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Abstract of the Dissertation

Using Locality to Tackle Modern Algorithmic Challenges

by

Samuel McCauley

Doctor of Philosophy

in

Computer Science

Stony Brook University

2016

As computers become faster and more parallel, the number of computations a
process executes is becoming too simplistic a predictor of performance. In many
circumstances, modern algorithmic research can no longer rely on the assumption
that each computation roughly corresponds to a set amount of time. For example,
large-scale computers may spend far more time moving data around than performing
computation, in which case minimizing data transfers is the best way to improve
wall-clock performance. Similarly, manufacturing plants may need to focus on min-
imizing maintenance costs. While they must still guarantee good throughput, the
maintenance costs are what most impact their profits. Under such circumstances,
algorithms must be analyzed using models that incorporate these new costs.

This work focuses on using locality as a tool to improve performance across dif-
ferent models and objectives. We discuss three specific areas: scheduling, external
memory, and high-performance computing.

Our scheduling research deals with machines that need to be calibrated at large
cost. Since jobs can only be scheduled on calibrated machines, we want to group jobs
as much as possible—while retaining good throughput—to minimize the number of
calibrations. We give algorithms and results for the offline setting (where jobs are
known ahead of time), and the online setting (where jobs must be handled as they
arrive).

The external-memory model measures the number of hard disk accesses made
by an algorithm. This model is applicable for I/O-bound algorithms (such as large-
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scale sorting) whose performance is limited by hard drive access time rather than
computation time. In this work, we focus on the packed memory array, a data
structure used as a building block for external-memory algorithms. We show that
we can retain optimal packed memory array performance while also providing history
independence, a security guarantee.

Finally, we discuss a new type of memory, High-Bandwidth Memory, which has
been proposed for the next generation of supercomputers. We modify the external-
memory model to take this new kind of memory into account, and give theoretical
analysis. We also give experimental results which show that this memory has the
potential to significantly improve sorting performance.
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Chapter 1

Introduction

Algorithms is the study of how to accomplish a goal (in particular, to satisfy a set of
constraints) while minimizing a cost. As computing evolves as a field—as computers
become larger, more distributed, and more parallel, for example—these goals and
costs have evolved with it.

Classical time-based algorithm analysis is usually done in the RAM model [47],
which essentially counts the number of operations if the algorithm was written in a
common programming language like C. Algorithms are generally analyzed asymptot-
ically, so the precise list of operations often does not affect the final result. There
are many exceptions where the exact operations do matter: for example, important
past works have made use of word-level parallelism to improve their results [5,34,63],
or restricted themselves to fast operations like addition and subtraction (eschewing
multiplication and division) [35]. However, the overall focus has been on reducing
strain on the processor to improve overall running time.

Much of this work focuses on scheduling, which has a slightly broader history of
algorithmic costs. In particular, a schedule often tries to minimize some scheduling-
related cost (like throughput, or the time required to complete the whole schedule).
The schedule itself must be computable efficiently. Research in scheduling has exam-
ined many different machine-related costs like energy usage [14, 124], the number of
required machines [44,46,76], or machine startup costs [13].

Modern machines require new algorithmic considerations. For example, a com-
puter processing more data may be I/O bound, spending more time accessing data
than actually performing computation on it. In this case, the most efficient algorithm
is one that minimizes data accesses. This has led to a long line of research on creat-
ing efficient algorithms that minimize the number of I/Os, while still retaining good
computation time [3, 64, 114]. These ideas are particularly applicable to research on
data structures and databases, where large amounts of data must be updated and
accessed as quickly as possible.

Modern theoretical computer science has research considering further, diverse
costs, which are not considered here. Some common examples are energy costs
[91, 93, 100], for algorithms run on expensive machines or data centers which spend
most of their money on powering (and particularly cooling) their machines, and com-
munication costs [43,110], for extremely large and parallel high-performance comput-
ers which must move the results of computations large distances. These costs can be
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extremely complicated and difficult to deal with for algorithms researchers, so they
are often condensed into simplified models. One example of such a model is MapRe-
duce [1,49,101], which gives a model that captures much of the power of a large-scale
computer without getting too bogged down in parameterization. MapReduce is a
further example of a modern cost metric: the algorithm designer must reduce the
number of rounds of pairwise communication.

These new costs are diverse, and yet many of them share a common trait: we want
to group similar things close together to reduce the cost. This may mean storing two
data points in the same page if we need them at similar times in the future, assigning
processors on the same rack to run a large-scale job on a high-performance computer
to reduce communication costs, or grouping jobs together on a machine to reduce its
startup costs. We refer to this trait as locality.

This is the unifying idea behind the results presented in this thesis. By improving
the locality of algorithms and data structures, we can improve their performance with
respect to these modern cost functions, even in drastically different situations.

We discuss three topics. The first is scheduling with calibrations, a scheduling
problem where the cost is the number of times the machines need to be calibrated to
complete the schedule. We consider several variants, particularly an offline variant
(where the entire workload that must be scheduled is known ahead of time), and
an online variant (where tasks may come up suddenly and must be worked into the
existing schedule). The second is the history-independent PMA, which stores items
relatively densely so that they can be efficiently accessed on a disk, while retain-
ing both good speed against adversarial inserts, and history-independence, a security
parameter. Finally, we discuss high-bandwidth memory, a new kind of architecture
which speeds up memory-bandwidth-bound computation in high-performance com-
puting applications.

These topics are discussed one by one in the remaining chapters. For each, we give
a more detailed motivation and related work before defining the model and giving
our results.
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Chapter 2

Scheduling With Calibrations

Scheduling is an area of computer science which studies how to efficiently execute a
series of tasks, or jobs. A scheduling algorithm decides when and where to run the
jobs (possibly with some constraints) to minimize an objective function.

Recent work has considered scheduling on machines that need to be calibrated [7,
19, 60]. These machines are assumed to be high-performance and high-maintenance,
and perform very precise tasks, which is why they need to be calibrated before they
can be trusted to perform a job. Performing these calibrations can be very expensive,
possibly much more than the cost of running the machines. The calibrations are only
effective for a set period of time, after which the machine may no longer be accurate,
and must be (expensively) recalibrated before running more jobs.

The goal of algorithms in this framework is to minimize the number of calibra-
tions. This objective function has an interesting property: in most objective functions
(say, minimizing total waiting time, or maximizing number of jobs completed by a
deadline), it is generally profitable to schedule a job as early as possible. However, to
minimize calibrations, the algorithm wants to group jobs together as much as possible,
possibly delaying some jobs considerably. The known algorithms in this framework
are designed to effectively handle this tradeoff: grouping jobs for more efficient cal-
ibrations, while maintaining a reasonable schedule where jobs are not delayed too
long.

2.1 Motivation

The original motivation for scheduling with calibrations came directly from the Inte-
grated Stockpile Evaluation (ISE) program to test nuclear weapons periodically. The
tests for these weapons require calibrations that are expensive in a monetary (though
not necessarily temporal) sense. This motivation is specified further in [19,38,97].

However, this motivation can extend to any context where machines perform-
ing jobs must be calibrated periodically. High-precision machines require periodic
calibration to ensure precision. Methods for calibrating these machines is itself an
area of research; some examples include [103,116,126,127]. Oftentimes, machines are
no longer considered to be accurately calibrated after a set period of time. There
are many guidelines to determine this calibration interval, or period of time between
calibrations, both from industry and academia [15,17,85,88,99,122].
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Calibrations have applications in many areas, including robotics [25,58,98], phar-
maceuticals [12,17,61], and digital cameras [11,16,24,128].

2.2 Background on Scheduling

In this section we give background on scheduling. In particular we provide some for-
malism for scheduling problems, and some (very brief) related work on past research
in scheduling.

The input to a scheduling problem is a set of n jobs J , and possibly a bound
on the number of processors P . We refer to processors as machines interchangeably.
Each job j ∈ J has a release time rj, a processing time pj, a weight wj, and possibly
a deadline dj. A schedule is an assignment of each job in J to a set of time intervals.
Each time interval consists of a half-open interval [t1, t2), and a machine m.

The schedule must meet certain constraints. A job must be scheduled for sufficient
time to complete its processing: the sum of all assigned time intervals must be at
least pj.

1

A single job cannot be scheduled concurrently, so all time intervals [t1, t2) for a
given job must be disjoint regardless of what machine they are assigned to. Similarly,
a machine can only process one job at a time, so the set of all time intervals [t1, t2)
assigned to a given machine m must also be disjoint. All jobs must be scheduled
after their release time (t1 > rj for all time intervals [t1, t2) that j is assigned to). If
jobs have deadlines, they must be completed before their deadlines (t2 ≤ dj for all
time intervals [t1, t2) that j is assigned to). A schedule is preemptive if some jobs are
assigned to multiple, noncontiguous time intervals, or a job is split among multiple
machines. Otherwise, if each job is assigned to a single contiguous time interval on a
single machine, the schedule is called nonpreemptive.

There is a standard notation to denote the constraints and objectives of scheduling
problems. After all, even the basic notions above (before objective functions are
considered) can lead to many different variants. The notation developed in [71] gives
a 3-field classification α|β|γ. The first field, α, gives the machine environment, i.e.
a bound P on the number of machines, or information about the machines such
as whether or not they all run jobs at the same speed. The second field, β, gives
information about the jobs themselves: do they have deadlines, are they preemptable,
etc. Finally, the third field γ is the cost function used. An example cost function is
Cmax, the maximum completion time of a job.

Scheduling is an extremely broad subarea, and there has been extensive work on
many variants on both constraints and objectives. A fairly extensive survey of classic
results in offline scheduling is [71]. A more recent survey that focuses on online

1With speed scaling s, as in [60], the sum must be at least pj/s.
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scheduling is [105].

2.3 Modeling Calibrations

In this work, we assume unit processing times, i.e., pj = 1 for all j. We further
assume that all release times and deadlines are integral. This somewhat simplifies
the problem: we can assume that all t1, t2 are integral, and preemption is unnecessary.

Thus, in this setting, we want to find an assignment of jobs to unit time intervals
(and associated machines). For simplicity, we refer to a unit time interval [t1, t2)
(where t2 − t1 = 1) as a time slot. In particular, we generally refer to a time slot by
its starting time t1.

We formally model calibrations as follows. We can calibrate a machine for unit
cost. The machine stays calibrated for T ≥ 2 time steps, after which it must remain
idle until it is recalibrated. We refer to these T time steps following a calibration as
an interval. Calibrating a machine is instantaneous, meaning that a machine can be
recalibrated between two job executions running in successive time steps. Minimizing
the number of calibrations helps minimize the total cost of an ISE instance.

A job can only be scheduled when a machine is calibrated. Thus if a job is assigned
to a time slot beginning at t1 on machine m, then m must be calibrated at some point
in (t1−T, t1]. Since all jobs are scheduled at integer times, all machines are calibrated
at integer times without loss of generality. We assume that machines are calibrated
instantaneously; we may calibrate a machine at t and t + T , assigning jobs to time
slots t+ T − 1 and t+ T .

We refer to the T time steps following the calibrations as an interval. In this view,
the goal is to find a small set of intervals during which we can schedule all the jobs.
Our analysis generally uses this view, manipulating intervals (and the jobs scheduled
in the intervals) to minimize the cost.

Our objective differs between the online (Chapter 2.6) and offline (Chapter 2.5)
cases. In the offline case we want to schedule unit-sized jobs (with deadlines)
while minimizing the number of calibrations. This may be denoted P |rj, dj, pj =
1|# calibrations. In the online case, we wish to minimize a tradeoff between
flow and calibrations. This may be denoted as P |online-time, pj = 1|

∑
Fj +

G(# calibrations).2

2See [105] for more details about this notation for online problems. In short, online-time denotes

online algorithms as described above.
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2.4 Related Work

Scheduling with calibrations was originally introduced in [19], which contains roughly
the same contents as Chapter 2.5.

Later, Fineman and Sheridan developed results for jobs with non-unit process-
ing times [60]. In particular, they note that scheduling with calibrations generalizes
the machine minimization problem: given a set of jobs, what is the smallest num-
ber of machines that the jobs can be run on so that they all meet their deadline?
This problem is trivial with unit-sized jobs, but difficult with generalized process-
ing times. In particular, the best known approximation for machine minimization is
O(
√

log n/ log log n) [44]. While scheduling with calibrations is at least as difficult—
an approximation algorithm for calibrations leads to an approximation algorithm for
machine minimization—Fineman and Sheridan show that they can meet nearly the
same bounds. Given a machine minimization approximation algorithm which uses
s-speed augmentation and αm machines, there is a calibrations algorithm that gives
an O(α) approximation for the nuber of calibrations using αm machines and s-speed
augmentation.

More recently, Angel et al. developed dynamic programming algorithms for fur-
ther generalizations—where for example there are multiple kinds of calibrations, or
jobs have nonunit processing time, but are preemptible [7]. These results are poly-
nomial time (though often with a moderately large exponent), giving some further
evidence that many calibrations scheduling problems may be polynomial-time solv-
able. On the other hand, they show that if there are several types of calibrations,
and jobs have arbitrary processing times, the problem is NP-hard even if preemption
is allowed.

Relationship to Classic Scheduling Problems

While scheduling with calibrations is relatively new, previous work has examined
problems with a similar flabor. Unfortunately, even some simple variants like
1|rj|Lmax (minimize max lateness on one processor with release times) and 1|rj|

∑
Cj

(minimize average completion time on one processor with release times) are NP-
hard [78]. Some others, such as P |rj, d|(

∑
wj|d − Cj|) (multiprocessor scheduling

trying to schedule jobs as close as possible to a common deadline) are NP-hard but
can be solved with a pseudopolynomial time algorithm [73].

Many related uniprocessor algorithms can be solved efficiently, such as 1||fmax,
which does not have release times for jobs and has any minimization function that
decreases with job completion time [78]. This class of objective functions is explored
further for the multiprocessor case with unit jobs in [51]. Minimizing the number of
calibrations does not have this property; there are cases where scheduling a job later
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reduces the total cost. But possibly more importantly, there is a further assumption
that fmax only depends on the values of individual completion times cj, not on the
relationship between multiple completion times. We show in Chapter 2.5.1 that there
is in fact an optimal algorithm for the uniprocessor case with unit processing times
that runs in polynomial time nonetheless.

Another similar problem that can be solved efficiently is P |pmtn|Cmax, multipro-
cessor scheduling with preemption to minimize maximum completion time [78]. While
we do not have preemption in our model, unit job lengths are similar to allowing pre-
emption, as there are no intermediary timesteps while a job runs where another job
can be started. Furthermore, the hardness of the problem without preemption is due
to a reduction to the Partition problem, which depends on large, indivisible jobs; unit
jobs avoid hardness in a similar way to preemption.

Interval Scheduling

Interval scheduling is similar to our current problem definition, but all jobs run for
the entire time between their release and due dates. In other words, pi = di−ri using
the notation we used in Chapter 2.2. For this reason, there is no choice about when
to run a job. If a job does not run at its release time, it is skipped, is late, or is only
partially run. The goal, then, is not to efficiently determine when to schedule a job,
but to determine which jobs to schedule, and what machines to schedule them on [82].
This area has been studied in both an offline and online [59, 89, 107] context. There
exist variants of the problem, such as allowing each job to be scheduled in any of k
intervals (i.e. [57,109]), and a variant closer to real-world applications where each job
may have a priority [83]. However, these variations seem less applicable to scheduling
with calibrations.

Much like scheduling with calibrations, the interval scheduling problem initially
came from a real-world Operations Research problem—namely, Dantzig and Fulker-
son described a tanker scheduling problem in [48] that would now be considered an
instance of interval scheduling [82]. Since then many practical problems have been
solved using the guarantees of interval scheduling. In all cases, the scheduling re-
quirements are very rigid; jobs must be scheduled at their release time exactly. Note
that some of these, particularly aircraft maintenance, are similar to scheduling with
calibrations, but with less time flexibility:
• aircraft maintenance – when to perform aircraft maintenance on a given plane

(this is an example where jobs may have priority, as some maintenance jobs can
be delayed and some cannot; this problem specifically motivated [83]),
• classroom assignment [40],
• crew scheduling (i.e. assigning bus drivers to routes [90,121]– in fact the interval

scheduling problem is sometimes referred to as ”The Bus Driver Scheduling
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Problem”),
• sattelite photography [65]– given a requested set of photographs for the Earth

and a set of satellite orbits, how can the photographs be efficiently taken?
• cottege rental [8]– efficiently assigning cottages to renters given requests for

certain vacation times,
• channel assignment [72, 75]– a problem in VLSI layout minimizing ‘’channels”

connecting two different components,
• replacement policies for caches [30],
• identifying protein segments in chains of amino acids [42]. To be more specific,

this deals with an intermediate step in Nuclear Magnetic Resonance wherein
resonance peaks must be matched with specific amino acids in a sequence.

In general, Interval Scheduling on P processors can be solved by finding a max-
imum weight P -colorable subgraph on the interval graph representing the job inter-
vals [57]. This was shown to be solvable in polynomial time in [123]. Similarly, a
solution using max flow was presented in [10], which was extended to a more general
greedy algorithm in [29] (note that this solution assumes identical processors).

Not all interval scheduling problems can be solved so easily, however. Most no-
tably, differences between machines can result in NP-hardness (if there are at least
3 types of machines [26, 56]) and even approximation hardness if the machines have
differing availabilities or jobs are constrained to certain machines [82] (to be specific,
there is no constant-factor approximation unless P = NP). In this thesis, however, we
assume identical machines, and so far we have not seen any algorithmic advantage to
assigning additional constraints that would distinguish machines. Interval scheduling
has been studied in this context in, for example [29], and as mentioned it is solvable
in polynomial time with this restriction. Therefore, interval scheduling could be used
to develop an efficient algorithm for a solution (whether optimal or approximate) for
scheduling with calibrations if an appropriate reduction is found.

Scheduling with Unit Jobs

As mentioned in Chapter 2.4, many scheduling problems with different processing
lengths are NP-hard, and we show in Theorem 2.1 that this is true for scheduling
with calibrations as well. Concentrating on unit-sized jobs gives the opportunity to
research efficient, optimal solutions to problems that would otherwise be NP-hard.

However, not all unit-sized job scheduling problems give efficient results.
P |rj, dj, pj = 1, assign|Lmax was shown to be strongly NP-hard in [50] (deadlines
may be assigned to jobs in that problem). A more complex example of strongly NP-
hard scheduling problem was given by Lee et al. in [86]. For P |rj, dj, pi = 1|Lmax,
identical to our problem other than the objective function, Baker recently gave a
polynomial-time algorithm [36].
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Machine Minimization

Machine minimization is a classic scheduling problem, in which we want to schedule a
set of jobs J with deadlines using the smallest possible number of machines. Previous
work features a large number of clever techniques in order to achieve a given bound.
In this section we focus on the continuous version of machine minimization, in which
jobs have release times and deadlines as described above (the discrete version limits
jobs to be scheduled during particular intervals).

As discussed in [60], scheduling with calibrations generalizes the machine mini-
mization problem. The idea behind the proof is that if T becomes arbitrarily large,
we need only calibrate each machine once to process all jobs assigned to that ma-
chine. Thus, the machine minimization problem can be regarded as scheduling with
calibrations with extremely large T .

The implications of this are twofold. First, lower bounds for machine minimization
apply to scheduling with calibrations directly. Upper bounds for machine minimiza-
tion can be regarded as an informal barrier as well: if we want to beat, for example,
the O(

√
log n/ log log n) offline machine minimization bound, we must improve on

the clever machine minimization techniques used in previous papers. Second, it is
possible that the techniques used in for machine minimization can help us improve
calibrations results. The work in [60] could be considered a strong result along these
lines.

For offline machine minimization, the best known non-preemptive algorithm has
an approximation ratio of O(

√
log n/ log log n) [44]. However, even with only (1 + ε)-

speed augmentation, an approximation ratio of 2 can be obtained [76] (the running
time of the algorithm is a function of ε). There exist special cases with small approx-
imation ratios, for example a 2-approximation if the jobs have equal release dates,
or a 6-approximation if the jobs have equal processing times [125]. A classic result
shows that the problem is strongly NP-complete [66], and there is a lower bound on
the approximation ratio of 2− ε [46]. Closing this substantial gap, between 2− ε and
O(
√

log n/ log log n), remains a major open problem in scheduling theory.
Online machine minimization is of particular importance to scheduling with cali-

brations, as it has key connections to extending the online case to allow job deadlines.
(The results in this thesis give throughput guarantees rather than meeting deadlines
for individual jobs.) Recently, Chen et al. gave an O(m2 logm)-competitive algo-
rithm [41] when preemption is allowed, where m is the optimal number of machines.
In particular, this is a constant approximation if the optimal number of machines
is also constant. For laminar instances (where if [rj, dj] and [rj′ , dj′ ] overlap, one of
these intervals must contain the other), they give a O(logm)-competitive schedule.
For agreeable instances (where rj < rj′ implies dj ≤ dj′ for all j, j′ ∈ J ), they give a
O(1)-competitive schedule. Previous work gave an O(log pmax/pmin)-competitive al-
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gorithm, where pmax and pmin are the maximum and minimum processing requirement
for jobs, respectively [102]. This paper also gave a lower bound of 5/4 for the online
preemptive case, the best currently known.

2.5 Offline Scheduling with Calibrations

In offline scheduling with calibrations, J is known to the algorithm. The algorithm
must schedule jobs on machines to minimize the number of calibrations, while ensuring
all jobs meet their deadlines. As mentioned, we assume that all jobs have unit size.
We begin by motivating this somewhat by giving an NP-hardness proof.

Theorem 2.1. Scheduling with calibrations is (weakly) NP-hard for any number of

machines P ≥ 1.

Proof. We reduce the Partition problem to scheduling with calibrations, shown NP-

complete by Karp in [79]. The Partition problem asks, given a multiset of integers S,

if S can be partitioned into two subsets S1, S2 such that the sum of the elements in

S1 is equal to the sum of the elements of S2.

Given a set S as specified in the Partition problem, we set T = 1
2

∑
si∈S si, so S1

(and therefore S2) has
∑

s∈S1
s = T . For each si ∈ S we set pi = si. Our construction

does not take advantage of release and deadlines, so all jobs have ri = 0, dj = 2T .

If there exists a schedule with a cost of two, all jobs can fit in two time intervals.

Then S1 and S2 consist of the elements of the set corresponding to the jobs in the

first and second interval respectively. If there does not exist a schedule with a cost of

two, the set cannot be partitioned into two equal subsets (if it could, we would have

been able to use S1 and S2 as two different time intervals).

2.5.1 Single-Machine Algorithm

In this section, we give an optimal algorithm for single-machine scheduling with cali-
brations. We further show that if a scheduling instance is feasible on a single machine,
then the best single-machine schedule is optimal, even if more machines are available.

EDF Scheduling with Intervals

Our algorithms schedule jobs based on the Earliest Deadline First (EDF ) scheduling
policy. Although this section primarily focuses on single-machine scheduling with
calibrations, we also explain here how EDF works on multiple machines.
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The EDF scheduler maintains a priority queue of jobs ordered by increasing dead-
line. If two jobs have the same deadline, the priority queue breaks ties arbitrarily but
consistently.

EDF schedules jobs by iterating over time slots from earliest to latest. When EDF
reaches a time slot t during which a new job j arrives (rj = t), EDF adds j to the
priority queue. Then EDF selects up to P jobs to run in time step t by popping these
jobs from the priority queue.

Lemma 2.2 (folklore). If jobs have unit size, EDF finds a feasible schedule on

single or multiple machines if one exists.

EDF also schedules optimally in the multi-machine setting where machines can
run only during specific active length-T intervals and otherwise must remain idle. To
see why, create “dummy” jobs for each time step of each inactive machine, where
each dummy job is constrained to run in its time step. Given the EDF schedule, we
can permute the jobs among machines without changing their running time to create
the proper intervals.

Optimal Single-Machine Algorithm

Although EDF always finds a feasible schedule, it may not minimize calibrations.
We use EDF as a subroutine in another algorithm that we call Lazy-Binning. Lazy-
Binning delays the start of an interval for as long as possible, until delaying it further
would make it impossible to find a feasible schedule.

Before giving the algorithm, we define the notion of a push.

Definition 2.3. A push is a move of an interval from time t to t + 1. This may

mean that later intervals on the same machine are recursively pushed, so that no two

intervals overlap.

Lazy-Binning is the algorithm we obtain by performing all feasible pushes.

Theorem 2.4. Lazy-Binning is optimal.

Proof. To obtain a contradiction, assume that Lazy-Binning is not optimal. Consider

the time t ≥ 0 when Lazy-Binning first differs from every optimal schedule. In

other words, from time 0 to t − 1, there exists at least one optimal schedule OPT

that matches Lazy-Binning exactly, but no optimal schedule matches Lazy-Binning

through time t. Furthermore, assume without loss of generality that OPT uses EDF

to schedule jobs within an interval, as Lazy-Binning does. Thus, there are two ways

for Lazy-Binning to differ from OPT:
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Algorithm 1 Lazy-Binning

1: for each time step t until all jobs are scheduled do

2: if no working interval that contains time t then

3: Run EDF starting at time step t+ 1

4: if EDF cannot find a feasible schedule then

5: Begin a working interval at time t.

6: end if

7: else

8: Schedule jobs in the current interval using EDF

9: end if

10: end for

• In Case A, Lazy-Binning starts an interval at time t while OPT remains idle.

• In Case B, Lazy-Binning does not start an interval at time t, OPT does.

We argue that neither of these cases is possible, leading to a contradiction.

Case A: Lazy-Binning starts an interval at time t, while OPT remains idle. This

means that EDF failed to find a feasible schedule starting the next interval at time

t + 1 or later. But OPT is a feasible schedule that starts the next interval at time

t+ 1.

Case B: OPT starts an interval at time t, whereas Lazy-Binning remains idle.

Consider a schedule OPT′ which has identical intervals to OPT, except that the

interval that OPT starts at t is pushed.

OPT′ matches Lazy-Binning until time t+ 1 so it cannot be an optimal schedule

by our definition of t. Since OPT′ uses the same number of intervals as OPT, the

cost for the schedule is the same, so it must be that OPT′ is infeasible; it cannot be

suboptimal.

Let j be the first job that misses its deadline when EDF schedules jobs in OPT′.

Any subsequent intervals that we add will be after j’s deadline and cannot make

OPT′ feasible. Therefore, j cannot be feasibly scheduled after the push, which means

that Lazy-Binning starts an interval at t.

We thus have an optimal algorithm for the single-machine case, as well as a test
to see if a feasible schedule exists.

Lazy-Binning, as stated in Algorithm 1, runs in pseudopolynomial time, but the
algorithm is easily modified to run in polynomial time. The issue is that if release
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times and deadlines have exponential values, Lazy-Binning may iterate through an
exponential number of time steps. However, an interval need never start more than
n time steps before the deadline of any job, giving a polynomial solution.

2.5.2 Multiple-Machine Algorithm

We first characterize the structure of optimal solutions on multiple machines. We
then give a 2-approximation algorithm. We describe conditions under which our
algorithms find optimal solutions.

Round Robin Machine Assignment

Let I = (I1, I2, . . . , IN) be a sequence of intervals, a partial solution for a set of jobs,
ordered by increasing start time. Ties are broken consistently. For our multiple-
machine algorithm, ties can be broken by interval creation time, since the algorithm
is incremental. Without loss of generality, no two intervals in I on the same machine
have start times within T of each other.

Each interval Ij ∈ I is scheduled on some machine Pj. Assigning intervals to
machines can be done using a round-robin method for any feasible schedule.

Lemma 2.5. Given a feasible schedule S on P machines, there exists a schedule

having the same cost and the same assignments of jobs to intervals where Pj ≡ j

(mod P ).

Proof. We use an inductive argument on N = |I|, the number of intervals. The

lemma is true for N = 1, where we can place the first interval on the first machine.

Suppose we have legally placed the first k intervals. Let t denote the time when

Ik+1 begins. If scheduling Ik+1 on machine (k+1) (mod P ) is not feasible, there exists

another interval Ic scheduled at time tc on Pk+1 such that t − T < tc ≤ t. Since all

previous intervals are scheduled using round-robin, there are P − 1 intervals starting

between times tc and t. Each of these must also be scheduled at or before t and after

t−T , so in total there are P +1 intervals that must be scheduled in that range. Since

there are P processors, two of the intervals must be scheduled concurrently on the

same machine, which is infeasible. This contradicts the assumption that the schedule

of the first k intervals is feasible.

Lemma 2.5 means that our algorithm need not explicitly determine an assignment
of intervals to machines.
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Our algorithm returns a sequence of interval start times. Given this sequence,
we assign intervals to machines using round robin and schedule jobs within intervals
using EDF.

Before proceeding, we further specify how EDF breaks ties.

Invariant 2.6. When EDF removes job j from the priority queue to run at time step

t, there may be multiple machines on which j could run. EDF breaks ties by assigning

j to the first interval I ∈ I that does not yet have a job assigned at time slot t (but

contains time slot t).

Characterization of Pushes

When there are multiple machines, intervals can overlap provide they are on different
machines. This leads to more subtlety in how we characterize a push.

Definition 2.7. A push is a move of an interval I ∈ I from time t to t+ 1 that may

recursively push later intervals in order to maintain the following:

1. The ordering of intervals in I does not change. Thus, any other interval that

starts at t and is ordered after I in I is also pushed.

2. The intervals on each processor are nonoverlapping. Thus, any interval that

starts at t+ T on the same processor as I is also pushed.

Suppose the push of an interval results in a new set of intervals I ′ and let t be the
latest start time of any interval in I ′. This push is feasible for an instance of jobs if
by augmenting I ′ by zero or more intervals, each starting at time t or later, all jobs
can be feasibly scheduled.

We categorize feasible pushes of the last currently-scheduled interval into four
cases. Because we only consider pushing the last interval, we do not need to worry
about cascades of pushes. There may be jobs in J that cannot be scheduled in any
of the intervals.

Definition 2.8. Each feasible push of the last interval I fits one of four cases. When I

is pushed, there may exist some job in I before the push that EDF no longer schedules

after the push; denote this job jout. Similarly, there may exist some job not scheduled

before the push that EDF schedules after the push; denote this job jin.

Case 1: There exists no job jout.

Case 2: There exists a job jout but no job jin.

Case 3: Job jout is after jin in EDF order.

Case 4: Job jout is before jin in EDF order.
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Framework for Optimal Solutions

We extend Lazy-Binning to multiple machines.

Definition 2.9. A push algorithm repeatedly creates a new interval at the end of I
and then pushes that interval. The algorithm

• performs all Case-1 and Case-3 pushes,

• never performs an infeasible push, and

• has the flexibility to choose which Case-2 and Case-4 pushes to perform.

Once the algorithm stops pushing the interval, if there are remaining unscheduled jobs,

the algorithm creates a new interval and begins pushing again.

At intermediate steps of a push algorithm, EDF assigns jobs to intervals only
temporarily. EDF may assign some job j to some interval, but when an interval is
pushed or a new interval is added to I, re-running EDF may assign j to a different
interval.

When P = 1, all feasible pushes are Case 1 and Case 3, so Lazy-Binning is a push
algorithm. Theorem 2.4 proves a push algorithm is optimal for P = 1. Theorem 2.16
shows that an optimal push algorithm always exists for any number of processors.

Algorithm 2 Push Algorithm
1: t← 0

2: while not all jobs are scheduled do

3: Remove all assignments of jobs to intervals

4: if t is contained in P or more intervals then

5: t← next time with ≤ P − 1 intervals

6: end if

7: Create a new interval I at t

8: Schedule jobs in all intervals with EDF

9: while pushing I is Case 1 or Case 3 do

10: Push I

11: t← t+ 1

12: end while

13: Perform 0 to T Case-2 or Case-4 pushes on I

14: end while
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Lemma 2.10. A push of an interval I starting at t is of type Case 2 or Case 4 if

and only if

1. before this push there is a tf ≤ t+T such that jobs are scheduled in all calibrated

time slots between t and tf

2. each of these jobs is due no later than tf , and

3. the push is feasible.

The smallest such tf has the property that tf − t ≥ 2 and at least two jobs are due

exactly at tf .

Proof. We first explain why tf − t must be greater than 1. If tf − t = 1 then there

exists a job j that must be scheduled at time t, the first time step of I before the

push. Scheduling j later would miss its deadline. Thus after the push, when I starts

at t+1, EDF does not schedule j in I. By Invariant 2.6, EDF schedules in the earliest

possible interval in I, so if j could be feasibly scheduled in an earlier interval it would

be scheduled there before the push. Thus, j cannot be scheduled in an interval before

I in I. All later intervals must also start after the deadline of j by Definition 2.7, so

j cannot be scheduled there either. Thus, if f = 1 the push is infeasible.

(⇐) If these jobs do exist, there must be a jout, because after we push I forward

there are more jobs that must run between t and tf than there are calibrated time

steps between times t and tf . The push cannot be Case 3 because before the push,

any jobs released by time t + T that precede jout in EDF order would have been

scheduled before jout and they still will be after the push. If jin is released at t + T ,

its deadline is at least t+ T + 1. This is after jout because jout has deadline no later

than tf ≤ t+ T .

(⇒) We now show that if there is a Case-2 or Case-4 push, such a tf must exist.

Let tf be the deadline of jout. We must have tf ≤ t + T because if jout could be

scheduled at t + T , it could be scheduled in I after the push, ruling out Case 2. In

Case 4, jout is replaced in the set of scheduled jobs by a job later in EDF order. That

would not happen if jout could be feasibly scheduled in the new set of intervals.

After the push, all Y calibrated time slots from t to tf must contain jobs since jout

cannot be scheduled. The configuration after the push is the same as before except

that the slot in I at time t is replaced by a slot at time t+ T . The EDF schedule is

the same up to the slot at time t that is removed. This is the last slot in time t since

I is the last interval. If there is no job in that slot, then the rest of the schedule can
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run as before and there is no jout, which contradicts the type of push. The job jb that

ran at time t in I must compete with newly-released jobs at time t + 1. Some may

have earlier deadlines than jb so jb may not recieve the very next slot. If jb is never

scheduled, it is jout and all slots are full through tf . Otherwise jb is scheduled at some

time t < tb ≤ tf . By the same arguments as above, that slot must have held a job

before the push. This job is either jout, delayed by other jobs till past its deadline, or

it displaces another till the cascade finally ends with the real jout. All slots are then

full until jout fails to meet its deadline at time tf .

All Y jobs the run between t and tf in the pushed schedule also ran between t and

tf before the push. All jobs affected by the push (including jout) ran no earlier than

time t before the push. Every job in this set runs no earlier after the push (most at

the same time except those involved in the cascade). All finish by tf since only jout

was pushed later (to failure). Job jout also ran before tf before the push, since tf is

job jout’s deadline. Thus, there were Y + 1 jobs running in the Y + 1 slots between

time t and tf before the push.

None of the Y + 1 jobs just described has a deadline later than tf . Consider the

discussion above about how the push affects the schedule. All jobs scheduled between

times t + 1 and tb, when the displaced job jb is finally scheduled, had deadlines no

larger than job jb’s deadline. This is because jb was scheduled later by EDF. Job

jc, displaced by jb, has a deadline no earlier than jb’s deadline and no earlier than

the deadline for any job scheduled between tb and tc. Thus the displaced jobs have

monotonically increasing deadlines and the current displaced job has a deadline no

smaller than that of any job schedule since time t. Thus, job jout has deadline no

smaller than that of any job that ran between t and tf .

We now show that at least two jobs are due exactly at the smallest tf . Consider

the smallest tf . Because tf − t > 1, there is at least one job scheduled at time

tf − 1 among the Y jobs described above (in interval I, for example). There is at

least one job scheduled before tf − 1 due after tf − 1; otherwise tf − 1 would satisfy

the definition for tf , violating the assumption that this is the smallest tf . All jobs

scheduled at tf − 1 are due at tf . There must be at least one such job in interval I.

Thus, there are at least two jobs due at tf .

Corollary 2.11. Every push algorithm does no more than T Case-2 or Case-4 pushes

on any interval.
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Proof. Since there exists a job in I with deadline no later than tf , by definition of

the jout for the push, I cannot be pushed past tf . Otherwise that job could not be

feasibly scheduled. Since tf ≤ T the lemma follows.

Lemma 2.12. If intervals are added to a schedule, EDF schedules all jobs no later

than without the added intervals.

Proof. Let S and S ′ be the schedule before and after the intervals are added. Assume

the contrary: there exists a job j that is scheduled later in S ′ than in S. Let j be the

first such job in EDF order and let t be the time when j is scheduled in S. When

EDF reaches t in S ′, there must be some job j′ before j in EDF order that has not

been scheduled (otherwise EDF would schedule j). But j′ must have already been

scheduled when EDF reached t in S (otherwise EDF would schedule j′ at t in S).

Then j′ is scheduled later in S ′ than in S, which contradicts our definition of j.

Lemma 2.13. Consider a Case-1 or Case-3 push of an interval I. If we remove any

set of jobs J ′ from J , this will still be a Case-1 or Case-3 push.

Proof. It is immediate that removing jobs can never result in infeasibility.

We now show that removing jobs cannot cause a push to become Case 2 or Case

4. Assume the contrary, that the push of interval I at time t becomes Case 2 or Case

4 after removing J ′. By Lemma 2.10, there must be some time step tf where each

calibrated time slot between t and tf is running a job that must be scheduled before

tf . In each time slot, removing J ′ can only cause a job with a later deadline to be

scheduled by EDF. Then before J ′ is removed, all calibrated time slots between t and

tf were already active with jobs with potentially earlier deadlines. Then this was a

Case-2 or Case-4 push initially, leading to a contradiction.

Lemma 2.14. Performing Case-1 and Case-3 pushes can never increase the number

of calibrations. That is, there is always an optimal schedule that performs a Case-1 or

Case-3 push whenever one is available during the incremental schedule construction.

Proof. To obtain a contradiction, assume the contrary: no optimal schedule performs

all available Case-1 and Case-3 pushes. Let OPT be the schedule that performs the

most Case-1 and Case-3 pushes. We show that we can obtain a schedule that performs

one more Case-1 or Case-3 push without increasing the cost, reaching a contradiction.
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A Case-1 or Case-3 push is only defined on the last interval placed so far while

we are making the schedule, so we refer to the push as Case 1 or Case 3 if the push

is Case 1 or Case 3 with subsequent intervals removed. That is, EDF schedules jobs

from the beginning after this removal to determine the case of the push.

We show that we can feasibly schedule all jobs in OPT after another Case-1 or

Case-3 push on some interval I without increasing the number of intervals. Let t be

the start time of the first interval I1 in OPT that did not have all Case-1 or Case-3

pushes applied. So a push on I1 is Case 1 or 3. Let I be the last interval started

at time t. A push on I must also be Case 1 or 3. If it were Case 2 or 4, then

by Lemma 2.10 there must be a time tf before which all calibrated time slots must

contain jobs with deadlines before tf . But since EDF schedules in time slots in order

by interval, all jobs in time slots before tf in I1 must also have deadlines before tf .

This means I1 is Case 2 or 4, which contradicts our definition. Thus pushing I is

Case 1 or 3. Furthermore, all subsequent intervals in OPT start at t + 1 or later, so

pushing interval I preserves the ordering of the starting times of the intervals.

Let t be the time when I starts in OPT. For now, assume that all later intervals

in OPT start strictly later than t. We consider the case where one starts at t later in

this proof.

We set the stage for an exchange argument. Schedule all jobs in OPT using EDF.

There is a (possibly empty) set of jobs J ′ that are (1) scheduled between times t and

t+ T − 1 inclusive, and (2) scheduled in an interval after I in OPT. Figuratively, we

remove these jobs and set their time slots as inactive. What we really do is peg these

jobs to these time slots for our exchange, so that their positions in the schedule are

not determined by rerunning EDF.

Perform the push on I in OPT with J ′ removed; now we have a sequence of

intervals OPT′. When I was the last interval placed so far, the push was remains a

Case-1 or Case-3 push. Now define jout and jin as in Definition 2.8. By Lemma 2.13,

job jout, if it exists, is released before jin and has a deadline after jin in EDF order. To

summarize, jout and jin are defined, assuming that we run the schedule only allocating

intervals up to I.

When we transform OPT into OPT′, we push I, and run EDF on OPT′ ignoring

the jobs in J ′ and their time slots. Interval I ends at t+T . Let j′out be a job scheduled

before t+ T (in any interval) in OPT but after t+ T and not in I in OPT′; let j′in be
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any job scheduled in an interval after t+T in OPT but before t+T or in I in OPT′.

Then j′in is jin and j′out is jout if it exists. This is because when I was the last

interval, the push was Case 1 or Case 3. After adding subsequent intervals, none of

the jobs scheduled in I are scheduled later than t+T , nor will a later job be scheduled

in I or earlier than t+ T .

Now we exchange jobs to show that OPT′ is feasible. We schedule the intervals

up to the pushed I according to (the new) EDF. We schedule the jobs strictly after

the interval I ends according the old EDF, except that in the slot where j′in used to

be, we replace that with j′out. We keep the jobs J ′ exactly where they were before.

Then we have performed an extra Case-1 or Case-3 push of I without increasing

the cost of the schedule, contradicting our assumption that we have the OPT with

the most Case-3 pushes.

As described, this exchange argument leaves out an important detail. This argu-

ment applies when interval I has a gap before the next interval on the same processor.

If there is no gap, that is, the two intervals are adjacent, then we need to adjust our

argument slightly. A simple adjustment is just to view the adjacent intervals as one

bigger interval and then to define the j′out where j′in according to this superinterval.

Lemma 2.15. A set of k Case-2 pushes on an interval I can only be a part of an

optimal push algorithm if, after the Case-2 pushes are performed, the next push would

be a Case-4 push.

Proof. We show that no job in J can be scheduled in the newly-calibrated time slots

after the Case-2 pushes. Let JI be the set of jobs feasibly scheduled by EDF in

the first I intervals, before I is pushed. Let J ′I be the jobs that cannot be feasibly

scheduled, so J ′I = J \ JI . Since the pushes are Case 2, none of the jobs in J ′I can be

scheduled in I after the Case-2 pushes on I. Adding subsequent intervals can only

cause jobs to be scheduled earlier by Lemma 2.12, so no job in JI is scheduled at a

later point after we add intervals later than I in I. Thus, no job in either J ′I or JI

can be scheduled in the newly-calibrated time slots.

By Lemma 2.10, after a Case-2 push, any further feasible pushes on the interval

are Case 2 or Case 4.

Thus, any newly calibrated time slots due to the push remain inactive, and the

pushes cannot decrease the cost of the remaining schedule unless there is a later

Case-4 push.

20



Theorem 2.16. There exists a sequence of Case-2 and Case-4 pushes such that the

corresponding push algorithm is optimal.

Proof. This proof generalizes Theorem 2.4. All Case-1 pushes are identical to the

single-machine case, and can still always occur without added cost. We show that

Case-3 pushes never add to cost in Lemma 2.14. The remainder of the argument

proceeds as in Theorem 2.4.

2-Approximation Algorithm

We now give a 2-approximation algorithm (Algorithm 3). Algorithm 3 is not a push
algorithm, though it has structural similarities. Observe that the algorithm also
becomes Lazy-Binning if P = 1.

Algorithm 3 pushes intervals similarly to a push-algorithm. It never performs an
infeasible push and performs all Case-1 and Case-3 pushes of each interval I. When-
ever it sees an opportunity for an interval I to have a Case-4 push or a series of Case-2
pushes followed by a Case-4 push, Algorithm 3, instead, creates another interval I ′

right after I. These extra intervals are ignored for the purpose of determining the
case of a push; otherwise the pushed interval may not be the last one scheduled. Like
Lazy-Binning, this algorithm is pseudopolynomial as written. If release times and
deadlines have exponential values, Algorithm 3 may iterate through an exponential
number of time steps. However, an interval need never start more than n time steps
before the deadline of any job. Incorporating this restriction makes Algorithm 3 run
in polynomial time.

Lemma 2.17. The set of jobs scheduled in the first i intervals of any push algorithm

A can be feasibly scheduled after i rounds of Algorithm 3 (a round refers to an iteration

of the while loop in Step 2).

Proof. By Corollary 2.11, any time when a time slot is calibrated in A’s schedule, the

corresponding time slot is also calibrated in Algorithm 3’s schedule. Thus, for the

first i intervals, we can copy the assignments of jobs to machines and times from A

directly to time slots calibrated by Algorithm 3, giving a feasible schedule.

Corollary 2.18. Algorithm 3 gives a solution with cost no more than twice optimal,

i.e. it is a 2-approximation.
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Algorithm 3 Lazy-Binning on Multiple Machines

1: t← 0; I ← ∅
2: while not all jobs are scheduled do

3: Remove all assignments of jobs to intervals

4: if P or more intervals overlap with I then

5: t← next time with ≤ P − 1 intervals

6: end if

7: Create a new interval I at t

8: while pushing I is Case 1 or Case 3 do

9: Push I

10: t← t+ 1

11: end while

12: t′ ← t

13: while pushing I from t′ is Case 2 do

14: t′ ← t′ + 1

15: end while

16: if pushing I is Case 4 then

17: Create another interval at t+ T

18: end if

19: end while
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2.6 Online Scheduling with Calibrations

In this section we discuss the online variant of the problem, where jobs are not known
ahead of time. This is particularly well-motivated in an industrial setting, where
factory owners may want to modify their schedules as new orders come in, or adapt
to changes in orders.

Even the ISE project, the original motivation for the problem, may benefit from
this generalization. The original calibrations paper states “this testing schedule is
determined in advance” [19], but even if some ISE testing requirements are known
ahead of time, it seems advantageous to have an algorithm that can adapt to changes.

Online Model

In the online variant of the problem, jobs are not known ahead of time. The algorithm
only knows about job j when it has reached time rj (and has completed the schedule
up to time rj). It cannot go back and change its old decisions. See [105] for further
discussion of the online model and a survey of past results. This is one of the simplest
and best-motivated ways of examining the problem—oftentimes, any production or
testing system using machines that require calibrations are unaware of jobs until they
are ready to be scheduled.

Crucially, we also slightly modify the cost function and throughput requirements
in the online variant. We assume that each calibration incurs a large cost G. In other
words, in this variant we make the large calibration cost explicit. Then our total cost
is the total flow time of the jobs, plus the total calibration cost. In other words, if
each job j is scheduled at time sj, then the total cost is

G(# Calibrations) +
∑
j∈J

(sj − rj)wj.

In the offline setting, we currently do not allow jobs to have deadlines. Timely
processing of jobs is guaranteed by minimizing the total flow time. The parameter G
gives a tradeoff between the flow guarantee and the number of required calibrations.

We analyze our algorithms using competitive analysis. An algorithm is said to
be α-competitive if, for every input I, the algorithm performs at most an α factor
worse than the optimal offline algorithm on I. Notably, this kind of analysis differs
from worst-case analysis in that it must do well on both hard and easy inputs—if the
optimal offline algorithm performs unusually well on an instance, our algorithm must
as well. In our analysis we generally fix an input J , and let OPT be the cost of the
optimal offline algorithm on J . On occasion, we sometimes also refer to the optimal
algorithm itself as OPT for brevity.
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2.6.1 Unweighted Single-Machine Algorithm

We give a 3-competitive algorithm. Currently, this algorithm only works for a single
machine with unweighted jobs (delaying any job incurs the same cost).

The idea of the algorithm is to delay arriving jobs until their flow is equal to the
calibration cost G. However, the algorithm has a maximum number of jobs it can
delay, after which it must schedule.

Algorithm 4 Online Unweighted Calibration on One Machine

1: Q← empty queue of jobs

2: for each time step t do

3: if a job j arrives at time t then

4: Push j onto Q

5: end if

6: if t is not calibrated then

7: f ← total flow of all jobs in Q if scheduled beginning at t+ 1

8: if Q contains ≥ G/T jobs or f ≥ G then

9: Begin a calibration at t

10: else

11: p← total flow of all jobs scheduled in last calibration

12: if p < G/2 and a job is released at t then

13: Begin a calibration at t

14: end if

15: end if

16: end if

17: if Q is not empty and t is calibrated then

18: Pop the job ′ with smallest release time off Q

19: Schedule j′ at t

20: end if

21: end for

Algorithm 4 is similar to known algorithms, like the optimal solution to the ski
rental problem. Both delay until a large penalty cost is reached (G in this case).
However, the maximum job requirement appears to differentiate this algorithm from
previous results. Without this requirement, the algorithm can perform arbitrarily
poorly. Interestingly, although the algorithm appears to schedule somewhat early
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in this case (especially if G/T is small), it still performs no worse than 3 times the
optimal solution.

We bound the algorithm’s performance using a charging argument. Before proving
the competitive ratio, we need a structural lemma to show that we never double-charge
to an interval. Let Ji be the set of jobs scheduled in interval i by Algorithm 4. We
partition Ji into two subsets: JEi is the set of jobs scheduled earlier in OPT than in
Algorithm 4, and JLi is the set of jobs scheduled later.

Lemma 2.19. Consider an interval i scheduled by Algorithm 4. Let iOPT be the

earliest interval in OPT containing a job in Ji. Then if i′ > i, iOPT contains no jobs

in Ji′.

Proof. Let j′ be the first job in Ji+1. If j′ is released after ti +T , it (and thus all jobs

in i′) must be scheduled after ti + T as well, so can’t be scheduled in iOPT . On the

other hand, if j′ is released before ti + T , since Algorithm 4 schedules in EDF order,

there must be T jobs in Ji. Then there are T + 1 jobs in Ji ∪ {j′}; thus j′ cannot be

scheduled in iOPT , and neither can any job in Ji′ .

We are now ready to prove the competitive ratio.

Theorem 2.20. Algorithm 4 is 3-competitive.

Proof. We use a charging argument for each calibration i. We break into two cases:

in the first, the calibration was due to total flow of G. In the second, the calibration

was due to G/T waiting jobs. Let fi be the total flow of all jobs in i released before

ti, and let ei be the total flow of all jobs in i released on or after ti. If Algorithm 4

calibrated after interval i because i had flow at most G/2 (but the normal conditions

for calibrating are not satisfied), we call this an immediate calibration. If there is an

immediate calibration following i, we consider the cost of i and i+ 1 simultaneously.

Case 1 (Calibrated due to flow G): We split into two subcases. First, we

assume that all jobs in i are scheduled later in OPT than in Algorithm 4 (JEi is

empty). Then we charge to the flow of the jobs in OPT. Algorithm 4 incurs cost

G + fi + ei < 2G + ei, while OPT incurs cost at least fi + ei ≥ G + ei, leading to a

competitive ratio of 2.

Otherwise, (in the second subcase) there is a job j in Ji scheduled earlier in OPT

than in Algorithm 4. We charge to the calibration containing the first job in Ji; this

charging is unique by Lemma 2.19. Algorithm 4 incurs a cost of G+ fi + ei < 3G; we

charge to a cost of G for a competitive ratio of 3.
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Case 2 (Calibrated due to G/T waiting jobs): We split into three subcases.

First, we assume that JEi is nonempty. If there is no immediate calibration follow-

ing i, we can charge to OPT as in Case 1. Specifically, we charge to the first interval

of OPT containing a job from Ji; this is only charged to once by Lemma 2.19. Al-

gorithm 4 has cost G + fi + ei < 3G; we charge to an interval with calibration cost

G.

If fi + ei ≤ G/2, If i + 1 is an immediate calibration, consider whether interval

i + 1 has a job scheduled earlier in OPT (i.e. whether JEi+1 is empty). If interval

i + 1 has a job scheduled earlier in OPT, charge to the interval containing it by

Lemma 2.19. Intervals i and i+ 1 have total cost 2G+ ei + fi + ei+1 + fi+1 < 6G; we

charge to a calibration cost of 2G in OPT. Otherwise, if all jobs in Ji+1 are scheduled

later in OPT, Algorithm 4 has cost 5G/2 + ei+1 + fi+1, and OPT has cost at least

G+ ei+1 + fi+1. In all cases, we achieve a competitive ratio of 3.

In the second subcase, we assume that JEi is empty (all jobs in Ji are scheduled

later in OPT), and all jobs in Ji are delayed to at least ti + T in OPT. If there is no

immediate calibration following i, Algorithm 4 incurs cost at most 2G+ fi + ei, while

OPT incurs cost at least G+fi+ ei. leading to a competitive ratio of 2. If there is an

immediate calibration, since i+ 1 begins before ti + 2T , all jobs in Ji+1 are scheduled

later in OPT (since OPT schedules the jobs in Ji+1 beginning at ti + T ). Thus, the

cost of OPT is at least G+ fi + ei + fi+1 + ei+1, leading to a competitive ratio of at

most 2.

Finally, we assume that all jobs in Ji are scheduled later in OPT, but at least

one is scheduled before ti + T . Let iOPT be the interval in OPT containing the first

such job. Note that we can charge to iOPT: this interval starts before Ji+1 starts, so

if it contains a job from Ji+1 we can charge to it by Lemma 2.19. Otherwise, iOPT

contains no job from Ji+1, and therefore no job from Ji′ for i′ > i + 1. Since iOPT

starts later than any interval i′ for i′ < i it can only be charged to by i.

First, assume that i+1 is an immediate calibration. Then there can be no waiting

jobs before i + 1 begins; otherwise, iOPT contains exactly the T jobs in Ji, and we

can improve OPT by scheduling iOPT earlier. Thus, i and i + 1 have total cost at

most 5G/2 + |Ji+1|, as each job in Ji+1 is scheduled immediately. We charge to cost

G + |Ji+1| in OPT: G from the calibration cost of iOPT, and |Ji+1| since each job in

Ji+1 must incur flow cost at least one in OPT. This gives a competitive ratio of 5/2.
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If i+ 1 is not an immediate calibration and i has total flow at least G/2, we still

examine calibrations i and i + 1 simultaneously . These intervals have total cost at

most 2G + fi + ei + fi+1 + ei+1. Since all jobs in Ji are scheduled later in OPT, we

charge to their flow as well as the calibration iOPT, so OPT has cost at least G+fi+ei.

The ratio between these is minimized at when fi + ei is minimized, at fi + ei = G/2.

Then Algorithm 4 has cost 5G/2 + fi+1 + ei+1 < 9G/2, and OPT has cost at least

3G/2, giving a competitive ratio of 3.

If i+1 is not an immediate calibration and i has flow less than G/2, we do consider

i + 1 separately. The first job in i + 1 must be released at least T time steps after i

ends. Thus, we charge i to iOPT as above; iOPT cannot be charged to by i+ 1 because

it ends before any job in Ji+1 is released.

2.6.2 Weighted Single-Machine Algorithm

When jobs have weights (but must be scheduled on a single machine), we follow a
similar algorithm to the unweighted case. The main differences are that the algorithm
now calibrates if the set of waiting jobs has total weight G/T , and the algorithm no
longer performs the immediate calibrations (when the calibrated interval had flow at
most G/2).

We assume that all algorithms schedule the heaviest possible job first, breaking
ties by release time. Unlike the unweighted case, there is no ordering on the jobs;
which job is scheduled next depends on which time slots are calibrated.

This lack of an ordering makes charging much more difficult. Our solution to
this is twofold. First, the bounds we achieve have larger constants, due in part to
the more difficult charging. Secondly, and more to the point, we show that we can
restrict ourselves to algorithms that do schedule in order of release time, losing only
a factor of 2 in cost.

Lemma 2.21. If the optimal solution of a given instance has cost COPT, there exists

a solution with all jobs scheduled in order of release time with cost at most 2COPT.

Proof. We begin with the optimal solution (with C calibrations), and create a new

schedule with all jobs in order of release time. This new schedule will schedule all

jobs no later than they were in the original instance, so the flow cost will be smaller.

Furthermore, the new schedule will have no more than 2C calibrations. Thus the

total cost of the new schedule is at most 2COPT.

Consider each job in the schedule, in order from latest to earliest release time. We

maintain the invariant that after considering a job j, it is scheduled at a time tj such
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Algorithm 5 Online Weighted Calibration on One Machine

1: Q← empty priority queue of jobs

2: for each time step t do

3: if a job j arrives at time t then

4: Push j onto Q

5: end if

6: if t is not calibrated then

7: f ← cost of scheduling all jobs in Q at t+ 1

8: if
∑

j∈Qwj ≥ G/T or f ≥ G then

9: Begin a calibration at t

10: end if

11: end if

12: if Q is not empty and t is calibrated then

13: Pop the job ′ with smallest weight off Q

14: Schedule j′ at t

15: end if

16: end for

that tj ≥ rj, and all jobs with rj′ > rj have tj′ > tj. At intermediate points while

constructing this schedule, several jobs may be scheduled at the same time. However,

we also maintain that after considering job j, no two jobs with release times at least

rj is scheduled at the same time.

For each such job j, move j before all jobs j′ with r′j > rj. In other words,

move j to the time slot immediately before the job with the next-largest release

time is scheduled; if there is a job already scheduled at this time slot, these jobs are

scheduled at the same time.

We now show that these invariants are maintained. The job is scheduled before

all jobs with later release times by definition. To show tj ≥ rj, we must have all all

jobs with rj′ > rj be scheduled at tj′ ≥ rj′ ≥ rj + 1; thus, rj is a time slot before

all jobs with later release times are scheduled, so it satisfies the requirement for tj.

Since tj is the maximum time slot satisfying the requirement, tj ≥ rj. Finally, no job

with release time larger than rj can be scheduled at tj; thus j is not scheduled at the

same time as a job with larger release time. Since the invariant was maintained for
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all jobs with larger release time, the invariant is maintained.

Now we show that there are no more than 2C calibrations. Each time we add a

job, we add one new time slot—this time slot is already calibrated, or is joined to a

sequence of newly-filled time slots which touch a calibrated time slot.

Consider a sequence of calibrated time slots in the new schedule. All jobs from

this sequence must have come from intervals contained in this sequence, as a job

j being pushed back never “skips over” an uncalibrated time slot. As j is pushed

back, it may empty some slots, but we assume that they remain calibrated in the new

schedule. Thus, all jobs from this calibrated sequence must come from an interval in

this sequence. Let p be the number of previously-uncalibrated slots in this sequence.

Then the number of extra calibrations necessary is dp/T e. Furthermore, the number

of calibrations previously in this interval was at least dp/T e. Thus the number of cal-

ibrations for each sequence is at most doubled. Thus the total number of calibrations

is no more than 2C.

Now we are ready to prove the performance of our algorithm. We show that it is
6-competitive with the best algorithm that schedules all jobs in order of release time,
which implies that it is 12-competitive with the optimal algorithm.

Lemma 2.22. Algorithm 5 is 12-competitive.

Proof. Consider an interval i which starts at ti and contains jobs Ji (note that in this

case, Ji is a subsequence of jobs in terms of release time). Let I be a sequence of

full intervals beginning with i; all but the last are full. Note that all intervals after I

consist of jobs that are released after I ends. Thus, each such sequence consists of a

contiguous set of jobs in order of release time. Thus, these jobs must be scheduled by

OPT in consecutive intervals. Thus, Algorithm 5 uses d|I|/T e intervals to schedule

these jobs, and OPT also must use d|I|/T e to schedule these jobs. For all but the first

interval of I, we charge to its pair. If i is the first interval, and i′ is its corresponding

interval in OPT, then:

1. If i′ starts before i, charge to i.

2. If i′ starts after i and i was started because the flow time of its jobs is at least

G, charge to the flow time of the jobs.
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3. If i′ starts after i, but before ti + T , and i was started because the sum of the

weights was at least G/T , charge to i′.

4. If i′ starts after ti + T , and i was started because the sum of the weights was

at least G/T , charge to the flow time of the jobs.

First, we show that the flow time of OPT is at least G when we charge to it. Note

that all jobs in I must be scheduled after i′ begins; in particular, all jobs in i must be

scheduled in OPT after i′ begins. Thus, if scheduling the jobs in i has flow time G,

scheduling them in i′ which starts after i incurs flow at least G. Similarly, delaying

jobs with weight G/T past ti + T (when all were released before ti) incurs flow at

least G.

We now bound how many times each interval can be charged to in the above.

First, note that no two intervals in the same sequence charge to the same interval (by

definition). Let i be the first interval of I, and j be the job with earliest release time

in I.

1. Assume that j is scheduled in an interval that starts before i. All jobs in later

sequences are released after I ends, so they cannot charge to the same interval.

Thus no two sequences can charge their first interval to the same interval in

OPT. Since sequences charge to consecutive intervals, this means that only two

sequences can charge to the same interval. Thus, any such interval can only be

charged to twice. If Algorithm 5 schedules i because there were T waiting jobs,

this case must apply.

2. In the second case, i had G/T waiting jobs, and charges to an interval that

begins between ti and ti + T . Any subsequent sequence that charges to this

interval starts after this interval begins; thus it can only be charged to once by

a later sequence. For any previous sequence, this interval starts after its first

interval ends; thus it cannot be charged to by the first interval by a previous

sequence. Thus it can only be charged to by the next and previous sequence,

or three times in total.

For every interval in the algorithm, we charge to an interval or to a flow cost of

G. We can charge to each interval three times. Thus the total competitive ratio is

at most 6. Since the optimal algorithm with jobs in order of release time has cost at

most 2OPT, Algorithm 5 has cost at most 12OPT.
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2.6.3 Multiple Machines

We give a competitive online algorithm when jobs can be assigned to multiple ma-
chines, and jobs do not have weights.

When there are multiple machines, charging becomes almost completely impossi-
ble, as small perturbations in the intervals can lead to significant changes in which
jobs belong to which interval (if they are scheduled in order of release time).

Instead, we use another method: the primal-dual approach. This allows us to use
linear-programming-based techniques to derive a lower bound on the cost of OPT
directly, without charging to intervals containing specific jobs. On the other hand,
this seems to come at some loss of efficiency: we only show that our algorithm for
multiple machines is only 12-competitive.

We briefly review linear programming and how it is used before describing our
algorithm and proving the competitive ratio.

Linear Programming: A Brief Overview

Linear programming is an algorithmic paradigm in which a set of constraints must be
met while minimizing a cost function. In linear programming, all constraints (and the
cost function) must be some linear combination of the variables. Linear programming
is one of the most wisely used ideas in all of algorithms, and has further practical
applications in operations research. We use LP to refer to both Linear Programming
as a concept, as well as a linear program, a specific goal and set of linear constraints.

Here, we focus on the primal-dual method for analysis. This method itself is far
too rich (both in terms of techniques and past work) to fully describe here. See [67]
for a full tutorial and a survey of previous results.

We give a short summary of how we use the primal-dual technique which we use
to develop the competitive ratio for the multiple-machine algorithm. We begin with
an algorithmic problem A (in this case, scheduling with calibrations). The first step
is to develop an LP such that any solution to A is also a solution to the LP, with
the same cost. Thus, the cost of the optimal solution of A is bounded below by the
optimal solution to the LP.

Linear programs have a dual which can be obtained by, essentially, transposing
the constraint matrix (see, for example, [45] for more details). The dual LP has a
cost function which we want to maximize. Crucially, any solution to this dual LP has
a smaller cost than any solution to the primal LP; this is the weak duality theorem.
Thus, any solution to the dual LP lower bounds the cost of the optimal solution to
A.

This leads us to a method for proving the competitive ratio for our algorithm.
While our algorithm progresses, we build a solution to the dual LP, trying to maximize
its objective function.
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In the end, we want that the cost of our algorithm is at most c times the objective
function of the dual LP. Since the dual LP lower bounds the cost of an optimal
solution for A, the algorithm has cost at most c times OPT.

Algorithm and Analysis

Our algorithm is an extension of Algorithm 5. We wait until there are G/T waiting
jobs or the jobs have total flow G to calibrate. Then, we schedule jobs in order of
release time, starting with the machine with smallest index first.

With multiple machines, we need to be careful how we define waiting jobs. In
particular, once we calibrate, we want the jobs we will schedule in that calibration to
no longer count as waiting jobs when deciding if we should calibrate. Thus, when we
calibrate, we assign jobs to the intervals immediately. This means that the guarantee
that jobs are scheduled in order of release time does not hold across machines for this
algorithm.

Algorithm 6 Online Unweighted Calibration Algorithm on Multiple Machines

1: Q← empty priority queue of jobs

2: for each time step t do

3: for all jobs j arriving at time t do

4: if there exists a machine m with an uncalibrated time t′ ≥ t then

5: Schedule j on m at t′

6: else

7: Push j onto Q

8: end if

9: end for

10: if less than p machines are calibrated at time t then

11: f ← cost of scheduling all jobs in Q at t+ 1

12: if Q contains at least G/T jobs or f ≥ G then

13: Begin a calibration at t on the next machine in round robin order

14: Schedule jobs from Q in this interval in release time order.

15: end if

16: end if

17: end for

We have four constraints in the linear program given in Figure 1. The first ensures
that flow is high until we fully calibrate. The second ensures that the flow can only
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Primal (covering):

minimize
∑∑

ft,j +G
∑
ct

ft,j +
t∑

t′=rj−T

ct′,p −aj,p ≥ 0 ∀j, t ≥ rj, p

∑
rj<t

(ft,j − ft−1,j)+
∑
p

t∑
t′=t−T

ct′,p ≥ 0 ∀t∑
p

aj,p ≥ 1 ∀j

frj ,j = 1 ∀j

Figure 1: A linear program for scheduling with calibrations. Every legal schedule is

a feasible solution to this linear program.

decrease by 1 (per machine), and only during calibrated time slots. The fourth ensures
that each job j is assigned to at least one processor p. The fourth makes sure that
every job incurs flow cost of at least 1.

Taking the dual, we obtain the LP given in Figure 2. All variables are required
to be nonnegative in the primal. In the dual, we have xt,j ≥ 0, yt ≥ 0, wj ≥ 0, and
zj unbounded.

Theorem 2.23. Algorithm 6 is 12-competitive.

Proof. As mentioned earlier, we use the primal dual technique. We set the variables

every time Algorithm 6 calibrates (or, in some cases, only after Algorithm 6 calibrates

twice. This is similar to when two intervals are charged simultaneously in the proof of

Theorem 2.20). In each case, we show that the increase in the dual objective function

(and thus the increase in OPT; see the discussion of Linear Programming above)

is at least 1/12 the cost incurred by Algorithm 6. This shows that Algorithm 6 is

12-competitive.

We let wj = maxp
∑

t xt,j,p. Intuitively, we use xt,j,p to keep track of the flow of

job j at time t on processor p. Since Algorithm 6 only assigns flow to one processor,

wj can store the total flow of job j. We set yt = G/2T for all t, and zj = G/2T for

all j. These variables help contribute to cost when there are a large number of jobs

that may not have much flow (i.e. Algorithm 6 calibrates due to T or G/T waiting

jobs).
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Dual (packing):

maximize
∑

zj +
∑

wj

∑
p

xt,j,p −yt+1 +zj ≤ 1 ∀t, j with t = rj

∑
p

xt,j,p +yt − yt+1 ≤ 1 ∀t, j with t 6= rj

∑
j|rj≤t+T

∑
t′>t

xt′,j,p +
t+T∑
t′=t

yt ≤ G ∀t, p∑
t>rj

−xt,j,p +wj ≤ 0 ∀j, p

Figure 2: The dual of the linear program given in Figure 1

We examine each interval i one by one and find the increase in the dual LP

objective after the interval is scheduled. Let ti be the time when interval i is scheduled.

Our argument is split into cases based on why the algorithm decided to schedule the

jobs.

Case 1: T waiting jobs If we calibrate because we have T jobs (with total flow

less than G), then we set zj = G/T + 1 for each of these T jobs. This adds a cost of

G+ T to the dual, whereas Algorithm 6 has cost at most 2G.

Case 2: Total flow G In this case, we calibrate because the waiting jobs have

total flow at least G. Assume calibration i starts at time ti. We split into two

subcases. First, assume that there is a job which is released before the interval i

ends, which is not immediately scheduled in i. Then there are T total jobs scheduled

during the interval. We keep xt,j,p = 0 for all t, p for the jobs scheduled in the interval,

but set zj = G/2T for all of them. This gives a total dual cost of G/2.

Now we can assume that all jobs with rj ≤ ti +T are scheduled in i. For all t ≤ ti

(for all jobs j scheduled in ti), let xt,j,p = 1/2 if job j is waiting at time t (and will be

scheduled on processor p), and xt,j,p = 0 otherwise. Since these jobs have total flow

G, the sum of these xj,t,p is at most G/2. Therefore, the third condition is satisfied
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for all times t, p. Consider a job j. Its flow consists of two parts: the flow before time

ti, and the flow incurred after ti while waiting for j to be scheduled. Since jobs are

scheduled in order of release time without loss of generality, each job j can only wait

for one time step for each waiting job at ti. However, by the definition of Algorithm 6,

this is at most G/T . Thus, for a given j,
∑

t xt,j,p + G/T is at least half the flow

incurred by job j. Since the jobs have total flow cost G, we get an added cost of G/2

in the dual LP.

Case 3: G/T waiting jobs We consider intervals i and i+1. These two intervals

have cost at most 6G. We show that the dual increases in cost by at least G/2. We

set xj,t,p = 1/2 for all waiting jobs j, for all times ti ≤ t ≤ ti + T . This gives a dual

cost of G/2. We charge intervals i and i + 1 to this cost, giving a total cost of 6G,

while the dual cost increases by G/2.
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Chapter 3

Data Structures in External Memory

This section focuses on the external memory model. This model differs from tradi-
tional algorithm analysis in that it measures the cost of hard disk accesses, rather
than computation time.

In particular, the external-memory, or Disk Access Machine (DAM) model has an
internal memory of size M . The input data begins in external memory (which has
unbounded size). For a cost of 1, the algorithm can transfer B consecutive elements
between internal and external memory. All computation must be performed on data
in internal memory; however, this computation is free (only the disk accesses have
cost). For more details, see Aggarwal and Vitter’s original exposition [3].

The DAM model, and external memory in general, is an extremely rich area, and
has become a particularly important area of focus as computers become larger and
spend more time accessing their input. Past work has focused on algorithms like
matrix multiplication [64,70] and sorting [3, 33].

This thesis, however, deals only with a simple (but fundamental) property of the
DAM model: linear scans are cheap. Scanning an array of size N in consecutive order
requires only O(N/B) I/Os in the DAM model. Moreover, rotating-disk hard drives
benefit further from linear scans; in practice, linear scans on a rotating disk can take
even less time than the DAM model would indicate.

This section gives a packed-memory array (PMA), which is a data structure that
keeps data in a closely-packed array, allowing it to be efficiently accessed in the DAM
model. This data structure is updating using linear scans as well, so it is I/O efficient
both to query and to update.

Our focus is on a new kind of PMA which has a built-in security guarantee: history
independence. History independence guarantees that the way we store data does not
give away unnecessary information to an observer. We give a history and formal
definition of both PMAs and history independence before describing our results.

3.1 Packed-Memory Arrays

A packed-memory array is a linear-sized array that efficiently maintains data, in order,
under adversarial inserts.

Definition 3.1. A packed memory array maintains N elements in an array of size
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O(N) under the following operations:3

• insert(x, y): Insert x into the data structure given a pointer to the location of

y, which is already in the data structure.

• delete(x): Given a pointer to x, remove it from the data structure.

PMAs are generally analyzed by their worst-case running time. Worst-case means
that we assume there is an adversary inserting particularly difficult elements into the
data structure to cause us to take extra time. Note that since our PMA is randomized,
we loosen this requirement slightly to use with high probability analysis.

Many PMAs (in particular the one presented here) have amortized performance
guarantees. This means that while individual operations may be expensive, the data
structures perform well on average. In particular, an amortized bound of O(log2N)
means that any k operations on the PMA (starting from an empty state) require
O(k log2N) time.

What we refer to here as PMAs have been studied under many different names,
such as sparse tables [77, 80], sequential file maintenance [117–119], list labeling [52–
55], and balanced-trees of small height [6, 84].

PMAs were first studied by Itai et al., who gave a fairly simple data structure
achieving O(log2N) amortized time for inserts and deletes [77]. Their data structure
is based on a series of thresholds for the density of each subarray. (This corresponds
closely to the requirement in our data structure that the balancing point of each range
be selected from the candidate set.) When a subarray is out of threshhold, one of the
subrarrays that contained it (specifically, the smallest one that is within threshold)
is rebuilt, spreading all elements evenly.

Itai et al.’s analysis gave a good amortized bound, but some operations could be
very expensive. For example, every O(N/ logN) operations may cause the entire data
structure to be rebuilt from scratch. This is, of course, undesirable in practice. It
would be disastrous for a single insert to cause the data structure to be completely
inoperative while the system slowly rebuilds itself from the ground up.

Later, Willard gave a data structure which achieves O(log2N) worst-case amor-
tized time [117–119]. This idea was later explored with a different, and arguably
simpler, alternative achieving the same bound [20].

There exist better bounds for special cases. The original PMA achieves O(logN)
amortized rebalance time under random inserts. Bender and Hu gave a PMA variant
that achieves O(logN) amortized rebalance time for random inserts, hammer inserts
(i.e. repeated inserts after the same element), and bursty insertion patterns that
hammer on random locations [23]. Their data structure retains the O(log2N) worst
case amortized bound, while improving it on these special cases.

3While the definition permits any constant in the O(N) size bound, since space is valuable we

would really like a very small constant here. Most PMAs work with sizes like 2N or 8N .
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On the lower bound side, Dietz and Zhang showed an Ω(log2N) bound in a
restricted model, where the data structure can only be modified between operations
by evenly spacing elements in a selected subarray [53]. This covered all PMAs known
when their paper was published. Furthermore, subarray rebuilds result in cache-
efficient updating; in particular, rebuilding a subarray of size k requires k/B I/Os.
This results in the O((log2N)/B) amortized update time in the I/O model. Thus,
this bound may be regarded as strong evidence that known PMA bounds were tight.
However, there are two issues. The first is that Bender et al.’s result (which beats the
O(log2N) bound for special cases) does not rebalance in this manner. The second is
that the lower bound instance in [53] was merely a sequence of sequential inserts. This
seems intuitively to be an easy case. In fact, this intuition is correct in some sense,
as Bender et al.’s data structure can achieve O(logN) time on sequential inserts.

The best possible complexity of a deterministic PMA was recently put to rest
by Bulánek et al. [37]. who gave an Ω(log2N) lower bound. Their lower bound is
constructive: essentially, the adversary they construct repeatedly places elements in
very dense parts of the PMA. Their paper is fairly technically involved. Most of the
difficulty comes from proving that an appropriately dense area exists. Their lower
bound is quite strong: for example, they allow the numbers inserted to be integers
that must be kept in order (rather than allowing the adversary to repeatedly insert
after an arbitrary element, as our upper bound requires). Thus, if two consecutive
integers are already in the data structure, they can be safely placed adjacent to one
another as no new integer can be placed between them. Bulánek et al. show that
even if the integers are bounded above by O(m) (where m = O(N) is the size of the
PMA) the Ω(log2N) bound remains.

Interestingly, the above lower bounds only apply to deterministic data structures.
The best-case performance of randomized PMAs remains an open problem. The
data structure we present here is randomized, but only for the purposes of history-
independence. In fact, due to what we call randomized rebalances, our PMA has
Θ(log2N) amortized update time even with very favorable input distributions, while
the classic PMA achieves O(logN) expected amortized update time in some special
cases (like random inserts) [23,77].

3.2 History Independence

History independence is a security guarantee to ensure that the memory representa-
tion of a data structure does not leak information to an observer.

Consider, for example, a newspaper reporter who has been given important in-
formation in a document. She shares this document with the public to back up the
story. However, unbeknownst to her, the way the document is stored contains ex-
tra information about its edit history. Perhaps the document is stored in an format
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which gives some clues as to what parts of the document were added more recently,
giving information about when the source obtained their information. In an extreme
example, the file format could append recent edits to the document in a simple log,
which perhaps even contains information that was intentionally redacted from the file
itself.

This kind of information leakage has been surprisingly common in recent his-
tory [74,96]. Thus, it is desirable for data structures to (provably) avoid this leakage
if they are used in sensitive applications.

In some cases, achieving this level of security is simply a matter of careful
implementation—don’t concatenate recent edits in a simple log, for example. How-
ever, in some cases it is much less trivial. For example, a balanced tree data structure
such as an AVL tree [2] can leak some information about when its contents were
inserted. One simple but easy-to-verify case where history is leaked is an AVL tree
on only two inserted elements; the more recent element will be the root element.

History-Independent data structures leak no information about the history of
operations on the data structure, even to an observer who can see how the data
structure is represented in memory. The remainder of this section is dedicated to
formally defining history-independence, and briefly discussing how we use it in this
thesis.

A data structure is a mapping from a set of inputs (and possibly some randomness)
to a memory representation. Let Σ be the set of all possible sequences of operations
on the data structure. Then a data structure DS of size N which uses r bits of
randomness is a mapping DS : Σ × {0, 1}r → {0, 1}N . The memory representation
contains the entirety of the on-disk representation of the data structure: what data
is stored, where it is stored in memory, the pointer structure of the data structure,
etc.

A history-independent (HI)4 data structure gives the same mapping for all σ ∈ Σ
that lead to the same set of stored contents S.5

Definition 3.2. Consider a data structure with stored contents S and memory rep-

resentation M . Then consider two distinct sequences of operations σ1, σ2 which both

lead to S being stored in the dictionary. Then the data structure is history independent

if

Pr
r

(DS(σ1, r) = M) = Pr
r

(DS(σ2, r) = M).

This is essentially the same definition given in [96].

4We also use HI to refer to history-independence itself.
5In the context of a PMA S is just the in-order set of items in the data structure. Other data

structures which store other information have slightly different S; however, the definition of history-

independence stays otherwise the same.
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This notion of history independence is known as weak history independence in the
literature—weak because it is secure only if the observer can look at the data struc-
ture once. Strong history independence hides history against an observer who can
look at the data structure multiple times. A classic theorem states that a reversible
data structure6 is strongly history independent if and only if it has a canonical rep-
resentation, up to initial randomness [74]. In other words, the data structure cannot
flip further random coins during execution. This turns out to be fatal to obtaining
good bounds for storing data in a dynamic array, and thus to a PMA (since a dynamic
array is essentially a PMA without the constraint that data must remain in order).

Observation 3.3. No strongly-history-independent dynamic array can achieve o(N)

amortized resize cost per insert or delete with with probability at least 1 − 1/N1+ε,

where N is the maximum size of the array.

Proof. Consider a strongly-history-independent dynamic array that needs to be

strictly greater than 50% full. (The proof generalizes to arbitrary capacity con-

straints.) For integer k, the adversary chooses a random ` ∈ {k, k+ 1, . . . , 2k}. Then

the adversary inserts up to ` elements into the array, and then alternates between

adding and removing an element from the array, so that the array alternates between

having ` and `+ 1 elements.

Given the capacity constraints on the array, there must be at least two different

canonical representations for the arrays of sizes k, k + 1, . . . , 2k. Thus, there is a

probability of at least 1/k that the adversary forces an array resize (with cost Ω(N))

on every insert and delete in the alternation phase.

Observe that k can be arbitrarily large. No matter how long the data structure

runs, it cannot avoid an Ω(N) resize with probability greater than 1− 1/k.

History independence was introduced by Naor and Teague in [96], though past
work had already examined ways to hide history from an observer. First Miccian-
cio [92] and later Snyder [108] studied how to hide information in the pointer structure
of a tree. (This is a weaker notion than history independence.) History indepen-
dence was significantly extended in the work of Hartline et al. [74]. Later research
includes results for history-independent hashing [27, 95, 96], dictionaries and order-
maintenance [27], and data structures for computational geometry [28,112].

6That is, a data structure with contents S that can perform a non-empty series of operations and

return to the same set of contents S (formally, the data structure’s state transition graph is strongly

connected). A PMA is reversible because it allows both inserts and deletes.
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History independence has been previously studied in external memory as well.
First, Golovin proposed the B-treap [68], a strongly history-independent external-
memory B-tree variant based on treaps [9]. Golovin notes that while the B-treap is a
unique-representation data structure supporting B-tree operations with low overhead,
from a practical point of view, it is complicated and difficult to implement [69].
Golovin thus proposes a strongly history-independent B-skip list [69] as a simpler
alternative to the B-treap. Both of these data structures meet classic B tree bounds
for all operations (with some additional, though reasonable, assumptions on B).

Retaining balance in data structures is an obstacle to history-independence. For
example, as mentioned earlier, an AVL tree is not history independent. However,
there are history-independent binary search trees. The treap is a history-independent
data structure in which each element, when inserted, is promoted randomly through
the tree [9]. This gives a randomized balancing scheme independent of the history
of the data strucutre. The skip list is a similar data structure that also gives strong
guaranteed performance bounds [106]. The skip list also promotes elements randomly,
but deviates from the classic binary search tree pointer structure, creating a distinct
and arguably simpler data structure as a result.

Our goal in this section is to give a randomized balancing scheme for a PMA–
which must be much more tightly balanced due to the O(N) space constraint—which
retains history-independence.

3.3 History-Independent Packed Memory Array

This subsection gives a history-independent packed memory array (PMA).
Our PMA is randomized and, therefore, our bounds are randomized as well—it is

possible, though extremely unlikely, that our data structure will perform much more
poorly than the O(log2N) bound on an unlucky execution. Our performance bounds
have two parts. We show that our data structure performs well in expectation, so
we expect it to have O(log2N) performance on average. But to follow up, we bound
how often they can deviate from the expected bound.

In particular, we show that our data structure requires O(log2N) operations and
O((log2N)/B) I/Os with high probability. An event occurs with high probability if
it occurs with probability at least 1 − O(1/N c) for any c ≥ 0. The parameter c in
the probability generally gives a tradeoff with the severity of the event: for example,
our HI PMA has cost O(c log2N) with probability 1 − O(1/N c). Thus, while it is
possible that the PMA performs slightly worse than expectation, if N is at all large,
it is extremely likely that its performance will be very close to the expected bound.
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3.3.1 High-Level Structure of HI PMA

Packed-memory arrays and sparse tables in the literature [21, 23, 77, 80, 119] are not
history independent; the size of the array, densities of the subarrays, and rebalances
depend strongly on the history.

We guarantee history independence for our PMA as follows. First, we ensure
the size of the PMA is history independent. We resize using the HI dynamic array
allocation strategy described in [74].

Next, we ensure that the N elements in the array of size NS = Θ(N) are spread
throughout the array according to a distribution (given below) that is independent
of past operations.

We maintain this history-independent layout recursively. At the topmost level
of recursion, we (implicitly) maintain a set of size Θ(NS/ logNS), which we call
the candidate set. The candidate set consists of elements that have rank N/2 ±
Θ(NS/ logNS). We pick a random element from the candidate set, which we call the
balance element. If the balance element has rank r, then we recursively store the first
r − 1 elements in the first half of the array and the remaining N − r − 1 elements in
the second half of the array.

In general, when we are spreading elements out within a subarray A of the PMA,
the candidate set has size Θ(|A|/ logNS), and as before, the balance element is ran-
domly chosen from this set. The base case is when |A| = Θ(logNS), at which point
the elements are spread evenly throughout A.

Thus, how the elements are spread throughout the PMA depends only on the
size NS (which is randomly chosen), the number of elements in the PMA N , and the
random choices of all the balance elements.

We maintain the balance elements in each candidate set using a simple general-
ization of reservoir sampling [113] in which there are deletes, described below. In this
particular instance of reservoir sampling, the size of a candidate set at any given level
of recursion stays the same, unless the size of the entire PMA changes.

3.3.2 Reservoir Sampling with Deletes

We first review a small tweak on standard reservoir sampling [113], reservoir sampling
with deletes, which we use to help build the PMA.

Game: We have a dynamic set of elements. The objective is to maintain a
uniformly and randomly chosen leader of the set, where each element in the set has
equal probability of being selected as leader. In other words, we are interested in
reservoir sampling with a reservoir of size 1.

Since the set is dynamic, at each step t, an element may be added to or deleted
from the set. The adversary is oblivious, which means that the input sequence cannot
depend on the particular element chosen as leader.
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We can maintain the leader using the following technique. Let nt denote the num-
ber of elements in the set at time t (including any newly-arrived element). Initially,
if the set is nonempty, we choose the leader uniformly at random. When a new ele-
ment y arrives, y becomes the leader with probability 1/nt; otherwise the old leader
remains. When an element is deleted, there are two cases. If that element was the
leader, then we choose a new leader uniformly at random from the remaining elements
in the set. If the deleted element was not the leader, the old leader remains.

Lemma 3.4 ([113]). At any time step t, if there are nt elements in the pool, then

each element has a probability 1/nt to be the leader.

3.4 Detailed Structure of the HI PMA

The size NS of our history-independent PMA is a random variable that depends on
the number of elements N stored in the PMA (similar to dynamic arrays). We select
parameter N̂ randomly from {N, . . . , 2N−1}, and NS is a function of N̂ (as described
below).

We view the PMA as a complete binary tree of ranges, where a range is a contigu-
ous sequence of array slots. This tree has height h = dlog N̂ − log log N̂e. The root is
the entire PMA and has depth 0. The leaves in the binary tree are ranges comprising
dCL log N̂e slots, where CL is a constant to be determined later. Thus, the PMA has
a total of NS = 2hdCL log N̂e ≤ (2CL + 1)N̂ = Θ(N) slots.

Consider a range R in the binary tree with left child R1 and right child R2. Recall
from Chapter 3.3.1 that the balance element bR of R is the first element of R2; all the
elements in R of smaller rank than bR are stored in R1. The values of bR for each
range/node are stored in a separate tree.

For each non-leaf range R at depth d, define the candidate set MR to be the
dc1N̂2−d/ log N̂e middle elements of R. More precisely, if R holds ` elements, then we
fix the size of MR and set the first element of MR to be the 1 + d`/2e − d|MR|/2eth
element of R.

Our PMA is parameterized by a constant 0 < c1 < 1 − 6/ log N̂ .7 A larger
c1 reduces the amortized update time and increases the space. We require CL ≥
1 + c1 + 6/ log N̂ . The value of CL and c1 need not change as N̂ changes—values such
as c1 = 1/2 and CL = 2 work for sufficiently large N̂ (over 4096 in this case).

7When N̂ ≤ 64, no such c1 exists. For such small N̂ , we use a dynamic array instead.
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3.5 Dynamically Maintaining Balance Elements

As elements are inserted into or deleted from the PMA, the candidate set MR for
some range R could change. This change might be caused by a newly inserted or
deleted element that belongs to MR or just because insertions at one end of R cause
the median element of R to change.

As the candidate set MR changes, we maintain the invariant that the balance
element bR is selected uniformly and randomly from MR. (In particular, this means
that bR is selected history-independently.) We use reservoir sampling with deletes as
the basis for maintaining this invariant.

Invariant 3.5. After each operation, for each range R, balance element bR is uni-

formly distributed over the candidate set MR.

Whenever one element leaves their candidate set, another one joins, since the
candidate set size of each range is fixed between rebuilds of the entire PMA. Thus,
we describe how to maintain the candidate set when exactly one element is added,
and one leaves.

If the balance element is the element leaving the candidate set, we select the new
balance element uniformly at random. Otherwise, when a new element enters the
candidate set, it has a 1/|MR| chance of becoming the new balance element (as in
reservoir sampling).

When the balance element of a range changes, we rebuild the entire range and
all of its subranges. Rebuilding a range of |R| slots can be done in Θ(|R|) time; see
Lemma 3.10.

3.6 Detecting Changes to the Candidate Set

In order to determine how inserts and deletes affect the candidate set of a range R, we
need to know the rank of the element being inserted or deleted, the current candidate
set of R, and the rank of the current balance element of R.

The rank of the element being inserted and deleted is specified as part of the insert
or delete operation.

To compute the other information, our PMA maintains an auxiliary data structure
containing the number of elements `R in each range R. During an insert or delete, as
we descend the tree of ranges, we keep track of the ranks of the first and last element
in each range as follows. Suppose we are at range R whose first element has rank x.
If we descend to R1, then we know the rank of the first element of R1 is also x. If we
descend to R2, then the rank of its first element is x+ `R1 . Given the rank of the first
element of a range and the number of elements in that range, it is easy to compute
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its candidate set. Note also that the rank of the balance element of a range R whose
first element has rank x is x+ `R1 .

We need to store `R for each range so that it can be accessed efficiently, both in
terms of operations and I/Os. Since the ranges form a complete binary tree, we store
the numbers `R in a binary tree organized in a Van Emde Boas layout (see [21,104]).
We call this auxiliary data structure the rank tree.

The Van Emde Boas layout is a deterministic, static, cache-oblivious—and hence
history-independent—layout of a complete binary tree. It supports traversing a root-
to-leaf path in O(logN) operations and O(logB N) I/Os. Thus, the rank tree is
history independent.

Whenever the size of a range changes due to an insert or delete, we update the
corresponding entry in the rank tree. Whenever we rebuild a range R in the PMA,
we update all entries of the rank tree corresponding to descendants of R. Whenever
we rebuild the entire PMA, we rebuild the entire rank tree.

3.7 Correctness and Performance

The main goal of this section is to prove that the PMA performs well; that is,

Theorem 3.6. There exists a weakly history-independent packed-memory array on

N elements which can perform inserts and deletes in O(log2N) amortized element

moves with high probability. This PMA requires O(N) space, can perform inserts and

deletes in amortized O
(
log2N
B

+ logB N
)

I/Os with high probability, and can perform

a range query for k elements in O(1 + k/B) I/Os.

3.7.1 Balance-Element Structural Lemmas

First, we show correctness—the data structure always finds a slot for any element it
needs to store.

Lemma 3.7. At all times, the size of a range is larger than the number of elements

it contains.

Proof. Consider a range at depth d. This range has NS/2
d = 2h−ddCL log N̂e ≥

CLN̂/2
d slots. We show that the maximum number of elements it can contain is

smaller than this number of slots.

The number of elements in the range is at most half of the elements in its parents

range, plus half of the size of the parent’s candidate set (rounding up). In other
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words, if S(d) is the maximum number of elements in a range at depth d, S(0) ≤ N̂

and

S(d) ≤ dS(d− 1)/2e+ dMR/2e

≤ dS(d− 1)/2e+
1

2

⌈
c1N̂

2d−1 log N̂

⌉
+

1

2

≤ S(d− 1)

2
+

c1N̂

2d log N̂
+

3

2
.

By induction,

S(d) ≤ N̂

2d
+

c1dN̂

2d log N̂
+ 3.

Since d ≤ log N̂ , and N̂/2d ≥ N̂/2h ≥ (log N̂)/2,

S(d) ≤ N̂

2d
(1 + c1) + 3 ≤ N̂

2d

(
1 + c1 +

6

log N̂

)
.

Since we choose CL ≥ 1 + c1 + 6/ log N̂ , we have S(d) ≤ CLN̂/2
d.

As Lemma 3.7 establishes, each leaf range in the PMA (which has Θ(logN) slots)
never fills up completely. Using a similar argument, it can be shown that each leaf
also contains Ω(logN) elements if c1 < 1−6/ log N̂ . Because the elements are spread
out evenly in the leaves, this implies there are O(1) gaps between two consecutive
elements.

Lemma 3.8. If c1 < 1 − 6/ log N̂ , the leaves are always constant-factor full. There

is O(1) space between two consecutive elements in the array.

Next, we prove weak history independence. As mentioned in Chapter 3.3.1, when
we are spreading elements out within a subarray A of the PMA, the balance element
is randomly chosen from the candidate set. The elements of A are recursively split
between its children according to this balance element. The base case is when |A| =
Θ(log N̂), at which point the elements are spread evenly throughout A.

Thus, how the elements are spread throughout the PMA depends only on N̂ (and
the related NS), the number of elements in the PMA N , and the random choices
of all the balance elements. This immediately gives weak history-independence, as
formalized in the following lemma.

Lemma 3.9. This PMA is weakly history independent.
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Proof. We show that the memory representation of the PMA is based only on N and

some randomness (in particular, the random choices made during balance element

selection and the random choice of N̂).

Let the PMA contain a set of elements S of size N , with a set of balance elements

P . Then P partitions the elements of S into leaf ranges.

Since the elements are evenly spaced in each leaf range, the position of each

element within the leaf is determined by the number of elements in that leaf. Since S

is partitioned into leaf ranges by P , P determines the position of each element in the

PMA. Thus P , N̂ , and N determine the memory representation of the data structure.

By Invariant 3.5, P is selected from a distribution based only on N and N̂ .

Thus, any two sequences of operations X and Y that insert S into the PMA result

in the same distribution on P , and the same distribution on memory representations.

3.7.2 Proving the Performance Bounds

We begin by bounding the cost of a rebalance. Then we bound the total number of
rebalances.

Lemma 3.10. Rebuilding a range R containing |R| slots takes O(|R|) RAM opera-

tions and O(|R|/B + 1) I/Os.

Proof. The algorithm first recursively chooses the balance elements for all ranges

contained in this range R and updates them in the rank tree; this takes O(|R|)
time and O(|R|/B + logB |R| + 1) = O(|R|/B + 1) I/Os. Then, all elements in R

are gathered, and inserted into the appropriate leaf range using a sequence of linear

scans.

Our goal is to bound the cost of our PMA operations. Specifically, we want to
show Theorem 3.11.

Theorem 3.11. Consider k (not necessarily consecutive) operations on a PMA dur-

ing which its maximum size is NM , its minimum size is Ω(NM), and k = Ω(NM).

The amortized cost of these operations is O(log2NM) with high probability with respect

to k: in other words, these k operations require O(k log2NM) total RAM operations

with high probability.

Before proving this theorem, we need some supporting lemmas and definitions.
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Definition 3.12. A rebuild that is not charged to a range R is called a free rebuild.

Free rebuilds come from two sources: (1) they are rebuilds of an ancestor range (whose

cost is charged to the ancestor), or (2) they are triggered by the interstitial operations

between the nonconsecutive operations of Theorem 3.11.

We further categorize non-free rebuilds by their causes. An out-of-bounds rebuild

is a rebuild caused by the pivot leaving the candidate set. A lottery rebuild is a

rebuild caused by deleting the pivot or by inserting into the candidate set an element

that becomes a new pivot.

Gearing up to Lemma 3.13, we concentrate on the cost of all rebalances at a single
depth d. Let Md be the size of the candidate set at depth d.

We give a lower bound on the probability that two out-of-bounds rebuilds happen
in quick succession. This lemma holds regardless of the number of free and lottery
rebuilds that happen in between.

Lemma 3.13. After any rebuild of a range R at depth d, consider a sequence of t

operations on R, for any t ∈ {1, . . . , bMd/2c}, with arbitrary free and lottery rebuilds

occurring during these operations. The probability p(t) that no out-of-bounds rebuild

happens during these t operations is at least 1− 2t/Md.

Proof. Let pi(t) be the probability that no out-of-bounds rebuild happens in the first

t time steps, given that exactly i free and lottery rebuilds happen during the first t

time steps. We prove the lemma by induction on i.

Define the guard number as the number of elements between the pivot and the

closest endpoint of the candidate set.

First, the base case: for any t, p0(t) is at least the probability that the

guard numberafter a rebuild is larger than t. Indeed, the balance element cannot

be moved closer to an endpoint of the candidate set by more than one element per

operation. As the pivot is sampled uniformly after any type of rebuild, we have

p0(t) ≥ Pr(guard number > t) ≥ 1− 2t/Md.

Now, assume by induction that pi(t) ≥ 1 − 2t/Md and we want to show pi+1(t) ≥
1− t/Md. Let t′ be the last time step before the (i+ 1)st non-out-of-bounds rebuild.

The following conditions ensure that there are no out-of-bounds rebuilds in the

first t operations:

1. there is no out-of-bounds rebuild in the first t′ operations, and
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2. there is no out-of-bounds rebuild in the subsequent t− t′ operations.

These two events are independent since there is a fixed (free or lottery) rebuild

between them. The first occurs with probability pi(t
′) and the second with probability

p0(t− t′). Thus, we have

pi+1(t) ≥ pi(t
′) p0(t− t′)

≥ (1− 2t′/Md) (1− 2(t− t′)/Md) ≥ 1− 2t/Md,

and the induction is complete.

Definition 3.14. Consider an out-of-bounds rebuild of a range R at depth d.

We call this rebuild a good out-of-bounds rebuild if R has only free and lottery

rebuilds for the next Md/4 operations.

By Lemma 3.13, an out-of-bounds rebuild is good with probability at least 1/2.
We are now ready to prove Theorem 3.11.

Proof of Theorem 3.11: Consider the sequence of rebuilds of ranges at a given
depth d. We analyze lottery rebuilds and out-of-bounds rebuilds separately. Since
variations in N̂ slightly change the candidate set size, let M denote the smallest
candidate-set size at depth d over the k operations. However, since N = Θ(NM) at
all times, M = Θ(|Md|).

We give a (weak) bound on k/M which helps show that the high-probability
bounds hold with respect to k.

In particular,

k/M ≥ k logNM

NM

≥ k log k logNM

NM log k
= Ω(log k),

since k/ log k = Ω(NM/ logNM) if k = Ω(NM).
Each operation has probability at most 1/M of causing a lottery rebuild. Thus,

there are k/M lottery rebuilds in expectation. Then using Chernoff bounds, the
probability that we have more than (1 + δ)k/M rebuilds is less than e−δk/3M . Recall
that k/M = Ω(log k). Substituting, there are O(k/M) lottery rebuilds with high
probability.

Now, we bound the out-of-bounds rebuilds. By the pigeonhole principle, there
cannot be more than k/(M/4) + 2d = O(k/M) good out-of-bounds rebuilds (the
second term comes from the number of ranges at depth d).

We bound how many bad out-of-bounds rebuilds can happen before reaching
this limit on good out-of-bounds rebuilds. Any out-of-bounds rebuild is good with
probability at least 1/2. Then after k/M = Ω(log k) out-of-bounds rebuilds, we
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obtain Θ(k/M) good out-of-bounds rebuilds with high probability, again by Chernoff
bounds. As we can only get O(k/M) good rebuilds, we have O(k/M) out-of-bounds
rebuilds in total.

Therefore, every k operations, there are O(k/M) out-of-bounds and lottery re-
builds of ranges at depth d with high probability. Each rebuild costs O(M logNM)
RAM operations by Lemma 3.10 (because that is the number of slots in a range at
depth d). Thus, the total rebuild cost for depth d is O(k logNM).

Having determined the cost of rebalancing at each depth, we account for the
total cost. The amortized rebalance cost, summing over all h = O(logNM) levels, is
O(log2NM).

Each resize costs O(NM) and occurs with probability O(1/NM) after every in-
sertion. Using Chernoff bounds, there are O((k logNM)/NM) = Ω(log k) resizes af-
ter k operations with high probability, leading to an additional amortized cost of
O(logNM).

Finally, each insert or delete requires extra bookkeeping: we must find the ap-
propriate leaf range to insert the element by traversing the rank tree. This traversal
takes O(logNM) RAM operations, and rebuilding the leaf so that the elements are
still evenly spaced takes O(logNM) RAM operations.

This gives a total of O(k log2NM) total RAM operations with high probability.
Using similar analysis, we can also bound the I/O performance. Recall that re-

balancing a range of size R takes O(R/B + 1) I/Os, and traversing a tree in the
Van Emde Boas layout requires O(logB NM) I/Os. Carrying these terms through the
above proof gives the desired bounds.

To complete the proof of Theorem 3.6, we need to extend this analysis to handle
the PMA changing size significantly.

Proof of Theorem 3.6: We partition the k = Ω(N) operations on the PMA into
types based on the size of the PMA. In particular, let N̂t be the value of N̂ during
the tth operation. Then operation t is of type 0 if N ≥ N̂t > N/2, type 1 if N/2 ≥
N̂t > N/4, and type i if N/2i ≥ N̂t > N/2i+1 for 0 ≤ i ≤ dlogNe.

We analyze each type of operations as a whole, and bound its total cost, summing
to O(k log2N) RAM operations in total. Each type is analyzed using two cases.

First, consider a type i which has at least
√
N total operations. Then by The-

orem 3.11, these operations take amortized O(log2N) RAM operations with high
probability.

Second, consider a type i which has less than
√
N operations. We call the op-

erations of these types small-type operations. We show that the total cost of all
small-type operations is a lower-order term.

Since the PMA begins as empty, and each operation can only insert one element,
there are at least N/2i+1 operations of type i. Thus, each small-type operation t has
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N̂t ≤
√
N .

Then overall, a type which has less than
√
N operations must operate on a PMA

of size ≤
√
N . Thus, each type has total cost O(N). Summing over the O(logN)

such types, we get a worst-case total cost of O(N logN) for small-type operations;
amortizing gives a cost of O(logN) RAM operations.

Thus the total amortized cost is O(log2N) with high probability with respect to
N . The I/O cost to rebuild range R is |R|/B by Lemma 3.10; carrying this term
through the above analysis, we obtain the desired I/O bounds.
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Chapter 4

High-Performance Computing

Modern CPUs are often able to process data much more quickly than they are able
to access it from DRAM, especially while computers become more parallel and more
streamlined, while DRAM access speeds stay relatively stagnant. In particular, many
of these processes are memory-bandwidth bound : they are not able to access data as
quickly as they can process it, but increasing the bandwidth of memory alleviates
this issue. In the language of the DAM model (see Chapter 3), the performance of
memory-bound processes improves as we increase B.

Not all memory-bound processes are memory-bandwidth bound. For example, a
process that accesses DRAM pages at random has to perform one I/O per operation
regardless of bandwidth. However, many common processes like sorting and sparse
matrix multiplication include scans over large amounts of data, which decrease in cost
as the bandwidth increases.

Recently, architectural advances have led to a new kind of memory which has the
potential to significantly improve the performance of memory-bandwidth-bound pro-
cesses. This memory has similar latency to DRAM, but higher bandwidth. Thus, we
refer to this new memory as High-Bandwidth Memory, or HBM. While its bandwidth
is higher, HBM is smaller than classic DRAM. Current HBM implementations are
generally around 4-16 GB [81,87].

High-Bandwidth Memory has been applied to both CPUs [4, 18, 81, 111, 115] and
GPUs [4, 115, 120]. In both of these applications, the focus is on highly parallel
machines (as without such parallelism, I/Os are generally able to keep up with com-
putation in practice). Our work here focuses on CPUs. We gloss over the parallel
aspect of HBM compute nodes for simplicity in our algorithm analysis.8 However,
the practical (and parallel) version of our algorithm is a reasonably straightforward
generalization of the ideas presented here. For a full exposition of this parallel gen-
eralization, see [18].

Because of this tradeoff between smaller size and larger bandwidth, HBM is not
used as a level in the current memory hierarchy. Instead, algorithm designers must
decide whether a given page should be stored in large, low-bandwidth DRAM, or the
small, high-bandwidth HBM.

This leads to a fundamental question: what data should we store in HBM to take

8In particular, we use a very simplified memory hierarchy which ignores the complicated cache

structure of these compute nodes.

52



maximum advantage of the improved bandwidth? Can we use HBM to improve the
real-time performance of common memory-bandwidth-bound applications?

In this work, we focus on the theoretical basis for HBM: setting up the theoretical
model, and giving an optimal algorithm for sorting. The full paper [18] also includes
simulation results which indicate that this algorithm improves wall clock running time
in practice.

4.1 Algorithmic High-Bandwidth Memory Model

In this section, we propose an algorithmic model of the HBM, generalizing the DAM
(i.e. external-memory model) of Aggarwal and Vitter [3] to include high- and low-
bandwidth memory. (This model is described in more depth in Chapter 3.)

HBM model

Both the DRAM and the HBM are independently connected to the cache; see Figure 3.
The HBM hardware has an access time that is roughly the same as that of normal
DRAM—the difference is that the HBM has limited size but higher bandwidth. We
model the higher bandwidth of the HBM by transferring data to and from the DRAM
in smaller blocks of size B and to and from the HBM in larger blocks of size ρB, ρ > 1.

We parameterize memory as follows: the cache has size Z, the HBM has size
M � Z, and the DRAM is modeled as arbitrarily large. We assume a tall cache;
that is, M > B2. This is a common assumption in external-memory analysis, see
e.g. [22, 31,32,64].

We model the roughly similar access times of the actual hardware by charging
each block transfer a cost of 1, regardless of whether it involves a large or small block.
Performance is measured in terms of block transfers. Computation is modeled as free
because we consider memory-bound computations.

Note that the HBM block size, ρB, in the algorithmic performance model need not
be the same as the block-transfer size in the actual hardware. But for the purpose
of algorithm design, one should program assuming a block size of ρB, so that the
latency contribution for a transfer is dominated by the bandwidth component.

In the following, we say that event EN on problem size N occurs with high proba-
bility if Pr(EN) ≥ 1−O( 1

Nc ), for some constant c. This is discussed in further detail
in Chapter 3.3.

Putting the HBM model in context

The external-memory model of Aggarwal and Vitter [3], assumes a two-level hierarchy
comprised of a small, fast memory level and an arbitrarily large second level. Data
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(very large)

DRAM

Cache (size Z)

HBM (size M)

Cost 1
Block size ρB,

Cost 1
Block size B,

Figure 3: The High Bandwidth Memory model.

is transferred between the two levels in blocks of size B.
Because the HBM model has two different bandwidths but roughly similar laten-

cies, we have extended the external-memory model to have two different block sizes,
each with the same transfer cost; see Figure 3.

There do exist other memory-hierarchy models, such as the cache-oblivious
model [64, 104], which apply to multi-level memories. However, the different band-
widths but similar latencies means that the cache-oblivious model does not seem to
apply. Instead, the HBM model can be viewed as a three-level model, but where two
of the levels are in parallel with each other.

Background on external-memory sorting

The following well-known theorems give bounds on the cost of external-memory sort-
ing.

Theorem 4.1 ([3]). Sorting N numbers from DRAM with a cache of size Z and block

size L (but no HBM) requires Θ
(
(N/L) logZ/L (N/L)

)
block transfers from DRAM.

This bound is achievable using multi-way merge sort with a branching factor of Z/L.

Theorem 4.2 ([3]). Sorting N numbers from DRAM with a cache of size Z and block

size L (but no HBM) using merge sort takes Θ
(
(N/L) lg (N/Z)

)
block transfers from

DRAM.

In the analysis of sorting algorithms in the following sections, we will sometimes
apply these theorems with L = B and sometimes apply them with L = ρB.
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4.2 Sorting with High-Bandwidth Memory

This section gives an optimal randomized algorithm for sorting with one processor
with a HBM. This algorithm generalizes multiway merge sort and distribution sort [3],
which in turn generalize merge sort and sample sort [62].

We are given an array A[1, . . . , N ] of N elements to sort, where N �M . For sim-
plicity of exposition we assume that all elements in A are distinct, but this assumption
can be removed.

The algorithm works by recursively reducing the size of the input until until each
subproblem fits into the HBM, at which point it can be sorted rapidly. In each
recursive step, we “bucket” elements so that for any two consecutive buckets (or
ranges) Ri and Ri+1, every element in Ri is less than every element in Ri+1. We then
sort each bucket recursively and concatenate the results, thus sorting all elements.

4.2.1 Choosing Bucket Boundaries

To perform the bucketing, we randomly select a sample set X of m = Θ(M/B)
elements from A[1, . . . , N ] and sort them within the HBM. (We assume sampling
with replacement, but sampling without replacement also works.)

The exact value of m is chosen by the algorithm designer, but must be small
enough to fit in the HBM.

Our implementation uses multiway mergesort from the GNU C++ library to sort
within the HBM [39]. Other sorting algorithms could be used, such as quicksort. If ρ
is sufficiently large, either sorting algorithm within the HBM leads to an optimal algo-
rithm (see Theorem 4.6); however, the value of ρ based on current hardware probably
is not large enough to make quicksort practically competitive with mergesort.

Corollary 4.3. Sorting x elements that fit in the HBM uses Θ
(
(x/ρB) logZ/B x/B

)
block transfers using multi-way merge sort with a branching factor of Z/B, or

Θ
(
(x/ρB) lg (x/Z)

)
in expectation using quicksort. Both algorithms use O(x lg x)

work.

4.2.2 Bucketizing

We are given the sample set X = {x1, x2, . . . , xm} (x1 < x2 < . . . < xm) of sorted
elements and input array A. Since |X| = m, X fits in the HBM, and A does not.

Our objective is to place each element A[i] ∈ A \X into bucket Rj if xj < A[i] <
xj+1. (We may assume that x0 = −∞, and xm+1 =∞.)

We perform a linear scan through A, ingesting M − Θ(m) elements into the
scratchpad at a time. All of X remains in the HBM for the entire scan.
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Once each new group of elements is loaded into the HBM, we sort them (along
with X). Their position relative to the elements of X indicate which bucket they are
stored in. The resulting bucketed elements get written back to DRAM, while the set
X remains in the HBM. We call this process a bucketizing scan.

Lemma 4.4. Each bucketizing scan costs:

1. O(N/B) block transfers from DRAM,

2. O(N/(ρB) logZ/(ρB)M/(ρB)) block transfers from the HBM, and

3. O(N lgM) operations in the RAM model.

Proof. We select and sort the set X of sampled points in the HBM (necessary for

mergesort), and then bucketize the rest of A. Assume for simplicity that m ≤M/2.

Sampling X requires O(m) block transfers and O(m) work, given constant time

to choose a random word. Sorting X requires O(m lgm) work and O( m
ρB

logZ/B
m
B

)

block transfers (via Corollary 4.3).

To bucketize, we read all elements from DRAM to the HBM in blocks of size

M−Θ(m) ≥M/2. This requiresO(M/B) block transfers from DRAM. The algorithm

sorts each of these blocks in O(M/(ρB) logZ/(ρB)M/(ρB)) HBM block transfers and

requires O(M lgM) work to decide their buckets. There are O(N/M) such groups, so

this requires O(N/B+N/(ρB) logZ/(ρB)M/(ρB)) total block transfers. We write each

bucket to a separate piece of DRAM memory. This does not increase the cost: were

the writing done to a contiguous location, it would require Θ(M/B) block transfers

as the reading does. By writing the elements in O(m) = O(M/B) pieces, we may

incur up to two extra block transfers per piece: one to start each bucket, and perhaps

another to end it. Thus the total number of transfers to write buckets to DRAM

(even in seperate pieces) is Θ(M/B).

4.2.3 Bounding the Recursion Depth for Sorting

We now conclude our analysis of HBM sorting. Recall that the algorithm successively
scans the input, refining it into progressively smaller buckets. Lemma 4.4 from the
previous section gave a bound of the complexity of each scan.

In this section, we first show that the random samples are good enough so that with
high probability each bucket is small enough to fit into cache after O(logm(N/M))
bucketizing scans. Then we give a bound on the sorting complexity.
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This randomized analysis applies to any external-memory sort. However, to the
best of our knowledge, this kind of analysis does not appear in the literature. Pre-
vious external memory sorting algorithms were deterministic. However, randomized
algorithms are practical.

Lemma 4.5. Each bucket fits into cache after O(logm(N/M)) bucketizing scans with

high probability.

Proof. Each newly-created bucket results from a good or bad split depending on its

size. If a split makes a new bucket at least
√
m factor smaller than the old one we

call this a good split; otherwise it is bad.

We show that in a sufficiently large set of O(logm(N/M)) splits, there are

3 logm(N/M) good splits with high probability. Thus, after O (logm(N/M)) scans,

each bucket is involved in at least 3 logm(N/M) good splits, and fits in HBM.

We first show that the probability of a bad split is exponentially small in
√
m. Let

Ri be the bucket being split. For simplicity, assume Ri lists the elements in sorted

order, though the bucket itself may not be sorted yet. If a subbucket starting at j

came from a bad split, no element in {Ri(j), Ri(j + 1), . . . , Ri(j + (|Ri|
√
m/m))} is

sampled to be in X. This happens with probability at most (1−
√
m/m)m ≈ e−

√
m.

We next show that of any (3/2)c logm(N/M) splits on a root-to-leaf path of the

recursion tree, at most c logm(N/M) are bad with high probability. Thus there are

at least (c/2) logm(N/M) good splits; choosing c ≥ 6 proves the lemma.

By linearity of expectation, the expected number of bad splits is at most

(3/2)ce−
√
m logm(N/M). Applying Chernoff bounds [94] with δ = (2/3)e

√
m − 1,

we obtain

Pr

[
# bad splits > c logm

N

M

]
≤
(

e

2e
√
m/3

)c logm N
M

.

We want to show that this is bounded above by 1/Nα. Taking the log of both

sides of the inequality, this simplifies to

c
(
(
√
m− 1) lg e− lg 3/2

)
logmN/M ≥ α lgN.

Now there are two cases. First, assume M ≥
√
N . Recall the tall cache assump-

tion, that M > B2. Then
√
m =

√
M/B ≥ M1/4 ≥ N1/8. Substituting, we obtain
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c((N1/8 − 1) lg e − lg 3/2) logmN/M ≥ α lgN , which is true for sufficiently large N

and c = α.

On the other hand, let M <
√
N . Note that for m ≥ 2,

((
√
m− 1) lg e− lg 3/2) / lgm ≥ 1/2. Then for c ≥ 4α,

c
(
(
√
m− 1) lg e− 2

)
logm

N

M
≥ c

2
lg
N

M
≥ α lgN.

This shows that each bucket is sufficiently small with high probability after

O(logmN/M) bucketizing scans. To show that all must be small enough, take the

union bound to obtain a probability no more than 1/Nα−1. Performing the analysis

with α′ = α + 1 gives us the desired bound.

Theorem 4.6. There exists a sorting algorithm that performs

Θ
(
N
B

logM/B
N
B

+ N
ρB

logZ/ρB
N
B

)
block transfers with high probability to parti-

tion the array into buckets, all of size ≤ M . This bound comprises O(N
B

logM/B
N
B

)

block transfers from DRAM and O( N
ρB

logZ/ρB
N
B

) high bandwidth block transfers from

the HBM. There is a matching lower bound, so this algorithm is optimal.

Proof. By Lemma 4.5 there are O(logmN/M) ≤ O(1+logmN/M) = O(logM/B N/B)

bucketizing scans; multiplying this by the block transfers per scan in Lemma 4.4 gives

us the desired bounds. Note that once the buckets are of size ≤ M , we can sort all

of them with O( N
ρB

logZ/ρB
M
ρB

) additional block transfers by Corollary 4.3; this is a

lower-order term.

To obtain the lower bound we will combine two lower bounds from weaker mod-

els. First consider a model where computation can be done in the HBM as well as

in cache. Then the standard two-level hierarchy lower bound applies, and sorting

requires Ω(N
B

logM/B
N
B

) block transfers from DRAM (since M + Z = O(M)). This

bound is the same as the one given in Theorem 4.1, and can be found in [3].

Consider a second model where the DRAM allows high-bandwidth block transfers.

Again, the standard two-level hierarchy lower bound applies, and sorting requires

Ω( N
ρB

logZ/(ρB)
N
ρB

) high-bandwidth block transfers.

Both of these bounds must be satisfied simultaneously. Thus, all together we

require Ω(N
B

logM/B
N
B

+ N
ρB

logZ/ρB
N
ρB

) block transfers. Since (N/ρB) logZ/ρB ρ <

N/B, this simplifies to Ω
(
N
B

logM/B
N
B

+ N
ρB

logZ/ρB
N
B

)
.
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The following corollary explains how the sorting algorithm performs when quick-
sort is used within the HBM, and follows by linearity of expectation. The corollary
shows that the algorithm remains optimal as long as the bandwidth of the HBM,
determined by ρ, is sufficiently large.

Corollary 4.7. An implementation of sorting using quicksort within the HBM uses

O(N
B

logM/B
N
B

+ N
ρB

lg M
Z

logM/B
N
B

)) block transfers in expectation. This is optimal

when ρ = Ω(lgM/Z).
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