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Abstract of the Thesis 
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This paper is an attempt at describing the priority of skimming in enhancing the lives of the 
visually impaired and dyslexic. The paper distinguishes summarization from skimming. It speaks 
of skimming a given blob of text. And with it, arises some unique challenges. So, the paper tries 
to tackle these challenges by enhancing and speeding up the algorithm. The algorithm breaks 
down the input into smaller and compact skimmed results, which when used as the input to the 
algorithm completely fastens the algorithm with a tremendous decrease in run time. The ways of 
creating the compact skimmed version of the text are described in the paper, at the same time 
comparing and contrasting the differences between those ways. The paper finally describes the 
fastest algorithm, its origin and the way to derive the shortest skimmed version to input to the 
final algorithm.  
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Definitions 
 

Summarization 

A summary [4] is the condensed presentation of the body of the material. This is the procedure to 
manipulate and modify the existing textual material in such a way so that the resulting text meets 
the following conditions 

• The output of the procedure should yield a text that is much minuscule than the input 
larger text. 

• The output text must not lose its meaning in any way. It should syntactically, 
semantically same as the input text. The outcome of the procedure should be exactly 
identical to the input text in its meaning. 

• There should be absolutely no loss in the meaning and the output would manage to have 
all the pivotal words that are necessary to preserve the meaning of the entire text. 

 

Precis Writing 

A precis is also a summary of the body of the text, but it usually contains one-third of the words 
present in the original text. A precis is a miniature portrait of the text or the passage. The precis 
writing is brief and to the point but preserves the meaning of the entire text. 

 

Selecting important words from a paragraph 

This is the procedure where we select the vital words in the paragraph or body of the text. These 
are the words that usually conserve the meaning of the text. The most important word in the 
paragraph will be chosen every time we try to categorize the important words in the paragraph. 
The next important word in the course of the text will be the word that will be chosen next to the 
most prominent word and is always chosen. Thus the first, second and third vital words are 
always bound to be picked and selected in the sphere of the summary and precis writing of the 
input text. These words mark the clarity, brevity and the precision of the input text. These words 
maintain a logical order of the text. These words make the passage well-knit and coherent and 
maintain the connectivity and flow of the meaning. 

 

Skimming 

The skimming is the process that is like the first page of the book. Just like when we attempt to 
read a book, we read the first page of the book and make a resolution to read the entire book or 
not. Some of the visually impaired and dyslexic people who are unable to skim through the 
introduction of the page may have to hear the entire book content or at least the start of each and 
every sentence before they can decide to continue further or not, by using audio books or a 
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reader. The screen readers [1][2] read the software from start to finish. But then when they are 
halfway into the book, they may decide that the material is uninteresting to continue any further 
and might want to stop reading it. But they have already invested some of their valuable time in 
processing the information till that part of the book. But if they had an opportunity to skim 
through the gist of the data, information or the book, then it would have been profitable to them 
to make an appropriate decision to read through the material now or save it for later reading. 
 

Overview to summarization and skimming 

The procedures of summarization, precis writing and selecting the important words from the 
paragraph are pondered upon and experimented with from times immemorial. These ideas are 
age old and not new to the researchers. The summarization is one of the most explored areas. It is 
the need of the ever growing data that necessitates the people who access that data to summarize 
it because a summary is effortless to read than reading the whole text.  

The precis is also a compressed and diminished version of summary. So the ever expanding 
needs of data storage requirements made the researchers explore ways to make the summary 
even shorter. To equip this arena of data handling, many research papers and algorithms were 
developed [4]. These algorithms evolved and got refined in due course of time. So we have an 
immense number of algorithms, research papers and developments in the area of text 
summarization. But the paramount and crucial step and pace in both the above processes of 
summarization and precis writing is to identify and hand-pick the most significant words which 
span and play the most important meaning of the text under consideration. 
 

Difference between Skimming and Other Techniques 

Skimming is more like a human approach to get the gist of the text but summarization is more 
like a well thought out approach. Summarized text needs to preserve and respect the rules of 
grammar. Skimming is a rapid reading method that allows to obtain the specific information that 
is of utmost importance in understanding and grasping the type of content of the data. 
Summarization contains all the information of the data in a concise way. They are particularly 
useful in determining a preview of the data and when we do not want to read through each and 
every word of the text. These methods help us to quickly identify the main ideas of the text. 
Skimming helps us identify all the essential information to help identify what things might be 
present in the rest of the content. Precis writing is an intelligent summary of the text and needs a 
clear understanding of the material to decide what are the most important points in the text that 
provide an insight on the essential points. Selecting the few pivotal words in the entire text is to 
pick and select a very few words and phrases. But the precis writing is an accumulation of 
several phrases or words to convey the importance of the text as a whole.  

Selecting the important words of the text is an approach that might always not work as desired 
because there might be a lot of very important or a lot of many unimportant words in the text. 
Sometimes, keyword search might not be possible on a text or it might not result in the words we 
want to understand the entire gist of the content. In these cases, skimming approach is a major 
rescue tool, since, skimming allows us to look for specific information in the text without 
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making the user lose the basic understanding of the content. Thus skimming is always effective 
in saving the users from heavy reading load. 
 

Importance of Skimming 

Usually when someone is planning to read a passage, essay or even a book for that matter, the 
first thing they do most often than not is skimming the preamble of the book, introduction of the 
passage or abstract of the essay. But without skimming these most people don’t confirm their 
plan to read. Skimming is the primordial step which aids the user to make and adhere to the 
decision as to read the information ahead or not. 
 

Proposal 

As a matter of utmost importance that was sought and most discussed in the world is to come up 
with more innovative ideas to make available a gist of the information to the visually impaired 
[5] and dyslexic people. Rich research [3] has been made to make reading an enjoyable task for 
the visually impaired. As the other users skim through the material and decide to identify the 
importance of the material they are about to process, even these disabled people must be 
provided with a way to hear to the gist of the material. So, we now attempt to equip them with a 
tool that will take the input as the text whose skimming is to be done. The output is the gist of the 
material that will be the short summary of the text. And we design a text to speech conversion 
software which will read the output of the tool and empower the disabled to obtain a summary of 
the material and make a judgment and speculate whether investing time to hear and process the 
material would benefit and profit them or not. 

Previous Work 

This is mainly Faisal Ahmed’s work [6]. On which I have worked on enhancing it to make it 
real-time. 

The grammar is the basic building backbone of a sentence. So every sentence is first parsed to 
extract all the grammatical relationship between all of its words. Then a lexical tree is 
constructed based on these relationships in the sentences, with each node of the tree representing 
a word in the sentence. Next, for every word in the text, 2 features are identified. They are - its 
grammatical features (like POS tags) and its structural features (in degree/out degree) are 
identified. These features are then fed to trained classifier which resolves whether to include the 
word in the skimming summary. As the final step of the algorithm, the subtree which consists of 
all the selected words is constructed. And this subtree represents the skimming summary that all 
the users can obtain when they interact with the system via a user interface. Thus the key 
elements of the algorithm would be the language parser, classifier and a skimming interface.  

One such parser is the Stanford Parser, which is a natural language parser that can analyze the 
grammatical and syntactical structure of sentences and extract relations. The relations identified 
by the parser are simple and accessible to all. Stanford parser identifies 48 different binary 
grammatical relations that exists between governor word and dependent word. Using these 
relations, a directed graph is constructed where the nodes are the words and the edges are the 
relations from the governor to the dependent. This is a sentence tree.  



 

4 
 

We need datasets to train the classifier. The summaries were collected by using trained 
participants who produced gold-standard summaries of all the chosen newspaper articles and 
then up-voting them. The purpose of skimming was to pick up most salient information without 
content rephrasing. The goal was to produce summaries which were ½ to ⅓ the original content 
satisfying the following rules - each sentence separately summarized and with punctuation, word 
order and information preserved.  

They designed an interface that facilitated the screen-reader users to switch seamlessly back and 
forth between reading the skimming summary and reading the original web page preserving the 
current reading position, so that the blind are allowed to scan the text easily and quickly at times, 
and to slow down and read text slowly at other times, just like the sighted readers. When 
switching between summary and the regular screen reading, the cursor position is placed at the 
closest preceding word that was present both in original text and in summary. The interface can 
skim on any web page. But if a page contains a list of links, then that page will be read entirely. 
The features that were the output of the Stanford parser that were used to train the classifier are - 
Number of Outgoing Edges (normalized by no of nodes in the tree), Level in the Tree 
(normalized by highest node in tree), Number of descendants (normalized by highest number of 
descendents of a node in tree), Incoming relation type, and POS tag. A feature vector was 
generated using Stanford parser can and every word in dataset. Then, to classify a feature vector, 
we check if the corresponding word appears in the gold summary. If it appears, vector is labeled 
as “YES” class otherwise as “NO” class. “YES” class means this word is selected to be used in 
summary and “NO” class meant otherwise. These datasets are used to train different Classifiers 
through Weka. The “Yes” class words are rearranged to preserve meaning. If there are a set of 
words that are repeated often, then LCM (Lowest Common Subsequence) algorithm was used to 
chose the set. A MinConnectedTree (Minimum Connected Tree) algorithm was used skim 
through a given sentence. Another algorithm named SkimSentence was used to select phrases 
because users skim through a set of words to understand the content better when skimming. The 
algorithm in paper [6] is described in Figure I. 
 

Definitions: 

• R is a set of dependencies in the type relations. It 
represents relations between the words where the 
mapping is created between Governor depends on 
Dependent. 

• T is a tree where the parent is the Governor and the 
Child is the dependent. 

• S is the input that consists of the sentence to be 
skimmed. 

• K is the output and is the skimmed sentence. 

Algorithm: 

• SN = set() #set of the summary nodes 
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• K = list()  #it is the list of the words 
• R = TypedDependencies(S) #from the Stanford Parser 
• T = ConstructTree(R) #obtained from the typed 

dependencies 
• For node N in T: 

o O =  number of Outgoing Edges of node N 
o L = LevelInTree(N) 
o C  = number of Descendants of node N 
o I = IncomingRelationType(N) 
o P = POSTags(N) 
o F =  <O,L,C, I, P> #feature vector 
o If InSkimming(F) = True #SVM classify 

§ SN.add(N) 
• MT = MinConnectedTree(SN) 
• K = OrderAndListWords(MT) 
• Return K #the skimmed sentence 

Figure I. Algorithm of paper [6] 

 
Aim 

The aim I worked on was to speed up the previously defined skimming algorithm according to 
paper [6] and to make it more efficient. Also, to create a better Skimmed version. Which means I 
would have less number of words selected in the final output, thus a better skimmed results. This 
in turn should help me speed the algorithm as well.  

My Approach 

Any textual material consists of a large collection of sentences. Some of the sentences are so 
relevant to the text that their removal is infeasible. They are of monumental and massive 
importance to preserve the overall meaning of the text. On the other hand, there are some other 
sentences in the text that we are trying to process that might be redundant to the context of the 
text. They might convey the same idea again that was conveyed by an earlier important sentence 
or a group of words. Thus, they might be of less importance. And the key idea here is that the 
removal of those sentences might not make the text lose any of its meaning. And this idea that 
the input text to the algorithms can be effectively reduced in size is a major breakthrough idea 
that will ease our tasks by an enormous amount in the future. 

By using the idea just mentioned, the input to the algorithm can be effectively reduced. If the 
algorithm in the beginning was fed with an input of size, say, a 100 sentences, now, after the 
preprocessing step, will be fed only 60-70 sentences instead of 100. This is a huge diminishing 
factor as far as the size of the input is concerned. 

The algorithm suggested in the previous section requires a great deal of runtime and is a 
bottleneck algorithm. If the input to the algorithm is large, the bottleneck algorithm takes a huge 
amount of time to run and yield results. But with an additional step that will reduce the input fed 
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to the bottleneck algorithm, the efficiency can be effectively increased by a great amount. So we 
employ a threshold. This threshold determines how many sentences can be removed from the 
text without losing its meaning and how many sentences need to be present because of their 
massive importance. This threshold value can be effectively decided upon by the users of the 
application. And larger the threshold value, lesser is the number of sentences that are permitted 
to be removed from the algorithm. On the other hand, if the threshold value is smaller, the users 
are at the liberty of removing a greater number of sentences without harming the meaning of the 
original text. This type of preprocessed input when fed to the bottleneck algorithm yields results 
in a much shorter span of time. And so running the bottleneck algorithm, which earlier utilized 
more time with the unprocessed input will now run much faster. The effective running time 
including the preprocessing step and the bottleneck algorithm (with the processed text, reduced 
in size, as input) combined, is much smaller than using the raw unprocessed text. This 
accelerates the entire process. And this is a massive and novel idea that polishes and ameliorates 
the running time and efficiency of the bottleneck algorithm. Now we will discuss in detail how to 
filter out and pick the sentences that can be removed and those that to be mandatory retained 
from the original text and how my approach does the filtering of input. 
 
Original Approach 

The original text has to be now filtered. The opening step in the approach is to breakdown and 
identify each and every sentence present in the original text. We thus obtain, a set of all 
sentences. Then we attempt to separate out words and group them into sets. We first identify all 
the nouns that are present. We identify the nouns in each and every sentence iteratively. After 
identifying the nouns in every sentence, we group them into a set. This is a set of all the nouns 
that are present in the original text material we have considered. Similarly, we then isolate all the 
verbs that are present in each and every sentence of the text. Then we group them into a set. This 
is a set of words, where each and every word of the set is a verb. This set contains all the verbs 
that are present in the original text. 

So, after the execution of the introductory step, we now possess a list of sentences, list/set of all 
the nouns and a set of all the verbs that are present in the original text. Now we proceed to decide 
which of the nouns are more important than the others in the list. Similarly, we identify and filter 
which of the verbs are more important than the other verbs in the list of verbs.  

So, we have a user defined threshold that can be negotiated. We then compare the meaning of 
each of the word in the list of nouns with every other word in the set of nouns. And we determine 
the extent of similarity in the meaning of the noun with the other nouns. If two nouns are similar 
to each other a lot, then we retain them. If the two nouns are very similar to each other in their 
meaning and the extent of their similarity is greater than the user defined threshold value, then 
they are retained in the refined list of nouns. Else if the extent of similarity between the two 
nouns is lesser than the threshold value, then they can be removed from the refined list. And this 
is performed for all the nouns in the list. So every noun is compared with every other noun for 
similarity. 

And this step is repeated in the same way for all of the verbs in the list of verbs. Similar to the 
nouns, we identify and filter which of the verbs are more important than the other verbs in the 
list of verbs. So, we have a user defined threshold for verbs that can be negotiated. We then 
compare the meaning of each of the word in the list of verbs with every other word in the set of 
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verbs. And we determine the extent of similarity in the meaning of the verb with the other verbs. 
If two verbs are similar to each other a lot, then we retain them. If the two verbs are very similar 
to each other in their meaning and the extent of their similarity is greater than the user defined 
threshold value, then they are retained in the refined list of nouns. Otherwise if the extent of 
similarity between the two verbs is lesser than the threshold value, then they can be removed 
from the refined list. And this is performed for all the verbs in the list. So every verb is compared 
with every other verb for similarity. 

Now, lets us analyze with a very mundane simple example how this might help refine the 
important sentences in the text. Suppose we collect textual material of several people expressing 
their views about the New York City. We can thus have textual opinions of several people 
discussing and expressing several things above New York, like the major tourist attractions, 
weather, culture etc. But there might be a sentence that says “My uncle has traveled there”, 
which is not so relevant to the entire context. So by skimming through the other opinions, we 
might be attempting to obtain useful information and get a bird’s eye view of the place. But this 
sentence is of no relevance to this aim of ours since it does not convey any useful information 
about the place. So the set of verbs or nouns that might be present in this sentence are not so 
much in similarity with the other nouns or verbs. And removing them may remove irrelevant 
words from the set. And that sentence can itself be removed without losing any useful 
information. Thus, we now can obtain a refined list of sentences, nouns and verbs, all of which 
are important and relevant to the text and context. 
Then, we attempt to form the lexical chains [7] for each and every noun that is present in the list 
of the nouns. These lexical chains of words from a WordNet encompassing several levels of 
words with similar meaning woven together as a chain at several levels. So, we take a noun or a 
verb into consideration, and try to form lexical chains of the word. So, the words that are very 
similar in meaning to the noun or the verb under consideration are placed at the second level, 
with the original word itself at the first level. Then the words that are very similar in meaning to 
the words at the second level are placed at the third and all the consequent levels with the 
original word (noun or verb) at the head or root of the chain. These lexical chains may span up to 
several levels. The key idea is to parse through several levels of the lexical chain and determine 
which two of the nouns or verbs has the words with very same meaning or same words down the 
lexical chain in the WordNet. These are the words that are very similar to each other in the 
meaning. Since, we had to limit the number of levels that one would traverse to determine 
similarity between two nouns or verbs under consideration, we chose to traverse to a depth of 5 
levels down the lexical chains of the words. So, we then retained the words which had the words 
same at the fifth or earlier levels of depth in the lexical chain as the two nouns or words that have 
similar meaning. Otherwise, those words can be removed from the refined list of the nouns or 
refined list of verbs. And thus after this step, we have in possession the refined list of nouns and 
verbs. Then we can run through the list of all the sentences in the text, and pick the sentences 
that contain the nouns or verbs present in the refined set of nouns and verbs. Rest of the 
sentences can be removed. So, we conserve the important and relevant sentences from the text. 
The procedure is summarized in Figure II. 
 

• Input T is the text that needs to be summarized 
• S = set() #all the identified sentences 
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• N = set() #all the nouns identified in the text 
• V = set()  #all the verbs identified in the text 
• W = set() #all final nouns and verbs of relevance to 

the text and thus, are retained 
• nounMeaningsList = list() #list of the trees of nouns 

and its meanings (till the depth of 5th level) 
• For noun in N: 

o nounMeanings = tree() #tree of a noun and its 
meanings (till the depth of 5th level) 

o For x in range(5): #number of levels in the 
lexical chains is limited to be 5 

§ nounMeanings.getNextNoun() #get the next noun 
(Breath First Traversal) from the 
nounMeanings’ tree 

§ allMeanings = getAllMeanings(noun) #get all 
meanings of the noun using WordNet 

§ For aMeaning in allMeanings: #loop through all 
the meanings of the noun 

• nounMeanings.add(noun, aMeaning) #add 
this meaning of the noun as the tree’s 
next level node. 

o nounMeaningsList.add(nounMeanings) 
• For i in range(length(nounMeaningsList)): #loop through 

all the nouns in the list, nounMeaningsList 
o If treeMatch(nounMeaningsList [i], 

nounMeaningsList [i + 1]): #if any node in any 
level of the tree (nounMeaningsList [i]) matches 
any other node in any level of the next tree 
(nounMeaningsList [i + 1]) 

§ W.add(nounMeaningsList [i].root.data()) # 
retain the root word of nounMeaningsList[i] 
tree which finds a match in the 
nounMeaningsList[i+1] tree 

§ W.add(nounMeaningsList [i+1].root.data()) # 
retain the root word of nounMeaningsList[i+1] 
tree that was matched in the 
nounMeaningsList[i] tree 

• Repeat the above steps for the set of verbs 
• Retain the sentences from the input text that contain 

words in the set W to obtain the Output X 
• Return X 

Figure II. Algorithm of the Original Approach 



 

9 
 

 
Issues with this Approach 

Though the above mentioned approach is good, it does not fare well because of the diversity in 
the meanings of the words of the language. And so the effective time to refine the set by 
identifying the words that are similar in meaning is quite very large. Suppose, we consider that 
there are n number of words that need comparison. And we are traversing five levels of depth 
down the lexical chain. If we assume that each word is similar to 4 other words in its meaning, 
and those 4 words are similar to 4 more words in their meaning, then we end up having almost 
1024 number of words with a depth of 5. Suppose if the number of words is 100, then we would 
effectively have almost 102,400 number of words that need a comparison with each other, which 
is a huge number. But there are always more than 100 words in the text. So, the total number of 
comparisons that might be required is far larger than the just discussed numerical figures. And 
since the language has a lot of words that are synonyms of each other and have similar meanings 
to each other, we end up having a greater set of words that might have very similar meanings to 
each other. And the set is much larger than expected. And the number and scale of the words that 
might be similar in meaning to the word under comparison might be much more than 4 words for 
every word. So, we end up having a larger set at hand, and the number of comparisons that result 
from having to compare every word in the set with every other word in the set is tremendously 
massive. And thus this approach does not scale well with the increased number of comparisons 
that we have to perform to fetch the refined set of words. These are the major hindrances with 
the approach. 
 
Current not optimized Approach 

This is novel idea that is much better than the previous approach because it reduces the total 
number of comparisons that we need to perform to obtain a refined set of nouns and verbs. First 
we obtain a dimensional array of nouns and verbs. Each and every row of the two dimensional 
array consists of one noun followed by all the other nouns in the list. Similarly, we get the matrix 
of all the verbs too. Each and every row of the two dimensional array consists of one verb 
followed by all the other verbs in the list. Next we need to populate this multi-dimensional array 
with the similarity quotients. To do that, we use the Princeton WordNet. This is an application 
that takes in two nouns or verbs as input and tells us the probability of similarity that might exist 
between these two words. In other words, this tells us how much the two words are similar to 
each other. 

So, we go ahead and fetch the corresponding probabilities of the words. These are the elements 
that populate the two dimensional arrays that we created earlier. Now these are numerical values 
and thus they are probabilities. So, they will a value starting anywhere from 0 and between 1. So, 
we obtain a unique probability number for every set of words. These values are then populated in 
the two dimensional array of both nouns and verbs. So, we now have the extent of similarity 
between all words. If we have 100 words in the list like we discussed earlier in the previous 
approach, we will now have 10,000 matches of words to be fed in WordNet and populated now 
as matrices. This is much efficient and better than having 102,400 number of comparisons.  

Then, as the next step in the approach, we scan through the elements of the two dimensional 
array and see if each and every element in the array is greater than the user defined and set 
threshold value. If the value of the element is greater than the threshold value, then we set the 
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value of that element as 1. If the value of the element is lesser than the threshold value, then we 
set the value of that element as 0. This step is repeated both the set of nouns and verbs. So, we 
end up in having two two-dimensional arrays of all nouns and verbs respectively having either 
values 0 or 1 as its elements. This procedure is carried out for all the elements of the two-
dimensional array except for the diagonal elements.  

After this step, we then scan through all the rows of the two-dimensional array. If the row 
contains all zeroes as its elements, then we remove those words (may be nouns or verbs) from 
the final set. If one or more of the entries in the two-dimensional arrays is one, then we retain 
those words from the final refined set of nouns and verbs. And following this approach reduces 
the number of comparisons by a large significant number than the previous one. The procedure is 
summarized in Figure III. 
 

• Input T is the text that needs to be summarized 
• S = set() #all the identified sentences 
• N = set() #all the nouns identified in the text 
• V = set() #all the verbs identified in the text  
• W = set() #all final nouns and verbs of relevance to 

the text and thus, are retained 
• K = 0.4 #threshold for the probability of two words’ to 

be synonyms (which have similar meanings) 
• Construct two-dimensional arrays of nouns nounArray and 

verbs verbArray 
• For i from 0 to length(N): 

o For j from 0 to length(N): 
§ nounArray[i][j] = getSimilarity(N[i], N[j]) 

#get the probability of extent of similarity 
between the words N[i] and N[j]. 

• For i from 0 to  length(N):  #apply the threshold on 
the whole matrix 

o For j from 0 to  length(N):     
§ If nounArray[i][j] > k : 

• nounArray[i][j] = 1  
§ Else: 

• nounArray[i][j] = 0 
• Repeat the above steps for the set of verbs and 

populate verbArray 
• For i in length(nounArray): #For each row in nounArray 

o If at least 1 element in nounArray[i] is 1: 
§ W.add(N[i]) #populate final set of words 

• Repeat the above steps for the set of verbs and add 
them to W  
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• Output X = refined text containing sentences with the 
final set of verbs and nouns in W (these are the only 
relevant and important sentences). 

• Return X 

Figure III. Algorithm of Current non-optimized approach 
 

Completely optimized current Approach 

This approach is much better optimized than the earlier approaches, which will be evident 
to the users from the following discussion. In this approach, we have the input as all the 
list of sentences, set of all the words (both nouns and verbs) which we have identified in 
the step 0 of the approach as mentioned earlier. This is the first crude set. Now, we 
employ a new approach. Here we start from the first word in the set, and begin by 
comparing it with the other words in the set. Here comparison essentially means that we 
will have probability by which the two words can be similar (fetched from the Princeton 
WordNet application) higher than the threshold value. If this is true, then we break 
through the loop for comparison and add the first word into a new set of words. We then 
repeat the same step with the second word, compare it till we find the next similar word 
in the list of words. Then once, the word is found, we add the second word to the new set. 
This is repeated for all the words in the list. And thus, we will have a new set of words 
(one new set of nouns and one new set of verbs) that will have all the words that were 
added during the run of the optimized algorithm.  

It is by far the best approach because it reduces the number of comparisons needed to 
populate the final set of words by a maximum number. In the previous approach, if we 
had 100 words, we would require almost about 10,000 number of comparisons at any 
cost. It would be the same for best, average and worst case complexities. We had to 
compare each and every word with every other word. But with this new optimized 
approach, we just have to compare a word until a very similar word to it is found. Once a 
similarity is identified, it can be added to the refined set. So, here the average case 
complexity is far better and optimized than the average case complexity of the previous 
algorithm. If the input to the algorithm is a well-written textual material, then it will 
usually speak of a definitive topic and have firm views about it. So, the chances of a noun 
or a verb not finding a word with a similar meaning down the list is almost nil. But on the 
other hand, if the input text is poorly written with no definitive topic, then we might have 
to do the same number of comparisons that we did previously. But this is the worst case 
complexity of the optimized algorithm. But on the bright side, the average case 
complexity is significantly improved by using this optimized algorithm against 10,000 
comparisons that were mandatory to be done in the previous algorithm. So, this is a 
significant improvement in efficiency as it reduces number of comparisons to a great 
extent. The procedure is summarized in Figure IV. 
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• Input T is the text that needs to be summarized 
• S = set() #all the identified sentences 
• N = set() #all the nouns identified in the text 
• V = set() #all the verbs identified in the text  
• W = set() #all final nouns and verbs of relevance to 

the text and thus, are retained 
• K = 0.4 #threshold for the probability of two words’ to 

be synonyms (which have similar meanings) 
• For i in length(N): 

o If getSimilarity(N[i], N[i + 1]) > K: #get the 
probability of extent of similarity between the 
words N[i] and N[i + 1] and compare it to K 

§ W.add(N[i]) #add N[i] to W 
§ W.add(N[i + 1]) #add N[i + 1] to W 

• Repeat the above steps for the set of verbs and add 
them to W  

• Output X = refined text containing sentences with the 
final set of verbs and nouns in W (these are the only 
relevant and important sentences). 

• Return X 

Figure IV. Algorithm of Current optimized approach 
 

Results 

The skimming algorithm, defined in the paper [6] was run on a set of 28 randomly selected 
Wikipedia articles for setting a standard against which the results of my algorithm shall be 
compared to. My algorithm was also executed on the same 28 Wikipedia articles, and its output 
was fed as input to the above described, skimming algorithm [6]. And these two set of outputs 
generated with and without my algorithm in the pipeline were noted and compared with each 
other. These algorithms were run on the exact same machine to avoid any disturbance in 
difference in time taken due to different processor speeds. 

Comparing the speed of both the outputs considered in an end-to-end fashion is that, it takes 
about 29 minutes for the skimming algorithm [6] to run for the given set of data. The original 
algorithm when executed on the input, takes a really long time to run, which stretches over 5 
hours. After this time period, I had to stop executing it. The current not optimized algorithm 
takes about 31 minutes to complete its execution. On other hand, the total end-to-end run time of 
my such a setting takes only 13 minutes. My algorithm when run, before skimming algorithm 
defined in paper [6], it speeds up by a lot, because the run time changes every once in a few run 
cycles, these timings are an average of 15 run cycles. The output of execution of all the above 
mentioned algorithms is the same, resulting in a skimmed version of the input, but with different 
times and speeds of execution in the algorithms. 
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Now to quantify, the results, here is a table of 28 different input files and number of words 
selected by the skimming algorithm [6] on the unedited text and the skimming algorithm [6] on 
sentence selected text created by my algorithm in place and the percentage of improvement that 
my algorithm resulted. 
 
 

 

File 

 
Number of Words By 
Skimming Algorithm 

Number of Words by Skimming 
Algorithm on Selected Sentences  

 
Percentage 
improvement 

1 288 123 42.71 

2 201 110 54.73 

3 234 95 40.60 

4 240 77 32.08 

5 343 176 51.31 

6 206 154 74.76 

7 158 40 25.32 

8 232 34 14.66 

9 152 50 32.89 

10 167 70 41.92 

11 358 212 59.22 

12 232 156 67.24 

13 202 92 45.54 

14 191 106 55.50 

15 213 84 39.44 

16 230 150 65.22 

17 169 43 25.44 

18 289 156 53.98 

19 207 143 69.08 

20 276 153 55.43 
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21 186 116 62.37 

22 196 57 29.08 

23 189 123 65.08 

24 145 85 58.62 

25 259 67 25.87 

26 235 112 47.66 

27 283 67 23.67 

28 252 141 55.95 

Total 6333 2992 47.24 

	
Table I. Comparison of the results 

 
Discussion 

Algorithm for text summarization by sentence extraction [8] describes an algorithm which 
accomplishes an aim closest to my aim. Every experiment in the paper comprises of the 
following steps as described in the words of the author are summarized in Figure V. 
 

• Preprocessing step: includes removing all the stop 
words (like the, in) followed by the application of 
Porter stemming [9]. 

• Term selection step which comprises deciding the 
features (size of n-grams) to be used to describe all 
the sentences in the text. 

• Deciding a method to calculate the importance of each 
feature is the next step termed as term weighting. 

• Sentence clustering phase which decides the initial 
seeds for k-means algorithm as the baseline sentences. 

• Selecting the closest sentence to each centroid for 
constructing the summary is the sentence selection 
step. 

Figure V. Algorithm of text summarization by sentence extraction 
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The algorithm employed in the paper which was summarized and described in the Figure V, is a 
testimony to clearly describe the major differences between the approach followed by me in my 
algorithm and the approach which is deemed as the gold standard approach to perform a similar 
task. The major difference that exists between the two approaches, is that this approach is 
performed using Machine learning approach. This approach highly depends on the machine 
learning techniques. And for a machine learning technique to work, we need to first create a 
model. And we will need to train the model. And we require a huge amount of training data to 
create a model. And we gather this data.  

Once we have the training data in place, we can create an appropriate model. And then we train 
this created model by using the above gathered training data. Then the trained model is utilized 
every time the code is executed, to obtain the required output. To achieve this model, we will 
require initial training time to create the model. And then we will need some additional time to 
train the model with the data. 

But with the help of my approach, the additional time for training the model is eliminated 
because we do not have to train the model. I, in my approach, use the WordNet application 
which is a lot faster than the regular machine learning approach that is employed in the algorithm 
described on the paper. And using WordNet do not require any sort of training of the model. The 
most important benefit that can be obtained from using my algorithm is that it does not need any 
prior training. In my approach, we can transfer the main file of the program into any platform, 
which can be executed on the fly as and when needed. This does not necessitate the requirement 
of any prior setup code. This program can be executed to obtain the results without any training 
data. But the paper was a major inspiration to develop an easier algorithm throughout the 
development of the Thesis project.  
 

Links 

These are the links of all the codes, input files and the output files 
• My Code - 

https://drive.google.com/folderview?id=0B4XC1hBF8VqkejA4bDV2QzIxYWs 
• My Final Output - 

https://drive.google.com/folderview?id=0B4XC1hBF8VqkbGQzbC14Vnh2LUE 
• My Intermediate Outputs with Comparisons - 

https://drive.google.com/folderview?id=0B4XC1hBF8VqkWXItcjFLNFV0YWc 
• Faisal’s Code - 

https://drive.google.com/folderview?id=0B4XC1hBF8VqkTjZxN3MyRUFNV2s 
• Faisal’s Output - 

https://drive.google.com/folderview?id=0B4XC1hBF8VqkLVZzVmRQOVlkQ2M 
• Common Inputs to both algorithms - 

https://drive.google.com/folderview?id=0B4XC1hBF8VqkR2lxdzduQVRLNWM 

If any more information or explanation is needed, please feel free to write to 
asatpute@cs.stonybrook.edu. 
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