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Abstract
The Computational Complexity of the Provision-after-Wait Problem in Healthcare
by
Gowtham Srinivasan
Master of Science
in

Computer Science

Stony Brook University

2016

In Provision-after-Wait in Healthcare (PaW), a social planner operating
on a constrained budget is required to sponsor medical treatments to a pop-
ulation of patients. Specifically, each patient is allocated to any of the k
hospitals to receive a single unit of medical treatment. The cost of treatment
depends upon the hospital and is paid for by the planner. Associated with
every patient is a set of k non-negative numbers which denote the patients
preference or intrinsic value towards getting treated in each of the k hospi-
tals. Since the patients do not pay for the treatment and the planner cannot
afford to send each patient to their most preferred hospital, waiting times
are used to ration access to over-demanded hospitals. The social planner is
responsible for assigning patients and computing the waiting time of each
hospital, so that the social welfare is maximized under budget constraints.

It has already been proved that finding optimal equilibrium assignments
that maximize social welfare is NP-hard. Besides that, little is known about
the complexity of PaW. For instance, it is not clear whether it permits an
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FPTAS or is fixed parameter tractable with respect to the number of hos-
pitals. In this work, we study the complexity of PaW and prove it to be
NP-hard even if all the values are polynomially bounded in the length of the
input. Since PaW is a number problem, this proves that it is NP-hard in the
strong sense and, as a consequence, there is no FPTAS for PaW unless P =
NP. In addition, we explore various special cases of PaW, their complexity
and related algorithms to resolve the problem.

v



Dedication Page

[ would like to dedicate this work and my Masters to my parents L.Srinivasan
and S.Jayashree for their support in everything.



Table of Contents

Contents
1 Introduction 1
2 Model 1
2.1 Description . . . .. ..o 1
2.2 Equilibrium assignments . . . .. ... ... 2
2.3 Optimal equilibrium assignments . . . . . . .. .. ... ... 2
3 Related Work 3
4 Strong NP-harndess 3
4.1 Pseudo Polynomial time algorithms . . . . . . .. .. ... .. 3
4.2 Definition-Strong NP-hardness . . . . . . . ... .. ... ... 4
4.3 Proof techniques for strong NP-hardness . . . . . . ... ... 5t
4.4 Practical aspects . . . . .. ... Lo 5
4.5 Properties . . . . ... 6
5 The complexity of the Provision-after-Wait Problem in gen-
eral 6
6 Ongoing and future work 9
6.1 PaW Monotone . . . . . ... ..o 9
6.2 PaW Two piece linear . . . . . .. .. .. ... .. .. .... 10
6.3 PaW Piece wise linear . . .. .. ... .. ... ... ..... 10

vi



List of Abbreviations

Provision after Wait in Healthcare

Fully Polynomial Time Approximation Scheme

vil



Acknowledgements

I would like to thank Professor Jing Chen for her guidance and kindness
in this work and many others.

viii



1 Introduction

Healthcare models in the United States, Europe and other places in the
world though widely different in many aspects, have a common underlying
theme to them. In many cases, there is a social planner(the Govt, insurance
company, healthcare service provider etc) who operates under a restricted
budget to give medical services to a population of patients. Since the pa-
tients do not pay for the medical service, waiting times[4] are used to ration
demand. There has been a lot of literature from medical and healthcare ex-
perts that aim to reduce waiting times of patients and offer easier access to
healthcare. Even though it might not be possible to make everybody happy,
is it possible to maximise the happinees of a population by providing them
free healthcare under a constrained budget? What can be said about this
scenario, computationally?

Provision-after-Wait in Health care[2] gives a computational model for
the above described scenario. In the Provision-after-Wait model, we have
a population of patients each demanding access to a single unit of medical
treatment which is provided at any of the m hospitals. Each patient has a set
of preferences about where they want to be treated. Since the patients do not
pay for the treatment, their preferences are not influenced by costs and are
subjective. Since the access to hospitals are rationed using waiting times[1],
the patients know the waiting time of each hospital. Similarly, the social
planner knows the set of preference of every patient towards the hospitals.

2 Model

2.1 Description

In this section, we give a formal description of the Provision-after-Wait in
healthcare model. This model is the same as in [2] and is described here for
convenience. In the following sections, 1 <i<n,1<j<mandi,je€Z"

e A population of n patients. Each patient is denoted by P;, where
1<i<nandi€Z"

e A set of m hospitals. Each hospital denoted by H;, where 1 < j <m
and j € Z*



Each hospital has a cost ¢; € ZT associated with it.

Each patient P; has a value v;; € Z" associated with every hospital
7 which denotes the patients’ preference towards hospital j or the pa-
tients’ utility for hospital j when treated there immediately.

A budget B, B € Z* which is the total amount the social planner can
spend to provide treatment for the patient population.

A solution A to the PaW is a pair A : (a,w), where

— a is a feasible assignment function a : [n] — [m] which allocates
each patient to a particular hospital. An assignment function a is
feasible if the total cost of the assignment is less than the budget

i.e, an(i) S B

— w = (wy, Wy, ., Wy,), w; > 0, is the waiting time vector

— Under an assignment A, each patient has an utility u; = via;) —
Wq(;)- The social welfare under assignment A, SW(A) = > w;

2.2 Equilibrium assignments

An assignment A is stable under the following two conditions

e Each patient has a non-negative utility under the assignment. i.e u; =
Via(i) — Wa(s)

e The hospital allocated for each patient under the assignment A should
have the maximum utility for the patient compared to all other hospi-
tals. i.e for any hospital j and for each patient ¢, viq) —Wa@) = vVij —w;

2.3 Optimal equilibrium assignments

An assignment A" is an optimal equilibrium assignment if SW(A") >
SW(A), where A is any equilibrium assignment.



3 Related Work

[2] introduces the problem of Provision — after — Wait in Health care.
The authors give a polynomial time reduction from knapsack to prove that
PaW is NP-hard. In addition, if there is a e deficit in the budget i.e
with a budget B(1 + €) , the authors give an algorithm with running time
O((logy+em)*(1 + €)>m*) which gives an equilibrium assignment with social
welfare atleast SWW(A'), where A" is the optimal equilibrium solution with
a budget B. Randomised assignments are discussed and the authors prove
that randomised assignments are also optimal with respect to social welfare
in many cases. Endogenous emergence of waiting times and other properties
of PaW are found.

[3] introduces a slightly different version of PaW called PaW with common
preferences, where each patient P; has a value v; for getting the medical
treatment and each hospital has a quality g;, which is publicly known to all
the patients. The value of patient ¢ towards hospital j is v;g;. In this paper,
the authors show various properties of an assignment function which emerge
from the above structure and how they influence social welfare. The authors
give a reduction from subsetsum to prove that PaW with common preferences
is NP-hard. In addition, an FPTAS with a running time of O((m+n).n*m/¢)
is provided. The concept of patient ordering is introduced and the results of
randomised assignments in [2] are extended.

In [7], the authors prove that the unit demand envy free pricing problem
is hard to approximate by a reduction from vertex — cover

4 Strong NP-harndess

When dealing with NP-hard problems, a natural question that arises is
"Are all NP-hard problems equally NP-hard? Are there distinctive features
that can classify NP-hard problems into different useful categories?’

4.1 Pseudo Polynomial time algorithms

A good starting place to look for such distinctions might be the "Partition’
problem, which has been widely termed as the ’easiest hard problem’[8].



Given a finite multi set A = {ay,as,...a,} of n integers such that a; €
7" ,Ya; € A, we define the Partition problem as follows,

Partition = {(A): there exists a A" C A such that > a;= > a; }.
a;€A’ a;€A—A

6], [5] discusses a recurrence relation and an algorithm for solving the
partition problem. The running time of the algorithm is O(nS), where S is
the sum of all elements in A. On the surface, this running time might look
polynomial but it is not. Using a binary encoding scheme, the number of
bits required to represent the Partition problem is O(nlogS). In the worst
case, increasing the input by one bit increases the running time by a factor of
2, which is exponential. It is clear that, the running time is not polynomial
in the number of bits in the input(input length) but it is polynomial with
respect to the numeric value of the input. Algorithms with such running
times are called psuedo polynomial time algorithms.

4.2 Definition-Strong NP-hardness

In the above case, if the numeric values in the input are polynomially
bounded by the length of the input the pseudo polynomial time algorithm
works as good as a polynomial time algorithm. So, Partition is NP-hard only
when the numeric values are very large(exponentially large) with respect to
the length of the input. This distinctive feature can be used to categorise
NP-hard problems into two categories. If an NP-hard problem is NP-hard
even on instances when the numeric values are polynomially bounded by the
length of the input, they are called Strongly NP-hard and NP-hard problems
which can be solved in polynomial time when the numeric values are bounded
by a polynomial function of the length of the input and are NP-hard only
on instances when the numeric values are very large when compared to the
input length are called Weakly NP-hard problems.

In addition to the above definition, there are other interpretations of strong
NP-hardness. A problem [] can be defined to be strongly NP-hard if it is
NP-hard even when the inputs are represented in unary.[5] [6]



4.3 Proof techniques for strong NP-hardness

Let us say, we want to prove the strong NP-hardness of a problem []. Is it
enough to give a polynomial time reduction from another NP-hard problem
to [[? Normal polynomial time reductions do not prove strong NP-hardness,
because they do not take into account or give any information about the nu-
meric values in the resulting instance which is key to the whole classification
of strong and weak NP-hardness. Following, are two methods to prove the
strong NP- hardness of any problem.

e Let [ be any problem and [[; be the instance of [[ where all the
numeric values are polynomially bound by the length of the input.
Giving a polynomial time reduction from any NP-hard problem to [],
proves that [] is Strongly NP-hard. This type of proof follows by
definition.

e Let [] be any strongly NP-hard problem. A polynomial time reduction
from [ to another problem [] , where the length and numeric values in

the resulting instances of H/ are polynomially bound by the length of ]
and the maximum numeric value of ] proves the strong NP hardness

of TT .
A more rigorous treatment of strong NP-hardness can be found on [6]
and [5].

4.4 Practical aspects

Now that we have classified NP-hard problems into two distinct categories,
we have another question at hand. ’Is this classification purely theoretical?
Are there practical applications for this?’

For example, some NP-complete scheduling problems might be intractable
only for instances where the numeric values(length of the tasks)[6] are ex-
ponentially large and in those cases scheduling them might be impractical.
For instances where the length of the tasks might be polynomial functions of
the input length, the pseudo polynomial algorithm acts as a polynomial time
algorithm for all practical purposes. Thus looking for a pseudo polynomial
time algorithm or proving strong NP hardness is an useful endeavour in its
own right.



4.5 Properties
Strongly NP-hard problems cannot have an FPTAS unless P=NP[5] [6].

5 The complexity of the Provision-after-Wait
Problem in general

By reducing the Vertex Cover problem to the decision version of the Provision-
after-Wait problem, we have the following theorem.

Theorem 5.1. [t is strongly NP-hard to compute an optimal stable assign-
ment for the Provision-after- Wait problem in general.

Proof. Consider the decision version of the general Provision-after-Wait prob-
lem:

DPaW = {(c=(¢;)jem),v = (Vij)icn],jeim), B,T') : there exists a stable
budget-feasible assignment A such that SW(A) > T}.

The Vertex Cover problem, which is strongly NP-hard, is defined as follows:

VC = {(G=(V,E),k): there exists V' C V with |V'| =k
such that, for each edge (u,v) € E,{u,v} NV' #£ (0},

where G is an undirected simple graph with vertex set V' and edge set E.
Given an instance (G, k) of VC with ¢ vertices and e edges, and letting V' =
{1,...,t} and E = {(uy,v1), ..., (te, ve) }, we construct an instance (¢, v, B, T)
of DPaW as follows.

e There are t + 1 hospitals and e + ¢ patients. Each hospital j € [t]
corresponds to a vertex 7 € V and hospital ¢ + 1 corresponds to a
dummy hospital. Each edge-type patient i € [e] corresponds to an edge
(ui,v;) € E and each vertez-type patient i € [e +t] \ [e] corresponds to
avertex i —e e V.

e For each hospital j € [t], ¢; = 1; and for hospital £ + 1, ¢;41 = 0.

e For each edge-type patient i € [e], viy, = v, = ¢* and v;; = 0 for
any other hospital j € [t 4+ 1] \ {u;,v;}. That is, i only wants hospitals
corresponding to the vertices of its edge.
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e For each vertex-type patient i € [e 4 t] \ [e], vis—e) = 1 and v;; = 0
for any other hospital j € [t + 1] \ {i — e}. That is, ¢ only wants the
hospital corresponding to its own vertex.

e Finally, B=c+kand T = et? + k.

It is easy to see that the reduction takes polynomial time and produces
an instance of D PaW where all the parameters are polynomial in the size of
(G, k). We have the following two lemmas.

Lemma 5.2. (G, k) €e VC = (¢,v,B,T) € DPaWV.

Proof. Letting V' be a vertex cover of G with |V’| = k, we construct an
assignment A = (a,w) as follows.

e w; = 0 for each hospital j € V' U {t+ 1} and w; = ¢? for each hospital
jEeVA\V.

e For each vertex-type patient i € [e+t]\[e], if i—e € V' then a(i) = i—e,
otherwise a(i) =t + 1.

e For each edge-type patient i € [e], if u; € V' then a(i) = wu;; otherwise
a(i) =v; (and v; € V7).

It is easy to see that the construction of A takes polynomial time. To see
why A is budget-feasible, notice that there are exactly k vertex-type patients
and e edge-type patients served in hospitals {1, ..., ¢}, with cost 1 each, thus
the total cost is e + k = B.

Now we show that A is stable. For each edge-type patient i € [e], by the
definition of a vertex cover we have a(i) € V', thus w,u) = 0 and v;qq) —
wy(;) = t?, which is the maximum utility ¢ can get from any hospital. For
each vertex-type patient ¢ € [e + t] \ [e] such that i — e € V', we have
Via(i) — Wa(i) = Vi(i—e) — Wi—e = 1 — 0 = 1, which is again the maximum
utility ¢ can get from any hospital. Moreover, for each vertex-type patient
i such that ¢ — e ¢ V', we have w;_. = t*, v;(j_¢) — w—e = 1 — t* < 0, and
Via(i) — Wa(i) = Vit+1) — Wer1 = 0 > v;; — w; for each j € [t +1]. Accordingly,
the assignment A is stable.



Finally, the social welfare of A is

SW(A) = Z Via(i) — Wa(s) = Via(i) — Wa(i) + Z Via(i) — Wa(s)
i€le+t] i€ [e] i€[e+t]\[e]
= et’ + Z l=et’ +|V|=et? +k=T.
i€le+t]\[e], i—e€V’

=

In sum, (c,v, B,T) € DPaW as desired. a
Lemma 5.3. (c,v,B,T) € DPaW = (G,k) € VC.

Proof. Letting A = (a,w) be the optimal stable budget-feasible assignment,
we have SW(A) > T = et? + k. Letting V' be the set of vertices whose
corresponding hospitals have waiting time 0 in A, we show that V' is a
vertex cover of G with size k.

First of all, since A is budget-feasible and each hospital in [t] has cost
1, there can be at most e + k patients served at these hospitals. Second,
notice that each edge-type patient values a hospital for at most ¢*> and each
vertex-type patient values a hospital for at most 1. In order to achieve
SW(A) > et?+k, it must be the case that all e edge-type patients and exactly
k vertex-type patients are served by hospitals in [t]: if there are x < e edge-
type patients and y vertex-type patients served by hospitals in [t], then the
social welfare can be at most xt?+y < x>+t < (e— 1)t2 +12 = et? < et®’ +k,
a contradiction. Moreover, each of the k vertex-type patient is served at a
hospital he values for 1, each edge-type patient is served at a hospital which
he values for 2, and all such hospitals have waiting time 0 in A. Accordingly,
these hospitals are all in V’. By construction, each edge has a vertex in V'
and V' is a vertex cover of G. Since each vertex-type patient corresponds to
a different vertex, |V'| > k.

Finally, it is easy to see that |V’| cannot be larger than k: otherwise,
since A is stable, all the |V'| corresponding vertex-type patients are served
by hospitals in V' and the total cost is e+ |V'| > e+ k = B, a contradiction.
Therefore we have |V'| = k and (G, k) € VC as desired. O

Theorem 5.1 follows directly from Lemmas 5.2 and 5.3. [



6 Ongoing and future work

Not every new problem offers the scope for a plethora of interesting avenues
to explore but this is not the case with PaW. PaW is incredibly tweakable;
with each tweak resulting in an interesting problem in its own right. In this
section, we discuss a few variations of PaW as a starting point for anyone
looking for interesting problems to work on.

6.1 PaW Monotone

Consider the case where m hospitals can be arranged in an increasing or
decreasing(montone) order by cost. For any patient P;, the patients values
towards the hospitals are v;; > vig > V3 > ... 2> vyp(or v < Ve <3 < . <

vim), Where each patient values the hospital with the highest cost the most
and the monotonicity follows from there.

Practically, it makes sense to assume that the care offered in costlier hos-
pitals might be better and as a result, patients prefer to be treated in higher
cost hospitals. Theoretically, this case is lies somewhere between the general
version of PaW 2] and the PaW with common preferences[3]. It offers a
good enough constraint from the general PaW to make us believe that it
might be easier. At the same time, it is a more general version of PaW with
common preferences which makes us believe that it should be harder. Since
PaW is strongly NP-hard and PaW with common preferences has an FPTAS,
it would be interesting to know where the PaWW Monotone version falls.

PaW Monotone has proven elusive to attempts at pseudo-polynomial re-
ductions so far. An important reason is that the monotonicity of the val-
ues offers difficulty in reductions either by way of structure(difficult to en-
code graphs and ensure monotonicity at the same time) or by leading to
an exponential blow up of values during reductions. On the other hand,
PaW Monotone being a more general version does not give the properties
of an ordered assignment and a neat structural characterisation of waiting
times that PaW with common preferences offers.



6.2 PaW Two piece linear

The PaW Two piece linear is closely related to PaW with common
preferences[3] and differs from it in the following way. Instead of each pa-
tient P; having a single value for getting the medical treatment, every patient
has two values(say vj(high), Vi(iow)), one for each set of hospitals. There exists
a hospital Hy, where the the patients value treatments at all hospitals on or
above Hj, favourably and unfavourably for all hospitals on or below Hy. Ev-
ery patient P; values the hospitals in the following manner, v;nigh)q1,Vi(high) g2,
Vi(high)q3s ---Vi(high) Tk Vi(low) Qk+1:Vi(low) Qk+25-- Vilow)dm- Here, every patient val-
ues treatments at hospitals after hospital Hy unfavourably. It is important
to note that, the viign) and ;o) of different patients are not related but it
is necessary that, vign) > Vigow) for each patient.

6.3 PaW Piece wise linear

The PaW Piece wise linear is a more general version of the PaW Two piece
linear case. Here, instead of dividing the hospital into two(high, low) cat-
egories, we divide the hospitals into p categories, where each patient values
all the hospitals in a particular category the same way.

On first glance, PaW Two piece linear and PaW Piece wise linear might
appear easy to solve as it is a matter of allocating patients to each category
and then, using the FPTAS for PaW with common preferences|3] to allo-
cate hospitals for patients within a category. Allocating patients to different
categories becomes challenging as the structure of waiting times and the
ordering within groups has not yet been found.
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