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Abstract of the Thesis

An Exploratory Study on Process Representations

by

Chetan Nagaraj Naik

Master of Science

in

Computer Science

Stony Brook University

2016

Knowledge about processes is essential for AI systems to under-
stand and reason about the real world events. And, the systems
need some form of semantic representation to perform reason-
ing. At the simplest level, even knowing which class of entities
play key roles can be helpful in recognizing and reasoning about
events. For instance, given a description “a puddle drying in
the sun", one can recognize this as an instance of the evapora-
tion process using simple role knowledge which asserts (among
other things) that the undergoer is a kind of liquid (the puddle),
and the enabler is a heat source (the sun).

In this work, we explore two forms of process knowledge repre-
sentations, a frame representation with a fixed set of roles and a
matrix representation. We developed a fully feature engineered
and a non engineered (using deep LSTM) system for role classi-
fication. We improve these process knowledge extraction mod-
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els by performing cross-sentence inference—over role classifier
scores—which extends the standard within sentence joint infer-
ence to inference across multiple sentences. We also present our
preliminary work on modeling processes as operators.
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Chapter 1

Introduction

1.1 Overview

One of the goals of Artificial Intelligence (AI) is to understand and reason
about the real world events and scenarios. To achieve this, it is necessary for
the AI systems to learn to identify and disentangle the underlying explana-
tory factors hidden in the data. Hence the success of AI systems generally
depends on data representations [3].

Many of the real world events and scenarios are expressed in natural lan-
guage texts. Understanding the events from text requires Natural Language
Processing (NLP). At a high level, understanding an event means being able
to answer questions about it. Numerous practical applications could take
advantage of language understanding, for example, to extract actionable
knowledge, answer questions, or summarize events based on the seman-
tic content of a text. And understanding events/concepts need some form
of semantic representation which provides an abstraction from lexical and
syntactic realizations. With better natural language semantic representa-
tions, computers can do a better job of answering questions as a result of
better understanding of natural text.

In this work, we focus on exploring two forms of representations to store
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knowledge about processes (biological, chemical, physical) in order to an-
swer 4th grade level questions.

1. FRAME REPRESENTATION: At the 4th grade level, the questions do not
involve deep knowledge about the sub-events or their sequential or-
der. Rather the questions test for shallower knowledge about the en-
tities undergoing change, the resulting artifacts, and the main char-
acteristic action describing the process. This knowledge is naturally
expressed via semantic roles. Accordingly we design a simple repre-
sentation that encodes information about each process via the follow-
ing roles [4]:

(a) Input – This role captures the main input to the process or the
object undergoing the process. e.g., Water is an input to the evap-
oration process.

(b) Result – The artifact that results from the process or the change
that results from the process e.g., Water vapor is a result of evap-
oration.

(c) Trigger – The main action, expressed as a verb or its nominaliza-
tion, indicating the occurrence of the process. e.g., converted is a
trigger for evaporation.

(d) Enabler – The artifact, condition or action that enables the process
to happen. e.g., Sun is a heat source that is enabler for evapora-
tion.

2. MATRIX REPRESENTATION: We encode the process knowledge in a
matrix that acts as an operator which predicts the output of a process
given its input.

This thesis also describes methods to extract process knowledge—that con-
forms to the above mentioned representations—from natural language text.

1. Process Knowledge Extraction using Feature Engineering: Here we
describe a system that uses feature engineered semantic role label-

2



ing (SRL) system and Integer Linear Program (ILP) to extract process
knowledge (FRAME REPRESENTATION).

2. Process Knowledge Extraction using LSTM: Here we describe a sys-
tem that uses a combination of Recurrent Neural Networks (RNN)
with Long Short-Term Memory (LSTM) and ILP to extract process
knowledge (FRAME REPRESENTATION).

3. Learning Process Operators: Here we learn a process operator ma-
trix that maps process input to a feature space where both inputs and
outputs of processes are represented.

1.2 Thesis Outline

Chapter 2 briefly describes Semantic Role Labeling and Recurrent Neural
Networks in order to lay down the background of our work.

Chapter 3 describes our system for Cross-Sentence Inference using engi-
neered features with ILP and its extensions.

Chapter 4 describes our system for process knowledge extraction using
LSTM and cross-sentence inference using ILP.

Chapter 5 describes our method to model processes as operators.

In Chapter 6 we conclude by outlining future work and further research
directions.

Chapter 3.1 is a joint work with Samuel Louvan which has been selected
for publication at EMNLP 2016 [5] and hence appear as is (except for minor
modifications to suit thesis requirements).
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Chapter 2

Background

This chapter provides the background material and literature review for
semantic role labeling and recurrent neural networks. Section 2.1 briefly
reviews semantic role labeling in general. Section 2.2 reviews deep learn-
ing and related sequence–to–sequence methods. Section 2.3 covers related
work in representation and extraction of semantic knowledge.

2.1 Semantic Role Labeling

As discussed earlier, to understand events we need some form of seman-
tic representation which provides an abstraction from lexical and syntactic
realizations. In NLP literature, events are often referred to as predicates
and the participants attached to the predicates as its arguments. A predi-
cate and its arguments form a predicate-argument structure. Semantic Role
Labeling (SRL) [6] is a task that involves prediction of predicate-argument
structure, i.e., both identification of arguments as well as assignment of la-
bels according to their underlying semantic role. SRL representations have
many potential applications in NLP and have been shown to benefit ques-
tion answering [7, 8], textual entailment [9], machine translation [10–12],
and dialogue systems [13, 14], among others.
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Chris bought a car from Dan yesterday .

WHO

WHAT

WHOM

WHEN

Figure 2.1: Predicate-argument structure in SRL

Consider Figure 2.1, the processing of the sentence should result in identify-
ing the predicate bought involving Chris as the Agent, Dan as the Seller, car as
the item being bought and yesterday as the time when the event happened.
Computational systems can make use of these semantic roles as shallow se-
mantic representation to make inferences that is not possible by only using
surface words or syntactic representation. For example, it can be used to
answer queries such as:

Who bought a car from Dan?
From whom did Chris buy a car ?
What did Chris buy?
When did Chris buy a car from Dan?

SRL is a challenging task because the same event can be expressed in several
varying syntactic forms. The previous example can be stated in different
ways: A car was bought by Chris, A car was sold to Chris, Chris was sold a
car by Dan, etc.

Different frameworks for representing semantic predicate-argument struc-
ture have been established, notably FrameNet, VerbNet and PropBank, with
accompanying sense and role inventories and annotated resources.

• FrameNet: offers a full-fledged semantic predicate-argument repre-
sentation. Predicates trigger a prototypical situation, called frame,
that defines the possible participants in the situation and their seman-
tic roles in relation to that predicate.

• PropBank: provides a small role inventory. Labels lack semantic trans-
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parency and are marked as A0 to A5. Adjuncts are tagged with a small
set of labels, such as ArgM-LOC.

• VerbNet: is located between FrameNet and PropBank on a continous
scale between a fine-grained interpretable role inventory on one side
and a compact, coarse-grained inventory on the other.

2.2 Deep Learning

Most of the current machine learning methods use human-designed feature
representations. And, the task of the machine learning method becomes
merely about optimizing feature weights needed to make the best final pre-
diction. Deep Learning is a method that combines representation learning
with machine learning. It allows computational models to jointly learn rep-
resentations of data with multiple levels of abstraction, and the final predic-
tion. Modern deep learning provides a very powerful framework for super-
vised learning. By adding more layers and more units within a layer, a deep
network can represent functions of increasing complexity [15, 16].

Deep learning theory shows that deep nets have two different exponen-
tial advantages over classic learning algorithms that do not use distributed
representations [17]. Both of these advantages arise from the power of com-
position and depend on the underlying data-generating distribution hav-
ing an appropriate componential structure [3]. First, learning distributed
representations enable generalization to new combinations of the values of
learned features beyond those seen during training (for example, 2n combi-
nations are possible with n binary features) [18]. Second, composing layers
of representation in a deep net brings the potential for another exponential
advantage (exponential in the depth) [19].
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2.2.1 Recurrent Neural Networks

Recurrent neural networks (RNN) [20] are a family of neural networks for
processing sequential data. RNNs can scale to much longer sequences than
would be practical for networks without sequence-based specialization. They
can also process sequences of variable length.

Outputs:

Hidden States:

Inputs:

ŷt−1 ŷt · · · ŷn

ht−1 ht · · · hn

xt−1 xt · · · xn

ŷ

h

x

Figure 2.2: A recurrent neural network and the unfolding in time of the
computation involved in its forward computation.

RNNs process an input sequence one element at a time, maintaining in their
hidden units a ‘state vector’ that implicitly contains information about the
history of all the past elements of the sequence. RNN structure is illustrated
in Figure 2.2. In this figure, we mark input layer as x, hidden layer as h and
output layer as ŷ. When considering the structure of RNN, people usually
unfold it in time to deal with it more easily. The basic idea of unfolding RNN
in time is to copy RNN several times and connect them in a chronological
order. In Figure 2.2, the right structure illustrates the unfolded version of
the network in the left. When we consider the outputs of the hidden units
at different discrete (unfolded) time steps as if they were the outputs of
different neurons in a deep multilayer network, it becomes clear how we
can apply backpropagation to train RNNs.

7



Many recurrent neural networks use equation 2.1 or a similar equation to
define the values of their hidden units.

ht = f (ht−1, xt;θ) (2.1)

where θ represents the parameters of the network. The same parameters
(the same value of θ used to parametrize f ) are used for all time steps.

When the recurrent network is trained to perform a task that requires pre-
dicting the future from the past, the network typically learns to use ht as a
kind of lossy summary of the task-relevant aspects of the past sequence of
inputs up to t. This summary is in general necessarily lossy, since it maps
an arbitrary length sequence (xt, xt−1, xt−2, . . . , x2, x1) to a fixed length vec-
tor ht. Depending on the training criterion, this summary might selectively
keep some aspects of the past sequence with more precision than other as-
pects.

For t = 1 to t = τ (number of time steps), we apply the following update equa-
tions:

at = b +W ht−1 +Uxt (2.2)

ht = tanh(at) (2.3)

ot = c + V ht (2.4)

ŷt = softmax(ot) (2.5)

where the parameters are the bias vectors b and c along with the weight ma-
trices U ,V and W , respectively for input-to-hidden, hidden-to-output and
hidden-to-hidden connections. This is an example of a recurrent network
that maps an input sequence to an output sequence of the same length. The
total loss for a given sequence of x values paired with a sequence of y values
would then be just the sum of the losses over all the time steps. [15]

The back-propagation algorithm applied to the unrolled RNN is called back-
propagation through time or BPTT. Though RNNs are very powerful dy-
namic systems, training them has proved to be problematic because the
back-propagated gradients either grow or shrink at each time step, so over
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many time steps they typically explode or vanish. To prevent this forgetting
problem, various techniques have been developed. Structurally Constrained
Recurrent Nets (SCRN) [21] split the hidden state into fast and slow chang-
ing parts to solve the problem. Other set of solutions like Long Short-Term
Memory (LSTM) [22] and Gated Recurrent Units (GRU) [23] use gating units
for internal states to solve the issue.

2.2.2 Long Short-Term Memory (LSTM)

As discussed, an important benefit of recurrent networks is their ability to
use contextual information when mapping between input and output se-
quences. Unfortunately, for standard RNN architectures, the range of con-
text that can be accessed is limited because of the exploding and vanishing
gradient problem [24–26]. In practice this shortcoming makes it hard for
an RNN to learn tasks containing delays of more than about 10 time-steps
between relevant input and target events [25]. The most effective solution
so far is the Long Short-Term Memory (LSTM) architecture [22].

The LSTM architecture consists of a set of recurrently connected subnets,
known as memory blocks. These blocks can be thought of as a differentiable
version of the memory chips in a digital computer. Each block contains
one or more self-connected memory cells and three multiplicative units —
the input, output and forget gates — that provide continuous analogues of
write, read and reset operations for the cells.

Figure 2.3 provides an illustration of an LSTM memory block with a single
cell. An LSTM network is formed exactly like a simple RNN, except that
the nonlinear units in the hidden layer are replaced by memory blocks. The
LSTM memory cell stores information of the sequential data. The multi-
plicative gates remember when and how much the information in memory
cell should be updated. This allows LSTM to store and access information
over long periods of time, thereby avoiding the vanishing gradient problem.
Mathematically, the process is defined by Formulas from 2.6 to 2.10.
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ht

xt ht−1 ct−1

it

xt ht−1 ct−1

ot

xt ht−1 ct−1

ft

× ×

×

ct

xt

ht−1

tanh tanh

Figure 2.3: LSTM memory block with one cell. In the middle, there is the
memory cell ct which keeps the information of the data sequence. Around
it, there are three gates, namely input gate it, output gate ot and forget gate
ft [1, 2]. Each of them gets information from the input and controls the
updating rule of memory cell.

it = σ (Wxixt + Whiht−1 + Wcict−1 + bi) (2.6)

f t = σ
(
Wx f xt + Wh f ht−1 + Wc f ct−1 + b f

)
(2.7)

ct = f tct−1 + it tanh (Wxcxt + Whcht−1 + bc) (2.8)

ot = σ (Wxoxt + Whoht−1 + Wcoct + bo) (2.9)

ht = ot tanh(ct) (2.10)

where σ is the logistic sigmoid function, and i, f , o and c are respectively the
input gate, forget gate, output gate and cell input activation vectors, all of which
are the same size as the hidden vector h. The weight matrix subscripts have
the obvious meaning, for example Whi is the hidden-input gate matrix, Wxo
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is the input-output gate matrix etc. The weight matrices from the cell to
gate vectors (e.g. Wci) are diagonal, so element m in each gate vector only
receives input from element m of the cell vector. [27]

2.3 Related Work

Role-based representations have been shown to be useful for open-domain
factoid question answering [7, 28], and comprehension questions on pro-
cess descriptions [29]. Similar to process comprehension work, we target
semantic representations about processes, but we focus only on a high-level
summary of the process, rather than a detailed sequential representation
of sub-events involved. Moreover, we seek to aggregate knowledge from
multiple descriptions rather than understand a single discourse about each
process.

There has been substantial prior work on semantic role labeling itself, that
we leverage in this work. First, there are several systems trained on the
PropBank dataset, e.g., EasySRL [30], Mate [31], Generalized-Inference [32].
Although useful, the PropBank roles are verb (predicate) specific, and thus
do not produce consistent labels for a process (that may be expressed us-
ing several different verbs). In contrast, frame-semantic parsers, e.g., SE-
MAFOR [33], trained on FrameNet-annotated data [34] do produce concept
(frame)-specific labels, but the FrameNet training data has poor (< 50%)
coverage of process verbs. Building a resource like FrameNet for a list of
scientific processes is expensive.

Several unsupervised, and semi-supervised approaches have been proposed
to address these issues for PropBank style predicate-specific roles [35–40].
A key idea here is to cluster syntactic signatures of the arguments and use
the discovered clusters as roles. Another line of research has sought to per-
form joint training for syntactic parsing and semantic role labeling [30], and
in using PropBank role labels to improve FrameNet processing using pivot
features [41].
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Our goal is to acquire a high quality semantic role based knowledge about
processes. This allows us a unique opportunity to jointly interpret sentences
that are discussing the same process. We build on ideas from previous
within sentence joint inference [32], argument similarity notions in semi and
unsupervised approaches [38], and combining PropBank roles to propose
a cross-sentence inference technique [41]. The inference can be integrated
with existing trained supervised learning pipelines, which can provide a
score for role assignments for a given span.

Recently, there has been increased interest in using deep learning methods
for a variety of language and information retrieval applications. In [42] Col-
lobert et al. proposed models that can perform many NLP tasks with very
little feature engineering. Unfortunately, the model restricts the use of con-
text to a fixed size window around each word, this makes it hard for the
model to learn long-distance relation between the words. But, this approach
inspired Zhou and Xu [43], who solved the issue using deep bidirectional
LSTMs and achieved state-of-the-art results.

Processes are complex events and hence can be seen as functions acting
on a number of arguments rather than simple lexical units with associated
word vectors. In the simplest setting, verbs and adjectives can also be con-
sidered as functions rather than simple lexical units. Baroni and Zampar-
elli [44], modeled adjectives as matrices which were estimated with partial
least squares regression. The adjective matrix multiplied with a vectorial
representation for noun will produce a vectorial representation of the spe-
cific adjective-noun compound. Socher et al. [45] proposed a model that
assigns each word a vector and a matrix. The words are composed via a
nonlinear function to create phrase representations consisting of another
vector/matrix pair. This process can proceed recursively, following a parse
tree to produce a composite sentence meaning.

12



Chapter 3

Process Knowledge Extraction
using Feature Engineering

Processes are complex events with many participating entities and inter-
related sub-events. With the work in this chapter, we aim for macro-level
role-based knowledge about processes. Our task is to find classes of entities
that are likely to fill key roles within a process (i.e., FRAME REPRESENTA-
TION) namely, the undergoer, enabler, result, and action. Table 3.1 shows some
examples of the target knowledge roles.

Process Undergoer Enabler Action Result
evaporation liquid heat changes gas

water heat energy convert water vapor
weathering rock weather disintegration smaller rocks

solid material heating breaking down smaller particles
photosynthesis carbon dioxide solar energy convert energy

CO2 light energy transforms food

Table 3.1: Examples of Target Knowledge Roles

Existing SRL systems extract semantic roles from a single sentence. In our
case, we have several sentences describing a process and each of these sen-
tences have similar entities filling similar semantic roles consistently. This
allows us to design a joint inference method that can promote expectations
of consistency amongst the extracted role fillers. This chapter presents a

13



technique to extend the within-sentence inference in SRL to cross-sentence
inference such that it encourages compatible role assignments across dif-
ferent sentence in a process. Section 3.1 briefly a simple cross-sentence in-
ference technique. Section 3.2 presents an extension to cross-sentence in-
ference with alignment variables. Section 3.3 presents the experimental re-
sults.

3.1 Simple Cross-Sentence Inference

Given a set of sentences about a process, we want to extract role fillers that
are globally consistent i.e., we want role assignments that are compatible.
Our approach is based on two observations: First, any given role is likely
to have similar fillers for a particular process. For instance, the undergoers
of the evaporation process are likely to be similar – they are usually liquids.
Second, it is unlikely for fillers that are similar to have different roles for the
same process. Using the same example as before, it is highly unlikely that
one liquid water is an undergoer for evaporation, whereas another similar
filler ocean is not. These role-specific selectional preferences vary for each
process and can be learned if there are enough example role fillers for each
process during training [46, 47]. Since, we wish to handle processes for
which we have no training data, we approximate this by modeling whether
two arguments should receive the same role given their similarity and their
context similarity.

Figure 3.1 illustrates a formalization of our cross sentence inference ap-
proach using a factor graph. It includes one random variable for every
candidate argument obtained from all the sentences for a given process: Sij

indicates the role label for argument j in sentence i. Each assignment to a
argument Sij is scored by a combination of the role classifier’s score (factor
φrole), and its pairwise compatibility with the assignments to other argu-
ments (factor φalign). The factors φsent capture two basic within sentence
constraints.
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S11 S12

φalign

S21

φrole

φsent

S22

Figure 3.1: Factor graph representation of cross sentence inference. S11 and
S12 denote role assignments for arguments a11 and a12 in one sentence, and
S21 and S22 denote for arguments a21 and a22 in another. The φrole factors
score each role assignment to the arguments, and φalign score the compati-
bility of the connected arguments. φsent encode sentence level constraints.

3.1.1 Role Classifier (φrole)

Given a set of process sentences, we build a role classifier to find the role
fillers mentioned in them. Although existing SRL and frame semantic parsers
do not directly produce the role information we need, we build on them by
using their outputs for a process role classifier.

Specifically, we adapt EasySRL [30], a state-of-the-art SRL system to gener-
ate the candidate argument spans for each predicate (verbs) in the sentence.
We use liblinear [48] to relabel these arguments and the predicates for our
four roles, and an additional NONE role. The classifier is trained with a set
of annotated examples (see Section 3.3). We use four sets of features to train
the classifier:

i) Lexical and Syntactic – We use a small set of standard SRL features such
as lexical and syntactic contexts of arguments (e.g., head word, its POS tag)
and predicate-argument path features (e.g, dependency paths). We also add
features that are specific to the nature of the process sentences. In particular,
we encode syntactic relationships of arguments with respect to the process
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name mention in the sentence.

ii) PropBank roles – While they do not have a 1-to-1 correspondence with
process roles, we use the EasySRL roles coupled with the specific predicate
as a feature to provide useful evidence towards the process role.

iii) Framenet Frames – We use the frames evoked by the words in the sen-
tence to allow better feature sharing among related processes. For instance,
the contexts of undergoers in evaporation and condensation are likely to be
similar as they are both state changes which evoke the same Undergo_Change
frame in FrameNet.

iv) Query patterns – We use query patterns to find sentences that are likely
to contain the target roles of interest. The query pattern that retrieved a sen-
tence can help bias the classifier towards roles that are likely to be expressed
in it.

3.1.2 Alignment Classifier (φalign)

We develop an alignment classifier to identify arguments that should re-
ceive similar role labels. One way to do this argument alignment is to use
textual entailment. We used an approach that combined WordNet-based
phrase similarity method, and word2vec vector similarity, where the vec-
tors where learned from a general news domain. Entailment (or) argument
similarity by itself is not enough to reliably figure out roles that should re-
ceive the same label. Moreover, the enabler, and the result roles are often
long phrases whose text-based similarity is not reliable. Therefore, we build
a classifier that uses many features that measure various aspects of compat-
ibility of a pair of arguments, including the lexical and syntactic similarity
of the arguments and the context in which they are embedded.

Fortunately, learning this classifier does not require any additional training
data. The original data with annotated semantic role labels can be easily
transformed to generate supervision for this classifier. For any given pro-
cess, we consider all pairs of arguments in different sentences (i.e., (aij, alm) :
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argmax
z

∑
k

∑
i,j

zijk

(
λ φrole(aij,k)︸ ︷︷ ︸

Role classifier score

+(1− λ)

[
∆(aij,k)−∇(aij,k)

]
︸ ︷︷ ︸

Global compatibility

)

where compatibility with same roles is:

∆(aij,k) =
1

Ñk
∑
l,m

zlmkφalign(aij, alm)

and compatibility with other roles is:

∇(aij,k) =
2

Ñk′
∑
l,m

∑
n 6=k

zlmn φalign(aij, alm)︸ ︷︷ ︸
Penalty when role n 6= k

subject to:

∑
k

zijk ≤ 1 ∀ aij ∈ sentencei

∑
j

zijk ≤ 1 ∀ aij ∈ sentencei,k ∈ R

Ñk : Approximate number of arguments with role k

Ñk′ : Approximate number of arguments with role n 6= k

Figure 3.2: An Integer Linear Program formulation of the Cross-sentence
Inference.

i 6= l) and label them as aligned if they are labeled with the same role, or un-
aligned otherwise.

3.1.3 Inference using ILP

We formulate inference as an Integer Linear Program shown in Figure 3.2.
The goal is to optimize a combination of individual role assignment scores
and their global compatibility, which is defined as the similarity of fillers for
the same role minus the similarity of fillers of different roles.

The zijk variables are decision variables which denote role assignments to
arguments. When zijk is set it denotes that argument j in sentence i (aij)
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has been assigned role k. The objective function uses three components to
assign scores to an assignment.

1. Role Classifier Score φrole(aij,k) – The sentence-level role classifier’s score
for assigning role k to argument aij.

2. Within Role Compatibility ∆(aij,k) – This is a measure of compatibility
with other role k assignments. Specifically, this is an estimate of how
well argument aij aligns with the other arguments that are also currently
assigned role k. We normalize the sum of alignment scores using (1/Ñk),
the total number of arguments in other sentences that can also receive
the label k.

3. Across Role Incompatibility ∇(aij,k) – This is a measure of how well aij

aligns with the other arguments that are assigned a different role (n 6= k).
For good assignments this quantity should be low and therefore we add
this as a penalty to the objective. As with ∆, we use an approximation for
normalization (1/Ñk′), which is the product of other roles and the num-
ber of arguments in other sentences that can receive these roles. Because
Ñk′ is typically higher, we boost this score by 2 to balance against ∆.

Last, we use two sets of hard constraints to enforce the standard within-
sentence constraints:

1. A single argument can receive only one label.

2. A sentence cannot have more than one argument with the same label,
except for the NONE role.

We use an off-the-shelf solver in Gurobi (www.gurobi.com) to find an ap-
proximate solution the resulting optimization problem.
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Figure 3.3: Cross sentence gains in F1 when varying the number of most
similar arguments used to assess compatibilities.

3.2 Cross-Sentence Inference with Alignment Vari-
ables

We also studied the effect of varying the number of arguments that ILP uses
to measure the compatibility of role assignments. Specifically, we allow in-
ference to use just the top k alignments from the alignment classifier. Fig-
ure 3.3 shows the main trend. Using just the top similar argument already
yields a 1 point gain in F1. Using more arguments tends to increase gains in
general but with some fluctuations.

At some of the smaller argument counts we see a slightly larger gain (+0.3)
compared to using all spans. This hints at benefits of a more flexible for-
mulation that makes joint decisions on alignment and role label assign-
ments.

Figure 3.4 illustrates a formalization of our cross sentence inference ap-
proach with alignment variables using a factor graph. It includes one ran-
dom variable for every candidate argument obtained from all the sentences
for a given process: Sij indicates the role label for argument j in sentence
i. Each assignment to a argument Sij is scored by a combination of the role
classifier’s score (factor φrole), and its pairwise compatibility with the as-
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signments to other arguments (factor φalign). Each φalign factor has one addi-
tional random variable Al to indicate whether a pair of candidate arguments
align. The factors φsent capture two basic within sentence constraints.

S11 S12

φalign

S21

φrole

φsent

S22

A1

A2 A3

A4

Figure 3.4: Factor graph representation of cross sentence inference with
alignment variables. S11 and S12 denote role assignments for arguments a11
and a12 in one sentence, and S21 and S22 denote for arguments a21 and a22
in another. The φrole factors score each role assignment to the arguments,
and φalign score the compatibility of the connected arguments. A1, . . . , A4
indicate alignment assignments. φsent encode sentence level constraints.

We formulate inference as an Integer Linear Program shown in Figure 3.5.
The goal is to optimize a combination of individual role assignment scores
and their global compatibility, which is defined as the similarity of fillers for
the same role minus the similarity of fillers of different roles.

The zijk variables are decision variables which denote role assignments to
arguments. When zijk is set it denotes that argument j in sentence i (aij) has
been assigned role k. The xijlm variables are decision variables which denote
alignment between two arguments aij and alm. xijlm can take one of three
values −1, 0 and 1. When xijlm is set to 1, it denotes that the argument aij

aligns with the argument alm. When xijlm is set to −1, it denotes that the
argument aij negatively aligns with the argument alm (dissimilarity). When
xijlm is set to 0, it denotes that the alignment between the arguments aij and
alm are ignored.
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argmax
z

∑
k

∑
i,j

zijk

(
λ φrole(aij,k)︸ ︷︷ ︸

Role classifier score

+(1− λ)

[
∆(aij,k)−∇(aij,k)

]
︸ ︷︷ ︸

Global compatibility

)

where compatibility with same roles is:

∆(aij,k) =
1

Ñk
∑
l,m

tijlmkφalign(aij, alm)

and compatibility with other roles is:

∇(aij,k) =
2

Ñk′
∑
l,m

∑
n 6=k

tijlmn φalign(aij, alm)︸ ︷︷ ︸
Penalty when role n 6= k

subject to:

∑
k

zijk ≤ 1 ∀ aij ∈ sentencei

∑
j

zijk ≤ 1 ∀ aij ∈ sentencei,k ∈ R

tijlmk ≤ zijk

tijlmk ≥ −zijk

tijlmk ≤ xijlm + (1− zijk)

tijlmk ≥ xijlm − (1− zijk)

Ñk : Approximate number of arguments with role k

Ñk′ : Approximate number of arguments with role n 6= k

Figure 3.5: An Integer Linear Program formulation of the Cross-sentence
Inference with alignment variables.

As described in the previous section, the objective function uses three com-
ponents to assign scores to an assignment.

1. Role Classifier Score φrole(aij,k)

2. Within Role Compatibility ∆(aij,k)

3. Across Role Incompatibility ∇(aij,k)

Last, we use the following constraints to enforce the standard within-sentence
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constraints:

1. A single argument can receive only one label.

2. A sentence cannot have more than one argument with the same label,
except for the NONE role.

3. Four additional constraints as described in Figure 3.5 to include align-
ment random variable xijlm in the formulation. 1

3.3 Evaluation

Our goal is to generate knowledge about processes discussed in grade-level
science exams. Since existing semantic resources such as FrameNet do not
provide adequate coverage for these, we created a dataset of process sen-
tences annotated with the four process roles: undergoer, enabler, action,
and result.

This dataset consists of 1205 role fillers extracted from 537 sentences re-
trieved from the web. We first compiled the target processes from a list of
process-oriented questions found in two collections: (i) New York Regents
science exams [49], and (ii) helpteaching.com, a Web-based collection of
practice questions. Then, we identified 127 process questions from which
we obtained a set of 180 unique target processes. For each target process,
we queried the web using Google to find definition-style sentences, which
describe the target process.

Table 3.2 shows some examples of the 14 query patterns that we used to find
process descriptions. Because these patterns are not process-specific, they
work for unseen processes as well.

To find role fillers from these sentences, we first processed each sentence

1Since we cannot multiply two random variables (zijk and xijlm) and have Gurobi op-
timize it, we use a single random variable tijlmk in the formulation and add the four con-
straints on tijlmk which use zijk and xijlm to replicate the multiplication.
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Query Patterns
〈name〉 is the process of 〈x〉
〈name〉 is the process by which 〈x〉
〈name〉 {occurs when} 〈x〉
〈name〉 { helps to | causes } 〈x〉

Table 3.2: Example query patterns used to find process description sen-
tences.

Role No. of instance
Undergoer 77
Enabler 154
Action 315
Result 194
NONE 465

Table 3.3: Role distribution

using EasySRL [30] to generate candidate arguments. Some of the query
patterns can be used to generate additional arguments. For example, in the
pattern “〈name〉 is the process of 〈x〉” if 〈x〉 is a noun then it is likely to
be an undergoer, and thus can be a good candidate2. Then two annotators
annotated the candidate arguments with the target roles if one were appli-
cable and marked them as NONE otherwise. Disagreements were resolved
by a third annotator. The annotations spanned a random subset of 54 target
processes.

The role label distribution is shown in Table 3.3.

We conducted five fold cross validation experiments to test role extraction.
To ensure that we are testing the generalization of the approach to unseen
processes, we generated the folds such that the processes in the test fold
were unseen during training. We compared the basic role classifier de-
scribed in Section 3.1.1, the within sentence and the cross sentence inference
models. We tune the ILP parameter λ for cross sentence inference based on
a coarse-grained sweep on the training folds.

2These patterns are not unambiguous and are not adequate by themselves for extract-
ing the roles. We use them as features.
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We also compared with a simple baseline that learned a mapping from
PropBank roles produced by EasySRL system to the process roles by using
the roles and the verb as features. We also add the FrameNet frames in-
voked by the lexical unit in the sentence. Note this is essentially a subset of
the features we use in our role classifier. As a second baseline, we compare
with a (nearly) out-of-the-box application of SEMAFOR [33], a FrameNet
based frame-semantic parser. We modified SEMAFOR to override the frame
identification step since the process frame information is already associated
with the test sentences.

Table 3.4 compares the performance of the different methods. The learned
role mapping of shallow semantic roles performs better than SEMAFOR but
worse than the simple role classifier. SEMAFOR uses a large set of features
which help it scale for a diverse set of frames in FrameNet. However, many
of these many not be well suited for the process sentences in our relatively
smaller dataset. Therefore, we use our custom role classifier as a strong
baseline to demonstrate within and cross sentence gains.

Method Prec. Rec. F1
Role mapping 56.62 59.60 58.07
SEMAFOR 40.72 50.54 45.10

Role class. (φrole) 78.48 78.62 78.55
+ within sent. 86.25 73.91 79.60
+ cross sent. 89.84 75.36 81.97††
+ cross sent. w/ align 86.68 74.27 80.00

Table 3.4: Process role inference performance. †† indicates significant im-
provement over Role + within sentence system.

The role classifier baseline, which operates at a sentence level without any
consistency constraints performs well with roughly the same precision and
recall values. Enforcing sentence-level consistency through joint inference
shown as (+within sent.) mainly serves to increase precision (by nearly 8
points), while loosing recall in the trade-off (by about 4.7 points) and yields
an overall gain in F1 by 1.05 points. Cross sentence inference provides addi-
tional gains beyond within sentence inference by another 2.38 points in F1
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3. Cross sentence inference with alignment variables provides gains beyond
within sentence inference, but it does not perform as well as cross sentence
inference without alignment variables. Though the inclusion of alignment
variables allows the model to be flexible but the ILP optimizer fails to select
best aligning spans the during optimization process.

Figure 3.6 shows the precision/recall plots for inference using within, cross
sentence and cross sentence with alignment variables as compared to the
basic role classifier. The inference models trade recall for gains in precision.
Cross sentence yields higher precision at most recall levels, for a smaller
overall loss in recall compared to within sentence (1.6 versus 4.9). And,
performance of cross sentence with alignment model lies in between within
sentence and cross sentence versions.
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Figure 3.6: Precision/Recall trade-offs for process role inference. y-axis is
truncated at 0.7 to better visualize the differences.

Simple role-based knowledge is essential for recognizing and reasoning
about situations involving processes. In this work we developed a method
for automatically acquiring such role-based knowledge for new processes.
The main idea is to enforce compatibility among roles extracted from sen-
tences belonging to a single process. We also find that using the same super-
vised training data, we learn an alignment classifier that can predict which

3The single parameter in ILP turned out to be stable across the folds and obtained this
best value at λ = 0.8.

25



arguments should receive the same labels. Using outputs from a custom-
built feature engineered role classifier, and the alignment classifier we for-
mulated an Integer Linear Program to extract globally consistent role labels.
Our evaluations on a process dataset shows that this approach helps im-
prove extraction accuracy, showing the potential for generalizing extraction
to new unseen processes.
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Chapter 4

Process Knowledge Extraction
using LSTM

As described in the previous chapter, processes are complex events with
many participating entities and inter-related sub-events. And, with the
work in this chapter, we aim for macro-level role-based knowledge about
processes without feature engineering.

We aim to build a role classifier using sequence-to-sequence models without
any feature engineering. As discussed in the introduction and background
section of this thesis, neural networks can perform the task of jointly learn-
ing feature representations and feature weights. A well-studied solution
for a neural network to process variable length input is the recurrent neural
network (RNN). LSTM, a variant of RNN with memory cell for long term
dependencies has shown great success in diverse NLP tasks such as speech
recognition, machine translation, and language modeling.

We have long known the importance of long-term dependencies in lan-
guage. But to keep sparsity in check, traditional models had to rely on inde-
pendence assumptions. With LSTMs we replace the explicit independence
assumptions in text processing with structural constraints on memory. This
allows LSTMs to be more flexible in efficiently handling long-term depen-
dencies. Role classification is a task in which modeling long-term depen-
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dencies help in developing accurate systems. In this chapter, we describe
a LSTM based architecture for role classification. Cross-sentence inference
is then performed using the ILP based method described in the previous
chapter.

4.1 Role Classification using LSTM

Condensation turns water vapor into liquid water .

Argument Extraction and Tokenization

Condensation turns water vapor into liquid water .

× ×

ŷ1 ŷ2 ŷ3 ŷ4 ŷ5 ŷ6

NONE TRIGGER INPUT NONE RESULT NONE

Figure 4.1: LSTM based Role Classifier Pipeline

Figure 4.1 illustrates the LSTM based role classifier pipeline. We use EasySRL
and query patterns to generate candidate argument spans from raw text
as described in the previous chapter. Once we have the candidate argu-
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ment spans, we discard overlapping spans1. The tokenizer considers the ex-
tracted candidate argument spans and keeps the phrasal spans intact while
tokenizing (e.g., phrasal tokens in blue boxes in the figure). LSTM needs
vectorial representation of input in order to perform classification. We use
GloVe vectors [50] to represent each word. In case of phrasal tokens, we
multiply the word vector of each of the words in the phrase to get the phrase
vectors. These are then passed through the hidden layer of LSTM to train
(and predict) role labels. And, as shown in the figure, every token has one
of 5 possible gold labels (None, Input, Result, Enabler, Trigger).

Back-propagation is then used to learn the weights at the hidden layers. We
applied RMSprop[51] for optimization, which is more suitable for training
RNNs than naïve stochastic gradient descent, and less sensitive to hyperpa-
rameters compared with momentum methods.

We use the same ILP based formulation described in the previous chapter
for cross-sentence inference. But instead of using feature engineered role
classifier, we use the LSTM classifier described above to get role probabili-
ties φrole. For alignment values φalign, we use the cosine similarity between
phrasal embeddings of the phrases that are considered for alignment.

4.2 Evaluation

We used the same dataset that is described in the previous chapter. Since
LSTMs consume sequential data, overlapping argument spans—after ar-
gument extraction—cannot be used directly in the architecture described
above. Hence we consider only the smaller argument spans in cases where
we have overlapping spans and ignore the bigger ones. This results in a
minor change in dataset size. Here we have 1021 role fillers as compared to
1205 considered for the model in the previous chapter.

We conducted five fold cross validation experiments to test role extraction.

1We consider only the smaller argument spans in cases where we have overlapping
spans and ignore the bigger ones.
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To ensure that we are testing the generalization of the approach to unseen
processes, we generated the folds such that the processes in the test fold
were unseen during training. We conducted experiments with LSTMs of
different depths. Table 4.1 compares the performance of these models where
the depth of model is included within parenthesis. We use ILP based opti-
mization described in the previous chapter for cross-sentence inference over
LSTM outputs. From the results, it is evident the depth helps in increasing
the accuracy of the LSTM classifier. As the depth increases, we don’t see any
significant gains in LSTM classifier, but when coupled with cross sentence
inference, we see significant gains. This is because, with higher depths, the
deeper hidden state vectors summarize a larger portion of the sentence and
hence tends to give better probability distribution over roles. This enables
ILP to easily make minor changes using similarity values and constraints.
This is evident from the results.

Method Prec. Rec. F1
LSTM (1) 86.17 66.62 75.14
LSTM (1) w/ cross sent. 81.63 68.97 74.77

LSTM (2) 86.33 67.5 75.76
LSTM (2) w/ cross sent. 81.13 74.14 77.48

LSTM (3) 88.8 68.52 77.36
LSTM (3) w/ cross sent. 88.46 79.31 83.64

Table 4.1: Performance of LSTM models with varying number of hidden
layers.

Table 4.2 compares the best feature engineered model described in the pre-
vious chapter with the best LSTM based model. LSTM classifier has higher
precision than the LIBLINEAR classifier (by nearly 10 points). But it has
a comparatively poor recall. With cross-sentence inference, LSTM outper-
forms LIBLINEAR model (by 1.67 points in F1).

When training a neural network, finding the optimal parameter can pro-
vide enormous gains in performance. However, due to time constraints,
our LSTM has not been optimized. The parameter settings used for the ex-
periment are listed in Table 4.3. Finding the optimal parameter settings can
provide a much bigger boost to the system performance.
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Method Prec. Rec. F1
LIBLINEAR role class.† 78.48 78.62 78.55
LIBLINEAR role class.† w/ cross sent. 89.84 75.36 81.97
LSTM (3) 88.8 68.52 77.36
LSTM (3) w/ cross sent. 88.46 79.31 83.64

Table 4.2: Process role inference performance. † indicates the feature engi-
neered role classifier described in the previous chapter.

Parameter Value
Word embedding size 100
Learning rate 0.001
Dropout rate 0.5
Number of epochs 30

Table 4.3: LSTM Parameters.

In this work we developed a method for automatically acquiring role-based
knowledge for new processes without any feature engineering. The main
idea here is to use deep LSTM models to perform role classification for
any new process. LSTMs can effectively utilize the shallow semantic in-
formation based on co-occurrence statistics embedded in the word vectors
to make decisions on semantic role labels. This model coupled with ILP
based cross-sentence inference mechanism shows improved extraction ac-
curacy.
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Chapter 5

Modeling Processes as
Operators

Processes are complex events with several participating entities. It is not
possible to have a scalable mechanism that includes such complexity in a
fixed frame representation. For example, the ‘rotation’ process cannot be
represented in FRAME REPRESENTATION (with Input, Output, Trigger and
Enabler roles) because a representation for rotation is incomplete without
the information about the axis of rotation. One alternative is to have differ-
ent fixed frames for different processes. Such representation methods can
easily handle this issue, but they are not scalable.

In this chapter, we explore the possibility of using a matrix for process rep-
resentation. We consider the simple version of the process representation
problem where the process matrix consumes input and emits an output. In
future, this can be scaled for multiple roles by designing a mechanism based
on matrix-vector operations over role specific vectors.

Section 5.1 describes a method based on WSABIE model [52] for learning
process operators. Section 5.2 describes the methods considered for data
collection and the difficulty involved in the collection process.
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5.1 Model

Our goal is to model processes as operators (MATRIX REPRESENTATION) in
order to predict the output of a process given its input. Example: given
water (input) and evaporation (process), predict water vapor (output).

Embedding Space ( IRd )

water vapor

gas

air

oxygen

salt

steam moisture
clouds

P xin xout

(evaporation) (water) (water vapor)

Figure 5.1: Process Operator Modeling

We begin by associating each word w in our vocabulary with a vector rep-
resentation xw ∈ IRd. These vectors are stored as the columns of a d × V
dimensional word embedding matrix We, where V is the size of the vo-
cabulary. We propose to learn a mapping matrix—we call this the process
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matrix— P that takes input word vector xin and maps it onto a point in
embedding space that is very close to output word vector xout. Figure 5.1
illustrates this using the example of water evaporating to form water va-
por.

Our goal is to rank the possible outputs of a given input such that the more
probable outputs are ranked higher than the others. We consider the fol-
lowing model to score the input-output compatibility:

s(in,out) = (xout)
TPxin

The possible outputs are ranked according to the magnitude of s(in,out),
which calculates the dot product between the vector xout and the projected
input vector Pxin. Our goal is to learn the model parameter P ∈ IRd×d such
that it projects xin very close to probable outputs and far away from improb-
able outputs. To learn the parameter P, we model our objective function
following Weston et al. [52], using a weighted approximate rank pairwise
(WARP) loss, learned with stochastic gradient descent (SGD).

The training objective function minimizes:

∑
x

∑
y

L
(
ranky(x)

)
max (0,γ + s (x,y)− s (x,y))

where x, y are the training inputs and their corresponding correct outputs,
y are negative outputs, and γ is the margin. Here, ranky(x) is the rank of
the positive output y relative to all the negative outputs:

ranky(x) = ∑
y

I (s(x,y) ≤ γ + s(x,y))

where I is the indicator function, and L(·) converts the rank into a weight
for the loss.

L(η) =
η

∑
j=1

1/j

One can define different choices of L(·) with different minimizers. The cho-
sen L(·) optimizes the top of the ranked list [53]. To train with such an
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objective, stochastic gradient is employed. For speed, the computation of
ranky(x) is then replaced with a sampled approximation: sample N items
y until a violation is found, i.e. max(0,γ + s(x,y)− s(x,y))) > 0 and then
approximate the rank with

ranky(x) ≈
⌊

Y− 1
N

⌋
where Y is the number of possible outputs.

5.2 Experiments & Challenges

Our goal is to model processes as operators. This needs a large number of
varying input-output pairs for each of the processes. There is no large scale
training data that can be readily used for this task. We tried the following
methods to collect a large number of varying, process specific input-output
pairs.

• Automatic pattern-based search: We built a system to retrieve sentences
that follow pre-defined patterns from the web. Methods described in
Chapter 3 were then used to extract input-output pairs.

• Bootstrapped data collection: We built a system to retrieve sentences us-
ing a bootstrapped mechanism to collect several outputs for a given
input. The output search is done based on pattern-based technique
where input is included within the pattern.

• Manual search: 2 students including me spent ∼ 6 hours manually
searching for sentences with good input-output pairs.

• Crowdsourcing: We ran few experiments on Amazon’s Mechanical Turk
(AMT) to collect input-output pairs and associated sentences.

We found the task of collecting input-output pairs to be challenging because,
the number of possible distinct input-output pairs for the processes in con-
sideration is limited. And, these are the same ones that are repeated in
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different web resources (Most of the sentences that describe/mention evap-
oration have a small set of lexicons representing liquid or water as input
and gas or vapor as output). If we expand our definition of output to in-
clude conclusive events of a process (this is usually not a single entity or
a direct result of the process e.g., Evaporation of water body makes its wa-
ter salty.), we can expect more variety in the kinds of spans we can collect.
But, this makes the task challenging. We tried the above listed methods to
collect spans and with these methods we collected ∼ 40 input-output pairs
for the process evaporation and ∼ 10− 15 input-output pairs for three other
processes.

This data is not sufficient to perform conclusive experiments. So, we used it
to do a preliminary test of our idea without using it to arrive at any signifi-
cant conclusions. We used the 37 pairs collected for the evaporation process
to jointly learn word embedding and process matrix using the model de-
scribed above. We evaluated the quality of the learnt word embeddings
and operator manually by inspecting the outputs returned by the model
for specific inputs. The leant process matrix behaved as expected, but this
could be because we are using a powerful model on small dataset and hence
the model could be overfitting. Further exploration of this idea needs more
data. This preliminary work can help us in deciding the next steps for fur-
ther exploration.
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Chapter 6

Conclusion

6.1 Conclusions

In this thesis, we have demonstrated the following:

• We show that a small set of semantic roles can be used to build an ef-
fective representation (FRAME REPRESENTATION) for recognizing and
reasoning about situations involving processes.

• We present a feature engineered system for role classification and align-
ment classification. Using outputs from the role classifier, and the
alignment classifier, we formulated an Integer Linear Program to ex-
tract globally consistent role labels (cross-sentence inference). Our
evaluations on a process dataset shows that cross-sentence inference
helps improve extraction accuracy, showing the potential for general-
izing extraction to new unseen processes.

• We then present a method for automatically acquiring role-based knowl-
edge for new processes without any feature engineering. We demon-
strate improved extraction accuracy from deep LSTM models in con-
junction with cross-sentence inference.
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• We also present our preliminary work on using MATRIX REPRESEN-
TATION for modeling processes.

6.2 Future Work

One can explore the following research directions from this thesis, which
are enumerated below:

• One could jointly model role classification and alignment classifica-
tion using attention mechanism over LSTMs. This is an end-to-end
approach and these kinds of end-to-end approaches have been suc-
cessful recently in machine translation.

• Fixed set of roles can only be used to represent a small subset of pro-
cesses. In order to scale one needs to design alternate scalable repre-
sentations. We explored one possibility using MATRIX REPRESENTA-
TION. One could explore that further.

Another possibility is to use clustering to discover the roles in sen-
tences that describe a process.
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