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Abstract of the Dissertation

Accurate Recovery of Functions in COTS Binaries

by

Rui Qiao

Doctor of Philosophy

in

Computer Science

Stony Brook University

2017

Binary analysis and instrumentation play a central role in COTS software
security. They can be used to detect and prevent vulnerabilities, mitigate
exploits, enforce security policies, and so on.

Many security instrumentations work at the granularity of functions. How-
ever, unlike high-level languages, functions in binaries are not clearly demar-
cated. To complicate matters further, functions in binaries may have multiple
entry points and/or exit points. Some of these entries or exits may not be
determined simply by instruction syntax or code patterns. Moreover, many
functions are reachable only through indirect control transfers, while some may
be altogether unreachable.

In this dissertation, we present an approach that overcomes these challenges
to accurately identify function boundaries, as well as calls and returns. Our
approach is based on fine-grained static analysis, relying on precise models of
instruction set semantics derived in part from our previous work.

In the later part of the work, we expand our investigation to recover the
next crucial piece of information that is lost in high-level language to binary
translation: the types and numbers of function parameters. We propose an
approach that uses fine-grained binary analysis to address this problem. We
evaluate this technique by applying it to enforce fine-grained control-flow in-
tegrity policies. While our approach is widely applicable to all binaries, when
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combined with recovered C++ semantics, it provides significantly improved
protection.
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1 Introduction

Program analysis is the process of analyzing programs for various properties
while program instrumentation concerns with changing program behavior by
inserting additional code. Program analysis and instrumentation play a central
role in software security. They are used in various tasks such as vulnerability
detection and prevention, exploit mitigation, security policy enforcement, and
malware analysis.

Program analysis and instrumentation can be applied to either source code,
or native binaries. Source code based techniques can leverage abundant infor-
mation that is available from high level languages, such as functions, variables
and types. These information are unavailable for COTS binaries because they
are either discarded during the compilation process, or stripped off before
software distribution. Despite the lack of high-level information, binary based
techniques are attractive because they are more widely applicable. For exam-
ple, they can be used on proprietary software, third-party libraries, or even
malware that are only present in binary form. Moreover, working with bina-
ries is advantagous because a later and more faithful form of the program is
used. This is in contrast with source code which is yet to be transformed by
compilers and linkers that could alter various aspects of the program.

Binary analysis and instrumentation are only possible or most effective
if high level abstractions and program constructs are available. Therefore, a
recurring task is to recover various high level information from COTS binaries.
In this report, we focus on a fundamental requirement for binary analysis and
instrumentation: recovering functions. In the rest of this section, we discuss
the motivation, involved tasks, challenges and existing techniques for function
recovery, and also summarize our contributions.

1.1 Functions at Binary Level

Functions are among the most common constructs in programming languages.
They are also the very basic building blocks for composing program logic. In
source code, function declarations or definitions are available, which can be
readily used by compilers or other source code transformation tools for analysis
and instrumentation purposes. However, this is not the case at binary level.

Functions in binaries are just byte streams. And unlike high-level lan-
guages, functions in binaries are not clearly demarcated. Actually, there is no
such requirement for binaries to be able to execute. At runtime, the bytes of
functions are interpreted by the CPU as instructions, and control can be trans-
ferred into or out of a function, without the knowledge of function boundaries.
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Other high level information are missing as well. Function types, just as
variable types, are discarded before binaries are generated. Note that function
type is defined as the number, location, and types of a function’s arguments
and return values.

However, function information is required by many binary analysis and
instrumentation applications: various tools are designed to operate on func-
tions. Therefore, when function information is not available, an essential step
of many tools is to recover them. While the common task is to recognize func-
tions in binaries, i.e., identifying their boundaries as well as entry/exit points,
other higher level information such as function types are also often needed.

Function recovery needs to be accurate. As an early step in many analysis
applications, function recovery significantly affects analysis accuracy due to
the quality of its output. Moreover, demanding applications such as instru-
mentation can only be supported with highly accurate function information.
Note that when supplied with inaccurate results, instrumentation techniques
may generate programs that would crash or raise false alarms, significantly
limiting their adoption and usability.

1.2 Challenges for Accurate Function Recovery

Although function recovery is essential and critical for many applications, pro-
ducing accurate results for COTS binaries is difficult due to several challenges.

• Missing abstractions. Many abstractions are introduced in high level
programming languages to cope with software complexity. However, af-
ter compilation, these abstractions are missing at the binary level. We
already discussed function abstraction is not available and needs to be
recovered. However, other abstractions (such as variables and types)
that may facilitate the task of function recovery, are unavailable as well.

• Stripped binaries. Metadata for high level program constructs may
be generated along with the compilation process. These include debug,
symbol and relocation information. However, these information are often
stripped off from COTS binaries, due to concerns such as their potential
use for reverse engineering.

• Indirect control flows. In contrast to direct control flows whose tar-
gets are statically known, the targets for indirect control flows are deter-
mined at runtime. In general, it is an undecidable problem to statically
resolve indirect control flow targets. Therefore, functions that are only
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indirectly reachable cannot be easily recognized. Note that the num-
ber of such functions can be significant, and it is necessary for many
applications that these functions are accurately recovered.

• Complex data flows. In low-level code, registers and memory loca-
tions are basic units of keeping data. Program memory is further divided
into global, stack and heap regions. However, all these regions are phys-
ical, instead of abstract as in high-level langauges. On the other hand,
functions extensively operate on different regions (especially stack) for
computation and data tranfers.

• Compiler optimizations. To squeeze performance gains, compilers
may generate code in unusual ways. For instance, contrary to the high
level abstraction that a function has a single entry point, a function in
a binary may have multiple entries. Moreover, instead of being entered
via a call instruction, tail call optimizations results in the use of jumps
to enter a function. Because of these, intra- and inter-procedural control
flow transfers cannot be easily distinguished by the instructions used, or
a simple model of the target.

• Hand-written assembly. Hand-written assembly is necessary in im-
plementing some low-level functionalities. For instance, setcontext and
getcontext functions of libc are such cases because direct manipulation
of stack pointer register is required. Furthermore, hand-written assem-
bly can be useful in producing optimized code. One example is the
memset and memcpy functions of libc. By implementing the functionality
directly using carefully arranged assembly code, superfluous instructions
that might otherwise be emitted by compilers are avoided. Moreover,
additional CPU features such as non-temporal instructions [56] can be
directly used for faster execution. However, “clever” uses of instruc-
tions in hand-written assembly often deviate from compiler generated
code patterns, and can break assumptions made by binary analysis and
instrumentation tools. Therefore, in order to be compatible with real-
world and low-level applications, binary tools need mechanisms to detect
and handle non-standard use of instructions.

1.3 Existing Function Recovery Techniques

There are three major techniques for function recovery, namely static analy-
sis, dynamic analysis, and machine learning. Static analysis is the most widely
used approach, which works by analyzing the binary module without program
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execution. However, techniques for indirect branch and memory reference res-
olution often lead to overapproximation. Moreover, imprecise modeling of in-
struction semantics and shalow analysis employed by many existing approaches
result in inaccuracies in recovered functions.

Dynamic analysis is the technique of analyzing programs by executing
them. By collecting execution traces and runtime data, some functions can
be recovered. Although the problem of indirect branch and memory reference
resolution is side-stepped because the data value is known for a particular
run, the main drawback of this approach is its limited coverage. This results
from the difficulty of determining the inputs (and possibly other environment
factors) to excercise all parts of the program. Path explosion problem could
pose further challenges. Due to limited code and path coverage, the recovered
constructs are often incomplete and constrained in terms of applications.

Machine learning is a technique that can be applied to many problem do-
mains. Two phases are involved. In the training phase, a dataset is consumed
by the training program to build a model. This model is then used in the
testing phase to produce results. Currently, machine learning is only adopted
for function boundary identification, but not yet other aspects of function re-
covery. Based on the proposed techniques and observations of the evaluation
results, current machine learning techniques have not effectively used deep
program construct information or global evidence.

1.4 Contributions

Taking the completeness, applicability and accuracy requirements into ac-
count, we consider static analysis a more favorable approach than the other
two. We utilize deep static analysis for function recovery: with precisely mod-
eled instruction semantics, our approach uncovers critical properties associated
with functions, and identifies useful constructs. This deep analysis is essential
for robust support of demanding applications such as instrumentation, even
on large and complex software.

In this dissertation, we present deep analysis techniques for accurate func-
tion recovery, with an emphasis on applications to the security domain. Our
approach is different from existing work in the following aspects:

1. Precise modeling of instruction semantics. Due to the complexity
of modern instruction sets such as x86, it is nontrivial to precisely model
instruction semantics. Many analyses only loosely capture semantics of
a subset of instructions, therefore not able to support large and complex
software. Our approach utilizes precise model of instruction semantics,
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which can not only be manually developed, but also automatically ex-
tracted from retargetable compilers.

2. Detailed reasoning of the stack. Program stack is an important
memory region that is frequently accessed by functions. To recover fun-
tion constructs or properties, the interaction of a function with stack
should be captured and analyzed. While some existing approaches solely
focus on registers [94], our analysis performs detailed reasoning of the
stack. Therefore, not only stack variables values are tracked, entities
such as return addresses and stack arguments can be determined.

3. Accurate recovery of function constructs with deep analysis.
Compared with coarse-grained analysis [12] as well as machine learn-
ing [15, 87], our approach achieves significantly more accurate results.
This is due to the fact that comprehensive analysis techniques have been
leveraged to capture both local and global evidences, as well as deeper
semantics. Relying on program semantics instead of instruction syntax
or code patterns, our analysis is also able to recover constructs that
are originated from hand-written assembly, which are easily missed by
manual analysis or pattern matching.

4. Robust enforcement of recovered constructs. Many prior ap-
proaches [2, 62] recover function constructs for reverse engineering and
program understanding purposes, therefore the results are not applica-
ble to security enforcement. On the contrary, the recovered constructs
from our analysis either directly support demanding applications such
as instrumentation (in addition to more permissive applications such as
analysis and reverse engineering), or possess desired properties which
make them more amenable for further refinement. Moreover, different
from binary rewriting oriented analysis [10, 37], our approach emphasize
on robust enforcement of security policies based on recovered constructs.
Therefore, a different set of trade-offs are made to support our use cases,
and the analysis could be tailored for specific needs.

Specifically, we apply our analysis techniques to various problems, and make
the following contributions:

• Accurate discovery of function returns. We present a technique
for accurate function return discovery. A principled return-oriented pro-
gramming (ROP) defense is developed as an application of our anal-
ysis. By systematically enforcing the inferred returns, our system can
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achieve stronger protection, better compatibility, and better performance
as compared to previous research.

• Accurate recognition of functions. We present a systematic function
recognition approach that is based on function start address enumeration
and function interface checking. An in-depth evaluation shows that our
system produces better results than state-of-the-art machine learning
based approaches. Moreover, the recovered functions are more amenable
for many analysis and instrumentation applications.

• Accurate function type analysis. We present techniques to accu-
rately infer function types. A more fine-grained control-flow integrity
(CFI) policy can be derived and enforced, based on the recovered func-
tion types. When combined with recovered C++ semantics, our analysis
leads to stronger protections for virtual dispatches — a C++ construct
commonly abused by attackers.

1.5 Dissertation Organization

The rest of this dissertation is organized as follows: Section 4 describes our
technique for accurate function return discovery, as well as a principled ROP
defense mechanism that is based on inferring and enforcing returns. Sec-
tion 5 presents our approach for function boundary identification, which is a
fundamental step for many binary analysis and instrumentation applications.
Section 6 presents our techniques for accurate function type analysis and its
application to fine-grained control-flow integrity enforcement. And lastly, Sec-
tion 7 concludes.
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2 Background and Related Work

In this chapter, we discuss the background and related work for this disserta-
tion. After describing existing analysis techniques related to function recovery
in the first three sections, we shift our focus to their applications on security.
Specifically, we introduce the common forms of code-reuse attacks in Sec-
tion 2.4, and then discuss how these attacks can be mitigated with a general
technique, namely control-flow integrity (Section 2.5).

2.1 Binary Organization and Disassembly

Program binaries are organized into sections. Each section may contain code,
data, metadata, or other auxiliary information. Figure 2.1 gives an example
for the organization of a Linux Executable and Linkable (ELF) binary. In this
figure, a code section (e.g., .init, .plt, .text, .fini) consists of a sequence
of bytes which is interpreted by the CPU as instructions and gets executed at
runtime. A data section can either be read-only (e.g., .rodata), or have read-
write permissions (e.g., .data, .bss). There may be metadata about the code
sections (and data sections), most notably the symbol, debug and relocation
information. However, they are normally stripped off before COTS binaries
are distributed.

Disassembly is the process of translating bytes of code sections of a binary
into decoded instructions. It is usually the first step for any binary analysis.
There are two major techniques for disassembly: linear sweep and recursive
traversal [85]. Each of these techniques has some limitations: linear sweep may
erroneously treat embedded data as code, while recursive traversal suffers from
completeness problems due to difficulties in statically determining indirect
control flow targets.

Recent advances have shown that robust disassembly can be achieved with
linear disassembly [11] and error correction mechanisms [106]. More specifi-
cally, the disassembly algorithm works by first linearly disassembling the bi-
nary, and then checking for errors such as (1) invalid opcode; and (2) direct
control transfer outside the current module or to the middle of an instruction.
These errors arise due to embedded data and are thus corrected by identifying
data start and end locations so that disassembling can skip over them. Robust
disassembly has been achieved by these techniques for a wide range of com-
plicated and low-level binaries [106, 11], so we rely on the same techniques in
this dissertation.
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Section Headers:
  [Nr] Name              Type            Addr     Off    Size   ES Flg Lk Inf Al
  [ 0]                   NULL            00000000 000000 000000 00      0   0  0
  [ 1] .interp           PROGBITS        08048134 000134 000013 00   A  0   0  1
  ...
  [10] .rel.dyn          REL             08049428 001428 000028 08   A  6   0  4
  [11] .rel.plt          REL             08049450 001450 000360 08   A  6  13  4
  [12] .init             PROGBITS        080497b0 0017b0 000026 00  AX  0   0  4
  [13] .plt              PROGBITS        080497e0 0017e0 0006d0 04  AX  0   0 16
  [14] .text             PROGBITS        08049eb0 001eb0 0120dc 00  AX  0   0 16
  [15] .fini             PROGBITS        0805bf8c 013f8c 000017 00  AX  0   0  4
  [16] .rodata           PROGBITS        0805bfc0 013fc0 004297 00   A  0   0 32
  ...
  [25] .data             PROGBITS        08064720 01b720 00016c 00  WA  0   0 32
  [26] .bss              NOBITS          080648a0 01b88c 000c70 00  WA  0   0 32
  [27] .comment          PROGBITS        00000000 01b88c 000038 01  MS  0   0  1
  [28] .debug_aranges    PROGBITS        00000000 01b8c4 000550 00      0   0  1
  [29] .debug_info       PROGBITS        00000000 01be14 020883 00      0   0  1
  [30] .debug_abbrev     PROGBITS        00000000 03c697 00506f 00      0   0  1
  [31] .debug_line       PROGBITS        00000000 041706 006f66 00      0   0  1
  [32] .debug_str        PROGBITS        00000000 04866c 005559 01  MS  0   0  1
  [33] .debug_loc        PROGBITS        00000000 04dbc5 018a28 00      0   0  1
  [34] .debug_ranges     PROGBITS        00000000 0665ed 0051d8 00      0   0  1
  [35] .shstrtab         STRTAB          00000000 06b7c5 00015f 00      0   0  1
  [36] .symtab           SYMTAB          00000000 06bf14 002580 10     37 326  4
  [37] .strtab           STRTAB          00000000 06e494 0023d0 00      0   0  1
Key to Flags:
  W (write), A (alloc), X (execute), M (merge), S (strings)
  I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)
  O (extra OS processing required) o (OS specific), p (processor specific)

Figure 2.1: Sections of an unstripped Linux ELF binary. Sections marked in
green are code sections, and the ones in red are data sections. Sections marked
in (different levels of) grey are symbol, debug, and relocation sections, which
can be distinguished using their section names. When the binary is stripped,
some of the grey sections are removed.
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2.2 Discovering Code Pointers

There are different kinds of code pointers in a binary. Some are function
pointers, while others are pointers to internal basic blocks of functions, and
used for intra-procedural control flow transfers.

In this section, we first describe a general and conservative technique for
identifying all code pointers, and then move to two specific code pointer struc-
tures, namely jump tables and virtual tables.

2.2.1 Conservative Code Pointer Analysis

Although it is undecidable whether a constant value in a binary represents
a code pointer, conservative analysis techniques have been developed that
identify a superset of possible code pointers. One recent approach [106] is to
scan all constants in the binary, and select the subset that (a) fall within the
range of code subsections within the binary, and (b) target a valid instruction
boundary. Our function recognition technique (Section 5) starts from this
conservative set, and prunes away almost all non-functions. As shown in our
experiments, our analysis reduces the number of valid function pointers by a
factor of 3.

2.2.2 Jump Table Analysis

A jump table is an array of addresses that are possible targets for an indirect
jump (which we refer to as a table jump). Jump tables are generally used to
implement intra-procedural switch-case statements in high-level languages.
Existing work has developed analysis techniques to identify jump tables as well
as their targets [26, 67]. The basic idea is to perform a backwards program
slicing from each indirect jump instruction, and then compute an expression
for the jump target. If the expression matches commonly used table jump
patterns, the indirect jump is recognized as a table jump. The address of jump
table can be extracted from the same expression, and its bound is obtained
based on constraints imposed on the index variable. Finally, jump targets can
be collected from the identified jump table.

2.2.3 Virtual Table Analysis

A virtual table (or VTable in short) is a data structure in C++ binaries used
for virtual function calls. Since the main component of a virtual table is an
array of virtual function pointers, the identification of virtual tables is helpful
for code pointer analysis.
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VTable

-0x8: offset-to-top
-0x4: &RTTI

 0x0: &virtual_function1

 0x4: &virtual_function2

 0x8: &virtual_function3

 0xc: &virtual_function4

vtblptr

Figure 2.2: Layout of an Itanium C++ VTable

Although VTables can be structured in different ways, modern compilers
follow system ABI (e.g., Itanium or MSVC) when generating VTable. Fig-
ure 2.2 presents the layout of an example VTable according to Itanium ABI
[4].

In this figure, the first field “offset-to-top” represents the offset of a vtblptr
field in an object. It is a constant that is either 0 (for single inheritance) or
a small number (in case of multi-inheritance). The second field is a pointer
to Run-Time Type Information (RTTI) [4]. However, it is 0 if RTTI is not
available in the binary. The final part is an array of (virtual) function pointers.
Note that vtblptr points to the start of this array, instead of the “offset-to-top”
field.

The basic approach for virtual table identification is a set of heuristics
[77, 103, 74] relying on system ABI. Since VTables locate in the read-only
section of a binary, a constant found in disassembled instructions is identified
as a candidate VTable pointer if its value corresponds to an address in the
read-only section. Further checking is performed on the data surrounding the
potential vtblptr address. Specifically, the data value at offset -4 should either
equal to 0 or point to read-only section, and the data value at offset -8 should
either equal to 0 or a small number. The values at positive offsets are scanned
in a pointer-sized stride. Since they are supposed to be function pointers, the
scanning stops when the value does not point to the .text section any more.
Therefore, the potential VTable end is detected.

This technique has been shown to be effective to recover VTables without
false negatives but only a few false positives [77, 74]. Moreover, the recovered
VTables may be larger than the correct ones, but not smaller. As will be
shown, this is desired and won’t cause false alarms for security enforcement.
Therefore, we leverage the same technique for VTable analysis.
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2.3 Function Recovery

A function is essentially a body of code that operates on input data, and
possibly returns values and/or exhibits side effects. Functions also have their
own variables to keep track of internal state.

Depending on the application, there are many aspects to recover for func-
tions in a binary. However, a first task is usually to recognize them. In the
following sections, we discuss related work on recovery of important constructs,
properties, as well as original source code for functions.

2.3.1 Function Recognition

Many tools recognize functions using call graph traversal and function prologue
matching. Examples include CMU BAP [17], angr binary analysis platform
[88], and the Dyninst instrumentation tool [50]. However, function prologue
patten matching is not robust. Similarly, IDA [2] uses proprietary heuristics
and a signature database for function recognition. Its problems include that
it underperforms for different compilers and platforms, and the overhead of
maintaining an up-to-date signature database.

Rosenblum et al. first proposed using machine learning for function start
identification [81]. The precision and runtime performance have been greatly
improved by recent work from Bao et al. [15] and Shin et al. [87], due to
adoption of different machine learning techniques such as weighed prefix trees
and neural networks. However, machine learning relies on a good training
set, and potentially subtle parameter tuning for producing accurate results.
Compared to analysis based approaches, they may also require an expensive
training phase.

Necleus [12] is a recent effort of function recognition based on control flow
analyis. Their approach builds a global control-flow graph (CFG) based on
accurate linear disassembly. After removing direct call edges, the nodes with
no inwards edges are considered as function starts. An interesting finding
of the paper is that the dataset used by prior machine-learning techniques
[15, 87] are biased because a lot of equivalent functions are present in the
dataset. And a re-evaluation of those approaches on different datasets have
shown significantly decreased performance.

Different from existing work, we develop a novel static analysis for function
recognition (Section 5). Our approach is based on comprehensive function in-
terface checking of control flow and data flow properties for potential functions.
We demonstrate that fine-grained static analysis [79, 78] can recognize func-
tions with much greater accuracy, and has the potential to support demanding
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applications such as automated analysis and instrumentation.

2.3.2 Function Type Recovery

Function type is defined as the number, location, and types of a function’s
arguments and return values. Since function type captures important aspects
of function interfaces, with which functions interact with each other, it is
critical for many applications.

The problem of function type recovery has been studied in the context
of binary rewriting [10, 37]. To ensure the rewritten function receives all its
original arguments, the number of arguments is over-approximated when static
analysis is limited. However, this makes the technique less applicable to other
applications.

TypeArmor [94] identifies the number of register arguments for both func-
tions and indirect callsites, in order to enforce a finer-grained control-flow
integrity (CFI). However, their technique relies on specific restrictions on the
x86-64 platform, and does not detect stack arguments.

Complementary to TypeArmor, our work recovers stack arguments for
functions and callsites. Based on a conservative analysis strategy and pol-
icy design, our technique can also be used for fine-grained CFI enforcement.
Note that stack arguments information can be used on its own, or combined
with register argument information, for stricter CFI policy.

2.3.3 Function Decompilation

Other than recovering certain constructs, a more ambitious goal for function
recovery is full decompilation: converting functions to source code. Two crit-
ical tasks are involved: (1) variable and type recovery; and (2) control flow
structure recovery.

Due to adoption of carefully chosen abstract domains, prior work based on
abstract interpretation [28] has made significant progress on variable recovery
[14, 10, 37]. However, they still cannot detect all variables. For type recov-
ery, although both dynamic and static analysis based approaches have been
proposed, the recovered types may either contain errors [63], or present in the
form of type intervals rather than precise, single types [62].

Control flow structure recovery [84, 98] concerns with recovering high-level,
structured control flow constructs such as loops, if-then-else branches, and
switch-cases. A program is considered structured if it is free of gotos. Con-
trol flow structure recovery can assist program understanding and facilitate
program analysis.
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Because of above challenges and limitations of discussed techniques, exist-
ing decompilers are either designed for helping human audits, due to possible
errors in their outputs [49, 38], or only tested with small programs [84], and
with no demonstration of scalability.

In this dissertation, our focus is robust recovery of function constructs
for large and complex software, with applications to security analysis and
instrumentation. Therefore, full decompilation is not needed hence out of
scope of this work.

2.4 Code-Reuse Attacks

Programs written in C/C++ are not memory safe. Vulnerabilities such as
buffer overflow, heap overflow and use-after-free can be exploited by attackers
to execute code of their choice. Traditionally, attackers inject payload (called
shellcode) into the address space of a victim process, and redirect control to
this code. However, with widespread deployment of Data Execution Preven-
tion (DEP), injected code is no longer executable, so attackers have come to
rely on code reuse attacks. The idea is to repeatedly redirect control flow to
existing benign code in the address space. Since the target code snippets are
carefully chosen by attackers, malicious computations can be performed.

Based on abused control flows, code-reuse attacks can be roughly classified
as return-oriented programming (ROP), call-oriented programming (COP),
and jump-oriented programming (JOP). These techniques can be combined to
be more evasive [47, 32, 48, 20, 19, 39]. Since JOP is less utilized due to the
relative small number of indirect jumps in a program, we focus our discussion
on the first two forms.

2.4.1 Return-Oriented Programming

Return-oriented programming (ROP) [86] is the most prevalent form of code-
reuse attacks. It makes use of “gadgets,” i.e., existing code snippets ending
with return instructions. A gadget used in a ROP attack could either be
an intended code sequence, or unaligned code, which refers to unintended
instruction sequence beginning from the middle of an (intended) instruction.
This is possible on variable-length instruction-set architectures such as x86.

To carry out ROP, attackers first get control of the stack. Since return
addresses used by gadgets originate from the stack, attackers prepare the stack
in such a way that execution of the selected gadgets are chained one after
another. The stack is also used to supply necessary data to the gadgets.
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2.4.2 Call-Oriented Programming

Another form of code-reuse attacks is call-oriented programming (COP) [47,
39]. In this case, indirect calls, rather than returns, are abused by attackers.
Generally speaking, COP is more difficult than ROP due to the need to repeat-
edly corrupt code pointers that may reside at different locations. Therefore,
COP may sometimes only be used to bootstrap ROP [47].

Counterfeit object-oriented programming (COOP) [83, 29] is a special form
of COP for C++ programs. By crafting counterfeit objects and abusing vir-
tual function calls, attackers can repeatly redirect control to selected virtual
functions (called “vfgadgets”). COOP is practical because it takes advantage
of code patterns commonly found in object-oriented languages such as C++.

2.5 Control-Flow Integrity

Control-flow integrity (CFI) is a low-level security policy that constrains pro-
gram control flows [6]. The basic idea is to pre-compute a static control
flow graph (CFG) of the program, and enforce that the indirect control flow
transfers are compliant with the CFG. CFI on its own can be used for de-
fenses against code reuse attacks, or it can serve as a primitive to ensure
non-bypassability of other inline reference monitors [6, 105, 101].

CFI restricts indirect control flow transfers, either forward or backward
ones. Forward control flow transfers include indirect calls and indirect jumps,
while backward ones refer to returns. Since in a CFG the instructions are
represented as nodes and control flow transfers are edges, we also call these
transfers forward and backward edges.

The strength of CFI depends on the precision of the CFG. A perfect CFG
would only allow intended control flow transfers. However, as CFG is inher-
ently static and the analysis that computes it usually overapproximates allowed
indirect control flow targets to be conservative, the result policy is often overly
permissive. Although function type information can be leveraged to further
restrict forward edges, backward edges are usually difficult to constrain as
a return site may legitimately target many locations. Based on the relative
precision of CFG, CFI schemes can be roughly classified as coarse-grained or
fine-grained.

CFI is a general technique that can be applied to any native code. How-
ever, CFI precision can be greatly improved if advanced language features can
be recovered. In the next sections, we first describe language-agnostic CFI
techniques that are widely applicable, and then discuss how C++ virtual calls
can be more precisely protected with recovered C++ semantics.
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Calling convention Arch. Arguments passing

System V ABI x86-64 RDI, RSI, RDX, RCX, R8, R9, then stack

Microsoft x64 x86-64 RCX, RDX, R8, R9, then stack

cdecl x86-32 stack

stdcall x86-32 stack

Figure 2.3: Arguments passing for different calling conventions

2.5.1 Language-Agnostic Approaches

To compute the CFG, programs need to be statically analyzed. They also need
to be instrumented for runtime enforcement. These tasks can be performed
either by a compiler on source code, or by some low-level tool on binaries.
Therefore, CFI can be classified as compiler- and binary-based approaches.

Compiler based approaches can leverage source code information such as
function types [71, 92, 73, 66], therefore providing a better precision. How-
ever, they are not applicable to COTS software or third party libraries. This
limitation can be significant: even if a single module is not protected, it could
become the weakest link and render all other defenses useless.

On the other hand, although binary-based protection can be more com-
plete, enforcing fine-grained CFI on COTS binaries is challenging due to lack
of high-level information. As a result, the first binary level schemes sacrifices
security for robustness, and used a relaxed policy that a large target set is
allowed by each indirect control flow transfer type [106, 104]. However, these
systems are bypassable [47, 32]. To provide stronger protection against deter-
mined adversaries, later research efforts have combined CFI with techniques
such as randomization [68] or safe loading [107], or also consider context in-
formation [93].

TypeArmor [94] is a technique inspired by source-level type-based CFI
enforcement. By analyzing indirect callees and callsites, it derives an under-
approximation of the number of arguments passed to each callee, and an over-
approximation of the number of arguments prepared by each callsite. It en-
forces a policy that a callsite can only call a callee if the prepared argument
count is not smaller than that of the callee. Policy for return values is also in
a similar, conservative fashion.

A limitation of TypeArmor is that it focuses only on register arguments.
Although for x86-64/Linux it is effective (because the first 6 arguments are
passed though registers), the technique does not apply to x86-32 where most
arguments are passed through stack, and its precision significantly decreases
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Class A
varA
vfA1()
vfA2()

Class B
varB
vfB1()
vfB2()

Class C
varC
vfA1()
vfB2()
vfC()

Object A
0x0: vtblptrA
0x4: varA

Object B
0x0: vtblptrB
0x4: varB

VTable A
-0x8: 0
-0x4: &RTTI_A
 0x0: &A::vfA1
 0x4: &A::vfA2 

VTable B
-0x8: 0
-0x4: &RTTI_B
 0x0: &A::vfB1
 0x4: &A::vfB2 

VTable C
-0x8: 0
-0x4: &RTTI_C
 0x0: &C::vfA1
 0x4: &A::vfA2
 0x8: &C::vfB2
 0xc: &C::vfC
Sub-VTable C
-0x8: 0
-0x4: &RTTI_C
 0x0: &B::vfB1
 0x4: &<thunk to
         C::vfB2>

Object C
0x0: vtblptrC1
0x4: varA
0x8: vtblptrC2
0xc: varB
0x10: varC

thisptr

thisptr

thisptr

Figure 2.4: Layout for polymorphic objects

on x86-64/Windows (only the first 4 arguments are passed through registers
and the rest are through stack). A summary of register passing for common
calling conventions is presented in Figure 2.3. Our function type analysis
complements this by focusing on memory arguments. It not only directly
works with x86-32, but can also improve the CFI precision for x86-64 when
combined with TypeArmor.

2.5.2 CFI for C++ Virtual Calls

As discussed in Section 2.4.2, C++ programs give attackers additional op-
portunities to develop advanced exploit techniques, such as those leveraging
virtual function calls [83, 29]. On the other hand, C++ semantics available
from source code can be used for stronger protection. Specifically, object type
information as well as class hierarchies can be effectively leveraged for highly
precise CFI enforcement [57, 92, 72, 16, 102].

For COTS binaries, however, these semantics are mostly unavailable. To
illustrate related concepts, we use an example in Figure 2.4. The left half of
the Figure depicts three classes A, B, and C. C is the subclass of both A
and B, therefore it is a case of multiple inheritance. The right half shows the
object layout of these polymorphic classes. For each object instance, the first
field is a VTable pointer, while the next ones are member variables. Each
object is associated with the VTable according to its class. Specifically, the
VTable pointer of each object points to the virtual function array inside the
corresponding VTable. Note that an object of class C has two VTable pointers,
as it inherits from two classes. The first VTable pointer is still the first field
of the object and points to V Table C, while the second VTable pointer is at
a larger offset and points to Sub-V Table C.

In Figure 2.4, the RTTI pointers in VTables either point to RTTI data
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structures, or are 0 if such information is not available. Although RTTI in-
formation [4] (which encodes class hierarchies) may present in some stripped
binaries, it is mostly adopted for reverse engineering [42, 99], and difficult to
apply to enforcement. Techniques for deriving class hierarchies without RTTI
information have also been developed [43, 58]. However, the recovered hier-
archies are still not precise enough for CFI enforcement without the help of
dynamic profiling [74].

Due to the challenges of accurately recovering class hierarchies as well as
object types, existing C++-aware CFI techniques rely on a subset of C++
semantics and constructs. Specifically, only virtual callsites and virtual tables
(VTables) are identified and used for generating a CFI policy [103, 77, 46].
Although these policies are not as precise as those from source code based
techniques, they still represent a significant improvement over approaches not
considering C++ semantics.

Since we discussed VTable identification in Section 2.2.3, next we focus on
identification of virtual callsites.

Identification of Virtual Callsites Prior works have developed techniques
to identify virtual calls in binaries [46, 77, 103]. The basic approach is to slice
and transform code so that each indirect call target as well as its first argument
are represented as expressions; if these expression satisfy certain constraints,
the corresponding indirect call is recognized as a virtual call. Specifically,
since the target of a virtual call should be derived from a VTable, the target
must be a dereference of form ∗(ptr1 + offset). Note that offset should be
a multiple of pointer size for the underlying architecture, and is possibly 0.
Moreover, for ptr1 to be a VTable pointer, it has to be the first field of an
object. In other words, ptr1 should derive its value from another dereference,
and its expression should be of form ∗(ptr2). If ptr2 is passed as the first
argument of the indirect call, a virtual call is identified, and ptr2 is recognized
as the this pointer.

Note that this technique also works for multiple inheritance and virtual
inheritance, as the this pointer is adjusted by the compiler before invoking
virtual calls. For example, in Figure 2.4, before any virtual function from Sub-
V Table C is invoked, the this pointer is adjusted by adding 0x8 to point to
vtblptrC2. Therefore, although ptr2 is an expression that can take different
forms, a virtual call is recognized as long as the two dereferences described
above and the argument passing are identified.

Evalutions on this technique have shown that although it may miss some
virtual calls (false negatives), there are no false positives [77]. Since the missing
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virtual callsites would not result in false alarms but only slightly decreased
security, we utilize the same technique for virtual call identification.

CFI Policies Since virtual calls must target virtual table entries (virtual
functions), a basic policy is to enforce this invariant, and therefore no other
targets are allowed. Earlier work has not developed VTable identification
techniques, therefore a relaxed policy is used [46]. Specifically, since VTables
must present in read-only sections, a virtual call is allowed if the target is
found in those sections. VTint [103] relocates VTables into a separate read-
only section, and instruments virtual callsites to check that the target VTable
is read-only. However, VTint is not able to prevent VTable reuse attacks.

vfGuard [77] proposed a stronger CFI policy with accurate detection of
virtual calls and VTables. Specifically, since each virtual call uses a constant
offset to index into a VTable and retrieve virtual function pointer (offset in
the expression call ∗ (∗(thisptr) + offset)), this constant can be statically
determined and effectively used. For example, a virtual call with offset 16 can
only target entries of offset 16 of all VTables. If a VTable is small and offset
16 is out of its bounds, then this VTable cannot be a candidate VTable for the
virtual call. vfGuard further refines the target sets based on other properties
such as calling conventions.

2.5.3 Shadow Stack

As discussed, backward edges cannot be well protected by CFI as the CFG
computed by a static analysis is not precise. Therefore, a shadow stack is
typically incorporated with coarse-grained CFI [7].

Shadow stack schemes [44, 24] were first proposed as a defense for stack
smashing attacks. However, a shadow stack alone is not effective against
ROP attacks, as only legitimate returns were checked and ROP attacks using
unintended returns are possible. CFI enforcement, which prevents the use
of unintended instructions, provides one way to block this attack avenue. A
second approach, used in DBT-based techniques (e.g., ROPdefender [33]), is
to instrument all returns before their execution.

The practical deployment of shadow stack has been limited by the preva-
lence of non-standard returns that violate shadow stack checks. While RAD
[24] addressed the cases of longjmp and signals, ROPdefender [33] identified
two other non-standard uses: C++ exceptions and lazy-binding of calls to
shared library functions. It handled them by manually identifying instruc-
tions that save a return address on the stack, and pushing a copy on the
shadow stack.
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A drawback of ROPdefender was its significant runtime overhead. Zhang
et al [105] discuss how dynamic binary instrumentation techniques, while dis-
playing good performance on SPEC benchmarks, tend to perform poorly on
large, real-world applications. Being based on static instrumentation, Zhang
et al were able to achieve significantly better performance than ROPdefender.

Lockdown [75] is a recent effort combining shadow stack and CFI in dy-
namic instrumentation, while focusing on reducing runtime overhead. How-
ever, they do not focus improving compatibility.

Dang et. al surveyed existing shadow stack systems and designed a “par-
allel shadow stack” scheme [31] to eliminate the need for shadow stack pointer
save and restore. They avoided register clobbers in their intrumentation, ap-
plied peephole optimizations, and achieved great performance. However, this
comes with some trade-offs on security. In fact, StackDefiler [27] describes an
attack that leaks shadow stack address.

2.5.4 Comparison with Other Defenses

The most comprehensive defense for memory corruption attacks is based on
bounds-checking [59, 97, 100, 9, 69]. Unfortunately, these techniques intro-
duce considerable overheads, while also raising significant compatibility issues
[91]. LBC [51] achieves lower overheads while greatly improving compatibil-
ity by trading off the ability to detect non-contiguous buffer overflows. Code
pointer integrity [61] significantly reduces overheads by selectively protecting
only those pointers whose corruption can lead to control-flow hijacks. However,
these solutions all require source code.
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3 Static Analysis Approach

3.1 Intermediate Representation

To analyze binaries, a representation of binary code is required. Disassembly
is a necessary step because it discovers code bytes and decodes them into
instructions. However, modern instruction sets such as x86 are complex and
the disassembled instructions are not amenable to direct analysis.

To address this problem, instructions are usually transformed into an in-
termediate representation (IR). The IR is much simpler in that it only consists
of a small number of operations, and all semantics are represented explicitly
with IR instructions. Since the IR is usually in a flat three address code form,
the data movement sources and destination are also explicit. Due to these
properties, IR can be directly consumed by analysis engines.

An IR can be a newly designed language, examples include the Valgrind
IR [70], BAP (Binary Analysis Platform) IR, and REIL (Reverse Engineering
Intermediate Language) IR. Alternatively, an existing IR, typically used in
compilers, can be adopted. For example, SecondWrite [10] chose LLVM IR,
while other works have used the GCC RTL (Register Transfer Language) IR
[55, 54, 80].

The benefit of using a new IR is that it can be designed to satisfy specific
requirements. However, it requires significantly more work. On the other hand,
using an existing compiler IR is advantageous in that many existing software
components, such as optimization passes of a compiler, can be adapted or
directly used. Moreover, it also facilites support for multiple platforms, if an
IR from a retargetable compiler (such as GCC and LLVM) is used.

In the next sections, we describe the two tasks involved in obtaining an IR
form of a binary, namely instruction semantics modeling, and IR transforma-
tion.

3.1.1 Precise Modeling of Instruction Semantics

To make sure the transformed intermediate representation faithfully represent
the semantics of original program, precise modeling of instructions is required.
Earlier works manually specify instruction semantics, based on the instruction
set architecture (ISA) manual from the CPU venders [70, 17, 35, 10, 60].
However, since modern instruction sets are complex, this task requires huge
human efforts and is prone to error.

Recent research has proposed techniques for to alleviate this. The key ob-
servation is that compilers, which transform source code into binaries, already
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have a model of instructions. Therefore, different approaches have been de-
veloped to automaticaly extract instruction semantics from compilers. LISC
[55] is a learning-based system that trains a model with GCC RTL IR and
assembly pairs obtained from the compilation of a large number of packages.
While EISSEC [54] takes a different approach by symbolically executing the
code generators in the GCC compiler.

To validate the correctness of recovered instructions semantics, testing ap-
proaches can be leveraged [52].

3.1.2 IR Transformation

To transform a binary into IR form, the disassembled instructions are used as
inputs to a “lifter” program. The lifter transforms each assembly instruction
into a number of IR statements. The original instruction opcode has been
represented with IR operations, while the operands are translated to their
counterparts in the IR. Note that the lifter makes use of an instruction speci-
fication, either manually specified or obtained using automatic approaches, so
that the generated IR has the same semantics as original program.

Our lifter is built on top of LISC [55], which transforms assembly instruc-
tions into GCC RTL IR. However, since RTL is tree-structured, it is not suit-
able for direct analysis. We therefore further transform RTL into a flat, and
simple IR that is in three-address form.

The core algorithm, flatten, is a recursive procedure that takes any RTL
tree node as input. For each RTL operation encountered, it outputs a cor-
responding IR statement, and temporaries are used as desired. Therefore, a
single RTL instruction is translated to multiple IR statements, which as a
whole captures the instruction semantics. These IR statements consist of a
handful of operations, such as arithmetic operations, memory dereferencing,
and assignment, therefore they can be easily used in analysis.

3.2 Data-Flow Analysis

Data-flow analysis is a set of techniques that gather information about the
flow of data along program execution paths [8]. Data-flow analysis is widely
used in compilers as a basis for optimization. For binary programs, data-flow
analysis is also the foundation for capturing important program properties.

The task of a data-flow analysis is to associate each program point with
a data-flow value — an abstraction of all possible program states that can
be observed from that point. Usually, only data-flow values at basic block
boundaries are considered. This is because with such information it is easy
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to compute the data-flow value before and after any internal instruction of a
basic block.

Different data-flow analysis concerns with different data-flow values. More-
over, data-flow analyses can also be classified as forward and backword ones,
based on the directions of concerned data flows.

Suppose we use IN [B] and OUT [B] to respectively represent data-flow
values at the entry and exit of a basic block B, for a forward data-flow analysis,
the following data-flow equations are generated:

OUT [B] = transB(IN [B])
IN [B] = joinP∈predB(OUT [P ])

In these equations, transB is the transfer function for basic block B. It
represents the transformations of data-flow values based on the semantics of
instructions of B. The join operation combines exit data-flow values from all
B’s predecessors.

For backward data-flow analysis, the equations are the opposite:

IN [B] = transB(OUT [B])
OUT [B] = joinS∈succB(IN [S])

Note that IN [B] derives new value from OUT [B], and the join combines
entry data-flow values from all B’s successors.

To get output for a data-flow analysis, data-flow equations need to be
solved. This is usually done with an iterative algorithm. Specifically, all the
IN states are first initialized (typically with ∅), and then the OUT states are
updated, based on the equations. This process continues until a fixpoint is
reached. The IN and OUT states at this point represent the final output of
the analysis.

In the following sections, we introduce two specific data-flow analyses that
have been used in our function recovery tasks.

3.2.1 Reaching Definition Analysis

Reaching definition analysis is a forward data-flow analysis that determines for
each program point which definitions may reach it. The data-flow equations
for a reaching definition analysis is as follows:

REACHout[B] = GEN [B] ∪ (REACHin[B]−KILL[B])
REACHin[B] = joinP∈predB(REACHout[P ])
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In above equations, we used REACHin[B] and REACHout[B] to represent
the reaching definition data-flow values at the entry and exit of a basic block
B. Note that the second equation is no different from the one shown in last
section. Intuitively, this means that a definition that can reach the exit of any
predecessor basic block reaches the current block.

The right-hand side of the second equation corresponds to the transfer
function for reaching definition analysis, and it consists of some new elements.
Specifcally, GEN [B] is the set of definitions inside B that are visible immedi-
ately after B, while KILL[B] is the union of all definitions killed in B. Note
that a “kill” means that the variable is overwritten, by a new definition of the
same variable.

GEN [B] and KILL[B] are derived from GEN [I] and KILL[I], where I
is any instruction (or equivalently, any IR statement) of B. Note that this
requires instruction semantics, which can be obtained using approaches de-
scribed in the first section of this chapter.

3.2.2 Liveness Analysis

Liveness analysis is a backward data-flow analysis that computes at each pro-
gram point the variables that may be potentially read before the next write,
i.e., variables that are live. In simpler words, a variable is live if it may be
needed in future of the execution. A variable is said to be dead if it is not live.

The data-flow equations for a liveness analysis is as follows:

LIV Ein[B] = GEN [B] ∪ (LIV Eout[B]−KILL[B])
LIV Eout[B] = joinS∈succB(LIV Ein[S])

The second equation is no different from the general equation for backward
data-flow analysis. For the first equation, note that GEN [B] and KILL[B]
are defined differently as in reaching definition analysis. Specifically, GEN [B]
represents the set of variables that are used in B before any assignment, while
KILL[B] represents the set of variables that are assigned a value in B.

3.2.3 Static Single Assignment

To simplify data-flow analysis, IR can be first transformed into a special form
called static single assignment (SSA). In SSA form, each variable is defined
exactly once, and each variable is defined before used. The same variable
defined at different places are usually denoted with different subscripts.

For example, consider the following piece of IR code:
x = 3
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x = 3
x = x + 2
x >? 7

y = x * 4
z = y

y = x + 1

z = x + y
w = x - y

x1 = 3
x2 = x1 + 2
x2 >? 7

y1 = x2 * 4
z1 = y1

y2 = x2 + 1

y3 = Φ(y1,y2)
z2 = x2 + y3

w1 = x2 - y3

Figure 3.1: IR code and its SSA form

y = 4
x = y + 5

It can be transformed to the following SSA form:
x1 = 3
y1 = 4
x2 = y1 + 5

Note that at line 3, since x is redefined, a new version (x2) of the variable
is created. The same statement uses variable y, which corresponds to its
definition at line 2, hence the same version (y1) is used.

An advantage of SSA, as can be seen from above example, is that the def-
use chain is explicit. This simplifies further analysis and optimizations on the
IR.

Figure 3.1 presents some IR code that consists of several basic blocks (on
the left), as well as its SSA form (on the right). Note that when multiple
definitions of the a variable reach the same location, a φ (Phi) function is
used to indicate the definition may be from different sources. As shown in the
figure, y at the last basic block is defined either in the second or third basic
block, therefore a special IR statement y3 = φ(y1, y2) is inserted.

Algorithms have been developed for transforming IR code into (and out
of) SSA form [30]. At the binary level, both registers and memory locations
can be transformed [95].

3.3 Abstract Stack Analysis

One common task for analyzing a function is to compute its effect on registers
and memory. Since stack frames are used to store local variables and pass
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X1 + [l1, h1] Xn + [ln, hn]

const

[l, h]

...

⊤

⊥

Figure 3.2: The abstract domain for stack analysis

arguments, a function frequently interacts with them. To get accurate results,
it is important that stack memory is precisely modeled.

We develop an abstract interpretation [28] based abstrack stack analysis
(ASA) for this purpose. For each function, it computes an overestimation of
values for registers and stack locations, based on semantics of lifted IR of a
function. The abstract domain we have used is similar to that of Reference
[82], and it is depicted in Figure 3.2.

As shown in the figure, each abstract value is in the form of Base+ [l, h],
where Base and h are optional. Base is a symbolic value that represents the
value of a register or stack location at function entry. A unique symbolic value
is associated with each distinct register or stack location. A missing Base is
treated as 0, and a missing h is treated as the same as l. The values l and h
are (possibly negative) integers. Note that a special Base, BaseSP is used to
represent the initial value of the stack pointer esp. Moreover, stack memory
locations are referenced with respect to this base value — typically with an
offset to BaseSP .

An abstract value X + [l, h] indicates that the concrete value will be in the
range of X + l to X + h (inclusive). The value [l, h] denotes a concrete value
from l to h. A special abstract value const represents an unknown concrete
value, with one limitation: when used as an address, it cannot reference local
memory.

Figure 3.3 describes the abstract interpretation in ASA. For each IR state-
ment, the abstract store A is updated, based on statement semantics. In this
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IR Statement Abstract Store (A)

R := c Upd(A, [R 7→ [c, c]])

R := R′ Upd(A, [R 7→ A[R′]])

∗(R) := R′ Upd(A, [x 7→ A[R′]]), if A[R] = x
Upd(...(Upd(A, [x1 7→ A[x1] ∪A[R′]])...
...), [xn 7→ A[xn] ∪A[R′]])
if A[R] = x1, ...xn, n > 1

R := R1 + R2 Upd(A, [R 7→ ∪r1∈A[R1],r2∈A[R2]r1 ⊕ r2])

call(f) Upd(...(Upd(A, [x1 7→ applysum(A[x1], f, x1)])...
), [xn 7→ applysum(A[xn], f, xn)])
where ModifiedNonLocal(f) = x1, ...xn

Figure 3.3: Abstract interpretation for stack analysis

figure, R (possibly with a subscript) denotes a register. The abstract store
associates up to k (where k is a small constant) abstract values to a regis-
ter or memory location. The notation A[l] means the abstract value stored
at location l for abstract store A, and Upd is used for updating the abstract
store. Note that there are two cases for stack memory updates. If the location
is a singleton, then the abstract value is replaced with a new one. However,
if multiple locations are involved, each possible location is updated with its
original value, combined with the new value. Moreover, note that unlike stack
memory, there is only a single location representing global and heap memory,
and it is initialized as const. This captures the assumption that stack variables
are created after a function is invoked, and no references to stack variables
present in global memory, unless they are escaped.

For an arithmetic operation ‘+’, its abstract operation is denoted as ‘⊕’.
The result of abstract value a + b depends on their forms. If a is of form
X + [l1, h1] and b of form [l2, h2], then the result is X + [l1 + l2, h1 + h2]. The
result is less precise if both bases present. To add X + [l1, h1] and Y + [l2, h2],
if neither X nor Y is BaseSP , then the result is const, and is > otherwise.
Note that if an operation causes the number of abstract values for a location
to exceed k, a generalization is used to reduce the count.

To handle function invocations, a function summary is computed for the
callee. Note that there is only one summary for each function, regardless of its
calling context. Depending on the analysis application, a function summary
may consist of the following information:

• Stack pointer change. The stack pointer may change due to invocation
of a function. Although for most of the cases, the value of esp change is
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0, but sometimes it could also be a constant or >.

• Activation record range. The stack memory region accessed as a result of
function invocation is denoted as BaseSP+[l, h]. BaseSP is the original
stack pointer value upon the function entry, while l, h ∈ (−∞,∞).

• Change of registers and stack location values. Since ASA captures reg-
ister and stack location values with respect to their initial value, the
changes are explicit with the end states of a function.

Given these summaries, ASA uses a function applysum to update the ab-
stract store to reflect value changes of registers and stack locations specified in
the summary. If the summary indicates a location l is unmodified or changed
to one of values x1, x2, ..., xn, then applysum assigns l with new abstract value
A[l] ∪ {x1, x2, ..., xn}.

To analyze a function, ASA uses an iterative algorithm to traverse the
CFG and perform abstract interpretation. For branches, each target basic
block is handled. For merges, ASA takes the union of abstract stores for all
incoming edges as the new state. When an indirect call is encountered, one
option is to assume that ABI is followed. Therefore, a special applysum is
used: callee-save registers as well as esp are preserved, but scratch registers
are clobbered.
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4 Accurate Recovery of Function Returns

Although function returns may seem trivial to identify, they are actually not.
In this section, we present a technique for accurate return discovery. The
most important motivation for this work is to apply it for ROP defense. We
therefore illustrate how accurate inference and enforcement of returns can be
useful.

4.1 Motivation and Approach Overview

As discussed, ROP is the most powerful and versatile among code reuse at-
tacks. Its power stems from the pervasiveness of returns in binary code. As
a result, there are sufficient gadgets in a reasonably large binary to perform
Turing-complete computation. Although variants such as COP and JOP have
been proposed, ROP remains by far the most dominant code reuse attack,
and the only kind used repeatedly in real-world attacks. For this reason, we
focuse on ROP attacks in this section, and develop a principled approach for
defeating them.

ROP relies on repeated subversion of returns in the victim program. Since
CFI is a general technique for limiting all control-flow subversions, it can be
used as a defense mechanism. CFI defeats most ROP attacks since they tend
to violate the statically computed CFG. However, determined attackers can
overcome CFI [47, 32] — specifically, coarse-grained CFI that is based on
simple static analyses can be defeated. In fact, researchers have shown that
a Turing-complete set of gadgets is available on sufficiently large applications
even when coarse-grained CFI is enforced [32].

We note that although techniques for more precisely constraining returns
have been known for well over a decade [24, 25], they have not seen wide
deployment due to compatibility and performance concerns. Next we discuss
these in more detail.

The essential characteristic of ROP is the repeated use of return instruc-
tions. Thus, techniques for constraining returns can be very effective in defeat-
ing ROP attacks. The primary approach for confining returns is the shadow
stack, which relies on a second stack that maintains a duplicate copy of every
return address. Each call instruction is modified so that it stores a second copy
of the return address on the shadow stack. Before each return, the return ad-
dress on the top of the stack is compared with that atop the shadow stack. A
mismatch is indicative of an attack, and program execution can be aborted be-
fore a successful control-flow hijack. However, previous shadow stack solutions
suffer from one or more of the following drawbacks:
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• Incompleteness. Many shadow stack schemes are based on compilers
[24, 31]. They do not protect returns in hand-written assembly code from
low-level libraries such as glibc and ld.so that are invariably present in
every application. Also left unprotected are third-party libraries made
available only in binary code form. Moreover, unintended returns (See
Section 2.4.1) could be used in ROP, and these won’t be checked against
the shadow stack.

• Incompatibility. In most complex applications, returns don’t always
match calls. If these exceptional cases are not correctly handled, they
lead to false positives that deter practical deployment of shadow stack
approaches.

• Lack of systematic protection from all ROP attacks. None of the previous
approaches provide a systematic analysis of possible hijacks of returns,
and how these attempts are thwarted. Indeed, most previous approaches
incorporate exceptions to the shadow stack policy in order to achieve
compatibility. A resourceful adversary can exploit these policy excep-
tions to carry out successful ROP attacks.

In this section, we develop a new defense against ROP that overcomes these
drawbacks. We provide an overview of our approach below.

Approach Overview Our approach is based on the following simple policy:

Return instructions should transfer control to intended return tar-
gets.

With a static interpretation of “intention”, many existing coarse-grained CFI
schemes can be seen as enforcing this policy. However, as discussed before, a
static interpretation affords far too many choices for return targets, allowing
successful ROP attacks to be mounted. We therefore take a dynamic interpre-
tation of intent. Specifically:

• The ability to return to a location is interpreted as a one-time use capa-
bility. These capabilities are inferred from and associated with specific
parts of the program text, e.g., a call instruction, or, a move instruction
that stores a function pointer on the stack, with the intent of using this
pointer as the target of a return. A return capability is issued each time
this program text is executed.
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• These return capabilities must be used in a last-in-first-out (LIFO) or-
der. As the term “capability” suggests, not every intended return needs
to be taken. Unexercised returns arise naturally due to exception un-
winding, thread exits, and so on. However, we require that those return
capabilities that are exercised do follow a LIFO order.

The LIFO property of return capabilities means that they can be maintained
on a stack, which we will refer to as the return capability stack (RCAP-stack).
Our system therefore consists of two key components:

• Static analysis to handle non-standard returns: While the intended re-
turns of call instructions are obvious, nontrivial applications include
many non-standard returns that don’t match any calls. Unlike previ-
ous approaches that relied on manual annotations to handle them, our
automated static analysis technique identifies (a) non-standard returns,
and (b) the intended targets of these returns, which can be used for
enforcement.

• Enforcement of inferred backward edges: Our instrumentation based en-
forcement mediates all returns using the inferred backward edges. The
need for “whitelisting” return instructions is avoided, and therefore our
policy is strict.

4.2 Background and Threat Model

4.2.1 CFI Platform

Although CFI itself cannot sufficiently confine returns, it can be used as an
important primitive for secure static instrumentation, as it can limit control
flows so that instrumentation cannot be bypassed [6]. Specifically, control
flows cannot go to (a) middle of instructions, or (b) an instruction within (or
immediately following) an inserted instrumentation snippet. For this reason,
we build our defense, which is based on static binary instrumentation, on a
platform that already implements CFI, specifically, the PSI platform [105].

4.2.2 Threat Model

We assume a powerful remote attacker that can exploit memory vulnerabilities
to read or write arbitrary memory locations, subject to OS-level permission
settings on memory pages. We assume the attacker has no local program
execution privilege or physical access to the victim system.
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We assume DEP is enabled on the victim system and therefore ROP is a
necessity for payload construction. We also assume that ASLR is deployed, but
attackers can use memory corruption vulnerabilities to leak the information
needed to bypass it without resorting to brute-force.

4.3 Inferring Intended Control Flow

As discussed earlier, we focus exclusively on return instructions. We do not
attempt to further improve the (coarse-grained) BinCFI policy [106] enforced
on the remaining branch types by our implementation platform, namely, PSI
[105].

The first task in enforcing a stronger policy on returns is to precisely infer
program-intended control flow for each of them. We develop a static analysis
for this purpose. Specifically, our analysis identifies instructions that push
addresses that may later be used as the target for a return instruction. As a
fallback option, static analysis may be augmented with manual annotations,
but we have not had to do this so far.

Based on the results of static analysis and/or annotations, instrumenta-
tion is added to update RCAP-stack to keep track of the return capabilities
acquired by the program by virtue of executing these instructions.

4.3.1 Calls

Most call instructions are used for function invocations and therefore express
an intent to return to the next instruction. However, it is up to the callee to
decide whether the return is actually exercised. For example, a call to exit()

will never return. Moreover, the call instructions themselves may be used for
purposes other than calling functions. For instance, position-independent code
(PIC) on x86 uses call instructions to get the current program counter, from
which the base of the static data section is computed.

Unintended calls do not lead to compatibility problems since we do not re-
quire all return capabilities to be used. However, issuing unneeded capabilities
can increase an attacker’s options. To avoid this, we use a static analysis of
target code to determine if the return address generated by a call is definitely
discarded before being used by a return instructions. In the simplest case,
a discard will happen through the use of a pop instruction that pops off the
return address at the top of the stack. More generally, the location containing
the return address may be overwritten, or the stack pointer incremented to
a value greater than this location. If one of these properties holds on every
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0x146b4 mov %eax,(%esp)

0x146b7 ...

0x146bb ret $0xc

Figure 4.1: A non-standard return from ld.so

execution path starting at the target of the call, then we conclude that the
return address will not be used as the target of a return.

After identifying unintended calls, the remaining calls are instrumented for
storing the return address on RCAP-stack. For unintended calls, the RCAP-
stack is left unchanged.

4.3.2 Returns

Returning to a code location is permitted only if the program possesses the
capability to do so. We check RCAP-stack for this capability. Typically, this
capability originates at the most recent call instruction, but there are instances
where the return address is pushed by other means. We call such returns as
non-standard returns.

One example of a non-standard return is shown in Figure 4.1. The return
instruction (at 0x146bb) uses a return address generated by a mov instruction
(at 0x146b4) rather than a call. This code snippet is taken from GNU’s
dynamic loader, and the non-standard return is used for dynamic function
dispatch after resolving a symbol. Specifically, when a function from another
module is called for the very first time, its execution traps to the dynamic
loader for symbol resolution. After the loader has resolved the address for
the function and cached the result in original module’s Global Offset Table
(GOT), control should be directed to the called function. This is achieved by
first moving the function address (stored in eax register) to the top of stack
using a mov, and then issuing a return1, as shown in Figure 4.1.

Note that while this non-standard return achieves the effect of an indirect
jump, it does so without using any register (other than the stack pointer), and
moreover, deallocates the memory location used to store the target address.

As discussed in the next section, there are a number of such non-standard
returns, scattered in different modules. Moreover, unlike a call, whose intended
return address is its successor, the intended target of non-standard return is
not immediately obvious. These factors motivate the static analysis described
below.

1The argument 0xc to the ret instruction specifies the number of additional bytes that
should be popped off the stack.
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4.3.3 Static Analysis of Non-standard Returns

The distinction between a standard and non-standard return is the return
address being used. The return address used by a standard return is pushed
by the call instruction in its caller, and not modified in the callee. In contrast,
return address used by a non-standard return is written to the return address
stack slot by a non-call instruction. Based on this observation, we develop a
static analysis that consists of four main steps as discussed below.

Candidate snippet extraction After a binary module is disassembled, we
build its CFG. We then perform a backward scan on the CFG starting from
each return instruction, and going back by n instructions, with n = 30 in our
implementation. These snippets are our candidates for analysis.

Each such snippet may contain multiple execution paths to the return in-
struction. We analyze each path separately, as this enables more accurate
analyis. In particular, this approach avoids approximations that result from
least upper bound operations needed to handle path merges. However, this
approach introduces two problems. First, loops can lead to an unbounded
number of paths. We only consider paths corresponding to zero and one itera-
tion of such loops. As a result, we may fail to discover some instances where an
instruction inside a loop pushes a return address on the stack. In theory, this
could lead to a compatibility problem, but in practice, it is very unlikely that
such instructions occur within a loop body. The second difficulty is that it is
theoretically possible for a single instruction I to participate in two distinct
paths such that in the first path, I pushes a value on the stack that would be
used by the return instruction at the end of the snippet, while it does not do
so in the second path. Note that this (unlikely) scenario does not lead to an
incompatibility: if the second execution path were to be taken at runtime, the
return capability pushed by I would simply not be used.

Semantic analysis The second step is to analyze the semantics of each
snippet by performing an abstract interpretation using ASA (Section 3.3).
At the beginning of each snippet, each register is assigned a corresponding
initial symbolic value. The program state is updated based on the semantics
of each executed instruction. At the end of each instruction, the abstract
value of each register (or memory location) will consist of simple expressions
consisting of constants and initial register values. Since we are analyzing each
execution path separately, these expressions rarely involve approximations.
Our analysis includes a simple procedure for maintaining these expressions in
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a canonical form, thereby enabling equivalent expressions to be recognized in
most instances.

Non-standard return identification The next step is to identify non-
standard returns. After semantic analysis, the value of stack pointer register
before the return instruction can be determined by an expression. Since it is
the pointer for the return address slot, if there is any memory write to that
location, a non-standard return is identified.

Intended control-flow inference The last step of the analysis is to infer
the intended control flow for the non-standard return. To that end, we need
to first identify the non-call instruction that stores the values used by the
return. We call such an instruction as an RAstore. Such an instruction can be
identified from the contents of memory and registers computed by our static
analysis after each instruction in the snippet.

In the following part of this section, we describe real-world non-standard
return examples identified by our analysis.

Non-standard return examples Previous shadow stack solutions rely on
manual identification and ad-hoc instrumentation to support non-standard
returns [33, 105, 31]. However, manual approaches are not scalable, and/or
can lead to false positives on large and complex software. Figure 4.2 illustrates
some of the more prominent real-world non-standard returns identified by our
static analysis. In this figure, upper case register names (e.g., EAX) denote
initial symbolic values, while lower case ones (e.g., eax) denote the current
contents of registers or memory. For easier illustration, each code snippet is
simplified to only include the last basic block. We omit the effects on floating
point registers and segment registers. Note that our analysis results do not
change when the full code snippets are used and when effects to non-general
purpose registers are captured.

The first example is the same one as shown in Figure 4.1. Our analysis
indicates that the return address comes from eax. The analysis discovers the
highlighted instruction as the one that pushes the return address.

The second example comes from setcontext(3) function of glibc. The
single argument of setcontext is a pointer to ucontext t structure, which is
loaded to eax at the first instruction. Since the user context structure contains
all saved register information, most of the snippet code performs the job of
register restores. Particularly, the program counter placed at offset 0x4c of
ucontext t was loaded to ecx at loction 0x3fa81. And the push instruction
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Code Snippet Semantics Equations

;; #1 /lib/ld-2.15.so eax = *(ESP+8)
0x146b0 popl %edx edx = *ESP
0x146b1 movl (%esp),%ecx ecx = *(ESP+4)
0x146b4 movl %eax,(%esp) esp = ESP + 4
0x146b7 movl 0x4(%esp),%eax *(ESP+4) = EAX
0x146bb ret $0xc ra = *esp = *(ESP+4) = EAX
;; #2 /lib/i386-linux-gnu/libc.so.6
0x3fa73 movl 0x4(%esp),%eax eax = *(*(ESP+4)+64)
0x3fa77 movl 0x60(%eax),%ecx edx = *(*(ESP+4)+56)
0x3fa7a fldenvl (%ecx) ecx = *(*(ESP+4)+60)
0x3fa7c movl 0x18(%eax),%ecx ebx = *(*(ESP+4)+52)
0x3fa7f movl %ecx,%fs esi = *(*(ESP+4)+40)
0x3fa81 movl 0x4c(%eax),%ecx edi = *(*(ESP+4)+36)
0x3fa84 movl 0x30(%eax),%esp ebp = *(*(ESP+4)+44)
0x3fa87 pushl %ecx esp = *(*(ESP+4)+48)-4
0x3fa88 movl 0x24(%eax),%edi *(*(*(ESP+4)+48)-4)
0x3fa8b movl 0x28(%eax),%esi = *(*(ESP+4)+76)
0x3fa8e movl 0x2c(%eax),%ebp ra = *esp
0x3fa91 movl 0x34(%eax),%ebx = *(*(*(ESP+4)+48)-4)
0x3fa94 movl 0x38(%eax),%edx = *(*(ESP+4)+76)
0x3fa97 movl 0x3c(%eax),%ecx
0x3fa9a movl 0x40(%eax),%eax
0x3fa9d ret
;; #3 /lib/i386-linux-gnu/libgcc s.so.1
0x154cb movl %esi,%ecx eax = *(EBP-20)
0x154cd movl %edi, 0x4(%ebp,%esi,1) edx = *(EBP-16)
0x154d1 addl $0x10,%esp ecx = ESI+EBP+4
0x154d4 leal 0x4(%ebp,%ecx,1),%ecx ebx = *(EBP-12)
0x154d8 movl -0x14(%ebp),%eax esi = *(EBP-8)
0x154db movl -0x10(%ebp),%edx edi = *(EBP-4)
0x154de movl -0xc(%ebp),%ebx ebp = *EBP
0x154e1 movl -0x8(%ebp),%esi esp = ESI+EBP+4
0x154e4 movl -0x4(%ebp),%edi *(ESI+EBP+4) = EDI
0x154e7 movl 0x0(%ebp),%ebp ra = *esp
0x154ea movl %ecx,%esp = *(ESI+EBP+4)
0x154ec ret = EDI
;; #4 /usr/lib/libunwind-setjmp.so eax = EDX
0x674 pushl %eax esp = ESP-4
0x675 movl %edx,%eax *(ESP-4) = EAX
0x677 ret ra = *esp = *(ESP-4) = EAX

Figure 4.2: Code snippets and their analysis results
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at 0x3fa87 pushes it as return address onto stack, which is consumed by the
return instruction at the end of the snippet. This non-standard return and
the RAstore at 0x3fa87 are identified by our static analysis. Another similar
case in function swapcontext(3) from the same module, was also identified
(not shown in figure).

The third example is a snippet from one of the stack unwinding functions
in libgcc s.so.1. The code first stores edi, the address of landing pad (handler
code) which is previously computed, to the return address slot of next frame
(0x154cd). Therefore, the following return will redirect control to the landing
pad. This example also demonstrates the power of the analysis: the store to
0x4(%ebp,%esi,1) at 0x154cd does not “look” like a return address overwrite,
however our static analysis is able to detect it. This is also an example why
simple pattern matching based non-standard return identification would not
work well.

Our last example is from an unwinding library libunwind. The snippet is
simple, and similar to the first example, but used for implementing longjmp.

We note that although the non-standard return compatibility problem has
been recognized by many in the literature [33, 31], only the first and third of
these four examples have seen manual handling [33]. In contrast, our static
analysis systematically identifies all of them, and serves as a basis for automatic
instrumentation.

4.3.4 Discussion

Since that our static analysis is local, it can fail to identify non-standard
returns when the RAstore instruction is far away from the return. If this as-
sumption were to be violated, we can address it by strengthening the analysis,
or using manual annotations. As mentioned before, we have not had to do
this so far in our implementation.

4.4 Enforcing Intended Control Flow

In this section, we describe our approach for enforcing intended control flow
using static binary instrumentation. We also describe the protection of the
RCAP-stack to ensure that the same mechanisms used to corrupt the main
stack cannot corrupt the RCAP-stack.
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4.4.1 Instrumentation-based Enforcement

Intended control flow enforcement is realized by instrumenting calls, RAstores
and returns. Both calls2 and RAstores are instrumented in the same manner:
a copy of the address being stored on the main stack is also pushed on RCAP-
stack.

Return instructions are instrumented to check the RCAP-stack for the
corresponding capability. Note that due to normal program behaviors such
as stack unwinding, the required return capability may not always be located
at the top of RCAP-stack. Similar to previous shadow stack proposals, our
design also pops non-matching capabilities from the top of RCAP-stack until
a capability that matches the target location of the return is encountered.
If such a capability is never found, then a policy violation is reported and
program execution aborted.

4.4.2 RCAP-stack Protection

Since return capabilities are generated and consumed for control flow authenti-
cation, their integrity needs to be ensured. In other words, RCAP-stack which
stores return capabilities should be protected. Otherwise, determined attack-
ers could use vulnerabilities to corrupt both the program stack and RCAP-
stack for control flow subversion.

We used the same approach as described in CFCI [107], which has also
been implemented on our platform PSI. In short, the protection mechanisms
are architecture-dependent. For x86-32, we rely on segmentation for efficient
protection, and for x86-64, a randomization based approach is used. The
randomization approach ensures that the location of RCAP-stack cannot be
leaked.

4.5 Implementation

4.5.1 Static Analysis

The first step of static analysis is to extract candidate snippets. We utilized
PSI [105] for this purpose. Specifically, PSI has a disassembly engine that is
based on objdump, and adds a layer of error detection and correction over
it. It also builds a CFG for the code disassembled. We traversed the CFG
backwards from each return instruction to collect code snippets that were 30
instructions long.

2As discussed earlier, we avoid instrumenting calls that are determined never to return.
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For our static analysis, we need to accurately model the semantics of each
instruction. Specifically, we utilized a tool by Hasabnis et al [53, 55] that lifts
assembly to GCC’s intermediate language called RTL. Since RTL is a tree-
structured language, it is further transform into a simple flat IR, as described
in Section 3.1.2.

Our static analysis is performed on the simple IR statements. Since we
analyze single execution paths, the main step in the static analysis is to sub-
stitute each register or memory location by the expression representing its
previously computed value. This expression is maintained in a canonical form
by defining an ordering on variables, and by performing constant-folding and
other arithmetic simplifications.

4.5.2 Binary Rewriting based Enforcement

Our shadow stack instrumentation is based on PSI [105] and was implemented
as a plugin. We chose PSI primarily for two reasons. First, shadow stack
needs to be built on top of CFI to be effective against ROP attacks, and
PSI offers CFI as a primitive. Second, PSI is a platform for COTS binary
instrumentations and works on both executables and shared libraries, and
therefore aligns with our goal of instrumentation completeness.

Protecting the Dynamic Loader Since the dynamic loader ld.so is an
implicit dependency for all dynamically linked executables, it is also instru-
mented to prevent returns from being misused. We ensured that memory
protection for RCAP-stack is set up before it is used by instrumentation.

Signal Handling The static analysis discussed in Section 4.3.3 is able to
identify non-standard returns that consume return addresses stored by pro-
gram code. However, return addresses can sometimes originate from the oper-
ating system. This is the case for UNIX signals. Once the OS delivers a signal
to a process, it invokes the registered signal handler by switching context so
that the user space execution starts at the first instruction of the signal han-
dler. Prior to that, the OS puts the address of the sigreturn trampoline on the
stack, which is to be used as the return address for the signal handler. There-
fore, signal handler will “return” to the sigreturn trampoline, whose purpose
is to trap back to the kernel. The kernel can proceed and revert user program
execution with saved context. Since the returns for signal handlers (which are
just normal functions) are also instrumented, if the corresponding return ca-
pabilities are not pushed onto RCAP-stack, signal delivery would cause false
positives.
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Fortunately, PSI [105] already has a mechanism for signal handler media-
tion. The platform intercepts all signal handler registrations (using signal and
sigaction system calls) and registers wrappers for the signal handlers. Once
a wrapper function is invoked by the OS, it transfers control to the real signal
handler after resolving its address. We use an updated version of wrapper code
so that it pushes the corresponding return capabilities to RCAP-stack. (The
wrapper code is not instrumented, and the CFI policy configured to ensure
that it cannot be invoked by the application.)

4.5.3 Optimizing Returns

Our shadow stack is built on top of a binary instrumentation system that
requires code pointer translation. In particular, code pointers point to original
code section, while the instrumented code resides in a different section. As a
result, code pointer values need to be translated to the corresponding code
locations in the instrumented code. This step, called address translation, is a
significant source of runtime overhead because it requires a hash table lookup.
To improve the performance, we performed an optimization that has also been
used in some previous research works [76]: push both the original address and
translated address on the shadow stack for each call. At the time of return, we
first compare the return address on the main stack with the original address
on the shadow stack, and if they match, return to the translated address on
the shadow stack.

For calls, the translated return address is simply the address of the instruc-
tion following the call instruction. However, RAstores push code pointers on
the stack, so there is no way to avoid address translation for them. Rather
than eagerly performing address translation at the RAstore, we simply push a
null value as the translated address. At a return instruction, if the translated
address has a null value, we perform address translation at that point.

4.6 Evaluation

We evaluated the key aspects of our system using a wide range of software on
Linux and FreeBSD operating systems. Below, we present our findings and
results.

4.6.1 Compatibility

In this section, we evaluate the compatibility improvement offered by our
approach. We first present statistics on the identification of non-standard
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Directory Linux Linux NSR FreeBSD FreeBSD NSR
NSR # module # NSR # module #

/lib 9 4 7 2

/usr/lib 41 23 0 0

/bin 6 1 7 2

/sbin 6 1 4 1

/usr/bin 26 7 0 0

/rescue N/A N/A 182 91

/opt 28 7 N/A N/A

total 116 42 213 98

Figure 4.3: Non-standard return (NSR) statistics

Module OS NSR Count

/lib/ld-2.15.so Linux 2

/lib/i386-linux-gnu/libc.so.6 Linux 2

/lib/i386-linux-gnu/libgcc s.so.1 Linux 4

/usr/bin/cpp-4.8 Linux 4

/usr/bin/g++-4.8 Linux 4

/usr/bin/gcc-4.8 Linux 4

/lib/libc.so.7 FreeBSD 3

/lib/libgcc s.so.1 FreeBSD 4

/usr/bin/clang FreeBSD 5

Figure 4.4: Non-standard returns in common modules

returns, together with an explanation for their prevalence. We then demon-
strate the improved compatibility by testing our instrumentation on low-level
and real-world software.

Non-standard Return Statistics We ran our static analysis tool on ex-
ecutables and shared libraries from an Ubuntu 12.04 32 bit Linux desktop
distribution, and a FreeBSD 10.1 32 bit desktop distribution. We have iden-
tified hundreds of non-standard return instances from different modules. Fig-
ure 4.3 shows the number of non-standard return instances and the modules
containing them for different directories of Linux and FreeBSD.

To better understand the impact of non-standard returns to shadow stack
compatibility, we need to further zoom in and see if they exist in widely used
binary modules. Figure 4.4 shows the prevalence of non-standard returns in
some of the widely used modules.
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Non-standard Return Summary In this section, we summarize some of
the most common reasons for the prevalence of non-standard returns, based
on an analysis of our static analysis results.

1. Programming language design and implementation

In addition to subroutine abstraction, return instructions can also be
used to implement other control flow abstractions such as coroutines or
light-weight threads. Under these situations, they are used to transfer
control between contexts, and therefore do not match calls.

2. Operating system design and implementation

Operating systems also provide programmers various abstractions to ease
their job. These abstractions may use return to implement control flow
behavior across OS boundary. UNIX signals, as discussed, are probably
the most prominent example in this category.

3. Optimization “tricks”

In the engineering of some software constructs, programmers tend to
make “clever” uses of assembly instructions. This also happens to return
instructions.

Testing Low-level and Real-world Software In order to further evaluate
the compatibility of our approach, we tested it with some low-level libraries
and real-world software. For each binary module tested, we first ran our
static analysis to identify non-standard returns and RAstore instructions. The
results are then fed into our instrumentation module to generate hardened
binaries. The instrumented software is finally executed for testing. For multi-
threaded programs used in this evaluation, we used Pin [65] for our testing.

Figure 4.5 shows the low-level and real-world software we have tested, and
how we tested them. The “Size” column specifies the total mapped code size
(in MB) of all modules of the program. No incompatibilities were found on
any of these programs, demonstrating that our approach works well even on
low-level software. The total size of all software tested in this evaluation is
almost 200MB.

4.6.2 Protection

Security Analysis Our system instruments all software modules including
executables, shared libraries, and dynamic loader. Moreover, it protects all
backward edges including both standard and non-standard returns. Return
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Type Software Size Description

Low-level libunwind 1.9 Run a test program unwinding its
own stack based on libunwind API

Low-level libtask 2.0 Run a tcp proxy that uses user level
threads API provided by libtask

Real-world scp 2.1 Copy 10 files to server
Real-world python 6.7 Run pystone 1.1 benchmark
Real-world latex 7.8 Compile 10 tex files to dvi
Real-world vim 9.1 Edit text file, search, replace, save
Real-world gedit 22 Edit text file, search, replace, save
Real-world evince 26 View 10 pdf files
Real-world mplayer 46 Play 10 mp3s
Real-world wireshark 58 Capture packets for 10 min

Figure 4.5: Low-level and real-world software testing

capabilities greatly restrict the scope of attacks possible. A coarse-grained
CFI permits any return to target any of the instructions following a call in a
program. In contrast, our approach limits return to one of the return addresses
that are already on the RCAP-stack. Moreover, each time an attack makes use
of a return address other than the top entry on RCAP-stack, the intervening
entries are popped off, thus further reducing the choice of possible targets for
the next return.

Note that although JOP and COP gadgets can be used in advanced code-
reuse attacks, the vast majority of them still rely on ROP gadgets [47, 32, 20,
48], and therefore can be defeated by our system.

Stack Pivoting In ROP attacks, controlling the stack is the most important
goal of the attacker. This is because, (a) fake return addresses need to be
prepared on stack so that control flow can be repeatedly redirected in the
manner chosen by the attacker, and (b) the stack supplies the data used in
ROP computation.

Attackers basically have two choices to control the stack. The first is to
corrupt the stack, usually through a stack buffer overflow. The second is to
pivot the stack, i.e., hijack the stack pointer to point to attacker controlled
data. Among these two, stack pivoting is more versatile because vulnerabilities
other than buffer overflow could be used. It is also more convenient because
the entire stack could be controlled, without being limited by factors such as
the location of the vulnerable buffer, or the maximum length of overflow.

Our system readily defeats ROP based on both stack corruption and stack
pivoting. As the effectiveness for stack corruption is clear, we focus on the
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latter. Specifically, in a single RCAP-stack scheme, stack pivoting based
ROP is blocked because the required return capabilities won’t be present on
RCAP-stack. When multiple RCAP-stacks are used, although stack pivoting
could cause new RCAP-stack creation, this does not compromise security as
the new RCAP-stack starts out with zero return capabilities on it.

Note that RCAP-stack protection is critical for defeating stack pivoting.
This is because in addition to stack pivoting, the attacker could also craft and
pivot an RCAP-stack by corrupting the RCAP-stack pointer. While previous
solutions may be vulnerable to such attacks [33, 31], our system is resistant
because RCAP-stack pointer resides in protectd memory as well.

TOCTTOU Threats For standard returns, our instrumentation pushes
return capability onto RCAP-stack at the time of a call, i.e., the instant that
return capability is issued. This is different from schemes that push return
capability at function prologue [24, 31], and hence provide a (narrow) window
for TOCTTOU attacks.

However, we note that our instrumentation does have a delay to store
return capability in the case of a non-standard return: i.e., it happens at
RAstore instruction, rather than return address generation instruction. This
is due to limited data flow tracking of our analysis, and is not an issue when
annotation is possible.

Storing return capability at a later time may give some window for attack-
ers, because they can modify the generated return capability before its store on
both stacks. However, attacker capabilities for utilizing non-standard returns
is greatly limited because of the following two reasons. First, CFI is still en-
forced as our base policy. Even if return capabilities for non-standard returns
can be altered by attackers, it has to satisfy CFI at least, and therefore the
forged capability can only grant transfer to instructions after calls. Second, as
shown in Section 4.6.1, there are limited number of non-standard returns. Re-
peatedly corrupting return capabilities before store, effectively chaining such
limited gadgets and bypassing CFI would be very difficult.

Experimental Evaluation of ROP Defense We evaluated the effective-
ness of our approach using two real-world ROP attacks. Our first test was the
ROPEME attack [64], which exploits a buffer overflow vulnerability in a test
program. The attack is two-staged. In the first stage, the attack uses a limited
set of gadgets in non-randomized executable code to leak out the base address
of libc. This enables the attacker to bypass ASLR as it relates to targeting
gadgets in libc. In the second stage of the attack, ROPEME uses a payload
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Figure 4.6: CPU overhead of shadow stack systems on SPEC 2006

consisting of a chain of libc gadgets. The stack is pivoted to this payload,
and control is transferred to libc gadgets. Our defense blocked the attack at
the first stage, because a backward edge control flow violation was identified
when the vulnerable function returned with an overwritten return address.

Our second test was to protect a vulnerable Linux hex editor: HT Editor
2.0.20. A specially crafted long input could overflow the stack and lead to
ROP attack [3]. As with the first attack, we detected the very first control
flow violation and successfully defeated this ROP attack as well.

4.6.3 Performance Overhead

We have measured the CPU overhead of our instrumentation on SPEC 2006
benchmark. We tested on a x86-32 Linux machine because it is the only envi-
ronment currently supported by PSI [105]. For all the benchmarked programs,
we transformed all involved executables and shared libraries. The results are
presented in Figure 4.6, where an empty bar in the histogram indicates an
unavailable performance number.

We compare our performance with that of our base platform PSI [105] and
Lockdown [75], a recent dynamic instrumentation based shadow stack imple-
mentation. From Figure 4.6, we can see that the performance overhead of our
system is about 17% on average. Our optimization (Section 4.5.3) accelerates
several control-flow intensive benchmarks such as 429.mcf and 447.dealll by
9% and 403.gcc, 458.sjeng, 471.omnetpp, and 453.povray by 5%. For the com-
mon set of programs we had with Lockdown, our overhead is 13% while theirs
is about 24%.

Parallel shadow stack [31] achieves lower overhead by employing a variety
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of optimizations. They report overheads in the range of 3.7% to 4.6%. Their
approach does not operate on binaries, but instead, on the assembly code
produced by a compiler. As a result, they avoid the overhead of address
translation. In addition, they do not enforce CFI. Considering these are the
two major source of overhead for the PSI platform we used, our added overhead
of 4% makes our performance comparable to theirs.
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5 Accurate Recovery of Function Boundaries

Functions are among the most common constructs in programming languages.
While their definitions and declarations are explicit in source code, at the
binary level, much information has been lost during the compilation pro-
cess. Nevertheless, numerous binary analysis and transformation techniques
require function information. For reverse engineering tasks such as decompil-
ing [49, 38, 84], function boundary extraction provides the basis for recovering
other high level constructs such as function parameters or local variables. In
addition, many binary analysis and instrumentation tools are designed to op-
erate on functions. These include binary code search [40, 36, 34, 21], binary
code reuse [96], security policy enforcement [25, 82, 22, 93, 94], type inference
[62], in-depth binary analysis such as vulnerability detection [90], and more. In
fact, a recent survey performed literature study by collecting all binary-based
papers published last 3 years at top security conferences, and found that 14
out of 30 works rely on function boundary information [11]. As a result, devel-
opers of most existing binary analysis platforms [2, 17, 50, 88] need to design
and implement techniques to recognize functions.

Function recognition is a challenging task for stripped COTS binaries since
they lack debug, relocation, or symbol information. Although directly called
functions can be readily identified from disassembly (e.g., 42c9c0 in call

42c9c0), a significant number of functions are only reachable indirectly. Since
resolving indirect call targets (e.g., all possible values for eax in call eax) is an
undecidable problem, the fraction of indirectly reachable functions identified
through static analysis is usually limited. Although there exist conservative
techniques to identify a superset of possible functions [106], they lack precision
since they overestimate function starts by a significant factor.

Compiler optimizations further exacerbate function recognition in COTS
binaries. For instance, contrary to the high level abstraction that a function
has a single entry point, a function in a binary may have multiple entries.
Moreover, instead of being entered via a call instruction, tail call optimiza-
tions result in the use of jumps to enter a function. Tail calls are relatively
common in optimized binaries, but with previous techniques, it is difficult to
reliably distinguish them from normal jumps.

Due to the above difficulties, one cannot rely on the obvious approach
of identifying functions by following direct calls. Many previous systems
[2, 17, 50, 88] relied instead on pattern-matching function prologues (e.g., the
instruction sequence push ebp; mov esp, ebp) and epilogues. Unfortunately,
this approach is far from robust, since these patterns may differ across compil-
ers. Moreover, optimizations may split and/or reorder these code sequences.
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Other optimizations (e.g., reuse of ebp as a general purpose register) may also
remove such identifiable prologues/epilogues. As a result, the best existing
tools are still unsatisfactory for function recognition [15].

To overcome the limitations of manually identified patterns, machine-learning
based approaches have been proposed for function recognition [81, 15, 87]. The
idea is to use a set of binaries to train a model for recognizing function starts
and ends. Machine learning can build more complete models that work across
multiple compilers, while reducing manual effort. As a result, ByteWeight
[15] achieved an average F1-score of 92.7% on a benchmark consisting of x86
binaries. Shin et al [87] further improved the accuracy to achieve an F1-
score of 94.4% on the same dataset. Unfortunately, error rates of over 5% are
still too high for most applications. More importantly, the accuracy of these
techniques can be skewed by the choice of the training data. In fact, an inde-
pendent evaluation of this dataset [13] found many functions to be duplicated
across the training and testing sets, thus artificially increasing their F1-score.
When evaluated with a different data set, ByteWeight’s accuracy degraded to
around 60% [13].

In light of these drawbacks of machine-learning based approaches, we pro-
pose a more conventional approach for function discovery, one that is founded
on static analysis. However, unlike previous techniques that relied on simple
control-flow analyses, and were confounded by the above-mentioned compli-
cations posed by stripped COTS binaries, our technique incorporates two key
advances:

• We develop a fine-grained analysis that is based on detailed semantics of
every instruction, including their effect on the contents of the registers
and memory. As a result, our analysis can reason about the content of
the stack, as well as the flow of data between a function and its caller.

• We identify a rich set of data-flow properties that characterize function
interfaces, such as the use of registers and the stack to pass parameters
and/or return values. We present a static analysis to discover these flows,
and verify whether a candidate function satisifies these properties.

As a result of these advances we have achieved a 4-fold reduction in error rate
as compared to the results reported by Shin et al [87]. As compared to Nucleus
[13], which relies on a static analysis of control-flows, we achieve an even more
impressive error rate decrease of more than 7x.

Contributions We develop a novel, static analysis based approach for func-
tion recognition in COTS binaries. Specifically, we make the following contri-
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butions:

• Function identification by checking function interface properties. We
show that function interface properties, as compared to function pro-
logue patterns, can provide valuable evidence for function recognition.
We identify a collection of such properties and present static analysis
techniques to check them. Each of these techniques is shown to be inde-
pendently effective in our evaluation.

• In-depth evaluation. Our evaluation consists of about 2400 binaries re-
sulting from 312 distinct C, C++ and Fortran programs. These binaries
have been compiled using 3 different compilers (GCC, LLVM and Intel)
for two architectures (x86 and x86-64) at four distinct optimization lev-
els. In contrast with previous work, our evaluation set includes low-level
code with hand-written assembly code, in particular, GNU libc.

• Highly accuracy. Our approach achieved an average F1-score of 99%
across these data sets, much better than the 90% to 95% achieved by
previous works [15, 87, 13]. This represents a reduction in error rate by
more than 4x.

• Deeper insight. Our approach automatically categorizes recognized func-
tions by their reachability such as “tail-called” or “unreachable.” As
discussed in Section 5.6, such information can be the basis for further
tuning and refinement of the analysis in order to support demanding
applications such as binary instrumentation that cannot tolerate errors.

5.1 Overview of Approach

5.1.1 Problem Definition

We define a binary function as a sequence of bytes in code section that has a
single entry point to be reached from outside the function; and one or more
exit points that transfer control from the function to some code outside. These
bytes need not be physically contiguous. Note that the entry point is typically
reached using call instructions, but possibly also jump instructions. An exit
point may be a return instruction, a jump to the entry point of another binary
function, or a call to a function that never returns.

Multiple-entry functions are supported: a function with n entry points is
treated as if there are n independent single-entry functions. Each is analyzed
independently by our method.
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Figure 5.1: Overview of our analysis. Direct function starts are identified
from call instructions in the disassembly, and require no further confirmation.
The remaining function start candidates (Indirect, Jump and Unreachable

function) need to pass our function interface checks that eliminate spurious
functions. Function body traversal is used to determine function ends, and
takes advantage of already identified functions. Function body traversal and
boundary information feeds back into the determination of unreachable func-
tions, as well as jump-reached (i.e., tail-called) functions.

Our task is to recover bytes belonging to each function. Similar to prior
work [15, 87], correctness is determined by matching the start and end address
for each function with symbol table information3. Note that start and end
addresses are determined by the smallest and largest address of all bytes of
the function, respectively.

Scope Our analysis focuses on stripped COTS binaries: no debug or symbol
information is available. Our evaluation focuses on Executable and Linkable
Format (ELF) binaries from x86-32 and x86-64 Linux platform, although our
technique itself is applicable to other platforms and binary formats, such as
Windows and the Portable Executable (PE) format. We make no assumptions
on the source language, compiler used, compiler switches or optimization levels.
However, similar to prior work [15, 87], obfuscated binaries are out of scope.

5.1.2 Approach Overview

The key idea of our approach is that of enumerating possible function
starts, and then using a static analysis to confirm them. The overview of our
approach is shown in Figure 5.1.

3While our experiments are performed on stripped binaries, we rely on symbol tables in
unstripped binaries for the ground truth.
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Possible function start addresses are enumerated in different ways. Di-
rectly called (Direct) function starts are readily obtained from disassembly
code. For indirectly reachable (Indirect) functions, code addresses buried
in all binary sections serve as proper function start candidates, while for un-
reachable (Unreachable) functions, the beginning of unclaimed code regions
are considered.

As shown in Figure 5.1, any function that isn’t directly reached needs to be
confirmed4 using additional checks. Since functions interact with each other
through interfaces, our approach identifies spurious functions by checking for
properties associated with function interfaces, such as the stack discipline,
control-flow properties and data-flow properties.

To determine function ends, function body traversal is performed. It takes
advantage of already recognized functions, and serves as means for recognizing
functions reached only using jumps (i.e., tail-called functions).

In a nutshell, our approach iteratively uncovers functions based on how
they are reached. Direct functions are first identified, and then Indirect

functions are enumerated and checked. Finally Unreachable functions are
handled. Note that Jump function enumeration and checking happens alongside
the body traversal for all other functions. The whole procedure ends when all
code regions have been covered.

In the following sections, we describe our techniques for determining func-
tion starts (Section 5.2), function boundaries (Section 5.3), and interface check-
ing (Section 5.4).

5.2 Function Starts

5.2.1 Directly Reachable Functions

According to our definition in Section 5.1.1, functions are code sequences that
are called (or alternatively, reached using jumps). Therefore, with the dis-
assembly obtained (Section 2.1), the targets for direct call instructions are
definite function starts 5. They are first collected.

Although we can obtain direct jump targets in the same manner, it is non-
trivial to distinguish whether they are function starts (as in the case of a tail
call), or, more likely, intra-procedural targets. We enumerate jump targets as
possible function starts if the target is physically non-contiguous with current

4In principle, we could require this confirmation for directly called functions as well, but
did not do so for performance reasons.

5We detect the obvious exceptions such as call next; next: pop reg as appear in position
independent code to retrieve current instruction pointer.
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function body (Section 5.3). An analysis of the jump context is later performed
to confirm or reject the function start.

5.2.2 Indirectly Reachable Functions

As compared to directly reached functions, some functions are only reachable
indirectly. These include functions that are reached using either indirect calls,
or indirect jumps (i.e., indirect tail calls). To enumerate their starts, constant
scanning described in Section 2.2 is used. Since spurious function starts may
also be included, the constants need to be confirmed with interface checking.

5.2.3 Unreachable Functions

Other than directly and indirectly reachable functions, there are functions
that are not reachable at all. For reasons discussed in the beginning of this
chapter, we also try to identify unreachable functions. The basic idea is to
analyze the “gap” area, i.e., code regions that are not covered by already
identified functions. This procedure is performed after the determination of
directly and indirectly reachable functions.

Because functions may have padding bytes after its end, we consider the
first non-NOP instruction6 in each gap as a potential function start. The
corresponding function end is then determined using techniques described in
Section 5.3. If this potential function does not take all the space of the current
gap, the remaining region is considered as a new gap, and the process continues
until all gaps have been analyzed.

Although our gap exploration seems similar to prior work [2, 50, 17], the
primary difference is that the identified functions have to pass interface prop-
erty checking.

5.3 Identifying Function Boundaries

To identify function boundaries, we traverse a function body, starting at its
entry point. All possible paths are followed until control flow exits the func-
tion. The largest address of any instruction discovered using this process is
considered the end of the function. Note that exits may sometimes take place
via jumps (tail calls), or calls to non-returning functions. As described below,
we discover and handle those cases as well.

6We consider an instruction as “NOP” based on its semantics: i.e., the machine state
(other than program counter) is not changed. For example, other than nop itself, xchg ax,
ax is also a NOP instruction.
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Function body traversal works by following all intra-procedural branches
until function exits. Specially, for conditional jumps, both branches are taken,
while for table jumps, all recovered targets are followed.

For function body traversal, some special control flow transfers need to be
taken into account, most notably C++ exception handling. When an exception
occurs, either at the current function or some of its callees, control is first
directed to C++ runtime, which is responsible for locating the proper handler
code (also called a “landing pad”), and during this process, stack unwinding
may be performed. If current function is identified to have a landing pad
designated for the raised exception, control flow is transferred to this landing
pad.

Logically, a landing pad is associated with (the main body of) a func-
tion. Indeed, at source code level, it corresponds to the catch block inside
a function. Since a landing pad is essentially indirectly reached from C++
runtime, the control flow transfer is not captured in the disassembly of the
analyzed binary. We therefore parse the “call frame information” available
in .eh frame sections of ELF binaries, the same metadata used by the C++
runtime to guide exception handling, to recover such control flows and con-
sequently follow them in our function body traversal. Note that exception
handling information must be present even in stripped binaries.

Function body traversal stops at function exits. While most functions exit
using return instructions, there are special cases that involve calls and jumps.
These special cases are described below.

Function exits via calls to non-returning functions. Although most
functions do return to the caller, some don’t. For example, libc exit function
terminates the program, and the control flow never returns back to the caller.
For invocation of such non-returning functions, function body traversal should
not go past the call.

To determine non-returning functions, we perform a simple analysis. First,
we collect a list of library functions that are documented to never return. We
then analyze each potential function of the binary. If it calls a known non-
returning function on each of its control flow paths, it is also recognized as a
non-returning function and added to the list, and so on.

Note that function body traversal only stops at a direct call to a non-
returning function. For an indirect call, the traversal falls through after the
call, as the target is unknown and compiler has to be conservative.

Function exits using jump instructions. Tail call is another special
type of function exit and is based on jumps. If not recognized, tail calls are
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0x1000:      ret

0x2200:      ret

func start 0x0200

func start 0x0400

func start 0x3000

(A)

(C)

(D)

(B)

Figure 5.2: Tail call detection

treated as normal intra-procedural jumps, causing errors in identified function
ends.

To detect tail calls, we utilize already identified functions to check jump
targets, specifically:

1. If the jump target is a known function start or a procedure linkage table
(PLT) entry7, it is recognized as a tail call.

2. If the edge crosses known function boundaries, it is a tail call.

We illustrate with an example. In Figure 5.2, function body traversal
begins from identified function start 0x0400, and A, B, C, D are four direct
jumps on the paths. Since jump A targets a known function and B crosses a
function start, they are identified as tail calls. For jumps C and D, there does
not seem to be an obvious way to determine if they target a different function,
or are intra-procedural jumps. We use a two-step approach to resolve them.

First, our function body traversal speculatively follows all jumps and only
terminates at definite function exits (e.g., returns). Second, all jumps whose
target is not physically contiguous with other traversal-covered instructions
are identified as potential tail calls. For example, the colored area in Fig-
ure 5.2 represents all traversal-covered instructions, and jump C is identified
as a potential tail call, as its target is not preceded by any covered instruction.
But on the other hand, D is not. These potential tail calls may be confirmed

7PLT entries are code stubs in ELF binaries that support dynamic linking. The target
of a PLT entry is a function in a different binary module, which is patched by the dynamic
loader at runtime. Similar mechanisms exist for Windows PE binaries.
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with further checks: they are not immediately considered as definite function
starts, as functions can be non-contiguous.

A tail call candidate is confirmed if both the potential function exit (the
jump) and potential entry (the target) pass function interface checking. While
function entry interface checking is to be introduced in the following section,
we focus on function exit interface checking, which is based on stack disci-
pline. Specifically, the stack pointer at the jump should not be lower than its
initial value on function entry, as it indicates the local storage has not been
deallocated and hence the jump is intra-procedural.

Note that other than determining current function exits, identification of
tail calls serves a second purpose: enumerating Jump function starts. These
functions may otherwise be undetected, if they are not directly or indirectly
called.

5.4 Interface Property Checking

For potential functions that are reached only via jumps or indirect calls, we
develop a set of static analysis techniques to check if the target is indeed a func-
tion. These checks can be divided into control flow and data flow properties,
as described further below.

5.4.1 Control Flow Properties

According to the binary function definition in Section 5.1.1, control is trans-
ferred to and out of a function in well-defined forms. Therefore, if control
flow reaches or leaves a “function” in a non-conformant manner, the function
is identified as spurious.

Function entries. Our verification is based on a simple strategy: intra-
procedural control flow targets are not function starts. Particularly, table
jumps are intra-procedural control flow transfers as they result from switch-
case statements. Table jump targets are excluded from function start candi-
dates.

Note that our jump table analysis uses a conservative strategy for identi-
fying jump tables and their bounds. In particular, it is designed to identify
targets that are definite table jump targets, and hence it is safe to remove all
of them from function start candidates.

Function exits. Our second control flow checking concerns function exits.
Specifically, we focus on exits that use returns. Our check determines if the
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805ce70 <get_date>:

805ce70: push %ebp ; real func start

805ce71: push %edi

805ce72: push %esi

805ce73: push %ebx

... ...

805d900: pop %ebx ; +4 ; spurious func start

805d901: pop %esi ; +8

805d902: pop %edi ; +12

805d903: pop %ebp ; +16

805d904: ret

Figure 5.3: Incorrect return address is used for a spurious function

8081130 <find_connection_moves>:

... ...

8081136: sub $0x533c,%esp

... ...

8081a10: mov %edi,0x4(%esp) ; spurious func start

8081a14: mov $0x80e6718,(%esp)

8081a1b: call 807c8d0

... ...

Figure 5.4: “Return address” is overwritten for a spurious function

return instruction will control transfer to the address that was stored atop of
the stack at the function entry point.

We note that although a static analysis may not give conclusive answer in
cases like unbounded stack pointer change, this checking is still very effective
in detecting spurious functions in general. While a more quantitative study is
given in Section 5.5.5, we next illustrate with two examples.

The first example is presented in Figure 5.3. In the code snippet, address
0x805ce70 is a real function start and 0x805d900 is a spurious one. They are
both enumerated as potential function starts. However, function [0x805d900,
0x805d904] is detected as spurious by our analysis, as its return address (used
by return instruction at 0x805d904) is derived from a location 16 bytes higher
than the proper stack slot.

Figure 5.4 shows our second example. In this code, address 0x8081a10 is
enumerated as a potential function start. However, since its “return address”
is overwritten at 0x801a14, the “function” can never return to the intended
return address. As a result, our analysis correctly identifies 0x801a14 as a
spurious function start. Note that in the context of the real function starting
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at 0x8081130, the purpose for instruction at 0x801a14 is actually prepar-
ing argument for the upcoming call. However, since the stack allocation at
0x8081136 was not included in the spurious function, the anomaly for “return
address” usage is spotted.

Internal Instructions. A function’s internal instructions should not be
targeted by control flows from outside. An exception arises in the case of multi-
entry functions, but even then, these alternate entry points must be targeted
by inter-procedural control transfers. In contrast, if an internal instruction of
a function f is targeted by an intra-procedural transfer from another function
g, that provides strong evidence that f is likely spurious.

Recall that when we perform interface verification for a function beginning
at location f , we start with a traversal of its body at f . The instructions
uncovered by this traversal constitute the body of f , and any control transfers
using intra-procedural control flow constructs (e.g., table jumps) from outside
this body indicate that f is spurious.

5.4.2 Data Flow Properties

Similar to control flows, there are also data flows into and out of a particu-
lar function. This provides us further opportunities to check if a function is
spurious.

Data flows between a function and the rest of the program are usually
through registers, stack, or global memory. Compared to (stack or global)
memory, the usage of registers for function interfaces is usually more con-
strained. In this section, we explore how register restrictions can help identify
spurious functions.

Constraints on the use of registers for inter-procedural data flows are im-
posed by system ABI and calling conventions [41]. They are summarized in
Figure 5.5. In this figure, allowed argument registers are registers that can
be used for passing arguments to a function, therefore used for inwards data
flow. On the other hand, callee-save registers are those registers whose value
need to be saved before being used in a function, and restored before function
returns, hence capturing both inwards and outwards data flows.

Note that on x86-32 allowed argument registers are calling convention spe-
cific, and the details are presented in Figure 5.6. To compute a reference set,
we take the union of all calling conventions. Therefore, the resultant allowed
argument registers are eax, edx, and ecx. If dataflow occurs from caller to
callee via any other register, such flow is in violation of all calling conventions,
thus indicating that the entry point is likely spurious.
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Registers x86-32 x86-32 x86-64 x86-64
Windows UNIX-like Windows UNIX-like

Allowed (See (See rcx, rdx, rdi, rsi, rdx,
argument Figure 5.6) Figure 5.6) r8, r9 rcx, r8, r9

Callee- ebx, esi, ebx, esi, rbx, rsi, rdi, rbx, rbp
save edi, ebp edi, ebp rbp, r12-r15 r12-r15

Figure 5.5: Register usage summary for calling conventions on different plat-
forms

x86-32 calling convention Argument passing

cdecl, stdcall, pascal stack

fastcall (Microsoft, GNU) ecx, edx then stack

fastcall (Borland) eax, edx, ecx then stack

thiscall (Microsoft) ecx then stack

Figure 5.6: Arguments passing for x86-32 calling conventions

We perform static analysis which operates on each potential function to
capture the actual data flow through registers and check with the reference
(Figure 5.5). Any noncompliance suggests a spurious function.

Static Analysis for Argument Registers. To identify registers used for
passing arguments to a “function”, we perform a liveness analysis. We use
the standard backwards data-flow analysis algorithm by computing GEN and
KILL sets for registers and EFLAGS (Section 3.2.2).

If a register is live at a “function” start, it is potentially an argument
register. This is because a live register indicates its use is before its definition
in the “function” body. Consequently, it must have been defined before the
function being called and information is passed through it. However, there
is an exception: callee-save instructions at function beginning “use” callee-
save registers with the purpose of preserving them to stack. Since this does
not represent information passing, they should not be considered as real uses.
Our analysis adopts a simple strategy by not considering register saves on the
stack as a use of the register. Specifically, if a register is saved to an address
less than the value of the stack pointer at function entry, then it is not treated
as a use of that register.

Note that a special case for argument register checking is that EFLAGS are
not used for passing information. Therefore, a live flag also suggests a spurious
function.

A concrete example for argument register checking is shown in Figure 5.4.
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805ce70 <get_date>:

805ce70: push %ebp ; real func start

805ce71: push %edi

805ce72: push %esi

805ce73: push %ebx

... ...

805d900: pop %ebx ; +4 ; spurious func start

805d901: pop %esi ; +8

805d902: pop %edi ; +12

805d903: pop %ebp ; +16

805d904: ret

Initial End state (for “function” End state (for “function”
state [0x805d900, 0x805d904] [0x805ce70, 0x805d904]

ebx = EBX ebx = *(ESP) ebx = EBX
esi = ESI esi = *(ESP + 4) esi = ESI
edi = EDI edi = *(ESP + 8) edi = EDI
ebp = EBP ebp = *(ESP + 12) ebp = EBP
... ... ...

ret addr = *(ESP + 16) ret addr = *(ESP)

Figure 5.7: The analysis states of example code

For the spurious function starting at 0x8081a10, edi is live and detected as
an argument register. However, since edi is not allowed for that purpose, the
function is spotted as spurious.

Static Analysis for Callee-saves. To check value preservation for callee-
save registers, we keep track of register and memory values by performing an
abstract stack analysis (Section 3.3). The analysis produces at the function
end the abstract value of each register and memory location, and how it has
changed against the initial value.

Figure 5.7 shows the initial and end states from our analysis of an example
snippet. In this figure, the capitalized REG is the symbolic value denoting
the initial value of reg upon function entry. The right two columns show the
end states for “function” [0x805d900, 0x805d904] and [0x805ce70, 0x805d904],
respectively. For “function” [0x805d900, 0x805d904], since registers ebx, esi,
edi, ebp do not preserve their values but instead get new values from “return
address” (location [ESP + 0]) and “stack argument” region (location [ESP +
4] to [ESP + 12]) , it is recognized as spurious. On the other hand, “function”
[0x805ce70, 0x805d904] passes callee-save register usage checking. Note that
in case register values end up with >, our analysis conservatively concludes no
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violations.
Note that in above two examples (Figure 5.3 and Figure 5.4) the spurious

functions violate both control flow and data flow properties. This is not always
the case — sometimes only a single interface checking technique is effective.
However, by adopting a comprehensive mechanism, we significantly increase
the confidence for correctness once a function passes checking.

5.5 Evaluation

5.5.1 Data Set

We used three data sets for evaluating our system.
Data Set 1. The first data set is the same as that used by machine learning
based approaches, namely, ByteWeight [15] and the work of Shin et al [87].
Since our current implementation is limited to Linux ELF binaries, the com-
parison focuses on the subset of the results for this platform. Note that the
vast majority (2064 of 2200) of the binaries in this data set were on Linux, so
our results do cover over 90% of the data used in these works. These 2064 bina-
ries correspond to binutils, coreutils and findutils. They are compiled
with GNU (gcc) or Intel (icc) compilers, from no optimization to the highest
optimization level for both x86-32 and x86-64 architectures. These binaries
include around 600,000 functions in total, with a total size over 280MB.

Despite its size, this data set is found to be skewed by a recent work
[13]. Specifically, since many binaries are from the same package, they share
a significant number of functions. This gives machine learning techniques ad-
vantages because functions used for learning and testing significantly overlap.
Nevertheless, we use this data set in order to provide a direct comparison with
machine learning approaches.

Data Set 2. Our second data set is the set of SPEC 2006 programs. As
compared to the first data set, which are mostly operating system utilities
written in C, SPEC programs are more diverse in terms of their applications,
as well as the programming languages used (C, C++, Fortran). Moreover,
unlike the first data set, SPEC programs rarely share functions with each
other. To compile these programs, we used the GCC compiler suite (gcc,
g++, and gfortran) and LLVM (clang, clang++), and compiled with all
optimization levels (O0-O3).

Data Set 3. Our third data set is the GNU C library, which is a suite of
functionally related shared libraries (24 in total), including libc.so, libm.so,
libpthread.so, etc. This is a more challenging data set for two reasons. First,
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the code is low-level and contains many instances of hand-written assembly.
Second, the binaries are in the form of position independent code (PIC). We
used GCC -O2 to compile for both x86-32 and x86-64 architectures.

5.5.2 Metrics

We use the same metrics, precision, recall, and F1-score as in previous work
[15, 87]. Their definitions are as follows. In these equations, TP denotes the
number of true positives for identified functions, FP denotes false positive,
while FN denotes false negatives.

Recall =
TP

TP + FN
(1)

Note that recall captures the fraction of functions in the binary that are
correctly identified by an approach.

Precision =
TP

TP + FP
(2)

Typically, these two metrics are combined using a harmonic mean into a
quantity called F1-score:

F1 =
2 · Precision ·Recall
Precision+Recall

(3)

5.5.3 Implementation

Our main analysis framework is implemented in Python, and consists of about
4100 lines of code. For the disassembler, we used objdump and reimplemented
the error correction algorithm from BinCFI [106]. The main framework also in-
cludes all major components described, including function start identification,
function body traversal, and part of interface checking. Our current analysis
engine is based on angr [88].

We used angr mainly because it is a comprehensive binary analysis plat-
form, and supports both x86-32 and x86-64. We built our customized analysis
on top of angr, but not using any of its built-in function recovery algorithms.
In fact, their accuracy is well under the best published results from machine
learning systems (which we compare in the following sections), probably be-
cause the primary goal of angr is for offensive binary analysis [88], rather than
robust recovery of program constructs.
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x86-32 x86-64 overall
Tool P R F1 P R F1 F1

ByteWeight 0.9841 0.9794 0.9817 0.9914 0.9847 0.9880 0.9849

Neural 0.9956 0.9906 0.9931 0.9880 0.9780 0.9830 0.9881

Ours 0.9978 0.9920 0.9948 0.9960 0.9948 0.9954 0.9951

Error ratio 2.0000 1.1750 1.3269 2.1500 2.9423 2.6086 2.4286

Figure 5.8: Function start identification results from different tools

x86-32 x86-64 overall
Tool P R F1 P R F1 F1

ByteWeight 0.9278 0.9229 0.9253 0.9322 0.9252 0.9287 0.9270

Neural 0.9775 0.9534 0.9653 0.9485 0.8991 0.9232 0.9443

Ours 0.9865 0.9809 0.9837 0.9912 0.9900 0.9906 0.9871

Error ratio 1.6667 2.4398 2.1288 5.8523 7.4800 7.5851 4.3178

Figure 5.9: Function boundary identification results from different tools

5.5.4 Summary of Results

Figure 5.8 and Figure 5.9 summarize function start and boundary identifi-
cation results for the first data set, respectively. Since the two most recent
work [15, 87] has the best published results and outperformed previous tools
(such as IDA and Dyninst [50]), we only compare our results with them.
Because we tested with the same data set, we directly use the numbers re-
ported by them. In this figure (and following ones), “P” denotes precision,
while “R” denotes recall. Note that for each architecture, every number
(for P/R/F1) is a mean over the corresponding 1032 binaries. To enable
direct comparison with machine learning systems, we followed their practice
by using an arithmetic mean8. The “error ratio” in the figure is defined as
(1−MAX(ByteWeight,Neural))/(1−Ours) for each column. The overall er-
ror ratio for function start and function boundary is 2.43 and 4.32. Therefore,
our system produced significantly better results.

The results for our second and third data sets are presented in Fig. 5.10.
We compare with the most recent work in this field, Nucleus [13], which is
also based on static analysis. We followed their way of summarizing results:
using an average of geometric means for all optimization levels. Our F1 scores
for this data set are consistently above 0.99, significantly higher than those of

8When using geometric or harmonic mean to summarize our results, the difference is less
than 0.0006.
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Dataset & Tool x86-32 binaries x86-64 binaries
compiler P R F1 P R F1

SPEC Nucleus 0.97 0.89 0.92 0.97 0.90 0.93
(GCC) Ours 0.9988 0.9869 0.9927 0.9952 0.9861 0.9905

SPEC Nucleus 0.95 0.88 0.91 0.94 0.86 0.90
(LLVM) Ours 0.9978 0.9933 0.9955 0.9934 0.9902 0.9918

GLIBC Nucleus - - - - - -
(GCC) Ours 0.9846 0.9914 0.9879 0.9804 0.9840 0.9817

Figure 5.10: Function boundary identification results for SPEC 2006 and
GLIBC.

Nucleus (around 0.92). We omitted zooming into each optimization level since
our results are not sensitive to them: the F1 score differences are within 0.01.

As shown in the last two lines of the figure, ours is the first work that evalu-
ates with GLIBC. Despite the challenges posed by PIC-code, hand-written as-
sembly and other low-level features, our techniques achieve an F1-score above
0.98.

5.5.5 Detailed Evaluation

In this section, we present detailed evaluation for our second data set: SPEC
2006 programs. For space reasons, we focus on the most widely used opti-
mization level: -O2. As shown in Fig. 5.11 and Fig. 5.12, for a wide range of
applications written in three different languages (C, C++ and Fortran) and
compiled with two compilers (GCC and LLVM9), our overall F1-scores are no
lower than 0.9817 for function boundaries. Note that overall metrics are com-
puted by using the aggregated true positives, false positives and false negatives
over the selected fraction of binaries. For many individual binaries, we have
achieved perfect (1.0000) precision and recall.

Distribution of Different Call Types. To understand how each step of
analyses contributes to the finally identified functions, we list the correspond-
ing results for SPEC 2006 programs in Figure 5.13. To conserve space, only
GCC (-O2) compiled programs for x86-32 architecture are shown. Note that
x86-64 binaries have similar results to their x86-32 counterparts.

As shown in the figure, the percentage of each function category is largely
language and program dependent. For most C and Fortran programs, direct
calls contribute to the largest number of identified functions. (Note that this

9LLVM does not have an official frontend for Fortran.
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Program Lang- Suite x86-32 x86-64
uage P R F1 P R F1

400.perlben. C int 0.9971 0.9983 0.9977 0.9743 0.9954 0.9847
401.bzip2 C int 1.0000 1.0000 1.0000 1.0000 1.0000 1.000
403.gcc C int 0.9959 0.9893 0.9926 0.9935 0.9946 0.9941
429.mcf C int 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
445.gobmk C int 0.9996 0.9996 0.9996 0.9980 0.9996 0.9988
456.hmmer C int 1.0000 0.9980 0.9990 0.9941 1.0000 0.9970
458.sjeng C int 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
462.libquan. C int 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
464.h264ref C int 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
433.milc C fp 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
470.lbm C fp 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
482.sphinx3 C fp 1.0000 1.0000 1.0000 0.9824 0.9911 0.9867
471.omnet. C++ int 0.9990 0.9946 0.9968 0.9975 0.9853 0.9914
473.astar C++ int 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
483.xalan. C++ int 0.9911 0.9923 0.9916 0.9883 0.9911 0.9897
444.namd C++ fp 1.0000 1.0000 1.0000 1.0000 0.9904 0.9951
447.dealII C++ fp 0.9601 0.9577 0.9592 0.9698 0.9494 0.9595
450.soplex C++ fp 1.0000 0.9764 0.9881 1.0000 0.9443 0.9713
453.povray C++ fp 0.9974 0.9707 0.9839 0.9913 0.9696 0.9802
410.bwaves F fp 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
416.gamess F fp 0.9931 0.9951 0.9941 0.9931 0.9979 0.9955
434.zeusmp F fp 1.0000 0.9884 0.9941 0.9767 0.9882 0.9824
435.gromacs F fp 0.9991 0.9981 0.9986 0.9982 0.9982 0.9982
436.cactus. F fp 1.0000 1.0000 1.0000 1.0000 0.9977 0.9988
437.leslie3d F fp 1.0000 1.0000 1.0000 0.9667 0.9355 0.9509
454.calculix F fp 0.9940 0.9836 0.9887 0.9953 0.9514 0.9728
459.Gems. F fp 0.9737 0.9487 0.9610 0.9733 0.9481 0.9605
465.tonto F fp 0.9760 0.9598 0.9678 0.9634 0.9634 0.9634
481.wrf F fp 0.9961 0.9958 0.9960 0.9972 0.9955 0.9963

C overall C both 0.9977 0.9950 0.9963 0.9918 0.9966 0.9942
C++ overall C++ both 0.9839 0.9808 0.9823 0.9845 0.9757 0.9801
F overall F fp 0.9902 0.9846 0.9874 0.9866 0.9826 0.9846

Overall all both 0.9886 0.9849 0.9868 0.9852 0.9781 0.9817

Figure 5.11: SPEC 2006 results (GCC compiled binaries)
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Program Lang- Suite x86-32 x86-64
uage P R F1 P R F1

400.perlben. C int 0.9952 0.9940 0.9945 0.9898 0.9886 0.9892
401.bzip2 C int 1.0000 1.0000 1.0000 0.9867 0.9736 0.9801
403.gcc C int 0.9977 0.9982 0.9979 0.9947 0.9942 0.9944
429.mcf C int 1.0000 1.0000 1.0000 0.9143 0.9697 0.9411
445.gobmk C int 0.9996 1.0000 0.9998 0.9996 0.9992 0.9994
456.hmmer C int 1.0000 1.0000 1.0000 0.9958 0.9916 0.9937
458.sjeng C int 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
462.libquan. C int 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
464.h264ref C int 1.0000 0.9981 0.9991 1.0000 0.9981 0.9990
433.milc C fp 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
470.lbm C fp 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
482.sphinx3 C fp 1.0000 1.0000 1.0000 0.9819 0.9939 0.9879
471.omnet. C++ int 0.9974 0.9604 0.9786 0.9963 0.9564 0.9759
473.astar C++ int 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
483.xalan. C++ int 0.9958 0.9888 0.9922 0.9920 0.9886 0.9903
444.namd C++ fp 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
447.dealII C++ fp 0.9942 0.9707 0.9823 0.9889 0.9731 0.9810
450.soplex C++ fp 1.0000 0.9847 0.9923 1.0000 0.9858 0.9929
453.povray C++ fp 1.0000 0.9566 0.9778 1.0000 0.9573 0.9782

C overall C both 0.9982 0.9982 0.9982 0.9949 0.9946 0.9948
C++ overall C++ both 0.9959 0.9792 0.9875 0.9922 0.9796 0.9859

Overall all both 0.9965 0.9847 0.9906 0.9930 0.9840 0.9885

Figure 5.12: SPEC 2006 results (LLVM compiled binaries)
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Binary Total Direct Direct Indi- Unreach-
funcs. call jump rect able

400.perlben. 1742 48.22% 0.46% 40.18% 11.14%

401.bzip2 81 61.73% 1.23% 9.88% 27.16%

403.gcc 4653 68.56% 2.82% 20.89% 7.57%

429.mcf 34 73.53% 0.00% 17.65% 8.82%

445.gobmk 2543 26.27% 0.55% 70.31% 2.87%

456.hmmer 504 54.96% 2.98% 5.56% 36.31%

458.sjeng 146 72.60% 4.11% 8.90% 14.38%

462.libquan. 109 68.81% 3.67% 6.42% 21.10%

464.h264ref 535 79.63% 2.80% 7.29% 10.28%

433.milc 246 79.67% 0.81% 3.25% 16.26%

470.lbm 28 75.00% 0.00% 21.43% 3.57%

482.sphinx 338 70.71% 1.18% 3.85% 24.26%

471.omnet. 2036 27.36% 1.82% 56.93% 13.36%

473.astar 98 75.51% 0.00% 8.16% 16.33%

483.Xalan 13525 33.62% 2.60% 53.84% 9.18%

444.namd 105 45.71% 0.00% 51.43% 2.86%

447.dealII 7242 26.90% 1.20% 30.46% 37.21%

450.soplex 935 43.42% 3.32% 38.93% 11.98%

453.povray 1639 58.88% 1.59% 30.14% 6.47%

410.bwaves 17 58.82% 0.00% 35.29% 5.88%

416.gamess 2898 94.79% 1.04% 0.59% 3.49%

434.zeusmp 86 66.28% 0.00% 6.98% 25.58%

435.gromacs 1100 70.36% 1.09% 4.09% 24.36%

436.cactus. 1311 44.47% 0.76% 14.80% 39.97%

437.leslie3d 32 71.88% 0.00% 18.75% 9.38%

454.calculix 1338 69.43% 2.24% 0.45% 26.83%

459.Gems. 78 78.21% 2.56% 6.41% 10.26%

465.tonto 3851 68.87% 4.05% 0.73% 24.51%

481.wrf 2888 55.40% 3.84% 0.66% 39.89%

Overall 50138 48.06 2.16 30.83 17.70

Figure 5.13: Functions identified in each step
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includes direct calls made within functions that are only indirectly reached.)
Some C programs (such as 445.gobmk), however, contains a large number of
indirect functions. For many C++ programs, because virtual functions10 are
abundant, there are generally more indirectly reached functions. The fourth
column presents the percentage of functions that are reached only by direct
jumps (i.e., tail called). These functions are not rare in optimized binaries.

Note that for some benchmarks, the percentage of unreachable functions is
quite high (average 17% and up to 40%). To verify these results, we selected a
subset of these programs, and used Pintools [65] to record the locations reached
via calls or jumps. We found that none of these addresses corresponded to
functions determined unreachable by our technique.

After checking source code, we found that the unreachable functions are
mostly global (i.e., non-static) functions which are neither called directly nor
have their addresses taken. Although they are not used, compilers don’t gen-
erally remove them unless specific actions are taken during the build process
to eliminate them. (Note that this is different from static functions whose
visibility is within the same compilation unit — it is more common for unused
static functions to be removed by default.)

Effectiveness of Interface Checking Techniques. As discussed, func-
tion interface checking is critical in pruning spurious functions from the iden-
tified candidate set. In this section, we evaluate the effectiveness of each
checking mechanism independently. The results are presented in Figure 5.14.
Again, only GCC -O2 compiled binaries for x86-32 are shown.

As shown in the figure, each checking mechanism is independently effective
in identifying a significant fraction of all spurious (“total pruned” in the figure)
functions. However, in general, no single mechanism is able to detect all
spurious functions. It is through their combination that we can effectively
reduce the number of spurious functions to a very low number. Note that for
four of the binaries, no spurious functions are pruned. This is because all the
functions enumerated happen to be real functions.

5.5.6 Performance

Our focus so far has been on accuracy rather than run time, and hence we
have not made any systematic efforts to optimize performance. Nevertheless,
it is useful to compare its performance against previous techniques.

As compared to machine learning based approaches [15, 87], one of the
advantages of our approach is that it does not require training, which is ex-

10Virtual functions can only be indirectly called through a V-table.
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Binary Total Control flow checking Data flow checking
pruned entry exit internal argument callee-save

400.perlben. 1630 91.60% 79.57% 39.26% 57.67% 53.31%
401.bzip2 48 100.00% 33.33% 89.58% 85.42% 87.50%
403.gcc 5845 94.06% 86.35% 38.25% 71.87% 46.14%
429.mcf 0 0.00% 0.00% 0.00% 0.00% 0.00%
445.gobmk 379 61.48% 89.18% 37.73% 46.70% 40.37%
456.hmmer 245 89.80% 81.63% 40.41% 76.33% 60.82%
458.sjeng 130 99.23% 44.62% 45.38% 72.31% 80.00%
462.libquan. 1 0.00% 0.00% 0.00% 100.00% 0.00%
464.h264ref 89 89.89% 73.03% 37.08% 84.27% 66.29%
433.milc 43 88.37% 97.67% 6.98% 69.77% 65.12%
470.lbm 0 0.00% 0.00% 0.00% 0.00% 0.00%
482.sphinx 16 31.25% 31.25% 18.75% 68.75% 12.50%
471.omnet. 130 72.31% 76.92% 22.31% 70.77% 43.08%
473.astar 0 0.00% 0.00% 0.00% 0.00% 0.00%
483.Xalan 1916 46.03% 65.55% 21.14% 80.64% 54.96%
444.namd 2 0.00% 50.00% 50.00% 0.00% 100.00%
447.dealII 1851 18.10% 65.80% 17.77% 64.94% 57.16%
450.soplex 228 84.65% 75.44% 26.32% 62.72% 56.58%
453.povray 1602 91.39% 38.76% 19.48% 75.28% 16.10%
410.bwaves 0 0.00% 0.00% 0.00% 0.00% 0.00%
416.gamess 3088 79.18% 56.99% 35.65% 73.74% 52.91%
434.zeusmp 14 0.00% 50.00% 57.14% 71.43% 50.00%
435.gromacs 360 84.44% 87.50% 34.44% 73.61% 35.56%
436.cactus. 376 95.48% 80.59% 56.65% 84.31% 58.24%
437.leslie3d 2 0.00% 100.00% 100.00% 50.00% 50.00%
454.calculix 269 75.09% 87.36% 53.53% 40.15% 37.17%
459.Gems. 72 80.56% 76.39% 50.00% 43.06% 62.50%
465.tonto 1631 90.74% 88.90% 17.78% 41.02% 40.34%
481.wrf 572 77.45% 93.71% 27.97% 29.55% 36.71%

Overall 21360 77.44 73.32 31.75 67.02 47.17

Figure 5.14: Effects of each checking mechanism

Tool Experiment setup x86-32 binaries x86-64 binaries
machine CPU RAM training testing training testing

ByteWeight desktop 4-core 3.5GHz 16G 293 hc 457,997 s 293 hc 593,170 s
i7-3770K (estimate) (estimate)

Neural Amazon EC2 8-core 2.9GHz 15G 20 h 1,062 s 20 h 1,018 s
c4.2xlarge Intel Xeon

Ours laptop 4-core 1.7GHz 8G 0 47,880 s 0 36,300 s
i5-4210U

Figure 5.15: Experiment setup and performance comparison (hc = compute
hours, h = hours, s = seconds)
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pensive. The results of our analysis, together with those from ByteWeight
[15] and neural network based system [87], are summarized in Figure 5.15.
The numbers are based on our first data set, and 10-fold cross validation for
machine learning systems.

The neural network based system uses much less time for the testing be-
cause it only identifies the bytes where functions start and end, without re-
covering the function body. As a comparison, ByteWeight and our system
follow the CFG to identify function ends, therefore can recognize the exact
instructions belonging to the function, and identify physically non-contiguous
parts of the function.

Currently, it takes about 40 seconds on average to analyze a binary of
our test suite. Although this is already satisfactory for many cases, there are
many opportunities for improvement. For example, spurious functions can
be immediately spotted if the entry basic block has violating behavior and
therefore analysis of the whole function can be avoided. This is in contrast to
our current naive implementation that performs complete analysis and checks.

5.6 Case Studies

Since function recognition serves as an essential step for many techniques work-
ing on binaries, to understand how well our approach can be used, we analyze
several representative classes of applications.

General evaluations have already shown that our approach has better ac-
curacy than state-of-the-art machine learning techniques (Section 5.5), in this
section, we focus on binary instrumentation tasks which usually impose more
stringent requirements.

5.6.1 Control-Flow Integrity

As discussed, CFI is an effective technique for mitigating code reuse attacks
[6, 106, 104, 93, 94]. CFI can be coarse-grained or fine-grained, depending on
the precision of the CFG computed by different static analysis techniques. It
has been shown that coarse-grained CFI provides less security because it is
more easily bypassed.

CFI is sensitive to the recall of indirectly reachable functions. Specifically,
consider a CFI policy that an indirect call must target the entry point of one of
the indirectly reachable functions in the program. With a recall rate less than
100%, some legitimate function entry points would not have been identified,
and hence CFI enforcement based on such an analysis can lead to runtime
failures of legitimate programs.
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To evaluate our system in the context of CFI enforcement, we tested with
all SPEC 2006 programs that are compiled with GCC (-O2). We focus on
indirectly reachable function starts in this case, because function ends are
not required for the instrumentation. To get the ground truth for indirectly
reachable function starts, we first preserve relocation information during the
compilation and linking process. For each relocation entry, if the involved
address matches a function start in the symbol table, we consider this address
taken and the corresponding function indirectly reachable. Finally, our results
are evaluated against this set.

The evaluation shows that for all programs in SPEC 2006, we have achieved
100% recall for indirectly reachable function starts. Indeed, the perfect recall
matches our expectation because by design our analysis enumerates all in-
directly reachable function starts, and then eliminates those spurious ones
detected by our analysis.

We note that although a high precision rate is not critical for soundness of
CFI instrumentation, it impacts security. Therefore, a strategy that sacrifices
precision drastically for perfect recall (e.g., the static analyses used by BinCFI)
is unattractive. Instead, we achieve perfect recall, while maintaining a high
precision of more than 98% on average. This allows us a 3-fold reduction as
compared to BinCFI-allowed targets.

In comparison, machine learning based systems [15, 87] identify function
boundaries with a model of surrounding code, and their system cannot be
easily tuned towards 100% recall. Therefore, false negatives may occur for
indirectly reachable functions (and others). For example, as Shin et al. have
observed from their system [87]: “False negatives often occurred when in-
structions that would typically occur in the middle of functions occurred at
the beginning of a function”; and when functions have multiple entries: “Many
of the false negatives occurred at the second entry points to functions, given
that the instructions before it are not the ones which usually end functions”.

5.6.2 Function-based Binary Instrumentation

Many binary instrumentation techniques operate on individual functions as a
unit [25, 82, 22]. Compared to CFI which is recall-sensitive, these applica-
tions are usually more sensitive to precision. This is because, an unrecognized
function may only leave the function untouched, while a misidentified function
could lead to breaking functionality if the technique assumes correct function
boundary information. In this section, we analyze the applicability of our
function identification system for these applications.

Since directly called functions are free of errors and unreachable functions
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0818ba30 <func>:

818ba30: fld 0x86ed1d0 ;real function start

818ba36: fstp 0x8ca5af0

... (similar instructions)

818c784: fld 0x87202c0 ;spurious function start

818c78a: fstp 0x8ca5908

818c790: fld 0x87202c8

818c796: fstp 0x8ca5910

... (similar instructions)

818c8d0: mov $0xf2,0x8ca5a4c

818c8da: mov $0xf6,0x8ca5aec

818c8e4: ret

Figure 5.16: A falsely identified (indirectly reachable) function [818c784,
818c8e4]

are not relevant for correct functionality (as they are not being executed at
runtime), imprecision could possibly originate from two sources: indirectly
reachable functions and direct jump reached (tail called) functions. We analyze
these two cases respectively.

For the first case, an address could be incorrectly identified as an (indirectly
reachable) function start if our interface checking mechanism was insufficient.
Although our comprehensive checking schemes are generally effective and can
remove vast majority of the spurious function starts, such misses do happen.
Figure 5.16 shows one example. In this case, since all instructions access global
memory and there are no stack or general-purpose register operations, our
interface checking could not identify [818c784, 818c8e4] as a spurious function.

Despite these imprecisions, one distinguishing feature of our system is that
the real function which encloses the spurious one is always identified. In Fig-
ure 5.16 for example, [818ba30, 818c8e4] is also recovered (recall in our model,
the recovered functions can overlap or share code). And with this property,
different measures could be taken for different instrumentations to cope with
the imprecisions.

For RAD [25], no work is required at all because the instrumentation is
resistant to such imprecisions11. For other more complicated instrumentations
[82, 22], the overlapping functions could have their own instrumented version

11This is because, at the spurious function start, an extra, unneeded “return address”
is pushed to the shadow stack. While this slightly increases attacker’s options, it does
not break program functionality since at the function epilogue, return addresses is popped
repeatedly from the shadow stack until there is a match. Note that the true return address
does present in the shadow stack, because the larger, real function is also recovered.
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(which are disjoint), and an address translation scheme for indirect branches
(commonly adopted by binary transformation systems [65, 106, 105, 89]) could
be used. With this technique, an indirect call target is translated at runtime
to point to its instrumented version before control transfer. Since the falsely
identified function is never called at runtime, the incorrect instrumentation
will not be executed.

Our system may also falsely recognize intra-procedural jumps as direct tail
calls (the second type of error). Essentially, this is equivalent to splitting the
original function into two. However, we note that this will not introduce any
correctness problems, as all executed instructions and exercised control flows
have been well captured.

Above analysis indicates that our function recognition is effective and only
leaves limited error possibility. The inaccuracies tend to either have no effect
for function-based instrumentation correctness, or can be easily coped with. As
a comparison, since machine learning based approaches rely on code or byte
patterns, false positives of function starts and ends are much more random
and difficult to deal with. Finally, as can be seen in both case studies, our
system automatically classifies identified functions based on their reachability
property, which can enable more flexible instrumentations.

5.7 Extensions

Special calling conventions. Currently our data flow checking technique
is based on well-respected system ABIs and calling conventions, and it can
be adapted to other architectures such as ARM [23]. We note although non-
standard calling conventions have not appeared in our tests, they could be
used in some cases, e.g., function calls within a single translation unit. To
deal with this issue, a “self-checking” mechanism can be adopted.

Specifically, note that ABI violations can occur only in the context of
direct calls and jumps. (Since a compiler cannot be sure about the target of
an indirect control flow transfer, it cannot assume that such a transfer is intra-
module.) Since we don’t apply interface checks for direct calls, ABI violations
won’t pose a problem in their context. That leaves direct jumps (i.e., direct
tail calls) as the only problem case. We develop a self-checking mechanism in
this case. Specifically, we can perform interface checks on a subset of directly
called functions to determine whether ABI is respected. If not, we identify a
relaxed set of conventions that are respected in direct calls, and apply these
relaxed checks to tail call verification. (Note that verification of indirectly
called functions can continue to rely on ABI.)
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6 Accurate Recovery of Function Types

After functions are recognized, another important task is to recover their types.
A function type is given by the argument types and return type. At binary
level, arguments passing and value return are usually based on stack or reg-
isters. However, the numbers and types for the arguments and return values
are not present.

Function type recovery is critical for several applications. First, reverse en-
gineering, especially decompilation requires function type information. More-
over, the types for functions as well as function pointers can be used to signif-
icantly refine program call graph — useful for many static analyses. Finally,
a fine-grained and effective CFI policy can be developed based on function
type information. Note that in Section 4 we addressed the problem of back-
ward edge protection by incorporating a compatibility-aware shadow stack,
but forward edges are not well protected.

In this chapter, we focus on recovery of function types that can be used
for deriving a fine-grained call graph. The call graph can be adopted in static
analysis, and most importantly, fine-grained forward-edge CFI enforcement.
To that end, we develop novel static analysis techniques to recover function
types for indirectly called functions, and also identify arguments used by each
indirect callsite. Our analysis is designed to be conservative, so that a CFI
policy can be enforced without resulting in false alarms. On the other hand, it
is also fine-grained and provides stronger protection than existing CFI schemes.
From a high level, our analysis works by accurately analyzing the number and
types of arguments for functions and function pointers. And the enforcement
policy is such that an indirect callsite can only reach callees with compatible
signatures.

6.1 Indirect Callee Arguments

To analyze indirect callee arguments, the first step is to identify these func-
tions. In Section 5.2.2, we have described how indirectly reachable functions
are recognized. We utilize the same technique here. Note, however, a slight dif-
ference is that all scanned constants that pass interface checking are considered
as indirectly reachable functions, although they could be directly reachable at
the same time.
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1 struct A {

2 int index;

3 int addend;

4 int array[4];

5 };

6

7 int f(struct A s) {

8 return s.array[s.index] + s.addend;

9 }

10

11 f:

12 movl 4(%esp), %eax

13 movl 12(%esp,%eax,4), %eax

14 addl 8(%esp), %eax

15 ret

Figure 6.1: An example function with a struct argument

6.1.1 Challenges

For each function, its stack arguments are prepared by the caller and are
placed right above the return address. Therefore, an effective approach for
inferring stack arguments is to analyze how they are accessed. Specifically,
since the stack arguments are located at positive offsets to stack pointer value
on function entry, we need to identify memory accesses to those locations.

Obviously, more accurate argument information can lead to more precise
CFI policies [92]. However, there are several challenges in obtaining accurate
stack argument information through analysis at the binary level.

First of all, a single multi-word argument can be passed through multiple
stack slots, the same way as passing multiple word-sized arguments. There-
fore, it may be challenging to differentiate between the two cases. Figure 6.1
presents such an example. The source code is shown in the upper part, while
the corresponding assembly code is shown in the lower part. In this example,
the only argument is of type struct A (non-scalar), and is passed by value:
all its fields are pushed on the stack. Note that in assembly the fields index

and addend are accessed on line 12 and 14, respectively. However, It is impos-
sible to determine whether they are fields of a struct or two different scalar
arguments.

The second issue is aliasing: stack arguments can be accessed using indirect
memory references. In Figure 6.1, the elements of A.array are accessed with
an index variable whose value is not known at compile time. Line 13 shows the
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corresponding assembly code. In this case, the number of arguments cannot
be determined as the value of the index variable is not bounded.

6.1.2 Our Analysis

Recognizing the difficulties in exact function argument recovery, we propose
to use an alternative approach: a “best-effort” argument recovery scheme.
Ideally, this approach should be sound for CFI enforcement, yet does not
result in too much loss of precision.

Specifically, for each function, we propose to identify definite argument
region instead of the accurate argument list. Our analysis ensures that any byte
inside argument region belongs to some argument (hence the word definite),
however, there could be extra arguments that are not included in this region.
Note that this is essentially an underestimation of the memory region used for
argument passing. However, as will be shown later, this result is useful and
sound for enforcing finer-grained CFI for binaries.

To identify definite argument region, we perform an abstract stack analysis
as described in Section 3.3. Definite arguments are first recognized if the
following two properties are satisfied: 1) the abstract value for the memory
access address is a singleton; and 2) the abstract value for the memory access
address is of the form BaseSP + C, where BaseSP is a symbolic variable
that represents the stack pointer value on function entry, and C is a positive
constant.

The definite argument region is then determined using the obtained definite
arguments. Specifically, the region begins from right above return address,
until the last byte of definite argument with the largest offset. Note that there
might be bytes inside the definite argument region but does not belong to
any definite argument, for the following two reasons. First, some arguments,
although passed in, are not actually used by the callee; and second, some
arguments may only be accessed through indirect memory references (e.g.,
A.array in Figure 6.1). In both cases, they are not recognized as definite
arguments by our analysis.

Note that in above cases, we can still obtain the exact argument region
unless the unused or indirectly referenced arguments are the last ones.

Function summaries A situation we need to deal with is that the analyzed
function may call other functions, which results in two complications: first,
the callees may access the current function’s arguments in some cases; and
second, the stack pointer may change due to the callee invocation.
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To address these issues, we utilize function summaries, as described in
Section 3.3. Specifically, for direct function calls, we compute a summary
for each callee and apply it at the callsite. Note that the function summary
not only includes the definite argument region it accesses (using the approach
described above), but also the stack pointer (and other register) change as a
result of the callee invocation.

To apply a function summary, at each callsite, we check if callee’s definite
argument region has a part that is above caller’s return address on the stack.
If so, we combine this part to the the caller’s definite argument region. We also
adjust the stack pointer (as well as other register) value based on the callee
summary. Note that the summaries are applied iteratively for all functions,
until a fix point is reached.

Note that for indirect calls, the function summaries cannot be computed
or applied as the callee cannot be statically determined. In this case, we
simply ignore the callee’s effects. We next discuss why this does not affect the
correctness of our analysis.

We could fail to identify some stack arguments of the caller, if those are
only accessed by the (indirect) callee that we have ignored. However, this
is relatively rare and will only result in an underestimation of the argument
region. As discussed, it is just a precision issue and does not affect correctness.

Another issue is stack pointer change. We note that in some rare cases,
indirect callee invocation may not preserve stack pointer. If we ignore this
effect, for argument-accessing instructions after the indirect call, our analysis
may fail to identify their correct offsets. However, even in this extreme case,
the analysis only results in imprecision, but not incorrectness. The key ob-
servation is, if a function invocation does not preserve stack pointer, its value
could only become larger which is the effect of callee cleanup (assuming stack
grows downwards). Therefore, failing to properly increase stack pointer will
only make the recognized stack region become smaller, which satisfies our goal
of deriving an underestimation of stack arguments.

Variadic Functions Variadic function is a special kind of function that can
take a varying number of arguments. We need to make sure that our analysis
works correctly for them.

Figure 6.2 shows a typical variadic function. In this case, our analysis rec-
ognizes the first argument (fmt) because accessed stack address is concrete.
On the other hand, the variadic arguments (...) are not recognized because
they are accessed using an aliased address12. This is actually desired result:

12The abstract value for these arguments is BaseSP + [8,∞). Again, BaseSP represents
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1 int compute(const char *fmt, ...) {

2 va_list argp;

3 const char *p;

4 int tmp, result = 0;

5

6 va_start(argp, fmt);

7 for (p = fmt; *p != ’\0’; p++) {

8 tmp = va_arg(argp, int);

9 if (*p == ’a’)

10 result += tmp;

11 }

12 va_end(argp);

13 return result;

14 }

Figure 6.2: A variadic function

recognizing the normal arguments and ignoring the variadic arguments is con-
servative, as it provides us an underestimation of the argument region.

6.2 Indirect Callsite Arguments

6.2.1 Challenges

In addition to callee argument analysis, we need to analyze the number of
stack arguments that are passed for each indirect callsite. This may seem
straight-forward at first sight: just record all slots for stack pushes before the
call. However, this simple approach may be inaccurate or even incorrect. This
is because, for example, due to compiler optimizations, the argument pushing
instructions may not necessarily present in the same basic block as the indirect
call.

Figure 6.3 presents such an example. The function pointer takes exactly
two arguments, however, in basic block starting at label .L6, only one argument
is passed. Note that the other argument is passed at line 17.

Another challenge is to differentiate stack arguments from local variables
and register spills. In the same example, line 16 assigns 0 to local variable x

(corresponds to line 4 in source code). However, it can be incorrectly recog-
nized as passing an argument.

the stack pointer value on function entry.
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1 extern void (*fp)(int, int*);

2 int a, b;

3 int test() {

4 int x = 0;

5 int *p = &x;

6 if (a > 0)

7 (*fp)(a, p);

8 else

9 (*fp)(a + 2, p);

10 }

11

12 test:

13 subl $12, %esp

14 movl a, %eax

15 leal 8(%esp), %edx

16 movl $0, 8(%esp)

17 movl %edx, 4(%esp)

18 testl %eax, %eax

19 jg .L6

20 addl $2, %eax

21 .L6:

22 movl %eax, (%esp)

23 call *fp

24 addl $12, %esp

25 ret

Figure 6.3: Challenges for identifying callsite arguments
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6.2.2 Our Analysis

To overcome these problems, our insight is that the exact argument informa-
tion is not necessary (although more accurate) for enforcing a finer-grained
CFI, and we can derive an overapproximation of prepared arguments. Simi-
lar to callee analysis, for a callsite, we focus on the stack region that is used
for passing arguments. In other words, our callsite analysis aims to infer an
overapproximation of the argument region. Recall that our callee analysis
produces an underapproximation of argument region, therefore, our policy en-
forces that an indirect callsite can only target callees which accept smaller or
equal argument region, but larger.

To identify callsite argument region, we developed a reaching definition
analysis for stack locations. Specifically, all stack locations (below return ad-
dress) are involved, and a stack location is defined (i.e., considered as potential
argument) if it is written to. Since compiler knows the exact location for call-
site stack arguments, they should be written using concrete offsets (relative to
BaseSP , the stack pointer value on function entry). Therefore, our analysis
ignores indirect memory writes (the address value set is not a singleton), which
are not used for argument pushing. Note that this applies to callsites to vari-
adic functions as well, as there is no difference with calls to normal functions
(the number of arguments is known in both cases).

In our analysis, all stack locations are killed in case of an indirect call
instruction (i.e., it is definitely not an argument for another indirect call that
comes later). This is because, for indirect call instructions, since the unknown
callee might overwrite its own arguments during the invocation, compiler has
to make conservative assumptions that all current stack arguments could be
clobbered, and cannot be reused for future indirect calls.

Note that special care needs to be taken for functions that call allocas. In
assembly code, alloca subtracts an unknown delta to the stack pointer, and
therefore its new offset to BaseSP cannot be determined. However, all pre-
viously defined locations should not be arguments to future indirect callsites,
as their distances to the stack top are not statically known by the compiler.
Therefore, our analysis kills all defined locations, and assigns a new symbolic
value NewSP to stack pointer.

For each callsite, after performing the reaching definition analysis, the de-
fined stack slots are the potential stack arguments. However, they are likely to
contain spurious arguments that are actually local variables or register spills.
We therefore develop further techniques to refine the initial results.

First, we observe that stack arguments for a callee must all be pushed and
laid out contiguously to each other, to meet callees’ expectations. Therefore,
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an undefined slot indicates that the following defined ones are all spurious
arguments. For example, if the defined stack slot offsets13 are {4, 8, 16, 20},
we exclude offset 16 and 20 as stack arguments, as offset 12 is not defined (i.e.,
definitely not prepared as stack argument).

Our second technique for removing spurious arguments is to eliminate
“callee-save” slots from the initial results. Since a function needs to preserve
certain register values, they are first saved to callee-save slots on the stack,
and then restored before function return. Obviously, these stack locations
should not be clobbered or used to pass arguments. Although we could use a
platform-agnostic yet complicated analysis [37], we opt to extract callee-save
information from .eh frame section of binaries. Note that this information is
widely available from stripped binaries for UNIX-like operating systems [45].

After spurious argument removal, the argument region for each callsite
could be determined. As discussed, it can be used together with the callee
argument region for a fine-grained CFI enforcement.

6.3 CFI Policies

A CFI policy is concerned with restricting indirect control flow transfers to
pre-defined sets of targets. As discussed, we focus on forward-edges, or more
specifically, indirect calls in this chapter.

Indirect calls can be used for callbacks, or dynamic function dispatches.
Specially, in C++ programs, all virtual function dispatches are based on in-
direct calls. Since virtual functions are abundant in C++ programs, it is
common that in these binaries, the majority of indirect calls are results of
virtual dispatches.

In the following sections, we present different fine-grained CFI policies
that are based on function types. We first present a general policy that is
widely applicable to all C/C++ programs, followed by a more precise policy
for securing virtual dispatches of C++ programs.

6.3.1 (Normal) Indirect Calls

For normal (non-virtual) indirect calls, our CFI policy is based on argument
arity. Specifically, an indirect callsite is allowed to reach a function if the
following constraints are satisfied:

• The target is a start of an indirectly reachable function.

13The slot size is 4 bytes. The offsets are relative to the stack pointer value on entry of
callee, and therefore slot with offset 0 holds the return address.
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• The callsite prepares more arguments than the target function takes.

Note that this policy is conservative. Since our analysis identifies more
arguments for callsites but not less, and identifies less arguments for callees
but not more, the policy would not break any legitimate control flow transfers.
On the other hand, it reduces the number of invalid targets allowed by each
callsite. We quantify this in Section 6.4.

6.3.2 Virtual Calls

Section 2.5.2 presented existing techniques for restricting C++ virtual calls.
In this section, we develop a more precise policy that is based on accurate
analysis.

With recovered function types, a natural choice is to combine it with the
vfGuard policy (Section 2.5.2). Specifically, a target is allowed for a virtual
call if the following two conditions are satisfied:

1. The target is an entry of a valid VTable, and its offset into the VTable is
the same as that determined by the virtual callsite (the vfGuard policy).

2. The target function has compatible signature with the virtual callsite
(the same policy for normal indirect calls).

Our CFI policy restricts this policy further. The key observation is that
polymorphic objects usually have multiple virtual functions, and one such
object tends to call different virtual functions along its life time. If different
virtual calls are found to be invoked on the same object, the base CFI policy
on each virtual call can be propagated. Specifically, our policy enforces that
the virtual calls on the same object can only invoke virtual functions of some
VTable, if each callsite-callee pair is compatible.

Figure 6.4 presents such an example. In this code snippet, the same this

pointer is used for invoking different virtual functions. Specifically, in line 3
the this pointer is loaded to ebx from a memory location. The VTable pointer
is retrieved from its first field and loaded to eax in line 4. The this pointer
is pushed as the first argument in line 5, and a virtual call is invoked in line
6, and its target comes from offset 4 of the VTable pointed by eax. Lines 7-9
invoke another virtual function on the same this pointer. And the offset into
the VTable is 12 (0xc).

In this example, the two virtual calls are invoked on the same object pointer
(ebx), and they are said to be in the same cluster. All recovered VTables are
matched against this cluster, instead of each virtual call as in vfGuard. A
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1 push %ebx

2 sub $0x18,%esp

3 mov 0x20(%esp),%ebx ; ’this’ ptr is loaded to %ebx

4 mov (%ebx),%eax ; %eax points to the VTable

5 mov %ebx,(%esp) ; ’this’ ptr is pushed as argument for the

1st vcall

6 call *0x4(%eax) ; first virtual call

7 mov (%ebx),%eax ; %eax points to the VTable

8 mov %ebx,(%esp) ; ’this’ ptr is pushed as argument for the

2nd vcall

9 call *0xc(%eax) ; second virtual call

10 ...

Figure 6.4: Multiple virtual calls with the same this pointer

VTable is only matched if each virtual call of the cluster satisfies the base
policy. Note that if a VTable is matched, the corresponding virtual function
address at the right offset for a virtual call is collected into its allowed target
set.

Figure 6.5 illustrates this procedure. The left part of the figure is the
same code as shown in Figure 6.4, but with non-call instructions removed for
clarity. The right part presents the identified VTables. Note that only virtual
function array of the VTable are shown, and corresponding offsets for virtual
function entries are marked. The numbers in parentheses indicate the number
of arguments for virtual callsites and virtual functions, as detected by our
analysis.

In this figure, vfGuard policy allows control flow transfers referred by all
arrows. The second callsite is not allowed to target VTable B, as there is
no corresponding entry at offset 0xc. However, our policy is stronger in that
all control flow transfers represented with dashed arrows are disallowed. For
example, edge (c) originated from the first virtual call is prevented because
the second virtual call indicates that VTable B cannot be a match for the
object. Moreover, edges (d) and (e) are not allowed: the second virtual call
has incompatible signature with the corresponding virtual function in VTable
C, indicating a mismatch between the object and VTable C.

Static Analysis To enable above policy, we develop static analysis tech-
niques to cluster virtual calls based on whether they operate on the same
object. To capture the usage of object (i.e., this) pointers, precise data flow
information is required. We therefore use an approach that is similar to vf-
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0:
4:
8:
c:

10:

0:
4:
8:
c:

10:
14:

0:
4:
8:

...

call   *0x4(%eax)

call   *0xc(%eax)

(1)
(1)
(3)
(1)
(2)

(1)
(1)
(4)
(2)
(3)
(2)

(1)
(1)
(2)

(1)

(1)

(a)

(b)

(c)

(d)

(e)

binary code 

VTable A

VTable B

VTable C

Figure 6.5: CFI policies for virtual calls

Guard.
We choose to transform each function into static single assignment (SSA)

form [30, 95], since the def-use and use-def chains are explicit. Our analysis is
intra-procedural and is performed on functions that contain multiple indirect
callsites. The function is first lifted into an intermediate representation (IR),
and then its control-flow graph (CFG) is built. After the code is transformed
into SSA, a phase of definition propagatition is performed. This procedure
is recursive and stops when registers and memory locations are defined with
expressions containing only the initial values of registers, function arguments
or global variables.

Since multiple paths may be involved, the target of a virtual call may be
represented as a collection of expressions, each corresponds to a specific path.
If the object pointer is the same for all paths of different virtual calls, these
virtual calls are added into the same cluster.

As an example of our analysis, for the function shown in Figure 6.4, our
analysis generates the target expressions for the two different callsites:

call ∗ (∗(∗(esp0 + 4)) + 4) (4)

call ∗ (∗(∗(esp0 + 4)) + 12) (5)

Since ∗(esp0 + 4) is used as the this pointer for both virtual callsites, they
are added into the same cluster.
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Callees Callsites

file perfect total % perfect total %

astar 81 86 94.19% 1 1 100.00%

bzip2 48 53 90.57% 11 11 100.00%

gcc 3138 3489 89.94% 57 70 81.43%

gobmk 723 2332 31.00% 26 27 96.30%

h264ref 296 353 83.85% 5 8 62.50%

hmmer 434 451 96.23% 2 2 100.00%

libquantum 77 84 91.67% 0 0 -

mcf 21 23 91.30% 0 0 -

omnetpp 1355 1704 79.52% 103 175 58.86%

perlbench 892 1146 77.84% 19 23 82.61%

sjeng 83 88 94.32% 0 0 -

geomean 199 244 81.48% 12 14 83.59%

Figure 6.6: Statistics for function argument analysis accuracy

6.4 Evaluation

6.4.1 Analysis Precision

In order to evaluate the precision of our function type analysis, we extracted
ground truth from the DWARF debug information of the ELF binaries. Note
that our analysis operates on the stripped version of these binaries, and is not
making use of this debug information.

For callee arguments evaluation, we first extract functions which are iden-
tified with the DW TAG subprogram tag, which includes the function start ad-
dress as one of its properties. For each function, we extract its argument
information from entities with DW TAG formal parameter tag, which includes
properties about the location, type and size of the argument. Based on this
information, we derive the argument region as the ground truth, and compare
it with our analysis results.

The left part of Figure 6.6 shows the precision evaluation for callee (func-
tion) argument analysis. The column total means the total number of func-
tions for each binary, while the perfect column indicates the the number
of functions that our analysis produces perfectly accurate result (same ar-
gument region as in the ground truth). As presented in the figure, in 82%
cases (geomean) our analysis is perfectly accurate and does not underestimate
arguments.

To evalute callsite analysis, we rely on two approaches. First, similar to
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callee analysis evaluation, we utilize debug information as ground truth. Al-
though DWARF standard has no official support yet [1], it is fortunate that
GCC has an extension that encodes arguments prepared for callsites [5]. How-
ever, since the expected use for the extension is for other purpose (accurate
backtrace for debugging), one limitation is that the information is not com-
plete in binaries: some callsites do not contain argument information, or only
contain information for some arguments. Therefore, the only verification we
can do is to check the argument region produced by our analysis actually in-
cludes the region derived from the debug information. Or in other words, our
analysis does not over-approximate arguments. The evaluations on SPEC 2006
programs indicates 0 error for our callsite argument analysis, as compared to
the incomplete debug information.

For a more comprehensive evaluation, we used a second method: we de-
veloped a Pintool [65] for dynamic analysis. Specifically, the tool records all
indirect edges that are taken (i.e, the source and target instructions) at run-
time. We also assume that if there is a control transfer from a callsite to
a callee, they have matching signatures, i.e., the same number and types of
arguments. Since from debug information we have the ground truth for each
function, we can use it for the corresponding callsite.

The right part of Figure 6.6 shows the results for this evaluation: in 84%
(geomean) of the cases, our callsite analysis was able to produce perfect argu-
ment region information.

6.4.2 Policy Correctness

Although a stricter CFI policy is desired for stronger protection, it is even
more important that the deployed policy is correct: i.e., it is compatible with
benign executions of the program. Because otherwise the policy would not be
adopted due to false alarms.

To evaluate the correctness of our policy, we used the same Pintool as
discussed in the last section. For the records generated by dynamic analysis, we
check whether each edge violates the CFI policies that we have generated. Note
that policies for both normal indirect calls and virtual calls are respectively
checked.

We evaluted SPEC 2006 benchmark, and found no such violations. This
indicates that our policy is compatible with benign program executions.

Note that although our policies can be enforced using different platforms
[105, 65, 50], the actual instrumentation is not the focus of this work. Indeed, a
CFI policy is nothing but a mapping between a control-flow transfer instruction
to a set of allowed targets, and existing systems can be readily used for realizing
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File BinCFI IFunc Reduction Type Reduction Overall
check reduction

astar 10 10 0.00% 4 60.00% 60.00%

bzip2 58 10 82.76% 2 80.00% 96.55%

gcc 7751 1222 84.23% 885 27.58% 88.58%

gobmk 2580 1798 30.31% 1542 14.24% 40.23%

h264ref 169 48 71.60% 34 29.17% 79.88%

hmmer 260 31 88.08% 23 25.81% 91.15%

libquantum 9 9 0.00% 7 22.22% 22.22%

mcf 8 8 0.00% 6 25.00% 25.00%

omnetpp 1369 1248 8.84% 760 39.10% 44.49%

perlbench 2595 731 71.83% 341 53.35% 86.86%

sjeng 152 16 89.47% 11 31.25% 92.76%

geomean 454 153 66.34% 83 45.83% 81.77%

Figure 6.7: Indirect call targets reduction of our language-agnostic CFI policy

our policy efficiently. This has been demonstrated repeatedly by many CFI
solutions [106, 104, 75, 94].

6.4.3 CFI Strength

Several metrics were proposed to evaluate the protection strength of a CFI
scheme [106, 18]. However, their limitations have been recognized and dis-
cussed [19, 18]. While we acknowledge that a more systematic evaluation
approach should be developed in future research, to enable direct comparison,
we utilize existing metrics.

Generally, the more targets an indirect call is allowed, the more freedom
an attacker is granted, and the more likely an exploit could be launched.
Therefore, we evaluate how our technique helps reduce the possible targets.
Specifically, we first compare our language-agnostic policy with that of BinCFI
[106], an existing coarse-grained CFI technique that works on COTS binaries14.
Then our CFI policy for virtual calls are evaluated against that of vfGuard
[77], a state-of-the-art precise virtual call protection system.

Figure 6.7 presents our evaluation results for SPEC 2006 programs. Col-
umn BinCFI shows the allowed targets for each indirect call of the executable.

14We did not compare with another coarse-grained CFI scheme CCFIR [104] (which has
similar CFI policy hence similar protection strength) because it is specific to Windows, and
relies on relocation information that is not available for Linux binaries. In addition, we
leave out comparison with the other fine-grained CFI [94], because it only works on x86-64,
and is orthogonal to our approach.
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Figure 6.8: Distribution of virtual callsites based on number of identified vir-
tual calls on the same object pointer

Column IFunc is the number of indirectly reachable functions we have identi-
fied. By enforcing indirect calls to only reach these targets, we can achieve a
reduction of 66% (geomean). The next column Ours shows the median15 num-
ber of targets that an indirect call can reach, based on our argument region
checking policy. As the next column shows, this further reduces the targets
by 46% (geomean), and brings an overall reduction of 82%, as compared to
BinCFI.

Since the CFI precision for C++ virtual calls depends on the number of
virtual callsites identified to be invoked on the same object pointer, we first
show this distribution for a set of programs in Figure 6.8. As presented in the
figure, a significant fraction of virtual callsites share object pointer with one
or more others. And on the same object pointer, up to 27 different virtual
calls are invoked.

For the same set of programs, Figure 6.9 shows the reduction of virtual call
targets for our C++-specific policy as compared with vfGuard. The vfGuard,
Conjugate and Conjugate&Type columns show the median number of allowed
targets for each policy. “Conjugate” is the policy that propagates the offset
constraint (as in vfGuard) to vcalls that share the same object pointer. As
presented, about 40% of targets can be removed (geomean). The reduction
stems from the combination of the “Conjugate” policy and “Type” policy,

15Each call site can reach different number of targets, hence we statistically representative
number is needed.
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File vfGuard +SameObj +Type+SameObj Reduction

omnetpp 20 20 13 35.0%

Xalan 309 220 155 49.8%

TinyXML 6 6 3 50.0%

HT Editor 34 32 24 29.4%

Xpdf 38 38 24 36.8%

geomean 34 32 20 41.2%

Figure 6.9: Virtual call targets reduction of our CFI policy

and “Conjugate” alone does not lead to much reduction. Note the last column
“Conjugate vcalls” indicate the percentage of virtual calls that are found to
be invoked on the same objects as some other virtual calls. For each number,
this correponds to the sum of all y-axis values except x = 1 for each program
in Figure 6.8.

6.5 Security Analysis

In this section, we evaluate the effectiveness of our approach against advanced
code reuse attacks.

6.5.1 Coarse-Grained CFI Bypass Attacks

It has been shown that coarse-grained CFI is bypassible [47, 32]. In this
section, we analyze how our approach can block such attacks, with the proof-
of-concept example from the original paper [47].

The original exploit has several phases. Because the vulnerability could be
used to corrupt a function pointer, the first phase of the attack is to transfer
control to a return instruction. The second phase pivots the stack and leverages
an advanced ROP chain that only uses coarse-grained CFI conformant gadgets,
and finally a system call is invoked to change memory permission – leading
to easy code injection attacks. Next we focus on the first phase of the attack,
and show that the exploit could be defeated even without backward edge
protection.

Note that the first phase of the attack only uses gadgets that begin from
valid function entry points, in order to bypass coarse-grained CFI protection.
However, one key step is to make the indirect callsite (incorrectly) target a
function that takes less arguments. Figure 6.10 shows the gadget that per-
forms this task. Note that our analysis detects line 5 actually is a callee save
instruction and hence the indirect call at line 6 takes 0 arguments. Moreover,
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1 mov %edi, %edi

2 push %esi

3 mov %ecx, %esi

4 mov (%esi), %eax

5 push %edi ; actually callee save; but accessed as an argument by the

function called next line

6 call 0xc4(%eax)

Figure 6.10: A gadget in the PoC exploit

because the callee takes at least one argument (and more than the callsite),
this control flow is blocked by our CFI policy, and the attack is defeated.

6.5.2 COOP Attacks

An end-to-end COOP attack can be divided into two stages. In the first
stage, an attacker exploits a vulnerability of a program, and uses the obtained
memory write capability to prepare a set of counterfeit objects, and also redi-
rects control flow to the main loop [83]. In the second stage, the main loop
dispatches vfgadgets based on the counterfeit objects. Note that although a
COOP variant can replace the main loop with recursion [29], since conceptu-
ally the same goal is achieved, we universally use “main loop” to refer to the
sequential dispatches of prepared vfgadgets.

Next, we discuss how COOP is mitigated in each of the two stages. We first
focus on the effects of VTable offset constraints and function type constraints
for vfgadget dispatches inside the main loop. And then explain how our CFI
policy prevents the main loop from being reached in the first place, with an
even higher precision.

Inside the main loop. The original COOP attack [83] introduced two vari-
ants for abusing vfgadgets (i.e., virtual functions gadgets). The first variant
can utilize a fake VTable inside the read-only section, while the second variant
is restricted with valid VTables. Although the first variant can bypass coarse-
grained VTable protection schemes [46, 103], it is stopped by a stricter policy,
such as the one from vfGuard [77]. The second variant is stealthier, however,
since only valid VTables can be used, the available vfgadgets are more limited.

As discussed in the original COOP paper, the vfGuard policy will be ef-
fective at least for small to medium sized C++ binaries, due to the limited
number of vfgadgets available. Although for larger binaries, sufficient vfgad-
gets may be collected, our policy mitigate this by imposing further constraints.
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Specifically, the function type of the virtual callsite and callee has also to be
compatible.

To enable data flows between vfgadgets, COOP uses two techniques. The
first is based on the field of a counterfeit object. Specifically, one vfgadget
writes to an object field, while another reads from it. Note that since counter-
feit objects can overlap, a single data field may belong to two or more objects
at the same time. Therefore, it is possible that one vfgadget of class A accesses
some object field of class B, even if they are completely not related.

The second technique is based on implicit data flows through argument
registers. For example, vfgadget f is called before vfgadget g. If f modifies
some scratch registers as a side effect of its invocation, and these registers
happen to be the ones used for argument passing (such as rcx and rdx), then
g can be called with attacker intended arguments.

TypeArmor [94] has shown that all existing COOP attacks can be stopped
due to their restrictions on invalid data flows through register arguments. For
architectures that mainly rely on stack for argument passing, our technique on
function type enforcement provides similar protection. Therefore, for COOP
to be evasive, the second technique for data flow cannot be used.

Base on our policy, to abuse a virtual call, attackers are left with vfgad-
gets whose offset in a VTable conforms with the callsite, and whose signature
is compatible. These constraints make finding vfgadgets with desired seman-
tics and passing information between each other much more difficult, if not
impossible, therefore effectively mitigate COOP.

Before the main loop. As discussed, attacker needs to first hijack control
flow to reach the main loop. In the context of a C++ program, a virtual
call would be the common choice for abuse. Therefore, the VTable offset
constraints and function type constraints play the same role in confining this
virtual call. However, our CFI policy based on “same object pointer” analysis
can place further restrictions.

In the same example as shown in Figure 6.5, suppose attacker uses the
first virtual call to reach the main loop gadget, which is pointed by the entry
at offset 4 of VTable C. If only VTable offset constraints and function type
constraints were enforced, attacker would successfully redirect control to the
main loop. However, our CFI policy actually detects the two virtual calls are
based on the same object pointer, and constraints on the second virtual call
is propagated to the first. Therefore, that edge is prevented. As shown in this
example, our CFI policy protects the control transfer to the main loop with
even higher precision.
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7 Conclusions and Future Work

Function recovery for COTS binaries is a comprehensive and challenging prob-
lem. There are many tasks involved: from the very basic function boundary
identification, to high level constructs and property recovery, and until full
function decompilation. Accuracy of function recovery is the key for enabling
many applications, and it requires deep analysis of function properties and
constructs.

In this dissertation, we started from accurately recovering function calls
and returns. Although seemingly straight-forward, call and return detection
cannot only rely on instruction syntax, due to complications such as low level
code and hand-written assembly. We therefore developed a static analysis to
accurately infer function call and return intentions. With this information,
backward control flow edges can be protected with improved compatibility as
well as precision.

We then extended our analysis for function recognition. A more compre-
hensive scheme has been used to accurately reason about function entry and
exit points. To that end, We develped effective analysis techniques to check
control flow and data flow properties associated with a function interface. Our
system not only significantly outperforms existing machine-learning and static
analysis based approaches, but they are more amenable for demanding analysis
and instrumentation applications.

Function type defines how functions interact with each other and its re-
covery can be used for many purposes. Our analysis focused on deriving stack
arguments for both indirect callees and callsites. We utilized such informa-
tion to enforce more fine-grained forward-edge CFI policies for both normal
indirect calls and C++ virtual calls.

Different from general reverse engineering, our function recovery is designed
to support a wide range of further analysis, and facilitate binary hardening
with instrumentations. Using backward and forward edge CFI as examples,
we demonstrated that robust and precise protection for COTS binaries can be
enabled with deep static analysis of functions.

In future, we plan to incorporate other static analysis techniques for accu-
rate function recovery. One direction is to leverage type inference for function
argument analysis. The specific types of arguments, in addition to the count
of arguments, will further improve CFI precision as well as enable other ap-
plications.
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[47] E. Göktaş, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out of
Control: Overcoming control-flow integrity. In IEEE S&P, 2014.
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