

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Verification of Probabilistic

Branching Time Systems

A Dissertation presented

by

Andrey Gorlin

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

December 2016

Stony Brook University

The Graduate School

Andrey Gorlin

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation

C. R. Ramakrishnan - Dissertation Advisor
Professor, Dept. of Computer Science

Scott D. Stoller - Chairperson of Defense
Professor, Dept. of Computer Science

Scott A. Smolka
Professor, Dept. of Computer Science

W. Rance Cleaveland
Professor, Dept. of Computer Science, University of Maryland

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

ii

Abstract of the Dissertation

Verification of Probabilistic Branching Time Systems

by

Andrey Gorlin

Doctor of Philosophy

in

Computer Science

Stony Brook University

2016

This thesis deals with verification of complex systems, which involve prob-
abilistic choices. In total, we explore three interrelated problems. First, we
explore probabilistic extensions of µ-calculus. GPL extends µ-calculus by
having all the probabilistic choices made first; this keeps the model check-
ing procedure decidable for any property. We extend GPL to a logic, XPL,
which is undecidable, in general. We define a syntactic property of an XPL
formula, separability, as a sufficient condition for model checking. Second,
we can frame the problem of probabilistic model checking as query evaluation
over probabilistic logic programs. We have developed an inference algorithm,
PIP, using tabled logic programming, which is sufficiently powerful to verify
GPL and separable XPL properties. PIP uses finite generative structures,
called FEDs, to represent families of explanations. Finally, we explore an
alternative paradigm for verification of temporal models: compositional or
partial model checking. In particular, we employ a technique called quoti-
enting, where we take a µ-calculus formula and a process and return another
formula that must be satisfied by the remainder of the system.

iii

Table of Contents

1 Introduction 1
1.1 Transition Systems and Model Checking 2

1.1.1 Temporal Logics . 3
1.1.2 Linear-time Probabilistic Logics 5
1.1.3 Branching Time in the Probabilistic Domain 5

1.2 Logic Programming . 6
1.3 Compositional Model Checking 7

1.3.1 Quotienting . 7
1.3.2 PRISM Model Checker 8

1.4 Thesis Outline . 8

2 Probabilistic Systems 9
2.1 Reactive Probabilistic LTSs . 9
2.2 Generalized Probabilistic Logic 11

2.2.1 GPL Syntax . 12
2.2.2 GPL Semantics . 13

2.3 GPL Model Checking . 15
2.4 Recursive Markov Chains . 18
2.5 Probabilistic Polynomial Systems 20
2.6 The Interpretation of Branching Time 23

2.6.1 Branching Processes . 23
2.6.2 PTTL . 25
2.6.3 Additional Interpretations 25

3 Linear Nondeterminism in Probabilistic Systems 26
3.1 Probabilistic Labeled Transition Systems 27
3.2 XPL . 30

3.2.1 XPL Syntax . 30
3.2.2 XPL Semantics . 30

iv

3.3 XPL Model Checking . 31
3.3.1 Separability of Fuzzy Formulae 32
3.3.2 Dependency Graph . 35

3.4 Encoding Other Model Checking Problems 40
3.4.1 Encoding PCTL* over MDPs 40
3.4.2 Encoding of RMDP Termination 41
3.4.3 PTTL and Branching Processes 44

3.5 Conclusion and Related Work 45

4 Model Checking with Logic Programming 48
4.1 Related Work . 51
4.2 Preliminaries . 53
4.3 The Inference Procedure PIP 53

4.3.1 Representing Explanations 54
4.3.2 Factored Explanation Diagrams 57
4.3.3 Nondeterminism and Merge 61
4.3.4 Computing Probabilities from FEDs 64

4.4 Applications . 66
4.5 Experimental Results . 68
4.6 Conclusions . 72

5 Partial pLµ Model Checking 73
5.1 pLµ . 74

5.1.1 pLµ Syntax . 74
5.1.2 pLµ Semantics . 75
5.1.3 Markov Branching Plays 76
5.1.4 Partial Model Checking and pLµ 76

5.2 Probabilistic Model . 77
5.2.1 Process Algebra . 77

5.3 Quotienting . 79
5.3.1 Probability Function . 79
5.3.2 Quotienting Rules . 80

5.4 Read Operator . 85
5.4.1 Effect on Processes . 86

5.5 Case Studies . 88
5.5.1 Rabin’s Choice Coordination Problem Encoding 89
5.5.2 ECo-MAC Encoding . 91

5.6 Conclusion . 92

v

6 Conclusion 93

vi

List of Figures

2.1 RPLTS Example . 11
2.2 D-Tree Example . 12
2.3 Dependency graph Pr(s1, ψ) . 18
2.4 RMC Example . 19

3.1 PLTS Example . 29
3.2 Example PLTS with nondeterministic choice on “a” 32
3.3 Dependency graph Dg(s1, ψ) . 40
3.4 Example RMDP with Call, Return, and Exit edges added to A. 44

4.1 (a) Example Markov chain; (b) PRISM encoding of transitions
in the chain. 49

4.2 FEDs for Example 4.2 . 62
4.3 Set of equations generated from the set of FEDs of Example 4.4 65
4.4 Model checker for a fragment of PCTL 67
4.5 Fragment of a model checker for fuzzy formulae in GPL . . . 69
4.6 Performance of PIP on PRISM Programs 70
4.7 Performance of PCTL model checking using PIP and the PRISM

model checker for Synchronous Leader Election protocol . . . 72

vii

List of Tables

2.1 GPL semantics: fuzzy formulae 14
2.2 GPL semantics: state formulae 14
2.3 Non-action nodes . 16

3.1 XPL semantics: state formulae 31

5.1 pLµ semantics . 75
5.2 Quotienting rules . 81
5.3 Additional Quotienting Rules 88

viii

List of Abbreviations

BDD Binary Decision Diagram. 7, 8, 50, 57, 60, 63, 69–72
BMDP Branching MDP. 27, 44–46, 93
BP Branching Process. 23–25, 44–46, 93
BSSG Branching Simple Stochastic Game. 44, 45, 76

CCS Calculus of Communicating Systems. 7, 48, 73, 77, 94
CSL Continuous Stochastic Logic. 5, 8
CTL Computation Tree Logic. 3, 4, 23, 25, 45

d-tree deterministic tree. 10–12, 16, 17, 25, 28, 29, 32, 41, 74, 75, 93
DAG directed acyclic graph. 57, 58, 61
DCG Definite Clause Grammar. 55–57
DNF disjunctive normal form. 34, 36, 38

ENF Explanation Normal Form. 60, 63

FED Factored Explanation Diagram. 7, 57–66, 69–71, 94

GFP greatest fixed point. 21, 23, 39, 52, 68
GPL Generalized Probabilistic Logic. 1, 2, 6–9, 11–13, 15, 19–22, 25, 26,
30–32, 35, 37–39, 45–48, 51–53, 64, 67, 68, 73–75, 93, 94

HMM Hidden Markov Model. 70, 71

ICL Independent Choice Logic. 52

LFP least fixed point. 21–23, 39, 68, 74
LHS left-hand side. 56, 57
LP logic programming. 48, 53
LPAD Logic Programs with Annotated Disjunctions. 50, 52
LTL Linear-time Temporal Logic. 3–5, 9, 20, 52
LTS Labeled Transition System. 1, 4, 7

ix

MBP Markov Branching Play. 6, 23, 74, 76
MDP Markov Decision Process. 1–3, 27, 41, 46, 52, 73, 76
MPS Monotone Polynomial System. 21

NSM Nested State Machine. 43

PCTL Probabilistic Real-time CTL. 5, 6, 8, 9, 20, 24, 45, 51, 52, 66–69, 71,
94
PIP “Probabilistic Inference Plus”. 2, 6–8, 48, 51–53, 66, 69–72
PITA Probabilistic Inference with Tabling and Answer Subsumption. 49,
50, 58, 69–71
PLC Probabilistic Left Corner. 71
PLP Probabilistic Logic Programming. 6, 7, 48, 51, 52, 54–56, 94
PLTS Probabilistic LTS. 1–3, 6–9, 26–31, 35–39, 41–43, 45, 53, 69, 73–79,
92, 93
PPS Probabilistic Polynomial System. 9, 21–23, 25, 46
PRISM Programming In Statistical Modeling. 6–8, 48–50, 52–54, 59, 61,
69–71
PTTL Probabilistic Tree Temporal Logic. 24, 25, 45

RHS right-hand side. 56, 57
RMC Recursive Markov Chain. 3, 8, 9, 18–21, 23, 24, 26, 41, 43, 46, 51–53,
74, 93
RMDP Recursive MDP. 1, 27, 41–46, 61, 62, 73, 93
RPLTS Reactive Probabilistic LTS. 3, 6, 9–13, 15, 17, 19, 20, 24–30, 43–45,
51, 53, 67, 93
RSSG Recursive Simple Stochastic Game. 1, 41, 42, 45, 76

SM stackless and memoryless. 42, 45
SNF Simple Normal Form. 21, 22
SRL Statistical Relational Learning. 52

XPL Extended Probabilistic Logic. 1, 2, 6, 8, 26, 27, 30–32, 36, 38–40,
45–48, 53, 64, 69, 73–75, 94
XPS Extended Polynomial System. 22, 23

x

Chapter 1

Introduction

This thesis deals with verification of complex systems. In particular, a key
aspect of the systems in this thesis is that they are probabilistic. This means
that at least some decisions are modeled as probabilistic choices, possibly as
a result of uncertainty and lack of information, or because the underlying
system is indeed random in some aspect. The presence of probability ad-
ditionally means that, when formulating questions about a system, we will
generally not seek to guarantee that a particular property holds; instead, we
will estimate its likelihood.

Another important aspect of the systems in this thesis is that they are
temporal. When analyzing temporal systems, there are two general ways
to consider system executions. We can look at traces, i.e., paths through
the system, or trees. Trees may arise in several different ways, of which a
rather interesting one is via a branching nondeterministic choice, where a tree
represents a single probabilistic outcome. Generalized Probabilistic Logic
(GPL) [CIN05] is a branching-time logic over such trees as the outcomes. In
Chapter 2, we provide an overview of GPL as originally presented in [CIN05].
Throughout this thesis, it serves a primary role in our discussion, as we will
both extend GPL directly and apply our logic programming advances to it.
In total, we explore three interrelated problems.

First, probabilistic choices do not entirely replace nondeterminism in La-
beled Transition Systems (LTSs). However, for model checking purposes, the
nondeterministic systems typically considered have been limited to Markov
Decision Processes (MDPs) [Ste09]. In this thesis, we analyze the model
checking of Probabilistic LTSs (PLTSs) [Seg95, Mio12]. In part, this is mo-
tivated by the results on Recursive MDPs (RMDPs) and Recursive Simple
Stochastic Games (RSSGs) [EY15]. Some of the properties in the resulting
logic, which we call Extended Probabilistic Logic (XPL), become undecid-
able, but we describe a wide class of properties that we can verify. We

1

elaborate on this in Chapter 3.
Second, logic programming has previously been applied to model checking

in the non-probabilistic domain. Both fields have been separately extended to
support probability in some form, and it is a challenging problem to reconcile
the two. In particular, the demands of model checking are different from the
other problems to which probabilistic logic programming has been applied.
Our inference algorithm, “Probabilistic Inference Plus” (PIP), is a first step
towards this goal; we discuss it in Chapter 4. With PIP, we can model check
GPL, and we explore how it handles (linear) nondeterminism, which could
be used to support a decidable fragment of XPL and the model checking of
PCTL* [Bai98] over MDPs.

Finally, an alternative paradigm for verification for temporal models is
compositional or partial model checking [And95, BR06]. In this case, we can
view the system as modeled by separate modules. While a straightforward
approach would be to compose them to get the whole system, which could
then be model checked, this may also be intractable. Instead, we seek to ver-
ify them separately, with a technique called quotienting. The probabilistic
branching time paradigm of GPL is not easily amenable to quotienting, due
to its semantics for the propositional connectives (i.e., to handle a conjunc-
tion, we cannot necessarily handle the conjuncts separately). Instead, we
apply pLµ, in which the semantics of a formula is a value in [0,1], and the
value of a binary operator is some function of the values of the operand (and
extensions admit binary operators other than standard conjunction and dis-
junction) [Mio11, Mio12]. Our model remains a PLTS, and we use a simple
process algebra to encode PLTSs to facilitate composition and quotienting.
We discuss our results in Chapter 5.

1.1 Transition Systems and Model Checking

Our models will generally be transition systems. Transition systems have
states; there is a set of propositions, Prop, a subset of which holds at each
state; and there is some notion of changing the state of the system, via the
transition relation. The transition relation may be probabilistic, yielding
a distribution of possible states to be reached for a particular transition.
Transitions may also be labeled by actions (drawn from the set Act), allow-
ing for composition synchronized on matching actions, or for a system to
have a branching nature, where different actions correspond to independent
branches. Markov chains [Ste09] are a natural basic probabilistic model.

2

As the transition systems outlined above, a Markov chain has states and
transitions (but no action labels), and the transitions from a state form a
distribution, with their probabilities summing to 1. When residency time,
i.e., the amount of time that a system spends at a state before moving to
a different one, is important, we may also distinguish between discrete- and
continuous-time Markov chains. In this thesis, we will generally view time
as discrete (or unimportant).

A PLTS is a general model allowing all of the above. Additionally, prob-
abilistic transitions may not replace all of the nondeterministic choices; non-
determinism may be present in probabilistic systems in two forms. The first
kind, which we will call linear nondeterminism, is resolved, potentially by a
scheduler (or a strategy), before the probabilistic choices are made. MDPs
are an extension of Markov chains with linear nondeterminism. The second
kind, which we will call branching, is resolved after the probabilistic choices.
In Chapter 2, we discuss a version of a PLTS where all nondeterminism
is branching (called a Reactive Probabilistic LTS (RPLTS) due to [CIN05]),
and discuss Recursive Markov Chains (RMCs) [EY09], where branching non-
determinism is intrinsic to the system. We deal with full PLTSs in Chapter 3.

1.1.1 Temporal Logics

Given a transition system, we will want to state and verify a property of
the system. Properties are temporal, describing not only what currently
holds, but how the system may evolve over time. Many temporal properties
can be expressed with two building blocks: a unary next operator, denoted
by Xφ, and a binary until operator, denoted by φ1Uφ2. In particular, U
is a fixed-point operator, which can describe properties about, e.g., some
proposition becoming true at an arbitrary point in the future or remaining
true henceforth.

First, we mention three non-probabilistic logics (a more detailed descrip-
tion may be found in, e.g., [HR04, Chapter 3]). Linear-time Temporal Logic
(LTL) [IN96] is built with the X and U operators, along with the typical
propositional connectives. A minimal syntax for LTL, with A ∈ Prop, may
be given as follows:

ψ ∶∶= A ∣ ¬ψ ∣ ψ ∧ ψ ∣ Xψ ∣ ψUψ.

Linear-time properties are associated with paths, i.e., the sequences of states
that a system is in as time advances. Meanwhile, Computation Tree Logic

3

(CTL) [CES86] is a branching-time logic. It allows quantification over paths,
either universally or existentially, with the A and E quantifiers, respectively.
The syntax for CTL may be given as follows:

φ ∶∶= A ∣ ¬φ ∣ φ ∧ φ ∣ AXφ ∣ EXφ ∣ A[φUφ] ∣ E[φUφ].

Despite the superficial similarity, the propositional connectives are quite
different in LTL and CTL, highlighting the distinction between linear and
branching time. For instance, Xψ1 ∨ Xψ2 ≡ X(ψ1 ∨ ψ2) in LTL, but, in CTL,
the formula AXφ1 ∨AXφ2 is stronger than AX(φ1 ∨ φ2).

An alternative way to write the syntax for CTL splits its formulae into
two types, state formulae φ and path formulae ψ.

φ ∶∶= A ∣ ¬φ ∣ φ ∧ φ ∣ A[ψ] ∣ E[ψ],

ψ ∶∶= Xφ ∣ φUφ.

Note that the syntax for the path formulae of CTL makes them a subset of
possible LTL formulae. CTL* [EH86] extends this syntax by allowing any
LTL formula as a path formula, at the expense of additional computational
complexity for verification. The syntax for CTL* may be given as follows:

φ ∶∶= A ∣ ¬φ ∣ φ ∧ φ ∣ A[ψ] ∣ E[ψ],

ψ ∶∶= φ ∣ ¬ψ ∣ ψ ∧ ψ ∣ Xψ ∣ ψUψ.

While X and U are high-level building blocks, modal µ-calculus [Koz83],
which we will call Lµ due to [Mio12], offers lower-level constructs, with least
and greatest fixed points (U is a particular instance of a least fixed point).
We define it over LTSs; additionally, we use a set of propositional variables,
Var, and a set of action labels, Act. A minimal syntax for modal µ-calculus,
with X ∈ Var and a ∈ Act, may be given as follows:

ψ ∶∶=X ∣ ψ ∧ ψ ∣ ψ ∨ ψ ∣ [a]ψ ∣ ⟨a⟩ψ ∣ µX.ψ ∣ νX.ψ.

Note that negation (¬ψ) is not part of the syntax, which is convenient for
maintaining monotonicity of the fixed points; the variables can also serve the
role of atomic propositions. Since each operator has its dual in the syntax, it
remains straightforward to write a formula neg(ψ) representing the negation
of a (closed) formula ψ. The modal operators [a]ψ and ⟨a⟩ψ are loosely
analogous to AXψ and EXψ, respectively. Additionally, any CTL* formula
can be translated to µ-calculus; note that the U operator can be written as
a fixed point, since ψ1Uψ2 ≡ ψ1 ∨ (ψ2 ∧X(ψ1Uψ2)).

4

1.1.2 Linear-time Probabilistic Logics

We can also model check LTL over Markov processes. The evaluation of an
LTL formula becomes the probability measure of all the paths on which it
holds (if the process also has linear nondeterminism, a scheduler maximizing
the measure may be assumed). Notably, a probabilistic value of 1 does not
necessarily require that the property hold on all paths, as a single infinite
path will typically have zero measure. To extend logics with state formulae,
we replace the operators A[ψ] and E[ψ] with Pr≥pψ and Pr>pψ. Thus, the
syntax of Probabilistic Real-time CTL (PCTL) [HJ94], where t ∈ N and
p ∈ [0,1], may be written as follows:

φ ∶∶= A ∣ ¬φ ∣ φ ∧ φ ∣ Pr≥pψ ∣ Pr>pψ,

ψ ∶∶= φU≤tφ ∣ φUφ.

We note briefly that PCTL has a bounded-time U operator (which could
be considered syntactic sugar in LTL) and omits the X operator. With
bounded-time properties, the nature of time is more significant, and time
may be discrete or continuous1. However, we will not focus on bounded-time
properties in this thesis.

The key to model-checking PCTL is the computation of the probabilistic
value of an until formula; thus, we can view PCTL essentially as a linear-time
probabilistic logic. Similarly, we can define PCTL* [Bai98], with the PCTL
syntax for state formulae and the LTL syntax for the path formulae.

1.1.3 Branching Time in the Probabilistic Domain

Throughout this thesis, we will reserve the meaning of probabilistic branch-
ing time for probabilistic systems with branching nondeterminism. Though
we do not focus on bounded-time properties, probabilistic branching time
contains other emergent properties. For instance, a qualitative query, i.e.,
whether a property holds with probability 1 or not, may depend on the spe-
cific values in the transition relation, even in a finite system. This result may
be intuitively understood with processes that either branch or terminate and
considering the extinction probability: if termination is more likely than the
creation of an additional process, extinction is guaranteed; however, if the
process population is expected to grow over time, another possible outcome
is a population growing without bound.

1A continuous-time analogue to PCTL is Continuous Stochastic Logic (CSL) [BHHK03]

5

GPL [CIN05] is a probabilistic branching-time logic over RPLTSs. It has
state formulae, with syntax like PCTL’s, including probabilistic operators,
and essentially full Lµ as the analogue of the path formulae; they are called
fuzzy formulae, as they are defined not over paths, but deterministic trees (d-
trees). We discuss GPL and RPLTSs in detail in Chapter 2; we extend GPL
to XPL, a logic over PLTSs, in Chapter 3; and we describe an implementation
of a general inference algorithm, PIP, capable of model checking GPL and
XPL in Chapter 4.

Other probabilistic extensions of µ-calculus exist, as well. PLTSs are
not necessarily interpreted as probabilistic branching-time systems, and can
instead be seen as having only linear nondeterminism. Then, pLµ [Mio12,
Mio11] is a logic over PLTSs with syntax identical to Lµ. Additionally,
it supports a probabilistic branching-time extension via additional proposi-
tional connectives of independent product and coproduct, yielding the logic
pLµ⊙ [Mio11]; then, the systems arising from the combination of the pLµ⊙

formula with the PLTS have the probabilistic branching-time nature, branch-
ing plays being similar to d-trees and Markov Branching Plays (MBPs) to
RPLTSs [Mio12]. We discuss pLµ further in Chapter 5.

1.2 Logic Programming

Our main practical contribution is a probabilistic inference algorithm imple-
mented via logic programming, which we discuss in more detail in Chap-
ter 4. Logic programming is a natural paradigm for model checking in
the non-probabilistic case, and, like model checking, it has been extended
to the probabilistic domain, with the Programming In Statistical Model-
ing (PRISM) system [SK97]. However, while the distribution semantics in
PRISM appears sufficient for probabilistic model checking, the existing im-
plementations of Probabilistic Logic Programming (PLP), including PRISM,
were inadequate for this purpose.

Logic programming typically involves a version of Prolog [NM95]. Prolog
is a declarative programming language, which, at its most basic, supports
first-order logic and consists of rules and an engine to answer queries, with
universally quantified variables. PRISM adds a special predicate called msw,
which corresponds to a probabilistic transition [SK97]. This is sufficient to
encode probabilistic systems and pose model checking queries. However,
prior PLP implementations typically made assumptions, such as mutual ex-
clusion or finiteness of explanations, which may be simultaneously violated

6

in a model checking query.
Since this was not an issue with PRISM’s distribution semantics [SK97],

we devised an inference algorithm, PIP, capable of probabilistic model check-
ing [GRS12]. This involves a new data structure, a generalization of Binary
Decision Diagrams (BDDs), which we called Factored Explanation Diagrams
(FEDs). Additionally, the distribution semantics means that the nondeter-
minism in PLP is branching, which allows for a natural encoding of GPL.
We can also support a limited form of linear nondeterminism.

1.3 Compositional Model Checking

In many cases, a system is made from a number of largely independent com-
ponents, which synchronize in a precise manner. Model checking the system
as a whole, however, may be intractable. Then, the system may be reduced
to an equivalent one via, e.g., symmetry reduction [CTV06] or partial order
reduction [HKQ11]. Another approach is partial model checking, where we
do not build the whole system at all. In Chapter 5, we consider the possibility
of applying partial model checking to probabilistic systems.

1.3.1 Quotienting

One way to model LTSs compositionally is with the Calculus of Communicat-
ing Systems (CCS) [Mil89]. CCS has also been extended to the probabilistic
domain [JYL01]. We use a simple process algebra to represent PLTSs and em-
ploy a verification approach called quotienting [And95]. If a property (for the
whole system) is expressed in modal µ-calculus [Koz83], then we can quotient
out a component process’s contribution to satisfying the formula, yielding a
new µ-calculus formula to be satisfied by the remaining components. If we
may have an arbitrary number of identical processes, then quotienting may
reach a fixed point, allowing parameterized partial model checking [BR06].

The nature of pLµ [Mio12] makes it a good candidate for probabilistic par-
tial model checking. However, while a process choice in the non-probabilistic
case could be turned into a disjunction in the µ-calculus formula, the stan-
dard disjunction of pLµ cannot support a quotiented probabilistic choice;
this is modeled instead by a convex combination operator, +λ. A feature
of pLµ is that it supports as extensions additional binary operations other
than standard conjunction and disjunction, including +λ. We show that, in
some cases, we may reach what would be a non-probabilistic fixed point in

7

the formula, where the only change from quotienting out another process is
on the values of λ in the +λ operators.

1.3.2 PRISM Model Checker

PRISM is a probabilistic model checker, and it serves as an example of sup-
porting a higher-level specification for probabilistic models [KNP11]2. It has
Markov processes [Ste09] as its low-level models, reactive modules [AH99]
for its specifications, and PCTL/PCTL* and CSL as its logics, depending
on the nature of time in the model. PRISM supports a BDD representation
for the models, which produces compact structures in many case studies. In
this thesis, we also analyze our own models for several of these case studies,
in Sections 4.5 and 5.5.

1.4 Thesis Outline

The rest of this thesis proceeds as follows. We review GPL in Chapter 2,
along with RMCs [EY09]. We extend GPL to XPL, a logic supporting PLTSs,
systems with linear nondeterminism, in Chapter 3. Chapter 4 introduces a
general probabilistic inference algorithm, PIP, which is based on tabled logic
programming [SW+12]. It includes the ability to model check GPL and a
fragment of XPL. In Chapter 5, we apply and extend pLµ [Mio12] to support
partial model checking. Our conclusion is in Chapter 6.

2Note that the PRISM system is distinct from the PRISM model checker.

8

Chapter 2

Probabilistic Systems

A Probabilistic LTS (PLTS) [Seg95, Mio12] is more expressive than a Markov
chain [Ste09]; PLTSs integral to this thesis. To find the probability of a path
formula in PCTL [HJ94], a logic over Markov processes, we can solve a linear
system of equations, which may be represented as a matrix. The models
covered in this chapter result in nonlinear systems; in particular, we get
Probabilistic Polynomial Systems (PPSs) [EY09, ESY12b]. The nonlinearity
arises as a treatment of probabilistic branching time; a PCTL path formula
may be seen as coming from a subset of LTL formulae [IN96].

In Section 2.1, we discuss RPLTSs, in which there is no linear nondeter-
minism. In Section 2.2, we describe GPL [CIN05], including its syntax and
semantics, followed by an outline of the model checking algorithm in Sec-
tion 2.3. We discuss RMCs [EY09] in Section 2.4. The polynomial systems
arising in GPL and RMCs are covered in Section 2.5. Finally, Section 2.6
considers the meaning of probabilistic branching time and its relation to
GPL.

2.1 Reactive Probabilistic LTSs

A Reactive Probabilistic LTS (RPLTS) has internal choices made as a re-
action to external choices. External choices are represented by differently
labeled actions, while internal choices are probabilistic choices labeled with
the same action.

Formally, with respect to fixed sets Act and Prop of actions and propo-
sitions, respectively, an RPLTS L is a quadruple (S, δ,P, I) [CIN05, Defini-
tion 1], where

• S is a countable set of states;

• δ ⊆ S ×Act × S is the transition relation;

9

• P ∶ δ → (0,1] is the transition probability distribution satisfying:

– ∀s ∈ S.∀a ∈ Act. ∑
s′∶(s,a,s′)∈δ

P (s, a, s′) ∈ {0,1}, and

– ∀s ∈ S.∀a ∈ Act.(∃s′.(s, a, s′) ∈ δ) Ô⇒ ∑
s′∶(s,a,s′)∈δ

P (s, a, s′) = 1;

• I ∶ S → 2Prop is the interpretation, recording the set of propositions that
are true at a state.

Given L = (S, δ,P, I), a partial computation is a sequence

σ = s0
a1
→ s1

a2
→ ⋯

an
→ sn ,

where for all 0 ≤ i < n, (si, ai+1, si+1) ∈ δ. Also, fst(σ) = s0 and last(σ) = sn.
Each transition of a partial computation is labeled with an action ai ∈ Act.
CL refers to the set of all partial computations of L, and CL(s) = {σ ∈ CL ∣

fst(σ) = s}. Composition of partial computations, σ
a
→ σ′, represents s0

a1
→

⋯
an
→ sn

a
→ s′0

b1
→ ⋯

bm
→ s′m if (sn, a, s′0) ∈ δ. σ

′ is a prefix of σ if σ′ = s0
a1
→ ⋯

ai
→ si

for some i ≤ n.
From a set of partial computations, we can build deterministic trees (d-

trees). We often denote a d-tree by the set of paths in the tree. Every d-tree
is prefix-closed and deterministic. T ⊆ CL is prefix-closed if, for every σ ∈ T
and σ′ a prefix of σ, σ′ ∈ T . T is deterministic if for every σ,σ′ ∈ T with

σ = so
a1
→ ⋯

an
→ sn

a
→ s⋯ and σ′ = s0

a1
→ ⋯

an
→ sn

a′

→ s′⋯, either a ≠ a′ or
s = s′, i.e., if a pair of computations share a prefix, the first difference cannot
involve transitions labeled by the same action. A d-tree T has a starting
state, denoted root(T); if s = root(T) then T ⊆ CL(s).

Further, edges(T) = {(σ, a, σ′) ∣ σ,σ′ ∈ T ∧∃s ∈ S.σ′ = σ
a
→ s}. Analogously

to the partial computation definitions, TL refers to all the d-trees of L, and
TL(s) = {T ∈ TL ∣ root(T) = s}. T ′ is a prefix of T if T ′ ⊆ T . T

a
→ T ′ means

T ′ = {σ ∣ root(T)
a
→ σ ∈ T}. T is finite if ∣T ∣ < ∞, and maximal if there exists

no d-tree T ′ with T ⊂ T ′. ML and ML(s) are analogous to TL and TL(s),
but for maximal d-trees.

An outcome is a maximal d-tree; this gives the external nondeterminism
of RPLTSs the branching nature. Intuitively, the probability of some finite
prefix is the product of the probabilities of all the edges. Formally, a basic
cylindrical subset ofML(s) contains all trees sharing a given prefix. Letting

10

s
5

s
1

s
6

s
4

s
2

s
3

a

3/43/4

1/4 1/4

a

a

aa

b c

Figure 2.1: RPLTS Example

s ∈ S, and T ∈ TL(s) to be finite, BT = {T ′ ∈ ML ∣ T ⊆ T ′}. The measure of
BT is:

m(BT) = ∏
(σ,a,σ′)∈edges(T)

P (last(σ), a, last(σ′))

From here, a probability measure ms ∶ Bs → [0,1] on the smallest field of sets
Bs is generated from subsets BT with ms(BT) = m(BT) [CIN05, Definition 8].

Example 2.1 (Sample RPLTS). Figure 2.1 is an example of a specification
[CIN05, Figure 3], where

• S = {s1, s2, s3, s4, s5, s6},

• δ = {(s1, a, s2), (s2, b, s3), (s2, c, s4), (s3, a, s2), (s3, a, s5),
(s4, a, s2), (s4, a, s6)},

• P (s3, a, s5) = P (s4, a, s6) = 1
4 , P (s3, a, s2) = P (s4, a, s2) = 3

4 . For all
other transitions t ∈ δ, P (t) = 1.

An example of an outcome is in Figure 2.2. This is a finite d-tree, which

has a probability of (1
4
)

3
⋅ 3

4 =
3

256 . Infinite outcomes are also possible, and, in
this example, they have positive measure.

2.2 Generalized Probabilistic Logic

Generalized Probabilistic Logic (GPL) [CIN05] is a probabilistic branching-
time extension of modal µ-calculus [Koz83].

11

s
5

s
1

s
4

s
2

s
3

a1/4 3/4

a

a

b c

s
4

s
2

s
3

b c

s
5

a1/4 1/4a

s
6

Figure 2.2: D-Tree Example

2.2.1 GPL Syntax

GPL has two different kinds of formulae. State formulae depend directly
only on the given state. Fuzzy formulae depend on outcomes. Additionally,
Var represents a set of variables. The syntax of GPL, with X ∈ Var, a ∈ Act,
A ∈ Prop, and 0 ≤ p ≤ 1, for state formulae, φ, and fuzzy formulae, ψ, is:

φ ∶∶= A ∣ ¬A ∣ φ ∧ φ ∣ φ ∨ φ ∣ Pr>pψ ∣ Pr≥pψ,

ψ ∶∶= φ ∣X ∣ ψ ∧ ψ ∣ ψ ∨ ψ ∣ ⟨a⟩ψ ∣ [a]ψ ∣ µX.ψ ∣ νX.ψ.

Note that only atomic propositions may be negated, but every operator has
its dual given in the syntax. The propositional connectives, ∧ and ∨, can be
used on both state and fuzzy formulae. Operators µX.ψ and νX.ψ are least
and greatest fixed point operators for the “equation” X = ψ. Additionally,
fuzzy formulae must be alternation-free, which prohibits a kind of mixing
of least and greatest fixed points, and a formula ψ used to construct state
formulae Pr>pψ and Pr≥pψ may not have any free variables. These operators
check the probability for a fuzzy formula ψ (Pr>p and Pr≥1−p are duals). The
semantics of GPL is given in terms of RPLTS d-trees. In that interpretation,
diamond implies box : ⟨a⟩ψ means that there is an a-transition and it satisfies

12

ψ; [a]ψ means that if there is an a-transition, it satisfies ψ. We also use a
set α ⊆ Act for the modalities, reading ⟨α⟩ψ as ⋁

a∈α
⟨a⟩ψ and [α]ψ as ⋀

a∈α
[a]ψ.

When we write −α, that represents Act ∖ α.

Example 2.2 (GPL Fuzzy Formula). For the RPLTS in Example 2.1, an
example of a fuzzy formula [CIN05, Example 2] is:

ψ = µX.[a][b]X ∧ [a][c]X.

From states s1, s3, and s4, an a-transition can go to s2, which has a b-
transition to s3 and a c-transition to s4. From s3 and s4, it is also possible
to go to s5 and s6, respectively, where [b]X and [c]X are true vacuously. A
single unfolding of the formula is:

([a][b]µX.[a][b]X ∧ [a][c]X) ∧ ([a][c]µX.[a][b]X ∧ [a][c]X).

As ψ is a least fixed point, it is, in this particular case, satisfied only by finite
outcomes, and in fact all such outcomes of the model rooted at s1 satisfy ψ.

2.2.2 GPL Semantics

We give the semantics of GPL with respect to a fixed RPLTS L = (S, δ,P, I),
where Φ and Ψ are the sets of all state and fuzzy formulae, respectively. A
function ΘL ∶ Ψ → 2ML , augmented with an extra environment parameter
e ∶ Var → 2ML , returns the set of outcomes satisfying a given fuzzy formula,
defined inductively in Table 2.1. For a given s ∈ S, ΘL,s(ψ) = ΘL(ψ)∩ML(s).
The relation ⊧L⊆ S ×Φ indicates when a state satisfies a state formula, and
is defined inductively in Table 2.2. Note that the definitions for ΘL and ⊧L
are mutually recursive.

There are two properties of fuzzy formulae that are important for the
completeness of the GPL model checking algorithm. First, we have distribu-
tivity on box and diamond:

Lemma 2.1 (Distributivity on modal operators ([CIN05] Lemma 1)). Letting
⊕ ∈ {∧,∨}:

ΘL([a]ψ1 ⊕ [a]ψ2) = ΘL([a](ψ1 ⊕ ψ2)),

ΘL(⟨a⟩ψ1 ⊕ ⟨a⟩ψ2) = ΘL(⟨a⟩(ψ1 ⊕ ψ2)),

ΘL([a]ψ1 ∧ ⟨a⟩ψ2) = ΘL(⟨a⟩(ψ1 ∧ ψ2)),

ΘL([a]ψ1 ∨ ⟨a⟩ψ2) = ΘL([a](ψ1 ∨ ψ2)).

◻

13

Table 2.1: GPL semantics: fuzzy formulae

ΘL(φ)e = ⋃
s⊧Lφ

ML(s),where φ is a closed formula,

ΘL(X)e = e(X),

ΘL(⟨a⟩ψ)e = {T ∈ ML ∣ ∃T ′ ∶ T
a
→ T ′ ∧ T ′ ∈ ΘL(ψ)e},

ΘL([a]ψ)e = {T ∈ ML ∣ (T
a
→ T ′) Ô⇒ T ′ ∈ ΘL(ψ)e},

ΘL(ψ1 ∧ ψ2)e = ΘL(ψ1)e ∩ΘL(ψ2)e,

ΘL(ψ1 ∨ ψ2)e = ΘL(ψ1)e ∪ΘL(ψ2)e,

ΘL(µX.ψ)e =
∞

⋃
i=0

Mi,where M0 = ∅ and Mi+1 = ΘL(ψ)e[X ↦Mi],

ΘL(νX.ψ)e =
∞

⋂
i=0

Ni,where N0 =ML and Ni+1 = ΘL(ψ)e[X ↦ Ni].

Table 2.2: GPL semantics: state formulae

s ⊧L A iff A ∈ I(s),

s ⊧L ¬A iff A ∉ I(s),

s ⊧L φ1 ∧ φ2 iff s ⊧L φ1 and s ⊧L φ2,

s ⊧L φ1 ∨ φ2 iff s ⊧L φ1 or s ⊧L φ2,

s ⊧L Pr>pψ iff ms(ΘL,s(ψ)) > p,

s ⊧L Pr≥pψ iff ms(ΘL,s(ψ)) ≥ p.

Second, we can relate the probability of a conjunction with that of a
disjunction [CIN05, Lemma 2]:

ms(ΘL,s(ψ1 ∨ψ2)) = ms(ΘL,s(ψ1)) +ms(ΘL,s(ψ2)) −ms(ΘL,s(ψ1 ∧ψ2)) (2.1)

[CIN05, Lemma 2] also includes the following result for a transition:

ms(ΘL,s(⟨a⟩ψ)) = ∑
s′∶(s,a,s′)∈δ

P (s, a, s′) ⋅ms′(ΘL,s′(ψ)) (2.2)

14

Additionally, a fairly standard property with respect to a µ-calculus is
that the negation of a formula, regardless of the underlying model, can be
expressed despite the lack of an explicit negation operator. With GPL, this
entails the existence of formulae neg(ψ) and neg(φ) for a fuzzy formula ψ
and state formula φ, respectively, such that, for any RPLTS L and state
s [CIN05, Lemma 3]:

ΘL,s(neg(ψ)) =ML(s) −ΘL,s(ψ) and s ⊧L neg(φ) ⇐⇒ s ⊭L φ .

The proof involves switching all the operators to their duals. Combined with
the alternation-free restriction, we thus may limit ourselves to least fixed
points when considering fuzzy formulae with only one fixed point.

2.3 GPL Model Checking

For model checking, we require that bound variables be guarded by a diamond
or a box operator (this does not affect the expressiveness of GPL [CIN05]).
We outline a model checking procedure for a fixed RPLTS L = (S, δ,P, I).

To compute ms0(ΘL,s0(ψ)), a dependency graph, Pr(s0, ψ) = (N,E), is
constructed. In the node set N ⊆ S × 2Cl(ψ), a node (s,F) has an associated
semantics of

⟦(s,F)⟧ = ΘL,s(∧F),

and Cl(ψ) is the Fisher-Ladner closure, defined as follows:

• ψ ∈ Cl(ψ).

• If ψ′ ∈ Cl(ψ), then:

– if ψ′ = ψ1 ∧ ψ2 or ψ1 ∨ ψ2, then ψ1, ψ2 ∈ Cl(ψ);

– if ψ′ = ⟨a⟩ψ′′ or [a]ψ′′ for some a ∈ Act, then ψ′′ ∈ Cl(ψ);

– if ψ′ = σX.ψ′′, then ψ′′[σX.ψ′′/X] ∈ Cl(ψ), with σ either µ or ν.

The edges in the graph are labeled from Act ∪ {ε+, ε−}, so we have the edge
set E ⊆ N ×(Act∪{ε+, ε−})×N . Finally, from the completed graph, a system
of polynomial equations can be extracted.

Some nodes are terminal, with no outgoing edges, and many nodes have
a single outgoing edge of the form ((s,F), ε+, (s,F ′)). This is based on the
existence of a formula ψ′ ∈ F , and the node is classified according to the first

15

node ψ′ F ′ ⟦(s,F)⟧ ms(⟦(s,F)⟧)

empty F = ∅ ML(s) 1

false φ (s ⊭L φ) no edges ∅ 0

⟨a⟩ψ′′ (s
a

/→)

true φ (s ⊧L φ) F ∖ {all such ψ′}

[a]ψ′′ (s
a

/→)

and ψ1 ∧ ψ2 F ∖ {ψ′} ∪ {ψ1, ψ2} ⟦(s,F ′)⟧ ms(⟦(s,F ′)⟧)

ν νX.ψ′′ F ∖ {ψ′} ∪ {ψ′′[ψ′/X]}

µ µX.ψ′′

F1 = F ∖ {ψ′} ∪ {ψ1}, ⟦(s,F1)⟧ ms(⟦(s,F1)⟧)

or ψ1 ∨ ψ2 F2 = F ∖ {ψ′} ∪ {ψ2}, ∪ +ms(⟦(s,F2)⟧)

F3 = F ∖ {ψ′} ∪ {ψ1, ψ2} ⟦(s,F2)⟧ −ms(⟦(s,F3)⟧)

Table 2.3: Non-action nodes

matching rule in the ψ′ column in Table 2.3. The or -node has three edges,
and the edge to (s,F3) has the label ε−, as ⟦(s,F1)⟧∩⟦(s,F2)⟧ = ⟦(s,F3)⟧ and,
when computing the measure, we use (2.1). If every formula in F has the
form ⟨a⟩ψ′ or [a]ψ′, with s having the corresponding a-transition for each
formula, then (s,F) is an action node. We define three helper functions:
residue ∶ 2Ψ × Act → 2Ψ, action ∶ 2Ψ → 2Act, and f(s,a) ∶ 2ML → 2ML(s), as
follows:

residue(F,a) = {ψ ∣ ⟨a⟩ψ ∈ F ∨ [a]ψ ∈ F},

action(F) = {a ∈ Act ∣ ∃ψ.⟨a⟩ψ ∈ F ∨ [a]ψ ∈ F},

f(s,a)(M) = {T ∈ ML(s) ∣ ∃T ′ ∈M.T
a
→ T ′}.

The function residue(F,a) finds all the formulae with a particular guard, and
removes the guard; action(F) returns all the guards found in F ; and f(s,a)(M)

extends trees by adding edges s
a
→ s′, where s′ is a root of other maximal

d-trees.
From an action node (s,F), there may be several edges of the form

16

((s,F), a, (s′, residue(F,a))), and we have:

⟦(s,F)⟧ = ⋂
a∈action(F)

⋃
((s,F),a,(s′,F ′))∈E

f(s,a)(⟦(s
′, F ′)⟧),

ms(⟦(s,F)⟧) = ∏
a∈action(F)

∑
((s,F),a,(s′,F ′))∈E

P (s, a, s′) ⋅ms′(⟦(s
′, F ′)⟧). (2.3)

In (2.3), for the measure of an action node, the intersection naturally turns
into a product, and the union into a sum, when independence and mutual
exclusion, respectively, are satisfied. Meanwhile, f(s,a)(⟦(s′, F ′)⟧) changes to
P (s, a, s′) ⋅ ms′(⟦(s′, F ′)⟧), which is essentially the contribution of the prob-
abilistic extension to the model checker.

Equations are readily constructed by considering ms(⟦(s,F)⟧) as a vari-
able. Note that the dependency graph treats µ and ν identically. In solving
the stratified system, we start from 0 to find the least fixed point, and 1 for
the greatest fixed point. The alternation-free restriction ensures that there
is no cycle in the graph containing both a µ-node and a ν-node.

Example 2.3 (Model Checking). For the RPLTS in Example 2.1 and fuzzy
formula ψ in Example 2.2, letting ψ1 = [a][b]ψ and ψ2 = [a][c]ψ, the depen-
dency graph is shown in Figure 2.3, and the probability measure of the d-trees
satisfying ψ is 1

9 .

Here, the only nodes with multiple outgoing edges are (s3,{ψ1, ψ2}) and
(s4,{ψ1, ψ2}), and the generated equations reduce to

x1 = x2 ⋅ x3,

x2 =
3

4
x1 +

1

4
,

x3 =
3

4
x1 +

1

4
,

with ms1(⟦(s1, ψ)⟧) = x1 = (3
4x1 +

1
4
)

2
and solutions x1 = 1

9 and x1 = 1, of
which the former corresponds to the least fixed point.

Note that, in general, one way to break down the model checking al-
gorithm is in the following two parts: writing down a polynomial system,
and then finding the (approximate) solution. The first part is bounded ex-
ponentially in the size of the fuzzy formula, as we deal with subsets of the
Fisher-Ladner closure. For the second part, value iteration is guaranteed to
converge [CIN05, Lemma 10], but may be exponentially slow in the number

17

1(s ,{ψ})

1(s ,{ψ˄ψ})1 2

1(s ,{ψ ,ψ})1 2

2(s ,{[b]ψ,[c]ψ})3(s ,{ψ})

3(s ,{ψ˄ψ})1 2

3(s ,{ψ ,ψ})1 2

5(s ,{[b]ψ,[c]ψ})

4(s ,{ψ})

4(s ,{ψ˄ψ})1 2

4(s ,{ψ ,ψ})1 2

6(s ,{[b]ψ,[c]ψ})

ε+

ε+

a
b c

ε+

ε+ ε+

ε+

aa

a a

5(s ,Ø) 6(s ,Ø)

ε+ ε+

Figure 2.3: Dependency graph Pr(s1, ψ)

of digits of precision [EY09, KLE07]. When the polynomial system is of a
specific form, discussed in Section 2.5, alternative approximation methods
have been proven to be efficient [KLE07, ESY12b].

2.4 Recursive Markov Chains

Recursion is a powerful programming paradigm. When a function or method
is called, execution is paused in the current context, to be resumed when
it returns, and possibly using a return value. A Recursive Markov Chain
(RMC) [EY09] is basic model for this in the probabilistic domain and a
branching-time extension of Markov chains. Recursion happens via special
entry and exit nodes, as well as boxes with call and return ports. Formally,
we define an RMC A as a tuple (A1, . . . ,Ak), where each component graph
Ai is a sextuple (Ni,Bi, Yi,Eni,Exi, δi):

18

2/3

1/4 1/4

1/2

1

1/3
1/3

1/3

1/3

1

en

ex
1

ex
2u

z

b' : A
1

b' : A'
2

en'

ex'
1

ex'
2

1/4

3/4 3/5

2/5

2/3

1/3

1

1

1

v

b
1

b : A'
1

A'A

Figure 2.4: RMC Example

• Ni is a set of nodes, containing subsets Eni and Exi of entry and exit
nodes, respectively.

• Bi is a set of boxes, with a mapping Yi ∶ Bi → {1, . . . , k} assigning each
box to a component. Each box has a set of call and return ports, corre-
sponding to the entry and exit nodes, respectively, in the correspond-
ing components: Callb = {(b, en) ∣ en ∈ EnYi(b)}, Returnb = {(b, ex) ∣ ex ∈
ExYi(b)}.

• δi is the transition relation, with transitions of the form (u, puv, v),
where u may not be an exit node or a call port, and v may not be an
entry node or a return port. Additionally, puv ∈ (0,1] and, for each u,

∑
v′∶(u,⋅,v′)∈δi

puv′ = 1.

Starting at an entry node of a component, we are typically interested in the
probability that the RMC terminates at a particular (or any) exit node of
the component. The problem of reachability of an RMC node, either with a
particular recursive stack or ignoring it, also reduces to termination [EY09,
Proposition 2.1]. In computing the termination probability of an RMC, we
solve a system of polynomial equations similar to one produced from GPL
model checking, which we discuss in the next section. Additionally, we can
translate an RMC to an RPLTS, which we will show in Section 3.4.2.

Example 2.4 (Sample RMC). Figure 2.4 [EY09, Figure 1] shows an example
of an RMC R with two components, A and A′, each having a single entry
node and two exit nodes. In addition, the components combine to have three
boxes and three internal nodes.

19

Formally, we have R = {A1,A2}, with A1 = A, where:

• N1 = {u, z, en, ex1, ex2}, with En1 = {en} and Ex1 = {ex1, ex2};

• B1 = {b1}, with Y1(b1) = 2, Callb1 = {(b1, en′)},
and Returnb1 = {(b1, ex′1), (b1, ex′2)};

• and transitions such as (u,1/3, z) ∈ δ1 and ((b1, ex′2),1/4, (b1, en′)) ∈ δ1;

and A2 = A′, where:

• N2 = {en′, v, ex′1, ex
′
2}, with En2 = {en′} and Ex2 = {ex′1, ex

′
2};

• B2 = {b′1, b
′
2}, with Y2(b′1) = 1 and Y2(b′2) = 2, Callb′1 = {(b′1, en)} and

Returnb′1 = {(b′1, ex1), (b′1, ex2)}, and Callb′2 = {(b′2, en
′)} and Returnb′2 =

{(b′2, ex
′
1), (b

′
2, ex

′
2)};

• and transitions such as (en′,3/4, (b′1, en)) ∈ δ2 and ((b′1, ex2),3/5, ex′1) ∈
δ2.

RMCs’ components often have a single entry node, as this restriction does
not affect RMC expressiveness [EY09]. Meanwhile, when all components
have a single exit, an RMC is called a 1-exit RMC (or 1-RMC); otherwise,
it’s a multi-exit RMC.

2.5 Probabilistic Polynomial Systems

One model checking paradigm is to construct an automaton with an ac-
ceptance condition from a model and a desired property. In some cases,
the automaton is essentially in the same class as the model, such as with
PCTL model checking, where the Markov process is transformed into an-
other Markov process, for which a given property becomes simple reachabil-
ity [HJ94]. This applies also to RMCs and reducing properties to termina-
tion [EY09]. In other cases, the properties cannot be reduced, and instead
are transformed to automata representing them; then, the product of the
model with the property yields a more general automaton, as with LTL and
PCTL* model checking [IN96, Bai98]. The dependency graph construction
for GPL model checking, described in Section 2.3, is also essentially building
a product of an RPLTS with a fuzzy formula [CIN05]. In both the RMC and
GPL cases, the automata lead to polynomial systems of equations, for which

20

the least fixed point (LFP) or the greatest fixed point (GFP) is the desired
solution [Ste15].

The systems are of the form x = P (x). Setting x(0) = 0 and iterating with
x(i+1) = P (x(i)), where x(i+1) ≥ x(i) for all i ≥ 0, the sequence always converges
to the LFP q∗, with q∗ = P (q∗). The GFP may be found similarly, starting
with x(0) = 1. The alternation-free restriction of GPL may lead to solving a
stratified system, where there is an acyclic relation between least and greatest
fixed points, and numerical issues may lead to indeterminate results [CIN05];
given our focus, we are satisfied with the GPL model checking algorithm
producing the polynomial system. Another concern is that value iteration
may be exponentially slow in the number of digits of precision (e.g., for the
equation x = 1

2x
2 + 1

2 [KLE07]), and additional results have been reached for
the systems arising from RMCs.

The polynomial systems produced from 1-RMCs and those from multi-
exit RMCs were not initially distinguished [EY09], each placed as a proper
subset of Monotone Polynomial Systems (MPSs) and explored with an adap-
tation of Newton’s method to speed up computation. A polynomial-time
algorithm was subsequently given for the computation of an LFP for PPSs,
which correspond to the systems produced from 1-RMCs [ESY12b]. A Prob-
abilistic Polynomial System (PPS) may always be converted to a Simple
Normal Form (SNF) [ESY12a, ESY15]. In the case without linear nondeter-
minism, for the system x = P (x), this means two forms:

• Form L: Pi(x) = ai,0 +
n

∑
j=1
aijxj, with aij ≥ 0 for all j and

n

∑
j=0
aij ≤ 1;

• Form Q: Pi(x) = xj ⋅ xk for some j, k.

For multi-exit RMCs, Form Q may be modified to a sum of products, and
for the least solution q∗, q∗ ∈ [0,1]n because the left factors correspond to
reaching distinct exits and are thus mutually exclusive [EY09].

In the next chapter, we will consider systems with nondeterminism. Then,
the following additional forms are in the SNF of a min/maxPPS [ESY12a,
ESY15]:

• Form M: Pi(x) = min{xj, xk} for some j, k;

• Form X: Pi(x) = max{xj, xk} for some j, k.

21

We consider all the polynomial systems produced in this and the next chapter
to be probabilistic, as they remain in [0,1]n. However, to distinguish from
PPSs, we will call them Extended Polynomial Systems (XPSs) in this thesis.

For the systems produced from GPL, if there are no disjunctions (includ-
ing implicit ones), the resulting system will be a PPS; disjunctions lead to a
specific kind of subtraction, which keeps the whole system in [0,1]n [CIN05].
We may thus refer to a (min/max)PPS as a conjunctive XPS. We may also
consider a disjunctive form, Form D, that is the dual to Form Q, and define
separable and disjunctive XPSs.

Definition 2.1 (Extended Polynomial System). An additional form for SNF
in XPS is:

• Form D: Pi(x) = xj + xk − xj ⋅ xk for some j, k.

Separable XPSs in SNF may have equations in Forms L, Q, D, M, and X; a
conjunctive XPS and a disjunctive XPS are separable XPSs with no equations
in Form D and Form Q, respectively. ◻

Separable XPSs (without Forms M and X) have recently been considered
with respect to game automata [MM15]. The systems produced by the GPL
model checking algorithm may actually go beyond a separable XPS, but
without any equations in Forms M or X; we will call this a stochastic XPS
and use an asymmetric form for disjunction, Form D′, to represent it.

Definition 2.2 (Stochastic XPS). We define the following additional form:

• Form D′: Pi(x) = xj + xk − xm for some j, k,m.

A stochastic XPS in SNF may have Forms L and Q, as above, and Form D′.
◻

That is, disjunctions are handled with a special form of subtraction such
that the whole system may not be monotonic (i.e., x ≤ y no longer implies
P (x) ≤ P (y)), but does not violate monotonicity under iteration starting
from 0 or 1, because when this form arises, xm changes more slowly than xj
and xk [CIN05, Lemma 10].

Note that Form Q represents the conjunction of independent outcomes;
if xm is in Form Q, such that xm = xj ⋅ xk, then Form D′ reduces to Form D.
Meanwhile, when xj and xk correspond to mutually exclusive outcomes in
Form D′, then, for the LFP q∗, q∗m = 0. Thus, if all disjunctions were mutually

22

exclusive, in the case of LFP computation, there would be no true subtraction
in the resulting XPS (cf. the system formed from a multi-exit RMC [EY09]).

The problem of computing the LFP of a disjunctive XPS may be reduced
to computing the GFP of a conjunctive XPS. The computation of a GFP for
a (min/max)PPS, as for the LFP, has a polynomial-time algorithm unless
both Forms M and X are present [ESY15].

If we are model checking an LFP disjunctive formula, we can get to the
PPS GFP computation in multiple ways. First, the negation of an LFP
disjunctive formula is a GFP conjunctive formula, which would then lead to
a PPS, and the nature of the fixed point does not affect the PPS construction.
Alternatively, we can employ the operator R ∶ [0,1]n → [0,1]n, with R(x) =
1 − P (1 − x) (R is mentioned in the introduction of [ESY15]). Applying R
to a disjunctive XPS produces a conjunctive XPS, since Form L is essentially
unchanged, while all Form D equations convert to Form Q (observe that
a + b − ab = 1 − (1 − a)(1 − b)).

2.6 The Interpretation of Branching Time

While Markov processes produce only linear equation systems, probabilis-
tic branching-time systems may produce nonlinear ones. We have explored
several probabilistic branching-time paradigms, such as the recursive calls in
RMCs. The paradigm with RMCs is a sequential (or nested) one: there is
a recursive call, and either exactly one or a few places to resume on return
(and the possibility that a return port is not reached at all), on which the
subsequent execution depends. An alternative probabilistic branching time
paradigm is parallel (or independent) branching. In this case, we might be
interested in what happens on all branches, or whether a branch satisfying
a property exists, quite similarly to CTL [CES86]. A basic probabilistic
branching-time model is a Markov Branching Play (MBP) [Mio11, Mio12,
MM15]. Meanwhile, other related work has considered the more specialized
Branching Processes (BPs) [EY09, ESY12b, CDK12, ESY15].

2.6.1 Branching Processes

One of the ways a BP may be used is to model populations. A process may
spawn additional processes, increasing the population, or die, decreasing it.
It may also evolve to a different (e.g., older) type, and all of the processes

23

evolve in each time step. We define a BP ∆ following [CDK12, Definition 1],
but with notation more closely mirroring RPLTSs, as a triple (Γ, δ, P), where:

• Γ is a finite set of types ;

• δ ⊆ Γ × Γ+ is a finite set of transition rules; and

• P ∶ δ → (0,1] is a transition probability distribution satisfying:

∀X ∈ Γ. ∑
α∶(X,α)∈δ

P (X,α) = 1.

Additionally, we will write (X,α) ∈ δ with P (X,α) = p as X
p
→ α. A BP

state is a multi-set of types, and a transition applies a transition rule simul-
taneously to each element in the set. Deadlock is modeled by a type D with

the rule D
1
→ D (alternative definitions of BPs allow a transition rule for

termination, (X, ε) ∈ δ).

Example 2.5 (BP Example). An example BP [CDK12, Equation (1)] is:

I
0.9
→ I, B

0.2
→ D, D

1
→D,

I
0.1
→ IB, B

0.5
→ B,

B
0.3
→ BB.

BP extinction refers to reaching a state that is an empty set, and the
problem of finding BP extinction probability can be reduced to 1-RMC ter-
mination [EY09]. Note that, with the case of the deadlock type D instead of
termination rules, reaching a state with only D types is essentially equivalent
to extinction. In Example 2.5, the extinction probability when starting at
state B is 2

3 . Meanwhile, the reachability problems are distinct for BPs and
1-RMCs (the BP reachability problem is considered in [ESY15, Section 5]).
Neither extinction nor reachability properties depend on the specifics of how
BPs run, and it is sufficient to know that processes evolve independent of
one another. Additionally, a PCTL-like [HJ94] logic, called Probabilistic
Tree Temporal Logic (PTTL), has been described over BPs [CDK12].

24

2.6.2 PTTL

PTTL is a logic over labeled BPs, which have an interpretation function I, as
with RPLTSs. We give the syntax of PTTL following [CDK12, Definition 18],
but more closely mirroring GPL. With A ∈ Prop, we refer to φ and ψ as state
and fuzzy formulae, as for GPL:

φ ∶∶= tt ∣ A ∣ ¬φ ∣ φ ∧ φ ∣ Pr≥pψ ∣ Pr>pψ,

ψ ∶∶= AXφ ∣ EXφ ∣ A[φUφ] ∣ E[φUφ] ∣ A[φRφ] ∣ E[φRφ].

We may view any RPLTS without terminal states as a BP, and the semantics
of the X and U operators on d-trees is essentially as in CTL [CES86] (R is
the dual of U); we will discuss PTTL semantics further in Section 3.4. The
polynomial system of equations produced by model checking PTTL is PPS-
expressible [CDK12].

2.6.3 Additional Interpretations

A simple formula over probabilistic branching time that goes beyond PPSs
is µX.[−]⟨−⟩X, which alternates between making the “best” and “worst”
choices. Aside from GPL [CIN05], the polynomial system that could be
produced from such a formula has been recently analyzed with respect to
game automata [MM15].

Additionally, some GPL formulae may be called entangled, e.g., ψe =
([a]ψ1 ∧ [b]ψ4) ∨ ([a]ψ2 ∧ [b]ψ3). Intuitively, this means that we cannot
consider each branch independently, as what we need to satisfy after an a
action depends on what happens after a b action (and vice versa, in this
example). The ability to express and model check entangled formulae is
a feature of GPL (we further discuss entanglement in Section 3.3.1), and
finding applications for them is an interesting possibility.

25

Chapter 3

Linear Nondeterminism in Probabilistic Systems

For finite-state systems, model checking a temporal property can be cast in
terms of model checking in the modal µ-calculus, the so-called “assembly
language” of temporal logics. A number of temporal logics have been pro-
posed and used for specifying properties of finite-state probabilistic systems.
Two of the notable logics for probabilistic systems based on the µ-calculus
are GPL [CIN05] and pLµ [Mio11].

GPL is defined over RPLTSs. The formal definitions of GPL and RPLTSs
were given in Chapter 2, mainly following [CIN05]. In an RPLTS, each
state has a set of outgoing transitions with distinct labels; each action, in
turn, specifies a (probabilistic) distribution of target states. GPL categorizes
formulae into state formulae, which have a deterministic truth value at a
state, and fuzzy formulae, whose truth at a state is probabilistic. Operators
of the form “Pr” are used to construct state formulae from fuzzy formulae.
For example, the state formula Pr>0.5ψ expresses that the fuzzy formula ψ
holds with probability greater than 0.5. GPL is expressive enough to serve
as an “assembly language” of a large number of probabilistic temporal logics.
For instance, model checking PCTL* properties over Markov chains, as well
as termination and reachability of RMCs can be cast in terms of GPL model
checking [CIN05, GRS12].

In this chapter, we consider an extension to GPL to express properties of
probabilistic systems with both linear and branching nondeterminism. This
logic, called Extended Probabilistic Logic (XPL), is defined over PLTSs. In a
PLTS, each state has a set of outgoing transitions, possibly with common la-
bels ; and each transition specifies a distribution of target states. PLTSs thus
exhibit both probabilistic choice and nondeterministic choice, and moreover,
under the XPL semantics, the internal nondeterminism is linear, while the
external nondeterminism is branching. Syntactically, XPL differs from GPL
by replacing the Pr operators with Prmax and Prmin to account for the max-

26

imal and minimal probabilistic values of fuzzy formulae (which may differ
due to the internal choices in PLTSs).

Contributions and Significance: XPL is expressive enough that a wide
variety of independently-studied verification problems can be cast as model
checking PLTSs with XPL. In fact, undecidable problems such as termination
of multi-exit RMDPs can be reduced in linear time to model checking PLTSs
with XPL. We introduce a syntactically-defined subclass, called separable
XPL, for which model checking is decidable. We describe a procedure for
model checking XPL which always terminates— successfully with the model
checking result, or with failure— such that it always terminates successfully
for separable XPL (see Section 3.3).

A number of distinct model checking algorithms have been developed in-
dependently for decidable verification problems involving systems that have
probabilistic and internal nondeterministic choice. Examples of such prob-
lems include PCTL* model checking of MDPs [Bai98], reachability in Branch-
ing MDPs (BMDPs) [ESY15], and termination of 1-exit RMDPs [EY15].
These problems can all be reduced, in linear time, to model checking sepa-
rable XPL formulae over PLTSs (see Section 3.4).

Termination of multi-exit RMDPs, cast as a model checking problem over
XPL along the same lines as our treatment of 1-exit RMDPs, yields an XPL
formula that is not separable. Thus separability can be seen as a character-
istic of the verification problems that are known to be decidable, when cast
in terms of model checking in XPL. Consequently, XPL in general, and sep-
arable XPL in particular, form a useful formalism to study the relationships
between verification problems over systems involving probabilistic and both
linear- and branching-time nondeterministic choice. We discuss these issues
in greater detail in Section 3.5.

3.1 Probabilistic Labeled Transition Systems

We define a Probabilistic LTS (PLTS) as an extension of an RPLTS.

Definition 3.1 (PLTS). With respect to fixed sets Act and Prop of actions
and propositions, respectively, a PLTS L is a quadruple (S, δ,P, I), where

• S is a countable set of states;

• δ ⊆ S ×Act × S is the transition relation;

27

• P ∶ δ ×N→ [0,1] is the transition probability distribution satisfying:

– ∀s ∈ S.∀a ∈ Act.∀c ∈ N. ∑
s′∶(s,a,s′)∈δ

P (s, a, s′, c) ∈ {0,1},

– ∀s.∀a.∀c ∈ N.(∃s′.(s, a, s′) ∈ δ) Ô⇒ ∑
s′∶(s,a,s′)∈δ

P (s, a, s′, c) = 1,

and

– ∀s.∀a.∀s′.(s, a, s′) ∈ δ Ô⇒ ∃c ∈ N.P (s, a, s′, c) > 0;

• I ∶ S → 2Prop is the interpretation, recording the set of propositions true
at a state. ◻

Recall that an RPLTS does not have internal nondeterminism, i.e., its
transition probability distribution P is a function of δ. We defined P in this
way in order to retain δ and d-trees as defined for RPLTSs. We also assume
that there are finitely many distributions to choose from, i.e., given s and a,
there exists a c such that for all s′ and c′ ≥ c, P (s, a, s′, c′) = P (s, a, s′, c). A
scheduler chooses the distribution by providing a natural number.

This definition is also in line with the most general for a PLTS [Mio11,
Seg95], in which, given an action, a probabilistic distribution is chosen non-
deterministically. Other equally expressive models include alternating au-
tomata, in which labeled nondeterministic choices are followed by silent prob-
abilistic ones. The difference between such models has been analyzed with
respect to bisimulation [ST05].

Many properties carry over naturally from RPLTSs as given in Sec-
tion 2.1. To resolve the nondeterministic transitions and give a measure
for a set of outcomes, we additionally require a scheduler. Recall that CL is
the set of all partial computations σ of L.

Definition 3.2 (Reactive scheduler). A scheduler for an PLTS L is a func-
tion γ ∶ CL ×Act→ N. ◻

Note that we have defined deterministic schedulers, which are also aware
of their relevant histories. Given a scheduler γ for a PLTS L, we have a
(countable) RPLTS Lγ, where SL,γ ⊆ CL and so δL,γ ⊆ CL × Act × CL. We
define a probability distribution:

Definition 3.3 (Combined probability). The probability distribution of a
PLTS L with scheduler γ is a function, PL,γ ∶ δL,γ → (0,1], where:

PL,γ(σ, a, σ
′) = PL(last(σ), a, last(σ′), γ(σ, a)).

28

s5

s1

s6

s4s2s3

a

3/42/3

1/3 1/4

a

a

aa

b,c b,c

Figure 3.1: PLTS Example

◻

It is convenient to extend Definition 3.3, letting PL,γ(σ, a, σ′) = 0 when
(σ, a, σ′) ∉ δL,γ.

Additionally, recall that the basic cylindrical subset BT contains all max-
imal d-trees sharing the prefix tree T . For these subsets, we define the
probability measure:

Definition 3.4 (Probability measure). For a PLTS L with scheduler γ, the
probability measure of a basic cylindrical subset BT is defined by a partial
function mγ ∶ 2ML → [0,1], where:

mγ(BT) = ∏
(σ,a,σ′)∈edges(T)

Pγ(σ, a, σ
′).

◻

Since mγ may be considered as defined for an RPLTS, we can extend it
to a measure mγ

s as in Section 2.1.

Example 3.1 (PLTS). Figure 3.1 is an example of a PLTS, where

• S = {s1, s2, s3, s4, s5, s6},Act = {a, b, c},

• δ = {(s1, a, s2), (s3, a, s2), (s3, a, s5), (s4, a, s2), (s4, a, s6),
(s2, b, s3), (s2, b, s4), (s2, c, s3), (s2, c, s4)},

29

• P (s1, a, s2, ⋅) = 1, P (s3, a, s5, ⋅) = 1
3 , P (s3, a, s2, ⋅) = 2

3 , P (s4, a, s6, ⋅) =
1
4 , P (s4, a, s2, ⋅) =

3
4 , P (s2, b, s3,0) = P (s2, c, s3,0) = 1, and for all k > 0:

P (s2, b, s4, k) = P (s2, c, s4, k) = 1.

An example of a scheduler γ for this system is γ(σ, b) = 0 and γ(σ, c) = 1,
for all σ such that last(σ) = s2.

3.2 XPL

Now we define Extended Probabilistic Logic (XPL), our extension to GPL.
The syntax for XPL fuzzy formulae is entirely unchanged from Section 2.2.1.
Meanwhile, we replace the GPL state formula Pr operators with Prmin and
Prmax.

3.2.1 XPL Syntax

The XPL syntax is then as follows:

φ ∶∶= A ∣ ¬A ∣ φ ∧ φ ∣ φ ∨ φ ∣ Prmin
>p ψ ∣ Prmin

≥p ψ ∣ Prmax
>p ψ ∣ Prmax

≥p ψ,

ψ ∶∶= φ ∣X ∣ ψ ∧ ψ ∣ ψ ∨ ψ ∣ ⟨a⟩ψ ∣ [a]ψ ∣ µX.ψ ∣ νX.ψ.

Prmin and Prmax compare against the minimum and maximum probabilities,
respectively, over all schedulers. Note that for an RPLTS, Prmin

>p ψ and Prmax
>p ψ

are equivalent to each other and to GPL’s Pr>pψ.

3.2.2 XPL Semantics

The semantics of XPL changes, from GPL as described in Section 2.2.2, only
due to the measure of the PLTS outcomes. It is defined with respect to a
fixed PLTS L = (S, δ,P, I). The function ΘL ∶ Ψ → 2ML remains essentially
the same, while ⊧L⊆ S ×Φ differs for the probabilistic operators.

Definition 3.5 (XPL Semantics). The semantics for the state formulae is
given in Table 3.1. For the fuzzy formulae, the semantics are as in Table 2.1.
◻

Note the use of sup and inf in Table 3.1. We may refer to a value like
supγ mγ

s(ΘL,s(ψ)) as a probabilistic value, denoted by Prmax
L,s (ψ) ([DGJP02]

uses the term capacity). Unlike in GPL, we may not always be able use a
model checking algorithm to produce a polynomial system for which this is
a solution.

30

Table 3.1: XPL semantics: state formulae

s ⊧L A iff A ∈ I(s),

s ⊧L ¬A iff A ∉ I(s),

s ⊧L φ1 ∧ φ2 iff s ⊧L φ1 and s ⊧L φ2,

s ⊧L φ1 ∨ φ2 iff s ⊧L φ1 or s ⊧L φ2,

s ⊧L Prmax
>p ψ iff supγ mγ

s(ΘL,s(ψ)) > p,

s ⊧L Prmax
≥p ψ iff supγ mγ

s(ΘL,s(ψ)) ≥ p,

s ⊧L Prmin
>p ψ iff infγ mγ

s(ΘL,s(ψ)) > p,

s ⊧L Prmin
≥p ψ iff infγ mγ

s(ΘL,s(ψ)) ≥ p.

3.3 XPL Model Checking

In this section, we describe an algorithm for model checking an XPL fuzzy
formula [GR16]. As we will see, it does not always succeed.

With the GPL model checking algorithm, we can factor any formula by
building a dependency graph. The key idea that enables this factoring is
(2.1). Meanwhile, not all XPL formulae can be factored. The corresponding
equality for XPL becomes (3.1) (if we are maximizing):

sup
γ

mγ
s(ΘL,s(ψ)) = sup

γ
(mγ

s(ΘL,s(ψ1)) +mγ
s(ΘL,s(ψ2)) −

−mγ
s(ΘL,s(ψ1 ∧ ψ2))), (3.1)

which is not particularly useful, because this does not yield a relationship for
the probabilistic values, Prmax

L,s (ψ), as in (3.2):

Prmax
L,s (ψ1 ∨ ψ2)

?
= Prmax

L,s (ψ1) + Prmax
L,s (ψ2) − Prmax

L,s (ψ1 ∧ ψ2). (3.2)

Indeed, it is easy to give an example where (3.2) does not hold. Consider the
formula ψa = [a]⟨b⟩tt∨[a]⟨c⟩tt, for a PLTS L (Figure 3.2) with {sa, sb, sc} ∈ SL
and nondeterministic a-transitions from sa to sb and sc, such that sb has a
b-transition, but no c-transitions, and vice versa for sc. Then, Prmax

L,sa(ψa) =
Prmax

L,sa([a]⟨b⟩tt) = Prmax
L,sa([a]⟨c⟩tt) = 1, but Prmax

L,sa([a]⟨b⟩tt ∧ [a]⟨c⟩tt) = 0, and

31

s
a

s
c

s
b

a a

b c

Figure 3.2: Example PLTS with nondeterministic choice on “a”

1 + 1 − 0 ≠ 1. However, Lemma 2.1 still applies with linear nondeterminism
present, because it deals only with d-trees and not measures, and we can
still model check this formula, if we delay dealing with the disjunction by
rewriting ψa as [a](⟨b⟩tt∨⟨c⟩tt), as the subformula guarded by a is trivial to
check at any state. We generalize this to a syntactic notion of separability,
defined below.

3.3.1 Separability of Fuzzy Formulae

In the GPL model checking algorithm in Section 2.3, we dealt with sets of
fuzzy formulae, under the semantics of conjunction. Since we cannot relate
disjunctions to conjunctions with XPL, the corresponding construct becomes
an and-or tree.

Definition 3.6 (And-or tree). The and-or tree of a fuzzy formula ψ, AO(ψ)
is a node labeled by ⊕, where ⊕ ∈ {∧,∨}, with children AO(ψ1) and AO(ψ2)
when ψ = ψ1 ⊕ ψ2, and a leaf ψ otherwise.

We can flatten this tree with the straightforward flattening operator,
where, e.g., the tree ∧(ψ1, . . . ,∧(ψ2, ψ3)) is flattened to ∧(ψ1, . . . , ψ2, ψ3).
Note that flattened trees have alternating ∧ and ∨ nodes. A (conjunctive)
set of formulae F corresponds to a flattened and-or tree with the root node
labeled by ∧ and having the elements of F as leaves. We will assume AO(ψ)
refers to the flattened tree.

A subformula of ψ of the form ⟨a⟩ψ′ or [a]ψ′ is called a modal subformula
of ψ. We say that ψ′ is an unguarded subformula of ψ if it is a leaf of AO(ψ).
We also retain the requirement for bound variables (in fixed points) to be
guarded by modal operators.

Definition 3.7 (Formula transformations).

32

• The fixed-point expansion of ψ, denoted by FPE(ψ), is a formula ψ′

obtained by expanding any unguarded subformula of the form σX.ψX
to ψX[σX.ψX/X] where σ ∈ {µ, ν}.

• We say that a formula is non-probabilistic if it is a state formula, or
of the form ⟨a⟩φ and [a]φ for a ∈ Act and φ ∈ {tt,ff}. The purely
probabilistic abstraction of a fuzzy formula ψ, denoted by PPA(ψ), is a
formula obtained by removing unguarded non-probabilistic subformulae
(i.e., we replace all instances of ψ ⊕ φ with ψ, where ψ is arbitrary, φ
is non-probabilistic, and ⊕ ∈ {∧,∨}).

• A grouping of a formula ψ, denoted by GRP(ψ), groups modalities in a
formula using distributivity. Formally, GRP maps ψ to ψ′ by applying
equivalences in Lemma 2.1 left-to-right at the top level. ◻

In particular, GRP may be viewed as repeatedly combining two leaves
of a node, if they are both modal subformulae with the same action; if the
node is binary, this also turns the node into a leaf node.

At a high level, a necessary condition of separability is that the actions
guarding distinct conjuncts and disjuncts of a formula are distinct as well. We
make this precise by first defining the action set of a formula (cf. action(F)
in Section 2.3).

Definition 3.8 (Action set). The action set of a formula ψ, denoted by
action(ψ) is the set of actions appearing at unguarded modal subformulae of
ψ:

• action(φ) = ∅;

• action(⟨a⟩ψ) = action([a]ψ) = {a};

• action(ψ1 ∧ ψ2) = action(ψ1 ∨ ψ2) = action(ψ1) ∪ action(ψ2);

• action(µX.ψ) = action(νX.ψ) = action(ψ). ◻

We can now define separability based on action sets of formulae as fol-
lows, obtained by applying the fixed-point expansion, purely probabilistic
abstraction, and grouping.

Definition 3.9 (Separability). The set of all separable formulae is the largest
set S such that ∀ψ ∈ S, if ψ′ = GRP(PPA(FPE(ψ))), then

33

1. every subformula of ψ′ is in S, and

2. if ψ′ = ψ1 ⊕ ψ2 where ⊕ ∈ {∧,∨}, then action(ψ1) ∩ action(ψ2) = ∅.

A formula ψ is separable if ψ ∈ S. ◻

Intuitively, all the leaves of ψ′ are modal subformulae, with no action
guarding more than one leaf.

Below we illustrate separability of formulae. Let ψ1-ψ4 be all separable
and distinct, and assume ψ1 ∨ ψ2 and ψ3 ∨ ψ4 are also separable.

First, note that GRP uses only distributivity of the modal operators over
“∧” and “∨”, and not the distributivity of the boolean operators themselves.
Consequently, a separable formula may be equivalent to a non-separable for-
mula, such as when it is written in disjunctive normal form (DNF).

Example 3.2 (Separable formula with equivalent non-separable formula).
The formula ψs is separable. The DNF version of ψs is not separable since
action sets of disjuncts overlap.

ψs = [a](ψ1 ∨ ψ2) ∧ [b](ψ3 ∨ ψ4), (3.3)

ψ′s = ([a]ψ1 ∧ [b]ψ3) ∨ ([a]ψ1 ∧ [b]ψ4) ∨ ([a]ψ2 ∧ [b]ψ3) ∨ ([a]ψ2 ∧ [b]ψ4).
(3.4)

This is important because we need the subformulae of a separable formula
to also be separable.

Example 3.3 (Non-separable formula). The formula ψe is a subformula of
ψ′s (3.4), is not separable, and has no equivalent separable formula:

ψe = ([a]ψ1 ∧ [b]ψ4) ∨ ([a]ψ2 ∧ [b]ψ3). (3.5)

With ψe, we need to satisfy ψ1 or ψ2 following an a action, and likewise for
ψ3 or ψ4 following a b action. An equivalent separable formula would thus
have to include [a](ψ1 ∨ψ2) and [b](ψ3 ∨ψ4), but this would also be satisfied
by, e.g., outcomes satisfying only [a]ψ1 ∧ [b]ψ3.

We say that a formula is entangled at a state if it is not (equivalent to) a
separable formula even after considering that state’s specific characteristics.
For instance, ψe is entangled only at states with both a and b actions present.
Even when considering only states where the actions relevant to entanglement
are present, a formula may be entangled at some states and not at others.

34

Example 3.4 (Entanglement on a and b depends on c). The formula ψc re-
duces to ψ′s (3.4) at states that have a c-transition, and to ψe (3.5) otherwise.

ψc = ([a]ψ1 ∧ [b]ψ3 ∧ ⟨c⟩tt) ∨ ([a]ψ1 ∧ [b]ψ4) ∨

∨ ([a]ψ2 ∧ [b]ψ3) ∨ ([a]ψ2 ∧ [b]ψ4 ∧ ⟨c⟩tt). (3.6)

There are also non-separable formulae that nonetheless would not be
entangled at any state of an arbitrary PLTS.

Example 3.5 (Never-entangled non-separable formula). For the formula ψd,
PPA(ψd) = ψe, but at any state it is equivalent either to [a]ψ1 ∧ [b]ψ4 or to
[a]ψ2 ∧ [b]ψ3.

ψd = ([a]ψ1 ∧ [b]ψ4 ∧ [c]ff) ∨ ([a]ψ2 ∧ [b]ψ3 ∧ ⟨c⟩tt). (3.7)

Since GRP groups together modal operators with a common action, we
have the following important consequence.

Proposition 3.1. All conjunctive formulae and disjunctive formulae are sep-
arable.

3.3.2 Dependency Graph

We now outline a model checking procedure for XPL’s fuzzy formulae for a
fixed PLTS L = (S, δ,P, I), along similar lines to the GPL model checking
algorithm (Section 2.3). The model checking procedure succeeds, in the sense
of producing a polynomial system of equations, whenever the given formula
is separable.

The core of the model checking algorithm is the construction of a depen-
dency graph Dg(s,ψ), to compute Prmax

L,s (ψ). When constructing a depen-
dency graph, in order to divide a formula by actions, we transform it into
factored form, in a similar manner to checking separability. If we are unable
to transform a formula into a factored form, as can happen when a formula
is non-separable, the graph construction terminates with failure.

Definition 3.10 (Factored form). A factored formula ψ can be trivial, when
ψ ∈ {tt,ff}. Otherwise, every leaf of AO(ψ) is in the action form, ⟨a⟩ψ′, and
no action may guard more than one leaf. ◻

35

Given a state s, a formula ψ′ can be transformed into a semantically
equivalent one ψ′′ that is in factored form1 as: ψ′′ = GRP (PE(s,FPE(ψ′))).
PE(s,ψ′) partially evaluates ψ′, by evaluating non-probabilistic subformu-
lae of ψ′ as well as all unguarded modal subformulae with actions absent
at state s, yielding tt or ff for each, and simplifying the result.2 Then
((s,ψ′), ε, (s,ψ′′)) ∈ E.

Definition 3.11 (Dependency graph). For model checking a formula ψ with
respect to a state s in PLTS L, the dependency graph, denoted by Dg(s,ψ),
is a directed graph (N,E), where node set N ⊆ S×AO(Cl(ψ)), and edge set
E ⊆ N ×(Act∪{ε, ε∧, ε∨})×N ; i.e., the edges are labeled from Act∪{ε, ε∧, ε∨}.
The sets N and E are the smallest such that:

• (s,ψ) ∈ N .

• If (s′, ψ′) ∈ N , ψ′ is not in factored form: if equivalent ψ′′ in factored
form exists, then (s′, ψ′′) ∈ N and ((s′, ψ′), ε, (s′, ψ′′)) ∈ E.

• If (s′, ψ′1 ⊕ ψ
′
2) ∈ N then (s′, ψ′i) ∈ N for i = 1,2. Moreover, ((s′, ψ′1 ⊕

ψ′2), ε
⊕, (s′, ψ′i)) ∈ E for i = 1,2, and ⊕ ∈ {∧,∨}.

• If (s′, ⟨a⟩ψ′) ∈ N then (s′′, ψ′) ∈ N for each s′′ such that (s′, a, s′′) ∈ δ.
Moreover, ((s′, ⟨a⟩ψ′), a, (s′′, ψ′)) ∈ E. ◻

If (s′, ψ′) ∈ N and ψ′ has no factored form, then the dependency graph
construction fails.

When we transform ψ′ to the factored form ψ′′, the semantics does not
change, i.e., ΘL,s′(ψ′) = ΘL,s′(ψ′′). When (s′, ψ′) is a node with a factored
ψ′, it may be a terminal node, an action node, an and -node, or an or -node.
For the factored formulae, standard XPL semantics apply (Table 2.1). Note
that we can assume action nodes to be of the form (s′, ⟨a⟩ψ′), as the action
a must then be present at state s′. From these semantics, we also get the
relationships for the probabilistic values.

Lemma 3.2 (Probabilistic values). Fix Dg(s0, ψ) = (N,E). The probabilistic
value Prmax

L,s (ψ′) for a node (s,ψ′) is as follows:

1We may use the DNF version of ψ′ to check for equivalence with existing nodes, but
not for finding the factored form.

2After applying GRP , we may have a leaf in action form ⟨a⟩ψ′a ∉ AO(Cl(ψ)). Then,
we may view an action a as a prefix label on the subtree ψ′a ∈ AO(Cl(ψ)).

36

• Prmax
L,s (ff) = 0 and Prmax

L,s (tt) = 1.

• If (s,ψ′) is an and-node, then:

Prmax
L,s (ψ′) = ∏

((s,ψ′),ε∧,(s,ψ′i))∈E

Prmax
L,s (ψ′i)

• If (s,ψ′) is an or-node, then:

Prmax
L,s (ψ′) = ∐

((s,ψ′),ε∨,(s,ψ′i))∈E

Prmax
L,s (ψ′i)

• If (s,ψ′) is an action node, i.e., ψ′ = ⟨a⟩ψ′a, then:

Prmax
L,s (ψ′) = max

c∈N
∑

((s,ψ′),a,(s′,ψ′a))∈E

P (s, a, s′, c) ⋅ Prmax
L,s′ (ψ

′
a)

• The remaining nodes (s,ψ′) have a unique successor (s,ψ′′) with:

Prmax
L,s (ψ′) = Prmax

L,s (ψ′′)

Proof. Most of the cases are straightforward and similar to the GPL model
checking algorithm [CIN05, Lemma 8] and a result for two-player stochastic
parity games [Mio11, Theorem 4.22]. The and -node and or -node cases have
the product and coproduct, respectively, due to independence. We explain
the action node case in more detail.

The sum over the probabilistic distribution is as in GPL and (2.2); we
explain the (linear) nondeterministic choice. A PLTS scheduler makes a
choice for an action given the partial computation σ. Here, this choice is
made based on a formula, ψ′a, to be satisfied. When the initial formula ψ is
separable, this is well-defined: given L, s, and ψ, the scheduler can deduce
ψ′a from σ.

We note that, although a particular choice may maximize Prmax
L,s (ψ′), a

scheduler that makes this choice every time is not necessarily optimal. In-
deed, no optimal scheduler may exist, in which case we would have only
ε-optimal schedulers for any ε > 0 [ESY15, Mio11]. The probabilistic value
may be predicated on making a different choice eventually. The formula-
tion in Lemma 3.2 is consistent with this possibility, and the existence of
(ε-)optimal schedulers may be justified through a common method, called

37

strategy improvement or strategy stealing [EY15, Mio11]. The intuition is
that, in case of a loop, we can add a choice to immediately succeed with
the maximum probability for the state. This cannot increase the probability,
and the maximizing scheduler can otherwise be the same, if this choice does
not arise.

Theorem 3.3 (Model checking termination). The graph construction of
Dg(s,ψ) terminates for any XPL formula ψ and PLTS L. Moreover, if
ψ is separable, it will always complete the construction.

Proof. Cl(ψ) is finite, so AO(Cl(ψ)) (with DNF versions) is finite. The
number of actions in L and ψ is finite, so the number of factored formulae is
finite. This is sufficient to guarantee termination, as we fail when we cannot
construct a factored formula. Meanwhile, separability implies that we can
always construct a factored formula starting from ψ′ ∈ AO(Cl(ψ)).

From the completed graph, a system of polynomial equations can be ex-
tracted. Equations are readily constructed by considering each Prmax

L,s (ψ) as a
variable. Note that the graph treats µ and ν nodes exactly the same way. In
solving the stratified system, we start from 0 to find the least fixed point, and
1 for the greatest fixed point. The alternation-free restriction ensures that
there is no cycle in the graph containing both a µ-node and a ν-node. How-
ever, as with GPL [CIN05], a practical implementation may suffer from nu-
merical issues, leading to indeterminate results when the probabilistic value
is sufficiently close to the threshold against which it is compared. We make a
separate argument for decidability, by appealing to the first-order theory of
real closed fields, which allows for addition, subtraction, and multiplication,
as well as comparison operators.

Theorem 3.4 (Soundness of computation). The construction of the depen-
dency graph Dg(s,ψ) leads to the equation system with Prmax

L,s (ψ) as a solu-
tion. Comparing this probabilistic value against a threshold p is decidable.

Proof. We write the min/max polynomial system, x = P (x), as a sentence in
the first-order theory of real closed fields, similar to [MM15]. The additional
comparison will be x0 > p or x0 ≥ p. Along with the equation system, we
need to encode fixed points and min/max.

We can encode xi = max(xj, xk) as (3.8) (cf. [EY15, Section 5]):

xi ≥ xj ∧ xi ≥ xk ∧ (xi ≤ xj ∨ xi ≤ xk) . (3.8)

38

Meanwhile, lettingN be the set of all variables and I a subset falling mutually
under an LFP, we can encode the LFP as (3.9):

∀x′I .(⋀
i∈I

x′i = Pi(x
′
I ,xN∖I) Ô⇒ ⋀

i∈I

xi ≤ x
′
i) . (3.9)

The alternation-free restriction precludes a cyclical dependency between an
LFP and a GFP; a GFP can be encoded similarly.

The encoding of fixed points makes the desired solution unique, and it is
compared against the threshold.

We note that decidability does not appear to break if we had both min
and max in a single system.

Example 3.6 (Model Checking XPL Formula). For the fuzzy formula ψ =
µX.[a][b]X∧[a][c]X in Example 2.2 and the PLTS in Example 3.1, we have
Prmax

L,s1(ψ) =
1
4 and Prmin

L,s1(ψ) =
1
9 .

The dependency graph, in Figure 3.3, remains quite similar to our exam-
ple in Section 2.3. We find Prmax

L,s1(ψ) as the LFP from the following equations:

xa1 = x
bc
2 ,

xbc2 = xb2 ⋅ x
c
2,

xb2 = max(xa3, x
a
4),

xc2 = max(xa3, x
a
4),

xa3 =
1

3
xbc5 +

2

3
xbc2 ,

xa4 =
1

4
xbc6 +

3

4
xbc2 ,

xbc5 = 1,

xbc6 = 1.

Solving the equations, Prmax
L,s1(ψ) = x

a
1 =

1
4 . We find Prmin

L,s1(ψ) in a similar way;
note that it has the same value as in Example 2.3.

The complexity analysis is also similar to the GPL model checking case
(Section 2.3), although the dependency graph is now bounded double expo-
nentially in the size of the fuzzy formula. In many practical cases, though,
it may lead to a smaller graph for the same formula, as fewer intermediate
nodes are constructed and disjunctions are handled directly, rather than as
or-nodes with three outgoing edges.

39

(s
1
, ψ)

(s
1
, [a]ψ

bc
)

(s
2
, [b]ψ˄[c]ψ)

ε

a
ε˄ ε˄

ε ε

aa
a a

(s
5
, tt)

ε ε

b

(s
2
, [b]ψ)

c

(s
2
, [c]ψ)

(s
4
, ψ) (s

3
, ψ)

(s
5
, [b]ψ˄[c]ψ) (s

6
, [b]ψ˄[c]ψ)

(s
6
, tt)

b c

(s
3
, [a]ψ

bc
) (s

4
, [a]ψ

bc
)

Figure 3.3: Dependency graph Dg(s1, ψ)

3.4 Encoding Other Model Checking Problems

In this section, we show the encoding of several model checking problems,
which demonstrate various aspects of separability.

3.4.1 Encoding PCTL* over MDPs

We can encode PCTL* [Bai98] to XPL, following [CIN05, Section 3.2]. The
syntax of PCTL* is then as follows, where A ∈ Prop, and φ and ψ represent
state formulae and path formulae, respectively:

φ ∶∶= A ∣ ¬φ ∣ φ ∧ φ ∣ Pr≥pψ ∣ Pr>pψ,

ψ ∶∶= φ ∣ ¬ψ ∣ ψ ∧ ψ ∣ Xψ ∣ ψUψ.

This is similar to the syntax given by [Bai98, Chapter 9], except omitting
the bounded until operator. The encoding of PCTL*, EPCTL∗(γ), where γ

40

is either a state or path formula, is as follows:

EPCTL∗(γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ, γ ∈ Prop,

neg(EPCTL∗(γ′)), γ = ¬γ′,

EPCTL∗(γ1) ∧EPCTL∗(γ2), γ = γ1 ∧ γ2,

Prmax
>p EPCTL∗(ψ), γ = Pr>pψ,

Prmax
≥p EPCTL∗(ψ), γ = Pr≥pψ,

⟨a⟩EPCTL∗(ψ), γ = Xψ,

µX.EPCTL∗(ψ2) ∨ (EPCTL∗(ψ1) ∧ ⟨a⟩X), γ = ψ1Uψ2.

Since PCTL* does not distinguish between action labels, we translate
MDPs to PLTSs by retaining the same transition structure, but renaming all
labels to a. Note that formulae are trivially separable if they have only one
action. Additionally, the d-trees become paths in this case. Consequently,
we can model check PCTL* formulae over MDPs using our encoding and
model checking algorithm.

3.4.2 Encoding of RMDP Termination

We consider a Recursive MDP (RMDP) [EY15] as a nondeterministic exten-
sion of RMCs [EY09], which we described in Section 2.4. We discuss a more
general model, called a Recursive Simple Stochastic Game (RSSG); formally,
an RSSG A is a tuple (A1, . . . ,Ak), where each component graph Ai is a
septuple (Ni,Bi, Yi,Eni,Exi,pli, δi):

• Ni is a set of nodes, containing subsets Eni and Exi of entry and exit
nodes, respectively.

• Bi is a set of boxes, with a mapping Yi ∶ Bi → {1, . . . , k} assigning each
box to a component. Each box has a set of call and return ports, corre-
sponding to the entry and exit nodes, respectively, in the correspond-
ing components: Callb = {(b, en) ∣ en ∈ EnYi(b)}, Returnb = {(b, ex) ∣ ex ∈
ExYi(b)}. Additionally, we have:

Calli = ⋃
b∈Bi

Callb,

Returni = ⋃
b∈Bi

Returnb,

Qi = Ni ∪ Calli ∪ Returni.

41

• pli ∶ Qi → {0,1,2} is a mapping that specifies whether, at each state,
the choice is probabilistic (i.e., player 0), or nondeterministic (player
1: maximizing, player 2: minimizing). As any u ∈ Calli ∪ Exi has no
outgoing transitions, let pli(u) = 0 for these states.

• δi is the transition relation, with transitions of the form (u, puv, v),
when pli(u) = 0 and u is not an exit node or a call port, and v may not
be an entry node or a return port. Additionally, puv ∈ (0,1] and, for
each u, ∑

v′∶(u,⋅,v′)∈δi

puv′ = 1. Meanwhile, the nondeterministic extension

yields transitions of the form (u,�, v) when pli(u) > 0. ◻

RMDPs only have a player 1 or player 2, depending on whether they
are maximizing or minimizing, respectively. Termination probabilities can
be computed for 1-RSSGs, and are always achieved, for both players, with a
strategy limited to a class called stackless and memoryless (SM) [EY15]. The
essence of SM strategies is that in each nondeterministic choice, the selection
is fixed to a single state from its distribution, which makes the resolution of
the nondeterministic choices substantially simpler than in the general case.
For multi-exit RSSGs, the termination probability is determined [Mar98],
although an optimal strategy may not exist, and the problem of computing
or approximating the probability is undecidable, in general. SM strategies
are inadequate even for 2-exit RMDPs [EY15].

Figure 3.4 shows an RMDP with two components, A and B. Any call to
A nondeterministically results in either a call to B (via box b1) or a transition
to u.

Translating RMDPs to PLTSs

Given an RMDP A, we can define a translated PLTS L that models A, with
Act = {p, n, c, ri, ei} and states of the PLTS corresponding to nodes of the
RMDP. We retain the RMDP’s transitions, labeling them as n for actions
from a nondeterministic choice and p for probabilistic choice. To this basic
structure we add three new kinds of edges:

• ei for the ith exit node of a component,

• c edges from a call port to the called component’s entry node, and

• ri edges from a call port to each return port in the box.

42

While c edges denote control transfer due to a call, r edges summarize returns
from the called procedure. Figure 3.4 shows the result of the translation for
one component of the RMDP. Formally, we define the PLTS L as follows:

Definition 3.12 (Translated RMDP). The translated RMDP A is a PLTS
L = (S, δ,P, I):

• The set of states S is the set of all the nodes, as well as the call and
return ports of the boxes, i.e., S = ⋃iQi. Additionally, we associate
a consistent index with each state corresponding to an exit node or a
return port.

• The transition relation δ has all the transitions of the components, la-
beled by action p for the probabilistic transitions and n for the nonde-
terministic ones. Thus, when (u, puv, v) ∈ δi for any i, then (u, p, v) ∈ δ,
and when (u,�, v) ∈ δi, (u,n, v) ∈ δ. Additionally,((b, en), c, en) ∈ δ and
((b, en), ri, (b, exi)) ∈ δ for every box b, and (exi, ei, exi) ∈ δ for every
exit node. Note the indices used.

• The transition probability distribution P is defined as P (u, p, v, ⋅) = puv
as given for the RMDP A, P (u,n, v, c(v)) = 1, where c ∶ S → N is a one-
to-one function (when c ≠ c(v) for any v with (u,n, v) ∈ δ, P (u,n, v, c) =
1 for an arbitrary v with (u,n, v) ∈ δ), and P (⋅) = 1 if the action is not
p or n.

• We do not use the interpretation in the translation, i.e., I(s) = ∅ for
any state s, unless additional relevant information about the RMDP A
is available. ◻

For RMCs, the translation yields an RPLTS L (no n actions).
Intuitively, L preserves all the non-recursive transition structure of A via

the actions labeled by p and n. There are additional c actions to model call
transitions. Note that each call port will have a single outgoing c transition,
while the entry nodes may have multiple incoming c transitions. Meanwhile,
we need a different design to associate exit nodes with return ports, as an exit
node may be associated with multiple return ports. Thus, we have indexed
e and r actions and require a standard formula to model termination. We
note that the resulting structure is similar to the Nested State Machines
(NSMs) [ACM11], with the p/n, c, ri, and ei edges corresponding to the loc
(local), call, jump, and ret edges, respectively, in the NSM model.

43

1/4

1

1/2

1/4

n

n

1

3/5

2/5

2/3

1

1/3

1

1

A

n

n

B

n

n

r
1

r
2 ce

1

e
2

en

b
1
: B

u

z

ex
2

ex
1

en'

b
1
': A

b
2
': B

v

ex'
2

ex'
1

Figure 3.4: Example RMDP with Call, Return, and Exit edges added to A.

Termination of 1-RMDPs can be encoded as the following separable for-
mula:

ψ1 = µX.⟨e1⟩tt ∨ ⟨p⟩X ∨ ⟨n⟩X ∨ (⟨c⟩X ∧ ⟨r1⟩X). (3.10)

Note that the probabilistic branching time appears on c and r actions, used
to model the recursive RMDP call.

The corresponding formula for a 2-exit RMDP, is not separable:

ψ1
2 =µ ⟨e1⟩tt ∨ ⟨p⟩ψ1

2 ∨ ⟨n⟩ψ1
2 ∨ (⟨c⟩ψ1

2 ∧ ⟨r1⟩ψ
1
2) ∨ (⟨c⟩ψ2

2 ∧ ⟨r2⟩ψ
1
2), (3.11)

ψ2
2 =µ ⟨e2⟩tt ∨ ⟨p⟩ψ2

2 ∨ ⟨n⟩ψ2
2 ∨ (⟨c⟩ψ1

2 ∧ ⟨r1⟩ψ
2
2) ∨ (⟨c⟩ψ2

2 ∧ ⟨r2⟩ψ
2
2).

3.4.3 PTTL and Branching Processes

A Branching MDP (BMDP) is an extension of BPs, which we discussed in
Section 2.6 (there are also the more general Branching Simple Stochastic
Games (BSSGs) [EY15]), and we will define BMDPs with notation more
closely mirroring our definitions for RPLTSs and BPs. Formally, with respect
to a set Act of actions, a BMDP ∆ is a triple (Γ, δ, P), where:

• Γ is a finite set of types;

• δ ⊆ Γ ×Act × Γ∗ is a finite set of transition rules; and

• P ∶ δ → (0,1] is a transition probability distribution satisfying:

∀X ∈ Γ.∀a ∈ Act. ∑
α∶(X,a,α)∈δ

P (X,a,α) = 1 .

44

A maximizing (or minimizing) player is assumed to be choosing the actions
for each type (in a BSSG, the types are partitioned into two sets, one for each
player). The problem of BSSG extinction is reducible to 1-RSSG termination,
and also admits optimal static strategies (the analogue to SM strategies for
RSSGs) [EY15].

Recall that we described PTTL in Section 2.6.2. We can extend PTTL
model checking [CDK12] to support BMDPs analogously to our PCTL* ex-
tension. As with RMDPs, we can readily translate BPs and BMDPs to
PLTSs. We give the semantics for PTTL (assuming maximizing schedulers)
over PLTSs without terminal states by encoding it in XPL, as EPTTL(γ).

EPTTL(γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ, γ ∈ Prop ∪ {tt},

neg(EPTTL(γ′)), γ = ¬γ′,

EPTTL(γ1) ∧EPTTL(γ2), γ = γ1 ∧ γ2,

Prmax
>p EPTTL(ψ), γ = Pr>pψ,

Prmax
≥p EPTTL(ψ), γ = Pr≥pψ,

[−]EPTTL(φ), γ = AXφ,

µX.EPTTL(φ2) ∨ (EPTTL(φ1) ∧ [−]X), γ = A[φ1Uφ2],

νX.EPTTL(φ2) ∧ (EPTTL(φ1) ∨ [−]X), γ = A[φ1Rφ2].

For the E[ψ] versions of X, U, and R, we replace the boxes with diamonds.
In this sense, PTTL is a natural extension of PCTL over PLTSs for the

case ∣Act∣ > 1, and all the formulae in the encoding are separable. Addition-
ally, although a limitation of GPL is that it cannot encode CTL’s EGφ when
∣Act∣ = 1 [CKP15], there is a PTTL formula of the form EGφ ≡ E[ff Rφ], which
we can encode with XPL (and GPL over RPLTSs).

3.5 Conclusion and Related Work

Previous attempts to extend GPL included allowing systems with internal
nondeterminism that was still branching [CI00], and EGPL, which had sim-
ilar syntax and semantics to XPL, but limited the model checking to non-
recursive formulae [Son04].

Following GPL, XPL treats conjunction in a traditional manner, retaining
the properties that ψ ∧ ¬ψ = ff, and ψ ∧ ψ = ψ for any formula ψ. However,
the probability value of ψ1∧ψ2 cannot be computed based on the probability

45

values of the conjuncts ψ1 and ψ2. This makes model checking in XPL more
complex, but also contributes to its expressiveness.

Another probabilistic extension of µ-calculus is pLµ. In contrast to XPL,
the most expressive version of pLµ, denoted pLµ⊙⊕ [Mio11, Mio12], defines
three conjunction operators and their duals such that their probability val-
ues can be computed from the probabilities of the conjuncts. The three
conjunctions are defined as minimum, independent product, and truncated
co-sum. The logic pLµ⊙ is able to support branching time and an intu-
itive game semantics [Mio11]. Along the same lines as our XPL encoding,
we can encode termination of 1-exit RMDPs as model checking in pLµ⊙,
and RMC termination in pLµ⊙⊕. However, attempting to encode multi-
exit RMDP termination in pLµ⊙⊕ similarly to multi-exit RMC termination
would lead to an incorrect, rather than undecidable, encoding. The scope
of pLµ includes infinite-state systems as well. Determining the relation-
ship between XPL and pLµ⊙ in branching time is an important problem.
Other recent probabilistic extensions of µ-calculus include the Lukasiewicz
µ-calculus [MS13a] and µp-calculus [CKP15], which can encode PCTL* over
MDPs, and PµTL [LSWZ15], but all these limit nondeterminism to the
linear-time semantics.

Although these systems are closely related, algorithms to check proper-
ties of RMCs (and probabilistic pushdown systems [EKM04]) were devel-
oped independently [EY09]. These were related to algorithms for computing
properties of systems such as BP extinction and the language probability
of stochastic context-free grammars, which were also phrased in terms of
solving a set of polynomial equations. The relationship between GPL and
these systems was mentioned briefly in [GRS12], but has remained largely
unexplored.

There has been significant interest in the study of expressive systems with
linear and branching nondeterminism, such as RMDPs and BMDPs [EY15].
At the same time, the understanding of the polynomial systems has ex-
panded. In [ESY12a], the Probabilistic Polynomial System (PPS) class is
introduced, which characterizes when efficient solutions to polynomial equa-
tion systems are possible even in the worst case [ESY12b]. While the sys-
tems arising from 1-RMCs were not initially distinguished from those from
multi-exit RMCs [EY09], the PPS class is limited to 1-RMCs. It was also
extended for RMDP termination, and later BMDP reachability, both having
polynomial-time complexity for min/maxPPSs [ESY12a, ESY15].

Systems producing equations in PPS form show an interesting charac-

46

teristic: that the properties are expressible as purely conjunctive or purely
disjunctive formulae. Recall that such formulae are trivially separable. Poly-
nomial systems equivalent to those arising from separable GPL have recently
been considered in the context of game automata [MM15], suggesting that
we may be able to lift the alternation-free restriction from separable XPL.
Characterizing equation systems that arise from separable formulae and in-
vestigating their efficient solution is an interesting open problem.

47

Chapter 4

Model Checking with Logic Programming

While we described a GPL model checking algorithm in Section 2.3 and
further extended it to separable XPL in Section 3.3, there remains a question
of a practical implementation. The idea may actually be flipped in intent, so,
while XPL is the featured application, the focus in this chapter is to build
on the idea of performing model checking via query evaluation over logic
programs [RRR+97].

The attractiveness of this approach is that the operational semantics
of complex process languages (originally CCS [Mil89], followed by value-
passing calculi [Ram01], the π-calculus [MPW92], and mobile calculi with
local broadcast [SRS08]), as well as the semantics of complex temporal logics
(e.g., the modal µ-calculus [Koz83]), can be expressed naturally and at a high
level as clauses in a logic program. Model checking over these languages and
logics then becomes query evaluation over the logic programs that directly
encode their semantics.

Starting in the 1990s, there have been a number of important devel-
opments in Probabilistic Logic Programming (PLP), combining logical and
statistical inference, and leading to a number of increasingly mature PLP
implementations. A natural question is whether the advances in PLP enable
the development of model checkers for probabilistic systems, the same way
traditional logic programming (LP) methods such as tabled evaluation and
constraint handling enabled us to formulate model checkers for a variety of
non-probabilistic systems.

Prior to PIP [GRS12], existing PLP inference methods were not suffi-
ciently powerful to be used as a basis for probabilistic model checking. One
of the earliest PLP inference procedures, used in PRISM [SK97], was formu-
lated in terms of the set of explanations of answers. PRISM put in place
three restrictions to make its inference work: (a) independence: random
variables used in any single explanation are all independent; (b) mutual ex-

48

s
0

s
3

s
4

s
2

s
1

1

0.1

0.3 0.2

0.5

0.4

0.5

% 3 "switches" (random processes) for transitions

% from states s0, s1 and s4, respectively.

values(t(s0), [s0, s1, s2]).

values(t(s1), [s1, s3, s4]).

values(t(s4), [s3]).

% Distribution parameters of the random variables.

set_sw(t(s0), [.5, .3, .2]).

set_sw(t(s1), [.4, .1, .5]).

set_sw(t(s4), [1]).

% Transition from S at instance I goes to T, as

% determined by the corresponding random process.

trans(S, I, T) :- msw(t(S), I, T).

% Starting at S at instance I, T is reachable.

reach(S, I, T) :-

trans(S, I, U),

reach(U, next(I), T).

reach(S, _, S).

(a) (b)

Figure 4.1: (a) Example Markov chain; (b) PRISM encoding of transitions
in the chain.

clusion: two distinct explanations of a single answer are mutually exclusive;
and (c) finiteness : the number of possible explanations of an answer is fi-
nite.1 Subsequent systems, notably ProbLog [DRKT07] and Probabilistic
Inference with Tabling and Answer Subsumption (PITA) [RS10a] eliminated
the independence and mutual exclusion restrictions of PRISM (but retained
the finiteness assumption). This, however, was still insufficient for model
checking, as the following example shows.

Motivating Example: Figure 4.1 shows a Markov chain and its represen-
tation in PRISM. In any execution of the chain, a transition from a state,
say s, is independent of any previous transitions (including those from the
same state). The definition of the trans predicate has an explicit instance
parameter I, which is also used in msw, the switch used to encode proba-
bilistic facts. PRISM treats different instances of the same random variable
as independent. Thus trans correctly encodes the semantics of the Markov
chain.

We first consider simple reachability questions of the form: What is the

1The finiteness assumption has since been lifted in PRISM “at no extra cost” via cyclic
explanation graphs [SM14].

49

likelihood that on an execution of the chain from a start state s, a final state
t will be reached? The reachability question using the reach predicate is
defined in Figure 4.1(b). Consider the likelihood of reaching state s3 from
s0. This query can be posed as the predicate prob(reach(s0,0, s3), P), where
prob/2 finds the probability of answers (P) to a given query reach(s0,0, s3).

The query prob(reach(s0,0, s3), P) could not be evaluated in PRISM with
the finiteness assumption. We illustrate this by first describing PRISM’s in-
ference at a high level. In PRISM, inference of probabilities proceeded in
the same way as logical inference, except when the selected literal is an msw.
In this case, the inference procedure enumerated the values of the random
variable and continues the inference for each value (by backtracking). The
probability of a derivation is simply the product of the probabilities of the
random variables (msw outcomes) used in that derivation (under the inde-
pendence assumption). The probability of a query answer is the sum of
probabilities of the set of all derivations for that answer (using the mutual-
exclusion and finiteness assumptions). Note that, due to the presence of
cycles in this Markov chain, reach(s0,0, s3) has infinitely many derivations,
and hence, under the finiteness assumption, PRISM could not infer its prob-
ability.

Markov chains can be encoded in ProbLog and Logic Programs with An-
notated Disjunctions (LPAD) [VVB04] in a similar manner. The sequence of
random-variable valuations used in the derivation of an answer is called an
explanation. In contrast to PRISM, ProbLog [DRKT07] and PITA [RS10a],
which is an implementation of LPAD, materialize the set of explanations
of an answer in the form of a Binary Decision Diagram (BDD). Probabili-
ties are subsequently computed based on the BDD. This approach permits
these systems to correctly infer probabilities even when the independence and
mutual-exclusion assumptions are violated. However, the set of explanations
of reach(s0,0, s3) is infinite.2 Since BDDs can only represent finite sets, the
probability of reach(s0,0, s3) cannot be computed in ProbLog or LPAD.

To correctly infer the probability of reach(s0,0, s3), we need an algorithm
that works even when the set of explanations is infinite. Moreover, it is easy
to construct queries where the independence and mutual exclusion proper-
ties do not hold. For example, consider the problem of inferring the prob-

2This is in contrast to the link-analysis examples used in ProbLog and PITA [RS10b],
where, even though the number of derivations for an answer may be infinite, the number
of explanations is finite.

50

ability of reaching s3 or s4 (i.e., the query reach(s0,0, s3); reach(s0,0, s4)).
Since some paths to s3 pass through s4, explanations for reach(s0,0, s3) and
reach(s0,0, s4) are not mutually exclusive. The example of Figure 4.1 illus-
trates that, to build model checkers based on PLP, we need an inference
algorithm that works even when the finiteness, mutual-exclusion, and inde-
pendence assumptions are simultaneously violated.

Summary of Contributions: In this chapter, we discuss “Probabilistic
Inference Plus” (PIP) [GRS12], an algorithm for inferring probabilities of
queries in a probabilistic logic program. PIP is applicable even when ex-
planations are not necessarily mutually exclusive or independent and the
number of explanations is infinite. We demonstrate the utility of this in-
ference algorithm by constructing model checkers for a rich class of prob-
abilistic models and temporal logics (see Section 4.4), including those for
PCTL properties of Markov chains; reachability properties in RMCs; and
GPL properties of RPLTSs. Our model checkers are based on high-level,
logical encodings of the semantics of the process languages and temporal log-
ics, thus retaining the highly declarative nature of the prior work on model
checking non-probabilistic systems on which we build.

We have implemented our inference algorithm in XSB Prolog [SW+12].
Based on this implementation, we have encoded probabilistic model checkers
for a variety of temporal logics, including PCTL and GPL (which subsumes
PCTL*), and for process languages of varying complexity (from Reactive
Modules to RMCs). Our experimental results show that, despite the highly
declarative nature of our encodings of the model checkers, their performance
is competitive with their native implementations.

The rest of this chapter develops along the following lines. Section 4.2 pro-
vides requisite background on PLP. Section 4.3 presents our PIP algorithm.
Section 4.4 describes our PLP encodings of probabilistic model checkers,
while Section 4.5 contains our experimental evaluation. Section 4.6 offers
some concluding remarks.

4.1 Related Work

There is a substantial body of prior work on encoding complex model checkers
as logic programs. These approaches range from using constraint handling
to represent sets of states such as those that arise in timed systems [GP97,

51

DRS00, MP00, PRR02], data-independent systems [SSR03], as well as other
infinite-state systems [DP99, MP99]; tabling to handle fixed point compu-
tation [RRS+00, FL04]; and procedural aspects of proof search to handle
names [YRS04] and GFPs [GBM+07]. However, all these works deal only
with non-probabilistic systems.

Moreover, most of these works exploited existing logic programming tech-
niques to implement model checkers for novel systems. In contrast, we
find that existing techniques for probabilistic inference in PLP are not suffi-
cient for the model checking of probabilistic systems. This chapter discusses
PIP [GRS12], which is applicable to PLPs in general, and also enables model
checkers for probabilistic systems to be constructed at the same high level as
those for non-probabilistic systems.

With regard to related work on probabilistic inference, Statistical Re-
lational Learning (SRL) has emerged as a rich area of research into lan-
guages and techniques for supporting modeling, inference and learning using
a combination of logical and statistical methods [GT07]. Some SRL tech-
niques, including Bayesian Logic Programs [KDR01b], Probabilistic Rela-
tional Models [FGKP99] and Markov Logic Networks [RD06], use logic to
compactly represent statistical models. Others, such as Stochastic Logic Pro-
grams [Mug96], PRISM [SK97], CLP(BN) [SCPQC03], ProbLog [DRKT07],
LPAD [VVB04], Independent Choice Logic [Poo08], and CP-Logic [VDB09],
define inference primarily in logical terms, subsequently assigning statisti-
cal properties to the proofs. Motivated primarily by knowledge represen-
tation problems, these works have been naturally restricted to cases where
the models and the inference proofs are finite. Recently, a number of tech-
niques have generalized these frameworks to handle random variables that
range over continuous domains (e.g., [KDR01a, NBKJ10, WD08, GJD10,
GTK+11, IRR12]), but they still restrict proof structures to be finite.

Modeling and analysis of probabilistic systems, both in discrete and con-
tinuous time, has been an actively researched area. PCTL [HJ94] is a widely
used temporal logic for specifying properties of discrete-time probabilistic
systems. PCTL* [Bai98] is a probabilistic extension of LTL and is more ex-
pressive than PCTL. GPL [CIN05] is a probabilistic branching-time variant
of the modal µ-calculus. The PRISM model checker [KNP11] is a leading tool
for modeling and verifying a wide variety of probabilistic systems: Markov
chains and MDPs. There is also prior work on techniques for verifying more
expressive probabilistic systems, including RMCs [EY09] and probabilistic
pushdown systems [KEM06], both of which exhibit context-free behavior.

52

The probability of reachability properties in such systems is computed as
the least solution to a corresponding set of monotone polynomial equations.
PReMo [WE07] is a model checker for RMCs. RPLTSs [CIN05] general-
ize Markov chains by adding branching nondeterminism, and PLTSs [Seg95,
Mio12] also have linear nondeterminism. GPL and XPL properties of such
systems are also computed as a solution to a set of probabilistic polynomial
equations. This chapter describes a practical implementation of a GPLXPL
model checker [GRS12].

4.2 Preliminaries

Notations: The root symbol of a term t is denoted by π(t) and its ith sub-
term by argi(t). Following traditional LP notation, a term with a predicate
symbol as root is called an atom. The set of variables in a term t is denoted
by vars(t). A term t is ground if vars(t) = ∅. We also use the standard
notions from LP such as derivation and substitution [NM95]. We denote the
language of a grammar G by LG. For any string s in LG, the set of symbols
in s is denoted by sym(s).

Following PRISM, a probabilistic logic program is of the form P = PF ∪PR,
where PR is a definite logic program and PF is the set of all possible msw/3
atoms. The set of possible msw atoms and the distribution of their subsets is
given by values and set sw directives, respectively. For example, clauses trans
and reach in Figure 4.1(b) are in PR. The set PF of that program contains
msw atoms such as:

msw(t(s0),0, s0), msw(t(s0),0.s0, s0),

msw(t(s0),0, s1), msw(t(s1),0.s1, s1).

In an atom of the form msw(t1, t2, t3), t1 is a term representing a ran-
dom process (switch in PRISM terminology), t2 is an instance, and t3 is the
outcome of the process at that instance. According to PRISM semantics,
two msw atoms with distinct processes or distinct instances are independent.
Two msw atoms with the same process and instance but different outcomes
are mutually exclusive.

4.3 The Inference Procedure PIP

A key idea behind the PIP inference algorithm [GRS12] is to represent the
(possibly infinite) set of explanations in a symbolic form. Observe from

53

the example in Figure 4.1 that, even though the set of paths (each with its
own distinct probability) from state s0 to state s3 is infinite, the regular
expression s0

+s1
+s4

?s3 captures this set exactly. Following this analogy, we
devise a grammar-based notation that can succinctly represent infinite sets
of finite sequences.

Definition 4.1 (Explanation). An explanation of an atom A with respect to
a program P = PF ∪ PR is a set ξ ⊆ PF of msw atoms such that (i) ξ,PR ⊢ A
and (ii) ξ is consistent, i.e., it contains no pair of mutually exclusive msw
atoms.

The set of all explanations of A w.r.t. P is denoted by EP (A). ◻

Example 4.1 (Set of explanations). Consider the program of Figure 4.1(b).
The set of explanations for reach(s0,0, s3) is:

msw(t(s0),0, s1), msw(t(s1),0.s1, s3).

msw(t(s0),0, s0), msw(t(s0),0.s0, s1), msw(t(s1),0.s0.s1, s3).

⋮

msw(t(s0),0, s1), msw(t(s1),0.s1, s1), msw(t(s1),0.s1.s1, s3).

⋮

4.3.1 Representing Explanations

As Example 4.1 illustrates, a representation in which instance identifiers
are explicitly captured will not be nearly as compact as the corresponding
regular expression (shown earlier). On the other hand, a representation (like
the regular expression) that completely ignores instance identifiers will not be
able to identify identical instances of a random process or properly distinguish
distinct ones.

We solve this problem by observing that, in PRISM’s semantics, different
instances of the same random process are independent and identically dis-
tributed (i.i.d.). Consequently, the probability of reach(s0,0, s3) (reaching s3

from s0 starting at instance 0) is the same as that of reach(s0,H, s3) for any
instance H. Hence, it is sufficient to infer probabilities for a single param-
eterized instance. Below, we formalize the set of PLP programs for which
such an abstraction is possible.

54

Definition 4.2 (Temporal PLP). A temporal probabilistic logic program is a
probabilistic logic program P with declarations of the form temporal(p/n−i),
where p/n is an n-ary predicate, and i is an argument position (between 1 and
n) called the instance argument of p/n. Predicates p/n in such declarations
are called temporal predicates. ◻

The set of temporal predicates in a temporal program P is denoted by
temporal(P); the set of all predicates in P is denoted by preds(P). By con-
vention, every program contains an implicit declaration temporal(msw/3−2),
indicating that msw/3 is a temporal predicate, and its second argument is
its instance argument. The instance argument of a predicate p/n is denoted
by χ(p/n). For example, the program of Figure 4.1(b) becomes a temporal
program when temporal(trans/3−2) and temporal(reach/3−2) are added. For
this program,

temporal(P) = {reach/3, trans/3,msw/3}, and

χ(reach/3) = χ(trans/3) = χ(msw/3) = 2.

Let α be an atom in a temporal program such that its root symbol is
a temporal predicate, i.e., π(α) ∈ temporal(P). Then the instance of α,
denoted by χ(α) by overloading the symbol χ, is argχ(π(α))(α). We also
denote, by χ(α), a term constructed by omitting the instance of α; i.e., if α =
f(t1, . . . , ti−1, ti, ti+1, . . . , tn) and χ(α) = ti, χ(α) = f(t1, . . . , ti−1, ti+1, . . . , tn).

Explanations of a temporal program can be represented by a notation
similar to Definite Clause Grammars (DCGs).

Example 4.2 (Set of explanations using DCG notation). Considering again
the program of Figure 4.1(b), the set of explanations for reach(s0,H, s3) can
be succinctly represented by the following DCG:

expl(reach(s0, s3),H) Ð→ [msw(t(s0),H, s0)], expl(reach(s0, s3),H.s0).

expl(reach(s0, s3),H) Ð→ [msw(t(s0),H, s1)], expl(reach(s1, s3),H.s1).

expl(reach(s1, s3),H) Ð→ [msw(t(s1),H, s1)], expl(reach(s1, s3),H.s1).

expl(reach(s1, s3),H) Ð→ [msw(t(s1),H, s3)], expl(reach(s3, s3),H.s3).

expl(reach(s1, s3),H) Ð→ [msw(t(s1),H, s4)], expl(reach(s4, s3),H.s4).

expl(reach(s3, s3),H) Ð→ [].

expl(reach(s4, s3),H) Ð→ [msw(t(s4),H, s3)], expl(reach(s3, s3),H.s3).

55

Note that each expl generates a sequence of msws. For this example, it
is also the case that in a string generated from expl(reach(s0, s3),H), the
msws all have instances equal to or later than H. It is then immediate that
msw(t(s0),H, s0) is independent of any msw from expl(reach(s0, s3),H.s0).
This property holds for an important subclass called temporally well-formed
programs, defined as follows.

Definition 4.3 (Temporally Well-Formed PLP). A temporal program P is
temporally well formed when, for each clause (α ∶− β1, . . . , βn) ∈ P :

1. If π(α) ∈ temporal(P), then ∀i,1 ≤ i ≤ n, s.t. π(βi) ∈ temporal(P),
χ(βi) = χ(α), or χ(α) is a subterm of χ(βi).

2. If π(α) /∈ temporal(P), then there is at most one i, 1 ≤ i ≤ n, s.t. π(βi) ∈
temporal(P).

3. Instance arguments χ(α) or χ(βi) or their subterms are unified only
with other instance arguments, their subterms, or ground terms. ◻

The first condition ensures that instances of predicates on the right-hand
side (RHS) of a clause are no earlier than those of the left-hand side (LHS).
The second condition ensures that a common temporal instance is created
for related temporal predicates. The final condition ensures that the effects
of first two are not undone by tainting the temporal arguments.

We represent the set of explanations of a temporal atom α by a special
term of the form expl(χ(α), χ(α)). The sets of explanations for an atom
can be represented succinctly by DCGs. Such DCGs are called explanation
generators.

An atom β is said to be probabilistic if it depends on an msw atom;
i.e., an msw atom is probabilistic, and an atom β is probabilistic if some
clause whose head unifies with β has a probabilistic atom on the RHS. For
a probabilistic atom β, let eβ = [β] if β = msw(r, t, v), eβ = expl(χ(β), χ(β))
if β is a temporal atom, and eβ = expl(χ(β),�) if β is not temporal. A time-
abstracted derivation of a query Q is a derivation constructed by ignoring
bindings to temporal arguments.

Definition 4.4 (Explanation Generator). Let P be a temporally well-formed
program and let Q be a query. Then the explanation generator for Q w.r.t.
P , denoted by Γ, is a DCG with non-terminals of the form expl(t1, t2) and

56

terminals of the form msw(t1, t2, t3) where t1, t2, t3 are terms, if Γ is the
smallest set such that the following holds:

Let β0 be the selected literal in some step of a time-abstracted derivation
of Q. Let c be an instance of a clause in P with β0 as the LHS atom and
β1, . . . , βl be the probabilistic atoms on the RHS. Let θ be the computed answer
substitution for the RHS of c in a time-abstracted derivation. Then

eβ0θ → eβ1θ, . . . , eβlθ ∈ Γ.
◻

An explanation generator is said to be ground if, for every non-terminal
symbol expl(t1, t2), t1 is ground and, for every terminal symbol msw(t1, t2, t3),
t1 and t3 are ground.

Example 4.3. The DCG in Example 4.2 is the explanation generator for
the query reach(s0,H, s3) over the program given in Figure 4.1(b).

Proposition 4.1. Let P be a temporally well-formed program, Q be a ground
query, and Γ be the explanation generator for Q w.r.t. P such that Γ is
ground. Then, the language of Γ corresponds to the set of explanations of Q,
i.e., EP (Q) = {sym(s) ∣ s ∈ LΓ}.

Note that the generator in Example 4.2 can be treated as a stochastic
grammar (with the probability of the msws representing the probability of
each production), and hence the probability of the query can be computed
directly. However, this does not hold in general. For instance, the query
reach(s0,H, s3); reach(s0,H, s4) considered in the introduction will result in
an explanation generator where the productions are not mutually exclusive.
To treat such generators, we define the factoring algorithm described below.

4.3.2 Factored Explanation Diagrams

The structure of a Factored Explanation Diagram (FED) closely follows that
of a Binary Decision Diagram (BDD). Similar to a BDD, a FED is a labeled
directed acyclic graph (DAG) with two distinguished leaf nodes: tt, repre-
senting true, and ff, representing false. While the internal nodes of a BDD
are Boolean variables, a FED contains two kinds of internal nodes: one repre-
senting terminal symbols of explanations (msws), and the other representing
non-terminal symbols of explanations (expls). Thus, each path in a FED can

57

be viewed as a production in a context free grammar. We will ensure, by con-
struction, that distinct paths in a FED are mutually exclusive and that the
set of msws used within a path are all mutually independent. Hence, we can
view a FED as a stochastic grammar, where each production’s probability is
given by the (product of) probabilities of msws in that production. We use a
partial order among nodes, denoted by “<”, to construct a FED. The order
is used to ensure the mutual exclusion and independence properties stated
above.

Definition 4.5 (Factored Explanation Diagram). A FED is a labeled DAG
with four kinds of nodes:

• tt and ff are terminal nodes;

• msw(r, h) is an n-ary node when r is a random process with n outcomes,
and the edges to the n children are labeled with the possible outcomes
of r;

• expl(t, h) is a binary node, and the edges to the children are labeled 0
and 1.

In the above, t is a ground term and h is an instance term (for an expl node,
it represents a range of instances). If there is an edge from node x1 to node
x2, then x1 < x2. ◻

Note that the multi-valued decision diagrams used in the implementation
of PITA [RS10b] are a special case of FEDs with only tt, ff, and msw(r, h)
nodes, where r and h are ground.

We represent non-terminal FEDs by x?Alts , where x is the node and
Alts is the list of edge-label/child pairs. A FED F whose root is an msw
node is written as msw(r, h)?[v1∶F1, v2∶F2, . . . , vn∶Fn], where F1, F2, . . . , Fn
are children FEDs (not all necessarily distinct) and v1, v2, . . . , vn are possible
outcomes of the random process r such that vi is the label on the edge from
F to Fi.

A FED F whose root is an expl node is written as expl(t, h)?[0∶F0,1∶F1],
where F0 and F1 are the children of F with edge labels 0 and 1, respectively.

We now define the ordering relation “<” among nodes. Let “≺” be a
partial order among instances such that h1 ≺ h2 if h1 represents an earlier
time instance than h2. Let ⊏ be a total order among instances, along the
lines of a lexicographic ordering, such that h1 ≺ h2 ⇒ h1 ⊏ h2. If h1 /⪯ h2 and

58

h2 /⪯ h1, then h1 and h2 are incomparable, denoted as h1 /∼ h2. We assume an
arbitrary order < among terms.

Definition 4.6 (Node order). Let x1 and x2 be nodes in a FED. Then x1 < x2

if it matches one of the following:

• msw(r1, h1) < msw(r2, h2) if h1 ⊏ h2 or (r1 < r2 and h1 = h2);

• msw(r1, h1) < expl(t2, h2) if h1 ≺ h2 or h1 /∼ h2;

• expl(t1, h1) < expl(t2, h2) if h1 ⊏ h2 and h1 /∼ h2. ◻

A node of the form msw(r, h, v) denotes a valuation of random process r at
instance h. From PRISM semantics, two random variables are independent
if they differ in their process or instance. Thus two msw nodes related by
“<” are independent. A node n of the form expl(t, h) may represent a set of
msws at instance h or later. It follows from the above definition that if m
is an msw node and m < n, then m is independent of every msw represented
by n. Finally, we can order two expl nodes with instances h1 and h2 only
if they have incomparable instances, since they represent sets of msws at or
later than h1 and h2, respectively.

Definition 4.7 (Binary Operations on FEDs). F1 ⊕F2, where ⊕ ∈ {∧,∨}, is
a FED F derived as follows:

• F1 is tt, and ⊕ = ∨, then F = tt.

• F1 is tt, and ⊕ = ∧, then F = F2.

• F1 is ff, and ⊕ = ∨, then F = F2.

• F1 is ff, and ⊕ = ∧, then F = ff.

• F1 = x1? [v1
1∶F

1
1 , . . . , v

n1
1 ∶F n1

1], F2 = x2? [v1
2∶F

1
2 , . . . , v

n2
2 ∶F n2

2]:

1. x1 < x2: F = x1? [v1
1∶(F

1
1 ⊕ F2), . . . , v

n1
1 ∶(F n1

1 ⊕ F2)];

2. x1 = x2: F = x1? [v1
1∶(F

1
1 ⊕ F

1
2), . . . , v

n1
1 ∶(F n1

1 ⊕ F n1
2)];

3. x1 > x2: F = x2? [v1
2∶(F1 ⊕ F 1

2), . . . , v
n2
2 ∶(F1 ⊕ F

n2
2)];

4. x1 /< x2, x2 /< x1: F = merge(⊕, F1, F2). ◻

59

Note that Definition 4.7 is a generalization of the corresponding opera-
tions on BDDs. Also, when x1 and x2 are both msw nodes, since < defines
a total order between them, case 4 will not apply. When the operand nodes
cannot be ordered (case 4), then we can try to merge them, but this can
potentially cause the FED generation to fail. We show how we may try to
resolve the merge cases.

Definition 4.8 (Merge of FEDs). We can merge FEDs F1 and F2 when
F1 = expl(t1, h1)?[0∶F 0

1 ,1∶F
1
1], F2 = expl(t2, h2)?[0∶F 0

2 ,1∶F
1
2], and h1 = h2 = h.

Then, merge(⊕, F1, F2) = expl(t1 ⊕ t2, h)?[0∶(F 0
1 ⊕ F

0
2),1∶(F

1
1 ⊕ F

1
2)]. ◻

When we need to merge, having the FEDs rooted at expl nodes with
identical contexts may be achieved via an Explanation Normal Form (ENF).

Definition 4.9 (Explanation Normal Form). A FED is in ENF if, for some
context h:

• msw nodes have context h;

• expl nodes have a context of the form h.r.vi. ◻

Meanwhile, we have in general the following relationships for i ∈ {1,2}:
Fi = F 0

i ∨ (expl(ti, hi) ∧ F 1
i), with the invariant that F 0

i implies F 1
i . Then,

when h1 = h2 = h, our construction corresponds to the following relationship:

F1 ∧ F2
?
= (F 0

1 ∧ F
0
2) ∨ (expl(t1 ∧ t2, h) ∧ (F 1

1 ∧ F
1
2)) . (4.1)

The relationship in (4.1) is not universal, though; e.g., when t1 holds, but t2
does not, we just need F 1

1 ∧F
0
2 . A sufficient condition for (4.1) is F 0

1 = F 0
2 (for

F1 ∨ F2, the respective condition is F 1
1 = F 1

2). We will show in Section 4.3.3
some particular cases where this condition is met.

We now give a procedure for constructing FEDs from an explanation
generator for query Q with respect to program P .

Definition 4.10 (FED Construction). Given an explanation generator Γ, the
FED corresponding to goal G, denoted by fed(G), is constructed by mutually
recursive functions fed and expand defined as follows:

• fed(G):

60

= msw(r, h)?[v1∶F1, . . . , vn∶Fn] if G = msw(r, h, v), where
for all i, Fi = tt if vi = v and Fi = ff otherwise;

= expand(G) if G = expl(t, h), h is either ground or a variable;

= G?[0∶ff,1∶tt] otherwise.

• expand(β0) = F where { (β0 → β1
1 , . . . , β

n1
1) , . . . , (β0 → β1

k , . . . , β
nk

k) } is
the set of all clauses in Γ with β0 on the left hand side, and

F =
k

⋁
i=1

nk

⋀
j=1

fed (βji) .

• expand(expl(t1 ⊕ t2, h)) = expand(expl(t1, h)) ⊕ expand(expl(t2, h)).

The definition can be understood as follows. The key function is expand,
which constructs a FED from a set of clauses in Γ. Function fed (i) defines
FEDs for msw nodes, and (ii) controls the expansion by stopping expansion of
expl nodes when the instance is partially specified. Expansion of a compound
expl node is achieved by expanding the component FEDs and then applying
the operation to them. In our implementation, the above definition is turned
into a tabled logic program. Furthermore, FEDs are maintained using a
dictionary to ensure that they have a DAG structure.

Example 4.4. Three of the four FEDs for the explanation generator in Ex-
ample 4.2 are shown in Figure 4.2. The FED for expl(reach(s3, s3),H), not
shown in the figure, is tt.

4.3.3 Nondeterminism and Merge

While we focused on systems without linear nondeterminism, in [GRS12] and
so far in this chapter, we note that the FED construction is agnostic with
respect to the distributions of the probabilistic choices. Thus, if we allow
PRISM’s [SK97] msws to be backed by linear nondeterminism, essentially
following the paradigm of RMDPs [EY15] in that respect, we can still perform
the FED construction. In this case, we replace the set sw predicate giving
the distribution with an indicator that the msw atom is nondeterministic.

Meanwhile, the FED construction in Definition 4.10 may not be sound,
if we perform the merge when the children are in a particular form. It

61

s1s0

1

ff tt

0 0 1

expl(reach(s0,s3),

next(H))

expl(reach(s1,s3),

next(H))

msw(t(s0), H)

(a) FED for expl(reach(s0, s3),H)

ff tt

msw(t(s1), H)

s3

expl(reach(s3,s3), expl(reach(s4,s3),expl(reach(s1,s3),

1
0

1

01
0

s1 s4

next(H)) next(H))next(H))

(b) FED for expl(reach(s1, s3),H)

ff tt

msw(t(s4), H)

expl(reach(s3,s3), next(H))

s3

0 1

(c) FED for expl(reach(s4, s3),H)

Figure 4.2: FEDs for Example 4.2

works in linear systems, where F0 = ff and F1 = tt for any F rooted at an
expl node. In probabilistic branching time, though, the results for multi-exit
RMDPs [EY15] and Chapter 3 indicate that a FED construction algorithm
cannot be compatible with linear nondeterminism and, at the same time,
be sound and complete. In the absence of linear nondeterminism, we can
change the construction algorithm with the analogue of (2.1), relating the
disjunction operation on two FEDs to their conjunction. For this, we define

62

an additional FED type, a triple.

Definition 4.11 (Triple). A triple is an additional type of terminal node for
a FED, representing a FED by referencing three other FEDs, and denoted by
F = triple(F1, F2, F3), such that its value may be computed from their values.

In addition to Definition 4.7, F1 ⊕F2, where F1 = triple (F 1
1 , F

2
1 , F

3
1), is a

FED F = triple (F 1
1 ⊕ F2, F 2

1 ⊕ F2, F 3
1 ⊕ F2). ◻

The alternative FED construction replaces the binary children system for
expl nodes with the triples (equivalently, we maintain the invariant that all 0
children are ff). This requires the following adjustment to Definition 4.7:

Definition 4.12 (Triple for disjunction). When FEDs F1 and F2 are rooted
at distinct expl nodes (i.e., excluding case 2 in Definition 4.7), then F1∨F2 =
triple(F1, F2, F1 ∧ F2).

Thus, for systems without linear nondeterminism, we can build FEDs
from any set of explanations.

Theorem 4.2 (Sound FED Construction). For systems where all branching
is separable, the FED construction algorithm via Definitions 4.7 and 4.10 is
sound and complete.

For systems without linear nondeterminism, the FED construction algo-
rithm including Definition 4.12 is sound and complete.

Proof. We will assume that the FEDs are in ENF. Then, FED expansion
entails exactly one time step, in branching time, and the merge case happens
only on two expl nodes with identical contexts.

Also, we start with the input being a set of expls, for which we need to
construct FEDs. Any additional FED will be a result of a merge. With
the standard algorithm, the number of additional FEDs is bounded double-
exponentially, and with triples, exponentially, in the number of initial expls.
Thus, completeness is guaranteed.

Potential issues with soundness arise primarily in the merge case. In
linear-time systems, the expl nodes have trivial children. With triples, all
merges are on conjunction and the 0 children are all ff, so the merge op-
eration in Definition 4.8 is correct. With separable systems, the results of
independent contexts are assumed to be themselves independent. This means
that, in combining two FEDs, we ultimately just have a tt or ff for a partic-
ular context and cannot utilize the details of how it is so. Then, the 0 and 1
children can be combined as with BDDs.

63

Thus, in the GPL model checking case, we are able to complete the model
checking algorithm by handling conjunctions and disjunctions in an asym-
metric way, with triples. For separable XPL model checking, the standard
algorithm produces the FEDs yielding the system with the correct result as
a solution.

4.3.4 Computing Probabilities from FEDs

Recall that a factored explanation diagram can be viewed as a stochastic
grammar. Following [EY09], we can generate a set of simultaneous equations
from the stochastic grammar and find the probability of the language from
the least solution of the equations. The generation of equations from the
factored representation of explanations is formalized below, where we assume
that a least solution is to be computed.

Definition 4.13 (Temporal Abstraction). Given a temporal program P ,
the temporal abstraction of a term t, denoted by abs(t), is χ(t) if π(t) ∈
temporal(P) and χ(t) is not ground, and it is t otherwise. That is, for a
term t with a temporal predicate as root, abs(t) omits its instance argument
if that argument is not ground. ◻

Definition 4.14 (Distribution). Let ρ be a random process specified in a
temporal program P . The set of values produced by ρ is denoted by valuesP (ρ).
The distribution of ρ, denoted by distrP (ρ), is a function from the set of all
terms over the Herbrand Universe of P to [0,1] such that

∑
v∈valuesP (ρ)

distrP (ρ)(v) = 1.

◻

Definition 4.15 (System of Equations for PLP). Let Γ be an explanation
generator, fed be the relation defined in Definition 4.10, V be a countable set
of variables, and f be a one-to-one function from terms to V . The system
of polynomial equations E(Γ,V,f) = {(f(abs(G)) = P(F)) ∣ fed(G,F) holds},

64

// xi: prob(expl(reach(si, , s3))); tij: prob(msw(t(si), , sj))

x0 = t00 ⋅ x0 + t01 ⋅ x1 t00 = .5 t14 = .5

x1 = t11 ⋅ x1 + t13 ⋅ x3 + t14 ⋅ x4 t01 = .3 t43 = 1

x3 = 1 t11 = .4

x4 = t43 ⋅ x3 t13 = .1

Figure 4.3: Set of equations generated from the set of FEDs of Example 4.4

where P is a function that maps FEDs to polynomials, is defined as follows:

P(ff) = 0,

P(tt) = 1,

P(msw(r, h)?[v1∶F1, . . . , vn∶Fn]) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

n

∑
i=1

distr(r)(vi) ⋅ P(Fi), r is probabilistic

max
i
P(Fi), otherwise

P(expl(t, h)?[0∶F0,1∶F1]) = f(abs(expl(t, h))) ⋅ P(F1) +

+ (1 − f(abs(expl(t, h)))) ⋅ P(F0),

P(triple(F1, F2, F3)) = P(F1) + P(F2) − P(F3).
◻

The set of equations for Example 4.4 is shown in Figure 4.3.
Note that subtraction may be present either as a result of triples or non-ff

0 children, but not both.
The implementation of the above definition is such that shared FEDs re-

sult in shared variables in the equation system. The correspondence between
a temporal program in factored form and the set of polynomial equations
permits us to compute the probability of query answers in terms of the least
solution to the system of equations.

Theorem 4.3 (Factored Forms and Probability). Let Γ be an explanation
generator for query Q w.r.t. program P . Let V be a set of variables and let
f be a one-to-one function from terms to V . Then, X is the probability of a
query answer Q evaluated over P , denoted by prob(Q,X), if X is the value
of the variable f(expl(χ(Q), χ(Q))) in the least solution of the corresponding
set of equations, E(Γ,V,f).

65

The following properties show that the algorithm for finding probabilities
of a query answer is well defined.

Proposition 4.4 (Monotonicity). If Γ is an explanation generator in fac-
tored form, V is a set of variables and f is a one-to-one function as required
by Definition 4.15, then the system of equations E(Γ,V,f) is monotone in [0,1].

Monotone systems have the following important property:

Proposition 4.5 (Least Solution [EY09]). Let E be a set of polynomial
equations which is monotone in [0,1]. Then E has a least solution in [0,1].
Furthermore, a least solution can be computed to within an arbitrary approx-
imation bound by an iterative procedure.

Note that FEDs may not be regular since expl nodes may have other
expl nodes as children, and hence the resulting equations may be nonlin-
ear. Proposition 4.5 establishes that the probability of query answers can be
effectively computed even when the set of equations is nonlinear.

Example 4.5. The probability of the language of explanations in Example 4.2
(via the equations in Figure 4.3) is given by the value of x0 in the least
solution, which is 0.6.

4.4 Applications

We now present two model checkers that demonstrate the utility of PIP.

PCTL: The syntax of an illustrative fragment of PCTL is given by:

SF ∶∶= prop(A) ∣ neg(SF) ∣ and(SF 1,SF 2) ∣ pr(PF ,gt,B) ∣ pr(PF ,geq,B),

PF ∶∶= until(SF 1,SF 2) ∣ next(SF).

Here, A is a proposition and B is a real number in [0,1]. The logic partitions
formulae into state formulae (denoted by SF) and path formulae (denoted by
PF). State formulae are given a non-probabilistic semantics: a state formula
is either true or false at a state. For example, formula prop(a) is true at
state s if proposition a holds at s; a formula and(SF 1,SF 2) holds at s if both
SF 1 and SF 2 hold at s. The formula pr(PF ,gt,B) holds at a state s if the
probability p of the set of all paths on which the path formula PF holds is
such that p > B (similarly, p ≥ B for geq).

66

% State Formulae % Path Formulae

models(S, prop(A)) :-

holds(S, A).

models(S, neg(A)) :-

not models(S, A).

models(S, and(SF1,SF2)) :-

models(S, SF1),

models(S, SF2).

models(S, pr(PF,gt,B)) :-

prob(pmodels(S, PF), P),

P > B.

models(S, pr(PF,geq,B)) :-

prob(pmodels(S, PF), P),

P >= B.

pmodels(S, PF) :-

pmodels(S, PF, _).

:- table pmodels/3.

pmodels(S, until(SF1, SF2), H) :-

models(S, SF2).

pmodels(S, until(SF1, SF2), H) :-

models(S, SF1),

trans(S, H, T),

pmodels(T,until(SF1,SF2),next(H)).

pmodels(S, next(SF), H) :-

trans(S, H, T),

models(T, SF).

temporal(pmodels/3-3).

Figure 4.4: Model checker for a fragment of PCTL

The formula until(SF 1,SF 2) holds on a given path (s0, s1, s2, . . .) if SF 2

holds on state sk for some k ≥ 0 and SF 1 holds for all si, 0 ≤ i < k. Full
PCTL has a bounded until operator, which imposes a fixed upper bound
on k; we omit its treatment since it has a straightforward non-fixed-point
semantics. The probability of a path formula PF at a state s is the sum of
probabilities of all paths starting at s on which PF holds. This semantics
is directly encoded as the probabilistic logic program given in Figure 4.4.
In this encoding, trans/3 encodes the transition relation of a Markov chain.
Observe the use of an abstract instance argument “ ” in the invocation of
pmodels/3 from pmodels/2. This ensures that an explanation generator can
be effectively computed for any query to pmodels/2.

GPL: GPL is an expressive logic based on the modal µ-calculus for prob-
abilistic systems [CIN05], which we discussed in Chapter 2 – we repeat the
basics here. GPL subsumes PCTL and PCTL* in expressiveness. GPL is
designed for model checking RPLTSs, which are a generalization of Markov
chains. In an RPLTS, a state may have zero or more outgoing transitions,
each labeled by a distinct action symbol. Each action has a distribution on
destination states.

67

Syntactically, GPL has state and fuzzy formulae, where the state formulae
are similar to those of PCTL. The fuzzy formulae are, however, significantly
more expressive. While we defined the syntax of GPL in Section 2.2, we give
it here in equational form:

SF ∶∶= prop(A) ∣ neg(prop(A)) ∣ and(SF ,SF) ∣ or(SF ,SF) ∣

∣ pr(PF ,gt,B) ∣ pr(PF , lt,B) ∣ pr(PF ,geq,B) ∣ pr(PF , leq,B)

PF ∶∶= sf(SF) ∣ form(X) ∣ and(PF ,PF) ∣ or(PF ,PF) ∣

∣ diam(A,PF) ∣ box(A,PF)

D ∶∶= def(X, lfp(PF)) ∣ def(X,gfp(PF))

Formula diam(A,PF) holds at a state if there is a transition labeled A after
which PF holds; box(A,PF) may also hold if there are no transitions labeled
A. In the syntax, X denotes a formula variable defined using LFP and GFP
equations in D using lfp and gfp, respectively. Formulae are specified as a set
of definitions. GPL admits only alternation-free fixed-point formulae, and
hence treating them as a set of recursive definitions suffices to ensure the
completeness of the equational representation.

A part of the model checker for GPL that deals with fuzzy formulae is
shown in Figure 4.5. Note that fuzzy formulae have probabilistic semantics,
and, at the same time, may involve conjunctions or disjunctions of other fuzzy
formulae. Thus, for example, when evaluating models(s, and(PF 1,PF 2),H),
the explanations of models(s,PF 1,H) and models(s,PF 2,H) may not be
pairwise independent. Thus, recursion-free fuzzy formulae cannot be eval-
uated in PRISM, but can be evaluated using the BDD-based algorithms of
ProbLog and PITA. In contrast, recursive fuzzy formulae can be evaluated
using PIP. Separable XPL formulae can also be evaluated, directly on PLTSs
in which any given transition is either nondeterministic or probabilistic, and
otherwise following a basic transformation of the PLTS and the formula.

4.5 Experimental Results

PIP has been implemented using the XSB tabled logic programming sys-
tem [SW+12]. An explanation generator is constructed by using query eval-
uation under the well-founded semantics by redefining msws to backtrack
through their potential values and to have the undefined truth value. This
generates a residual program in XSB that captures the dependencies be-
tween the original goal and the msws (now treated as undefined values). In

68

%% pmodels(S,PF,H): S in model of fuzzy formula PF at or after instant H

%% smodels(S,SF): S in model of state formula SF

pmodels(S, sf(SF), H) :-

smodels(S, SF).

pmodels(S, and(F1,F2), H) :-

pmodels(S, F1, H),

pmodels(S, F2, H).

pmodels(S, or(F1,F2), H) :-

pmodels(S, F1, H);

pmodels(S, F2, H).

pmodels(S, diam(A, F), H) :-

trans(S, A, SW),

msw(SW, H, T),

pmodels(T, F, [T,SW|H]).

pmodels(S, box(A, F), H) :-

findall(SW,trans(S,A,SW),L),

all_pmodels(L, S, F, H).

pmodels(S, form(X), H) :-

tabled_pmodels(S,X,H1), H=H1.

all_pmodels([], _, _, _H).

all_pmodels([SW|Rest],S,F,H) :-

msw(SW, H, T),

pmodels(T,F,[T,SW|H]),

all_pmodels(Rest, S, F, H).

:- table tabled_pmodels/3.

tabled_pmodels(S,X,H) :-

fdef(X, lfp(F)),

pmodels(S, F, H).

Figure 4.5: Fragment of a model checker for fuzzy formulae in GPL

the first partial implementation, called PIP-Prism, the probabilities are
computed directly from the residual program. Note that such a computa-
tion will be correct if PRISM’s restrictions are satisfied. In general, however,
we materialize the explanation generator. The second partial implementa-
tion, called PIP-BDD, constructs BDDs from the explanation generator and
computes probabilities from the BDD. Note that PIP-BDD will be correct
when the finiteness restriction holds. The full implementation of PIP, called
PIP-full, is obtained by constructing a set of FEDs from the explanation
generator (Definition 4.10), generating polynomial equations from the set of
FEDs (Definition 4.15), and finally finding the least solution to the set of
equations. The final equation solver is implemented in C. All other parts
of the three implementations, including the BDD and FED structures, are
implemented entirely in tabled Prolog.

We present two sets of experimental results, evaluating the performance
of PIP on (1) programs satisfying PRISM’s restrictions; and (2) a program
for model checking PCTL formulae. The results were collected on a machine
running Mac OS X 10.6.8, with a 4-core 2.5 GHz Intel Core i5 processor and
4 GB of memory. For the first set of results, we compare PIP with PRISM

69

 0

 5

 10

 15

 20

 25

 30

 35

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
P

U
 T

im
e
 R

e
la

ti
v
e
 t

o
 P

R
IS

M

Length of Observation Sequence

PRISM
PITA-INDEXC

PIP-Prism
PIP-BDD

PIP-full

 0

 1

 2

 3

 4

 5

 6

 1000 2000 3000 4000 5000 6000 7000 8000 9000

C
P

U
 T

im
e
 i
n

 s
e
c
o

n
d

s

Length of Sentence

PRISM
PITA-INDEXC

PIP-Prism
PIP-BDD

PIP-full

(a) Relative perf. on HMM (b) NPV queries for PLC

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40 50 60 70 80 90

C
P

U
 T

im
e
 i
n
 s

e
c
o
n
d
s

Length of Sentence

PRISM
PITA-INDEXC

PIP-Prism
PIP-BDD

PIP-full

 0.001

 0.01

 0.1

 1

 10

 5 6 7 8 9 10 11 12 13

C
P

U
 T

im
e
 i
n
 s

e
c
o
n
d
s

Length of Sentence

PRISM
PITA-INDEXC

PIP-Prism
PIP-BDD

PIP-full

(c) NCN queries for PLC (d) ADVN queries for PLC

Figure 4.6: Performance of PIP on PRISM Programs

v2.0.3 and PITA in XSB v3.3.6. The model checking results were compared
with that of PRISM Model Checker v4.0.3.

Performance on PRISM Programs: Note that all three implementa-
tions (PIP-Prism, PIP-BDD and PIP-full) may be used to evaluate PRISM
programs.

Hidden Markov Model (HMM): We used the simple 2-state gene se-
quence HMM from [CG09] (also used in [RS11]) for our evaluation. We
measured the CPU time taken by the versions of PIP, PRISM and PITA-
INDEXC [RS11] (a version of PITA that uses not BDDs, but PRISM’s as-
sumptions) to evaluate the probability of a given observation sequence, for
varying sequence lengths. The observation sequence itself was embedded as
a set of facts (instead of an argument list). This makes table accesses fast
even when shallow indices are used. The number of nodes in the explanation

70

graph (e.g., FED) is linear in the size of the argument list. The perfor-
mance of the three PIP versions and PITA-INDEXC, relative to PRISM, is
shown in Figure 4.6(a). CPU times are normalized using PRISM’s time as
the baseline. Observe that the PIP-Prism and PITA-INDEXC perform simi-
larly: about 3.5 to 4 times slower than PRISM. Construction of BDDs (done
in PIP-BDD, but not in PIP-Prism) increases this overhead by a factor of
4. Construction of full-fledged FEDs, generating polynomial equations and
solving them (done only in PIP-full) further doubles the overhead. We find
that the equation-solving time is generally negligible.

Probabilistic Left Corner (PLC) Parsing: This example was adapted
from PRISM’s example suite, parameterizing the length of the input se-
quence to be parsed. We measured the CPU time taken by the three ver-
sions of PIP, PRISM, and PITA. The performance on three queries (NPV ,
NCN , and ADVN , each encoding a different class of strings) is shown in
Figure 4.6(b)–(d). As in the HMM example, the sequences are represented
as facts instead of lists. The number of nodes in the explanation graph is
linear in string length for NPV queries; and quadratic for NCN and ADVN
queries. The processing time needed for generating explanations is linear for
NPV queries; quadratic for NCN queries; and exponential in ADVN queries.
Note that the y-axis is logarithmic in Figure 4.6(d), and linear in the rest.
The performance on NPV is similar to that on HMM, with one exception:
PIP-Prism marginally outperforms PITA-INDEXC. The differences are more
noticeable on NCN and become significant on ADVN , indicating the relative
efficiency of computing explanations in PIP. The performance of PIP relative
to PRISM shows smaller overheads on NPV and NCN (compared to HMM)
and exhibits a reversal on ADVN . The differences between PIP-Prism, PIP-
BDD and PIP-full narrow in NPV and become negligible in ADVN due to
the small size of explanations.

The PLC experiments show that the overhead of BDD or FED construc-
tion is not necessarily constant across different queries or within a class of
similar queries on different scales, but may depend on factors such as how
compact the explanation generator is with respect to the set of explanations.

Performance of the PCTL Model Checker: We evaluated the per-
formance of PIP-full for supporting a PCTL model checker (encoded as
shown in Figure 4.4). We compared the performance of PIP-based model
checker with that of the widely-used PRISM model checker [KNP11]. We

71

 0.01

 0.1

 1

 10

 2 3 4 5 6

C
P

U
 T

im
e
 i
n

 s
e
c
o

n
d

s

No. of slots

Prism MC

PIP-full

 0.01

 0.1

 1

 10

 100

 2 3 4 5

C
P

U
 T

im
e
 i
n

 s
e
c
o

n
d

s

No. of slots

Prism MC

PIP-full

(a) Number of processes N = 5 (b) Number of processes N = 6

Figure 4.7: Performance of PCTL model checking using PIP and the PRISM
model checker for Synchronous Leader Election protocol

show the performance of PIP and the PRISM model checker on the Syn-
chronous Leader Election Protocol [IR81] for computing the probability that
eventually a leader will be elected. Figure 4.7 shows the CPU time used to
compute the probabilities of this property on systems with different numbers
of processes (N) and number of slots used by the protocol (slots). Observe
that our high-level implementation of a model checker based on PIP per-
forms within a factor of 3 of the PRISM model checker (note: the y-axis on
these graphs is logarithmic). Moreover, the two model checkers show similar
performance trends with increasing problem instances. However, it should
be noted that the PRISM model checker uses a BDD-based representation
of reachable states, which can, in principle, scale better to large state spaces
compared to the explicit state representation used in our PIP-based model
checker.

4.6 Conclusions

In this chapter, we have shown that in order to formulate the problem of
probabilistic model checking in probabilistic logic programming, one needs
an inference algorithm that functions correctly even when finiteness, mutual-
exclusion, and independence assumptions are simultaneously violated. We
have discussed such an inference algorithm, PIP [GRS12], implemented it in
XSB Prolog, and demonstrated its practical utility as the basis for encoding
model checkers for a rich class of probabilistic models and temporal logics.

72

Chapter 5

Partial pLµ Model Checking

In Chapter 3, we saw that we could specify a whole system as a PLTS
and then verify a property in a probabilistic µ-calculus, such as GPL or
XPL [CIN05, GR16]. However, systems are frequently made up of smaller
components; instead of expressing the whole system, we would like to spec-
ify the components under a compositional framework. The PRISM Model
Checker [KNP11] achieves this in the probabilistic domain, for Markov chains
and MDPs, via reactive modules [AH99]. However, we seek to allow quoti-
enting, as defined in [And95], but in the probabilistic domain, and moreover
attempt to define, in particular cases, a form of parameterized partial model
checking a la [BR06]. Additionally, there are some similarities to our trans-
lation of RMDPs [EY15] in Section 3.4.2, which can be seen as sequential
composition, as compared to the parallel composition we will describe in this
chapter.

The suitability of PLTSs, expressed via a process algebra, and pLµ for
compositional model checking has recently been explored by Mio and Simp-
son [MS13b]. As we depart from GPL and XPL in this chapter, we first dis-
cuss pLµ in Section 5.1. Then, we concentrate on the partial model checking
aspect. We aim for our framework to facilitate quotienting, and our deci-
sions are designed to require a minimum of extensions. We retain a visible
action on every step and preserve action labels on synchronization. In Sec-
tion 5.2, we define a process algebra for PLTSs, which is loosely based on
CCS [Mil89, JYL01]. We describe how quotienting works with our system in
Section 5.3. Additionally, in some advanced cases, we want to be able to vary
the response based on the number of actions synchronized in the step, e.g.,
to detect collisions; we analyze the effect of supporting this in Section 5.4.
Finally, we discuss a pair of case studies in Section 5.5, and conclude in
Section 5.6.

73

5.1 pLµ

The most relevant aspect of pLµ, for this thesis, is that, with the independent
product extension (pLµ⊙) [Mio11], it also supports probabilistic branching
time. However, it arises as a result of a logical operator, which enforces
independence, and is not viewed as inherent to the probabilistic system.
As PLTSs are not viewed as probabilistic branching time systems by pLµ,
the combination of a pLµ formula with a PLTS can lead to such a system
instead. This is called a Markov Branching Play (MBP). The analogue to
d-trees (Section 2.1), where all the probabilistic choices of an MBP have been
resolved, is called a branching play.

The key operator present in pLµ and absent in XPL is the conjunction
as minimum; XPL does allow for linear nondeterminism, but can refer to
it only via the schedulers. Meanwhile, the independent product extension
of pLµ is quite straightforward to model with XPL and a PLTS interpreted
as a probabilistic branching time system. Indeed, the model checking of
separable XPL involves grouping by action, where all remaining top-level
conjunctions and disjunctions acquire the semantics of independent product
and coproduct, respectively.

Another extension of pLµ involves the truncated sum operator. We men-
tion it since it allows for the modeling of multi-exit RMC termination: the
truncated sum can represent a disjunction of two mutually exclusive prop-
erties, when it is under an LFP not affected by a linear-nondeterministic
choice.

Finally, for partial model checking, the extension of pLµ requires, at the
very least, convex combinations, with the logic denoted as pLµ∪{+λ} [Mio12].

5.1.1 pLµ Syntax

With X ∈ Var, a ∈ Act, and 0 ≤ λ ≤ 1, the syntax of extended pLµ ∪ {+λ} is:

ψ ∶∶=X ∣ ψ ∧ ψ ∣ φ ∨ φ ∣ ⟨a⟩ψ ∣ [a]ψ ∣ µX.ψ ∣ νX.ψ ∣ ψ +λ ψ.

The syntax of pLµ is similar to GPL/XPL fuzzy formulae, although the
propositional connectives and the modal operators represent a linear nonde-
terministic choice (i.e., a choice made before the future probabilistic choices
are resolved); additionally, the +λ operator is a weighted sum, which will be
introduced into a formula only as a result of quotienting out a pchoice. We
may also write ∑i λiψi = λ1 ⋅ ψ1 + ⋅ ⋅ ⋅ + λn ⋅ ψn for a larger distribution.

74

Table 5.1: pLµ semantics

⟦X⟧e(s) = e(X)(s),

⟦ψ1 ∨ ψ2⟧e(s) = ⟦ψ1⟧e(s) ⊔ ⟦ψ2⟧e(s),

⟦ψ1 ∧ ψ2⟧e(s) = ⟦ψ1⟧e(s) ⊓ ⟦ψ2⟧e(s),

⟦ψ1 +λ ψ2⟧e(s) = ⟦ψ1⟧e(s) +λ ⟦ψ2⟧e(s),

⟦⟨a⟩ψ⟧e(s) = ⊔
c∈N

⎛

⎝
∑

s′∶(s,a,s′)∈δ

P (s, a, s′, c) ⋅ ⟦ψ⟧e(s
′)
⎞

⎠
,

⟦[a]ψ⟧e(s) = ⊓
c∈N

⎛

⎝
∑

s′∶(s,a,s′)∈δ

P (s, a, s′, c) ⋅ ⟦ψ⟧e(s
′)
⎞

⎠
,

⟦µX.ψ⟧e(s) = lfp (λf.⟦ψ⟧e[f/X]) (s),

⟦νX.ψ⟧e(s) = gfp (λf.⟦ψ⟧e[f/X]) (s).

5.1.2 pLµ Semantics

The semantics of pLµ with respect to a fixed PLTS L = (S, δ,P, I) is similar
to that of the fuzzy formulae in Table 2.1 [CIN05, GR16], but is a value
p ∈ [0,1], rather than a set of d-trees. Additionally, the environment here is
a function e ∶ Var → [0,1]S. The semantics of a pLµ formula is in Table 5.1.
Note that disjunction, conjunction, and the modal operators use ⊔ and ⊓
here, which, for finitely branching systems, correspond to max and min,
respectively. Additionally, we explain “lfp” and “gfp”, as GPL and XPL
allowed for simpler fixed points, due to the alternation-free restriction. For a
complete lattice (L,≤) (which makes ⊔ and ⊓ well-defined for any subset) and
monotone function f ∶ L→ L, we have the equalities [Mio11, Theorem 2.3]:

lfp(f) = ⊔
α
fα, fα = ⊔

β<α

f(fβ), (5.1)

gfp(f) = ⊓
α
fα, fα = ⊓

β<α

f(fβ). (5.2)

75

5.1.3 Markov Branching Plays

Branching plays and MBPs are defined for stochastic tree games [Mio11,
Chapter 4]. Stochastic tree games are somewhat similar to RSSGs and
BSSGs [EY15, ESY15], which we mentioned in Section 3.4. There is a game
arena A = ⟨(S,E), (S1, S2, SN ,B), π⟩, with the set of states S partitioned
into the maximizing, minimizing, probabilistic, and branching states, E be-
ing the transition relation, and π ∶ SN → D(S) providing the distribution for
the probabilistic states.

Trees in the game arena are defined in the standard way, and there is the
intuitive notion of a node being uniquely or fully branching. A branching
play is fully branching only on branching nodes and uniquely branching on
the others. An MBP is fully branching on both branching and probabilistic
nodes [Mio11, Definitions 4.2-4.6].

5.1.4 Partial Model Checking and pLµ

We view as useful two alternative viewpoints on compositional model check-
ing. We may consider a process as representing a PLTS, with some additional
information used for composing with other processes. When composition is
complete, we could then extract a PLTS, and the properties to be verified
would also be written in pLµ. This is similar to what the PRISM Model
Checker [KNP11] does, with Markov chains and MDPs as its model.

Alternatively, we may consider the effect of quotienting directly on PLTSs
and pLµ. This broadens the interpretation of the model and the logic, and
the PLTSs assume a specialized form, but without requiring any additional
extensions. This will generally be our paradigm, with the former alternative
serving to help with intuition.

Example 5.1 (Running Example). There is some number of identical pro-
cesses, each of which probabilistically chooses to be active on one of two
channels or to remain idle. We require that at least one process be active,
but not both channels.

Thus, in Example 5.1, if we have only a few processes, failure is likely
to result when all the processes are idle; meanwhile, if there are a lot of
processes, a typical failure will be from choosing both channels. Each process
could be modeled by a 4-state PLTS, and the composed system’s size would
be exponential in the number of processes; meanwhile, we will show that we

76

can quotient out the processes in Example 5.1 while the formula remains a
convex combination bounded by a constant number of terms.

Example 5.2. The formula for Example 5.1, that we want at least one active
process, but not both channels active, may be written as follows:

ψ = ⟨p⟩((⟨a⟩tt ∧ [b]ff) ∨ ([a]ff ∧ ⟨b⟩tt)) (5.3)

5.2 Probabilistic Model

While our underlying model will be a PLTS, as in Definition 3.1, we will
generally deal with a process algebra rather than composing PLTSs directly.

5.2.1 Process Algebra

We now present a process algebra over PLTSs. Here, we continue follow-
ing [BR06], which used CCS [Mil89]. CCS has also been extended proba-
bilistically by [JYL01].

Process Syntax

We define a simplified version of a probabilistic process algebra as follows:

Definition 5.1 (Process Algebra). A process is built by starting with S in
the grammar below.

S ∶∶= 0 ∣X ∣ N ∣ S +λ S ∣ (S∣S)

P ∶∶= P + P ∣ S

E ∶∶= A.P ∣ A0.P

N ∶∶= N +N ∣ E

D ∶∶=X
def
= S

◻

We have several dynamic operators:

• a.P : a simple prefix operator, pref, this means the process proceeds on
action a.

• a0.P : a special prefix operator, read, which is not active in itself, but
can be composed with a pref to become active.

77

• N1 +N2, P1 + P2: a nondeterministic choice (nchoice), which can gen-
eralize to a choice between a set of prefix processes, with the choices
being between actions and within an action, respectively.

• S1 +λ S2: a probabilistic choice (pchoice), selecting S1 with probability
λ and S2 with (1 − λ), which can generalize to a distribution.

We also have the static operator S1∣S2 (compose), the idle 0 process, and the
ability to refer to processes recursively by name (ranging over X, possibly

indexed, where we have X
def
= S).

Process Semantics

To follow PLTSs, action prefixes precede probabilistic choices, so that a pro-
cess corresponds to a PLTS state at the (external) nchoice operator. Addi-
tionally, while we view a and a0 as distinct actions, they can synchronize,
and (until Section 5.4) both cannot be present at the same state; we will
allow a to possibly represent either a or a0 where ambiguity is not a con-
cern. The prefix, (internal) nchoice, and pchoice operators correspond to the
transitions. When performing composition, we match similar operations: an
nchoice with an nchoice, a prefix process with a prefix (on the same action),
and a pchoice with a pchoice. We discuss these in order:

External choices
Let action(N) be the set of actions in the prefixes of an nchoice process
N (cf. action(⋅) in Section 2.3 and Definition 3.8 in Section 3.3). That is,
action(a.P) = action(a0.P) = {a}, and action(N1 +N2) = action(N1) ∪
action(N2), where we also require action(N1) ∩ action(N2) = ∅. The
composition depends on whether one or both of the processes have a
particular action:

• Let N1 = a.P +N ′
1 and a ∉ action(N2). Then, N1∣N2 = a.(P ∣N2) +

N ′
1∣N2.

• Let N1 = E1+N ′
1 and N2 = E2+N ′

2, where action(E1) = action(E2).
Then, N1∣N2 = E1∣E2 +N ′

1∣N
′
2.

Prefixes
A pref process corresponds to an a transition. A read process corre-
sponds to an a0 transition. These can be composed as follows:

78

• a.P ∣a.Q yields a.(P ∣Q);

• a.P ∣a0.Q yields a.(P ∣Q);

• a0.P ∣a0.Q yields a0.(P ∣Q).

Internal and probabilistic choices
(P1+P2)∣P3 and (S1+λS2)∣S3 are treated similarly, yielding P1∣P3+P2∣P3

and S1∣S3 +λ S2∣S3, respectively. In certain cases, symmetry reduc-
tion [CTV06] may be possible, though we do not cover it in this thesis.

An important aspect of a PLTS is that when we ask it to perform an action
that is absent at its current state, it terminates. Given our composition
operator, however, we have something of a third option, where an action is
semi-present at a state. With a read operator, we may even make a transition
at a component, but the action is nonetheless not yet fully present, pending
a later composition with a pref operator. Hence, we shift the focus from
absence of an action to a stronger requirement for presence, via the pref and
read operators.

Example 5.3. The processes in Example 5.1, which can choose one of two
channels (each with 0.1 probability) or remain idle (with 0.8 probability), can
be described with the following expression:

P
def
= p.(P +0.8 (a.0 +0.5 b.0)) (5.4)

5.3 Quotienting

Quotienting [And95] is at the heart of partial model checking. The essence
of quotienting is transforming a property that needs to be satisfied based on
the contribution of the component quotiented out [BR06]. Interestingly, an
obligation that appears to be satisfied may be undone by further quotienting.

5.3.1 Probability Function

It is useful to define the semantics of pLµ directly in terms of processes:
⟦(ψ,P)⟧ = ⟦(ψ, s)⟧�, as a process P corresponds to a state s of a PLTS L.
We may also use an equational syntax for pLµ’s fixed points, where we write
X =σ ψ, with σ ∈ {µ, ν}.

79

The transitions (s, a, s′) correspond to a.P , where the internal (Pa) and
probabilistic (P i

a) choices lead to some s′. Then, we can write the semantics
as follows:

⟦(⟨a⟩ψ,P)⟧ = max
Pa

(∑
i

pia ⋅ ⟦(ψ,P
i
a)⟧) , (5.5)

⟦([a]ψ,P)⟧ = min
Pa

(∑
i

pia ⋅ ⟦(ψ,P
i
a)⟧) . (5.6)

We define an additional notation for a case we call the ordered action
interpretation. We label this as [α]u and ⟨α⟩u, where α is a set of actions,
of which we want to select at most one, while otherwise adhering closely to
the expected meaning of box and diamond. This notation assumes a total
order on the available actions (i.e., when multiple actions may be active in
the same state, the order determines which one has priority), and, e.g., if a
is the greatest available action in α and α′ = α ∖ {a}, we have:

[α]uψ = [a]ψ ∧ (⟨a⟩tt ∨ [α′]uψ),

⟨α⟩uψ = ⟨a⟩ψ ∨ ([a]ff ∧ ⟨α′⟩uψ).

5.3.2 Quotienting Rules

With pLµ, quotienting is a function from a pLµ formula and a process to a
pLµ formula. Convex combinations are introduced as a result of quotienting.

The quotienting rules can be seen in Table 5.2.
Next, we describe the rules.
Rules 1-3 demonstrate the cases where the process does not change the

formula, either because the formula is already tt or ff, or because the process
is 0, the identity of the composition operator.

Rules 4-7 handle conjunction, disjunction, and convex combinations, sim-
ply by treating them separately and combining the results.

Rules 8-10 deal with process and formula names, as well as composition.
Note that, in Rule 9, we are essentially designating a new formula to be
defined. While we could compose the processes and then quotient on the
composed process in Rule 10, we want to be able to quotient them separately;
this is essentially our whole goal in defining quotienting in the first place.

Rules 11-18 deal with the modal operators. Rules 11-12 apply the modal
operator once the internal choice has been made and just the probabilistic

80

Table 5.2: Quotienting rules

1. Π(P)(tt) = tt

2. Π(P)(ff) = ff

3. Π(0)(ψ) = ψ

4. Π(P)(ψ1 ∧ ψ2) = Π(P)(ψ1) ∧Π(P)(ψ2)

5. Π(P)(ψ1 ∨ ψ2) = Π(P)(ψ1) ∨Π(P)(ψ2)

6. Π(P)(ψ1 +λ ψ2) = Π(P)(ψ1) +λ Π(P)(ψ2)

7. Π(P1 +λ P2)(ψ) = Π(P1)(ψ) +λ Π(P2)(ψ)

8. Π(X)(ψ) = Π(P)(ψ) if X
def
= P

9. Π(P)(XPs) =XP ∣Ps

10. Π(P1∣P2)(ψ) = Π(P1)(Π(P2)(ψ))

11. Π(ac.S)(⟨an⟩ψ) = ⟨an−c⟩Π(S)(ψ)

12. Π(ac.S)([an]ψ) = [an−c]Π(S)(ψ)

13. Π(a.(P1 + P2))(⟨a⟩ψ) = Π(a.P1)(⟨a⟩ψ) ∨Π(a.P2)(⟨a⟩ψ)

14. Π(a.(P1 + P2))([a]ψ) = Π(a.P1)([a]ψ) ∧Π(a.P2)([a]ψ)

15. Π(N)(⟨a⟩ψ) = ⟨a⟩Π(N)(ψ)

16. Π(N)([a]ψ) = [a]Π(N)(ψ)

17. Π(a.P +N)(⟨a⟩ψ) = Π(a.P)(⟨a⟩ψ)

18. Π(a.P +N)([a]ψ) = Π(a.P)([a]ψ)

(a ∉ action(N))

choice remains. This is the only place where the annotation on the action can
change: n − 1 is assumed to be 0, and the a0 appearing in modal operators
represents the set {a, a0}.

Rules 13-14 handle the internal choice for an action, which is a disjunction
for diamond and a conjunction for box. Rules 15-16 handle the case when
the action is absent in the process, in which case it remains idle. Rules 17-18
handle the external choice when the action is present, by choosing the process
containing the action.

81

The fixed points, which are represented in equational form (via X =σ ψ),
can lead to additional equations when quotienting, as the same formula may
need to quotient out different processes. This is straightforward to generate
with an algorithm.

It is also interesting that, due to the presence of convex combinations,
a formula has its own probability of being true even without any process.
We can denote this as ⟦(ψ,0)⟧. Note that the probability may rise or fall
after quotienting out another process, depending on how it affects the action
annotations.

In order to identify more formulae as equivalent by simple equality checks,
we also define some basic refining rules.

Definition 5.2 (Refining rules). We apply the following rules to a formula
until none of them can be applied, to get a refined formula.

• ⟨⋅⟩ff = ff.

• [⋅]tt = tt.

• ⟨a0⟩tt = tt.

• [a0]ff = ff.

• ff ∧ ψ = ff.

• tt ∧ ψ = ψ.

• ff ∨ ψ = ψ.

• tt ∨ ψ = tt. ◻

Further refining is possible, as well [BR06].

Example 5.4. If we quotient out process P (5.4) from formula ψ (5.3) once,
with ψ′ = (⟨a⟩tt ∧ [b]ff) ∨ ([a]ff ∧ ⟨b⟩tt) we get the following result:

⟨p0⟩ψ′ +0.8 (⟨p0⟩[b]ff +0.5 ⟨p0⟩[a]ff). (5.7)

If we quotient out another process P from the resulting formula, we get:

0.64 ⋅ ⟨p0⟩ψ′ + 0.02 ⋅ ff + 0.34 ⋅ (⟨p0⟩[b]ff +0.5 ⟨p0⟩[a]ff). (5.8)

82

Except for the values on the convex combinations, we have reached a
fixed point with (5.8). Further quotienting of P from the resulting formulae
only affects the λ values, for which, letting p1

n correspond to the weight of
the first subformula, p2

n for the second, and p3
n the third and the fourth, we

have p1
n +p

2
n +2 ⋅p3

n = 1 and the following recurrence relation and closed form:

p0 = (1,0,0);

p1
n = 0.8 ⋅ p1

n−1 = 0.8n;

p2
n = p

2
n−1 + 0.2 ⋅ p3

n−1 = 1 + 0.8n − 2 ⋅ 0.9n;

p3
n = 0.9 ⋅ p3

n−1 + 0.1 ⋅ p1
n−1 = 0.9n − 0.8n.

Our quotienting implementation can compute the probabilities numerically,
and it may be plausible to derive the recurrence relation in a mostly auto-
matic way, as well. We solved manually for the closed form, although both
p1
n and p3

n are quite intuitive here, and p2
n is just 1 − (p1

n + 2 ⋅ p3
n).

Theorem 5.1 (Quotienting is sound). For all P , Q, and ψ, ⟦(ψ,Q∣P)⟧ =
⟦(Π(P)(ψ),Q)⟧.

Proof. Proceeds by induction on the size of the formula and the process
expression.

• Rules 1-2: A standard process P cannot affect tt or ff. The probability
will be 1 for tt and 0 for ff, regardless of the process.

• Rule 3 (P = 0): We have P ∣0 = P for any process P , so:

⟦(ψ, (Q∣0))⟧ = ⟦(ψ,Q)⟧

= ⟦(Π(0)(ψ),Q)⟧

• Rule 4 (ψ = ψ1 ∧ ψ2): We induct on formula size.

⟦(ψ1 ∧ ψ2,Q∣P)⟧ = ⟦(ψ1,Q∣P)⟧ ⊓ ⟦(ψ2,Q∣P)⟧

= ⟦(Π(P)(ψ1),Q)⟧ ⊓ ⟦(Π(P)(ψ2),Q)⟧

= ⟦(Π(P)(ψ1) ∧Π(P)(ψ2),Q)⟧

= ⟦(Π(P)(ψ1 ∧ ψ2),Q)⟧

The proofs for Rules 5-7 are similar.

83

• Rule 8 (P = X): Here, we just substitute in the definitions for the
process, and we can induct on the size of the process expression (given

X
def
= P).

⟦(ψ,Q∣X)⟧ = ⟦(ψ,Q∣P)⟧

= ⟦(Π(P)(ψ),Q)⟧

= ⟦(Π(X)(ψ),Q)⟧

• Rule 9 (ψ =XPs): The rule itself here is just substitution. The equation
for XP ∣Ps is created with the equation-generating algorithm.

• Rule 10 (P = P1∣P2): This is the composition of three processes. We
use the associativity of composition as a binary operator and induct on
the size of the process expression.

⟦(ψ,Q∣(P1∣P2))⟧ = ⟦(ψ, (Q∣P1)∣P2)⟧

= ⟦(Π(P2)(ψ),Q∣P1)⟧

= ⟦(Π(P1)(Π(P2)(ψ)),Q)⟧

= ⟦(Π(P1∣P2)(ψ),Q)⟧

• Rule 11 (P = ac.S, ψ = ⟨an⟩ψ′): We assume Q = aq.Qa + Q′, where
Qa = ∑

i
Si (if a ∉ action(Q), then q = 0 and Qa = Q). The case c + q < n

is trivial, so we assume c + q ≥ n and omit the action annotations.

⟦(⟨a⟩ψ,Q∣a.S)⟧ = ⟦(⟨a⟩ψ, (a.Qa +Q
′)∣a.S)⟧

= ⟦(⟨a⟩ψ,a.(Qa∣S))⟧

= ⟦(⟨a⟩ψ,a.(∑
i

Si∣S))⟧

= ⊔
i

⟦(⟨a⟩ψ,a.(Si∣S))⟧

= ⊔
i

⟦(ψ,Si∣S)⟧

= ⊔
i

⟦(Π(S)(ψ), Si)⟧

= ⊔
i

⟦(⟨a⟩Π(S)(ψ), a.Si)⟧

= ⟦(⟨a⟩Π(S)(ψ), a.Qa)⟧

= ⟦(Π(a.S)(⟨a⟩ψ),Q)⟧

The proof for the box operator in Rule 12 is similar.

84

• Rule 13 (P = a.(P1+P2), ψ = ⟨a⟩ψ′): We assume Q as above and P2 = S,
and induct on the size of the process expression.

⟦(⟨a⟩ψ,Q∣a.(P + S))⟧ = ⟦(⟨a⟩ψ, (a.Qa +Q
′)∣a.(P + S))⟧

= ⟦(⟨a⟩ψ,a.(Qa∣(P + S)))⟧

= ⟦(⟨a⟩ψ,a.(Qa∣P +Qa∣S))⟧

= ⟦(⟨a⟩ψ,a.(Qa∣P))⟧ ⊔ ⟦(⟨a⟩ψ,a.(Qa∣S))⟧

= ⟦(⟨a⟩ψ,a.Qa∣a.P)⟧ ⊔ ⟦(⟨a⟩ψ,a.Qa∣a.S)⟧

= ⟦(⟨a⟩ψ,Q∣a.P)⟧ ⊔ ⟦(⟨a⟩ψ,Q∣a.S)⟧

= ⟦(Π(a.P)(⟨a⟩ψ),Q)⟧ ⊔ ⟦(Π(a.S)(⟨a⟩ψ),Q)⟧

= ⟦(Π(a.(P + S))(⟨a⟩ψ),Q)⟧

The proof for the box operator in Rule 14 is similar.

• Rule 15 (P = N idle on a, ψ = ⟨a⟩ψ′): We can utilize the definition of
idling to reduce this to the proof for Rule 11 by letting P = a0.N , and
likewise for Rule 16.

• Rule 17 (P ′ = a.P +N , ψ = ⟨a⟩ψ, a ∈ action(N1)): This follows from
our process and composition definitions (likewise for Rule 18), as we
compose on a and other actions become irrelevant. We assume Q as
above and induct on the size of the process expression.

⟦(⟨a⟩ψ,Q∣(a.P +N))⟧ = ⟦(⟨a⟩ψ, (a.Qa +Q
′)∣(a.P +N))⟧

= ⟦(⟨a⟩ψ,a.(Qa∣P) +Q′∣N)⟧

= ⟦(⟨a⟩ψ,a.(Qa∣P))⟧

= ⟦(⟨a⟩ψ,a.Qa∣a.P)⟧

= ⟦(⟨a⟩ψ,Q∣a.P)⟧

= ⟦(Π(a.P)⟨a⟩ψ,Q)⟧

= ⟦(Π(a.P +N)(⟨a⟩ψ),Q)⟧

5.4 Read Operator

In Definition 5.1, we defined two separate prefix operators, pref and read.
At least one pref was needed to make an action active, and beyond that

85

was immaterial. Thus, in our semantics, the composition of a pref with a pref
yielded the same process as composition of a pref with a read. In certain cases,
though, we may count the number of processes actively performing an action,
e.g., to model collisions between processes. We can do this with an active
(count-dependent) read operator, which may produce different effects based
on this number. This requires additional process extensions and quotienting
rules.

5.4.1 Effect on Processes

On the process side, this affects the prefix operators. We define the change
to the process algebra as follows:

Definition 5.3 (Active read operator). The addition of the active read op-
erator changes E in Definition 5.1 as shown below.

E ∶∶= Ac.P ∣ A.P +A0.P + ⋅ ⋅ ⋅ +A−n.P

◻

The change for the pref operator is straightforward: we simply provide
the count, which is nonnegative. We also define cp to refer to the count of a
prefix process.

An active read process depends on the value of the count, which we model
by annotating its actions with counts c ≤ 1. An initial active read process is
not, despite our name for it, active, i.e., it does not have a response on a 1
count, but active read processes formed by composition with pref processes
are active in this sense, as well; thus, cp may be 0 or 1 for an active read
process. For practical purposes, we disallow the presence of multiple active
read processes on the same action. Additionally, we define np for prefix
processes, which is n for a process ending with a−n.Pa−n . Then, the semantics
for composing prefix processes is as follows:

• If we compose acp .Pa and acq .Qa; the processes synchronize on action
a. The new count is the sum of the two counts, c = cp + cq, and we
compose the attached processes, resulting in ac.(Pa∣Qa).

• Letting c = cp, n = nq, if we compose ac.Pa and a.Qa1 + a0.Qa0 + ⋅ ⋅ ⋅ +
a−n.Qa−n , we get:

– if c ≤ n, a.(Pa∣Qa1−c) + ⋅ ⋅ ⋅ + ac−n.(Pa∣Qa−n);

86

– if c > n, a.(Pa∣Qa−n).

Note that the actual (positive) value of the count on a pref process only
matters if it will be composed with an active read process, as otherwise all
positive values are equivalent. Thus, when an active read process is merged
with a pref process and only one possibility remains, we convert it into a pref
process with its count at 1.

Effect on Quotienting

We can derive ⟨an⟩eψ and [an]eψ operators, for exact modalities, as follows:

⟨an⟩eψ = ⟨an⟩ψ ∧ [an+1]ff

[an]eψ = [an]ψ ∨ ⟨an+1⟩tt

These operators will be useful in writing clearer formulae for quotienting.
Also, we have the following inverse relations:

⟨an⟩ψ = ⟨an⟩eψ ∨ ⟨an+1⟩ψ = ⋁
i≥n

⟨ai⟩eψ

[an]ψ = [an]eψ ∧ [an+1]ψ = ⋀
i≥n

[ai]eψ

The interpretation of Rules 11-12 changes to reflect that the counts are
no longer limited to 0 and 1 and account for the exact an modalities. We add
Rules 19-20 for the active read process. The new rules are seen in Table 5.3.

Proof. (Additional rules for Theorem 5.1)
Rule 19 (P = a.P−1 + a0.P0 + ⋅ ⋅ ⋅ + a−n.Pn, ψ = ⟨al⟩ψ′): Here, we assume that
P at least responds to a and a0. For a fixed Q, P becomes equivalent to a
pref process, so we can reuse the steps from the proofs for Rules 11 and 13.
Then, for the diamond case, the other values are vacuously equal to 0. There

87

Table 5.3: Additional Quotienting Rules

19. Π(a.P−1 + ⋅ ⋅ ⋅ + a
−n.Pn)(⟨a

l
⟩ψ) = ⟨al−1

⟩eΠ(P−1)(ψ) ∨

⋮

∨ ⟨al+n−1
⟩eΠ(Pn−1)(ψ)

∨ ⟨al+n⟩Π(Pn)(ψ)

20. Π(a.P−1 + ⋅ ⋅ ⋅ + a
−n.Pn)([a

l
]ψ) = [al−1

]eΠ(P−1)(ψ) ∧

⋮

∧ [al+n−1
]eΠ(Pn−1)(ψ)

∧ [al+n]Π(Pn)(ψ)

(cp = 1 and n = np ≥ 0)

exists j ∈ {−1..n} such that a.Pj is an equivalent process.

⟦(⟨al⟩ψ,Q∣P)⟧ = ⟦(⟨al⟩ψ,Q∣a.Pj)⟧

= ⟦(Π(a.Pj)(⟨a
l⟩ψ),Q)⟧

= ⟦(⟨a0⟩Π(Pj)(ψ),Q)⟧

= ⊔
i=−1..n−1

⟦(⟨al+i⟩eΠ(Pa−i)(ψ),Q)⟧ ⊔ ⟦(⟨al+n⟩Π(Pa−n)(ψ),Q)⟧

= ⟦(⋁
i=−1..n−1

⟨al+i⟩eΠ(Pa−i)(ψ) ∨ ⟨al+n⟩Π(Pa−n)(ψ),Q)⟧

= ⟦(Π(P)(⟨al⟩ψ),Q)⟧

In the box case for Rule 20, the proof is similar.

5.5 Case Studies

We looked at two examples, the ECo-MAC protocol [ZBA10] and Choice
Coordination [NM10], both of which have also been modeled with the PRISM
Model Checker [KNP11]. We model both of these examples by using an
ordered action interpretation, with differently named actions used only for
synchronization of the composed processes.

88

5.5.1 Rabin’s Choice Coordination Problem Encoding

In the choice coordination problem [NM10], we have some number of tourists
who want to choose between two locations, without communicating directly
with each other, so that, eventually, all tourists enter the same location. This
is accomplished with a noticeboard at each location that the tourists update,
according to predetermined rules, and the tourists separately keeping track of
a value in personal notepads. We model the state of the two locations with a
single process, and each tourist as her own process. Storing each noticeboard
and tourist’s value as a number, while a straightforward encoding, would
make this an infinite-state system; therefore, we adapt the idea in [NM10] to
make this a finite-state system. The key idea is to observe that the difference
between the two noticeboards will never exceed one tier (the difference may
be 1, 2, or 3 in this case), and termination is assured once the values are in
the same tier, but differ by 1. Meanwhile, each tourist’s value is essentially
one of four possibilities: equal to one tier, but smaller (or greater) than the
other; equal to both; or smaller than both. Additionally, we need to encode
the next destination of each tourist; the total number of states is finite.

Process Encoding

Aside from visiting the left or the right location next, we encode the rela-
tionship between the tourists’ own value with the noticeboard’s, and update
it not only when the tourist reaches the next location, but also should the
noticeboard’s value change. While the original system nondeterministically
selects the next tourist to advance to her next location, we have a proba-
bilistic choice for each tourist on each time step. We also prevent tourists
from reaching their next location if they currently have a higher-tier value;
this would not occur in the worst case of the original model with nonde-
terminism. There are process states corresponding to each location, which
are mostly symmetric between tourists next headed for the right and left
locations, so we will describe one direction:

• Locations begin with equality, eqw:

– A tourist may be an updater (tu1r), with her own value equal to
the locations.

– If the tourist has a lower value, this value is expired (te1r).

89

When the location is eqw, each tourist is in the set {tu1r , t
u1
l , t

e1
r , t

e1
l },

with at least one equal to each of tu1r and tu1l in a fully instantiated
case.

• On an update, the location changes to a difference-2 state, dw2 . The
probabilistic choice at dw2 is a key element of the coordination strategy.

– If a tourist has a temporarily higher value than the next location,
she is in a waiting state (twr).

– A tourist can again be an updater (tu2r).

– A tourist can still be expired (te2r and te3r), with different states
depending on which location is currently greater.

The tourists actually encode which location has the higher value in
this case. When the left one is higher, each tourist is in the set
{twr , t

u2
r , t

e2
l , t

e3
r }, with at least one equal to each of twr and tu2r in a fully

instantiated case. When the right one is higher, we switch the rs and
ls in the above.

• If the locations do not return to an equality state, they change to a
difference-1 state, d1, at which point there will be just one more update,
to mark the location with the lower value with “Here”.

– All the tourists become potential finishers (tf1r , tf2r , tf3r), along with
the number of visits they still have to make to write “Here”.

– Once someone does, there are two done states, where the tourists
just have to visit the set location to enter (td1r and td2r).

In the finishing case, when the right one will be it, the tourists are
in the set {tf1r , t

f2
l , t

f3
r }, with at least one tourist being tf1r in the fully

instantiated case. In the done case, they are in the set {0, td1r , t
d2
l }.

Example Property

A simple property here is that all the tourists eventually enter the same
location, and thus there are no actions with positive counts:

ψl =µ [−]uψl.

90

Given the property, we can then quotient out the location and arbitrarily
many tourists. Multiple tourists may move simultaneously in this formula-
tion, which leads to a quickly growing number of formulae. However, it is
still true that at the end of a turn, when all eligible tourists make a proba-
bilistic choice, each of the tourists will be in at most four different states, so
we could write down something like a recurrence relation for how the system
evolves.

5.5.2 ECo-MAC Encoding

The ECo-MAC protocol is a protocol for wireless communications. Here, we
model a simplified version of its backoff procedure [ZBA10], one that makes
it similar to a Synchronous Leader Election Protocol [IR81] in nature.

In order to model this protocol, we use the active read operator. We
model two kinds of processes, a single receiver and arbitrarily many senders.
The simplified example covers a loop over contention stages, each involving
several time steps.

Process Encoding

The receiver waits for a request r and reads the count of rs to return either
clear to send, c, or jam, j. We encode the receiver as follows:

rec = r0.c.rec + r−1.j.rec.

The senders probabilistically decide to try sending a request after some num-
ber of time steps (in our simplified example, there are two choices). Sending
a request is complementary to the receiver, and encoded as follows:

req = r.(c0.0 + j0.send).

The sender’s probabilistic choice, when between 2 steps, is encoded as follows:

send = p.(req +0.5 (c0.send + j0.send + u.req)).

Example Property

Finally, we encode the property that all of the senders eventually receive a
clear (i.e., no action has a positive count):

ψc =µ [−]uψc.

91

Let us refer to ψc,[sendn,rec] as loopn. For n ≥ 2, we have:

loopn =[⟨p0⟩(⟨r2⟩⟨j0⟩loopn ∨ ⟨r⟩e⟨c
0⟩loopn−1 ∨ (⟨r0⟩ett ∧ ⟨u0⟩⟨r0⟩⟨j0⟩loopn))

+λ1⟨p
0⟩(⟨r⟩⟨j0⟩loopn ∨ ⟨r0⟩e⟨c

0⟩loopn−1)]

+λ2⟨p
0⟩⟨r0⟩⟨j0⟩loopn.

Here, p1 = λ1 ⋅ λ2 corresponds to the probability that a jam occurs in the
first step, p2 = (1 − λ1) ⋅ λ2 to exactly one sender making a request in the
first step, and p3 = (1 − λ2) to no requests in the first step, which, for n ≥ 2,
precludes a clear in the second step. For this specific case, we can write down
a recurrence relation for pni :

p2 = (0.25,0.5,0.25),

pn1 = p
n−1
1 + 0.5 ⋅ pn−1

2 = 1 − (n + 1)0.5n,

pn2 = 0.5 ⋅ pn−1
2 + 0.5 ⋅ pn−1

3 = n ⋅ 0.5n,

pn3 = 0.5 ⋅ pn−1
3 = 0.5n.

When quotienting this in our current implementation, we distinguish between
the cases for the top part based on the number of processes contributing to
a collision. Additional refinement would allow us to collapse all of those into
a single formula in a distribution as shown above.

5.6 Conclusion

This chapter suggests that partial model checking may be practical in the
probabilistic domain, although our results on case studies were more theo-
retical than experimental. In particular, even parameterized partial model
checking [BR06] is plausible, with an ideal outcome being a formula that
reaches a fixed point except for the values of λ on the +λ operators, and it
may be extended to a wider class of problems via techniques such as sym-
metry reduction [CTV06]. Additionally, the paradigm with the active read
and counting, which we used in the ECo-MAC case study for collisions, ex-
tends nicely into the definitions of PLTSs and quotienting in pLµ, and we are
not aware of a similar paradigm elsewhere. Other extensions of pLµ, to add
independent product or truncated sum (and their respective duals), appear
straightforward to support in quotienting, as well.

92

Chapter 6

Conclusion

In non-probabilistic systems, there were two paradigms for time: linear and
branching. Essentially, this reflected whether nondeterministic choices were
presumed to be made before or after a property was to be verified. With
the introduction of probabilistic choices, the nature of branching time be-
comes substantially more ambiguous. Nondeterministic choices have been
typically resolved before the probabilistic ones, which we have called linear
nondeterminism. Meanwhile, branching nondeterminism has more commonly
appeared implicitly in specialized systems, e.g., via recursion or nesting. An
RPLTS is explicitly a probabilistic branching-time system, but without linear
nondeterminism.

GPL was a creative extension of µ-calculus, being a logic over what we
have called probabilistic branching time. Branching nondeterminism is par-
ticularly interesting in the case of entanglement, and we expect novel appli-
cations for entangled formulae in the future. The effect of linear nondeter-
minism on decidability, as we find in Chapter 3, is that the properties must
be separable. Intuitively, this has to do with the difference in commitment
between probabilistic and linear-nondeterministic choices. For the latter, the
choice is made when a state is reached and it is based on a property : the
property affects the choice, so it must be unique. This is consistent with the
results for RMDPs and BMDPs [EY15], as extensions of RMCs and BPs.
Additionally, we can allow both maximizing and minimizing choices at the
same time in a system. One way to attempt this, in a way that retains the
d-tree semantics, is to partition actions into minimizing and maximizing sets.
Then, Prmin and Prmax would revert to a single Pr operator, but we would
lose the ability to negate a formula; negation could be achieved in a dual
PLTS where the minimizing and maximizing action sets were swapped. Sim-
ilarly, if we were to designate certain actions as purely probabilistic, we could
guarantee dependency graph construction for some non-separable formulae,

93

i.e., if at some point in the construction we would otherwise give up, but all
of the actions were part of this purely probabilistic set, we could apply the
GPL model checking algorithm.

In Chapter 4, we extended probabilistic logic programming to support
probabilistic model checking. The FED data structure builds on tabling to
support probabilistic branching time, and thus supports the model checking
of logics such as PCTL [HJ94], PCTL* [Bai98], GPL [CIN05], and sepa-
rable XPL [GR16]. The FED construction is also oblivious on whether a
linear-nondeterministic choice is minimizing or maximizing, so allowing both
in one system and property may entail no extra cost. Curiously, however,
while the model checking of bounded-time PCTL properties could ostensibly
have been done via PLP with the existing approaches prior to our contribu-
tion, this would be quite inefficient for large time bounds, and neither do we
address this case. Indeed, even with [HJ94]’s PCTL model checking algo-
rithm, it is true that PCTL properties with large time bounds lead to a more
difficult computation than for similar unbounded properties, even though
they are reduced to simple reachability, so further exploration of handling
bounded time properties via logic programming is warranted. Meanwhile, in
this thesis, we focused instead on branching time and fixed-point properties.

In Chapter 5, we extended partial model checking [And95, BR06] to the
probabilistic domain. In order to incorporate the quotienting of probabilis-
tic choices into the logical formula, we essentially allow a formula to be a
convex combination of formulae. With simple examples, we can reach what
looks like a fixed point, if we were to remove the probabilities in the convex
combination. On the model side, we described a simple process algebra moti-
vated by CCS [Mil89, JYL01], and introduced a special active read operator
to enhance the ways different processes may synchronize. Our refinement
rules are currently basic, and could likely be extended a la [BR06], so that
we could identify more formulae as equivalent. Overall, this chapter may be
viewed as a collection of interesting and potentially useful ideas.

94

Bibliography

[ACM11] Rajeev Alur, Swarat Chaudhuri, and P. Madhusudan. Software
model checking using languages of nested trees. ACM Trans.
Program. Lang. Syst., 33(5):15:1–15:45, November 2011.

[AH99] Rajeev Alur and Thomas A. Henzinger. Reactive modules.
Form. Methods Syst. Des., 15(1):7–48, July 1999.

[And95] Henrik Reif Andersen. Partial model checking (extended ab-
stract). In Proceedings, Tenth Annual IEEE Symposium on
Logic in Computer Science, pages 398–407. IEEE Computer So-
ciety Press, 1995.

[Bai98] Christel Baier. On algorithmic verification methods for proba-
bilistic systems. Habilitation thesis, Fakultät für Mathematik &
Informatik, Universität Mannheim, 1998.

[BHHK03] Christel Baier, Boudewijn Haverkort, Holger Hermanns, and
Joost-Pieter Katoen. Model-checking algorithms for continuous-
time Markov chains. IEEE Transactions on Software Engineer-
ing, 29(7):2003, 2003.

[BR06] Samik Basu and C. R. Ramakrishnan. Compositional analysis
for verification of parameterized systems. Theoretical Computer
Science, 354(2):211–229, 2006.

[CDK12] Taolue Chen, Klaus Dräger, and Stefan Kiefer. Model checking
stochastic branching processes. In Proceedings of the Mathemat-
ical Foundations of Computer Science 2012: 37th International
Symposium, MFCS 2012, Bratislava, Slovakia, August 27-31,
2012, pages 271–282, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

95

[CES86] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla.
Automatic verification of finite-state concurrent systems using
temporal logic specifications. ACM Trans. Program. Lang. Syst.,
8:244–263, April 1986.

[CG09] Henning Christiansen and John P. Gallagher. Non-
discriminating arguments and their uses. In Logic Programming,
volume 5649 of Lecture Notes in Computer Science, pages 55–69.
Springer Berlin Heidelberg, 2009.

[CI00] Rance Cleaveland and S Purushothaman Iyer. Branching time
probabilistic model checking. In ICALP Workshops, volume 8,
pages 487–500. Citeseer, 2000.

[CIN05] Rance Cleaveland, S. Purushothaman Iyer, and Murali
Narasimha. Probabilistic temporal logics via the modal mu-
calculus. Theoretical Computer Science, 342(2-3):316–350, 2005.

[CKP15] Pablo Castro, Cecilia Kilmurray, and Nir Piterman. Tractable
Probabilistic mu-Calculus That Expresses Probabilistic Tem-
poral Logics. In 32nd International Symposium on Theoreti-
cal Aspects of Computer Science (STACS 2015), volume 30 of
Leibniz International Proceedings in Informatics (LIPIcs), pages
211–223, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

[CTV06] Edmund M. Clarke, Muralidhar Talupur, and Helmut Veith.
Environment abstraction for parameterized verification. In Ver-
ification, Model Checking, and Abstract Interpretation, 7th In-
ternational Conference, VMCAI 2006, Charleston, SC, USA,
January 8-10, 2006, Proceedings, volume 3855 of Lecture Notes
in Computer Science, pages 126–141. Springer, 2006.

[DGJP02] Jose Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash
Panangaden. Weak bisimulation is sound and complete for
PCTL*. In CONCUR 2002 Concurrency Theory, volume 2421
of Lecture Notes in Computer Science, pages 355–370. Springer
Berlin Heidelberg, 2002.

[DP99] Giorgio Delzanno and Andreas Podelski. Model checking in
CLP. In TACAS, pages 223–239, 1999.

96

[DRKT07] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen.
ProbLog: A probabilistic Prolog and its application in link dis-
covery. In IJCAI 2007, Proceedings of the 20th International
Joint Conference on Artificial Intelligence, Hyderabad, India,
January 6-12, 2007, pages 2462–2467, 2007.

[DRS00] Xiaoqun Du, C. R. Ramakrishnan, and Scott A. Smolka. Tabled
resolution + constraints: A recipe for model checking real-time
systems. In IEEE Real Time Systems Symposium (RTSS), Or-
lando, Florida, November 2000.

[EH86] E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and
“not never” revisited: on branching versus linear time temporal
logic. J. ACM, 33:151–178, January 1986.

[EKM04] Javier Esparza, Antońın Kucera, and Richard Mayr. Model
checking probabilistic pushdown automata. In LICS, pages 12–
21, 2004.

[ESY12a] Kousha Etessami, Alistair Stewart, and Mihalis Yannakakis.
Polynomial time algorithms for branching Markov decision pro-
cesses and probabilistic min(max) polynomial Bellman equa-
tions. In Proceedings of the Automata, Languages, and Program-
ming: 39th International Colloquium, ICALP 2012, Warwick,
UK, July 9-13, 2012, Part I, pages 314–326, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[ESY12b] Kousha Etessami, Alistair Stewart, and Mihalis Yannakakis.
Polynomial time algorithms for multi-type branching processes
and stochastic context-free grammars. In Proceedings of the
Forty-fourth Annual ACM Symposium on Theory of Computing,
STOC ’12, pages 579–588, New York, NY, USA, 2012. ACM.

[ESY15] Kousha Etessami, Alistair Stewart, and Mihalis Yannakakis.
Greatest fixed points of probabilistic min/max polynomial equa-
tions, and reachability for branching Markov decision processes.
In Proceedings of the Automata, Languages, and Programming:
42nd International Colloquium, ICALP 2015, Kyoto, Japan,
July 6-10, 2015, Part II, pages 184–196, Berlin, Heidelberg,
2015. Springer Berlin Heidelberg.

97

[EY09] Kousha Etessami and Mihalis Yannakakis. Recursive Markov
chains, stochastic grammars, and monotone systems of nonlinear
equations. J. ACM, 56(1):1:1–1:66, February 2009.

[EY15] Kousha Etessami and Mihalis Yannakakis. Recursive Markov
decision processes and recursive stochastic games. J. ACM,
62(2):11:1–11:69, May 2015.

[FGKP99] Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer.
Learning probabilistic relational models. In Proceedings of the
16th International Joint Conference on Artificial Intelligence -
Volume 2, IJCAI’99, pages 1300–1307, San Francisco, CA, USA,
1999. Morgan Kaufmann Publishers Inc.

[FL04] Berndt Farwer and Michael Leuschel. Model checking object
Petri nets in Prolog. In Proceedings of the 6th ACM SIGPLAN
International Conference on Principles and Practice of Declar-
ative Programming, PPDP ’04, pages 20–31, New York, NY,
USA, 2004. ACM.

[GBM+07] Gopal Gupta, Ajay Bansal, Richard Min, Luke Simon, and Ajay
Mallya. Coinductive logic programming and its applications.
In Logic Programming, 23rd International Conference, ICLP
2007, Porto, Portugal, September 8-13, 2007, Proceedings, vol-
ume 4670 of Lecture Notes in Computer Science, pages 27–44.
Springer, 2007.

[GJD10] Bernd Gutmann, Manfred Jaeger, and Luc De Raedt. Extending
ProbLog with continuous distributions. In Proceedings of the
20th International Conference on Inductive Logic Programming
(ILP–10), Firenze, Italy, 2010.

[GP97] Gopal Gupta and Enrico Pontelli. A constraint-based ap-
proach for specification and verification of real-time systems. In
Proceedings of the 18th IEEE Real-Time Systems Symposium
(RTSS ’97), December 3-5, 1997, San Francisco, CA, USA,
pages 230–239. IEEE Computer Society, 1997.

[GR16] A. Gorlin and C. R. Ramakrishnan. XPL: An extended proba-
bilistic logic for probabilistic transition systems. ArXiv e-prints,
April 2016.

98

[GRS12] Andrey Gorlin, C. R. Ramakrishnan, and Scott A. Smolka.
Model checking with probabilistic tabled logic programming.
TPLP, 12(4-5):681–700, 2012.

[GT07] Lise Getoor and Ben Taskar. Introduction to Statistical Rela-
tional Learning. The MIT Press, 2007.

[GTK+11] Bernd Gutmann, Ingo Thon, Angelika Kimmig, Maurice
Bruynooghe, and Luc De Raedt. The magic of logical inference
in probabilistic programming. TPLP, 11(4–5):663–680, 2011.

[HJ94] Hans Hansson and Bengt Jonsson. A logic for reasoning about
time and reliability. Formal Aspects of Computing, 6(5):512–535,
1994.

[HKQ11] H. Hansen, M. Kwiatkowska, and H. Qu. Partial order reduc-
tion for model checking Markov decision processes under uncon-
ditional fairness. In Eighth International Conference on Quanti-
tative Evaluation of Systems (QEST), pages 203–212, Sept 2011.

[HR04] Michael Huth and Mark Ryan. Logic in Computer Science:
Modelling and Reasoning About Systems. Cambridge University
Press, New York, NY, USA, 2004.

[IN96] Purush Iyer and Murali Narasimha. “Almost always” and “def-
initely sometime” are not enough: probabilistic quantifiers and
probabilistic model-checking. Technical report, North Carolina
State University at Raleigh, 1996.

[IR81] Alon Itai and Michael Rodeh. Symmetry breaking in distributive
networks. In FOCS, pages 150–158, 1981.

[IRR12] Muhammad Asiful Islam, C. R. Ramakrishnan, and I. V. Ra-
makrishnan. Inference in probabilistic logic programs with con-
tinuous random variables. Theory and Practice of Logic Pro-
gramming, 12(4–5):505–523, 2012.

[JYL01] Bengt Jonsson, Wang Yi, and Kim G Larsen. Probabilistic ex-
tensions of process algebras. Handbook of process algebra, pages
685–710, 2001.

99

[KDR01a] Kristian Kersting and Luc De Raedt. Adaptive Bayesian logic
programs. In Proceedings of the Inductive Logic Programming,
11th International Conference, ILP 2001, Strasbourg, France,
September 9-11, 2001, volume 2157 of Lecture Notes in Com-
puter Science, pages 104–117. Springer, 2001.

[KDR01b] Kristian Kersting and Luc De Raedt. Bayesian logic programs.
CoRR, cs.AI/0111058, 2001.

[KEM06] Antońın Kucera, Javier Esparza, and Richard Mayr. Model
checking probabilistic pushdown automata. Logical Methods in
Computer Science, 2(1), 2006.

[KLE07] Stefan Kiefer, Michael Luttenberger, and Javier Esparza. On
the convergence of Newton’s method for monotone systems of
polynomial equations. In STOC, pages 217–226, 2007.

[KNP11] Marta Kwiatkowska, Gethin Norman, and David Parker.
PRISM 4.0: Verification of probabilistic real-time systems. In
23rd CAV, volume 6806 of LNCS, pages 585–591, 2011.

[Koz83] Dexter Kozen. Results on the propositional µ-calculus. Theo-
retical Computer Science, 27:333–354, 1983.

[LSWZ15] Wanwei Liu, Lei Song, Ji Wang, and Lijun Zhang. A simple
probabilistic extension of modal mu-calculus. In Proceedings
of the 24th International Conference on Artificial Intelligence,
IJCAI’15, pages 882–888. AAAI Press, 2015.

[Mar98] Donald A. Martin. The determinacy of Blackwell games. The
Journal of Symbolic Logic, 63(4):1565–1581, 1998.

[Mil89] Robin Milner. Communication and Concurrency. International
Series in Computer Science. Prentice Hall, 1989.

[Mio11] Matteo Mio. Probabilistic modal mu-calculus with independent
product. In Proceedings of the Foundations of Software Science
and Computational Structures: 14th International Conference,
FOSSACS 2011, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2011, Saarbrücken,

100

Germany, March 26–April 3, 2011, pages 290–304, Berlin, Hei-
delberg, 2011. Springer Berlin Heidelberg.

[Mio12] Matteo Mio. Game semantics for probabilistic modal mu-calculi.
PhD thesis, The University of Edinburgh, 2012.

[MM15] Henryk Michalewski and Matteo Mio. On the problem of com-
puting the probability of regular sets of trees. In Prahladh
Harsha and G. Ramalingam, editors, 35th IARCS Annual Con-
ference on Foundation of Software Technology and Theoreti-
cal Computer Science, FSTTCS 2015, December 16-18, 2015,
Bangalore, India, volume 45 of LIPIcs, pages 489–502. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[MP99] Supratik Mukhopadhyay and Andreas Podelski. Beyond re-
gion graphs: Symbolic forward analysis of timed automata. In
FSTTCS, pages 232–244, 1999.

[MP00] Supratik Mukhopadhyay and Andreas Podelski. Model checking
for timed logic processes. In Computational Logic, pages 598–
612, 2000.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of
mobile processes, Parts I and II. Information and Computation,
100(1):1–77, 1992.

[MS13a] Matteo Mio and Alex Simpson. Lukasiewicz mu-calculus. In
Proceedings Workshop on Fixed Points in Computer Science,
FICS 2013, Turino, Italy, September 1st, 2013, volume 126 of
EPTCS, pages 87–104, 2013.

[MS13b] Matteo Mio and Alex Simpson. A Proof System for Composi-
tional Verification of Probabilistic Concurrent Processes, pages
161–176. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[Mug96] Stephen Muggleton. Stochastic logic programs. In New Gener-
ation Computing. Academic Press, 1996.

[NBKJ10] Per Närman, Markus Buschle, Johan König, and Pontus John-
son. Hybrid probabilistic relational models for system quality

101

analysis. In Proceedings of the 14th IEEE International Enter-
prise Distributed Object Computing Conference, EDOC 2010,
Vitória, Brazil, 25-29 October 2010, pages 57–66. IEEE Com-
puter Society, 2010.

[NM95] Ulf Nilsson and Jan Maluszynski. Logic, Programming, and
PROLOG. John Wiley & Sons, Inc., New York, NY, USA, 2nd
edition, 1995.

[NM10] Ukachukwu Ndukwu and AK McIver. An expectation trans-
former approach to predicate abstraction and data independence
for probabilistic programs. In Proc. 8th Workshop on Quantita-
tive Aspects of Programming Languages (QAPL’10), 2010.

[Poo08] David Poole. The independent choice logic and beyond. In
Probabilistic Inductive Logic Programming, volume 4911 of Lec-
ture Notes in Computer Science, pages 222–243. Springer Berlin
Heidelberg, 2008.

[PRR02] Giridhar Pemmasani, C. R. Ramakrishnan, and I. V. Ramakr-
ishnan. Efficient model checking of real time systems using
tabled logic programming and constraints. In International Con-
ference on Logic Programming (ICLP), LNCS. Springer, 2002.

[Ram01] C. R. Ramakrishnan. A model checker for value-passing mu-
calculus using logic programming. In PADL, volume 1990 of
LNCS, pages 1–13. Springer, 2001.

[RD06] Matthew Richardson and Pedro Domingos. Markov logic net-
works. Machine Learning, 62(1-2):107–136, February 2006.

[RRR+97] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan,
Scott A. Smolka, Terrance Swift, and David S. Warren. Efficient
model checking using tabled resolution. In CAV, volume 1254
of LNCS, pages 143–154. Springer, 1997.

[RRS+00] C. R. Ramakrishnan, I. V. Ramakrishnan, Scott A. Smolka,
Yifei Dong, Xiaoqun Du, Abhik Roychoudhury, and V. N.
Venkatakrishnan. XMC: A logic-programming-based verifica-
tion toolset. In Twelfth International Conference on Computer

102

Aided Verification (CAV), volume 1855 of Lecture Notes in
Computer Science, pages 576–580, Chicago, Illinois, July 2000.
Springer.

[RS10a] Fabrizio Riguzzi and Terrance Swift. An extended semantics
for logic programs with annotated disjunctions and its efficient
implementation. In Italian Conference on Computational Logic,
volume 598 of CEUR Workshop Proceedings, 2010.

[RS10b] Fabrizio Riguzzi and Terrance Swift. Tabling and answer sub-
sumption for reasoning on logic programs with annotated dis-
junctions. In Technical Communications of the International
Conference on Logic Programming, pages 162–171, 2010.

[RS11] Fabrizio Riguzzi and Terrance Swift. The PITA system:
Tabling and answer subsumption for reasoning under uncer-
tainty. TPLP, 11(4–5):433–449, 2011.

[SCPQC03] Vı́tor Santos Costa, David Page, Maleeha Qazi, and James
Cussens. CLP(BN): Constraint logic programming for prob-
abilistic knowledge. In Proceedings of the 19th Conference on
Uncertainty in Artificial Intelligence (UAI03), pages 517–524,
Acapulco, Mexico, August 2003.

[Seg95] Roberto Segala. A compositional trace-based semantics for prob-
abilistic automata. In Proceedings of the CONCUR ’95: Concur-
rency Theory, 6th International Conference, Philadelphia, PA,
USA, August 21-24, 1995, volume 962 of Lecture Notes in Com-
puter Science, pages 234–248. Springer, 1995.

[SK97] Taisuke Sato and Yoshitaka Kameya. PRISM: a language for
symbolic-statistical modeling. In Proceedings of the 15th Inter-
national Joint Conference on Artificial Intelligence, pages 1330–
1335, 1997.

[SM14] Taisuke Sato and Philipp Meyer. Infinite probability computa-
tion by cyclic explanation graphs. Theory and Practice of Logic
Programming, 14(06):909–937, 2014.

[Son04] Arvind Soni. Probabilistic and nondeterministic systems. Mas-
ters thesis, North Carolina State University, 2004.

103

[SRS08] Anu Singh, C. R. Ramakrishnan, and Scott A. Smolka. A pro-
cess calculus for mobile ad hoc networks. In 10th International
Conference on Coordination Models and Languages (COOR-
DINATION), volume 5052 of LNCS, pages 296–314. Springer,
2008.

[SSR03] Beata Sarna-Starosta and C. R. Ramakrishnan. Constraint-
based model checking of data-independent systems. In Inter-
national Conference on Formal Engineering Methods (ICFEM),
volume 2885 of Lecture Notes in Computer Science, pages 579–
598. Springer, 2003.

[ST05] Roberto Segala and Andrea Turrini. Comparative analysis
of bisimulation relations on alternating and non-alternating
probabilistic models. In Second International Conference on
the Quantitative Evaluaiton of Systems (QEST 2005), 19-22
September 2005, Torino, Italy, pages 44–53. IEEE Computer
Society, 2005.

[Ste09] William J. Stewart. Probability, Markov Chains, Queues, and
Simulation: The Mathematical Basis of Performance Modeling,
chapter Markov Chains, pages 191–382. Princeton University
Press, Princeton, NJ, USA, 2009.

[Ste15] Alistair Stewart. Efficient algorithms for infinite-state recursive
stochastic models and newton’s method. PhD thesis, The Uni-
versity of Edinburgh, 2015.

[SW+12] Terrance Swift, David S. Warren, et al. The XSB logic program-
ming system, Version 3.3, 2012. http://xsb.sourceforge.net.

[VDB09] Joost Vennekens, Marc Denecker, and Maurice Bruynooghe.
CP-logic: A language of causal probabilistic events and its rela-
tion to logic programming. TPLP, 9(3):245–308, 2009.

[VVB04] Joost Vennekens, Sofie Verbaeten, and Maurice Bruynooghe.
Logic programs with annotated disjunctions. In ICLP, pages
431–445, 2004.

104

http://xsb.sourceforge.net

[WD08] Jue Wang and Pedro Domingos. Hybrid Markov logic networks.
In Proceedings of the 23rd National Conference on Artificial In-
telligence - Volume 2, AAAI’08, pages 1106–1111. AAAI Press,
2008.

[WE07] Dominik Wojtczak and Kousha Etessami. PReMo: An analyzer
for probabilistic recursive models. In Tools and Algorithms for
the Construction and Analysis of Systems, 13th International
Conference, TACAS 2007, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2007
Braga, Portugal, March 24 - April 1, 2007, Proceedings, vol-
ume 4424 of Lecture Notes in Computer Science, pages 66–71.
Springer, 2007.

[YRS04] Ping Yang, C. R. Ramakrishnan, and Scott A. Smolka. A logical
encoding of the pi-calculus: Model checking mobile processes
using tabled resolution. International Journal on Software Tools
for Technology Transfer (STTT), 6(1):38–66, 2004.

[ZBA10] Hafedh Zayani, Kamel Barkaoui, and Rahma Ben Ayed. Prob-
abilistic verification and evaluation of backoff procedure of the
WSN ECo-MAC protocol. International Journal of Wireless &
Mobile Networks, 2(2):156–170, 2010.

105

	Introduction
	Transition Systems and Model Checking
	Temporal Logics
	Linear-time Probabilistic Logics
	Branching Time in the Probabilistic Domain

	Logic Programming
	Compositional Model Checking
	Quotienting
	PRISM Model Checker

	Thesis Outline

	Probabilistic Systems
	Reactive Probabilistic LTSs
	Generalized Probabilistic Logic
	GPL Syntax
	GPL Semantics

	GPL Model Checking
	Recursive Markov Chains
	Probabilistic Polynomial Systems
	The Interpretation of Branching Time
	Branching Processes
	PTTL
	Additional Interpretations

	Linear Nondeterminism in Probabilistic Systems
	Probabilistic Labeled Transition Systems
	XPL
	XPL Syntax
	XPL Semantics

	XPL Model Checking
	Separability of Fuzzy Formulae
	Dependency Graph

	Encoding Other Model Checking Problems
	Encoding PCTL* over MDPs
	Encoding of RMDP Termination
	PTTL and Branching Processes

	Conclusion and Related Work

	Model Checking with Logic Programming
	Related Work
	Preliminaries
	The Inference Procedure PIP
	Representing Explanations
	Factored Explanation Diagrams
	Nondeterminism and Merge
	Computing Probabilities from FEDs

	Applications
	Experimental Results
	Conclusions

	Partial pL Model Checking
	pL
	pL Syntax
	pL Semantics
	Markov Branching Plays
	Partial Model Checking and pL

	Probabilistic Model
	Process Algebra

	Quotienting
	Probability Function
	Quotienting Rules

	Read Operator
	Effect on Processes

	Case Studies
	Rabin's Choice Coordination Problem Encoding
	ECo-MAC Encoding

	Conclusion

	Conclusion

