

Scheduler Running Time. Fig. 3.7 shows the overall running time of each

scheduler. Generally, the running time of using TaPRA and TaPRA-fast is

much smaller than using MM-GA and GSA, which confirms our observation

in offline simulations. Meanwhile, when using TaPRA or TaPRA-fast, the

running time of OnTaPRA is larger than other schedulers, because of the
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higher complexity of OnTaPRA. Furthermore, the running time of using

TaPRA-fast is about 10 times faster than using TaPRA in all schedulers.

Summary. In online simulations, we demonstrate the performance of the

OnTaPRA scheduler and the TaPRA/TaPRA-fast algorithms. The results

show that: (a) the OnTaPRA scheduler with TaPRA/TaPRA-fast has the

best performance: it reduces the average JCT to 60%-280% compared by

existing schedulers; (b) the proposed DRC procedure has great impact on the

average JCT: without this procedure, the average JCT can be increased by up

to 120%; (c) while TaPRA-fast performs 5% worse than TaPRA, when using

TaPRA-fast, the running time of OnTaPRA is 10 times smaller than using

TaPRA, which makes OnTaPRA+TaPRA-fast an very applicable choice in

practice.

3.7 Conclusion

In this paper, we focused on the problem of scheduling embarrassingly parallel

jobs in cloud, in which there is a need to determine the task placement plan

and the resource allocation plan for jobs composed of independent tasks with

the goal of minimizing the Job Completion Time (JCT). We first studied

how to optimally allocate resources with pre-determined task placement and

proposed an analytical solution. In the following, we formulate the problem of

scheduling a single job (SJS) as a NLMIP problem and present an relaxation

with an equivalent Linear Programming problem. We further propose an

algorithm named TaPRA and its simplified version: TaPRA-fast that solve

the SJS problem. At last, to address multiple jobs in online scheduling, we
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propose an online scheduler named OnTaPRA.

We evaluated the performance of the TaPRA and TaPRA-fast algorithms

and the OnTaPRA scheduler by comparing them with the state-of-the-art

algorithms and schedulers in offline and online simulations. The simulation

results show that: (a) TaPRA and TaPRA-fast reduce the JCT by 40%-

430% compared to the state-of-the-art algorithms and their running time

is more than 30 times smaller. (b) The OnTaPRA scheduler when using

TaPRA/TaPRA-fast reduces the average JCT by 60%-280% compared to

exsiting schedulers. (c) TaPRA-fast can be 10 times faster than TaPRA with

around 5% performance degradation compared to TaPRA, which makes the

use of TaPRA-fast very applicable in practice.
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Chapter 4

Coflow Scheduling in Data

Centers: Routing and

Bandwidth Allocation

4.1 Introduction

In recent years, we have witnessed a significant improvement on the IT in-

frastructures, like high performance computing systems, ultra high-speed

networks and large-scale storage systems. Benefiting from these improve-

ments, our ability of collecting, storing and processing data has also been

dramatically enhanced. In a data center owned by big corporations like

Google or Twitter, every day, hundreds terabytes of data can be transferred

into its data storage system [67, 68], like HDFS [69] and GFS [70], and pro-

cessed/analyzed by some computing frameworks such as MapReduce [71],

Dyrad [72], Spark [73] and etc. By applying such data analysis on many
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Figure 4.1: Scheduling 3 flows in a network with 3 servers and 5 routers.

different areas like physics, biology, medicine, manufacture and finance, we

have greatly changed the world we live in and made our life better. In such

a context, one of the most important goals pursued by engineers and re-

searchers is improving the execution performance of those data processing

jobs.

To achieve this goal, a critical problem to solve is how to optimize data

transferring time. In many computing frameworks, jobs consist of a sequence

of processing stages. Between two consecutive stages, there is usually a set of

flows which move output data of the previous stage to the nodes executing the

later stage. A job cannot start its next stage until all flows in this set finish.

We usually refer such a set of flows as a coflow [74]. Since the transfer of a

coflow can occupy more than 50% of the job completion time [75], optimizing

the Coflow Completion Time (CCT) is important for improving the execution

performance of jobs.

Recently many mechanisms [13–17] have been proposed to provide band-
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width guarantee to network flows. With such ability, we can guarantee the

flow completion time (FCT), i.e., the completion time of a single flow. How-

ever, scheduling a coflow in a fashion that minimizes its completion time is

still a complex problem which involves both routing and bandwidth alloca-

tion at the level of the whole set of flows.

To illustrate this problem, consider the scenario shown in Fig. 4.1, in

which a coflow with 3 individual flows (f1, f2, f3) is waiting to be scheduled

in a network with 3 servers and 5 routers. The goal is minimizing the CCT.

To schedule this coflow, there is a need to determine a route for each flow

and allocate a certain amount of bandwidth along each route. Fig. 4.2 shows

three schedules generated by different scheduling strategies. Fig. 4.2(a) shows

a schedule in which each flow is routed via the maximum capacity path and

bandwidth is fairly allocated to flows using the same link, while Fig. 4.2(b)

shows a schedule using the same routes but allocating bandwidth based on

flow volume. We can see that by appropriately allocating bandwidth, the

completion time of the largest flow f1 is successfully reduced, which leads

a decreases on the CCT. However, the schedule shown in Fig. 4.2(b) is not

the optimal one: The determined routes share the same link, which causes

bandwidth competition and limits the CCT. This is because routing is per-

formed at the level of individual flows rather than the whole set of flows in

this schedule. Whereas, Fig. 4.2(c) shows the optimal schedule in which we

co-schedule all flows, reduce route overlap and allocate more bandwidth.

From this example, we can see that routing and bandwidth allocation

together determine the CCT. We can obtain the minimum CCT only if we

find out the optimal solution on both routing and bandwidth allocation.
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(a) Schedule 1: Maximum capacity path + Fair sharing

(b) Schedule 2: Maximum capacity path + Volume-proportional sharing

(c) Schedule 3: Jointly consider routing and bandwidth allocation

Figure 4.2: Three flow schedules generated by different strategies.

However, in practice, we may need to schedule a large number of flows in a

network with thousands or tens of thousands of nodes. In such cases, there

exists a vast amount of possible routing plans and for each routing plan there

are very many ways to allocate bandwidth. Searching the optimal solution
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in such a huge solution space is not an easy problem to solve.

While several approaches have been proposed to schedule coflows [74–79],

they either do not jointly consider routing and bandwidth allocation [74–78]

or perform routing based on a limited set of candidate paths [79]. In this

paper, we focus on the coflow scheduling problem in which we jointly consider

routing and bandwidth allocation for a given coflow, formulate the problem

as a non-linear programming problem, and propose algorithms to solve it.

In summary, our main contributions include

• We study the problem of optimal bandwidth allocation with pre-determined

routes, in which the route of each flow in a given coflow has been deter-

mined and our goal is allocating bandwidth to each flow while minimizing

the CCT. We formulate it as a convex optimization problem and provide

an analytical solution. By solving this problem, we essentially reduce the

dimension of the coflow scheduling problem: For any routing plan, we can

always optimally allocate bandwidth. (Section 4.4)

• We formulate the coflow scheduling problem as a Mixed Integer Non-

linear Programming (NLMIP) problem named CoS, which incorporates

both routing constraints and bandwidth allocation constraints. We then

present a relaxation of the CoS problem, named CoS-Relax, and transform

it to a solvable convex optimization problem. (Section 4.5)

• We propose an algorithm, called Coflow Routing and Bandwidth Alloca-

tion (CoRBA), that solves the CoS problem based on the solution of CoS-

Relax. With more practical consideration, we further propose CoRBA-fast,

a simplified version of CoRBA with less complexity. (Section 4.6)
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• We evaluate the performance of CoRBA and CoRBA-fast by comparing

them with some existing algorithms through both offline and online simu-

lations. The simulation results show that CoRBA can achieve 40%-500%

smaller CCT than the existing algorithms. The results also show that

CoRBA-fast can be hundreds times faster than CoRBA with up to 10%

performance degradation, which makes it a good choice in practical use.

(Section 4.7)

• We further discuss about the applicability of CoRBA-fast by comparing its

running time with the transferring time of coflows in some typical MapRe-

duce jobs. (Section 4.8)

4.2 Related Work

A significant amount of research has focused on the area of flow transmissions

in data center networks. In this section, we discuss some of the works most

relevant to our problems.

Coflow schedulers. The problem of coflow-aware flow scheduling has at-

tracted significant attention [74–79]. Orchestra [75] is a global control archi-

tecture that manages the transfer of a set of correlated flows. In Orchestra,

a set of algorithm has been proposed to improve the transfer time of such

flows. Chowdhury et al. [74] explicitly propose the concept of coflow, a net-

work abstraction that describes the traffic pattern of prevalent data flows.

Barrat [76] is a decentralized flow scheduler which groups flows of a task and

schedules them together with scheduling policies like FIFO-LM. Varys [77] is

a coflow scheduler that addresses the inter-coflow scheduling problem, sup-
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ports deadlines and guarantees coflow completion time. In Varys, a problem

named concurrent open shop scheduling with coupled resources is introduced

and heuristics are proposed to solve this problem. Aalo [78] is a recently pro-

posed coflow scheduler that improves its predecessor Varys [77]. Aalo sched-

ules coflows without any prior knowledge and it supports pipelining and

dependencies in multi-stage DAGs. While the coflow schedulers introduced

above focus on scheduling individual coflows or groups of coflows, however,

they neglect routing, an important factor that impacts the coflow completion

time.

RAPIER [79] is a recently proposed coflow-aware network scheduling

framework that integrates both routing and bandwidth allocation. In RAPIER,

scheduling a single coflow is formulated as a linear programming problem in

which the route of each flow in the coflow is selected from a set of candidate

paths given as input. In contrast to RAPIER, in this chapter, we propose

algorithms that consider the bandwidth availability of the whole network and

route flows via the best paths instead of picking up a path from a set of can-

didates. We show the superior performance of our algorithms by comparing

them with the optimization algorithm used in RAPIER.

Flow schedulers. Much research work has also been performed on reducing

the average flow completion time [24–30]. Rojas et al. [24] give a comprehen-

sive survey on existing schemes for scheduling flows in data center networks.

PDQ [26] is a flow scheduling protocol which utilizes explicit rate control

to allocate bandwidth to flows and enables flow preemption. pFabric [27]

is a datacenter transport design that decouples flow scheduling from rate

control, in which flows are prioritized and switches implement a very sim-
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ple priority-based scheduling/dropping mechanism. Munir et al. [28] classify

the strategies used by existing data center transports into three categories

and propose PASE, a framework that uses these strategies together with

an appropriate division of responsibilities. RepFlow [29] is a transport de-

sign that replicates each short flow. It transmits the replicated and original

flows via different paths, which reduces the probability of experiencing long

queueing delay and therefore decreases the flow completion time. PIAS [30]

is an information-agnostic flow scheduling scheme minimizing the FCT by

mimicking the Shortest Job First strategy without any prior knowledge of

incoming flows. While these existing schemes can reduce the FCT by using

different strategies, they are not coflow-aware and therefore have different

optimization objective compared to our algorithms.

4.3 Problem Definition

In this paper, we consider scheduling a given coflow on a given data center

network. We now introduce the input, output, and objective of this problem.

Input. The input contains a data center network and a coflow. We model

the data center network as a graph G =< V , E ,B >, where V is the set of

nodes, in which each server and router corresponds to one node; E is the set

of links, in which a link Euv presents the link between node u and node v;

and B is the set of available bandwidth of links in E , in which Buv presents

the available bandwidth of the link Euv. Note that each link in the set E is

unique, i.e., a link between node u and v is modeled as either Euv or Evu,

but not both.
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The coflow is a set of flows. We denote it by F = {F1, F2, . . . , FN} and

define each flow Fi as {Si, Di, Vi}, where Si is the source node of this flow, Di

is the destination node of this flow and Vi is the data volume of this flow, i.e.,

the total amount of data to be transferred. Like prior works [25–27,76,77,79],

we assume that the information of a coflow can be captured by upper layer

applications [74] or using existing prediction techniques [80].

Output. The output contains a set of routes, one for each flow in CF , and

a certain amount of bandwidth allocated to each route. We define the set of

routes as P = {p1, p2, . . . , pN} in which pi is the route selected for flow Fi.

We also define bi as the amount of bandwidth allocated to the route pi.

Objective. Our objective is minimizing the Coflow Completion Time that

is the completion time of the last finished flow. Let cti denote the completion

time of flow Fi, then our objective is

Minimize max
i=1,...,N

{
cti
∣∣ cti =

Vi
bi

}
. (4.1)

4.4 Optimal Bandwidth Allocation with Pre-

determined Routes

We start from the problem of optimal bandwidth allocation with pre-determined

routes. In this problem, the route of each flow has already been determined

and we need to allocate bandwidth to these routes with the goal of minimiz-

ing the CCT. With the solution of this problem, we can optimally allocate

bandwidth corresponding to any routing plan, which essentially reduces the

dimension of the coflow scheduling problem.
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To model this problem, we define X i
uv as a binary constant whose value

is 1 if link Euv is on the path pi; otherwise it is 0. We can express it as

X i
uv =

 1, if link Euv is on the path pi,

0, otherwise.
(4.2)

We then formulate the Optimal Bandwidth Allocation (OptBA) problem as

OptBA

Objective:

Minimize max
i=1,...,N

{
cti
∣∣ cti =

Vi
bi

}
(4.3)

Subject to

N∑
i=1

∣∣X i
uv

∣∣ · bi ≤ Buv, ∀u,∀v, that Euv ∈ E , (4.4)

bi ≥ 0, i = 1, . . . , N (4.5)

Remarks:

• The objective of DSBA-OPT-BA (4.3) is to minimize the maximum

completion time of data flows in set F . Because all flows are simulta-

neously released, by minimizing this objective function, we essentially

minimize the flow set completion time of F .
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• Constraints (4.4) are bandwidth availability constraints, which limit

that for any link Euv, the overall amount of bandwidth allocated to

flows using this link cannot exceed the available bandwidth of this

link.

• Constraints (4.5) are domain constraints ensuring the bandwidth allo-

cated to each flow to be non-negative.

We now show that the OptBA problem is a convex optimization problem. We

observe that the functions in constraints (4.4) and (4.5) are all affine on bi and

thus convex. On the other hand, the function cti is convex, because its second

derivative is nondecreasing when bi is larger than 0. Therefore, according

to [31], the objective function, i.e., the pointwise maximum function of cti,

is also a convex function. As a result, the OptBA problem is a convex

optimization problem.

4.4.1 Analytical Solution

While existing convex optimization algorithms can be used to solve the

OptBA problem, we develop an analytical solution which is more efficient.

Specifically, we define biuv as the amount of bandwidth allocated to flow Fi on

link Euv when we proportionally distribute the available bandwidth of link

Euv to all flows that are using this link, i.e.,

biuv =
Vi∑N

k=1X
k
uvVk

Buv. (4.6)
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Let ~b∗ be an vector{b∗1, b∗2, . . . , b∗N}, in which b∗i is the minimum value of all

existing biuv, i.e.,

~b∗ = {b∗1, b∗2, . . . , b∗N},

where b∗i = min
Euv∈Ei

{ Vi∑N
k=1X

k
uvVk

Buv

}
,

(4.7)

in which Ei is the set of links on the route of flow Fi. We then have that the

vector ~b∗ is an optimal solution of the OptBA problem. To prove this, we

first prove the following lemma.

Lemma 3. Assume that for the vector ~b∗ defined in Equation 4.7, flow Fp

has the largest finish time, i.e., ct∗p = Vp/b
∗
p = maxi=1,...,N{ct∗i }. Also assume

that b∗p obtains its value when link Eu∗v∗ is considered, i.e.,

b∗p = min
Euv∈Ep

{
bpuv
}

= bpu∗v∗ =
Vp∑N

k=1X
k
u∗v∗Vk

Bu∗v∗ . (4.8)

Then for every other flow Fi using link Eu∗v∗, its allocated bandwidth b∗i also

obtains its value when link Eu∗v∗ is considered, i.e,

b∗i = min
Euv∈Ei

{
biuv
}

= biu∗v∗ =
Vi∑N

k=1X
k
u∗v∗Vk

Bu∗v∗ . (4.9)

Proof. To begin with, we assume that there exists a flow Fq using link Eu∗v∗

but getting its allocated bandwidth when another link Eu′v′ is considered,

i.e.,

b∗q = min
Euv∈Eq

{
bquv
}

= bqu′v′ =
Vq∑N

k=1X
k
u′v′Vk

Bu′v′ . (4.10)
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Next, we define ct′q as the completion time of flow Fq when its allocated

bandwidth equals to the bandwidth allocated on link Eu∗v∗ , i.e.,

ct′q =
Vq
bqu∗v∗

. (4.11)

Based on Equations (4.10) and (4.11), we have

ct∗q =
Vq
bqu′v′

>
Vq
bqu∗v∗

= ct′q. (4.12)

On the other hand, based on Equation (4.8), we have

ct∗p =
Vp
bpu∗v∗

=
Vq
bqu∗v∗

= ct′q. (4.13)

Now using the Inequity (4.12) and Equation (4.13), we get

ct∗q > ct′q = ct∗p, (4.14)

which conflicts with the assumption the flow Fp has the largest completion

time. Therefore, there does not exist a flow Fq and a link Eu′v′ that satisfy

the Equation (4.10). As a result, we have proved the lemma.

Based on Lemma 3, we have the following theorem.

Theorem 3. The vector ~b∗ defined in Equation 4.7 is an optimal solution of

the DSBA-OPT-BA problem.

Proof. Assume that flow Fp has the largest completion time and b∗p obtains

its value then link Eu∗v∗ is considered. Then according to Lemma 3, for every
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flow using link Eu∗v∗ , there exists

b∗i = biu∗v∗ =
Vi∑N

k=1X
k
u∗v∗Vk

Bu∗v∗ . (4.15)

Therefore, for all these flows, we have

ct∗i =
Vi
b∗i

=
Vp
b∗p

= ct∗p. (4.16)

Now assume that instead of ~b∗, a vector ~b′ is the optimal solution. Also

assume that flow Fq has the largest completion time. We have

ct′q = max
i=1,...,N

{ct′i} < max
i=1,...,N

{ct∗i } = ct∗p. (4.17)

Using Equations (4.16) and (4.17), we have

ct′i < ct′q < ct∗p = ct∗i , ∀i, that X i
u∗v∗ 6= 0. (4.18)

Naturally, we have

b′i > b∗i , ∀i, that X i
u∗v∗ 6= 0. (4.19)

On the other hand, from Equation (4.15), we can get

N∑
i=1

X i
u∗v∗b

∗
i = Bu∗v∗ . (4.20)
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Putting Equations (4.19) and (4.20) together, we have

N∑
i=1

X i
u∗v∗b

′
i >

N∑
i=1

X i
u∗v∗b

∗
i = Bu∗v∗ , (4.21)

which conflicts with the assumption that ~b′ is a feasible solution. As a result,

there does not exist a feasible solution that is better than ~b∗. Therefore,

the vector ~b∗ defined in Equation (4.7) is an optimal solution of the OptBA

problem.

4.5 The Coflow Scheduling (CoS) Problem

In this section, we study the coflow scheduling problem: We formulate it

as a Mixed Integer Non-linear Programming (MINLP) problem, present its

relaxed NLP problem, and further transform the relaxed NLP problem to a

solvable convex optimization problem.

To formulate the coflow scheduling problem, we define variable xiuv as an

integer variable with three possible values (-1, 0, and 1). If data is transferred

from node u to node v for the flow Fi, then xiuv equals to 1; if data is

transferred from node v to node u for the flow Fi, then xiuv equals to -1; if

data is not transferred between node u and node v for flow Fi, then xiuv equals

to 0. We can express it as To formulate the coflow scheduling problem, we

define variable xiuv as an integer variable with three possible values (-1, 0,

and 1). If data is transferred from node u to node v for the flow Fi, then

xiuv equals to 1; if data is transferred from node v to node u for the flow Fi,

then xiuv equals to -1; if data is not transferred between node u and node v
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for flow Fi, then xiuv equals to 0. We can express it as

xiuv =


1, if Fi flows from node u to v,

−1, if Fi flows from node v to u,

0, otherwise.

(4.22)

Note that for a link between node u and v, there exists either xiuv or xivu,

corresponding to the existence of either Euv or Evu. The coflow scheduling

problem is then presented as

CoS

Variables

• bi: bandwidth allocated to the path pi selected for Fi.

• xiuv: an integer variable defined by Equation (4.22).

• cti: the completion time of flow Fi.

Constants

• N : the number of flows in the set F .

• Buv: the available bandwidth of the link Euv.

• N (u): the set of neighbor nodes of node u.

Objective:

Minimize max
i=1,...,N

{
cti
∣∣ cti =

Vi
bi

}
(4.23)
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Constraints:

∑
w∈N (si)

xiwsi −
∑

w∈N (si)

xisiw = −1, i = 1, . . . , N, (4.24)

∑
w∈N (si)

xiwdi −
∑

w∈N (si)

xidiw = 1, i = 1, . . . , N, (4.25)

∑
w∈N (u)

xiwu −
∑

w∈N (u)

xiuw = 0, ∀i,∀u /∈ {si, di}, (4.26)

N∑
i=1

∣∣xiuv · bi∣∣ ≤ Buv, ∀u,∀v, that Euv ∈ E , (4.27)

bi ≥ 0, i = 1, . . . , N, (4.28)

xiuv ∈ {−1, 0, 1}, ∀i, ∀u, ∀v. (4.29)

Remarks:

• Constraints (4.24) ensure that data is sent out from the source of any

flow through only one link. Because a positive value of xiwsi and a

negative value of xisiw mean that data is going into the source node via

link Esiw or Ewsi , making the term
∑

w∈N (si)
xiwsi −

∑
w∈N (si)

xisiw to

be -1 essentially restricts that only one link is selected to sent data out

from the source node and there is no data transferred into the source

node. Similarly, constraints (4.25) ensure that data is transferred into

the destination node of any flow through only one link.

• Constraints (4.26) ensure flow conservation, i.e., for any flow Fi and

any intermediate node u, the number of links through which data is
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transferred into node u should be equal to the number of links through

which data is sent out from node u. Note that constraints (4.24), (4.25)

and (4.26) together enforce that only one path is selected to transfer

data for each flow.

• Constraints (4.27) enforce that the overall bandwidth allocated to flows

in coflow CF on any link Euv does not exceed the total available band-

width of that link.

• Constraints (4.28) and (4.29) are domain constraints.

We observe that xiuv is an integer variable, and the objective function and

the constraint (4.27) are non-linear. Hence, the CoS problem is a NLMIP

problem, which is hard to solve.

4.5.1 A Relaxation of the CoS Problem and An Equiv-

alent Convex Optimization Problem

To solve the CoS problem, we first consider its relaxation in which the integer

variable xiuv is relaxed to a real variable, i.e., changing the constraint (4.29)

to

−1 ≤ xiuv ≤ 1, ∀i, ∀u, ∀v. (4.30)

We name the relaxed problem as CoS-Relax.

Subsequently, we transform the CoS-Relax problem into an equivalent

convex optimization problem. We start from defining variable T as the CCT,

i.e.,

T = max
i=1,...,N

{
Vi
bi

}
.
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We can then transform the objective function in the CoS-Relax problem into

the following format

Minimize T

Vi
bi
≤ T, i = 1, . . . , N. (4.31)

We further define variable qi as

qi = T · bi, (4.32)

and then reformulate the constraint (4.31) as

qi ≥ Vi, i = 1, . . . , N. (4.33)

Meanwhile, by substituting qi into constraint (4.27), we have

N∑
i=1

∣∣xiuv · qi∣∣ ≤ T ·Buv, ∀u,∀v, that Euv ∈ E . (4.34)

Next, we define variable piuv as

piuv = xiuv · qi. (4.35)

By substituting piuv into constraint (4.34), we have

N∑
i=1

∣∣piuv∣∣ ≤ T ·Buv, ∀u,∀v, that Euv ∈ E . (4.36)
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Putting all transformations shown above together and substituting xiuv by

piuv/bi, we get an equivalent problem of CoS-Relax, named CoS-Relax-Cvx,

as shown below.

CoS-Relax-Cvx

Objective:

Minimize T (4.37)

Constraints:

qi ≥ Vi, i = 1, . . . , N, (4.38)∑
w∈N (si)

piwsi −
∑

w∈N (si)

pisiw = −qi i = 1, . . . , N, (4.39)

∑
w∈N (si)

piwdi −
∑

w∈N (si)

pidiw = qi i = 1, . . . , N, (4.40)

∑
w∈N (u)

piwu −
∑

w∈N (u)

piuw = 0, ∀i, ∀u /∈ {si, di}, (4.41)

N∑
i=1

∣∣piuv∣∣ ≤ T ·Buv, ∀u,∀v, that Euv ∈ E , (4.42)

T ≥ 0. (4.43)

All constraints in the CoS-Relax-Cvx problem are affine, except the con-

straints (4.42) which are convex constraints, because the absolute value of

piuv is a convex function and the sum of convex functions is still convex.

Therefore, the CoS-Relax-Cvx problem is a convex optimization problem
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Algorithm 7 The CoRBA Algorithm

1: function CoRBA(Network G =< V , E ,B >, Coflow CF)
Phase I:

2: Solve CoS-Relax-Cvx and get {T ′, q′i, p′
i
uv};

3: Calculate x′iuv and b′i using Equations (4.32) and (4.35);
Phase II:

4: for each Fi ∈ CF do
5: pMC

i ← max capacity path using x′iuv as link capacity;
6: xiuv ← 1 if Euv on pMC

i ; otherwise, xiuv ← 0;
7: end for
8: Calculate bi using Equation (4.45);
9: CCT ← maxi=1,...,N{cti | cti = Vi/bi};

Phase III:
10: Update B according to xiuv and bi;
11: while true do
12: Fmax ← {Fi | cti == CCT};
13: for each Fi ∈ Fmax do
14: Econgest ← {Euv | Euv is on pi & Buv == 0};
15: Add bi back to B along route of Fi;
16: Set each Euv ∈ Econgest as unavailable;
17: pMC

i ← new max capacity path;
18: Reset xiuv according to new pMC

i ;
19: Re-calculate bi, cti, and CCT;
20: if cti is reduced then break;
21: else Reverse all changes made for Fi;
22: end for
23: if no cti is reduced then break;
24: end while
25: return xiuv, bi, and CCT;
26: end function

which can be solved by using convex optimization algorithms [31].
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4.6 The Coflow Routing and Bandwidth Al-

location (CoRBA) Algorithm and Its Sim-

plified Version: CoRBA-fast

To solve the CoS problem, we propose an algorithm, called Coflow Routing

and Bandwidth Allocation (CoRBA).

The CoRBA algorithm has three phases. In the first phase, CoRBA ob-

tains a solution of the CoS-Relax problem by solving the CoS-Relax-Cvx

problem, the equivalent convex optimization problem of CoS-Relax; in the

second phase, it determines an initial solution of the CoS problem based

on the solution of the CoS-Relax problem; in the last phase, it utilizes a

local search procedure to further optimize the obtained initial solution. Al-

gorithm 7 shows the pseudocode of CoRBA.

We now introduce the details of each phase.

Phase I: Solve the relaxed problem. To begin with, the CoRBA algo-

rithm solves the CoS-Relax-Cvx problem by using convex algorithms [31],

as this problem is a convex optimization problem. Let the solution of CoS-

Relax-Cvx be T ′, q′i, and p′iuv.

After obtaining the solution of CoS-Relax-Cvx, CoRBA calculates the

solution of CoS-Relax, denoted by x′iuv and b′i, using Equations (4.32) and

(4.35).

Phase II: Obtain an initial solution of the CoS problem. In this

phase, the CoRBA algorithm obtains an initial solution of the CoS problem

in two steps:
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• First, it determines the value of variable xiuv, i.e., obtaining a route

for each flow. Specifically, for each flow Fi, CoRBA uses x′iuv as the

capacity of link Euv and find the max capacity path [81] (denoted by

pMC
i ) between the source and destination of this flow. In the following,

CoRBA sets xiuv as 1 for each link on the max capacity path and set

its value as 0 for all other links, i.e.,

xiuv =

 1, if Euv is on the path pMC
i ,

0, otherwise.
(4.44)

• Second, the CoRBA algorithm determines the value of bi, i.e., the

amount of bandwidth allocated to each flow. Because the route of

each flow is already determined in the first step, the CoS problem is

naturally reduced to the OptBA problem which is already solved in

section 4.4. Therefore, according to Equation (4.7), CoRBA calculates

the value of bi as

bi = min
Euv∈Ei

{ Vi∑N
k=1 |xkuv|Vk

Buv.
}
. (4.45)

Phase III: Local search. In this phase, the CoRBA algorithm utilizes

a local search procedure to further improve the initial solution obtained in

phase II.

In this local search procedure, CoRBA runs in iterations. In each iter-

ation, it starts with identifying all flows with the largest completion time

and putting them into a set named Fmax. Subsequently, CoRBA iteratively
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considers each flow in the set Fmax. For each flow Fi in Fmax, the CoRBA

algorithm puts all links that are on the route of this flow and that do not

have any available bandwidth (Due to the initial bandwidth allocation to

flows) into set Econgest; it then sets all links in Econgest as unavailable and find

a new max capacity route for flow i; in the following, it temporarily changes

the route of flow Fi to the new route and re-calculates bi and CCT for current

routing plan. If the completion time of flow Fi is reduced in the new solution,

the CoRBA algorithm stops considering all other flows in the set Fmax and

starts a new iteration; otherwise, it reverts all temporary changes that it has

made and moves to the next flow in the set Fmax.

If the CoRBA algorithm cannot improve the completion time of any flow

in Fmax in some iteration, it then finishes and outputs current solution as

the final solution, as it cannot improve the CCT anymore.

4.6.1 CoRBA-fast: A Simplified Version of CoRBA

The CoRBA algorithm begins with solving the CoS-Relax-Cvx problem which

a is convex optimization problem. When the problem’s scale is large enough,

solving this problem can be time-consuming. On the other hand, we observe

that the local search procedure in the CoRBA algorithm can be used to op-

timize any feasible coflow schedules. With such observations, we propose

CoRBA-fast, a simplified version of CoRBA with less time complexity.

CoRBA-fast has two phases: First, it obtains an initial solution; Sec-

ond, it utilizes the local search procedure used in the CoRBA algorithm to

optimize the initial solution.

To obtain an initial solution, for each flow Fi, the CoRBA-fast algorithm
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set the route of this flow as the shortest maximum capacity path (i.e., the

shortest path with the maximum capacity). Subsequently, CoRBA-fast cal-

culates bi and CCT based on the determined routes. Algorithm 8 shows the

pseudocode of CoRBA-fast.

4.7 Performance Evaluation

4.7.1 Performance Evaluation through Offline Simula-

tions

In this section, we evaluate the proposed algorithms, CoRBA and CoRBA-

fast, through offline simulations. In the following, we present our simulation

setup, evaluation metrics, comparing algorithms and simulation results.

4.7.1.1 Simulation Setup

In a single run of the offline simulation, the proposed algorithms are called

to schedule a random coflow on a data center network.

Data center network. For the network, we use a modified FatTree [64]

architecture. A k-array FatTree network has k pods, where each pod has k/2

Top-of-Rack (ToR) switches and k/2 aggregation switches. While in each pod

the ToR and aggregation switches are interconnected as a complete bipartite

graph, each ToR switch also connects a rack of k/2 hosts. In addition, there

are (k/2)2 core switches that connect the aggregation switches of all pods.

In general, a k-array FatTree network is able to support k3/4 hosts.

To better evaluate our algorithms, we decide to increase the oversub-
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Algorithm 8 The CoRBA-fast Algorithm

1: function CoRBA-fast(Network G =< V , E ,B >, Coflow CF)
Phase I:

2: for each Fi ∈ CF do
3: pMC

i ← the shortest maximum capacity path of Fi;
4: xiuv ← 1 if Euv on pMC

i ; otherwise, xiuv ← 0;
5: end for
6: Calculate bi using Equation (4.45);
7: CCT ← maxi=1,...,N{cti | cti = Vi/bi};

Phase II:
8: Run phase III of CoRBA (Line 10–24 in Algorithm 7);
9: return xiuv, bi, and CCT;

10: end function

scription ratio and therefore introduce more competition on bandwidth at

the aggregation and core levels. To achieve this goal, we multiply the num-

ber of hosts in a rack by a factor αover. By doing so, a k-array modified

FatTree contains αover · k3/4 hosts now. In our simulations, we set αover as 2

and set the each link’s capacity as 10 Gbps.

Noise flows. In order to simulate the complex traffic condition in real data

center, we introduce noise flows into our simulations. Specifically, each single

simulation run starts with generating a set of noise flows whose amount is 4

times of the number of hosts in the network. The source and destination of

each noise flow is randomly selected and the duration follows an uniform dis-

tribution in [1, 150]. We randomly select a shortest path between as its route

and allocate a certain amount of bandwidth which is the available bandwidth

of the selected path multiplied by a random factor within [0, 0.5].

Coflow. We randomly generate a coflow with N flows. For each flow, we

randomly select two hosts as its source and destination. We further set the
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(a) Coflow Completion Time (b) Allocated bandwidth

(c) Average length of flow route (d) Running time

Figure 4.3: Performance of CoRBA and CoRBA-fast when scheduling differ-
ent numbers of flows in a FatTree network with 1617 nodes.

maximum possible volume of a flow (denoted by Vmax) as 1000 Gb and de-

termines the volume of a flow (i.e., Vi) by using an uniform distribution in

[β · Vmax, Vmax]. In our simulations, we set β as 0.7.

Each data point in our simulation results is an average of 20 simulations

performed on an Intel 2.5 GHz processor.
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(a) Coflow Completion Time (b) Allocated bandwidth

(c) Average length of flow route (d) Running time

Figure 4.4: Performance of CoRBA and CoRBA-fast when scheduling a
coflow with 50 flows in FatTree networks with different number of nodes.

4.7.1.2 Evaluation Metrics

We use four evaluation metrics. Coflow Completion Time. This metric

is the objective of the CoS problem. Hence, it is the most important metric.

Allocated bandwidth. This metric is the overall bandwidth allocated to

CF , which equals to
∑N

i=1 bi. It demonstrates how an algorithm performs on

the aspect of bandwidth allocation. Average length of flow route. This

metric is the average number of hops on the route of flows in CF . It gives us
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a sense about how an algorithm performs on the aspect of routing.

Running time. Running time of an algorithm is also important. It gives a

sense of the scalability of that algorithm.

4.7.1.3 Comparison Algorithms

As a comparison algorithm of CoRBA, we use a modified version of the Min-

imizeCCT algorithm used in RAPIER [79]. Given a coflow, MinimizeCCT

determines route for each flow and allocates bandwidth to these flows while

minimizing the CCT. Although MinimizeCCT looks similar to the CoRBA

algorithm, it does not perform true routing for the coflow. Instead, it selects

each flow’s route from a set of candidate paths given as input.

To compare the MinimizeCCT algorithm with our algorithm, we modify it

to generate K paths as candidates for each flow before scheduling the coflow.

We name this modified version as MinCCT. To make the comparison more

comprehensive, we further propose three variants of MinCCT in which the K

potential paths are (i) K shortest paths, (ii) K maximum capacity paths, and

(iii) K shortest maximum capacity paths. We denote them by “MinCCT-S”,

“MinCCT-M”, and “MinCCT-SM” respectively. In our simulations, we set

the value of K as 5.

4.7.1.4 Evaluation Results of CoRBA

Performance with Increasing Size of the Coflow. In this simulation,

we study how CoRBA and CoRBA-fast perform as the number of flows in

the coflow increases from 10 to 100. We uses a 16-array modified FatTree

with αover = 2, which contains 1617 nodes.
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Fig. 4.3(a) shows the CCT generated by each algorithm. While the CCT

generally increases along with the expansion of the coflow, CoRBA generates

the smallest CCT. When the coflow contains 100 flows, the CCT of CoRBA

is 300% smaller than that of MinCCT-M and MinCCT-S, and 40% smaller

than that of MinCCT-SM. Meanwhile, CoRBA-fast generates almost the

same CCT compared to CoRBA. We also observe that the growth rate of the

CCT of CoRBA and CoRBA-fast is much lower than that of other algorithms.

When the number of flows increases from 10 to 100, the CCT of CoRBA

increases around 90%, but that of other algorithms increases 140%-380%.

Fig. 4.3(b) shows the total bandwidth allocated to the coflow. As can be

seen, CoRBA allocates about 110%-500% more bandwidth than the MinCCT

algorithms but about 25% less bandwidth than CoRBA-fast. Fig. 4.3(c)

shows the average length of flow route. We observe that CoRBA and MinCCT-

M generates the longest flow route length, followed by CoRBA-fast, MinCCT-

SM and MinCCT-S.

Putting Figs. 4.3(a), 4.3(b) and 4.3(c) together, we can see that when

the size of the coflow increases, CoRBA and CoRBA-fast are able to allocate

more bandwidth to the coflow and thereby keep the growth of CCT rela-

tively flat, as observed in Fig. 4.3(a). We attribute this to their ability of

routing based on the bandwidth availability of the whole network. When the

coflow expands, CoRBA and CoRBA-fast are able to route flows via different

paths and utilize more bandwidth. In contrast, the MinCCT algorithms are

restricted by the limited number of candidate paths and cannot sufficiently

utilize the available resources in the network, which leads the rapid increase

of the CCT. In addition, we can also see that CoRBA-fast generates simi-
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lar CCT with CoRBA while it allocates more bandwidth. This shows that

CoRBA utilizes bandwidth more efficiently towards the goal of minimizing

CCT.

At last, Fig. 4.3(d) shows the algorithm running time. When the coflow

contains 100 flows, the running time of CoRBA is about 1100 seconds, while

that of CoRBA-fast, MinCCT-S, MinCCT-M, and MinCCT-SM is 5 seconds,

70 seconds, 220 seconds, and 80 seconds respectively. One of the reasons is

that CoRBA solves a programming problem containing a large number of

variables, which is commonly a slow procedure. Another reason is the hard-

ware limitation: All simulations are perform on a laptop with Intel i5-3250M

CPU with 2.5 GHz speed. We believe that the algorithm can run much

faster on servers with better CPUs. In addition, parallel convex optimiza-

tion techniques have been well studied recently [82–84]. By utilizing such

techniques, the CoRBA algorithm can be executed in a parallel environment

and its running speed can be further improved.

Performance with Increasing Size of the Network. In this simulation,

we demonstrate how our algorithms perform as the number of nodes in the

FatTree network increases from 52 to 4500, i.e., the number of pods increases

from 4 to 20. We fix the number of flows in the coflow at 50.

Fig. 4.4(a) shows the CCT. We can see that the CCT of CoRBA is similar

to that of CoRBA-fast, 30% smaller than that of MinCCT-SM, and 200%

smaller than that of MinCCT-S and MinCCT-M. Fig. 4.4(b) shows the total

allocated bandwidth. CoRBA and CoRBA-fast allocate similar amount of

bandwidth, which is 2 times of that allocated by MinCCT-SM and 4 times

of that allocated by MinCCT-M and MinCCT-SM.

101



(a) Coflow Completion Time (b) Ratio CCT to CoRBA

(c) Running time

Figure 4.5: Performance of CoRBA and CoRBA-fast in online simulations
with increasing number of flows in the coflow.

As can be seen, the bandwidth allocated by CoRBA is dramatically in-

creased when the network just starts expanding and becomes more smooth

thereafter. We attribute this to the limitation on how much bandwidth the

algorithm can find to utilize. When the network is small, the number of good

paths (with large available bandwidth) is also small. Consequently, CoRBA

may schedule some flows to use paths with less bandwidth, which limits the

CCT. At this stage, an expansion of network generates more good paths
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and make CoRBA be able to allocate more bandwidth. However, along with

the expansion, the number of good paths becomes more than enough and

CoRBA is able to schedule most of the flows on these paths. At this stage,

the quality of paths is barely improved. As a result, the increase of total al-

located bandwidth becomes small. Such a trend on the allocated bandwidth

then leads the trend of CCT, which is a steep decrease at the beginning but

becomes relatively flat thereafter, as shown in Fig. 4.4(a).

We also observe that although MinCCT-M and MinCCT-SM use the

maximum capacity paths as candidate routes, they actually allocate much

less bandwidth than CoRBA. This is because when they generate candidate

routes for a flow, they do not consider the candidate routes generated for

other flows and the number of such routes is limited. As a result, it is pos-

sible that the routes of multiple flows overlap with each other, which leads

bandwidth competition and therefore greatly limits the amount of bandwidth

allocated to the coflow. Whereas CoRBA takes the whole network into con-

sideration when performing routing and thereby is able to find routes with

less or even no overlap and allocate more bandwidth.

Fig. 4.4(c) shows the average length of flow routes. MinCCT-M and

CoRBA have the longest route length, followed by CoRBA-fast, MinCCT-S

and MinCCT-SM. We attribute this to the fact that MinCCT-M and CoRBA

route flows via the maximum capacity paths while MinCCT-S and MinCCT-

SM route flows via the shortest paths.

At last, Fig. 4.4(d) shows the algorithm running time. When the network

contains 16 pods (i.e., 4500 nodes), the running time of CoRBA is about 2500

seconds, while that of CoRBA-fast, MinCCT-S, MinCCT-M, and MinCCT-
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SM is 10 seconds, 140 seconds, 600 seconds, and 160 seconds respectively.

Summary. In offline simulations, we examined the performance of CoRBA

and CoRBA-fast when scheduling a single coflow. Benefiting from the ability

of finding paths with less overlaps and allocating more bandwidth, CoRBA

and CoRBA-fast outperforms MinCCT-SM by a factor of 1.3-1.5 and outper-

forms MinCCT-S and MinCCT-M by a factor of 3-5. Moreover, CoRBA-fast

has similar performance with CoRBA but less efficiency on utilizing available

bandwidth.

4.7.2 Performance Evaluation through Online Simula-

tions

In this section, we examine long-term performance of the proposed algorithms

through online simulations in which we simulate the execution of a flow

scheduler using the state-of-the-art scheduling policy.

4.7.2.1 Simulation Setup

An online simulation begins with a 10-array modified FatTree network with-

out any flows, in which there are 625 nodes and the link capacity is 10 Gbps.

In the following, coflows start to arrive at a rate following a Poisson distribute

with µ = 0.01/second, and stop arriving at 1800 seconds. The whole simu-

lation finishes, once all coflows are scheduled. Each data point in the results

is an average of 10 simulations performed on an Intel 2.5GHz processor.

Scheduling Policy. We use the scheduling policy proposed in RAPIER [79]

to schedule arrived coflows. Once a coflow arrives, the scheduling algorithm
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(a) Coflow Completion Time (b) Ratio CCT to CoRBA

(c) Running time

Figure 4.6: Performance of CoRBA and CoRBA-fast in online simulations
with increasing arriving rate of noise flows.

is called to calculate the CCT of all existing coflows based on their current

residual volume. In the following, all coflows are scheduled in the ascending

order of their CCT. Once a coflow is scheduled, the CCT of all other coflows

are re-calculated based on updated bandwidth availability. The selection

procedure is repeated until all existing coflows are addressed. An existing

coflow may be preempted by a newly arrived coflow. If scheduling a coflow is

failed, this coflow is added into a waiting queue. Meanwhile, if a coflow has
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been waiting for more than 100 seconds, it gets the privilege to be scheduled

regardless of its calculated CCT. At last, once a coflow finishes, a special

procedure is called to distribute the released bandwidth to existing coflows,

aiming to facilitate the flow completion.

Noise flows. The noise flows arrives following a Poisson distribution and

the duration of these noise flows follows an uniform distribution in [1, 150].

When a noise flow starts, we randomly selects a shortest path as its route

and allocates a certain amount of bandwidth which is the link capacity times

a random factor within [0, 0.5].

4.7.2.2 Evaluation Metrics

We focus on two metrics: (i) the average CCT of coflows and (ii) the algo-

rithm running time.

4.7.2.3 Comparison Algorithms

We compare our algorithms with MinCCT-S, MinCCT-M, and MinCCT-SM.

4.7.2.4 Evaluation Results of CoRBA

Performance with Increasing Size of the Coflow. We first study how

our algorithms perform when the number of flows in the coflow increases.

We set the arriving rate of noise flows to follow a Poisson distribution with

µ = 40/second.

Fig. 4.5(a) shows the average CCT generated by each algorithm and

Fig. 4.5(b) shows the ratio of the average CCT of other algorithms to that

of CoRBA. We observe that the average CCT generated by CoRBA is about
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10%, 40%, 60%-80%, and 100%-650% smaller than that generated by CoRBA-

fast, MinCCT-SM, MinCCT-S, and MinCCT-M respectively. Fig. 4.5(c)

shows the running time of each algorithm. While CoRBA has the largest

running time, CoRBA-fast has the smallest running time which is 4-8 times

faster than the three MinCCT algorithms and about 40 times faster than

CoRBA .

Performance with Increasing Size of the Coflow. We further study

how our algorithms perform when the arriving rate of noise flows increases.

We set each coflow containing 30 flows.

Fig. 4.6(a) shows the average CCT generated by each algorithm and

Fig. 4.6(b) shows the ratio of the average CCT of other algorithms to that

of CoRBA. We can see that the average CCT generated by CoRBA is

about 10%, 40%, 60%–120%, and 400%-500% smaller than that generated by

CoRBA-fast, MinCCT-SM, MinCCT-S, and MinCCT-M respectively. Fig. 4.6(c)

shows the running time of each algorithm. Again, CoRBA has the largest

running time and CoRBA-fast has the smallest running time which is 4-8

times faster than the three MinCCT algorithms and around 30 times faster

than CoRBA.

Summary. We examined the performance of our algorithms in online

simulations. The results show that the CoRBA and CoRBA-fast algorithms

maintain their advantage over the three MinCCT algorithms: They are at

least 40% (and up to 500%) better than the comparison algorithms. We

attribute this to their better performance when scheduling each individual

coflow.

On the other hand, while CoRBA-fast is much faster than CoRBA, CoRBA
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performs about 10% better than CoRBA-fast in the online simulations. One

possible reason is that CoRBA utilizes bandwidth more efficiently than CoRBA-

fast when scheduling a single coflow, as shown in previous offline simulations.

In long-term running, with such property, CoRBA is able to save more band-

width and allocates them to other coflows. Therefore, it generates smaller

average CCT.

4.8 Discussion

In simulations, it has been shown that CoRBA-fast can be tens of times faster

than other algorithms, which makes it a good choice in practice. In this

section, we further discuss about its applicability by comparing its running

time with the transferring time of flows in some typical MapReduce jobs.

The shuffle stage in MapReduce jobs generates coflows. In shuffle-heavy

jobs, like tera-sort and ranked-inverted-index, the shuffle volume can be more

than 200 GB [85,86]. Considering the simulation case in which a coflow with

100 flows is scheduled in a network with 1617 nodes, the running time of

CoRBA-fast is about 6 seconds and the bandwidth allocated to the coflow is

around 60 Gb/s. In this case, if the coflow contains 200 GB data, its transfer-

ring time is about 27 seconds, which is nearly 5 times of the running time of

CoRBA-fast. Whereas, the MinCCT algorithms allocate 10-20 Gb/s band-

width and the coflow transferring time is 80-160 seconds. We can see that

while CoRBA-fast significantly reduces the coflow transferring time, its run-

ning time is still generally small compared to the reduced transferring time.

When examining other simulation cases, we get similar results. Therefore,
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we believe that the use of CoRBA-fast is very applicable in practice.

4.9 Conclusion

In this paper, we focused on the coflow scheduling problem in which there is

a need to perform routing and bandwidth allocation for a given coflow with

the goal of minimizing the coflow completion time. We first studied how to

optimally allocate bandwidth to a coflow with pre-determined routes. We

formulated this problem as a convex optimization problem and provided an

analytical solution with which we can always optimally allocate bandwidth

corresponding to any routing plan. Subsequently, we formulated the coflow

scheduling problem as a MINLP problem and presented a relaxation of this

problem together with an equivalent convex optimization problem. To solve

this problem, we proposed an algorithm called CoRBA and a simplified ver-

sion of CoRBA called CoRBA-fast.

We evaluated the performance of CoRBA and CoRBA-fast by comparing

them with some state-of-the-art algorithms in both offline and online simula-

tions. In offline simulations, we examined how our algorithms perform when

scheduling a single coflow. The simulation results shows that while CoRBA

and CoRBA-fast have similar performance, they generate 30%-400% smaller

CCT than their comparison algorithms. In online simulations, we simulated

the execution of a flow scheduler and used the state-of-the-art scheduling pol-

icy. The results show that CoRBA and CoRBA-fast are at least 40% and up

to 500% better than the comparison algorithms. Meanwhile, the results also

show that CoRBA-fast can be tens of times faster than all other algorithms
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with the cost of about 10% performance degradation compared to CoRBA,

which makes CoRBA-fast very applicable in practice.
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Chapter 5

Scheduling of Independent

Flows in Data Centers: Routing

and Bandwidth Allocation

5.1 Introduction

In the previous section, we studied the problem of scheduling coflows com-

posed of a set of flows. While coflows represent one type of data transfers

existing in the data centers, another type of data transfers are independent

flows which have relatively large volume and can be initiated simultaneously.

These flows are very common in data centers. Examples include data repli-

cation flows, database movements, distribution of experiment data. Due to

their large volume, how to schedule these flows with the goal of minimizing

their transfer time is a critical problem.

Similar to coflow scheduling, scheduling these independent flows also in-
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cludes determining a routing plan and a bandwidth allocation plan. However,

in contrast to coflow scheduling, the objective of this flow scheduling prob-

lem is to minimize their Total Transfer Time (TTT), equivalent to minimize

the average Flow Completion Time (FCT). From the previous study of the

coflow scheduling problem, we can see that how to efficiently schedule a set

of flows with joint consideration of routing and bandwidth allocation is a

complex problem to solve.

While several approaches have been proposed to reduce the average flow

completion time [24–30], none of them considers routing and bandwidth allo-

cation together. In this paper, we focus on the independent flow scheduling

problem in which we jointly consider routing and bandwidth allocation for

a given set of independent flows and propose offline algorithms and online

scheduler to solve it.

In summary, our main contributions include

• We formally define the problem of scheduling independent flows, present

the input, output, objective, and constraints. (Section 5.3)

• We study the problem of optimal bandwidth allocation with pre-determined

routes, in which the routes of a given set of flows have been determined

and our goal is allocating bandwidth to each flow while minimizing the

TTT. We formulate it as a convex optimization problem. By solving this

problem, we essentially reduce the dimension of the coflow scheduling prob-

lem: For any routing plan, we can always optimally allocate bandwidth.

(Section 5.4.1)

• We formulate the problem of scheduling a single set of flows as a Mixed In-
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teger Non-linear Programming (NLMIP) problem named SSFS, which in-

corporates both routing constraints and bandwidth allocation constraints.

We then present a relaxation of the SSFS problem, named SSFS-Relax, and

transform it to a solvable convex optimization problem. (Section 5.4.2)

• We propose an algorithm, called Flow Routing and Bandwidth Allocation

(FRoBA), that solves the SSFS problem based on the solution of SSFS-

Relax. With more practical consideration, we further propose FRoBA-fast,

a simplified version of FRoBA with less complexity. (Section 5.4.3)

• We propose an online scheduler named OnFRoBA to address multiple flows

in online scheduling. The OnFRoBA scheduler periodically schedules all

flows in the waiting queue in two steps: (i) Selects a set of flow from the

waiting queue; and (ii) calls scheduling algorithm to schedule the selected

set of flows. We further proposed multiple flow approaches. For work

conservation, the OnFRoBA scheduler distributes the residual bandwidth

in the network to existing flows. (Section 5.5)

• We evaluate the performance of FRoBA and FRoBA-fast by comparing

them with some existing algorithms through both offline and online simu-

lations. The simulation results show that FRoBA can achieve 60%-250%

smaller TTT than the existing algorithms. (Section 5.6)

5.2 Related Work

A significant amount of research has focused on the area of flow transmissions

in data center networks. In this section, we discuss some of the research works
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that we consider most relevant to our problems.

Many research work have been perform on reducing the average flow com-

pletion time (FCT) [24–30]. Rojas et al. [24] give a comprehensive survey

about existing schemes for the transmission of flows in data center networks.

D3 [25] is a Deadline-Driven Delivery control protocol that makes data center

networks deadline aware. It utilizes the explicit rate control to assign flows

with rates based on their deadlines, instead of the fair share. PDQ [26] is a

flow scheduling protocol which utilizes explicit rate control to allocated band-

width to flows and enables flow preemption. In this way, it can transfer the

most critical flows as quick as possible by preemptively allocating the required

resources to them. pFabric [27] is a datacenter transport design that decou-

ples flow scheduling from rate control. In this design, flows are prioritized

and switches implements a very simple priority-based scheduling/dropping

mechanism. The goal of rate control is then to avoid persistently high packet

drop rates. Munir et al. [28] classify the strategies used by existing data

center transports into three categories: self adjusting endpoints, arbitration

and in-network prioritization. Munir et al. then propose PASE, a transport

framework that uses these strategies together with an appropriate division of

responsibilities. RepFlow [29] is a transport design that replicates each short

flow. It transmits the replicated and original flows via different paths, which

reduces the probability of experiencing long queueing delay and therefore

decreases the flow completion time. PIAS [30] is a information-agnostic flow

scheduling scheme that minimizes the FCT by mimicking the Shortest Job

First strategy without any prior knowledge of incoming flows. While these

existing schemes can reduce the FCT by using different strategies, they do
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not consider optimizing the route of flows which has important impact on

the flow completion time, as shown in previous example. In contrast to these

schemes, we jointly consider routing and bandwidth allocation in this chapter

and therefore achieve better performance.

5.3 Problem Definition

In this paper, we consider scheduling a given set of flows on a given data

center network. We now introduce the input, output, and objective of this

problem.

5.3.1 Input

The input contains a data center network and a set of input flows.

Data Center Network. We model the data center network as a graph

G =< V , E ,B >, where V is the set of nodes, in which each server and router

corresponds to one node; E is the set of links, in which a link Euv presents

the link between node u and node v; and B is the set of available bandwidth

of links in E , in which Buv presents the available bandwidth of the link Euv.

Note that each link in the set E is unique, i.e., a link between node u and v

is modeled as either Euv or Evu, but not both.

The input flows. We denote the set of input flows by F = {F1, F2, . . . , FN}

and define each flow Fi as {Si, Di, Vi}, where Si is the source node of this

flow, Di is the destination node of this flow and Vi is the data volume of this

flow, i.e., the total amount of data to be transferred. We assume that the

information of the input flows can be captured by upper layer applications
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or using existing prediction techniques [80].

5.3.2 Output

The output contains a routing plan and a bandwidth allocation plan.

Routing Plan. A routing plan is a set of routes, one for each flow in F .

We define the routing plan by P = {P1, P2, . . . , PN} in which Pi is the route

selected for flow Fi. A route Pi contains a set of links which forms a path

from source node Si to destination node Di. We use an integer variable

xiuv to indicates the relationship between the route Pi and the link Euv.

Specifically, the variable xiuv has three possible values (-1, 0, and 1). If data

is transferred from node u to node v for the flow Fi, then xiuv equals to 1; if

data is transferred from node v to node u for the flow Fi, then xiuv equals to

-1; if data is not transferred between node u and node v for flow Fi, then xiuv

equals to 0. We can express it as

xiuv =


1, if Fi flows from node u to v,

−1, if Fi flows from node v to u,

0, otherwise.

(5.1)

Note that for a link between node u and v, there exists either xiuv or xivu,

corresponding to the existence of either Euv or Evu.

Bandwidth Allocation Plan. A bandwidth allocation plan indicates the

amount of bandwidth allocated to each flow. We denote the bandwidth

allocation plan by ~b = {bf1 , . . . , bfN} in which bfi is the amount of bandwidth

allocated to flow Fi.
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5.3.3 Objective

Our objective is minimizing theTotal Transfer Time (TTT) that is the overall

transfer time of all input flows. Let tti denote the transfer time of flow Fi,

then our objective is

Minimize TTT =
N∑
i=1

tti =
N∑
i=1

Vi
bfi
. (5.2)

5.3.4 Constraints

Flow Conservation Constraints. For each flow Fi, only one path is se-

lected to transfer data from the source Si to the destination Di. To achieve

this, there should be three sets of constraints:

• Data should be sent out from the source of any flow through only one link.

We can formulate these constraints as

∑
w∈N (si)

xiwsi −
∑

w∈N (si)

xisiw = −1, i = 1, . . . , N. (5.3)

Because a positive value of xiwsi and a negative value of xisiw mean that

data is going into the source node via link Esiw or Ewsi , making the term∑
w∈N (si)

xiwsi −
∑

w∈N (si)
xisiw to be -1 essentially restricts that only one

link is selected to sent data out from the source node and there is no data

transferred into the source node.

• Data should be transferred into the destination node of any flow through

only one link. Similar to constraints (5.3), we can formulate these con-

117



straints as

∑
w∈N (si)

xiwdi −
∑

w∈N (si)

xidiw = 1, i = 1, . . . , N. (5.4)

• For any flow Fi and any intermediate node u, the number of links through

which data is transferred into node u should be equal to the number of

links through which data is sent out from node u. We can formulate these

constraints as

∑
w∈N (u)

xiwu −
∑

w∈N (u)

xiuw = 0, ∀i, ∀u /∈ {si, di}. (5.5)

Constraints (5.3), (5.4) and (5.5) together enforce that only one path is

selected to transfer data for each flow.

Bandwidth Availability Constraints. Bandwidth availability constraints

ensure that the overall bandwidth allocated to the input flows on any link Euv

does not exceed the total available bandwidth of that link. We can formulate

these constraints as

N∑
i=1

∣∣xiuv · bfi∣∣ ≤ Buv, ∀u,∀v, that Euv ∈ E . (5.6)

5.4 Scheduling a Single Set of Flows

In this section, we focus on scheduling a single set of flows. We start from its

sub-problem: Optimal Bandwidth Allocation with Pre-determined Routing

Plan (OptBA-TTT).
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5.4.1 Optimal Bandwidth Allocation with Pre-determined

Routing Plan

In the OptBA-TTT problem, the routing plan has already been determined,

i.e., the value of xiuv is known. For convenience and clarity, we use X i
uv

to indicate the determined routing plan. Our goal is to allocate available

bandwidth to these flows while minimizing the TTT. With the solution of

this problem, we can optimally allocate bandwidth corresponding to any

routing plan, which essentially reduces the dimension of the coflow scheduling

problem.

With the determined routing plan, the bandwidth availability constraints

(5.6) becomes

N∑
i=1

∣∣X i
uv

∣∣ · bfi ≤ Buv, ∀u,∀v, that Euv ∈ E . (5.7)

We can then formulate the OptBA-TTT problem as

OptBA-TTT

Minimize TTT =
N∑
i=1

tti =
N∑
i=1

Vi
bfi
. (5.8)

Subject to

N∑
i=1

∣∣X i
uv

∣∣ · bfi ≤ Buv, ∀u,∀v, that Euv ∈ E , (5.9)

bfi ≥ 0, i = 1, . . . , N. (5.10)
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Remarks:

• Constraints (5.9) are bandwidth availability constraints; Constraints

(5.10) are domain constriants.

• Flow conservation constraints (5.3), (5.4), and (5.5) are not included

in OptBA-TTT, as they are only related with the variable xiuv whose

value is already determined in the above problem.

We next show that the OptBA-TTT problem is a convex optimization prob-

lem. We observe that the function Vi/bfi is convex, because its second deriva-

tive is nondecreasing when bfi is larger than 0. Therefore, according to [31],

the objective function, as the sum of a convex function, is also a convex

function. In addition, the functions in constraints (5.9) and (5.10) are all

affine on bfi and thus convex. As a result, the OptBA-TTT problem is a

convex optimization problem which can be efficient solved by using convex

algorithms introduced in [31].

5.4.2 Formulation of the Single Set Flow Scheduling

Problem and Its Solvable Relaxation

We now study the Single Set Flow Scheduling (SSFS) problem in which we

are required to determine the routing plan and bandwidth allocation plan for

a set of flows with the goal of minimizing the TTT. We formulate this problem

as a Non-Linear Programming (NLP) problem, present its relaxed model and

further transform the relaxed model to a solvable convex optimization model.

Based on the objective and constraints introduced in Section 5.3, the

SSFS problem can be formulated as
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SSFS

Minimize TTT =
N∑
i=1

tti =
N∑
i=1

Vi
bfi
. (5.11)

Subject to

∑
w∈N (si)

xiwsi −
∑

w∈N (si)

xisiw = −1, i = 1, . . . , N, (5.12)

∑
w∈N (si)

xiwdi −
∑

w∈N (si)

xidiw = 1, i = 1, . . . , N, (5.13)

∑
w∈N (u)

xiwu −
∑

w∈N (u)

xiuw = 0, ∀i,∀u /∈ {si, di}, (5.14)

N∑
i=1

∣∣xiuv · bfi∣∣ ≤ Buv, ∀u,∀v, that Euv ∈ E , (5.15)

bfi ≥ 0, i = 1, . . . , N, (5.16)

xiuv ∈ {−1, 0, 1}, ∀i, ∀u, ∀v. (5.17)

Remarks:

• The objective (5.11) and constraints (5.12)–(5.15) are formally defined

in Section 5.3.

• Constraints (5.16) and (5.17) are domain constraints.

Naturally, the SSFS problem is a NLMIP problem which is hard to solve

directly. To solve this problem, we first propose a solvable relaxation and
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then determine a solution of the SSFS problem based on the solution of the

relaxation.

5.4.2.1 A Relaxation of the SSFS problem and An Equivalent

Convex Optimization Problem

To solve the SSFS problem, we first consider solving its relaxed version in

which the integer variable xiuv is relaxed to real variable, i.e., substituting

constraint (5.17) by

−1 ≤ xiuv ≤ 1, ∀i, ∀u, ∀v. (5.18)

We name this relaxed version of SSFS as SSFS-Relax and present it as

SSFS-Relax

Objective:

Minimize
N∑
i=1

Vi
bfi

(5.19)

Constraints:

∑
w∈N (si)

xiwsi −
∑

w∈N (si)

xisiw = −1, i = 1, . . . , N, (5.20)

∑
w∈N (si)

xiwdi −
∑

w∈N (si)

xidiw = 1, i = 1, . . . , N, (5.21)

∑
w∈N (u)

xiwu −
∑

w∈N (u)

xiuw = 0, ∀i,∀u /∈ {si, di}, (5.22)
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N∑
i=1

∣∣xiuv · bfi∣∣ ≤ Buv, ∀u,∀v, that Euv ∈ E , (5.23)

bfi ≥ 0, i = 1, . . . , N, (5.24)

−1 ≤ xiuv ≤ 1, ∀i, ∀u, ∀v. (5.25)

We notice that the SSFS-Relax problem is still hard to solve because

of the product of two variables xiuv and bfi in constraint (5.14). To solve

SSFS-Relax, we now transform it to an equivalent convex optimization prob-

lem named SSFS-Relax-Cvx. We start from defining variable piuv as the

product of xiuv and bfi , i.e.,

piuv = xiuv · bfi . (5.26)

By substituting piuv into each constraint of SSFS-Relax, we have

SSFS-Relax-Cvx

Objective:

Minimize
N∑
i=1

Vi
bfi

(5.27)

Constraints:

∑
w∈N (si)

piwsi −
∑

w∈N (si)

pisiw = −bfi , i = 1, . . . , N, (5.28)

∑
w∈N (si)

piwdi −
∑

w∈N (si)

pidiw = bfi , i = 1, . . . , N, (5.29)
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∑
w∈N (u)

piwu −
∑

w∈N (u)

piuw = 0, ∀i, ∀u /∈ {si, di}, (5.30)

N∑
i=1

∣∣piuv∣∣ ≤ Buv, ∀u,∀v, that Euv ∈ E , (5.31)

bfi ≥ 0, i = 1, . . . , N, (5.32)

−bfi ≤ piuv ≤ bfi , ∀i, ∀u, ∀v. (5.33)

We observe that objective (5.27) and constraint (5.30) are convex functions

because the function |piuv| and Vi/bfi are convex and the sum of convex func-

tions is still convex function. In addition, all other constraints are affine.

Hence, the SSFS-Relax-Cvx problem is a convex optimization problem that

can be solved by convex algorithms [31].

5.4.3 The Flow Routing and Bandwidth Allocation (FRoBA)

Algorithm and Its Simplified Version: FRoBA-

fast

To solve the SSFS problem, we propose an algorithm, called Data Flow

Routing and Bandwidth Allocation with Minimizing Total Transfer Time

(FRoBA). The FRoBA algorithm has three phases: First, it solves the SSFS-

Relax-Cvx problem, the relaxed version of SSFS; second, it determines an

initial solution of the SSFS problem based on the solution of SSFS-Relax-

Cvx; third, it utilizes a local search procedure to further optimize the ob-

tained initial solution. We now introduce the details of each phase.

Phase I: Solve the relaxed problem. In this phase, the FRoBA algorithm
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solves the SSFS-Relax problem. It begins with solving the equivalent model

SSFS-Relax-Cvx by using convex algorithms introduced in [31]. Assume that

the solution of SSFS-Relax-Cvx is b′fi and p′iuv. FRoBA then calculates the

value of variable xiuv based on Equation (5.26). We denote the obtained re-

sults by x′iuv.

Phase II: Obtain an initial solution of SSFS. In this phase, the FRoBA

algorithm obtains an initial solution of SSFS from the solution of the relaxed

problem SSFS-Relax. The procedure contains two steps:

• First, the FRoBA algorithm determines the value of variable xiuv, i.e.,

finding a route for each data flow. Specifically, for a data flow i, FRoBA

uses x′auv as the capacity of link Euv and find the max capacity path [81]

(denoted by pMCi ) between the source and destination node of flow i.

Subsequently, FRoBA set xiuv as 1 for each link on the max capacity

path and set its value as 0 for all other links. We can express such

assignment as

xiuv =

 1, if Euv is on the path pMC
i ,

0, otherwise.
(5.34)

• Second, the FRoBA algorithm determines the value of bfi , i.e., the

amount of bandwidth allocated to each data flow. We observe that once

the value of xiuv is obtained, the SSFS problem is naturally reduced to

the OptBA-TTT problem. Hence, FRoBA determines the value of bfi

by solving the corresponding OptBA-TTT problem reduced from the

original SSFS problem.
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Phase III: Local search. In this phase, the FRoBA algorithm utilizes a

local search procedure to further optimize the initial solution obtained in

previous phase.

In this local search procedure, the FRoBA algorithm starts from calcu-

lating the residual bandwidth of each link according to the initial solution

xiuv and bfi , i.e., subtracting bfi from the available bandwidth of each link

whose xiuv equals to 1.

The FRoBA algorithm then runs in iterations. In each iteration, it put

all congested links (i.e., links without any residual bandwidth) into a set

Econgest in the decreasing order of the number of data flows using this link.

Next, FRoBA iteratively addresses each congested link in set Econgest. When

addressing a congested link e, the FRoBA algorithm identifies all data flows

using this link and put them into set Fcongest in the decreasing order of their

transfer time. Subsequently, FRoBA marks the link e as unavailable and

iterates through the set Fcongest. For a selected data flow a, FRoBA sets the

available bandwidth of each link as its capacity and finds out the shortest max

capacity path, i.e., the shortest path which has the largest capacity among all

shortest paths. Note that the FRoBA algorithm uses the number of hops on

a path as the length of that path. In the following, it temporarily changes the

route of flow a to the newly found route and calculate the optimal bandwidth

allocation for current routing schedule. If the total transfer time is reduced

in the new solution, i.e., our solution is improved, the FRoBA algorithm

then stops consider the following data flows in Fcongest and congested links in

Econgest; instead, it starts a new iteration. Otherwise, it reverts all temporary

changes that it has made and moves to the next data flow in Fcongest.

126



If the FRoBA algorithm cannot improve current solution in some iteration

(after iterating through all congested links and all data flows using these

links), the algorithm then finishes and outputs current solution as the final

solution.

5.4.3.1 FRoBA-fast: A Simplified Version of FRoBA

The FRoBA algorithm begins with solving the SSFS-Relax-LP problem which

is a LP problem. When the problem’s scale is large enough, solving this prob-

lem can be time-consuming. On the other hand, we observe that the local

search procedure in the FRoBA algorithm can be used to optimize any feasi-

ble schedules. With such observations, we propose FRoBA-fast, a simplified

version of FRoBA with less time complexity.

FRoBA-fast has two phases: First, it obtains an initial solution; Second, it

utilizes the local search procedure used in the FRoBA algorithm to optimize

the initial solution. To obtain an initial solution, for each flow Fi, the FRoBA-

fast algorithm set the route of this flow as the shortest maximum capacity

path (i.e., the shortest path with the maximum capacity). Subsequently,

FRoBA-fast calculates bfi and CCT based on the determined routes.

5.5 Online Scheduling

In the previous section, we have studied how to schedule a single set of

flows with the goal of minimizing their total transfer time (TTT) and have

proposed algorithms to solve this problem.

However, in practice, flows arrive the system in a time sequence and in

127



a long term view, our goal is to minimize the average TTT of all arrived

flows. With this goal, we propose an online scheduler named OnFRoBA,

which periodically schedules all arrived flows together.

5.5.1 Online Scheduler: OnFRoBA.

The OnFRoBA scheduler puts each arrived flow into a waiting queue Qwait

and keeps track of the waiting time of each job in Qwait. The OnFRoBA

scheduler periodically addresses the flows in the waiting queue and temporar-

ily allocates residual bandwidth to ongoing flows everytime a flow finishes.

In the following, we introduce details of the OnFRoBA scheduler

5.5.1.1 Periodic scheduling of the waiting queue.

The OnFRoBA scheduler periodically addresses the flows in the waiting

queue in two steps:

Step I: Flow Selection. First, it selects a set of flows from Qwait, denoted

by Fcand. Those selected flows are scheduled in the next step and those uns-

elected flows remain in the waiting queue. The motivations of such selection

include:

• First, it is possible that there is no valid route for some waiting flows.

Naturally, such flows should remain waiting until there are valid routes.

• Second, there may be a large number of waiting flows. If all of them are

scheduled at the same time, each of them may get only a very small portion

of available bandwidth, which can largely prolong the average TTT. Under
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such circumstance, scheduling some of these waiting flows and making

them finished first can be a better choice.

To perform flow selection, we propose three approaches: Valid Flow First(VFF),

Smallest Load First (SLF), and Shortest Flow First (SFF). The details of

these approaches are introduced later.

Step II: Flow Scheduling. After selecting the flow set Fcandidate, the

OnFRoBA scheduler calls the FRoBA algorithm to schedule the flows in the

set. Note that the flow selection procedure guarantees that there is always

feasible schedules for the set Fcandidate.

5.5.1.2 The Distribute Residual Bandwidth (DRB) procedure

When a flow is finishes, the bandwidth reserved by that flow is released

and becomes residual bandwidth. For work conservation, the OnFRoBA

scheduler temporarily allocates the residual bandwidth to ongoing flows. This

procedure is named Distribute Residual Bandwidth (DRB).

Specifically, the DRB procedure releases the bandwidth reserved for on-

going flows and calculates the new bandwidth allocation plan, i.e., solves

the OptBA-TTT problem, based on the updated bandwidth availability of

the network. The DRB procedure then reserves bandwidth for ongoing flows

according to the new bandwidth allocation plan.

5.5.2 Flow Selection Approaches

The details of the proposed flow selection approaches are introduced in the

following.
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Valid Flow First (VFF). The VFF procedure simply selects all valid flows.

For a flow Fi, if there exists at least one route whose available bandwidth is

larger than a certain threshold, this flow Fi is then a valid flow. To verify

the feasibility of a flow Fi, the VFF procedure tries to find the maximum

capacity path for Fi. If a feasible path exists, flow Fi is then valid; otherwise,

it is invalid.

Shortest Flow First (SFF). The SFF procedure runs in iterations. In

each iteration, it selects one flow from the waiting queue and adds it into

Fcandidate in three steps:

• First, the SFF procedure calculates the minimum transfer time (MinTT)

of each flow in the waiting queue. Specifically, it finds out the maximum

capacity path for each flow Fi. Let the available bandwidth of this path

be Bmax
Pi

. The MinTT of flow Fi, denoted by MinTTfi is then

MinTTfi =
Vi

Bmax
Pi

. (5.35)

If such a path does not exist, the SFF procedure skips this flow and con-

tinues considering the following flow.

• Second, the SFF procedure selects the flow Ft with the shortest MinTT,

i.e.,

Ft = argmin
Fi∈Qwait

{MinTTfi}. (5.36)

The flow Ft is then moved from Qwait to Fcandidate.

• Third, the SFF procedure temporarily updates the available bandwidth of
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the links on the maximum capacity path of Ft, i.e., reducing the amount

of available bandwidth by Bmax
Pt

.

After performing the three steps, the SFF procedure starts the next iteration.

If in some iteration, there is no flow that has a valid path, the SFF procedure

stops the selection and reverses all updates made on the available bandwidth

during the iterations. The intuition of the SFF procedure is that if some

flows compete for the available bandwidth on some links, we may be able

to get smaller TTT by transferring flows with shorter transfer time first.

This is similar to the well-known Shortest Job First approach used in task

scheduling.

Smallest Load First (SLF). The SLF procedure iterates through flows in

the waiting queue in the ascending order of their volume. For each flow Fi, the

SLF procedure determines the maximum capacity path. If a valid path with

available bandwidth Bmax
Pi

exists, the SLF procedure adds Fi into Fcandidate
and temporarily reserve the bandwidth Bmax

Pi
along the path; otherwise, the

SLF procedure directly moves to the next flow. After addressing each flow

in Qwait, the SLF procedure stops selection and reverses all updates made on

the available bandwidth.

The SLF procedure follows the similar principle used in the SFF proce-

dure but reduces the complexity by selecting flows in the ascending order of

their volume. The intuition here is that it is more likely that a flow with

smaller volume has a shorter transfer time.
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5.5.3 Preemptive Flows

It is possible that flows are preemptive in some data transferring systems. If

flows are preemptive, before selecting the flow set Fcandidate from the wait-

ing queue, the OnFRoBA scheduler preempts all ongoing flows and adds

them into the waiting queue. Subsequently, it generates Fcandidate and call

scheduling algorithm based on all existing flows. Besides this major change,

whenever the volume of a flow is considered in any scheduling procedure, the

residual volume of this flow is considered.

Moreover, when flows are preemptive, the DRB procedure allocates resid-

ual bandwidth to waiting flows also. When distributing the residual band-

width to waiting flows, the DRB procedure iterates through the flows in Qwait

in the ascending order of their volume. For each flow Fi, the DRB procedure

finds out the maximum capacity path. If such path exists, assuming that

its available bandwidth is Bmax
Pi

, the DRB procedure then allocates Bmax
Pi

amount of bandwidth to Fi along the maximum capacity path and updates

the residual bandwidth accordingly. If a maximum capacity path does not

exist, the DRB procedure moves to the next flow. After addressing each flow

in Qwait, the DRB procedure finishes

5.6 Performance Evaluation

5.6.1 Performance of the FRoBA Algorithm

In this section, we evaluate the FRoBA algorithm through offline simula-

tions. In the following, we present our simulation setup, evaluation metrics,
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comparing algorithms and simulation results.

5.6.1.1 Simulation Setup

In each single run of the simulation, we randomly generate a data center

network and a set of input flows. The FRoBA algorithm is then called to

schedule the flows on the given network.

Flow Set. We randomly generate a set of N flows. For each flow, we

randomly select two hosts as its source and destination. We further set

the maximum possible volume of a flow (denoted by Vmax) as 1000 Gb and

determines the volume of a flow (i.e., Vi) by using an uniform distribution in

[β · Vmax, Vmax]. In our simulations, we set β as 0.7.

Data center network. For the network, we use a modified FatTree [64]

architecture. A k-array FatTree network has k pods, where each pod has k/2

Top-of-Rack (ToR) switches and k/2 aggregation switches. While in each pod

the ToR and aggregation switches are interconnected as a complete bipartite

graph, each ToR switch also connects a rack of k/2 hosts. In addition, there

are (k/2)2 core switches that connect the aggregation switches of all pods.

In general, a k-array FatTree network is able to support k3/4 hosts.

To better evaluate our algorithms, we decide to increase the oversub-

scription ratio and therefore introduce more competition on bandwidth at

the aggregation and core levels. To achieve this goal, we multiply the num-

ber of hosts in a rack by a factor αover. By doing so, a k-array modified

FatTree contains αover · k3/4 hosts now. In our simulations, we set αover as 2

and set the each link’s capacity as 10 Gbps.

Noise flows. In order to simulate the complex traffic condition in real data
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center, we introduce noise flows into our simulations. Specifically, each single

simulation run starts with generating a set of noise flows whose amount is 4

times of the number of hosts in the network. The source and destination of

each noise flow is randomly selected and the duration follows an uniform dis-

tribution in [1, 150]. We randomly select a shortest path between as its route

and allocate a certain amount of bandwidth which is the available bandwidth

of the selected path multiplied by a random factor within [0, 0.5].

5.6.1.2 Evaluation Metrics

We use four evaluation metrics to evaluate our algorithms.

Total Transfer Time. This metric is the objective of the CoS problem.

Hence, it is the most important metric.

Allocated bandwidth. This metric is the overall bandwidth allocated to

all flows in F , which equals to
∑N

i=1 bfi . It demonstrates how an algorithm

performs on the aspect of bandwidth allocation.

Average length of flow route. This metric is the average number of hops

on the route of flows in F . It gives us a sense about how an algorithm

performs on the aspect of routing.

Running time. Running time of an algorithm is also important. It gives a

sense of the scalability of that algorithm.

5.6.1.3 Comparison Algorithms

We compare our algorithms with two other algorithms.

Equal Cost Multipath Forwarding (ECMP). The ECMP algorithm is

one of the most popular routing algorithm using in data centers in nowa-
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days, because of its simplicity and fast running speed. The ECMP algorithm

randomly selects a shortest path between the source and destination of each

flow. Because the ECMP algorithm does not perform any bandwidth allo-

cation, in practice, some bandwidth allocation approach should be called to

allocate bandwidth to the flows according to the selected routes. In the sim-

ulations, we solves the OptBA-TTT problem to allocated bandwidth based

on the routing plan determined by the ECMP algorithm.

Weighted Cost Multipath Forwarding (WCMP). The WCMP algo-

rithm is a variant of the ECMP algorithm. For a given flow, the WCMP

algorithm gives each shortest path between the source and destination a

certain weight and then randomly selects one path based on the assigned

weights. In the simulations, the WCMP algorithm uses the available band-

width of each shortest path as its weight and allocated bandwidth by solving

the OptBA-TTT problem. Generally, the WCMP algorithm should have bet-

ter performance on load balance and should have larger chance to allocate

more bandwidth to a given flow, compared to the ECMP algorithm.

Note that the ECMP and WCMP algorithms used in our simulations

optimally allocate bandwidth by using the solution proposed in our paper.

However, these two algorithm perform routing and bandwidth allocation in

two totally separately steps. By comparing our algorithms with them, we

essentially demonstrate the importance of jointly considering the routing and

bandwidth allocation.
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(a) Total Transfer Time (b) Allocated bandwidth

(c) Average length of flow route (d) Running time

Figure 5.1: Performance of FRoBA and FRoBA-fast when scheduling differ-
ent numbers of flows in a FatTree network with 1617 nodes.

5.6.1.4 Evaluation Results of FRoBA and FRoBA-fast

Performance with Increasing Number of Flows. In this simulation, we

study how FRoBA and FRoBA-fast perform as the number of flows in the

coflow increases from 10 to 90. We uses a 16-array modified FatTree with

αover = 2, which contains 1617 nodes.

Fig. 5.1(a) shows the TTT generated by each algorithm. While the TTT

generally increases along with the expansion of the coflow, FRoBA generates
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the smallest CCT. When the coflow contains 80 flows, the TTT of FRoBA

is 120% smaller than that of ECMP and WCMP, and 15% smaller than

that of FRoBA-fast. We also observe that the growth rate of the TTT of

FRoBA and FRoBA-fast is much lower than that of ECMP and WCMP.

When the number of flows increases from 10 to 90, the growth rate of the

TTT generated by FRoBA and FRoBA-fast is round 200 second/flow, but

that of ECMP and WCMP is about 400 seconds/flow.

Fig. 5.1(b) shows the total bandwidth allocated to the coflow. As can be

seen, FRoBA allocates about 70%-100% more bandwidth than the ECMP

and WCMP algorithms and about 10%-15% more bandwidth than FRoBA-

fast. Fig. 5.1(c) shows the average length of flow route. We observe that

the FRoBA algorithm generates the longest flow route length, followed by

FRoBA-fast, ECMP, and WCMP.

Putting Figs. 5.1(a), 5.1(b) and 5.1(c) together, we can see that when

the number of the input flows increases, FRoBA and FRoBA-fast are able

to allocate more bandwidth to the coflow and thereby keep the growth of

TTT relatively slow, as observed in Fig. 5.1(a). We attribute this to their

ability of routing based on the bandwidth availability of the whole network.

When the number of flows increases, FRoBA and FRoBA-fast are able to

route flows via different paths and utilize more bandwidth. In contrast, the

ECMP and WCMP algorithms select the routes for input flows separately and

randomly. With such selection, the generated routes may share a lot of links

and may also use links with poor bandwidth availability. Consequently, these

algorithms cannot sufficiently utilize the available resources in the network,

which leads the rapid increase of the TTT.
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At last, Fig. 5.1(d) shows the algorithm running time. When the coflow

contains 90 flows, the running time of FRoBA is about 550 seconds, while

that of FRoBA-fast, ECMP, and WCMP is 113 seconds, 1 seconds, and 1

seconds respectively. One of the reasons is that FRoBA solves a programming

problem containing a large number of variables, which is commonly a slow

procedure. Another reason is the hardware limitation: All simulations are

perform on a laptop with Intel i5-3250M CPU with 2.5 GHz speed. We

believe that the algorithm can run much faster on servers with better CPUs.

In addition, parallel convex optimization techniques have been well studied

recently [82–84]. By utilizing such techniques, the FRoBA algorithm can

be executed in a parallel environment and its running speed can be further

improved.

Performance with Increasing Size of the Network. In this simulation,

we demonstrate how our algorithms perform as the number of nodes in the

FatTree network increases from 153 to 3300, i.e., the number of pods increases

from 6 to 18. We fix the number of flows at 50.

Fig. 5.2(a) shows the TTT. We can see that the TTT of FRoBA is about

10%-15% smaller than that of FRoBA-fast, 60%-250% smaller than that of

ECMP and WCMP Fig. 5.2(b) shows the total allocated bandwidth. FRoBA

allocates 13% more bandwidth than FRoBA-fast and about 20%-100% more

bandwidth than ECMP and WCMP.

As can be seen, the bandwidth allocated by FRoBA is dramatically in-

creased when the network just starts expanding and becomes more smooth

thereafter. We attribute this to the limitation on how much bandwidth the

algorithm can find to utilize. When the network is small, the number of good
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(a) Total Transfer Time (b) Allocated bandwidth

(c) Average length of flow route (d) Running time

Figure 5.2: Performance of FRoBA and FRoBA-fast when scheduling 50
flows in FatTree networks with different number of nodes.

paths (with large available bandwidth) is also small. Consequently, FRoBA

may schedule some flows to use paths with less bandwidth, which limits the

TTT. At this stage, an expansion of network generates more good paths

and make FRoBA be able to allocate more bandwidth. However, along with

the expansion, the number of good paths becomes more than enough and

FRoBA is able to schedule most of the flows on these paths. At this stage,

the quality of paths is barely improved. As a result, the increase of total al-

located bandwidth becomes small. Such a trend on the allocated bandwidth
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then leads the trend of TTT, which is a steep decrease at the beginning but

becomes relatively flat thereafter, as shown in Fig. 5.2(a).

We also observe that although the ECMP and WCMP algorithms op-

timally allocate bandwidth (by solving the OptBA problem), they actually

allocate much less bandwidth than FRoBA. This is because these algorithms

perform routing and bandwidth allocation separately, which may cause the

selected routes sharing a lot of links and using links with low bandwidth

availability. As a result, even if they optimally allocate bandwidth based on

the selected routes, the total amount of allocated bandwidth is small, which

then leads a large value of TTT. Whereas FRoBA takes the whole network

into consideration when performing routing and thereby is able to find routes

with less or even no overlap and allocate more bandwidth.

Fig. 5.2(c) shows the average length of flow routes. While the FRoBA

algorithm generates the longest routes, the average lengths of flow routes

generated by the four algorithms are actually close to each other.

At last, Fig. 5.2(d) shows the algorithm running time. When the network

contains 16 pods (i.e., 4500 nodes), the running time of FRoBA is about

2600 seconds, while that of FRoBA-fast,ECMP, and WCMP is 20 seconds,

1 second, and 1 second respectively.

5.6.1.5 Summary

In offline simulations, we examined the performance of FRoBA and FRoBA-

fast when scheduling a single set of input flows. Benefiting from the ability of

finding paths with less overlaps and allocating more bandwidth, FRoBA and

FRoBA-fast outperforms outperforms ECMP and WCMP by 60%-250%.
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5.6.2 Performance of the OnFRoBA Scheduler

In this section, we examine the performance of the OnFRoBA scheduler

through online simulations.

5.6.2.1 Simulation Setup

An online simulation begins with a FatTree network without any flows. In the

following, flows start to arrive at a rate following a Poisson distribute with

µ = 0.8/second, and stop arriving at 1200 seconds. The whole simulation

finishes, once all flows are scheduled. Each data point in the results is an

average of 10 simulations performed on an Intel 2.5GHz processor.

Flows. Flows start to arrive at a rate following a Poisson distribute with µ =

0.8/second, and stop arriving at 1200 seconds. For each flow, we randomly

select two hosts as its source and destination. We further set the maximum

possible volume of a flow (denoted by Vmax) as 1000 Gb and determines the

volume of a flow (i.e., Vi) by using an uniform distribution in [β ·Vmax, Vmax].

In our simulations, we set β as 0.7.

Data Center Network. We use a 10-array modified FatTree network which

contains 625 nodes. The capacity of links in the network is set to 10 Gbps.

Noise flows. The noise flows arrives following a Poisson distribution and

the duration of these noise flows follows an uniform distribution in [1, 150].

When a noise flow starts, we randomly selects a shortest path as its route

and allocates a certain amount of bandwidth which is the link capacity times

a random factor within [0, 0.5].
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5.6.2.2 Evaluation Metrics

We use two metrics to evaluate the OnFRoBA scheduler.

Average Flow Completion Time (FCT). The FCT of flow Fi, denoted

by FCTfi , is the length of the time period between the arriving time and the

completion time of that flow. It composed of the total waiting time of that

flow (denoted by FWTfi) and the flow transfer time of that flow (denoted

by FTTfi) generated by the scheduling algorithm, i.e.,

FCTfi = FWTfi + FTTfi . (5.37)

The average FCT is the average of FCT of all arrived flows.

Total Running Time. Total running time is the running time of a scheduler

from the beginning of a simulation to the end.

5.6.2.3 Comparison Scheduling Policies and Algorithms

In the online simulations, we compare the three flow selection approaches

proposed in our paper. For each of these approaches, we further compare the

FRoBA and FRoBA-fast algorithm with the ECMP and WCMP algorithms.

FCFS. Furthermore, we compare the proposed scheduler with a FCFS sched-

uler. The FCFS scheduler addresses the flows in the waiting queue whenever

a new flow arrives. Specifically, it iterates the flows in the waiting queue in

the ascending order of their arriving time, following the principle of first come

first serve. For each flow, the FCFS scheduler calls the ECMP algorithm or

the WCMP algorithm to schedule that flow. If a flow fails to be scheduled,

it is added into waiting queue and wait for the next round of scheduling.
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(a) DRB Enabled

(b) DRB Disabled

Figure 5.3: The average FCT generated by different scheduler when flows
are non-preemptive.

5.6.2.4 Performance of OnFRoBA when Flows are Non-preemptive

Fig. 5.3 shows the average FCT generated by each combination of flow selec-

tion approaches and scheduling algorithms with/without the DRB procedure

enabled. Fig. 5.4 shows the average FWT generated by each combination of

flow selection approaches and scheduling algorithms with/without the DRB

procedure enabled. Fig. 5.5 shows the running time of each combination.

Based on the results, we have several observations:
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(a) DRB Enabled

(b) DRB Disabled

Figure 5.4: The average FWT generated by different scheduler when flows
are non-preemptive.

Impact of Scheduling Algorithms. As shown in Fig. 5.3, FRoBA and

FRoBA-fast generally show better performance than ECMP and WCMP,

while FRoBA is about 5% better than FRoBA-fast. As shown in Fig. 5.3(a),

in the DRB enabled simulations, FRoBA and FRoBA-fast reduces the aver-

age FCT by about 20% compared to ECMP and WCMP in the SLF, SJF,

and VFF selection respectively. Furthermore, compared to the FCFS selec-

tion, FRoBA and FRoBA-fast in the SLF selection reduces the average FCT
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(a) DRB Enabled

(b) DRB Disabled

Figure 5.5: The running time of different scheduler when flows are non-
preemptive.

by about 25%. As shown in Fig. 5.3(b), in the DRB disabled simulations,

FRoBA and FRoBA-fast still shows better performance compared by ECMP

and WCMP. Generally, FRoBA and FRoBA-fast performs 70%-90% better

than ECMP and WCMP in all combinations with flow selection approaches.

From Fig. 5.4, we can see that the four scheduling algorithms generates

similar FWT in all combinations with flow selection approaches.

Impact of the DRB procedure. The DRB procedure temporarily dis-
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tributes the residual bandwidth in the network to the existing flows to accel-

erate the completion of those flows. We can see that the DRB procedure has

signification impact on the average FCT. With the DRB procedure enabled,

the average FCT generated by FRoBA and FRoBA-fast is reduced by about

40%, while the average FCT generated by ECMP and WCMP reduced by

about 60%.

Scheduler Running Time. Fig. 5.5 shows the running time of the sched-

uler with each combination of flow selection approaches and scheduling al-

gorithms. We can see that the FRoBA algorithm generally has the largest

running time, followed by FRoBA-fast, ECMP, and WCMP. Meanwhile, the

running time of the schedulers with DRC enabled is longer than the sched-

ulers with DRC disabled. Furthermore, we observe that the running time

of the scheduler with the SJF selection increases insignificantly compared to

schedulers with SLF or VFF selection.

5.6.2.5 Performance of OnFRoBA when Flows are Preemptive

We now demonstrate the performance of the OnFRoBA scheduler when flows

are preemptive. Fig. 5.6 and Fig. 5.7 shows the average FCT and FWT

generated by each combination of flow selection approaches and scheduling

algorithms with/without the DRB procedure enabled respectively. Fig. 5.8

shows the running time of each combination. Based on the results, we have

several observations:

Impact of Scheduling Algorithms. As shown in Fig. 5.6, FRoBA and

FRoBA-fast generally show better performance than ECMP and WCMP,

while FRoBA is about 5% better than FRoBA-fast. As shown in Fig. 5.6(a),
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(a) DRB Enabled

(b) DRB Disabled

Figure 5.6: The average FCT generated by different scheduler when flows
are preemptive.

in the DRB enabled simulations, FRoBA and FRoBA-fast reduces the aver-

age FCT by about 85% compared to ECMP and WCMP in the SLF, SJF,

and VFF selection. Furthermore, compared to the FCFS selection, FRoBA

and FRoBA-fast in the SLF selection reduces the average FCT by about

50-80%. As shown in Fig. 5.6(b), in the DRB disabled simulations, FRoBA

and FRoBA-fast still shows better performance compared to the ECMP and

WCMP algorithms. Generally, FRoBA and FRoBA-fast performs 60%-100%
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(a) DRB Enabled

(b) DRB Disabled

Figure 5.7: The average FWT generated by different scheduler when flows
are preemptive.

better than ECMP and WCMP in all combinations with flow selection ap-

proaches.

From Fig. 5.7, we can see that FRoBA and FRoBA-fast generates smaller

FWT than ECMP and WCMP when the SFL or SJF selection is used. How-

ever, the ECMP and WCMP algorithms with the FCFS selection generates

the smallest FWT. This is reasonable because with the FCFS selection, the

OnFRoBA scheduler attempts to schedule a flow as soon as the flow arrives.
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(a) DRB Enabled

(b) DRB Disabled

Figure 5.8: The running time of different scheduler when flows are preemp-
tive.

Impact of the DRB procedure. The DRB procedure temporarily dis-

tributes the residual bandwidth in the network to the existing flows to ac-

celerate the completion of those flows. From Fig. 5.6(b) and Fig. 5.6(a), we

can see that the DRB procedure improves the performance of the FRoBA

and FRoBA-fast algorithms by 10%, while it improves the performance of

ECMP and WCMP by about 20%. In addition, from Fig. 5.7, we observe

that the DRB procedure also reduces the waiting time generated by ECMP
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and WCMP.

Scheduler Running Time. Fig. 5.5 shows the running time of the sched-

uler with each combination of flow selection approaches and scheduling al-

gorithms. We can see that the FRoBA algorithm generally has the largest

running time, followed by FRoBA-fast, ECMP, and WCMP. Meanwhile, the

running time of the schedulers with DRC enabled is longer than the sched-

ulers with DRC disabled. Moreover, we observe that the running time of

ECMP and WCMP with SJF selection is much higher than with other se-

lection approaches. We attribute to the fact that the complexity of the SJF

selection is higher than other selection approaches.

5.6.2.6 Summary

In online simulations, we demonstrate the performance of the OnFRoBA

scheduler using different combinations of flow selection approaches and schedul-

ing algorithms. The results show that: (a) Compared by ECMP and WCMP,

the FRoBA algorithm reduces the average FCT by 20%-25% when flows are

non-preemptive and by 50%-80% when flows are preemptive; (b) The per-

formance of the proposed flow selection approaches do not have significant

difference; (c) The DRB procedure can effectively reduce the average FCT

by 20%-40% when flows are non-preemptive and by 10%-20% when flows are

preemptive; (d) While FRoBA-fast performs 5% worse than FRoBA, when

using FRoBA-fast, the running time of OnFRoBA can be 3-14 times smaller

than using FRoBA, which makes OnFRoBA+FRoBA-fast an very applicable

choice in practice.
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5.7 Conclusion

In this paper, we focused on the flow scheduling problem in which there is

a need to perform routing and bandwidth allocation for a given set of flows

with the goal of minimizing the Total Transfer Time (TTT). We first studied

how to optimally allocate bandwidth to a set of flows with pre-determined

routes. We formulated this problem as a convex optimization problem that

can be solved efficiently. Subsequently, we formulated the Single Set Flow

Scheduling (SSFS) problem as a MINLP problem and presented a relaxation

of this problem together with an equivalent convex optimization problem.

We further propose an algorithm named FRoBA and its simplified version:

FRoBA-fast that solve the SSFS problem. At last, to address multiple flows

in online scheduling, we propose an online scheduler named OnFRoBA.

We evaluated the performance of the FRoBA and FRoBA-fast algorithms

and the OnFRoBA scheduler by comparing them with the state-of-the-art

algorithms and schedulers in offline and online simulations. The simula-

tion results show that: (a) FRoBA and FRoBA-fast reduce the JCT by

60%-250% compared to the state-of-the-art algorithms. (b) The OnFRoBA

scheduler when using FRoBA/FRoBA-fast reduces the average FCT by 20%-

80% compared to exsiting schedulers. (c) FRoBA-fast can be 10 times faster

than FRoBA with around 5% performance degradation compared to FRoBA,

which makes the use of FRoBA-fast very applicable in practice.
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Chapter 6

Future Work

In this section, we discuss about our future work which include two aspects:

(a) Extension of current study; and (b) More types of tasks.

6.1 Extension of Current Study

While we have studied three complex task scheduling problems in this dis-

sertation, we can further extend our current study on these problems. In

our study on the coflow scheduling problem, we have not considered online

scheduling. Instead, we compared our scheduling algorithm with the state-

of-the-art algorithms using an existing online scheduler. Based on our study

and understanding of the coflow scheduling problem, how can we propose a

better online scheduler is a question waiting for us to answer.

Meanwhile, these scheduling problems can be even more complex in prac-

tice, when considering more practical constraints. One important constraint

is the deadline of user tasks, which has not been considered in our study
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yet. Deadline-aware task scheduling is an important part of the general task

scheduling problem. Furthermore, energy-aware flow scheduling is another

practical problem which attracts more and more attention recently, as the

energy consumed by network device is rapidly increasing. This problem is

also included in our future work.

6.2 More Types of Tasks.

In this dissertation, we mainly considered embarrassingly parallel jobs, coflows

and independent flows. There are many other types of tasks executing in data

centers in nowadays. How to jointly perform task placement and resource

allocation for those tasks is another important part of our future work.

For example, scientific workflows presents a large part of parallel pro-

cessing jobs. These workflows are composed of staged computing tasks and

data movements between these tasks. They are usually presented as Directed

Acyclic Graphs (DAGs). Scheduling these workflows involves scheduling both

computing tasks and data transfers, which is even more complex than the

problems studied in our dissertation. Another example is MapReduce-like

distributed data processing jobs. Such jobs also include computing tasks

and data transfers, however, have strong fixed execution pattern usually.

How to design specific scheduling strategies for this type of jobs is also an

important problem to solve in our future work.

153



Chapter 7

Conclusion

In this dissertation, we studied the problem of task scheduling in data cen-

ters, which includes task placement and resource allocation. We started

from a fundamental problem: how to optimally allocate resource according

to determined task placements. We formulated this problem as a convex

optimization problem with generalized linear constraints and presented two

variants with two different but common objectives. Based on the solution of

this problem, we further studied three more complex problems: (a) Energy-

aware scheduling of embarrassingly parallel jobs and resource allocation in

a cloud, in which there is a need to determine the task placement plan and

the resource allocation plan for jobs composed of independent tasks with the

goal of minimizing the Job Completion Time (JCT); (b) Coflow scheduling

in data centers: routing and bandwidth allocation, in which there is a need

to perform routing and bandwidth allocation for a given coflow with the goal

of minimizing the coflow completion time. (c) Scheduling of independent

flows in data centers: routing and bandwidth allocation, in which there is
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a need to perform routing and bandwidth allocation for a given set of flows

with the goal of minimizing the Total Transfer Time (TTT). We formulate

each of these problems as a Non-linear Mixed Integer Programming problem

and presented an relaxation with equivalent solvable problem. We further

proposed offline algorithms and online schedulers, which jointly consider task

placement and resource allocation, to solve these problems. Lastly, we com-

pared the proposed solutions with existing approaches through simulations

and demonstrated the superior performance of the proposed solutions.

155



Bibliography

[1] Y. Jiang, “A survey of task allocation and load balancing in distributed

systems,” Parallel and Distributed Systems, IEEE Transactions on,

vol. PP, no. 99, pp. 1–1, 2015.

[2] T. D. Braun, H. J. Siegel, N. Beck, L. L. Blni, M. Maheswaran, A. I.

Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F.

Freund, “A comparison of eleven static heuristics for mapping a class of

independent tasks onto heterogeneous distributed computing systems,”

Journal of Parallel and Distributed Computing, vol. 61, no. 6, pp. 810 –

837, 2001.

[3] X. He, X. Sun, and G. Von Laszewski, “Qos guided min-min heuristic

for grid task scheduling,” Journal of Computer Science and Technology,

vol. 18, no. 4, pp. 442–451, 2003.

[4] K. Etminani and M. Naghibzadeh, “A min-min max-min selective algori-

htm for grid task scheduling,” in Internet, 2007. ICI 2007. 3rd IEEE/I-

FIP International Conference in Central Asia on. IEEE, 2007, pp.

1–7.

156



[5] J. Xu, A. Lam, and V. Li, “Chemical reaction optimization for task

scheduling in grid computing,” Parallel and Distributed Systems, IEEE

Transactions on, vol. 22, no. 10, pp. 1624–1631, Oct 2011.

[6] T. Kokilavani and D. D. G. Amalarethinam, “Load balanced min-min

algorithm for static meta-task scheduling in grid computing,” Interna-

tional Journal of Computer Applications, vol. 20, no. 2, pp. 43–49, 2011.

[7] E. Kartal Tabak, B. Barla Cambazoglu, and C. Aykanat, “Improving the

performance of independenttask assignment heuristics minmin, maxmin

and sufferage,” Parallel and Distributed Systems, IEEE Transactions

on, vol. 25, no. 5, pp. 1244–1256, 2014.

[8] S. U. Khan and I. Ahmad, “A cooperative game theoretical technique

for joint optimization of energy consumption and response time in com-

putational grids,” Parallel and Distributed Systems, IEEE Transactions

on, vol. 20, no. 3, pp. 346–360, 2009.

[9] J. Ko lodziej, S. U. Khan, L. Wang, A. Byrski, N. Min-Allah, and S. A.

Madani, “Hierarchical genetic-based grid scheduling with energy opti-

mization,” Cluster Computing, vol. 16, no. 3, pp. 591–609, 2013.

[10] F. Pinel, B. Dorronsoro, J. E. Pecero, P. Bouvry, and S. U. Khan, “A

two-phase heuristic for the energy-efficient scheduling of independent

tasks on computational grids,” Cluster computing, vol. 16, no. 3, pp.

421–433, 2013.

157



[11] K. Li, X. Tang, and K. Li, “Energy-efficient stochastic task scheduling

on heterogeneous computing systems,” Parallel and Distributed Systems,

IEEE Transactions on, vol. 25, no. 11, pp. 2867–2876, 2014.

[12] D. Li and J. Wu, “Minimizing energy consumption for frame-based tasks

on heterogeneous multiprocessor platforms,” Parallel and Distributed

Systems, IEEE Transactions on, vol. 26, no. 3, pp. 810–823, March

2015.

[13] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and

Y. Zhang, “Secondnet: a data center network virtualization architec-

ture with bandwidth guarantees,” in Proceedings of the 6th International

COnference. ACM, 2010, p. 15.

[14] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing the

data center network,” in Proceedings of the 8th USENIX conference on

Networked systems design and implementation. USENIX Association,

2011, pp. 23–23.

[15] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,

and I. Stoica, “Faircloud: sharing the network in cloud computing,” in

Proceedings of the ACM SIGCOMM 2012 conference on Applications,

technologies, architectures, and protocols for computer communication.

ACM, 2012, pp. 187–198.

[16] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and J. R.

Santos, “Elasticswitch: practical work-conserving bandwidth guaran-

158



tees for cloud computing,” in Proceedings of the ACM SIGCOMM 2013

conference on SIGCOMM. ACM, 2013, pp. 351–362.

[17] H. Ballani, K. Jang, T. Karagiannis, C. Kim, D. Gunawardena, and

G. O’Shea, “Chatty tenants and the cloud network sharing problem.”

in NSDI, 2013, pp. 171–184.

[18] U. Bhoi and P. N. Ramanuj, “Enhanced max-min task scheduling al-

gorithm in cloud computing,” International Journal of Application or

Innovation in Engineering and Management (IJAIEM), pp. 259–264,

2013.

[19] G. Ming and H. Li, “An improved algorithm based on max-min for

cloud task scheduling,” in Recent Advances in Computer Science and

Information Engineering. Springer, 2012, pp. 217–223.

[20] H. Chen, F. Wang, N. Helian, and G. Akanmu, “User-priority guided

min-min scheduling algorithm for load balancing in cloud computing,”

in Parallel Computing Technologies (PARCOMPTECH), 2013 National

Conference on, Feb 2013, pp. 1–8.

[21] K. H. Kim, A. Beloglazov, and R. Buyya, “Power-aware provisioning

of cloud resources for real-time services,” in Proceedings of the 7th In-

ternational Workshop on Middleware for Grids, Clouds and e-Science.

ACM, 2009, p. 1.

[22] C.-M. Wu, R.-S. Chang, and H.-Y. Chan, “A green energy-efficient

scheduling algorithm using the dvfs technique for cloud datacenters,”

Future Generation Computer Systems, vol. 37, pp. 141–147, 2014.

159



[23] S. Hosseinimotlagh, F. Khunjush, and R. Samadzadeh, “Seats: smart

energy-aware task scheduling in real-time cloud computing,” The Jour-

nal of Supercomputing, vol. 71, no. 1, pp. 45–66, 2015.

[24] R. Rojas-Cessa, Y. Kaymak, and Z. Dong, “Schemes for fast trans-

mission of flows in data center networks,” Communications Surveys &

Tutorials, IEEE, vol. 17, no. 3, pp. 1391–1422, 2015.

[25] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never

than late: Meeting deadlines in datacenter networks,” in ACM SIG-

COMM Computer Communication Review, vol. 41, no. 4. ACM, 2011,

pp. 50–61.

[26] C.-Y. Hong, M. Caesar, and P. Godfrey, “Finishing flows quickly with

preemptive scheduling,” ACM SIGCOMM Computer Communication

Review, vol. 42, no. 4, pp. 127–138, 2012.

[27] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,

and S. Shenker, “pfabric: Minimal near-optimal datacenter transport,”

ACM SIGCOMM Computer Communication Review, vol. 43, no. 4, pp.

435–446, 2013.

[28] A. Munir, G. Baig, S. M. Irteza, I. A. Qazi, A. X. Liu, and F. R.

Dogar, “Friends, not foes: synthesizing existing transport strategies for

data center networks,” in ACM SIGCOMM Computer Communication

Review, vol. 44, no. 4. ACM, 2014, pp. 491–502.

160



[29] H. Xu and B. Li, “Repflow: Minimizing flow completion times with

replicated flows in data centers,” INFOCOM, 2014 Proceedings IEEE,

pp. 1581–1589, 2014.

[30] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “Information-

agnostic flow scheduling for commodity data centers,” in 12th USENIX

Symposium on Networked Systems Design and Implementation (NSDI

15), 2015, pp. 455–468.

[31] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge uni-

versity press, 2004.

[32] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud

computing and emerging it platforms: Vision, hype, and reality for de-

livering computing as the 5th utility,” Future Generation computer sys-

tems, vol. 25, no. 6, pp. 599–616, 2009.

[33] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource al-

location heuristics for efficient management of data centers for cloud

computing,” Future generation computer systems, vol. 28, no. 5, pp.

755–768, 2012.

[34] T. Gunarathne, T.-L. Wu, J. Y. Choi, S.-H. Bae, and J. Qiu, “Cloud

computing paradigms for pleasingly parallel biomedical applications,”

Concurrency and Computation: Practice and Experience, vol. 23, no. 17,

pp. 2338–2354, 2011.

[35] T. Mathew, K. C. Sekaran, and J. Jose, “Study and analysis of various

task scheduling algorithms in the cloud computing environment,” in

161



Advances in Computing, Communications and Informatics (ICACCI,

2014 International Conference on. IEEE, 2014, pp. 658–664.

[36] Z.-H. Zhan, X.-F. Liu, Y.-J. Gong, J. Zhang, H. S.-H. Chung, and Y. Li,

“Cloud computing resource scheduling and a survey of its evolutionary

approaches,” ACM Computing Surveys (CSUR), vol. 47, no. 4, p. 63,

2015.

[37] L. Zuo, L. Shu, S. Dong, C. Zhu, and T. Hara, “A multi-objective opti-

mization scheduling method based on the ant colony algorithm in cloud

computing,” IEEE Access, vol. 3, pp. 2687–2699, 2015.

[38] S. H. Adil, K. Raza, U. Ahmed, S. S. A. Ali, and M. Hashmani,

“Cloud task scheduling using nature inspired meta-heuristic algorithm,”

in 2015 International Conference on Open Source Systems & Technolo-

gies (ICOSST). IEEE, 2015, pp. 158–164.

[39] Z. Tang, L. Jiang, J. Zhou, K. Li, and K. Li, “A self-adaptive scheduling

algorithm for reduce start time,” Future Generation Computer Systems,

vol. 43, pp. 51–60, 2015.

[40] C.-W. Tsai, W.-C. Huang, M.-H. Chiang, M.-C. Chiang, and C.-S. Yang,

“A hyper-heuristic scheduling algorithm for cloud,” Cloud Computing,

IEEE Transactions on, vol. 2, no. 2, pp. 236–250, 2014.

[41] P. Kumar and A. Verma, “Independent task scheduling in cloud comput-

ing by improved genetic algorithm,” International Journal of Advanced

Research in Computer Science and Software Engineering, vol. 2, no. 5,

2012.

162



[42] G. Guo-ning, H. Ting-lei, and G. Shuai, “Genetic simulated annealing al-

gorithm for task scheduling based on cloud computing environment,” in

2010 International Conference on Intelligent Computing and Integrated

Systems, 2010.

[43] J. G. Koomey et al., “Estimating total power consumption by servers

in the us and the world,” 2007.

[44] X. Zhu, L. T. Yang, H. Chen, J. Wang, S. Yin, and X. Liu, “Real-time

tasks oriented energy-aware scheduling in virtualized clouds,” Cloud

Computing, IEEE Transactions on, vol. 2, no. 2, pp. 168–180, 2014.

[45] M. Liaqat, S. Ninoriya, J. Shuja, R. W. Ahmad, and A. Gani, “Virtual

machine migration enabled cloud resource management: A challenging

task,” arXiv preprint arXiv:1601.03854, 2016.

[46] G. Han, W. Que, G. Jia, and L. Shu, “An efficient virtual machine

consolidation scheme for multimedia cloud computing,” Sensors, vol. 16,

no. 2, p. 246, 2016.

[47] Y. Mhedheb, F. Jrad, J. Tao, J. Zhao, J. Ko lodziej, and A. Streit,

“Load and thermal-aware vm scheduling on the cloud,” in Algorithms

and Architectures for Parallel Processing. Springer, 2013, pp. 101–114.

[48] Y. Shen, Z. Bao, X. Qin, and J. Shen, “Adaptive task scheduling strat-

egy in cloud: when energy consumption meets performance guarantee,”

World Wide Web, pp. 1–19, 2016.

163



[49] Q. Zhao, C. Xiong, C. Yu, C. Zhang, and X. Zhao, “A new energy-aware

task scheduling method for data-intensive applications in the cloud,”

Journal of Network and Computer Applications, vol. 59, pp. 14–27, 2016.

[50] Z. Xiao, W. Song, and Q. Chen, “Dynamic resource allocation using

virtual machines for cloud computing environment,” Parallel and Dis-

tributed Systems, IEEE Transactions on, vol. 24, no. 6, pp. 1107–1117,

2013.

[51] S. Shin, Y. Kim, and S. Lee, “Deadline-guaranteed scheduling algorithm

with improved resource utilization for cloud computing,” in Consumer

Communications and Networking Conference (CCNC), 2015 12th An-

nual IEEE. IEEE, 2015, pp. 814–819.

[52] D. Liu and N. Han, “An energy-efficient task scheduler in virtualized

cloud platforms,” International Journal of Grid and Distributed Com-

puting, vol. 7, no. 3, pp. 123–134, 2014.

[53] J. Li, M. Qiu, Z. Ming, G. Quan, X. Qin, and Z. Gu, “Online optimiza-

tion for scheduling preemptable tasks on iaas cloud systems,” Journal

of Parallel and Distributed Computing, vol. 72, no. 5, pp. 666–677, 2012.

[54] Y. Ge and G. Wei, “Ga-based task scheduler for the cloud computing

systems,” in Web Information Systems and Mining (WISM), 2010 In-

ternational Conference on, vol. 2. IEEE, 2010, pp. 181–186.

[55] A. Bohra and V. Chaudhary, “Vmeter: Power modelling for virtualized

clouds,” in Parallel Distributed Processing, Workshops and Phd Forum

164



(IPDPSW), 2010 IEEE International Symposium on, April 2010, pp.

1–8.

[56] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya, “Vir-

tual machine power metering and provisioning,” in Proceedings of the 1st

ACM Symposium on Cloud Computing, ser. SoCC ’10, 2010, pp. 39–50.

[57] B. Krishnan, H. Amur, A. Gavrilovska, and K. Schwan, “Vm power

metering: feasibility and challenges,” ACM SIGMETRICS Performance

Evaluation Review, vol. 38, no. 3, pp. 56–60, 2011.

[58] C. Gu, H. Huang, and X. Jia, “Power metering for virtual machine in

cloud computing-challenges and opportunities,” Access, IEEE, vol. 2,

pp. 1106–1116, 2014.

[59] N. Kim, J. Cho, and E. Seo, “Energy-credit scheduler: an energy-aware

virtual machine scheduler for cloud systems,” Future Generation Com-

puter Systems, vol. 32, pp. 128–137, 2014.

[60] B. Veeravalli, D. Ghose, V. Mani, and T. G. Robertazzi, “Scheduling

divisible loads in parallel and distributed systems,” Los Almitos: IEEE

Computer Society Press, California, 1996.

[61] T. G. Robertazzi, “Ten reasons to use divisible load theory,” Computer,

vol. 36, no. 5, pp. 63–68, 2003.

[62] Z. Zhang and T. G. Robertazzi, “Scheduling divisible loads in gaussian,

mesh and torus network of processors,” IEEE Transactions on Comput-

ers.

165



[63] “Dynamic scaling of cpu and ram for vms in apache cloud-

stack,” https://cwiki.apache.org/confluence/display/CLOUDSTACK/

Dynamic+scaling+of+CPU+and+RAM.

[64] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data

center network architecture,” in ACM SIGCOMM Computer Commu-

nication Review, vol. 38, no. 4. ACM, 2008, pp. 63–74.

[65] J. L. Hellerstein, W. Cirne, and J. Wilkes, “Google cluster data,” Google

research blog, Jan, 2010.

[66] L. M. Leemis, Reliability: probabilistic models and statistical methods.

Prentice-Hall, Inc., 1995.

[67] J. Lin and D. Ryaboy, “Scaling big data mining infrastructure: the

twitter experience,” ACM SIGKDD Explorations Newsletter, vol. 14,

no. 2, pp. 6–19, 2013.

[68] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,

S. Boving, G. Desai, B. Felderman, P. Germano et al., “Jupiter rising:

A decade of clos topologies and centralized control in google’s datacen-

ter network,” in Proceedings of the 2015 ACM Conference on Special

Interest Group on Data Communication. ACM, 2015, pp. 183–197.

[69] D. Borthakur, “Hdfs architecture guide,” HADOOP APACHE

PROJECT http://hadoop. apache. org/common/docs/current/hdfs de-

sign. pdf, 2008.

166



[70] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”

in ACM SIGOPS operating systems review, vol. 37, no. 5. ACM, 2003,

pp. 29–43.

[71] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,

2008.

[72] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: dis-

tributed data-parallel programs from sequential building blocks,” in

ACM SIGOPS Operating Systems Review, vol. 41, no. 3. ACM, 2007,

pp. 59–72.

[73] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,

“Spark: Cluster computing with working sets.” HotCloud, vol. 10, pp.

10–10, 2010.

[74] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for

cluster applications,” in Proceedings of the 11th ACM Workshop on Hot

Topics in Networks. ACM, 2012, pp. 31–36.

[75] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Man-

aging data transfers in computer clusters with orchestra,” ACM SIG-

COMM Computer Communication Review, vol. 41, no. 4, pp. 98–109,

2011.

[76] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decen-

tralized task-aware scheduling for data center networks,” in ACM SIG-

167



COMM Computer Communication Review, vol. 44, no. 4. ACM, 2014,

pp. 431–442.

[77] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling

with varys,” in Proceedings of the 2014 ACM conference on SIGCOMM.

ACM, 2014, pp. 443–454.

[78] M. Chowdhury and I. Stoica, “Efficient coflow scheduling without prior

knowledge,” in Proceedings of the 2015 ACM Conference on Special In-

terest Group on Data Communication. ACM, 2015, pp. 393–406.

[79] Y. Zhao, K. Chen, W. Bai, C. Tian, Y. Geng, Y. Zhang, D. Li, and

S. Wang, “Rapier: Integrating routing and scheduling for coflow-aware

data center networks,” in Proc. IEEE INFOCOM, 2015.

[80] Y. Peng, K. Chen, G. Wang, W. Bai, Z. Ma, and L. Gu, “Hadoop-

watch: A first step towards comprehensive traffic forecasting in cloud

computing,” in INFOCOM, 2014 Proceedings IEEE. IEEE, 2014, pp.

19–27.

[81] A. P. Punnen, “A linear time algorithm for the maximum capacity path

problem,” European Journal of Operational Research, vol. 53, no. 3, pp.

402–404, 1991.

[82] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed op-

timization and statistical learning via the alternating direction method

of multipliers,” Foundations and Trends R© in Machine Learning, vol. 3,

no. 1, pp. 1–122, 2011.

168



[83] I. Necoara and D. Clipici, “Efficient parallel coordinate descent algo-

rithm for convex optimization problems with separable constraints: ap-

plication to distributed mpc,” Journal of Process Control, vol. 23, no. 3,

pp. 243–253, 2013.

[84] V. Cevher, S. Becker, and M. Schmidt, “Convex optimization for big

data: Scalable, randomized, and parallel algorithms for big data ana-

lytics,” Signal Processing Magazine, IEEE, vol. 31, no. 5, pp. 32–43,

2014.

[85] Y. Guo, J. Rao, and X. Zhou, “ishuffle: Improving hadoop performance

with shuffle-on-write.” in ICAC. Citeseer, 2013, pp. 107–117.

[86] M. Li, L. Zeng, S. Meng, J. Tan, L. Zhang, A. R. Butt, and N. Fuller,

“Mronline: Mapreduce online performance tuning,” in Proceedings of

the 23rd international symposium on High-performance parallel and dis-

tributed computing. ACM, 2014, pp. 165–176.

169


