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Models of Internet routing are critical for studies of Internet security, reliability 
and evolution, which often rely on simulations of the Internet’s routing system. 
Accurate models are difficult to build and suffer from a dearth of ground truth 
data, as ISPs often treat their connectivity and routing policies as trade secrets. In 
this environment, researchers rely on a number of simplifying assumptions and 
models proposed over a decade ago, which are widely criticized for their inability 
to capture routing policies employed in practice. This thesis makes the following 
two contributions: 

● Investigating Interdomain Routing Policies.  
First we put Internet topologies and models under the microscope to understand 
where they fail to capture real routing behavior. We measure data plane paths 
from thousands of vantage points, located in eyeball networks around the globe, 
and find that between 14-35% of routing decisions are not explained by existing 
models. We then investigate these cases, and identify root causes such as 
selective prefix announcement, misclassification of undersea cables, and 
geographic constraints. Our work highlights the need for models that address 
such cases, and motivates the need for further investigation of evolving Internet 
connectivity. 
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● Detecting BGP hijacks and interceptions 
We develop a system to detect BGP hijacks and interceptions in near real-time. 
When BGP was designed, the security challenges were not kept in mind. BGP 
lacks techniques like path validation and origin verification, as a result malicious 
ASes can advertises prefixes they do not own and can redirect the traffic to 
themselves. This is called BGP hijacking. Similarly, malicious ASes can partake 
man in the middle attack by routing traffic to the legitimate owner of the prefixes 
after redirecting first to themselves. This type of attack is called man in the 
middle attack. We develop a system to observe BGP announcements and 
updates in real time. We use combination of heuristics based on control plane 
and data plane (targeted traceroutes data) to separate malicious BGP 
announcements from legitimate announcements 
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Measuring Interdomain Routing Policies 
Models of Internet routing are critical for studies of Internet security, reliability and 
evolution, which often rely on simulations of the Internet’s routing system. Accurate 
models are difficult to build and suffer from a dearth of ground truth data, as ISPs often 
treat their connectivity and routing policies as trade secrets. In this environment, 
researchers rely on a number of simplifying assumptions and models proposed over a 
decade ago, which are widely criticized for their inability to capture routing policies 
employed in practice. In this study we put Internet topologies and models under the 
microscope to understand where they fail to capture real routing behavior. We measure 
data plane paths from thousands of vantage points, located in eyeball networks around 
the globe, and find that between 14-35% of routing decisions are not explained by 
existing models. We then investigate these cases, and identify root causes such as 
selective prefix announcement, misclassification of undersea cables, and geographic 
constraints. Our work highlights the need for models that address such cases, and 
motivates the need for further investigation of evolving Internet connectivity 
 
Research on existing and new protocols on the Internet is challenging because key 

aspects of the network topology are hidden from public view by interdomain routing 

protocols. Further, deploying new protocols at Internet scale requires convincing large 

numbers of autonomous networks to participate. As a result, networking researchers 

rely on assumptions, models, and simulations to evaluate new protocols [13, 26], 

network reliability [20, 41], and security [1, 16, 24]. Our existing models of interdomain 

routing [11], however, have important limitations. They are built and validated on the 

same incomplete topology datasets, typically routes observed via route monitors such 

as RouteViews and RIS [33, 39]. These vantage points expose a large fraction of paths 

from global research & education networks (GREN) and core networks, but they are 

incomplete in two keys ways. First, they expose few paths to and from eyeball and 

content networks. Second, they do not expose less preferred paths that would be used 

if the most preferred path was not available. As a result, they do not capture partial 
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peering, more complex routing policies based on traffic engineering, or load balancing 

and the rich peering mesh which exists near the edge of the network [35]. While 

limitations of our existing models are well known [27, 29, 35]–and are even being 

addressed in recent work [15]–we lack a solid understanding of how much these 

limitations impact our ability to accurately model the interdomain routing system. Recent 

work has attempted to address this issue by observing destination based routing 

violations in control plane data [28] and by surveying a population of network operators 

about their policies [12]. However, these approaches are limited in terms of scale and 

their ability to observe behavior at the network edge. In this paper, we take a systematic 

approach to understand how our models of routing policies [11] hold in practice. We 

leverage a combination of data plane measurements covering the network edge 

(Section 3.1) and control plane experiments which allow us to directly measure relative 

preference of routes (Section 3.2). We create a methodology that accounts for 

numerous potential causes of violations to our assumptions including sibling ASes [4], 

complex AS relationships [15], prefix-specific routing policies, and the impact of 

geography. We investigate the prevalence of each of these causes in AS-level paths 

observed via measurements of the data and control planes. We revisit generally held 

assumptions and models of Internet routing. Our goal is not to measure a complete 

Internet topology; rather, we seek to improve our understanding of routing decisions 

made by ASes when routing their traffic.  

Towards this goal we make the following observations for our measured paths:  
● Known hybrid and partial transit relationships (e.g., those explored in [15]) 

contribute a surprisingly small amount to unexpected routing decisions.  
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● Per-prefix routing policies appear to explain 10-20% of unexpected routing 
decisions, where an AS chooses a longer or more expensive path than our 
model predicts.  

● We find that some large content providers like Akamai and Net- flix are 
destinations for a large fraction of unexpected routing decisions (21% and 17%, 
respectively).  

● Routing decisions vary based on geography. We find that paths traversing 
multiple continents deviate from our models more, owing to undersea cable ASes 
which are not accounted for in our models. We also observed a tendency for 
ASes to prefer non-international paths when endpoints are in the same country.  

 
Our results highlight areas where more investigation would yield the largest payoff in 
terms of improving our accuracy when modeling AS relationships and routing policies. 
We also identify key areas, specifically investigating prefix-specific routing policies, 
where additional vantage points and looking glass servers could improve the fidelity of 
our AS topology data.  

Modeling Interdomain Routing  
The now standard model of routing policies was developed by Gao and Rexford [10, 11] 
based on seminal work by Griffin, Sheppard, and Wilfong [17] and Huston [18, 19]. In 
this model, ASes connect to each other based on business relationships: 
 (1) customer-provider, where the customer pays the provider, and (2) peer-to-peer, 
where the ASes exchange traffic at no cost. This model gives the following view of local 
preferences and export policies, based on the economic considerations of ASes:  
 
Local Preferences. An AS will prefer routes through a neighboring customer, then 
routes through a neighboring peer, and then routes through a provider. In other words, 
an AS will prefer cheaper routes.  
 
Export Policy. A customer route may be exported to all neighboring ASes. A peer or 
provider route may only be exported to customers.  
 
This model is sometimes augmented with the assumption that ASes only consider the 
next hop AS on the path when making their routing decisions. This simplifies analysis 
and makes debugging more tractable [20]. Simulation studies also often restrict path 
selection to the shortest among all paths satisfying Local Preference and use tie-
breakers to induce unique routing decisions when AS path lengths are same [13, 14]. 
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While the above model and variations thereof have been used in many studies (e.g., [1, 
13, 16, 21, 41]), it is well known that this model fails to capture many aspects of the 
interdomain routing system [27, 29, 35]. These aspects include AS relationships that 
vary based on the geographic region [15] or destination prefix, and traf fic engineering 
via hot-potato routing or load balancing. Prior work has used traceroute measurements 
and BGP data to address some of these issues (e.g., [27, 29]); however, these 
measurements only offer a glimpse into ASes’ routing preferences. Namely, they 
expose only the set of paths that are in use at the time of measurements. In contrast, 
we use active control plane experiments (PEERING [37]) to expose less preferred 
paths. Further, these datasets have poor or no coverage of paths used by edge 
networks [7]. On a smaller scale, network operators were surveyed about their routing 
policies to better understand how our models correspond to practice [12], but the scale 
and representativeness of a survey approach makes generalizing these observations 
infeasible. 

Methodology 
We aim to understand the gap between interdomain routing models and empirically 
observed behavior on the Internet. Our methodology combines two measurement 
techniques to gain better visibility into interdomain routing policies. First, we passively 
observe routing decisions on paths towards popular content networks (Section 3.1). We 
leverage the RIPE Atlas platform which provides a large collection of vantage points 
located around the world for our traceroute measurements. We thus observe routing 
decisions for broad range of hosts from variety of vantage points. One limitation of this 
approach lies in its passiveness as it only provides information about paths that are in 
use at the time of measurements. We do not get any information about the alternate 
paths available to an AS. Our second technique (Section 3.2) overcomes the above 
mentioned limitation and exposes less preferred paths for different ASes. We use 
PEERING [2, 37, 40] to selectively poison BGP announcements and force ASes to 
choose an alternate path, then we use RIPE Atlas probes as vantage points to run 
traceroutes towards poisoned prefixes to observe these alternate paths. This approach 
of actively probing routing decisions enables us to discover less preferred paths and 
also reverse engineer the BGP decision process. However, the PEERING platform is 
currently limited to few locations from which we can send poisoned announcements.  
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Passively observing route decisions  
It is well known that a disproportionately large amount of Internet traffic originates from 
a few popular content providers [23, 36]. However, there is little empirical data about the 
paths this traffic takes [23]. We target these paths with our measurements. Note that it 
is not our goal to observe routing decisions for the entire Internet. Rather, we focus on 
the more tractable task of measuring a subset of important Internet paths (those 
carrying most traffic) from a diverse set of vantage points, and putting those paths under 
the microscope to understand how and why they differ from paths predicted by routing 
models.  
 
Selecting content providers 
We consider a list of the top applications from Sandvine [36] and top Web sites from 
Quantcast [31]. From these lists, we isolate top HTTP and non-HTTP hosts in terms of 
number of downstream bytes and number of visits. Finally, we arrive at a list of 34 DNS 
names representing 14 large content providers.  
Vantage Points 
RIPE Atlas has broad global coverage, but is known to have a disproportionate fraction 
of probes skewed towards Europe. 
 
 
 
 

AS type 
 

Probes 
 

Distinct ASes 
 

Distinct 
 

Stub-AS  787 333 106 

Small ISP 581 188 78 

Large ISP 56 109 51 

Tier 1 69 8 3 

Table 1: Distribution of selected RIPE Atlas probes 
 
To avoid a bias towards European ASes, we picked equal number of probes from each 
continent. For every continent, we picked probes in a round robin fashion from different 
countries and ASes so that selected probes cover a wide range of ASes. Table 
[PUTNUMBER] summarizes the location of these probes in terms of AS type using the 
categorization method of Oliveira et al. [30]. The bulk of the probes are located near the 
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network edge in stub and small ISP networks. To measure paths to content providers, 
each RIPE Atlas node performs a DNS lookup for each of the 34 content DNS names, 
and then performs a traceroute to the resolved IP. We use 1,998 RIPE Atlas probes 
located in 633 ASes, distributed according to our sampling methodology. Data set. We 
used maximum probing rate allowed by RIPE Atlas to perform 28,051 traceroutes 
towards selected hosts. These traceroutes ended up in a total of 218 destination ASes. 
The number of destination ASes is large relative the number of content providers 
because large numbers of content servers are hosted outside the provider’s network 
(e.g., inside ISPs) [5]. We convert the traceroute-based IP-level paths into AS paths 
using the method described by Chen et al. [7]. Since interdomain routing is destination 
based, we can observe routing decisions for all ASes along the path to a given 
destination. We thus observe routing decisions for a total of 746 ASes. 

Actively probing route decisions  
Passive measurements observe only the most preferred route for an AS toward a 
destination. We use PEERING [2, 37, 40] to expose alternate, less preferred routes and 
to attempt to reverse engineer BGP decisions.  
PEERING operates an ASN and owns IP address space that we can announce via 
several upstream providers. PEERING allows us to manipulate BGP announcements of 
its IP prefixes and observe how ASes on the path react. We used PEERING to 
announce prefixes using six US universities (Georgia Tech, Clemson, University of 
Southern California, Northeastern, Stony Brook, and Cornell) and one Brazilian 
university as providers. We change announcements at most once per 90 minutes to 
allow for route convergence and avoid route flap dampening. We use prefixes allocated 
to the PEERING research testbed reserved for our experiments; these prefixes carry no 
real traffic beyond our measurements.  
 
Discovering alternate routes 
We start announcing an IP prefix from all PEERING locations in an anycast 
announcement. At each round, we observe the preferred route at a target AS T and the 
next-hop neighbor N that T is using to route toward our prefix. We then poison N, i.e., 
add N’s AS number to the path [3, 9], to trigger BGP loop prevention at N and cause N 
to no longer have a path to our prefix (and stop announcing a route to T). This forces T 
to choose a different route, through a different neighbor N 0 . We repeat this process in 
consecutive rounds, poisoning the newly-discovered neighbor, to identify all neighbors 
and routes T can use toward our prefixes. When we observe different routes at the 
target AS T (through different neighbors) from multiple vantage points (e.g., due to 
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different routing preferences at different geographic locations), we run the algorithm for 
each vantage point separately. We can potentially execute this algorithm for each AS in 
the topology as the target AS. A similar experiment was performed by Colitti [9]; here, 
we use the same mechanism with a more diverse set of providers and with a different 
goal.  
We insert all poisoned ASes into a single AS-set, and surround the poisoned AS-set 
with PEERING’s AS number. This limits ASpath length, prevents inference of non-
existent inter-AS links, and allows operators to identify the poisoning.  
 
Reverse engineering BGP decisions 
In addition to the experiment to discover alternate routes, we conduct a complementary 
experiment to infer BGP decision triggers. We first announce an IP prefix from one 
PEERING location (called the magnet), wait five minutes to allow for route convergence, 
then announce (anycast) the same IP prefix from all other PEERING locations. After we 
anycast the prefix, an AS may change to a new route with higher LocalPref, shorter AS-
path length, or better intradomain tie-breakers, as specified in the BGP decision process 
[8]. If an AS x keeps using the route toward the magnet after we anycast the prefix, we 
check if the magnet route is cheaper according to the Gao-Rexford model or has shorter 
AS-path length than all other routes we observed from x. If none of these checks are 
satisfied, we infer AS x is using intradomain costs or route age (the last tie-breaker 
before router ID) as a tie-breaker. If AS x did not choose the route to the magnet, we 
check if the chosen route is cheaper or shorter than the route to the magnet. If none of 
these checks are satisfied, we infer AS x is using intradomain costs as a tie-breaker.  
We repeat this process using each PEERING location as the magnet. We also check 
whether the route chosen after we anycast the prefix is more expensive according to the 
Gao-Rexford model or is the same cost but has longer AS-path length than other routes 
we observed, which is a violation of the model. The route to the magnet may become 
unavailable when a downstream AS receives and chooses a more preferred route; in 
these cases we consider the downstream AS’s decision. 
 
 Vantage points (VPs) 
 We perform traceroutes from 96 RIPE Atlas probes and approximately 200 PlanetLab 
nodes every 20 minutes, and collect BGP feeds every 15 minutes from RouteViews and 
RIPE RIS to monitor paths toward PEERING prefixes. We use the maximum number of 
RIPE Atlas probes allowed within daily probing budget limits. We implement a greedy 
heuristic that picks probes to maximize the number of ASes traversed on the default 
paths toward PEERING locations.  
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Data set 
We needed a total of 188 distinct poisoned announcements to infer preferences for all 
360 target ASes we observe on paths toward PEERING (some poisonings are useful for 
multiple target ASes). We observe 739 inter-AS links. We find 45 inter-AS links that are 
not in CAIDA’s AS-relationship database, 10 of which (22.2%) can only be observed 
with poisoned announcements.  

Comparison with existing models 
We compare paths observed in our passive and active measurements with CAIDA’s 
topology of inferred inter-AS relationships. We aggregate five topologies (Oct. 14 to 
Feb. 15) inferred using the method presented by Luckie et al. [25]. We aggregate these 
snapshots to mitigate the impact of transient link failures on the topology used in our 
analysis. When inferences conflicted, we took the majority poll of inferred relationships 
while assigning higher weight to more recent inferences, i.e., if the latest two months 
had the same inference, we used that inference regardless of the first three months. We 
use this topology to compute all paths that satisfy the Gao-Rexford (GR) model 
described in Section 2.  
We compare the measured paths with all paths satisfying the GR model computed 
using CAIDA’s inferred relationships. We consider two properties: (1) whether the 
measured path satisfies the GR model of local preference, and (2) whether the 
measured path has the same length as the shortest paths satisfying the GR model of 
local preference. Based on this we classify routing relationships as either obeying GR 
local preference; i.e., using the neighbor with the Best Relationship type (Best), routing 
based on shortest path (Short), or a combination of the two.  
For our active probing measurements, we consider the order in which the target AS T 
chooses paths. Again, we consider two properties: (1) whether the relationship between 
T and the next-hop on the first path is equal or better than the relationship with the 
nexthop on the second path, and (2) whether the first path is shorter or equal in length 
as the second path. We similarly label the observed decisions which obey property (1) 
as Best, and those that obey (2) as Short. We have limited visibility on what path the 
second neighbor exported to T when T chose the first path. When labeling decisions, 
we assume the second neighbor exported the second path to T when T chose the first 
path. We verified this assumption holds for the results we report.  
In both cases, the sets should be treated as disjoint, with ASes that obey both Best and 
Short path policies appearing only in the Best/Short category. Observations which 
follow neither of these properties are considered inconsistent with existing models (i.e., 
NonBest/Long category). There can be, however, some cases when a path suggested 
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by CAIDA’s inferences might not exist in practice. One of the reasons can be 
incomplete or erroneous inferences in the topologies. In addition, an AS might apply 
more complex filters than suggested by Gao-Rexford model when deciding which paths 
to advertise to neighbors (Section 4.3 discusses this in more detail). 

How often to the model hold 
 We now consider how empirically observed AS paths compare with those predicted by 
GR model. We then investigate how often deviations can be explained by known 
sources of inaccuracies.  
Encouragingly, we find that a majority of routing decisions (64.7%) for passively 
observed measurements are correctly inferred by the commonly used GR model; 
however, a significant fraction (34.3%) do not follow that model. Figure 1 (Simple) 
characterizes the observed routing decisions based on whether the path chosen is Best 
or Short. We find only a small number of cases (8.3%) where decisions can neither be 
explained by Best nor by Short path selection. In the following sections, we explore the 
reasons behind these decisions that differ from model-based predictions.  

 
Figure 1: Breakdown of routing decisions observed by taking 
into account complex relationships (Complex), siblings (Sibs), 

prefix-specific policies (PSP-1, PSP-2) and by combining complex 
and siblings relationships with both criteria of prefix-specific 

 

Complex routing relationships  
A well known limitation of existing routing policy models is the simplification of 
relationships into either customer-provider or settlement-free peering relationships. 
Recent work by Giotsas et al. addresses this limitation by augmenting relationship 
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inferences with cases of hybrid relationships (i.e., ASes whose arrangements vary 
based on location) and partial transit relationships (i.e., ASes who will behave as 
providers, but only for a subset of prefixes) [15]. The hybrid relationship dataset 
contains pairs of ASes and the corresponding cities where relationships differ for a 
given AS pair. To use this dataset, we use the geolocation data from [6], which offers 
good coverage of infrastructure IPs such as routers. For each pair of ASes in each AS 
path, we geolocate corresponding IP addresses and if the geolocation data points to the 
same city as mentioned in hybrid relationship dataset for that AS pair, we use the hybrid 
relationship. Figure 1 (Complex) shows the breakdown of routing decisions observed 
taking into account these complex relationships. Interestingly, we find that taking these 
relationships into account has nearly no impact on the classification in our dataset (less 
than 1% change).  

Sibling ASes  
The mapping between AS numbers and organizations is not oneto-one [4]. Many 
organizations manage multiple AS numbers, either for geographic regions (e.g., Verizon 
with ASNs 701, 702, and 703) or due to mergers (e.g., Level 3 (AS 3356) and Global 
Crossing (AS 3549)).  
Cai et al. [4] present a technique to map organizations to ASes by using attributes like 
organization IDs, email addresses and phone numbers found in whois information of 
ASes. We take a similar approach to identify AS siblings, but our approach differs in two 
key ways. First, we focus only on e-mail addresses in whois data, which previous work 
identified as the field with best precision and recall [4]. Second, we use DNS SOA 
records to identify different e-mail domains that belong to the same organization. For 
example, dish.com and dishaccess.tv share the dishnetwork.com authoritative domain. 
We also remove groups where the e-mail address is hosted by a popular e-mail 
provider (e.g., hotmail.com), or regional Internet registry (e.g., ripe.net). This results in a 
total of 94 sibling groups identified in our traceroute data set.  
For every non GR decision that an AS makes, we check whether the AS chooses a path 
via a sibling. If the path is via a sibling, we mark this decision as satisfying the Best 
condition. Figure 1 (Sibs) shows the result of this change—3.9% more decisions are 
classified as Best/Short.  
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Prefix-specific policies 
Interdomain routing is often abstracted to the level of a destination AS. However, in 
practice routing is based on IP prefixes which may be subject to different export policies 
by their originating AS (e.g., forwarding prefixes hosting enterprise-class services to a 
more expensive provider). While Giotsas et al. consider partial transit [15], which is a 
type of prefix-specific policy, they do not explicitly consider per-prefix policies as 
implemented by origin ASes.  
We use two criteria to identify prefix-specific policies based on correlation with BGP 
data obtained from Routeviews/RIPE [34, 39]. Given an origin AS (O), a neighbor N and 
a prefix P: Criteria 1 do not assume the edge N − O exists for prefix P unless we 
observe O announcing P to N in the BGP data. Criteria 2 is similar to Criteria 1, except 
that we require that we observe at least one prefix announced from O to N before 
applying Criteria 1. The first criteria can be seen as being more aggressive whereas the 
second aims to ensure that our observation is actually caused by selective prefix 
announcement and not poor visibility.  
Figure 1 (PSP-1, PSP-2) shows the breakdown of routing decisions using Criteria 1 and 
2 above, respectively. We find that prefixs-pecific policies account for a significant 
fraction (10-19%) of unexpected routing decisions. Combining Criteria-1 and Criteria-2 
separately with simple, complex and siblings relationships, yields 85.7% and 75.7% of 
decisions for Best/Short category respectively (Figure 2, All-1, All-2). One limitation of 
these approaches is that we only check prefix-specific policies for origin ASes. Other 
limitation is incomplete visibility in BGP control plane data. 
Validation In order to validate the cases of prefix-specific policies, we try to find a 
Looking Glass server hosted by the neighboring AS of the AS originating the prefix 
being examined. There were a total of 630 cases of prefix-specific policies involving 149 
unique neighboring ASes. We were able to find looking glass servers in 28 of the 
neighboring ASes. Using these looking glass servers we manually verify 100 cases of 
prefix-specific policies and confirm that applying Criteria 1 was correct 78% of the time.  

Active BGP Measurements  
Using our active BGP measurements, we discover alternate routes. We study whether 
the sequence of alternate route choices match existing models and infer which step of 
the BGP decision process led to each route. We report results for experiments 
performed between Feb. 25th and Apr 27th, 2015. Alternate routes. We analyze AS 
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routing choices when we use PEERING to discover alternate, less preferred routes. We 
compare the sequence of routes chosen by target ASes with  
 

BGP decision Bgp feeds Traceroutes 

Best Relationship 435 228 

Shortest Path 155 158 

Intradomain Tie breaker 155 84 

Oldest route (magnet) 24 9 

Violation 179 58 

Total 945 537 

 
 
Table 2: BGP decisions observed after we anycast a prefix previously announced 

from a single (magnet) location.  
 
AS-relationships database. Out of the 360 ASes we targeted, 310 (86.1%) chose routes 
following both Best and Shortest (as defined in Sec. 3.3); 29 (8.0%) chose routes 
following Best only; 18 (5.0%) following Shortest only; and 3 (0.8%) did not follow either 
property. We discuss the three observations that did not satisfy either property to 
illustrate limitations of current models.  
One violation occurs for a European network E that routes via Open-Peering 
(AS20562)–a transit relationship identified from RPLS entries in public routing 
databases. After poisoning OpenPeering, E routes through (a likely peer-to-peer 
relationship) with AMPATH (AS20080) at AMS-IX. We list this as a violation because 
CAIDA identifies OpenPeering as a provider for E and AMPATH as a peer of E. 
Interestingly, the second route is the suffix of the first route (i.e., the route through 
OpenPeering also reaches PEERING through AMPATH at AMS-IX), indicating the first 
route includes an unnecessary detour. Relationships are complex; transit and peering 
relationships may be preferred one over the other. Models with finer granularity for 
ranking neighbors of an AS may resolve these issues [27]. 
Another violation occurs at a US university U. The university first routes through 
Internet2 (AS11537) toward one of the PEERING locations in the US. After we poison 
Internet2, U routes through AMPATH (AS20080) toward the PEERING location in 
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Brazil. We list this as a violation because CAIDA identifies Internet2 as a provider and 
AMPATH as a settlement-free peer of U. Our last observed violation is similar, where a 
European network first routes through Switch (AS559, identified as a provider) and then 
routes through NCSA (AS10764, identified as a settlementfree peer) to reach PEERING 
after we poison Switch. These violations indicate that identifying links used as back-up 
might improve our routing models.  
 
Reverse engineering BGP decisions  
We now turn to our second control plane experiment, where we use anycast to explore 
considerations such as route age on routing decisions. Table 2 shows the root cause 
behind BGP routing decisions. Although most decisions are made based on relationship 
and path length, more than 17% of decisions are made based on intradomain tie-
breakers and route age, which are not considered in and could improve current models.  
 
 
Limitations  
BGP poisoning does not work when BGP loop prevention is disabled or when ASes 
filter poisoned announcements [20, 22]. Intermediate ASes between PEERING 
locations and target ASes may prevent us from controlling routes exported to the target 
AS. These factors limit our ability to identify all routes available to and neighbors of 
target ASes. We consider the subset of routes we observed and neighbors we 
identified. Moreover, our results for these experiments cover a small fraction of the 
Internet and are probably biased toward academic and research networks. Our control 
plane techniques, however, are general and could be used by other networks to cover 
different portions of the Internet. We believe better coverage and visibility would result in 
discovering more violations. To this end, we are working to extend the PEERING 
platform and RIPE has configured periodic measurements from a diverse set of Probes 
toward all PEERING prefixes.  

Skewness by source and destination 
We now investigate which source and destination ASes account for most of the routing 
decisions which deviate from our model. Figure 2 (a) and (b) shows the cumulative 
fraction of routing decisions which violate either the Best or Short condition (i.e., the AS 
chooses a path that is longer or more expensive than we would expect). If violations 
were evenly distributed across ASes, the curves would fix y = x; otherwise, some ASes 
are responsible for a disproportionately larger (or smaller) fraction of violations. We find  
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Figure 2: CDF plot of the fraction of violations (x-axis) explained 
by source and destinations ASes (y-axis). Violations observed 

in our dataset are skewed significantly toward Akamai 
and Netflix (21% and 17% of total NonBest/Short violations 
respectively). The skew for source ASes is less prominent. 

 
 
this effect is present in both plots, but more prominently for destination ASes. We focus 
on the latter.  
Destination ASes owned by Akamai account for 21% of violations. Of these, Cogent 
(AS174) is the most common source, responsible for 3.4% of these Akamai related 
violations. These Cogent-Akamai violations tend to occur when Cogent prefers a peer-
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to-peer path through a Tier-1 AS over a longer customer route towards Akamai. Netflix’s 
AS is the destination on 17% of paths with violations. Of these, nearly a quarter (24%) 
are due to a stale inter-AS link in CAIDA’s topology, which included a direct link 
between AS3549 and Netflix that no longer exists according to RIPE ASN Neighbor 
History [32]. For source ASes, the distribution is less skewed. Cogent and Time Warner 
are the top two sources, responsible for 4.1% and 2.2% of violations, respectively. The 
skew for source ASes is less prominent. 

Impact of Geography  
We next consider the role of geography on routing decisions. First, we isolate 
traceroutes that stay within a continent (Continental traceroutes), i.e., all hops stay 
inside a given continent based on geolocating router IP addresses. Figure 3 shows the 
breakdown in decisions in the continental traceroutes (45% of our dataset). The fraction 
of decisions explained by GR for continental traceroutes is significantly greater than for 
intercontinental ones.  

 
Figure 3: Breakdown of routing decisions for traceroutes that 

stay within continents of Africa (AF), North America (NA), Europe 
(EU), South America (SA), Asia (AS) and all continents 

combined (Cont), and for intercontinental traceroutes (Non 
Cont). 

 
Domestic Paths 
Next we focused on traceroutes where we infer that the entire traceroute stayed within a 
single country, but there is a better multinational Best/Short path (in the CAIDA data), 
which we define to be a path with at least one AS registered (via whois data) in a 
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country outside the source and destination AS’s country. We find that more than 40% of 
non-Best/Short decisions can be explained by avoiding alternative multinational paths. 
One limitation of this approach is that even for the ASes that reside in multiple 
countries, whois data still points to just one country or when an AS spans across 
multiple regional internet registries then each RIR shows different country as the origin 
of that AS. Table 3 details the non-Best/Short decisions explained by ASes preferring 
domestic routes.  
 
Undersea cables 
Undersea cable ASes are a critical component of Internet topologies that previous 
works overlook [15, 25]. While some cables are jointly owned by large ISPs, e.g., Pan-
American Crossing, Americas-II (owned by AT&T, Sprint, and many others), we 
observed that others, e.g., EAC- C2C (PACNET), are operated by independent 
organizations using their own allocated ASNs and IP prefixes. Because these cable 
operators only provide pointto-point transit along the cables (i.e., they do not originate 
traffic and peer in locations proportional to cable landings), they resemble high-latency, 
high-cost IXPs and thus confuse existing AS relationship models. As such, we need 
techniques to identify cable ASes and correct their relationships in inferred topologies.  
 
 

Continent Non Best/Short Decisions 

Asia 40.1% 

Africa 62.5% 

Europe 64.3% 

North America 10.9% 

Oceania 62.9% 

South America 66.6% 

Table 3: Continent wise violations 
 
We use a list of undersea cables from the TeleGeography Submarine Cable Map [38] to 
identify ASes for undersea cable operators. Overall, cable-ASes appear on less than 
2% of paths but most of the decisions (51.2%) involving cable-ASes caused deviations 
from Best/Short paths. Table 4 shows fraction of each type of decision explained by 
undersea cable ASes. Violation type Pct. of decisions explained Non-Best & Short 3.0% 
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Best & Long 6.5% Non-Best & Long 4.5% Table 4: Fraction of decisions of each type 
that can be attributed to undersea cables.  

Conclusion 
In this work, we investigated how interdomain paths predicted by state-of-the-art routing 
models differ from empirically observed routes. We found that while a majority of paths 
in our dataset agree with models, more than a third do not. We explained a significant 
fraction of these differences due to factors such as sibling ASes, selective prefix 
announcements and undersea cables. Further, we investigated how the models hold up 
when comparing with groundtruth routing preferences revealed using PEERING 
announcements, and identified AS behavior that is not included in existing models. As 
part of future work, we are continuing to investigate cases of routing decisions that 
violate today’s models, and we aim to incorporate our findings into new models of 
Internet routing.  
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BGP Hijacks and Interception 
Detection 
 
BGP was designed when the Internet was comprised of a few ASes, hence security was 
not in the top of the mind. The protocol doesn’t provide mechanisms to validate or 
authenticate the messages being sent by ASes, which makes it is highly vulnerable to 
routing incidents caused by misconfiguration or attacks [42,43,44], including hijacking. 
These incidents include large-scale route leaks [46], where an AS originates a large 
number of prefixes allocated to other ASes (e.g., the China Telecom incident [46]) and 
more suspicious forms of path manipulation, where an AS may announce a path that 
does not actually exist in the AS-graph [45]. Another type of BGP hijacks is the 
interception attack, the malicious AS gets the traffic destined to some other ASN, sniffs 
it and send it back to the unsuspecting AS 

Related Work 
A lot of past works have focused on detecting BGP hijacks. Initial works Cyclops [47] 
and PHAS [48] use information only from the control plane data and raise alarms based 
on anomalies found in it. These systems, however, suffer from the large number of false 
positives. To tackle this problem, PHAS and Cyclops have subscription based system in 
which the prefix owners are notified if their prefix is originated by other autonomous 
systems. Though high on false positives, the solutions provided by these works are 
easily deployable. 

Some works looked at only dataplane based anomalies to detect hijacks. These 
systems issue periodic traceroutes towards the prefixes and observe changes in the AS 
paths[49,50]. These solutions offer less false positives than control-plane-only based 
systems, however these systems suffer from scaling issues as it is infeasible to monitor 
all the prefixes all the time and also these systems require strategic placement of 
vantage points which is not possible with limited number of Planet Lab nodes used in 
these studies.  

Some works combined both data plane and control plane information. Initial work in this 
domain was presented by Xu. et al [51]. On the detection of control plane anomalies, 
the system carries out dataplane measurements from the  Planet Lab vantage points 
with modified software which do host based fingerprinting analysis to determine the 
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cause of the anomaly. This solution was indeed scalable as they only monitored BGP 
updates and the dataplane measurements were spawned only in case of control plane 
anomaly. However, the host fingerprinting required looking at TCP timestamps, IP IDs 
etc which required customized software on the Planet Lab nodes, thus making the 
system harder to deploy. Another similar system, Argus[52] also used both control plane 
and dataplane information from route servers or looking glasses. Similar to [51], they 
issued dataplane measurements (i.e pings) only in case of control plane anomalies. 
They studied reachability of the prefixes both in terms of control plane and dataplane 
and used a statistical approach to classify the events as hijacks or benign ones. The 
system laid too much emphasis on using looking glass servers and carrying out 
dataplane measurements from those looking glass servers. These servers are limited 
and not all such servers provide means to carry out dataplane measurements. Thus too 
much reliance on external hardware poses some deployment challenges. Since the 
reachability in terms of dataplane, meant classifying those events as benign, so this 
system could not detect BGP interceptions.  

Detecting BGP interceptions was infact ignored in earlier works too. A part of reason 
behind this  lack of focus might be due to scant BGP interception examples from the 
real life. Infact, before Renesys presented a real life example of BGP interception [9], 
the most attention BGP interceptions ever got was the conceptual demonstration by 
Psilov and Kapella at Defcon’06[52] 

Apart from above mentioned systems, [54] identified BGP hijacks from a large dataset 
containing known events of spam. [53] also found spam campaigns using BGP hijacks. 
These works however fell short in presenting a system to detect future BGP hijacks. 

Our system employs both control plane and data plane measurements to detect BGP 
hijacks as well as BGP interceptions in near real time. We don’t rely on looking-glass 
servers for dataplane measurements nor do we require any software modification in 
vantage points. We leverage vast data plane measurement infrastructures of RIPE Atlas 
and CAIDA to carry out traceroutes in the case of control plane anomalies. This makes 
our system easily deployable. Our methodology does not use rely solely on reachability 
so we detect BGP interceptions.  
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 Uses 
Control 
plane 

Uses 
Data 
plane 

False 
positive rate 

Detects 
Interceptions 

Deploymen
t 

Scalability 

Cyclops Yes No High No Easy Poor 

PHAS yes No High No Easy Poor 

iSpy No Yes Medium No Easy Poor 

Xu et.al Yes Yes Low No Hard Medium 

Argus Yes Yes Low No Medium Medium 

Our Yes Yes Low Yes Easy Easy 

 
Table 4: Comparison among different BGP anomaly systems 

 
System Architecture 
We have developed a BGP hijacks and interception detection system, BGPSTREAM.  

 
                       Figure 4: BGP Stream Architecture 
 
The system start with getting BGP control plane feeds from multiple BGP route 
collectors from RIPE and RouteViews project. From this routing data, we look for 
different types of control plane anomalies. We then run different heuristics, to remove 
false positive from those anomalies. Then we move to carrying out targeted data plane 
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measurements (traceroutes). In response to suspicious control plane anomalies, we 
carry out traceroutes. Finally, we have our dataplane classifier, that tries to remove 
more false positives to get the list of highly suspicious events 
 
 
We look for four different types of control planes anomalies: 
 
1: MOAS (When a prefix is being advertised by multiple ASNs) 
2: SubMOAS (When an ASN announces a prefix which belongs to the address space of     
    another ASN) 
3: New edges in AS graph (When a new AS edge is seen that’s not seen before) 
 
Not all of these events of these anomalies can be due to BGP hijacks or interceptions, 
we devise methodologies to identify those events that are false positive or part of 
normal Internet routing system. These anomalies are further explained in section x 
 

Diagnosing BGP Hijacks and Interceptions 
 
For each event detected as suspicious, the module for each of the four anomalies 
described above generates relevant meta-data, including which type of anomaly was 
observed, potential victim prefixes and ASes, and relevant AS paths to measure. To 
remove false positives from control plane anomalies and minimize the set of prefixes to 
traceroute to we use following resources: 
 
CAIDA’s AS relationship: 
 We use CAIDA’s AS relationship dataset which gives us information about business 
relationship different ASes [1]. This is being updated on monthly basis by CAIDA. 
 
Siblings ASes datasets: 
Siblings are those ASNs that belong to same organization. Many organizations manage 
multiple ASNs for geographical reasons or commercial mergers. We use CAIDA’s AS-
to-Organization dataset to generate list of siblings ASNs [2]. The dataset assigns 
Organization IDs to ASNs, two ASNs are assigned same organization IDs if they are 
considered belonging to same organization based on similarities in various whois 
information fields like email addresses, contact phone, organization name, 
administrative contact etc. We consider those ASNS as siblings which are assigned 
same organization IDs by this dataset. 
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Private ASNs: 
 These ASNs are not allocated to organization for public routing. Most common type of 
these ASNs are private use ASNs. They are used to testing purposes normally and are 
not meant to be exposed to the Internet. The use of private ASN is more frequent in 
private networks that will never communicate directly with the Internet. Most ISPs utilize 
route filters to reject routes that contain private ASNs. However, sometimes private 
ASNs are still in ASpath of globally reachable IP prefixes. Along with private ASNs, we 
also check for unallocated ASNs like ASN reserved for IANA use etc. IANA specifies 
which ASNs are reserved for private use. [3] 
 
Furthermore, we also use IXP prefixes to filter out false positives 

Control Plane Anomalies 

MOAS 
A MOAS (Multiple Origin AS) occurs when a prefix is originated by multiple origin ASes. 
A MOAS event is uniquely identified by the pair <pfx, origin_set>, where origin_set is 
the list of ASes announcing the prefix pfx. A prefix can be associated to one and only 
one MOAS event at a time. 
A MOAS event starts when the prefix pfx starts being announced by a specific 
origin_set (different from the list of origin ASes announcing it at the previous 
timestamp). 
● t - <pfx, origin_set(t)> 
● t+1 - <pfx, origin_set(t+1)> 

where origin_set(t) != origin_set(t+1) and size(origin_set(t+1)) > 1. 
A MOAS event ends when the prefix pfx starts being announced by a different 
origin_set (different from the list of origin ASes announcing it at the previous 
timestamp), or it stops being announced. 
A MOAS event is ongoing, if the prefix keeps being announced by the same origin_set 
as it was before, a MOAS event is recurring if it has been already seen within a moving 
window of one week. Not all such anomalies can be result of hijacks/interception, we 
can have legitimate cases of MOAS or submoas due to IP anycast, IP transfers, prefix 
de-aggregation etc. 
 
We classify a MOAS event as a legitimate event when: 
● An IXP prefix is involved in the MOAS event 
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● Private ASN is responsible for the MOAS event 
● All ASNs in a MOAS group belong to sibling ASNs 
● All origin ASNs for a MOAS prefix can form a customer-provider chain where 

each ASN is single homed (each ASN has only one provider) 
 
As far as the effect of duration of an event on its suspiciousness is concerned, we are 
currently not taking the duration in account. While most of the hijacks are short lived and 
longer the duration an event exists (say MOAS event), the lesser would be probability of 
the event being a malicious one. But still some malicious events are long lived as much 
as 8 months as reported by Vervier et.al . Similar observation was made by 
Ramachandran et.al 
Using the rules above, we will curate a list of MOAS violations that are a normal part of 
the Internet's routing system and thus do not require further analysis through active 
measurements. 

SubMOAS 
A SubMOAS (subprefix MOAS) occurs when a sub-prefix is originated by a set of ASes 
sub-origins that differs from the set of ASes that originates one of its super-prefixes 
(super-origins). 
For example, consider the prefix 181.48.0.0/13 originated by AS14080. Later, AS10620 
announces 181.52.148.0/22. 
 
Since the new prefix lies in the address space of already originated prefix and both 
prefixes have different ASNs, we will consider this event as a SubMOAS event. The 
prefix 181.52.148.0/22 is sub-prefix and AS 10620 is the sub-origins, the prefix 
181.48.0.0/13 is super-prefix and AS 14080 is super-origins. 
 
A SubMOAS event is uniquely identified by the tuple <super-prefix, sub-prefix, super-
origins, sub-origins>, where sub-prefix is a more specific of the super-prefix, super-
origins is the list of ASes announcing the super-prefix, and sub-origins is the list of ASes 
announcing the sub-prefix. A <super-prefix, sub-prefix> pair can be associated to one 
and only one SubMOAS event at a time. 
 
A SubMOAS event starts when the <super-prefix, sub-prefix> start being announced by 
two different origins' sets, i.e. 
● t - <super-prefix, super-origins> 
● t - <sub-prefix, sub-origins> 
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where super-origins(t) != sub-origins(t). 
 
A SubMOAS event ends when the super-prefix or the sub-prefix start being announced 
by a different origins' set (compared to those observed at the previous timestamp), or if 
one of them stops being announced. 
 
We classify a subMOAS event as a legitimate event when: 
● An IXP prefix is involved in the SubMOAS event 
● Private ASNs are responsible for the SubMOAS 
● All origin ASNs from both sub-prefix and super-prefix form one sibling group 
● All origin ASNs from both sub-prefix and super-prefix can form a customer-

provider chain where each ASN is single homed (each ASN has only one 
provider) 

 

New Edge 
We monitor the set of edges observed in BGP announcements (similar to how Argus 
tracks pairs of ASes observed in BGP paths). A new edge event is considered finished 
when the new edge is no longer observed in the considered sliding window. While a lot 
of cases of new edges can be simply due to previously unseen backup links but new 
edges can be seen in case of route-leaks (cite Malaysia telecom example) or when a 
hijacker inserts a fake ASN to show it's adjacency towards a particular ASN.  
 
We classify new edges as legitimate if: 
● Both ASNs are siblings to each other 
● One or both ASNs are private ASNs 

For other new edges,data plane measurements will help us validate that they are not 
due to interception or hijacks, in which case we will add them to a list of previously seen 
edges. As failures happen and ASes explore backup paths, over time we should gain a 
more complete view of all edges we should expect to see. 

Control Plane anomalies analysis 

Data source 
We use one of the RouteViews collectors (RouteViews-2) [3] as our source of BGP 
control-plane data. RouteViews-2 has 44 peers across different parts of the world [4], 
most of them being fullfeed peers. Having multi-hop and full-feed peers, if there is some 
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routing change somewhere in the world, RouteViews-2 should be able to see it in most 
of the cases. We use pyBGPstream to process historical data from MRT dumps from 
different peers of RouteViews-2. pyBGPstream collects BGP feeds (updates, 
withdrawals, RIBs) from multiple peers, sorts them and presents in chronological order. 
We could have used more collectors in addition to RouteViews-2 but adding more 
collectors resulted in more data being processed, of which a large fraction was 
repetitive as multi-hoped RouteViews-2 already covers a broad range of control-plane 
instances generated worldwide. We analyze control-plane data spanning from June, 1st 
2014 to August, 1st 2014. 
 
We generate a view as the global state of routing information. A view stores all the 
prefixes which are seen by any peer of the collector. A prefix is removed from the view 
only when all the peers which previously made announcements, send withdrawal 
message for that prefix. We update our view with RIBs of all the peers after every two 
days of BGP time to cater cases of incomplete or lost messages due to data corruption 
or a peer going down. 
 

Computing Durations 
A sub-MOAS event starts when a sub-prefix and a super-prefix are announced from 
different ASNs and it finishes when either of these prefixes is no longer advertised. The 
duration of a sub-MOAS event depends on which type of a prefix is removed from the 
view. In some cases, a super-prefix no longer advertised means all its sub-prefixes are 
no longer sub-MOASes. 
 
 Alternatively, we can have events, where a super-prefix is also a sub-MOAS prefix 
itself, so all its sub-prefixes still remain sub-MOAS prefixes but to a different super-
prefix. Therefore, we deal with each case of prefix removal separately to find out when a 
sub-MOAS event is actually finished. We divide prefix removals in four different 
categories: 
 
 1. The prefix is a sub-MOAS itself and it has no sub-prefixes. 
 2. The prefix is a sub-MOAS itself and it has sub-prefixes. 
 3. The prefix is not a sub-MOAS but has sub-prefixes. 
 4. The prefix is not a sub-MOAS itself neither it has sub-prefixes. 
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 In the first case, we consider the sub-MOAS event as finished and calculate the 
duration of the event. In the second case, the prefix itself is considered no longer a sub-
MOAS prefix but all its sub-prefixes still remain sub-MOASes and their super-prefix is 
now the former super-prefix of the prefix that is just removed. In the third case, all the 
sub-prefixes are considered over and corresponding sub-MOAS durations are 
calculated. In the fourth case, we do not do anything as it does not deal with sub-
MOASes in any way.  

Filtering out 
We have filtered out those sub-MOAS events which include private ASNs. Private ASNs 
are normally used by networks with a single provider. According to RFC [5], private 
ASNs are not meant to be exposed to global Internet. ASes tend to strip off private 
ASNs from the ASPATH. 
 Since Private ASNs are mostly used internally by organizations, it is unlikely that an 
attacker will use them for malicious purposes. In our observation span, we identify 3,128 
cases of Private use ASNs involved in sub-MOAS events. 
  
AS relationships 
 Here we compare AS relationships between ASes involved in the sub-MOAS events. 
We divide sub-MOAS events in seven buckets according to the ASes involved in them. 
The seven buckets are Sibling, Customer, InPath, Customer-cone, Provider, Peer and 
Not found. Sibling means that both ASes belong to a same organization according to 
the dataset available here [6]. 
Customer means that sub-ASN is a customer of super-ASN and Provider signifies the 
inverse of it. Peer specifies peering relationship between ASes. Customer-cone bucket 
has those events where the sub-ASN can be reached from its super-ASN by traversing 
customer paths alone. We use inferences done by Luckie et.al in their ASrank dataset 
[7] to determine provider, customer, peering and customer-cone relations between the 
AS pairs. InPath bucket is for the events when atleast one of the AS paths towards the 
prefix originated by sub-ASN has super-ASN in it.  
 
 

Siblings Customer InPath Customer-
Cone 

Providers Peers Not Found 

8.7% 9%  39.7% 9% 1.5% 4.8% 1% 35% 

Table 5: Percentage of subMOASes for each bucket 
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Table 5 shows the percentage of unique sub-ASN–super-ASN pairs involved in all sub-
MOAS events observed. We can create a white-list of sub-MOAS events according to 
the type of bucket they belong to. We can white-list the following buckets: 
 
1: Customer: This case can’t be malicious because the super-ASN is letting the 
announcements pass through it so it is unlikely that super-ASN will let malicious 
advertisements to propagate beyond its network. 
2. InPath: Same argument as the customer bucket can be applied here. The super-
ASN will not let announcements to propagate if they are malicious. 
 3. Customer-cone: Same argument as the customer bucket again. The sub-ASN is 
indirectly buying transit from its super-ASN . 
4. Siblings: Both ASes belong to same organization. 
 
Combining all four above mentioned buckets, we can white-list 58.3% of unique AS 
pairs observed in sub-MOAS events. If we count every event (including duplicate 
events), we can white-list 78.44% of total sub-MOAS events seen in two months. As far 
as the time complexity of this classification is concerned, except inPath, each bucket 
decision can be taken in O(1). One limitation of this classification is that a hijacker might 
append such origin ASN before its own ASN, that makes the sub-MOAS event fall in 
one of the white-listed buckets. 
 This type of clever ASN prepending can yield false negatives. 
  
Rate of change of sub-MOASes 
We analyze the rate by which we observe new sub-MOAS events. Figure 6 shows sub-
MOAS events added on time scale. This also counts repeating sub-MOAS events and 
sub-MOASes spanning multiple prefixes between a same pair of sub-ASN and super-
ASN . The arrival of individual sub-MOAS events tends to be bursty in nature and the 
average number of subMOAS events observed per hour is 107.7. Next we study, how 
many of these events are new and unique. We define a sub-MOAS event as unique 
when sub-ASN–super-ASN pair is unique for a set time interval. Since the same type of 
sub-MOAS events need to be verified once, this type of study helps prefix hijack 
detection systems in choosing a suitable time window for keeping unique sub-MOAS 
events in the memory. Within a window, a unique sub-MOAS is event is counted only 
once even if it occurs repeatedly. Figure 2 shows new sub-MOAS events generated for 
different window sizes.  
Unlike the bursty nature of individual events, the arrival rate of unique events seems to 
be stable and manageable. The arrival rate for new unique sub-MOAS events for 
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window sizes of 7 days, 14 days and 21 days was 7, 6 and 5.5 events per hour 
respectively. Even with a small window size of 7 days, we do not observe too many 
spikes or new unique events. So by using a small time window of unique sub-MOAS 
events, we have to consider much less events as compared to keeping track of each 
event. Another observation is that, as we keep on increasing the window size, the noise 
around y-axis does not decrease dramatically, which shows that repeating events are 
grouped close  
 

 
Figure 6: Net change in subMOASes 

together on the time axis. Note that some of the spikes remain same across all the 
window size, we identify these spikes as hijacks based on various properties in section 
4.5. 
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Figure 8: Number of MOASES in a window 

 
Next, we study the number of entries that we have to keep in the memory for different 
window sizes (Figure 7). Once reaching a threshold, the number of entries remain 
stable for different window sizes, which shows that arrival rate of new unique sub-
MOAS events does not change a lot. Nevertheless, we observing new sub-MOAS 
events as evident from infinite window curve, so having a small window is necessary for 
hijack detection systems. 
  
 
Duration of SubMoas event 
Figure 9 shows the distribution of sub-MOAS durations calculated according to the 
methodology defined. A large number of sub-MOAS events did not finish in our 
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observation (6,6018). This number is close to the spike of sub-MOASes we observed on 
day one of our observation period. These sub-MOASes look legitimate as they have 
been part of the RIBs for a long time (Manual analysis of 20 of those events revealed 
that 17 of them have been part of RIBs for atleast last two years). For those sub-MOAS 
events that did finish, most of them finished within an hour (60%). Next we identify some 
cases of hijack. We tag sub-MOAS events as potential hijacks if they match all of the 
following criteria:  

1. Same ASN being sub-ASN for large number of super-ASNs  
2.  Sub-MOASes being originated from ISPs that are confined to their own regions. 

For example, PTCL, a small Internet provider of Pakistan has prefixes only for 
Pakistan region. 

3. We used ASNs whois data to confirm this. 
4. Sub-ASNs originating prefixes belonging to other ASNs located in different 

countries (sometimes different continents). For example, A local ISP from New-
Zealand being a sub-ASN for a local ISP from Italy. 

5. The sub-MOAS events start close to each other on time axis and have durations 
similar to each other. 

 
6.  The sub-ASN being mentioned as a Spam producing ASN in the blacklists at [8]. 

 
 

 
Figure 9: Duration of subMOAS events 
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Combined, we isolate 1,636 cases of sub-MOAS events as hijacks involving 4 sub-
ASNs and 130 super-ASNs. Figure 5 shows the distribution of hijack events in terms of 
time durations. 
The majority of identified hijacks finished in short time durations with 97% finishing 
within first 12 minutes. 
  

Data Plane Analysis 
Even after we have identified suspicious events from control plane, we still need to run 
traceroutes to further increase our confidence in our decision. We use two sources of 
vantage points: 
 

1. RIPE Atlas 
2. CAIDA Ark 

 
RIPE atlas hosts thousands of probes across the globe 

 
 

Figure 10: Distribution of RIPE atlas probes 
 
These probes can be used to carry out traceroutes, DNS measurements, ping and other 
type of network measurements. We used both Ark and RIPE nodes to run traceroutes in 
response to control plane anomalies 
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Probe Selection 
We picked up probes as close to affected AS as possible. We define AS in subMOAS 
the subASN. Thus we select probes in neighboring ASes of subASN. We use following 
scheme to pick up RIPE atlas probes. 
 
 

1. From affected AS, do a breadth first search on all its neighbours 
2. Select at most one ripe atlas probe from the AS 
3. Keep on traversing the AS graph till N probes are found 

 
Analyzing results of Traceroutes 
We analyzed results of traceroutes which were ran in response to subMOAS control 
plane anomalies.  
We converted IP addresses in the traceroutes to AS path 
A subMOAS can have two different type of origin ASes, i.e subASN and superASN.We 
divided results into following broad categories. 
 

1. Both Origin ASNs exist 
Atleast one origin ASN exist in the traceroute path 
 

a. Only superASN exist 
b. Only subASN exist 
c. Both origin ASNs exist 

i. Traceroute path sees subASN before the superASN 
ii. Traceroute path sees superASN before the superASN 

 
    2.  None of the Origin ASNs exist 
 
Here we show the fraction of traceroutes which followed each bucket 
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Figure 12: Breakdown of traceroutes 
Here we discuss which of these buckets are more likely to be suspicious 
Suspicious buckets: 
None of the origins exist: This bucket is suspicious as traceroute not reaching its 
eventual destination is suspicious but this can be due to traceroute information not 
complete. Reachability of traceroute can never be reliably inferred as the reachability of 
actual traffic (29.1% of TRs had this property) 
 
SubASN exists only: In SubMOAS, the suspicious ASN in the subASN, so traceroute 
reaching the subASN only might indicate a hijack (5.3% of traceroutes had this 
property) 
 
SubASN exists before SuperASN: This can be a case of interception as the traffic 
reached superASN after passing through subASN, so a rouge subASN can easily sniff 
the traffic 
 
Here we have described the analysis only for subMOAS. We’re currently doing the 
analysis for other anomalies too, however,The methodology of analysis of other 
anomalies should be similar too. 
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Conclusion 
We have developed a near real-time BGP hijacks and Interception system. The system 
uses control plane data from a number of route collectors. We use these router feeds to 
look for control plane anomalies. Building on insights and datasets from previous works, 
we isolate suspicious anomalies from the control plane data. Then based on suspicious 
control plane anomalies, we issue traceroutes to further increase our confidence about 
an event being a hijack or an interception 
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