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Abstract of the Dissertation

Performance-Optimized Detection, Tracking

and Modeling of Physical Phenomena in

Distributed Sensing Environments

by

Anurag Umbarkar

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2014

Cyber Physical Systems (CPS) are distributed systems-of-systems that

perform reliable data acquisition in order to build efficient data models. Data

models are mathematical expressions that describe the attributes of the ob-

served environments. These models can be used for monitoring, tracking and

predicting the dynamics of the physical phenomena. Also, data models aid

in formulating decision-making procedures under resource constraints. Data

model construction in CPS is challenging because the dynamics of physical en-

vironments are hard to track in real-time through a distributed sensing network

with limited bandwidth and local memory. Therefore, the limited resources

must be optimally utilized to boost performance metrics.
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This dissertation presents a novel technique that uses distributed sens-

ing to construct local models. A multi-level state variable lumping scheme

is proposed that reduces communication traffic. A linear-programming based

optimization scheme is designed to minimize the modeling error due to data

losses and communication delays. Application goals help in defining the pa-

rameters of the cost function. The solution of this cost function is used to

decide the resource allocation strategy. Error modeling is an important step

in achieving this objective. As a part of this research, accurate models are

constructed for different types of errors in the network. These include error

due to data loss, communication delay, lack of synchronization and modeling

errors.

An ontological approach is proposed to build centralized models using

data sampled in a distributed environment. The ontological representation

is used for describing relationships between model parameters. These phys-

ical models are more meaningful since the relationships are extracted from

experimental data using data mining as well as causal analysis. This helps

in improving the model robustness, thereby enabling the system to respond

better to unexpected changes in the dynamics of the physical entities.

In the course of this research, three case studies have been explored: De-

tection and tracking of emergent gas clouds, Sound-based tracking for vehicular-

traffic scenarios and thermal monitoring for 3-Dimensional integrated circuits.

Several algorithms to detect and track emergent entities are proposed. Also,

different techniques to maximize accuracy of tracking and prediction are dis-

cussed.

Similar to networks of embedded systems, we can imagine networks of

human beings and their interactions. Data model and knowledge extraction

can also be performed to characterize the ‘creativity’ of human subjects. For

this purpose, we define metrics such as Novelty, Variety, Quality and Useful-

ness. Causal knowledge search using data from these experiments can give

insight into the creative thinking process of human engineers.
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Chapter 1

Introduction

1.1 Motivation

Modern applications, e.g., intelligent traffic systems, smart power grid,

and critical infrastructure monitoring, require large-scale decision making net-

works that operate in tight interactions with the natural environments. Nat-

ural environments are fundamentally different than engineered systems (i.e.

plants, autovehicles, and consumer goods), which have been the traditional

beneficiaries of optimized control. Engineered systems have, in general, a

well-defined and predictable behavior as their operating conditions and re-

quirements are well defined. Natural environments are arguably more complex

and diverse with respect to their composing elements and interactions. Many

interactions and conditions of the natural world are unknown until they are

produced, hence are hard to predict and characterize a-priori. Second, natural

environments are continuously changing without necessarily moving towards

an end state or progressing towards a final goal. The two arguments stress

that the modeling and representation of natural environments must tackle dy-

namically changing situations that include a large variety of emerging entities

and interactions.

Creating robust data models for an observed, physical environment

is a critical component of Cyber-Physical Systems (CPS). Data models are

mathematical expressions that describe in time and space the attributes of
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the observed environments, e.g., the differential equations that express energy

conservation laws [23]. These models can be used to devise (or synthesize)

optimized decision strategies by estimating, predicting, and identifying trends

and patterns of the physical environment. Data model construction in CPS is

challenging because the dynamics of physical environments is hard to track in

real-time through a distributed sensing network with limited bandwidth and

local memory.

Resource allocation is an important challenge for distributed data ac-

quisition for decision making [19,55]. This is because the individual embedded

nodes of the networked infrastructure, due to the cost constraints of an appli-

cation, do not have sufficient resources to sample sufficient data, e.g., limited

local memory, energy and communication bandwidth. Therefore, the resources

of the infrastructure as a whole must be efficiently employed for the sampling

task. These limitations can be significantly reduced if an entire network of

embedded nodes is used for tracking. However, new challenges arise at the

network level as data routing to the decision making nodes can produce sig-

nificant data loss and delays. The resources of a network of embedded nodes

must be allocated so that there is an optimal load balancing between sensing

- processing - communication activities.

The Cyber-Physical Systems (CPS) considered in this report are dis-

tributed embedded systems that are expected to reliably acquire data from

the environment to produce robust data models and perform optimized, local

and global decisions [20] [19] [18]. This procedure of data acquisition, com-

munication and processing has to be performed under timing and data loss

constraints using limited availability of resources. There are three main steps

in achieving the above-mentioned objectives:

• Develop procedures to detect emergent/existing physical entities, per-

form reliable data acquisition and store it in flexible data structures

which respond to changing environments.

• Develop systematic global model to represent all components of the scene

and describe relationships between those components.
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• Design methods to create robust local data models that can be used to

develop efficient resource allocation strategies.

• Implement algorithms to track and predict the movements of the physical

entity, using insights from the local and global models.

These data acquisition procedures, tracking and prediction algorithms,

robust data models and causal graphs can be used to implement decision-

making procedures for specific application goals. Also, cause-effect relation-

ships can be extracted using causal analysis and search techniques.

Similar to networks of embedded systems, we can imagine networks of

human beings and their interactions. Data model and knowledge extraction

can also be performed to characterize the ‘creativity’ of human subjects. For

this purpose, we define metrics such as Novelty, Variety, Quality and Useful-

ness. Causal knowledge search using data from these experiments can give

insight into the creative thinking process of human engineers.

1.2 CPS: Proposed Execution Platform

An overview of the proposed methodology is shown in Figure 1.1. The

application goals define the nature of the sensing stage. The sensed data is then

used to extract high level features. This distributed data is then aggregated

by communication between the nodes in the network. The decision-making

procedure uses an optimization scheme to perform resource allocation based

on performance metrics. In the execution platform for this methodology, Z-

language notation is used to describe the problem statement, ontological struc-

tures are used for global scene representation, symbolic expressions are derived

for distributed data modeling, Kinetic data structures (KDS) are used for data

management and Linear programming based optimization scheme is used for

resource management. The details of this execution platform are described in

this section.

3



Figure 1.1: Overview of proposed methodology

1.2.1 Problem statement: Z-language notation

A goal-oriented framework to describe the CPS problem statement can

be prepared using the Z language notation. An example of such a schema for

gas pollution monitoring is shown in Figure 1.2. The details of this notation

are described in [2]. For a specific application, the schema presents the vari-

ables, data characteristics, application goals and corresponding constraints.

For example, the variables gas type, gas concentration, time are mentioned at

the top of the schema while the optimization scheme using these variables is

described at the bottom. A decision-making routine would use the outputs

mentioned in the middle to perform necessary operations.

Figure 1.2: Z-based notation describing schema for application goals

4



1.2.2 Global Modeling: Ontology for Scene Represen-

tation

A detailed description of this work on Ontological scene representation,

including experimental evaluation, is provided in our paper [4]. An ontology

describes the concepts, attributes (properties), and permanent relations among

the concepts of an application class. Ontologies offer an abstract yet complete

description of the possible situations that can occur in reality. Each ontology

defines the concepts (components) that form a real situation, the relations ac-

cording to which the concepts are linked together, and the attributes (features)

of the concepts, the constraints of the attribute values (e.g., sequencing over

time, impact of events, etc.). The instantiation of an ontology for a specific

scenario is useful to find the mathematical models that describe the scenario.

The models result as a composition of the models describing the concepts and

relations identified from the ontology.

Guarino and Welty [9, 10] propose that ontologies are characterized

using metrics, like unity and identity. Unity states that all instances of a

concept are linked to the concept through a well defined set of properties.

Rigidity indicates that properties do not change within a time window but

then can change as a result of an event. A rigid property carries identity

condition if it the existence of the property implies that the involved instances

are equal. We propose a similar approach based on the common attributes of

the instances of a concept.

Ontology description: Vehicular traffic case study

In our approach, every concept represents a group of instances that

share a common set of attributes and are distinguishable from other instances

and concepts by another set of attributes. Attributes are invariant features of

instances. There can be various perspectives to describe the invariant character

of attributes, such as invariant over time, space, population, etc.

The meaning of a traffic scene is defined in terms of a set of basic

semantic elements, which cannot be defined using more basic elements and can

5



be estimated based on the inputs coming from sensors. The basic semantic

elements (BSEs) to be identified and analyzed include the following aspects:

• Vehicle attributes: Some of the typical vehicle attributes include kind,

speed, acceleration, position, and trajectory.

• Driver’s driving profile: A profile includes his/her preferred style of

driving depending on traffic and weather conditions. For example, the

driver’s profile describes the likelihood of changing the speed or trajec-

tory (e.g., switching the lanes).

• Clusters of vehicles: Clusters are formed by vehicles that travel while

having a common set of stationary attributes, such as a constant number

of vehicles in the cluster and vehicle speed variations and inter-vehicle

spacing that pertain to well-defined (yet unknown) ranges.

• Cluster attributes: Every cluster is characterized by attributes like size

(number of vehicles), speed range, trajectory, time of formation and time

of dispersion. Clusters have also attributes that are different from the

attributes of vehicles, e.g., spacing between cars.

• Cluster-level, social behavior: The way in which the drivers forming a

cluster change their driving behavior based on the cluster characteristics,

e.g., drivers decide to adapt to the speed of the other drivers in the

cluster, or start looking for opportunities to leave the cluster.

• Cluster dynamics: Vehicle clusters go through modifications, such as a

cluster splitting into sub-clusters and different clusters merging into a

single clusters. Another kind of interaction is if two clusters automati-

cally correlate their attributes, like speed.

• Road conditions: This refers to special road conditions, e.g., the position

of potholes, traffic signs, and stopped vehicles.

• Weather conditions: This aspect relates to the nature of weather condi-

tions, such as the position of ice and water on the road.
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Figure 1.3: Relations in ontologies for traffic applications

The elements above define a simple ontology for traffic applications.

They are the basic elements involved in traffic and are used for expressing the

possible interactions and correlations in traffic scenes. Every particular traffic

scene is a specific instance of the ontology. Understanding the behavior of

traffic involves constructing the traffic scene corresponding to the ontology.

Figure 1.3 illustrates the nature of relations between the concepts of a

traffic-related ontology. Figure 1.3(a) shows concept instantiation and enabling

relations. Instantiation, indicated with solid line, defines that concept car is

a more specific concept than concept vehicle. Some of the defining attributes

of concept vehicle have a more constrained description for car. For example,

attribute size is restricted to a smaller range. Still, the constrained attribute

allows distinguishing the concept from other concepts instantiated based on

concept vehicle. Enabling relations, shown with dotted lines, indicates that

the characteristics of the related class are used to control (refine) more specific

attribute values for the concept. For example, the attributes of concepts driver

and conditions restrict the attribute values of concept vehicle.

The is-part relation in Figure 1.3(b) (shown with dotted line) defines

that all attributes of the target concept depend on attributes of the originating

concepts or instances. This means that for every attribute of the target con-

cept, every participating concept has at least one attribute that influences the

attribute. For example, all attributes of concept cluster (of vehicles) depend

on the attributes of the instances (vehicles) that form the cluster. Note that

the attributes of the target concept might depend also on other attributes than

those of the originating concepts or instances. A concept set Cin is a complete

description of the is−part relation with concept C, if there is no other concept
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Figure 1.4: Traffic scene understanding methodology

that has a is− part relation with concept C.

Constructing Traffic Scene Representations

Figure 1.4 presents the proposed methodology to construct representa-

tions of traffic scenes. The methodology has three steps: (i) identifying the

entities that participate to the scene, such as individual vehicles, vehicle cat-

egories (i.e. sedan, truck, SUV, etc.), vehicle clusters, road obstacles, traffic

lights, and so on; (ii) understanding the relations between the found entities,

and (iii) predicting the dynamics of the scene based on analytical models for

the scene as well as sensed data acquired in real time.

The first step, entity identification, finds the participating entities based

on their distinguishing attributes (which separate them from other entities).

Every instance, i.e. vehicle in a scene, has physical attributes (PAs), some

of which can be measured directly through sensors, e.g., position, dimension,
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weight, temperature, time, and so on. Some of the sensor readings might

be unavailable at a certain moment. Every attribute can have values from a

(constrained) domain. In addition, attribute descriptions might include con-

straints defined over the associated attributes, including constraints between

the goal of the application and attributes. Common attributes of multiple

instances enable the identification of the categories to which the individual

entities pertain to, like the vehicles that form a cluster.

Example: For traffic applications, possible PAs are position (of a ve-

hicle), time, dimension and weight (of a vehicle). Speed, another attribute

of a vehicle, is represented as the following tuple: (x−x0

t−t0 , (x, t), (x0, t0), t >

t0, t − t0 < ε). The speed attribute (the first component of the tuple) is

defined using two other associations of PAs, (x, t) and (x0, t0). Besides, the

constraints t > t0, t − t0 < ε must be valid to compute correctly the speed

attribute. Similarly, the interspacing between two vehicles A and B is defined

as (xA − xB, (xA, t), (yB, t), xA > xB).

The second step of the methodology finds the causal relations among

concepts, such as the reasons that produce certain constraints and patterns of

the attributes of entities. Causes that are directly observable through sensors

are utilized to formulate hypothesis on the causal relations that might orig-

inate the constraints [13, 14]. Other potential causes, which are not directly

observed, are formulated based on the ontology of traffic scenes during the in-

sight getting step. The likelihood of (observable and unobservable) causes are

computed using Bayesian networks, a popular causal reasoning procedure [12].

The third step constructs the analytical models starting from the iden-

tified scene elements and the causality relations between them. The analytical

models include the mathematical expressions that characterize the attributes

of the elements as well as the expressions of the causal relations. These models

are then used to predict the future dynamics of the represented scene. Sec-

tion IV illustrates the algorithm to predict traffic scene evolution, including

the behavior of the current clusters and their merging and splitting.
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Deriving insights from the ontology

The goal of this work is to understand at run time the semantics of

traffic scenes (environments) based on audio range inputs collected through a

network of embedded nodes with sound processing features [8]. Understanding

traffic scenes includes the following main challenges:

• Finding the components of a scene: This capability identifies the el-

ements of a traffic scene and their defining attributes. The elements

include not only physical objects (e.g., objects with attributes directly

sensed through the sensors) but also more abstract elements that are used

in the reasoning process, like concepts which are not directly sensed but

impact the observed signals as well as abstract concepts and categories.

Scene components are characterized by a set of well defined, repeatable

attributes (which creates the invariant identity of a component) and a

set of attributes that distinguish the concept from other concepts.

• Understanding the relations between the components in a scene: This

capability finds the interdependencies and correlations that exist between

the components in a scene, including cause - effect relations, in which

a certain element causes or enables a given effect, and various kinds of

correlations between elements.

Getting insight into the cause of the existing relations is a first main

requirement. In addition to the correlations that result directly from the

nature of the application, other correlations are produced due to specific

conditions and properties of the participating elements. For example,

traffic flow can be obstructed by an obstacle on the road (direct cause)

or a set of drivers with specific driving profiles that slow each other down.

The second situation can be inferred from the scene characteristics even

if it is not directly specified as a cause for slow traffic.

Disambiguation is a second main requirement as multiple causes can

produce similar effects. For example, group of vehicles slowing down can

be either because of some conservative drivers or due to potholes present
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Figure 1.5: Simple traffic scene

in the road. The sensed information must be used to deduce the more

likely cause that produces a situation among the two possibilities.

• Predicting the evolution of a scene: The capability refers to the dynam-

ics (evolution) of a traffic scene, including the possible situations that

can emerge within a future time window. Predictions are important to

correct erroneous data from the sensors, to identify the necessary and suf-

ficient data needed for scene understanding, and to preemptively adopt

decisions for situations in which reactive actions are insufficient.

Example: Let’s consider the simple traffic situation in Figure 1.5 to

illustrate the three challenges in scene understanding. Figure 1.5(a) presents

five vehicles moving on the road. Scene understanding must first identify the

three vehicle clusters, where a cluster comprises of the vehicles moving accord-

ing to the same pattern (e.g., similar speed and speed variations). This pattern

must be different from the patterns of other clusters. If the clusters move with

different speed then only speed is sufficient for cluster identification. How-

ever, if two clusters are moving at the same speed then additional attributes

are needed for differentiating the clusters, such as the interspacing di,j be-

tween the vehicles. A possible differentiation criterion is that interspacing is

significantly larger than the average of the other interspacing.
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An important aspect in concept identification (including finding con-

cept attributes) is the identification of the necessary and sufficient information

that makes the identification process possible. Moreover, inferring the infor-

mation needed for scene understanding helps solving the ambiguities that can

occur between different concepts with common attributes. Hence, concept

identification relies not only on finding similarities between concepts but also

outliers.

Another important objective of scene understanding is getting insight

into the causes of the relations between concepts, and solving the ambiguities

that occur during this step. These relations are not directly evident from the

description of a traffic application. For example, there can be multiple causes

for vehicle slow down, e.g., potholes, stopped cars, traffic lights, and flooded

areas. However, these causes can be often distinguished from each other by

using sufficient relevant attributes. For example, potholes force cars to mainly

slow down and change lanes, while stopped vehicles cause vehicles only rarely

to switch lanes or to stop. Moreover, traffic lights impose a periodic stopping

of all cars, while for other periods cars movements are not affected. Finally,

flooded areas cause all vehicles to stop and wait until the cars in front pass. In

this case, there is no attribute that distinguishes the four cases. Instead, the

ontological hierarchy in Figure 1.5(b) must be used for getting insight into the

traffic scene and disambiguate the possible cause - effect relations by finding

the most likely cause.

Once the concepts and their relations in a scene are understood, the

information is used to understand the expected dynamics (evolution) of the

scene and the emergence of new relations. For example, if the driver profile

in Figure 1.5(c) does not match the speed attribute of the cluster, it is likely

that that vehicle will leave the cluster in the near future.

1.2.3 Local Modeling: Distributed Symbolic Expres-

sions

Data models can be expressed as ordinary differential equations (ODEs)

in time and space and describing the attributes of the observed environment.
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Figure 1.6: Simple ontology for traffic applications

ODEs have been used to present the energy conservation laws for a variety

of physical environments and phenomena [23]. For example, the temperature

and density of substances in dissipative or non-dissipative 3D volumes (e.g.,

the liquid inside a computer server cooling system, or the gases forming the at-

mosphere in a city or a room) is modeled by instantiating the flow equations in

physics based on the sampled signals, energy sources, and energy flow proper-

ties of the monitored physical environment. Recent work focuses on techniques

to automatically create data models for physical environments, including the

causal origin of the observed variations and correlations [44,49].

The ODEs formulated for a physical environment are solved by dis-

cretizing the equations through backward (or forward) Euler integration for-

mula, e.g., 7-point finite difference discretizing [35, 47]. Equation discretizing

is described as a network of energy injection and removal elements connected

through transfer elements (i.e. resistors and capacitors) that propagate en-

ergy in time and space (see Figure 2.2(b)). Depending on the nature of the

physical phenomenon, the energy injection/removal and transfer elements are

described as linear, nonlinear, or stochastic expressions over the parameters

of the phenomenon. In circuit design, temperature maps are examples of data

models.

1.2.4 Data Management: Kinetic Data Structures

A short description of the use of KDS in the CPS framework is provided

in this section. Further details and experiments related to this work can be

found in the paper [3]. A decentralized strategy was proposed to produce dy-
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namically, under timing, accurate data representing geographically-distributed

physical phenomena. Our data model is based on the Kinetic Data Structure

(KDS) model [17] but focuses on a distributed implementation strategy, where

data is aggregated in the form of fragments distributed over the entire cloud.

When the emergent cloud is detected, we compute the initial set of fragments

in the form of convex hulls as shown in Figure 1.8(a). Each fragment is repre-

sented by an aggregate node that correlates its data with other aggregate nodes

to make decisions that correspond to merging or splitting those fragments to

represent a phenomenon. Whenever these fragments change their structure,

related parameters, like area, location, density and composition, are updated.

Readings from sensors

Update the AAV databases
of affected ANs

based on density profile
Merge/split convex hulls

based on cloud composition
Merge/split convex hulls

Compute initial set of convex hulls
and extract topological data

Detect cloud and compute AVs

procedure
Goal selects

Figure 1.7: Proposed flow to construct distributed KDS

Distributed Implementation of KDS

A. Overview. The process of obtaining a meaningful representation of

the cloud is summarized in Figure 1.7. At the lowest level, the sensor nodes

sample emergent events and compute the attribute vectors (AV). The vectors

are then used to compute the initial set of convex hulls. Data is aggregated

at this level, so that each Aggregation Node (AN) contains the aggregated
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attribute vector (AAV) for that particular convex hull. This aggregated data

can be used to compute several topographical parameters such as boundary,

area and location of the convex hull.

We can obtain deeper insight into the cloud composition and density

profile by performing certain additional procedures. Since this sytem follows a

goal-oriented approach, the procedure is selected at runtime depending on the

aim of the application. This approach is explained in detail later on. At this

level, the ANs share their AAV information with the neigbours. Depending

on the goal, we focus on either the density profile or the cloud composition,

in order to decide which convex hulls should be split/merged. For example,

this splitting process helps us gain more information in regions where the

density gradient is higher which suggests variation in gas concentrations or

greater variety of vehicles (sound sources). Alternately, the regions with lower

gradients are combined since the information content in the region is lower.

This merging and splitting results in the formation of additional AAVs at the

bottom-right AN of the hull, which are then communicated to all the other

ANs in the modified hull. These ANs then update their database to reflect the

changes. This methodology also helps in representing changes in the structure

and composition of the cloud over time.

B. KDS Parameters. In order to faithfully represent the dynamic na-

ture of the physical cloud movement, we use KDS to characterize different

aspects of the entities which form the cloud. Our cloud KDS have three main

parameters:

• Topography: The parameter describes the geographical extent of the

cloud. It can express boundary, area, and location. In order to extract

these parameters, the sensing nodes generate attributes by providing ei-

ther the location of the entity, or their own location if they do not have

localization capabilities.

• Composition: The parameter contains information regarding the inher-

ent signature characteristics of the entity being monitored. For example,

the chemical composition of a gas or the frequency spectrum of a sound

source. The parameter helps us to define another parameter called cloud
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Algorithm 1 Algorithm for computing the initial convex hulls

for each active node i = 1 to n do
initialize count = 0
forward data towards the ANs
if (yi 6= 0)and(xi 6= N) then

collect incoming data vectors to compute the convex hull at ANi

increment count
if count > 2 then

aggregate data in the format: AAV < (X, Y )A, HA, DA >

end if
end if

end for

class, e.g., homogeneous or heterogeneous. The attributes required for

this purpose are the signature attributes, which are generated by the

nodes using their sampled data.

• Density: The parameter contains information regarding the density of

the entity in different regions of the cloud. Combining the data from all

these parameters, we can identify important derived characteristics such

as the continuous/discontinuous nature of the cloud, merging/splitting

of clouds, and movement of clouds over time.

C. KDS Operators. KDS include three main operators for each kind of

parameter: (i) convex hull operator [17] is the mathematical model that sup-

ports aggregating data fragments into a valid result, (ii) composition operator

that decides to merge fragments (applying convex hull operator) depending on

the pursued goal, and (iii) splitting operator that decomposes the computing of

a KDS parameter for a larger geographical area into fragments corresponding

to smaller regions. The three operators are presented next.

i. Convex hulls: Suppose an emergent cloud triggered events at n nodes

in a network of size N×N . The n nodes sample the data and compute the low

level attributes that are required to comprehensively charaterize the KDS op-

erators. These attributes are then converted into aggregated fragments called

convex hulls (CH) at the Aggregation Nodes (AN), using certain aggregation

scheme as shown in Figure 1.8(a). The arrows show the communication scheme
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for transmitting data during the aggregation process. The procedure used to

form these initial set of convex hulls is explained below. The input to this

function is the attribute vector generated by the sampling nodes, represented

as follows:

AVi < (x, y)i, Hi, Di > (1.1)

Hi < entity1, entity2, ..entityl > (1.2)

Di < d1, d2, ..dl > (1.3)

where, (x, y) is the location of the sensor node, H is the cumulative vector

which contains the list of l entities, D contains the density of each type of

entity, in the same order as the names in H. Each node generates one attribute

vector. So, i varies from 1 to n.

In Algorithm 1, the initial convex hulls are formed using a static algo-

rithm where the bottom-right node in the structure is the AN for that partic-

ular convex hull. Therefore, the nodes which have y coordinate zero (leftmost

column) or those which have x coordinate equal to N (topmost row), cannot

be ANs. Also, the AN requires at least three active nodes to form a convex

hull. The aggregated attribute vector contains (X, Y )A which is a list of (x, y)

coordinates of the nodes which form the convex hull, HA is the cumulative

aggregated vector of the list of distinct entities and DA contains the average

density of the respective entities for that particular convex hull.

ii-iii. Goal-oriented composition (merging) and distribution (splitting):

In the analysis, n nodes form m aggregation nodes, which in turn compute

p convex hulls. Initially, the ANs transmit their AAVs to the active neigh-

bours and receive AAVs from others. Depending on the goal, Algorithm 2

or Algorithm 3 is selected to operate on the network. Therefore, depending

on the density gradient or composition of the cloud, convex hulls are split

(distributed) or merged (composed), to get more insights into the cloud char-

acteristics as shown in Figure 1.8(b).
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Algorithm 2 Goal-Oriented Merging/Splitting of Convex hulls - Density pro-
file

send AAVs to neighbouring active ANs
receive AAVs from neighbouring active ANs
if goal = Density profile then

for each AN j = 1 to m do
compare density profile D for entities
if dD

d(x,y)
> thresholdhigh then

split convex hull into smaller sections
else

if dD
d(x,y)

< thresholdlow then
merge convex hulls into larger sections

end if
end if

end for
end if
Update convex hull information in AAV databases in the ANs

Algorithm 3 Goal-Oriented Merging/Splitting of Convex hulls - Cloud com-
position

send AAVs to neighbouring active ANs
receive AAVs from neighbouring active ANs
if goal = Cloud composition then

for each AN j = 1 to m do
compare list of entities HA in the incoming AAVs
if lists match then

combine hulls
end if

end for
end if
Update convex hull information in AAV databases in the ANs
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Figure 1.8: Aggregation, splitting and merging of convex hull fragments

1.2.5 Optimization: Linear Programming

Resource allocation strategies are required in order to decide the band-

width, buffer size and communication paths used by each node in the network.

A linear programming based optimization scheme was designed to perform re-

source allocation. The details of such a scheme applied to a thermal monitoring

application is described in Chapter 2.

1.3 Going Beyond Sensed Data

1.3.1 Distributed Information in Human Networks

In certain application domains, such as human networks, there are vari-

ables that cannot be measured directly using electronic sensors. There is a need

for systematic estimation and inference techniques to quantify the effects of

these variables. For example, estimating the ‘Creativity’ of a human subject

(and of a group of subjects) is a challenging problem. It can only be described

as a combined effect of the novelty, quality, usefulness and variety of the solu-

tions that the subject(s) can design. Therefore, we performed experiments [6,7]

to analyze creativity in design of electronic embedded systems.

We think that the insight gained through these experimental studies

can inspire the devising of new CAD tools targeted towards innovation in

engineering design. Computer algorithms have been devised for automati-
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cally comparing electronic circuits based on ideas inspired by structural align-

ment [146], theoretical models for domain knowledge representation in circuit

design based on concept categorization [147], and circuit design flows inspired

by problem solving heuristics [145]. The ongoing work can continue this ef-

fort towards a complete CAD environment for innovation in electronic circuit

design.

1.3.2 Causal Search, Inference and Prediction

Any complex system usually contains several variables that directly or

indirectly affect each other. Some of these variables are measurable and there-

fore ‘visible’ while others are not. These ‘hidden’ variables cannot be directly

measured either because of physical inaccessibility or technological limitations.

There are several advantages of performing Causal analysis of systems where

such variables might exist. Experiments for causal search were performed us-

ing data from thermal analysis of 3-dimensional integrated circuits and the

creativity measurements.

Causal search can be used to extract a graphical representation of rela-

tionships between different variables in a system, directly from raw data. This

gives an insight into the expected and unexpected interactions between the

parameters. This graph can also be used to extract symbolic expressions that

describe the behavior of the system. Also, there are algorithms specifically de-

signed to provide information about the possible location of hidden variables

in the graph. This information can be used to perform reliable prediction of

dynamics of the measured entities. Decision-making routines can be much

more reliable and efficient if they monitor the cause-effect relations between

different entities in the system.

1.4 Thesis Outline and Contributions

This report is organized as follows: Chapters 2 and 3 discuss dicuss the

work on networks of embedded systems. Chapters 4 and 5 present research on

the topic of analyzing creativity in electronic design. Chapter 6 provides the
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conclusions and introduces ‘causal search graphs’ obtained from experiments

in previous chapters, as future work. Here is a description of contents in each

chapter and the contributions of this work.

Chapter 2 presents a multi-level state variable lumping scheme to construct

robust mathematical data models from data sampled through a network

of sensing devices of limited resources, like bandwidth and buffer mem-

ory. The proposed modeling scheme uses a linear programming (LP)

formulation to compute the lumping level at each node, and the param-

eters of the networked sensing platform, i.e. best data communication

paths and bandwidths. Two algorithms are described to predict the tra-

jectories of mobile energy sources/sinks as predictions can further reduce

data loss and delays during communication. Even though the procedure

can be used to model a broader set of phenomena, experiments discuss

the effectiveness of the method for thermal modeling of ULTRASPARC

Niagara T1 architecture.

Experiments show that variable lumping reduces the overall error by up

to 76.91% and delay by up to 57.62%, as compared to no lumping being

used. The error is smallest if latency reduction has high priority. The

attempt to minimize local error performs less lumping, however, results

is larger data loss, and hence in more overall error. The attempt to

reduce the overall error by minimizing the correlation error results in

increased latency. As the network size increases from 25 nodes to 64 and

100 nodes, the larger communication traffic leads to further losses and

delays. Therefore, accuracy-centered optimization becomes critical for

performing reliable data extraction. Trajectory prediction using adaptive

method (A2) reduces modeling error by up to about 10%.

Chapter 3 presents an approach for tracking and predicting the trajectory

of moving entities, while simultaneously optimizing the data models.

The method considers three orthogonal facets defining model precision:

minimizing the sampling error of the individual embedded nodes, sam-

pling sufficient data from distributed areas to correctly represent the
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phenomenon of interest, and meeting the timing delays that guarantee

the timeliness of data. The three objectives are achieved by dynamically

reconfiguring the architecture of the embedded nodes, and dynamically

selecting the data transfer paths to the decision making nodes.

Sound based trajectory tracking is used as a case study for the proposed

approach. For this application, the accuracy of data sensing is improved

by about 28.5%, data loss is zero in most situations, and delay reductions

are more than 20% in most cases.

Chapter 4 presents a study on the role of precedents in illuminating cre-

ative ideas during iterative design for solving open-ended problems in

electronic embedded systems. Through an experimental study grounded

in cognitive psychology, this work examined the influence of precedents

on the novelty, variety, quality, and utility of design solutions devised

through an iterative design process involving groups of participants. An-

other tested hypothesis was whether incremental changes of requirements

improve novelty. Results show that precedents did not increase solution

novelty and quality, but improved utility. Precedents reduced design

feature variety as solutions converged towards a few dominant designs.

Incremental modification of requirements did not increase novelty.

Chapter 5 discusses the nature of concept combinations in modular design

of electronic embedded systems as well as the relation between combina-

tion characteristics and novelty, quality, and usefulness of the produced

solutions. Through two experimental studies, this work explored the

frequency of relation-based and property-based combinations in embed-

ded design solutions, and how the specifics of the given building blocks,

i.e. salience, relatedness and number, influenced the produced combi-

nations. The impact of popular aids, like titles and short descriptions

(briefs), in improving novelty, quality, and usefulness of the designs was

also analyzed. Design solutions include mostly relation-based combina-

tions. Design novelty correlates mainly to the purpose and context of

the produced combinations. Novelty is aided by titles but not by briefs.
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Chapter 6 ends this report with a summary of the conclusions and describes

a topic that can be explored in the future, namely ‘causal knowledge

extraction’ in distributed data. It is well known that correlation of values

between two variables does not necessarily imply causation. We need

specialized algorithms to identify such causal relations. By observing the

nature of relations between the same set of variables, at different nodes

in the sensor network, we can try to gain an insight into the behavior

of the physical entity being monitored. Similarly, in a group of human

beings, we can analyze individual responses as well as their interaction

with others in the group using causal analysis. Therefore, we explore two

application goals: Creativity in electronic design (explained in chapters

4 and 5) and Thermal modeling of microprocessor (from chapter 2). For

each goal, the aim is to extract causal graphs from distributed data

and analyze the causal relationships between different variables under

varying circumstances.

23



Chapter 2

Robust Data Modeling in

Distributed Sensing

Environments

1

Creating accurate data models describing the dynamics of physical phe-

nomena in time and space is important in optimized control and decision

making. Models highlight various trends and patterns. However, producing

accurate models is challenging as different errors are introduced by sampling

platforms with limited resources, e.g., insufficient sampling rates, data loss

due to buffer overwriting, reduced communication bandwidth, and long com-

munication delays. Furthermore, the dynamics of the environment, like mo-

bile energy sources and sinks, might further increase errors as resources must

be shared between the sampling and communication activities. This chap-

ter presents a procedure to systematically construct robust data models using

samples acquired through a grid network of embedded sensing devices with

limited resources, like bandwidth and buffer memory. Models are in the form

1Note: This chapter is based on the work published in [1]. Preliminary work on this topic
was performed in collaboration with a colleague and included in [2]. Since then, several
enhancements to this work were conducted by me including the following: The error models
have been re-evaluated and cost function is updated. A completely new set of experiments
for thermal modeling have been included. Several new figures and tables are also included.

24



of ordinary differential equations (ODEs). The procedure constructs local data

models by lumping state variables. Local models are then collected centrally

to produce global models. The proposed modeling scheme uses a linear pro-

gramming (LP) formulation to compute the lumping level at each node, and

the parameters of the networked sensing platform, i.e. best data communi-

cation paths and bandwidths. Two algorithms are described to predict the

trajectories of mobile energy sources/sinks as predictions can further reduce

data loss and delays during communication. The computed parameters and

trajectory predictions are used to configure the local decision making routines

of the networked sampling nodes. Even though the procedure can be used

to model a broader set of phenomena, experiments discuss the effectiveness

of the method for thermal modeling of ULTRASPARC Niagara T1 architec-

ture. Experiments show that the presented method reduces the overall error

between 58.29% and 76.91% with an average of 68.87%, and communication

delay between -11.49% and 57.62% with an average of 21.85%.

2.1 Introduction

Cyber-Physical Systems (CPS) are expected to integrate data acquisi-

tion, networking, and control in an effort to produce effective decisions while

operating in complex physical environments [39]. The acquired data is utilized

to build data models, which are then used to devise (or synthesize) optimized

control (decision) strategies by estimating, predicting, and identifying trends

and patterns of the physical environment as expressed by data models. Data

model accuracy is critical as unaccounted modeling errors might produce un-

predicted decisions, hence reduce the robustness of the systems.

This chapter focuses on data models expressed as ordinary differential

equations (ODEs) in time and space and describing the attributes of the ob-

served environment. ODEs have been used to present the energy conservation

laws for a variety of physical environments and phenomena [23]. For example,

the temperature and density of substances in dissipative or non-dissipative

3D volumes (e.g., the liquid inside a computer server cooling system, or the
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gases forming the atmosphere in a city or a room) is modeled by instantiating

the flow equations in physics based on the sampled signals, energy sources,

and energy flow properties of the monitored physical environment. Recent

work focuses on techniques to automatically create data models for physical

environments, including the causal origin of the observed variations and cor-

relations [44,49].

The ODEs formulated for a physical environment are solved by dis-

cretizing the equations through backward (or forward) Euler integration for-

mula, e.g., 7-point finite difference discretizing [35, 47]. Equation discretizing

is described as a network of energy injection and removal elements connected

through transfer elements (i.e. resistors and capacitors) that propagate en-

ergy in time and space (see Figure 2.2(b)). Depending on the nature of the

physical phenomenon, the energy injection/removal and transfer elements are

described as linear, nonlinear, or stochastic expressions over the parameters

of the phenomenon. In circuit design, temperature maps are examples of data

models. A multi-grid thermal modeling method is proposed in [35] to address

the heterogeneous areas of 3D ICs. A similar approach, based on adaptive

discretizing grids, is discussed in [29].
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Figure 2.1: (left) Complete thermal map and (right) thermal map for dis-
tributed sensing with data loss; the map is significantly distorted due to data
loss

Data model construction in CPS applications is challenging because the
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dynamic of physical environments is hard to track accurately and in real-time

through a distributed sensing network with limited resources, like bandwidth

and memory. Continuously streaming large volumes of data samples can result

in important data losses due to low bandwidth and many data overwrites in the

memory buffers. Also, low bandwidths and long communication paths increase

the time delays of data samples, thus adding further errors to time-sensitive

data models. Figure 2.1 shows that, even for a smaller, 25-node network,

there is significant difference between the real thermal map (left) and the map

(right) based on distributed sensing. As the network size grows, the streaming

volume increases and consequently the difference in the thermal maps further

increases. The modeling error reduces the optimality of the devised control

decisions of CPS applications.

The impact of data loss on model accuracy can be mitigated by build-

ing local data models, and then streaming the local models instead of the

samples used to create the models. For example, for Wireless Sensor Networks

(WSNs), data aggregation has been proposed to improve the network perfor-

mance, like throughput, bandwidth, and energy consumption [31, 32, 36]. A

regression-based framework for modeling sensor data is presented in [30, 33].

Data communications are reduced by exploiting the correlations between data

sensed by neighboring nodes [52] or by fitting generic functions that approxi-

mate the transmitted values [22].

Building accurate, global data models from streamed local models raises

two main issues. First, the decision on which local models to produce (e.g.,

which state variables to express) is made only based on local information even

though the decision impacts the accuracy of the global model. The embed-

ded sensing nodes lack global knowledge about the environment’s dynamics,

including moving energy sources and sinks, and changing sensitivities of its

state variables. This issue introduces significant differences from methods

like [29,35,40], which assume statically known environments in which all state

variables are available to construct the model. Second, due to data loss, model

accuracy depends on the resource characteristics of the distributed sensing

platform. Resource utilization must be optimized such that the resulting data
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loss and time delays generate a minimum modeling error. This issue has been

less explored by related work.

This chapter presents a procedure to systematically construct robust

data models based on samples acquired through a grid network of embedded

sensing devices with limited resources, like bandwidth and buffer memory.

The data models are in the form of ordinary differential equations (ODEs).

The procedure constructs local data models by lumping state variables, so

that the errors due to data loss and time delays are minimized. The model

error is captured by mathematical bounds for four types of errors: due to

data loss, time delays and clock non-synchronization, loss of correlation infor-

mation, and variable lumping (loss of state variables). These errors describe

the types of inaccuracies that occur during data model construction using a

distributed sensing network. The proposed bounds are then used to com-

pute using linear programming (LP) the lumping level of the local models

(e.g., number of lumped variables) and the parameters of the networked sens-

ing platform, including data communication paths and bandwidth rates. The

computed parameters are utilized to set threshold values used by local schemes

(at the embedded sensing nodes) to decide the specific modeling actions (see

Figure 2.10).

The novelty of the work is in that it emphasizes the robustness of

the created data models (ODEs) by tackling the connection between mod-

eling error and model characteristics, physical environment dynamics, and

sensing platform resources. Traditional aggregation methods [28, 33, 52] fo-

cus on reducing communication traffic to lower power and energy consump-

tion. Feedback-based adaptation addresses the changing traffic conditions and

time requirements of data aggregates sent by parent nodes to their children

over a tree network [31]. Aggregation also avoids transmission of redundant

data [32]. The method in [54] defines a centralized threshold-OR fusing rule

for combining sensor samples under normally distributed, independent addi-

tive noise conditions. Xue et al. [51] propose a locally weighted fusion function

for improving model accuracy. A cluster-based technique is proposed in [38] to

perform structural health monitoring. Data aggregation is at the cluster-level
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by filtering spatial and semantic correlations to improve energy efficiency and

reduce data storage. Particle Swarm Optimization (PSO) is used in [45] for

data aggregation to minimize network cost and communication delay. The

correlations between data sensed by neighboring nodes have been used to re-

duce the amount of data transmitted in a network [52]. The work in this paper

complements these results by adding model accuracy as a main requirement

of distributed model construction.

The experimental section uses the proposed data modeling procedure

for thermal modeling of ULTRASPARC Niagara T1 architecture [34]. How-

ever, the method is not limited to thermal modeling and can be used for mod-

eling other physical phenomena, like the characteristics of ocean water, e.g.,

salinity, temperature, and pH. There have been extensive studies on thermal

modeling in three-dimensional Integrated Circuits (3D-ICs). Current tech-

niques [37, 47] observe the thermal behavior of 3D-IC by simulating the chip

as a part of the pre-fabrication validation stage. Once this behavior is charac-

terized, thermal management through voltage and frequency scaling and task

scheduling is performed [25–27]. Although sensors are distributed over the

entire area of the chip, most thermal management policies use a centralized

repository of the real-time thermal data. However, policies must include mod-

els for data losses and delays associated with the real data collection networks

in order to address inevitable modeling errors. The proposed work presents

a distributed approach to physical phenomena modeling while minimizing the

effect of various model error sources.

This chapter has the following structure. Section 2.2 presents an overview

of physical phenomena modeling, its associated modeling errors, and the pro-

posed modeling methodology. Section III discusses the model error bounds,

trajectory prediction, and the related optimization formulation. Section Sec-

tion 2.4 details the experiments. Conclusions end the chapter.
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2.2 Data Modeling and Error Minimization

This work considers data models that are ordinary differential equations

(ODEs) over time and space for the parameters of physical environments. Pa-

rameters are strongly coupled with each other, e.g., pressure and temperature,

wave propagation speed and gas density, and many more [23]. In addition to

environmental characteristics, the dynamic of physical parameters is decided

by mobile energy sources and sinks with variable properties. Some energy

sources and sinks move along unknown trajectories. Figure 2.2(a) illustrates

the concept. This section details the characterization of physical phenomena,

the types of modeling errors, and the proposed modeling procedure to reduce

modeling error.

2.2.1 Characterizing Physical Phenomena

Let’s assume that Yi(t) are the state variables of the monitored phys-

ical environment, such as state variable Yi corresponds to the nodes of the

discretization grid used in modeling. Note that only some Yi(t) are observed

(e.g., sampled) through sensors. The well-known mathematical expressions of

state variables Y are as follows [35]:

SiẎi(t) = Ėi(t) +
∑
k∈K

Yk(t)− Yi(t)
Grk,i

+
∑
k∈K

Yi(t)− Yk(t)
Gri,k

(2.1)

K is the set of neighbors of node i. Gri,k and Grk,i are the gradient

coefficients that define the in- and outgoing energy flows between two neigh-

boring points i and k. The coefficients Si represent the energy stored at node i,

and the terms Ėi are the added or removed energy at node i. The model pa-

rameters are dynamic because physical parameters, like temperature, density,

pressure, and humidity, change in space and time [23]. Figure 2.2(b) illustrates

the above mathematical expressions.

Example: Section IV present a case study for thermal modeling of

integrated circuits (ICs). State variable Y is temperature (T ) while coeffi-

cients S and Gr represent heat storage and heat transfer coefficients, respec-
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Figure 2.2: (a) Distributed sensing and (b) data model structure

tively [23, 53]. The energy injection due to power dissipation of the IC cores

is denoted by variable E. Depending on the workload of the cores, the power

dissipation varies causing variation in the values of variable E over time and

space. Then, equation (2.1) corresponds to the following heat transfer equa-

tion:

SiṪi(t) = Ėi(t) +
∑
k∈K

Tk(t)− Ti(t)
Grk,i

+
∑
k∈K

Ti(t)− Tk(t)
Gri,k

(2.2)

The left-hand side of the equation denotes the change in heat energy

at node i in time dt. The right side indicates the two causes of this change,

the energy injection (E) due to power dissipation and the energy transferred

from neighboring nodes k to node i. Coefficients S vary according to the heat

capacity, and coefficients Gr indicate the thermal conductivity of the material.

The energy sources and sinks in equation (2.1) can be static or mobile.

Then, energy source (sink) Ei is the sum of all energy sources (sinks) that are

located at node i at time moment t. The expression of Ei is as follows:

Ei(t) =
∑
p∈ES

Ep(t)δi(

∫
t

vp(τ)dτ) (2.3)

Set ES is the set of all energy sources (sinks) and vp is the speed of

source p. Function δi(x) is one, if x = i at time moment t, otherwise it is zero.
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For example, in ICs, energy sources and sinks correspond to thermal

energy injection (due to power dissipation) and removal (via liquid-cooling

microchannels or heat sinks), respectively. Depending on the variable workload

of memories, CPU cores, buses, and other devices, these spots are observed in

time at different locations on the chip and are therefore considered “mobile”.

Finding physical models means, conceptually, that the set of equa-

tions (2.1) and (2.3) formulated at each node i of the discretization grid is

solved symbolically. For example, if all energy sources and sinks are static

(vp(t) = 0), the identified data model are the following solutions of the equa-

tion set:

Yi(t) =
∑
k

αi,ke
λkt +

∑
l

βi,lt
l (2.4)

Parameters αi,k, λk, and βi,l depend on the parameters Si, Gri,k, Grk,i,

and Ėi,p of the modeled process (equations (2.1) and (2.3)). The solutions

indicate explicitly how cause variables influence the parameters of the model

as well as the importance (sensitivities) of the variables in deciding the model.

Note that solving symbolically the differential equations (2.1) and (2.3)

is difficult. For example, in the general case, the expressions of αi,k, λk, and

βi,l are hard to compute. There are closed form solutions only for specific

situations. Also, the expressions of the energy sources Ei at points i are

usually unknown and their values are not directly sampled by the sensing

devices. Also, the expressions of terms Si, Grk,i, and Gri,k might be unknown.

Hence, the expressions and behavior of these unknowns must be found during

model construction, e.g., through profiling and/or identification.

Another difficulty in precise data modeling stems from the correlations

between the trajectories of energy sources (sinks) (e.g., sound, heat, etc.) and

the communication paths used to transmit the sampled data. As shown in

Figure 2.2(a), data acquired by the sensor nodes is sent along various data

communication paths (DCPs) with minimum loss and within the needed tim-

ing constraints. DCPs are defined from the sensing nodes to Target Points

(TPs), where the streamed data is saved. The selected DCPs influence the

modeling error as they determine the experienced data loss and delays while
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Figure 2.3: Data path configurations used in tracking trajectories

forwarding data to TPs. Data loss occurs when data stored in local buffers is

overwritten before it is forwarded either because of an ongoing data sampling

or data reception. This situation also increases the delay of transmitting data

to TPs.

Example: Figure 2.3(a) shows two different DCPs, and the same mo-

bile energy source trajectory (highlighted in bold) moves through the network

for those configurations. The TP is the black bubble. The experimental model

for the networked nodes is based on PSoC processor [21]. The first DCP does

not experience any data loss for the considered trajectory. The average de-

lay for the nodes is 1434.62 msec and the maximum and minimum delays are

2040 msec and 1010 msec, respectively. Six nodes in the second DCP experi-

ence data loss for the same trajectory. The average delay for the nodes that

did not experience any data loss is 1962.86 msec and the maximum and min-

imum delays are 5660 msec and 1010 msec, respectively. Hence, nodes have

an average delay of 36.82% more than path configuration one. Different DCPs

can yield different levels of performance for the same trajectory. Moreover,

Figure 2.3(b) shows two different trajectories running through the network,

which uses the same path configurations. Trajectory one is shown with black

line and trajectory two with grey line. Trajectory one has data loss at seven

nodes compared to trajectory two which has no data loss. The nodes in tra-
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jectory one experience an average delay of 73.43% higher than trajectory two.

Hence, the same DCP can yield different levels of performance for different

trajectories.

2.2.2 Errors during Distributed Data Modeling

Main challenges in constructing precise data models based on samples

from a distributed sensing network include minimizing the errors introduced

during sensing, estimation and communication of the parameters in equa-

tions (2.1) and (2.3). The four types of errors express the inaccuracies that

occur when computing locally (at each network node) the parameters S, Gr,

and E in equation (2.1) based on the values sampled by a node and the data

received using DCPs. Errors are grouped into the following four categories:

(b)(a)

Figure 2.4: Correlation errors

• Errors due to data losses: Data losses are due to buffer overwriting when

streaming from sensors to the collection site for model construction (e.g.,

TPs). Data losses can be reduced by increasing the buffer sizes but this

requires more resources. Such resources are not available for basic sensing

nodes. Data loss also occurs when sensor data cannot be acquired due to

hardware constraints of the sensing frontends, e.g., insufficient sampling

frequency or inaccurate mixed-signal frontends [24].
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• Errors due to time delays and clock non-synchronization: The accuracy

of the models depends on the delays with which the sampled data be-

comes available at the TPs (see Figure 2.2(a)). The communication

delays are incorporated to some degree into the data models, hence fur-

ther reducing their accuracy. Transmitting more data samples to con-

struct better models increases the delay of the communication paths.

Also, there is no common clock signal available to the distributed nodes,

hence there is “jitter” noise added to the data samples because of non-

synchronization of the local clocks at each sensing node.

• Path-induced errors: If the path configuration shown in Figure 2.4(a) is

used for data collection, certain correlations are missed as the nodes on

a DCP do not have access to the samples sent on another DCP. Missed

correlations are represented in the figure by dotted lines. The error

introduced due to missed correlations is called correlation error. It can

be minimized by selecting a path configuration such as in Figure 2.4(b).

Data modeling can use state variable lumping to reduce data loss and

delays. Variable lumping eliminates the less significant state variables and

simplifies the structure of the discrete representation of the state equations.

Variable lumping might eliminate one or several consecutive variables. Lump-

ing introduces the following modeling error:

• Errors due to lumping: During lumping, some intermediate state vari-

ables are removed. At the TP, the original data needs to be extracted

from this lumped information. The inaccuracies observed in the ex-

tracted data represent the error due to lumping of state variables while

forming the local models.

Assuming an additive error model, the local modeling error at node i

is equal to:

Erri = Err
(Loss)
i + Err

(Delay)
i + Err

(Corr)
i + Err

(Lump)
i (2.5)

The total modeling error over all nodes i (
∑

iErri) should be minimized

by an optimized modeling scheme.
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2.2.3 Methodology for Creating Distributed Models

Every sensing node of the network makes local decisions in an attempt

to minimize the local error described by equation (2.5). The decisions include

selection of a certain DCP, the communication rate of the DCP, and perform-

ing variable lumping or not. Let’s assume that the following probabilities

express these decisions: prob(DCPp) is the probability of using path p (from the

set of available paths), prob(rj,p) is the probability of using rate j (from the

set of available communication rates of DCP p), and prob(lump) is the node’s

probability to perform variable lumping. Then, finding the optimized imple-

mentation scheme requires computing the probabilities for each sensing node

in the network. At run time, every sensing node uses its specific probabilities

to dynamically select the most effective DCP depending on the trajectories of

the energy sources (sink), configures the parameters of the DCP (e.g., baud

rate), and decides whether to lump or not.

equations (5)−(18) in

in ;Produce estimation models for 

S i Gr i,k Gr k,iProduce estimation models for , , ;

Profiling

Compute error bounds using
Section III.A;

parameters of the distributed sensing
Find the variable lumping rates and the

platform by optimizing equations in Section III.C;

Use found parameters to set−up the local decision
scheme for producing data models as in Section III.D;

E

Figure 2.5: Data modeling methodology

Figure 2.5 presents the methodology to construct mathematical data

models for distributed sensing platforms. The first step, profiling, uses raw

data samples of the observed state variables Y (a sub-set of all state vari-
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Table 2.1: Symbols used in the model and their definitions

Symbol Definition Symbol Definition Symbol Definition Symbol Definition Symbol Definition

Y (C) State variable E (C) Energy source/sink Gr (C) Transfer coef. S (C) Storage coef. Err (O) Total error

Err(Loss) (O) Err.loss E(Delay) (O) Err.delay E(Corr) (O) Path-ind.err. Err(Lump) (O) Err.lump. Err(Buff) (O) Err.buff.loss

Err(Coll) (O) Coll.err. error(k) (O) Err.discard.data γ (P) Coef.bounds κ (P) Coef.bounds BW (R) Comm. bandwidth

DCP (R) Data Comm. Path t (T) Time δ (R) Time disc.step p (O) Lumping level qsens (R) Sampling rate of sensors

α (O) Rate disc.sensor data β (O) Rate sel.bandw. λ (O) Rate sel.lump. buff (R) buff.size DATAOUT (R) pack.size

lump levelj (R) Lump.level Loss (O) Data loss In rate (R) Req.resol. NET IN (O) Input data NETOUT (O) out. data

Delayp (O) Delay DCP prob(DCP )(O) Prob.sel.DCP prob(r)(O) Prob.sel.BW prob(Lump)(O) Prob.lump x (y) Cartesian coord.

Nalt traj Number altern. traj. l Length traj. V Velocity agent Grad Grad. traj. θ Angle traj.

ables Y ) to produce the initial estimates of parameters Ei, Si, Grk,i, and Gri,k

in equations (2.1) and (3.3). The parameters are found for a large set of scenar-

ios for the dynamics of the monitored physical entities. Table 2.1 summarizes

the model variables estimated during profiling (labeled as (P)). The second

step uses the profiling information to find the characteristics of the dynam-

ics, e.g., the bounds for first and second order derivatives of Y and energy

sources Ei. This insight is then utilized to find the maximum error bounds

that intervene during distributed data sensing. The error types are discussed

in Section III.A and captured in equations (2.5)-(2.18). The next step finds

the variable lumping scheme and the parameters of the distributed sampling

architecture that minimizes the errors of the data models, hence maximizes

the model robustness. The parameters are computed by solving the optimiza-

tion model described by the equations in Section III.C. Finally, the computed

parameters are used to set-up the local data modeling decision making scheme

of each embedded node. Section III.D presents the local routines.

2.3 Optimization of Distributed Data Model-

ing

This section introduces the algorithms and error models that are part of

the data modeling methodology in Figure 2.5. Section III.A details error mod-

eling. Section III.B discusses trajectory prediction for mobile energy sources

(sinks). Section III.C describes the computation of the probabilities used in

local decision making: probability prob(DCPp) of using path p (from the set of

available paths), probability prob(rj,p) of using rate j (from the set of available
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communication rates of DCP p), and probability prob(lump) to perform vari-

able lumping. Table 2.1 summarizes the variables of the modeling and their

meaning.

2.3.1 Detailed Error Modeling

The four error types introduced in Section II.A are modeled as follows.

i. Errors due to data loss. Data loss error is the sum of the errors due

to buffer loss and collection loss. Buffer loss Err(Buff) represents the error

due to buffer overwriting and collection loss Err(Coll) is the error due to the

limited sensing (sampling) capabilities of a node.

Err
(Loss)
i = Err

(Buff)
i + Err

(Coll)
i (2.6)

Lemma 2: The loss of n consecutive data values due to buffer overwrit-

ing at node i is described by the following expression:

Err
(Buff)
i ≤ n

BW
||Ẏmax| − |Yn+1 − Y0||+

n

BW 2
||Ÿmax| − |Ẏn+1 − Ẏ0|| (2.7)

BW is the data communication bandwidth at node i’s input.

Proof: Using the first three terms of the Taylor series (Y0 is the starting

value), Y (t) ≈ Y0 + Ẏ t+ Ÿ t2. Losing n consecutive data results in estimating

the first two derivatives as Ẏ ≈ BW Yn+1−Y0

n
and Ÿ ≈ BW Ẏn+1−Ẏ0

n
. The total

error due to the miss-prediction of the first derivative is 1
BW

∑n
i=0 ||Yi+1−Yi|−

|Yn+1 − Y0|| ≤ n
BW
||Ẏmax| − |Yn+1 − Y0||. Similarly, the error due to the miss-

prediction of the second derivative is 1
BW 2

∑n
i=0 ||Ẏi+1 − Ẏi| − |Ẏn+1 − Ẏ0|| ≤

n
BW 2 ||Ÿmax| − |Ẏn+1 − Ẏ0||.

Collection errors are introduced if data cannot be acquired fast enough

due to the hardware constraints of the sensing frontends. For example, the

analog-to-digital converters are too slow, or not all sampled values in the

input buffers can be processed [24]. Let’s assume that error Errsensj
is due to

discarding one physical value of sensor sensj. The total error introduced by

all discarded data is as follows:
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Err
(Coll)
i =

∑
∀sensj

αj qsensj
Errsensj

=
∑
∀sensj

(1sec)αj qsensj
(
∑
∀k

error(k)) (2.8)

qsensj
is the sampling rate of the sensor (number of samples in one

second). αj is the rate of discarding values at sensor sensj (αj < qsensj
).

error(k) is the error introduced for tuple k by the discarded data. Term 1 sec

was added to correctly represent the unit of the error.

In equation (2.6), buffer and collection errors represent conceptually the

same type of errors, which are due to data packets loss (data is overwritten

during communication or not sampled due to low sensor sampling rates). The

unit for the errors in equation (2.6) is BU , the basic unit of the state-variable

Y , e.g., degree Kelvin if variable Y is temperature.

ii. Errors due to time delays and clock non-synchronizations. These

errors are introduced by the delays at which the sampled data reaches the

target point (TP). Errors change equations (2.1) to SiẎi(t) =
∑

p Ėi,p +∑
k
Yk(t−TDelay

1 )−Yi(t−TDelay
2 )

Grk,i
, where TDelayi is the delay of the related data com-

munication paths between nodes i and k. The errors change the fundamental

matrix (φ) of the equation set (2.1), which changes the symbolic expressions

of the state variables Y (equation (3.3)).

As already explained, it is difficult to compute closed form expressions

for state variables Y and then estimate the error based on the differences in

the fundamental matrix due to time related errors. Instead, the local errors

introduced by time delays are characterized by the differences in the time

delays of any data communication paths(DCPs) s and t that converge at node i

(see Figure 2.2(a)):

Err
(Delay)
i ∼

∑
∀s,t∈DCPi

|TDelays − TDelayt | (2.9)

DCPi is the set of all communication paths converging at node i.

iii. Path-induced errors. These errors are introduced by the missed

data correlations due to the sampled data being sent using different DCPs.
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The error is estimated as follows:

Errb,path =
∑
∀b

NL∑
∀p

∑
c ∈ p

error(p) (2.10)

b is a pair of neighboring nodes i and k that belong to different paths.

error(p) is the error introduced due to the missing tuples c at all lumping levels

p of node k (assuming that data is transmitted from node i to node k).

∆Y

i+1,j−1
i+1,j

Y i−1,j−1
Y i−1,j

Y i,j+1Y i,j−1 i,jY

Y Y

2DCPDCP 1

E

Figure 2.6: Path-induced error estimation

The path configuration used for data collection eliminates the coupling

gradient coefficients for some of the nodes in the network. Figure 2.6 shows a

network of transfer and storage elements modeling state variable Y expressed

by equation (2.1) (the resistive elements represent parameters Gr and the

capacitive elements correspond to parameters S). The Y values sampled along

column j − 1 are communicated using DCP1, while the values sampled along

column j are sent usingDCP2. As the values sent usingDCP2 are not available

to the nodes on DCP1, any partial models built during data communication

do not include the correlations between the neighboring state variables, e.g.,

values Yi,j−1 and Yi,j. Hence, any decision made using the partial models

does not consider the coupling gradients between columns j and j − 1. For

example, if there is a large energy source at node Yi+1,j, without the correlation

information, the partial models would suggest that there is an energy source at
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node Yi+1,j−1, therefore some action (e.g., cooling) should be targeted at that

point. As shown in Figure 2.6, correlation errors are modeled by disconnecting

columns j and j − 1 in the network model.

Lemma 3: The expression for path-induced error at lumping level 2 in

Figure 2.7 is given by the following expression:

Erri,corr =
1

γ Gra,i

[exprx,corr 1 − exprx,corr 2] (2.11)

expri,corr 1 = γ S
(equiv)
i Gra,i

Ẏi(t) + (γ + 1) Yi(t) (2.12)

expri,corr 2 = γ YA(t) + YB(t) + γ Gra,i
E

(equiv)
i (t) (2.13)

γ is the ratio of the coefficients Gr from neighboring nodes.

Proof: After decoupling the network along the nodes on the communica-

tion path, the equivalent coefficient parameters Gequiv
i and Sequivi are measured

from the decoupled node to the actuator. The error associated with decou-

pling the columns j− 1 and j is proportional to the flux through the removed

gradient variables, which is computed by applying Kirchhoff’s law at node i.

The derivation leads to equation (2.11), where YA(t) and YB(t) are state vari-

ables at nodes A and B respectively, Ẏi(t) is first order derivative at node i,

and E
(equiv)
i (t) is the external input energy source incident at the node.

Lemma 4: The path-induced error at state variable Yi over W samples

is bounded by the following expression, where boundW,corr = Errx,corr(t) −
Errx,corr(t−W δ):

boundW,corr ≤
W δ

γ Gra,i

[boundW,corr 1 − boundW,corr 2] (2.14)

boundW,corr 1 = γ S
(equiv)
i Gra,i

Ÿi,MAX (2.15)

boundW,corr 2 = γ ẎA−iMIN
+ ẎB−iMIN

+ γ Gra,i
Ė(equiv)i,MIN (2.16)
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Ÿ MAX
i is the maximum of the second derivative of the state variable Y ,

ẎA−iMIN
and ẎB−iMIN

are the minimum first order derivative of the difference

in sensor readings at i with respect to nodes A and B. These values are

estimated using profiling.
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Figure 2.7: Multi-level variable lumping

iv. Errors due to state variable lumping. These errors are generated

by removing state-variables during lumping. The bottom part of Figure 2.7

shows the variables sampled at five nodes YA, Y ′X , Yi, Y
′′
X , and YB and the

corresponding model for equation 2.1, including transfer elements (Gr), stor-

age elements (S), and energy injection elements (E). During lumping, at

level 1, variable Y ′X is removed and the equivalent parameters GrA,i, S
(equiv)
i ,

and E
(equiv)
i are computed and connected to node Yi as shown in the figure.

Similarly, at level 2, the procedure is repeated to remove variable Y ′′X . The

model on top approximates the original model shown at the bottom of the

figure. Assuming that data is sent from node YA to node YB, the described

lumping procedure is performed at node YB.

Lemma 5: The lumping error at node i is expressed as follows:
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Err
(Lump)
i = κ|γYA(t) + YB(t)− (γ + 1)Yi(t− δ)− (γ + 1)

Ė(equiv)(t)

Si
| (2.17)

where κ = γSiGrAB

(γ+1)2δ+SiGrAB
. E(equiv) models the equivalent external input

energy. δ is the time discretizing step. γ is the ratio of Gri,B and GrA,i.

Proof: The expression for lumping error at a node i is derived by sub-

tracting the expressions for the discretized ODEs of Yi(t) before lumping from

the expression after lumping (Err
(Lump)
i = |∆Yi(t)|).

The following bounds exist for the lumping errors in equation (2.17).

Lemma 6: The maximum increase in lumping errors for lumping state

variable Y over M samples is as follows:

Err(Lump) ≤ κMδ(bound
(Lump)
1 − bound(Lump)

2 ) (2.18)

where, bound
(Lump)
1 = (γ+1)δŸ MAX

i +γẎ MAX
A−i +Ẏ MAX

B−i and bound
(Lump)
2 =

(γ+1)δ
Si

Ė
(equiv),MIN
i .

Ÿ MAX
i is the maximum of the second derivative of state variable Y ,

Ẏ MAX
A−i and Ẏ MAX

B−i are the maximum first order derivative of the difference in

sensor readings at i with respect to nodes A and B. (YA−i(t) = YA(t)− Yi(t),
and YB−i(t) = YB(t)− Yi(t)) bound(Lump)

M = errorYi
(t)− errorYi

(t−Mδ). The

values for Ẏ MAX , Ÿ MAX , and Ėequiv,MIN
i are found through profiling.

The computing of the error bounds due to buffer loss, path-induced

errors, and lumping errors assumed that the dynamics of state-variable Y in

equation (2.1) can be expressed with a reasonable accuracy using the first three

terms of their Taylor series expansion. Taylor series expansion has been a pop-

ular method to approximate systems with weak nonlinearities, like analog cir-

cuits [42] and mechanical systems [50]. Other popular techniques for describing

parameter dynamics include Volterra series [43] and nonlinear model order re-

duction [41]. Figure 2.12 plots the lumping and correlation error bounds for

four different scenarios presented in Section IV.B. The bounds change in time

(e.g., iteration) corresponding to the repositioning of energy sources, i.e. mov-

ing heat sources in the case of data sets 2 and 4. Moreover, Figure 2.13 shows

43



that there is a small error between the actual thermal data from the 3D-ICE

simulator [46] and the data map constructed using the method based on the

proposed approximation model of the bounds. However, if the modeled pa-

rameters have stronger nonlinearities then methods based on Volterra series

can be used to compute the error bounds.

2.3.2 Mobile Energy Source/Sink Trajectory Prediction

As explained in Section II, model errors also occur due to the correla-

tions between the trajectories of mobile energy sources (sinks) and the data

communication paths (DCPs). Trajectory prediction algorithms help in reduc-

ing errors by minimizing data loss and delays of data communications through

optimized selection of data communication paths (DCPs). In addition to our

previous method [48], this work presents a new algorithm for predicting the

trajectory of energy sources (sinks). The two algorithms differ depending on

their assumptions on the trajectory characteristics. The first algorithm is for

trajectories that pass stochastically through a set of bounded regions. This

algorithm was also presented in [48]. The second method assumes trajectories

with both quasi-static parts and parts in bounded regions.

i. Stochastically Bounded Trajectories. The algorithm uses the concepts

of bounded trajectory and stochastically-bounded trajectory. As explained

in [48], a bounded trajectory refers to a mobile energy source’s physical trajec-

tory that is located inside a region defined by minimum and maximum gra-

dients. The region is called Trajectory Approximating Region (TAR). Then,

the trajectory is approximated as sequences of convex - concave fragments

with bounded gradients of known ranges. The point separating each succes-

sive convex - concave fragments is called inflexion point. The average time

distance ∆T between inflexion points is known.

Example: Figure 2.8(a) illustrates a trajectory expressed in this way.

The gradient of the convex fragment is in range [GradconvexMin , GradconvexMax ]. At

time T1, there is a break of the two dashed lines as the trajectory switches to the

concave part. The gradients of this part are in range [GradconcaveMin , GradconcaveMax ].

The trajectory in the figure is well approximated by the corresponding TAR.
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Figure 2.8: Trajectory description using bounded trajectory model

Probability pn that node n, inside TAR, samples the agent’s trajectory

is estimated as follows. Let’s consider a discretization of TAR into sub-regions,

as shown with dotted line in Figure 2.8(b). Probability pn depends of the

unknown length ltrajectory of the trajectory inside the sub-region containing

the node, the area Areasub−region of the sub-region, and the number Nalt traj

of alternative trajectories that are inside the sub-region and pass through the

node [48]:

pn ∝
ltrajectory

Areasub−region
Nalt traj ≈

∫
∆T

√
x(t)2 + y(t)2dt

Areasub−region
Nalt traj (2.19)

or

pn ∝
∫

∆T

√
x2

0 + y2
0 + 2(Gradx +Grady)t dt

Areasub−region
Nalt traj (2.20)

x(t) and y(t) are the unknown equations describing the agent’s trajec-

tory. x0 and y0 are the coordinates of the agent at time T0, and Gradx and

Grady are the gradients at time T0 of the trajectory along the two axes. The

number of alternative trajectories Nalt traj can be estimated based on (i) the

angle defined by vector
−−−→
(A, n) from node A (the node currently considered) to

node n and the vector corresponding to Gradmin, and (ii) the angle defined
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by vector
−−−→
(A, n) and the vector corresponding to Gradmax. The larger the

product of the two angles, the higher is Nalt traj:

Nalt traj ∝
̂−−−→

(A, n),
−−−−−→
Gradmin ×

̂−−−→
(A, n),

−−−−−→
Gradmax (2.21)

Two approximations were introduced for expressions (2.20) and (2.21)

to reduce the effort of computing probability pn by the sensing nodes. First,

we considered that all nodes of a TAR are equally likely to be part of the

trajectory. Therefore, expression (2.20) has the same value for all nodes, and

is computed using the area value for the entire TAR without any discretization.

Then, Nalt is the same for all nodes and can be eliminated from the expression.

Second, we assumed that an agent’s trajectory can have any gradient inside

TAR, hence, in the worst case, it coincides with the data communication path

(DCP) inside the region. Then, probability pn can be estimated as follows:

pn ∝
1

lengthn∈DPi

(2.22)

DPi is the DCP containing node n. lengthn∈DPi
is the length of DPi

inside TAR.

Example: In Figure 2.8(b), DCP Path2 has no nodes inside the re-

gions, hence the probability of its nodes sampling the trajectory is lesser than

for the nodes of Path1.

Counting the number of path nodes inside a TAR requires a low com-

puting effort. For windows of size one, expression (2.20) is proportional to the

cosine of the angle between the trajectory and the DCP at node A.

Moreover, stochastically-bounded trajectory are bounded trajectories in

which the change to another fragment follows a stochastic rule. Figure 2.9(b)

shows a trajectory that is described by four fragments, each being character-

ized by specific gradient ranges and average time ∆T of switching to another

fragment. The switching between different fragments is modeled as a Marko-

vian process. Let’s denote xi the steady-state probability of fragment i, and

ti,j the transition rates between the fragments. The values of ti,j are found

through observing various trajectories through the same region. The steady-
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Figure 2.9: Trajectory description using stochastically bounded trajectory
model

state probabilities can be computed by solving the following equations:

ti,ixi −
∑
j 6=i

tj,ixj = 0 (2.23)

and

∑
∀k

xk = 1 (2.24)

Using the same reasoning as for bounded trajectories, probability pn in

expression (2.20) is updated as follows:

pn ∝ xi

∫
∆T

√
x2

0 + y2
0 + 2(Gradx +Grady)t dt

Areasub−region
Nalt traj (2.25)

or the approximation in equation (2.22) is changed to expression:

pn ∝ xi
1

lengthn∈DPi

(2.26)

ii. Adaptive trajectory prediction. The second method adapts its pre-

diction based on the current state and the rate of change of trajectory param-

eters. If the rate of change of velocity or angle changes beyond a range, the
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trajectory has entered another state. For example, a higher rate of change of

angle causes the trajectory to loop. A lower rate of change of angle causes an

almost linear trajectory.

Using the above definition of a trajectory state, the prediction method

implements the following steps. If the rate of change of angle and velocity

over time has been constant or within a small range (e.g., to support noise

margins), the trajectory is assumed to remain in the same state. A new state

is defined by changes of velocity ∆V and angle ∆θ over time. As shown

in equation (2.27), the probability pstate for which a trajectory remains in the

same state can be computed based on the time for which it has been in a given

state. That depends on the number ntrajstate of previous events for which the

trajectory assumed the same state and the number of deviations of current

values of velocity nδ(∆V ) and angle nδ(∆θ) with respect to the current state.

Hence,

pstate ∝
ntrajstate

nδ(∆V ) + nδ(∆θ)
(2.27)

For higher probabilities, predictions correspond to longer future tra-

jectory segments, and define time tpredict over which the trajectory can be

predicted accurately:

tpredict ∝ pstate (2.28)

tpredict depends on the current state of the trajectory e.g., rate of change

of velocity and angle, and the current absolute values of angle and velocity.

2.3.3 Computing the Parameters of Decision Making

Policies

The procedure computes the amount of sensing and lumping at ev-

ery sensing node and the parameters of the networked sensing platform, so

that a cost function including the overall error and propagation delay is mini-

mized. The computed parameters for the networked sensing platform include
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the path utilization rates and bandwidths of the data communication paths

(DCPs), and are used to set-up the local decision making schemes of the nodes

(Figure 2.10). An earlier version of the method was presented in [28].

Table 2.1 summarizes all the parameters of the linear programming

description, including their symbols and description. Also for each symbol

we indicated the way in which it is found: (P) indicates that the parameter is

found during profiling, (C) means that the parameter is computed by the local

decision scheme (Subsection III.D), (R) means that the parameter has a known

value (e.g., performance requirement or resource size), and (O) indicates that

the parameter is computed by solving the LP formulation of the optimization

scheme. Otherwise, the parameters are part of the mathematical analysis used

to compute error bounds or trajectory prediction.

The details of the LP formulation are presented next.

i. Cost function. The LP equations are solved along with the cost

function to compute the utilization rates: α for discarding sensed values (equa-

tion (2.8)), λ for different lumping levels, β for bandwidth values, and Path

for DCPs.

min

∀p∈S∑
{ζErr(Loss)

p + ξErr(Delay)
p + ηErr(Corr)

p +

θErr(Lump)
p + µDelayavp}

(2.29)

where, S is the set of all DCPs. Parameters ζ, ξ, θ, µ and η are

user-defined weights that reflect different importance assigned to the various

modeling error types and delay.

The following equations describe the LP optimization model. The equa-

tions are specific to data communication path DCPj with different path seg-

ments (px ∈ DCPj).
ii. Errors due to data loss (Err(Loss)). Data loss due to buffer over-

writing (Err(Buff)) occurs at node x when the input rate is higher than the

output rate and the difference is more than the available buffer size buff . The

data loss is equal to:
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Lossx = |(In ratex +NET INx )−NETOUTx − buff | (2.30)

buff is the local buffer size. The average sensing rate of node x

(In ratex) is equal to the required sampling resolution. NET INx is the amount

of data input at node x from other nodes in the path. The amount of data

output from node x is NETOUTx .

NET INx =
∑

j∈Pred

NETOUTj (2.31)

Pred is the set of all nodes that precede immediately node x on the

used data communication paths (DCPs).

NETOUTx depends on the amount of lumping at node x and all previous

nodes pv in path segment px of the DCPs that lead to node x:

NETOUTx = prob(Lump)
x DATAOUTx +

∑
∀pv∈px

prob(Lump)
pv DATAOUTpv (2.32)

DATAOUTx is the size of the packet sent out by node x for the locally

lumped data model.

The error due to buffer loss Err(Buff) is expressed using equation (2.7)

in which n is replaced by variable Lossx. Collection errors (E(Coll)) are de-

scribed as in equation (2.8). Equation (2.6) describes the total error E(Loss)

due to data loss at node x.

iii. Path delay (Delayav) and errors due to time delays (Err(Delay)).

The delay of path px is the sum of the average execution time of all nodes x

along the path plus the average time for transmitting the output data of each

node:

Delaypx =
∑
∀x∈px

(Execx +Delayoutx ) (2.33)

Execx is the execution time of the primitives at node x.

The average time for transmitting the output data NETOUTx of node x
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is expressed as follows:

Delayoutx = NETOUTx,MAX

∑
∀j

βj
1

BWj

(2.34)

βj is the rate of using bandwidth BWj for the output link and
∑
∀j βj =

1. NETOUTx,MAX is the maximum NETOUTx at node x found during profiling. The

worst-case value for NETOUT had to be considered in order to keep the model

linear.

The average delay (Delayav) is the average of the delays Delaypx for

all paths px used for communicating the sensed data to the data construction

site.

The error due to time delay Err(Delay) is described using expression (2.9)

in which TDelay is replaced by variables Delaypx .

iv. Correlation Error (Err(Corr)). The correlation error is given by the

equation below:

Err(Corr) =
∑
∀i∈DCP

Pathi Err
(Corr)
i (2.35)

where Err
(Corr)
x are computed using equation (2.14).

v. Lumping Error (Err(Lump)). The lumping error is given by the

equation below:

Err(Lump) =
∑

∀x∈DCP

(prob(Lump)
x Err(Lump)

x ) (2.36)

where Err
(Lump)
x are computed using equation (2.18). prob

(Lump)
x is the

probability that node x is lumped, and is given by the following equation:

prob(Lump)
x =

∑
∀j

λjlump levelj (2.37)

where lump levelj corresponds to the lumping level, which is defined

by the percentage of lumped nodes in px. λj is to the utilization rates of using

lump levelj.
∑
∀j λj = 1.
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for(DCP which overlap less with the predicted trajectory){

select communication BW m with rate β m ;

make_decision(Errtotal ,

while (true) {

 select lumping at level j with rate λ j;
update total error up to current time;

}

j , βmW, 

if (equation (38) is true) {

estimate mobile source trajectory using
method in Section III.B;

k

}
}

}

, Path

select DCP k with rate Path  ;

k ){λ

Figure 2.10: Local decision making routine

2.3.4 Local Decision Making Routine

The local decision making routine at a node is shown in Figure 2.10.

It uses as input parameters the computed values for the rates Pathk of using

DCP k, βm of using different bandwidths BWm for DCP, rate λk of employ-

ing lumping hierarchy level k at a node i, and the estimated minimum error

Errtotal. Equation (2.38) is used to decide locally, if node i performs lumping

or not. This decision is based on the following lemma:

Lemma 1: Node i performs variable lumping at current time T (curr), if

the following constraint is met:

Err
(prev)
i + Err

(k)
i

E[Erri]
<
W − T (curr)

W
(2.38)

Otherwise, there is no lumping at time T (curr). E[Erri] is an estimation

of the minimum total error at sensing node i over time window W . The

estimate is computed by the optimization in Section III.C. Err
(prev)
i is the

error due to previous lumping. Err
(curr)
i is the error introduced by the current

state lumping.

Proof: E[Erri] represents the lower bound of the error that can be

achieved by the sensing node (according to the optimization in Section III.C).

52



Assuming a uniform distribution of the lumping error, the total error in the re-

maining time of the current time window W (i.e. W−T curr) is E[Erri]
W−T curr

W
.

Hence, the decision making procedure should select to lump or not, so that

the difference between the bound E[Erri] and the sum Err(prev) + Erri(k) +

E[Erri]
W−T curr

W
is minimized. This proves the lemma.

Conceptually, the local decision making procedure at node i tracks the

lower bound E[Erri].

Next the decision making routine estimates the trajectory of mobile

energy sources or sinks using one of the algorithms presented in Section III.B.

The DCPs with least overlapping with the trajectories are selected as they

reduce the data loss along the DCPs (see Section II.A and Figure 2.3). From

the selected DCPs, the actual DCP k used in communication is chosen based

on the computed rates Pathk. The bandwidth of the chosen DCP is set to

value BWm based on the rates βm.

The LP formulation is solved offline, as shown in Figure 2.5, while tra-

jectory prediction and lumping level selection are executed online. The energy

consumption and time delay due to these computations is small compared

to the cost associated with data communication. Apart from generating and

sending its own data packets, each node receives data from other nodes, and

forwards it towards the target point along the selected DCP. Due to state-

variable lumping, data traffic and communication is reduced leading also to

reduction in average energy costs. In a sampling-processing-communication

iteration for unoptimized case, up to 70.84% of the time is spent on commu-

nication by a node in a network of size 25. In the optimized case, the average

reduction in traffic compared to unoptimized case up to 25.69%.

2.4 Experiments and Results

Experiments were performed to verify the accuracy and efficiency of the

discussed modeling scheme. An overview of the simulation framework is shown

in Figure 2.11. A temperature-sensing network was modeled in SystemC to

describe accurately the timing, resolution, bandwidth, and local memory of
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Figure 2.11: Experimental framework

reconfigurable mixed-signal PSoC processor [21]. PSoC processor includes an

8-bit processor operating at 24 MHz, 2k SRAM and 64k EPROM on-chip mem-

ory, programmable clocks, and serial data communication (SPI and UART)

with programmable bandwidths. This Simulator has a communication core,

which consists of a grid network of embedded nodes that perform various tasks,

such as sampling, communication, and generation of local models. One of the

nodes in the network, is designated as the target point (TP), and all other

nodes are connected to this TP via predefined path configurations. The TP

receives data packets, extracts temperature information from model parame-

ters, and builds the resultant thermal map. Loss, delay and error statistics are

then extracted from the information received by the TP.

2.4.1 Trajectory Prediction and Optimization

The two trajectory prediction algorithms were studied using six trajec-

tories defined such that they cover the entire data communication network.

The trajectories are presented in [48], and cover different trajectory direc-

tions, velocity values, angle ranges, and rates of change of velocity and angle.

The data communication paths (DCPs) were defined such that there are three

unique path configurations for each of the four target points. Hence, the ex-

periments used a total of twelve path configurations.
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Table 2.2: Summary of the two trajectory prediction algorithms

Average Data Loss Improv. Average Delay Improv.(%)

Trajectory Events A1 A2 A1 A2

1 20 0.75 0.75 -8.50 26.00

2 21 1.00 1.00 0.75 20.00

3 25 1.00 1.00 2.50 21.75

4 30 4.00 4.50 3.75 18.50

5 26 1.25 1.25 -8.00 18.75

6 74 6.25 7.75 -16.75 12.50

Both algorithms, stochastically bounded trajectories method (A1) and

adaptive method (A2), offer an improvement in data loss as compared to the

best-case static path configurations, in which all nodes in the network are

static. For the adaptive algorithm (A2), in most cases, the data loss is zero

and it is close to zero for A1. The maximum data loss was four samples for

A1, two samples for A2, and 33 out of 74 events for static path configuration.

Both algorithms provide improvements in average delay as compared to static

path configurations. Improvements are as high as 38% for A1 and 40% for

A2, but there are instances in which the resulting delay is higher for the two

methods as compared to static paths.

Table 2.2 summarizes the improvement and percentage improvement

in average data loss and average delay, respectively for the six trajectories

compared to the best-case static path configurations. Trajectories 4 and 6

are the longest trajectories in terms of number of events generated. For both

trajectories, algorithms A1 and A2 produce significant reduction in data loss,

but only method A2 results in reduced delay. For trajectories 1, 2, 3 and 5,

both algorithms achieve small improvement in data loss over the best-case

static configuration results. Algorithm A2 causes reduction in average delay

for all these trajectories, while A1 manages to do that only for trajectories 2

and 3. The results suggest that algorithm A2 is superior to algorithm A1.
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2.4.2 Data Modeling

Experimental set-up: The improvements in data loss, modeling error,

and latency were recorded and compared with the unoptimized case. The scal-

ability of the methods was tested by running simulation using three network

sizes: 25 nodes, 64 nodes, and 100 nodes. Four different data communication

path (DCP) configurations between nodes were used for each of the 3 network

sizes.

The simulator selects an appropriate configuration for each iteration

based on results of the optimization engine. For the unoptimized case, the

path utilization rate was set as 25% for each path configuration. So, each

configuration had an equal probability of being selected. The output of the

optimization engine was also used to select the lumping thresholds and the

communication bandwidth. For the unoptimized case (used as a reference),

the bandwidth utilization rate was fixed as 33.33% for each bandwidth value.

For the optimized case, the results of the minimum error estimation step were

used to set probabilities βj of the three bandwidth values.

In the optimization engine, weights θ, µ and η in the cost function

were set to reflect different importance assigned to modeling error, delay and

correlation error: OptRatio1 (θ/µ/η) = 0.6/0.2/0.2, OptRatio2 = 0.2/0.6/0.2,

and OptRatio3 = 0.2/0.2/0.6. Depending on which ratio is being used, the

probability of using a particular communication rate changes. Weights ζ and

ξ were set to 0. For example, OptRatio2 assigns more importance to reducing

latency, hence increasing the probability of using the fastest communication

rate.

Thermal modeling was used a case study for distributed data mod-

eling, even though the technique can be also used for other data modeling

situations. The thermal data was generated for the ULTRASPARC Niagara

T1 architecture [34]. Experiments were performed using eight datasets, which

represent different workload scenarios resulting in stationary, fluctuating and

moving hotspots. The temperature behavior was found for the datasets using

the temperature simulator 3D-ICE [46].

Model validation. The bounds for lumping error and correlation er-
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Figure 2.12: Bounds on lumping (left) and correlation errors (right)

ror were estimated using equations (2.18) and (2.14), respectively. The ther-

mal data was generated through profiling of various workload scenarios. The

bounds were tested for each of the datasets used in the experiments for all

DCPs and OptRatios. The value of correlation error depends on the selected

communication path and the dataset. While the magnitude of the bound

depends on the dataset, the shape of the curve (over time) depends on the

configuration of the DCP. Among all the datasets, Dataset 6 has the highest

average correlation error. Figure 2.12(right) shows the correlation error for

Dataset 6 for all DCPs along with the bounds. The bounds were recomputed

at every iteration. Low values of the bounds correspond to state variables

with small values, while large bounds reflect large state variables. The slope

of the bound plots describes the rate of change of the state variables. Path 1

has the highest error compared to the other DCPs because it has longest path

segments. The two main factors that affect the value of lumping error are

dataset and optimization ratio (OptRatio). Dataset 3 has the highest lump-

ing error compared to other datasets. The lumping error for all OptRatios for

Dataset 3 along with the bounds is shown in Figure 2.12(left). The shape of

the curve for the bound depends on the lumping level while the magnitude de-

pends on the dataset. The error is highest for OptRatio3 since it performs the

highest amount of lumping. Note that if the number of iterations increases,

the bounds would adjust accordingly by moving up. Hence, the actual errors
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values would not exceed the bounds.

The validation of S and Gr coefficients was performed for the unop-

timized case as well as optimized case for all OptRatios and all DCPs using

a large data set for simulated workloads. First, the sensed temperature data

is converted to equivalent storage (S) and gradient coefficients (Gr) at each

node. At the target point, the original thermal information is extracted back

from these coefficients. For example, for Dataset 8, the average error associ-

ated with these conversions is 2.5% for the un-optimized case and 3.0% for the

optimized case. Figure 2.13 shows a comparison between the actual thermal

map sensed by the sensor nodes versus the thermal map extracted from the S

and Gr coefficients. The two maps are very similar.
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Figure 2.13: Complete thermal map (left) and thermal map constructed using
the data model (right)

Results and analysis: The results for Dataset 2 (two moving heat

sources) and Dataset 6 (six stationary heat sources) for different network sizes

are detailed. Then an overview of results for all datasets and network sizes is

summarized.

58



The following parameters were extracted from the simulation results:

(i) data not sampled gives the number of instances when the node failed to

sense the temperature data because it was busy forwarding packets from pre-

vious nodes on the path; (ii) buffer loss is the loss of data because the packet

got overwritten in the buffer due to incoming packets; (iii) lumped data gives

the loss of packets because the node was lumped; (iv) data received is the

number of packets received at the target point; (v) avg. delay is the average

delay associated with packets that were received at the model construction

node; and (v) avg. error is the average value of lumping error for the packets

that could not reach the model construction node.

Dataset 2. The experimental results for Dataset 2 are as shown in Fig-

ures 2.14 and 2.15. The x axis in Figure 2.14 gives the network size. The

y axis shows the number of packets in terms of percentages. The ‘data not

sampled’ and ‘buffer loss’ represent undesirable losses as they cause uncontrol-

lable errors for the data models. ‘Lumped data’ represents controllable loss as

its impact is factored in the final error of the data models.

For the 25 node network, the unoptimized case has the highest collec-

tion loss and buffer loss as compared to any of the optimized cases. Also, the

delay and error is much larger for the unoptimized case. The amount of lump-

ing increases if the cost function assigns higher priority on reducing latency

and lower importance to modeling error and correlation error. The increase in

lumped data leads to lower communication traffic but causes a higher modeling

error. Also, faster bandwidth rates are used. The average delay increases as

the network size increases. Since a larger volume of packets is generated in the

larger networks, but the buffer size of the nodes remains fixed, there is higher

collection loss and buffer loss. The values of average error are comparable only

because there is higher loss leading to fewer packets reaching the TP.

A couple of anomalies were noted in the results for network sizes 64

and 100 nodes. Firstly, the requirement to increase lumping to improve com-

munication (at the penalty of higher error) was less than if the objective was

to reduce error by allowing less local lumping. Less lumping combined with

slower communication rates causes increase in delay and losses due to buffer
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Figure 2.14: Dataset 2: data loss for different network sizes
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Figure 2.15: Dataset 2: delay and error for different network sizes

overflow. Therefore, fewer packets reach the TP, leading to increase in error.

Secondly, especially for 64 node network, the delay for unoptimized case is

less than the delay for the case that minimizes lumping. This is because delay

can only be estimated for packets that actually reach the TP. However, since
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very few packets actually make it to the TP in the unoptimized case (hence

the large error) and since most of these packets are from nodes close to the

TP, the average delay is minimized. Therefore, it is important to combine the

loss and the delay/error statistics to get a more accurate understanding of the

results.
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Figure 2.16: Dataset 6: Data loss for different network sizes

Dataset 6. The experimental results for Dataset 6 are as shown in

Figures 2.16 and 2.17. Most of the observations noted for the results for

Dataset 2 are also valid for Dataset 6. An important difference is in the

amount of lumped data as there is less lumping for Dataset 6. The basic

purpose of lumping is to reduce communication traffic by lumping some of the

less important data. Since Dataset 6 has more thermal activity (hotspots),

there are fewer regions where data can be lumped. This causes an increase in

communication traffic leading to higher delays and buffer loss.

Summary of results. Table 2.3 summarizes the percentage improvement

in loss, model error, and delay for the optimized cases vs. the unoptimized

case. Columns 4, 6, 8, and 10 in the table present the amount of performance

improvement due to trajectory prediction (TrPr) using algorithm A2. The

results are averaged over the 8 datasets. The collection loss (data not sampled)
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Figure 2.17: Dataset 6: delay and error for different network sizes

is reduced by up to 84.43% for 25 nodes, up to 57.86% for 64 nodes, and

up to 50.50% for the 100 node network. Similarly, for buffer loss, there is

significant reduction of up to 67.34% for 25 nodes and up to 76.16% for 100

node network. The improvement is smaller for 64 nodes up to 16.31%. This

is because, for the unoptimized case, more than 60% of the data is lost as

collection loss. So, there is already less traffic in the network leading to less

buffer loss. This causes the misperception that the buffer loss is comparable

for the optimized and unoptimized cases. It is also interesting to note that

the percentage improvement for both, collection and buffer loss, is higher for

OptRatios 2 and 3 as compared to OptRatio 1. The reduction in overall error

is up to 76.91% for 25 nodes, between 58.29 to 73.49% for 64 nodes and up to

72.99% for 100 nodes. The highest improvement is shown either by OptRatio 1

or 2, for any network size. There is a significant reduction in the average delay

for 25 nodes (up to 57.62%), especially for OptRatio2 which tries to improve

latency. For the other network sizes as well, the improvement in latency is

highest for OptRatio2 but the percentage is smaller for 64 and 100 nodes.

Again, the low values for 64 nodes are caused by the fact that more than 60%

of the packets in the unoptimized case are not generated at all (collection loss)
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Table 2.3: Summary of Results

Net Opt % Improvement vs UnOpt Case

Size Ratio Coll TrPr Coll Buff TrPr Buff Error TrPr Delay TrPr

Loss Loss Loss Loss Error Delay

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 79.10 9.43 62.50 14.52 76.91 1.05 45.69 2.16

25 2 83.61 6.35 67.34 10.48 68.21 1.89 57.62 1.54

3 84.43 13.93 69.35 18.95 72.67 2.82 56.57 0.80

1 36.26 14.27 -14.02 4.54 58.29 9.35 -11.49 0.81

64 2 57.96 19.27 16.31 4.88 73.49 5.21 5.83 7.04

3 44.80 20.30 13.11 9.97 65.97 9.74 -2.14 6.96

1 25.72 8.07 24.89 5.04 62.66 3.47 0.40 1.24

100 2 50.50 14.97 76.16 1.37 72.99 3.56 34.95 3.60

3 37.02 12.37 76.79 0.63 68.68 3.91 9.25 1.29

leading to less traffic and lower delays for the remaining packets. Hence, it

is important to combine the information over the four columns to get useful

insights into the results of these experiments.

For the 25 node network, trajectory prediction provides up to 13.93%

reduction in collection loss and up to 18.95% reduction in buffer loss. It also

contributes to a small improvement in overall error and delay. For the 64 node

network, the prediction results in up to 9.74% reduction in error and up to

7.04% reduction in delay. The improvement is loss is also high, up to 20.30%

for collection loss and up to 24.54% for buffer loss. Similarly for the network

size of 100 nodes, there is a small contribution to reduction in loss, delay and

up to 12.37% reduction in collection loss.

In a platform with constant bandwidth, j = 1 and variable βj is one

in equation (2.34). Optimization of the selection of DCPs and lumping levels

is still performed to minimize data loss and delay. Table 2.4 compares the

optimization results when three bandwidths BWj are used versus constant

bandwidth. When fixed BW1 (slowest) is used, as expected, the improvements

in loss, error, and delay are less than for the fully optimized case (multiple

BWj) for all optimization ratios. For fixed BW3 (highest), the results for

collection loss and error are similar to the fully optimized case (multiple BWj).
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Table 2.4: Optimization Results for Single versus Multiple Bandwidths

% Improvement vs UnOpt Case

BW OptRatio Coll Loss Buff Loss Error Delay

1 79.10 62.50 76.91 45.69

Multiple BWj 2 83.61 67.34 68.21 57.62

3 84.43 69.35 72.67 56.57

1 52.66 52.78 63.30 -18.76

Fixed BW1 2 66.22 72.69 59.09 0.06

3 61.17 66.67 61.67 -6.42

1 87.90 52.78 79.81 67.65

Fixed BW3 2 86.16 59.72 74.59 70.74

3 87.23 56.94 76.68 69.89

The improvement in delay is higher and in buffer loss is less. But, operating

only at maximum bandwidth increases power consumption.

2.5 Conclusion

This chapter presented a procedure to construct robust data models

using samples acquired through a grid network of embedded sensing devices

with limited resources, like bandwidth and buffer memory. The procedure

constructs local data models by lumping state variables, and then collects

centrally the local models to produce global models. The modeling procedure

uses a linear programming formulation to compute the lumping level at each

node, and the parameters of the networked sensing platform, like data commu-

nication paths and bandwidths. Two algorithms are described to predict the

trajectories of mobile energy sources/sinks as predictions can further reduce

data loss and delays during communication. The computed parameters and

trajectory predictions are used to set-up the local decision making routines of

the networked sampling nodes. Experiments discuss the method’s efficiency

for thermal modeling of ULTRASPARC Niagara T1 architecture.

Experiments show that variable lumping reduces the overall error by up

to 76.91% and delay by up to 57.62%, as compared to no lumping being used.

The error is smallest if latency reduction has high priority. The attempt to
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minimize local error performs less lumping, however, results is larger data loss,

and hence in more overall error. The attempt to reduce the overall error by

minimizing the correlation error results in increased latency. As the network

size increases from 25 nodes to 64 and 100 nodes, the larger communication

traffic leads to further losses and delays. Therefore, accuracy-centered opti-

mization becomes critical for performing reliable data extraction. Trajectory

prediction using adaptive method (A2) reduces modeling error by up to about

10%.
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Chapter 3

Optimizing the Accuracy of

Sound Based Tracking

1

This chapter presents an approach for optimizing the accuracy of data

models produced based on data sampled through a network of embedded sen-

sors. The method considers three orthogonal facets defining model precision:

minimizing the sampling error of the individual embedded nodes, sampling

sufficient data from distributed areas to correctly represent the phenomenon

of interest, and meeting the timing delays that guarantee the timeliness of

data. The three objectives are achieved by dynamically reconfiguring the ar-

chitecture of the embedded nodes, and dynamically selecting the data transfer

paths to the decision making nodes. Sound based trajectory tracking is used

as a case study for the proposed approach.

1Note: This chapter is based on the work published in the paper [16]. This research
was conducted in collaboration with the co-authors of the paper and my contributions
are as follows: The theory and experiments related to sound-based localization and node-
level optimization. Also provided assistance in the development and implementation of the
trajectory prediction algorithms.
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3.1 Introduction

Resource allocation is a main challenge for distributed data acquisition

for decision making [19,55]. This is because the individual embedded nodes of

the networked infrastructure, due to the cost constraints of an application, do

not have sufficient resources to sample sufficient data, e.g., limited local mem-

ory, energy and communication bandwidth. Therefore, the resources of the

infrastructure as a whole must be efficiently employed for the sampling task.

For example, a sensing node running a sound-based tracking algorithm on an

8-bit microcontroller can track only vehicles moving less than 10 km/hour [66].

In addition, many sensor readings might be incorrect, if the background noise

is very high, or for certain angles between the node and the sound source.

These limitations can be significantly reduced if instead a network of embed-

ded nodes is used for tracking. However, new challenges arise at the network

level as data routing to the decision making nodes can produce significant data

loss and delays.

The resources of a network of embedded nodes must be allocated so

that there is an optimal load balancing between sensing - processing - commu-

nication activities. Zhao et al. [19] explain that this problem needs meticulous

investigation due to its importance for distributed information processing sys-

tems. Several important resource allocation methods have been presented in

the literature mainly to optimize energy and power consumption. Munir et

al. [64] propose a technique using Markov Decision Processes to tune the pa-

rameters of the node architecture (i.e. processor voltage and frequency, and

sensing frequency) to reduce energy consumption while operating in chang-

ing environments. Software reconfiguration for WSN is discussed in [60]. Lu

et al. [62] discuss energy efficient node cluster formation using data corre-

lations and spatial properties of the application. A decentralized adaptive

resource allocation approach is discussed in [63]. Nodes use a bidding scheme

to allocate resources in which they optimize their return (i.e. the utility of

their actions) while minimizing their payments (e.g., consumed energy). Other

resource allocation methods for distributed networked systems are discussed

in [58, 61, 67, 68]. While minimizing energy consumption is important to pro-
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long the functioning of a network, acquiring sufficient data is equally important

for effective decision making. Performing resource allocation to optimize the

quality and quantity of the data acquired through a network has not been

studied yet.

This chapter presents a new approach for optimizing the accuracy of

distributed data acquisition for dynamic phenomena through a network of

embedded sensors. The method considers three orthogonal facets defining

model precision: minimizing the sampling error of the individual embedded

nodes, sampling sufficient data from distributed areas to correctly represent the

phenomenon of interest, and minimizing the timing delays that guarantee the

timeliness of data. The first objective is achieved by dynamically reconfiguring

the frontend architecture of the embedded nodes. The information about the

signal level and bandwidth is used to adapt the parameters and topology of

the amplifier and filter blocks of the frontend. Dynamic data transfer path

selection minimizes data losses and delays by using a probabilistic model for

the likelihood of a node to run out of resources, either because of it being on

the sampled trajectory or being part of the forwarding paths of other nodes.

Three models, called quasi-static, bounded and stochastically bounded models,

are presented for likelihood prediction.

The chapter has the following structure. Motivational examples for this

work are discussed in Section 2. Section 3 presents the proposed adaptation

methods. Section 4 discusses experimental results. The chapter ends with

conclusions.

3.2 Motivation

The signals and data sampled through the network of embedded nodes

is utilized to create models (of the observed physical phenomena) used in

decision making. A model is defined by the following quadruple:

Model =< Function,Error, Utility, Cost > (3.1)
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Function is the mathematical expression of the model. Error is the prediction

error of the model. Utility is the utility of using the model in decision making,

(e.g., improving the quality of decisions). Cost is the cost of producing the

model, including the related time, and used hardware resources and energy.

This chapter is mainly concerned with minimizing the error of the model.

The modeling error depends on three main factors: (i) the accuracy of

the signal sampling at the individual nodes, (ii) the data loss during commu-

nication to the decision making node (called target point in this chapter), and

(iii) the delay with which data is received at the target point, as excessively

delayed data might become obsolete. The next two examples explain how

resource allocation impacts the three factors.

A. Signal sensing accuracy. Sound-based tracking algorithms were im-

plemented on PSoC embedded processors [21], and then the effect of ambient

noise on the localization accuracy was studied. The different Signal to Noise

ratio (SNR) values were 0dB, 6dB, 20dB and 40dB. Readings were taken for

values of Direction of Arrival (DoA) ranging from -90 to +90 in steps of 15

degrees. A reading was considered abnormal if its value deviates from the

expected value by more than five degrees. The experiment counted the num-

ber of instances of abnormality out of twenty readings for each angle for each

value of SNR. The rms error was calculated only for values which were not

abnormal. Figure 3.1 plots the percentage abnormality for localization for low

noise and high noise conditions. Similarly, Figure 3.2 plots the rms error for

localization for low noise and high noise.

These experiments detail the fact that the probability of getting an

abnormal DoA estimate increases with increase in the ambient noise, close to

100% in certain conditions. The accuracy of the localization data, expressed

based on error depends to a large degree on the noise conditions. The tempera-

ture dependency of the speed of sound in air introduces additional abnormality

in the results.

B. Accuracy at the network level. The correlations between the trajec-

tory of the tracked sound source and the selected data communication paths

influences both the experienced data loss and delays while forwarding data to
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Figure 3.1: Percentage abnormality for high and low noise conditions
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Figure 3.2: Rms error for high and low noise conditions

the target point.

It has been experimentally observed that, due to the limited resources

of a node, data can remain in the receive buffer while the node is sampling.

Data loss occurs when data stored in the buffer is overwritten before it is

forwarded. This situation also increases the delay of transmitting data to the

target node as described by Figure 2.3 in section 2.1 of Chapter 2.

In conclusion, resource allocation, e.g., the frontend resources used for

localizing the sound source by a node and the selected data communication

paths, determine the three main factors defining the error of the models used
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in decision making. The quality of resource allocation schemes depends to a

high degree on the characteristics of the environment, e.g., ambient noise, and

monitored phenomena, i.e. trajectory.

3.3 Two Methods to Improve Model Accuracy

This section presents two resource allocation methods to improve data

acquisition accuracy at node and network levels.

3.3.1 Improving Accuracy at the Node Level

The capability of PSoC to dynamically reconfigure its mixed-signal

frontend can be used to improve the accuracy of the data (e.g., sound source

location) sampled by each embedded node. This optimization dimension has

not been explored before by other sound-localization implementations which

use FPGAs or ASICs [56].

The adaptation procedure operates as follows: after detecting a sound

source, the sound characteristics, e.g., level, frequency bandwidth, and noise,

are found and used to dynamically customize the frontend by modifying the

topology and parameters of the building blocks at run time. The frontend

has one amplifier, one filter and one ADC. (i) The level of the signal is used

to adjust the gain of the amplifier until a predefined threshold for the signal

amplitude is achieved. (ii) The frequency bandwidth of the tracked signal

decides the bandwidth requirement of the filter, which is then used to select

the topology and filter parameters that match closest the requirement. The

block parameters of the alternative filter solutions are stored locally by every

node. (iii) The reconfigurable input MUXs is used to integrate temperature

sensing. The hardware of the analog frontend used for sound localization is

modified at runtime and reused for temperature sensing. Temperature sensing

helps further improving the localization accuracy.

A shown in Section IV, the three frontend reconfiguration steps improve

the node-level accuracy of data acquisition without increasing the utilized

hardware resources and energy.
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3.3.2 Improving Accuracy at the Network Level
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Figure 3.3: Data loss prediction

At the network level, the proposed resource allocation method decides

the used data communication paths and bandwidths, so that the overall data

losses and delays are within the acceptable errors of the model (equation (2.5)).

Each node sampling or forwarding data to the target point makes

communication-related decisions without relying on global state information

as its update to every node in the network would require very large overhead.

For example, in Figure 3.3(a), node A decides to forward the sampled data us-

ing the minimum length path going through node C. Simultaneously, node C

also receives the data sampled by node B. In this case, data is lost because

the requirements exceed the communication resources of node C. If any of

the nodes A and B selects a different path then it experiences a longer delay

but there is no data loss. This resource allocation problem is an instance of

the Prisoner’s Dilemma problem in game theory [65] as the local decisions of

a node interact strongly with the decisions of another node without the nodes

knowing each others decisions.

The data loss at any node n of a path pi is as follows:

lossn,pi
= pnK +N in

n −N out
n (3.2)

pn is the likelihood of having data samples at node n (e.g., the trajectory

passes through the vicinity of the node). K is the number of data tokens

(bytes) of each sample. N in
n is the total input data of node n, and N out is the
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total output data of the node. N in
n includes the data transferred to the node

along all paths converging to the node. Similarly, N out
n is the data sent out

along all output paths available at node n.

The total loss of the nodes of path pi is:

losspi
=

∑
∀n∈pi

lossn,pi
(3.3)

Every node must select the path pi and its bandwidth (communication speed)

such that the loss and delay is minimized:

argpi
min(α losspi

+ β Delaypi
) (3.4)

α and β are weights describing the importance of data loss and delay for

deciding the error of the decision making model.

Equations (2.1) and (3.3) incorporate several probabilistic variables.

The likelihood pn of sampling data at a node depends on the tracked trajectory,

which is known only during run time. Variable N in
n depends on the trajectory

and the decision of other nodes in the network to use a communication path

that brings data at the input of node n. However, the nature of the decisions

made by other nodes is unavailable to the node. Instead, the node must decide

path pi using estimations of the probabilistic variables. The time window ∆T

considered for estimation is a trade-off between the preciseness of estimation

and the related processing overhead at the node. The prediction procedures

for the two variables are discussed next.

Prediction procedure 1: trajectory prediction. This chapter

presents three ways to predict a trajectory based on the nature of the tracked

source.

1. Quasi-static trajectories. We define an unknown trajectory to be

quasi-static, if the trajectory can be approximated well (at run time) as a col-

lection of fragments pertaining to a set of statically defined trajectories. This

is a good approximation for phenomena described by differential equations

with parameters in known ranges of values, e.g., the trajectories of unpow-

ered, floating beacons in a pond. For each of the static trajectories in the
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static set, the data path offering minimum loss and delay can be found using

the method described in [67].

Each node stores the static trajectories and the best data communica-

tion path for the trajectory. The data path selection procedure dynamically

estimates at every node the most likely static trajectory to which the cur-

rent node (and its neighboring nodes) might belong to. Then, the optimal

data path is dynamically selected for that node. The probability of the cur-

rent node n being approximated by trajst,i of the static set is estimated using

Bayesian inference [57]:

p(trajst,i|n) ∝

p(n|trajst,i)
∑
trajst,k

p(trajst,i|trajst,k)p(trajst,k|nprev) (3.5)

p(trajst,i|n) is the probability of having trajectory trajst,i given that node n

sampled the current trajectory. p(n|trajst,i) is the probability of node n sam-

pling data given the static trajectory trajst,i. p(trajst,i|trajst,k is the proba-

bility of having a transition to trajst,i given trajst,k. p(trajst,k|nprev) is the

probability of having trajst,k given that the previous node nprev sampled the

trajectory.

The static path having the highest value p(trajst,i|n) is selected as being

the one to which the current nodes belongs to, and its data path is used for

forwarding data.

2. Bounded trajectories. We define a trajectory as a bounded trajecto-

ries if the trajectories that can be approximated as a sequence of convex - con-

cave fragments, where each curve segment has bounded gradients with known

ranges. The point separating each successive convex - concave fragments is

called inflexion point. The average time distance ∆T between inflexion points

is also known. The prediction model estimates that the real trajectory is lo-

cated inside the region defined by the minimum and maximum gradients. The

region is called trajectory approximating region. The mathematical expres-

sions are described in detail in section 2.2 of Chapter 2.

3. Stochastically bounded trajectories. We define a trajectory as stochas-
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tically bounded trajectories if the trajectory is approximated by bounded frag-

ments in which the change to another fragment follows a stochastic rule, in-

stead of alternating between convex and concave regions like for bounded tra-

jectories. Similar to bounded trajectories, stochastically bounded trajectories

are composed of fragments with gradients limited to a known range [GradiMin,

GradiMax]. The mathematical expressions are described in detail in section 2.2

of Chapter 2.

Prediction procedure 2: data flow prediction. The reasoning for

estimating variable N in in equation (2.1) is discussed based on Figure 3.3(b).

Node A must decide if it should forward data to target point TP through

node C. However, the data might get lost due to the data sampled by node B.

The decision of node B to use node C as a forwarding node to TP depends

on the number of shortest-path alternatives available to node B. All shortest-

path alternatives are included within the bounding box shown with dashed

lines. Hence, instead of using node C, node B could use all forwarding nodes

situated at the same distance as node C, such as nodes 2 and 3. If the nodes

are equally spaced then the likelihood of node B selecting node C depends on

the number of alternatives:

likelihoodB,C ∝
1

WB

≈ 1√
2× dist(B,C)

(3.6)

WB is the number of nodes equally spaced to node B as node C. dist(b, C)

is the communication delay between nodes B and C.

As shown in Figure 3.3(c), the likelihood of node C receiving additional

samples forwarded from other nodes than node A is then as follows:

likelihoodC ∝
∑

∀B∈Traj

1

WB

pB (3.7)

where pB is the likelihood of node B sampling the trajectory. Or,

likelihoodC ∝
∑

∀B∈Traj

1√
2× dist(B,C)

pB (3.8)
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Table 3.1: Frontend reconfiguration results
RMS noise RMS noise Percent

LPF BPF Improvement

105.74 32.03 69.70

105.20 29.39 72.05

98.39 22.73 76.89

89.51 25.85 71.12

85.40 26.17 69.34

82.63 26.80 67.56

104.35 25.91 75.16

98.05 37.71 61.53

115.29 31.49 72.68

85.53 22.75 73.39

Estimating transmission delay. The total transmission delay in

equation (3.4) for path pi is:

Delaypi
= Timeproc +

k1∑
n=1

rn × Timecomm + k2 × Timewait (3.9)

Timeproc is the processing time of the sound localization algorithm executed

by a node. Timecomm is the data communication time between two successive

nodes. k1 is the number of nodes to which data is forwarded including the

target point. rn is the number of re-transmissions for the next node due to the

wireless connection. Timewait is the average waiting time in the input buffer

of a node. k2 is the number of nodes in which data is buffered before reaching

target point. rn and k2 are Gaussian variables with mean and variance set by

the similar characteristics of the wireless communication module and buffering

at the network nodes.

3.4 Experiments

3.4.1 Improving Accuracy at the Node Level

A SNR of 0dB (high noise conditions) was used to perform experiments

to quantify the percentage improvement in the rms value of noise due to fil-
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Table 3.2: Direction of Arrival Results
AE for AE for AE for PI for PI for

SNR 0dB SNR 9dB SNR 20dB 0-9dB 9-20dB

3 2 2 33.33 0.00

3 2 2 33.33 0.00

2 2 2 0.00 0.00

4 3 3 25.00 0.00

4 2 2 50.00 0.00

4 3 2 25.00 33.33

4 3 2 25.00 33.33

5 2 2 60.00 0.00

3 2 2 33.33 0.00

2 2 2 0.00 0.00

ter reconfiguration. The results are as shown in Table 3.1. The percentage

improvement in rms noise ranges from 61.53% to 76.89% with an average im-

provement of 70.98%. This reduction in rms noise translates into improvement

in SNR.

Due to frontend reconfiguration, SNR of 0dB changes to 10.75dB, SNR

of 3dB to 16.75dB, SNR of 9dB to 19.75dB, SNR of 20dB to 30.75dB, and SNR

of 40dB to 50.75dB. This improvement in SNR decreases the probability of

obtaining abnormal results as shown in Figure 3.1. The SNR value closest to

10.75dB and whose data is available is 9dB. Using this data and by simulating

a probability model using random numbers, experiments were conducted to

compare the number of Abnormal Estimates (AE) obtained over for both these

SNR values and then identify the Percentage Improvement (PI) in results. The

actual estimates were assigned to the 13 nodes on the trajectory ranging from

-90 to +90 degrees in steps of 15 degrees. Similar experiments were performed

for 9dB and 20dB. The results are summarized in Table 3.2.

We observe that when SNR changes from 0dB to 9dB, the percentage

increase in correct estimates is between 0% to 60% with an average increase of

28.5%. Also, when SNR changes from 9dB to 20dB, the percentage increase in

correct estimates is between 0% to 33.33% with an average increase of 6.67%.
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3.4.2 Improving Accuracy at the Network Level

The following path selection algorithms discussed in Section III were

experimented for simulated PSoC networks of sizes 25, 64 and 100 nodes.

Algo1 refers to path selection based on the minimum cosine between the tra-

jectory and the data communication path (approximation for bounded trajec-

tory model). Algo2 uses path selection based on a qualitative expression of

the gradient ranges and number of inflexion points of the bounded trajectory

model (bounded model). Algo3 refers to the quasi-static trajectory model.

Algo4 implements equation (2.22) for path selection. The equation is com-

puted for the node over a window of k forwarding nodes. Algo5 implements

the stochastically bounded trajectory model.

The simulation models were calibrated according to the timing delays

and data waiting times in buffers measured for real nodes. The number of

re-transmissions rn in equation (3.9) for path delays was also calibrated based

on measurements of physical wireless networks. For every network, experi-

ments considered four different target points, and three different data path

configurations. Various trajectories were considered.

Table 3.3 presents data loss values for the network with 100 nodes.

Column one shows the target point which was used. Column 2 indicates the

path configurations used for that target point. Column 3 presents data loss for

the trajectory for that particular path configuration. The heading for Column

3 has data loss (out of n), where n is the length of the trajectory. Columns 4,

5, 6, 7 and 8 give (data loss for that algorithm) / (data loss for the static path

configuration) for performance comparison of the algorithm with the static

DAPs.

The table shows that all data path selection methods reduce the data

loss compared to static data paths. For example, the losses of the static paths

can be as high as 8 data values out of 19 values (50%). For this case Algo1 and

Algo4 experience no loss, and Algo2 looses only one value. Similar percentage

data loss reductions were observed also for the network with 64 nodes. For

this network, Algo4 has a slightly smaller data loss than Algo1. Increasing the

window size k for Algo4 does not produce any improvement meaning that the
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Table 3.3: Data loss for network with 100 nodes
Target Path Data Loss Data Loss for Algos

Point Config (out of 19) Algo1 Algo2 Algo3 Algo4 (k=2) Algo4 (k=4)

1 1 3 0/3 1/3 3/3 0/3 0/3

2 3 0/3 1/3 3/3 0/3 0/3

3 1 0/1 1/1 3/1 0/1 0/1

2 1 2 0/2 2/2 1/2 0/2 0/2

2 7 0/7 2/7 1/7 0/7 0/7

3 1 0/1 2/1 1/1 0/1 0/1

3 1 8 0/8 1/8 4/8 0/8 0/8

2 3 0/3 1/3 4/3 0/3 0/3

3 3 0/3 1/3 4/3 0/3 0/3

4 1 6 2/6 0/6 1/6 2/6 2/6

2 0 2/0 0/0 1/0 2/0 2/0

3 1 2/1 0/1 1/1 2/1 2/1

related trajectory model should be used only for short-term predictions.

Table 3.4 presents the average delay for networks with 100 nodes. Col-

umn 1 shows the used target point. Column 2 indicates the path configurations

used for that target point. Column 3 shows average delay for that particular

path configuration. Columns 4, 5, 6, 7 and 8 show percentage improvement of

average delay compared to static paths.

For 8 out of 12 cases, Algo1 and Algo4 reduce the average delay by more

than 20%, up to 45%. For 6 cases, Algo2 offers delay improvements of more

than 15%, up to 32%. The window size k does not affect the delay saving of

Algo4. Note that in 11 out of 12 instances, one of the four algorithms reduces

delay compared to any of the static paths. This suggests that identifying

the best approximation model for a trajectory is very important, and generic

trajectory models are insufficient. Algo3 performs worst compared to the

other methods with respect to both loss and delays. Only for this method, we

regularly see loss and delays higher than for static paths. That is because the

performance depends on how well the real trajectory is approximated by the

static trajectories.

Algo5 was experimented for trajectories that turn back. These are
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Table 3.4: Average delay for network with 100 nodes
Target Path Average Percentage Improvement in Avg Delay

Point Config Delay Algo1 Algo2 Algo3 Algo4 (k=2) Algo4 (k=4)

1 1 1946.67 32.13 32.04 5.891 30.85 30.08

2 1928.67 31.50 31.41 5.012 30.21 29.43

3 1288.24 -2.55 -2.69 -42.21 -4.49 -5.66

2 1 1731.76 21.13 6.25 15.95 20.65 19.70

2 2118.33 35.53 23.36 31.29 35.13 34.36

3 1455.56 6.17 -11.54 0.00 5.59 4.47

3 1 2250.91 45.54 32.97 15.38 45.54 45.54

2 1819.38 32.63 17.07 -4.69 32.63 32.63

3 1445.63 15.21 -4.38 -31.75 15.21 15.21

4 1 1901.54 27.80 16.22 26.38 26.87 21.83

2 1722.63 20.30 7.52 18.73 19.28 13.71

3 1400.00 1.93 -13.80 0.00 0.67 -6.18

difficult to handle by the other algorithms, including static paths. There was

no data loss in all but one instance for the network with 100 nodes, and no

data losses in all cases for networks with 25 nodes. The maximum loss was 2

data values out of 15 for networks with 64 nodes.

3.5 Conclusions

This chapter presents a new approach for optimizing the accuracy of dis-

tributed data acquisition for tracking dynamic phenomena through a network

of embedded sensors. The method considers three orthogonal facets: mini-

mizing the sampling error of the individual embedded nodes through frontend

reconfiguration, and selecting dynamically data paths to avoid data loss and

delays due to embedded nodes running out of resources. The likelihood of a

node to run out of resources, either due to it sampling the trajectory or being

part of other forwarding paths, is estimated using three prediction models.

The accuracy of data sensing is improved by about 28.5%, data loss is zero in

most situations, and delay reductions are more than 20% in most cases.
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Chapter 4

The Role of Precedents in

Increasing Creativity during

Iterative Design of Electronic

Embedded Systems

1

This chapter presents a study on the role of precedents in illuminat-

ing creative ideas during iterative design for solving open-ended problems in

electronic embedded systems. Through an experimental study grounded in

cognitive psychology, this work examined the influence of precedents on the

novelty, variety, quality, and utility of design solutions devised through an

iterative design process involving groups of participants. Another tested hy-

pothesis was whether incremental changes of requirements improve novelty.

Results show that precedents did not increase solution novelty and quality,

but improved utility. Precedents reduced design feature variety as solutions

converged towards a few dominant designs. Incremental modification of re-

quirements did not increase novelty.

1Note: This chapter is based on the work published in [6].
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4.1 Introduction

Design problems in electronic embedded systems are often open-ended

as they address new core applications and functionalities in emergent yet im-

portant domains, like intelligent infrastructure, robotics, healthcare, automo-

tive industry, and many more. Open-ended design problems are incompletely

specified, or represent needs based on organizational or personal perspectives,

judgments, and predictions [78, 80]. Other kinds of design problems include

fully-specified, well-defined problems and fully-specified, infeasible problems

[91,109,116]. Fully-specified, well-defined problems are described as complete

sets of requirements solved through optimization or transformation methods.

Tackling fully-specified, infeasible design problems involves finding the contra-

dicting requirements and then solving these through specific resolution rules

[70,74,84].

Creativity is important in solving open-ended design problems because

new goals and functions, novel design solutions, and original resolution rules

must be found. There are many definitions of creativity [73]. Creativity is

often characterized by referring to the novelty (e.g., solutions have less fre-

quent features) and utility (i.e. solutions satisfy precise needs) of the solutions

[71, 102, 120, 122]. Creativity in physics is described by inventiveness and or-

derliness, and creativity in art is represented by imagination and originality

[119]. In engineering, design creativity is characterized by the level of meeting

goals [112]. [93] suggests that the cognition factors involved in creativity are

fundaments (e.g., words), classes (categories), relations, patterns, problems,

and implications. Innovation originates through a process that includes both

convergent and divergent thinking. Convergent thinking refers to naming ob-

jects, classifying objects into categories, finding correlations, identifying pat-

terns, finding changes, and providing unique conclusions. Divergent thinking

involves finding different words with the same properties, producing alterna-

tive relations with the same meaning, and changing a structure’s meaning for a

new purpose. A broad set of theories and models on creativity are discussed in

the research literature in cognitive psychology [71,92,97,102,117,120,125,126].

The relation between creativity theories and models in cognitive psy-

82



chology and innovation in engineering is subtle. Many creativity tests in cog-

nitive psychology neglect the comprehensive nature of engineering design and

ignore domain specific information. For example, tests on divergent thinking

are weak when used to measure and predict creativity in real-world situations

[101, 129]. Other creativity models focus on concrete innovation situations

while considering more specific engineering problem details. [74] define inno-

vation as contradiction solving. Altshuller (1988), the creator of TRIZ method,

proposes a set of rules to resolve a broad variety of contradictions. Dubois,

Eltzer and De Guio [84] extend TRIZ into Generalized Contradiction model,

in which combinations of contradictions are identified for given engineering

problems. Other approaches to design innovation suggest problem-solution

co-evolution [82, 115]. Poon and Maher [105] propose co-evolving problem

descriptions and solutions by combining genes with modified behavior from

interacting populations of problems and solutions. Kryssanov, Tamaki and

Kitamura [98] describe a model for the dynamics and non-determinism of

design.

In spite of the breadth of existing work on creativity and design inno-

vation, there are still few design creativity studies that capture the specifics of

electronic embedded system design problems while being grounded in models

devised in cognitive psychology. Electronic embedded systems have several

characteristics that distinguish them from other general-purpose or engineer-

ing problems:

• Embedded systems are arguably more complex than other engineered

systems therefore design conceptualization is harder [80].

• Modularity is intrinsic to design [79,105], not a subsequent step, like in

architecture or mechanical engineering [81,121].

• Embedded systems are programmable. This helps achieving a higher

utility through customization to broader needs and contexts but in-

creases the hardness of conceptualization as more options are possible.

• Design procedures are iterative [76]. Iterative design includes successive

iterations that continuously use previous solutions as starting points to
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create designs with new goals, extra functions, and sub-structures in-

spired by previous designs [95, 108].

The implications of these characteristics on design creativity are not well un-

derstood.

This chapter presents a study on the role of precedents in illuminating

new, creative ideas during iterative design procedures for open-ended problems

in electronic embedded systems. We defined design precedents as solutions

and solution features that were available to participants to solve a problem.

Specifically, the set of available solutions included the designs developed dur-

ing the iterative solving process by the participants in a group. Each group

had six members, and each member had access to the solutions of any other

member of the group. Solution features included the related purposes (e.g.,

needs addressed by designs), functionalities, and implementation details of de-

signs. This definition is similar to that by Eilouti [87] as it refers to available

solutions. However, Eilouti considers mature, well-accepted solutions, while

our precedents are designs devised during the iterative process. Mature solu-

tions are less common in emerging application domains, such as for embedded

system design. Section 1 also summarizes other precedent definitions.

The study verifies five hypotheses. The first two hypotheses state that

precedents enhance creativity by stimulating new ideas during early design

stages, but then creativity decreases during later design iterations. Hypothe-

ses three and four state that precedents improve design quality and utility

throughout all iterations. These outcomes are expected because most de-

signs converge towards a common solution as more of the effective features

are adopted while the less efficient features are dropped. Hence, precedents

in iterative design are likely to produce lesser solution feature variety than if

precedents are not used. Finally, the fifth tested hypothesis is that creativity

increases again if new requirements are added to the original problem specifica-

tion. New requirements are expected to support more divergent thinking and

new ideas. Our discussions present the insight gained from the experiments.

The study is based on the experimental procedure in cognitive psy-

chology proposed by Mobley, Doares and Mumford [102]. Even though the
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experiment by Mobley et al. is a simplification of the design process, it is

more analogous to the common design activities than other creativity-oriented

experiments in cognitive psychology. Section 1 offers more details on the sim-

ilarity.

The presented study is important for getting insight on the conditions

that influence creativity in iterative design procedures. Majority of design

flows in electronic embedded systems are iterative, hence originate dynamic

innovation contexts depending on the amount of available, problem-related

knowledge. Having more precedents should help innovation, but precedents

can also produce fixation. Also, it is important to understand whether in-

novation occurs mainly during early design iterations, or if similar levels of

innovation should be expected throughout the entire process. If opportunities

for innovation are objectively less during later iterations, then design method-

ologies should first emphasize exploring divergent approaches followed by an

emphasis on improving implementation quality during later stages. Moreover,

understanding how changing problem requirements affect the innovation level

is a main issue in open-ended problems [108] as design specifications often

change during the design process. Finally, the obtained insight is useful in

creating novel, innovation-oriented CAD tools for embedded system design.

Robertson and Radcliffe [107] argue that design tools in engineering often

lag behind state-of-the-art design methods, and might negatively impact in-

novation through bounded ideation, premature fixation, and circumscribed

thinking.

The chapter has the following structure. Section one describes the pro-

cedure used in this study. Section two presents the experimental results. Sec-

tion three discusses the results and the obtained insight. Finally, conclusions

are offered.

4.2 Experimental Procedure

This study observed the impact of precedents on design novelty, variety,

quality, and utility. It was based on the experimental procedure in cognitive
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psychology developed by Mobley, Doares and Mumford [102]. We think that

this procedure matches better the specifics of electronic embedded system

design than other creativity tests, like divergent thinking tests. Zheng, Proc-

tor and Salvendy [129] explain that traditional tests in cognitive psychology,

like structure of the intellect divergent production test, Walchan-Kogan test,

Getzels-Jackson test, and Torrance Test of Creative Thinking, address ideation

but fail to capture other important design aspects, like problem framing, so-

lution evaluation, and detailed implementation.

The procedure by Mobley, Doares and Mumford involves three inte-

grated steps performed on a given set of exemplars. Exemplars are verbs and

nouns grouped into three categories. Exemplars vary depending on their kind

(e.g., artifacts), typicality, and degree of relatedness of the words in a group.

For example, exemplar groups include seat, tire, brakes, wheel (group 1), glove,

baseball, baseball bat, football (group 2), and bicycling, running, swimming,

lifting weights (group 3) [102]. Exemplars are (in concept) similar to basic

building blocks in design of modular embedded systems. The first step in the

procedure by Mobley, Doares and Mumford requires finding a category label

for the exemplars. This step is analogous to problem framing in open-ended

problem solving, and combines analysis, ideation, and evaluation. The second

step in the procedure by Mobley, Doares and Mumford creates more exem-

plars for the selected category label. The third step requires writing a story

that uses the category label and exemplars. Steps two and three are conceptu-

ally similar to detailed implementation in embedded system design, including

identification of additional building blocks needed for implementation and the

actual creation of a design solution by relating the building blocks to each

other. Therefore, we argue that the procedure by Mobley, Doares and Mum-

ford offers a good basis to capture more accurately the specifics of embedded

system design. For this study, we extended the procedure by Mobley, Doares

and Mumford [102] in three directions:

1. The design exercises included broad design goals as embedded system

applications are rarely without a-priori purposes. Goals are important

in general-purpose creative tasks [74] as well as in domain-specific inno-
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vation [129]. Problem-framing was part of the solutions.

2. The procedure was performed iteratively for four consecutive iterations

to study the role of precedents.

3. The experiment was modified for group settings to replicate more accu-

rately the characteristics of design environments in real-life. Participants

worked individually, but at the end of each iteration and before starting

the next iteration, the design solution of each participant was commu-

nicated to the group. These design ideas represented the precedents for

the next iteration.

The study tested the following five hypotheses: Hypothesis 1: De-

sign precedents in iterative electronic embedded system design produce more

new features than if no precedents are used. More novel features are gener-

ated during early iterations. The number of new features drops during the

later iterations as design solutions converge. Hypothesis 2: Design prece-

dents produce design solutions of lesser variety than if no precedents are used.

Hence, precedents create more converging solutions while having no precedents

encourages more divergent solutions. Hypothesis 3: Design precedents pro-

duce design solutions of higher quality (performance) than if no precedents

are used. Hypothesis 4: Design precedents improve the overall utility of

solutions during all iterations of the iterative design procedure.

The literature discusses several kinds of design precedents. For exam-

ple, precedents are past solutions that are reused to solve new problems [87].

Alternatively, precedents are guidelines modified according to new require-

ments [83]. In feature alignment for analogical reasoning, precedents establish

correspondences with the current problem, followed by transfer of structural

features from the analogy to the solution being devised [125]. In pattern-

based design, precedents are parameterized templates describing an entire class

of solution. Precedents are important in exposing hard-to-anticipate, global

properties, e.g., the density and occupancy of urban environments [111]. The

repertoire of precedents must be numerous, detailed, and consistent because

precedents must offer a comprehensive sampling of the possible features of so-
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lution spaces [69,111]. Precedents help finding new ideas, hence do not limit

creativity in architecture [87], avoid rediscovery of well understood solutions

[69], help deeper understanding and better interpretation of results [87, 111],

and increase the number of solutions in mechanical engineering [123].

In our study, we defined precedents as the solutions and solution fea-

tures that were available to the participants to solve the problem. The available

solutions included the designs developed during the iterative solving process

by the participants in a group. Each member had access to the solutions of

any other member of his/her group. Solution features included the related

purposes (e.g., addressed needs), functionalities, and implementation details

of the designs.

We expected that high quality precedents eliminate alternatives that

are less effective, thus reduce the variety of solutions. Also, more precedents

will increase the number of associations to similar problems and solutions, thus

improve solution novelty. These hypotheses are consistent with other studies

that show that larger pools of solutions increase the number of combinations

inspired by the pool [117]. The number of ideas is correlated to the number

and commonality of input stimuli as they stimulate more associations [85].

Nijstad, Stroebe and Lodewijkx [103] suggest that more variety of ideas boosts

creativity as broader sets of concepts are accessed. In contrast, Chua and

Iyengar [75] explain that more options do not always improve creativity as

people simplify and eliminate to cope with higher complexity. The ability to

handle more design options increases with experience. Heylighen, Deisz and

Verstijnen [94] report that students in architecture are less creative, if they

devise more solutions. Thus, more precedents can lower creativity too. High

flexibility in design tasks, including high degree of uncertainty in problem

specification, also reduces creativity. Thus, defining design goals is likely to

improve innovation. However, other studies suggest that previous solutions

can reduce creativity due to fixation [96,118].

Our design study corresponded to component-based design style, in

which building blocks are connected to form a solution. In contrast to other

component-based design styles, i.e. in architecture [87], embedded system
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design emphasizes the importance of causal relations among blocks, such as the

output of one block generates inputs for its following blocks. Problem framing

is more flexible than in other domains as there are more applications, contexts,

goals, and functions that can be identified. For example, adding intelligent

behavior based on programmable embedded systems is a useful capability for

most current engineering applications. Finally, the existing constraints relate

mainly to technological aspects, like nature of electrical signals, execution

time, resolution, power consumption, and less to esthetic, cultural, or context-

induced constraints. In addition, embedded systems must offer active yet

intuitive interaction with humans, like through voice, touch, image, and so

on. These differences are expected to result in a different impact of precedents

on design novelty, quality, and utility than that the impact observed in other

design domains.

Hypotheses 5: After several iterations, adding new functional require-

ments to the problem specification increases the number of novel features in

the design solutions. This hypothesis is based on the observation that many

successful engineering designs introduce functional modifications to current

solutions, or follow established design patterns. Goldenberg, Mazursky and

Solomon [89] suggest five common templates in product innovation: intro-

ducing dependencies between previously unrelated variables, producing con-

trol dependencies between unrelated components, eliminating one component

of the design with and without changing the main functionality, and splitting

one component into subcomponents that jointly have the same functionality

as the original component. Maimon and Horowitz [100] explain that innova-

tive designs change the nature of relations between design variables without

modifying the design logic for the considered technology and without adding

new types of components. Dzbor and Zdrahal [86] propose transformation

rules for problem framing, like restricting solution acceptability, identifying

and solving contradictions, reinterpreting solutions in different framing con-

texts, and incremental changing of design principles. Design transformations

are formally expressed as graph-based descriptions [88, 113, 114]. Hypothesis

5 was suggested by the idea that new functional requirements will introduce
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new relations between the design blocks of a solution. Section 1.1 presents a

detailed description of the experiments used to test the five hypotheses, and

Section 1.2 describes the measurement procedure of the results. Section 2 of-

fers a statistical analysis of the results. Finally, Section 3 presents a discussion

of the experimental data in practical terms.

4.2.1 Detailed Description

The description of the experimental procedure is as follows. Partici-

pant had to solve the following design exercise. The title of the application

was “intelligent remote controller”. Participants had to devise an innovative

solution for a remote controller that meets the following specification:

• Performs its functions using voice/sound-based commands.

• Has intelligent yet easy-to-use functions, and uses maximum number of

sensor of different kinds.

Participants were told that it was important that the solution incorpo-

rates novel functional capabilities. The following list of sensors, functionalities,

and intelligent responses were available to be incorporated into design solu-

tions. Other blocks could be used too.

Sensors Functions Responses to user Altitude Select among multiple

choices No response Microphone Set parameters Indicate performed function

Fluid flow for gases and liquids Define sequences of selected choices Offer

short demo of results Force (linear and torque) Set time limits Warning about

impossible problems Pressure Associate responses to choices Suggest other re-

lated functions Proximity Set priorities for multiple choices Different options of

communication (audio, video, text, vibration) Stress and strain Temperature

Vibration Wind speed

Participants had to submit the following outputs as part of their solu-

tion:

• To describe alternative design solutions for an intelligent remote con-

troller by explaining the devised functionality, the used sensors, and the

response type offered to users.
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• To explain the used design principle, e.g., block diagram with inputs

and outputs, and expected solution performance, like size, weight, speed,

and power consumption, and expected beneficiaries, including possible

applications.

Participants were told that the design evaluation follows the next rule:

25% for satisfying the design requirements, 25% for solution performance, and

50% for uniqueness (novelty) of the solution. The experiments involved a

control group (CG) and an experimental group (EG):

• EG: Participants had to privately design their solutions but collectively

see and discuss their solutions in a group setting. Subjects were asked

to refine their design three times. Between successive iterations, the

EG subjects discussed their solutions. After three iterations, the func-

tional requirements were extended (while leaving the core functionality

unchanged), and one more design refinement was performed. The added

requirement was that the remote controller had to be used to identify

frequent habits of the user. All iterations were performed immediately

after each other. After each iteration, each participant briefly stated to

the other group members the functionality of his/her solution, the used

sensors, and the responses offered to the user.

• CG: Participants worked for the same total amount of time but without

following the iterative design scheme. CG conducted their designs in

private. They were not allowed to see any other solutions during the

entire process.

In each of the iterations, participants had the liberty to continue adding

new ideas to their existing design or start designing a new solution. The

measurement procedure for the experimental study is presented next.

4.2.2 Measurement Procedure

All design solutions were assessed using the method proposed by Shah,

Vargas-Hernandez and Smith [112]. A similar technique is also suggested by
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Schunn, Lovell and Wang [110]. According to the method, the novelty of any

design can be estimated by identifying the frequency of its features appearing

in other designs too. The novelty rating for each design was estimated using

the following formula [112]:

MNi = sumn
j=1fj × Sj (4.1)

where, n is the number of features of the design, fj is the weight of

feature j, and Sj is the novelty index of feature j.

The novelty index of a feature is computed according to the following

expression (Shah, Vargas-Hernandez & Smith, 2003):

Sj =
(Tj − Cj)

Tj
×R (4.2)

Tj is the total number of designs from the investigated set having fea-

ture j present, and Cj is the number of designs from the set using the same

feature’s implementation as the currently evaluated design. Term R normal-

izes the index value to the desired range which in our case is range [0,10].

Specifically, the following attributes were considered to compute the novelty

metric:

• Nature of sensing: sense the human body, environment, or both.

• Type of inputs: Inputs were classified as voice (V) only, touch (T) only,

V and T, brain wave and gesture (Ges), V and Ges, and other/none.

• Number of sensors: The groups were 1-2 (small), 3-4 (average), 5-6

(large), and 7-8 (very large).

• Type of outputs: control signal (CS); display (D); CS and D; CS and

alarm; CS, voice and D; CS and alarm and D; and vibration and D.

Traditionally, simpler systems use CS and D, while the more advanced

designs utilize voice and other means, like vibration.

These attributes characterize the main components of a design solu-

tion, which depend on the application domain, specific problem, and solution

92



structure. The variety metric is calculated for a set of designs based on the

diversity of the features that the designs offer [112]. It is computed using a

hierarchical representation called genealogy tree, which is specific to the ap-

plication domain. For this study, the genealogy tree had four levels as shown

in Figure 1. The different features for each attribute can be represented as

nodes on that level. For each of the nodes, we counted the number of designs

that shared the specific feature.

The four levels define a top-down description of an electronic embedded

system:

• Level 1 describes the nature of sensing, such as if the system operates

based on data collected from the physical environment (like tempera-

ture, humidity, pressure, etc.), from observing physiological signals of

the human body, or in other ways. The nature of sensing is decided to

a large degree by the goal of the design and induces further constraints

that shape the nature of design solutions.

• Level 2 expresses the type of inputs, like sensing voice, touch, brain

waves, and so on. The kind of inputs limits to a certain degree the

nature of computing that can be realized by the system.

• Level 3 indicates the complexity of the system. Having more sensors

also imposes more complex functionality to process the sensor inputs.

• Level 4 presents how the computed information is presented to users,

e.g., through control signals, triggering alarms, using displays, and so

on.

The dotted path in Figure 1 from levels 1 to 4 represents a design that

performs human body sensing, has voice and touch inputs, uses 7-8 sensors,

and gives a display output. Similarly, genealogy trees can be constructed for

any other set of features, or other types of electronic circuits as discussed in

(removed due to blind review).
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Figure 4.1: Genealogy tree for embedded system design

Following are the arguments that support our statement that the rep-

resentation in Figure 1 is a genealogy tree as proposed by Shah, Vargas-

Hernandez and Smith (2003). Genealogy trees are hierarchical structures

in which four consecutive abstraction levels represent the physical principles,

working principles, embodiments, and details of a group of designs [112].

Physical principle represents the highest level of abstraction and detail level

the lowest. For embedded systems, the nature of signal sensing (input) rep-

resents the most basic way of differentiating designs. For example, sensing

signals of the physical environment (e.g., temperature, pressure, humidity,

etc.) implies devising applications and algorithms that perform control and

interfacing while obeying universal laws of physics and chemistry (removed

due to blind review). In contrast, sensing signals of the human body (i.e.

voice, brain waves, touch, etc.) involves conceptually different purposes and

processing activities that must consider the subjective, individual-dependent

meaning of signals (Yang, 2006). Hence, the nature of signal sensing repre-

sents the most abstract way of distinguishing embedded systems. Moreover,

the type of inputs (Level 2) represents the next abstraction level as it decides

to a large degree the specific inputs and processing algorithms of a system. For

example, an embedded system that monitors a user’s level of attention can uti-
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lize perspiration monitoring by sensing skin conductance, voice analysis based

on audio signal sensing using microphones, or gesture and facial analysis us-

ing video cameras. Different interfacing and processing techniques are needed

in each case. The third abstraction level corresponds to the number of used

sensors as it decides whether local or distributed sensing is implemented and

if signals are homogeneous or heterogeneous. The lowest abstraction level is

represented by the type of output (Level 4) as it expresses the details of pre-

senting the produced output (e.g., display, alarm, vibration, etc) but without

changing the meaning of the output and the algorithmic ways in which it is

computed.

A typical design flow includes four stages: problem framing, design

ideation, detailed implementation, and evaluation [128]. For the represen-

tation in Figure 1, Level 1 covers problem framing, levels 2 and 4 together

correspond to design ideation and evaluation, and Level 3 is for detailed im-

plementation. The nature of sensing (Level 1) decides the application domain

and the types of functions offered by solutions, which both relate to problem

framing. The type of input (Level 2) corresponds to various ideas for realizing

the framed goal and function (ideation). The type of output (Level 4) com-

pletes a design, therefore enabling the evaluation of a solution. Finally, the

number of sensors (Level 3) defines the implementation details of sensing and

processing in a solution. These associations were not discussed for the original

genealogy tree representation in [112].

Using the genealogy tree in Figure 2, the variety metric is defined as

follows [112]:

MVi =
m∑
j=1

(fj ×
∑n

k=1(Vk × bk)
MAXV

)×R (4.3)

where, n is the number of levels in the genealogy tree, and bk indicates

the number of branches at level k. m is the total number of features and fj is

the feature’s weight in the overall variety score. Similar to equation (1), the

weights are selected depending on the significance of a feature in meeting the

design requirements. The value R normalizes the variety score to a desired
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range which in our case is [0,10].

Term MAXV is the set’s maximum achievable variety, defined as follows

[112]:

MAXV = N ×
n∑
k=1

(Vk) (4.4)

where, N is the total number of circuits of the current set and Vk, called

the variety index, is a weight associated to each level of the genealogy tree.

The quality ratings of designs were estimated by considering the follow-

ing performance parameters: precision, cost, power, size, and ease of interface

(EoI). First, a pool of input and output devices was created by observing a

set of designs. Actual data from an electronic device catalog was used to rate

these devices, using the five parameters mentioned above. The devices with

highest precision were selected while creating the pool in order to make sure

that the functionality is faithfully implemented. In case of a tie, the cheapest

of the options was selected. Therefore, these parameters were weighted while

calculating quality. Also, since the number of devices and sensors used in

each design was different, average ratings of the parameters were calculated

before calculating quality. The overall quality rating was estimated using the

following equation:

MQi = 20×PrecisionAvg+21×CostAvg+22×(PowerAvg+SizeAvg+EOIAvg)

(4.5)

Design feasibility was estimated by analyzing the following aspects of

the solutions:

1. Complexity of the different parts of the design.

2. Interactions and interfacing between these different parts.

3. Nature of inputs and outputs.

4. Availability of technology for implementing the solution.
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The following factors were considered to estimate the utility (useful-

ness) of a design:

1. Does the design satisfy a need?

2. Does it follow the design constraint?

3. Is there any similar design solution already available?

4. Is the proposed design better than the similar options?

5. Can the solution be used to build other things?

The next section offers a statistical analysis of the results, and Section

3 presents a discussion of the experimental data in practical terms.

4.3 Experimental Results

Participants were senior undergraduate and first-year graduate students

in the Department of Electrical and Computer Engineering. The control group

(CG) designed voice-based remote controllers in isolation, and spent the en-

tire time on design, refinement, and testing. The experimental group (EG)

worked in isolation but examined and discussed in a group setting. CG had 10

participants. EG had 24 participants grouped into six, equal-size sub-groups

(DSGs). Each iteration was 15 minutes long, followed by 5 minutes to discuss

the solutions. Participants in the EG were told the number of times they had

refine the design. The total experiment time was 120 minutes for both groups.

Undergraduate participants were mainly Electrical and Computer Engi-

neering (ECE) senior students in their last semester and graduate participants

were mostly first year graduate students in ECE. Hence, we don’t estimate that

there was a significant difference in their background and experience in em-

bedded system design. Undergraduates were mostly domestic students and

graduates were mainly international students. This could produce some dif-

ferences in their motivation and ability to work in groups. Section A presents

our main observations on this issue.
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Table 4.1: Novelty Compare: Control Group Vs. Experimental Group

ANOVA Results

F p-value Fcrit

CG Itr1 Vs. EG Itr1 3.75 0.06 4.15

H0 FTR ANH

CG Itr2 Vs. EG Itr2 0.44 0.51 4.15

H0 FTR ANH

CG Itr3 Vs. EG Itr3 1.73 0.20 4.15

H0 FTR ANH

CG Itr4 Vs. EG Itr4 1.34 0.26 4.15

H0 FTR ANH

4.3.1 Design novelty

The analysis of novelty ratings considered the variation over four itera-

tions. Figure 2 illustrates the average novelty ratings of the designs in EG and

CG for the four iterations. Table 1 shows the average novelty ratings for CG

compared to those for EG. H0 represents Null Hypothesis, which always states

that there is no significant difference between the means of the two analyzed

datasets. F-test was used to determine if Null Hypothesis is accepted or not.

F-test computes two values: p-value and F/Fcrit value. p-value indicates if

the test ”fails to reject” (FTR) or ”fails to accept” (FTA) the Null Hypothesis.

This indication has to be confirmed using F/Fcrit value. The result of this

confirmation is either ”accept Null Hypothesis” (ANH) or ”reject Null Hy-

pothesis” (RNH). Differences are statistically insignificant, if Null Hypothesis

was accepted (ANH) for the comparison, and statistically significant, if Null

Hypothesis was rejected (RNH).

In order to compare CG and EG ratings, average values were calculated

for each DSG. The average novelty ratings for CG and EG are not statisti-

cally different for all of four iterations (Null Hypothesis is accepted in all

cases). Thus, the average amount of design novelty produced by CG and EG

is similar across all iterations. This rejects Hypothesis 1 indicating that design

precedents do not produce more novel designs than if no precedents are used.

The percentage of designs which either retained or improved their rat-

ings for the other iterations is shown in Table 2. For CG, although all but one
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Figure 4.2: Novelty Comparison: Control Group (CG) and Experimental
Group (EG)

Table 4.2: Percentage of designs which retained/improved their Novelty ratings

Itr1 to Itr2 Itr2 to Itr3 Itr3 to Itr4

CG 100 50 50

EG 66.67 62.5 58.3

participant improved their rating from Iteration 1 to Iteration 2, only five of

the ten subjects improved from Iteration 2 to Iteration 3, and only three out

of the ten subjects improved from Iteration 3 to Iteration 4. For EG, 13 par-

ticipants increased their novelty from Iteration 1 to Iteration 2, 3 participants

had the same novelty, and 8 participants had a decrease in the novelty of their

designs. For Iteration 2 to Iteration 3, 13 participants got higher novelty, 2

participants had the same novelty, and 9 participants experienced a lower nov-

elty. Finally, for Iteration 3 to Iteration 4, 8 participants had higher design

novelty, 6 participants had the same novelty, and 11 participants produced

designs of lesser novelty.
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Table 4.3: Percentage Improvement ANOVA results

ANOVA Results

F p-value Fcrit

CG Vs. EG 0.06 0.82 7.71

H0 FTR ANH

Table 4.4: Novelty Compare: Iteration 3 Vs. Iteration 4

ANOVA Results

F p-value Fcrit

CG Itr3 Vs. CG Itr4 0.00 1.00 4.41

H0 FTR ANH

EG Itr3 Vs. DG Itr4 0.04 0.83 4.05

H0 FTR ANH

Table 3 contains the one-way ANOVA analysis for the data in Table 2.

This test also indicates that the amount of innovation remained statistically

similar for CG and EG groups for all iterations, which supports the conclusion

that Hypothesis 1 is rejected.

Following is a brief description of the main design features used in the

different sub-groups. For DSG 1, two designs perform human body (HB)

sensing and two perform environment sensing. For DSG 2, from Iteration 2

onwards, one design has HB sensing, two use environment sensing, and one

both. For DSG 3, iterations 1 and 2, two designs are based on HB sensing and

two designs on environment sensing. For iterations 3 and 4, one design uses HB

sensing, two designs rely on environment sensing, and one design on both. For

DSG 4, one design considered HB sensing and three designs used environment

sensing. For DSG 5, all four designs use the most common features in almost

all iterations: inputs are for environment sensing or voice/none, and outputs

are control signals or display. For DSG 6, two designs implement HB sensing,

and two use environment sensing. Subgroup DSG 5 has the lowest average

novelty.

Table 4 compares the novelty ratings for Iteration 3 vs. the ratings

for Iteration 4, for CG as well as EG. The results indicate that there is no
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Table 4.5: Variety Ratings: Control Group (CG) and Experimental Group
(EG)

Iteration 1 Iteration 2 Iteration 3 Iteration 4

CG 3.9 4.5 4.1 4.4

EG 2.2 2.6 2.9 2.8

significant difference in the means for the two iterations. The Null Hypothesis

is accepted, thus Hypothesis 5 is rejected. This suggests that adding new

functional requirements after several iterations does not increase the novelty

of designs.

We further analyzed the impact on novelty due to ideas borrowed by

certain designs from other designs in their subgroup (DSG). A total of 16 ideas

were borrowed by the designs in the six subgroups. Most ideas were borrowed

after Iteration 1 (62.5%) and Iteration 3(25%). The novelty ratings improved

in 8 situations (between 1.3% and 21.8%). In most cases, the borrowed ideas

were added as features in the current designs, hence did not generate signif-

icant novelty increases. However, there was one case where an entirely new

design emerged based on a borrowed idea: In Iteration 1, Design 1 used heart-

rate monitoring as one of the features in the design ”Control iPod music while

jogging”. Design 3 borrowed this idea and proposed a new design (”Intelligent

heart monitor for patients”) based completely on this new concept. This case

represents developing a conceptually new solution using an idea inspired by de-

sign precedents. In another three cases, the borrowed ideas related to the type

of input (Level 2) and increased novelty ratings between 10.5% and 12.7%.

Finally, some adopted ideas corresponded to number of sensors (Level 3) and

output type (Level 4) to produce novelty increases between 1.3% and 5.5%.

The novelty ratings of the other 8 instances of borrowed ideas dropped (be-

tween -1.7% and -15.8%) or remained constant. These designs simply adopted

the borrowed ideas without adding any new features.
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Figure 4.3: Variety Comparison: Control Group (CG) and Experimental
Group (EG)

Table 4.6: Variety Compare: Control Group Vs. Experimental Group

ANOVA Results

F p-value Fcrit

CG Vs. EG 56.14 0.00 5.99

H0 FTA RNH

4.3.2 Design Variety

The variety ratings for CG and EG are given in Table 5. CG variety

rating is higher than EG rating for all iterations. This result indicates that CG

participants used a broader range of features for their designs. However, since

EG participants interacted after each iteration, they had an option of either

borrowing ideas from others or intentionally avoiding commonly used features.

Since the genealogy tree has weights associated with each level, if features from

a higher level were added to a design, the variety rating improved more than

when feature from lower level were added. This explains the fluctuations in

the plots shown in Figure 3.

We compared the variety ratings over the four iterations. Table 6 shows

the result of the ANOVA test. We concluded that there is significant difference
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in the means between the ratings for CG and EG. The Null Hypothesis is

rejected. Hence, Hypothesis 2 is accepted indicating that design precedents

produce design solutions of lesser variety (converging solutions) than if no

precedents are used (divergent solutions). The total number of features (by

combining all levels of the genealogy tree) used by CG designs was sixteen

features. The twenty four designs in EG utilize a combined total of twenty

design features. All sixteen features in CG are in the EG too. In addition,

the four new features (inputs: brain wave, BW & T, BW & T & V; output:

CS & V) are found only in three designs in EG. The remaining twenty one

designs use the same feature space as CG. Even though CG has a slightly

smaller feature set than EG, the features of CG are combined in a larger set

of alternatives. This explains the higher variety rating for the CG population

for all iterations.

As expected, there is a correlation between design novelty ratings and

variety ratings. For example, eight out of the ten designs in CG had similar

features. The remaining two designs contributed features which were very dif-

ferent (sensing: environmental and HB sensing; output: display, CS & A &

D) from the feature-set present in the other eight designs. For example, in

Iteration 1, Design 18 is the only one using three out of the thirteen features.

Therefore, the novelty rating for the two designs is high (between 7.5 and 9)

while the others have low novelty (between 4 and 6.5), which caused the aver-

age to drop. In EG, since there was exchange of ideas, there is no such subset

of designs which outperformed the others. Therefore, the novelty ratings for

all designs in EG are in the same range, between 5 and 8. Solutions in EG are

more convergent while solutions in CG are more divergent, including instances

with both high and low novelty ratings.

The analysis of the novelty and variety ratings for undergraduate vs.

graduate students was also conducted (removed due to blind review). Follow-

ing are the main observations: 1) average novelty ratings are highest for CG

graduate students and EG undergraduate students suggesting that graduate

students work better alone while undergraduates are more creative in groups.

2) For both CG and EG, novelty increases for graduate students for each
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consecutive iteration and decreases for undergraduates. This suggests that

graduates were more motivated in creatively improving their design during

the entire experiment. 3) Average variety ratings for CG graduate students

are highest followed by CG undergraduates, EG undergraduates, and EG grad-

uates (in that order). However, we could not conclude that undergraduates or

graduates were more successful in producing designs of higher variety. The ob-

served differences between the design novelty ratings for undergraduates and

graduates might be a result of different levels of motivation as well as different

educational experiences as undergraduates were mainly domestic students and

graduates were mostly international students. Understanding the implications

of these differences between the two groups requires more detailed studies,

which were beyond the scope of this work.

4.3.3 Design Quality

Since the implementation level contains maximum details about the

design, the most reliable way to estimate the performance ratings is by includ-

ing information at this level. Hence, equation (5) for the quality metric was

instantiated based on the features of implementation level.

The average quality ratings of the designs in EG and CG for the four

iterations are shown in Figure 4. The quality ratings for CG were compared

with those for EG using one-way ANOVA test for each iteration, as shown in

Table 7. The Null Hypothesis was accepted for all the iterations suggesting an

equivalence of means between quality ratings for CG vs. EG. This conclusion

rejects Hypothesis 3 as there is no difference between the average qualities of

CG and EG designs.

The lowest quality rating was 4.18 and the highest was 9.46. For CG,

the quality rating is highest (Q = 9.37) for Design 10 in iterations 1, 3, and

4. Design 6 has the highest score for Iteration 2 (Q = 9.31) and the second-

highest ratings for all other iterations. However, it is interesting to note that

although both these designs have consistently scored high in quality, their

novelty ratings were low. Also, Design 6 is identified to be infeasible. On the

other hand, Design 9 has the lowest quality rating for all four iterations (Q =
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Figure 4.4: Quality comparison for Control Group (CG) vs. Experimental
Group (EG)

7.41) but it has a medium novelty rating. Although these observations suggest

an inverse relationship between the novelty and quality ratings, it is important

to note that Designs 2 and 7 are feasible and have high novelty ratings and

high quality ratings for all iterations.

For EG, Design 8 has the highest quality (Q = 9.46) for iterations 1,

2, and 3, and the second-highest rating (Q = 9.46) for Iteration 4. However, a

few other designs also share this rating (Q = 9.46) for some of the iterations:

Table 4.7: Quality Compare: Control Group Vs. Experimental Group

ANOVA Results

F p-value Fcrit

CG Itr1 Vs. EG Itr1 0.03 0.86 4.15

H0 FTR ANH

CG Itr2 Vs. EG Itr2 0.21 0.65 4.15

H0 FTR ANH

CG Itr3 Vs. EG Itr3 0.00 0.93 4.15

H0 FTR ANH

CG Itr4 Vs. EG Itr4 0.41 0.53 4.15

H0 FTR ANH
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Design 13 in Iteration 1, Design 16 in Iteration 2, and Designs 5 and 6 in

Iteration 3. Design 18 has the highest quality in Iteration 4 (Q = 9.90).

Again, although Design 8 has high quality in all iterations, it has low novelty.

On the other hand, Design 11 is infeasible, has low quality in all the iterations

but it has high novelty. Also, Design 14 has high novelty, medium quality, and

is infeasible. An exception to this trend would be Design 5 which has high

novelty and high quality ratings for all the iterations.

Quality ratings were also calculated separately for each design activity,

e.g., problem framing (Level 1 in Figure 1), ideation (Level 2), detailed im-

plementation (Level 3), and evaluation (Level 4). Quality was computed for

problem framing using the following parameters.

For designs that sense the environment:

• Sensor location: indoors or outdoors.

• Discrete measurements or continuous measurements (sensing).

• Monitor parameters or control parameters.

• Safety: potentially damaging to itself or other devices.

For designs that performed human-body sensing:

• Sensor locations: internal or external.

• Discrete measurements or continuous measurements.

• Monitor parameters or control parameters.

• Invasive or non-invasive.

For the ideation and evaluation levels, the parameters used to compute

quality ratings were the same as used for implementation level. However, the

designs were treated as black-boxes and sensor details were not taken into

consideration because these details relate to the implementation level.

Table 8 presents the comparison results for the following three cases:

problem framing (Level 1) vs. implementation (Level 3), problem framing
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Table 4.8: Quality Comparison

ANOVA Results ANOVA Results

F p-value Fcrit F p-value Fcrit

Level 1 Vs. Level 3 Level 2 and 4 Vs. Level 3

Itr 1 Vs. Itr 1 9.23 0.00 3.99 Itr 1 Vs. Itr 1 56.41 0.00 3.99

H0 FTA RNH H0 FTA RNH

Itr 2 Vs. Itr 2 17.33 0.00 3.99 Itr 2 Vs. Itr 2 89.87 0.00 3.99

H0 FTA RNH H0 FTA RNH

Itr 3 Vs. Itr 3 22.09 0.00 3.99 Itr 3 Vs. Itr 3 79.09 0.00 3.99

H0 FTR RNH H0 FTA RNH

Itr 4 Vs. Itr 4 21.56 0.00 3.99 Itr 4 Vs. Itr 4 112.61 0.00 3.99

H0 FTA RNH H0 FTA RNH

Level 1 Vs. Level 2 and 4

Itr 1 Vs. Itr 1 14.31 0.00 3.99

H0 FTA RNH

Itr 2 Vs. Itr 2 21.83 0.00 3.99

H0 FTA RNH

Itr 3 Vs. Itr 3 16.79 0.00 3.99

H0 FTA RNH

Itr 4 Vs. Itr 4 25.91 0.00 3.99

H0 FTA RNH

(Level 1) vs. ideation and evaluation (Level 2 and 4), and ideation and eval-

uation (Level 2 and 4) vs. detailed implementation (Level 3). The Null Hy-

pothesis is rejected in all iterations, for all the cases. This indicates that there

are statistically significant differences between the quality ratings of the four

design activities.

Most variations of the quality ratings over the four iterations were at

the ideation and implementation levels, and less for problem framing. This

is because most design additions were at the ideation and implementation

levels. The ratings at Level 1 (problem framing) change only if the concept

of the design is modified either by selecting a new application or significantly

modifying the functionality.

4.3.4 Utility ratings

Table 9 presents the comparison of the utility ratings for CG and EG.

Utility rating considered the level of desirability for CG and EG designs, e.g.,

the offered functions are attractive to users. The Null Hypothesis was accepted
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Table 4.9: Utility comparison for Control Group vs. Experimental Group

ANOVA Results

F p-value Fcrit

CG Itr1 Vs. EG Itr1 0.16 0.69 4.15

H0 FTR ANH

CG Itr2 Vs. EG Itr2 0.61 0.44 4.15

H0 FTR ANH

CG Itr3 Vs. EG Itr3 0.04 0.84 4.15

H0 FTR ANH

CG Itr4 Vs. EG Itr4 0.13 0.73 4.15

H0 FTR ANH

for all iterations. However, CG had an average utility of 5.8 in Iteration 1 and

an average utility of 6.2 in Iteration 4. EG had an average utility of 5.6 in

Iteration 1 and an average utility of 6.4 in Iteration 4. The utility increase for

EG is statistically higher than CG. Hence, Hypothesis 4 is accepted indicating

that design precedents cause increase in utility over iterations. Note that only

1 out of 10 designs in CG had a utility rating higher than 8.0, while 6 out of

24 designs in EG had a utility greater than 8.0.

For CG, the utility results ranged from 3.5 to 7.3 in Iteration 1 while

in Iteration 4, the range was 4.6 to 9.2. Six out of 10 designs saw an increase

in utility over the four iterations. Design 5 had the highest utility in Iteration

4. The design is for an ’intelligent’ refrigerator that keeps track of the food

items (quantity, nutritional value), informs the user via email and text when

certain items need to be restocked and makes suggestions on the closest place

to purchase those items.

For EG, the results in Iteration 1 ranged from 3.5 to 8.8. The range

for Iteration 4 was from 5.0 to 10. Fifteen out of 24 designs saw an increase in

utility from Iteration 1 to 4. Design 11 had the highest utility in Iteration 4

because the design uses a remote control to encode brainwaves (neural activity)

and transmits it to other users as a means for ’telepathic’ communication.

In the first three iterations, the design uses the remote controller to control

different devices using brainwave mapping (commands).
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4.4 Discussion

The novelty ratings of the control (CG) and experimental groups (EG)

are similar during iterative design. This result rejects Hypotheses 1 which

states that the use of design precedents results in more novel designs. The

variety of CG designs is larger than the variety of EG solutions suggesting

that each EG converged to a set of ideas that were considered to be best in

terms of feasibility and utility. The Hypotheses 2, which states that precedents

lead to more converging solutions and lesser variety, is accepted. It seems that

EG participants spent some of their time on incorporating borrowed ideas into

their own solutions rather than identifying new features.

Every design in CG introduced new features in Iteration 2, suggesting

that the initial iteration had a positive role in helping ideation in problem

understanding, framing, and detailed solving. Perttula and Liikanen [104]

report a similar observation according to which design novelty increases over

time even if designers work independently. Statistically, there was a difference

in the increase of average utility ratings between CG and EG designs, which

accepts Hypothesis 4. However, most participants did not make (in Iterations

2, 3, and 4) major changes to their designs that would impact significantly

the overall utility. Most designs only added a couple of sensors to include

additional but minor functionality. Only a few subjects made major improve-

ments or proposed entirely new designs in the latter iterations. Hence, group

setting and discussions in iterative design help design utility evaluation and

aid converging to a smaller set of solutions, but are less useful in increasing

novelty or improving implementation quality (Hypothesis 3).

Our conclusions about the impact of precedents on design novelty dif-

fer from those of studies in other design domain, like architecture. Reports

show that precedents have a beneficial role for creativity, like they improve

novelty [87], avoid existing designs [69], and spawn new ideas. One rea-

son for these differences could be the nature of precedents. Previously used

precedents are well documented, fully specified, and widely accepted solutions.

Our precedents are intermediate designs, which are more typical for emerging

application domains. In such situations, having well established solutions is
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unlikely. Moreover, our precedents did not serve deeper understanding of the

problem as in most cases participants borrowed ideas on certain functions

but abstained from reframing their problem, from modifying goals, or from

identifying new contradictions in their solutions. Precedents did not expose

hard-to-anticipate, global properties like in Senbel, Girling, White, Kellett

and Chan (2013). Another reason could be the difficulty of the open-ended

problem. Participants got fixated on their previous solutions or some of the

communicated designs as they might have considered the problem as too chal-

lenging. The main benefit of precedents is in improving design utility as the

iterative, group-based process helps reinforcing design features considered as

valuable, discarding less important functions, and adding more details, which

also enhances the desirability of solutions in real situations.

Hypothesis 5 is rejected as adding new requirements later in the design

process did not increase novelty. One reason could be the fact that the main

problem requirements remained unchanged. The new solutions had incremen-

tal changes that included the new requirements, however, without modifying

the core of the solutions. Rarely, a borrowed idea triggered an emergent de-

sign, such as by placing a novel conceptual idea into a new problem framing.

This is in contrast to the findings reported in Pertulla and Liikanen [104],

which indicate that initial designs act only as temporary constraints.

Our experiments show that most borrowed ideas are very specific, such

as precise functions. Producing emergent features seems to represent rare

events (but not necessarily accidental events), which is hard to describe as

statistical models for creativity because emergence was not correlated to the

commonality or dissimilarity of designs. This suggests that producing emer-

gent features probably requires borrowing more abstract concepts which are

then instantiated for the specific solution under development. Using metaphors

or analogies in problem framing and development of new solutions could im-

prove design novelty. Similarly, Lawson [99] reports that experts use more

compressed knowledge as precedents, such as symbolic references, while novices

rely on more concrete, geometric descriptions.

Experiments suggest that group formation is an important factor in

110



deciding the final novelty, quality, and utility of designs. If group members

have a tendency to generate similar designs, it is likely that the feedback during

discussions acts mainly to reinforce the selection of the same features, thus pro-

duce less novel ideas. An important corollary is that the initial pool of design

ideas (e.g., after Iteration 1) must be sufficiently diverse, and can be used as a

predictor of the expected design novelty after iterative design. However, team

diversity can also result in lesser innovation because of social categorization

[124]. Similar to Coskun, Paulus, Brown and Sherwood [77], we also found

that more new ideas are created initially, such as in Iteration 2. However, we

believe that this is not only due to fixation and lesser motivation, but also

due to the group settings, which acted like filters to eliminate less promising

ideas. The filtering effect is expected to be stronger than remote association

accessing as the variety of CG is lesser than for EG. Experiments showed for

many designs an inverse correlation between novelty and quality. Designs of

high novelty were more likely to have lower quality. The main differences in

quality are due to (the estimated) EoI, cost, and power consumption. This

suggests that coming up with ideas for new embedded system designs might

increase the cost and power consumption of the solutions while the interfaces

with users are not well optimized. More importance to design quality should

therefore be set during ideation and evaluation. This observation is similar to

the much broader conclusions in Goldenberg, Lehmann and Mazursky [90].

They suggest that major technological changes might produce market failures

either because of their high cost or low product quality.

We think that problem framing is the most important step in deciding

the overall novelty of electronic embedded system designs as it uncovers new

business niches and applications for which the existing building blocks and

domain knowledge can be utilized to create novel solutions for existing needs.

For example, a new concept is the idea of sensing physiological signals of human

bodies to understand their ongoing activity. This is a new way in controlling an

embedded system, based on implicit, passive participation of users, in contrast

to traditional methods in which they explicitly and actively indicate their

intentions. Once the principle is selected, various solving strategies, based
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on optimization, similarities, reuse, and design patterns, can be employed to

produce an efficient design. Careful problem framing is also important as it is

likely to improve the quality of final designs [72].

4.5 Conclusions

This chapter presented a study about the role of precedents in illuminat-

ing creative ideas during iterative design procedures for open-ended problems

in electronic embedded systems. Precedents were defined as the solutions and

solution features developed during the iterative solving process by the partic-

ipants in a group. Through an experiment grounded in cognitive psychology,

this work explored the influence of precedents on novelty, variety, quality, and

utility of design solutions devised during four consecutive iterations. Another

tested hypothesis was that incrementally changing problem requirements im-

proves design novelty. The experimental procedure was based on the method

proposed by Mobley, Doares and Mumford (1992) as this procedure captures

more accurately the nature of embedded system design than other standard

creativity tests.

Experiments showed that precedents did not increase design novelty

as compared to the group that did not utilize precedents. Most novel ideas

were proposed in Iteration 2 independently of precedents being considered or

not. Novelty rate slightly decreases as more iterations are performed. Prece-

dents in iterative design flows reduced the variety of design solutions as the

group setting seemed to filter out ideas that were perceived as less promising.

There was no statistical difference between average novelty and quality rat-

ings of the designs created while precedents were communicated or not, but

utility was higher for the designs created in a group setting that shared the

developed solutions. The only design with emerging features originated in a

group setting in which one design idea was conceptualized by another partic-

ipant to create a very innovative solution. This suggests that devising truly

novel design ideas seems to be more of a rare event than a systematic process

described through steady-state, statistical equations. Most of the borrowed
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precedents were simply added to an existing solution without changing the

main characteristics of the solution. Modifying the design specification after

three iterations did not produce significant novelty increases. Precedents and

the iterative, group-based process improved utility by reinforcing features con-

sidered to be valuable, discarding less important functions, and adding more

details to the design implementations. Many solutions had an inverse relation

between novelty and quality.

In our experiments, precedents did not improve creativity as compared

to the participants that did not use them. This suggests that, likely, precedents

did not help deeper understanding, expose hard-to-anticipate, global proper-

ties, or reduce fixation. This is in contrast to the findings of other studies on

the impact of precedents in domains like architecture. However, these prece-

dents were well documented, well accepted designs while the precedents in our

case were intermediate designs, which were subject to further development.

Intermediate designs are typical for emerging technological domains in which

accepted, mature solutions are not available yet.

Solving open-ended design problems in electronic embedded systems

remains a difficult task. More effective design methods and CAD tools are

needed. Existing approaches for co-evolving problem formulations and solu-

tions [82, 105] can be a starting point but the specifics of embedded system

design must be also addressed. Moreover, group settings seem not to help

in producing design alternatives with a high variety of features. Instead, de-

signers should work individually and then use group settings to evaluate the

utility of their solutions. Also, group interactions should involve descriptions

at a more conceptual level rather than express mainly details on functions and

implementations. Finally, design creativity results are correlated to the partic-

ipants’ motivation to effectively solve the exercises, especially during the later

design iterations. The levels of motivation must be continuously monitored as

decrease in motivation can reduce creativity. We plan to tackle these issues in

our future studies.
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Chapter 5

Two Experimental Studies on

Creative Concept Combinations

in Modular Design of Electronic

Embedded Systems

1

This chapter discusses the nature of concept combinations in modular

design of electronic embedded systems as well as the relation between combi-

nation characteristics and novelty, quality, and usefulness of the produced solu-

tions. Through two experimental studies, this work explored the frequency of

relation-based and property-based combinations in embedded design solutions,

and how the specifics of the given building blocks, i.e. salience, relatedness and

number, influenced the produced combinations. The impact of popular aids,

like titles and short descriptions (briefs), in improving novelty, quality, and

usefulness of the designs was also analyzed. Design solutions include mostly

relation-based combinations. Design novelty correlates mainly to the purpose

and context of the produced combinations. Novelty is aided by titles but not

by briefs.

1Note: This chapter is based on the work published in [7].
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5.1 Introduction

Design methodologies for electronic embedded systems stress the im-

portance of modularity. Modular design solutions are created by connecting

basic building blocks with well defined functionality, interfaces, and perfor-

mance, e.g., components, library circuits, or intellectual property (IP) blocks.

Modular design reduces design cost and effort by reusing building blocks, and

enhances design correctness as repeated testing and verification of blocks elim-

inate most of their errors [76, 153]. New blocks are rarely created. Thus,

designing original electronic embedded systems mainly involves finding new

ways to relate blocks. This explains the significance of finding novel and use-

ful combinations among building blocks.

The importance of concept combinations in creativity has been in-

tensely studied by research in cognitive psychology [117, 144, 167]. Concept

combinations are of three kinds. Property-based combinations transfer fea-

tures from one concept, called modifier, to another concept, called head con-

cept [174]. For example, Lagne [157] explains that in “zebra clam”, property

“stripes” of the modifier concept “zebr” is transferred to the head concept

“clam”. Relation-based combinations introduce new relations between con-

cepts [157, 176]. For instance, “mountain stream” is a relation-based com-

bination that defines a location-based connection between concepts “moun-

tain” and “stream” [157]. Hybrid combinations are a mixture of relation

and property-based combinations, such as combination “musician painter”

[175]. Various conditions influence the kind of produced combinations, like

the salience of concept features [149], and the similarity and abstraction

level of combined concepts. More similar concepts originate more property-

based combinations, while dissimilar, yet easy- to-relate concepts create more

relation-based combinations [175]. Abstract concepts favor relation-based

combinations, and basic concepts help property-based combinations [161].

Property-based combinations are harder to create [157] but enable new fea-

tures beyond those of the initial concepts [175], even though other studies

challenge these findings [173, 176]. Creativity is higher for concepts with

less typical, less salient features [148], combinations of dissimilar features
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[150,161], abstract concept combinations [126], and anomalous combinations

[135,173].

Enhancing creativity in electronic embedded system design based on

the insight gained from studies in cognitive psychology is not straightforward.

Studies in psychology rarely capture the specificity and complexity of embed-

ded system design problems. Problems in embedded system design are often

wicked (ill-defined). Wicked problems express loosely or incompletely specified

requirements, or present needs based on organizational or personal perspec-

tives, judgments, predictions, or beliefs [78, 80]. Modularity is intrinsic to

the design process [79, 81, 105] while in other domains, like architecture or

mechanical engineering, modularity is less common or identifying modules is

a step that follows design and implementation [121]. Also, embedded systems

are programmable, which enhances their capability to be customized to spe-

cific needs. Thus, designs can achieve higher utility [105]. Finally, electronic

systems are more complex than other engineering systems, e.g., in mechanical

engineering, therefore conceptualization is harder [80]. However, the complex-

ity of electronic systems can be effectively tackled through top-down design

methodologies, in which design activities are performed separately at con-

secutive levels of abstraction, including behavioral level, logic level (e.g., gate

netlist, schematic), and physical level (i.e. layout). In spite of these differences,

devising new experimental studies based on work in cognitive psychology is

instrumental in understanding the connections between creativity in electronic

embedded systems design, the characteristics of the produced concept combi-

nations, and the specifics of the domain-specific design knowledge, e.g., the

nature of the existing building blocks. Gaining insight on these connections

is important to devise more effective methodologies and CAD tools for design

innovation.

This chapter presents two experimental studies on the nature and char-

acteristics of concept combinations in modular, electronic embedded system

design and the implications of these characteristics on the creativity of the pro-

duced designs: ” The first experimental study explored the nature of concept

combinations in design solutions (e.g., property-based, relation-based, and hy-
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brid combinations), and how the attributes of the given building blocks, i.e.

salience, relatedness and number, influence the novelty, quality, and usefulness

of the combinations. ” The second experimental study addressed the impor-

tance of using design aids, like titles and short descriptions (briefs), in improv-

ing the novelty, quality, and usefulness of final design solutions. This analysis

was motivated by similar studies in domains like construction and architecture.

Studies show that various aids can increase creativity, e.g., design briefs [165],

word graphs expressing semantic associations between annotations [166], and

video-story creation [163]. However, other aids, like sketching, are found to

be less critical in early conceptual design in architecture [136].

Our two experimental studies are based on the work by Mobley, Doares

and Mumford [102]. Their experimental procedure on concept combinations is

an elegant and simple representation of the main elements in general-purpose,

creative activities, e.g., (i) the involved domain knowledge (described by a

given set of exemplars), (ii) information structuring and aggregation (emu-

lated through category labels), (iii) gaining insight into a problem description

(mimicked through the step of enumerating more exemplars), and (iv) produc-

ing solutions (captured through story writing). Similar to the sets of exemplars

in Mobley, Doares and Mumford (1992), design flows for electronic embedded

systems assume the existence of domain knowledge in the form of libraries of

building blocks (modules) with well defined functions, interfaces, and proper-

ties.

The insight gained through the two experimental studies on concept

combinations is important to develop new design methodologies and CAD

tools for innovation in electronic embedded system designs. For example, if

experiments show a biasing towards relation-based combinations then new

strategies are needed to produce more property-based or hybrid combinations.

Focusing also on property-based and hybrid combinations would produce more

alternative representations for concepts and their combinations, which is likely

to improve solution creativity [152, 164]. Also, the insight on the efficiency

of using the two design aids is useful as designers often lose sight of the pur-

sued goals or get fixated on previous solutions. But, as titles and briefs are
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regularly used in design, understanding their impact on concept combinations

and design creativity can help devising more effective ways to utilize these

aids in a focused pursuing of design goals, quicker defixation, and more robust

divergent thinking.

The chapter has the following structure. Section one presents the spe-

cific innovation issues in electronic embedded system design studied in this

work. Section two presents the experimental studies. Section three discusses

the results. Section four offers conclusions.

5.2 Experimental Procedure

5.2.1 Concept Combinations in Modular Embedded Sys-

tem Design

Our work devised the following two experimental studies on design

innovation in modular, electronic embedded system design.

Study 1: What is the nature of concept combinations in modular

design of electronic embedded systems? What are the novelty, quality, and

usefulness of combinations in such designs?

The following five hypotheses were defined as part of the first study.

Hypothesis 1: Relation-based combinations are more common in mod-

ular, embedded system design than property-based combinations.

Hypothesis 2: The ratio of relation-based combinations and property-

based combinations is not affected by the similarity of the given basic blocks.

The two hypotheses state that modular electronic, embedded system

designs include mainly relation-based combinations and few property-based

combinations. The hypotheses are supported by the observation that property-

based combinations are rare in everyday life [143]. Also, the last resort

hypothesis [174] indicates that, during problem solving, humans first con-

sider creating relation-based combinations, and if they fail then they analyze

property-based combinations. In addition, the nature of electronic basic blocks

and the specifics of current design methodologies suggest that relation-based
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combinations are dominant. Blocks in embedded system designs have mostly

orthogonal features, which are functionally different and satisfy distinct needs.

The orthogonal features of blocks are tied together such that the outputs of

a block act as inputs to another block. New solutions are built by iteratively

adding, deleting, and replacing modules. Utilizing blocks with orthogonal fea-

tures is justified as having multiple, functionally-similar blocks as parts of the

same design does not offer new functional capabilities but increases complexity

and cost.

The study also aimed to understand the kind and amount of features in

creative design solutions produced through concept combinations. Creative so-

lutions must be novel, feasible, and useful [133]. Novelty refers to the number

of features that are not present in the given blocks or in other similar solu-

tions. Feasibility states that a produced concept combination and its features

are correct with respect to the domain-specific knowledge, including physical

and engineering laws. Usefulness represents the capability of the design solu-

tion to satisfy the requirements of the problem. The next three hypotheses

express the relations between the nature of combined concepts and the nov-

elty, quality, and usefulness of resulting combinations. Independent variables

were the characteristics of building blocks, i.e. their salience, relatedness, and

number.

Hypothesis 3: The novelty of the design solutions produced through

relation-based combinations is higher if the combined building blocks are less

related, and lower if the blocks are more related.

Hypothesis 4: The quality of the design solutions produced through

relation-based combinations is lower if the combined building blocks are less

related, and higher if the blocks are more related.

Hypothesis 5: The usefulness of the design solutions produced through

relation-based combinations is lower if the combined building blocks are less

related, and higher if the blocks are more related.

Hypotheses 4 and 5 suggest that related building blocks are likely to

be correctly and effectively used together again in new solutions as they have

been already utilized together in a larger variety of conditions and solutions,
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thus their features (capabilities) are likely to be orthogonal and enhancing of

each other for a broad set of conditions. In contrast, exemplars that have not

been often used together are more likely to induce incorrect relations as their

capabilities are not fully understood, or because some of their capabilities are

conflicting. While the literature indicates that unexplored situations have the

potential of producing new solutions [144], the risk of having incorrect or

inefficient relations is also higher. Finally, cause-effect relations, like input

- output connections between blocks, are very natural to human reasoning

as inputs express an event that triggers a reaction (response) represented by

the output [139]. In contrast, less common relations, like circular relations

between concepts, represent in day-to-day life inconsistent formulations, like

paradoxes. However, circular relations are useful in circuit design as they

induce features beyond those of the building blocks, even though the risk of

incorrect operation remains high.

Engineering design has studied extensively the connection between de-

sign creativity and dissimilarity of source and target domains in analogical

reasoning [125, 170]. Analogical reasoning, a popular method in engineer-

ing design innovation [137, 138, 141], transfers features of the source (e.g., an

existing design) to the target solution. Analogical distance quantifies the de-

gree of dissimilarity between concepts [138,172]. Both across-domain (hence,

more distant) and within-domain (thus, closer) analogies are used in design

[138]. Distant analogies improve creativity [141] but close analogies based on

superficial features are easier to identify.

Study 2: How important are design aids, like titles and design aids,

in concept combinations for modular, electronic embedded system design?

The second study explored the importance of aids, like titles and short

descriptions (briefs), in improving the novelty, quality, and usefulness of con-

cept combinations in electronic embedded systems. Briefs have been shown to

be helpful in enhancing creativity in developing novel product advertisements

[154]. In embedded system design, briefs are used for design specification and

communication between the involved parts but are less utilized as tools to

enhance novelty and improve the transformative potential of design solutions.

120



The next two hypotheses were considered.

Hypothesis 6: Using titles to summarize a design solution improves the

novelty of the solutions.

Hypothesis 7: Using short descriptions (briefs) to describe a design

solution improves the novelty of the solutions.

Our hypothesis states that “title-like descriptions” as well as short de-

scriptions (briefs) are expected to offer more insight into the uniqueness and

usefulness of a solution by contrasting its features to the pursued goal. Titles

and briefs act as aggregators of solution features, hence, indicate their purpose

and distinguishing attributes. According to our hypothesis, contrasting a title

to the purpose of a design solution followed by repeating the design exercise is

expected to enhance creativity, as the contrast highlights how well the purpose

matches the problem requirement (usefulness aspect) and how unique features

are (novelty). Subsequent iterations that integrate the uniqueness attributes

to the requirements and then repeat the design process for the new purpose

are likely to strengthen creativity due to the explicit focus on what is perceived

to be original. Also, producing new relations is aided by explicitly expressing

in a short description (brief) the purpose of a solution [154, 155]. Solution

purposes (goals) set directions along which new relations are created. The

preciseness of purpose impacts the relations [140]: tight purposes make the

search difficult as there might be few feasible combinations. Loose purposes

create only a weak guiding of the search. There is a trade-off between the

number of feasible solutions and the directionality along which solutions must

be searched.

5.2.2 Experimental Studies

This section details the two experimental studies meant to verify the

seven hypotheses of the two studies. The studies are based on the work on

concept combinations by Mobley, Doares and Mumford [102]. In their origi-

nal experiment, participants are asked to find a label that encompasses three

groups of exemplars, use the label to propose other similar exemplars, and then

develop a story that uses the exemplars. The novelty and quality of the labels,
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exemplars, and stories are rated. Similarly, our experiment gave participants

a group of exemplars (e.g., basic building blocks used in electronic embedded

systems) that had to be utilized to develop an innovative design, including its

purpose (similar to the labeling step in Mobley, Doares and Mumford’s exper-

iment) and implementation diagram (similar to story writing in the original

experiment).

Description of the experimental studies

Study 1: The five hypotheses of the first study were tested using the

following experiments. The first group of participants used exemplars (build-

ing blocks) that are common in electronic embedded system problems but

their functionality is orthogonal, thus well distinguished from each other. The

second group considered unrelated exemplars, such as the exemplars are rarely

used together in solutions. For example, GPS are mainly utilized for mobile

applications, while cooking stoves and hair driers are static devices. The third

group utilized exemplars that are often used together. For example, camera,

sonar, GPS, accelerometer, speakers, alarm signals are typical components of

mobile devices, like smart phones and tablets. The fourth group used a larger

set of common exemplars. The subjects in all four groups worked individually.

Table 1 lists the devices given to each group of participants.

Table 1: The four sets of building blocks used in the two experimental

studies

Each group utilized the following problem description: “Using the

above devices, develop a novel electronic embedded system that you feel is use-

ful in your household. Use as many devices from the list as possible. Provide a

description of the system that presents how the devices relate (interact) with

each other. The solution will be rated based on its level of novelty (uniqueness

compared to the solutions of your colleagues and designs discussed in text-

books, media, web), its usefulness to solve the problem, and its correctness

(feasibility to be implemented). The experiment time is 10 minutes.”

The problem description for Group 4 was developed to explicitly test

Hypothesis 2 and as an additional experiment to check Hypothesis 1. Markman
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Table 5.1: The four sets of building blocks used in the two experimental studies

Group 1 Group 2

gas sensor wireless link on/off switch on/off switch processor cooking stove

GPS OpAmp light GPS memory robotic arm

temperature resistors/ voice wireless hair drier

sensor capacitors motor recorder link

accelerometer processor fan pressure sensor OpAmp latch

microphone memory capacitive resistors/

sensor capacitors

Group 3 Group 4

GPS wireless link on/off switch gas sensor wireless link on/off switch

camera Ethernet link speaker humidity Ethernet link

accelerometer OpAmp alarm signal sensor

sonar memory color display GPS OpAmp light

touch screen processor sonar analog frontend robotic arm

temperature resistors/ motor

sensor capacitors

accelerometer processor fan

movement FPGA

detection sensor

microphone memory

voice recorder

pressure sensor flash memory

touch screen

capacitive sensor
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Table 5.2: Nature of concept combinations

Property-based Average number of

Nr. of Relation-based Combinations Combinations (correct relation-based

Group designs (correct only) only) combinations

1 21 70 (70) 5 (0) 3.33

2 17 42 (42) 3 (0) 2.47

3 18 38 (38) 0 (0) 2.11

4 12 36 (36) 0 (0) 3.00

Total 68 186 (186) 8 (0)

and Wisniewski [161] suggest that having more similar exemplars encourages

property-based combinations through property migration from one concept to

another. However, if most combinations are still relation-based then having

more exemplars (and likely more similar features too) should not affect the

amount of property-based combinations as these are rare. Otherwise, the

amount of property-based combinations should be higher than for Group 1.

Study 2: The second experimental study verified Hypotheses 6 and

7. Participants were given the same building blocks as those for Group 4 in

Table 1. The subjects in all three groups worked individually

The first group (control) used the same problem description as the

groups in Study 1. The second and third groups (experimental) followed the

next descriptions: Using the above devices, develop a novel electronic embed-

ded system that is useful at your home. Use as many devices as possible.

Propose a title that summarizes best the features that you think make the

solution unique and valuable. (Group 3 used the following sentence instead:

Then, provide a description of the system that highlights the novelty, qual-

ity and feasibility of your solution.) Then, refine the solution to improve the

novelty, usefulness, and correctness of your solution. Then, propose a second

title that best summarizes the features that make your system unique and

valuable. Compare the initial and the second title and indicate what makes

your system unique. (Group 3 used the following two sentences instead of the

last two sentences: Develop a brief description of the change. Summarize how

your design changed because of the short description.)
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Figure 5.1: Two design samples developed in Study 1

5.3 Experimental Results

The experimental results for the two studies are presented next. The

subjects were graduate students in the Department of Electrical and Com-

puter Engineering (ECE). Most students were in their first year of graduate

study majoring in either Electrical Engineering or Computer Engineering with

a moderate level of expertise in embedded system design. The study was con-

ducted on a voluntary basis. Participants did not receive any reward for par-

ticipating at the study but were told about the importance of the research.

Subjects were provided with a printed paper that provided the problem de-

scription and a few sheets of blank paper to write their responses in pencil.

The proctoring was done by three proctors.

5.3.1 Study 1

Experiments were conducted separately by four groups of students: 25

students were in Group 1, 17 students in Group 2, 20 students in Group 3,

and 14 students in Group 4, for a total number of 76 students. 9 responses

were discarded as they did not include any relevant information (the corre-
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sponding responses are marked as N/A in Appendix A). Participants worked

individually to produce design solutions. Each solution was assessed by two in-

dependent raters (senior graduate students with extensive design background

in embedded systems). The raters were initially trained by the faculty on the

assessment of solution novelty, quality, and usefulness. Inconsistencies between

their ratings were solved by the two raters with the help of the faculty.

Figure 1 presents two design samples. The left figure shows a design

called ”AI-fridge” (Design 13 in Group 1). It automatically regulates the

temperature inside a fridge, and accepts voice commands. It informs the user

about items that need to be purchased based on history of previous usages,

detects the user’s location, and provides the directions to nearest store where

that item can be bought. It has the highest novelty rating in Group 1. The

right figure illustrates a design called ”Auto Shit-off Pressure Cooker” (Design

14 in Group 2). It detects steam pressure and automatically shuts off the stove

using a robot arm. Its novelty rating is highest in Group 2.

Nature of concept combinations: Table 2 presents the number of

relation-based combinations (RBCs) and property-based combinations (PBCs)

for the four groups. Column two indicates the number of designs in each group.

The number of PBCs is very small compared to number of RBCs. Hence,

Hypothesis 1 is correct.

Next, we observed the effect of exemplar similarity on the number of

RBCs. The average number of RBCs is highest (3.33 per design) for Group 1

(common, well distinguished exemplars) and lowest (2.11 per design) for Group

3 (often used together exemplars). The average is high (3.00 per design) for

Group 4 (more exemplars) as well. The average is low (2.47 per design) for

Group 2 (rarely used together). Hypothesis 2 is correct as the variation of the

ratio of RBCs is small for the four groups of exemplars.

The identified PBCs are either infeasible or inefficient. For example,

the property of a tachometer is given to an accelerometer. This is likely to be

feasible to be realized but is less efficient than using traditional tachometer

sensors. A similar conclusion was noted for other situations, like giving to a

microphone the property of a speaker, and to the GPS that of a communication
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transceiver or cellphone/pager. Other property transfers were deemed to be

infeasible, such as a motor that acts as a pressure sensor to control the opening

and closing of a door. However, as suggested by Estes and Ward [144], infea-

sible combinations can be the starting points in developing novel solutions.

Novelty assessment: As a first step in novelty assessment, we de-

vised a new equation that robustly characterizes embedded system design so-

lution novelty. We used initially the novelty index and variety metric proposed

by Shah, Vargas-Hernandez and Smith [112], however this characterization

sometimes failed to correctly capture the novelty, especially if designs utilized

traditional design ideas but tackled unique purposes (goals) or operated in

special environments and conditions. Human raters considered such solutions

to be very creative but the two metrics gave low ratings. To address this issue,

we devised a new equation that considers the nine main factors specific to em-

bedded system designs. Each factor was weighted such that the error between

the novelty ratings of human raters and the novelty estimations predicted by

the equation is minimized. The novelty estimation of each design was verified

manually by two raters to eliminate inconsistencies. The following formula

was used in assessing solution novelty:

Novoverall = {[w2 × (Novfactor9 +Novfactor8)] + [w1 × (Novfactor7 +Novfactor5)]

+ [w0 × (Novfactor6 +Novfactor4 +Novfactor3 +Novfactor2 +Novfactor1)]} ×R
(5.1)

Where factor 1 refers to the number of exemplars used in a solution,

factor 2 represents the types of relations connecting the exemplars, factor 3

relates to the topology of the combinations, factor 4 indicates the capabilities

added by the combinations, factor 5 describes the properties added to the

system, factor 6 presents the system topology, factor 7 indicates the type of

the system, factor 8 defines the purpose of the design, and factor 9 presents

the place of use. Term R is a normalization constant such that the novelty

range is [0, 10]. Weights w reflect the importance of the nine factors.

Weight w was computed by minimizing the error between the novelty
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Figure 5.2: Novelty assessment based on raters vs. novelty assessment based
on analytical formula

ratings of the designs by human raters and the novelty estimations predicted by

the above formula. Six raters graded the designs from Group 1. All raters were

graduate students in Electrical Engineering or Computer Engineering. They

were initially trained on how to assess novelty, quality, and usefulness. In

order to ensure impartial grading, the raters were not allowed to communicate

with each other or with the subjects. Using the equation for novelty, it was

experimentally observed that the value w = 4 provides the best fit such that

the difference between the raters’ grades and the values given by the equation

is minimized. The plot for novelty based on raters vs. novelty based on

analytical formula is shown in Figure 2. For each design in studies 1 and 2,

the novelty values computed based on the analytical formula were also verified

for consistency by two more raters (different from the six raters).

Appendix A presents the novelty ratings for all four groups calculated

using the analytical method. Table 3 summarizes the novelty assessment for

each of the four groups, including the average novelty of the designs in the

group, the two designs with highest novelty, and a description of their features.

The following terms were used through the remaining of the presen-

tation: H0 - Null Hypothesis, FTR - Fail to Reject H0, ANH - Accept Null
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Table 5.3: Novelty assessment of the designs in Study 1

Group 1

Average novelty:
5.5

Designs 13 and 14
have highest nov-
elty ratings (both
are 7.5)

Design 13 (intelligent fridge): performs usual fridge func-
tions; keeps track of food items; alerts the user by sending
messages via wireless link; detects current location of user
and provides information about the nearest store to buy
missing products. Design 14 (kitchen-aid robot): assists
cook in performing different tasks in the kitchen.

Group 2

Average novelty:
6.1

Designs 14 and
17 have highest
novelty ratings (7.5
and 7.4, respec-
tively)

Design 14 (auto shut-off pressure cooker): monitors the
temperature and pressure inside the cooker; uses the
robotic arm to turn the stove on and off. Design 17 (iFetch
robot): gets commands wirelessly; locates the object that
the user wants; holds object using robotic arm and then
travels to the location of the user.

Group 3

Average novelty:
4.8

Designs 20 and
17 have highest
novelty ratings (8.2
and 6.7, respec-
tively).

Design 20 (smart stove and oven): regular operation; gives
warning signals; downloads and displays recipes from the
Internet; orders food online. Design 17 (automatic grocery
shopping system): user uses the camera to take picture of
an item; the device sends this picture along with address
of the user (identified using GPS) to the nearest grocery
store; requests a delivery of the item.

Group 4

Average novelty:
4.9

Designs 6 and 10
have high novelty
ratings (6.8 and
6.7, respectively).

Design 6: alarm system to warn against fire or gas leakage.
Design 10: performs certain functions according the specific
movements of the user.

Table 5.4: Novelty ratings for the four groups

ANOVA Results

F p-value Fcrit

Group 1 vs. Group 2 vs. Group 3 vs. Group 4 4.504 0.006 2.751

H0 RNH

Group 1 vs. Group 2 2.345 0.134 4.105

H0 ANH

Group 1 vs. Group 3 3.847 0.058 4.113

H0 ANH

Group 1 vs. Group 4 2.224 0.146 4.149

H0 ANH

Group 2 vs. Group 3 11.399 0.002 4.160

H0 RNH

Group 2 vs. Group 4 9.023 0.006 4.210

H0 RNH

Group 3 vs. Group 4 0.133 0.718 4.225

H0 ANH
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Table 5.5: Quality ratings for the four groups

ANOVA Results

F p-value Fcrit

Group 1 vs. Group 2 vs. Group 3 vs. Group 4 16.004 0.000 2.742

H0 FTA RNH

Group 1 vs. Group 2 8.787 0.005 4.091

H0 FTA RNH

Group 1 vs. Group 3 56.186 0.000 4.085

H0 FTA RNH

Group 1 vs. Group 4 1.042 0.315 4.130

H0 FTR ANH

Group 2 vs. Group 3 3.483 0.071 4.139

H0 FTR ANH

Group 2 vs. Group 4 8.271 0.008 4.210

H0 FTA RNH

Group 3 vs. Group 4 55.936 0.000 4.196

H0 FTA RNH

Hypothesis, FTA - Fail to Accept H0, RNH - Reject Null Hypothesis.

Table 4 presents the one-way ANOVA tests that compare the novelty

ratings of the four groups. The Null Hypothesis was rejected for the com-

parison between all groups together. The comparison between pairs of groups

indicates no significant difference in the means between Group 1 vs. Group 2,

and Group 1 vs. Group 4. The Null Hypothesis is accepted even for Group 1

vs. Group 3 but only by a small margin. For Group 2, the Null Hypothesis

is accepted only for comparison with Group 1. For the comparison between

Group 3 vs. Group 4, the Null Hypothesis is strongly accepted. The analysis

suggests that Hypothesis 3 is accepted. Hence, less related exemplars increase

the average novelty of the combinations while more related exemplars lower

the average novelty. Using common exemplars or having more exemplars does

not help novelty.

Quality assessment: Only 6 out of 68 designs were found to be im-

practical. The average quality ratings are 7.7 for Group 1, 7.1 for Group 2,

6.6 for Group 3, and 7.9 for Group 4. We compared the quality ratings by

performing one-way ANOVA tests. Table 5 presents the results. There is a

significant difference in the means for all groups together. Therefore, we in-

spected two groups at a time. The Null Hypothesis was rejected for most cases
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Table 5.6: Correlation between quality rating and implementation character-
istics

Closest to quality rating Farthest to quality rating

Group 1 Precision Size EoI Power Cost

Group 2 Precision Size EoI Power Cost

Group 3 Size EoI Precision Power Cost

Group 4 Precision Size EoI Power Cost

except in the case Group1 vs. Group 4, and Group 2 vs. Group3. Therefore,

there is no significant difference in means for these pairs of groups. Thus,

the quality results are statistically equivalent for the case when the exemplars

are commonly used (Group 1) and when more exemplars are given (Group

4). The average quality is high for these cases. Also, the results are equiv-

alent for exemplars which are rarely used together (Group 2) and often used

together (Group 3). The average quality is low for these two cases and lowest

for Group 3. Hence, Hypothesis 4 is invalid as utilizing related exemplars does

not improve solution quality as compared to using less related exemplars.

The quality metric was calculated using five factors that characterize

the design solution: size, cost, processing precision, power consumption, and

ease of interface (EoI). One-way ANOVAs and post-hoc analysis using stan-

dard error technique were performed to identify which factor affects the overall

quality rating the most. Table 6 presents the results. The factors which affect

the overall quality the most are precision, size followed by EoI. Cost is the

factor which is farthest from the overall quality.

Usefulness assessment: The usefulness of a design was evaluated

based on five factors: (1) Does the design satisfy a need? (2) Does it follow

the design constraint? (3) Is there something similar available? (4) Is the

proposed design better than the similar options? (5) Can it be used to build

other things?

The average usefulness is 5.7 for Group 1, 7.5 for Group 2, 7.1 for Group

3 and 6.2 for Group 4. The usefulness ratings were compared by performing

one-way ANOVAs. The results are shown in Table 7. For the ANOVA with all

groups together, the Null Hypothesis was rejected. ANOVAs for pairs of groups
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Table 5.7: Usefulness ratings for the four groups

ANOVA Results

F p-value Fcrit

Group 1 vs. Group 2 vs. Group 3 vs. Group 4 8.138 0.000 2.742

H0 FTA RNH

Group 1 vs. Group 2 17.468 0.000 4.091

H0 FTA RNH

Group 1 vs. Group 3 10.792 0.002 4.085

H0 FTA RNH

Group 1 vs. Group 4 1.698 0.201 4.130

H0 FTR ANH

Group 2 vs. Group 3 1.061 0.310 4.139

H0 FTR ANH

Group 2 vs. Group 4 8.304 0.008 4.210

H0 FTA RNH

Group 3 vs. Group 4 3.949 0.057 4.196

H0 FTR ANH

Table 5.8: Correlation between usefulness rating and implementation charac-
teristics

Closest to usefulness ratings Farthest to usefulness ratings

Group 1 Q2 Q1 Q3 Q5 Q4

Group 2 Q2 Q1 Q5 Q3 Q4

Group 3 Q2 Q1 Q3 Q4 Q5

Group 4 Q1 Q2 Q5 Q3 Q4

show that there is no significant difference in the means for Group 2 and Group

3. The average rating is very high for these two groups. The Null Hypothesis

was accepted for Group 1 and Group 4 as these groups have comparatively

lower ratings, especially Group 1 (common but well distinguished exemplars).

The difference of means for Group 3 and Group 4 is such that the p-value

is very close to 0.05, so that this pair is just close enough for the H0 to be

accepted. Hence, Hypothesis 5 is invalid as the average usefulness of solutions

created using less related exemplars is not lower than that if more related

exemplars are used.

One-way ANOVA and post-hoc analysis using standard error technique

was used to identify which of the five questions affects the overall usefulness

the most. The results are as shown in the Table 8. Question 2 and Question 1
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Table 5.9: Novelty assessment of the designs in Study 2

Group 1

Average novelty:
5.3

Designs 5 and 6
have highest nov-
elty ratings (6.9
and 6.8, respec-
tively)

Design 5: uses robotic arms to stabilize the house in the
event of an earthquake; it also uses gas sensor to detect
gas leakage. Design 6: intelligent vending machine which
provides helpful suggestions and performs actions to help
the user.

Group 2

Average novelty:
5.2 after Iteration
1 and 6.0 after
Iteration 2

Designs 8 and
10 have highest
novelty ratings (7.2
and 6.8, respec-
tively)

Design 8 (Driverless car): navigates using GPS, robotic
arm and other sensors. In the second iteration, the design
is converted into a ’Thinking car’, where the car remembers
its previous decisions and therefore has the ability of self-
learning. Design 10: its novelty increased by a huge margin
from iteration 1 to 2. In first iteration, the design is for a
security system to warn against gas leakage. Novelty rating
is 3.9 (low). In second iteration, the design is modified to
an earthquake monitoring system which is a novel concept.
New novelty rating is 6.8.

Group 3

Average novelty:
6.5 after Iteration
1 and 6.3 after
Iteration 2

Designs 8 and 6
have highest nov-
elty ratings (6.8
and 6.7, respec-
tively)

Design 8 (bathroom mirror defogger): its novelty increased
from iteration 1 to 2. In first iteration, the design automat-
ically clears the mirror by detecting the humidity and tem-
perature in the bathroom. In the second iteration, there is
an added functionality to record reminders which increased
the factor 8 rating. Design 6: had highest rating in first
iteration and the rating decreased by a significant amount
in the second iteration. In first iteration, it implements a
security system in the kitchen to warn against fire and gas
leakage. In second iteration, anti-burglary functionality is
added, but its purpose changes from only kitchen to any
room, resulting in decrease in the overall novelty.

are the factors which affect usefulness the most. Question 4 has the least effect.

This implies that the subjects focused more on making sure that the design

satisfied a need and followed constraints. However, they ignored whether the

design is better than similar options.

5.3.2 Study 2

Experiments were conducted separately by three groups of students:

each group had 12 students, for a total number of 36 students. 7 responses were

discarded as they did not include any relevant information (the corresponding

responses are marked as N/A in Appendix B). Participants worked individually

to produce design solutions. The rating of the designs was similar to that in
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Table 5.10: Novelty ratings for the four groups

ANOVA Results

F p-value Fcrit

Group 2 Step1 vs. Step2 3.335 0.093 4.747

H0 FTR ANH

Group 3 Step1 vs. Step2 0.630 0.436 4.351

H0 FTR ANH

Group 1 vs. Group 2 Step1 0.008 0.930 4.600

H0 FTR ANH

Group 1 vs. Group 3 Step1 11.799 0.003 4.414

H0 FTA RNH

Group 2 Step1 vs. Group 3 Step1 13.179 0.002 4.494

H0 FTA RNH

Group 2 Step2 vs. Group 3 Step2 1.260 0.278 4.494

H0 FTR ANH

Study 1.

Novelty assessment: Appendix B presents the novelty of the designs

created by three groups. Table 9 summarizes the novelty assessment for each

of the three groups in Study 2, including the average novelty of the designs

in the group, the two designs with highest novelty, and a description of their

features.

Table 10 summarizes the ANOVA tests for the novelty ratings of the

three groups and two design steps. For Group 2, the Null Hypothesis was

accepted by a small margin for comparison between steps 1 and 2 as there is

only a 0.8 difference between the average novelty for Step 1 and Step 2. In

Group 3, the novelty for most of the designs remained the same from Step

1 to Step 2 and therefore, the Null Hypothesis was accepted. For Group 1,

the Null Hypothesis was accepted for comparison with Step 1 of Group 2 but

is rejected for comparison with Step 1 of Group 3. For comparison between

Step 1 of groups 2 and 3, the Null Hypothesis was rejected but was accepted

for comparison of Step 2. This suggests that the mean for the groups came

closer in the second step. Thus, Hypothesis 6 is true as titles help improving

the novelty of the subsequent design. Hypothesis 7 is false as briefs do not

increase the novelty between the two steps.

Quality assessment: Appendix C presents the quality ratings for the
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Table 5.11: Quality ratings for the three groups

ANOVA Results

F p-value Fcrit

Group 2 Step 1 vs. Step 2 0.390 0.540 4.414

H0 FTR ANH

Group 3 Step 1 vs. Step 2 0.558 0.464 4.351

H0 FTR ANH

Group 1 Step 1 vs. Group 2 Step 1 0.450 0.511 4.381

H0 FTR ANH

Group 1 Step 1 vs. Group 3 Step 1 1.015 0.326 4.351

H0 FTR ANH

Group 2 Step 1 vs. Group 3 Step 1 0.410 0.530 4.381

H0 FTR ANH

Group 2 Step 2 vs. Group 3 Step 2 0.031 0.862 4.381

H0 FTR ANH

three groups. The average quality ratings for both steps of Group 2 and Group

3 are very close to each other. As shown in Table 11, the Null Hypothesis is

accepted for comparison between steps 1 and 2 for both groups. Also, there

are no statistically significant difference in means between Step 1 of the groups

1, 2, and 3. While analyzing the designs, it was noticed that there were very

few changes made when the design was modified from Step 1 to Step 2. Since

most of the devices used in Step 1 were retained in Step 2, there is no major

difference in the quality ratings.

Usefulness ratings: Table 12 shows that there is a small change in

the usefulness ratings between steps 1 and 2 of both Group 2 and Group

3. However, the one-way ANOVA results suggest that this change is not

statistically significant. Also, the Null Hypothesis was accepted for comparison

between Step 1 of groups 1, 2, and 3. Hence, the overall usefulness remained

the same for all the groups. However, it can be noticed that a few designs

especially in Group 1 have very high ratings (e.g., designs 1 and 6) while some

have very low ratings (i.e. Design 7). Therefore, there seems to be a lot of

fluctuations in the ratings for different designs but the average rating matches

that of the other groups.
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Table 5.12: Usefulness ratings for the three groups

ANOVA Results

F p-value Fcrit

Group 2 Step 1 vs. Step 2 1.336 0.267 4.600

H0 FTR ANH

Group 3 Step 1 vs. Step 2 0.108 0.746 4.351

H0 FTR ANH

Group 1 Step 1 vs. Group 2 Step 1 0.128 0.725 4.451

H0 FTR ANH

Group 1 Step 1 vs. Group 3 Step 1 0.091 0.766 4.351

H0 FTR ANH

Group 2 Step 1 vs. Group 3 Step 1 0.004 0.952 4.451

H0 FTR ANH

Group 2 Step 2 vs. Group 3 Step 2 0.035 0.855 4.451

H0 FTR ANH

5.4 Discussion

Figure 3 summarizes the average novelty, quality, and usefulness of the

designs in Study 1. The results show that, for modular, electronic embed-

ded system design, it is more convenient to relate exemplars based on their

functions using relations like input - output or event - response. It is difficult

to combine exemplars such that properties of one exemplar are transferred to

the other exemplar. This justifies the fact that the number of RBCs is sig-

nificantly larger than the number of PBCs. The highest number of RBCs per

design is generated if well known exemplars are considered as this generates

more ideas on how to relate the exemplars. Surprisingly, having more or less

related exemplars reduces the average number of RBCs per design. While less

related exemplars might be more difficult to combine in various ways, more

related exemplars might encourage fixation to a particular kind of design.

Related studies show that examples have a mixed role in creative design.

It is known that exposure to examples can reduce innovation through fixation

[96, 118]. The path-of-least-resistance model indicates that features of known

examples are accessed first [171,172]. Fixation to initial solutions can persist

during the design process [168]. However, other work shows that examples can

improve creativity too [151, 159]. Agogue et al. [130] distinguish examples

with fixating role from those with a role in expanding the solution features
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Figure 5.3: Average novelty, quality, and usefulness of the designs in Study 1

beyond the features of the initial design. Far-field, less common examples

improve novelty and quality in mechanical engineering design [137]. Early

exposure to examples possibly followed by prototyping and re-exposure to

examples also helps creativity [156].

We observed that fixation induced by some of the exemplars was an

important factor in deciding the nature of solutions, including their purpose

and place of being utilized. To a certain degree, exemplars have a constraining

effect similar to examples [118]. For example, having gas and temperature

sensors among the exemplars given to Group 1 resulted in more applications

on home safety related to toxic gases and dangerous temperatures, including

fire. Group 2 had voice recorder, robotic arm, and cooking stove among its

exemplars. These exemplars encouraged more solutions like voice controlled

embedded systems and smart cooking devices placed in the kitchen and with

robotic arm. The camera and the alarm signal in the set provided to Group

3 favored more home security applications against intruders. Group 4 had

designs similar to Groups 1 and 3. Some exemplars, like capacitive sensors,

were rarely used even though they are very popular in modern embedded

systems, like smart phones and music players. This observation suggests that
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the exemplars (through their fixating constraints) have different impact on

deciding the application and design solution.

Design solutions can be grouped into three categories: (1) solutions

highly similar to already existing designs, e.g., home security systems, (2) so-

lutions that apply an available solution for a new problem or in a new place,

i.e. using a robotic arm for pumping gas in a gas station, and (3) solutions

that include new relations between the given exemplars, like using a hair drier

to disperse smoke in a kitchen. The novelty of the first category is low. The

novelty of the second category is high, if the identified purpose or place are

less common. This category resembles to using analogies in solving engineer-

ing problems [125]. There was one instance in which the solution represented

a metaphor-based design. The application entitled ”Voice follows you” pro-

posed an automated voice amplification system that adjusts automatically the

strength of the received voice signal based on the position of the participants.

This solution has the potential of enabling many more applications that in-

volve high-quality communication between people in distributed spaces. The

third category included solutions with unique relations but the novelty of the

overall solution or its usefulness were low.

Figure 4 plots and displays (in the bottom tables) the novelty, quality,

and usefulness ratings of each design in Study 1. The gaps in the plots rep-

resent subjects that did not respond to the problem. These cases are marked

as N/A in Appendix A. Novelty was assessed using the formula in Section

2.2 computed based on the features of the designs. Note that novelty was an

explicit design requirement in our studies: In the problem description, partic-

ipants were instructed to create novel designs which are dissimilar to designs

seen in textbooks, technical magazines and journals, Internet, etc. The de-

signs with novelty ratings above average were highlighted with a gray box if

their usefulness was above average and with a black box if their usefulness was

below average.

In about 60% of the cases, the novelty and usefulness of solutions are

inversely correlated, meaning that higher novelty rate comes at the expense of
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Figure 5.4: Novelty, quality, and usefulness of individual designs in Study 1
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lower usefulness. Some new solutions had often low usefulness as the invented

relations were considered unrealistic or marginal as more traditional designs

already solved well the same problem, e.g., using the noise of car engine to

gain access to parking lots. Three designs, “AI-fridge” (Design 13 in Group 1),

“iFetch robot” (Design 17 in Group 2), and “smart stove and oven” (Design 20

in Group 3) have high novelty and usefulness. Such designs are truly creative

but difficult to produce. More traditional solutions scored high for usefulness.

Solution quality and novelty are less related as shown in the figure.

Producing design solutions based mainly on RBCs (and virtually no

PBCs) can be justified by the fact that the given exemplars have orthogonal

functionalities with few overlapping properties. This is similar with experi-

ments that suggest that overlapping features favor property-based combina-

tions [174]. Another explanation is that traditional design methodologies

focus only on relating building blocks to achieve a certain purpose and not on

how properties can be transferred among exemplars. Developing novel design

methodologies that target PBCs can create opportunities to improve novelty,

but this requires reasoning with design attributes (e.g., design performance) in

addition to the more traditional way of reasoning based on functional features.

A possibility would be to incorporate visual descriptions to reflect properties

and self-explanations [131,132,142]. Novel design methods must address less

considered issues regarding quality and usefulness, like relating the developed

design to alternative solutions and the capability of a design to be used as an

enabler for future solutions. Also, designers must be encouraged to tackle in

more detail aspects like solution cost and easiness of interfacing (EoI).

The experimental results indicate that relation-based combinations in

electronic embedded system designs can be distinguished based on their pur-

pose into four types:

1. Core relations exist if the functionality of the resulting block is explicitly

derivable from the functionality of the composed blocks. For example,

the functionality of a weighted adder circuit includes two separate basic

blocks: input multiplication by constant weights and summation. The

features of the overall block can be derived through linear composition
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from the features of the basic blocks.

2. Enabling relations are produced if the functionality of one block enables

the functioning of another block. Enabling relations implement input-

output connections between blocks, such as if an amplification block

strengthens the inputs signals of another block. The features of the

second block remain unchanged but the amplification block enhances

the range of the inputs to the block.

3. Performance-enhancing relations are if one block enhances the perfor-

mance of another block but without conditioning the basic functionality

of the design solution. For example, a memory module increases the

amount of time over which a computed value is available.

4. Hidden relations are created when the connected structure has differ-

ent capabilities than those of the composing blocks, e.g., filtering struc-

tures. Possible ways of constructing hidden relations is by producing

circular connections (feedback loops) and cross-correlations in a circuit

design. The new property is a resultant of repeatedly executing the loop.

The new features represent either fixed points (invariants) of the cyclic

structures, amplification of secondary features (while reducing the im-

portance of main attributes), or patterns defined over variable dynamics,

e.g., repetitive behavior like for sinusoidal oscillation. In the first case,

there are both enforcing and reducing relations that reach equilibrium

(the fixed point). The second situation indicates a reinforcement rela-

tionship that acts as positive feedback to amplify the secondary feature,

similar to increase in salience in concept combination [176]. The third

case represents relations that create a cyclic trace that proceeds, through

positive amplification, to reach an extreme point followed then by chang-

ing the positive amplification to reach another extreme point, and so

on. Characterizing novel features of hidden relations requires simulation

(prediction) similar to situated simulation theory [134].

Two of the relation kinds are partially similar to relational categories

[158,160]. Enabling relations are similar to CAUSES, USED BY, USES, BY,
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and FOR modifiers. Performance-enhancing relations can act as specialization

modifiers, like DERIVED FROM, LOCATED, and DURING. All three kinds

of relations operate as HAS, MADE OF, and USES modifiers. Note that FOR,

IS, and ABOUT modifiers relate to goals, which are not explicitly expressed

through the relations of modular design, especially in situations in which the

features of the solution are not summations of the features of its compos-

ing blocks. The relational categories in [158, 160] do not include anything

similar to hidden relations as there are no implicit features. Enabling and

performance-enhancing relations are also related to schemata [139]. However,

schemata do not include cyclic structures which are important to produce for

hidden relations. Enabling relations are a more natural way of relating blocks

to each other as the final characteristics of solutions are easier to infer in

terms of basic blocks. This is due to several reasons. Many building blocks

used in design have complementary, non-overlapping features, and designer

training relies on discussing examples that are relevant representatives for a

given class of circuits. In addition, economical constraints enforce that the

building blocks in a library have little overlapping features as they can lead

to redundancies, and hence unwanted increase in cost. Also, circuit design

practice relies often on formalisms that stress input-output dependencies be-

tween blocks, thus favor enabling relations. In contrast, hidden relations are

more difficult to predict as their nature becomes evident only after additional,

usually hard-to-acquire insight, e.g., through simulation and analysis. Hidden

relations are usually learned and reused in similar situations. Hidden relations

correspond to implicitly expressed relations or relations which are open-ended

(under-constrained), thus allowing an infinity of solutions. This suggests that

hidden relations have the potential of introducing features other than what

the original blocks offer, thus extending the domain knowledge beyond addi-

tive composition of the individual block meanings.

Figure 5 summarizes the average novelty, quality, and usefulness of the

designs produced by the three groups in Study 2. Using titles increases the

novelty of the solutions in Group 2, Step 1 compared to Group 2, Step 2. Titles

helped refine the designs’ purposes and places of use, two of the dominant
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Figure 5.5: Average novelty, average quality, and average usefulness for all
groups in Study 2

factors in deciding novelty. Deciding in Step 2 more precise purposes and

places of use in contrast to the general, unspecified goals in Step 1 improved

novelty. For example, titles focused a general safety system in which the

robotic was used for protection (developed in Step 1) to a security system for

banks (Step 2). Or a similar safety system (Step 1) is refined as a security

system for industrial systems (Step 2). An interesting situation occurred for a

design of a driverless car (Step 1) which was modified to a thinking car (Step

2) capable of active decision making and strategy finding. The title defined a

novel PBC, the capability of the car to think. The observation that creativity is

improved by more specific solutions (rather than broad, less detailed purposes)

was also observed in the first study. Titles had little impact on quality and

usefulness.

Short descriptions (briefs) did not improve the designs’ novelty of Group

3, Step 1 compared to Group 3, Step 2. The result of briefs was to encourage

the adding in Step 2 of more functionality to the initial design without chang-

ing its main purpose. For example, a system for seagull detection was extended

also for searching extraterrestrial zones. Or a system used to pre-heat a car’s

engine was extended to distinguish between weekends and week days, which

creates the premises of achieving a better quality of the product (e.g., customer
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satisfaction) but does not improve novelty. A typical situation was represented

by a house security based on gas detection (Step 1) was extended to also in-

corporate movement detection (Step 2). The average novelty after Step 2 was

slightly lower than Step 1. This is in contrast to the results reported for the

novelty of product advertisements [154].This difference can be explained as

follows. Briefs seem to help subjects identify incremental extensions of system

without modifying the basic concept. As solutions are mainly based on RBCs,

new RBCs are added in Step 2 but with minor impact on novelty. Briefs had

little impact on quality and usefulness. The findings of the first study are

likely to be valid for any domain characterized by modular solutions created

by connecting building blocks with orthogonal functionalities. Such domains

include computer architecture design, VLSI circuit design, and software de-

sign. For example, connecting processing units and wireless radio circuits, two

types of modules rarely used previously together, has produced revolutionizing

architectures for mobile computing systems. The findings of the second study

probably hold for a broader range of domains, not only those dominated by

relation-based combinations. Aids, like titles, can be used as tools to describe

constraints that distinguish new solutions from their related precedents. A

broad range of work explains the utility of constraints in improving creativity

[162,169].

5.5 Conclusions

This chapter presented two experimental studies on the characteristics

of concept combinations in modular, electronic embedded system design as

well as the relation between concept characteristics and novelty, quality, and

usefulness of designs. The work explored the frequency of relation-based and

property-based combinations in design solutions, and how the specifics of the

used building blocks, i.e. salience, relatedness, and number, influenced the

novelty, quality, and usefulness of combinations. The importance of two design

aids, titles and short descriptions (briefs), in improving the novelty, quality,

and usefulness of final designs was also analyzed. The two experimental studies
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are based on the work by Mobley, Doares and Mumford (1992).

Experimental results show that new electronic embedded systems are

developed mainly through relation-based combinations. This conclusion does

not depend on the kind or number of building blocks given to the subjects.

The average novelty is higher for building blocks that have rarely been used

together before. Also, the novelty of solutions is mainly related to factors that

express the purpose (goal) and place of use (context) of the solutions, and less

related to the number and specific kind of building blocks and the types of their

interconnections. Some exemplars have a stronger role in deciding the purpose

of the application by fixating the subjects to certain applications. The solution

quality and usefulness are not correlated to the nature and number of building

blocks. Subjects did pay little attention to issues like implementation cost,

similar solutions being already available, and the possibility to incrementally

develop the present design into future solutions. Novelty is aided by using

titles that summarize the purpose and distinguishing features of solutions but

short descriptions (briefs) do not help.

The two studies suggest that a strategy to improve design novelty is to

attempt using existing design ideas (e.g., design patterns) in a new but spe-

cific place or for a new but precise purpose (goal). Using continuously titles

to summarize and then focus on novel yet specific features improves innova-

tion. Solutions that target general purposes should be avoided as their lack

of details lowers the perceived usefulness and novelty. Second, it seems that

many subjects had already selected the targeted purpose independently of the

experiment, similar to pre-inventive structures [138]. The actual problem that

they solved was partially related to a problem which they had identified before

and separately from the experiment. Future work will study how exemplars

with expansive role [130] can help broadening the space of the considered

goals. Also, using less related exemplars helps increasing novelty as shown

by work on analogical reasoning [138, 141, 172]. But the connection between

unrelated exemplars and selecting new goals and opportunities is unclear. It

seems hard to infer new needs in a bottom-up fashion, starting from exem-

plars and moving towards new purposes. However, combinations of distant
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concepts originated revolutionary technologies, like Internet and World Wide

Web. Finally, we think that the insight gained through experimental stud-

ies can inspire the devising of new CAD tools targeted towards innovation in

engineering design. We have devised computer algorithms for automatically

comparing electronic circuits based on ideas inspired by structural alignment

[146], theoretical models for domain knowledge representation in circuit de-

sign based on concept categorization [147], and circuit design flows inspired

by problem solving heuristics [145]. Our ongoing work will continue this ef-

fort towards a complete CAD environment for innovation in electronic circuit

design.

5.6 Appendix

APPENDIX A: Table 7.13

APPENDIX B: Table 7.14

APPENDIX C: Table 7.15
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Table 5.13: Design novelty for the four groups

Design Group 1 Group 2 Group 3 Group 4

1 4.2 5.1 4.4 3.9

2 4.5 4.9 N/A 3.5

3 5.2 7.1 5.2 5.0

4 6.5 5.6 4.3 5.0

5 6.8 5.8 4.3 5.6

6 N/A 5.0 4.2 6.8

7 5.0 6.3 N/A 3.6

8 4.8 6.8 3.6 5.1

9 4.5 7.1 3.6 5.6

10 4.3 5.0 4.9 6.7

11 7.2 4.9 3.8 4.9

12 N/A 5.3 6.5 3.6

13 7.5 6.9 N/A N/A

14 7.5 7.5 4.4 N/A

15 4.5 6.5 N/A

16 4.7 6.3 4.4

17 5.3 7.4 6.7

18 4.3 4.1

19 4.6 3.6

20 7.1 8.2

21 5.5

22 N/A

23 4.7

24 6.5

25 6.7

Average 5.5 6.1 4.8 4.9

Table 5.14: Novelty ratings for the three groups

Design Group 1 Group 2 Group 3

Step 1 Step 2 Step 1 Step 2

1 5.5 N/A N/A 6.4 6.4

2 3.9 N/A N/A N/A N/A

3 4.6 N/A N/A 6.0 6.0

4 N/A 5.5 5.9 6.4 6.2

5 6.9 5.3 5.8 6.6 6.5

6 6.8 4.8 5.4 7.3 6.7

7 N/A N/A N/A 6.5 6.2

8 N/A 6.9 7.2 6.7 6.8

9 4.5 N/A N/A 6.9 6.5

10 4.4 3.9 6.8 6.5 6.4

11 4.9 5.8 5.8 5.3 5.2

12 5.8 4.4 5.4 6.7 6.4

Average 5.3 5.2 6.0 6.5 6.3
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Table 5.15: Quality ratings for the three groups

Design Group 1 Group 2 Group 3

Step1 Step2 Step1 Step2

1 7.2 N/A N/A 7.5 7.5

2 7.4 7.8 7.5 N/A N/A

3 8.1 7.4 7.5 7.6 7.6

4 N/A 7.5 7.3 7.7 7.5

5 7.4 7.3 6.7 7.8 7.8

6 7.2 7.4 7.5 6.7 6.8

7 7.9 N/A N/A 7.2 6.8

8 7.9 7.7 7.7 9.3 8.4

9 6.8 7.7 7.7 7.3 7.0

10 7.7 7.7 7.4 7.6 7.6

11 7.1 7.4 7.7 8.4 8.1

12 7.6 8.0 8.0 7.9 7.7

Average 7.5 7.6 7.5 7.7 7.5
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis report, we presented a procedure to construct robust data

models using samples acquired through a grid network of embedded sensing

devices with limited resources, like bandwidth and buffer memory. The proce-

dure constructs local data models by lumping state variables, and then collects

centrally thelocal models to produce global models. The modeling procedure

uses a linear programming formulation to compute the lumping level at each

node, and the parameters of the networked sensing platform, like data commu-

nication paths and bandwidths. Two algorithms are described to predict the

trajectories of mobile energy sources/sinks as predictions can further reduce

data loss and delays during communication. Experiments discuss the method’s

efficiency for thermal modeling of ULTRASPARC Niagara T1 architecture.

Experiments show that variable lumping reduces the overall error by up

to 76.91% and delay by up to 57.62%, as compared to no lumping being used.

The error is smallest if latency reduction has high priority. The attempt to

minimize local error performs less lumping, however, results is larger data loss,

and hence in more overall error. The attempt to reduce the overall error by

minimizing the correlation error results in increased latency. As the network

size increases from 25 nodes to 64 and 100 nodes, the larger communication

traffic leads to further losses and delays. Therefore, accuracy-centered opti-
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mization becomes critical for performing reliable data extraction. Trajectory

prediction using adaptive method (A2) reduces modeling error by up to about

10%.

We also presented a new approach for optimizing the accuracy of dis-

tributed data acquisition for tracking dynamic phenomena through a network

of embedded sensors. The method considers three orthogonal facets: mini-

mizing the sampling error of the individual embedded nodes through frontend

reconfiguration, and selecting dynamically data paths to avoid data loss and

delays due to embedded nodes running out of resources. For the sound-based

tracking application, the accuracy of data sensing is improved by about 28.5%,

data loss is zero in most situations, and delay reductions are more than 20%

in most cases.

We proposed methods to detect and track emergent kinetic data repre-

senting clouds of physical entities in [3]. The main attributes of the considered

kinetic data structures (KDS) are topography (position, boundary, and area),

composition (signature), and concentration of the gas clouds. The report

presents fully decentralized methods for optimized implementation of kinetic

data on a grid network of wireless embedded sensing nodes. Adaptation poli-

cies are devised to switch between different parameters namely buffer memory

size, communication bandwidth, radio power, and sampling precision. The ef-

ficiency of the algorithms is compared in [3] with similar methods proposed in

the literature. The decentralized method improves latency up to 90% and data

loss by 75% compared to centralized approaches, by 64% and 61% compared

to cluster-based algorithms and latency improvement of about 25% compared

to hierarchical techniques.

A methodology to model the dynamics of traffic scenes, including the

participating vehicles, vehicle clusters, attributes and relations of all scene

elements, and related events, like cluster merging and splitting was presented in

Chapter 1. Experiments using this methodology are described in [4]. The main

steps of the methodology find the elements of a scene, identify the relations

among the elements, and construct analytical prediction models for the traffic

scene dynamics. Compared to other methods, this methodology constructs
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the models online using sound input captured by the nodes equipped with two

microphones each.

A study was presented about the role of precedents in illuminating

creative ideas during iterative design procedures for open-ended problems in

electronic embedded systems. Precedents were defined as the solutions and

solution features developed during the iterative solving process by the partic-

ipants in a group. Through an experiment grounded in cognitive psychology,

this work explored the influence of precedents on novelty, variety, quality, and

utility of design solutions devised during four consecutive iterations. Another

tested hypothesis was that incrementally changing problem requirements im-

proves design novelty. Experiments showed that precedents did not increase

design novelty as compared to the group that did not utilize precedents. Prece-

dents in iterative design flows reduced the variety of design solutions as the

group setting seemed to filter out ideas that were perceived as less promising.

In our experiments, precedents did not improve creativity as compared to the

participants that did not use them.

We presented two experimental studies on the characteristics of concept

combinations in modular, electronic embedded system design as well as the

relation between concept characteristics and novelty, quality, and usefulness of

designs. The work explored the frequency of relation-based and property-based

combinations in design solutions, and how the specifics of the used building

blocks, i.e. salience, relatedness, and number, influenced the novelty, quality,

and usefulness of combinations. The importance of two design aids, titles and

short descriptions (briefs), in improving the novelty, quality, and usefulness of

final designs was also analyzed. Experimental results show that new electronic

embedded systems are developed mainly through relation-based combinations.

This conclusion does not depend on the kind or number of building blocks

given to the subjects. Using continuously titles to summarize and then focus

on novel yet specific features improves innovation.

Two application goals were explored for causal knowledge search: Cre-

ativity in electronic design and Thermal modeling of microprocessor. For each

goal, causal graphs were extracted from distributed data using TETRAD. We
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analyzed the causal relationships between different variables in the graphs,

under varying circumstances.

6.2 Future Work: Goal-oriented Causal Knowl-

edge Search in Distributed Data

Due to the distributed nature of Cyber-physical systems, data mod-

els can be extracted at each individual node (node-level), between groups of

nodes (local-level) or at the central node (global-level). At each level, the

models express relationships between the involved variables or parameters.

As mentioned in chapter 1, these relationships can be of two types: is-part

relations and cause-effect relations. Is-part relations can be extracted using

data mining, through classification and clustering. For example, using SVM

classification, we identify a ‘car’ and classify that it is a part of the class of

vehicles. However, cause-effect relations are tricky to isolate. Correlation of

values between two variables does not necessarily imply causation. We need

specialized algorithms to identify such causal relations. A graph of the causal

relationships between variables is called a ‘Causal Graph’. By observing the

nature of relations between the same set of variables, at different nodes in the

sensor network, we can try to gain an insight into the behavior of the physical

entity being monitored.

A study of Cyber-physical systems includes observing behavior at each

node in the network and their interactions. Similarly, in a group of human

beings, we can analyze individual responses as well as their interaction with

others in the group. Therefore, we will explore two application goals in this

chapter: Creativity in electronic design (explained in chapters 6 and 7) and

Thermal modeling of microprocessor (from chapter 1). For each goal, the

aim is to extract causal graphs from distributed data and analyze the causal

relationships between different variables under varying circumstances.
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6.2.1 Causal Search

There has been significant research performed on the topic of causal

analysis and search in the last two decades [177, 178]. In this chapter, the

TETRAD tool [179] developed by Scheines et al. [178] was used to perform

causal knowledge search. Raw numerical data was input to the tool. This data

is used by the tool to extract the covariance statistics between the different

variables. Based on the chosen algorithm, a causal graph is output at the end

of the search operation. This graph can be parameterized as a ‘Structural

Equation Model’ or a ‘Bayes Model’ and the parameters can be estimated

using regressors. The search also provides a ‘Model-fit’ coefficient that gives

an indication of the reliability of the graph compared to the data. So, we can

use this number to get an idea of how closely the relationships in the graph

are tied to the actual numerical data.

For example, as shown in Figure 6.1, the data block accepts numerical

information. Background knowledge is included to reduce the sample space

and help the algorithm achieve faster results. The Search block uses algo-

rithms for model-based search and score-based search. If the search does not

involve latent variables, the algorithm searches for ‘Patterns’. There are spe-

cial algorithms to search graphs that might contain latent variables, called

Partial Ancestral Graphs (PAGs). The search outputs a causal graph that has

directed as well as undirected edges. Graph manipulator is used to can be used

to choose a desired direction for the undirected edges to create a fully-directed

acyclic graph (DAG). This graph is converted to a parametric model such

that each link is assigned a coefficient apart from the overall graph ‘Model-fit’

coefficient. These coefficients are estimated using the estimator block.

An example of causal search result for the thermal modeling case study

is shown in Figure 6.2. As described in chapter 1, thermal data was generated

for the ULTRASPARC T1 microprocessor. Variable ‘dT/dt’ represents change

in temperature at a particular node in time ‘dt’, ‘DTSum’ is the sum of temper-

ature difference of current node with neighbors and ‘E/dt’ denotes the energy

injection due to power dissipation. As we know from equation 2.1, the change

in temperature at a particular node is caused by thermal flow from neigh-
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Figure 6.1: TETRAD procedure

bors and power dissipation. So, in the causal graph, we would expect to see

directed links representing these cause-effect relationships. This is confirmed

by Figure 6.2(top-left) using the GES (Greedy Equivalency Search) scoring-

based search algorithm. The estimator output is shown in Figure 6.2(top-

right) which shows the values of the edge coefficients. The output of FCI

(Fast Causal Inference) algorithm, which searches for PAGs, is shown in Fig-

ure 6.2(bottom). We see an additional link between variables ‘DTSum’ and

‘E/dt’, which suggest that they might be some hidden dependency between

the two. However, the ‘bubbles’ at the end of the link signify that the direction
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Figure 6.2: TETRAD example: Thermal modeling, (top-left) search using
GES, (top-right) estimator output, (bottom) search using FCI

of link cannot be established due to insufficient information.

6.2.2 Preliminary Experiments and Observations

Two application goals will be explored in this section: Creativity in

electronic design and Thermal modeling of microprocessor. For each goal, the

aim is to extract causal graphs from distributed data and analyze the causal

relationships between different variables under varying circumstances.
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Creativity in electronic design

Problem statement : In chapter 5, two studies were performed to

analyze creative concept combinations in design of modular embedded systems.

For the first study (Study 1), subjects were asked to build a novel electronic

embedded system to be used in the household. There were four groups of

subjects and each group was given a different set of blocks to be used in their

designs. The list of building blocks is shown in Table 5.1. Following were the

important characteristics of the blocks for each group:

• Group 1: Used exemplars (building blocks) that are common in electronic

embedded system problems but their functionality is orthogonal, thus

well distinguished from each other.

• Group 2: Unrelated exemplars, such as the exemplars that are rarely

used together in solutions.

• Group 3: Exemplars that are often used together.

• Group 4: A larger set of common exemplars.

The novelty ratings were computed using equation 5.1. Nine factors

were involved in this analysis:

• Factor 1: number of exemplars used in the design

• Factor 2: types of relations connecting the exemplars

• Factor 3: topology of the combinations

• Factor 4: capabilities added by the combinations

• Factor 5: properties added to the system

• Factor 6: system topology

• Factor 7: type of the system

• Factor 8: purpose of the design
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• Factor 9: place of use.

For each group, the individual scores for the nine factors as well as

the overall novelty score were input to the TETRAD tool in order to perform

causal search. The main aim was to identify any hidden correlations between

the 9 factors that directly or indirect affect the overall novelty ratings.

Search Results : The search results for groups 1, 2, 3 and 4 are shown

in Figures 6.3 and 6.4 respectively. As an additional analysis, the designs from

all groups were combined into a single group and a separate causal search test

was performed on this combined data. The result is shown in Figure 6.5.

For Group1, the model fit is 0.94 which indicates that this graph is

highly significant compared to the data. All 9 factors affect the overall novelty

rating. This is expected, due to the nature of the novelty expression. However,

we can observe additional dependencies between different factors. For exam-

ple, factor 2 (type of relations) and factor 3 (topology of combinations) are

connected by an undirected edge. The undirected edge indicates that there is

insufficient information to confirm the direction of the edge. It can also indi-

cate that some members of the equivalence class contain edge in one direction

while other members have the same edge pointing in the opposite direction.

Also, factors 4 (capabilities added by combinations) and 5 (properties added

to system), factors 5 and 6 (system topology), factor 8 (purpose)and 9 (place

of use) are connected to each other respectively.

As seen in the graphs for Groups 2, 3 and 4, there are some similarities

as well as differences in the causal relations between the factors, as compared

to Group 1. The main reason for these dependencies might be the nature of

the building blocks that were provided to the subjects, as explained earlier.

For example, Group2 uses exemplars that are rarely used together. So, the

purpose of the designs (factor 8), as chosen by the subjects, strongly affects

the topology of the combinations of blocks (factor 3) as well as the system

topology (factor 6). This behvior is not observed for any other group. On

the contrary, Group used exemplars that are often used together. So, we see

that the topology of combinations of blocks (factor 3) is directly affected by

three factors, namely factors 2 (types of relations), 6 (system topology) and 7
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Figure 6.3: Causal graphs for Group1 (top) and Group2 (bottom), with model
fit of 0.94 and 0.32 respectively

(type of system). The graph for Group 4 has the least number of links. This

might be because of the larger set of building blocks or because group 4 was

the smallest group with only 12 subjects.

A small test was performed to observe the effect of having different

number of subjects in each group. All the groups were combined to from a

big dataset called ‘AllGroups’ that contained 68 datapoints. This also gives

an idea of the most common and prominent dependencies in the combined

group of designs, irrespective of the building blocks that were provided. The

results are shown in Figure 6.5. Most of the dependencies are similar to those
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Figure 6.4: Causal graphs for Group3 (top) and Group4 (bottom), with model
fit of 0.13 and 0.48 respectively

in Group 1. There are two additional links: one from factor 2 (types of

relations) to factor 1 (number of exemplars) and another from factor 9 (place

of use) to factor 2. The estimation of coefficients for this graph shows the edge

coefficients. The model fit is 0.12 which indicates that this graphical model

is statistically significant compared to the data. It is interesting to note that

the edge coefficients are very close to the regression coefficients that can be

estimated from the novelty expression in equation 5.1.
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Figure 6.5: (top) Causal graph for all groups combined and (bottom) estimator
output, Model fit of 0.12

Thermal modeling of microprocessor

Problem statement : As described in chapter 2, a thermal simula-

tor was used to generate thermal data for an ULTRASPARC T1 architecture

floorplan. A scenario that was simulated involved a single hotspot moving

across either side of the floorplan. This dataset was labeled ‘Dataset 2’ (DS2)

and is depicted in Figure 6.6. The X and Y axis denote the floorplan dimen-

sions (um) while the Z axis denotes time (ms). The temperature scale (K) is

shown on the colorbar.
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Figure 6.6: Dataset 2 thermal hotspots

For this dataset DS2, the following causal search tests were performed:

• Causal Pattern-search on DS2, using GES algorithm

• Causal Pattern-search on DS2 with microchannel cooling, using GES

algorithm

• Causal PAG-search on DS2, using FCI algorithm

• Causal PAG-search on DS2 with microchannel cooling, using FCI algo-

rithm

The aim is to observe the effect of cooling on the extracted causal graph.

This should manifest in the form of changes in the caus-effect relationships in

the graph as well as the value of model fit coefficient. Also, we can study the

effectiveness of Pattern search using GES (scoring-based) algorithm versus

PAG search using FCI algorithm.

Similar to the previous example on thermal modeling, variable ‘dT/dt’

represents change in temperature at a particular node in time ‘dt’ and ‘E’

denotes the energy injection due to power dissipation. ‘DTup’, ‘DTdown’,
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‘DTleft’ and ‘DTright’ are the temperature difference of current node with

the four neighbors in the grid network of sensor nodes. From equation 2.1, we

know that the change in temperature at a particular node is caused by thermal

flow from neighbors and power dissipation. So, in the causal graph, we would

expect to see directed links representing these cause-effect relationships.

Search Results:

Figure 6.7: DS2 Thermal modeling, using GES with (bottom) and without
(top) cooling, Model fit: 0.86,0.77

In Figure 6.7, on the left, we have the graph for DS2 using GES algo-

rithm. The right-side shows the output when microchannel cooling is used.

Without cooling, it can be seen that temperature at current node is affected

by all neighbors as well as the energy injection. Also, ‘E’ affects the temper-

atures at the left and right neighbors, while the ‘down’ neighbor affects ‘up’

and ‘right’. When cooling is involved, these links from the ‘down’ neighbor

disappear. Also, the model fit drops from 0.86 to 0.77. These results might
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Figure 6.8: DS2 Thermal modeling, using FCI with (bottom) and without
(top) cooling, Model fit: 0.54,0.43

get even worse for a different dataset and higher coolant flow-rate. Similar

results can be observed in Figure 6.8 for the FCI algorithm. Without cooling,

the links are similar to the GES results. When cooling was introduced, all

links to ‘DTup’ disappeared as well as the links from the neighbor ‘down’ to

‘up’ and ‘right’. The model fit reduced from 0.54 to 0.43.

6.2.3 Conclusions

Two application goals were explored in this section: Creativity in elec-

tronic design and Thermal modeling of microprocessor. For each goal, causal

graphs were extracted from distributed data using TETRAD. We analyzed the

causal relationships between different variables in the graphs, under varying

circumstances.
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