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Abstract of the Dissertation

Kurma: Efficient and Secure Multi-Cloud Storage Gateways for
Network-Attached Storage

by

Ming Chen

Doctor of Philosophy

in

Computer Science

Stony Brook University

2017

Cloud computing is becoming increasingly popular as utility computing is being gradually real-
ized. Still, many organizations cannot enjoy the high accessibility, availability, flexibility, scalabil-
ity, and cost-effectiveness of cloud systems because of security concerns and legacy infrastructure.
A promising solution to this problem is the hybrid cloud model, which combines public clouds
with private clouds and Network-Attached Storage (NAS). Many researchers tried to secure and
optimize public clouds, but few studied the unique security and performance problems of such
hybrid solutions.

This thesis explores hybrid cloud storage solutions that have the advantages of both public
and private clouds. We focus on preserving the strong security and good performance of on-
premises storage, while using public clouds for convenience, data availability, and economic data
sharing. We propose Kurma, an efficient and secure gateway (middleware) system that bridges
traditional NAS and cloud storage. Kurma allows legacy NAS-based programs to seamlessly and
securely access cloud storage. Kurma optimizes performance by supporting and improving on the
latest NFSv4.1 protocol, which contains new performance-enhancing features including compound
procedures and delegations. Kurma also caches hot data in order to serve popular I/O requests from
the faster, on-premises network.

On-premises Kurma gateways act as sources of trust, and overcome the security concerns
caused by the opaque and multi-tenant nature of cloud storage. Kurma protects data from untrusted
clouds with end-to-end integrity and confidentiality, and efficiently detects replay attacks while al-
lowing data sharing among geo-distributed gateways. Kurma uses multiple clouds as backends
for higher availability, and splits data among clouds using secret sharing for higher confidential-
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ity. Kurma can also efficiently detect stale data caused by replay attacks or due to the eventual
consistency nature of clouds.

We have thoroughly benchmarked the in-kernel NFSv4.1 implementation and improved its
performance by up to 11×. Taking advantage of NFSv4.1 compound procedures, we have designed
and implemented a vectorized file-system API and library (called vNFS) that can further boost NFS
performance by up to two orders of magnitude. Assuming a public cloud supporting NFSv4, we
have designed and implemented an early Kurma prototype (called SeMiNAS) with a performance
penalty of less than 18%, while still protecting integrity and confidentiality of files.

Based on SeMiNAS, we developed Kurma which uses real public clouds including AWS S3,
Azure Blob Store, Google Cloud Storage, and Rackspace Cloud Files. Kurma reliably stores files
in multiple clouds with replication, erasure coding, or secret sharing to tolerate cloud failures. To
share files among clients in geo-distributed offices, Kurma maintains a unified file-system names-
pace across geo-distributed gateways. Kurma keeps file-system metadata on-premises and encrypts
data blocks before writing them to clouds. In spite of the eventual consistency of clouds, Kurma
ensures data freshness using an efficient scheme that combines versioning and timestamping. Our
evaluation showed that Kurma’s performance is around 52–91% that of a local NFS server while
providing geo-replication, confidentiality, integrity, and high availability.

Our thesis is that cloud storage can be made efficient and highly secure for traditional NAS-
based systems utilizing hybrid cloud solutions such as Kurma.
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Chapter 1

Introduction

Cloud storage has many desirable traits including high accessibility (from multiple devices, at
multiple locations), availability, flexibility, scalability, and cost-effectiveness [16, 123, 199]. For
instance, clouds eliminate up-front commitment by users and allows pay-as-you-go; clouds also
make most infinite computing resources available on demand [16]. However, cloud storage providers
need to improve the integrity and confidentiality of customer data. Some customer data got silently
corrupted in the cloud [188]. Silent data corruption could be disastrous, especially in health-
care and financial industries. Privacy and confidentiality are other serious security concerns as
increasingly more organizations and people are moving their enterprise and private data to the
cloud. The significance is emphasized by high-profile incidents such as leakage of intimate pho-
tos of celebrities [15] and theft of patient records [131]. Data in cloud are lost due to internal
bugs [35, 47, 87, 127], and leaked [132], and modified [37]

In addition to security concerns, legacy infrastructure is another obstacle to cloud storage adop-
tion. It is difficult to impossible for many organizations to switch to all-cloud infrastructures: tra-
ditional NAS-based systems are incompatible with cloud’s eventual-consistency semantics [49].
Moreover, the cost of a full migration of infrastructure can be prohibitive. Higher performance is
also a reason to keep legacy on-premises infrastructure because cloud accesses incur round trips
in wide-area networks and are thus slow. In contrast, on-premises infrastructure uses local-area
networks and is much faster.

Hybrid cloud computing is a new computing paradigm that takes advantages of both on-
premises infrastructure and public clouds. In the hybrid-cloud model, a portion of computing and
storage goes to the cloud (public clouds) for high accessibility, availability, and scalability—while
the rest remains on premises (private clouds) for high performance and stronger security. Enjoying
the best of both worlds, hybrid clouds are becoming more popular. For instance, many storage ap-
pliances and hyper-convergence platforms [135,136,153] now have cloud integration so that public
clouds can be used for backup, expansion, disaster recovery, and web-tier hosting—whereas other
workloads still stay on-premises. However, most existing hybrid cloud systems [135,136,153] use
public clouds as a separate tier for specific workloads such as backup or web-tier hosting. Hybrid
clouds, although enjoying strong security and high performance for generic workloads, were less
studied than public clouds.

This thesis focuses on efficient and secure hybrid-cloud storage solutions that seamlessly sup-
port traditional NAS-based applications. As hybrid-cloud storage systems involve both private and
public clouds, this thesis studies both types of clouds. For private clouds, we focus on the Net-
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work File System (NFS)—the standard NAS protocol; for public clouds, we focus on cloud storage
gateways. We began this work by benchmarking NFSv4.1—the latest version of NFS with new
features including compound procedures and delegations. We compared NFSv4.1 performance
to NFSv3 in both local- and wide-area networks under a large number of workloads. We found
NFSv4.1 has comparable performance to NFSv3: NFSv4.1 is more talkative with a stateful pro-
tocol, but NFSv4.1 also enables higher concurrency through asynchronous RPC calls. During the
benchmarking, we also found and fixed a number of bugs in Linux’s NFS implementation; one of
our bug fixes in the Linux NFSv4.1 client improved workload performance by up to 11×.

Our benchmarking study also showed that NFSv4.1 compound procedures have the potential
to significantly improve performance but are underused because of the limited POSIX file-system
API [41]. To overcome the limitations, we then proposed a vectorized file-system API and im-
plemented the API using a user-space library and an NFS client called vNFS. The vectorized API
allows many file-system operations to be performed in batch using a single network round trip.
This batching amortizes high network latency and is especially important after years of signifi-
cant network improvement in bandwidth but not in latency. The vNFS API is not only efficient
but also convenient to use with higher semantics including automatic file opening, atomic file ap-
pending, and file copying. We found it easy to modify several Unix utilities, an HTTP/2 server,
and the benchmarking tool Filebench [64] to use vNFS. We evaluated vNFS under a wide range
of workloads and network latency conditions, showing that vNFS improves performance even for
low-latency networks. On high-latency networks, vNFS can improve performance by up to two
orders of magnitude.

After evaluating network storage (NAS) performance through benchmarking and then improv-
ing this performance in the private cloud side, we proceeded to the public cloud side and developed
two cloud storage gateway systems. The first gateway system is SeMiNAS, which is an early pro-
totype of the second system Kurma. SeMiNAS allows files to be securely outsourced to cloud and
be shared among geo-distributed clients. SeMiNAS also explores the possibility of using NFSv4.1
for both client-to-gateway and gateway-to-cloud communications. SeMiNAS provides end-to-end
data integrity and confidentiality that protects data from not only attacks during data transmission
over the Internet, but also from misbehaving clouds. Data stays in encrypted form in the cloud, and
is not decrypted until clients retrieve the data from clouds. SeMiNAS leverages advanced NFSv4
features, including compound procedures and Data-Integrity eXtensions (DIX), to minimize net-
work round trips caused by security metadata. SeMiNAS caches remote files locally to reduce
accesses to providers over WANs. We designed, implemented, and evaluated SeMiNAS, which
demonstrates a small performance penalty of less than 26% and an occasional performance boost
of up to 19% for Filebench workloads.

After SeMiNAS, we further developed Kurma, our final secure cloud storage gateway system.
SeMiNAS and Kurma have similar architectures and on-premises caches; they also share a simple
key-exchange scheme that allows per-file encryption keys to be exchanged securely among geo-
distributed gateways without relying on any trusted third-party. Kurma is our final secure cloud
storage gateway system. Similar to SeMiNAS, Kurma also provides end-to-end data integrity
and confidentiality while outsourcing data storage to untrusted public clouds. However, Kurma
improves SeMiNAS in three unique ways:

1. SeMiNAS assumes that public clouds support NFSv4.1 DIX. Although DIX is a forward-
looking feature improving security and performance, it is not standardized yet. In contrast,
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Kurma communicates to real clouds including Amazon AWS, Microsoft Azure, Google
Cloud, and Rackspace using their native object store APIs.

2. SeMiNAS uses only a single public cloud. Although most public cloud providers have high
availability close to five nines (99.999%) [199], availability still remains the largest obstacle
for cloud computing [16]. A single cloud provider is itself a single point of failure [16];
once it is out of service, there is little tenants can do but wait for the cloud to come back
up. Therefore, Kurma stores data across multiple clouds using replication, erasure coding,
or secret sharing. Kurma can thus tolerate failure of a single or more clouds.

3. SeMiNAS is susceptible to stale data when clouds return old versions of data because of
eventual consistency or malicious replay attacks. Kurma solves this problem and can detect
stale data by maintaining a version number of each data block. Kurma synchronizes the
version numbers of data blocks among all geo-distributed gateways so that clients can check
freshness of files after they are modified by remote Kurma gateways.

Kurma uses public clouds as block stores. It stores only encrypted and authenticated file data
blocks on clouds while keeping all metadata in trusted gateways. The metadata includes file-system
namespace, file block mapping, per-file encryption keys, and integrity metadata of file data blocks.
Therefore, Kurma is secure against side-channel attacks that exploit information such as file-access
patterns. Each Kurma gateway maintains a copy of the whole file-system metadata, so that it can
still serve files to local clients after network failures separate it from other gateways. The metadata
changes made by a Kurma gateway are asynchronously replicated to all other gateways.

To simplify file sharing among distant clients, Kurma also maintains a unified file-system
namespace across geo-distributed gateways. Kurma provides NFS close-to-open consistency among
clients connected to the local Kurma gateway, which is the same as traditional network-attached
storage (NAS). For clients across geo-distributed gateways, Kurma trades off consistency for
higher performance and availability, and provides FIFO consistency [111]. This means that op-
erations in different gateways may be conflicting. Kurma can reliably detect conflicts and contains
a framework for resolving them. We have implemented several default resolution policies for com-
mon conflicts. We have implemented and evaluated a Kurma prototype. Our evaluation shows that
Kurma performance is around 52–91% that of a local NFS server while providing geo-replication,
confidentiality, integrity, and high availability.

Our thesis is that cloud storage can be both efficient and secure for many generic workloads,
and it seamlessly integrate with traditional NAS-based systems. In summary, this thesis includes
five major contributions:

• A comprehensive and in-depth performance analysis of NFSv4.1 and its unique features
(statefulness, compounds, sessions, delegations, etc.) by comparison to NFSv3 under low-
and high-latency networks, using a wide variety of micro- and macro-workloads.

• An NFSv4.1-compliant client that exposes a vectorized high-level file-system API and lever-
ages NFS compounds to improve performance by up to two orders of magnitude.

• A forward-looking and secure cloud storage gateway system that uses advanced NFSv4.1
features (compound procedures and DIX) in both private and public clouds.
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• A realistic and highly-available cloud gateway system that allows geo-distributed clients to
store and share data in multiple public clouds in a seamless, secure, and efficient manner.

• An efficient security scheme that ensures data integrity, confidentiality, and data freshness
without using traditional Merkle trees [124], which are expensive in cloud environments.

The rest of this thesis is organized as follows. Chapter 2 presents the performance benchmark-
ing of NFSv4.1. Chapter 3 describes our vNFS client that maximizes NFS performance using
compounds and vectorized I/Os. Chapter 4 details the design, implementation, and evaluation of
SeMiNAS. Chapter 5 describes the design of Kurma—our final multi-cloud geo-distributed secure
cloud gateway system. Chapter 6 concludes this thesis and discusses future work.
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Chapter 2

Benchmarking Network File System

2.1 NFS Introduction
Before the cloud era, over 90% of enterprise storage capacity was served by network-based stor-
age [204], and Network File System (NFS) represents a significant proportion of that total [180].
NFS has become a highly popular network-storage solution since its introduction more than 30
years ago [161]. Faster networks, the proliferation of virtualization, and the rise of cloud comput-
ing all contribute to continued increases in NFS deployments [30]. In order to inter-operate with
more enterprises, Kurma supports an NFS interface and its gateways appear as NAS appliances
to clients. Using NFS, instead of vendor-specific cloud storage APIs, as the storage protocol also
improves application portability and alleviates the vendor lock-in problem of cloud storage [16]. In
this chapter, we focus our study on NFS. Specifically, we performed a comparative benchmarking
study of the NFS versions to choose the NFS version(s) to be supported in Kurma.

Network File System is a distributed file system initially designed by Sun Microsystem [161].
In a traditional NFS environment, a centralized NFS server stores files on its disks and exports
those files to clients; NFS clients then access the files on the server using the NFS protocol. Pop-
ular operating systems, including Linux, Mac OSX, and Windows, have in-kernel NFS support,
which allows clients access remote NFS files using the POSIX API as if they are local files. By
consolidating all files in once server, NFS simplifies file sharing and storage management signifi-
cantly.

The continuous development and evolution of NFS has been critical to its success. The initial
version of NFS is known only internally within Sun Microsystems, the first publicized version of
NFS is NFSv2 [125,161], which supports only UDP and 32-bit file sizes. Following NFSv2 (which
we will refer to as V2 for brevity), NFSv3 (V3) added TCP support, 64-bit file sizes and offsets,
asynchronous COMMITs, and performance features such as READDIRPLUS. NFSv4.0 (V4.0), the
first minor version of NFSv4 (V4), had many improvements over V3, including (1) easier deploy-
ment with one single well-known port (2049) that handles all operations including file locking,
quota management, and mounting; (2) stronger security using RPCSEC GSS [168]; (3) more ad-
vanced client-side caching using delegations, which allow the cache to be used without lengthy
revalidation; and (4) better operation coalescing via COMPOUND procedures. NFSv4.1 (V4.1),
the latest minor version, further adds Exactly Once Semantics (EOS) so that retransmitted non-
idempotent operations are handled correctly, and pNFS, which allows direct client access to multi-
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ple data servers and thus greatly improves performance and scalability [82, 168]. NFS’s evolution
does not stop after NFSv4.1; NFSv4.2 is under development with many new features and opti-
mizations [81] already proposed.

V4.1 became ready for production deployment only a couple of years ago [61,121]. Because it
is new and complex, V4.1 is less understood than older versions; we did not find any comprehen-
sive evaluation of either V4.0 or V4.1 in the literature. (V4.0’s RFC is 275 pages long, whereas
V4.1’s RFC is 617 pages long.) However, before adopting V4.1 for production, it is important to
understand how NFSv4.1 behaves in realistic environments. To this end, we thoroughly evaluated
Linux’s V4.1 implementation by comparing it to V3, the still-popular older version [121], in a
wide range of environments using representative workloads.

Our NFS benchmarking study has four contributions: V4.1 in low- and high-latency net-
works, using a wide variety of micro- and macro-workloads; (1) performance analysis that clearly
explains how underlying system components (networking, RPC, and local file systems) influence
NFS’s performance; (2) a deep analysis of the performance effect of V4.1’s unique features (state-
fulness, sessions, delegations, etc.) in its Linux implementation; and (3) fixes to Linux’s V4.1
implementation that improve its performance by up to 11×. This benchmarking study has been
published in ACM SIGMETRICS 2015 [41].

Some of our key findings are:

• How to tune V4.1 and V3 to reach up to 1177MB/s aggregate throughput in 10GbE networks
with 0.2–40ms latency, while ensuring fairness among multiple NFS clients.

• When we increase the number of benchmarking threads to 2560, V4.1 achieves only 0.3×
the performance of V3 in a low-latency network, but is 2.9× better with high latency.

• When reading small files, V4.1’s delegations can improve performance up to 172× compared
to V3, and can send 29× fewer NFS requests in a file-locking workload;

The rest of this chapter is organized as follows. Chapter 2.2 describes our benchmarking
methodology. Chapters 2.3 and 2.4 discuss the results of data- and metadata-intensive workloads,
respectively. Chapter 2.5 explores NFSv4’s delegations. Chapter 2.6 examines macro-workloads
using Filebench. Chapter 2.7 overviews related work. We conclude and discuss limitations in
Chapter 2.8.

2.2 Benchmarking Methodology
This section details our benchmarking methodology including experimental setup, software set-
tings, and workloads.

2.2.1 Experimental Setup
We used six identical Dell PowerEdge R710 machines for this study. Each has a six-core Intel
Xeon X5650 2.66GHz CPU, 64GB of RAM, and an Intel 82599EB 10GbE NIC. We configured
five machines as NFS clients and one as the NFS server. On the server, we installed eight Intel
DC S3700 200GB SSDs in a RAID-0 configuration with 64KB stripes, using a Dell PERC 6/i
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RAID controller with a 256MB battery-backed write-back cache. We measured read throughputs
of up to 860MB/s using this storage configuration. We chose these high speed 10GbE NICs and
SSDs to avoid being bottlenecked by the network or the storage. Our initial experiments showed
that even a single client could easily overwhelm a 1GbE network; similarly, a server provisioned
with HDDs or even RAID-0 across several HDDs quickly became overloaded. We believe that NFS
servers’ hardware and network must be configured to scale well and that our chosen configuration
represents modern servers; it reached 98.7% of the 10GbE NICs’ maximum network bandwidth,
allowing us to focus on the NFS protocol’s performance rather than hardware limits.

All machines ran CentOS 7.0.1406 with a vanilla 3.14.17 Linux kernel. Both the OS and the
kernel were the latest stable versions at the time we began this study. We chose CentOS because
it is a freely available version of Red Hat Enterprise Linux, which is often used in enterprise
environments. We manually ensured that all machines had identical BIOS settings. We connected
the six machines using a Dell PowerConnect 8024F 24-port 10GbE switch. We enabled jumbo
frames and set the Ethernet MTU to 9000 bytes. We also enabled TCP Segmentation Offload to
leverage the offloading feature of our NIC and to reduce CPU overhead. We measured a round-trip
time (RTT) of 0.2ms between two machines using ping and a raw TCP throughput of 9.88Gb/s
using iperf.

Many parameters can affect NFS performance, including the file system used on the server,
its format and mount options, network parameters, NFS and RPC parameters, export options, and
client mount options. Unless noted otherwise, we did not change any default OS parameters. We
used the default ext4 file system, with default settings, for the RAID-0 NFS data volume, and
chose Linux’s in-kernel NFS server implementation. We did not use our Kurma NFS server to
avoid any potential problems in our implementation and to draw conclusions that are reproducible
and widely applicable. We exported the volume with default options, ensuring that sync was
set so that writes were faithfully committed to stable storage as requested by clients. We used
the default RPC settings, except that tcp slot table entries was set to 128 to ensure the
client could send and receive enough data to fill the network. We used 32 NFSD threads, and
our testing found that increasing that value had a negligible impact on performance because the
CPU and SSDs were rarely the bottleneck. On the clients, we used the default mount options,
with the rsize and wsize set to 1MB, and the actimeo (attribute cache timeout) set to 60
seconds. Because our study focuses on the performance of NFS, in our experiments we used the
default security settings, which do not use RPCSEC GSS or Kerberos and thus do not introduce
additional overheads.

2.2.2 Benchmarks and Workloads
We developed a benchmarking framework named Benchmaster, which can launch workloads on
multiple clients concurrently. To verify that Benchmaster can launch time-aligned workloads, we
measured the time difference by NTP-synchronizing client clocks and then launching a program
that simply writes the current time to a local file. We ran this test 1000 times and found an average
delta of 235ms and a maximum of 432ms. This variation is negligible compared to the 5-minute
running time of our benchmarks.

Benchmaster also periodically collects system statistics using tools such as iostat and vmstat,
and by reading procfs entries such as /proc/self/mountstats. The mountstats file
provides particularly useful details of each individual NFS procedure, including counts of requests,
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the number of timeouts, bytes sent and received, accumulated RPC queueing time, and accumu-
lated RPC round-trip time. It also contains RPC transport-level information such as the number of
RPC socket sends and receives, the average request count on the wire, etc.

We ran our tests long enough to ensure stable results, usually 5 minutes. We repeated each test
at least three times, and computed the 95% confidence interval for the mean using the Student’s
t-distribution. Unless otherwise noted, we plot the mean of all runs’ results, with the half-widths
of the confidence intervals shown as error bars. We focused on system throughput and varied the
number of threads in our benchmarking programs in our experiments. Changing the thread count
allowed us to (1) infer system response time from single-thread results, (2) test system scalability
by gradually increasing the number of threads, and (3) measure the maximum system throughput
by using many threads.

To evaluate NFS performance over short- and long-distance networks, we injected delays rang-
ing from 1ms to 40ms using netem at the NFS clients side. Using ping, we measured 40ms
to be the average latency of Internet communications within New York State. We measured New
York-to-California latencies of about 100ms, but we do not report results using such lengthy delays
because many experiments operate on a large number of files and it took too long just to initialize
(pre-allocate) those files. For brevity, we refer to the network without extra delay as “zero-delay,”
and the network with nms injected delay as “nms-delay” in the rest of this thesis proposal.

We benchmarked four kinds of workloads:

1. Data-intensive micro-workloads that test the ability of NFS to maximize network and storage
bandwidth (Chapter 2.3);

2. Metadata-intensive micro-workloads that exercise NFS’s handling of file metadata and small
messages (Chapter 2.4);

3. Micro-workloads that evaluate delegations, which are V4’s new client-side caching mecha-
nism (Chapter 2.5); and

4. Complex macro-workloads that represent real-world applications (Chapter 2.6).

2.3 Benchmarking Data-Intensive Workloads
This section discusses four data-intensive micro-workloads that operate on one large file: random
read, sequential read, random write, and sequential write.

2.3.1 Random Read
We begin with a workload where five NFS clients read a 20GB file with a given I/O size at random
offsets. We compared the performance of V3 and V4.1 under a wide range of parameter settings
including different numbers of benchmarking threads per client (1–16), different I/O sizes (4KB–
1MB), and different network delays (0–40ms). We ensured that all experiments started with the
same cache states by re-mounting the NFS directory and dropping the OS’s page cache before each
experiment. For all combinations of thread count, I/O size, and network delay, V4.1 and V3 per-
formed equally well because these workloads were exercising the network and storage bandwidth
rather than the differences between the two NFS protocols.
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Figure 2.1: Random-read throughput with 16 threads and different network delays (varying I/O
size).
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Figure 2.2: Random-read throughput with 1MB I/O size, default 2MB TCP maximum buffer size,
and different network delays (varying the number of threads per client).

We found that increasing the number of threads and the I/O size always improved a client’s
throughput. We also found that network delays had a significant impact on throughput, especially
for smaller I/O sizes. As shown in Figure 2.1, a delay of 10ms reduced the throughput by 20×
for 4KB I/Os, but by only 2.6× for 64KB ones, and did not make a difference for 1MB I/Os. The
throughputs in Figure 2.1 were averaged over the 5-minute experiment run, which can be divided
into two phases demarcated by the time when the NFS server finally cached the entire 20GB file.
NFS’s throughput was bottlenecked by the SSDs in the first phase, and by the network in the
second. The large throughput drop for 4KB I/Os (20×) was because the 10ms delay lowered the
request rate far enough that the first phase did not finish within 5 minutes. But with larger I/Os,
even with 10ms network delay the NFS server was able to cache the entire 20GB during the run.
Note that the storage stack performed better with larger I/Os: the throughput of our SSD RAID
is 75.5MB/s with 4KB I/Os, but 285MB/s with 64KB I/Os (measured using direct I/O and 16
threads), largely thanks to the SSDs’ inherent internal parallelism.

However, when we increased the network delay further, from 10ms to 40ms, we could not
saturate the 10GbE network (Figure 2.2) even if we added more threads and used larger I/O sizes.
As shown in Figure 2.2, the curves for 20ms, 30ms, and 40ms reached a limit at 4 threads. We
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Figure 2.3: Sequential-read throughputs of individual clients when they were launched one after
the other at an interval of one minute. Throughput results of one run of experiments; the higher
the better. When all five clients are running (after 4 minutes), the throughputs of the five identical
clients are not equal and fall into two clusters, where the throughput of the higher cluster (winners)
is about twice of the lower cluster (losers). The winners and losers changed at approximately
4m30s because of re-hashing. The winner-loser pattern is irrelevant to the launch order of the
clients; for example, we launched Client2 before Client3, but Client2 is a loser and Client3 is a
winner at the end.

found that this limit was caused by the NFS server’s maximum TCP buffer sizes (rmem max and
wmem max size), which restricted TCP’s congestion window (i.e., the amount of data on the wire).
To saturate the network, the rmem max and wmem max sizes must be larger than the network’s
bandwidth-delay product. After we changed those values from their default of 2MB to 32MB
(larger than 10Gb/s×40ms

5
where 5 is the number of clients), we achieved a maximum throughput of

1120MB/s when using 8 or more threads in the 20ms- to 40ms-delay networks. These experiments
show that we can come close to the maximum network bandwidth for data-intensive workloads by
tuning the TCP buffer size, I/O size, and the number of threads for both V3 and V4.1. To avoid
being limited by the maximum TCP buffer size, we used 32MB for rmem max and wmem max
for all machines and experiments in the rest of this proposal.

2.3.2 Sequential Read
We next turn to an NFS sequential-read workload, where five NFS clients repeatedly scanned a
20GB file from start to end using an I/O size of 1MB. For this workload, V3 and V4.1 performed
equally well: both achieved a maximum aggregate throughput of 1177MB/s. However, we fre-
quently observed a winner-loser pattern among the clients, for both V3 and V4.1, exhibiting the
following three traits: (1) the clients formed two clusters, one with high throughput (winners),
and the other with low throughput (losers); (2) often, the winners’ throughput was approximately
double that of the losers; and (3) no client was consistently a winner or a loser, and a winner in one
experiment might became a loser in another.

The winner-loser pattern was unexpected given that all the five clients had the same hardware,
software, and settings, and were performing the same operations. Initially, we suspected that the
pattern was caused by the order in which the clients launched the workload. To test that hypothesis,
we repeated the experiment but launched the clients in a controlled order, one additional client
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Figure 2.4: Illustration of Hash-Cast. The NIC of the NFS server has six transmit queues (tx). The
NFS server is sending data to five clients using one TCP flow for each client. Linux hashes the
TCP flows of Client1, Client3, and Client5 into tx3, tx2, and tx5, respectively; and hashes the flows
of both Client2 and Client4 into tx0. Therefore, Client2 and Client4 shares one transmit queue and
each gets half of the throughput of the queue.

every minute. However, the results disproved any correlation between experiment launch order
and the winners. Figure 2.3 shows that Client2 started second but ended up as a loser, whereas
Client5 started last but became a winner. Figure 2.3 also shows that the winners had about twice
the throughput of the losers. We repeated this experiment multiple times and found no correlation
between a client’s start order and its chance of being a winner or loser.

By tracing the server’s networking stack, we discovered that the winner-loser pattern is closely
related to the server’s use of physical queues in its network interface card (NIC). Every NIC has
a physical transmit queue (tx-queue) holding outbound packets, and a physical receive queue
(rx-queue) tracking empty buffers for inbound packets [158]. Many modern NICs have multi-
ple sets of tx-queues and rx-queues to allow networking to scale with the number of CPU
cores (each queue can be configured to interrupt a specific core), and to facilitate better NIC virtu-
alization [158]. Linux uses hashing to decide which tx-queue to use for each outbound packet.
However, not all packets are hashed; instead, each TCP socket has a field recording the tx-queue
the last packet was forwarded to. If a socket has any existing packets in the recorded tx-queue,
its next packet is also placed in that queue. This approach allows TCP to avoid generating out-
of-order packets by placing packet n on a long queue and n + 1 on a shorter one. However, a
side effect is that for highly active TCP flows that always have outbound packets in the queue, the
hashing is effectively done per-flow rather than per-packet. (On the other hand, if the socket has no
packets in the recorded tx-queue, its next packet is re-hashed, probably to a new tx-queue.)

The winner-loser pattern is caused by uneven hashing of TCP flows to tx-queues. In our
particular experiments, the server had five flows (one per client) and a NIC configured with six
tx-queues. If two of the flows were hashed into one tx-queue and the rest went into three
separate tx-queues, then the two flows sharing a tx-queue got half the throughput of the other
three because all tx-queues were transmitting data at the same rate. We call this phenomenon—
hashing unevenness causing a winner-loser pattern of throughput—Hash-Cast, which is illustrated
in Figure 2.4.

Hash-Cast explains the performance anomalies illustrated in Figure 2.3. First, Client1, Client2,
and Client3 were hashed into tx3, tx0, and tx2, respectively. Then, Client4 was hashed into
tx0, which Client2 was already using. Later, Client5 was hashed into tx3, which Client1 was
already using. However, at 270 seconds, Client5’s tx-queue drained and it was rehashed into

11



tx5. At the experiment’s end, Client1, Client3, and Client5 were using tx3, tx2, and tx5,
respectively, while Client2 and Client4 shared tx0. Hash-Cast also explains why the losers usually
got half the throughputs of the winners: the {0,0,1,1,1,2} distribution is the most likely hashing
result (we calculated its probability as roughly 69%).

To eliminate hashing unfairness, we evaluated the use of a single tx-queue. Unfortunately,
we still observed an unfair throughput distribution across clients because of complicated network-
ing algorithms such as TSO Automatic Sizing, which can form feedback loops that keep slow TCP
flows always slow [40]. To resolve this issue, we further configured tc qdisc to use Stochastic
Fair Queueing (SFQ), which achieves fairness by hashing flows to many software queues and sends
packets from those queues in a round-robin manner [122]. Most importantly, SFQ used 127 soft-
ware queues so that hash collisions were much less probable compared to using only 6 queues. To
further alleviate the effect of collisions, we set SFQ’s hashing perturbation rate to 10 seconds using
tc qdisc, so that the mapping from TCP flows to software queues changed every 10 seconds.

Note that using a single tx-queuewith SFQ did not reduce the aggregate network throughput
compared to using multiple tx-queues without SFQ. We measured only negligible performance
differences between these two configurations. We found that many of Linux’s queuing disciplines
assume a single tx-queue and could not be configured to use multiple ones. Thus, it might be
desirable to use just one tx-queue in many systems, not just NFS servers. To ensure fairness
among clients, for the remainder of experiments in this thesis proposal we used SFQ with a single
tx-queue. The random-read results shown in Chapter 2.3.1 also used SFQ.

2.3.3 Random Write
The random-write workload is the same as the random-read one discussed in Chapter 2.3.1 except
that the clients were writing data instead of reading. Each client had a number of threads that
repeatedly wrote a specified amount (I/O size) of data at random offsets in a pre-allocated 20GB
file. All writes were in-place and did not change the file size. We opened the file with O SYNC set,
to ensure that the clients write data back to the NFS server instead of just caching it locally. This
setup is similar to many I/O workloads in virtualized environments [180], which use NFS heavily.

We varied the I/O size from 4KB to 1MB, the number of threads from 1 to 16, and the injected
network delay from 0ms to 10ms. We ran the experiments long enough to ensure that the working
sets, including in the 4KB I/O case, were at least 10 times larger than our RAID controller’s cache
size. As expected, larger I/O sizes and more threads led to higher throughputs, and longer network
delays reduced throughput. V4.1 and V3 performed comparably, with V4.1 slightly worse (2% on
average) in the zero-delay network.

Figure 2.5 shows the random-write throughput when we varied the I/O size in the zero-delay
network. V4.1 and V3 achieved around the same throughput, but both were significantly slower
than the maximum performance of our SSD RAID (measured on the server side without NFS).
Neither V4.1 nor V3 achieved the maximum throughput even with more threads. We initially sus-
pected that the lower throughputs were caused by the network, but the throughput did not improve
when we repeated the experiment directly on the NFS server over the loopback device. Instead,
we found the culprit to be the O SYNC flag, which has different semantics in ext4 than in NFS.
The POSIX semantics of O SYNC require all metadata updates to be synchronously written to disk.
On Linux’s local file systems, however, O SYNC is implemented so that only the actual file data
and the metadata directly needed to retrieve that data are written synchronously; other metadata
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Figure 2.6: Random-write throughput of a single NFS client in a zero-delay network (log10). The
higher the better. The “App” curve is the throughput observed by the benchmarking application,
i.e., the writing speed of the application to the file; the “Client” curve is the throughput observed
by the NFS client, i.e., the writing speed of the clients to the remote NFS server.

remains buffered. Since our workloads used only in-place writes, which updated the file’s modifi-
cation time but not the block mapping, writing an ext4 file did not update metadata. In contrast,
the NFS implementation more strictly adheres to POSIX, which mandates that the server com-
mit both the written data and “all file system metadata” to stable storage before returning results.
Therefore, we observed many metadata updates in NFS, but not in ext4. The overhead of those
extra updates was aggravated by ext4’s journaling of metadata changes on the server side. (By
default ext4 does not journal changes to file data.) The extra updates and the journaling intro-
duced numerous extra I/Os, causing NFS’s throughput to be significantly lower than the RAID-0’s
maximum (measured without NFS). This finding highlights the importance of understanding the
effects of the NFS server’s implementation and the underlying file system that it exports.

We also tried the experiments without setting O SYNC, which generated a bursty workload to
the NFS server, as shown in Figure 2.6. Clients initially realized high throughput (over 1GB/s)
since all data was buffered in their caches. Once the number of dirty pages passed a threshold,
the throughput dropped to near zero as the clients began flushing those pages to the server; this
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Figure 2.7: Throughput of reading small files with one thread in a zero-delay network.

process took up to 3 minutes depending on the I/O size. After that, the write throughput became
high again, until caches filled—and the bursty pattern then repeated.

2.3.4 Sequential Write
We also benchmarked sequential-write workloads, where each client had a single thread writing
sequentially to the 20GB file. V4.1 and V3 again had the same performance. However, the ag-
gregate throughputs of single-threaded sequential-write workloads were lower than the aggregate
throughputs of their multi-threaded counterparts because our all-SSD storage backend has internal
parallelism [2], and favors multi-threaded I/O accesses. For sequential writes, the O SYNC behav-
ior we discussed in Chapter 2.3.3 had an even stronger effect if the backend storage used HDDs,
because the small disk writes generated by the metadata updates and the associated journaling
broke the sequentiality of NFS’s writes to disk. We measured a 50% slowdown caused by this
effect when we used HDDs for our storage backend instead of SSDs [39].

2.4 Benchmarking Metadata-Intensive Workloads
The data-intensive workloads discussed so far are more sensitive to network and I/O bandwidth
than to latency. This section focuses on metadata-intensive workloads, which are critical to NFS’s
overall performance because of the popularity of uses such as shared home directories, where
common workloads like software development and document processing involve many small- to
medium-sized files. We discuss three micro-workloads that exercise NFS’s metadata operations by
operating on a large number of small files: file reads, file creations, and directory listings.

2.4.1 Read Small Files
We pre-allocated 10,000 4KB files on the NFS server. Figure 2.7 shows the results of the 5 clients
randomly reading entire files repeatedly for 5 minutes. The throughputs of both V3 and V4.1 in-
creased quickly during the first 10 seconds and then stabilized once the clients had read and cached
all files. V4.1 started slower than V3, but outperformed V3 by 2× after their throughputs stabi-
lized. We observed that V4.1 made 8.3× fewer NFS requests than V3 did. The single operation

14



10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 0  50  100  150  200  250  300

T
h

ro
u

g
h

p
u

t 
(O

p
s/

s,
 l

o
g

)

Time (Seconds)

V3
V4.1

V4.1p

Figure 2.8: Aggregate throughput of reading small files with 16 threads in a 10ms-delay network
(log10). The “V4.1” curve is the throughput of vanilla NFSv4.1; the “V4.1p” curve is the through-
put of the patched NFSv4.1 with our fix.

that caused this difference was GETATTR, which accounted for 95% of all the requests performed
by V3. These GETATTRs were being used by the V3 clients to revalidate their client-side cache.
However, V4.1 rarely made any requests once its throughput had stabilized. Further investigation
revealed that this was caused by V4.1’s delegation mechanism, which allows client-side caches
to be used without revalidation. We discuss and evaluate V4’s delegations in greater detail in
Chapter 2.5.

To investigate read performance with fewer caching effects, we used a 10ms network delay to
increase the time it would take to cache all of the files. With this delay, the clients did not finish
reading all of the files during the same 5-minute experiment. We observed that the client’s through-
put dropped to under 94 ops/s for V3 and under 56 ops/s for V4.1. Note that each V4.1 client made
an average of 243 NFS requests per second, whereas each V3 client made only 196, which is
counter-intuitive given that V4.1 had lower throughput. The reason for V4.1’s lower throughput
is its more verbose stateful nature: 40% of V4.1’s requests are state-maintaining requests (e.g.,
OPENs and CLOSEs in this case), rather than READs. State-maintaining requests do not contribute
to throughput, and since most files were not cached, V4.1’s delegations could not help reduce the
number of stateful requests.

To compensate for the lower throughput due to the 10ms network delay, we increased the num-
ber of threads on each client, and then repeated the experiment. Figure 2.8 shows the throughput
results (log scale). With 16 threads per client V3’s throughput (the red line) started at around 8100
ops/s and quickly increased to 55,800 ops/s. After that, operations were served by the client-side
cache; only GETATTR requests were made for cache revalidation. V4.1’s throughput (the green
curve) started at only 723 ops/s, which is eleven times slower than that of V3. It took 200 seconds
for V4.1 to cache all files; then V4.1 overtook V3, and afterwards performed 25× faster thanks to
delegations. V4.1 also made 71% fewer requests per second than V3; this reversed the trend from
the no-latency-added single-thread case (Figure 2.7), where V4.1 had lower throughput but made
more requests.

To understand this behavior, we reviewed the mountstat data for the V4.1 tests. We found
that the average RPC queuing time of V4.1’s OPEN and CLOSE requests was as long as 223ms,
while that average queuing time of all V4.1’s other requests (ACCESS, GETATTR, LOOKUP, and
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READ) was shorter than 0.03ms. (The RPC queuing time is the time between when an RPC is
initialized and when it begins transmitting over the wire.) This means that some OPENs and CLOSEs
waited over 200ms in a client-side queue before the client started to transmit them.

To diagnose the long delays, we used Systemtap to instrument all the rpc wait queues
in Linux’s NFS client kernel module and found the culprit to be an rpc wait queue for seqid,
which is an argument to OPEN and CLOSE requests [168]; it was used by V4.0 clients to notify the
server of changes in client-side states. V4.0 requests that needed to change the seqid were fully
serialized by this wait queue. The problem is exacerbated by the fact that once entered into this
queue, a request is not dequeued until it receives the server’s reply. However, seqid is obsolete
in V4.1: the latest standard [168] explicitly states that “The ‘seqid’ field of the request is not used
in NFSv4.1, but it MAY be any value and the server MUST ignore it.”

We fixed the long queuing time for seqid by avoiding the queue entirely. (We have submitted
a patch to the kernel mailing list.) For V4.0, seqid is still used and our patch does not change
its behavior. We repeated the experiments with these changes; the new results are shown as the
blue curve in Figure 2.8. V4.1’s performance improved by more than 6× (from 723 ops/s to
4655 ops/s). V4.1 finished reading all the files within 35 seconds, and thereafter stabilized at a
throughput 172× higher than V3 because of delegations. In addition to the higher throughput,
V4.1’s average response time was shorter than that of V3, also because of delegations. For brevity,
we refer to the patched NFSv4.1 as V4.1p in following discussions.

We noted a periodic performance drop every 60 seconds in Figures 2.7 and 2.8, which cor-
responds to the actimeo mount option. When this timer expires, client-cached metadata must
again be retrieved from the server, temporarily lowering throughput. Enlarging the actimeo
mount option is a way to trade cache consistency for higher performance.

2.4.2 File Creation
We demonstrated above that client-side caching, especially delegations, can greatly reduce the
number of NFS metadata requests when reading small files. To exercise NFS’s metadata operations
more, we now turn to a file-creation workload, where client-side caching is less effective. We
exported one NFS directory for each of the five clients, and instructed each client to create 10,000
files of a given size in its dedicated directory, as fast as possible.

Figure 2.9 shows the speed of creating empty files in the 10ms-delay network. To test scala-
bility, we varied the number of threads per client from 1 to 512. V4.1 started at the same speed as
V3 when there was only one thread per client. Between 2–32 threads, V4.1 outperformed V3 by
1.1–1.5×, and V4.1p (NFSv4.1 with our patch) outperformed V3 by 1.9–2.9×. Above 32 threads,
however, V4.1 became 1.1–4.6× slower than V3, whereas V4.1p was 2.5–2.9× faster than V3.

As shown in Figure 2.9, when the number of threads per client increased from 1 to 16, V3
sped up by only 12.5%, V4.1 by 50%, and V4.1p by 225%. In terms of scalability (1–16 threads),
V3 scaled poorly, with an average performance boost of merely 3% each power-of-two step in the
thread count. V4.1 scaled slightly better, with an average 10% boost per step. But, because of the
seqid synchronizing bottleneck explained in Chapter 2.4.1, its performance did not improve at all
once the thread count increased beyond two. With the seqid problem fixed, V4.1p scaled much
better, with an average boost of 34% per step. With 16–512 threads, V3’s scalability improved
significantly, and it achieved a high average performance boost of 44% per step; V4.1p also scaled
well with an average boost of 40% per step.
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Figure 2.9: Aggregate throughput of creating empty files in a 10ms-delay network with different
numbers of threats per client.
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Figure 2.10: Average number of outstanding requests when creating empty files in a 10ms-delay
network.

V4.1p always outperformed the original V4.1, by up to 11.6× with 512 threads. Therefore, for
the rest of this thesis proposal, we only report figures for V4.1p, unless otherwise noted.

In the 10ms-delay network, the rates of creating empty, 4KB, and 16KB files differed by less
than 2% when there were more than 4 threads, and by less than 27% with fewer threads; thus, they
all had the same trends. As shown in Figure 2.9, depending on the number of threads, V4.1p created
small files 1.9–2.9× faster than V3 did. To understand why, we analyzed the mountstats data
and found that the two versions differed significantly in the number of outstanding NFS requests
(i.e., requests sent but not yet replied to). We show the average number of outstanding NFS requests
in Figure 2.10, which closely resembles Figure 2.9 in overall shape. This suggests that V4.1p
performed faster than V3 because the V4.1p clients sent more requests to the server at one time. We
examined the client code and discovered that V3 clients use synchronous RPC calls (rpc call sync)
to create files, whereas V4.1p clients use asynchronous calls (rpc call async) that go through a
work queue (nfsiod workqueue). We believe that the asynchronous calls are the reason why V4.1p
had more outstanding requests: the long network delay allowed multiple asynchronous calls to
accumulate in the work queue and be sent out in batch, allowing networking algorithms such as
TCP Nagle to efficiently coalesce multiple RPC messages. Sending fewer but larger messages is
faster than sending many small ones, so V4.1p achieved higher rates. Our analysis was confirmed
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Figure 2.11: Rate of creating empty files in a zero-delay network.

by the mountstats data, which showed that V4.1p’s OPEN requests had significantly longer
queuing times (up to 30×) on the client side than V3’s CREATEs. (V3 uses CREATEs to create
files whereas V4.1p uses OPENs.) Because V3’s server is stateless, all its mutating operations
have to be synchronous; otherwise a server crash might lose data. V4, however, is stateful and
can perform mutating operations asynchronously because it can restore states properly in case of
server crashes [133].

In the zero-delay network, there was not a consistent winner between the two NFS versions
(Figure 2.11). Depending on the number of threads, V4.1p varied from 1.76× faster to 3× slower
than V3. In terms of scalability, V3’s speed increased slowly when we began adding threads, but
jumped quickly between 64 and 512 threads. In contrast, V4.1p’s speed improved quickly at the
initial stage, but plateaued and then dropped when we used more than 4 threads.

To understand why, we looked into the mountstats data, and found that the corresponding
graph (not shown) of the average number of outstanding requests closely resembles Figure 2.11. It
again suggests that the lower speed was the result of a client sending requests rather slowly. With
further analysis, we found that V4.1p’s performance drop after 32 threads was caused by high con-
tention for session slots, which are V4.1p’s unique resources the server allocates to clients. Each
session slot allows one request; if a client runs out of slots (i.e., has reached the maximum number
of concurrent requests the server allows), it has to wait until one becomes available, which happens
when the client receives a reply for any of its outstanding requests. We instrumented the client ker-
nel module and collected the waiting time on the session slots. As shown in Figure 2.12, waiting
began at 32 threads, which is also where V4.1p’s performance began dropping (Figure 2.11). Note
that with 512 threads, the average waiting time is 2500ms, or 12,500× the 0.2ms round-trip time.
(The 10ms-delay experiment also showed waiting for session slots, but the wait time was short
compared to the network RTT and thus had a smaller effect on performance.)

We note that Figure 2.12 had high standard deviations above 32 threads per client. This behav-
ior results from typical non-real-time scheduling artifacts in Linux, where some threads can win
and be scheduled first, while others wait longer. Even when we ran the same experiment 10 times,
standard deviations did not decrease, suggesting a non-Gaussian, multi-modal distribution [178].
In addition to V4.1p’s higher wait time in this figure, the high standard deviation means that it
would be harder to enforce SLAs with V4.1p for highly-concurrent applications.

With 2–16 threads (Figure 2.11), V4.1p’s performance advantage over V3 was because of
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Figure 2.12: Average waiting time for V4.1p’s session slots of ten experimental runs. Error bars
are standard deviations.

V4.1p’s asynchronous calls (the same as explained above); V4.1p’s OPENs had around 4× longer
queuing time, which let multiple requests accumulate and be sent out in batch. This queuing time
was not caused by the lack of available session slots (Figure 2.12). This was verified by evaluating
the use of a single thread, in which case V4.1p performed 17% slower than V3 because V4.1p’s
OPEN requests are more complex and took longer to process than V3’s CREATE (see Chapter 2.4.3).

One possible solution to V4.1p’s session-slot bottleneck is to enlarge the number of server-side
slots to match the client’s needs. However, slots consume resources: for example, the server must
then increase its duplicate request cache (DRC) size to maintain its exactly once semantics (EOS).
Increasing the DRC size can be expensive, because the DRC has to be persistent and is possibly
saved in NVRAM. V3 does not have this issue because it does not provide EOS, and does not
guarantee that it will handle retransmitted non-idempotent operations correctly. Consequently, V3
outperformed V4.1p when there were more than 64 threads (Figure 2.11).

2.4.3 Directory Listing
We now turn to another common metadata-intensive workload: listing directories. We used Filebench’s
directory-listing workload, which operates on a pre-allocated NFS directory tree that contains
50,000 empty files and has a mean directory width of 5. Each client ran one Filebench instance,
which repeatedly picks a random subdirectory in the tree and lists its contents.

This workload is read-only, and showed behavior similar to that of reading small files (Chap-
ter 2.4.1) in that its performance depended heavily on client-side caching. Once all content was
cached, the only NFS requests were for cache revalidations. Figure 2.13 (log scale) shows the
throughput of single-threaded directory listing in networks with different delays. In general, V4.1p
performed slightly worse than V3. The biggest difference was in the zero-delay network, where
V4.1p was 15% slower. mountstats showed that V4.1p’s requests had longer round-trip times,
which implies that the server processed those requests slower than V3: 10% slower for READDIR,
27% for GETATTR, 33% for ACCESS, and 36% for LOOKUP. This result is predictable because the
V4.1p protocol, which is stateful and has more features (EOS, delegations, etc.), is substantially
more complex than V3. As we increased the network delay, the processing time of V4.1p became
less important: V4.1p’s performance was within 94–99% of V3. Note that Linux does not support
directory delegation.
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Figure 2.13: Directory listing throughput (log10).

With 16 threads, V4.1p’s throughput was 95–101% of V3’s. Note that V4.1p’s asynchronous
RPC calls did not influence this workload much because most of this workload’s requests did not
mutate states. Only the state-mutating V4.1p requests are asynchronous: OPEN, CLOSE, LOCK,
and LOCKU. (WRITE is also asynchronous, but this workload does not have any WRITEs.)

2.5 Benchmarking NFSv4 Delegations
In this section, we discuss delegations, an advanced client-side caching mechanism that is a key
new feature of NFSv4. Caching is essential to good performance in any system, but in distributed
systems like NFS caching gives rise to consistency problems. V2 and V3 explicitly ignored strict
consistency [38, p. 10], but supported a limited form of validation via the GETATTR operation.
In practice, clients validate their cache contents frequently, causing extra server load and adding
significant delay in high-latency networks.

In V4, the cost of cache validation is reduced by letting a server delegate a file to a particu-
lar client for a limited time, allowing accesses to proceed at local speed. Until the delegation is
released or recalled, no other client is allowed to modify the file. This means a client need not
revalidate the cached attributes and contents of a file while holding the delegation of the file. If any
other clients want to perform conflicting operations, the server can recall the delegation using call-
backs via a server-to-client back-channel connection. Delegations are based on the observation that
file sharing is infrequent [168] and rarely concurrent [102]. Thus, they can boost performance most
of the time, although with performance penalty in the rare presence of concurrent and conflicting
file sharing.

Delegations have two types: open delegations of files, and directory delegations. The former
comes in either “read” or “write” variants. We will focus on read delegations of regular files be-
cause they are the simplest and most common type—and are also the only delegation type currently
supported in the Linux kernel [63].

2.5.1 Granting a Delegation
An open delegation is granted when a client opens a file with an appropriate flag. However, clients
must not assume that a delegation will be granted, because that choice is up to the server. If
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Operation NFSv3 NFSv4.1 NFSv4.1
deleg. off deleg. on

OPEN 0 10, 001 1000
READ 10, 000 10, 000 1000
CLOSE 0 10, 001 1000
ACCESS 10, 003 9003 3
GETATTR 19, 003 19, 002 1
LOCK 10, 000 10, 000 0
LOCKU 10, 000 10, 000 0
LOOKUP 1002 2 2
FREE STATEID 0 10, 000 0
TOTAL 60,008 88,009 3009

Table 2.1: NFS operations performed by each client for NFSv3 and NFSv4.1 (delegations on
and off). Each NFSv4.1 operation represents a compound procedure. For clarity, we omit trivial
operations (e.g., PUTFH) in compounds. NFSv3’s LOCK and LOCKU come from the Network Lock
Manager (NLM).

a delegation is rejected, the server can explain its decision via flags in the open reply (e.g., lock
contention, unsupported delegation type). Even if a delegation is granted, the server is free to recall
it at any time via the back channel, which is a RPC channel that enables the NFS servers to notify
clients. Recalling a delegation may involve multiple clients and multiple messages, which may
lead to considerable delay. Thus, the decision to grant the delegation might be complex. However,
because Linux currently supports only file-read delegations, it uses a simpler decision model. The
delegation is granted if three conditions are met: (1) the back channel is working, (2) the client is
opening the file with O RDONLY, and (3) the file is not currently open for write by any client.

During our initial experiments we did not observe any delegations even when all three condi-
tions held. We traced the kernel using SystemTap and discovered that the Linux NFS server’s
implementation of delegations was outdated: it did not recognize new delegation flags introduced
by NFSv4.1. The effect was that if an NFS client got the filehandle of a file before the client
opened the file (e.g., using stat), no delegation was granted. We fixed the problem with a kernel
patch, which has been accepted into the mainline Linux kernel.

2.5.2 Delegation Performance: Locked Reads
We previously showed the benefit of delegations in Figure 2.8, where delegations helped V4.1p
read small files 172× faster than V3. This improvement is due to the elimination of cache revali-
dation traffic; no communication with the server (GETATTRs) is needed to serve reads from cache.
Nevertheless, delegations can improve performance even further in workloads with file locking. To
quantify the benefits, we repeated the delegation experiment performed by Gulati [76] but scaled
it up. We pre-allocated 1000 4KB files in a shared NFS directory and then mounted it on the five
clients. Each client repeatedly opened each of the files in the shared NFS directory, locked it, read
the entire file, and then unlocked it. (Locking the file is a technique used to ensure an atomic read.)
After ten repetitions the client moved to the next file.

Table 2.1 shows the number of operations performed by V3 and by V4.1p with and without
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delegation. Only V4.1p shows OPENs and CLOSEs because only V4 is stateful. When delegations
were on, V4.1p used only 1000 OPENs even though each client opened each file ten times. This
is because each client obtained a delegation on the first OPEN; the following nine were performed
locally. Note that in Table 2.1, without a delegation (for V3 and V4.1p with delegations off), each
application read incurred an expensive NFS READ operation even though the same reads were
repeated ten times. Repeated reads were not served from the client-side cache because of file
locking, which forces the client to revalidate the data.

Another cause of the difference in the number of READ operations in Table 2.1 is the timestamp
granularity on the NFS server. Traditionally, NFS provides close-to-open cache consistency [104].
Timestamps are updated at the server when a file is closed, and any client subsequently opening the
same file revalidates its local cache by checking its attributes with the server. If the locally-saved
timestamp of the file is out of date, the client’s cache of the file is invalidated. Unfortunately, some
NFS servers offer only one-second granularity, which is too coarse for modern systems; clients
could miss intermediate changes made by other clients within one second. In this situation, NFS
locking provides stronger cache coherency by first checking the server’s timestamp granularity.
If the granularity is finer than one microsecond, the client revalidates the cache with GETATTR;
otherwise, the client invalidates the cache. Since the Linux in-kernel server uses a one-second
granularity, each read operation incurs a READ RPC request because the preceding LOCK has
invalidated the client’s local cache.

Invalidating an entire cached file can be expensive, since NFS is often used to store large files
such as virtual disk images [180], media files, etc. The problem is worsened by two factors: (1) in-
validation happens even when the client is simply acquiring read (not write) locks, and (2) a file’s
entire cache contents are invalidated even if the lock only applies to a single byte. In contrast, the
NFS client with delegation was able to satisfy nine of the ten repeated READs from the page cache.
There was no need to revalidate the cache because its validity was guaranteed by the delegation.

Another major difference among the columns in Table 2.1 was the number of GETATTRs. In
the absence of delegation, GETATTRs were used for two purposes: to revalidate the cache upon
file open, and to update file metadata upon read. The latter GETATTRs were needed because the
locking preceding the read invalidated both the data and metadata caches for the locked file. A
potential optimization for V4.1p would be to have the client append a GETATTR to the LOCK in the
same compound, and let the server piggyback file attributes in its reply. This could save 10,000
GETATTR RPCs.

The remaining differences between the experiments with and without delegations were due to
locking. A LOCK/LOCKU pair is sent to the server when the client does not have a delegation.
Conversely, no NFS communication is needed for locking when a delegation exists. For V4.1p
with delegations off, one FREE STATEID follows each LOCKU to free the resource (stateid) used by
the lock at the server. (A potential optimization would be to append the FREE STATEID operation
to the same compound procedure that includes LOCKU; this could save another 10,000 RPCs.)

In total, delegations cut the number of V4.1p operations by over 29× (from 88K to 3K). This
enabled the original stateful and “chattier” V4.1p (with extra OPEN, CLOSE, and FREE STATEID

calls) to finish the same workload using only 5% of the requests used by V3. In terms of data
volume, V3 sent 3.8MB and received 43.7MB, whereas V4.1p with delegation sent 0.6MB and
received 4.5MB. Delegation helped V4.1p reduce the outgoing traffic by 6.3× and the incoming
traffic by 9.7×. As seen in Figure 2.14, these reductions translate to a 6–19× speedup in networks
with 0–10ms latency.
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Figure 2.14: Running time of the locked-reads experiment (log10). Lower is better.

2.5.3 Delegation Recall Impact
We have shown that delegations can effectively improve NFS performance when there is no conflict
among clients. To evaluate the overhead of conflicting delegations, we created two groups of NFS
clients: the Delegation Group (DG) grabs and holds NFS delegations on 1000 files by opening
them with the O RDONLY flag, while the Recall Group (RG), recalls those delegations by opening
the same files with O RDWR. To test scalability, we varied the number of RG clients from one to
four. For n clients in the DG, an RG open generated n recalls because each DG client’s delegation
had to be recalled separately.

We compared the cases when the DG clients were and were not holding delegations. Each DG
client needed two operations to respond to a recall: a DELEGRETURN to return the delegation, and
an OPEN to re-open the file (since the delegation was no longer valid).

For the RG client, the presence of a delegation incurred one additional NFS OPEN per file. The
first OPEN failed, returning an NFS4ERR DELAY error to tell the client to try again later because
the server needed to recall outstanding delegations. The second open was sent as a retry and
succeeded.

The running time of the experiment varied dramatically, from 0.2 seconds in the no-delegation
case to 100 seconds with delegation. This 500× delay was introduced by the RG client, which
failed in the first OPEN and retried it after a timeout. The initial timeout length is hard-coded to
100ms in the client kernel module (NFS4 POLL RETRY MIN in the Linux source code), and is
doubled every time the retry fails. This long timeout was the dominating factor in the experiment’s
running time.

To test delegation recall in networks with longer latencies, we repeated the experiment after
injecting network delays from 1–10ms. Under those conditions, the experiment’s running time
increased from 100s to 120s. With 10ms of extra network latency, the running time was still
dominated by the client’s retry timeout. However, when we increased the number of clients in DG
from one to four, the total running time did not change. This suggests the delegation recall works
well when there are several clients holding conflicting delegations at the same time.

We believe that a long initial timeout of 100ms is questionable considering that most SLAs
specify a latency of 10–100ms [4]. Also, because Linux does not support write delegations, Linux
NFS clients do not have any dirty data (of delegated files) to write back to the server, and thus
should be able to return delegations quickly. We believe it would be better to start with a much

23



 5

 10

 15

 20

 25

0 1 2 5 10

T
h

ro
u

g
h

p
u

t 
(K

o
p

s/
s)

Injected Network Delay (ms)

V3

V4.1

V4.1p

Figure 2.15: File Server throughput (varying network delay)

shorter timeout; if that turns out to be too small, the client will back-off quickly anyway since the
timeout increases exponentially.

Recalling read delegations is relatively simple because the clients holding them have no dirty
data to write back to the server. For write delegations, the recall will be more difficult because the
amount of dirty data can be substantial—since the clients are free from network communication,
they are capable of writing data faster than in normal NFS scenarios. The cost of recalling write
delegations would be interesting to study when they become available.

2.6 Benchmarking Macro-Workloads
We now turn to macro-workloads that mix data and metadata operations. These are more complex
than micro-workloads, but also more closely match the real world. Our study used Filebench’s File
Server, Web Server, and Mail Server workloads [101].

2.6.1 The File Server Workload
The File Server workload includes opens, creates, reads, writes, appends, closes, stats, and deletes.
All dirty data is written back to the NFS server on close to enforce NFS’s close-to-open semantics.
We created one Filebench instance for each client and ran each experiment for 5 minutes. We used
the File Server workload’s default settings: each instance had 50 threads operating on 10,000 files
(in a dedicated NFS directory) with an average file size of 128KB, with the sizes chosen using
Filebench’s gamma function [196].

As shown in Figure 2.15, V4.1p had lower throughput than V3. Without any injected net-
work delay, V4.1p’s throughput was 12% lower because V4.1p is stateful and more talkative. To
maintain state, V4.1p did 3.5 million OPENs and CLOSEs (Figure 2.16), which was equivalent to
58% of all V3’s requests. Note that 0.6 million of the OPENs not only maintained states, but also
created files. Without considering OPEN and CLOSE, V4.1p and V3 made roughly the same num-
ber of requests: V4.1p sent 106% more GETATTRs than V3 did, but no CREATEs and 78% fewer
LOOKUPs.

V4’s verbosity hurts its performance, especially in high-latency networks. We observed the
same problems in other workloads such as small-file reading (Chapter 2.4.1), where V4 was 40%
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Figure 2.16: Number of NFS requests made by the File Server

slower than V3 with a single thread and a 10ms-delay network. Verbosity is the result of V4’s
stateful nature, and the V4 designers were aware of the issue. To reduce verbosity, V4 provides
compound procedures, which pack multiple NFS operations into one message. However, com-
pounds have not been implemented effectively in Linux (and other OSes): most contain only 2–4
often-trivial operations (e.g., SEQUENCE, PUTFH, and GETFH); and applications currently have no
ability to generate their own compounds. We believe that implementing effective compounds is
difficult for two reasons: (1) The POSIX API dictates a synchronous programming model: issue
one system call, wait, check the result, and only then issue the next call. (2) Without transaction
support, failure handling in compounds with many operations is fairly difficult.

In this File Server workload, even though V4.1p made a total of 56% more requests than V3,
V4.1p was only 12% slower because its asynchronous calls allowed 40–95% more outstanding
requests (as explained in Chapter 2.4.2). When we injected delay into the network (Figure 2.15),
V4.1p continued to perform slower than V3, by 8–18% depending on the delay. V4.1p’s delegation
mechanism did not help for the File Server workload because it contains mostly writes, and most
reads were cached (also Linux does not currently support write delegations).

Figure 2.15 also includes the unpatched V4.1. As we increased the network delay, V4.1p per-
formed increasingly better than V4.1, eventually reaching a 10.5× throughput improvement. We
conclude that our patch helps V4.1’s performance in both micro- and macro-workloads, especially
as network delays increase.

2.6.2 The Web Server Workload
Filebench’s Web Server workload emulates servicing HTTP requests: 100 threads repeatedly op-
erate on 1000 files, in a dedicated directory per client, representing HTML documents with a mean
size of 16KB. The workload reads 10 randomly-selected files in their entirety, and then appends
16KB to a log file that is shared among all threads, causing contention. We ran one Web Server
instance on each of the five NFS clients.

Figure 2.17 shows the throughput with different network delays. V4.1p was 25% slower than
V3 in the zero-delay network. The mountstats data showed that the average round-trip time
(RTT) of V4.1p’s requests was 19% greater than for V3. As the network delay increased, the
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Figure 2.17: Web Server throughput (varying network delay).
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Figure 2.18: Web Server throughput in the zero-delay network (varying thread count per client).

RPC RTT became overshadowed by the delay, and V4.1p’s performance became close to V3’s
and even slightly better (up to 2.6%). V4.1p’s longer RTT was due to its complexity and longer
processing time on the server side, as explained in Chapter 2.4.3. With longer network delays,
V4.1p’s performance picked up and matched V3’s because of its use of asynchronous calls.

To test delegations, we turned on and off the readonly flag of the Filebench workload, and
confirmed that setting readonly enabled delegations. In the zero-delay network, delegations
reduced the number of V4.1p’s getattr requests from over 8.7M to only 11K, and opens and
closes from over 8.8M to about 10K. In summary, delegations cut the total number of all NFS
requests by more than 10×. However, the substantial reduction in requests did not bring a corre-
sponding performance boost: the throughput increased by only 3% in the zero-delay network, and
actually decreased by 8% in the 1ms-delay situation. We were able to identify the problem as the
writes to the log file. With delegations, each Web Server thread finished the first 10 reads from
the client-side cache without any network communication, but then was blocked at the last write
operation.

To characterize the bottleneck, we varied the number of threads in the workload and repeated
the experiments with delegations both on and off. Figure 2.18 shows that delegations improved
V4.1p’s single-threaded performance by 7.4×, from 18 to 137 Kops/s. As the thread count in-
creased, the log write began to dominate and delegations’ benefit decreased, eventually making no
difference: and the two curves of V4.1p in Figure 2.18 converged. With delegations, V4.1p was
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Figure 2.19: Mail Server throughput (varying network delay)

2.2× faster than V3 when using one thread. However, V4.1p began to slow down with 4 threads,
whereas V3 sped up and did not slow down until the thread number increased to 64. The eventual
slowdown of both V3 and V4.1p was because the system became overloaded when the log-writing
bottleneck was hit. However, V4.1p hit the bottleneck with fewer threads than V3 did because
V4.1p, with delegations, only performed repeated WRITEs, whereas V3 performed ten GETATTRs
(for cache revalidation) before each WRITE. With more than 32 threads, V4.1p’s performance was
also hurt by waiting for session slots (see Chapter 2.4.2).

This Web Server macro-workload demonstrated how the power of V4.1p’s delegations can be
limited by the absence of write delegations in the current version of Linux. Any real-world appli-
cation that is not purely read-only might quickly bottleneck on writes even though read delegations
can eliminate most NFS read and revalidation operations. However, write delegations will not help
if all clients are writing to a single file, such as a common log.

2.6.3 The Mail Server Workload
Filebench’s Mail Server workload mimics mbox-style e-mail activities, including compose, re-
ceive, read, and delete. Each Mail Server instance has 16 threads that repeat the following sets of
operations on 1000 files in a flat directory: (1) create, write, fsync, and close a file (compose);
(2) open, read, append, fsync, and close a file (receive); (3) open, read, and close a file (read);
(4) delete a file (delete). The initial average file size was 16KB, but that could increase if ap-
pends were performed. We created a dedicated NFS directory for each NFS client, and launched
one Mail Server instance per client. We tested different numbers of NFS clients, in addition to
different network delays.

Figure 2.19 (note the log Y scale) presents the Mail Server throughput with different network
delays. Without delay, V4.1p and V3 had the same throughput; with 1–40ms delay, V4.1p was
1.3–1.4× faster. Three factors affected V4.1p’s performance: (1) V4.1p made more NFS requests
for the same amount of work (see Chapter 2.6.1); and (2) V4.1p’s operations were more complex
and had longer RPC round-trip times (see Chapter 2.4.3); but (3) V4.1p made many asynchronous
RPC calls and helped the networking algorithms coalesce RPC messages (see Chapter 2.4.1). Al-
though the first two factors hurt V4.1p’s performance, the third more than compensated for them.
Increasing the network delay did not change factor (1), but diminished the effect of (2) as the delay
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Figure 2.20: Mail Server throughput (varying client count)

gradually came to dominate the RPC RTT. Longer network delays also magnified the benefits of
factor (3) because longer round trips were mitigated by coalescing requests. Thus, V4.1p increas-
ingly outperformed V3 (1.3–1.4×) as the delay grew. V4.1p’s read delegations did not help in this
workload because most of its activities write files (reads are largely cached). This again shows the
potential benefit of write delegations, even though Linux does not currently support them.

Figure 2.20 shows the aggregate throughput of the Mail Server workload with different num-
bers of NFS clients in the zero- and 10ms-delay networks. With zero delay, the aggregate through-
put increased linearly from 1 to 3 clients, but then slowed because the NFS server became heavily
loaded. An injected network delay of 10ms significantly reduced the NFS request rate: the server’s
load was much lighter, and although the aggregate throughput was lower, it increased linearly with
the number of clients.

2.7 Related Work of NFS Performance Benchmarking
NFS versions 2 and 3 are popular and have been widely deployed and studied. Stern et al. per-
formed NFS benchmarking for multiple clients using nhfsstone [177]. Wittle and Keith designed
the LADDIS NFS workload that overcomes nhfsstone’s drawback, and measured NFS response
time and throughput under various loads [197]. Based on LADDIS, the SPECsfs suites were de-
signed to benchmark and compare the performance of different NFS server implementations [174].
Martin and Culler [118] studied NFS’s behavior on high performance networks. They found that
NFS servers were most sensitive to processor overhead, but insensitive to network bandwidth
due to the dominant effect of small metadata operations. Ellard and Seltzer designed a simple
sequential-read workload to benchmark and improve NFS’s readahead algorithm [59]; they also
studied several complex NFS benchmarking issues including the ZCAV effect, disks’ I/O reorder-
ing, the unfairness of disk scheduling algorithms, and differences between NFS over TCP vs. UDP.
Boumenot conducted a detailed study of NFS performance problems [33] in Linux, and found that
the low throughput of Linux NFS was caused not by processor, disk, or network performance lim-
its, but by the NFS implementation’s sensitivity to network latency and lack of concurrency. Lever
et al. introduced a new sequential-write benchmark and used it to measure and improve the write
performance of Linux’s NFS client [103].

Most prior studies [33,59,103,118,174,197] were about V2 and V3. NFS version 4, the latest
NFS major version, is dramatically different from previous versions, and is far less studied in the
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literature. Prior work on V4 focuses almost exclusively on V4.0, which is quite different than V4.1
due to the introduction of sessions, Exactly Once Semantics (EOS), and pNFS. Harrington et al.
summarized major NFS contributors’ efforts in testing the correctness and performance of Linux’s
V4.0 [79] implementation. Radkov et al. compared the performance of a prototype version of V4.0
and iSCSI in IP-networked storage [152]. Martin [117] compared the file operation performance
between Linux V3 and V4.0; Kustarz [101] evaluated the performance of Solaris’s V4.0 imple-
mentation and compared it with V3. However, Martin and Kustarz studied only V4.0’s basic file
operations without exercising unique features such as statefulness and delegations. Hildebrand and
Honeyman explored the scalability of storage systems using pNFS, an important part of V4.1. Es-
hel et al. [60] used V4.1 and pNFS to build Panache, a clustered file system disk cache that shields
applications from WAN latency and outages while using shared cloud storage.

Only a handful of authors have studied the delegation mechanisms provided by NFSv4. Bat-
sakis and Burns extended V4.0’s delegation model to improve the performance and recoverability
of NFS in computing clusters [21]. Gulati et al. built a V4.0 cache proxy, also using delegations, to
improve NFS’s performance in WANs [76]. However, both of these studies were concerned more
with enhancing NFS’s delegations to design new systems rather than evaluating the impact of stan-
dard delegations on performance. Moreover, they used V4.0 instead of V4.1. Although Panache is
based on V4.1, it revalidated its cache using the traditional method of checking timestamps of file
objects instead of using delegations.

As the latest minor version of V4, V4.1’s Linux implementation is still evolving [63]. To
the best of our knowledge there are no existing, comprehensive performance studies of Linux’s
NFSv4.1 implementation that cover its advanced features such as statefulness, sessions, and dele-
gations.

NFS’s delegations are partly inspired by Andrew File System (AFS). AFS stores and moves
files at the unit of whole files [83], and it breaks large files into smaller parts when necessary. AFS
clients cache files locally and push dirty data back to the server only when files are closed. AFS
clients re-validate cached data when clients use the data for the first time after restart; AFS servers
will invalidate clients’ cache with update notification when files are changed.

2.8 Benchmarking Conclusions
We have presented a comprehensive benchmarking study of Linux’s NFSv4.1 implementation by
comparison to NFSv3. Our study found that: (1) V4.1’s read delegations can effectively avoid
cache revalidation and help it perform up to 172× faster than V3. (2) Read delegations alone, how-
ever, are not enough to significantly improve the overall performance of realistic macro-workloads
because V4.1 might still be bottlenecked by write operations. Therefore, we believe that write
delegations are needed to maximize the benefits of delegations. (3) Moreover, delegations should
be avoided in workloads that share data, since conflicts can incur a delay of at least 100ms. (4) We
found that V4.1’s stateful nature makes it more talkative than V3, which hurts V4.1’s performance
and makes it slower in low-latency networks (e.g., LANs). Also, V4.1’s compound procedures,
which were designed to help the problem, are not in practice effective. (5) However, in high-latency
networks (e.g., WANs), V4.1’s performed comparably to and even better than V3’s since V4.1’s
statefulness permits higher concurrency through asynchronous RPC calls. For highly threaded
workloads, however, V4.1 can be bottlenecked by the number of session slots. (6) We also showed
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that NFS’s interactions with the networking and storage subsystems are complex, and system pa-
rameters should be tuned carefully to achieve high NFS throughput. (7) We identified a Hash-Cast
networking problem that causes unfairness among NFS clients, and presented a solution. (8) Lastly,
we made improvements to Linux’s V4.1 implementation that boost its performance by up to 11×.

With this comprehensive benchmarking study, we conclude that NFSv4.1’s performance is
comparable to NFSv3. Therefore, we plan to support NFSv4.1 in Kurma. We also believe that
NFSv4.1’s compound procedures, which are currently woefully underutilized, hold much promise
for significant performance improvement. We plan to implement more advanced compounds, such
as transactional NFS compounds that can coalesce many operations and execute them atomically
on the server. With transactional compounds, programmers, instead of waiting and then checking
the status of each operation, can perform many operations at once and use exception handlers to
deal with failures. Such a design could greatly simplify programming and improve performance at
the same time.

2.8.1 Limitations
This benchmarking study has two limitations: (1) Most of our workloads did not share files
among clients. Because sharing is infrequent in the real world [168], it is critical that any sharing
be representative. One solution would be to replay multi-client NFS traces from real workloads,
but this task is challenging in a distributed environment. (2) Our WAN emulation using netem
was simple, and did not consider harsh packet loss, intricate delays, or complete outages in real
networks.
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Chapter 3

vNFS: Maximizing NFS Performance with
Compounds and Vectorized I/O

Modern systems use networks extensively, accessing both services and storage across local and
remote networks. Latency is a key performance challenge, and packing multiple small operations
into fewer large ones is an effective way to amortize that cost, especially after years of significant
improvement in bandwidth but not latency. To this end, the NFSv4 protocol supports a compound-
ing feature to combine multiple operations. However, as shown by our benchmarking study in
Chapter 2, compounding has been underused because the synchronous POSIX file-system API
issues only one (small) request at a time.

In this chapter, we propose vNFS, an NFSv4.1-compliant client that exposes a vectorized high-
level API and leverages NFS compound procedures to maximize performance. We designed and
implemented vNFS as a user-space RPC library that supports an assortment of bulk operations on
multiple files and directories.

3.1 vNFS Introduction and Background
Modern computer hardware supports high parallelism: a smartphone can have eight cores and a
NIC can have 256 queues. Although parallelism can improve throughput, many standard software
protocols and interfaces are unable to leverage it and are becoming bottlenecks due to serialization
of calls [41, 78]. Two notable examples are HTTP/1.x and the POSIX file-system API, both of
which support only one synchronous request at a time (per TCP connection or per call). As Moore’s
Law fades [191] and the focus shifts to adding cores, it is increasingly important to make these
protocols and interfaces parallelism-friendly. For example, HTTP/2 [26] added support for sending
multiple requests per connection. However, to the best of our knowledge little progress has been
made on the file-system API.

In this chapter we similarly propose to batch multiple file-system operations per call. We
focus particularly on the Network File System (NFS), and study how much performance can be
improved by using a file-system API friendly to NFSv4 [166, 168]; this latest version of NFS
supports compound procedures that pack multiple operations into a single RPC so that only one
round trip is needed to process them. Unfortunately, although NFS compounds have been designed,
standardized, and implemented in most NFS clients and servers, they are severely underutilized—
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PUTROOTFH; LOOKUP "home"; GETFH; GETATTR.

NFS Client NFS Server

1

FH (fh1) and attributes of "/home"

PUTFH fh1; LOOKUP "Bob"; GETFH; GETATTR.2

FH (fh2) and attributes of "/home/Bob"

PUTFH fh2; OPEN ".bashrc"; GETFH; GETATTR.3

FH (fh3) and attributes of "~/.bashrc"

PUTFH fh3; READ 0 4096.4

Data of "~/.bashrc"

PUTFH fh3; CLOSE; GETATTR.5

Attributes of "~/.bashrc"

Figure 3.1: NFS compounds used by the in-kernel NFS client to read a small file. Each numbered
request is one compound, with its operations separated by semicolons. The operations use an
NFSv4 server-side state, the current filehandle (CFH). PUTROOTFH sets the CFH to the FH of the
root directory; PUTFH and GETFH set or retrieve the CFH; LOOKUP and OPEN assume that the
CFH is a directory, find or open the specified name inside, and set it as the CFH; GETATTR, READ,
and CLOSE all operate on the file indicated by the CFH.

mainly because of the limitations of the low-level POSIX file-system interface [41].
To explain the operations and premise of NFS4’s compound procedures, we discuss them using

several instructive figures. We start with Figure 3.1, which shows how reading a small file is limited
by the POSIX API. This simple task involves four syscalls (stat, open, read, and close)
that generate five compounds, each incurring a round trip to the server. Because compounds are
initiated by low-level POSIX calls, each compound contains only one significant operation (in bold
blue), with the rest being trivial operations such as PUTFH and GETFH. Compounds reduced the
number of round trips a bit by combining the syscall operations (LOOKUP, OPEN, READ) with
NFSv4 state-management operations (PUTFH, GETFH) and attribute retrieval (GETATTR), but the
syscall operations themselves could not be combined due to the serialized nature of the POSIX
file-system API.

Ideally, a small file should be read using only one NFS compound (and one round trip), as
shown in Figure 3.2. This would reduce the read latency by 80% by removing four of the five
round trips. We can even read multiple files using a single compound, as shown in Figure 3.3. All
these examples use the standard (unmodified) NFSv4 protocol. SAVEFH and RESTOREFH operate
on the saved filehandle (SFH), an NFSv4 state similar to the current filehandle (CFH). SAVEFH

copies the CFH to the SFH; RESTOREFH restores the CFH from the SFH.
For compounds to reach their full potential, we need a file-system API that can convey high-

level semantics and batch multiple operations. We designed and developed vNFS, an NFSv4 client
that exposes a high-level vectorized API. vNFS complies with the NFSv4.1 standard, requiring no
changes to NFS servers. Its API is easy to use and flexible enough to serve as a building block for
new higher-level functions. vNFS is implemented entirely in user space, and thus easy to extend.

vNFS is especially efficient and convenient for applications that manipulate large amounts of
metadata or do small I/Os. For example, vNFS lets tar read many small files using a single RPC
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PUTROOTFH; LOOKUP "home"; GETFH; GETATTR;

LOOKUP "Bob"; GETFH; GETATTR;

OPEN ".bashrc"; READ 0 4096; CLOSE; 

GETFH; GETATTR.

NFS Client NFS Server

1

FH and attributes of "/home", "/home/Bob",

and "/home/Bob/.bashrc", as well as data

of "/home/Bob/.bashrc".

Figure 3.2: Reading /home/Bob/.bashrc using only one compound. This single compound
is functionally the same as the five in Figure 3.1, but uses only one network round trip.

PUTROOTFH; LOOKUP "home"; GETFH; GETATTR;

LOOKUP "Bob"; GETFH; GETATTR; SAVEFH;

OPEN ".bashrc"; READ 0 4096; CLOSE; 

GETFH; GETATTR; RESTOREFH;

OPEN ".bash_profile"; READ 0 4096; CLOSE; 

GETFH; GETATTR; RESTOREFH;

OPEN ".bash_login"; READ 0 4096; CLOSE; 

GETFH; GETATTR.

NFS Client NFS Server

1

a

b

c

d

Figure 3.3: One NFS compound that reads three files. The operations can be divided into four
groups: (a) sets the current and saved filehandle to /home/Bob; (b), (c), and (d) read the files
.bashrc, .bash profile, and .bash login, respectively. SAVEFH and RESTOREFH (in
red) ensure that the CFH is /home/Bob when opening files. The reply is omitted.

instead of using multiple RPCs for each; it also lets untar set the attributes of many extracted
files at once instead of making separate system calls for each attribute type (owner, time, etc.).

We implemented vNFS using the standard NFSv4.1 protocol, and added two small protocol
extensions to support file appending and copying. We ported GNU’s Coreutils package (ls, cp,
and rm), tar/untar, nghttp2 (an HTTP/2 server), and Filebench [64, 181] to vNFS. In gen-
eral, we found it easy to modify applications to use vNFS. We ran a range of micro- and macro-
benchmarks on networks with varying latencies, showing that vNFS can speed such applications
by 3–133× with small network latencies (≤5.2ms), and by up to 263× with a 30.2ms latency. This
vNFS study has been published in the 15th USENIX Conference on File and Storage Technologies
(FAST 2017) [42].

The rest of this chapter is organized as follows. Chapter 3.2 summarizes vNFS’s design. Chap-
ter 3.3 details the vectorized high-level API. Chapter 3.4 describes the implementation of our
prototype. Chapter 3.5 evaluates the performance and usability of vNFS by benchmarking appli-
cations we ported. Chapter 3.6 discusses related work and Chapter 3.7 concludes.

3.2 vNFS Design Overview
In this section we summarize vNFS’s design, including our design goals, choices we made, and
the vNFS architecture.

33



3.2.1 Design Goals
Our design has four goals, in order of importance:

• High performance: vNFS should considerably outperform existing NFS clients and im-
prove both latency and throughput, especially for workloads that emphasize metadata and
small I/Os. Performance for other workloads should be comparable.

• Standards compliance: vNFS should be fully compliant with the NFSv4.1 protocol so that
it can be used with any compliant NFS server.

• Easy adoption: vNFS should provide a general API that is easy for programmers to use. It
should be familiar to developers of POSIX-compliant code to enable smooth and incremental
adoption.

• Extensibility: vNFS should make it easy to add functions to support new features and per-
formance improvements. For example, it should be simple to add support for Server Side
Copy (a feature in the current NFSv4.2 draft [81]) or create new application-specific high-
level APIs.

3.2.2 Design Choices
The core idea of vNFS is to improve performance by using the compounding feature of standard
NFS. We discuss the choices we faced and justify those we selected to meet the goals listed in
Chapter 3.2.1.

3.2.2.1 Overt vs. covert coalescing

To leverage NFS compounds, vNFS uses a high-level API to overtly express the intention of com-
pound operations. An alternative would be to covertly coalesce operations under the hood while
still using the POSIX API. Covert coalescing is a common technique in storage and networking;
for example, disk I/O schedulers combine many small requests into a few larger ones to minimize
seeks [18]; and Nagle’s TCP algorithm coalesces small outbound packets to amortize overhead for
better network utilization [134].

Although overt compounding changes the API, we feel it is superior to covert coalescing in
four important respects: (1) By using a high-level API, overt compounding can batch dependent
operations, which are impossible to coalesce covertly. For example, using the POSIX API, we
cannot issue a read until we receive the reply from the preceding open. (2) Overt compounding
can use a new API to express high-level semantics that cannot be efficiently conveyed in low-level
primitives. NFSv4.2’s Server Side Copy is one such example [81]. (3) Overt compounding im-
proves both throughput and latency, whereas covert coalescing improves throughput at the cost of
latency, since accumulating calls to batch together inherently requires waiting. Covert coalescing
is thus detrimental to metadata operations and small I/Os that are limited by latency. This is im-
portant in modern systems with faster SSDs and 40GbE NICs, where latency has been improving
much slower than raw network and storage bandwidth [160]. (4) Overt compounding allows im-
plementations to use all possible information to maximize performance; covert coalescing depends
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Figure 3.4: vNFS Architecture. The blue arrows show vNFS’s data path, and the dashed red arrows
show the in-kernel NFS client’s data path. The vNFS library and client (blue shaded boxes) are
new components we added; the rest existed before.

on heuristics, such as timing and I/O sizes, that can be sub-optimal or wrong. For example, Nagle’s
algorithm can interact badly with Delayed ACK [45].

3.2.2.2 Vectorized vs. start/end-based API

Two types of APIs can express overt compounding: a vectorized one that compounds many
desired low-level NFS operations into a single high-level call, or an API that uses calls like
start compound and end compound to combine all low-level calls in between [150]. We
chose the vectorized API for two reasons: (1) A vectorized API is easier to implement than a
start/end-based one. Users of a start/end-based API might mix I/Os with other code (such as loop-
ing and testing of file-system states), which NFS compounds cannot support. (2) A vectorized
API logically resides at a high level and is more convenient to use, whereas using a low-level
start/end-based API is more tedious for high-level tasks (e.g., C++ programming vs. assembly).

3.2.2.3 User-space vs. in-kernel implementation

A kernel-space implementation of vNFS would allow it to take advantage of the kernel’s page
and metadata caches and use the existing NFS code base. However, we chose to design and im-
plement vNFS in user space for two reasons: (1) Adding a user-space API is much easier than
adding system calls to the kernel, and simplifies future extensions. (2) User-space development
and debugging is faster and easier. Although an in-kernel implementation might be faster, prior
work indicates that the performance impact can be minimal [179], and the results in this chapter
demonstrate substantial performance improvements even with our user-space approach.

3.2.3 Architecture
Figure 3.4 shows the architecture of vNFS, which consists of a library and a client. Instead of using
the POSIX API, applications call the high-level vectorized API provided by the vNFS library,
which talks directly to the vNFS client. To provide generic support and encourage incremental
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Function Description
vopen/vclose Open/close many files.
vread/vwrite Read/write/create/append files with automatic file opening

and closing.
vgetattrs/vsetattrs Get/set multiple attributes of objects.
vsscopy/vcopy Copy files in whole or in part with/out Server Side Copy.
vmkdir Create directories.
vlistdir List (recursively) objects and their attributes in directories.
vsymlink Create many symbolic links.
vreadlink Read many symbolic links.
vhardlink Create many hard links.
vremove Remove many objects.
vrename Rename many objects.

Table 3.1: vNFS vectorized API functions. Each function has two return values: an error code
and a count of successful operations; errors halt processing at the server. To facilitate gradual
adoption, vNFS also provides POSIX-like scalar API functions, omitted here for brevity. Each
vNFS function has a version that does not follow symbolic links, also omitted.

adoption, the library detects when compound operations are unsupported, and instead converts
vNFS operations into standard POSIX primitives.

A vNFS client accepts vectorized operations from the library, puts as many of them into each
compound as possible, sends them to the NFS server using TI-RPC, and finally processes the reply.
Note that existing NFSv4 servers already support compounds and can be used with vNFS without
change. TI-RPC is a generic RPC library without the limitations (e.g., allowing only a single data
buffer per call) of Linux’s in-kernel SUNRPC; TI-RPC can also run on top of TCP, UDP, and
RDMA. Like the in-kernel NFS client, the vNFS client also manages NFSv4’s client-side states
such as sessions, etc.

3.3 vNFS API
This section details vNFS’s vectorized API (listed in Table 3.1). Each API function expands on its
POSIX counterparts to operate on a vector of file-system objects (e.g., files, directories, symbolic
links). Figure 3.5 demonstrates the use of the vectorized API to read three small files in one NFS
compound. To simplify programming, vNFS also provides utility functions for common tasks such
as recursively removing a whole directory, etc.

3.3.1 vread/vwrite
These functions can read or write multiple files using a single compound, with automatic on-
demand file opening and closing. These calls boost throughput, reduce latency, and simplify pro-
gramming. Both accept a vector of I/O structures, each containing a vfile structure (Figure 3.5),
offset, length, buffer, and flags. Our vectorized operations are more flexible than the readv and
writev system calls, and can operate at many (discontinuous) offsets of multiple files in one
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1 struct vfile {
2 enum VFILETYPE type; // PATH or DESCRIPTOR
3 union {
4 const char *path; // When "type" is PATH,
5 int fd; // or (vNFS file) DESCRIPTOR.
6 };
7 };
8 // The "vio" I/O structure contains a vfile.
9 struct vio ios[3] = {

10 { .vfile = { .type = PATH,
11 .path = "/home/Bob/.bashrc" },
12 .offset = 0,
13 .length = 64 * 1024,
14 .data = buf1, // pre-allocated 64KB buffer
15 .flags = 0, // contains an output EOF bit
16 }, ... // two other I/O structures omitted
17 };
18 struct vres r = vread(ios, 3); // read 3 files

Figure 3.5: A simplified C code sample of reading three files at once using the vectorized API.

call. When generating compound requests, vNFS adds OPENs and CLOSEs for files represented
by paths; files represented by descriptors do not need that as they are already open. OPENs and
CLOSEs are coalesced when possible, e.g., when reading twice from one file.

The length field in the I/O structure also serves as an output, returning the number of bytes
read or written. The structure has several flags that map to NFS’s internal Boolean arguments
and replies. For example, the flag is creation corresponds to the NFS OPEN4 CREATE flag,
telling vwrite to create the target file if necessary. is write stable corresponds to NFS’s
WRITE DATA SYNC4 flag, causing the server to save the data to stable storage, avoiding a separate
NFS COMMIT. Thus, a single vwrite can achieve the effect of multiple writes and a following
fsync, which is a common I/O pattern (e.g., in logging or journaling).

� State management NFSv4 is stateful, and OPEN is a state-mutating operation. The NFSv4
protocol requires a client to open a file before reading or writing it. Moreover, READ and WRITE

must provide the stateid (an ID uniquely identifying a server’s state [168]) returned by the preced-
ing OPEN. Thus, state management is a key challenge when vread or vwrite adds OPEN and
READ/WRITE calls into a single compound. vNFS solves this by using the NFS current stateid,
which is a server-side state similar to the current filehandle. To ensure that the NFS server always
uses the correct state, vread and vwrite take advantage of NFSv4’s special support for using
the current stateid [168, Section 8.2.3].

� Appending vwrite also adds an optional small extension to the NFSv4.1 protocol to better
support appends. As noted in the Linux manual page for open(2) [109], “O APPEND may lead
to corrupted files on NFS file systems if more than one process appends data to a file at once.” The
base NFSv4 protocol does not support appending, so the kernel NFS client appends by writing
to an offset equal to the current known file size. This behavior is inefficient (the file size must
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first be read) and is vulnerable to TOCTTOU races. Our extension uses a special offset value
(UINT64 MAX) in the I/O structure to indicate appending, making appending reliable with a tiny
(5 LoC) change to the NFS server.

3.3.2 vopen/vclose
Using vread and vwrite, applications can access files without explicit opens and closes. Our
API still supports vopen and vclose operations, which add efficiency for large files that are
read or written many times. vopen and vclose are also important for maintaining NFS’s close-
to-open cache consistency [104]. vopen opens multiple files (specified by paths) in one RPC,
including LOOKUPs needed to locate their parent directories, as shown in Figure 3.3. Each file
has its own open flags (read, write, create, etc.), which is useful when reading and writing are
intermixed, such as external merge sorting. We also offer vopen simple, which uses a common
set of flags and mode (in case of creation) for all files. Once opened, a file is represented by a
file descriptor, which is an integer index into an internal table that keeps states (file cursor, NFSv4
stateid and sequenceid [168], etc.) of open files. vclose closes multiple opened files and releases
their resources.

3.3.3 vgetattrs/vsetattrs
These two functions manipulate several attributes of many files at once, combining multiple sys-
tem calls (chmod, chown, utimes, and truncate, etc.) into a single compound, which is
especially useful for tools like tar and rsync. The aging POSIX API is the only restriction on
setting many attributes at once: the Linux kernel VFS already supports multi-attribute operations
using the setattr method of inode operations, and the NFSv4 protocol has similar SE-
TATTRs support. vgetattrs and vsetattrs use an array of attribute structures as both inputs
and outputs. Each structure contains a vfile structure, all attributes (mode, size, etc.), and a
bitmap showing which attributes are in use.

3.3.4 vsscopy/vcopy
File copying is so common that Linux has added the sendfile and splice system calls to
support it. Unfortunately, NFS does not yet support copying and clients must use READs and
WRITEs instead, wasting time and bandwidth because data has to be read over the network and
immediately written back. It is more efficient to ask the NFS server to copy the files directly on
its side. This Server Side Copy (SSC) has already been proposed for the upcoming NFSv4.2 [81].
Being forward-looking, we included vsscopy in vNFS to copy many files (in whole or in part)
using SSC; however, SSC requires server enhancements.

vsscopy accepts an array of copy structures, each containing the source file and offset, the
destination file and offset, and the length. The destination files are created by vsscopy if neces-
sary. The length can be UINT64 MAX, in which case the effective length is the distance between
the source offset and the end of the source file. vsscopy can use a single RPC to copy many files
in their entirety. The copy structures return the number of bytes successfully copied in the length
fields.
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vcopy has the same effect but does not use SSC. vcopy is useful when the NFS server
does not support SSC; vcopy can copy N small files using three RPCs (a compound for each of
vgetattrs, vread, and vwrite) instead of 7×N RPCs (2 OPENs, 2 CLOSEs, 1 GETATTR, 1
READ, and 1 WRITE for each file). A future API could provide only vcopy and silently switch to
vsscopy when SSC is available; we include vsscopy separately in this thesis for comparison
with vcopy.

3.3.5 vmkdir

vNFS provides vmkdir to create multiple directories at once (such as directory trees), which is
common in tools such as untar, cmake, and recursive cp. vNFS contains a utility function
ensure directory that uses vmkdir to ensure a deep directory and all its ancestors exist.
Consider "/a/b/c/d" for example: the utility function first uses vgetattrs with arguments
["/a"; "/a/b"; . . .] to find out which ancestors exist and then creates the missing directo-
ries using vmkdir. Note that simply calling vmkdirwith vector arguments ["/a"; "/a/b";
. . .] does not work: the NFS server will fail (with EEXIST) when trying to recreate the first ex-
isting ancestor and stop processing all remaining operations.

3.3.6 vlistdir

This function speeds up directory listing with four improvements to readdir: (1) vlistdir
lists multiple directories at once; (2) a prior opendir is not necessary for listing; (3) vlistdir
retrieves attributes along with directory entries, saving subsequent stats; (4) vlistdir can
work recursively. It can be viewed as a fast vectorized ftw(3) that reads NFS directory contents
using as few RPCs as possible.

vlistdir takes five arguments: an array of directories to list, a bitmap indicating desired at-
tributes, a flag to select recursive listing, a user-defined callback function (similar to ftw’s second
argument [116]), and a user-provided opaque pointer that is passed to the callback. vlistdir
processes directories in the order given; recursion is breadth-first. However, directories at the same
level in the tree are listed in an arbitrary order.

3.3.7 vsymlink/vreadlink/vhardlink
Three vNFS operations, vsymlink, vreadlink, and vhardlink, allow many links to be
created or read at once. Together with vlistdir, vsymlink can optimize operations like
"cp -sr" and "lndir". All three functions accept a vector of paths and a vector of buffers
containing the target paths.

3.3.8 vremove

vremove removes multiple files and directories at once. Although vremove does not support
recursive removal, a program can achieve this effect with a recursive vlistdir followed by
properly ordered vremoves; vNFS provides a utility function rm recursive for this purpose.
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3.3.9 vrename

Renaming many files and directories is common, for example when organizing media collections.
Many tools [29, 66, 90, 149] have been developed just for this purpose. vNFS provides vrename
to facilitate and speed up bulk renaming. vrename renames a vector of source paths to a vector
of destination paths.

3.4 vNFS Implementation
We have implemented a prototype of vNFS in C/C++ on Linux. As shown in Figure 3.4, vNFS
has a library and a client, both running in user space. The vNFS library implements the vNFS
API. Applications use the library by including the API header file and linking to it. For NFS files,
the library redirects API function calls to the vNFS client, which builds large compound requests
and sends them to the server via the TI-RPC library. For non-NFS files, the library translates
the API functions into POSIX calls. (Our current prototype considers a file to be on NFS if it
is under any exported directory specified in vNFS’s configuration file.) The vNFS client builds
on NFS-Ganesha [50, 138], an open-source user-space NFS server. NFS-Ganesha can export files
stored in many backends, such as XFS and GPFS. Our vNFS client uses an NFS-Ganesha backend
called PROXY, which exports files from another NFS server and can be easily repurposed as a
user-space NFS client. The original PROXY backend uses NFSv4.0; we added NFSv4.1 support
by implementing session management [168]. Our implementation of the vNFS client and library
added 10,632 lines of C/C++ code and deleted 1,407. vNFS is thread-safe; we regression-tested it
thoroughly. Our current prototype does not have a data or metadata cache. We have open-sourced
all our code at https://github.com/sbu-fsl/txn-compound.

3.4.1 RPC size limit
The vNFS API functions (shown in Table 3.1) do not impose a limit on the number of operations
per call. However, each RPC has a configurable memory size limit, defaulting to 1MB. We ensure
that vNFS does not generate RPC requests larger than that limit no matter how many operations an
API call contains. Therefore, we split long arguments into chunks and send one compound request
for each chunk. We also merge RPC replies upon return, to hide any splitting.

Our splitting avoids generating small compounds. For data operations (vread and vwrite),
we can easily estimate the sizes of requests and replies based on buffer lengths, so we split a
compound only when its size becomes close to 1MB. (The in-kernel NFS client similarly splits
large READs and WRITEs according to the rsize and wsize mount options, which also default
to 1MB.) For metadata operations, it is more difficult to estimate the reply sizes, especially for
READDIR and GETATTR. We chose to be conservative and simply split a compound of metadata
operations whenever it contains more than k NFS operations. We chose a default of 256 for k,
which enables efficient concurrent processing by the NFS server, and yet is unlikely to exceed the
size limit. For example, when listing the Linux source tree, the average reply size of READDIR—
the largest metadata operation—is around 3,800 bytes. If k is still too large (e.g., when listing large
directories), the server will return partial results and use cookies to indicate where to resume the
call for follow-up requests.
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3.4.2 Protocol extensions
vNFS contains two extensions to the NFSv4.1 protocol to support file appending (see Chap-
ter 3.3.1) and Server Side Copy (see Chapter 3.3.4). Both extensions require changes to the pro-
tocol and the NFS server. We have implemented these changes in our server, which is based on
NFS-Ganesha [50, 51, 138]. The file-appending extension was easy to implement, adding only an
if statement with 5 lines of C code. In the NFS server, we only need to use the file size as the
effective offset whenever the write offset is UINT64 MAX.

Our implementation of Server Side Copy follows the design proposed in the NFSv4.2 draft [81].
We added the new COPY operation to our vNFS client and the NFS-Ganesha server. On the server
side, we copy data using splice(2), which avoids unnecessarily moving data across the ker-
nel/user boundary. This extension added 944 lines of C code to the NFS-Ganesha server.

3.4.3 Path compression
We created an optimization that reduces the number of LOOKUPs when a compound’s file paths
have locality. The idea is to shorten paths that have redundancy by making them relative to preced-
ing ones in the same compound. For example, when listing the directories "/1/2/3/4/5/6/7/a"
and "/1/2/3/4/5/6/7/b", a naı̈ve implementation would generate eight LOOKUPs per direc-
tory (one per component). In such cases, we replace the path of the second directory with "../b"
and use only one LOOKUPP and one LOOKUP; LOOKUPP sets the current filehandle to its parent
directory. This simple technique saves as many as six NFS operations for this example.

Note that LOOKUPP produces an error if the current filehandle is not a directory, because
most file systems have metadata recording parents of directories, but not parents of files. In
that case, we use SAVEFH to remember the lowest common ancestor in the file-system tree (i.e.,
"/1/2/3/4/5/6/7" in the above example) of two adjacent files, and then generate a RE-
STOREFH and LOOKUPs. However, this approach cannot be used for LINK, RENAME, and COPY,
which already use the saved filehandle for other purposes. Also, we use this optimization only
when it saves NFS operations: for example, using "../../c/d" does not save anything for
paths "/1/a/b" and "/1/c/d".

3.4.4 Client-side caching
Our vNFS prototype does not yet have a client-side cache, which would be useful for re-reading
recent data and metadata, streaming reads, and asynchronous writes. We plan to add it in the future.
Compared to traditional NFS clients, vNFS does not complicate failure handling in the presence of
a dirty client-side cache: cached dirty pages (not backed by persistent storage) are simply dropped
upon a client crash; dirty data in a persistent cache (e.g., FS-Cache [84]), which may be used
by a client holding write delegations, can be written to the server even faster during client crash
recovery. Note that a client-side cache does not hold dirty metadata because all metadata changes
are performed synchronously in NFS (except with directory delegations, which Linux has not yet
implemented).
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3.5 vNFS Evaluation
To evaluate vNFS, we ran micro-benchmarks and also ported applications to use it. We now discuss
our porting experience and evaluate the resulting performance.

3.5.1 Experimental Testbed Setup
Our testbed consists of two identical Dell PowerEdge R710 machines running CentOS 7.0 with
a 3.14 Linux kernel. Each machine has a six-core Intel Xeon X5650 CPU, 64GB of RAM, and
an Intel 10GbE NIC. One machine acts as the NFS server and runs NFS-Ganesha with our file-
appending and Server Side Copy extensions; the other machine acts as a client and runs vNFS.
The NFS server exports an Ext4 file system stored on an Intel DC S3700 200GB SSD to the
client. The two machines are directly connected to a Dell PowerConnect 8024F 10GbE switch,
and we measured an average RTT of 0.2ms between them. To emulate different LAN and WAN
conditions, we injected delays of 1–30ms into the outbound link of the server using netem: 30ms
is the average latency we measured from our machines to the Amazon data center closest to us.

To evaluate vNFS’s performance, we compared it with the in-kernel NFSv4.1 client (called
baseline), which mounts the exported directory using the default options: the attribute cache (ac
option) is enabled and the maximum read/write size (rsize/wsize options) is 1MB. The vNFS
client does not use mount, but instead reads the exported directory from a configuration file during
initialization. We ran each experiment at least three times and plotted the average value. We show
the standard deviation as error bars, which are invisible in most figures because of their tiny values.
We ran all experiments on network latencies ≤5.2ms. For longer latencies, we ran only a subset
of tests because the baseline experiments were taking up to five hours for a single run. vNFS’s
benefits would only be magnified on higher-latency networks. Before each run, we flushed the
page and dentry caches of the in-kernel client by unmounting and re-mounting the NFS directory.
Currently, vNFS has no cache. The NFS-Ganesha server uses an internal cache, plus the OS’s page
and dentry caches.

3.5.2 Micro-workloads
3.5.2.1 Small vs. big files

The most important goal of vNFS is to improve performance for workloads with many small NFS
operations, while staying competitive for data-intensive workloads. To test whether vNFS has
achieved this goal, we compared the time used by vNFS and the baseline to read and write 1,000
equally-sized files in their entirety while varying the file size from 1KB to 16MB. We repeated the
experiment in networks with 0.2ms to 5.2ms latencies, and packed as many operations as possible
into each vNFS compound. The results are shown (in logarithmic scale) in Figure 3.6, where
speedup ratio (SR) is the ratio of the baseline’s completion time to vNFS’s completion time. SR
values greater than one mean that vNFS performed better than the baseline; values less than one
mean vNFS performed worse.

Because vNFS combined many small read and write operations into large compounds, it per-
formed much better than the baseline when the file size was small. With a 1KB file size and 0.2ms
network latency, vNFS is 19× faster than the baseline when reading (Figure 3.6(a)), and 5× faster
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(a) Reading whole files
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(b) Writing whole files

Figure 3.6: vNFS’s speedup ratio (the vertical Z-axis, in logarithmic scale) relative to the baseline
when reading and writing 1,000 equally-sized files, whose sizes (the X-axis) varied from 1KB to
16MB. vNFS is faster than (blue), equal to (white), or slower than (red) the baseline when the
speedup ratio is larger than, equal to, or smaller than 1.0, respectively. The network latency (Y-
axis) starts from 0.2ms (instead of zero) because that is the measured base network latency of our
testbed (see Chapter 4.5.1).
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when writing (Figure 3.6(b)). As the network latency increased to 5.2ms, vNFS’s speedup ratio
improved further to 103× for reading and 40× for writing. vNFS’s speedup ratio was higher for
reading than for writing because once vNFS was able to eliminate most network round trips, the
NFS server’s own storage became the next dominant bottleneck.

As the file size (the X-axis in Figure 3.6) was increased to 1MB and beyond, vNFS’s com-
pounding effect faded, and the performance of vNFS and the baseline became closer. However,
in networks with 1.2–5.2ms latency, vNFS was still 1.1–1.7× faster than the baseline: although
data operations were too large to be combined together, vNFS could still combine them with small
metadata operations such as OPEN, CLOSE, and GETATTR. Combining metadata and data opera-
tions requires vNFS to split I/Os below 1MB due to the 1MB RPC size limit (see Chapter 3.4).
When a large I/O is split into pieces, the last one may be a small I/O; this phenomenon made vNFS
around 10% slower when reading 4MB and 8MB files in the 0.2ms-latency network. However,
this is not a problem in most cases because that last small piece is likely to be combined into later
compounds. This is why vNFS performed the same as the baseline with even larger file sizes (e.g.,
16MB) in the 0.2ms-latency network. This negative effect of vNFS’s splitting was unnoticeable
for writing because writing was bottlenecked by the NFS server’s storage. Note that the baseline
(the in-kernel NFS client) splits I/Os strictly by 1MB size, although it also adds a few trivial NFS
operations such as PUTFH (see Figure 3.1) in its compounds, meaning that the baseline’s RPC size
is actually larger than 1MB.

3.5.2.2 Compounding degree

The degree of compounding (i.e., the number of non-trivial NFS operations per compound) is a
key factor determining how much vNFS can boost performance. The ideal scenario is when there
is a large number of file system operations to perform at once, which is not always the case because
applications may have critical paths that depend on only a single file. To study how the degree of
compounding affects vNFS’s performance, we compared vNFS with the baseline when calling the
vNFS API functions with different numbers of operations in their vector arguments.

Figure 3.7 shows the speedup ratio of vNFS relative to the baseline as the number of operations
per API call was increased from 1 to 256 in the 0.2ms-latency network. Even with a vector size
of 1, vNFS outperformed the baseline for all API functions except two, because vNFS could still
save round trips for single-file operations. For example, the baseline used three RPCs to rename a
file: one RENAME, a LOOKUP for the source directory, and a LOOKUP for the destination directory,
whereas vNFS used only one compound RPC that combined all three operations. Getattrs
and Setattr1 are the two exceptions where vNFS performed slightly worse (17% and 14%
respectively) than the baseline. This is because both Getattrs and Setattr1 need only a
single NFS operation; therefore vNFS could not combine anything but suffered the extra overhead
of performing RPCs in user space.

When there was more than one operation per API call, compounding became effective and
vNFS significantly outperformed the baseline for all API calls; note that the Y axis of Figure 3.7 is
in logarithmic scale. All calls except Write4KSync (bottlenecked by the server’s storage stack)
were more than 4× faster than the baseline when multiple operations were compounded. Note that
vsetattrs can set multiple attributes at once, whereas the baseline sets one attribute at a time.
We observe in Figure 3.7 that the speedup ratio of setting more attributes (e.g., Setattr4) at
once was always higher than that of setting fewer (e.g., Setattr3).
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Figure 3.7: vNFS’s speedup ratio relative to the baseline under different degrees of compounding.
The X-axis is log2. The network latency is 0.2ms. Write4KSync writes 4KB data to files opened
with O SYNC; Read4KDirect reads 4KB data from files opened with O DIRECT; SetattrN
sets N files’ attributes (mixes of mode, owner, timestamp, and size). The vector size of the base-
line is actually the number of individual POSIX calls issued iteratively. The speedup ratio of
Read4KDirect goes up to 46 at 256 operations per call; its curve is cut off here.

In our experiments with slower networks (omitted for brevity), vNFS’s speedups relative to the
baseline were even higher than in the 0.2ms-latency network: up to two orders of magnitude faster.

3.5.2.3 Caching

Our vNFS prototype does not yet support caching. In contrast, the baseline (in-kernel NFS client)
caches both metadata and data. To study the cache’s performance impact, we compared vNFS and
the baseline when repeatedly opening, reading, and closing a single file whose size varied from
1KB to 16MB. Figure 3.8 shows the results, where a speedup ratio larger than one means vNFS
outperformed the baseline; and a speedup ratio less than one means vNFS performed worse.

The baseline served all reads except the first from its cache, but it was slower than vNFS (which
did not cache) when the file size was 256KB or smaller. This is because three RPCs per read are
still required to maintain close-to-open semantics: an OPEN, a GETATTR (for cache revalidation),
and a CLOSE. In comparison, vNFS used only one compound RPC, combining the OPEN, READ

(uncached), and CLOSE. The savings from compounding more than compensated for vNFS’s lack
of a cache. For a 512KB file size, vNFS was still faster than the baseline except in the 0.2ms-
latency network; for 1MB and larger file sizes, vNFS was worse than the baseline because read
operations became dominant and the baseline served all reads from its client-side cache whereas
vNFS had to send all the reads to the server without the benefit of caching.
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Figure 3.8: The speedup ratio of vNFS over the baseline (in logarithmic scale) when repeatedly
opening, reading, and closing a single file, whose size is shown in the X-axis. vNFS is faster than
(blue), equal to (white), and slower than (red) the baseline when the speedup ratio is larger than,
equal to, and smaller than 1, respectively. Our vNFS prototype does not have a cache yet, whereas
the baseline does. The Z-axis is in logarithmic scale; the higher the better.

3.5.3 Macro-workloads
To evaluate vNFS using realistic applications, we modified cp, ls, and rm from GNU Coreutils,
Filebench [64, 181], and nghttp2 [140] to use the vNFS API; we also implemented an equivalent
of GNU tar using vNFS.

3.5.3.1 GNU Coreutils

To benchmark realistic applications, we ported several popular GNU Coreutils programs to vNFS:
cp, ls, and rm. We used the modified versions to copy, list, and remove the entire Linux-4.6.3
source tree: it contains 53,640 files with an average size of 11.6KB, 3,604 directories with average
17 children per directory, and 23 symbolic links. The large number of files and directories can
thoroughly exercise vNFS and demonstrate the performance impact of compounding.

Porting cp and rm to vNFS was easy. For cp, we added 170 lines of code and deleted 16;
for rm, we added 21 and deleted 1. Copying files can be trivially achieved using vsscopy,
vgetattrs, and vsetattrs. Recursively copying directories requires calling vlistdir on
the directories and then invoking vsscopy for plain files, vmkdir for directories, and vsymlink
for symbolic links—all of which is done in vlistdir’s callback function. We tested our mod-
ified cp with diff -qr to ensure that the copied files and directories were exactly the same
as the source. Removing files and directories recursively in rm was similar, except that we used
vremove instead of vsscopy.

Porting ls was more complex because batching is difficult when listing directories recursively
in a particular order. Unlike cp and rm, ls has to follow a certain order (e.g., by size or by last-
modified timestamp) when options such as --sort are specified. We could not use the recursive
mode of vlistdir because the underlying READDIR NFS operation does not follow any specific
order when reading directory entries, and the whole directory tree may be too large to fit in memory.
Instead, vNFS maintains a list of all directories to read in the proper order as specified by the ls
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Figure 3.9: Running time to copy (cp -r) the entire Linux source tree. The lower the better.
vNFS runs much faster than the baseline both with and without Server Side Copy (SSC); thus the
vNFS bars are tiny.

options, and repeatedly calls vlistdir (not recursively) on directories at the head of the list until
it is empty. Note that (1) a directory is removed from the list only after all its children have been
read; and (2) sub-directories should be sorted and then inserted immediately after their parent to
maintain the proper order in the list. This algorithm enables our ported ls to efficiently compound
READDIR operations while still keeping a small memory footprint. We added 392 lines of code
and deleted 203 to port ls to vNFS. We verified that our port is correct by comparing the outputs
of our ls with the vanilla version.

Figure 3.9 shows the results of copying the entire Linux source tree; vNFS outperformed the
baseline in all cases. vNFS uses either vsscopy or vcopy depending on whether Server Side
Copy (SSC) is enabled. However, the baseline cannot use SSC because it is not yet supported by the
in-kernel NFS client. For the same workload of copying the Linux source tree, vNFS used merely
4,447 compounding RPCs whereas the baseline used as many as 506,697: two OPENs, two CLOSEs,
one READ, one WRITE, and one SETATTR for each of the 53,640 files; 60,873 ACCESSs; 62,327
GETATTRs; and 8,017 other operations such as READDIR and CREATE. vNFS-NOSSC saved more
than 99% of RPCs compared to the baseline, with each vNFS compounding RPC containing an
average of 250 operations. This simultaneously reduced latency and improved network utilization.
Therefore, even for a fast network with only a 0.2ms latency, vNFS-NOSSC is still more than 4×
faster than the baseline. The speedup ratio increases to 30× with a 5.2ms network latency. When
Server Side Copy (SSC) was enabled, vNFS ran even faster, and vNFS-SSC reduced the running
time of vNFS-NOSSC by half. The further speedup of SSC is only moderate because the files are
small and our network bandwidth (10GbE) is not a bottleneck. The speedup ratio of vNFS-SSC to
the baseline is 8–60× in networks with 0.2ms to 5.2ms latency. Even when the Linux kernel adds
SSC support to its NFSv4 implementation, vNFS would still outperform it because this workload’s
bottleneck is the large number of small metadata operations, not data operations.

With the -Rs options, cp copies an entire directory tree by creating symbolic links to the
source directory. Figure 3.10 shows speedups for symlinking, for recursively listing (ls -Rl),
and for recursively removing (rm -Rf) the Linux source tree. In each of these three metadata-
heavy workloads, vNFS outperformed the baseline regardless the network latency: all speedup
ratios are larger than one.

When recursively listing the Linux tree, ls-baseline used 10,849 RPCs including 3,678 READ-
DIRs, 3,570 ACCESSes, and 3,570 GETATTRs. Note that the in-kernel NFS client did not issue a
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Figure 3.10: vNFS’s speedup relative to the baseline when symbolically copying (cp -Rs), listing
(ls -Rl), and removing (rm -Rf) the entire Linux source tree. The Y-axis uses a logarithmic
scale; the higher the better.

separate GETATTR for each directory entry although the vanilla ls program called stat for each
entry listed. This is because the in-kernel NFS client pre-fetches the attributes using readdirs
and serves the stat calls from the local client’s dentry metadata cache. This optimization enables
ls-baseline to finish the benchmark in just 5 seconds in the 0.2ms-latency network. However,
with our vectorized API, ls-vNFS did even better and finished the benchmark in 2 seconds, using
only 856 RPCs. Moreover, vNFS scales much better than the baseline. When the latency increased
from 0.2 to 30.2ms, vNFS’s running time rose to only 28 seconds whereas the baseline increased
to 336 seconds. ls-vNFS is 10× faster than ls-baseline in high-latency (>5.2ms) networks.

Compared to the directory-listing benchmark, the speedup of vNFS is even higher in the sym-
bolic copying and removing benchmarks shown in Figure 3.10. In the 0.2ms-latency network,
vNFS was 7× and 18× faster than the baseline for symbolic copying and removing, respectively.
This is because the baseline always operated on each file at a time, whereas vNFS could copy
or remove more than 200 files at once. Compared to the baseline, vNFS reduced the number of
RPCs by 99.1% in the copying benchmark, and as much as 99.7% in the removing benchmark.
This massive saving of RPCs improved cp by 52× and rm by 133× in the 5.2ms-latency network;
for 30.2ms the speedup ratios became 106× for cp, and 263× for rm. For both removing and
symbolic copying, vNFS ran faster in the 30.2ms-latency network (25 and 15 seconds, respec-
tively) than the baseline did with 0.2ms latency (38s and 55s, respectively), demonstrating that
compounds can indeed help NFSv4 realize its design goal of being WAN-friendly [121].

3.5.3.2 tar

Because the I/O code in GNU tar is closely coupled to other code, we implemented a vNFS
equivalent using libarchive, in which the I/O code is clearly separated. The libarchive
library supports many archiving and compression algorithms; it is also used by FreeBSD bsdtar.
Our implementation needed only 248 lines of C code for tar and 210 for untar.

When archiving a directory, we use the vlistdir API to traverse the tree and add sub-
directories into the archive. We gather the listed files and symlinks into arrays, then read their
contents using vread and vreadlink, and finally compress and write the contents into the
archive. During extraction, we read the archive in 1MB (RPC size limit) chunks and then use
libarchive to extract and decompress objects and their contents, which are then passed in
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Figure 3.11: Speedup ratios of vNFS relative to the baseline when archiving (tar) and extracting
(untar) the Linux-4.6.3 source tree, with and without xz compression.

batches to vmkdir, vwrite, or vsymlink. We always create parent directories before their
children. We ensured that our implementation is correct by feeding our tar’s output into our
untar and compared the extracted files with the original input files we fed to tar. We also tested
for cross-compatibility with other tar implementations including bsdtar and GNU tar.

We used our tar to archive and untar to extract a Linux 4.6.3 source tree. Archiving read
53,640 small files and wrote a large archive: 636MB uncompressed, and 86MB with the xz option
(default compression used by kernel.org). Extracting reversed the process. There are also
metadata operations on 23 symbolic links and 3,604 directories. Therefore, this test exercised a
wide range of vNFS functions.

Figure 3.11 shows the tar/untar results, compared to bsdtar (running on the in-kernel
client) as the baseline. For tar-nocompress in the 0.2ms-latency network, vNFS was more
than 5× faster than the baseline because the baseline used 446,965 RPCs whereas vNFS used only
2,144 due to compounding. This large reduction made vNFS 37× faster when the network latency
increased to 5.2ms. In terms of running time, vNFS used 69 seconds to archive the entire Linux
source tree in the 5.2ms-latency network, whereas the baseline, even in the faster 0.2ms-latency
network, still used as much as 192 seconds. For untar-nodecompress, vNFS is also 5–36×
faster, depending on the network latency.

Figure 3.11 also includes the results when xz compression was enabled. Although compression
reduced the size of the archive file by 86% (from 636MB to 86MB) and thus saved 86% of the
I/Os to the archive file, this had a negligible performance impact (less than 0.5%) because the most
time-consuming operations are for small I/Os, not large ones. This test shows that workloads with
mixed I/O sizes are slow if there are many small I/Os, each incurring a network round trip; vNFS
can significantly improve such workloads by compounding those small I/Os.

3.5.3.3 Filebench

We have ported Filebench to vNFS and added vectorized flowops to the Filebench workload mod-
eling language (WML) [198]. We added 759 lines of C code to Filebench, and removed 37. We
converted Filebench’s File-Server, NFS-Server, and Varmail workloads to equivalent versions us-
ing the new flowops: for example, we replacedN adjacent sets of openfile, readwholefile,
and closefile (i.e., 3 × N old flowops) with a single vreadfile (one new flowop), which
internally uses our vread API that can open, read, and close N files in one call.
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Figure 3.12: vNFS’s speedup ratios for Filebench workloads.

The Filebench NFS-Server workload emulates the SPEC SFS benchmark [173]. It contains one
thread performing four sets of operations: (1) open, entirely read, and close three files; (2) read a
file, create a file, and delete a file; (3) append to an existing file; and (4) read a file’s attributes. The
File-Server workload emulates 50 users accessing their home directories and spawns one thread
per user to perform operations similar to the NFS-Server workload. The Varmail workload mimics
a Unix-style email server operating on a /var/mail directory, saving each message into a file.
This workload has 16 threads, each performing create-append-sync, read-append-sync, read, and
delete operations on a set of 10,000 16KB files. Since none of these workloads perform many
same-type operations at a time, their vNFS versions have only moderate degrees of compounding.

Figure 3.12 shows the results of the Filebench workloads, comparing vNFS to the baseline.
For the NFS-Server workload, vNFS was 5× faster than the baseline in the 0.2ms-latency network
because vNFS combined multiple small reads and their enclosing opens and closes into a single
compound. vNFS was also more efficient (and more reliable) when appending files since it does not
need a separate GETATTR to read the file size (see Chapter 3.3.1). This single-threaded NFS-Server
workload is light, and its only bottleneck is the delay of network round trips. With compounding,
vNFS can save network round trips; the amount of savings depends on the compounding degree
(the number of non-trivial NFS operations per compound). This workload has a compounding
degree of around 5, and thus we observed a consistent 5× speedup regardless of the network
latency.

As shown in Figure 3.12, vNFS’s speedup ratio in the File-Server workload is about the same
as the NFS-Server one, except in the 0.2ms-latency network. This is because these two workloads
have similar file-system operations and thus similar compounding degrees. However, in the 0.2ms-
latency network, vNFS was 13% slower (i.e., a speedup ratio of 0.87) than the baseline. This is
caused by two reasons: (1) the File-Server workload has as many as 50 threads and generates a
heavy I/O load to the NFS server’s storage stack, which became the bottleneck; (2) without a cache,
vNFS sent all read requests to the overloaded server whereas the in-kernel client’s cache absorbed
more than 99% of reads. As the network latency increased, the load on the NFS server became
lighter and vNFS became faster thanks to saving round trips, which more than compensated for the
lack of cache in our current prototype.

Because the Varmail workload is also multi-threaded, its speedup ratio curve in Figure 3.12 has
a trend similar to that of the File-Server workload. However, vNFS’s speedup ratio in the Varmail
workload plateaued at the higher value of 14× because its compounding degree is higher than the
File-Server workload.
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Figure 3.13: vNFS speedup ratio relative to the baseline when requesting a set of objects with
PUSH enabled in nghttp2.

3.5.3.4 HTTP/2 server

Similar to the concept of NFSv4 compounds, HTTP/2 improves on HTTP/1.x by transferring
multiple objects in one TCP connection. HTTP/2 also added a PUSH feature that allows an HTTP/2
server to proactively push related Web objects to clients [26, Section 8.2]. For example, upon
receiving an HTTP/2 request for index.html, the server can proactively send the client other
Web objects (such as Javascript, CSS, and image files) embedded inside that index.html file,
instead of waiting for it to request them later. PUSH can reduce a Web site’s loading time for end
users. It also allows Web servers to read many related files together, enabling efficient processing
by vNFS.

We ported nghttp2 [140], an HTTP/2 library and tool-set containing an HTTP/2 server and
client, to vNFS. Our port added 543 lines of C++ code and deleted 108.

The HTTP Archive [14] shows that, on average, an HTTP URL is 2,480KB and contains ten
5.5KB HTML files, 23 20KB Javascript files, seven 7.5KB CSS files, and 56 28KB image files.
We created a set of files with those characteristics, hosted them with our modified nghttp2 server,
and measured the time needed to process a PUSH-enabled request to read the file set. Figure 3.13
shows the speedup ratio of vNFS relative to the baseline, which runs vanilla nghttp2 and the in-
kernel NFS client. vNFS needed only four NFS compounds for all 96 files: one vgetattrs
call and three vreads. In contrast, the baseline used 309 RPCs including one OPEN, READ, and
CLOSE for each file. The reduced network round trips made vNFS 3.5× faster in the 0.2ms-latency
network and 9.9× faster with the 5.2ms latency.

Although current Web servers are often deployed close to their underlying storage, we believe
that new technologies such as HTTP/2 and vNFS will allow wider separation of servers and storage,
enabling widely distributed systems with higher scalability and reliability.

3.6 Related Work of vNFS

3.6.1 Improving NFS performance
The ubiquitous Network File System, which is more than 30 years old, has continuously evolved to
improve performance. Following the initial NFSv2 [125], NFSv3 added asynchronous COMMITs
to improve write performance, and READDIRPLUS to speed up directory listing [38]. NFSv4.0 [166]
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added more performance features including compounding procedures that batch multiple opera-
tions in one RPC, and delegations that enable the client cache to be used without lengthy revalida-
tion. To improve performance further with more parallelism, NFSv4.1 [168] added pNFS [82] to
separate data and metadata servers so that the different request types can be served in parallel. The
upcoming NFSv4.2 has yet more performance improvements such as I/O hints, Application Data
Blocks, and Server Side Copy [81].

In addition to improvements in the protocols, other researchers also improved NFS’s perfor-
mance: Duchamp found it inefficient to look up NFSv2 paths one component at a time, and re-
duced client latency and server load by optimistically looking up whole paths in a single RPC [56].
Juszczak improved the write performance of an NFS server by gathering many small writes into
fewer larger ones [94]. Ellard and Seltzer improved read performance with read-ahead and stride-
read algorithms [59]. Batsakis et al. [22] developed a holistic framework that adaptively schedules
asynchronous operations to improve NFS’s performance as perceived by applications. Our vNFS
uses a different approach, improving performance by making NFSv4’s compounding procedures
easily accessible to programmers.

3.6.2 I/O compounding
Compounding, also called batching and coalescing, is a popular technique to improve through-
put and amortize cost by combining many small I/Os into fewer larger ones. Disk I/O schedulers
coalesce adjacent I/Os to reduce disk seeks [18] and boost throughput. Purohit et al. [150] pro-
posed Compound System Calls (Cosy) to amortize the cost of context switches and to reduce data
movement across the user-kernel boundary. These compounding techniques, as well as NFSv4’s
compounding procedures, are all hidden behind the POSIX file-system API, which cannot convey
the required high-level semantics [41]. The Batch-Aware Distributed File System (BAD-FS) [27]
demonstrated the benefits of using high-level semantics to explicitly control the batching of I/O-
intensive scientific workloads. Dynamic sets [175] took advantage of the fact that files can be
processed in any order in many bulk file-system operations (e.g., grep foo *.c). Using a set-
based API, distributed file system clients can pre-fetch a set of files in the optimal order and pace so
that computation and I/O are overlapped and the overall latency is minimized. However, dynamic
sets did not reduce the number of network round trips. To the best of our knowledge, vNFS is the
first attempt to use an overt-compounding API to leverage NFSv4’s compounding procedures.

3.6.3 Vectorized APIs
To achieve high throughput, Vilayanur et al. [187] proposed readx and writex to operate at
a vector of offsets so that the I/Os can be processed in parallel. However, these operations are
limited to a single file, helping only large files, whereas our vread/vwrite can access many
files at once, helping with both large and small files.

Vasudevan et al. [185] envisioned the Vector OS (VOS), which offered several vectorized sys-
tem calls, such as vec open(), vec read(), etc. While VOS is promising, it has not been fully
implemented yet. In their prototype, they succeeded in delivering millions of IOPS in a distributed
key-value (KV) store backed by fast NVM [186]. However, they implemented a key-value API,
not a file-system API, and their vectorized KV store focuses on serving parallel I/Os on NVM,
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whereas vNFS focuses on saving network round trips by using NFSv4 compound procedures. The
vectorized key-value store and vNFS are different but complementary.

Our vNFS API is also different from other vectorized APIs [185, 187] in three aspects: (1)
vread/vwrite supports automatic file opening and closing; (2) vsscopy takes advantage of
the NFS-specific Server Side Copy feature; and (3) to remain NFSv4-compliant, vNFS’s vectorized
operations are executed in order, in contrast to the out-of-order execution of lio listio(3) [110],
vec read() [185], and readx [187].

3.7 vNFS Conclusions
We designed and implemented vNFS, an NFSv4.1 client and API library that maximize NFS per-
formance in LAN and WAN environments. vNFS uses a vectorized high-level API to leverage
standard NFSv4 compounds, which have the potential to reduce network round trips but were
severely underutilized due to the low-level and serialized nature of the POSIX API. vNFS makes
maximal use of compounds by enabling applications to operate on many file-system objects in a
single RPC. To further improve performance, vNFS supports reliable file appends and Server Side
Copy that reduce the latency and bandwidth demands of file appending and copying.

We ported several applications to use vNFS, including cp, ls and rm from GNU Coreutils;
bsdtar; Filebench; and nghttp2. The porting was generally easy.

Micro-benchmarks demonstrated that—compared to the in-kernel NFS client—vNFS signifi-
cantly boosts the throughput of workloads with many small I/Os and metadata operations even in
fast networks, and performs comparably for large I/Os or with low compounding degrees. Our
benchmarks using the ported applications show that vNFS can make these applications faster by
up to two orders of magnitude.

Limitations and future work Currently vNFS does not include a cache; an implementation
is underway. To simplify error handling, we plan to support optionally executing a compound
as an atomic transaction. Finally, compounded operations are processed sequentially by current
NFS servers; we plan to execute them in parallel with careful interoperation with transactional
semantics.
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Chapter 4

SeMiNAS: A Secure Middleware for
Cloud-Backed Network-Attached Storage

4.1 SeMiNAS Introduction
Cloud computing is becoming increasingly popular as utility computing is being gradually real-
ized, but many organizations still cannot enjoy the advantages of public clouds due to security
concerns, legacy infrastructure, and high performance requirement (especially low latency). Many
researchers tried to secure public clouds, but few studied the unique security problems of hybrid
clouds. Kurma is our proposed hybrid cloud solution to the storage aspect of these problems.

In Chapter 2 and Chapter 3, we decided to use NFSv4.1 as Kurma’s storage protocol because of
NFSv4.1’s advanced features such as delegations and compound procedures. Now we discuss an
early prototype of Kurma in this chapter. We name the prototype SeMiNAS—Secure Middlewares
for cloud-backed Network Attached Storage. SeMiNAS is the first step towards our ultimate devel-
opment of Kurma; it has the same threat model, an analogous architecture, and similar design goals.
Both SeMiNAS and Kurma appear as NFS service providers to clients, and include on-premises
gateways for security enhancement and performance improvement. The high-level architectures of
SeMiNAS and Kurma are similar: they differ mostly in their gateway architecture and components.
SeMiNAS provides the same caching and security features including confidentiality and integrity.
SeMiNAS’s discussions of complex interactions among those security and caching features is also
applicable to Kurma. However, SeMiNAS is limited in several aspects and makes several simplify-
ing assumptions. For example, SeMiNAS uses a single public cloud as back-end and is not secure
against replay attacks; and SeMiNAS requires new NFS features not standardized yet or available
from current cloud providers. These limitations are solved in our final Kurma design in Chapter 5.

SeMiNAS consists of on-premises gateways that allow clients to outsource data securely to
clouds using the same file system API as traditional NAS appliances. As shown in Figure 4.1,
SeMiNAS inherits many advantages from the popular middleware architecture, as exemplified by
network firewalls. For instance, SeMiNAS can protect a large number of clients by consolidating a
small number of SeMiNAS gateways; SeMiNAS also minimizes migration costs by requiring only
minimal configuration changes to existing clients and servers.

SeMiNAS provides end-to-end data integrity and confidentiality using authenticated encryption
before sending data to cloud. Data stays in encrypted form in the cloud, and is not decrypted until
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Figure 4.1: SeMiNAS high-level architecture. Each geographic office has a trusted SeMiNAS
gateway to protect clients from the untrusted storage provider. SeMiNAS can securely share files
among geo-distributed offices.

SeMiNAS retrieves and decrypts the data from clouds on clients’ behalf. End-to-end integrity
and confidentiality protects data from not only potential attacks during data transmission over the
Internet but also misbehaving cloud servers and storage devices. Using a simple and robust key
exchange scheme, SeMiNAS can share files securely among geo-distributed offices without relying
on any trusted third-party or secret channel for key management.

SeMiNAS ensures its security scheme is efficient with three mechanisms: (1) SeMiNAS
stores Message Authentication Codes (MAC) together with file data using NFS data-integrity ex-
tension [139], so that no extra WAN round trips are needed for checking and updating MACs.
(2) SeMiNAS uses NFSv4’s compound procedures to combine operations on file headers (added
by SeMiNAS for distributing file keys securely among gateways) with small metadata operations.
Therefore, SeMiNAS does not introduce any extra WAN round trips for its security metadata.
(3) SeMiNAS contains a persistent write-back cache that stores recently used data and coalesces
writes to the server; this further reduces the communication to remote servers. With these three
optimizations, SeMiNAS is able to provide integrity and confidentiality with a small overhead of
less than 18%.

This chapter makes three contributions: (1) a middleware system that allows clients to securely
and efficiently store and share files in remote NAS providers; (2) a study of leveraging NFSv4 com-
pound procedures for a highly efficient security scheme; and (3) an implementation and evaluation
of NFSv4 end-to-end Data Integrity eXtension (DIX) [139]. This SeMiNAS study has been pub-
lished in the 9th ACM International Systems and Storage Conference (SYSTOR 2016) [43].

The rest of this chapter is organized as follows. Chapter 4.2 presents the background and
motivation behind SeMiNAS. Chapter 4.3 and Chapter 4.4 describe its design and implementation,
respectively. Chapter 4.5 evaluates SeMiNAS under different networks and workloads. Chapter 4.6
discusses related work and Chapter 4.7 concludes this chapter.

4.2 SeMiNAS Background and Motivation
We present the background and motivation behind SeMiNAS by answering two questions: (1) Why
we need yet another cryptographic file system on an untrusted server—an area studied more than
a decade ago? (2) Why SeMiNAS uses an NFS back-end instead of a key-value object back-end?
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4.2.1 A revisit of cryptographic file systems.
Utility computing requires storing data in external providers. Consequently, security concerns arise
because of the opaque and multi-tenant nature of external servers, as well as the large exploitation
surface area of public wide-area networks. Using cryptographic file systems to securely outsource
data has been studied before in SFS [120], Cepheus [69], SiRiUS [73], SUNDR [105], Iris [176],
and others [67, 68, 95, 190, 201]. However, a revisit of these studies is needed for three reasons.

First, modern cryptographic file systems should protect data not only from potentially mali-
cious servers, but also from the deep storage stack (with multiple layers of virtualization, soft-
ware, firmware, hardware, and networking), which is much more complex and error-prone than
before [20, 113]. Data Integrity eXtensions (DIX) [52] is a growing trend of making the once hid-
den Data Integrity Fields (DIF) of storage devices available to applications. This can help keep
data safe from both malicious servers and a misbehaving storage stack. By providing an eight-byte
out-of-band storage for security checksums per 512-byte sector, DIX can protect the whole data
path from applications all the way down to physical storage media.

Second, newer and more powerful networking storage protocols have emerged, particularly
NFSv4 [81, 166, 168]. Compared to its previous versions, NFSv4 is superior not only in perfor-
mance, scalability, and manageability [41, 121], but also in security with RPCSEC GSS [58] and
ACLs [81, 166, 168]. Moreover, with advanced features including compound procedures and del-
egations, NFSv4 provides great opportunities for making cryptographic file system flexible and
efficient when storage servers are remote over WANs.

Third, the performance penalty of modern cryptographic file systems should be small enough
to maintain a lower total cost of ownership—a key incentive for outsourcing storage. Some re-
searchers [44] argued that encrypting data in cloud was too expensive, whereas others [30, 190]
claimed new hardware acceleration makes encryption viable and cheap for cloud storage. These
debates highlight the importance of reducing performance overhead when securing cloud storage.
Therefore, SeMiNAS strives for high performance as well as security, whereas many prior sys-
tems [67, 73, 105] sacrificed performance by up to 90% for security.

4.2.2 An NFS vs. a key-value object back-end.
Currently, most cloud storage vendors provide key-value object stores. However, SeMiNAS uses
an NFS back-end instead for four reasons. First, we believe that cloud storage is still in its early
age and future cloud storage will offer richer, file-system APIs in addition to key-value object
APIs. Key-value object stores are popular now primarily because of simplicity. File-systems APIs
in clouds are likely to grow in popularity as cloud applications demand more functions from cloud
storage vendors. This is a trend as seen by the recent cloud offering of the NFSv4-based Amazon
Elastic File System [88].

Second, the open, pervasive, and standard NFS API has many advantages over vendor-specific
object APIs. NFS is compatible with the POSIX standard, and most applications based on direct-
attached storage can continue to work on NFS without change. Therefore, migration from on-
premises storage to cloud NAS providers requires only minimal effort. By contrast, a full migration
from file systems to key-value object stores can be prohibitive because object stores support fewer
features (i.e., absence of file attributes, links, locks) and sometimes use weaker consistency models
(e.g., eventual consistency [49]) than file systems.
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Third, file systems have much richer semantics than key-value object stores, and can signifi-
cantly simplify application development. As more applications are deployed in clouds, rudimen-
tary object stores have begun to fall short of functionalities to support complex systems [144].
The richer semantics of file systems also provide more optimization opportunities than key-value
stores. For example, NFS can be much more efficient with pNFS [168], server-side copying [81],
and Application-Data Blocks [81].

Fourth, NFSv4 is optimized for WANs, and its speed over WANs can be considerably improved
by caching, as was demonstrated by both academia [60] and industry [157]. The performance boost
of an NFS cache, such as SeMiNAS, can be particularly significant with NFSv4 delegations—
a client caching mechanism that enables local file operations without communication to remote
servers. Our benchmarking study in Chapter 2 showed that delegations can reduce the number of
NFS messages by almost 31×. Delegations do not compromise NFS’s strong consistency [168];
they are effective as long as concurrent and conflicting file sharing among clients is rare, which is
often true [102].

4.3 SeMiNAS Design
We present the design of SeMiNAS including its threat model, design goals, architecture, caching,
and security features.

4.3.1 Threat Model
Our threat model reflects the settings of an organization with offices in multiple locations, and
employees in each office store and share files via a SeMiNAS gateway (see Figure 4.1). We discuss
the trustability of the cloud, clients, and the middleware with regard to security properties such as
availability and integrity.

The Cloud. We do not trust the cloud in terms of confidentiality and integrity. It is risky to put
any sensible data in plaintext format considering threats both inside and outside the cloud [16].
Since communication to public clouds goes through the Internet, plaintext data is vulnerable to
man-in-the-middle attacks. Even if the communication is protected by encryption, storing plain-
text data on cloud servers is still dangerous because the storage device may be shared with other
malicious tenants. The same is true for data integrity: attackers inside and outside the cloud may
covertly tamper with the data. However, we think cloud availability is a smaller concern. High
availability is an important trait that makes cloud attractive: major cloud services had availabil-
ity higher than four nines (99.99%) [199]. Consequently, SeMiNAS currently uses a single cloud
back-end; our final Kurma design in Chapter 5 will use multiple clouds for even higher availability.

Clients. Clients are trusted. Clients are usually operated by employees of the organization, and
are generally trustworthy if proper access control is enforced. SeMiNAS supports NFSv4 and thus
can enforce access control using traditional mode bits and advanced ACLs [168].

57



The Middleware. SeMiNAS is trusted. It provides centralized and consolidated security ser-
vices. Physically, the middleware is a small cluster of computers and appliances, which can fit in a
guarded machine room. Thus, securing the middleware is easier than securing all clients that might
scatter over multiple buildings. An organization can also dedicate experienced security personnel
to fortify the middleware. We also trust that only SeMiNAS gateways can authenticate themselves
to the cloud NFS servers using RPCSEC GSS [58]; therefore, adversaries cannot fake a gateway.
SeMiNAS currently does not handle replay attacks, which we address later in Kurma.

4.3.2 Design Goals
We designed SeMiNAS to achieve the following four goals, ordered by descending importance:

• High security: SeMiNAS should ensure high integrity and confidentiality while storing and
sharing data among geo-distributed clients.

• Low overhead: SeMiNAS should have minimal performance penalty by using a low-overhead
security scheme and effectively caching data.

• Modularity: SeMiNAS should be modular so that more security features, such as anti-virus
and intrusion detection, can be easily added in the future.

• Simplicity: SeMiNAS should have a simple architecture that eases development, deploy-
ment, and maintenance.

4.3.3 Architecture
SeMiNAS is a cryptographic file system that serves as a gateway between clients and remote cloud
servers. SeMiNAS has a stackable file system architecture so that its security mechanisms can
be easily added as layers on top of existing storage gateways and WAN accelerators. Stackable
file systems, such as Linux’s UnionFS [200] and OverlayFS [36], are flexible for three reasons:
(1) they can intercept all file operations including ioctls; (2) they can be stacked on top of any
other file systems (e.g., ext4 and NFS); and (3) the stacking can be composed in different orders
to achieve a wider range of functionalities. Stackable file systems are also simpler than standalone
file systems because they can use existing unmodified file systems as building blocks. Stackable
file systems can also achieve high security as shown in previous studies [77, 91, 130, 201].

SeMiNAS consists of multiple gateways in geo-distributed offices that share files securely via
a common storage provider. Each office has a SeMiNAS gateway, which acts as an NFS server to
clients and as a client to remote NFS servers. SeMiNAS protects files transparently and stores files
in ciphertext format in remote cloud servers. A client writes a file by first sending an NFS request
to SeMiNAS. Then, SeMiNAS simultaneously encrypts and authenticates the data to generate
ciphertext and Message Authentication Codes (MACs). After that, SeMiNAS sends the ciphertext
and MACs to the cloud. File reading happens in reverse: SeMiNAS simultaneously verifies and
decrypts the data from the ciphertext and MACs when reading from remote servers. Each file
has a unique encryption key, which is secretly shared among geo-distributed offices using a PGP-
like scheme. SeMiNAS combines the encryption and authentication functionality in one stackable
file-system layer.
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Figure 4.2: GCM for integrity and optional encryption

In addition to the security stackable layer, SeMiNAS contains another stackable file-system
layer that caches file content in persistent storage devices in SeMiNAS gateways. Caching is
indispensable to avoid the long latency in WANs. SeMiNAS stacks the caching layer on top of the
security layer so that file content is cached in cleartext format and reading from the cache does not
require decryption. Saving the file’s content as cleartext in SeMiNAS is secure because SeMiNAS
is fully trusted in our threat model.

4.3.4 Integrity and Confidentiality
In the security stackable file-system layer, SeMiNAS uses authenticated-encryption to simultane-
ously authenticate and encrypt files [195]. Authenticated-encryption is desirable for strong security
because combining a separate encryption layer and an authentication layer is susceptible to secu-
rity flaws. There are three ways to combine encryption and authentication: (1) Authenticate then
Encrypt (AtE) as used in SSL; (2) Encrypt then Authenticate (EtA) as used in IPSec; and (3) En-
crypt and Authenticate (E&A) as used SSH. Despite being used by popular security protocols (SSL
and SSH), both AtE and E&A turned out to be “not generically secure” [98]. Only one out of the
three combinations (i.e., EtA) is considered to be secure [119]. The security ramifications of these
combinations are rather complex [25]: even experts can make mistakes [99]. Therefore, SeMiNAS
avoids separating encryption and authentication, and instead uses one of the standard authenticated
encryption schemes that perform both operations simultaneously.

Out of the ISO-standardized authenticated encryption modes, we chose the Galois/Counter
Mode (GCM) because of its superior performance [48] to other modes such as CCM [192] and
EAX [24]. SeMiNAS strictly follows NIST’s guidance of using GCM and meets the “uniqueness
requirements on IVs and keys” [57].

As shown in Figure 4.2, GCM accepts three inputs and produces two outputs. The three in-
puts are the plaintext to be both authenticated and encrypted (PDATA), additional data only to be
authenticated (ADATA), and a key; the two outputs are ciphertext and a Message Authentication
Code (MAC). Out of the three inputs, either PDATA or ADATA can be absent. This lets SeMiNAS
achieve integrity but not encryption by leaving PDATA empty and using the concatenation of data
and metadata as ADATA.

On write operations, GCM uses the data to be written as PDATA and additional security meta-
data (discussed in Chapter 4.3.4.3) as ADATA. GCM outputs the ciphertext and MAC, which are
then written to the cloud. On read operations, SeMiNAS retrieves the ciphertext and MAC, and
then simultaneously verifies the MAC and decrypts the ciphertext. SeMiNAS thus achieves end-
to-end data integrity and confidentiality as the protection covers both the transport channel and the
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cloud storage stack.

4.3.4.1 Key Management

Key management is critical for strong security. SeMiNAS uses a simple yet robust key man-
agement scheme. Each SeMiNAS gateway has a master key pair, which is used for asymmetric
encryption (RSA) and consists of a public key (MuK) and a private key (MrK). The public keys
are exchanged among geo-distributed gateways manually by security personnel. This is feasible
because one geographic office usually has only one SeMiNAS gateway, and key exchange is only
needed when opening an office in a new site. This scheme has the advantages of not relying on any
third-party for public key distribution. Each file has a symmetric file key (FK) and a 128-bit ini-
tialization vector (IV); both FK and IV are 128-bit long and randomly generated. To avoid reusing
IVs [57], SeMiNAS adds to the IV the block offset number to generate a unique IV for each block.

Because each SeMiNAS gateway maintains the MuKs of all other gateways, the file keys (FKs)
can be shared among all SeMiNAS gateways under the protection of MuKs. When creating a file,
a SeMiNAS gateway (creator) generates an FK. Then for each SeMiNAS gateway with which the
creator is sharing the file (accessor), the creator encrypts the FK using the accessor’s public key
(MuK) with the RSA algorithm, and generates a 〈SID, EFK〉 pair where SID is the unique ID of
the accessor and EFK is the encrypted FK. All the 〈SID, EFK〉 pairs are then stored in the file
header. With the upcoming sparse file support [81], the file header can reserve sufficiently large
space with a hole following the header. Therefore, adding a new SeMiNAS gateway need only add
its 〈SID, EFK〉 in the header by filling the hole without shifting the file data following the header.
When opening a file, a SeMiNAS gateway, which needs to be an accessor of the file, first finds its
〈SID, EFK〉 pair in the header, and then it retrieves the file key FK by decrypting the EFK using
its private key (MrK).

4.3.4.2 File-System Namespace Protection

SeMiNAS protects not only file data but also file-system metadata. SeMiNAS applies authenticated
encryption to file and directory names so that attackers in a compromised cloud server could not
guess sensitive data from the names. SeMiNAS also generates a key for each directory and uses
the key to encrypt the names of file-system objects inside the directory. Similar to a file key,
a directory key (DK) is also encrypted by SeMiNAS gateways’ master key pairs. However, the
encrypted directory key pairs (i.e., 〈SID, EDK〉) are saved in a hidden KeyMap file under the
directory because we could not prepend a header to a directory (as SeMiNAS does for each file).
When processing a directory creation request from a client, SeMiNAS also create the KeyMap
file in addition to creating the directory in the cloud server. When processing a directory deletion
request, SeMiNAS needs to delete its KeyMap file before deleting the directory in the cloud server;
otherwise, an ENOTEMPTY error will occur. When accessing child objects inside a directory by
names, SeMiNAS encrypts the names to obtain the real names stored in the cloud. When listing a
directory, SeMiNAS decrypts the names returned from the cloud.
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Figure 4.3: SeMiNAS metadata management

4.3.4.3 Security Metadata Management

SeMiNAS maintains per-file metadata so that files can be encrypted and secretly shared among
geo-distributed offices. As shown in Figure 4.3, the most important per-file metadata is the en-
crypted key pairs discussed in Chapter 4.3.4.1; other per-file metadata is authenticated and en-
crypted file attributes including unique file ID, IV, real file size flags, etc. SeMiNAS saves the
per-file metadata in a 4KB file header. More space can be reserved for the header by punching a
hole in the file [81] following the header. Thus, when accommodating more 〈SID, EFK〉 pairs, the
header can grow beyond 4KB by filling the hole without shifting any file data.

SeMiNAS divides a file into fix-sized data blocks and applies GCM to each block (with padding
if necessary). Therefore, it also maintains per-block metadata including a 16-byte MAC and an 8-
byte block offset (Figure 4.3). The block offset is combined with the per-file IV to generate the
unique per-block IV, and is also used to detect an attack of swapping blocks. SeMiNAS can detect
inter-file swapping as well because each file has a unique key. The per-block metadata is stored
using DIX as detailed in Chapter 4.3.5.1.

4.3.5 NFSv4-Based Performance Optimizations
SeMiNAS leverages two advanced NFSv4 features to ensure its security scheme has low overhead:
Data-Integrity eXtension (DIX) and compound procedures, discussed next.

4.3.5.1 NFS Data-Integrity eXtension

DIX gives applications access to the long-existed out-of-band channel of information in storage
media. With NFSv4, NFS clients can utilize DIX to store extra information in NFS servers [139].
Figure 4.4 shows how SeMiNAS leverages DIX and stores the per-block metadata (a MAC and
an offset). This is particularly beneficial in wide-area environments because it saves many extra
network round trips for metadata operations.

Storing MACs and offsets using DIX is better than the other three alternative methods: (1)
The first alternative is to write the concatenation of each encrypted block and its MAC as one
file in the cloud. This method not only burdens file system metadata management with many small
files [70], but also negates the benefits of using a file-system API such as the file-level close-to-open
consistency (which means once clients close a file, all their changes to the file will be available to
clients who open the file later). (2) The second alternative method is to use an extra file for all per-
block metadata of each file. However, this is suboptimal, especially considering the high latency of
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WANs, because writing data blocks incurs an extra write request to the metadata file. (3) The third
alternative is to map one block to a larger block in the cloud-stored file. For example, a file with ten
16KB blocks corresponds to a cloud file with ten slightly larger blocks (i.e., 16KB+N where N is
the size of the per-block metadata). However, this method suffers from extra read-modify-update
operations caused by breaking block alignment. Using a larger block size (e.g., 256KB instead
of 16KB) alleviates this problem by having fewer extra read-modify-update operations, but it also
makes each extra operation more expensive.

Using DIX frees SeMiNAS from all aforementioned problems. To accommodate the 24-byte
per-block metadata, we require a block to be at least 2KB large, because each sector uses at least
two DIX bytes by itself for an internal checksum and leaves at most six DIX bytes for applications.

4.3.5.2 Compound Procedures

To maintain the security metadata in file headers, SeMiNAS performs many extra file-system op-
erations (e.g., a read of the header when opening a file). Sending separate NFS requests for these
extra operations incurs extra WAN round trips and consequently large performance overheads. To
avoid this, SeMiNAS leverages compound procedures—a new NFSv4 feature that combines mul-
tiple operations into one NFS request. Compound procedures can significantly shorten the average
latency of operations. This is because in high-latency networks, a single multi-operation RPC takes
almost the same amount of time to process as a single-operation RPC.

Extra operations on file headers are great candidates for compound procedures because all file-
header operations immediately follow some other user-initiated file-system operations. By packing
extra file-header operations into the same NFS request of the initiating operations, no extra requests
are needed. Extra operations on the KeyMap files, each of which stores the secret key of its parent
directory (see Chapter 4.3.4.2), are also good candidates for compound procedures. Specifically,
SeMiNAS packs extra operations into compound procedures in the following scenarios:

• creating the header after creating a file;

• reading the header after opening a file;

• updating the header before closing a dirty file;
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• reading the header when getting file attributes;

• getting the attributes (GETATTRS) after writing to a file;

• creating its KeyMap file after creating a directory;

• reading its KeyMap file after looking up a directory; and

• unlinking its KeyMap file before unlinking a directory.

Compound procedures are highly effective for SeMiNAS. We have benchmarked the optimiza-
tion of compound procedures separately using Filebench’s File-Server workload: compound pro-
cedures cut the performance overhead of SeMiNAS from 52% down to merely 5%.

4.3.6 Caching
SeMiNAS’s caching file system layer maintains a cache of recently used file data blocks, so that
hot data can be read in the low-latency on-premises network without communicating with the
cloud. The caching layer is designed to be a write-back cache, to minimize writes to the cloud
as well. Being write-back, the cache is persistent because some NFS requests—WRITEs with the
stable flag, and COMMITs—require dirty data be flushed to “stable storage” [166] before replying.
Because the NFS protocol demands stable writes to survive server crashes, the cache layer also
maintains additional metadata in stable storage to ensures correct crash recovery. The metadata
includes a list of dirty files and a per-block dirty flag to distinguish dirty blocks from clean blocks.

For each cached file, SeMiNAS maintains a sparse file of the same size in the gateway’s local
file system. Insertion of file blocks are performed by writing to the corresponding blocks of the
sparse files. Evictions are done by punching holes at the corresponding locations using Linux’s
fallocate system call. This design delegates file block management to the local file system, and
thus significantly simplifies the caching layer. SeMiNAS also stores the crash recovery metadata
of each file in a local file. The caching layer does not explicitly keep hot data blocks in memory,
but implicitly does so by relying on the OS’s page cache.

When holding a write delegation of a file, a SeMiNAS instance does not have to write cached
dirty blocks of the file back to the cloud until the delegation is recalled. Without a write delegation,
SeMiNAS has to write dirty data backs to the cloud upon file close to maintain NFS’s close-to-
open consistency. To avoid bursty I/O requests and long latency upon delegation recall or file close,
SeMiNAS also allows dirty data to be written back periodically at a configurable interval.

4.4 SeMiNAS Implementation
We have implemented a prototype of SeMiNAS in C and C++ on Linux. We have tested our imple-
mentation thoroughly using functional unit tests and ensured our prototype passed all xfstests [203]
cases that are applicable to NFS. We present the technical background and the implementation of
the security and caching features.
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4.4.1 NFS-Ganesha
Our SeMiNAS prototype is based on NFS-Ganesha [50, 51, 138], an open-source user-land NFS
server that supports NFS v3, v4, and v4.1. NFS-Ganesha provides a generic interface to file sys-
tem implementations with a File System Abstraction Layer (FSAL), which is similar to a Virtual
File System (VFS) in Linux. With different FSAL implementations, NFS-Ganesha can provide
NFS services to clients using different back-ends such as local and distributed file systems. NFS-
Ganesha’s FSAL implementations include FSAL VFS that uses a local file system as back-end,
and FSAL PROXY that uses another NFS server as back-end. We use FSAL VFS for the cloud
NFS server, and FSAL PROXY for our secure gateway.

Like their stackable counterparts in Linux [206], FSALs can also be stacked to add features in
a modular manner. For example, an FSAL for encryption can be stacked on top of FSAL PROXY.
NFS-Ganesha originally allowed only one stackable layer; we added the support of multiple stack-
able layers. NFS-Ganesha originally allowed only one stackable layer; we added the support of
multiple stackable layers [142]. NFS-Ganesha configures each exported directory and its backing
FSAL separately in a configuration file, allowing SeMiNAS to specify security policies for each
exported directory separately.

4.4.2 Authenticated Encryption
We implemented SeMiNAS’s authenticated encryption in an FSAL called FSAL SECNFS. We
used cryptopp as our cryptographic library because it supports a wide range of cryptographic
schemes such as AES, GCM, and VMAC [100]. We used AES as the block cipher for GCM.
We implemented the NFS DIX in NFS-Ganesha so that ciphertext and the security metadata can
be transmitted together between SeMiNAS gateways and the cloud. First, we implemented the
READ PLUS and WRITE PLUS operations of NFSv4.2 [81] so that the out-of-band DIX bytes
can be transfered together with file block data in one request. Then, at the gateway side, we
changed FSAL PROXY to use READ PLUS and WRITE PLUS for communications with the cloud
NFS server (Figure 4.4). Lastly, at the cloud side (running FSAL VFS), we changed FSAL VFS
to use WRITE PLUS and READ PLUS, and to write the ciphertext and security metadata together to
storage devices. Currently, Linux does not have system calls to pass file data and their DIX bytes
from user space to kernel; so we used a DIX kernel patchset [146] after we fixed its bugs.

We implemented FSAL SECNFS carefully to avoid any side effects caused by the security
metadata. For example, updating metadata in a file header has the side effect of changing the file’s
ctime and mtime, with an unexpected consequence of invalidating NFS clients’ page cache
and hurting performance: an NFS client uses ctime to check the validity of an NFS file’s page
cache; an external change of ctime implies the file has been modified by another NFS client, and
demands the client to invalidate the cache to prevent reading stale data. To avoid this inadvertent
cache invalidation, FSAL SECNFS maintains the effective ctime and mtime in the file header
instead of using the real ctime and mtime attributes of the file.

We also implemented two additional performance optimizations in FSAL SECNFS: (1) We
cache the file key (FK) and the 〈SID, EFK〉 pairs in memory to reduce the frequency of expensive
RSA decryptions of FKs. This is secure because FSAL SECNFS runs in the trusted SeMiNAS
gateways. (2) We use the faster VMAC [48, 100] (3.2× faster on our testbed) instead of GCM
when only integrity (but not encryption) is required.
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4.4.3 Caching
The persistent caching file-system layer of SeMiNAS is implemented as another FSAL named
FSAL PCACHE. Because FSAL PCACHE needs to write back dirty data using separate threads, we
implemented FSAL PCACHE on top of a home-built external caching library to avoid complicating
NFS-Ganesha’s threading model. The caching library provides caching (lookup, insert, invalidate,
etc.) and write-back APIs for FSAL PCACHE. When inserting dirty blocks of a file into the cache
using this library, FSAL PCACHE registers a write-back callback function along with the dirty
buffer to the library. The callbacks are invoked periodically as long as the file remains dirty. When
closing a file, FSAL PCACHE calls the write-back function directly, and deregisters the callback
to the library.

4.4.4 Lines of Code
The implementation of our SeMiNAS prototype took about 25 man-months (of serveral graudate
students over 3 years), and added around 14,000 lines of C/C++ code. In addition, we have fixed
bugs and added the multi-layer stacking feature in NFS-Ganesha; our patches have been merged
into the mainstream NFS-Ganesha. We have also fixed bugs in the DIX kernel patchset. We plan
to release all code as open source in the near future.

4.5 SeMiNAS Evaluation
We now present the evaluation of SeMiNAS under different workloads, security polices, and net-
work settings.

4.5.1 Experimental Setup
Our testbed consisted of seven Dell R710 machines running CentOS 7.0 with a 3.14 Linux kernel.
Each machine has a six-core Intel Xeon X5650 CPU, a Broadcom 1GbE NIC, and an Intel 10GbE
NIC. Five machines run as NFS clients and each of them has 1GB RAM. Both remaining machines
have 64GB: one of them runs as a SeMiNAS gateway and the other emulates a cloud NFS server.
Clients communicated to the gateway using the 10GbE NIC, whereas the gateway communicated
to the server using the 1GbE NIC (to simulate a slower WAN). The average RTT between the
clients and the SeMiNAS gateway is 0.2ms. The SeMiNAS gateway uses an Intel DC S3700
200GB SSD for the persistent cache. We emptied the cache before each experiment to observe the
system’s behavior when an initial empty cache is gradually filled. We used 4KB as the block size
of SeMiNAS.

To better emulate the network between the SeMiNAS gateway and the cloud, we injected 10–
30ms delays in the outbound link of the server using netem; 10ms and 30ms are the average
network latencies we measured from our machines to in-state data centers and the closest Amazon
data center, respectively. We patched the server’s kernel with the DIX support [146] (with our bug
fixes) that allows DIX bytes to be passed from user space to kernel.

Physical storage devices that support DIX are still rare [80], so we had to set up a 20GB DIX-
capable virtual SCSI block device backed by RAM using targetcli [137]. Using RAM, instead
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Figure 4.5: Aggregate throughput of baseline and SeMiNAS with 4KB I/O size, 5 NFS clients,
and one thread per client under different read-write ratios and network delays.

of a disk- or flash-backed loop device, allowed us to emulate the large storage bandwidth provided
by distributed storage systems in the cloud. Although using RAM fails to account for the server-
side storage latency, the effect is minor because the Internet latency (typically 10–100ms) usually
dwarfs the storage latency (typically 1–10ms), especially considering the popularity of cloud in-
memory caching systems such as RAMcloud [143] and Memcached [65]. If storage latency in the
cloud was counted, the extra latency added by SeMiNAS’s security mechanisms would actually be
smaller relative to the overall latency; hence the results we report here are more conservative. The
DIX-capable device was formatted with ext4, and exported by NFS-Ganesha using FSAL VFS.

We verified that all SeMiNAS’s security features work correctly. To test integrity, we created
files on a client, changed different parts of the files on the cloud server, and verified that SeMiNAS
detected all the changes. To test encryption, we manually confirmed that file data was an unread-
able ciphertext when reading directly from the server, but its plaintext was identical to what was
written by clients.

We used the vanilla FSAL PROXY as baseline. FSAL PROXY uses up to 64 concurrent requests
each with a 2MB-large RPC buffer. We benchmarked two cases—with and without the persistent
cache (FSAL PCACHE) for both the baseline and SeMiNAS. We benchmarked a set of simple
synthetic micro-workloads, and Filebench [64] macro-workloads including the NFS Server, Web
Proxy, and Mail Server.
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4.5.2 Micro-Workloads
We benchmarked SeMiNAS using three micro-workloads: (1) random file accesses with different
read-write ratios, (2) file creation, and (3) file deletion.

4.5.2.1 Read-Write Ratio Workload

Read-write ratio is an important workload characteristic that influences the performance impact
of SeMiNAS’s security mechanisms and the persistent cache (FSAL PCACHE). We studied read-
write ratios from write-intensive (1:5) to read-intensive (5:1) to cover common ratios in real work-
loads [102, 159]. We pre-allocated 100 1MB-large files for each of the five NFS clients, and then
repeated the following operations for two minutes: randomly pick one file, open it with O SYNC,
perform n 4KB reads and m 4KB writes at random offsets, and close it. We varied n and m to
control the read-write ratio. We also ensured n + m is a constant (i.e., 60) so that dirty contents
are written back in the same frequency.

Figure 4.5 shows the results when the read-write ratios are 1:1, 5:1, and 1:5. Overall, the
configurations with caching outperform their “nocache” counterparts. For the 1:1 read-write ra-
tio, caching speeds the workloads up by 4–6×. The degree of speed-up grows to 9–16× as the
workload becomes read-intensive (Figure 4.5(b)), but drops to 3–4× as the workloads become
write-intensive (Figure 4.5(c)). The cache’s help to writes is smaller than to reads because SeMi-
NAS has to write dirty writes back to the cloud server upon file close, so that clients in other offices
can observe the latest changes.

To better illustrate the performance impact of SeMiNAS, we show SeMiNAS’s relative through-
put to the baseline in Figure 4.6. When it is write-intensive, SeMiNAS can be up to 3% faster than
the baseline regardless of the presence of FSAL PCACHE. This is because the baseline uses ex-
tra COMMITs following WRITEs to make write operations stable, whereas SeMiNAS does so by
simply setting the stable flag of WRITE PLUS requests. The normalized throughput of SeMiNAS
drops as the workload becomes more read-intensive (Figure 4.6(a)) for two reasons: (1) the effect
of saving COMMITs becomes smaller as the number of writes goes down; and (2) SeMiNAS has to
authenticate and decrypt (encrypt) data when reading from (writing to) the cloud server.

When cache is on (Figure 4.6(b)), the normalized throughput decreases much slower and is
almost flat. This is because (1) the cache content is in plaintext format and reading from cache
needs no more authentication or decryption; and (2) writes are acknowledged once dirty data is
inserted into the cache and the real write-back happens asynchronously.

Note that the normalized throughput of SeMiNAS is better for longer network delay no matter
if the cache is on or off. This is because SeMiNAS is optimized for wide-area environments and
minimizes the number of round trips between the gateway and the cloud.

4.5.2.2 File-Creation Workload

Depending on the number of threads, SeMiNAS has different performance impact over the baseline
for file creation. As shown in Figure 4.7, SeMiNAS has only negligible performance impact when
there are only one or ten threads. Surprisingly, SeMiNAS makes file creation 35% faster than
the baseline when the number of threads grows to 100. This is caused by the TCP connection
between the gateway and the server, particularly due to the TCP Nagle algorithm [194]. The
algorithm adds extra delay to outbound packets in the hope of coalescing multiple small packets
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Figure 4.6: Relative throughput of SeMiNAS to the baseline under 10ms, 20ms, and 30ms network
delays.

into fewer, larger ones; TCP Nagle trades off latency for bandwidth. This trade-off hurts the
baseline performance of this file-creation workload, which is metadata intensive and generates
many small network packets. In contrast, the algorithm favors SeMiNAS because SeMiNAS uses
compound procedures to pack file creations and extra secure operations (e.g., creating file headers)
together to form larger packets.

The number of threads influences the performance because all threads share one common TCP
connection between the gateway and the server. More threads bring more coalescing opportunities;
otherwise, the extra waiting of TCP Nagle is useless if the current request is blocked and no other
requests are coming. To verify this explanation, we temporarily disabled TCP Nagle by setting the
TCP NODELAY socket option, and observed that SeMiNAS’s throughput became about the same
(99%) as the baseline thereafter.

Figure 4.7 also shows that, as expected, the persistent cache (FSAL PCACHE) does not make
a difference in file creation because FSAL PCACHE caches only data, but not metadata.

4.5.2.3 File-Deletion Workload

Figure 4.8 shows the results of deleting files, where SeMiNAS have the same throughput as the
baseline with and without the persistent cache. This is because SeMiNAS does not incur any
extra operations upon file deletion. However, adding FSAL PCACHE makes file deletion 12–
18% slower. This is because FSAL PCACHE needs one extra lookup operation to delete a file.
FSAL PCACHE uses file handles as unique keys of cached content, but the file deletion function
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Figure 4.8: Throughput of deletion of 256KB files, with one NFS client and 100 threads.

(i.e., unlink) uses the parent directory and file name, rather than the file handle, to specify the
file. Those extra lookups could be saved if FSAL PCACHE maintains a copy of the file-system
namespace, which we left as future work.

4.5.3 Macro-Workloads
We evaluated SeMiNAS using three Filebench macro-workloads: (1) NFS Server, (2) Web Proxy,
and (3) Mail Server.

4.5.3.1 Network File-System Server Workload

Filebench’s NFS-Server workload emulates the I/O activities experienced by an NFS server. We
used the default settings of the workload, which contains 10,000 1KB-to-1700KB-large files total-
ing 2.5GB. The read sizes of the workload range from 8K to 135K with 85% reads 8KB-large; the
write sizes range from 9K to 135K with 50% writes 9KB- to 15KB-large. The workloads perform
a variety of operations including open, read, write, append, close, create, and delete.

Figure 4.9 shows the results of running this workload. Without cache, the baseline gateway’s
throughput decreases from 72 ops/sec to 26 ops/sec as the network latency between the gateway
and the server increased from 10ms to 30ms. After adding the persistent data cache, the baseline
throughput increases but only slightly. The performance boost of caching is small because the
workload contains many metadata operations that cannot be cached; for example, open and close
operations have to talk to the server in order to maintain close-to-open consistency.
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Figure 4.9: Throughput of Filebench NFS-Server workload, with one benchmarking client and one
thread.

In this NFS-Server workload, SeMiNAS is between 6% slower and 2% faster than the baseline
without cache; SeMiNAS is 3–10% slower with cache enabled. As the network delay grows, the
performance penalty of SeMiNAS becomes smaller regardless of the presence of cache. This is
because we optimized SeMiNAS for wide-area environment by minimizing the number of round
trips between the gateway and the cloud server.

We noticed that adding cache to SeMiNAS actually makes the performance slightly worse (the
last two bins in each group of Figure 4.9). This is because FSAL PCACHE makes file deletions
slower with extra lookups (see Chapter 4.5.2.3), and file deletions count for as much as 8% of
all WAN round trips in this workload. The extra lookups incurred by file deletions are also one
of the reasons why the cache’s performance boost to the baseline is small, although a lookup in
the baseline is cheaper than in SeMiNAS (because SeMiNAS needs extra bookkeeping during
lookups).

4.5.3.2 Web-Proxy Workload

Filebench’s Web-Proxy workload emulates the I/O activities of a simple Web-Proxy server, which
fits well with SeMiNAS’s gateway architecture. The workload has a mix of file creation, deletion,
many open-read-close operations, and a file append operation to emulate logging. The default
Web-Proxy workload has 10,000 files with an average size of 16KB in a flat directory, and 100
benchmarking threads. We made three changes to the default settings: (1) we placed the files in
a file-system directory tree with a mean directory width of 20 because a flat directory made the
baseline so slow (around 20 ops/sec) that SeMiNAS did not show any performance impact at all;
(2) we enlarges the average file size to 256KB so that the working set size (2.56GB) is more than
twice the size of the NFS client’s RAM (1G) but smaller than the size of the persistent cache; and
(3) we used a Gamma distribution [193, 196] to control the access pattern of the files, but varied
the Gamma’s shape parameter (k) to emulate access patterns with different degrees of locality.

Figure 4.10 shows the Web-Proxy workload results. With 10ms network delay, the throughput
of “baseline-nocache” drops from 910 to 630 ops/sec as the degree of workload locality decreases.
The “seminas-nocache” curve in Figure 4.10(a) has a similar shape to its baseline counterpart, but
at 11–18% lower throughputs as a result of extra security mechanisms in SeMiNAS. With high
locality (k <= 1), adding FSAL PCACHE (blue circle curve) actually slows down the baseline
(red diamond curve) because (1) FSAL PCACHE is not useful when most reads are served from
the client’s page cache; and (2) FSAL PCACHE also introduces extra overhead for file deletions.
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Figure 4.10: Web-proxy results with different access patterns, one NFS client, and 100 threads. A
larger value of the shape parameter means less locality in the access pattern.
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Figure 4.11: Filebench Mail Server throughput.

Conversely, as the locality drops (k = 10), the client’s page cache becomes less effective and the
persistent cache, which is larger than the working set size, becomes effective.

Figure 4.10(a) shows that SeMiNAS actually makes the workload up to 15% faster than the
baseline when there is a cache (i.e., the green triangle curve is higher than the orange rectangle
curve). This is because SeMiNAS makes file creations faster in this highly-threaded workload
thanks to the TCP Nagle algorithm (see Chapter 4.5.2.2).

For a slower network of 30ms latency (Figure 4.10(b)), the throughputs of baseline and SeM-
iNAS are both slower than in the faster network (10ms). However, the relative order of the four
configurations remains the same. Without the cache, SeMiNAS has a small performance penalty
of 4–6%; with the cache, SeMiNAS sees a performance boost of 9–19%.

4.5.3.3 Mail-Server Workload

Filebench’s Mail-Server workload emulates the I/O activity of an mbox-style e-mail server that
stores each e-mail in a separate file. The workload consists of 16 threads, each performing create-
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append-sync, read-append-sync, read, and delete operations on a fileset of 10,000 16KB files.
We used this Mail-Server workload to test the scalability of SeMiNAS by gradually increasing

the number of NFS clients. As shown in Figure 4.11, both the baseline and SeMiNAS scales well
as the number of clients grows. The relative order and trend of the four curves in Figure 4.11
share similarity with the curves of the Web-Proxy workload results for similar reasons. In terms
of relative speed to the baseline, SeMiNAS is 1–11% slower without cache, and is between 17%
slower (fewer clients) and 12% faster (more clients) with cache depending on the network delay
and effectiveness of TCP Nagle algorithm (see Chapter 4.5.2.2).

4.6 Related Work of SeMiNAS
SeMiNAS is related to (1) secure distributed storage systems, (2) cloud NAS, and (3) cloud storage
gateways.

4.6.1 Secure Distributed Storage Systems
SFS [120], Cepheus [69], SiRiUS [73], and SUNDR [105] are cryptographic file systems that pro-
vide end-to-end file integrity and confidentiality with minimal trust on the server; but they all used
remote servers as block stores instead of file-system servers, and none of them took advantage of
NFSv4, which was not invented at the time. SeMiNAS’ sharing of file keys (FK) is similar to
SiRiUS [73]. However, because access control is enforced by the trusted middleware, SeMiNAS
needs only one key per file instead of two (one for reading and the other for writing) in SiR-
iUS. NASD [72] and SNAD [128] add strong security to distributed storage systems using secure
distributed disks. In both NASD’s and SNAD’s threat models, disks are trusted; these are funda-
mentally different from threat models in the cloud where storage hosts are physically inaccessible
by clients and thus hard to be trusted.

4.6.2 Cloud NAS
Panache [60] is a parallel file-system cache that enables efficient global file access over WANs but
without WAN’s fluctuations and latencies. It uses pNFS to read data from remote cloud servers and
caches them locally in a cache cluster. Using NFS, Panache enjoys the strong consistency of file
system API. However, its main focus is high performance with parallel caching, instead of security.
Cloud NAS services are provided by companies such as Amazon [88], SoftNAS [172] and Zadara
Storage [205]. These services focus on providing file system services in public clouds. These cloud
NAS service providers control and trust the ultimate storage devices, whereas SeMiNAS cannot
control or trust the devices. FileWall [171] combines the idea of network firewalls with network file
systems, and provides file access control based on both network context (e.g., IP address) and file
system context (e.g., file owner). FileWall can protect cloud NAS servers from malicious clients,
whereas SeMiNAS is for protecting clients from clouds.

72



4.6.3 Cloud storage gateways
Using the cloud as back-end, a cloud gateway gives a SAN or NAS interface to local clients, and
can provide security and caching features. There are several cloud gateway technologies, in both
industry and academia. In academia, Hybris [54], BlueSky [190], and Iris [176] are examples of
cloud storage gateway systems that provide integrity. Hybris additionally gives fault tolerance by
using multiple cloud providers, whereas BlueSky also provides encryption. BlueSky and Iris have
a file system interface on the client side, and Hybris provides a key-value store. However, none of
them uses a file system API for cloud communication, and thus they offer only a weaker model—
the eventual consistency model that usually uses a RESTful API. In the storage industry, NetApp
SteelStore [135] is a cloud integrated storage for backup. Riverbed SteelFusion [157] provides a
hyper-converged infrastructure with WAN optimization, data consolidation, and cloud back-ends.
The exact security mechanisms of SteelStore and SteelFusion are not publicly known although
they claim to support encryption.

4.7 SeMiNAS Conclusions
We presented the design, implementation, and evaluation of SeMiNAS, a secure middleware using
cloud NAS as back-end. SeMiNAS provides end-to-end data integrity and confidentiality while
allowing files to be securely shared among geo-distributed offices. SeMiNAS uses authenticated
encryption to safely and efficiently encrypt data and generate MACs at the same time. SeMiNAS is
optimized for WANs and has a persistent cache to hide high WAN latencies. SeMiNAS leverages
advanced NFSv4 features, including Data Integrity eXtention (DIX) and compound procedures, to
manage its secure metadata without incurring extra network round trips. Our benchmarking with
Filebench workloads showed that SeMiNAS has a performance penalty less than 18%, and occa-
sionally improve performance by up to 19% thanks to its effective use of compound procedures.

4.7.1 Limitations
SeMiNAS does not handle attacks based on side-channel information or file-access patterns. SeM-
iNAS is vulnerable to replay attacks, which usually requires building a Merkle tree [124] for the
entire file system and is thus expensive in WANs. We are developing an efficient scheme to thwart
replay attacks. We solve all these limitations in Chapter 5.
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Chapter 5

Kurma: Multi-Cloud Secure Gateways

5.1 Kurma Introduction
Kurma is the final design of a cloud middleware system we propose to build. Kurma is based
on SeMiNAS, and they have common design goals such as strong security, high performance,
and flexible trade-off between security and performance. Their threat models are the same: public
clouds are not trusted, clients are semi-trusted, and only the secure gateways are fully trusted. They
also both provide the same security features: integrity, confidentiality, and malware detection. Both
Kurma and SeMiNAS have a middleware architecture where clients access cloud storage using
NFS indirectly via secure cloud gateways. They both have an on-premises persistent cache that is
nearly identical.

Nevertheless, Kurma is better than SeMiNAS in four important aspects: robustness, security,
performance, and feasibility.

First, Kurma is more robust than SeMiNAS by eliminating single points of failure, and thus
enjoys higher availability. Although most public cloud providers have high availability close to
five nines (99.999%) [199], availability and business continuity remain the largest obstacles for
cloud computing [16]. A single cloud provider is itself a single point of failure [16]; once it is out
of service, there is not much tenants can do but wait for it to come up. By using multiple clouds,
Kurma solves this problem. In SeMiNAS, another single point of failure is the gateway server;
Kurma eliminates this by storing metadata in a highly available distributed service (ZooKeeper),
and by partitioning file data among a cluster of on-premises NFS servers.

Second, Kurma is more secure than SeMiNAS by protecting file system metadata and detecting
replay attacks. SeMiNAS encrypts only file data but not file system metadata such as file names
and directory tree structure. This makes SeMiNAS susceptible to in-cloud side-channel attacks
that might extract secret information from the metadata. In contrast, Kurma saves on the cloud
only encrypted data blocks, but not any file system metadata whatsoever. Moreover, SeMiNAS’s
vulnerability to replay attacks is fixed by Kurma. Kurma keeps file system metadata on premises
and replicates the metadata across the gateways (regions) via secure communication channels. A
part of the replicated metadata is a per-block version number, which can detect replay attacks that
covertly replace fresh data with overwritten stale data.

Third, Kurma has higher performance than SeMiNAS by relaxing the (unnecessarily strong)
consistency requirement, and optimizing NFS’s compound procedures. We argue in Chapter 4 that
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SeMiNAS’s NFS file system consistency among geo-distributed gateways is feasible and desirable
for many applications. However, the cost of global NFS consistency is high even in the presence
of a persistent cache, as was demonstrated in the evaluation of SeMiNAS (Chapter 4.5), especially
in the Filebench file-server macro-workload. To achieve the global NFS close-to-open consistency
of NFS, SeMiNAS has to talk to the cloud NFS server synchronously upon each file open and
close operation. This incurs a long latency because of round trips in WANs. Conversely, Kurma
is willing to trade global NFS consistency for high performance. Instead of pursuing global NFS
close-to-open consistency among all geo-distributed gateways, Kurma maintains NFS’s close-to-
open consistency at only the gateway (or regional) level. That is, NFS operations are synchronized
with operations to the same gateway instance (i.e., within one common region), but not with oper-
ations to other instances (i.e., in other regions). This consistency model is the same as provided by
traditional NAS appliances, and thus is enough for legacy applications. Kurma’s geo-distributed
gateways still share a common namespace by asynchronously replicating gateway-level changes
to other gateways. Without overall consistency, however, the asynchronous replication may cause
conflicts, which Kurma has to resolve automatically or with end users’ intervention.

Fourth, Kurma is more feasible than SeMiNAS with more realistic assumptions of what cloud
providers support. SeMiNAS assumes the cloud NFS server supports NFS’s end-to-end integrity [139],
which simplifies management of security metadata (see Chapter 4.3.4.3), but is non-standard part
of the NFSv4.2 protocol proposal. As it stands today, SeMiNAS could not be deployed at a cloud
scale and be objectively evaluated. On the other hand, Kurma uses existing cloud APIs and is thus
more practical.

The rest of this chapter is organized as follows. Chapter 5.2 introduces Kurma’s supporting
systems. Chapter 5.3 and Chapter 5.4 discuss Kurma’s design and implementation, respectively.
Chapter 5.5 evaluates its security and performance. Chapter 5.6 studies related work. Chapter 5.7
concludes this chapter.

5.2 Kurma Background
In addition to NFS-Ganesha introduced in Chapter 4.4, Kurma also depends on several open-
source distributed systems. These systems are important components of Kurma; understanding
these systems is helpful in understanding Kurma. We discuss them here before we turn to Kurma’s
design.

5.2.1 ZooKeeper: A Distributed Coordination Service
Apache ZooKeeper [86] is a distributed coordination service. ZooKeeper achieves consensus
among distributed systems using an algorithm called ZAB, short for ZooKeeper Atomic Broad-
cast [92]. ZooKeeper is popular and regarded as “The King of Coordination” [23]. It is also widely
used for leader selection, configuration management, distributed synchronization, and namespace
management. ZooKeeper provides strong consistency and has been used in cloud service as “con-
sistency anchor” [30].

In ZooKeeper, distributed systems coordinate with each other through a shared tree-structured
namespace. Each node in the namespace is called znode, and the path from the tree root to a zn-
ode is called zpath. Each znode can store a small amount (typically less than 1MB) of data, and
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have children znodes. ZooKeeper keeps all data (including the namespace metadata and znode
data) in memory to achieve high throughput and low latency. Kurma achieves durability by main-
taining replicas among its servers, and saving transaction logs and snapshots in a persistent store.
ZooKeeper is transactional and has a global ordering of all transactions. Therefore, it guarantees
a consistent view of the tree-structured namespace. ZooKeeper supports a rich set of attributes
for each znode, including a unique ID, ACL, number of children, as well as version numbers and
timestamps for data changes, ACL changes, and children member changes. ZooKeeper allows
clients to register watchers to znodes, and will notify interested clients upon changes on watched
znodes.

ZooKeeper is stable and has been successfully used in many industrial applications [11]. Al-
though ZooKeeper is implemented in Java, it provides both C and Java APIs to clients. ZooKeeper
also has a helper library called Apache Curator [8]. Curator includes a higher level ZooKeeper
API, recipes for common usage of ZooKeeper, a testing framework, and other utilities.

Kurma uses ZooKeeper for three purposes: (1) storing the namespace data (file attributes,
directory structure, and block mapping) of the Kurma file system; (2) coordinating multiple NFS
servers in the same region; and (3) transaction execution of large NFS compounds. Kurma uses
Apache Curator [8] to simplify the programming of ZooKeeper.

5.2.2 Hedwig: A Publish-Subscribe System
Apache Hedwig is an open-source “publish-subscribe system designed to carry large amounts
of data across the Internet in a guaranteed-delivery fashion” [9]. Clients to Hedwig are either
publishers (sending data) or subscribers (receiving data). Hedwig is topic based: a publisher posts
messages to a topic, and Hedwig delivers the messages in the published order to all subscribers
that are interested in that topic.

Hedwig is designed for inter-data-center communication; it consists of geo-distributed regions
spread across the Internet. A message published in one region is delivered to subscribers in all
regions. Hedwig achieves guaranteed delivery by saving messages in a persistent store, replicating
messages in all interested regions, and then sending messages to all subscribers until they acknowl-
edge the delivery. To achieve high availability, Hedwig uses ZooKeeper for metadata management,
and uses BookKeeper [7], a highly available replicating log service, for persistent store. Hedwig
supports both synchronous and asynchronous publishing; it also supports message filters in sub-
scriptions.

Kurma uses Hedwig for distributed state replication to maintain a global namespace. Using
Hedwig, a gateway asynchronously propagates changes to the namespace to other gateways in
remote regions. A per-block version number is a part of the namespace data, and is used for
detecting replay attacks. Hedwig’s filters can be used for advanced access control, for example
when a certain file should not be visible by clients in a region. Hedwig also supports customizable
traffic throttling.

5.2.3 Thrift: A Cross-Language RPC Framework
Apache Thrift is cross-language RPC framework for scalable cross-language services develop-
ment [10]. Thrift allows seamless integration of services built in different languages, including
C, C++, Java, Python, PHP, Ruby, Erlang, Perl, Haskell, C#, and many others. Thrift includes a
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code generator to generate messages (structs or types), RPC stubs (services), and data marshaling
routines; it is similar to Sun’s rpcgen, but not limited to support only the C language. In addition
to a general RPC framework, Thrift also has concrete building blocks of high performance RPC
services, such as scalable multi-threaded servers. Thrift has been used by large companies such as
Facebook, Siemens, and Uber [12].

Kurma uses Thrift for two purposes: (1) defining messages stored in ZooKeeper and repli-
cated among gateways, and (2) implementing RPC communication between the Kurma services
running in a gateway. For example, the Kurma NFS server talks to Kurma’s file system server
using RPC implemented using Thrift. Thrift supports data compression when encoding messages,
and considerably cut the memory footprint of compressible data such as block version numbers.
This is particularly helpful when storing compressible data in ZooKeeper, which keeps all its data
in memory.

5.3 Kurma Design
Kurma has the same threat model as SeMiNAS; the model is described in Chapter 4.3.1. This
section presents other aspects of Kurma design including its design goals, architecture, consistency
model, caching, file system partition, and security features.

5.3.1 Design Goals
Kurma’s design goals are similar to those of SeMiNAS, except that Kurma strives for higher avail-
ability, stronger security, and better performance. We list Kurma’s four design goals by descending
importance:

• Strong security: Kurma should ensure confidentiality, integrity, and freshness to both file
data and metadata while outsourcing storage to clouds.

• High availability: Kurma should have no single point of failure, and be available despite
network partitions and outage of a small subset of clouds.

• High performance: Kurma should minimize the performance penalty of its security fea-
tures, and overcome the high latency of remote cloud storage.

• High flexibility: Kurma should be configurable in many aspects to support flexible trade-off
among security, availability, performance, and cost.

5.3.2 SeMiNAS Architecture
Kurma’s architecture is analogous to SeMiNAS: on-premises gateways (trusted) acts as security
bridges between trusted clients and untrusted public clouds. However, Kurma has three major ar-
chitectural differences, as illustrated in Figure 5.1. First, each geographic region has a distributed
gateway instead of a centralized one. A conceptual Kurma gateway consists of a cluster of ma-
chines which are properly coordinated using ZooKeeper. This distributed gateway avoids any
single point of failure and enjoys better scalability and availability.
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Figure 5.1: Kurma architecture when there are three gateways. Each dashed oval represents an
office in a region, where there are clients and a Kurma gateway. Each gateway is a cluster of
coordinated machines represented by three inter-connected racks. The green arrows connecting
gateways are private secret channels for replicating file-system and security metadata. Each gate-
way has directly attached storage to cache hot data. Clocks of all machines are synchronized using
NTP [129].

Second, Kurma gateways in geo-distributed regions are interconnected. In SeMiNAS, gateways
communicate with each other only indirectly through the cloud NFS server. This significantly sim-
plifies the SeMiNAS’s architecture, but sharing secrets through the untrusted public cloud makes
replay attacks difficult to detect. With a trusted direct communication channel between each pair
of gateways, secret file system metadata can be easily shared, and replay attacks can be efficiently
detected using version numbers of data blocks.

Third, Kurma uses multiple public clouds, instead of a single one, as back-ends. Kurma uses
clouds as block stores other than file servers. For a data block, Kurma stores in each cloud either
a replica, or a part of the erasure coding results of the block. In case of cloud outage, Kurma can
continue its service by accessing other clouds that are still available; in case of data corruption in
cloud, Kurma can restore the data from other replicas or other erasure coding parts.

5.3.2.1 Gateway components

Each Kurma gateway has three types of servers. These servers are loosely coupled and use RPC
or network sockets for mutual communication. They can be deployed in many machines, so that
Kurma enjoys the flexibility of adjusting the number of specific servers according to load. Fig-
ure 5.2 shows the Kurma servers and their components. NFS Servers export Kurma files to clients
via NFS; each NFS Server has a persistent Cache Module that holds hot data (see Chapter 4.3.6).
To process metadata requests and uncached data requests, each NFS Server uses its Gateway Mod-
ule to talk to Gateway Servers’ FS Module using RPCs defined using Apache Thrift [10].

Gateway Servers break files into blocks, and use its Cloud Module to store encrypted blocks
as key-value objects in clouds. The Cloud Module also performs replication, erasure coding, and
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Figure 5.2: Kurma gateway components. A gateway consists of three types of servers as separated
by dashed lines: NFS, Gateway, and Metadata Servers. Each NFS Server has a persistent Cache
Module and a Gateway Module. Each Gateway Server has six modules: file system (FS), con-
figuration (Config), metadata, security, cloud, and garbage collection (GC). Each Metadata Server
has a ZooKeeper Module and a Hedwig Module. NFS Servers and Metadata Servers have local
storage for data cache and metadata backups, respectively.

secret sharing if configured to do so. Each Gateway Server also has a Config Module that parses
configuration parameters, a Security Module that performs authenticated encryption of each block,
and a Garbage Collection (GC) Module that deletes stale data blocks from clouds and stale meta-
data from metadata servers. Gateway Servers also detect and resolve file-system conflicts (detailed
in Chapter 5.3.6).

Metadata Servers run ZooKeeper to store the metadata (e.g., attributes, block versions) of each
file-system object as a znode—a ZooKeeper data node. They also run Apache Hedwig [9] to
receive messages of metadata updates from other gateways. For each message, Hedwig notifies
a responsible Gateway Server to apply the metadata update in the local gateway. The Gateway
Servers’ Metadata Module communicates with Metadata Servers using ZooKeeper and Hedwig
APIs.

Kurma groups file-system objects into volumes and assigns an NFS Server and a Gateway
Server to each volume. Each volume is a separate file-system tree that can be exported via NFS
to clients. Splitting Kurma services by volumes simplifies the load balancing over servers. Kurma
also uses ZooKeeper to coordinate the assignment of volumes to servers. A client can mount to
any NFS Server, which will either process the client’s NFS requests, or redirect the requests to the
responsible NFS Server using NFSv4 referrals [167].

5.3.3 Metadata Management
Kurma stores file-system metadata in Metadata Servers. Compared to storing metadata also in
clouds, this is not only safer but also faster because metadata operations do not incur slow cloud
accesses. Since each Kurma gateway maintains a full replica of the entire file-system metadata,
Kurma does not need to synchronize with other gateways when processing metadata operations.
Note that each ZooKeeper instance runs completely inside one gateway and does not communicate
directly with gateways in other regions. Therefore, Kurma’s metadata operations are free of any
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Figure 5.3: Simplified Kurma data structures in Thrift’s interface definition language. i16 is a
16-bit integer. Thrift does not have a native i128, so we emulated it using two i64s. list and
map are builtin linear and associative containers, respectively. We omit common attributes such as
mode, uid, and other data structures for directories and volumes.

WAN traffic and thus fast. Each Kurma gateway asynchronously replicates metadata changes to
all other gateways, detecting and resolving conflicting updates (see Chapter 5.3.6).

As shown in Figure 5.3, Kurma’s file-system metadata format is defined using Apache Thrift [10].
Thrift can generate Java and C/C++ data structures from its interface definition language. Kurma
uses a unique 16-bit integer named GatewayID to represent a gateway. Kurma identifies each
file-system object using a unique ObjectID that contains an 128-bit integer id, the gateway that
created the object, and the object type (file, directory, or link). Using a 128-bit integer for id is
enough for one billion machines to create one billion files per second for more than 10,000 bil-
lion years, so Kurma does not reuse ObjectIDs. Each Kurma gateway keeps in ZooKeeper the
largest id that has been used so far. To avoid updating the id in ZooKeeper too frequently, Kurma
always allocates N ids at a time, where N defaults to 1,024. The creator in ObjectID can
distinguish objects that happened to be created simultaneously in multiple gateways with the same
id. Therefore, an ObjectID uniquely identifies a file-system object across all gateways.

In addition to common attributes (size, mode, uid, timestamps, etc.), each Kurma file-
system object has extra attributes including a set of flags and a timestamp of the last update by any
remote gateway. One example of such flags is to indicate if a file-system object is only visible in
one gateway but not in other gateways; this flag is helpful for resolving conflicts among gateways.

Figure 5.3 also shows the structure of a Kurma file. It includes ObjectIDs for itself and its
parent, attributes, and the block shift (i.e., log2 of the block size). For each data block, the file
structure records the block version, and the GatewayID of the gateway that creates the version
of the block. The file structure also records the redundancy configuration and cloud providers of
the file. The redundancy string identifies the redundancy type of the file and its parameters (e.g.,
“r-4” means replication with four replicas). cloud ids represent the cloud storage providers and
buckets; for example, “S3a” represents a bucket named “a” in Amazon’s AWS S3. There is also a
keymap field which we detail in Chapter 5.3.4.

Storing metadata in distributed and highly-available ZooKeeper makes Kurma resilient to ma-
chine and disk failures. Kurma’s metadata is also durable because ZooKeeper saves transaction
logs and snapshots in persistent storage [86]. ZooKeeper keeps as much of its metadata (ideally
all) in memory to speed up metadata operations; keeping file-system metadata in memory is a vi-
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Figure 5.4: Authenticated encryption of a Kurma file block. AES runs in CTR mode without
padding. The initialization vector of AES is the concatenation of the block offset and version.

able solution also used by HDFS [32] and GFS [71]. Kurma minimizes the memory footprint of
its metadata using three strategies:

1. Kurma uses a large block size so that files have fewer blocks and thus less metadata. The
default block size is 1MB and can be configured to be larger. Using a large block size
for cloud storage is beneficial in throughput because cloud stores are often bottlenecked by
network latency instead of bandwidth. A large block size can also save costs because some
cloud storage providers (e.g., AWS and Azure) charge by request counts instead of sizes. A
large block size can further save costs using a write-back cache, which can coalesce many
small writes into a single, larger cloud request.

2. Kurma uses only a 64-bit version number and a 16-bit GatewayID for each block. Kurma
generates an unique block key on the fly when storing the block into cloud key-value stores
(see Figure 5.4). Kurma stores other necessary per-block metadata (e.g., the offset and times-
tamp) in clouds instead of in ZooKeeper.

3. Kurma also compresses its metadata. The block version numbers, which is the largest meta-
data for large files, are particularly compressible because most version numbers are small
and neighboring versions are often numerically close due to locality. Our study of a large set
of NFS traces [6] shows that version numbers of files (larger than 100MB) have an average
compression ratio of 4:1 if using a 1MB block size with LZO level-1 [108,141]. That means
that a 1TB file’s version numbers take only 2.5MB (i.e., 1T/1M × (8 + 2)/4 = 2.5M ).

Minimizing metadata size also reduces the amount of metadata that needs to be replicated
among gateways so that bandwidths of the inter-gateway channels do not become a bottleneck of
the whole system.

5.3.4 Security
Kurma provides integrity and confidentiality as SeMiNAS does. Kurma also use authenticated-
encryption to provide encryption and authentication together. However, Kurma is more secure
with the following two differences: (1) Kurma detects replay attacks, and (2) Kurma protects not
only file data but also file metadata including file system tree structure, and file access patterns.
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Kurma stores each encrypted block as a cloud key-value object: the key of the cloud object is
derived from the block’s metadata; the value is a concatenation of ciphertext and message authen-
tication code (MAC) as shown in Figure 5.4. Kurma’s authenticated encryption uses the secure
encrypt-then-authenticate scheme [119].

5.3.4.1 Data integrity

In addition to confidentiality and authenticity, Kurma also protects data integrity by embedding
encrypted block metadata into each cloud object. As shown in Figure 5.4, the encrypted metadata
includes the offset, version, creator, and timestamp of a block. Kurma uses the offset to detect
attacks of swapping two blocks of the same file; Kurma can also detect inter-file block swapping
because each file has a unique key. Kurma uses the version and the creator to detect replay attacks,
and uses the timestamp to estimate the length of stale time when data freshness could not be
guaranteed.

Data freshness is important because clouds may return stale data due to eventual consistency
or malicious attacks. Checking data freshness requires a file reader (i.e., a client that reads the file)
to be notified of the latest version of the file. It is difficult for a file writer to notify all file readers
of the write because of the large number of clients. However, Kurma has only one gateway in each
region, so it is feasible for gateways to notify each other of file updates. Kurma replicates block
versions among all gateways, and uses the versions to help data freshness in three ways.

First, by incorporating a block’s version number into its cloud object key, updating blocks does
not overwrite existing cloud objects but always creates new objects instead. When a Kurma gate-
way reads a block during an inconsistency window of an eventually consistent cloud, the gateway,
instead of reading stale data, may find the new block missing and then fetch it from other clouds.

Second, a version number uniquely identifies a revision of a data block. When a file is trun-
cated, Kurma does not discard the version number of truncated blocks until the file is completely
removed. When the truncated blocks are added back later, their version numbers are incremented
from the existing values instead of starting at zero. By not reusing the version number of each
block, Kurma ensures that each version of a block has a unique key for its cloud object. Kurma
uses the most significant bit of a 64-bit integer to tell whether the block belongs to a file hole, and
uses the remaining 63 bits for versioning. The version number space is large enough to last for
292,000 years even if a block is updated one million times a second. Note that gateways are not
synchronized and may simultaneously create the same version of a block; Kurma detects this by
including the creator GatewayID in the per-block metadata.

Third, block versions also help prevent replay attack. Since each block version has a unique
cloud object key, attackers could not tell whether two objects are two different versions of one
block. Even if attackers managed to replay a block with an old version, Kurma will find that out
because the old block would contain the wrong version number in the encrypted cloud object value.

With the help of version numbers, Kurma guarantees that a client always reads fresh data
that contains all updates made by clients in the same region. However, Kurma cannot guarantee
that a client would always read fresh data that contains all updates made by any clients in other
regions. This is because network partitions may separate a Kurma gateway in one region from
other gateways, and thus delay the replication of version numbers. This is a trade-off Kurma
makes between availability and partition tolerance as per the CAP Theorem [34].
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5.3.4.2 Key Management

Each Kurma gateway has a master key pair, which is used for asymmetric encryption (RSA) and
consists of a public key (PuK) and a private key (PrK). The public keys are exchanged manually
among geo-distributed gateways by security personnel. This is feasible because one geographic
office has only one Kurma gateway, and key exchange is only needed when opening an office in a
new site. This scheme has the advantages of not relying on any third parties for public key distri-
bution. Knowing the public keys of all other gateways makes it easy for gateways to authenticate
each other, and allows Kurma to securely replicate metadata among all gateways.

When creating a file, the creator gateway randomly generates a 128-bit symmetric encryption
file key (FK). Then, for each Kurma gateway with which the creator is sharing the file (i.e., an
accessor), the creator encrypts the FK using the accessor’s public key (PuK) using RSA, and then
generates a 〈GatewayID, EFK〉 pair where EFK is the encrypted FK. All the 〈GatewayID, EFK〉
pairs are then stored in the file’s metadata (i.e., keymap in Figure 5.3). When opening a file, an
accessor gateway first finds its 〈GatewayID, EFK〉 pair in the keymap, and then retrieves the file
key by decrypting the EFK using its private key (PrK). Kurma uses the file key to encrypt all blocks
of the file. When encrypting a block, Kurma uses the concatenation of the block offset and block
version as the initialization vector (IV). This avoids the security flaws of reusing IVs [57].

5.3.5 Multiple Clouds
Most cloud providers have availability higher than 99% [199]. However, cloud outage does happen
and can be significant at times [183]. Researchers consider availability as the top obstacle to the
growth of cloud computing; the solution is to use multiple cloud providers [16]. By saving data
redundantly on multiple clouds, Kurma can achieve high availability and ensure business continuity
in the presence of cloud failures. Assuming that failures of clouds are independent and the failure
rate of each cloud is λ, then the availability of using two clouds would be 1 − λ2. Therefore,
Kurma can achieve six-nines of availability (99.9999%) when saving replicas on two clouds, each
of which has an availability of 99.9%.

Depending on the configuration, Kurma uses one of three redundancy types: (1) replication,
(2) erasure coding, and (3) secret sharing (described below). They represent different trade-offs
among reliability, security, space overhead, and computational overhead. Each redundancy type
also has its own parameters. A file’s redundancy type and parameters are determined by Kurma’s
configuration when creating the file; the parameters are then stored in the file’s metadata (i.e.,
redundancy and cloud ids in Figure 5.3).

5.3.5.1 Replication

To tolerate the failure of f clouds using replication, we need to replicate data over f + 1 clouds.
A write operation (i.e., PUT) finishes only when we have successfully placed a replica in each of
the f + 1 clouds. A read operation (i.e., GET), however, finishes as soon as one replica is read
and found to be valid by checking the MAC and embedded metadata (see Figure 5.4). The storage
overhead and write amplification are both (f + 1)×. The read amplification is zero in the best
case (no failure), but (f + 1)× in the worst case (f failures). Replication requires little extra
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computation than using a single replica. Kurma encrypts each data block before replicating it over
clouds.

5.3.5.2 Erasure coding

An erasure code transforms a message of k > 1 symbols into a longer message with k + m
symbols. It can recover the original message with any k symbols of the longer message. Therefore,
to tolerate the failure of f clouds using erasure coding, Kurma writes to k+f clouds and read from
at least k clouds. In the best case, a read operation has to read from k clouds but each read size
is 1

k
of the original block size. In the worst case, it has to read from k + f clouds. The storage

overhead and write amplification are both f+k
k
×. Unlike replication, erasure coding requires extra

computation. Erasure coding is more secure than replication because each cloud sees only part of
a block’s data. However, even the partial data may leak significant information, so Kurma always
encrypts data blocks first before applying erasure coding. Kurma’s erasure coding scheme uses
Reed-Solomon [154] from the Jerasure library [147].

5.3.5.3 Secret sharing

A secret sharing algorithm has three parameters: (n, k, r), where n > k > r. It transforms a
secret of k symbols into n shares (where n > k) such that the secret can be recovered from any
k shares but it cannot be recovered even partially from any r shares. A secret sharing algorithm,
such as Shamir’s secret sharing scheme [164] and Rabin’s information dispersal algorithm [151],
simultaneously provides fault tolerance and confidentiality. It is thus more secure than erasure
coding. To tolerate the failure of f clouds using secret sharing, Kurma writes to k + f clouds and
read from at least k clouds. Secret sharing also prevents r (or fewer) conspiring clouds from getting
any secret from the cloud objects. The storage overhead and read/write amplification of secret
sharing are the same as erasure coding. Kurma’s secret sharing algorithms include AONT-RS (All-
Or-Nothing-Transform-Reed-Solomon) [156] and CAONT-RS [107]. CAONT-RS supports data
deduplication on top of AONT-RS.

In sum, replication uses more extra space, but reads from fewer clouds, and does not cost any
computation; erasure coding uses less extra space, but reads from more clouds, and costs extra
computation; secret sharing use about the same space as erasure coding but is more secure thus
requiring more computation. Kurma leaves the choice to end user by supporting all three types of
redundancy and uses the method as specified in its configuration file.

5.3.6 File Sharing Across Gateways
To share files across geo-distributed gateways, Kurma gateways use a common set of cloud providers
for file data blocks, and maintain a unified file-system namespace by replicating metadata changes
across all gateways. In this section, we present Kurma’s consistency model and conflict resolution.

5.3.6.1 Consistency Model

Taking advantage of the observation that file sharing is “rarely concurrent” [102], Kurma gateways
replicate metadata changes asynchronously to other gateways, and detect and resolve conflicts
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after they occur. Asynchronous replication allows Kurma gateways to process metadata operations
without waiting for remote gateways. This significantly lowers operation latency. The asynchrony
also keeps a Kurma gateway available to its local clients when its secret channels to other gateways
are disconnected due to network partitions. In other words, Kurma trades off consistency for
performance, availability, and partition tolerance [34].

This degree of trade-off is acceptable because the relaxed consistency is still the same as pro-
vided by traditional NFS servers. That is, NFS clients in a local region follow the close-to-open
consistency model [104]: when a client opens a file, the client sees all changes made by other
clients in the same region who closed the file before the open. The client, however, may not see
changes from remote gateways until the changes propagate to the local region. This propagation
process is the inconsistency window when a local client may perform operations conflicting with
the remote change. Since concurrent file updates are rare [102], conflicts are rare as well. Kurma
detects and resolves these conflicts.

Kurma replicates metadata asynchronously using the “all-to-all broadcast” method [19]: once a
gateway receives a metadata-mutating request from a client, the gateway processes the request and
then broadcasts the metadata change to all other gateways. This broadcasting is feasible because
Kurma was designed for a small number of gateways (less than a hundred).

Specifically, Kurma uses Apache Hedwig [9] to replicate file-system metadata across gate-
ways. Hedwig is a publish-subscribe system optimized for communication across geo-distributed
data-centers. Hedwig also protects its communications using SSL, so that file-system metadata is
securely replicated among the gateways. Hedwig has been used in production by Yahoo! [93]. Us-
ing pub-sub services is a common technique to replicate data in geo-distributed systems. Facebook
also uses a pub-sub systems called Wormhole to replicate data [165].

We defined the format of Kurma’s inter-gateway Hedwig messages using Thrift [10]. A gate-
way broadcasts a Hedwig message after each successful local metadata-mutating operation (in-
cluding a write that updates version numbers). Although Hedwig ensures ordered message de-
livery, Kurma still needs to synchronize dependent operations. For example, Kurma ensures that
a preceding directory-creation operation is finished before we process a dependent operation that
creates a file in that directory. Kurma does not synchronize independent operations so that they
can be processed quickly in parallel.

Since metadata changes are replicated asynchronously, conflicts may arise when geo-distributed
gateways perform incompatible changes simultaneously. Kurma needs to detect and resolve the
conflicts, and the strategy of resolving conflicts determines Kurma’s consistency model. A simple
strategy is to prioritize gateways so that metadata changes made by higher-priority gateways always
overwrite conflicting changes from lower-priority gateways. With this simple conflict-resolution
strategy, geo-distributed Kurma gateways will become eventually consistent: with no additional
updates to a given file, all reads from clients in all gateways will eventually return the same file
data. This also implies that a gateway separated from other gateways due to network partitions
may not see the changes made by other gateways until the partition is healed. Similar to the clas-
sic eventual consistency [189], Kurma’s eventual consistency assumes all network partitions will
eventually recover. Hedwig has also been used in other eventually consistent distributed systems:
for instance, Yahoo’s Web-scale data-serving system, PNUTS [170], uses Hedwig as well.

If Kurma uses a conflict resolution strategy that allows gateways to diverge, Kurma is no longer
eventually consistent: with no additional updates, the gateways may eventually have different
states. For example, when two gateways simultaneously create files with the same path, a diverg-
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ing conflict-resolution strategy may choose to keep both files by making them visible only to their
creator gateway; thus the two gateways will eventually contain different files. With a diverging
conflict-resolution strategy, Kurma offers FIFO consistency [111]: Kurma preserves the partial or-
dering of operations in a single gateway, but not ordering among geo-distributed gateways. This
is because Hedwig delivers messages from a particular region in the same order to all subscribers
globally, but it may mix messages from different regions in any order [13]. For example, consid-
ering a Kurma deployment with three gateways (A, B, and C): if Gateway-A updates a file (say a)
from av0 to av1 and then to av2, and simultaneously Gateway-B updates another file (say b) from
bv0 to bv1 and then to bv2, then Gateway-C will always see the av0 → av1 change before av1 → av2,
and it will also see bv0 → bv1 before bv1 → bv2. However, Gateway-C may see av0 → av1 before
bv1 → bv2 or in the reverse order.

Because there is no ordering among messages from different gateways, Kurma does not provide
causal consistency [3, 75, 112]. Messages with causal dependency may be delivered out of order.
For example, Gateway-A updates a file (say a) from av0 to av1; then the av0 → av1 change is
quickly replicated to Gateway-B, and after that Gateway-B updates the same file from av1 to av2
before Gateway-C sees the av0 → av1 change. In the end, it is therefore possible for Gateway-C to
see the av1 → av2 change from Gateway-B before it sees the av0 → av1 change from Gateway-A.

5.3.6.2 Conflict resolution

Kurma adds extra information inside inter-gateway Hedwig messages to detect conflicts that might
happen during the inconsistency window of asynchronous replication. For example, each file-
creation message contains not only the parent directory and the file name, but also the ObjectID
of the locally created file. If a remote gateway happens to create a file with the same name simul-
taneously, Kurma can differentiate the two files using their ObjectIDs.

Conflicts are rare [155], but their resolution can be complex requiring application-specific
knowledge and even human intervention [96, 163]. Fortunately, the majority of conflicts can be
resolved automatically [155]. Kurma has a framework to support conflict detection and resolution.
Kurma also contains default conflict resolvers for three common types of conflicts: (1) content
conflicts when two or more gateways write to the same file block simultaneously, (2) name conflicts
when two or more gateways create objects with the same name in one directory, and (3) existence
conflicts when one gateway deletes or moves a file-system object (e.g., delete a directory) while
another gateway’s operations depend on the object (e.g., create a file in that directory).

A Kurma gateway detects content conflicts when processing a write operation, which may be
initiated by a local client or a Hedwig write message replicated from a remote gateway. As shown
in Figure 5.3, Kurma maintains a version and a creator GatewayID for each block. Overwriting
a block with another block of the same creator is not a conflict. Note that Hedwig guarantees in-
order delivery of messages, so that block versions with the same creator are written in the proper
order. Overwriting a block with a different creator may be a content conflict, and Kurma uses a
default resolver that follows Bayou’s “last writer wins” policy [182]. Kurma reads two conflicting
versions of the block from clouds, compares the timestamps of the two block versions, and uses
the version with a later timestamp as the winner.

A gateway detects a name conflict if it finds a different file-system object with the same name
already exists when replicating an object from a remote gateway. Note that each object has an
ObjectID that is unique across all gateways. Our default resolver for name conflicts appends
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the creator’s name to the file name so that conflicting objects can coexist. To indicate this name
change, Kurma sets a flag in the attributes of the newer object. For example, if file “foo” already
exists when processing a conflicting Hedwig create message from the remote New York office, a
new file “foo ny” will be created instead. Note that Kurma does not append a suffix to the name
of the file created by local clients. In this example, the resolution procedure creates a new file
“foo ny”, but keeps the original “foo” intact.

A gateway detects an existence conflict if a dependant condition is false when processing a
Hedwig message from a remote gateway. For example, a gateway may find the directory not
empty while processing a message that unlinks the directory. Kurma’s default policy for this type
of conflicts is to mark a deleted object private to the remaining gateways that still need the object.
This policy does not delete any objects in question and thus does not lose data. For the directory
unlinking example, the gateway processing the unlinking Hedwig message will mark the non-
empty directory as private to the local gateway instead of deleting it. Once an object is marked
private, subsequent changes to it will not be broadcast to other gateways. A private object is
actually removed once its private gateway also deletes it.

More conflict resolution policies can be added: for example, instead of picking the versions
of blocks with the latest timestamp, it may be desirable to merge two versions of a file using
content-based merging as Git does. We leave these as future work.

5.3.7 Partition over Multiple NFS Servers
To make Kurma gateways robust, Kurma partitioned file system objects (files and directories) of
Kurma volumes across multiple NFS servers. Each Kurma gateway maintains a list of the NFS
servers running in that gateway, and designates a primary NFS server for each file system object.
Each file system object has only one primary NFS server at a time, and the primary NFS server
processes all operations to that object. Kurma prefers the least loaded running NFS server when
making designation decision. The list of running NFS servers and the designation records of
primary NFS servers are stored in ZooKeeper.

To simplify the designation of primary NFS server, Kurma does that only for directories whose
directory depths are lower than a configurable level (3 by default). For a file system object without
a directly designated NFS server, it inherits the primary NFS server from the lowest ancestor in the
directory tree.

When the primary NFS server of a file system object is down, Kurma designates a still-running
NFS server as the new primary. We propose to achieve the fail over between NFS servers by
setting all NFS servers as an NFS cluster [145]. When the failed NFS server recovers, it will read
designation information from ZooKeeper, and know it is no longer the primary NFS server for file
system objects designated before the outage. When the recovered NFS server still receives requests
on the old file system objects, it will redirect those request to their new primary NFS servers.

Each Kurma gateway stores file system metadata in one single instance of ZooKeeper, and
uses ZooKeeper to coordinate multiple NFS servers. Therefore, NFS requests operating on two
file system objects in two NFS servers, such as RENAME, is not a problem because the single
ZooKeeper will process changes of the metadata backing both NFS servers.
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5.3.8 Garbage Collection
When updating a file block, Kurma creates a new cloud object with a higher version number instead
of overwriting the existing cloud object. Therefore, Kurma needs a separate garbage-collection
process to remove old cloud objects not used by anyone. Each Kurma gateway deletes only the
cloud objects it created so that a cloud object is deleted only once. For each gateway that no longer
exists (may be removed), Kurma assigns an existing gateway to delete old cloud objects on behalf
of the removed gateway. Each Kurma gateway reads its assignment from its configuration file.

Kurma adds a delay before deleting old-version cloud objects to avoid removing old objects
that may still be needed by remote gateways. Consider a gateway that updates a block twice in a
short time window and generates two versions, say “V-11” and “V-12”. The updates generate two
Hedwig messages that are broadcast to remote gateways. If a remote gateway processes the Hedwig
message of “V-11” and reads “V-11” before processing the next message, the read of “V-11” from
clouds may fail if the local gateway has already deleted “V-11” from the clouds. The duration of
the delay is a parameter in Kurma’s configuration file. A previous study shows that many files are
updated in bursts of short time windows, separated by longer periods of inactivity [162]. Therefore,
a reasonable delay should be longer than the cross-gateway latency and the active window size.

5.3.9 Persistent Caching
Each Kurma NFS Server (see Figure 5.2) has a persistent cache so that hot data can be read in
the low-latency on-premises network instead of from remote clouds. The cache stores plaintext
instead of ciphertext so that reading from the cache does not need decryption; this is safe because
on-premises machines are trusted in our threat model. The cache is a write-back cache that can hide
the high latency of writing to clouds. Being write-back, the cache is persistent because some NFS
requests—WRITEs with the stable flag and COMMITs—require dirty data to be flushed to stable
storage [166] before replying. The cache also maintains additional metadata in stable storage so
that dirty data can be recovered and written back after crashes. The metadata includes a list of dirty
files and the dirty extents of each file.

For each cached file, the cache maintains a sparse file of the same size in the server’s local
file system. Insertion of file blocks is performed by writing to the corresponding block offsets
of the sparse files. Evictions are done by punching holes at the corresponding locations using
fallocate [115]. This design delegates file block management to the local file system, and thus
significantly simplifies the Cache Module.

Traditionally, NFS provides close-to-open cache consistency, which guarantees that when a
client opens an NFS file, it can observe the changes made by clients that have closed the file
before. This requires an NFS client to flush a file’s dirty pages upon closing the file, and to
revalidate its local cache when re-opening the file (i.e., check if any other client has invalidated
the cached data). To be consistent, Kurma’s Cache Module also revalidates a file’s persistent cache
content when processing an NFS open request on the file. As discussed in Chapter 4.3.4.3, Kurma
stores a file attribute that is the timestamp of the last change made by any other remote gateway
(called remote ctime). The cache compares its locally-saved remote ctime with the latest
remote ctime: if they match, it means that no other gateway has changed the file, and the
content is still valid; otherwise, the content should be invalidated.

To allow flexible trade-off between consistency and latency, the Cache Module uses a parameter
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Components Language LoC
Kurma NFS Server C/C++ 15,802
Kurma Gateway Server Java 27,976
Secret Sharing JNI C/C++ 2,480
RPC & Metadata Definition Thrift 668

Table 5.1: Lines of code of the Kurma prototype, excluding code generated by Thrift.

called write-back wait time (WBWT ) to control whether the write-back should be performed
synchronously or asynchronously upon file close. When WBWT is set to zero, write-back is
performed right away and the close request is blocked until the write-back finishes. WhenWBWT
is greater than zero, Kurma first replies to the close request, and then waitsWBWT seconds before
starting to write-back dirty cache data to the clouds.

5.4 Kurma Implementation
We have implemented a Kurma prototype that includes all features described in the design, except
for the partition of volumes among multiple NFS servers. We have tested our prototype thoroughly
using unit tests and ensured that it passed all xfstests [203] cases applicable to NFS. Table 5.1
shows the lines of code of the prototype. We plan to open-source all of our code in the near future.

5.4.1 NFS Servers
Kurma’s NFS Servers (see Figure 5.2) were built on top of NFS-Ganesha [50, 138], a user-space
NFS server. NFS-Ganesha can export files from many backends to NFS clients through its File
System Abstraction Layer (FSAL). FSAL is similar to Linux’s Virtual File System (VFS). Multiple
FSAL layers can also be stacked to add features in a modular manner. We implemented the Cache
Module as an FSAL PCACHE layer and the Gateway Module as an FSAL KURMA layer; we stack
FSAL PCACHE on top of FSAL KURMA. FSAL PCACHE always tries to serve NFS requests from
the local cache. It only redirect I/Os to the underlying FSAL KURMA in case of cache miss or write
back. FSAL PCACHE groups adjacent small I/Os to form large I/Os that are multiples of the file’s
block size so that slow cloud accesses are amortized. FSAL PCACHE uses the LRU algorithm to
evict blocks and ensures that evicted dirty blocks were written back first. FSAL KURMA requests
file-system operations to Gateway Servers using a custom protocol defined using Apache Thrift.

5.4.2 Gateway Servers
The Gateway Servers were implemented in Java because many dependent services such as ZooKeeper
and Hedwig are also Java libraries. The File-System Module is a Thrift RPC server that commu-
nicates with Kurma’s NFS Servers; it is implemented using Thrift’s Java RPC library. The Meta-
data Module uses the ZooKeeper client API to store metadata; it also uses Apache Curator [8],
a ZooKeeper utility library. Before been stored into ZooKeeper, metadata is compressed using
Thrift’s compressing data serialization library (TCompactProtocol). The Metadata Module
uses the Hedwig client API to subscribe to remote metadata changes and to publish local changes.
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The secret channels connecting Kurma gateways are SSL socket connections. The Security Mod-
ule uses Java 8’s standard cryptographic library. The Cloud Module includes cloud drivers for
Amazon S3, Azure Blob Store, Google Cloud Storage, and Rackspace Cloud Files; it also includes
a redundancy layer for replication, erasure coding, and secret sharing. We adapted the cloud drivers
code from Hybris [53, 54]. Our erasure coding uses the Jerasure library [147] and its JNI wrap-
per [184]. Our secret sharing library uses the AONS-RS [156] and CAONS-RS [107] code from
CDStore [106]; we also added a JNI wrapper for the secret sharing library.

5.4.3 Optimizations
Our Kurma implementation includes five optimizations:

1. Generating a file’s keymap needs to encrypt the file’s key using slow RSA for each gateway
(see Section 5.3.4). To hide the high latency of RSA encryptions, Kurma uses a separate
thread to pre-compute a pool of keymaps, so that Kurma can quickly take one keymap out
of the pool when creating a file.

2. To reduce the metadata size written to ZooKeeper, Kurma stores a file’s keymap in a child
znode (a ZooKeeper data node) under the file’s znode. For large files, Kurma also splits
their block versions and creators into multiple child znodes so that a write only updates one
or two small znodes of block versions.

3. Kurma metadata operations are expensive because one ZooKeeper update requires many
network hops among the distributed ZooKeeper nodes. Furthermore, a file-system operation
may incur multiple ZooKeeper changes. For example, creating a file requires one creation of
the file’s znode, one creation of its keymap znode, and one update of its parent directory’s
znode. To amortize high ZooKeeper latency, we batch multiple ZooKeeper changes into a
single ZooKeeper transaction [86].

4. Latencies of clouds vary significantly over time. To achieve the best performance, Kurma
sorts cloud providers by their latencies every N seconds (N is a configurable parameter) and
uses the fastest clouds as backends.

5. To reduce the frequency of accessing the Metadata Servers, Kurma’s Gateway Servers cache
clean metadata in memory using Guava’s LoadingCache [89]. The cached metadata in-
cludes attributes of hot file-system objects, block versions of opened files, and hot directory
entries.

5.5 Kurma Evaluation
We evaluated Kurma’s security and performance. To put its performance into perspective, we also
compared Kurma to a traditional NFS server.
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Figure 5.5: Latency of reading and writing objects from public clouds. The five ticks of each
boxplot represent (from bottom to top): the minimum, 25th percentile, median, 75th percentile,
and the maximum. Note: both axes are in log2 scales.

5.5.1 Testbed Setup
Our testbed consists of two identical Dell PowerEdge R710 machines, each with a six-core Intel
Xeon X5650 CPU, 64GB of RAM, and an Intel 10GbE NIC. Each machine runs Linux KVM [97]
to host a set of identical VMs that represent a cluster of Kurma servers in one gateway. Each VM
has two CPU cores and 4GB of RAM. Each VM runs Fedora 25 with a Linux 4.8.10 kernel. To
emulate WAN connections among gateways, we injected a network latency of 100ms using netem
between the two sets of VMs; we chose 100ms because it is the average latency we measured
between the US east and west coasts. We measured a network latency of 0.6ms between each pair
of servers in the same gateway.

For each gateway, we set three VMs as three Metadata Servers (see Figure 5.2) running ZooKeeper
3.4.9 and Hedwig 4.3.0. Each gateway also has a Kurma NFS Server and a Gateway Server; the two
servers communicate using Thrift RPC 0.9.3. The Kurma NFS Server runs NFS-Ganesha 2.3 with
our FSAL PCACHE and FSAL KURMA modules; FSAL PCACHE uses an Intel DC S3700 200GB
SSD for its persistent cache. The Gateway Server runs on Java 8. Each gateway has another VM
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running as an NFSv4.1 client. For comparison, we set up a traditional NFS server on a VM. The
traditional NFS server runs NFS-Ganesha with its vanilla FSAL VFS module. FSAL VFS exports
to the client an Ext4 file system, stored on a directly-attached Intel DC S3700 200GB SSD. The
traditional NFS server does not communicate with other VMs other than the client.

5.5.2 Security Tests
We tested and verified that Kurma can reliably detect security errors and return valid data available
in other healthy clouds. To test availability, we manually deleted blocks of a file from one of the
clouds, and then tried to read the file from an NFS client. We observed that Kurma first failed to
read data from the tampered cloud, but then Kurma retried the read from other clouds, and finally
it returned the correct file contents to the client.

For integrity tests, we injected four types of integrity errors by (1) changing one byte of a cloud
object, (2) swapping two blocks of the same version at different offsets of a file, (3) swapping two
blocks of the same version and offset of two files, and (4) replaying a newer version of a block with
an old version. Kurma detected all four types of errors during authentication. It logged information
in a local file on the secure gateway for forensic analysis; this information included the block offset
and version, the cloud object key, the erroneous cloud, and a timestamp. Kurma also successfully
returned the correct content by fetching valid blocks from other untampered clouds. We also
tested that Kurma could detect and resolve the three types of conflicting changes made in multiple
gateways (see Chapter 5.3.6).

5.5.3 Cloud Latency Tests
Kurma’s cloud backends include AWS, Azure, Google, and Rackspace. Figure 5.5 (log2 scale
on both axes) shows the latency of these public clouds when reading and writing objects with
different sizes. Kurma favors a large block size because larger blocks cost less (both AWS and
Azure charge requests by count instead of size) and reduce the metadata size. Larger block sizes
not only reduce cloud costs, but they also improve overall read throughputs. When the block size
increased by 256× from 16KB to 4MB, the read latency of a block increased by only 1.1×, 3.1×,
1.2× for AWS, Google, and Rackspace, respectively. However, thanks to the larger block sizes,
the read throughput increased by a lot: 234×, 83×, and 216× for AWS, Google, and Rackspace,
respectively. However, Azure is an exception where reading a 4MB object takes 6.5 seconds and
is 43 times slower than reading a 16KB object. Our measurements of Azure are similar to those
reported in Hybris [54], where Azure took around 2 seconds to read an 1MB object, and round 20
seconds to read a 10MB object. Large performance variances of cloud storage in Figure 5.5 were
also observed in other studies [54, 202].

A larger block size also improves write throughputs. When the block size increases from
16KB to 4MB, the write throughput increased by 1.9×, 76×, 82×, and 68× for AWS, Azure,
Google, and Rackspace, respectively. Writes are significantly slower than reads. As shown in
Figure 5.5(b), writing a 4MB object to AWS takes close to 2 minutes. However, the high write
latency of large objects is acceptable because Kurma’s persistent write-back cache can hide the
latency from clients. Therefore, Kurma uses a default block size of 1MB. It can be configured to
use larger blocks if occasional high latencies are acceptable during cache misses (e.g., 6.5 seconds
for 4MB blocks in Figure 5.5(a)).
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Figure 5.6: Latency of reading and writing a 16MB file with different redundancy configurations
over multiple clouds. The persistent write-back cache is temporarily disabled. The “N replicas”
configuration uses the first N clouds out of the list of Google, Rackspace, Azure, and AWS (or-
dered by their performance with 1MB objects). The erasure coding algorithm is Reed-Solomon
with k = 3 and m = 1. The secret sharing algorithm is CAONS-RS with n = 4, k = 3, and r = 2.

Figure 5.5 also shows that the latencies of different clouds can differ by up to 100 times for
objects of the same size. The latency variance is high even for the same cloud. Note the large
error bars and the logarithmic scale of the Y-axis. Therefore, when reading from only a subset of
clouds, ordering the clouds by their speeds, and using the fastest ones can significantly improve
performance. Our tests showed that ordering the clouds by their speeds can cut Kurma’s average
read latency by up to 54%. If not configured differently, our Kurma prototype reorders the clouds
based on their speeds every minute, to decide where to send read requests to first.

5.5.4 Multi-Cloud Tests
For high availability, Kurma stores data redundantly over multiple clouds using replication, erasure
coding, and secret sharing. Figure 5.6 shows the latency of reading and writing a 16MB file with
different redundancy configurations. To exercise the clouds, we temporarily disabled Kurma’s
persistent cache in this test. The N -replica configuration uses the first N clouds out of the list
of Google, Rackspace, Azure, and AWS. The list is ordered in decreasing overall performance
with 1MB objects (see Figure 5.5). Figure 5.6(a) shows that reading a 16MB file takes around 1.6
seconds for all four replication configurations. This is because all N -replica configurations have
the same data path for reads: fetching 16 × 1MB blocks from the single fastest cloud. Note that
1.6 seconds is smaller than 16× the read latency of a single 1MB-large object (around 0.28s as
shown in Figure 5.5). This is because Kurma uses multiple threads to read many blocks in parallel.
Both the erasure-coding and secret-sharing configurations need to read from three clouds, and thus
the reading takes longer with these two configurations: 2.2s and 2.5s on average, respectively.

When writing a 16MB file, the N -replica setup writes a replica of 16 1MB-large blocks to
each of N clouds. The write latency of N -replica is determined by the slowest one of the N
clouds. AWS is the slowest cloud for writes, so when AWS was added as a 4th replica to the 3-
replica configuration, making it a 4-replica configuration, the write latency jumped to 57.4 seconds
(Figure 5.6(b)). Both the erasure-coding and secret-sharing configurations write to four clouds;
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Figure 5.7: Latency of replicating files across geo-distributed gateways under different write-back
wait times (WBWT s).

however, their write latencies are around one third of the latency of 4-replica. This is because both
erasure coding and secret sharing split a 1MB block into four parts, each around 340KB large.
Kurma also uses multiple threads to write blocks in parallel, so writing a 16MB-large file takes
less time than sequentially writing 16 1MB-large objects.

In Figure 5.6, the 2-replica, erasure-coding, and secret-sharing configurations can all tolerate
failure of one cloud. Among them, the 2-replicas configuration has the best performance. However,
secret sharing provides extra security—resistance to cloud collusion—and has read performance
comparable to the 2-replica configuration. Therefore, we used the secret-sharing configuration in
the remaining tests. Note that in general, write latency is less important here because it will be
hidden by the persistent write-back cache.

5.5.5 Cross-Gateway Replication
Kurma shares files across geo-distributed gateways by asynchronously replicating file-system meta-
data. Figure 5.7 shows the replication latency of files under different write-back wait times (WBWT s,
see Chapter 4.3.6). The timer of a file’s replication latency starts ticking after the file is created,
written and closed in one gateway; the timer keeps ticking and does not stop until the file is found,
opened, fully read and closed in another remote gateway. When WBWT is zero, dirty data is syn-
chronously written back to clouds when closing a file. So the replication latency does not include
the time of writing to the clouds and thus is small: 2.9s, 3.9s, and 14s for a 64KB, 1MB, and 16MB
files, respectively. When WBWT is not zero, dirty data is written back after closing the file; the
replication latency increases linearly with the wait time. In Figure 5.7, the replication latency for
larger files is higher because larger files take more time to write to and read from clouds.

5.5.6 Data Operations
To test Kurma’s performance with large files, we created a 1GB file: this took around 200 seconds
writing to clouds. We then performed random reads on the file after emptying Kurma’s persistent
cache. Figure 5.8 shows the results. For all three I/O sizes (4KB, 16KB, and 64KB), the initial
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Figure 5.8: Aggregate throughput of randomly reading a 1GB file using 64 threads. The test starts
with a cold cache. The I/O sizes are 4KB, 16KB, and 64KB.
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Figure 5.9: Latency of reading and writing files in Kurma and traditional NFS. Kurma’s persistent
cache is hot during reads; write-back wait time (WBWT ) is 30 seconds.

throughput was merely around 20 ops/sec because all reads needed to fetch data from clouds over
the Internet. The throughput slowly increased as more data blocks were read and cached. Once the
whole file was cached, the throughput suddenly jumped high because reading from the cache was
faster than reading from the clouds by two orders of magnitude. Afterwards, all reads were served
from the cache, and the throughput plateaued. It took around 75 seconds to read the whole file
regardless of the I/O size; this is because Kurma always uses the block size (1MB) to read from
clouds.

To show Kurma’s performance when its cache is in effect, we compared a Kurma gateway
with a hot cache to a traditional NFS server. Figure 5.9 shows the latency results of reading and
writing whole files. For 64KB files, Kurma’s read latency is 22% higher and its write latency is
63% higher. This is because each Kurma metadata operation (e.g., OPEN, CLOSE, and GETATTR)
involved multiple servers and took longer to process. In contrast, the traditional NFS server is
simpler and each operation was processed by only one server. However, as the file size increased,
Kurma’s latency became close to that of the traditional NFS. This is because when the file data was
cached, Kurma did not need to communicate with the Gateway Server or the Metadata Server; thus
its data operations were as fast as NFS, and they amortized the high latency of the few metadata
operations.
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Figure 5.11: Throughput of Filebench workloads.

5.5.7 Metadata Operations
To quantify the performance impact of Kurma’s slower metadata operations, we compared Kurma
to the traditional NFS in two metadata-only workloads: creating and deleting empty files. Fig-
ure 5.10 shows the results. When processing metadata operations, Kurma needs to communicate
with the Kurma NFS Server, the Gateway Server, and the Metadata Servers (see Figure 5.2). More-
over, a metadata update in ZooKeeper needs to reach a consensus over all ZooKeeper servers; in
our setup with three ZooKeeper nodes, it means that at least three additional network hops. Be-
cause of these extra network hops, Kurma’s throughput is 49% and 46% lower than NFS for file
creation and deletion, respectively. These results were obtained after our optimization of batching
ZooKeeper updates (see Chapter 5.4.3); without the optimization, Kurma would be even slower
by more than 2×. Kurma’s performance penalty in file creation is higher than that in file dele-
tion. This is because creating a Kurma file requires extra computation to generate and encrypt the
per-file secret key (see Chapter 5.3.4).

Despite the lower throughput, Kurma has four advantages over a traditional single-server NFS:
(1) Kurma is more secure by protecting each file with a secret key; (2) Kurma can share files
across geo-distributed gateways; (3) By saving metadata in distributed ZooKeeper, Kurma avoids
the single-point failure of NFS’s metadata store; and (4) Kurma can easily scale its metadata service
by adding more nodes into the ZooKeeper instance.
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5.5.8 Filebench Workloads
Figure 5.11 shows Kurma’s performance under Filebench workloads that are more complex and
realistic than micro-workloads. The Filebench NFS-Server workload emulates the SPEC SFS
benchmark [173]. It contains one thread performing four sets of the following operations: (1) open,
entirely read, and close three files; (2) read a file, create a file, and delete a file; (3) append to an
existing file; and (4) read a file’s attributes. The File-Server workload emulates 50 users accessing
their home directories and spawns one thread per user to perform operations similar to the NFS-
Server workload. The Varmail workload mimics the I/Os of a Unix-style email server operating
on a /var/mail directory, saving each message as a file; it has 16 threads, each performing
create-append-sync, read-append-sync, read, and delete operations on 10,000 16KB files.

For the Filebench NFS-Server workload, Kurma’s throughput is around 9% lower than NFS.
That is caused by Kurma’s slow metadata operations which require extra network hops to pro-
cess. For example, deleting a file took only 1ms for the traditional NFS server, but around 2ms for
Kurma. The File-Server workload has similar operations to the NFS-Server workload, but contains
50 threads instead of one. Many concurrent metadata updates, such as deleting files in a common
directory, need to be serialized using locks. This type of serializations makes Kurma’s metadata
operations even slower because of longer wait time. For example, deleting a file in the File-Server
workload took around 16ms for the traditional NFS server, but as long as 188ms for Kurma. Con-
sequently, Kurma’s throughput is around 48% lower than the traditional NFS server. The same is
true of the multi-threaded Mail-Server workload, where Kurma throughput is around 41% lower.
The high latency of metadata operations is the result of trading off performance for security, avail-
ability, and scalability. This performance penalty can be minimized by batching operations using
NFSv4 compound procedures [42, 168]. Batching metadata operations requires adding journaling
into Kurma; otherwise, some metadata updates may be lost during power outage. We left this as
future work.

5.6 Related Work of Kurma
Kurma is inspired by many previous studies in related areas, and we have already studied some
of those in the discussion of SeMiNAS (Chapter 4.6). Here, we focus on studies that are related
to Kurma features not available in SeMiNAS. Specifically, we compare Kurma to other file and
storage systems that (1) use multiple clouds (i.e., a cloud-of-clouds) as storage back-end, and
(2) guarantee data or metadata freshness in the face of replay attacks.

5.6.1 A Cloud-of-Clouds
Using multiple cloud providers is an effective way to ensure high availability and business con-
tinuity in case of cloud failures [16]. There are several studies of multi-cloud systems [1, 30, 46,
54, 85, 202], and most of them store data redundantly on different clouds using either replication
or erasure coding. In addition to higher availability, multiple clouds can also be used to enhance
security. Because compromises or collusion across multiple cloud providers is less likely, dispers-
ing secrets among clouds is more secure than storing whole copies of secrets on a single cloud [5].
For example, DepSky [31], SCFS [30], and CDStore [107] secretly store pieces of sensitive data
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on multiple clouds and prevent any single cloud alone from accessing the data.
However, most of these multi-cloud storage systems [1, 28, 31, 54, 85, 107] provide only key-

value stores, whereas Kurma provides a geo-distributed file-system service to NAS clients. SCFS [30]
and CYRUS [46] use multiple clouds as beck-ends and provide POSIX-like file systems, but they
are client-side cloud stores, not cloud storage gateways. Also, both SCFS and CYRUS are for
personal use; they favor the scenario when all of a client’s files can fit in the client’s local storage.
In contrast, each Kurma gateway has a large consolidated file data cache shared by many clients.

5.6.2 Freshness Guarantees
Not many cryptographic file systems guarantee data or metadata freshness [176] because replay
attacks are difficult to handle. SiRiUS [73] ensures partial metadata freshness but not data fresh-
ness. SUNDR [105], SPORC [62], and Depot [114] all guarantee fork consistency that can detect
freshness violations with out-of-band inter-client communication.

Among the few file systems that guarantee freshness of both data and metadata, most of
them [55, 67, 176] use Merkle trees [124] or its variants to detect replay attacks. Iris [176] uses a
balanced Merkle-tree that supports parallel updates from multiple clients. Athos [74] does not use
Merkle trees, and guarantees freshness after replacing the hierarchical structure of the directory
tree with an equivalent but different structure based on skip lists. SCFS [30] also provides fresh-
ness without using Merkle trees, but it does so by relying on a trusted and centralized metadata
service running on cloud.

Other cloud systems provide data freshness guarantees for key-value stores, instead of file sys-
tem services. CloudProof [148] provides a mechanism for clients to verify freshness; Venus [169]
and Hybris [54] guarantee freshness by providing strong global consistency out of the eventual
consistency model of cloud key-value stores.

Kurma’s approach to freshness guarantees is significantly different from all aforementioned
systems. Kurma is free from the performance overhead of Merkle trees, and instead uses a reliable
publish-subscribe service (Hedwig) to replicate metadata and block version numbers among geo-
distributed cloud gateways. Unlike SCFS [30], Kurma does not rely on any trusted third party for
metadata management or key distribution.

5.7 Kurma Conclusions
We presented Kurma, which provides secure file-system services to clients in different regions via
geo-distributed cloud gateways. Kurma protects file blocks with authenticated encryption before
storing them in clouds. Kurma keeps file-system metadata in trusted gateways instead of in clouds.
It also embeds a version number and a timestamp into each file block to ensure data freshness.
Kurma tolerates cloud failures by storing data redundantly among multiple clouds using repli-
cation, erasure code, or secret sharing. Through secret channels connecting Kurma’s gateways,
each gateway replicates metadata and version updates to other gateways. The replication is asyn-
chronous so that local operations do not incur long latency of contacting remote gateways. As a
trade-off, Kurma detects and resolves conflicting operations that happened simultaneously in mul-
tiple gateways. We implemented and evaluated a Kurma prototype. Thanks to Kurma’s persistent
write-back cache, its performance of data operations is close to a baseline using a single-node NFS
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server. Kurma’s throughput is around 52–91% of the baseline for general purpose Filebench server
workloads. This overhead is contributed by slower metadata operations. Kurma sacrifices some
performance for significantly improved security, availability, scalability, and improved file sharing
across regions.

Limitations and future work Kurma currently does not consider the insider problem. Cur-
rently, Kurma assumes a fixed number of gateways; we leave adding and deleting Kurma gateways
to future work. Adding and deleting trusted participants in secure distributed storage systems has
several security concerns and has been studied separately elsewhere [17]. Kurma supports reso-
lution of only three common types of conflicts, and we plan to support more. We also plan to
amortize the high latency of Kurma’s metadata operations among all operations using an NFSv4
compound procedure [42, 168].
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Chapter 6

Conclusions

Network-attached storage (NAS) is important, even in this cloud era. Many NAS-based applica-
tions demand high performance (especially low latency), which cannot be achieved in clouds due
to long physical distances and thus high network latency between clients and clouds. This thesis
focuses on improving network-attached storage (NAS) in two important aspects: (1) keep NAS
performance in pace with modern high-speed networks and flash SSDs; and (2) integrate NAS sys-
tems with cloud storage. Particularly, we benchmarked and optimized the latest NFSv4.1 protocol
to make sure excellent performance of high-speed networks and flash SSDs can be successfully
delivered to NAS clients through NFSv4.1. We also built cloud storage gateway systems (SeMi-
NAS and Kurma) that provide NAS clients with seamless, efficient, and secure accesses to public
cloud storage.

NFS is the standard storage protocol of network-attached storage (NAS). NFSv4.1 is the latest
NFS version, which was not studied much in the literature. We began this thesis by comparing the
performance of NFSv4.1 and NFSv3. We conducted a comprehensive and in-depth benchmarking
study using a wide range of workloads in different network settings. We fixed a severe perfor-
mance problem in NFSv4.1 and improved its performance by up to 11×. We found that NFSv4.1
has comparable performance to NFSv3, and holds the potential of much better performance than
NFSv3 when its advanced features—such as delegations—are used effectively. We also identified
NFSv4.1 compound procedures, which were underused, as an opportunity to significantly boost
NFSv4.1 performance.

To maximize NFS performance, we then developed vNFS to take full advantage of the un-
derused compound procedures. vNFS is an NFSv4.1-compliant client and library that exposes a
vectorized high-level file-system API. We designed and implemented vNFS as a user-space RPC
library that supports many bulk operations on files and directories. For example, using only one
network round trip, vNFS can open, read, and close many files; set many attributes of many files; or
copy many files wholly or partially without moving data over networks. We found it easy to mod-
ify applications to use the vectorized API. We evaluated vNFS under a wide range of workloads
and network latency conditions, showing that vNFS improves performance even for low-latency
networks. On high-latency networks, vNFS can improve performance by as much as two orders of
magnitude.

Then, as a first step to develop Kurma, we designed, implemented, and evaluated a simple cloud
storage gateway system called SeMiNAS. SeMiNAS explores the idea of using the WAN-friendly
NFSv4.1 for communication between gateways and clouds. SeMiNAS achieves end-to-end data
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integrity and confidentiality with a highly efficient authenticated-encryption scheme. SeMiNAS
leverages advanced NFSv4 features, including compound procedures and data-integrity extensions,
to minimize extra network round trips caused by security metadata. SeMiNAS also caches remote
files locally to reduce accesses to providers over WANs. We designed, implemented, and evaluated
SeMiNAS, which demonstrates a small performance penalty of less than 26% and an occasional
performance boost of up to 19% for Filebench workloads. SeMiNAS assumes that cloud providers
support an NFS extension [139] that is, however, not standardized yet; SeMiNAS uses only a single
cloud as back-end and is susceptible to replay attacks.

Finally, based on our experience with SeMiNAS, we presented the design of Kurma, which
is more robust, secure, and efficient. Kurma does not have single points of failure: it uses mul-
tiple public clouds as back-end, and is built on top of fault-tolerant distributed services such as
ZooKeeper and Hedwig. Kurma has an efficient solution to replay attacks: it maintains a version
number for each data block, and replicates the version numbers across all geo-distributed gateways.
For high security, Kurma keeps file-system metadata on-premises and encrypts data blocks before
writing them to clouds. For higher confidentiality and availability, Kurma divides data across mul-
tiple clouds using erasure coding or secret sharing. To share files among distant clients, Kurma
maintains a unified file-system namespace across geo-distributed gateways. Kurma is also faster
and more realistic than SeMiNAS by trading off cross-region consistency for performance and us-
ing real clouds (we used Amazon AWS, Google Cloud Storage, Microsoft Azure, and Rackspace).
Evaluations of our Kurma prototype showed that its performance is around 52–91% that of a local
NFS server while providing geo-replication, confidentiality, integrity, and high availability.

6.1 Limitations and Future Work
The future work of this thesis includes the following:

1. Transactional NFS compounds. vNFS can be extended with transactional execution, which
greatly simplifies error handling. Currently, compounded operations are processed sequen-
tially by NFS servers (according to the standard [168]) and the first failed operation halts the
execution of remaining operations in the compound. If a compound is executed atomically,
we can then process independent operations inside in parallel. This parallel execution can
reduce the compound processing time by taking advantage of the high parallelism inside
modern SSDs. Therefore, transactional compounds may simultaneously simplify program-
ming while boosting performance. We have explored this idea, but the main difficulty we
faced is the lack of a transactional local file-system.

2. Optional strong global consistency. Kurma trades off strong global consistency for better
performance; however, it may still be desirable to have optional global consistency for cer-
tain files. One plausible way is to use file mastership. By designating a master gateway
of a file (e.g., the creator gateway), global consistency can be achieved by synchronizing
changes to the file in all gateways with the master. This idea is somewhat similar to NFSv4.1
delegations.

3. Cost awareness and optimization. Cloud operations have different cost and performance.
For example, reading data is generally more expensive than writing [30], and one cloud
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provider may be slower but cheaper than other cloud providers. Lowering Kurma’s cost
under a reasonable performance is an interesting topic worth exploring.

4. Kurma load balancing. Kurma supports only volume-level load balancing which may be
too coarse; finer load balance may be achieved by using NFSv4.1 referrals and pNFS. Also,
Kurma currently sorts cloud providers and always uses the fastest one. A better method
would be to load-balance the reads across several clouds, proportionally to their perfor-
mance. This makes use of the bandwidths of slower clouds, and maximizes the overall
throughput of Kurma.

6.2 Lessons Learned and Long-Term Visions
There are several important lessons I learned during this Ph.D. work:

• Good research problems are often buried in the details. We all know that finding a good prob-
lem to solve is the single most important step in research. Many important problems in this
thesis caught our attention after in-depth analysis of details, such as performance anomalies.
For example, when benchmarking NFSv4.1, we found different NFS clients had uneven
throughput; we dove deep into the analysis and found the HashCast problem (see Chap-
ter 2.3.2). In another example, we were puzzled that each NFSv4.1 compound contained
only two to four operations. After analyzing this in detail, we realized that compounds are
limited by the POSIX API and this problem led to the vNFS paper [42]. This compound
problem also contributed to the optimization of our SeMiNAS system (see Chapter 4.3.5.2).

• Testing is our friend. Modern storage systems often contain many components and depend
on many external libraries. We need to ensure that each component and library is working as
expected; for that, we need a unit test for each function of every component. Tests should not
only provide full coverage but also be thorough. During our initial benchmarking of SeMi-
NAS, we experienced frequent kernel crashes due to bugs in the DIX (see Chapter 4.3.5.1)
implementation. It took us more than three months to realize and fix these kernel bugs. Our
initial test of DIX did not consider the scenario of big files and thus failed to expose the bugs
at an earlier stage. Integrating these components and libraries is also challenging, so we
also needed integration tests and system tests. Tests are time-consuming in the short term,
but they did save us a lot time in later development of our systems. Tests also helped us in
assigning tasks to teammates; I often used tests to check their implementations.

• Keep it simple, stupid (KISS). KISS is a well-known design principle. Although I was aware
of this principle, I neglected to follow it when I was tempted by some fancy features. One
example is that we had anti-virus in our initial SeMiNAS. However, anti-virus makes the
threat model, design, and implementation much more complex. For instance, most anti-virus
systems requires scanning files in whole, which is very different from encryption that can be
done on a per-block basis. We should have started the project without anti-virus, and only
added it after the system has matured. In fact, anti-virus is complex and it alone deserves a
long paper as my laboratory did for Avfs [130]. I also failed to follow the KISS principle
when designing Kurma. In the initial design, the file block’s size was lazily determined upon
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1 namespace fs = std::experimental::filesystem;
2 auto async_open = [](name, flags) {
3 return std::async(fs:open, name, flags);
4 };
5 auto async_read = [](fd, buf, len) {
6 return std::async(fs:read, fd, buf, len);
7 };
8 auto async_close = [](fd) {
9 return std::async(fs:close, fd);

10 };
11 async_open("foo", O_RDONLY)
12 .next(async_read, buf, len).unwrap()
13 .next(async_close).unwrap().get();

Figure 6.1: A C++ code sample of building a compound of multiple file-system operations.

the first write so that we could use large block sizes for big files. However, it led to a lot of
bugs when we had an empty file with undetermined block size. A safer and simpler approach
was to make the file block size configurable, which we did later.

I also would like to share some long-term visions of systems we built in this thesis:

• Transactional NFS compounds using transactional storage devices. High-performance SSDs
have not only high internal parallelism but also transaction support thanks to their log-
structured data management. If we can leverage storage devices’ transaction support, we
can then more efficiently and easily achieve transactional NFS compounds.

• Transactional NFS compounds API in general languages. We proposed a customized client
file-system library to initiate large NFS in Chapter 3. However, it would be more convenient
and elegant to support that in general programming languages. Some modern languages,
such as the proposed C++17 [126], are showing the potential to do that. Figure 6.1 shows
such an example that may initiate a compound comprising three file operations (i.e., open,
read, and close).

• Make Kurma ready for production use. We will make Kurma’s code public available. Kurma
is currently a research prototype, but most of its features are already mature. Kurma can
effectively alleviate the security concerns of using public clouds, and we would like it to
be actually used, at least by fellow researchers. I hope consistent development from the
open-source community will make Kurma ready for production in the future.
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