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Enhancing Operating Systems with Network Provenance Based Policies

for Systematic Malware Defense

by

Wai Kit Sze

Doctor of Philosophy
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2016

Todays OSes adopt users as the basic unit of trust. Every file and pro-
cess owned by the same user has the same userid as the user. This design
stems from the very first multi-user OS created, a time when computers
were self-contained, and file contents were under the control of users. Today,
users frequently download data and code from the Internet, without fully un-
derstanding their content or consequences. However, existing desktop OSes
reuse the same old trust model and treat downloaded files as if users are fully
responsible for them. This trust is exploited by today’s malware.

In this dissertation, we generalize the existing OS trust hierarchy with
remote provenance information. Instead of having only mutually-untrusted
users, we extend it to principals encoding both local user and remote prove-
nance information. We allow principals to have arbitrary trust relationships.
With just two provenances having a unidirectional trust relationship, we can
already build a usable integrity protection that can systematically defend
against unknown malware. In addition, we show how our framework sub-
stantially generalizes previous ones such as the web browsers’ same-origin
policy and the policies governing inter-app interactions on mobile OSes.
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Trust hierarchy and access controls are enforced deep inside OSes. Gen-
eralizing the trust model can affect all applications and every component
in OSes. Instead of building a new OS from scratch or instrumenting ex-
isting OSes to enforce this new trust model directly, we re-purpose existing
security mechanism common in contemporary OSes to achieve this general-
ization. This re-purposing mediates every access automatically, incurs low
performance overhead, and is agnostic to both OSes and applications. Our
system has been implemented on Linux, BSD, and Windows, supporting large
applications like Firefox, Microsoft Office, Adobe Reader and Photoshop.

This dissertation is organized into three parts. The first part is con-
cerned with provenance tracking and enforcement mechanisms. Our main
contributions in this part are (a) a novel dual-sandbox architecture that pro-
vides strong security against untrusted (potentially malicious) code, while
preserving compatibility with the vast base of existing applications, and (b)
an approach for encoding provenance using userids supported on contem-
porary operating systems, which enables the enforcement framework to be
easily implemented on Linux, BSD and Windows.

The second part of the dissertation studies provenance-based security
policies. Our key contributions in this context include: (a) a formal treat-
ment of the usability versus functionality trade-off made by various integrity-
preservation policies, (b) the development of a new integrity policy that, in
a formal sense, provides an optimal trade-off, (c) formalizing what it means
for a policy to preserve the integrity and availability, and establishing that
our policies indeed achieve these goals, (d) development of inference tech-
niques to automate several components of policy development, and (e) the
development of a general provenance-based security policy framework that
is shown to subsume existing models such as those arising in the context of
web mashups and smart phone apps.

The third part of this dissertation implements the mechanisms and poli-
cies developed in the previous parts into several prototype systems and eval-
uates their effectiveness, performance and usability. The first system, Spif,
is an integrity protection system for commodity OSes, including Linux, BSD,
and Windows. Spif can run large, unmodified applications, such as Firefox,
Google Chrome, Microsoft Office, Adobe Reader, and Photoshop, without
any impact on user experience, while warding off sophisticated and stealthy
malware. The second system, SRFD, addresses a long-standing problem in
information flow tracking, called self-revocation. The last system, SwInst,
is a system to secure the software installation process. We use SwInst to
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demonstrate the need for rollback and commit capabilities in an enforcement
mechanism, and how these can be utilized to realize highly expressive se-
curity policies that cannot be supported otherwise. This system has been
successfully evaluated on over 20,000 software packages available on Ubuntu
Linux.
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Chapter 1

Introduction

The earliest computers were mainframes from the 1950s that lacked any
form of operating system. Each user had sole use of the machine for a
scheduled period of time. They would arrive at the computer with program
and data, often on punched paper cards. The program would be loaded to the
machine, and the machine would be set to work until the program completed
or crashed.

As computers became faster, people quickly realized that rapid advances
in electronics could allow time-sharing of hardware resources across multiple
users. The very first multi-user OS, called Multics, was then created in the
late 1960s, allowing multiple users to use a computer simultaneously. Users
became the basic unit of isolation to prevent one user’s task from affecting
that of another. Every resource in a multi-user OS is labeled based on users.
This notion made sense since computers were self-contained and isolated
systems: users provide their own programs and data in the form of punched
cards or magnetic taps. There was no way to introduce new data or code into
a computer (except for a dedicated system administrator that could access
some backup and restore devices). The only way data or code could be on
the system is if the user actually produced or generated it by running existing
programs on some of his/her data. Hence, the user is solely responsible for
the data.

When the Internet became popular in the 1980s, no changes were made
to the user/permission model to account for the possibility that code or
data could be downloaded from the Internet. The way the implementation
handled this possibility was to set the ownership of a downloaded file to that
of the process performing the transfer. This labeling only captures the fact
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that the download was handled by the process, but it fails to meaningfully
account for the network origin of the file content.

As sharing across the Internet became the norm in the 1990s, people
share not only data but also code, a.k.a. third-party applications. Many
users do not hesitate to use resources that are readily available from the
Internet without fully considering the security implications. Unfortunately,
traditional OS-based mechanisms provide no protection in these cases, since
OSes possess no information about the true source of such files.

Traditional OS-based mechanisms are unprepared for the growing use of
software from untrusted sources. The problem is that they do not take soft-
ware source into account, but make all security decisions on the basis of the
user, who does not have much control over the operation of software. As a
result, when a process performs operations such as adding a file to run during
system booting, OSes cannot distinguish if the user intentionally added this
file, or it was an unintended side-effect of running an application from the
Internet.

Newer environments such as mobile OSes and web browsers provide better
security against code and data downloaded from Internet sites. The basic
idea is to isolate code from different sources using the Same-Origin Policy
(SOP) or App model, so that code from different sources cannot interact
with each other. If a domain or an app is malicious or compromised, it
can only affects its own data, but is unable to attack or subvert code/data
from other sites. This contrasts with desktop OSes, where a single malicious
application is often capable of corrupting all users and/or system data/code
on the system.

While isolation can bring increased security, it prevents applications from
collaborating with each other. Familiar application composition constructs
such as pipelines, shared libraries, plugins, IPCs, and scripts can no longer
be used if they involve code or data from different sites. Browsers and mo-
bile OSes have hence introduced newer constructs such as the post-message
API [Mozilla Developer Network, 2015] on browsers and the Intent mecha-
nism on Android [Google, 2016] in order to support limited form of collabo-
ration for code/data from different origins. Unfortunately, these mechanisms
are much more limited than the composition mechanisms on desktop OSes.
Worse, to the extend collaboration takes place, it becomes possible for one
of the sites to compromise the integrity of another.

To protect desktop systems, we need a new design that is compatible with
existing applications and support all of the composition mechanisms available
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on today’s OSes, while simultaneously providing strong security guarantees.
Ideally, the design should:

• Allow code from different sources to cooperate. The hallmark of to-
day’s OSes is the ability to compose applications together. UNIX
pipelines represented one of the early examples of application composi-
tion. Other common forms of composition can happen through files or
scripts, e.g., printing a spread sheet into a PDF file and then emailing
this PDF file. We need a new design that enables data sharing across
applications, while supporting mechanisms and tools such as pipelines,
scripts, library, and plugins.

• Provide strong security guarantees without needing to make optimistic
assumptions or the need to place unlimited trust on the platform provider.
Regardless of how careful a piece of code is written, attackers can still
find vulnerabilities in it. We need a design that embraces the fact that
most code is vulnerable.

• Preserve compatibility with existing OSes and applications. Ideally, the
design does not require any change to existing OSes and applications
so that the design is readily deployable. The design should not require
efforts to develop security policies for each application.

• Provide a framework that generalizes known defenses used on browsers,
mobile OSes, and desktop OSes.

1.1 Overview and Contributions

This dissertation explores the use of provenance, i.e., information origins of
resources, to enhance system security in contemporary desktop OSes. Newer
environments already leverage provenance information to enforce isolation
policy based on provenance of the code. While isolation is effective in confin-
ing malicious applications from compromising others, isolation also restricts
how applications can interact. A natural question is “Can we use the prove-
nance information to achieve better security while maintaining compatibility
with existing OSes?”. To answer this question, we need three parts: enforce-
ment mechanisms, policies, and systems. Enforcement mechanisms provide
the basis for enforcing policies. Policies dictate the security, functionality
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and usability of the systems. Finally, an overall system implementation and
experimental evaluation can illustrate the use of provenance.

1.1.1 Enforcement mechanisms

In Part I, we first focus on the enforcement mechanisms for realizing prove-
nance tracking policies. The two main fundamental features of provenance
tracking are (1) how to label subjects and objects, and (2) how to enforce
policies when subjects and objects interact.

The most natural approach is to modify OSes to handle provenance labels
on subjects and objects directly. This approach needs kernel modifications.
The advantage of implementing mechanisms inside kernel is that these mech-
anisms have good security against malware. They can even protect malware
with administrative privileges. However, they are closely tied to specific
OSes.

A more interesting question is whether provenance tracking is possible at
the user-level. We propose a novel dual-sandbox architecture, which confines
not only untrusted processes, but also benign processes, to realize user-level
provenance tracking. Instead of storing provenance information using cus-
tom labels, our design overloads existing permission (Discretionary Access
Control) labels to encode provenance information. The dual-sandbox archi-
tecture (Chapter 4) allows us to provide strong security against untrusted
(potentially malicious code) while preserving compatibility with the vast base
of existing applications. Since the system is designed entirely in user-space
without requiring any kernel modification, we have been able to port the
system to different OSes easily, including Ubuntu, PC-BSD, and Windows.

1.1.2 Policies

After discussing the enforcement mechanism aspect for realizing provenance
tracking, we discuss in Part II the policy aspect.

To make the discussion more concrete, we first discuss policies specifically
in the context of preserving system integrity in Chapter 5. We propose a for-
mal treatment of the usability versus functionality trade-off made by various
integrity-preservation policies. We show that existing policies such as Biba
and low-water-mark [Biba, 1977] focus on either usability or functionality,
and therefore they are not optimal. We develop a new integrity policy called
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SRFD that, in a formal sense, provides an optimal trade-off. We also develop
a policy called ED/UII that is optimal in most common use cases.

We also formalize what it means for a policy to preserve the integrity and
availability, and establishing that our policies indeed achieve these goals. We
develop inference techniques in Chapter 6 to automate several components of
policy development. For example, if an operation to modify a high-integrity
file is going to be denied, how a policy denies the operation (e.g., by returning
what error code) could affect program behaviors. While a policy developer
can specify policy for each file and each operation, this is a troublesome
task. Our technique relies on inferring file type based on access behaviors,
and applies different policies based on the inferred type.

Finally, we develop a general provenance-based security policy framework
in Chapter 7 that is shown to subsume existing models such as those arising
in the context of web mashups and smart phone apps.

1.1.3 Systems

In Part III, we present a number of systems that implement the enforcement
mechanisms and policies proposed in the previous chapters. We discuss im-
plementation and evaluation for each the system:

• Spif: Integrity protection system for commodity OSes.
We present a system called Secure Provenance-based Integrity Fortifi-
cation (Spif), which combines our dual-sandboxing architecture with
ED/UII policy for malware defense. We have implemented Spif on
multiple platforms, including Linux, BSD, and Windows. Spif also
supports running large, unmodified applications such as Microsoft Of-
fice, Internet Explorer, Firefox, Chrome, Windows Media Player, Adobe
Reader, and Photoshop. We discuss in detail how we implement the
dual-sandbox architecture without modifying OSes. We also discuss
the security guarantees that Spif provides. We present an extensive
performance and security evaluation of Spif. We extend Spif to en-
force the generalized policy presented.

• Integrity protection using SRFD with dynamic downgrading.
SRFD is our kernel based implementation of the Self-Revocation Free
Downgrading policy for malware defense. We implemented SRFD on
Ubuntu as a Linux Kernel Module. We discuss how SRFD performs
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look ahead to avoid potential self-revocation, a long-standing problem
in information flow tracking. Our experimental evaluation shows that
our approach is efficient, incurring an overhead of a few percentage
points, is compatible with existing applications, and provides strong
integrity protection.

• Securing software installation using SwInst.
We use SwInst to demonstrate the need for rollback and commit ca-
pabilities in an enforcement mechanism, and how these can be utilized
to realize highly expressive security policies that cannot be supported
otherwise. This system has been successfully evaluated on over 20,000
software packages available on Ubuntu Linux. SwInst covers the ini-
tial file labeling during software installation. Spif can then enforce
runtime policies based on the initial labeling.

We present related work in Chapter 11. We then conclude the dissertation
and discuss future working directions in Chapter 12.
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Part I

Enforcement Mechanisms
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Chapter 2

Background

Enforcement mechanisms are essential for enforcing security policies, deter-
mining the scope, and the range of security policies that can be supported.
In this chapter, we discuss enforcement mechanisms for provenance-based
policies. To set the context, we first present some of the definitions, termi-
nology, and the threat model in sections 2.1 and 2.2. Then we discuss issues
and the challenges for enforcement mechanisms in Section 2.3..

2.1 Terminology

Tracking provenance relies on attaching labels to subjects and objects and
enforces policies based on the labels. Specifically, every piece of code and
data entering the system needs to be labeled with provenance information.
We define provenance as the origin (“where”) of a piece of information. In the
simplest setting focusing on preserving system integrity, we consider only two
provenance labels. Files coming from the OS vendor and any other source
that is trusted to be non-malicious are given the label benign (Figure 2.1).
The remaining files are given the label untrusted. The distinction between
benign and untrusted is purely based on the trust users have on the sources.

Note that benign programs may contain exploitable vulnerabilities, but
only untrusted programs can be malicious, i.e., may intentionally violate pol-
icy and/or attempt to evade enforcement. Exploitation of vulnerabilities can
cause benign programs to turn malicious. However, an exploit represents an
intentional subversion of security policies, and hence cannot occur without
the involvement of malicious entities. Consequently, benign processes, which
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are processes that have never been influenced by untrusted content, cannot
be malicious. New files and processes created by benign processes can hence
be labeled benign. Processes that execute untrusted code, and those that
read untrusted inputs, are labeled as untrusted, as are the files created or
written by them. Trusted programs are programs that are trusted to handle
untrusted inputs at specific interfaces. They are trusted to sanitize untrusted
inputs and remain to be benign.

Figure 2.2 (adopted from PPI [Sun et al., 2008b]) shows the classification.
Noted that an identifiable subset of benign programs are trusted, while an
unidentifiable subset of untrusted programs are malicious.

Term Explanation

malicious intentionally violate policy, evade enforcement

untrusted possibly malicious

benign code non-malicious but potentially vulnerabilities

benign process process whose code and input
is benign, i.e., non-malicious

trusted process benign process that can handle untrusted inputs
without getting compromised at specific interfaces

Figure 2.1: Key terminology

(Low Integrity)

Untrusted

(High Integrity)

Benign

MaliciousTrusted

Figure 2.2: Classification of subjects/objects

2.2 Threat Model

We assume that users of the system are benign. Any benign application in-
voked by a user will therefore be non-malicious. It is possible to designate
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some users as untrusted, but we believe that in the context of today’s mal-
ware landscape, users are typically careless or gullible, but not intentionally
malicious.

We assume that any file received from unknown or untrusted sources will
be labeled as low-integrity. This can be achieved by exclusion: Only files
from trusted sources like OS distributors, trustworthy developers, and ven-
dors are labeled as high-integrity. All files from unverifiable origins (including
network and external drives) are labeled as untrusted. This labeling conven-
tion has been adopted by Windows and OS X. As described later, labeling
of incoming files has been seamlessly coupled on the Microsoft Windows OS
with Windows Security Zones, which has been adopted by all recent browsers
and email clients. For Unix systems, we have developed browser and email
client addons to label files. An administrator or a privileged process can up-
grade these labels, e.g., after a signature or cryptographic hash verification.
A benign process can also downgrade labels.

We first focus on attacks that compromise the system-integrity, i.e., per-
forming unauthorized modifications to the system e.g., malware installing
itself for auto-starting or altering the environment to hide or subvert other
applications or the OS (e.g., by modifying bashrc). Although we can con-
sider protecting confidentiality of user files, this would require confidentiality
policies to be explicitly specified. We introduce in Section 8.7 a generalization
together with a policy language that can be used to specify confidentiality
policies. It should be noted that files containing secrets are useful to gain
privileges are already protected from reads by normal users. This policy
could be further tightened for untrusted subjects.

2.3 Criteria for enforcement mechanisms

Enforcement mechanisms for provenance tracking place labels on subjects
(e.g., processes) and objects (e.g., files), and they enforce policies to restrict
how subjects and objects interact. There are a few criteria that enforcement
mechanisms need to consider:

2.3.1 Security against evasive malware

Experience with various containment mechanisms such as sandboxie [Sand-
boxie Holdings, LLC., 2015], Bufferzone [BufferZone Security Ltd., 2015]
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and Dell Protected Workspace [Dell, 2015], as well as the numerous real-
world sandbox escape attacks [Fisher, 2014, Li, 2015, Constantin, 2013] have
demonstrated the challenges of building new, effective containment mecha-
nisms for malicious code [Rahul Kashyap, 2013]. Attackers can try every
possible way to circumvent the tracking system.

There are two requirements for a provenance tracking mechanisms to be
secure:

• Ability to label resources and propagate labels securely.
Subjects and objects are highly dynamic. A subject can create new sub-
jects and objects. For example, a process may fork or clone itself. Users
may create hard links to objects. A provenance tracking enforcement
mechanism needs to assign labels to all new subjects and objects based
on the corresponding sources in such a way that attacker-controlled
and attacker influenced entitles are marked as untrusted.

• Ability to mediate every interaction between subjects and ob-
jects.
OSes support multiple mechanisms for subjects and objects to interact.
Subjects and objects can not only interact directly through file read-
ing/writing, but also indirectly via anonymous objects like unnamed
pipes, IPC with other subjects using sockets, shared memory, or pipes.
Systems like Windows even allow a subject to create a remote thread
in another subject. A secure provenance tracking enforcement mecha-
nism needs to mediate every interaction between subjects and objects,
or otherwise, attackers could leverage those unrestricted interactions to
compromise unconfined processes, take control, and abuse privileges of
unconfined processes.

2.3.2 OS Compatibility/portability

Different choices for enforcement mechanisms result in different levels of OS
compatibility:

• Developing a brand new OS: Enforcement mechanisms that enforce
policies at a different OS abstraction would need dramatic modification
to OSes. A few research projects (e.g., HiStar [Zeldovich et al., 2006]
and Asbestos [Efstathopoulos et al., 2005]) introduce new objects for
access control (e.g., memory page or event). Since existing OSes do
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not support these abstractions, they need to rewrite the entire OS from
ground up. We do not see these research OSes getting widely adopted
because of the limited application and technical support.

• Reusing existing OS kernel abstraction: More often enforcement
mechanisms enforce policies using existing OS abstractions at the ker-
nel level, i.e., processes for subjects and inodes for objects. The main
advantage of reusing existing OS abstractions for subjects and objects
is that the mechanism requires less modification to OSes. Further-
more, OSes already provide some level of tracking for the standard
abstractions. Linux LSM [Wright et al., 2002] and TrustedBSD [Wat-
son et al., 2003] already provide hooks throughout the OSes such that
callback functions that policies implemented will be invoked to make
security decision. This has considerably simplified the task of building
a secure enforcement mechanism. However, OS kernels can undergo fre-
quent updates, which often require nontrivial effort towards updating
the implementation of enforcement mechanisms.

• Reusing existing user-level abstraction: Instead of using abstrac-
tions at the kernel level, mechanisms can also enforce policies based on
user-level abstractions such as system calls or user permissions. User-
level abstractions are relatively uniform across OSes, and remain sta-
ble for long periods of time. For this reason, enforcement mechanisms
based on user-level abstractions are desirable.

2.3.3 Expressive power and flexibility

Different enforcement mechanisms have different expressive power. A more
flexible mechanism could enforce a more powerful policy. The expressive
power of an enforcement mechanism comes from how the labels are defined,
whether the labels can be changed, and if any recovery mechanisms are avail-
able when there are policy violations. We discuss them below.

Provenance labels

There are two main concerns about provenance labels:

• Number of labels supported
Provenance-based tracking systems attach labels to subjects and ob-
jects and enforce policies based on the labels. A mechanism supporting
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more provenance labels could encode more principals and allow more
fine grained tracking and enforcement. In the simplest case, our threat
model assumes that there are only two provenance labels: benign and
untrusted. Resources therefore have to be labeled as either benign
or untrusted. While this simplifies the implementation, it can be too
coarse-grained: consider two untrusted origins A and B. Since both
origins are not benign, they have to be labeled using the same untrusted
label. If A is indeed malicious, it can compromise every resource that
shares the untrusted label, including everything belonging to B.

A mechanism supporting more provenance labels could create separate
untrusted labels for A and B. Hence, a malicious principal, e.g., A,
cannot expand its footprint and compromise other principals.

• Mapping principals to provenance labels
Provenance-based tracking systems regulate how subjects and objects
of different provenance labels interact. They need to label and track
the effects of the interactions. Provenance labels form a partial order
in the system. In the context of integrity, the results would be labeled
with the greatest lower bound when subjects and objects interact.

There are two possible ways to map principals into provenance labels.
One is to assign each principal with a provenance label. Any subject
or object belongs to exactly one principal. This is less flexible as the
provenance label may not reflect exactly the effect that the result actu-
ally came from multiple principals. However, it is easier to implement
as we do not need to maintain multiple provenance labels for each ob-
ject and subject.

A more precise approach is to model labels as representing a set of the
principals. This labeling system can then label all possible interactions
accurately. The size of the provenance label, however, grows with the
number of principals.

Dynamic label changes

Enforcement mechanisms attach labels to subjects and objects, and they
enforce policies controlling how subjects and objects can interact. Given a
subject with label S and an object with label O with information flowing
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from the object to the subject, the policy can either permit the operation
when S ≤ O or deny the operation when S > O.

When the enforcement mechanism allows labels to change dynamically, S
could change to S ′ ≤ O to permit the information flow. If the subject never
writes into a high integrity file after downgrading, the execution would not
trigger any policy violation. Allowing subject labels to change could allow
more executions to be completed, and hence leads to more usable systems.

On the other hand, if the subject writes to high integrity files after down-
grading, the system would flag this as policy violation and deny the writes. If
the files were opened before downgrading, applications usually do not handle
write failures. This would load to the so-called self-revocation problem. We
discuss the problem in more detail in Part II.

Rollback/recovery

While policies focus on deciding how subjects and objects interact, the de-
cisions are often limited by the underlying supporting enforcement mecha-
nisms. When an operation is deemed as violation, the simplest mechanism
is to deny the operation during the execution.

Denying an operation during an execution could cause problems. For
instance, if application does not expect the operation to fail, it will not
handle the failure gracefully. The classical integrity policy low-water-mark
has the self-revocation problem, where permission to write to a file could be
revoked unexpectedly. This could leave resources in inconsistent states.

The problem that applications cannot handle failures gracefully can be
addressed at either the policy level or at the mechanism level:

• At the policy level, the policy can deny the operation at a earlier
time. The earliest time is to simply deny an application from even
running. Other possible time could be at the file opening time. We
call these look ahead methods. We leave the discussion to Section 6
(ED/UII) and 5.5 (SRFD). In short, look ahead methods try to deny
an operation earlier (promote early failures) so that applications can
handle the failures more gracefully. Since it involves predicting future
application behavior, policies often need to make conservative decisions
and could block some safe executions from completing.

• At the enforcement mechanism level, enforcement mechanisms
can simply rollback all the changes made by the execution, as if the
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application has never started. The ability to rollback is much more
powerful than at the policy level because it does not require the policy
to be conservative.
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Chapter 3

Kernel-based provenance
enforcement

One approach to enforce provenance policy is to modify OS kernel. Prove-
nance information is encoded using labels for subjects and objects. An im-
portant question is how to store these labels. One solution is to store the
labels out-of-band, i.e., separated from the objects. SELinux [Loscocco and
Smalley, 2001b] and TrustedBSD [Watson et al., 2003] addressed the problem
by modifying OSes. They store labels on disks using extended file attributes
(ext4) or extension file attributes (HFS). For in-memory entities, LSM uses
opaque fields for storing labels, i.e., the labels are stored in-band in these
cases.

After defining how to store the labels of subjects and objects, we need to
decide on how to mediate interactions between them. We chose the approach
of implementing a kernel module using LSM hooks [Wright et al., 2002]. This
module defines these hooks in such a way as to maintain provenance, and
enforce the specified provenance-based policies. Existing systems such as
SELinux [Loscocco and Smalley, 2001b], AppArmor [Ubuntu, 2015], and OS
X App Sandbox [Apple Inc., 2014] are all based on the same general approach.

In this chapter, we discuss our approach for building a kernel-based
provenance enforcement mechanism. The design of our approach is adopted
from [Mital, 2010]. Our main contributions are (1) we implemented the de-
sign, (2) we evaluated the performance of the mechanism, and (3) we estab-
lished the correctness and security guarantee for the mechanism (Section 5.6).
We describe our approach below:
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3.1 Key abstractions

In our kernel-based enforcement mechanism, there are three key entities:
Objects, Subjects and Handles.

Objects Objects consist of all storage and inter-process communication
abstractions on an OS: files, pipes, sockets, message queues, semaphores,
etc. our approach divides these objects into two categories: file-like and
pipe-like. There is a fundamental difference between these classes. File-like
objects are persistent, and our approach assigns fixed integrity label to them.
Any data read from the file has this label, and writes to the file don’t change
the label. (The information flow policy ensures that any subject writing to it
has a equal or higher label.) For a file-like object, the label of data read from
it will be the same as that of data written into it. In contrast, for a pipe-like
object, the label of data read from the object representing one end of the
pipe is the same as the label of data written to the object representing the
other end of the pipe (called a peer object). Examples of pipe-like objects
include UNIX pipes and sockets.

Subjects and SubjectGroups Subjects correspond to threads. Since
the OS-level mechanisms used in our framework cannot mediate information
flows that take place via shared memory, subjects that share memory are
grouped into SubjectGroups. SubjectGroups are basically processes. The
idea is that all subjects within a SubjectGroup will have the same security
label at any time.

Handles Handles is a level of indirection between subjects and objects.
They serve to link together objects and subjects that have a unidirectional
information flow relationship. There is a many-to-one mapping between han-
dles and subjects, and many-to-one mapping between handles and objects in
our approach.

Handles are conceptually similar to file descriptors, but there are some
differences as well, e.g., a handle is unidirectional: a handle has either a read
or a write capability. (Obtaining both requires two handles.) The label of
a read-handle is given by the label of the object that it reads from, while
the label of a write-handle is given by the label of the subject holding the
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handle. When read (or write) operation takes place, our mechanism passes
the label of the handle to the corresponding subject (or object).

3.2 Object types

While subjects and handles are largely homogeneous, there are many different
types of objects that need to be considered. In order that operations on these
objects be handled in a uniform way, we map the actual object operations
into several abstract operations as shown in Table 3.1. For the purposes of
policy enforcement, some of these operations are either ignored or are treated
as a combination of other operations; such operations are shown in italics.

Operations to
Read/Modify Create/ Associate Perform

object Delete handles to reads and
attribute object objects writes
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Files File + + + + + + + + + + + +
Directory + + + + + + + + + + +

Links Hard link + + + + + + +
Symlink + + + + + +

Volumes File sys + + + +
Pipes Pipe + + + + +

Named pipe + + + + + + + + + + + +
Sockets Unix Socket + + + + + + + + + + + + + + + + +

Inet Socket + + + + + + + + + + + + +
IPCs Shmem + + + + +

Other IPCs + + + + + + +

Table 3.1: Object types in Linux and the list of abstract operations available
on them.

The mapping of concrete operations to the abstract operations may not
always be obvious for all object types, so we clarify this below:

• Files: We view creation operation as a combination of create and bind
operations. The latter requires permission checks corresponding to the
directory in which the object is being created. An unlink operation (a
rmdir if it is a directory) is treated as a delete on the target object,
while a rename is treated as a combination of delete and create.

Directories are similar to files, and are handled the same as plain files
in most cases, but there are some differences as well. For instance, they
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are not written or mmap’d, although they can be read. A lookup on a
directory is treated the same as a read of the directory.

• Hard links: These are different from files because they do not have
labels associated with them. Although our design could, in principle,
associate labels with links, it would be difficult to implement: we rely
on extended attributes for storing labels, but there is usually no support
for associating extended attributes with links. As a result, permission
decisions have to be made on the basis of labels associated with its
parent (the directory in which the link resides) and its target (the file
pointed by the link). In particular, link creation as well as removal are
treated as a bind (to the parent directory) and a write to the target
file.

• Symbolic links: Since symbolic links are stored as plain files (which
contain the name of the target file), labels could be associated with
them. Creation and deletion of a symbolic link are both treated as a
bind on its parent, whereas a lookup is treated as a read of the link file
(but not the target). Symlinks need to be protected and it is possible
that the symlink can have the security label different from that of the
actual target.

• File systems: The only operations on file system are mount and un-
mount. Note that a mount operation removes the existing interpre-
tation of the mount point, and associates it with a new device. As
such, mount is treated as a combination of a remove (of the original
directory), a write to the device being mounted (unless it is a read-only
mount), followed by a bind. Unmount is similar.

In the case of mount/unmount operations, additional steps are needed
for two reasons. First, the file system being mounted may not be
trustworthy, and hence the labels provided by the file system may need
to be overridden. Second, some file systems may not be capable of
providing labels. To address these problems, we set the device label as
the maximum label that is possible for any file within the file system
represented by the device. In the first case, if the file system associates
a label l with a file within it, then we take glb file lbl(max lbl, l) as
its label, where glb file lbl corresponds to the greatest lower bound
operation between the two labels. The glb operation makes sense for
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integrity: it is the minimum of the integrity level of the file system
and the specific label on a file. It also makes sense for confidentiality,
since the glb will correspond to the maximum of the confidentialities
of the entire file system and the specific file. In the second case, we use
max lbl as the default label of all files in the volume. We may need a
mount-time option by which the max lbl is set to a value lower than
that of object’s label.

• Pipes: As mentioned earlier, pipes and sockets differ from files in that
they represent two distinct object such that data written to one of them
can be read from the other and vice-versa. As a result, create and open
operations need to be interpreted differently, and appropriate handles
associated with the objects.

Unnamed pipes can be created, but there is no way to delete them.
They cannot be opened but can be closed. They cannot be bound to
names, and hence do not support operations such as lookup, unlink,
rename, chmod, etc. In contrast, a named pipe has a name in the
directory tree, and hence supports all these operations. In particular,
creation of a named pipe implies a bind operation, similar to plain files.
Other name-related operations are also handled the same was as regular
files (with the exception of how handles are associated with objects).

• Sockets: These are very similar to pipes. In particular, Unix domain
sockets are very similar to named pipes, except for the following differ-
ences: (a) bind operation can be separated from creation, (b) handle
to object associations are affected by additional operations (accept/-
connect), and (c) additional system calls to read/write are available
(send/recv). (For datagram oriented sockets, sendto/recvfrom may also
be used.)

Internet-domain sockets differ primarily in terms of the addresses used
for binding, and secondarily because LSM provides better hooks for
mediating accept and connect system calls in the context of Internet-
domain.

• IPCs: System V IPCs include those for manipulating message queues,
semaphores, and shared memory.

Shared memory needs to be treated differently because we cannot me-
diate interactions based on shared memory. Processes sharing memory
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can be handled as if they have a common mmapped file. Thus, a shared
memory creation can be viewed as a combination of a file open (in read-
only or read-write mode, based on how the shared memory segment is
created), followed immediately by a mmap.

Semaphores and Message queues are both handled in the same way,
fairly similar to files.

3.3 Label management

By managing provenance labels at the kernel level, these labels can be changed
easily and hence supporting downgrading easily. When a subject and an ob-
ject with different labels interact, apart from denying the operation when it
violates the security policy, downgrading could be an extra option to resolve
the policy conflict.

However, allowing downgrading to occur at anytime could result in self-
revocation, whereby read/write operations on already open files are denied
because the label of the subject performing these operations has been down-
graded. To prevent self-revocation, our approach limits when downgrading
can occur.

Our design uses a novel constraint propagation technique to identify file
open operations that introduce a potential for future self-revocations, and
denies them. Our design is general, and avoids self-revocation involving files
as well as interprocess communication.

The key idea is to deny open operations when a subject already holds
open-file-descriptors that can write to high-integrity files. This task is sim-
ple enough for stand-alone subjects, but challenges arise when considering
processes that interact with each other.

Note that many applications involve processes that communicate via
pipes, sockets, shared memory and other IPC mechanisms. If our approach
looks at each process in isolation and allows one of them to be downgraded,
it is possible that a future read by another process would have to be denied,
since it is reading an output of the downgraded process. Since the goal of
our approach is to avoid denials of reads/writes, our approach needs bet-
ter mechanisms to keep track of open file descriptors across collections of
processes.

A simple approach to deal with collections of communicating processes
is to treat them as a single unit, and downgrade them as a unit. LO-
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MAC [Fraser, 2000] uses this approach to avoid self-revocation due to IPC
within a UNIX process group. However, LOMAC does not recognize the
one-way nature of pipe-based communication, and hence would needlessly
downgrade an upstream process when a downstream process opens a low-
integrity file. To avoid this, our approach needs a mechanism to keep track
of all output files held open by processes that are downstream from each
process. Since this information is different for each process, keeping track of
it can be messy as well as expensive, especially if the number of processes
(or number of open files) grows large.

To overcome these problems, we develop a new approach that is based on
propagating constraints about downgradability of processes. In particular,
our approach keeps track of the highest integrity of any output file that is
held open by a process and any of the processes that it writes to. We call
this min lbl. Our approach propagates the min lbl “upstream” through
pipes and other communication mechanisms. The result is an approach that
relies on maintaining and propagating just this single quantity (min lbl) for
each process, instead of having to propagate a large amount of information
concerning open file descriptors.

3.3.1 Invariants, Flows, and Constraint Propagation

Our approach maintains a current label (current lbl) field for each object
and subject. current lbl is the basis for enforcement. In particular, our
approach permits no flow from a source to a destination unless the source’s
current label is at least equal to that of the destination.

Invariant 1 Any information flow from an entity A to another entity B
must satisfy current lbl(A) ≥ current lbl(B).

Instead of denying the operation when the above invariant does not hold, our
approach will attempt to dynamically downgrade the label of the destination.
Since our approach restricts downgrading to subjects, B must be a subject,
and downgrade occurs when it reads from a handle A. B can protect itself
from undesirable downgrades by setting its minimum label (called min lbl).
In particular, our approach will not attempt to downgrade current lbl un-
less the following invariant holds after the downgrade:

Invariant 2 current lbl(B) ≥ min lbl(B).
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Since our approach does not downgrade the labels of file-like objects, file-
like objects will have the same label for min lbl and current lbl. For
subjects and pipe-like objects, our approach determines the min lbl by con-
straint propagation, as described further in Section 3.3.3. Finally, handles
do not have an independent value for their current label and minimum la-
bel; instead, these are derived from the corresponding values of objects and
subjects associated with a handle.

Combining the above two invariants, our approach will permit informa-
tion flow from A to B in all cases where current lbl(A) ≥ min lbl(B).
Since self-revocation occurs precisely when such a data transfer is denied, we
can say:

Observation 3 A read (or write) operation that transfers data from an en-
tity A to another entity B will be denied in our approach only if current lbl(A) <
min lbl(B).

3.3.2 Forward information flows

Figure 3.1 illustrates the flow of information between objects and subjects
via handles. In this figure, solid lines represent actual flow of information.
There are two subjects S1 and S2. Flow of information between these two
subjects occurs via a socket object O1 (which is pipe-like), and a file object
O2.

SOCKET

OBJECT

SOCKET

OBJECT

OBJECT

FILE

S2S1 O21

RH21

RH3

WH12 RH12

RH2

O2

WH2

WH21

O12

Flow of current lbl
Flow of min lbl

Figure 3.1: Illustration of information flow in our kernel-based framework

Flow of information via file objects is simpler than that of pipe-like ob-
jects. In particular, an object created by a subject receives the label of that
subject. This flow is handled by propagating the current label of subject
S2 to its write handle WH2, and then from WH2 to the object O2. (If the
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object is already present, then its current lbl should be less than or equal
to that of the subject writing to it, and no propagation would be needed.) If
S1 subsequently reads from the object O2, the label of O2 will flow into S1.

Since a socket is a pipe-like object representing two distinct flows, we
split it into two objects: O12 that represents information flow from S1 to
S2, and O21 that represents the information flow from S2 to S1. S1 uses a
read-handle RH21 and a write-handle WH12 to read from and write into the
socket, while S2 uses RH12 and WH21 respectively for the same purpose.

It is important to clarify the role of open versus read operations. Specifi-
cally, when a file is opened for reading, the file’s current lbl flows from the
file to the handle. But since no data has yet been read by the subject, the
propagation of current lbl from the handle to the subject does not take
place until the first read operation. (A similar comment applies to write

operations as well.) This distinction between open and read operations is
made for pipe-like objects as well, except that there are many open-like sys-
tem calls, including pipe, connect and accept.

Delaying current lbl propagation serves an important purpose: shells
(e.g., bash) often open files for file redirection, and set up pipes for use by
its child processes. The shell process does not perform any reads/writes on
these objects. By deferring any downgrades until the first read, our approach
prevents the shell from having to downgrade itself. Such a downgrade of
shell’s label is disastrous, as it prevents the shell from ever running high-
integrity commands.

We note that for memory-mapped files, reads may happen implicitly when
memory is read, and hence our approach does not support delayed propaga-
tion of labels as described above.

3.3.3 Constraint propagation

As noted earlier, our approach avoids self-revocation by propagating con-
straints on min lbl. Figure 3.1 shows constraint propagation using dashed
lines. Note that constraints propagate in the reverse direction of information
flow.

Note that min lbl represents the minimum label that needs to be main-
tained by a subject A. Any entity B from which information can flow to A
needs to maintain a label higher than min lbl(A) or else the flow from B to
A may have to be cut-off. Since such cut-offs lead to self-revocation, our ap-
proach prevents them by propagating min lbl(A) to any handle from which
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A reads; and from this handle to the associated object; and so on. In other
words, by propagating min lbl in the inverse direction of information flow,
our approach can ensure that every data producer upstream will maintain
the integrity level required by A.

Whereas the forward flow of labels is normally delayed until an explicit
read or write operation, constraint propagation is instantaneous, i.e., when
a channel (representing file or pipe-like communication) for information flow
from entity A to another entity B is opened, B’s min lbl is propagated
immediately to A. Because of Invariant 2, this propagation will fail if A’s
current label is already less than min lbl(B). In this case, our approach will
deny the open operation.

It is important to note that min lbl is a quantity that is derived through
constraint propagation. It should not be thought of as a variable whose
value is increased each time a new communication channel is established.
For this reason, min lbl can either increase or decrease during the lifetime
of a subject. Increases happen when a subject opens a new output handle,
while decreases happen when a subject closes an output handle.

Due to constraint propagation, the following invariant holds:

Invariant 4 If there is an information flow path (shown by solid lines in
Figure 3.1) from A to B, min lbl(A) ≥ min lbl(B).

Since constraint propagation increases a min lbl value for an entity only
if there is a constraint that requires it to be that high, and since files are the
only entities that have a hard requirement for their min lbl values, we can
make the following observation:

Observation 5 For an entity A, let B1, ..., Bk be all the open output files
reachable from A while following the information flow paths. Then min lbl(A)
will be the maximum among min lbl(B1), ..., min lbl(Bk).

This observation follows readily from our declarative definition of constraints
and their propagation.

3.4 Implementation

We developed our approach on both Ubuntu 13.10 and 14.04. We imple-
mented our approach using the Linux Security Module (LSM) framework.
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Although Linux kernel no longer allows loadable modules to use LSM hooks,
there are work-arounds available [NTT DATA Corporation, 2010] that we
relied on. Structuring the system as a loadable module eases development
and debugging, especially in the early stages of prototype development.

The LSM framework provides hooks to mediate system calls and system
operations pertaining to inodes, files, tasks, semaphores, shared memory,
sockets, and message queues. We present below the LSM hooks that our
approach used.

3.4.1 Framework hooks

This section broadly classifies the hooks of our framework based on their pur-
pose. A short description of each hook has also been provided. LSM provides
many more hooks than the ones discussed here. However only the pertinent
hooks have been used in our implementation, the criteria for selection being
the hook’s appearance in the sequence of invocation of related hooks, the
hook’s parameters and the hook’s return type.

Much of the work performed in each of the selected hooks falls into the
following categories:

• Updating the data structures in response to various operations on sub-
jects and objects; and maintaining the invariants listed in the appendix
after each such operation.

• Storing information that is available in one LSM hook so that it can
be used in a subsequent hook where it is needed; and more generally,
reconstructing information needed by our framework that is not directly
available in the LSM hooks.

• Enforcing integrity policies on objects and subjects and making access
decisions. It is important to note that a hook with a void return type
cannot be used for making access decisions.

The classification of LSM hooks used in our framework is as follow:

• Security hooks for program execution operations

– bprm_committing_creds : This hook is invoked when a subject
executes an object. Our approach uses this hook to downgrade a
subject when the object is of a different provenance label.
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– bprm_check_security : This hook is invoked when a subject is
about to execute an object. Our approach uses this hook to check
if information can flow from the object to the subject.

• Security hooks for filesystem operations

– security_sb_mount : This hook checks if the runtime binding of
a device can occur with a mount point.

– security_sb_unmount : This hook simply checks if the subject
can unmount a device.

• Security hooks for inode operations

– inode_alloc : This hook is used to allocate an in-memory object
security structure to every object represented by an inode and
assign a label to it.

– inode_free : This object de-allocates the object security struc-
ture and cleans up the memory allocated for its label and handles
(if the handles were not already closed).

– inode_init_security : This hook makes the object security
structure, associated with the inode, persistent, by writing it on
the persistent media (disk), typically in the inode’s extended at-
tribute space.

– inode_create : This hook is specifically for regular files and
helps the framework perform regular-file specific permission checks
(such as bind).

– inode_link : This hook is specifically for hard-links and helps
the framework perform hard-link specific permission checks (such
as bind).

– inode_unlink : This hook helps the framework perform permis-
sion check (such as unlink) on the inode, to remove hard links to
it.

– inode_symlink : This hook is specifically for symbolic-links and
helps the framework perform symbolic-link creation checks (such
as bind).

– inode_mkdir : This hook is for directories and helps the frame-
work perform directory creation checks (such as bind).
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– inode_rmdir : The framework uses this to check if a directory
can be unlinked from its parent namespace.

– inode_mknod : This hook deals with permission checks for cre-
ation of special files like pipes and named sockets.

– inode_rename : This hook primarily implement the abstract op-
eration
rename.

– inode_follow_link : This hook is used for maintaining link
traversal information which is used for implementing virtual down-
grades.

– inode_permission : This hook performs the handle creation op-
eration by checking the mode in which the inode is being accessed.
The abstract operation open is performed in this hook.

– inode_setattr : This hook checks permission before setting file
attributes.

– inode_getattr : This hook checks permission before getting file
attributes.

– inode_delete : This hook can be used to release any persistent
label associated with the inode. Currently this hook is not being
used because the clean-up is performed in inode_free_security.

– inode_setxattr : This hook checks permission before setting the
extended attributes.

– inode_getxattr : This hook checks permission before getting the
extended attributes.

– inode_removexattr : This hook checks permission before remov-
ing the extended attributes from persistent media.

• Security hooks for dentry operations

– d_instantiate : This hook is invoked whenever a dentry struc-
ture is instantiated for an inode, in the d cache.

• Security hooks for file operations

– file_permission : This hook is invoked for every read and write
attempted on a file object. Our framework calls the read and
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write abstract operations depending on the mode the file is being
accessed.

– file_ioctl : This hook checks permission for an ioctl operation
on file.

– file_mmap : This hook checks permissions for a mmap operation.
Reads and rites to the mmap’ed region are unmediated, this hook
helps the framework in setting the desired flag for the read and
write handles to the mmap’ed region.

– file_fcntl : This hook checks permission before allowing the
file operation specified by the —cmd— parameter from being per-
formed on the file.

• Security hooks for task operations

– task_create : This hook is used by the framework to differentiate
between fork and clone events.

– task_setrlimit : To perform permission checks on the subject
which tries to modify resource limits.

– task_kill : To perform task permission check on one task which
is trying to send a signal to another task.

– cred_prepare and cred_free: This hook is used by the frame-
work to manage subject and subjectgroup. A new subjectgroup
is created when a fork is called. Our approach relies on track-
ing cred structure to relate subjects and subjectgroups because
there are no hooks for allocating and destroying subject security
structures.

• Security hooks for Unix domain networking

– unix_stream_connect : Checks permissions before establishing a
Unix domain stream connection.

– socket_unix_may_send : Checks permissions before connecting
or sending datagrams from one socket to another.

• Security hooks for socket operations

– socket_create : Checks permissions prior to creating a new
socket.
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– socket_bind : Checks permission before socket protocol layer
bind operation is performed and the socket is bound to the spec-
ified address.

– socket_connect : Checks permission before socket protocol layer
connect operation attempts to connect socket to a remote address

– socket_listen : Checks permission before socket protocol layer
listen operation.

– socket_accept : Checks permission before accepting a new con-
nection.

– socket_sendmsg : Checks permission before transmitting a mes-
sage to another socket.

– socket_recvmsg : Checks permission before receiving a message
from another socket.

• Security hooks for System V IPC Message Queues

– msg_queue_associate : Checks permission when a message queue
is requested through the —msgget— system call.

– msg_queue_msgctl : Checks permission when a message control
operation specified by —cmd— is to be performed on the given
message queue

– msg_queue_msgsnd : Checks permission before a message is en-
queued on the message queue.

– msg_queue_msgrcv : Checks permission before a message is de-
queued on the message queue.

• Security hooks for System V Shared Memory Segments

– shm_associate : Checks permission when a shared memory re-
gion is requested through the —shmget— system call.

– shm_shmctl : Checks permission when a shared memory control
operation specified by —cmd— is to be performed on the shared
memory region.

– shm_shmat : Checks permissions prior to allowing the —shmat—
system call to attach the shared memory segment to the data
segment of the calling process.
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• Security hooks for System V Semaphores
All operations performed in the following hooks are exactly the same
as those performed for the corresponding hooks for System V Shared
Memory Segments.

– sem_associate

– sem_semctl

– sem_semop

3.4.2 Code complexity

The overall size of our implementation is shown in Figure 3.2.

C Header Python Total

Kernel Code 3844 865 - 4709
Userland code 643 142 57 842

Total 4487 1007 57 5561

Figure 3.2: Implementation code size for our kernel-based enforcement ap-
proach

Our approach has a userland component that can communicate with the
kernel module using netlink to manage policies. The userland code will be
notified when there is a policy violation. The userland can then enforce
additional policy on how to handle the violation, which is a topic of Part II.

3.5 Alternative: one-way isolation

Isolation is another useful policy that the kernel can enforce. There are two
types of isolation: one-way isolation and two-way isolation. Virtual ma-
chines and browsers SOP generally enforce two-way isolation. They prevent
resources from one provenance to interact with another. On desktop envi-
ronment, this can be implemented using virtual machines or LXC [Canonical
Ltd., 2012] so that applications running within a container cannot access
resources on the host.

One-way isolation [Sun et al., 2005, Liang et al., 2009] permits untrusted
software to read shared resources, but its outputs are held in isolation. It
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is usually implemented using copy-on-write file systems. To separate the
process and IPC namespace, LXC is also used, and mounts the host file
system as read only.

Although App model and SOP also use isolation, their usage is for isolat-
ing resources of each provenance. When applying in the context of provenance-
based enforcement, one-way isolation is far more powerful when applied as a
rollback mechanism to recover from policy violation and enforce state-based
policies.

Supporting rollback

One of the main disadvantages of enforcing provenance-based policies is that
policy violations can occur at a point when it is hard to recover. For example,
the application may not expect an operation to result in a security failure
(e.g., read operations on open file descriptors) and hence may terminate the
execution abruptly upon policy violation. This could leave the system in
an inconsistent state. Provenance-based policies therefore focus on detecting
potential policy violations earlier, and thus promote early failures.

By running an execution within a one-way isolation environment, the
system can buffer the changes that an execution would have. If there is a
policy violation, the system can simply discard the changes. Otherwise, the
changes can be committed and made visible to the rest of the system. The
policy need not to be conservative to promote any failure.

One-way isolation alone is not enough to support a more general provenance-
based policies (i.e., confidentiality). It imposes no restriction on reading. To
enforce confidentiality policies, the system needs to monitor read accesses. If
processes attempt to read any confidential file, the enforcement mechanism
can terminate the execution immediately.
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Chapter 4

Userlevel-based provenance
enforcement

Provenance tracking and enforcement techniques described above, as well as
those developed by previous research require significant changes to the OS
kernel [Li et al., 2007, Sun et al., 2008b, Mao et al., 2011], or the develop-
ment of brand new OSes [Zeldovich et al., 2006, Efstathopoulos et al., 2005].
Developing such a system-wide tracking mechanism can be error-prone and
involve substantial engineering challenges. This problem is particularly se-
rious in the context of closed-source OSes such as Windows. We therefore
develop an approach for provenance tracking and secure policy enforcement
using security mechanism that are universal to today’s desktop OSes, namely,
multi-user protection and discretionary access control (DAC). A key strength
of our approach is its simplicity and portability, enabling its implementation
on Linux, FreeBSD as well as all modern versions of Microsoft Windows
(Windows XP through Windows 10).

We focus our discussion on building our approach with only two prove-
nance labels (principals) called benign and untrusted. Our approach extends
the idea of mobile OSes to desktop OSes, and is designed to protect legacy
desktop applications. We have implemented our approach on multiple OSes,
including Linux, BSD, and Windows. It is compatible with existing appli-
cations such as Firefox, Internet Explorer, Chrome, Microsoft Office, Adobe
Reader, and Photoshop.
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4.1 Approach overview

Secure enforcement and tracking without OS changes.
To reliably track provenance, our approach uses an existing security mech-

anism, namely, multi-user protection and discretionary access control (DAC).
Unlike Android, which uses a different userid for each app, our design cre-
ates one new userid for each existing user. While Android’s goal is to isolate
different apps, we use DAC to protect benign processes/files from untrusted
code/data. (We discuss the alternative of using Windows integrity labels in
Section 8.6.7.)

Our approach introduces a set of untrusted userids. It encodes prove-
nance labels into file ownership and permission. In particular, untrusted
files are those that are owned by the untrusted userids, or are writable by
these users. Untrusted processes are all run with an untrusted userid. This
encoding enables us to leverage existing OS mechanisms for tracking and
propagating provenance labels. In particular, note that files as well as child
processes inherit their ownership from that of the process that created them.
As a result, any file or process created by an untrusted process will have an
untrusted label.

Benign processes and files are characterized by their ownership by a userid
other than an untrusted userid. In addition, benign files will have write
permissions that make them unwritable by untrusted userids by default. This
provides the basic protection to benign processes against untrusted processes.
Files created by benign processes will have benign labels, once again ensuring
correct propagation of labels. Benign processes aware of our approach can
request our system to mark a benign file as untrusted.

In addition to tracking provenance labels, our userid-based encoding also
provides the foundation for sound policy enforcement without OS kernel
changes. Specifically, existing OS mechanisms can correctly enforce basic
policies on untrusted processes: by virtue of our provenance label encod-
ing, benign files have permission settings that make them unwritable by
untrusted userids. As benign processes can be vulnerable, our approach sup-
ports enforcing policies on benign processes as well, e.g., to prevent them
from reading untrusted files. This is a considerably simpler task than policy
enforcement on untrusted code. In particular, challenges in secure policy en-
forcement arise mainly due to evasion attacks. Since benign processes cannot
be malicious, they won’t attempt evasion. Indeed, a simple yet secure im-
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plementation can be developed within the address space of a benign process,
e.g., by replacing libc/ntdll.dll, which makes all system calls on behalf of a
process, with a version that enforces the desired policies.

Application transparency.
Our approach applies a novel dual-sandbox architecture to achieve secure

enforcement. The first of these sandboxes performs eager policy enforcement.
To minimize breaking legitimate functionality, it blocks only those operations
that can cause irreparable damage, e.g., overwriting an existing benign file.
This sandbox, called untrusted sandbox (U), needs to be secure against any
attempts to circumvent it.

Operations with unclear security impact, such as the creation of new
files, are left alone by the second sandbox, called benign sandbox (B). While
these actions could very well be malicious, there isn’t enough information to
make that conclusion with confidence by U . Hence, we rely on B to observe
subsequent effects of this action to determine if it has to be stopped. Policies
will have much more information to decide. For instance, B would prevents
a benign process from using files that could compromise the benign process.

Our dual-sandbox architecture preserves functionality of both benign and
untrusted applications by implementing many important transparency fea-
tures, so that security benefits of our approach can be achieved without
requiring changes to applications, or the way in which users use them.

Since our approach labels processes using userid, our approach treats
applications as blackboxes and requires no application modification. Ap-
plications already support running with different userids natively. Our ap-
proach can therefore support feature-rich unmodified applications such as
Photoshop, Microsoft Office, Adobe Reader, Windows Media Player, Inter-
net Explorer, and Firefox.

Implementation on contemporary OSes.
We have implemented our approach on Linux, BSD, and Windows, sup-

porting XP, 7, 8.1, and 10. Implementing such a system-wide information
flow tracking system on closed-source OSes is challenging. We present dif-
ferent design choices we made during the development of our approach. We
share our experiences and lessons on implementing it on different OSes such
that researchers can be aware of the techniques we applied, and start devel-
oping defenses on popular OSes.
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Figure 4.1: Untrusted sandbox

4.2 Containing Untrusted Processes

Our approach leverages existing userid mechanisms in OSes to track prove-
nance information. It confines both benign and untrusted processes. In this
section, we focus the discussion on untrusted sandbox.

Our untrusted sandbox, illustrated in Figure 4.1, consists of a simple
inner sandbox UI based on OS-provided access control mechanisms, an outer
sandbox that is realized using a library UL, and a user-level helper process
UH .

The inner sandbox UI enforces a basic isolation policy that limits un-
trusted processes so that they can only perform operations that do not affect
benign processes, e.g., write to untrusted files. This strict mechanism, by
itself, can cause many untrusted applications to fail. For example, an un-
trusted document writer cannot create temporary files or save files on user’s
desktop. The outer sandbox is designed to relax the restrictions imposed
by UI . The transparency library UL component of the outer sandbox masks
these failures so that applications can continue to operate as if they were
executing directly on the underlying OS. In particular, UL remaps some of
the failed requests (primarily, system calls) so that they would be permitted
by UI . As UL runs in the untrusted context, UL may not resolve all failures
due to the DAC permission. In those cases, UL forwards the request to UH ,
which runs with the userid of a normal user, to carry out the request. The
helper UH uses a basic default policy that is more permissive than the inner
sandbox, but it can also enforce a different policy.

In addition to modifying or relaying requests from untrusted processes,
the transparency library UL also supports the following two remapping mech-
anisms for file accesses:
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• Shadowing: Instead of modifying the actual copy of the file, UL can
transparently shadow the access to a private copy of the file.

• Redirection: Instead of creating a new file at the intended location,
UL can transparently redirect the file creation to a different location.
Future accesses to the file will be redirected as well.

Whether a particular file access is shadowed or redirected can be specified in
the policy, a topic further discussed in Section 6.

By splitting the untrusted sandbox into inner and outer sandboxes, our
approach can rely on existing OS mechanism to enforce a non-circumventable
policy against malicious code. The outer sandbox is circumventable, but by-
passing it does not let untrusted code gain any privilege. The inner sandbox
only needs to deny untrusted processes from accessing resources owned by
benign users. This allows our approach to be deployed on most multi-user
OSes with users as basic trust units. OSes such as Windows support ad-
vanced user permission models, e.g., ACLs, can grant untrusted processes
preciously the safe accesses that they can have. For these OSes, the outer
sandbox needs not be separated from the inner sandbox.

Inner Sandbox UI

Contemporary desktop OSes provide access control mechanisms for protect-
ing system resources such as files, registry entires and IPCs. Moreover, pro-
cesses belonging to different users are already isolated from each other. We
repurpose this mechanism to realize the inner sandbox. Such repurposing
would, in general, require some changes to file permissions, but our design
was conceived to minimize such changes: our implementation on Ubuntu
Linux required changing permissions on less than 60 files (Section 4.5). Win-
dows ACL supports permission inheritance and hence only a handful of top
level directories and registry entries needed modification. Moreover, this
DAC permission overloading preserves all of the functionality relating to the
ability of users to share access to files.

The basic idea is to run untrusted processes with newly-created users that
have very little, if any, direct access to modify the file system. For each non-
root user1 R in the original system, we add a corresponding untrusted user

1We don’t support untrusted code execution with administrative privileges. In Chap-
ter 3, we described a kernel-based system which supports running untrusted code as root.
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create a new group GB

for each user U do
add a userid U to group GB

for each real user R do
create a userid RU for the user R

for each group G do
create a new group that GU with the members of G
for each user account R in G do

add RU to GU

Figure 4.2: Algorithm for setting up users in dual-sandboxing approach

RU . Similarly, for each existing group G, we create an untrusted group GU

that consists of all userids in G and their corresponding untrusted userids.
To further limit accesses of RU , we introduce a new group GB of existing
(“benign”) userids on the system before untrusted userids are added. File
permissions are modified so that world-writable files and directories become
group-writable by GB

2. Similarly, world-executable setuid programs are
made group executable by GB. The algorithm is presented in Figure 4.2.

With the above permission settings, no RU will have the permission to
create or modify any file in the system. To support redirection and shadow-
ing, our approach creates a redirect and a shadow directory for each RU so
that RU can create or modify objects inside. Shadowing consists of reading
the original copies and creating shadow copies. By granting RU permissions
to create files, at least half of the logic for shadowing can be offloaded to RU .
This greatly simplifies the complexity of the outer sandbox.

Our mechanism ensures that benign processes will not consume untrusted
files by ensuring that they do not access objects within the redirect or shadow
directory. Since untrusted files are either redirected or shadowed, benign
processes are not even aware of the untrusted files by default. Untrusted
processes cannot modify benign files either, since the benign sandbox ensures
appropriate permission settings on benign files during creation.

Untrusted processes can compromise benign processes through inter-process
communication. Some communication mechanisms, such as pipes between
parent and child processes, need to be closed when a child process of a be-
nign process becomes untrusted. This can happen in our system only through

2If group permissions are already used, then we use ACLs instead.
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the execve system call or CreateProcess Windows API. Other communica-
tion mechanisms such as signals and IPC are restricted by the OS based on
userids, and hence the inner sandbox will prevent them already. For intra-
host socket communication, the benign sandbox is responsible for identifying
the userid of the peer process and blocking the communication. While our
mechanism can also rely on the untrusted sandbox to prevent untrusted pro-
cesses from connecting to benign sockets, some OSes such as BSD do not
honor permissions on sockets. Hence, our approach places checks on the
benign sandbox at the time of connection establishment. To block communi-
cation with external hosts, appropriate firewall rules can be used, e.g., using
the uid-owner and gid-owner options provided by iptables.

Using userid as an isolation mechanism has been demonstrated in systems
like app model on Android for isolating applications. One of our contributions
is to develop a more general design that not only supports strict isolation
between applications, but also permits controlled interactions. (Although
Android can support interactions between applications, such interactions can
compromise security, providing a mechanism for a malicious application to
compromise another benign application. In contrast, our approach ensures
that malicious applications cannot compromise benign processes.) Our sec-
ond contribution is that our approach requires no modifications to (untrusted
or benign) applications, whereas Android requires applications to be rewrit-
ten so that they do not violate the strict isolation policy.

Transparency Library UL

Operations such as requesting the helper, performing shadowing and redirec-
tion cannot be encoded as permission. Our approach uses UL to modify the
behaviors of system library to support these operations. Note that UL oper-
ates with the same privileges as the untrusted process, so no special security
mechanisms are needed to protect it. Specifically, UL handles the following
transparency issues:

Userid and group transparency Applications may fail simply because
they are being run with different user and group ids. For this reason, UL
wraps getuid-related system calls to return R for processes owned by RU .
It also wraps getgid-related system calls to return G for processes group-
owned by Gu. On UNIX, this mapping is applied to all types of userids,
including effective, real and saved userids. As a result, an untrusted process
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is not even aware that it is being executed with a different userid from that
of the user invoking it.

This modification is important for applications that query their own user
or groupid, and use them to determine certain accesses, e.g., if they can
create a file in a directory owned by R. If not, the application may refuse to
proceed further, thus becoming unusable. Some common applications such as
OpenOffice, gedit, eclipse and gimp make use of their userid information.
UL ensures that such applications remain usable. This modification is also
crucial for enhancing usability on Windows— shortcuts such as Desktop and
My Documents in file selection dialog boxes are pointed to R rather than RU ,
despite the fact that RU is running the processes.

File access transparency Both shadowing, redirection, and merging of
directory contents are implemented in UL by intercepting calls to file cre-
ation/open, getdents, or NtQueryDirectoryFile. Untrusted processes can
rely on existing DAC permission to read and shadow files on their own. If
untrusted processes do not have permissions to read the original files, they
can request UH to get access to the file and shadow the file themselves. Note
that our approach implemented its own COW semantics as existing COW
semantics would not allow RU to create files inside R’s shadowed directories.

Helper Process UH

In the absence of our approach, programs will be executed with the userid R
of the user running it. Thus, the maximum access they expect is that of R,
and hence UH can be run with R’s privileges.

Observe that the inner sandbox imposes restrictions (on RU relative to R)
for only three categories of operations3: file/registry/IPC operations, signal-
ing operations (e.g., kill or CreateSemaphore), and tracing operations (e.g.,
ptrace or CreateRemoteThread). We have not found useful cases where RU

needs to signal or trace a process owned by R. Registry entries and IPC
objects support permission settings, and hence our approach treats them the
same as files. Consequently, we focus the discussion on file system operations
that UH enforces by default:

3Recall that R cannot be root, and hence many system calls (e.g., changing userid,
mounting file systems, binding to low-numbered sockets, and performing most system ad-
ministrative operations) are already inaccessible to R-processes. This is why it is sufficient
to consider these three categories.
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• Read-permission: By default, RU is permitted to read every object
(file, registry, pipe, etc.) readable by R. This policy can be made
more restrictive to achieve some confidentiality objectives. We leave
the discussion in Chapter 8.7.

• Write-permission: By default, RU subjects are not permitted to write
objects that are owned by R. However, instead of denying, untrusted
sandbox can shadow the accesses transparently by copying the original
file F to RU ’s shadow directory. Henceforth, all accesses by RU -subjects
to access F are transparently redirected to this shadow file.

Shadowing enables more applications to successfully execute by avoid-
ing permission denials. But this may not always be desirable, as it can
create confusion to users as there can be multiple copies of the same
file. It is sometime desirable to deny the operation. We describe in
Chapter 6 how to decide between denial and shadowing.

• Object creation: New object creation is permitted if R has permission
to create the same object. RU creates these new objects in redirected
directory and benign processes will not be permitted to read them.
If R creates an object whose name collides with an untrusted object,
either file exists error will be returned or the untrusted object will be
shadowed, depending on the type of the object. The policy is detailed
in section 6.

• Listing directories: As RU ’s files are either redirected or shadowed,
benign and untrusted files are separated. This can lead to usability
problem as file system namespace is fragmented. To preserve a unified
file namespace, Our approach merges the contents from the directories
transparently as in unioning file system.

• Operations to manipulate permissions, links, etc.: These operations
are handled similar to file modification operations: if the target file(s)
involved is untrusted, then untrusted processes can perform the changes
as permitted by the inner sandbox.

• Operations on R’s subjects: RU -subjects are not allowed to interact
with R-subjects. These include creating remote threads in or sending
messages to R’s processes, or communicating with R’s processes using
shared memory.
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• Other operations: RU -subjects are given the same rights as those of
R for the following operations: executing files, querying registry, re-
naming untrusted files inside redirected/shadow directory, and so on.
Operations that modify benign file attributes are denied by UI by de-
fault.

Note that it is possible that a file may be at a shadowed directory, main
file system, or both. Users may have a hard time locating such files, as
untrusted copies are visible only to untrusted processes. A policy can specify
what files to be shadowed. This is further discussed in Section 6.

While we do not emphasize confidentiality support in this chapter, our
approach provides the mechanism for sound enforcement of confidentiality
restrictions by tightening the policy on user-readable files. We discuss more
in Section 8.7

Windows implementation
In our Windows implementation, our approach grants all of the above

rights, except for shadowing and redirection, to RU -subjects by configuring
permissions on objects accordingly. There is no need for UH . Unlike UNIX,
object permissions on Windows are specified using ACLs, which can encode
different accesses of arbitrary number of principals. Moreover, there are
separate permissions for object creation versus writing, and permissions can
be inherited, e.g., from a directory to files in the directory. These features
give our approach the flexibility to implement the above policies. Shadowing
and redirection are implemented using UL. Both reading the original files
and creation of untrusted files in the shadowed/redirected directories can be
completed by untrusted processes themselves.

4.3 Protecting Benign Processes

Our benign sandbox completes the second half of our sandbox architecture.
Whereas the untrusted sandbox prevents untrusted processes from directly
damaging benign files and processes, the benign sandbox is responsible for
protecting benign applications from indirect attacks that take place through
input files or inter-process communication.

Existing mechanisms focus on restricting only untrusted processes: policy-
based confinement mechanisms focus on sandboxing untrusted processes;
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Windows Integrity Mechanism (WIM) enforces no-write-up policy to pro-
tect benign processes from being attacked by untrusted processes. However,
they do not enforce any policy on benign processes. A benign process can
read untrusted files and then get compromised. This is well illustrated by
the Task Scheduler XML Privilege Escalation attack [jduck, 2014] in Stuxnet,
where a user-writable task-file is maliciously modified to allow the execution
of arbitrary-commands with system privileges. Hence, it is important to
protect benign processes from consuming untrusted objects accidentally.

While policy enforcement against untrusted processes has to be very se-
cure, policies on benign subjects can be enforced in a more cooperative set-
ting. Benign subjects do not have malicious intentions, and hence they can
be trusted not to actively circumvent enforcement mechanisms4.

In this cooperative setting, it is easy to provide protection— our approach
uses a benign sandboxing library BL that operates by intercepting calls to
system calls used for making security-sensitive operations and changing their
behavior so as to prevent attempts by a benign process to open untrusted
objects. In contrast, a non-bypassable approach will have to be implemented
in the kernel, and moreover, will need to cope with the fact that the system
call API in Windows is not well-documented.

A simple way to protect benign applications is to prevent them from ever
coming into contact with anything untrusted. However, total separation
would preclude common usage scenarios such as the use of benign applica-
tions (or libraries) in untrusted code or the use of untrusted applications to
examine or analyze benign data. In order to support these usage scenarios,
our approach provides three basic interaction mechanisms in three categories
as follows. The policy can decide which mode to use, and what other modes

• Logical isolation: By default, benign applications are isolated from un-
trusted components by the benign sandbox, which denies any attempt
to open an untrusted file for reading, or engaging in any form of inter-
process communication with an untrusted process.

• Unrestricted interaction: The other extreme is to permit benign appli-
cations to interact freely with untrusted components. This interaction

4Although benign applications may contain vulnerabilities, exploiting a vulnerability
requires providing a malicious input. Recall our assumption that inputs will be conserva-
tively tagged, i.e., any input that isn’t from an explicitly trusted source will be marked as
untrusted. Since a benign process won’t be permitted to read untrusted input, it follows
that it won’t ever be compromised and hence won’t actively subvert policy enforcement.
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is rendered secure by running benign applications within the untrusted
sandbox.

• Controlled interaction: Between the two extremes, benign applications
may be permitted to interact with untrusted processes according to the
policy module, while remaining as benign processes. Since malware can
exploit vulnerabilities of benign software through these interactions,
they should be limited to trusted programs that can protect themselves
in such interactions.

The first and third interaction modes are supported by a benign sandbox-
ing library BL. As described in Section 4.3, the default policy relies on BL

to enforce policies to protect benign processes from accidental exposure to
untrusted components. The second interaction mode makes use of the un-
trusted sandbox described earlier, as well as a benign sandboxing component
(Section 4.4.1) for secure context switch from benign to untrusted execution
mode. Our approach supports enforcing more sophisticated policies.

Benign Sandboxing Library
Since benign processes are non-malicious, they can be sandboxed by en-

forcing policies using library. By default, our approach enforces the isolation
mode, BL enforces the following basic policies. More advanced policies can
be specified and enforced by BL

• Listing directories: Attempts to list directories that have been redi-
rected will be merged to present users an unified view by default. This
is the only operation that untrusted files are involved. It is a trade-
off between security and usability— our approach assumes that benign
processes cannot be compromised simply because of the presence of an
untrusted file. This allows users to know the existence of untrusted
files and infers user intentions to transition to untrusted domain.

• Querying file attributes: Operations such as access, stat and
NtQueryAttributesFile that refer to untrusted files are denied. The
default error is file not exist, as untrusted files are shadowed/redirected.
However, policies can specify a customized error if such error can com-
municate security failures to the users more meaningfully.

• Executing files and reading files/registry entries: These are handled
in the same way as file attribute query operations. Since untrusted
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files and registry entries can be shadowed or redirected, this checking
involves examining the paths to the system call.

• Opening non-file objects for reading: Our appropriate does not permit
benign processes to read untrusted objects by default. These opens will
be denied as in the querying file attributes operations. To avoid race
conditions, the object needs to be opened and a stat is performed on
the object descriptor/handle. Note that post-checking is necessary for
non-file objects because our approach does not separates namespace for
untrusted non-file objects, as not all OSes support object namespace.

• Changing file permissions: These operations are intercepted to ensure
that benign files are not made writable to untrusted users accidentally
by default. These restrictions prevent unintended changes to the prove-
nance labels of files. However, there may be instances where a benign
process output needs to be marked as untrusted. Our approach pro-
vides both an utility and specific library calls for this purpose. Our
approach uses DAC permission to ensure that only benign processes
can invoke this utility.

• Interprocess communication channel establishment: This includes op-
erations such as connect and accept. The OS is queried for the userid
of the peer process. If it is untrusted, the communication will be closed
by default, and our approach returns a failure code. For OSes that do
not support querying userid based on sockets, our approach can incor-
porate in-band authentication mechanisms to challenge peer’s identity
right after the channel establishment. The challenge can be as simple
as asking the peer process to return the content of a user-readable file
which untrusted users cannot read.

• Loading kernel modules: Similar to opening files for reading, untrusted
modules or drivers are redirected and hence are not visible to benign
processes for loading into the kernel.

In addition to isolation, BL can also support controlled interaction be-
tween benign and untrusted processes. This option should be exercised only
with trustworthy programs that are designed to protect themselves from ma-
licious inputs. Moreover, trust should be as narrowly confined as possible,
so BL can limit these interactions to specific interfaces and inputs on which
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a benign application is trusted to perform sufficient input validation. To
highlight this aspect, we refer to this mode of interaction as trust-confined
execution.

BL provides two ways by which trust-confined execution can deviate from
the above default isolation policy. In the first way, an externally specified
policy identifies the set of files (or communication end points such as port
numbers) from which untrusted inputs can be safely consumed. We discuss
more in an application of our approach, namely secure software installation,
in Section 10. The policies can also specify if certain outputs should be
marked as untrusted. In the second way, a trusted process uses an API pro-
vided by BL to explicitly bypass the default isolation policy, e.g., trust open

to open an input file even though it is untrusted. While this option requires
changes to the trusted program, it has the advantage of allowing its program-
mer to determine whether sufficient input validation has been performed to
warrant trusting a certain input.

4.4 Switching Between Benign and Untrusted

Contexts

4.4.1 Context-Switching at Process Execution Time

Users may wish to use benign applications to process untrusted files. Nor-
mally, benign applications will execute within the benign sandbox, and hence
won’t be able to read untrusted files. To avoid this, they need to preemp-
tively downgrade themselves and run within the untrusted sandbox. Our
approach provides a mechanism for downgrading subjects at the exec time.
The (policy) decision as to whether to downgrade this way is discussed in
Chapter 6.

Switching security contexts (from untrusted to benign or vice-versa) is
an error-prone task. For a benign process to run an untrusted program, it
needs to change its userid from R to RU .

Transition on UNIX One of the advantages of our design is that it lever-
ages a well-studied solution to this problem, specifically, secure execution of
setuid executables in UNIX.

A switch from untrusted to benign domain can happen through any se-
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tuid application that is executable by untrusted users. This transitioning
can be useful when untrusted processes need to perform actions that are only
available to benign processes. Well-written setuid programs protect them-
selves from malicious users. Moreover, OSes incorporate several features for
protecting setuid executables from subversion attacks during loading and
initialization.

Transitions in the opposite direction (i.e., from benign to untrusted) are
far more common and require more care because processes in untrusted con-
text cannot be expected to safeguard system security. We therefore intro-
duce a gateway application called uudo to perform the switch safely. Since
the switch would require changing to an untrusted userid, uudo needs to be
a setuid-to-root executable. It provides an interface similar to the familiar
sudo5 program on UNIX systems — it interprets its first argument as the
name of a command to run and the rest of the arguments as parameters
to this command. By default, uudo closes all benign files that are opened
in write mode as well as IPC channels. These measures are necessary since
all policy enforcement takes place at the time of open, which, in this case,
happened in the benign context. Next, uudo changes its group to GU and
userid to RU and executes the specified command. (Here, R represents the
real userid of the uudo process.)

Transition on Windows On UNIX, the transition can be performed us-
ing setuid, but Windows only supports an impersonation mechanism that
temporarily changes security identifiers (SIDs) of processes. This is in-
secure for confining untrusted processes as they can re-acquire privileges.
The secure alternative is to change the SID using a system library func-
tion CreateProcessAsUser to spawn new processes with a specific SID. Our
approach uses a Windows utility RunAs to perform this transition. RunAs

behaves like a setuid-wrapper that runs programs as a different user. It also
maps the desktop of RU to the current desktop of R so that the transition
to user RU is seamless. By passing RunAs with the appropriate parameters,
it serves the purpose of uudo.

5The name uudo parallels sudo, and stands for “untrusted user do,” i.e., execute a
command as an untrusted user. The most typical usage scenario is to start an untrusted
shell by executing uudo bash or uudo cmd.
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4.4.2 Dynamic (Any-time) Context-Switching

In this section, we describe how we can leverage existing constructs in OSes
to build a dynamic downgrading system without any kernel modification.
The mechanism described in Chapter 3 maintains labels in the kernel, which
provides a lot of information about processes and flexibility for policy enforce-
ment and label management. It can therefore support dynamic downgrading
easily. Enforcing similar policy in the user-space is challenging, yet it would
be more robust and easily deployable on various Unix based OSes.

Downgrading mechanism

Supporting dynamic downgrading requires the ability to change provenance
labels of processes dynamically during their executions. For our user-space
approach, this will requires changing userids of processes dynamically. Unix
supports setuid system calls that allow processes to change userids. Typi-
cally, setuid is used by root processes to switch to another users. For example,
the login program runs as root when the system starts. Upon receiving and
authenticating user login credentials, login will call setuid to change own-
ership to the user. All processes spawned by login will then automatically
inherit the credentials of the user.

While privileged processes can arbitrarily switch their userids using setuid,
normal user processes cannot do so. UNIX setuid mechanism was developed
to address this very problem, but it can only be used at the time of execve6.
Accomplishing userid changes at other times seems impossible from the de-
sign of UNIX mechanisms, but we show below how we can achieve this, by a
clever exploitation of the specifics of userid mechanism.

There are three different userids associated with each process. They are
ruid (real userid), euid (effective userid), and suid (saved userid). By con-
vention, ruid represents the identity of the logged in user (“real user”) whose
actions spawned this process. Security decisions, in contrast, are made on
the basis of euid. suid is designed for processes to store userids that they can
use later. However, most processes have suid the same as euid or ruid.

For most processes, these three userids share the same value. Processes
that have different ruid and euid are typically those running setuid binaries
or root-owned processes. When a process executes a setuid binary, the ruid of

6This is the reason for discussing execve-time context switching separately in the pre-
vious section.
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the process will remain as the ruid of the process. This allows setuid programs
to check who executed the programs. However, euid of the process will be
changed to the owner of the setuid binary. Since all permission checking is
based on euid, this allows the process to be granted the privileges of the
setuid binary owner7.

Apart from the setuid system call that allows a root process to change
its userids to arbitrary values, there are other setuid system call variants for
manipulating userids. Specifically, setresuid allows a process to change its
ruid, euid and suid to any of its ruid, euid and suid. For most user processes
that have the same ruid, euid and suid, calling setresuid has no effect.

By exploiting the semantics of setresuid, we can extend our approach
to achieve userid-based dynamic downgrading. setresuid provides a mecha-
nism for processes to change ownership. In our system, benign user processes
will be running with two userids: real user and “untrusted” user. As long
as the process is benign, the process will have privileges of the real user. To
downgrade a process, our system simply needs to change all the userids of
the process to the “untrusted” user (or drop the benign userid). As a result,
the process can no longer have the privileges of the benign user.

Propagation and maintenance of userids

To support dynamic downgrading, processes need to be spawned with two
userids. However, as discussed previously, privileged processes like login

call setuid to set ruid, euid and suid all to the actual user’s userid. Child
processes simply inherit userids from parent processes and hence have only
one userid. One way to support multiple userids for all user processes is
to modify the behavior of the privileged processes such that they maintain
two userids. Specifically, we can convert calls to setuid into setresuid to
maintain two userids. Then all the child processes will automatically have
two userids and can be downgraded. However, most processes, e.g., window
managers or file managers, do not downgrade and can simply run as usual
with a single userid.

Alternatively, we can grant processes two userids only if they might need

7A setuid program running with the program owner privilege may want to restrict it
accesses just to what the real user has. On Linux, access system call checks the privileges
against ruid. Hence, a root process may not be allowed to access a user file. Typical
programs do not expect to run in setuid context simply uses access for checking privileges
of the current users.
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to be downgraded. Instead of intercepting the transition from root to user
at the setuid call, we can grant processes two userids at the time of the
execve system call. This can be achieved by executing a setuid-to-root bi-
nary whenever a process needs to have the downgradability privilege. Instead
of executing the desired program image, our system executes the setuid-to-
root program. This setuid-to-root binary is nothing but a program to execute
the command specified in the parameter similar to uudo. Upon executing this
binary, the process privilege will be escalated to root and having euid = 0.
The program can then invoke setresuid to set ruid, euid and suid to contain
the two userids before executing the actual program images. Since running
this setuid-to-root binary allows any process to become downgradable pro-
cess, this setuid binary needs to be protected so that only benign processes
can execute.

Granting two userids by executing a setuid-to-root binary has some lim-
itations. Specifically, the loader automatically discards some of the environ-
ment variables when executing setuid-to-root binaries because environment
variables such as LD LIBRARY PATH and LD PRELOAD can compromise
the execution of the setuid process and lead to privilege escalation attacks.
Relying on exec-time to grant two userids could therefore affect the function-
ality of applications.

Another way to grant processes two different userids is by inheriting the
two userids from their parent processes during exec. It is therefore important
to understand the semantics of exec when processes have multiple userids.
When a process executes an image, its suid will be overwritten by the pro-
cess’s euid. Only processes’ ruid and euid are preserved when exec is called.
This is because suid is considered for program’s internal use and hence is not
preserved across exec. As a result, our system cannot use suid for propagat-
ing the two userids.

Since a process with two userids represents a benign, downgradeable pro-
cess in our design, the euid of this process should be made to correspond to a
benign user so that it is granted the privileges of a benign user. That leaves
only the ruid field available to store an untrusted userid. Unfortunately, us-
ing ruid in this manner violates the intended semantics of ruid, which leads
to compatibility problems. For instance, applications frequently use access

system call to verify user privileges. If we store an untrusted userid in the
place of ruid, such applications will receive incorrect information about the
actions permissible for a process. It may seem possible to address this in-
compatibility by transparently replacing a call to access with an eaccess
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that uses euid instead of ruid. Unfortunately, this does not work either, be-
cause eaccess is not compatible with systems that use ACLs in addition to
conventional UNIX file permissions.

Considering the complications mentioned above, we devised an approach
that stores the untrusted userid into suid normally, but moves it into ruid
during exec. When executing a setuid-to-root binary, the process will have
ruid as untrusted and euid representing the real user. After executing the
desired program image, we can then have suid set to untrusted, and both
of ruid and euid set to that of the real user. This approach preserves the
semantics of the userids: ruid and euid remain unchanged as if on unprotected
system.

Dynamic Downgrading

There are three type of processes in our system: Downgradable benign pro-
cesses, non-downgradable benign processes and untrusted processes. They
are different based on the userids they have. Non-downgradable benign pro-
cesses and untrusted processes in our system are characterized by having the
same value for all three of their uids. Downgradable benign processes have
both the ruid and euid set to that of the real user, with suid corresponding
to an untrusted user. This factor enables downgradable processes to change
their label from benign to untrusted at any time during their execution. Nat-
urally, care needs to be exercised to ensure that this switch operation is
secure.

While downgrading a process in our system is as simple as calling
setresuid with the untrusted userid as a parameter. However, simply down-
grading in this manner won’t be secure because a downgraded process may
file descriptors that were opened when the process was benign. As in the
case of execve-time downgrade, open file descriptors need to be examined.
However, instead of closing these file descriptors, as was done in the case of
uudo, we prefer the simpler option of failing the setresuid operation if there
are open file descriptors that enable the process to write to a benign file. This
simple option is compatible with the dynamic downgrading primitive needed
in our system. (See Section 5.5)

For a single process, it is easy to check its open file descriptors to deter-
mine if any of them point to benign files. But things become more complex
in the presence of IPC. When multiple processes are connected via IPC, in-
formation can flow from one process to another. If any of the downstream
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processes have a high integrity file opened for writing, upstream processes
should not be allowed to open a low integrity file for reading.

When multiple processes are connected via IPC, our system creates a
shared memory region. Each of the benign member of the connected pro-
cesses shares its opened file information with other processes. The shared
memory region contains information for each of the interacting processes,
and this information states if the process has a high integrity file opened for
writing. This information is sufficient to determine whether a downgrade
should be allowed to proceed or not. If so, the process can mark itself as
downgraded, detach itself from the shared memory, and downgrades itself.
In addition, processes keep monitoring the integrity of upstream processes,
and if any of them become low integrity, they will downgrade themselves as
well.

Apart from userid, processes can also access resources based on groupid
and supplementary groups. groupid can be downgraded similar to how userid
is downgraded. However, there is no mechanism to support downgrading sup-
plementary groupids. As such, supplementary group accesses are no longer
supported in the system. For supplementary group accesses, the system
convert it to helper-based access as in Spif for downgradable processes.
Downgradable processes are therefore started with no supplementary groups.

Limitations

One of the obvious limitation of the user-level dynamic downgrading ap-
proach is that a process can only downgrade at most once during its execu-
tion. This is because at most two userids can be propagated across exec, and
every downgrading would consume one userid. However, a new userid can be
resupplied by exec. The system can therefore allows processes to downgrade
once during its execution.

Another limitation is that the level to downgrade to have to be decided
ahead of time. This restriction, again, stems from the fact that processes can
only carry two userids across exec.

4.5 Implementation

We implemented our dual-sandboxing enforcement mechanism on Ubuntu,
PCBSD, and Windows. Our primary implementation was performed mainly
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on Ubuntu 10.04 and Windows 8. We ported our system to PCBSD, one of
the best known desktop versions of BSD, to illustrate its feasibility on BSD
system. In addition, we also tested the system on Windows XP, 7, 8, and
Windows 10. We discuss the implementation specifics below:

4.5.1 Initialization

When our system is installed, existing files are considered as benign. Per-
mission on existing world-writable files need to be changed so that they are
not writable by untrusted processes.

Ubuntu We found no world-writable regular files on Ubuntu, so no per-
mission changes were needed. There were 26 world-writable devices, but
our approach did not change their permissions because they do not behave
like files. Our approach also left permissions on sockets unchanged because
some BSD systems ignore permissions on sockets. Instead, our system per-
forms checking during the accept system call. World-writable directory with
sticky-bit set were left unmodified because OSes enforce a policy that closely
matches our requirement. Half of the 48 world-executable setuid programs
were modified to group-executable by GB. The rest were setgid programs
and were protected using ACLs.

Windows Installation of our approach on Windows involves modifying
ACLs. As Windows ACL supports inheritance, only a few directories and
registry entries need updating— by default, Windows allows any user to cre-
ate files in the root directory (e.g., C:\) and various system directories. Our
system modified ACL to protect these directories such that untrusted files
can only be created in shadowed or redirected directories. Instead of creating
a new group GB on Windows, our mechanism created negative ACL entries
to revoke the write permissions of these directories. It also granted read and
traversal permissions to RU on R’s home directory and registry subtree. This
removes the need of the helper process UH .

Some applications (e.g., Photoshop) intentionally leave some directories
and files as writable for everyone. As such, untrusted processes could also
write to these locations. Our approach prevented untrusted processes from
writing into these locations by revoking write permissions from untrusted
users. This was achieved by explicitly denying writes in ACLs. Once our
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system is installed, our system’s benign sandbox will automatically modify
ACLs to newly created world-writable files/directories/registry entries.

Some system files are writable by all users, yet they are protected by
digital signatures. Our system currently does not consider digital signatures
as provenance label, and hence it grants benign processes exceptions to read
these “untrusted” files. A better approach is to incorporate signatures into
provenance label so that no exception needs to be granted.

Apart from files, there were also other world-writable resources such as
named pipes and devices for system-wide services. Our system granted ex-
ceptions for these resources as none of them could be controlled by untrusted
processes, and these resources do not carry untrusted information.

Our system also created a shadow and a redirect directory and granted
untrusted processes full control to the directories.

UL and BL realization

Policy enforcement mechanics On Ubuntu, our system modifies the
system library at the binary level to realize the functionality of UL and BL.
Fifteen assembly instructions were inserted around each system call invo-
cation sites in system libraries (libc and libpthread). This allows our
system to intercept all system calls. Our implementation then modifies the
behavior of these system calls as needed to realize the sandboxes described
in Section 4.2 and 4.3. Our system also modified the loader to refuse loading
untrusted libraries for benign processes.

We cannot rely on the same mechanism to hook on Windows APIs. This
is because Windows protects DLLs from tampering using digital signatures.
Instead, our approach relies on the dynamic binary instrumentation tool
Detours [Microsoft Research, 2015]. Detours works by rewriting in-memory
function entry-points with jumps to specified wrappers. Our system builds
wrappers around low-level APIs in ntdll.dll to modify API behaviors.

To initiate API-hooking, our approach injects UL and BL into every pro-
cess. Upon injection, the DLLMain routines of UL and BL will be invoked,
which, in turn, invoke Detours and trigger the API interception.

Our approach relies on two methods to inject UL and BL into process
memory. The first one is based on AppInit DLLs [Microsoft, 2015d], which
is a registry entry used by user32.dll. Whenever user32.dll is loaded into
a process, the DLL paths specified in the registry AppInit DLLs will also be
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Shared Ubuntu PCBSD

Require no instrumentation 118 170 205

Benign Sandbox 49 6 29

Untrusted Sandbox 55 7 40

Figure 4.3: Number of system calls intercepted in Ubuntu and PCBSD

loaded.
A second method is used for a few console-based applications (e.g., the

SPEC benchmark) that don’t load user32.dll. This method relies on the
ability to create a child process in suspended state (by setting the flag
CREATE SUSPENDED). The parent then writes the path of the dll into the mem-
ory of the child process, and creates a remote thread to run LoadLibraryA

with this path as argument. After this step, the parent releases the child
from suspension.

We rely on the first method to bootstrap the API interception process.
Once the library is loaded into a process, all descendants of the process will
be intercepted by making use of the second method. Although our approach
may miss some processes started at the early booting stage, most processes
(such as the login and Windows Explorer) are intercepted.

Enforcement on system calls Figure 4.3 shows the number of system
calls that out approach instrumented to enforce policies on Ubuntu and
PCBSD. On i386 Linux, some calls are multiplexed using a single system
call number (e.g., socketcall). We demultiplexed them so that the results
are comparable to BSD. Most of the system calls require no instrumentation.
A large number of system calls that require instrumentation are shared be-
tween the OSes. Note that some calls, e.g., open, need to be instrumented
in both sandboxes.

A large portion of the PCBSD specific system calls are never invoked: e.g.,
NFS, access control list, and mandatory access control related calls. Of those
59 (10 overlaps in both sandboxes) system calls that require instrumentation,
29 are in the benign sandbox. However, only 4 (nmount, kldload, fexecve,
eaccess) out of the 29 calls are actually used in our system. Hence, we only
handle these 4 calls. For the rest of the calls, we warn about the missing
implementation if there is any invocation. The other 40 calls in untrusted
sandbox are for providing transparency. We found that implementing only
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a subset of them (futimes, lchmod, lutimes) is sufficient for the OS and
applications like Firefox and OpenOffice to run. Note that incomplete
implementation in the transparency library UL does not compromise security.

On Windows, our system intercepts mainly the low-level functions in
kernel32.dll and ntdll.dll. Higher-level Windows functions such as
CreateFile(A/W) , CopyFile(A/W), MoveFile(A/W), ReplaceFile(A/W),
GetProfile... FindFirstFile(A/W),FindFirstFileEx, 8 rely on a few low-
level functions such as NtCreateFile, NtSetInformationFile and
NtQueryAttributes. By intercepting these low-level functions, all of the
higher-level APIs can be handled. Our experience shows that changes to
these lower level functions are very rare9. Moreover, some applications such
as cygwin don’t use higher-level Windows APIs, but still rely on the low-
level APIs. By hooking at the lower-level API, our system can handle such
applications as well. Figure 4.4 shows a list of API functions that our system
intercepts.

There are 276 system calls in 32-bit Windows XP and 426 in 32-bit Win-
dows 8.1. Although the number of system calls on Windows and Unix are
comparable, system calls on Windows are more complicated than those on
Unix. Windows has a large number of higher-level APIs that are translated
into lower-level APIs by DLLs. For example, a file-open on Unix (open(2))
takes up to 3 arguments. On the other hand, file-open on Windows requires
NtCreateFile, which takes 11 arguments. Apart from the file-path and
open-mode, additional arguments are for setting file attributes, storing re-
quest completion status, setting allocation size, controlling share access, spec-
ifying how the file is accessed, and setting extended attributes. As such, the
number of system calls that our approach needs to handle is much less than on
Ubuntu. Apart from low-level APIs, our system also intercepts a few higher-
level functions as they provide more context that enables policies to make
better choices. For example, our system intercepts CreateProcess(A/W) to
check if a benign executable is being passed an untrusted file argument, and if
so, create an untrusted process. This has allowed policy inference Chapter 6.

8Calls ending with “A” are for ASCII arguments, “W” are for wide character string
arguments.

9We did see new functions in Windows 8.1 that our system needed to handle.
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API Type APIs

File NtCreateFile, NtOpenFile, NtSetInformationFile,

NtQueryAttributes, NtQueryAttributesFile,

NtQueryDirectoryFile,...

Process CreateProcess(A/W)

Registry NtCreateKey, NtOpenKey,NtSetValueKey, NtQueryKey,

NtQueryValueKey,...

Figure 4.4: Windows API functions intercepted by dual-sandbox architecture

LOC

C/C++ header Other

Ubuntu +PCBSD Ubuntu +PCBSD Both

Shared 2208 130 737 27 39

helper UH 703 16 106

uudo 68 52

BL ∩ UL 811 15 492 30 74

BL only 451 67

UL only 944 81

Total 5185 361 1335 57 113

Figure 4.5: Code complexity for realizing dual-sandbox on Ubuntu and
PCBSD

4.5.2 Code complexity

Ubuntu and PCBSD Figure 4.5 shows the code size of different com-
ponents for supporting Ubuntu, and the additional code for PCBSD. The
overall size of code is not very large. Moreover, a significant fraction of the
code is targeted at application transparency. We estimate that the code that
is truly relevant for security is less than half of that shown, and hence the
additions introduced to the TCB size are modest. At the same time, our
system reduces the size of the TCB by a much larger amount, because many
programs that needed to be trusted to be free of vulnerabilities don’t have
to be trusted any more.

Windows As for Windows, our system consists of 4000 lines of C++ and
1500 lines of header. This small size is a testament to the design choices
made in our design. In particular, the helper UH is removed because of the
ACL support on Windows allows our approach to grant untrusted processes
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the precious set of permissions that UH needs to grant. A small code size
usually translates to a higher level of assurance about safety and security.
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Part II

Policies
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Chapter 5

Comparing Integrity Policies:
Functionality, Compatibility,
and Security

The second important component of our work is policy. A policy dictates how
subjects and objects with different provenance labels can interact during an
operation or within an execution. In this chapter, we consider several policies
for integrity preservation. While all of these policies stop integrity violations,
the manner in which they do so can differ substantially:

• Stop (potential) violations by altering executions: The most
obvious resolution is to deny violating operations, as in the Biba [Biba,
1977] policy. However, simply denying the operation can lead to us-
ability problems, e.g., a high integrity process attempting to run a
low integrity program image would fail. Some policies allow this by
downgrading the integrity of processes at runtime. Such downgrad-
ing, however, can create another usability problem: by the time the
execution is known to be unsafe, there may no longer be an effective
way to communicate the violation to the program. This leads to com-
patibility problems that can cause application crashes, which, in turn,
may leave the system in an inconsistent state. ED/UII (Chapter 6)
and SRFD (Section 5.5) are two new policies we explore to improve
usability without impacting compatibility.

• Rollback the changes made during executions: The policies dis-
cussed above perform eager enforcement: they determine the safety of
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an operation before it is performed. However, there are scenarios where
the safety of an operation cannot be determined until we examine sub-
sequent operations. We discussed a delayed enforcement mechanism in
the previous part of this dissertation in order to support such policies.
With this mechanism in place, the effects of execution are isolated from
the rest of the system, and they are subsequently examined to deter-
mine their safety. If this check succeeds, the effects will be committed
and made visible to other processes in the system. Otherwise, the
changes can be discarded as if the execution never occurred. The two
advantages of delayed enforcement are that:

– it supports strictly more powerful policies as it allows intermediate
unsafe changes, and

– it stops only those violating executions without needing to be
overly conservative.

Note that eager enforcement is limited to the class of enforceable poli-
cies [Schneider, 2000], while deferred enforcement can support policies
expressible using edit automata [Ligatti et al., 2005].

In this chapter, we discuss policies based on eager enforcement first, and
then proceed to discuss policies that can be realized with delayed enforce-
ment. Our goal is to compare these policies using three criteria: functionality,
application compatibility, and user experience.

5.1 Criteria for usable policies

• Functionality concerns the ability of a policy to permit safe execu-
tions. Safe executions do not compromise the security goal of the sys-
tems and can run perfectly on unprotected systems. Ideally, a usable
policy should permit every safe execution so that application actions are
denied only when absolutely essential to preserve security. Permitting
every safe execution, however, could lead to application compatibility
problem below.

• Application compatibility concerns the ability of applications to
recover from permission denials. One way to stop unsafe executions
is to deny the operations that would compromise the security goal,
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e.g., a write operation by a low integrity process to a high integrity
file. However, denying the operations at such a late stage could lead
to compatibility problems: Programs may not be designed to handle
such failures and may not have any recovery mechanism to recover from
inconsistent states.

Leaving systems in an inconsistent state also affects usability. One of
the criteria of policies is to fail unsafe executions gracefully rather than
abruptly. Policies use different strategies to detect potential unsafe ex-
ecutions and fail them earlier in the executions (promote early failures)
as to achieve application compatibility.

• User experience concerns additional user prompts, the need for users
to make security decisions or to modify their behavior. Ideally, security
mechanisms should not assume that users are well-informed about the
security consequences of their actions, or that they will take the time
to carefully and thoughtfully answer security prompts.

In order to define these criteria formally, we begin by formalizing process
execution in terms of the sequence of actions A = A1 . . . An performed by
it1. Each action Ai can be:

• an invocation (I), typically, the execution of another program;

• an observation (O), typically, a file read operation; or

• a modification (W), typically, a file write operation.

In order to simplify terminology and description, we consider only two
integrity levels in this chapter: benign/high (Hi) and untrusted/low (Lo).
Objects (typically files) as well as subjects (processes) have one of these
integrity levels.

1 Schneider [Schneider, 2000] formulates enforceable security policies using the formal-
ism of security automata. These automata make transitions that are entirely based on
a subject’s own operations, such as open’s, read’s and write’s. Whereas these automata
can only accept or reject an execution sequence, Ligatti et al [Ligatti et al., 2005] pro-
posed a more powerful automata called edit automata that could also suppress or modify
a subject’s actions. We also use automata to compare different downgrading schemes for
information flow systems, but the transitions in our automata are not only dependent on
the subject’s actions, but also the state of the file system. This is because whether an
operation opens a high or low-integrity file is a function of the file system state. Indeed,
Ligatti et al [Ligatti et al., 2005] explicitly specify that security properties in their model
are those that are purely functions of the operation sequence.
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Definition 6 (Integrity-preserving executions)
Integrity-preserving executions ensure that the content of all high integrity
objects are derived entirely from other high integrity objects and subjects.

A strong integrity-preservation policy, such as the Biba’s strict integrity pol-
icy and the low-water-mark policy, will ensure that all executions are integrity
preserving. In particular, this means that low-integrity data and programs
cannot influence the contents of integrity-critical (data or program) files on
the system. Today’s remote exploits and malware attacks all rely on modify-
ing critical files using data or code from untrusted sources, and hence can be
definitively blocked by enforcing these integrity policies, provided that only
data and code from trustworthy sources is given a high integrity label.

A security policy can alter an execution sequence in one of two ways.
First, it can disallow an operation Ai, denoted as /Ai. There are several pos-
sibilities here, including (a) silent suppression of Ai, (b) suppressing Ai and
returning an error to the process performing this operation, and (c) replacing
Ai with another allowable action. We primarily focus on the alternative (b).

A second avenue for the enforcement engine is to downgrade a subject
before Ai, denoted ↓Ai. Note that such a downgrade may be an internal
operation within a reference monitor enforcing the policy, and hence we may
not explicitly show it in some instances.

We call executions without any failed operations permitted or successful
executions, while the rest are called failed executions. The more execution
sequences that a security policy permits, the less functionality will be lost as
a result of security policy enforcement. This leads to the following definition
comparing the functionality of different security policies.

Definition 7 (Functionality)
A security policy P1 is said to be more functional than P2, denoted P1 ⊇F P2,

if and only if every execution sequence permitted by P2 is also permitted by
P1.

Note that functionality defines a partial order on security policies, and hence
two policies could be incomparable in terms of functionality. By permitting
more executions, a more functional policy would seem to have weaker security
than a less functional policy, thus capturing the tension between functionality
and security.
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5.2 Integrity policies

We can now classify actions into two categories: high integrity actions (AH)
that can be performed by high integrity subjects, and low integrity actions
(AL) that can be performed by low integrity subjects. Specifically, AH in-
cludes all actions except read-down (OL), i.e., read from a low-integrity input,
and invoke-down (IL), i.e., executing a program that has low integrity. AL

includes all actions except write-up (WH). Note that IH is permitted in AL

because we interpret it as the execution of a high integrity file within a low
integrity subject. (In contrast, the term “invoke-up” is used in Biba model
to refer to the execution of a high integrity subject.)

Integrity-preserving execution sequences can be realized by confining high
integrity processes to perform only AH , and low integrity processes to perform
only AL. Since WH exists only in AH and OL exists only in AL, it is clear
that low-integrity objects and subjects cannot affect high-integrity objects.

Most systems do not allow revisions to object integrity levels. However,
subject integrity label can be revised down as long as the downgraded subject
is restricted to perform AL after the downgrade. This leads to the following
variants that all preserve integrity.

No Downgrading (ND). This policy, which corresponds to the Biba
strict policy, permits no privilege revision (NPR): labels are statically as-
signed to subjects and objects, and they cannot change. With this strict
interpretation, every program has to be labeled as high or low integrity, and
a high integrity program cannot be used to process low integrity data, even
if all outputs resulting from such use flow only to low-integrity files or low-
integrity subjects.

Early downgrading (ED). This policy permits subject labels to be down-
graded, but only when executing a program. This approach, also called privi-
lege revision on invocation (PRI), allows more executions as compared to the
no-downgrading policy. With the PRI policy, a subject wishing to operate on
low-integrity files should know ahead of time (i.e., prior to execution) that it
needs to consume low-integrity file, and drop its privilege before execution.
This is why we call it early downgrading.
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Hi Lo

AH = {OH ,WH ,WL, IH}
AL = {OH , OL,WL, IL}

ALAH

OL

IH

IL

Figure 5.1: State machine for integrity-preserving executions.

Lazy downgrading (LD). The final policy is the low-water-mark policy
for subjects, where downgrades can happen before any observe operation
or an invoke operation. We call it lazy (or just-in-time) downgrading since
downgrading operation would typically be delayed until the very last step,
which must be the consumption of a low-integrity input.

Figure 5.1 shows a simple state-machine model that captures the above
three policies. With the ND policy, none of the transitions between Hi and
Lo states are available. With the ED policy, only the transitions on IL and
IH are enabled. Note that while it is mandatory to transition to Lo on IL,
IH may or may not cause a transition to Lo. When it does, it corresponds
to the use of a high-integrity application to process low-integrity data.

With the LD policy, only the IL and OL transitions from Hi to Lo are
enabled. There is no need to make a transition from Hi to Lo on IH , as
the downgrade can be deferred until the next operation to read low-integrity
data. As a result, LD avoids one of the difficulties of ED, namely, the need
to predict ahead of time whether a certain process will need to read low-
integrity data. uudo inference described previously is a technique to make
ED more usable.

5.3 Comparing functionalities of integrity poli-

cies

It is easy to see the motivation for the LD policy: when the actions performed
by an application are disallowed, it can lead to errors and failures, and hence
loss of functionality. In contrast, downgrading has the potential to permit
the application to continue and function. In fact, we can formally state:
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Theorem 8 LD ⊃F ED ⊃F ND

Proof: This theorem simply states that LD is strictly more functional than
ED, which, in turn, is more functional than ND. From the definition of the
three policies, and Figure 5.1, it is easy to see that all three policies accept
the same set A∗L of execution sequences for low-integrity subjects. (We are
using a regular expression syntax to succinctly capture the set of execution
sequences permitted by a policy.) Thus, we can limit our comparisons to
the execution sequences permitted for high-integrity subjects. Note that
ND accepts only sequences of the form A∗H for high-integrity subjects. ED
accepts (IL|IH)A∗L for subjects started with high, in addition to the set A∗H .
Finally, LD accepts A∗H(IL|OL)A∗L, which is a strict superset of sequences
accepted by ED.

5.4 Compatibility

Increased functionality does not always translate to a better user experience,
or better compatibility with existing software. Self-revocation is a prime
example of the compatibility problem posed by LD, an approach that max-
imizes functionality over other integrity policies. In contrast, ED is less
functional as compared to LD, but is considered more compatible.

Self-revocation occurs when a subject is initially granted access to a re-
source, but this access is revoked subsequently; and the revocation is the
result of some of the other actions performed by the subject itself. More
concretely, self-revocation manifests itself as follows in the context of file
system APIs provided by modern operating systems: a process successfully
opens a file, but a subsequent write operation using that file handle is denied.
Although self-revocation is more commonly identified with failures of writes,
it can also happen on read operations. In both cases, self-revocation raises
several compatibility issues:

• The file system API is designed to perform security checks on open op-
erations, but not on reads and writes. As a result, there is usually no
way to even communicate a security failure to the subject performing
the read or write2. Thus, security failures have to be mapped into other

2For instance, on UNIX, there are no error codes related to permissions that can be
returned by read and write system calls.
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failures that can occur on reads/writes, such as an attempt to read a
file before opening it. Such remapping has obvious drawbacks because
applications may misinterpret the error code and respond inappropri-
ately.

• Even if an error code is returned on reads and writes, many applications
may not check them at all. This is because failures of these operations
are rare and unexpected, so many applications may not contain code
for checking these error cases, or undertaking any meaningful error
recovery.

• Even if the application checks the error and undertakes recovery, data
loss or corruption may be unavoidable at this point. Consider an ap-
plication that was updating a file. If its write access is taken away
when it is half-way through the update, that may lead to the file being
truncated, leading to data loss, inconsistency or corruption.3

For this reason, we develop the following notion of application compati-
bility, or simply, compatibility of security policies.

Definition 9 (Compatibility)
We say that a security policy P is compatible if all actions disallowed by

it can return a valid permission failure error to the subject.

With contemporary file APIs, this means that a compatible policy would
deny open’s but not reads/writes. We show that in terms of compatibility,
the results are inverted from that of functionality:

Theorem 10 LD is not failure-compatible, whereas ND and ED are both
failure compatible.

Proof: Recall that for subjects that start at low integrity, all three policies
allow A∗L. It is clear that this sequence permits the same set of operations
throughout, so self-revocation is not possible. For high-integrity subjects,
ND accepts A∗H — again, the set of operations permitted remain constant
throughout the subject’s lifetime, and hence there will be no self-revocation.
For ED, the sequences accepted are of the form A∗H or A∗L. For each alternate,

3With buffered I/O, even the data that an application believes to have written prior to
the self-revoking action may be lost — such data may be held in the program’s internal
buffers, which may be flushed much later, at which point, the write system call would fail.
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it is easy to see that all of the actions permitted towards the beginning of
the sequence are also permitted later on, once again ruling out the possibility
of self-revocation. Finally, we have already explained how LD suffers from
self-revocation.

5.5 Self-Revocation Free Downgrading

LOMAC [Fraser, 2000] argues that a central reason for non-adoption of con-
ventional information flow techniques is that of compatibility. They con-
sider information flow systems that allow privilege revision (such as dynamic
downgrades) and those that don’t, and conclude that former class has in-
creased compatibility. They point out that policies such as low-water-mark
policy had not received much attention because of the self-revocation prob-
lem. They proceeded to address this problem in a particularly common case,
namely, the pipelines created by shell processes. As noted earlier, their so-
lution relied on the shell’s use of Unix process groups to run each pipeline,
and ensuring that all processes within such a group had identical integrity
labels. In this manner, there will never be a need to restrict communi-
cations within a process group, and thus self-revocation involving pipes is
prevented. They remark that they “cannot entirely remove this pathological
case without also removing the protective properties of the model.” Indeed,
the solution they present does not attempt to address revocations involving
files, sockets, etc. Our work is inspired by their comments, and shows that
it is in fact possible to retain the security benefits of integrity protection, as
well as the compatibility benefits of privilege revision without incurring the
cost of self-revocation.

The results in the previous section lead to the following question: can
there be an approach that is preferable in terms of both functionality and
compatibility? Our answer is affirmative. We begin by positing the existence
of a new dynamic downgrading policy that combines LD’s functionality with
the compatibility of ED.

Definition 11 (Self-revocation-free downgrading)
SRFD accepts the same set of execution sequences as LD. Every sequence

that is modified by LD is also modified by SRFD, but unlike LD, SRFD only
modifies (i.e., denies) open operations.
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So, the next natural question is whether SRFD is realizable. Conceptually,
we can synthesize execution sequences accepted or modified by SRFD from
the acceptance or modification actions of LD as follows. If LD accepts
a sequence, then SRFD will accept the same sequence. If LD modifies a
sequence, let Ai be the first write operation denied by LD. SRFD will
identify the open operation Aj preceding Ai that caused LD to downgrade
the subject, and then SRFD will deny Aj.

Noting that LD denies only write operations on high-integrity files, this
means that SRFD needs to predict whether a subject will perform future
writes on any of the currently open file descriptors for accessing high-integrity
files. If so, SRFD should not permit the subject to open any low-integrity
file. In this manner, SRFD can prevent the subject from downgrading itself,
and hence will not have to deny writes on one of these descriptors in the
future.

This raises the final question: how can a reference monitor predict future
actions of a subject? Often, questions regarding future behavior are answered
by assuming that any thing that can happen will indeed happen. We formal-
ize this by characterizing a class of programs that transfer data along every
possible communication channel between communicating processes, and show
that for this class, SRFD can indeed be realized.

Another way to characterize our result is as follows. Unless an oracle for
predicting future behavior of a set of communicating processes exists, one
cannot improve over the functionality of the design presented in the next
section without risking self-revocation.

Our implementation of SRFD on contemporary operating systems was
based on the kernel-based mechanism described in Chapter 3. We show that
SRFD eliminates self-revocations and unless future inter-process communi-
cations can be predicted accurately, it is not possible to improve on the
functionality of SRFD without incurring self-revocation.

Theorem 12 There will be no self-revocations experienced by the implemen-
tation described above.

Proof: The proof is by contradiction. Suppose that a self-revocation takes
place on a read or write operation that transfers data from A to B. From
Observation 3, self-revocation can happen only when current lbl(A) <
min lbl(B). Together with Invariant 2, this implies that min lbl(A) <
min lbl(B). However, note that it is invalid to issue a read or write opera-
tion before setting up the information flow path between A and B. (In this
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case, the path happens to be of length 1.) From Invariant 4, the condition
min lbl(A) ≥ min lbl(B) must also hold, thus leading to a contradiction.

Definition 13 (Flow-indeterminate programs) A set of programs are
said to be flow-indeterminate if for any set of communicating processes run-
ning them, the following condition holds: for every communication path p
between any two processes, there will be data transfer operations that cause
data to flow from the beginning to the end of this path.

Flow-indeterminacy simply formalizes the idea that programs may exhibit
any possible pattern of communication that is consistent with their current
set of open file descriptors; and that there is no simple yet general way to
delineate likely communications from those that are unlikely/impossible.

Theorem 14 For flow-indeterminate programs, any policy that accepts any
execution rejected by SRFD will suffer from self-revocation.

Proof: For an execution sequence rejected by our approach, consider the first
operation Ai that is denied. From the description of the approach in Sec-
tion 3.3.3, Ai must be an open operation that would have created a path from
entity A to B such that current lbl(A) < min lbl(B). Now, suppose that
there exists a correct integrity policy P that permits this open operation.
Then, because of the properties of flow-indeterminate programs, it can be
seen that there will be a subsequent operation that transfers data from A to
B. This will either have to be denied, or it will cause current lbl(B) to fall
below min lbl(B). The former case corresponds to self-revocation, thus com-
pleting the proof. In the latter case, from Observation 5, it can be seen that
there is some output file Bi whose min lbl is higher than current lbl(B).
Also, from properties of flow-indeterminate programs, there will be an ac-
tual data flow from B to Bi, which will cause the output file Bi’s label to fall
below its minimum value. This is not permissible in the model, and hence
the more permissive policy P is simply invalid. Thus, in either case, we
have established that the functionality offered by SRFD cannot be increased
without risking self-revocation.

Thus, for flow-indeterminate programs, we have shown that SRFD allows
the same successful executions as any other valid information-flow policy that
is free of self-revocations. Thus, SRFD represents the maximal functionality
achievable without any self-revocations. We present our implementation of
SRFD in Chapter 9.
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5.6 Integrity and Availability Guarantees

In this section, we provide a formal treatment of the integrity and availabil-
ity guarantees that can be provided by the integrity preservation policies
described in previous sections. Key difficulties in this formalization are those
of defining what it means for a system to possess high integrity, and how
to account for the effects of actions performed by malicious or careless users
that may indeed compromise security. The novelty of our approach is that
it enables these problems to be side-stepped.

In our analysis, we assume that the OS kernel is not vulnerable. We also
assume that all files that kernel reads directly (not including those read on
behalf of user-level processes) are writable only by the system administrator4.
Since our system does not permit low-integrity code to run with system
administrator privilege, the kernel will never read a low-integrity file, nor
will it fail due to the absence of such a file (as low-integrity code could not
have created the file in the first place). As a result, integrity and availability
failures can only be experienced by user-level processes. Hence the proofs
below target only at user-level processes.

We also assume that no low-integrity file will be marked high-integrity,
regardless of how the file entered the system.

5.6.1 Integrity Preservation

We use F to denote the state of the file system. The file system state evolves
discretely over time, with each change corresponding to the execution of
a command c, denoted F

c−→ F′. A command includes a program name,
and encompasses both command-line arguments and environment variables.
We denote a command invoked by a high-integrity process as high-integrity
command. During an execution, a process may read a set of input files, and
produce a set of output files. For simplification, we assume that commands
are deterministic, i.e., two executions of the same program with identical
command-line arguments, environment, and system state will result in ex-
actly the same set of changes to F. Some times we use the notation F(t) to
denote system state at time t.

The most natural steps towards a proof would seem to be: (1) provide

4Recall from the description of UL that this property holds for loadable kernel modules
as well.
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a formal definition of integrity, and (2) prove that our sandboxes preserve
integrity after every command execution. Unfortunately, both steps are prob-
lematic. Firstly, contemporary OSes are too complex and dynamic to develop
a precise yet practical definition of integrity. Secondly, even in the absence of
any low-integrity code, system integrity could be compromised due to factors
such as human errors, e.g., running an important system script with incorrect
parameters. Thus, a formal proof requires a different way of thinking about
the problem.

To overcome the first problem, we develop an abstract characterization
of integrity: our proof relies on the existence of a function I for determining
integrity, but does not require its details to be spelt out. Formally:

I : F×N −→ {0, 1}
such that system integrity held at some time t0 (i.e., I(F(t0), N) = 1).

Here, N is a subset of filenames in F(t0) that are relevant for integrity.
Moreover, we assume that all files in N are labeled as high-integrity at the
start time t0. In the degenerate case, where some of the files in N are not
present in F, I returns 0.

To overcome the second problem, i.e., side-step the effect of human errors,
we don’t prove that command executions always preserve integrity. Instead,
we show that (a) if integrity is lost, then its root cause can be traced to a high-
integrity command execution, and (b) the loss would have been experienced
even if there was no low-integrity code or data on the system.

Lemma 15 In the absence of trusted processes (i.e., processes that remain
high-integrity after consuming low-integrity inputs), system integrity cannot
be compromised due to the presence of low-integrity files.

Proof: If integrity is never lost, then there is nothing to prove. Otherwise,
let tm be the earliest time when I(F(tm), N) = 0. Let us denote the evolution
of system state from t0 to tm as follows:

F(t0)
c1−→ F(t1)

c2−→ F(t2)
c3−→ · · · cm−→ F(tm) (5.1)

From this sequence, we construct another sequence

FHi(t0)
c′1−→ FHi(t1)

c′2−→ · · · c′m−→ FHi(tm) (5.2)
that consists of only high-integrity commands and operates on the restriction
FHi of the system state to files that are labeled as high-integrity. Command c′i
is the null command (i.e., it leaves the system state unchanged) if ci represents
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a low-integrity command, or else c′i = ci. We now establish the validity of
Sequence (5.2) by induction on m. The base case of m = 0 holds vacuously.
For the induction step, assume that the sequence is valid up to length k− 1.
In the kth step, if ck is a low-integrity process, then, the policies enforced by
the sandboxes ensure that it cannot modify any high-integrity files. Thus,
FHi(tk−1) = FHi(tk), thus validating the kth step with ck being the null
command. If ck is a high-integrity process, then, because of the fact that
none of the high-integrity processes are permitted to consume low-integrity
inputs (or even query their existence), the behavior of ck is solely determined
by the content of high-integrity files in F(tk−1). Due to determinism of
command execution, ck will have identical effects on the file system when
executed on F(tk−1) and FHi(tk−1), so FHi(tk−1)

ck−→ FHi(tk) in this case
too.

Since tm is the first step where integrity does not hold, all of the files in the
set N are present in F(tk) for 0 ≤ k < m. Moreover, due to our policies that
do not permit overwriting a high-integrity file with a low-integrity one, the
files in N will always be high-integrity. This means that FHi(tk) will include
all of the files in N , and hence I(FHi(tk), N) = 1 for 0 ≤ k < m. Since we
assumed I(F(tm), N) = 0, either some of the files in N are not present in
F(tm), or I returns 0 on these files. In either case, I(FHi(tm), N) = 0. Thus,
integrity violation occurs in the Sequence (5.2) that has no low-integrity
executions or files.

Theorem 16 Sandboxes UI , UL and UH ensure that system integrity is not
compromised by low-integrity applications.

Proof:
The proof of Lemma 15 amounted to showing that if there was an integrity

violation, it was due to high-integrity processes. In this theorem, we have one
more reason for integrity violation, namely, a (buggy) trusted process that
compromises the system due to consumption of low-integrity input. This
error should be attributed to the trusted process. We formalize this idea by
treating the input as if it was already embedded in the code of the trusted
process, and then removing the external input.

Specifically, as in the proof of Lemma 15, we start with the sequence that
violates system integrity properties, i.e.,

F(t0)
c1−→ F(t1)

c2−→ F(t2)
c3−→ · · · cm−→ F(tm) (5.3)

73



From this sequence, for each trusted process execution ck in this sequence
that safely consumes a low-integrity file f , we construct another command
ck,f that has the exact same behavior, except that it does not read f at all:

F(t0)
c1−→ F(t1)

c2−→ F(t2)
c3−→ · · ·F(tk−1)

ck,f−→ · · · cm−→ F(tm) (5.4)
This transformation has the effect of attributing integrity violations due

to the consumption of f as an error that is contained entirely within the
trusted process. Once this is done, we have a sequence that is the same as at
the beginning of the proof of Lemma 15, i.e., a sequence without considering
trusted programs. We can reuse that proof to establish that low-integrity
processes and files were not the source of any integrity violations.

5.6.2 Availability Preservation

Although the sandboxing of high-integrity processes has the benefit of en-
hancing system integrity, availability may be degraded since these processes
may now fail due to accesses being denied. However, we show that this
cannot happen in our system.

We use a construction similar to the proof of Theorem 16 to show that
any availability loss is due to high-integrity commands only. We define a
function A for determining availability similar to I:

A : F×N −→ {0, 1}
Here, N is a subset of filenames in F(t0) that are relevant for availability.

We assume that files in N can be partitioned into two sets: NI contains the set
of high-integrity at the start time t0, and NO contains the set of optional files
that can either be of high-integrity or do not exist. Non-existence of files in
NO (e.g., preference files) do not compromise the availability of applications
because applications can create them in the first run.

Similar to the proof for integrity, we don’t prove that benign command
executions always preserve availability. Instead, we show that (a) if avail-
ability is lost, then its root cause can be traced to a high-integrity command
execution, and (b) the loss would have been experienced even if there was no
low-integrity code or data on the system.

Lemma 17 In the absence of trusted processes, system availability cannot
be compromised due to the presence of low-integrity files.
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Proof: If availability is never lost, then there is nothing to prove. Oth-
erwise, let tm be the earliest time when A(F(tm), N) = 0. Let us denote the
evolution of system state from t0 to tm as follows:

F(t0)
c1−→ F(t1)

c2−→ F(t2)
c3−→ · · · cm−→ F(tm) (5.5)

From this sequence, we construct another sequence

FHi(t0)
c′1−→ FHi(t1)

c′2−→ · · · c′m−→ FHi(tm) (5.6)
that consists of only high-integrity commands and operates on the re-

striction FHi of the system state to files that are labeled as high-integrity.
Command c′i is the null command (i.e., it leaves the system state unchanged)
if ci represents a low-integrity command, or else c′i = ci. We now establish
the validity of Sequence (5.2) by induction on m. The base case of m = 0
holds vacuously. For the induction step, assume that the sequence is valid
up to length k − 1. In the kth step, if ck is a low-integrity process, then, the
policies enforced by the sandboxes ensure that it cannot modify any high-
integrity files. Thus, FHi(tk−1) = FHi(tk), thus validating the kth step with
ck being the null command. If ck is a high-integrity process, then, because of
the fact that none of the high-integrity processes are permitted to consume
low-integrity inputs or even query existence of low-integrity files, the behav-
ior of ck is solely determined by the existence and content of high-integrity
files in F(tk−1). Due to determinism of command execution, ck will have
identical effects on the file system when executed on F(tk−1) and FHi(tk−1),

so FHi(tk−1)
ck−→ FHi(tk) in this case too.

Since tm is the first step where availability does not hold, the following
conditions hold for 0 ≤ k < m:

• all of the files in the set NI are present in F(tk), and

• all of the files in the set NO are either present in F(tk) or does not exist

Moreover, due to our policies that do not permit overwriting a high-integrity
file with a low-integrity one, and high-integrity processes cannot determine
the existence of low-integrity files, the files in NI will always be high-integrity,
and the files in NO will always be either high-integrity or their existence
cannot be determined by high-integrity processes. This means that FHi(tk)
will include all of the files in N . The sandbox UI and hence A(FHi(tk), N) = 1
for 0 ≤ k < m. Since we assumed A(F(tm), N) = 0, either some of the files
in NI are not present in F(tm), or A returns 0 on files in NI or NO. In
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either case, A(FHi(tm), N) = 0. Thus, availability violation occurs in the
Sequence (5.6) that has no low-integrity executions or files.

Theorem 18 Sandboxes UI , UL and UH ensure that availability of high-
integrity processes will not be compromised due to the presence of low-integrity
files or their execution.

Proof: The proof of Lemma 17 amounted to showing that if there was
an availability failure, it was due to high-integrity processes. In this the-
orem, we have one more reason for availability failure, namely, a (buggy)
trusted process that compromises the system availability due to consump-
tion of low-integrity input. This error should be attributed to the trusted
process. Similar to integrity, we formalize this idea by treating the input
as if it was already embedded in the code of the trusted process, and then
removing the external input.

Specifically, as in the proof of Lemma 15, we start with the sequence that
violates availability properties. For each trusted process execution ck in this
sequence that safely consumes a low-integrity file f , we construct another
command ck,f that has the exact same behavior, except that it does not read
f at all. This transformation has the effect of attributing availability failure
due to the consumption of f as an error that is contained entirely within
the trusted process. Once this is done, we have a sequence that is the same
as at the beginning of the proof of Lemma 17, so we can reuse that proof
to establish that low-integrity processes and files were not the source of any
availability failures.

Relaxing Assumptions in the Formal Model One of the assumptions
was deterministic execution. This can be relaxed by permitting process ex-
ecutions to transform an input state into one of many possible states, with
the provision that the possibilities remain identical for the same input state.
This would allow the proof to be easily carried through.

A second assumption was sequential execution of processes. This can
easily be relaxed to permit common cases where multiple processes interact
with each other, while executing concurrently. For instance, consider the
common case of a script that starts up several processes over its lifetime, and
ensures that all of these processes are terminated before its own termination.
This set of process executions can be captured as if it is one large command
that executed.
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5.7 Delayed Enforcement

In this section, we discuss policies that can be realized with delayed en-
forcement (DE), which requires rollback and commit capabilities from the
enforcement framework. Unlike ED/UII and SRFD, DE is not based on
downgrading. DE first isolates the effect of an execution. When the ex-
ecution has completed, the effect of the execution will be checked by the
policy. If the policy determines the changes are safe, DE will commit the
effects. Otherwise, the changes will be discarded as if the execution never
took place.

It is clear that delayed enforcement can permit all executions that can
be determined to be safe by eager enforcement. In addition, DE can permit
some executions that go through unsafe intermediate states before reaching
a safe final state. Such executions would be denied by previously discussed
integrity policies. For this reason, DE’s functionality is strictly superior to
that of ND, ED, LD, or SRFD. Moreover, using a rollback capability, it is
possible to cleanly recover from aborted executions. In other words, it is no
longer necessary to communicate security errors to a subject in a meaningful
way: if an operation is to be denied, and there isn’t a way to communicate
permission denial to an application, the whole execution can be rolled back5.
Thus, DE can support policies that provide better compatibility than all of
the previously discussed integrity policies.

Finally, DE policies can be simpler to express because they can reference
the state of the system at the end of an execution. In contrast, previous
integrity policies needed to be stated in terms of permissibility of individual
operations. We present a compelling illustration of this ability in Section 10.

DE provides semantics similar to the transactional semantics of edit au-
tomaton [Ligatti et al., 2005], which basically suppress all the actions of the
execution, and emit the execution when the edit automaton determined that
the entire execution is safe.

5Note that since applications are executed in isolation, rollbacks don’t propagate out-
side of this isolated environment. At the end of execution, if the policy is satisfied, the
results are committed at that point, and become visible to the processes that were execut-
ing outside of this isolated environment. See Reference [Liang et al., 2009] for how such
an environment can be realized.
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5.7.1 Discussion

The main reason for resolving policy violations is because they can lead to
partial completion when executions failed due to the unexpected failures in-
troduced by the security systems. Both ED and SRFD make sure all failures
are compatible — fail at open so that applications may handle them more
gracefully. As discussed previously, there is a trade-off between functionality
and compatibility. A system cannot have both because one has to decide
allow or deny for each action. An alternative approach is to build recovery
mechanisms to “rollback” failed executions. This is not always easy to do in
general.

One-way isolation [Sun et al., 2005] uses rollback as the default choice,
while providing primitives to commit executions that the user determines
to be secure. However, it is problematic to rely on users to decide what
is secure. Not only does it demand considerable time, effort and skill on
the part of users, but also suffers from the fact that users could be easily
fooled. Thus, rollback techniques coupled with automated procedures for
determining secure executions are needed. Such automated procedures re-
quire full specification of what is secure — this itself is too a difficult task to
accomplish in general. However, it may be possible to specify detailed and
accurate policies for secure execution in special cases. One example of this
is the secure software installation [Sun et al., 2008a] work, where a policy for
determining secure installations was specified and checked automatically.

TxBox [Jana et al., 2011] relies on TxOS [Porter et al., 2009] to sand-
box and isolate untrusted processes using transactions. It allows untrusted
processes to run until they trigger policy violations. A policy violation is
defined at the system call level. When violations occur, the system state can
be rolled back as if the untrusted process never ran.

Back to the future [Hsu et al., 2006] takes this “rollback” technique to the
extreme. It protects system integrity against malware by rolling the system
back. Instead of confining untrusted processes, it confines benign processes.
Every modification made by untrusted processes is recorded. Whenever a
benign process consumes untrusted data, the entire system will be rolled
back to the “clean” state, and the untrusted process will be terminated.
This allows high-integrity processes to consume only high-integrity data.
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Chapter 6

Policy Inference

Although the policies described in the last chapter seemed fully defined, there
arise several situations where multiple safe alternatives are available, and it is
unclear which of those alternatives is more desirable. For instance, consider
the early downgrade policy. There are situations where the correct option it
to deny the execution of an untrusted executable. In other situations, the
appropriate action is to downgrade the process and to allow the execution
to proceed. One way to resolve this choice is to ask the users to explicitly
indicate if they wish a downgrade to be performed. The uudo helper discussed
in the previous chapter provides a mechanism for doing this. Unfortunately, it
creates too much work for users if they have to manually identify downgrades
every time.

Another situation where a choice arises is as follows. Suppose that an
untrusted subject U tries to overwrite a benign object B. This action could
simply be denied, but this choice may cause U to fail. A second alternative is
to permit the U to create a shadow object BS that is only visible to untrusted
subjects. With this choice, subsequent references to B by untrusted subjects
would be redirected to BS, while benign subjects would directly access B.
Once again, most users won’t have the time and/or knowledge needed to
determine which of the two choices (denial or shadowing) is appropriate.

In this chapter, we develop techniques for automatically inferring the right
choice in scenarios such as those described above. While the inference tech-
niques are not guaranteed to resolve among possible choices in all situations,
they do so in most common cases, thereby minimizing user involvement in
security decisions.
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6.1 Policy inference for untrusted subjects

Our policy for untrusted processes is geared to stop actions that have a high
likelihood of damaging benign processes. A benign process may be compro-
mised by altering its code, configuration, preference, or data input files. Of
these, the first three choices have a much higher likelihood of causing harm
than the last as programs are less likely to be written to protect against them.
For this reason, our policy for untrusted processes is based on denying access
to code, configuration, and preference files of benign processes. However,
note that benign applications may be run as untrusted processes, and in this
case, they may fail if they aren’t permitted to update their preference files.
For this reason, our approach is to shadow writes to preference files, while
denying writes to configuration and code files.

To implement this policy, we could require system administrator (or OS
distributors) to specify code, configuration, and preference files for each ap-
plication. But this is a tedious and error-prone task. Moreover, these details
may change across different software versions, or simply due to differences in
installation or other options.

A second alternative is to do away with this distinction between different
types of files, and apply shadowing to all benign files that untrusted processes
opened for writing, i.e., create an untrusted copy for every benign file. But
this approach has several drawbacks as well:

• Shadowing should be applied to as few files as possible, as users are
unaware of these files. In particular, if data files are shadowed, users
may not be able to locate them. Thus, it is preferable to apply shad-
owing selectively to preference files. (Users can still find the redirected
files as they are visible to benign processes.)

• If accesses to all benign files are shadowed, this will enable a malicious
application to compromise all untrusted executions of benign applica-
tions. As a result, no benign application can be relied on to provide its
intended function in untrusted executions. (Benign executions are not
compromised.)

• Finally, it is helpful to identify and flag accesses that are potentially
indicative of malware. This helps prompt detection and/or removal of
malware from the system.
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We therefore develop an automated approach for inferring different categories
of files, and then apply shadowing to a narrow subset of files.

6.1.1 Explicitly specified versus implicit access to files

When an application accesses a file f , if this access was triggered because of
external input, then this access is considered to be explicitly specified. For
instance, f may be specified as a command-line argument or as an environ-
ment variable. Alternatively, f may have been selected by a user using a file
selection widget. All file accesses that are not explicit are deemed implicit.

Applications seldom rely on an explicit specification of their code, con-
figuration, and preference files. Libraries required are identified and loaded
automatically without a need for listing them by users. Similarly, applica-
tions tend to “know” their configuration and preference files without requir-
ing user input. In contrast, data files are typically specified explicitly. Based
on this observation, we devise an approach to infer implicit accesses made
by benign applications. We monitor these accesses continuously and main-
tain a database of implicitly accessed files, together with the mode of access
(i.e., read-only or read/write) for each executable. The policy for untrusted
subjects is developed from this information, as shown in Figure 6.1.

Note that our inference is based on accesses of benign processes. Un-
trusted executions (even of benign applications) are not considered, thus
avoiding attacks on the inference procedure.

6.1.2 Computing Implicitly Accessed Files

Files that are implicitly accessed by an application are identified by exclusion:
they are the set of files accessed by the application but are not explicitly
specified. Identifying explicitly specified files can be posed as a taint-tracking
problem. Taint sources include:

• command-line parameters

• all environment variables

• file names returned by a file selection widget, which captures file names
selected by a user from a file dialog box
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Implicitly accessed by benign Explicitly

read and write other accessed

Inferred type Preference Code and

configuration

Data

Action Shadow Deny Deny

Figure 6.1: Untrusted Sandbox policy on modifying benign files

Taint in our system is propagated with the following rule: If a directory
with a tainted file name is opened, all of the file names from this directory
are marked as tainted. This is important for file selection dialogs: when
users open a directory by double-clicking on a directory icon in file selection
dialogs, this directory open should be regarded as explicit because users are
involved. Hence, intermediate paths returned should also be intercepted.
Explicitly specified files are those that are tainted.

Our system intercepts exec and CreateProcess to monitor arguments
and environment variables. It also intercepts values returned by file selection
widgets to capture what files users selected. These values are then used to
determine if a file access is explicit. We consider a file access as explicit if
the file accessed has a name that matches the explicit values specified by the
users. Other files are regarded as implicitly accessed.

In terms of implementation, the file name for each file open is matched
against a set of explicit values. Furthermore, values specified by users may
not be exactly the same as the file name appears in open(2): a file may be
specified via command line options: e.g., −config = test. The file eventu-
ally opened can be /path/to/file/test.cfg. The location of the file may
be the current working directory of the process, or a default directory specific
for the application. The argument contains program specific option config,
followed by test, which appears in the actual open system call argument.
We rely on the assumption that file names typically do not contain “−”. If
it identifies an argument starts with “−” or “=,” then it discards parts of
the name up to these symbols. Instead of performing an exact match, we
consider matches if the length of the longest substring between the file ac-
cessed and any of the explicitly specified values exceeds certain size. A match
will be added to the set of explicit values. our approach is to applies Aho-
Corasick [Aho and Corasick, 1975] algorithm to compute the longest common
substring and supports incremental tracking of explicit values efficiently.
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Implicit access Explicit access

Action Deny (file does not exist) Deny (permission denied unless

trust-confined)

Figure 6.2: Benign Sandbox policy on reading untrusted files

With information on whether a file is accessed implicitly by programs
or explicitly by users, different policies can be applied to serve users better.
This “implicit-explicit” technique not only can be used to infer file types
and hence be used for shadowing policy, but also be applied to limit the
trust on programs that need to handle benign and untrusted simultaneously
(Section 6.2).

6.2 Policy inference for benign subjects

Policies can also be inferred for benign programs. We discuss how we auto-
mate the policy inference process for each of the three modes supported on
benign code.

6.2.1 Logical isolation

The default policy for benign code is to prevent consumption of untrusted
inputs, while returning a “permission denied” or “file does not exist” error
code.

Although an attempt to open a file is always going to be blocked, the
response of the application can be different, based on the error code returned.
We find that applications handle “permission denied” error codes well when
dealing with data files, i.e., user specified files. Moreover, communicating
this error message to the user is less confusing than the alternative “file does
not exist.” Finally, it can suggest to the user to run the application with the
uudo wrapper. On the other hand, some applications (e.g., OpenOffice on
Windows) are less graceful in handling permission denials on configuration
and preference files. This is because applications create these configuration
and preference files and do not expect users to modify them. So, our system
returns a “file does not exist” error when accessing untrusted files implicitly
(Figure 6.2).
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6.2.2 Untrusted execution

By design, ED does not allow subjects to change their integrity labels. Pro-
cesses therefore have to decide which integrity level they want to be in before
executing program images. To run as low-integrity, users can invoke uudo.
Requiring users to explicitly invoke uudo has the benefit that users know in
advance whether they can trust the outputs or not. However, it is an in-
convenience for users to make this decision all the time. Hence, ED/UII can
also automatically infer the use of uudo. The idea is as follows: if an execu-
tion will fail without uudo but may succeed with it, ED/UII automatically
invokes uudo.

uudo inference can also be combined with the implicit-explicit mechanism.
When it is the users’ intention to open low-integrity files, ED/UII opens the
files with low-integrity processes. However, when users do not expect opening
the low-integrity files, such openings would be denied. ED/UII considers
user-actions such as double-clicking on the files, selecting files from a file-
dialog box, or explicitly typing the file names as indications of their intents.

This technique, however, fails if files to be opened depend on the interac-
tion with the programs. Since the files to be accessed are not known at the
time of executing program images, ED/UII cannot infer the use of uudo in
cases such as when high integrity programs are invoked without arguments.
A solution is to have the benign programs to capture the user intention to use
untrusted files (e.g., when users explicitly selected to open an untrusted file)
and spawn a new untrusted process to handle the user request. Handling
more general cases, e.g., pipelines, can be addressed using trial execution
(Section 6.2.2) or dynamic downgrading (Section 5.5).

Trial-execution based inference

uudo inference has the advantage that it is simple— Simply by looking at
the parameters used in the exec system call, ED/UII can infer what files
a program may access. However, there are two problems with this simple
technique: The first problem is that command-based techniques do not take
into account how files are used. Files specified in arguments may not be
necessarily for reading. If the files are for writing only, the inference can
wrongly suggest the use of uudo. The second problem is that not all files are
specified directly in the argument, just as illustrated in the previous example
where there are some transformations in the filenames.
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Trial-execution based inference relies on the assumption that given the
same command, file access behavior of the program would be the same un-
der the same environment. By observing files that are accessed during a
trial execution, ED/UII can determine what files will be accessed in the ac-
tual execution. ED/UII can then decide what labels to assign to subjects.
More importantly, the system can abort directly if the integrity requirement
between benign and untrusted principals simply cannot be satisfied. This
technique is general enough to support arbitrarily complex command that
can involve any number of programs, principals, and files.

Trial-execution relies on programs to exhibit the same file access behav-
iors whenever the same command is issued. However, actual file accesses can
depend on the system environment such as the file systems and environment
variables. While ED/UII can execute the command directly on the actual
system, this, however, can damage or corrupt system states and leave the
system in inconsistent state. Hence, we rely on one-way-isolation to create
an isolated environment for “trial” executions. This one-way-isolation envi-
ronment provides same file system environment, except modifications to the
environment are isolated. Changes to the environment are discarded such
that the real environment is unaffected. This allows us to capture the actual
file access behavior when the same command would have been executed in
the system.

During the trial execution, processes and files accessed (in read or write
mode) are recorded. These become constraints for the inference process. The
goal of the inference is to assign subjects with labels (integrity level) such
that all the integrity constraints can be satisfied.

There are various type of constraints based on the interaction policies:

1. Object principal constraint corresponds to principals of existing files.
Since objects usually do not change their principals, this represents a
hard constraint.

2. Object read access constraint corresponds to the read accesses captured
during the trail-execution. If a process reads from a file of principal F ,
the principal of the process would need to trust the information from
F .

3. Object write access constraint are generated from write accesses. This
constraint makes sure that processes writing to a file with principal F
is allowed to have information flow to F .
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The analysis starts by assuming processes can be any principal (benign
or untrusted). Based on the constraints, potential process principals will
be reduced. For example, if the process read from an untrusted file, then
the process must be untrusted to satisfy the read constraint. The analysis
completes when all of the information flow constraints are satisfied with
some process-to-principal assignment, or the constraints cannot be satisfied.
If there exists a principal assignment to processes, the command can then be
executed in the actual environment, and appropriate interaction policies will
be placed automatically for principal transition. On the other hand, if no
solution exists, our system will report to the user that the command cannot
be executed.

Note that multiple rounds of trial-execution may be needed to complete
the analysis. When an isolated benign process needs to run as untrusted, the
system would terminate the execution and restart that process in the corre-
sponding principal. This is because the system cannot let benign processes
read untrusted files, even within an isolated environment. Doing so can com-
promise a benign process, and any read-write access behavior observed can
no longer be trusted. Furthermore, the process can also compromise other
processes in the isolated environment to affect the inference.

We rely on Linux container for process isolation, aufs for creating a copy-
on-write file system for isolating processes. Read-write accesses are captured
using a library interception framework. We then used XSB [XSB Research
Group, 2012] to solve the constraints.

6.3 Related work

Both user-driven access control [Roesner et al., 2012] and our uudo inference
are based on capturing user intention. However, user-driven access control is
about granting resource accesses to untrusted applications. Their focus is on
reducing additional user effort for granting these accesses, whereas our goal
is to eliminate additional interactions. User-driven access control operates
in a hostile environment while uudo is for high-integrity processes to infer
the use of low-integrity environment. Inaccuracies in their approach can lead
to granting authorized permissions to the untrusted applications. In Spif,
inaccurate uudo inference will not lead to any security failures.

BLADE [Lu et al., 2010] protects system against drive-by-download mal-
ware by stopping unconsented-content executions. It detects user intention
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of downloading files by parsing file-download dialog-boxes of browsers. Such
intent is then used to move files out of the secure zone. Files without user-
consent will remain in the secure zone and hence cannot be executed. BLADE
relies on user intent for security purposes. Although Spif also captures user
intents, the goals of capturing user intents are different in the two systems.
BLADE uses the intent to enforce security policy, but Spif relies on user
intent for improving usability. As such, BLADE requires a kernel module to
examine network streams and correlate with files to ensure that file origins
are labeled properly. BLADE also needs to monitor keyboard and mouse to
make sure that users are actually interacting with the browser rather than a
spoofed interface. BLADE has to make sure that user intents are captured
properly or otherwise security breaks. On the other hand, Spif does not rely
on user-intent for security, but for usability. Spif relies on user-intent for
uudo inference, deciding shadowing policies, as well as the return code for
denying opening low-integrity files. Therefore, Spif does not require kernel
driver to make sure the correctness of user-intent.
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Chapter 7

Generalized Multi-Provenance
Policies

In this chapter, we present a generalization of policies along two dimensions.
First, we increase the number of provenance labels supported in our system.
Second, polices are no longer constrained to integrity. Principals can also
specify confidentiality policies. We describe a language for expressing these
richer policies.

The policy language presented in this chapter represents a systematic
generalization that can express policies enforced in many previous systems,
such as the same-origin policy (SOP) of browsers and the Android policy for
apps, as well as many other previous research works [Tiwari et al., 2012].

Our generalized policy is based on ED/UII. We call the policy MultiP.
We start by describing the updated threat model that considers multiple

principals (Section 7.1). Then we propose using the notion of permissible
information flow to capture both integrity and confidentiality (Section 7.3).
After that, we describe a policy language in Section 7.4 that allows each
principal to describe its security requirement. Section 7.5, we describe how
MultiP can model ED/UII and a simple multi-provenance policy. In Sec-
tion 7.6, we discuss how principals can interact with each other securely
while respecting each principal’s security policy. In Section 7.7, we show
that MultiP is a general model that can simulate other existing models.
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7.1 Threat model in the multiple principal

scenario

MultiP builds on the standard multi-user support mechanisms in the OSes to
do the provenance tracking and policy enforcement. We assume this mecha-
nism enforces access-control on every resource that belongs to the user, and
users are isolated from each other by default, i.e., one compromised user
cannot compromise another user.

We assume that system administrators (root/administrator/system) are
not malicious. MultiP relies on user-land mechanisms and hence a malicious
system administrator can easily bypass our protection.

We assume that whenever new files enter into the system, their net-
work provenance information can be retrieved accurately. For example, when
downloading from the Internet, files will be assigned principals that reflect the
origin domains if their integrity can be verified (e.g., transferred via HTTPS
or checksummed against tampering) by a “trusted” program. Otherwise, we
assign the file with an “untrusted” network principal to indicate that the files
can be coming from potentially anywhere.

Each principal can define its own integrity and confidentiality policy. For
instance, integrity depends highly on applications. A news feed program
may trust RSS feeds from a site, but package installers may not consider
packages from the same site as high-integrity. By allowing each principal to
define its own policy, trust can be context specific. We consider the two most
common applications that handle files from multiple sources: web browsers
and package installers. We assume that other programs access the network
for only information trusted by the program principals. Programs that need
to relabel files would need to be aware of MultiP so that they can express to
MultiP their trust levels for different files.

We also assume that code from a principal protects the principal itself,
i.e., the code has no intention to compromise the security of the code owning
principal when executed by the code owning principal. However, code from
one principal may act maliciously towards code from another principal. As
a result, running code from other principals need to be explicitly allowed
in MultiP. Moreover, any principal can be actively trying to compromise
other principals. These assumptions allow us to split the principal protection
scheme into two parts: cooperative part for protecting the principal itself,
and mandatory part for preventing the principal from compromising others.
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This is a generalization of the dual-sandbox in the two-principal scenario.

7.2 Supporting multiple principals

ED/UII only supports 2 provenance labels: benign and untrusted. MultiP
extends the policy to support multiple principals. MultiP, however, still
requires each object/subject to be associated with exactly one principal.

MultiP does not support set notion of principals because permitting joint
ownership can lead to an accumulation of principals over time, like the label
creep problem, and that it becomes hard to distinguish between consequential
and inconsequential contributions to a file. Moreover, when policies of all
principals are to be observed, it may not be possible because they may all
have different policies. Our goal is to maintain separation between mutually
untrusting principals, and it has nothing to do with accurately capturing
situations where a file was produced by multiple principals.

7.3 Permissible information flow

The Bell-LaPadula model focuses on confidentiality and enforces no-write-
down and no-read-up, with levels concerning secrecy. On the other hand,
Biba model focuses on integrity and enforces no-read-down and no-write-up,
with levels concerning integrity. It is natural to consider permissible infor-
mation flow which satisfies both confidentiality and integrity requirement.
Specifically, information can flow from principal A to principal B if and only
if both of the following conditions are satisfied:

1. Confidentiality of A: A is willing to release information to B. There
are three possible cases:

• A has no secrets, or

• A trusts B to guard its secrets, or

• A can declassify the information flowing to B

2. Integrity of B: B is willing to receive information from A. There are
three possible cases:

• B’s integrity does not depend on the information, or

90



• B trusts A that information from A will not compromise its in-
tegrity, or

• B trusts itself to sanitize the data from A so as to prevent itself
from being compromised

Our two-provenance scenario focuses on integrity— high-integrity prin-
cipal allows information to flow to low-integrity principal, and low-integrity
principal trusts information from high-integrity principal. This creates a uni-
directional trust relationship that allows every piece of information to flow
from high-integrity to low-integrity.

When we consider secrecy as well, a high-integrity principal may be will-
ing to share all except some confidential information like SSH keys. This
constrains the set of information that can flow from high-integrity principals
to low-integrity principals, or in general, between any two principals.

We extend ED/UII so that each principal can define its own integrity and
confidentiality requirement with respect to other principals using the policy
language specified in Section 7.4. MultiP will make sure that any information
flow occurs across principals will respect the requirements specified by the
principals. Otherwise, the two principals cannot interact.

As we generalize to consider both integrity and confidentiality, we call
the benign principal as the platform principal, or simply as platform.

7.4 Policy language

The basis of security in our approach is isolation: no information is permitted
to flow from one principal to another unless both of the principals explicitly
allow the flow. Since complete isolation can prevent useful interactions, we
provide a policy language for principals to specify their interaction require-
ments. This language has been guided by the observation that application
providers don’t want to spend much effort on security policies. Hence we
utilize a simple language that uses familiar constructs when feasible (Fig-
ure 7.1), together with default policies (Figure 7.3) that work for most of the
applications. It is important to note that the default policies permit a good
deal of interaction between principal platform and other principals.

File names and network addresses can have wild-cards. Groups of re-
sources can be given a name so that they can be reused in subsequent direc-
tives. Some resource groups have predefined meanings:
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Exec = Filename | Id (7.1)

Obj = NetworkEndPoint | Filename | Id (7.2)

Rule = (allow | deny) Principal (read | write | exec) Obj (7.3)

| (allow | deny) (read|write|exec) Obj [from Principal] (7.4)

| (allow | deny) transition (to|from) Principal [via Obj](7.5)

| Id = {Obj, ..., Obj} (7.6)

Figure 7.1: Grammar for generalized policy language

• The group confidential is empty by default, but can be defined ex-
plicitly. It is used in default policies to prevent other principals from
accessing the confidential information.

• The group config, preference, and other correspond to files that are
inferred as “config”, preference files, and other files based on program
access behaviors. Note that the group config includes executable files.
Principals can define their own policies on whether to share config and
preference files using these primitives.

• The keyword all includes all principals other than the current prin-
cipal. When new principals are created in the system, they are auto-
matically added to the group all. Principals can also specify specific
principals in their policies.

• The keyword self refers to the principal itself.

A policy, specified by a principal p, consists of one or more rules that
define how p can interact with other principals. Interactions are divided into
three categories: read, write, and invoke. MultiP allows each principal to
define policies for each of the interaction with respect to other principals.

As discussed previously, a permissible information flow needs to respect
both the confidentiality requirement of the information source and the in-
tegrity requirement of the information sink. The act of information flow
concerns two parties: a subject and an object. Rules are therefore catego-
rized into subject rules (Rule 7.4) and object rules (Rule 7.3). Principal’s
object rules are applied when that principal’s object is involved in informa-
tion flow. Subject rules are invoked when the principal is a subject. As
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there are multiple principals, there are also rules governing how principals
can transition from one to another (Rule 7.5).

We discuss each of the rules below:

• Object rules (Rule 7.3) specify what operations other principals can
or cannot perform on the principal’s objects. Each of the allow or
deny rule specifies which other principals can read, write, or execute
the principal’s files. Note that allow/deny rules can refer to file objects
as well as network end points. Obj must be an object belonging to the
principal specifying the policy in order for the rule to be in effect. Read
concerns about confidentiality. Write concerns about the integrity of
the principal. Execute concerns about the confidentiality of the code.

• Subject rules (Rule 7.4) concern operations performed by a subject
owned by the principal. Similar to the object rules, there are three
interactions that subject rules concern: read, write, and execute. Read
and write concern about integrity and confidentiality of the principal.
Execute concerns about integrity of the principal when running code
from the other principals. These are completely opposite to the object
rules.

• Transition rules (Rule 7.5) specify if a principal can transition into
another principal. Transition rules are useful when the object rules and
subject rules between the involving principals cannot be satisfied, and
hence may require executing the code as a different principal. There are
two types of transition rules: transition to and transition from.
transition to specify what principals the principal can transition to.
transition from specify what principals can transition to the current
principal. The rule can also specify an interface Obj through which the
transition can occur.

An information flow is allowed only if the subject and object rules from
both principals have explicitly allowed. These rules are tried in the order in
which they are listed. If an access does not match any rule, then it is denied.
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1. allow untrusted read, exec ∗
2. allow transition to untrusted

(a) Policy for benign

3. allow read, write, exec * from benign

4. allow benign read, write, exec ∗
5. allow transition from benign

(b) Policy for untrusted

Figure 7.2: Policy for two-provenance case

7.5 Example Policies

7.5.1 ED/UII

Figure 7.2 captures the ED/UII policy descried in previous chapters. Rule
1 allows information to flow out of the benign principal without any con-
fidentiality concerns. Rule 3 allows untrusted to read from benign without
integrity concerns. Rule 1 and 3 combined allow information to flow from the
benign to the untrusted principal. Rule 2 and 5 are transition rules. They
allow benign to transition into untrusted.

Note that Rule 4 does allow benign principal to read its files. However,
MultiP would not consider this as a permissible information flow because
there is no corresponding rule in the benign principal allowing it to read
from untrusted. Permissible information flow requires both the involving
principals willing to permit the flow.

7.5.2 A simple multi-provenance policy

We now extend the two-provenance policy from Figure 7.2 to support mul-
tiple, mutually untrusting principals. Recall that in this case, we use the
platform principal in the place of benign principal.

Figure 7.3 shows the policy for the platform principal. This policy is
the same as the policy for the benign principal (Figure 7.2a) except (1) with
the confidentiality rules (Rule 1 and 2) added, and (2) allowing transition
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1. confidential = {.ssh/∗, ...}
2. deny all read confidential

3. allow all read, exec ∗
4. allow transition to any

(a) Platform principal’s policy

5. confidential = {}
6. deny all read confidential

7. allow all read, exec ∗
8. allow transition to, from any

9. allow read, write, exec ∗ from platform

(b) Default policy for other principals

Figure 7.3: Policy for multi-provenance case

to any principal rather than just untrusted. This is because the platform

principal forms the basis for other principals to interact. Therefore, code,
configuration files, preference files and data from the platform are readable
to other principals under the default policy.

A remote principal p, in the simplest case, does not provide a policy, and
thereby ends up using default policy shown in Figure 8.9d. Note that this
policy does not provide any security from platform code (Rule 9). This is
intentional: since platform code runs with higher privileges (possibly root),
it is not always possible to protect p from the platform. The default policy
also allows other principals to read and execute all except confidential files
of p (Rule 5, 6, and 7). By defining the list confidential, p can very
easily control the privacy of its data. Rule 8 allows transitioning cross any
remote principals. Rule 4 allows benign principal to transition to any remote
principal.
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7.6 Interaction between principals

While permissible information flow focuses only on flows between information
sources and information sinks, a program execution would in general consist
of multiple information flows involving several principals. There can be four
entities involved in a program execution:

• Invoker principal I: the principal that wants to execute a piece of code

• Code principal C: the principal that owns the code

• Read data principals DR: the set of all principals that own the data
read during the execution

• Write data principals DW : the set of all principals that own the data
written during the execution

Since each principal defines its own policy with respect to other principals,
MultiP will select an executing principal P to run the code such that all of the
rules defined by the principals are observed. We use the notation A→ B to
denote that an information flow from principal A to principal B is permitted
by both their policies.

Let I denote a principal invoking the execution of code owned by a princi-
pal C. Let DR and DW be the principals that own the files read and written
during this execution. Then, our system will attempt to find a principal P
such that the following flows are permitted, and execute C within a process
owned by P :

• I → P (Invoker)

• C → P (Code owner)

• ∀Dr ∈ DR Dr → P (Read data owner)

• ∀Dw ∈ DW P → Dw (Write data owner)

Consider a typical desktop OS scenario with two principals: user and
root, with root→ user for files such as code. Suppose that the user invokes
a root owned program that modifies a user file. MultiP considers user as
the invoker principal I that triggers the action. The code is owned by root,
i.e., C = root. When the code runs, it will read both root-owned files (e.g.,
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libraries) and user-owned files (e.g., preference files), so DR = {user, root}.
The execution can result in modifying user files, i.e., DW = {user}. As a
result, the executing principal can only be user.

Satisfying the first three constraints are necessary for a program to ex-
ecute. This is because the act of invoking the code and reading code and
data characterizes a program execution. Permissions to write to file is not
essential, as the modification can be shadowed. (However, as discussed be-
fore, some user input or policy inference is necessary to determine whether
shadowing is appropriate, or if the whole operation should be denied.)

7.6.1 Principal resolution algorithm

MultiP allows only permissible information flows. Flows that violate prin-
cipals’ policy will be denied. To minimize the impact on usability, MultiP
attempts to choose to run code with a principal that satisfies all the infor-
mation flow requirements.

There are 4 possible choices for the executing principal P . It can be the
same as I, C, Dr/Dw, or other. We summarize the implication of each choice
below:

1. Desktop mode when the execution runs as principal Invoker
I.
This corresponds to the conventional usage of desktop application,
where code simply runs with the privilege of the invoker, regardless
of who owns the code.

2. App mode when the execution runs as the code principal C.
App model on mobile OSes such as Android, where each app is runs
with its own privilege (similar to setuid on desktop). Any app on
Android can invoke any other app to perform any action.

3. Data-oriented mode when the execution runs as the data own-
ing principal Dr/Dw.
Bubbles [Tiwari et al., 2012]-like system which organizes the system
based on data labels. Each data is tagged with a label. Code and in-
vokers are simply tools for processing data. The same app can produce
data with different labels.
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4. Hosted mode when the execution runs as a principal none of
the above.
This is similar to the ephemeral container in Apiary [Potter and Nieh,
2010], LXC, or Alcatraz [Liang et al., 2009], where the code runs in
isolation. MultiP runs the code with a principal other than I, C, or
Dr/Dw. The process and its output would not be accessible by other
principals.

The goal of the different interaction modes is to allow principals to in-
teract while respecting their interaction policy. The algorithm to decide on
which mode to run is simply test if each of the mode listed above observes
the policies of the involving principals. The testing order is as follow: Desk-
top, App, Data-oriented, and finally Hosted. The order is determined by the
impact on usability for legacy desktop applications.

An alternative view is that principals in MultiP form a partially ordered
set, with a binary relationship defining permissible information flow between
two principals. In the simplest scenario, we consider principals higher in
the set allow information to flow to principals lower in the set. The first
three constraints imply that P is at most the greatest lower bound among
{I, C, and Dr,∀Dr ∈ DR}. Such P may or may not exist, depending on
the permissible information flow between the principals. If no such P exists,
the execution will be denied as the information flow requirement between
principals cannot be satisfied. Otherwise, the execution will be allowed to
run as principal P .

When shadowing data is not an option, the forth constraint translates
into P ≥ Dw, ∀Dw ∈ DW . If no such P exists, the execution will be denied.

7.7 Simulating existing models

7.7.1 Bubbles

Bubbles [Tiwari et al., 2012] isolates resources based on context, which is an
abstraction to capture events based on contacts and time. For example, a
context can be a conference event with a group of participants at specific
time. Before using an app, users need to select the context that they want
to use. Resources created in a context belongs to the context and can only
be accessed by that context.
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Both Bubbles and our system support isolation. In Bubbles, apps are
tools for manipulating resources, but they do not own data. MultiP can
simulate Bubbles by mapping a principal into every Bubbles’ context. Since
Bubbles does not allow contexts to interact, this corresponds to no interaction
between principals in MultiP.

Bubbles require extra efforts to develop trusted viewers to let users to
browse and select contexts. These viewers are trusted not to steal informa-
tion from different contexts and not to corrupt resources within the contexts.
They assemble information from different contexts and present users an uni-
fied view. For example, images can belong to different bubbles and each has
a different provenance label. A trusted viewer is needed to view images from
all bubbles.

While simulating the Bubbles’s model, MultiP also need to assemble in-
formation from different contexts. Unlike Bubbles, MultiP can reuse existing
desktop applications to act as trusted viewers instead of developing new ap-
plications. Indeed, simply the file manager (e.g., Windows Explorer) itself
running as the platform principal can already browse all the files created in
each context. MultiP transparently merges files created from different prin-
cipals together. By double-clicking on a file, the principal corresponding to
the context will start and let the user to view the context.

1. allow read other from all

2. allow transition to all

(a) Policy for trusted viewer

3. allow trusted viewer read other

4. allow transition from trusted viewer

(b) Policy for contexts

Figure 7.4: Policy for modeling Bubbles

with principal P using coding from R

Figure 7.4 shows a MultiP policy for simulating Bubbles. The policy
consists of two parts: one for trusted viewers and one for contexts. The
trusted viewers are trusted to view data from all principals so that they can
present users a summarized view. The policy allows the trusted viewer to
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read using Rule 1 and 3. The transition rules (Rule 2 and 4) allow the trusted
viewers to transition into different context when users want to dive in. The
policies for the contexts simply permit the trusted viewers the accesses.

7.7.2 Android

Android isolates applications based on app origin. App origin is identified by
the developer’s key used to sign the apps. Apps from the same origin run as
the same user and are free to interact using existing Linux IPC mechanisms
such as signaling to interact. Apps from different origins run with different
userid, and they can only interact with other apps using Android’s own
sharing mechanisms such as Intent.

Our system can simulate Android by mapping each app origin as a dif-
ferent principal. In Android, apps can decide what data it want to share
and receive. Hence, private files (such as code, preference, and configuration
files) are not shared in Android. In our system, all data files (other) can be
shared with other principals unconditionally, while code, configuration, and
preference files are not visible by other principals and hence are private.

On Android, user can select a particular application which she wants
the data to be shared with. The user can also select a particular app if
multiple apps can handle the intent during the intent resolution phase. On
our system, the Windows Explorer serves as the explicit sharing mechanism
across principals. Users can use open as to select a desired app to consume the
data. Applications that can accept the data would have handlers registered
with the Windows Explorer/Shell.

1. allow transition to, from all

Figure 7.5: Policy for modeling Android app model

Figure 7.5 shows the policy in MultiP for modeling Android app. Every
app in Android uses the same policy: it allows transitioning into or from
other apps (rule 1). This is because apps can freely create an intent to
invoke other apps. Intent filter in the Android model can filter what apps to
invoke based on data type, and is captured by specifying what objects they
want to share. By default, every data file is accessible using other. Apps
can also define their own data type that they want to share.
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The MultiP policy models the Android app model. However, when a
piece of data from one app is malicious, the malicious data can spread to
another app and compromise that app. This is a problem in Android. To
solve this problem, one can allow an app to execute the code of another
app in an one-way isolation environment. The policy in Figure 7.6 allows
this one-way isolation. Note that Rule 1 and 2 permit other apps to read
any file, including config, preference, and data files. Transition rules (Rule
3 and 4) are replaced by allowing executing executables. This creates an
isolation environment for the app to run code from another app: Data from
a malicious app cannot spread to other apps.

1. allow all read ∗
2. allow read ∗
3. allow all exec executables

4. allow exec executables

Figure 7.6: Policy for modeling Android app model for each app principal

7.7.3 Web

The Web security model also adopts isolation. It applies same-origin-policy
(SOP) to isolate based on origins, defined by the tuple ¡domain name, proto-
col¿. Resources for each principal in the SOP model includes code (JavaScript),
DOM and local storage objects, and remote resources (accessed via cookies).

There a few modes of interactions in the web model. We discuss each of
them and how they can be modeled by MultiP:

• SOP does not allow a principal P to access resources belonging to
other principals (e.g., R). P can include the entire page from R but
cannot access DOM or local storage objects from R. Cookies from R
are also not accessible by P . However, SOP allows resources such as
JavaScript and images from R to be loaded by P . P can use JavaScript
and images from R as if they are from P . To simplify our discussion,
we assume that JavaScript can be loaded from R.

Principal P can include code R as libraries using script tags. The
code will then be executed as if it belongs to P , i.e., it will have all
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the privileges that P has. The code, however, cannot access local or
remote resources from R since P does not have accesses.

Modeling SOP in MultiP is simply allowing principal P to execute code
from principal R. This is done by using the policies in Figure 7.7. They
keyword JavaScript consists of a the set of code that R is willing to
share with P . Note that SOP prevents a principal from reading code
of another principal.

1. allow all exec JavaScript

2. allow exec JavaScript from all

Figure 7.7: Policy for modeling SOP
policy enforced by browsers

With the policy in Figure 7.7, MultiP would allow P to execute code
from any other domain. P can execute the code and use the code from
R as library. However, there is no domain transition rule from P to R.
P cannot access data in R too.

When P executes code from R, the trust assumption is that P trusts
the code from R, and R can access every resource in P .

• CORS (Cross-Origin Resource Sharing) is a mechanism for relax-
ing the limitation of SOP. SOP limits code from principal P to access
only P ’s resources. It is something useful for P to access other’s re-
sources as well, such as when R is a content provider for application
at P . Since the SOP policy is enforced by web browsers to protect
principals, the relaxation is actually done by the browsers. When code
from P requests resources from R (e.g., using Ajax), the browsers will
consult R first using pre-flight requests to check if R is willing to give
P access to its resources. Only if R allows P to access the resources,
the request from P can reach R. Unlike SOP which only allows script
tags (basically only HTTP GET requests), CORS allows also POST
and PUT requests that can modify resources on R. CORS has recently
been standardized.

CORS protocol itself is coarse-grained that it either allow or deny P
to make requests to P . R can implement additional logics to decide
whether to serve each of the request made from P . Hence, the MultiP
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1. allow all exec JavaScript

2. allow exec JavaScript from all

3. allow read, write, exec ∗ from permitted domains

4. allow permitted domains read, write, exec ∗

Figure 7.8: Policy for modeling CORS
policy enforced at the browser, with permitted domains retrieved from

remote servers

policy specified in Figure 7.8 would allow P to access any files of R.
Rule 1 and 2 are from SOP, which allows executing JavaScript from any
principal. Rule 3 and 4 uses a special keyword permitted domain to
capture the domains that are willing to grant P access to its resources.
The set of permitted domain is managed by browsers using pre-flight
requests in CORS. Browsers enforce the policy in Figure 7.8. The
web server of R can make further decisions as to whether to serve the
requests. This is not enforced by browser and hence not captured by
the policy in Figure 7.8.

1. allow all exec JavaScript

2. allow exec JavaScript from all

3. allow transition to permitted domains

4. allow read ∗ from permitted domain

(a) Policy for P , enforced by browsers

5. allow transition from P via predefined interface

6. allow P read predefined interface

(b) Policy for R

Figure 7.9: Policy for modeling CORS interacting with specific interfaces

with principal P using resources from R

To model the interaction between browsers and the web server of R,
MultiP can model the decision logic in R by permitted P to access re-
sources of R via a single mediation point (e.g., predefined interface),
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which can then control whether to serve the requests. This can be
achieved using the policy in Figure 7.9. The policy is divided into two
parts: Figure 7.9a is enforced by the browser on P and Figure 7.9b is
enforced by the web server R. Rule 1 and 2 are from the SOP. Rule 3
transits the control to the web server owned by principal R, combin-
ing with Rule 5, P can transition to R by invoking specific interfaces
specified in predefined interface. Rule 4 and 6 allow P to read the
result back from the web server of R. R can perform mediations at
predefined interface as it is the single entry point for P to access
resources in R.

• JSONP requires no modification to the HTTP protocol in order to
realize cross origin sharing on top of SOP. JSONP exploits the fact
that SOP allows code from other principals to be accessible via script

tag, i.e., Rule 1 and 2 in Figure 7.7. By having the other principal R
to return data resources inside a JavaScript file, P can access the data
resources prepared inside the JavaScript from R. JSONP has been used
in frameworks such as jQuery, where the code running as principal P
can specify a callback method name in the request to R. The script
returned from R can then invoke the callback method with the data
requested.

JSONP is considered as exploiting a loophole in SOP. The script re-
turned from R could access all resources of P , including P ’s DOM tree,
local storage, and remote resources of P as cookies are accessible too.
This is because P runs the code from R using P ’s privilege. If the prin-
cipal R is malicious or compromised, SOP can provide no protection
to P .

To provide better protection, a browser can create an ephemeral prin-
cipal and runs the script returned from R to construct the data object.
After the data object is constructed, P can then retrieve the data ob-
ject from the ephemeral principal. Figure 7.10 captures this policy.
The policy is enforced by the browser and is divided into two parts:
Figure 7.10a is a policy for principal P . Figure 7.10b is a policy for
an ephemeral principal (P,R) instantiated when P would like to access
resources from R using JSONP. Rule 1 and 2 are from the SOP. Rule
3 allows P to transition into the ephemeral principal (P,R). Rule 5
allows the ephemeral principal to run code from R. Rule 4 and 6 al-
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low P to obtain the result from the code. This is a much safer option
for realizing JSONP because if R is malicious, the principal (P,R) can
only access the code from R, but not resource from P .

1. allow all exec JavaScript

2. allow exec JavaScript from all

3. allow transition to ephemeral domain(P, R)

4. allow read other from ephemeral domain(P, R)

(a) Policy for domain P accessing data from R

5. allow exec JavaScript from R

6. allow P read other

(b) Policy for ephemeral domain(P, R)

Figure 7.10: Policy for modeling JSONP with isolation

policy enforced at the browser

• URL.hash [Wang Jiaye, 2011] is another method for allowing princi-
pals from two origins in same window but different frame to communi-
cate despite of SOP. Browsers allows code to access the URL location of
another frame. Two principals can be loaded into two different frame
and communicate with each another by changing the hash tag value
at the end of their URL. Since hash tag in the URL does not trigger
any page reload, it can be served as a shared object for principals to
communicate. A participating principal would monitor hash tag values
of the other principals, and then modifies its own hash tag value in
respond.

Figure 7.11 captures the policy that browsers enforce to realize URL.hash
communication. Note that browsers enforces additional policy rules
(Rule 3 and 4) over the SOP policy to allow resources, i.e., window.location,
to be readable by other domain. Since this mechanism is not designed
for inter-principal communication in the first place, there is no security
protection. Any other principals can access the hash tag values and
intercept the communication.
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1. allow all exec JavaScript

2. allow exec JavaScript from all

3. allow all read window. ∗ .location
4. allow read window. ∗ .location

Figure 7.11: Policy for modeling URL.hash
policy enforced at the browser

The mechanism provides no way for principals to protect their commu-
nications from getting sniffed. MultiP can easily protect the window.location
by limiting the accesses to the intended principals (Changing Rule 3
and 4 to principal specific). Figure 7.12 shows the URL.hash policy
that allows R to observe URL.hash of P . The browser ensures that
only intended principals, i.e., R, can access P ’s location information.

1. allow all exec JavaScript

2. allow exec JavaScript from all

3. allow R read P .window.location
4. allow read R.window.location

Figure 7.12: Policy for modeling URL.hash with protection
policy enforced at the browser for P , permitting P and R access URL.hash

• Post-message is a newer standard for web principals to interact. Its
idea is similar to the URL.hash method. Post-message allows principals
to communicate by sending messages. When sending a message, the
sending principal can specify the receiving principal using origin. A
callback function provided by the receiving principal will be invoked.
The callback function can also check the message originating principal.
This push bashed mechanism is much more secure than the URL.hash
method.

Figure 7.13 captures the post-message model. It designate R.window.message
as the object for P to communicate with R. Post-message is similar
to URL.hash except post-message allows other principals to send mes-
sages to the shared resources, while URL.hash allows other principals
to read messages from the shared resources. Hence, the differences be-
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1. allow all exec JavaScript

2. allow exec JavaScript from all

3. allow all write P .window.message
4. allow write *.window.message

Figure 7.13: Policy for modeling post-message
policy enforced by browsers, with principal P sending messages

tween the URL.hash policy (Figure 7.13) and the post-message policy
are (1) the operation changed from read to write, and (2) the resources
are window.message.

In post-message, principals can check the origin of the messages before
deciding how to handle the messages. We can use similar policy in
CORS with specific interface (Figure 7.9) to transition into another
principal and only allow the principals to communicate via specific
interfaces.

• MashupOS Sandbox abstraction [Wang et al., 2007] is one of the
abstraction that has not been implemented in browsers. The <Sandbox>
abstraction allows one principal Integrator to enclose another princi-
pal Provider. The Integrator can access the content and code of
Provider without worrying getting compromised by Provider. Instead
of running the enclosed content as Integrator or Provider, it runs the
content as unauthorized. This protects both the Integrator and the
Provider.

Figure 7.14 shows the policy for modeling the MashupOS Sandbox ab-
straction. The modeling involves three principals: Integrator, Provider,
and unauthorized. unauthorized is an ephemeral principal. Rules 1,
2, 4, and 5 are SOP. A feature of the sandbox abstraction is to al-
low the integrated code to run securely by running as the principal
unauthorized. MultiP models this by allowing transitioning between
Integrator and unauthorized via specific interfaces DOM method calls

using Rules 3 and 8. The unauthorized principal has access to code
and resources of the enclosing page (Rules 6 and 7), as well as running
code from the Integrator (Rule 9) so that the results can be presented.
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1. allow all exec JavaScript

2. allow exec JavaScript from all

3. allow transition to, from unauthorized

(a) Policy for Integrator

4. allow all exec JavaScript

5. allow exec JavaScript from all

(b) Policy for Provider

6. allow exec JavaScript from Provider

7. allow read other from Provider

8. allow transition to, from Integrator via DOM method calls

9. allow exec JavaScript from Integrator

(c) Policy for unauthorized

Figure 7.14: Policy for modeling MashupOS Sandbox abstraction

policy enforced at the browser, Integrator sandboxes provider
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Chapter 8

Spif

In this chapter, we present Spif, a malware defense system based on prove-
nance tracking.

The scale and sophistication of malware continues to grow exponentially.
The reactive approach embodied in malware scanners and security patches
is no match for today’s stealthy, targeted attacks. Recognizing this fact,
researchers as well as software vendors have been developing proactive tech-
niques that can protect against previously unseen exploits and/or malware
attacks. These techniques can be classified into three main categories: sand-
boxing, privilege separation, and information flow control.

Sandboxing techniques [Goldberg et al., 1996, Provos, 2003, Ubuntu,
2015, Yee et al., 2009] mediate all security-relevant operations performed by
applications, permitting only those deemed “safe” by a sandboxing policy.
The scope of damage that can result from a malicious (or compromised) ap-
plication is hence limited by this policy. On UNIX, applications frequently
targeted by attacks are typically protected using SELinux [Loscocco and
Smalley, 2001b] or AppArmor policies [Ubuntu, 2015]. Microsoft Office used
a sandbox for its protected view [Microsoft, 2015b]. This sandbox ensures
that a compromised process cannot overwrite system or user files or registry
entries.

Privilege separation techniques [Provos et al., 2003] refine the sandboxing
approach to support applications requiring significant access to realize their
functionality. The application is decomposed into a small, trustworthy com-
ponent that retains significant access, and a second larger (and less-trusted)
component whose access is limited to that of communicating with the first
component in order to request security-sensitive operations. While sandboxes
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can confine malicious as well as frequently targeted benign applications (e.g.,
browsers), privilege separation is applied only to the latter class. Chromium
browser [Reis and Gribble, 2009], Acrobat Reader and Internet Explorer are
some of the prominent applications that employ privilege separation, more
popularly known as the broker architecture. These applications sandbox their
renderers, which are complex and are exposed to untrusted content. As a
result, vulnerabilities in the renderer (or more generally, a worker) process
won’t allow an attacker to obtain all privileges of the user running the appli-
cation.

Information flow control (IFC) techniques [Biba, 1977, Zeldovich et al.,
2006, Krohn et al., 2007, Li et al., 2007, Sun et al., 2008b, Mao et al.,
2011, Sze et al., 2014] maintain labels on files and processes to keep track
of the flow of sensitive and/or untrusted information in the system. Classi-
cal integrity policies such as the Biba policy [Biba, 1977] enforce both no-
read-down (i.e., integrity-critical applications cannot read untrusted data)
and no-write-up (i.e., untrusted applications cannot create or overwrite high-
integrity files) policies. In contrast, Windows Integrity Mechanism (WIM)
[Microsoft, 2015c] enforces just the no-write-up policy. Indeed, WIM is pri-
marily deployed as a sandboxing mechanism: progressively more restrictive
policies are enforced on lower integrity processes, while high-integrity pro-
cesses are unconfined. In contrast, the strength of integrity protection in
IFC stems from policy enforcement on high-integrity processes, which pre-
vents them from compromised by consuming untrusted data or code.

8.1 Challenges

Application of these three approaches for malware defense poses several tech-
nical as well as practical challenges.

Policy development Policy affects both usability and functionality of ap-
plications. Restrictive policies can block more attacks, but they also tend to
break applications. Moreover, policy development requires not only a good
understanding of applications, but also the OS semantics. A recent Adobe
Reader XI vulnerability [Google Security Research, 2014] exploits the seman-
tics of junctions on NTFS, where the broker process failed to sanitize paths
and ended up allowing workers to create files at arbitrary locations.
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Application and OS compatibility To run successfully with a policy
and its enforcement framework, applications need to be re-architected, or at a
minimum, be made aware of the confined environment. Most IFC approaches
require nontrivial changes to applications as well as the OS. There have been
efforts to automate some of the steps (e.g., automating privilege separation
[Brumley and Song, 2004]) or to minimize application changes for IFC (e.g.,
PPI [Sun et al., 2008b]), but in practice, most techniques end up requiring
substantial effort in rewriting or porting applications or the OS.

Sandbox escape attacks Given the large effort needed to (a) develop
policies and (b) modify applications to preserve compatibility, it is no wonder
that in practice, confinement techniques are narrowly targeted at a small
set of highly exposed applications. This naturally leads attackers to target
sandbox escape attacks: if the attacker can deposit a file containing malicious
code somewhere on the system, and trick the user into running this file, then
this code is likely to execute without confinement (because confinement is
being applied to a small, predefined set of applications). Alternatively, the
attacker may deposit a malicious data file, and lure the user to open it with
a benign application that isn’t sandboxed. In either case, the attacker is in
control of an unconfined process that is free to carry out its malicious acts.

As a result of these factors, existing defenses only shut out the obvi-
ous avenues, while leaving the door open for attacks based on evasion (e.g.,
Stuxnet [Falliere et al., 2011]), policy/enforcement vulnerabilities (e.g., sand-
box escape attacks on Adobe Reader [Fisher, 2014], IE [Li, 2015] and Chrome
[Constantin, 2013]), or social engineering. Stuxnet [Falliere et al., 2011] is
a prime example here: one of its attacks lures users to plug in a malicious
USB drive into their computers. The drive then exploits a link vulnerability
in Windows Explorer, which causes it to resolve a crafted lnk file to load and
execute attacker-controlled code in a DLL.

8.2 Approach overview and key features

We present a new approach and system called Spif, which stands for Se-
cure Provenance-based Integrity Fortification, to achieve OS-wide integrity
protection on contemporary OSes. Unlike previous approaches, Spif:

• Requires no manual effort for policy development.
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• Requires no application or OS modifications, being able to support
Linux, BSD, and all major versions of Windows since Windows XP, and
feature-rich, unmodified applications such as MS Office, IE, Chrome,
Firefox, Skype, Photoshop, and VLC.

• Confines all applications, thereby taking away the motivation for sand-
box escape attacks.

Spif defends against unknown malware attacks targeting integrity1, includ-
ing stealthy malware such as Stuxnet and Sandworm [Ward, 2014].

Spif uses provenance tracking to track integrity. We define integrity
based on the origin (“where”) of a piece of information. Our implementation
classifies origins into just two categories: benign and untrusted.

Spif applies the dual sandboxing architecture (Chapter 4) to enforce the
ED/UII policy (Chapter 6). Spif therefore:

• tracks provenance reliably without modifying OSes or applications (Chap-
ter 4)

• enforces policies robustly (Chapter 4)

• preserves user experience (Chapter 6)

• automates policy development (Chapter 6)

8.3 Threat model

We state the threat model for Spif. It is mostly the same as in Section 2.2.
We assume that users of the system are benign. Any benign application

invoked by a user will therefore be non-malicious. If a user is untrusted, Spif
can simply treat the user as an untrusted user and every subject created by
that user is of low-integrity.

Spif assumes that any files received from unknown or untrusted sources
will be labeled as low-integrity. This can be achieved by exclusion: Only files
from trusted sources like OS distributors, trustworthy developers and vendors
are labeled as high-integrity. All files from unverifiable origins (including

1Although Spif does not focus on confidentiality, note that most malware needs to
embed itself into the system in such a manner that it would be invoked automatically.
This step requires compromising system integrity, and will be caught by Spif.
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network and external drives) are labeled as untrusted. As described later,
Spif’s labeling of incoming files has been seamlessly coupled with Windows
Security Zones, which has been adopted by all recent browsers and email
clients. For Unix systems, we developed browser and email client add-ons to
label files. An administrator or a privileged process can upgrade these labels,
e.g., after a signature or cryptographic hash verification. We may also permit
a benign process to downgrade labels.

Spif focuses on defending attacks that compromise the system-integrity,
i.e., performing unauthorized modifications to the system (such as malware
installing itself for auto-starting) or environment that enables the malware to
subvert other applications or the OS (e.g., .bashrc). Although Spif can be
configured to protect confidentiality of user files, this requires confidentiality
policies to be explicitly specified, and hence we did not explore it further
in this paper. It should be noted that files containing secrets useful to gain
privileges are already protected from reads by normal users. This policy
could be further tightened for untrusted subjects.

We assume that benign programs rely on system libraries (i.e., libc.so,
ntdll.dll or kernel32.dll) to invoke system calls. Spif intercepts system
calls from the libraries to prevent high-integrity processes from accidentally
consuming low-integrity objects. We do not make any such assumptions
about untrusted code or low-integrity processes, but do assume that OS
permission mechanisms are secure. Thus, attacks on the OS kernel are out
of the scope of Spif.

8.4 Design

Spif leverages the dual-sandboxing architecture in Chapter 4 as its enforce-
ment mechanism to confine both benign (Section 4.3) and untrusted pro-
cesses (Section 4.2). Spif enforces ED/UII policy (Section 5.2) and supports
policy inference (Section 6) to preserve normal desktop user experience. Spif
can provide the integrity and availability guarantees stated in Section 5.6.

8.5 Implementation

In this section, we discuss how we implemented Spif on Ubuntu, PCBSD, and
Windows. Our primary implementation was performed mainly on Ubuntu
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10.04 and Windows 8. We ported Spif to PCBSD, one of the best known
desktop versions of BSD, to illustrate its feasibility on BSD system. In ad-
dition, we also tested our system on Windows XP, 7, and Windows 10.

Spif requires the initialization in Section 4.5 for initial file labeling and
realization of the dual-sandbox architecture.

We discuss below how Spif integrates with OSes in terms of initial file
labeling, relabeling, display server/DBus, and file utilities.

8.5.1 Initial file labeling

An important requirement for enforcing policies is to label new files according
to their integrity. Some files may arrive via means such as external storage
media. In such a case, we expect the files to be labeled as untrusted (unless
the authenticity and/or integrity of files could be verified using signatures
or other means). However, we have not implemented any automated mech-
anisms to ensure this, given that almost all files arrive via the Internet.

Web browsers We designated Firefox, the main web browser on Ubuntu,
to protect itself from network inputs and inputs from local files selected using
a file dialog by the user. Files selected by user using a file dialog are mainly
used for uploading. These files are identified by the “implicit-explicit” mech-
anism described in Section 6.1, preventing Firefox from using untrusted
files as non-data inputs. To ensure that downloaded files are associated with
the right integrity labels, we have developed a Firefox add-on, which uses
a database to map domains to integrity levels.

As a second alternative, we dedicated an instance of the web browser
for benign sites. Using policies, the benign instance can be restricted from
accessing untrusted sites. In Spif, we manually defined a white-list of benign
sites. A better alternative would use white-lists provided by third parties.
Instead of blocking users from visiting untrusted sites, we can invoke the
untrusted browser instance to load the pages directly.

Email clients Email clients introduce untrusted data into the system through
message headers, content, and attachments. Our approach is to trust the
email reader to protect itself from untrusted sources. However, attachments
are given labels corresponding to the site from which the attachment was
received. We have developed an add-on for Thunderbird on Ubuntu for
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this purpose. However, the current email protocol (SMTP) does not pro-
tect against spoofing. To provide trustworthy labeling, we could either rely
on digital signatures (when present), or on the chain of SMTP servers that
handled the email. Such spoof-protection has not yet been implemented.

Integrating with Windows Security Zone Spif’s integration with Win-
dows leverages a Windows built-in mechanism called Windows Security Zones.
Instead of developing add-ons, most web browsers and email clients such as
Internet Explorer, Chrome, Firefox, MS Outlook, and Thunderbird automat-
ically assign security zones when downloading files. It is a piece of information
stored in Alternate Data Stream, along with the file. The origins-to-security
zones mapping can be customized. Windows provides a convenient user-
interface for users to configure what domains belong to what security zones.
Microsoft also provides additional tools for enterprises to manage this con-
figuration across multiple machines with ease.

Windows has used security zone to track origin, but in an ad-hoc man-
ner. When users run an executable that comes from the Internet, they are
prompted to confirm that they really intend to run the executable. Unfor-
tunately, users tire of these prompts, and tend to grant permission without
any careful consideration. While some applications such as Office make use
of the zone labels to run themselves in protected view, other applications
ignore these labels and hence may be compromised by malicious input files.
Finally, zone labels can be changed by applications, providing another way
for malware to sneak in without being noticed.

Spif makes the use of security zone information mandatory. Spif con-
siders files from URLZONE INTERNET and URLZONE UNTRUSTED as low-integrity.
Applications must run as low-integrity in order to consume these files. More-
over, since Spif’s integrity labels on files cannot be modified, attacks similar
to those removing file zone labels are not possible.

Software Installation Our system relies on correct integrity labeling when
new files are introduced into the system. Of particular concern is the software
installation phase, especially because this phase often requires administrative
privileges. Solutions have previously been developed for securing software in-
stallation, such as SSI [Sun et al., 2008a]. We are implementing an approach
similar to SSI to protect the software installation phase and to label files
introduced during the installation on Ubuntu. Spif can then enforce the
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policies at run time based on the labels.
Rather than safeguarding the installation process, approaches have been

developed to eliminate the installation phase completely. 0install [Leonard
et al., 2015] allows users to execute a software directly using a url. Applica-
tion files are cached entirely in user’s home directory. We tested our system
with 0install. It allows users to directly execute a remote application securely
simply based on a url. 0install supports multiple platforms, including Linux
and Windows.

8.5.2 Relabeling

Spif automatically labels files downloaded from the Internet based on its
origin. However, it is possible that high-integrity files are simply hosted
on untrusted servers. As long as their integrity can be verified (e.g., using
checksum), Spif would allow users to relabel a low-integrity file as high-
integrity. Changing file integrity level requires copying the file from redirect
storage to the main file system, while the file ownership is changed from RU

to R. We rely on a trusted application for this purpose, and this program is
exempted from the information flow policy. Of course, such an application
can be abused: (a) low-integrity programs may attempt to use it, or (b)
users may be persuaded, through social engineering, to use this application
to modify the label on malware. The first avenue is blocked because low-
integrity applications are not permitted to execute this program. The second
avenue can be blocked by setting mandatory policies based on file content,
e.g., upgrading files only after signature or checksum verification.

8.5.3 Display server and DBus

Resources such as display (X-Server or desktop window) and DBus need
to be shared by both benign and untrusted processes for usability, yet these
mechanisms support very little or no access control once processes are granted
access the resources. An untrusted GUI application can send arbitrary events
(key events or Windows events) to another benign GUI programs. An un-
trusted process can also send messages to other programs listening to the
user DBus.

Spif attempts to protect these resources using two methods: isolation or
enforce policies to restrict operations. In isolation, Spif creates a redirected
copy of the resource and let untrusted processes connect to the redirected
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copy. On Ubuntu, Spif uses Xephyr, a nested X-server to serve untrusted
processes. As for DBus, Spif transparently redirects untrusted processes to
connect to an untrusted DBus server.

Another alternative is to enforce policies to restrict interactions between
untrusted processes and the server. Spif uses X-security-extensions to des-
ignate untrusted processes as untrusted X-client, to restrict/disable accesses
to certain X resources. DBus does not provide built-in mechanisms to desig-
nate clients as untrusted. We have also built a DBus proxy which intercepts
DBus messages between server and untrusted processes. This allows Spif to
enforce policies on DBus. Since this option trusts the X-server or the DBus
proxy, it is not as secure as the first alternative, but integrates smoothly in
terms of user experience.

Our implementation do not consider Windows messages because any pro-
cess with a handle to the desktop can send message to any other process on
the desktop, regardless of the userid of the processes. This is demonstrated
in shatter attack. As a result, an untrusted process can send Windows mes-
sages to a benign process. Windows servers support multiple concurrent
users, Spif could use remote-desktop to achieve isolation similar to Xephyr.
For policy-based enforcement, there are two techniques to solve the prob-
lem: The first technique is to apply job control in Windows to prevent un-
trusted processes from accessing handles of benign processes. By setting
the JOB OBJECT ULIMIT HANDLES restriction, a process cannot access han-
dles outside of the job. The other method is to run untrusted processes as
low WIM integrity processes. WIM already prevents lower integrity processes
from sending messages to higher integrity processes.

8.5.4 File utilities

Files belonging to different integrity levels co-exist. Utilities such as mv, cp,
tar, find, grep, and rm may need to handle files of high and low integrity
at the same time. We designated these file utilities as able to protect them-
selves when dealing with untrusted data such that their functionalities can
be preserved.

Instead of trusting these utilities to consume any untrusted data, Spif
can further reduce the set of files by relying on the “implicit-explicit” tech-
nique described in Section 6.1. When users invoke a command, data files are
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specified as input arguments2.
A side effect of making these utilities as trusted is that their outputs have

high integrity labels. This is not desirable for applications like cp and tar as
integrity labels on original files are lost. We solved this problem by setting
appropriate flags to preserve the integrity information. This is relatively easy
as the integrity information is encoded as group ownership in Spif.

8.6 Evaluation of Spif

In this section, we evaluated the complexity, compatibility, usability, security
and performance of Spif.

Spif shares the same code complexity as in the dual-sandboxing archi-
tecture (Section 4.5.2).

8.6.1 Preserving Functionality of Code

We performed compatibility testing with about 100 applications shown in
Figure 8.1a on Ubuntu. 70 of them were chosen randomly, the rest were
hand-picked to include some widely used applications. Figure 8.1b shows
a list of 35 unmodified applications that can run successfully at high- and
low-integrity in Spif on Windows. We used them to perform basic tasks.
These applications span a wide range of categories: document readers, ed-
itors, web browsers, email clients, media players, media editors, maps, and
communication software.

Benign mode
As expected, all the applications running as benign processes worked per-

fectly when given benign inputs.
To use these applications with untrusted inputs, we first ran them with

an explicit uudo command or from untrusted shell (bash on Ubuntu or cmd
on Windows). In this mode, they all worked as expected. When used in this
mode, most applications modified their preference files, and our approach for
redirecting them worked as expected.

We then used these applications with untrusted inputs, but without
an explicit uudo. In this case, our uudo inference procedure was used,

2When globbing is used in shell command, the shell process will expand it to the set
of file names matching the pattern.
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Document

Readers

Adobe Reader, dhelp, dissy, dwdiff, evince, F-spot, FoxitReader, Geegle-gps,

jparse, naturaldocs, nfoview, pdf2ps, webmagick

Document

Processor

Audacity, Abiword, cdcover, eclipse, ewipe, gambas2, gedit, GIMP, Gnumeric,

gwyddion, Inkscape, labplot, lyx, OpenOffice, Pitivi, pyroom, R Studio, scidavis,

Scite, texmaker, tkgate, wxmaxima

Games asc, gbrainy, Kiki-the-nano-bot, luola, OpenTTD, SimuTrans, SuperTux,

supertuxkart, Tumiki-fighters, wesnoth, xdemineur, xtux

Internet cbm, evolution, dailystrips, Firefox, flickcurl, gnome-rdp, httrack, jdresolve, kadu,

lynx, Opera, rdiff, scp, SeaMonkey, subdownloader, Thunderbird, Transmission,

wbox, xchat

Media aqualung, banshee, mplayer, rhythmbox, totem, vlc

Shell-like bochs, csh, gnu-smalltalk, regina, swipl

Other apoo, arbtt, cassbeam, clustalx, dvdrip, expect, gdpc, glaurung, googleearth,

gpscorrelate-gui, grass, gscan2pdf, jpilot, kiki, otp, qmtest, symlinks, tar, tkdesk,

treil, VisualBoyAdvance, w2do, wmmon, xeji, xtrkcad, z88

(a) Software tested on Ubuntu

Readers Adobe Reader, MuPDF

Document

Processor

MS Office, OpenOffice, Kingsoft Office, Notepad 2, Notepad++, CppCheck,

gVim, AklelPad, IniTranslator, KompoZer

Internet Internet Explorer, Firefox, Chrome, Calavera UpLoader, CCProxy, Skype, Tor +

Tor Browser, Thunderbird

Media Photoshop CC, Picasa, GIMP, WinAmp, Total Video Player, VLC, Picasa, Light

Alloy, Windows Media Player, SMPlayer, QuickTime

Other Virtual Magnifying Class, Database Browser, Google Earth, Celestia

(b) Software tested on Windows

Figure 8.1: Software ran successfully in Spif
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and it worked without a hitch when benign applications were started us-
ing a double-click or a “open-with” dialog on the file manager nautilus or
Windowsexplorer. The inference procedure also worked well with simple
command-lines without pipelines and redirection.

One example that the technique did not handle well was when double-
checking to open an untrusted image file on Windows. The default viewer
is the running explorer process itself, which is a benign process and hence
cannot read the untrusted file. Users have to open the image file with another
editor (e.g., MS Paint) or have a default program other than the Explorer
such that Spif can perform the uudo inference.

Untrusted mode
All of the software shown in Figure 8.1 worked without any problems or

perceptible differences. We discuss our experience further for each category
shown in Figure 8.1.

Document Readers All of the document readers behave the same when
they are used to view benign files. In addition, they can open untrusted files
without any issues. They can perform “save as” operations to create new
files with untrusted label.

Games By default, we connect untrusted applications as untrusted X-
clients, which are restricted from accessing some advanced features of the
X-server such as the OpenGL GLX extensions. As a result, only 8 out of 12
games worked correctly in this mode. However, all 12 applications worked
correctly when we used (the some what slower) approach of using a nested
X-server (Xephyr).

Editors/Office/Document Processors These applications typically open
files in read/write mode. However, since our system does not permit un-
trusted processes to modify benign files, attempts to open benign files would
be denied. Most applications handle this denial gracefully: they open the file
in read-only mode, with an appropriate message to the user, or prompt the
user to create a writable copy before editing it.

Internet This category includes web browsers, email clients, instant mes-
sengers, file transfer tools, remote desktop clients, and information retrieval
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applications. All these applications worked well when run as untrusted pro-
cesses. Files downloaded by applications are correctly labeled as untrusted.
Any application opening these downloaded files will hence be run in untrusted
mode, ensuring that they cannot damage system integrity.

Media Player These are music or video players. Their functions are sim-
ilar to document readers, i.e., they open their input files in read-only mode.
Hence, they do not experience any security violations. For media editors,
they behave more like document processors. They create new media files
rather than modifying the original files.

Shell-like application This category includes shells or program inter-
preters that can be executed interactively like a shell. Once started in un-
trusted mode, all the subsequent program executions will automatically be
performed in untrusted mode.

Other Programs We tested a system resource monitor (wmmon), file man-
ager
(tkdesk), some personal assistant applications (jpilot, w2do,
arbtt), googleearth and some other applications. We also tested a num-
ber of specialized applications: molecular dynamic simulation (gdpc), DNA
sequence alignment (clustalx), antenna ray tracing (cassbeam), program
testing (qmtest, expect), computer-aided design (xtrkcad) and an x86 em-
ulator (bochs). While we are not confident that we have fully explored all the
features of these applications, we did observe the same behavior in our tests
in benign as well as untrusted modes. The only problem experienced was
with the application gpscorrelate-gui, which did not handle permission
denial (to write a benign file) gracefully, and crashed.

Overall

Reading both high and low integrity files. Applications that only
read, but not modify files can always start as low-integrity, so that they can
consume both high and low integrity files.
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Editing both high and low integrity files. Spif does not allow a pro-
cess to edit files of different integrity simultaneously as this can compromise
the high-integrity files. However, Spif allows files to be edited in different
processes— edit high-integrity files in high-integrity processes, and edit low-
integrity files in low-integrity processes. As these processes are running as
different users, different instances of the same application can run simulta-
neously in Spif.

Low-integrity processes writing high-integrity files. Applications like
OpenOffice maintain runtime information in user profile directories. Appli-
cations expect these files to be both readable and writable— otherwise they
will simply fail to start and crash. Having these files as high-integrity would
prevent low-integrity processes from being usable. Letting these files become
low-integrity would break availability of high-integrity processes.

Spif shadows accesses to these files inside user-profile directories, hence
high- and low-integrity processes can both run without significant usability
issues. One problem is that profiles for high and low integrity sessions are
isolated. There is no safe way to automatically merge the shadowed files
together.

On Ubuntu, files that are being shadowed are all “.” entries. Some of
them are cache file, some of them are preference/history files (.viminfo,
.pulse− cookie, deluge/ui.conf, gtkfilechooser.ini, vlcrc,
.recently− used.xbel) or cache files. As for Windows, shadowing is pri-
marily applied to preference files. Specifically, Spif applies shadowing to files
in %USER PROFILE%\AppData, HKEY_CURRENT_USER and files in all hidden di-
rectories. None of them corresponds to data files and deleting the redirected
storage does not result in any significant usability issues.

8.6.2 Usage experience

Secure-by-design solutions frequently end up requiring considerable changes
to applications as well as the user experience. We walk through several usage
scenarios to demonstrate that our techniques generally do not get in the way
of users, and are highly compatible with existing software. Here are some
scenarios to illustrate the usability of Spif, as well as how Spif preserved
the normal user experience.
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Watching a movie We opened a movie torrent from an untrusted website.
Firefox downloaded the file to the temporary directory and labeled it as
untrusted. The default BitTorrent client, Transmission, was invoked as
untrusted to start downloading the movie into the Download directory. Once
the download completed, we double-clicked the movie to view it. vlc was
started as untrusted to play the movie. Realizing that the movie had no
subtitles, we located subdownloader for downloading subtitles. Since our
installer considers Ubuntu’s universe repository as untrusted, the application
was installed as untrusted, and hence operated only in untrusted mode. We
searched and found a match. Clicking on the match resulted in launching an
untrusted Firefox instance. We went back to subdownloader to download
the subtitle, and then loaded this file into vlc to continue watching the
movie.

Compiling programs from students Some students submit their pro-
gramming assignments. Teaching assistants for the course need to download
their projects, extract them, compile them and execute the binaries in or-
der to grade the assignments. In this experiment, we considered an attack
that creates a backdoor by appending ssh key to authorized keys so that a
malicious student can break into TA’s machine later.

With protection from Spif, when the TA received the submission as an
attachment, it was marked untrusted. As the code was unpacked, compiled
and run, this “untrusted” label stayed with it. So, when the code tried to
append a public key, it was stopped.

Resume template We downloaded a compressed resume template from
the Internet. When we double clicked on the tgz file, FileRoller, the de-
fault archive manager started automatically as untrusted because the file was
labeled as untrusted by Firefox. We extracted the files to Documents direc-
tory. We then opened the file with texmaker by selecting “Open With”, since
texmaker was not the default handler for tex file. texmaker was started as
untrusted and we started editing the file. We then compiled the latex file and
viewed the dvi document with evince by clicking on the “View DVI” but-
ton in texmaker. We then viewed pdf and AdobeReader was automatically
invoked as untrusted. The document was rendered properly.
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Stock charting and analysis We wanted to study trend of a stock and we
searched the Internet about how to analyze. We came across a tutorial on an
unknown website with a R script. We installed R and downloaded the script.
When we started R, we found that it is a command line environment and is not
so user-friendly for beginners. We then installed RStudio, a front-end for R,
from a deb file we found on another unknown website. Our installer installed
RStudio as untrusted because Firefox labeled the deb file as untrusted.
After we started RStudio, we loaded the script and realized that it required
several R libraries. We installed the missing R libraries. These libraries
were installed in a shadow directory since R implicitly accessed the library
directory. After installing the libraries, we generated a graph. We saved the
graph in the Pictures directory, and edited the graph with GIMP.

Summary The protection offered by Spif had allowed us to download
and run arbitrary software. Applications were started in the right mode
automatically and user did not have to think about security.

While security failures occur from time to time, our efforts to ensure
application transparency bore fruit: applications handled failures gracefully
if not transparently. For instance, if an untrusted editor was used to open a
benign file, it would first attempt to open the file in read/write mode, which
would be denied. Then it simply opens the file in read-only mode, and the
user does not experience a difference unless she tries to edit the file.

8.6.3 Experience with malicious software

Spif is also effective in stopping malware from compromising the system.
Here we present some scenarios involving stealthy attacks that are stopped
by our system.

Real world malware on Ubuntu Malware can enter systems during in-
stallation of untrusted software or via data downloads. As secure installation
is not our focus, we assumed that attacks during installation are prevented
by systems like [Sun et al., 2008a] or the system presented in Section 10 and
untrusted files are labeled properly.

We tested our system with malware available on [Packet Storm, 2015]
for Ubuntu and [Offensive Security, 2014] for Windows. On Ubuntu, these
malware were mainly rootkits: patched system utilities like ps and ls, kernel
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modules, and LD PRELOAD based libraries. Specific packages tested include:
JynxKit, ark, BalaurRootkit, Dica, and Flea. All of them tried to over-
write benign (indeed, root-owned) files, and were hence stopped.

KBeast (Kernel Beast) requires tricking root process to load a kernel
module. The benign sandbox prevents root processes from loading the kernel
module since the module is labeled as untrusted.

Real world exploit on Ubuntu We tested an Adobe Flash Player ex-
ploit (CVE-2008-5499) on Ubuntu, which allows remote attackers to execute
arbitrary code via a crafted SWF file. If the browser is simply trusted to be
free of vulnerabilities, then this attacks would obviously succeed. Our ap-
proach was based on treating the web-site as untrusted, and opening it using
an untrusted instance of the browser. In this case, the payload executed, but
its actions were contained by the untrusted sandbox. In particular, it could
not damage system integrity.

Simulated targeted attacks on Ubuntu We also simulated a targeted
attack via compromising a document viewer on Ubuntu. A user received
a targeted attack email from an attacker, which contained a PDF that can
compromise the viewer. When the user downloaded the file, the email client
labeled the attachment as untrusted automatically since the sender cannot
be verified. Our system, however, did not prevent the user from using the
document. User could still save the file along with other files.

When she opened the file, the document viewer got compromised. On an
unprotected system, the attacker controlled viewer then dumped a hidden
malicious library and modified the .bashrc file to setup environment vari-
able LD PRELOAD such that the malicious library would be injected into all
processes the user invoked from shell. Worse, if the user has administrative
privileges, the viewer can also create an alias on sudo, such that a rootkit
would be installed silently when user performs an administrative action.

Although the viewer still got compromised under Spif, the user was not
inconvenienced: while she could view the document, modification attempts
on .bashrc were denied, and hence malware attempts to subvert and/or
infect the system were thwarted.
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CVE/OSVDB-ID Application Attack Vector

2014-0568 Adobe Reader Code
CVE-2010-2568 Windows Explorer

(Stuxnet)
Data (lnk)

2014-4114/113140 Windows (Sandworm) Data (ppsx)
104141 Calavera UpLoader Preference (dat)
100619 Total Video Player Preference (ini)

2013-6874/100346 Light Alloy Data (m3u)
2013-3934 Kingsoft Office Writer Data (wps)

102205 CCProxy Preference (ini)
2013-4694/94740 WinAmp Preference (ini)
2014-2013/102340 MuPDF Data (xps)

Figure 8.2: Exploits defended by Spif on Windows

8.6.4 Real world exploit on Windows

There are far more malware available on Windows. We evaluated the se-
curity of Spif against malware from Exploit-DB [Offensive Security, 2014]
on Windows XP, 7 and 8.1. We selected all local exploits targeting Win-
dows platform, mostly released between January and October of 2014. Since
these exploits work on specific versions of software, we only included mal-
ware that “worked” on our testbed, and their results were easy to verify.
Figure 8.2 summarizes the CVE/OSVDB-ID, vulnerable applications, and
the attack vectors. We classify attacks into three types: data input attacks,
preference/configuration file attacks, and code attacks.

Note that by design, Spif protects high-integrity processes against all
these attacks. Since high-integrity processes cannot open low-integrity files,
only low-integrity applications can input any of the malware-related files. In
other words, attackers can only compromise low-integrity processes. More-
over, there is no mechanism for low-integrity processes to “escalate their
privilege” to become high-integrity processes. Note that since low-integrity
processes can only modify files within the shadow directory, they cannot af-
fect any user or system files. For this reason, Spif stopped all of the attacks
shown in Figure 8.2.

Both data and preference/configuration file attacks concern inputs to
applications. When applications fail to sanitize malicious inputs, attackers
can exploit vulnerabilities and take control of the applications. Data input
attacks involve day-to-day files like documents (e.g., wps, ppsx, xps). They
can be exploited by simply tricking users to open files. On the other hand,
attacks using preference/configuration files are typically hidden from users,
and are trickier to exploit directly. These exploits are often chained together
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with code attacks to carry out multi-steps attacks to circumvent sandboxes.
Code attacks correspond to instances where the attacker is already able

to execute code but with limited privileges, e.g., inside a restrictive sand-
box. For instance, in the Adobe Reader exploit [Fisher, 2014], it is assumed
that an attacker has already compromised the sandboxed worker process.
Although attackers cannot run code outside of the sandbox, they can exploit
a vulnerability in the broker process. Specifically, the attack exploited the
worker-broker IPC interface — the broker process only enforced policies by
resolving the first level NTFS junction. A compromised worker can use a
chain of junctions to bypass the sandbox policy and write arbitrary file to
the file system with the broker permissions. Since the broker ran with user
privilege, attackers could therefore escape the sandbox and modify any user
files. Spif ran both the broker and worker as untrusted processes. As a re-
sult, the attack could only create or modify low-integrity files, which means
that any subsequent uses of these files were also confined by the untrusted
sandbox.

Spif stopped Stuxnet [Falliere et al., 2011] by preventing the lnk vul-
nerability from being triggered. Since the lnk file is of low-integrity, Spif
prevented Windows Explorer from loading it, and hence stopped Windows
Explorer from loading any untrusted DLLs.

We also tested the Microsoft Windows OLE Package Manager Code Ex-
ecution vulnerability, called Sandworm [Ward, 2014]. It was exploited in
the wild in October 2014. When users view a malicious PowerPoint file,
OLE package manager can be exploited to modify a registry in HKLM, which
subsequently triggers a payload to run as system-administrator. Spif ran
PowerPoint as low-integrity when it opened the untrusted file. The exploit
was stopped as the low-integrity process does not have permissions to modify
the system registry.

The most common technique used to exploit the remaining applications
was an SEH buffer overflow. The upload preference file uploadpref.dat of
Calavera UpLoader and Setting.ini of Total Video Player were modified so
that when the applications ran, the shell-code specified in the files would be
executed. Similarly, SEH buffer overflow can also be triggered via data input,
e.g., using a multimedia playlist (.m3u) for Light Alloy or a word document
(.wps) for Kingsoft Office Writer. Other common techniques include integer
overflow (used in CCProxy.ini for CCProxy) and stack overflow (triggered
when MuPDF parsed a crafted xps file or when WinAmp parsed a directory
name with invalid length). In the absence of Spif, these applications ran
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with user’s privileges, and hence the attackers could abuse user’s privileges,
e.g., to make the malware run persistently across reboots.

Although preference files are specific to applications, there exists no per-
mission control to prevent other applications from modifying them. Spif
makes sure that preference files of high-integrity applications cannot be mod-
ified by any low-integrity subject. This protects benign processes from being
exploited, and hence attackers cannot abuse user privileges. On the other
hand, Spif does not prevent low-integrity instances of the applications from
consuming low-integrity preference or data files. While attackers could ex-
ploit low-integrity processes, they only had privileges of the low-integrity
user. Furthermore, all attackers’ actions were tracked and confined by the
low-integrity sandbox.

8.6.5 Real world malware on Windows

One of the advantage of implementing the defense on Windows is that we
can evaluate the defense against a wide range of malware available in the
wild.

We downloaded more than 30000 files from malwr.com [Claudio nex
Guarnieri and Alessandro jekil Tanasi, 2015], a website where anyone can sub-
mit files for dynamic malware analysis. Malwr.com relies on Cuckoo [Cuckoo
Foundation, 2015], an open source automated malware analysis tool to ana-
lyze submissions. Cuckoo works by running the files inside VMs and monitors
the behaviors of the processes. As some malware may only exhibit malicious
behaviors only when there are human interactions (e.g., mouse move events),
Cuckoo generates these events. Cuckoo relies on injecting libraries to monitor
processes.

Out of the 30000 files downloaded from malwr.com, 14366 of them are
executables. We focus our automated testing on executables only. To evalu-
ate the effectiveness of Spif, we modified Cuckoo. We prepared two groups
of Windows XP SP2 VMs, one group without Spif and one group with Spif
protection. Since Spif’s library works at a lower level than Cuckoo’s, events
observed by Cuckoo library were redirected and shadowed; Cuckoo can report
user file being modified, yet Spif transparently shadowed the modifications.
We therefore do not rely on the monitoring facility in Cuckoo. To obtain
the exact changes made by processes during executions, our system dumps
the entire system registry tree and generates md5 for all files in the system
before and after the running of each of the samples. By comparing the snap-
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shots, our system can detect changes made by the samples. By comparing
the snapshots generated from protected VM and unprotected VM, we can
determine if Spif is effective in stopping the sample.

9579 samples showed no changes when running in both unprotected and
protected VMs, of which 6746 were marked as malware by Virus Total. The
reason why these samples do not exhibit any observable behavior is likely
because of missing system dependency or library in our VM, or they detected
virtualized environment and refuse to run. The remaining 4787 samples
showed changes in our testbed.

2538 of the 4787 samples modified the system registry entries, of which
1272 of them modified entries to automatically start whenever the system
boots. Spif stopped these attempt because untrusted processes do not have
privileges to modify system objects. 1096 samples modified user registry
entries or files so that they can start whenever the user login to the sys-
tem. Spif redirected these changes to the untrusted users’ registry entries
or files. As untrusted user does not login to the system via the login win-
dows, these entries will not be used. 8 samples modified the security zone
mapping. Again, Spif redirected these changes and hence have no effect
to R. 1246 samples attempted to create files or executables in C:\Windows

or C:\Program Files. Spif’s policy does not allow untrusted processes to
create files in these directories, as they can compromise all other untrusted
processes. 23 samples modified existing executables. Spif does not allow
existing system executables to be modified by untrusted processes. For user
executables, untrusted processes can modify them but R is not affected be-
cause of shadowing. 12 of the samples modified a large number of user files
on the system. These include randsome malware which encrypts user files.
Spif does not allow them to modify user files because these are considered as
benign data file. Modifications to non-data files would be shadowed by Spif.
As a result, benign programs and data files are not affected. 1819 samples
created new executable in non-system locations. Spif redirected the creation
to redirected directories. These new files also carry untrusted labels so that
they can only run as untrusted processes. Any effect from these untrusted
processes will be tracked by Spif.

8.6.6 Performance

A practical malware defense should have low overheads. We present both
micro and macro-benchmarks of Spif. All performance evaluation results
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Simple
syscall

Simple
read

Simple
write

Simple
stat

Simple
fstat

Simple
open/
close

Select
on 10
fd’s

Select
on 100

fd’s

Unprotected (µs) 0.80 0.88 0.86 2.14 0.98 3.94 1.03 2.10
platform (overhead) 6.18% 5.98% 5.60% 5.34% 4.88% 232% 5.13% 2.36%
remote (overhead) 6.39% 6.10% 5.85% 174% 4.97% 183% 4.91% 1.89%

Pipe
latency

Process
fork + exit

Process
fork+
execve

Process
fork +
/bin/sh

Unprotected (µs) 74.57 438 1128 2498
platform (overhead) 1.79% 55.04% 173% 152%
remote (overhead) 2.03% 54.63% 149% 134%

Figure 8.3: lmbench performance overhead on Ubuntu

were obtained on Ubuntu 10.04 and Windows 8.1. (Performance does not
vary much across different versions of Windows.)

Micro-benchmark Figure 8.3 shows the performance of lmbench micro-
benchmark. stat has large overhead for untrusted processes because we
are consolidate stat into fstatat for untrusted processes. The overhead
for open/close is particularly high because of the implicit/explicit tracking.
The behavior on fork-related calls are likely to be because of the use of fork
instead of vfork.

Figure 8.4 shows the SPEC2006 benchmark overheads on Ubuntu and
Windows. The overhead is less than 1% for CPU intensive operations. This
is to be expected, as the overhead of Spif will be proportional to the number
of intercepted system calls or Windows API calls, and SPEC benchmarks
make very few of these.

Macro-benchmark Figure 8.5 shows the overhead of openssl and Firefox

when compared with unprotected systems on Ubuntu. We obtained the
statistics using speed option in openssl. As for Firefox, we used pageloader

addon [Mozilla, 2015] to measure the page load time. Pages from top 1200
Alexa sites were fetched locally such that overheads due to networking is
eliminated. The overhead on openssl benchmark is negligible. The average
overhead for Firefox on Ubuntu is less than 5%. We did the same exper-
iment on Windows for the top 1000 Alexa sites. The overheads for benign
Firefox and untrusted Firefox on Windows are 3.32% and 3.62% respectively.
Figure 8.6 shows the correlation between unprotected page load time with
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Unprotected Benign Untrusted

Time (s) Overhead Overhead

400.perlbench 575.8 -0.18% 0.10%

401.bzip2 841.8 0.23% -0.38%

403.gcc 541.2 -1.99% 0.82%

429.mcf 699.0 -0.86% -1.06%

445.gobmk 693.2 -0.02% -0.02%

456.hmmer 982.7 0.36% -0.13%

458.sjeng 933.8 0.49% 0.51%

462.libquantum 995.4 -0.17% 0.33%

464.h264ref 1243.3 0.21% -0.27%

471.omnetpp 573.0 0.07% -0.24%

473.astar 734.2 -0.46% -0.79%

433.milc 882.5 0.85% -2.66%

444.namd 841.5 0.11% 0.13%

Average -0.10% -0.28%

(a) SPEC2006 on Ubuntu

Unprotected Benign Untrusted

Time (s) Overhead Overhead

401.bzip2 1785.9 -0.33% 0.26%

429.mcf 716.4 -1.69% -0.96%

433.milc 3314.1 1.15% -0.53%

445.gobmk 1094.9 0.26% -0.08%

450.soplex 1108.0 0.58% 2.34%

456.hmmer 2386.2 0.02% 0.13%

458.sjeng 1442.5 -0.25% 0.20%

470.lbm 1203.0 -1.51% -0.32%

471.omnetpp 750.9 0.96% 1.83%

482.sphinx3 2653.6 -2.55% -3.45%

Average -0.34% -0.06%

(b) SPEC2006 on Windows

Figure 8.4: Overhead in SPEC2006, ref input size

Benign Untrusted

Overhead σ Overhead σ

openssl 0.01% 1.43% -0.06% 0.70%

Firefox 2.61% 4.57% 4.42% 5.14%

Figure 8.5: Runtime overhead for Firefox and OpenSSL on Ubuntu.
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protected benign Firefox and untrusted Firefox.
We also evaluated Spif with Postmark [Katcher, 1997], a file I/O intensive

benchmark. To better evaluate the system for Windows environment, we
tuned the parameters to model files on a Windows 8.1 system. There were
193475 files on the system. The average file size is 299907 bytes, and the
median is a much smaller 5632 bytes. We selected 3 size ranges based on
this information: small (500 bytes to 5KB), medium (5KB to 300KB), and
large (300KB to 3MB) bytes. Each test creates, reads, writes and deletes
files repeatedly for about 5 minutes. We ran the tests multiple times and the
average is presented in Figure 8.7. There are three columns for each file size,
showing (a) the base runtime obtained on a system that does not have Spif,
(b) the overhead when the benchmark is run as a high-integrity process, and
(c) the overhead when it is run as a low-integrity process. As expected, the
system shows higher overhead for small files. This is because there are more
frequent file creation and deletion operations that are intercepted by Spif.
For larger files, relatively more time is spent on reads and writes, which are
not intercepted by Spif.

Figure 8.8 shows the latency for some GUI programs on Ubuntu. We
measured the time between starting and closing the applications without
using them. While there are some latencies, the overall user experiences
were not affected when using the applications.
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Figure 8.6: Firefox page load time correlation on Windows
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File Size 500B to 5KB

Operations Base Benign Untrusted

Files Created per Second 351.14 -5.02% -10.45%

File Read per Second 350.14 -5.18% -10.59%

File Appended per Second 344.79 -5.19% -10.58%

File Deleted per Second 350.21 -5.17% -10.57%

Total Transaction Time (s) 285.36 6.53% 12.38%

File Size 5KB to 300KB

Operations Base Benign Untrusted

Files Created per Second 68.00 -2.79% -2.02%

File Read per Second 67.64 -3.02% -2.34%

File Appended per Second 67.64 -3.02% -2.61%

File Deleted per Second 67.86 -3.03% -2.00%

Total Transaction Time (s) 367.29 3.05% 4.58%

File Size 300KB to 3MB

Operations Base Benign Untrusted

Files Created per Second 8.00 -1.25% -1.56%

File Read per Second 7.60 -3.95% -1.97%

File Appended per Second 8.00 -2.50% -2.34%

File Deleted per Second 8.00 -1.25% -2.34%

Total Transaction Time (s) 308.67 1.27% -0.62%

Figure 8.7: Postmark overhead for high and low integrity processes on Win-
dows

Unprotected Benign Untrusted

Time (s) Overhead Overhead

eclipse 6.16 1.99% 10.23%

evolution 2.44 2.44% 5.04%

F-spot 1.61 2.11% 6.80%

Firefox 1.32 3.24% 10.08%

gedit 0.82 5.02% 6.09%

gimp 3.63 1.90% 4.32%

soffice 1.56 0.33% 7.08%

Figure 8.8: Latency for starting and closing GUI programs on Ubuntu
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8.6.7 Discussion

Alternative choices for enforcement

Spif could use WIM labels instead of userids for provenance tracking and
policy enforcement. WIM enforces a no-write-up policy that not only pre-
vents a low-integrity process from writing to high-integrity files, but also to
processes. Although WIM does not enforce no-read-down, we can achieve
it in a co-operative manner using an utility library, the same way how Spif
achieves it now.

With userids, Spif gets more flexibility and functionality by using DAC
permissions to limit the access of untrusted processes. For instance, files that
can be read by low-integrity applications can be fine-tuned using the DAC
mechanism. Moreover, Spif can be easily generalized to support the notion of
groups of untrusted applications, each group running with a different userid,
and with a different set of restrictions on the files they can read or write.
Achieving this kind of flexibility would be difficult if WIM labels were used
instead of userids.

On the positive side, WIM can provide better protection on desktop/win-
dow system related attacks. The transition to lower-integrity is also auto-
matic when a process executes a lower-integrity image, whereas this function-
ality is currently implemented in our utility library. For added protection,
one could combine the two mechanisms — this is a topic of ongoing research.

Limitations

Our WinAPI interception relies on the AppInit DLLs mechanism, which does
not kick in until the first GUI program runs. Furthermore, libraries loaded
during the process initialization stage are not intercepted. This means that if
a library used by a benign application is somehow replaced by a low-integrity
version, a malicious library could be silently loaded into a high-integrity
process. Our current defense relies on the inability of untrusted applications
to replace a high-integrity file, but subtle attacks may be possible where an
application loads a DLL from the current directory if the DLL is present, but
if the DLL is not found, it starts normally. A better solution is to develop a
kernel driver to enforce a no-read-down policy on file loads.

Our prototype does not consider IPC that takes place through COM and
Windows messages. COM supports ACL, so it may be easy to handle.

135



Our prototype does not support untrusted software whose installation
phase needs administrative privileges. If we enforce the no-read-down policy,
the installation won’t proceed. If we waive it, then malicious software will
run without any confinement, and can damage system integrity. Techniques
for secure software installation [Sun et al., 2008a] can be applied to solve this
problem, but will need to be implemented for Windows.

Other architectural/implementation vulnerabilities

Attacks on UH Policies on untrusted processes are enforced using the well-
defined, well-studied DAC mechanisms. Relaxation over the strict policy
dictated by the DAC mechanisms are provided via the use of helper process
UH . Communications between untrusted processes and UH use UNIX-domain
sockets. This narrow communication interface exposed to untrusted processes
have only a small attack surface. Same as other benign processes, UH cannot
be ptraced or receive signals from untrusted processes. Furthermore, UH
runs with user’s privilege, but not administrative privileges.

Vulnerabilities in trusted programs Trusted programs are trust-confined.
They are only trusted to consume some specified untrusted files. Opening
of other untrusted files will still be rejected. Our approach reduces the at-
tack surface to those interfaces where we incorrectly chose to trust. Trusted
programs are those that can execute in limited mutual trust mode. They
are only trusted to consume some specified untrusted files. Opening of other
untrusted files will still be rejected. Our approach reduces the attack surface
to those interfaces where we incorrectly chose to trust.

Trusted programs may also need to label files based on origins. Label-
ing errors due to misplaced trust. For instance, we may incorrectly trust a
software provider and mark their code as benign or label an untrusted file
downloaded from untrusted source as benign. The only defense in this re-
gard is to be conservative: only trust those sources that are indisputably
trustworthy.

Labeling errors Another related problem is labeling errors due to mis-
placed trust. For instance, we may incorrectly trust a software provider and
mark their code as benign or label a untrusted file downloaded from untrusted
source as benign. The only defense in this regard is to be conservative: only
trust those sources that are indisputably trustworthy.
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8.7 Generalizing to multiple principals

While partitioning origins into benign and untrusted is effective in protecting
the system integrity against malware, there are several drawbacks for consid-
ering only two principals. First of all, this coarse-grained partitioning groups
all potentially malicious resources into the same category. A single malicious
file can ruin all untrusted but non-malicious resources. This is particularly
problematic since most resources cannot be placed in the benign category.
The second problem is that putting all resources in the same level does not
preserve security boundary. Naturally, files from both origin A and B can
be untrusted to the system; yet, information from A should be isolated from
B. The two-principal model cannot support this isolation. In this section,
we discuss how to generalize Spif to support multiple untrusted principals,
i.e., provenance tracking for more than 2 sources.

We also generalize Spif to support confidentiality. Secret information
such as SSH authorization keys, cookies, and password files contains au-
thentication information that attackers can use to gain access to resources.
Protecting integrity alone does not prevent such attacks. Protecting confi-
dentiality is necessary to provide complete protection.

We extends the notion of principal in OSes to incorporate not only local
user but also network provenance information. This is also a generalization to
the same-origin-policy in web browsers and the app model in Android, where
only provenance information of app (web app or Android app) is considered.

OSes only support mutually untrusted relationships between principals.
Information is not shared between principals by-default, but principals are
free to share information voluntarily. In the previous section, Spif introduced
a mandatory unidirectional trust relationship between two principals. By
considering multiple principals and confidentiality, Spif can capture a more
general notion of trust and model trust-hierarchy in various systems. For
example, Android allows one application to “invoke” another application for
code reuse; Web browsers isolate code and data so that code from one origin
can only access data and interact with code from the same origin. At the
same time, browsers also support using third-party scripts as libraries. Our
extension to Spif can simulate existing trust models such as Android and
Bubbles [Tiwari et al., 2012].
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8.7.1 Implementation and evaluation

Setup: We have modified Spif to support multiple principals. We created
additional users on the system to represent new principals. From the OS
perspective, these new principals are no different than regular users.

Each principal has a set of principals that it trusts with integrity and
confidentiality. In our experiment, we have created four principals: plat-
form, word processor, pdf reader, and untrusted. word processor corresponds
to a principal which owns the Microsoft Word. pdf reader corresponds to a
principal that owns Adobe Reader. platform trusts no other principal; Both
word processor and pdf reader trust platform; untrusted trusts all of the other
principals.

Figure 8.9 specifies the policy used for all the principals. Note that
word processor and pdf reader are mutually untrusted to each other. No
information is permitted to flow between them.

Policy enforcement: Spif relies on OS DAC permissions to enforce ob-
ject rules. If principal A does not allow principal B to perform an operation
on A’s objects, Spif will protect A’s objects with DAC permissions by deny-
ing B from performing the operation. On Windows, DAC permissions are
encoded using ACL which supports both positive and negative ACL entries.
Spif encodes the entire set of object rules using ACL. On Linux, since ACL
is not widely supported, Spif uses the 9-bit DAC permission to encode a
default deny policy. It is up to the subjects to request the operation using
a helper process. The helper process will then decide whether to permit the
operation based on the object rules.

The enforcement of subject rules is based on the observation that these
rules are defined by the subject principal itself to restrict information flowing
into and out of the principal. As a result, the subject has no interest in
bypassing subject rules. Therefore, Spif enforces subject rules using library
interception.

For enforcing allow read and allow write rules, whenever a subject
opens files of different principal for reading or writing, Spif checks if the
permissions are allowed by the policy. The enforcement of the object rules
such as allow all read and allow all write are enforced by DAC per-
mission using ACL. For systems like Unix that do not use ACL, Spif relies
on UH to mediate accesses to other principals’ objects and enforce object
policies for other principals.
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For enforcing principal transition rules, the transition rule allow transition
to is checked when the subject tries to transition into another principal be-
fore executing an executable. The other transition rule allow transition

from is enforced by uudo to check if the subject principal has the permission
to execute the object.

Shadowing and redirection: Every principal (except platform) has its
own shadowing and redirection directory. Shadowing resolves the write ob-
ject conflicts using copy-on-write, where an executing principal does not have
permission to modify an object. Redirection provides user an illusion that
files are located in the same directory; yet, they are located in different redi-
rection directories.

The purpose of redirection is to protect applications that are not compat-
ible with Spif-library. Since Spif enforces subject rules using Spif-library,
applications that do not load the Spif-library will not be protected against
accidental consumption of untrusted resources. By partitioning resources
based on principals, applications that are not compatible with Spif will re-
main protected. Note that since Spif does not rely on Spif-library to enforce
object policies. Applications that do not load Spif-library still cannot bypass
the object rules, which are enforced using DAC permissions.

When a principal lists a directory, Spif creates an unified view for the
principal by combining all the redirected directories. For example, untrusted
principal listing user’s home directory will contain the results not only from
its own directory, but also from word processor, pdf reader, and platform.
Since redirection is only applied to data files, Spif ensures that file names
cannot collide by rejecting the creation of files with the same name.

On the other hand, configuration and preference files use a shadowing/copy-
on-write semantics, with read-only copies from trusted principals. Modifica-
tions to the files would result in shadowing in the principal’s own shadowing
directory. For instance, when the untrusted principal runs Microsoft Office,
Spif allows the untrusted Microsoft Office process to read but not modify
word processor’s preference files. When these files are updated, Spif trans-
parently shadows the changes in untrusted’s shadow directories.

Performance In term of performance, we observed no performance differ-
ence for supporting MultiP in Spif. This is because Spif relies on OS DAC
permission to label and enforce policies. The labeling and enforcement are
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independent of the number of provenance labels, as they are simply users
from the OS perspective.

The principal resolution algorithm kicks in for every calls to CreateProcess
or exec. Since there are only a limited number of process creation, the algo-
rithm imposes negligible overheads.

Another factor that could affect the performance is to check if an op-
eration involving multiple principal is allowed or not. The procedure for
retrieving the object principal has been there even in the two-provenance
case. The only additional work for supporting MultiP is to consult the pol-
icy. The policy is loaded in the memory and Spif rely on hash table to
perform the lookup. Hence, it imposes negligible overheads.

Transition between principals: Spif is an early downgrading system
(Section 5), principal transitioning therefore happens at exec or CreateProcess
time. For every exec or CreateProcess call, Spif runs the principal resolu-
tion algorithm (Section 7.6.1) to decide what can be the executing principal.
At the time of invocation, Spif knows the invoker principal, the code owner
principal, and some of the data owner principals.

In the experiment, a platform process starting a Microsoft Office applica-
tion will automatically transition into word processor because the invoker is
platform and the code owner is word processor. No rule in the platform’s pol-
icy would allow platform to execute code from any other principals. Hence,
the transition rule (Rule 4 and 12) kicks in to transition the platform process
to word processor to allow Microsoft Office to run.

All the documents created by the Office applications will therefore belong
to word processor. Users can save the document as a PDF file on the desktop.
The PDF document still belongs to word processor. However, when users
double click on the PDF document belonging to the word processor principal,
Spif will need to design again which principal to run the code.

The data file belongs to word processor, yet the application belongs to
pdf reader. Neither the word processor nor the pdf reader trusts information
from the other. Hence, the PDF reader cannot run as any of the two. The
domain transition rules (Rules 11, 15, and 6) allow transitioning to untrusted.
Rule 7 and 10 also allows untrusted to read the PDF file from word processor.
Rule 7 and 14 also allows untrusted to read the config and preference files
from word processor. As such, the PDF reader runs as untrusted. An exploit
in the PDF document would therefore cannot compromise the pdf reader
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principal.

8.7.2 Confidential policy samples

Figure 8.10 shows a list of files that contain browser confidential information.
To protect these confidential information, the platform principal can include
these files as confidential, or the system administrator can create a browser
principal and only let browser to read them.

Figure 8.11 shows a list of files that contain FileZilla FTP site confidential
information. We can similarly protect them by setting them as confidential.
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1. confidential = {.ssh/∗, ...}
2. deny all read confidential

3. allow all read, exec ∗
4. allow transition to any

(a) platform’s policy

5. allow all read, exec ∗
6. allow transition to, from any

7. allow read, write, exec ∗ from platform,word processor, pdf reader

(b) untrusted’s policy

8. confidential = {HKEY CURRENT USER\...\Office\...\Identity}
9. deny all read confidential

10. allow all read, exec ∗
11. allow transition to any

12. allow transition from platform

13. allow read, write, exec ∗ from platform

(c) word processor’s policy

14. allow all read, exec ∗
15. allow transition to any

16. allow transition from platform

17. allow read, write, exec ∗ from platform

(d) pdf reader’s policy

Figure 8.9: Policy for multi-principal system
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.*\Mozilla\Firefox\Profiles\.*\.default\signons\.sqlite$

.*\Mozilla\Firefox\Profiles\.*\.default\secmod\.db$

.*\Mozilla\Firefox\Profiles\.*\.default\cert8\.db$

.*\Mozilla\Firefox\Profiles\.*\.default\key3\.db$

.*\History\History\.IE5\index\.dat$

.*\Temporary Internet Files\Content\.IE5\index\.dat$

.*\Application Data\Google\Chrome\.*

Figure 8.10: Files for protecting browser private information

.*\FileZilla\sitemanager\.xml$

.*\FileZilla\recentservers\.xml$

Figure 8.11: Files for protecting FileZilla private information
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Chapter 9

SRFD: Integrity Protection
with Dynamic Downgrading

The weaknesses of userid-based DAC has prompted a resurgence of interest in
mandatory access control (MAC) [Loscocco and Smalley, 2001b, Biba, 1977,
Krohn et al., 2007, Sun et al., 2008b, Zeldovich et al., 2006, Efstathopoulos
et al., 2005, Ubuntu, 2015, Li et al., 2007, Mao et al., 2011, Sze and Sekar,
2013, Fraser, 2000]. Information-flow approaches such as the Biba model
[Biba, 1977] are particularly attractive in the context of malware threats,
as they can prevent low-integrity (untrusted and potentially malicious) data
or code from ever influencing high-integrity data or applications. It not
only prevents malware from directly corrupting important system files, but
also stops indirect attacks that operate by corrupting some intermediate data
consumed by other high integrity processes that can update important system
files.

A drawback of the Biba model is that its strict separation between high
and low-integrity objects and subjects, which impacts its usability. Consider
a utility application such as a word-processor that needs to operate on both
high and low integrity files. It would be necessary to have two versions of
every such application, one for operating on high-integrity files and another
for low-integrity files. It is cumbersome to install and maintain two versions
of every application. Worse, a user needs to be careful in selecting the correct
version of an application for each task — choosing a high-integrity version
of an application for processing low-integrity files (or vice-versa) will lead to
security failures and/or application crashes.

The low-water-mark policy [Biba, 1977] can avoid these drawbacks of
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the strict policy by permitting subject integrity to be downgraded at run-
time. In particular, this policy allows applications to be invoked with high
integrity, and the integrity level to be downgraded if the application subse-
quently reads a low integrity object. Fraser [Fraser, 2000] argues eloquently
why low-water-mark policy provides significantly better compatibility with
existing software as compared to the strict model. However, prior to this
project, the low-water-mark policy was not very popular because of the self-
revocation problem [Fraser, 2000]. Specifically, consider a subject that has
already opened a high integrity file for writing. If this subject subsequently
opens a low integrity file for reading, it is downgraded. At this point, the
subject cannot be permitted to write the high integrity file any more. Ap-
plications expect and handle security failures when opening files, but once
opened, they assume that subsequent read and write operations will not fail.
When this assumption is invalidated, applications may malfunction or crash.

In this chapter, we implemented a more general solution to the self-
revocation problem in all cases based on our SRFD policy. Our implementa-
tion of SRFD on Ubuntu Linux 13.10 is fast, incurring a maximum overhead
under 6% and average overhead below 2% across several macro-benchmarks.
The evaluation also demonstrates that SRFD provides very good compati-
bility, while thwarting malware attacks.

9.1 Implementation

We implemented SRFD based on the mechanism described in Section 3 with
the design in Section 5.5 .

We present an implementation and experimental evaluation of SRFD on
Ubuntu Linux 13.10. Our experimental evaluation shows that our imple-
mentation is fast, incurring a maximum overhead under 6% and average
overhead below 2% across several macro-benchmarks. The evaluation also
demonstrates that SRFD has very good compatibility while thwarting mal-
ware attacks.

LSM hooks are used to enforce information flow policies, perform dynamic
downgrading, track and maintain min lbl constraints. Our implementation
also uses an user-level component to perform some usability enhancing fea-
tures such as notifying users when a process is downgraded and shadowing
accesses to preference files for low-integrity processes. By maintaining sep-
arate preference files for high and low-integrity processes, SRFD prevents
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processes from downgrading automatically due to consuming low integrity
preference files. Note that these features do not allow a process to bypass
kernel enforcement.

9.1.1 Abstraction mapping: Subjects, Objects, and Han-
dles

SRFD maps threads to subjects. Threads of the same process belong to
the same subject group. Within the kernel, subjects are identified using
task structs. Since LSM does not have hooks to track process creation di-
rectly, our prototype relies on cred ∗ hooks instead. For each subject group,
SRFD maintains information such as integrity level and a list of handles.

Objects are mapped into inodes in the kernel. Our implementation main-
tains and updates object-related information, including labels, handles asso-
ciated with each object, and constraints. We use LSM hooks on inodes for
creating objects on demand, and deallocating objects when they are no longer
needed. For file objects, integrity labels are stored on the disk persistently
using extended attributes.

Handles are similar to file descriptors but represent an unidirectional
information flow between exactly one subject and one object. SRFD relies
on LSM hooks such as file open, inode permission and d instantiate to
maintain handles. When an object is associated with a subject (as a result
of a file open, pipe or socket creation), the object will be attached to the
subject via at least one handle. When the association is broken, e.g., due to
a close operation, the corresponding handle is destroyed.

9.1.2 Constraint propagation

When a subject A opens a file O for writing (or a socket connection with
another process), constraints from the file (or target process) have to be
propagated in the inverse direction of information flow, as described in Sec-
tion 3.3.3. The open operation is permitted if the invariants regarding
current lbl and min lbl can be satisfied after this propagation.

Note that constraint propagation can involve circular dependencies as
illustrated in Figure 3.1. To deal with cycles, SRFD uses a fix-point algorithm
for constraint propagation. To detect a fix-point, SRFD stores the previous
value of min lbl in a variable called last min lbl. It then updates the value
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of min lbl of A to be the maximum of last min lbl and the label of the
file O. If min lbl(A) = last min lbl(A), then a fix-point has been reached,
and our algorithm stops. If not, then the same process is used to propagate
the new value of A’s min lbl to each of the subjects S1, . . . , Sn that output
to A, and the process continues. If any of the propagation steps fail because
it results in a min lbl exceeding the value of current lbl, then the open

operation is denied, and the values of min lbl restored.
The same fix-point algorithm is used even if A performs a close rather

than an open. The only difference is that instead of computing the maximum
of A’s min lbl and that of the new object being opened, we recompute
min lbl as the maximum of the labels of all the currently open write handles
of A. However, in the presence of cycles, this simple algorithm will not
always compute the least fix-point. For this reason, our algorithm will retry
constraint propagation from scratch before denying an open request. Note
that (a) this retry step is unnecessary if no close operations have taken place
since the last retry, and (b) constraint propagation itself is unnecessary for
processes that are already at low-integrity.

LSM has no hooks on close operation: SRFD is not notified when a pro-
cess closes a file. As a result, SRFD may have stale information regarding
files opened. SRFD solves this problem by walking through the file descriptor
table to prune out outdated handles when recomputing constraints. SRFD
optimizes this by recomputing the constraints only when the current con-
straints cannot be satisfied.

9.1.3 Tracking subjects

Processes inherit a lot of rights from their parents, e.g., ability to write to
a file. SRFD needs to be aware of these inherited rights to protect against
self-revocation of these rights.

When a new process is created, SRFD duplicates the book-keeping infor-
mation associated with the parent to the child. This automatically captures
the communication between parent and child that happen using mechanisms
such as pipes. The most common use of pipes occur in the context of shell
processes, where the parent first creates a pipe with a readable-end and a
writable-end. It then creates two child processes. At this point, the par-
ent and children can all read and write from the pipes, so there is cyclic
dependency between them. As a result, any constraint propagation will re-
sult in all three processes having the same min lbl. However, in the next
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step, parent shell will close the two ends of the pipe, and then the first child
will close the readable end of the pipe, while the second child will close the
writable end of the pipe. After these close operations, there can be no flow
between the children and the parent shell. Moreover, no information can
flow from the second child to the first child. All of this is handled by our
constraint propagation algorithm, which will correctly allow the second child
to be downgraded (if necessary) without having to downgrade the first child
or the parent.

9.1.4 Limitations

Our current prototype does not enforce its policies on operations relating
to capabilities, file mount points, signals, message queue, and semaphores.
In particular, low-integrity processes performing these operations are not
restricted. We also simply denies lower integrity processes to ptrace on higher
integrity processes. We have left out these aspects since our experiments did
not make use of these system calls. A complete implementation should also
mediate these operations by propagating labels.

For sockets, our prototype handles Unix domain sockets because the two
ends of the socket connection are within the control of the OS. For sockets
in the Internet domain, their other end is typically outside the control of the
OS. Hence SRFD does not attempt to enforce any policies on such Internet
sockets.

9.2 Performance

We evaluate the performance of SRFD using micro- as well as macro-benchmarks.
All the evaluations are performed on a Ubuntu 13.10 VMware virtual ma-
chine allocated with one VCPU AMD Opteron Processor 4228 HE (2.8GHz)
and 1GB RAM.

As a micro-benchmark, we use lmbench, which measures the overhead
for making individual system calls. Figure 9.1 shows the overheads of our
system for different classes of system calls. The overheads are modest: the
geometric mean is about 12%, and the arithmetic mean is 16%. Note that if
we exclude open and close, which are typically less frequent than other calls
such as read/write, the overheads are much smaller — less than 5%.
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Simple Simple Simple Simple Simple Select Select

syscall read write stat open/ 10 500

close fd’s fd’s

unprotected 0.375 0.477 0.517 1.104 2.591 0.624 8.935

protected 0.376 0.526 0.580 1.122 5.867 0.624 8.958

Overhead (%) 0.09% 10.28% 12.15% 1.62% 126% -0.1% 0.26%

Pipe AF UNIX Process Process Geometric

latency latency fork+ fork+ mean

exit /bin/sh -c

unprotected 12.854 8.812 235.4 1830

protected 13.994 9.785 249.8 1963

Overhead (%) 8.87% 11.04% 6.08% 7.27% 12%

Figure 9.1: SRFD lmbench Performance overhead

It is natural for open and close to have higher overheads because of
constraint propagation, but that does not explain a doubling of execution
time. It occurs in our prototype because LSM does not have hooks for close,
and as a result, our implementation has to walk through the list of open file
descriptors while propagating constraints. In contrast, because there can be
no failures on read and write, no additional checking is needed, and the only
work is to blindly copy current lbl from the source to destination.

Micro-benchmarks help to understand and explain the overheads of kernel-
based defenses such as ours, but they tend to overestimate the overheads
because most applications spend only a minority of their time in the ker-
nel. Macro-benchmarks are better at estimating overheads experienced by
real users in practice. For this reason, we used several macro-benchmarks,
including the CPU-intensive SPEC 2006 and openssl, file-system intensive
Postmark, and commonly used programs such as browsers and software
builds.

From Figures 9.2 and 9.3, it is clear that overheads on CPU-intensive
programs such as SPEC and openssl are negligible — the overheads are
below measurement errors/noise.

Package builds, which represent a combination of CPU and I/O load,
show a slightly higher overhead of 1% to 3%. Specifically, our benchmark
built Debian Linux packages for coreutils and am-utils from source code.
Another mixed load consists of Firefox, whose overhead was measured using
pageloader, a benchmarking tool from Mozilla. Top 3000 Alexa sites were
pre-fetched in this experiment so as to eliminate the effects of network latency.
(If this was not done, then the overheads will be even smaller.) The overhead
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Unprotected Protected

Time (s) Overhead

400.perlbench 554.41 -0.21%

401.bzip2 772.29 0.03%

403.gcc 505.47 0.01%

429.mcf 709.06 0.02%

445.gobmk 673.06 0.05%

456.hmmer 712.94 -0.13%

458.sjeng 865.29 -0.23%

462.libquantum 1032.35 -0.23%

464.h264ref 1159.41 -0.05%

471.omnetpp 543.24 0.27%

473.astar 738.29 0.16%

433.milc 875.47 -0.14%

444.namd 764.47 -0.09%

Average 0.04%

Figure 9.2: SPEC2006 Overhead for SRFD, ref input size

Protected

Overhead

Openssl -0.08%

dpkg -b coreutils 2.93%

dpkg -b am-utils 1.22%

Firefox 4.89%

Postmark 5.74%

Figure 9.3: Overhead on other benchmarks for SRFD

experienced was 5%.
Finally, the I/O-intensive Postmark was configured to create 500 files

with size between 500 bytes and 500 Kbytes. The overhead reported was
6%.

9.2.1 User Experience

Our work is motivated by a continuing trend in sophisticated and adaptive
malware attacks, and our desire to develop a principled defenses against
them. Existing approaches rely on techniques such as sandboxing a few key
applications such as browsers and email readers that have the most exposure
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to malware. While sandboxing these applications can prevent some attacks,
e.g., those that try to mount a code injection attack on an email reader (or
other document viewers invoked by a browser), more sophisticated attacks
can often get around these defenses. For instance, users may save a document
on their desktop, and subsequently open it with their favorite document ed-
itor/viewer application. Since the application is typically not sandboxed in
this usage scenario, the attack can succeed. In contrast, an information-flow
based approach would mark such files as low-integrity, and regardless of the
number of applications that process them, or how many intermediate steps
they go through, untrusted files will always be operated on by low-integrity
processes. Since such processes can only output low-integrity files, and can-
not modify high-integrity files or interfere with high-integrity subjects, their
attempts to compromise system integrity will continue to fail.

Although these theoretical benefits of information-flow based integrity
protection are well-known, these techniques have not found widespread use
on modern operating systems as they often pose compatibility challenges.
In this section, we walk through several illustrative and common usage sce-
narios to demonstrate that SRFD can work well on contemporary operating
system distributions, without posing major compatibility problems. Natu-
rally, our focus will be on illustrating features specific to SRFD, as opposed
to information-flow based techniques in general.

In these scenarios, we assume that the default OS installation consists of
only high-integrity files; and that low-integrity files enter the system when
the system begins to be used, and new low-integrity files are created by low-
integrity subjects. We assume that browsers and email readers are run as
low-integrity processes.

Self-revocations involving files, pipelines and sockets

The scenarios discussed here illustrate the benefits of accurate information-
flow dependency tracking in SRFD, and how that permits us to be more
functional as compared to previous approaches (specifically, LOMAC [Fraser,
2000]), while avoiding self-revocation.

One of the challenges in SRFD is to track communications between pro-
cesses. This can be nontrivial when a deep pipeline is involved. Consider the
command:

cat lowI | grep... | sed | ... | sort | uniq 〉〉 highI
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It is necessary to propagate labels across the pipeline to ensure that infor-
mation from low-integrity file lowI is prevented from contaminating a high-
integrity file highI. Opportunities for self-revocation abound, especially if
the shell opens highI before cat gets a chance to open lowI. Even other-
wise, self-revocation is possible since intermediate commands such as grep

may begin execution as high-integrity processes, and then be prevented from
reading their input pipes, or they may be downgraded and prevented from
writing on their output pipes. LOMAC [Fraser, 2000] avoids self-revocation
on pipes by downgrading process groups at a time — in this case, all processes
in the pipeline will be part of the same process group.

SRFD accurately captures information flow dependencies between the
processes in the pipeline, and can avoid self-revocation while preserving us-
ability. In particular, depending on the order in which processes are sched-
uled, cat may be permitted to downgrade. In this case, SRFD will deny the
open operation on highI. Alternatively, if highI is opened first, SRFD will
deny cat’s attempt to open lowI.

Another example that illustrates the strength of SRFD is:

cat high1 | tee high2 | lowP

where lowP is a low-integrity utility program. SRFD will run this pipeline
successfully: both cat and tee will be remain at high-integrity, and be able
to output to high-integrity file high2, while lowP will run at low-integrity.
LOMAC requires all processes in the pipeline to be at the same level, and
hence cannot run this.

SRFD protects sockets, and can avoid self-revocation on processes that
make use of these features. When a server program has a high-integrity
file opened for writing, SRFD will deny connections from a low-integrity
client, as the establishment of such a connection would violate the con-
straints on min lbl. Moreover, any client that is already connected to such
a high-integrity server will be prevented from opening a low-integrity file,
or connecting to any other low-integrity process. LOMAC will experience
self-revocation.

Commonly used applications

We implemented SRFD on a Ubuntu 13.10 desktop system. This system runs
a large number of applications and services, including a number of daemons,
X-server, GNOME desktop environment, and so on. All these applications
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work with SRFD, but this is unsurprising: in our tests, these applications
did not access low-integrity files, and so SRFD does not constrain them in
any way.

In the same manner, applications that don’t modify high-integrity files
will run without any problems, as SRFD imposes no constraints on them.
Most complex applications can be run this way — for instance, we run web
browsers and email readers in this mode.

Most command-line programs can run as high or low-integrity without
any problems. Common utilities such as tar, gzip, make, compilers, and
linkers can be run without any problems on low-integrity files. Composing
these command line applications using pipelines works as described in the
preceding section. Thus, we focus the rest of this section on more complex
GUI applications that need to access a combination of low and high-integrity
files.

Document viewers Document viewers such as evince and Acrobat Reader
can be used in SRFD without any issues. These programs can be used to
open high and low-integrity documents simultaneously. However, once the
viewer has opened a low-integrity file, it will not be able to overwrite a high-
integrity file.

Editors GUI editors (e.g., gedit, OpenOffice, GIMP) impose additional
challenges for dynamic downgrading systems like SRFD. When users select
files to edit using file selection dialogs, applications tend to open every file
to generate a preview, regardless of the integrity of the files. When users
open a directory containing low-integrity files, the editors will automatically
be downgraded to low-integrity even if the users did not intend to open low-
integrity files.

To prevent editors from downgraded accidentally, we can allow editors to
be downgraded only when demanded by users. We can rely on the “implicit-
explicit” mechanism suggested in Section 6.1 to identify file accesses that are
requested explicitly by users, and only allow editors to be downgraded on
opening these files. SRFD can deny opening low-integrity files implicitly.

Media Editors We consider media editors (e.g., f-spot and audacity) sep-
arately because they usually do not modify the original media files directly.
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Instead, they edit copies of the media files. As a result, these media editors
can be used without usability issues.

9.2.2 Defense against malware

We downloaded a rootkit ark from [Packet Storm, 2015]. The tar file was
labeled as low-integrity when downloaded into the system by a web browser.
The user then untars the file by invoking tar. SRFD started tar as a high-
integrity process, with current lbl = Hi, min lbl = Lo because it has no
constraints on its output files and it has not been contaminated with any low-
integrity information. tar started by loading libraries like ld.so.cache and
libc− 2.17.so. The tar process was then downgraded to low-integrity when
reading the rootkit tar file. tar process then spawned gzip as low-integrity
to decompress the file. After decompressing, the tar process continued to
untar. All of the new files created are automatically labeled as low-integrity.

With these integrity labels in place, SRFD can easily preserve system
integrity. Specifically, system directories are labeled as high-integrity and
hence rootkits cannot be placed in the system directories. It is possible for
users to accidentally invoke these rootkits by placing them in some user-
specific search paths. SRFD protects the system integrity by downgrading
processes when these rootkits are executed or used, including executions by
root processes. Hence, when a user process executes a low-integrity binary
or loads a low-integrity library, SRFD downgrades the process and prevent
the process from damaging system integrity.

SRFD also intercepts LSM hooks related to kernel modules. Low-integrity
kernel modules cannot be loaded even by root processes.

9.3 Discussion

The LOMAC project [Fraser, 2000] does not attempt to solve the self-revocation
problem in its entirety, but focuses on two common instances that involve
pipes and shared memory abstractions. Pipes are particularly nasty, because
downgrading of one process in a pipeline can prevent it from writing to the
pipe, which in turn will cause the next process in the pipeline to fail because
it does not get any input. LOMAC avoids this problem by permitting pipe
communications only within a UNIX process group, and ensuring that all
processes within this group are at the same level. This notion of a group is
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further extended to include all processes that share memory. Since all pro-
cesses within a group are at the same level at all times, there is no need to
restrict communication among them, and hence pipes and shared memory
operations don’t ever have to be denied. Unfortunately, self-revocation prob-
lem still remains when dealing with files, as well as other IPC mechanisms
such as sockets.

Both UMIP [Li et al., 2007] and IFEDAC [Mao et al., 2011] adopt the LD
model and do not constrain high-integrity processes. High-integrity process
can therefore be downgraded accidentally due to the consumption of low-
integrity input. This can cause all its future accesses to be denied, including
writes to files that were opened before consuming low-integrity input.

Flume [Krohn et al., 2007] uses the notion of endpoints and rules to
enforce endpoint safety. File endpoints have immutable labels. This implic-
itly constrains the labels of processes — processes cannot downgrade (e.g.,
by acquiring low-integrity label) as this will violate the file endpoint safety
constraints. This prevents self-revocation. However, Flume only solved self-
revocation involving single process. It does not constrain downgrading for
processes that are connected via IPC. When these processes downgrade them-
selves to consume low-integrity data, the IPC endpoint safety can no longer
be satisfied. As a result, messages will get dropped silently. SRFD addresses
this problem by propagating constraints across all IPC-connected processes.
Furthermore, Flume does not consider file close operations. Once a file is
opened, the file endpoint constraint remains throughout the process lifetime.
As a result, the process can never downgrade themselves once they opened a
high integrity file for writing, even after closing the files. While SRFD also
relies on LSM hooks, SRFD handle for file close operations by searching the
file description table. Hence, SRFD allows processes to be downgraded after
closing high-integrity files.
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Chapter 10

Software Installation: A Case
Study for Deferred
Enforcement

In this chapter, we discuss an important application of Delayed Enforcement,
namely software installation. We introduce SwInst to secure the software
installation process. SwInst is built based on Spif and transaction, a de-
layed enforcement mechanism. Transaction allows deferring the decision on
whether to accept changes made by installers. SwInst allows system admin-
istrators to customize policies about acceptable changes. Installations that
do not violate the policies will be committed automatically, otherwise, the
system state is reverted as if the installation process has never taken place.

One of the important criteria for any provenance tracking system is the
proper object labeling upon object creation. The two main ways to introduce
new files into systems are through browser downloads and software instal-
lation. We have already described how Spif leverages browser add-ons and
Security Zone to label file downloads properly. In this chapter, we discuss
how to leverage the provenance tracking capability of Spif to label programs
created during software installation and hence securing the installation pro-
cess.

We applied a delayed enforcement approach towards securing software
installation.

Software installation itself poses a significant challenge to malware de-
fense; not only because it introduces new programs into the system, but also
because the installation process itself involves running untrusted code with
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administrative privileges. This would allow malware to shutdown any user-
level and kernel-level protection mechanism, and malware can also install
themselves persistently into the system at firmware levels [Hudson, 2015].

Desktop OSes vendors realized the problem and have attempted to ad-
dress the problem partially. Instead of limiting what an installer process
can do, OS vendors specifically focus on protecting their system files against
tampering. Microsoft uses digital signatures to protect some of the system
binaries; Apple supports System Integrity Protection [Apple Inc., 2015b] to
allow only Apple-signed processes to update some of the system files. These
mechanisms do not attempt to protect applications or the user environment
because there is no way for the OSes to distinguish if it is user’s intention to
modify the applications and the user environment.

Modern OSes such as Android, iOS, Windows 10 and OS X adopt con-
tainer based model for installing applications. Each app lives in its own
directory which contains all the libraries and other dependencies the app
needs. Apps are also independent of each other. Installation and uninstal-
lation of the app is as simple as creating and deleting the app directories.
Unfortunately, most desktop applications (e.g., Microsoft Office, Photoshop,
Adobe Reader, Firefox) do not run as apps; furthermore, a complete sep-
aration of apps also limits app functionalities. Modern desktop OSes such
as Windows 10 and OS X therefore still support the traditional software
installation— i.e., let the installers to do whatever they want to install the
applications.

Users expect software installers to install programs into system directories
and configure the system in order to work properly, and therefore they are
willing to grant installers administrative privileges. Users do not expect
installers to compromise the integrity of their systems; however, there exists
no mechanism to make sure that the installers will only perform what they
are supposed to do. OSes only enforce the bare minimum policies to protect
themselves, yet leaving users no way to confine but to trust the installers.

Software installations are attractive for both malware and PUPs (Poten-
tially Unwanted Programs). For malware writers, instead of finding exploits
to compromise programs to run their payloads, software installation allows
them to run arbitrary code directly with administrative privileges. They
can create registry entries or files so that they will be persistent across sys-
tem reboot. They may also modify browser settings in an unwanted way.
For software distributors, by distributing and installing PUPs inattentively
along with their software, the distributors can make extra profits.
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Our goal is to secure the software installation process. Our system,
SwInst, works by dividing software packages into different trust levels and
imposes different restrictions for different packages. Intuitively, users are
more willing to give packages from trustworthy sources more privileges than
packages from less trustworthy sources. In this paper, we evaluate the pos-
sibility of restricting privileges on installers. This is challenging as installers
usually run with administrative privileges without any confinement.

Specifically, our contributions are:

• Designed and implemented SwInst that secures the software installa-
tion process for Debian OSes

• Evaluated SwInst by testing installation of over 17500 packages

10.1 Existing installation approaches

One way to install software is via invoking make install or running software
installers directly, where users download the software and run scripts or bi-
naries provided by the packages (e.g., in the form of Makefile, install.sh,
.msi, or .pkg). All desktop OSes support this type of software installation.
Users usually need to make sure that the system has met all the dependencies
requirements of the software.

A more common approach towards software installation on Linux is via
package managers, which helps resolving dependencies. Package manager
front-ends (such as apt-get or Ubuntu Software Center) help users to find
and retrieve packages from pre-configured repositories. Users can also down-
load pre-compiled installation packages (in the form of deb or rpm files)
manually. These installation packages contain dependency information that
can be used to check for conflicts and dependency. The package manager
back-ends (e.g., dpkg) will perform the actual installation by extracting files
from packages into the file system. Although this may seem less dangerous
than the make install approach, scripts from the packages (pre- and post-
installation scripts) do execute directly.

SwInst supports both installation methods. We focus our discussion on
the package manager based installation as it also involves running scripts
provided directly from the packages.
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10.2 Difficulties in securing the installation

process

Installers run with administrator’s privileges; however, there exists no mech-
anism to limit trust on the installers. A malicious installer can:

• replace existing files with rootkits

• mark a file as root-setuid binary such that it can escalate to root at a
later time

• create a new user with uid 0

• make a protected file as world-writable

• control another running process

Even if we limit installers from performing the above operations, they
may still need to modify some files legitimately. How do we make sure that
files are modified in a legitimate way?

We propose SwInst, a system to safe-guard the installation process on
unmodified installers. SwInst also makes it easy to develop policy to safely
install untrusted applications.

10.3 Threat Model

We assumed that packages can be partitioned into benign and untrusted—
only packages coming from untrusted origins may compromise the system
integrity. SwInst works by imposing restrictions on untrusted package in-
stallers to protect system integrity. SwInst therefore cannot support arbi-
trary untrusted packages installation. SwInst is designed to support most
untrusted package installation automatically. With the 17,161 packages ran-
domly selected from the Ubuntu repositories, 87% of them could be installed
without violating SwInst’s policy.

Software installation involves not only creating new files, but also modify-
ing existing files. For example, database of installed packages will be updated
during the installation, a new helper program may register itself as capable
of opening certain files, or a program may want to create a new non-system
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Figure 10.1: Software installation flow chart in SwInst

user. SwInst needs to make sure that all the changes are safe. Instead of
writing policies focusing on what changes are acceptable, SwInst focuses on
securing how the changes are commenced, i.e., the chain of processes that has
resulted in the file changes. Policies are specified in terms of program invo-
cation. This provides high-level reasoning about why some modifications are
safe, and has significantly reduced the policy development efforts. Since the
policies are developed based on invoking existing system utilities, SwInst
requires untrusted installers to modify files using system utilities rather than
editing the files directly.

10.4 System Design

SwInst protects against untrusted installers by isolating the untrusted in-
stallation processes. When the installation is completed, SwInst analyzes if
the modifications are acceptable, and commits the changes back to the system
only if so. This commit-based design is more powerful than sandboxing ap-
proach. In this section, we describe how SwInst handles the pre-installation
phase, installation phase and post-installation phase. Figure 10.1 shows an
overview flow of the installation. We discuss each of the step in this section.

160



10.4.1 Handling dependency

Before installation, SwInst prioritizes the package installation order. On
unprotected system, all packages specified by users, as well as dependent
packages, will be installed at the same time with administrator privilege.
SwInst divides the installation into two phases by first installing benign
packages, and then the untrusted packages.

SwInst allows users to mark certain repositories as untrusted. Our im-
plementation on Ubuntu provides a wrapper on apt-get. Users interact
with the wrapper the same as the the original apt-get. Upon receiving
requests to install new packages, the wrapper first resolves the dependency
and download the packages. At the same time, the wrapper identifies the
integrity level of the packages based on matching package checksums with
the repository database. After identifying the integrity-levels, the wrapper
installs the benign packages and then the untrusted packages.

SwInst ensures that the integrity dependency is satisfied before the in-
stallation, i.e., benign packages do not depend on any untrusted package.
Otherwise, SwInst will deny the installation.

10.4.2 Isolating installation

Since installation scripts assume that they can modify, create, and remove
any file with administrative privilege, revoking such capabilities can break
installation. SwInst protects the system against untrusted installers by
one-way isolation, which virtualizes the resources for installers. Apart from
isolation at the file system level, SwInst also needs to protect other processes
running in the system. Running untrusted code with root privileges can allow
untrusted code to control any other processes. Instead of running untrusted
installers unconfined, SwInst applies both chroot and setuid-jail to restrict
file system and IPC accesses.

SwInst runs untrusted installers as a new, unprivileged user untrustedRoot.
No other process runs with untrustedRoot. To isolate modifications to the
file system, SwInst creates a copy-on-write (COW) file system and chroots
untrusted installers inside it. Files owned by root cannot be modified even
in the COW file system. To allows untrustedRoot to modify root-owned
files inside the COW, a root helper process running outside COW will han-
dle file open requests from untrustedRoot. The helper will open files in the
COW directory in writable mode. Before passing the file descriptor to the
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Figure 10.2: SwInst architecture
SwInst architecture relies on COW filesystem, chroot and setuid jail

installer, the root helper will change the ownership of the file to belong to
untrustedRoot. This allows the analyzer to know that this file could have
been modified by untrustedRoot in arbitrary way.

SwInst requires no modification to installers. SwInst injects a library
into installers to change some of the system call behaviors. For example,
when file opens failed, the library transparently requests the helper process
to open the files, and then replace the error with the file handles returned
from the helper process. SwInst does not rely on the library to enforce
any policy, but to facilitates the installation process within the isolation
environment. The actual policy is enforced when analyzing the changes.

Figure 10.2 shows the overall architecture for SwInst. Edges labeled
with C and M correspond to file creation and modification by untrusted
process respectively. The trusted root helper helps the untrusted installer to
handle file creation and modification, and the helper will label these files as
untrusted at the same time. Edge T corresponds to the file access by trusted
installer. This access is not mediated. We describe more in Section 10.4.4
about trusted programs.
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10.4.3 Committing changes

The COW file system shadows all the files changed, created and removed
during an installation. SwInst can decide if the installation is safe or not
by simply examining the files in the shadow directory. SwInst enforces a
policy that no existing benign file should be modified to untrusted.

However, limiting changes to only file creation would break most installa-
tions; at least the package database files will be updated. SwInst supports
two strategies to validate if modifications to files are safe: file-based and
invocation-based. File-based verifications compare the difference between the
pre-installation and post-installation version of the file. Rules are defined on
what changes are acceptable for each file. Invocation-based verifications do
not rely on file contents, but on how the changes to the files are produced.
SwInst defined a set of invocation rules suggesting files changed by certain
programs are always safe to commit. SwInst ensures that files are only
modified by programs satisfying the safe condition. This is done by ensuring
that invocation parameters and the invocation environment are safe. Since
these files cannot be modified by untrustedRoot in arbitrary way, these files
are not owned by untrustedRoot. The analyzer does not need to perform any
validation to the file contents. We will discuss more how SwInst guarantee
the integrity of the invocation environment in later section.

Apart from verifying the safety of the file content, the analyzer will also
make sure that files modified in the rootfs have not been modified since the
start of the installation. If the files in the rootfs are modified, the instal-
lation process might have used an out-dated copy during the installation.
Overwriting the rootfs files could result in inconsistency.

If the changes can be committed back to the rootfs, the analyzer will
simply move the files from the shadow storage to the rootfs. Otherwise, the
changes will be discarded and the analyzer will report to the user why the
installation failed.

Files may be deleted during an installation. In COW filesystem, the
underlying filesystem usually creates whiteout files in the writable branch to
represent deleted files. SwInst cannot encode how a file is deleted using
permission (as in the file modification case). SwInst solved this problem
by introducing a directory for authorized deletion. If a file is not deleted in
arbitrary way, i.e., deleted only under specific circumstances, the deletion
will result in an entry in the authorized deletion directory. SwInst relies on
the portable integrity protection system to ensure the integrity of the trusted
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processes and the authorized deletion directory. We will discuss more in the
following subsection.

10.4.4 Invoking trusted programs by untrusted installers

Files can be modified arbitrarily during the installation. Developing policies
to capture safe modifications for each file would require a lot of efforts. We
observe that file modifications are consequences of invocation of some com-
mands. We therefore propose verifying safety at the time of invocation of the
commands. For example, by verifying that useradd was invoked with a non-
zero userid, SwInst does not need to verify if /etc/passwd was modified
safely.

However, programs invoking with the right parameters does not automat-
ically guarantee the files modified are safe to commit. Files can be modified
by other processes in addition to the intended process. Furthermore, un-
trusted installers could have compromised the execution environment for the
intended processes. It is therefore important to protect the execution of
trusted programs.

SwInst enforces information flow policy using Spif to protect the in-
tegrity of the execution environment of trusted programs. Instead of running
trusted programs as untrustedRoot, SwInst runs trusted programs as root.
This prevents untrusted installers from injecting code into processes running
trusted programs. SwInst also protects the execution environment with
a default policy in Spif to ensure that trusted processes cannot consume
files created/modified by untrustedRoot. This is because reading untrusted
files could compromise the integrity of trusted processes. Similar to Spif,
SwInst achieves this by injecting a library into trusted processes— the li-
brary monitors every file access and ensures that all the files accessed are
not owned by untrustedRoot. SwInst also protects system libraries and the
SwInst-library by denying untrusted installers from modifying the libraries,
despite they are inside a COW environment.

SwInst transitions from untrusted processes to trusted processes in two
steps. In the first step, untrusted processes will check if the exec parameters
satisfy the conditions for running as trusted processes. If so, a setuid-to-root
program will be executed with the existing parameters passed as arguments.
In the second step, the setuid-to-root program will validate the parame-
ters again since the checking performed by untrusted processes cannot be
trusted. Furthermore, the setuid program will also make sure that the pro-
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"/usr/man/*",

"/usr/share/man/*",

"/usr/local/man/*",

"/usr/local/share/man/*",

"/usr/X11R6/man/*",

"/opt/man/*",

Figure 10.3: Untrusted files that SwInst trusts mandb for reading

gram image is safe. As for environment variables, existing systems already
protect them for setuid programs— loader automatically ignore the environ-
ment variables such as LD PRELOAD and LD LIBRARY PATH when executing
setuid programs. Hence, SwInst does not have to worry about malicious
environment. Trusted programs cannot consume arbitrary untrusted files.
SwInst only allows trusted programs to read files located at specific direc-
tories. SwInst considers mandb as a trusted program. Figure 10.3 shows the
policy of the files that SwInst trusts mandb to read.

By default, new programs executed by any trusted process will run as
untrusted processes. This is achieved by calling setuid to untrustedRoot
before invoking exec. For scripts, the trust would be inheritable to child
processes.

10.5 Policy development

Policy development in SwInst is based on training. Policies are updated
when installation of seemingly safe untrusted packages has resulted in viola-
tion. To facilitate the policy development process, SwInst traces installers
running inside the confined environment. SwInst produces not only files
that violated the policy, but also how the violation was resulted.

Figure 10.8 shows an example of violation, where /var/cache /man/index.db
is modified to low integrity file during the installation of 2vcard. SwInst
identifies the chain of processes that have resulted in the violation. SwInst
produces this invocation chain by tracing processes across clone, exec, and
file open. During the commit phase, SwInst can then identify the depen-
dency based on clone, exec and file open to help policy developers to generate
policy. In this example, mandb’s post installation script was triggered because
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2vcard created new mandb files that mandb need to process. SwInst resolves
this conflict by marking mandb as trusted program and can read untrusted
files specified in Figure 10.3.

There are two ways to resolve violations in SwInst. First is to ensure
the content of the file is safe. SwInst supports using scripts (e.g., sh or
awk) to validate files. The second method is to rely on identifying trusted
programs in the installation. To facilitate the policy development process,
SwInst tracks each process running during the installation. When files
cannot be committed automatically, SwInst prints the process invocation
chain leading to the modification of the problematic file. Users can then
decide whether to write a validation script for the file, or designate some
programs as trusted by creating new invocation rules. Since SwInst protects
trusted processes against reading untrusted files, the result also lists out if
there are any read violation occurred for trusted processes.

10.5.1 Installation-time policy

SwInst enforces different policies when installers are running. There are four
entities: untrusted processes, trusted processes, rudo and the root helper.

Untrusted processes Untrusted processes run as untrustedRoot. SwInst
allows untrusted processes to perform any operation within the confined envi-
ronment, provided that these actions do not compromise the integrity of the
trusted processes in the confined environment. Specifically, SwInst allows
untrusted processes to:

• Read from any root-readable file

• Write to any root-writable file, except those that can compromise the
integrity of trusted processes

• Connect to the root helper via IPC

• Transition to root when executing predefined trusted programs with
predefined parameters

Trusted processes SwInst does not allow trusted processes to read any-
thing untrusted. The integrity of trusted processes are protected using Spif
by considering untrustedRoot as an untrusted user. Trusted processes also
create an authorized deletion entry when deleting files.
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rudo Similar to uudo in Spif, rudo acts as a gateway for transitioning from
untrusted processes to benign processes. rudo allows transitioning from un-
trusted processes into root only when specific conditions are met. Otherwise,
the installation will fail.

Root helper SwInst uses root helper to provide both read and write ac-
cesses to untrusted processes. Unlike Spif’s helper process, the root helper
in SwInst opens files inside COW as writable for untrusted processes; in ad-
dition, the root helper also marks the files as untrusted. Apart from opening
files, the root helper also perform other file system operations such as chmod,
unlink, chown, symlink, etc.. While untrusted processes can modify root files
via the root helper, the root helper will only grant permissions to modify files
that do not directly compromise the integrity of trusted processes within the
confined environment. For example, attempts to replace the loader, system
libraries, or SwInst-library will be denied.

10.5.2 Commit-time policy

File-based policy The simplest policy that SwInst supports is append-
only policy. SwInst applies this policy mainly on log files such as
/var/log/apt/history.log or /var/log/apt/term.log to make sure that
new contents are only inserted at the end of the files. Some files such as
/var/lib/dpkg/available-old maintain information about installed pack-
ages. SwInst ensures only new entries corresponding to the just installed
packages are added to the files. SwInst uses file-based policy because dpkg

modifies these files. Since dpkg will execute untrusted scripts, it is not safe
to designate dpkg as trusted.

Invocation-based policy Figure 10.4 shows a list of trusted programs in
SwInst. SwInst ensures the execution environment of these programs, and
only allow them to consume untrusted files specified in certain directories.
Files modified by these programs are therefore not checked.

Figure 10.5 also shows a list of programs that SwInst trusts to execute
as benign process only when invoked with certain parameters.
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/usr/bin/mandb

/usr/bin/fc-cache

/usr/bin/update-desktop-database

/usr/sbin/update-fonts-scale

/usr/sbin/update-fonts-dir

/usr/sbin/update-mime

/usr/bin/gtk-update-icon-cache

/usr/share/gnome-menus/update-gnome-menus-cache

/var/lib/dpkg/info/python-gmenu.postinst

/usr/sbin/update-alternatives

/usr/bin/update-alternatives

/usr/bin/gconftool-2

/usr/sbin/gconf-schemas

/usr/lib/libgtk2.0-0/gtk-update-icon-cache

/usr/bin/defoma

/usr/bin/mkfontscale

/usr/sbin/update-info-dir

/var/lib/dpkg/info/ureadahead.postinst

/var/lib/dpkg/info/doc-base.postinst

/usr/bin/update-mime-database.real

/usr/bin/update-gconf-defaults

/usr/sbin/update-xmlcatalog

/usr/bin/dpkg-divert

Figure 10.4: Trusted programs

/usr/sbin/useradd

/usr/sbin/groupadd

/usr/bin/chage

/usr/bin/dpkg-statoverride

/usr/sbin/usermod

/usr/sbin/userdel

Figure 10.5: Trusted programs with rules for parameter validation
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Component C/C++ Header Other

shared 699 47
library 536 42 47

wrapper 945 758
helper 1209 88 5
rudo 39 22

Total 3428 177 832

Figure 10.6: Code complexity of SwInst

10.6 Evaluation

We implemented SwInst on Ubuntu 10.04 based on Spif. SwInst extended
Spif by providing library functions specific to installation within the isolated
environment. SwInst also introduced root helper daemon for the installation
and apt-get wrapper for creating isolated environment. Table 10.6 shows the
complexity of SwInst in addition to Spif. SwInst only reuses some of the
code from the Spif library.

To evaluate if SwInst is compatible with existing packages. We as-
signed packages from the universe and multiverse repositories as untrusted
and installed them randomly. Each untrusted package may depend on other
packages. SwInst installed the benign packages, and then the untrusted
packages.

We tested 20540 unique packages out of the 23433 untrusted packages A
total of 17863 installations were performed. 702 installations (4%) failed to
install automatically because the installation requires user interaction, be-
nign packages not installed successfully, or other implementation issues that
our installer have not handle (e.g., handling DBus messages). 14964 installa-
tions (83.7%) were completed successfully without triggering any violation.
The remaining 2197 installations (12.3%) were failed because of some viola-
tions/errors as listed in Figure 10.7

Out of the 1288 failed installations that invoked programs that untrusted
installers should not invoke, over 1184 involve invoking update-rc.d. 77
involve dkms, 50 involve depmod, 29 involve update-initramfs, 8 involve
update-grub. Some installations invoked multiple of these programs.
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Count Violation

18 Making an untrusted file setuid-to-root
48 Attempting to restart existing application
54 Package appears in both benign and untrusted packages
59 Involve package uninstallation which is not implemented
85 apt-get failed to retrieve packages
173 Package in neither benign nor untrusted repository
472 Benign package depends on untrusted packages
1288 Invoking programs that untrusted installer should not invoke

Figure 10.7: Number of installations failed to install due to violations

Write low: /var/cache/man/index.db 31382_2 /usr/bin/mandb

[31300_0] L /lwip/executables/dpkg/dpkg_original

[31373_0] L /lwip/executables/dpkg/dpkg_original

[31373_1] L /var/lib/dpkg/info/man-db.postinst /var/lib/dpkg/info/man-db.postinst ...

[31373_2] L /bin/dash /var/lib/dpkg/info/man-db.postinst triggered /usr/share/man

[31373_3] L /usr/share/debconf/frontend /usr/share/debconf/frontend ...

[31373_4] L /usr/bin/perl /usr/share/debconf/frontend /var/lib/dpkg/info/man-db.postinst ...

[31381_0] L /usr/bin/perl /usr/share/debconf/frontend /var/lib/dpkg/info/man-db.postinst ...

[31381_1] L /var/lib/dpkg/info/man-db.postinst /var/lib/dpkg/info/man-db.postinst ...

[31381_2] L /bin/dash /var/lib/dpkg/info/man-db.postinst triggered /usr/share/man

[31382_0] L /bin/dash /var/lib/dpkg/info/man-db.postinst triggered /usr/share/man

[31382_1] L /usr/bin/perl perl -e @pwd = getpwnam("man"); $( = $) = $pwd[3]; $< = $> = $pwd[2];

[31382_2] L /usr/bin/mandb /usr/bin/mandb -pq

+ /var/cache/man/index.db

Figure 10.8: Invocation chain for installing 2vcard

Invocation chain explaining why /var/cache/man/index.db was downgraded
to low integrity during installation of 2vcard
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Chapter 11

Related work

In this chapter, we discuss a number of works related to the dissertation.

11.1 Malware detection and avoidance

The most widely adopted malware defense techniques are based on detection
and avoidance. They attempt to detect and stop malware from running in
the first place. Before any new piece of code and data can be used, these
techniques attempt to determine if the file is free of malware. Anti-virus,
Windows Security Zone [Microsoft, 2015a], and Mac OS X Gatekeeper [Apple
Inc., 2015a] belong to this category. They all work by either blacklisting
malware or white-listing files obtained from identifiable and verifiable sources.
For instance, anti-virus relies on malware signatures. Windows Security Zone
relies on the domains that the files come from. Gatekeeper uses code-signing
with keys signed by Apple. We discuss each of them in detail below.

11.1.1 Anti-virus

Modern anti-virus software relies on pattern scanning. The idea is to first
identify a set of characteristics that malware possesses, called patterns. The
anti-virus software running on a client computer will then match every file
with these patterns. A match would suggest that the file could be malware.
As benign files may be marked as malware due to false positives, anti-virus
software also uses white-listing. Upon detection, anti-virus software will
proceed with remediation procedures such as prompting for user actions and
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quarantining or removing the suspicious files.
The success of pattern-based solutions depends on both the expressiveness

and coverage of the patterns for identifying malware. The simplest form of
patterns uses hashing, e.g., cryptographic hashing functions MD5 or SHA,
which generates a unique checksum for each unique file.

Cryptographic hashing functions have an avalanche effect: a single bit-
flip in the file would result in a completely different pattern. Malware can
therefore easily evade detection using techniques such as polymorphism or
appending random data. When two files contain mostly identical contents,
the fact that one file is malware suggests that the other file is also likely to
be a malware. The anti-virus industry therefore introduced context triggered
piecewise hashes (CTPH, a.k.a. Fuzzy hashes), e.g., ssdeep [Kornblum, 2006].
These hashes can match inputs that have homologies. Files with mostly
the same but slightly different content will yield hash values with common
substrings. Malware that shares some code could therefore be captured using
CTPH.

These techniques, however, may not detect metamorphic malware, which
has different code yet with the same semantics. A common technique to
solve the problem is to generate byte-patterns rather than relying on file
hashes. Yara [Alvarez, 2015] is a popular pattern matching tool for byte
sequence matching in malware. Instead of using a summary Byte-pattern
captures the essence of malicious behaviors by identifying the corresponding
instructions. As malware can be encrypted, bytes can be obfuscated. Anti-
virus vendors therefore are also analyzing process memory during run-time
to scan for patterns. Volatility [The Volatility Foundation, 2015], a memory
dump tool on Windows, is often combined with Yara to identify malware.

Apart from analyzing malware statically, anti-virus vendors also use dy-
namic analysis to identify runtime malicious behaviors (e.g., cuckoo [Cuckoo
Foundation, 2015], a platform for automatically testing malware). During
program executions, system calls or Windows API calls are monitored and
matched against known malicious or suspicious behaviors. These patterns
are usually defined manually, e.g., popular malware Flame [Kaspersky Lab]
creates mutex of names in the form of __fajb.* or DVAAccessGuard.*,
Turlacomrat [Tanase, 2015] moves files with names Microsoft\shdocvw.tlb,
Microsoft\oleaut32.dll, ... Other patterns include creating remote thread
in other processes, installing and communicating via tor network, detect-
ing virtualized environment, or installing OpenCL library (for mining Bit-
coins) [Cuckoo Foundation, 2015].
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Pattern-based approaches are effective only when anti-virus vendors have
access to the malware before their clients so that vendors can generate pat-
terns for clients to detect and block the malware. Before 2000s, the total
unique malware samples were less than 100,000; however, the number of new
malware found in the year 2014 alone already reached 148,000,000 [McAfee
Labs, 2015], which is more than 4.5 malware creations per second. The rate
of new unique malware becomes so high that pattern-based approaches are
no longer effective because (1) anti-virus vendors may not have seen the
malware before, and (2) the pattern may not be delivered to the clients in
time; furthermore, malware started to employ different techniques to detect
virtualized environment, which is commonly used by anti-virus vendors to
analyze malware but not typical among end users. By exhibiting legitimate
behaviors during analysis, malware can evade detection.

11.1.2 Origin-based protection

Anti-virus software relies on databases of known malware and good-ware.
Every piece of data on the system is checked against known malware pat-
terns. Anti-virus therefore cannot protect against new malware that has not
be seen by anti-virus vendors. Instead of relying on anti-virus vendors, Win-
dows Security Zone relies on the origins of the data: user’s trust on a file
depends on where the file comes from. For example, files coming from the
OS distributor or local network would be more trustworthy than files coming
from the Internet.

Windows Security Zone maps domains into zones of different trustwor-
thiness. Windows predefined five zones: URLZONE LOCAL MACHINE,
URLZONE INTERNET, URLZONE TRUSTED, URLZONE INTERNET,
and URLZONE UNTRUSTED. These zones correspond to different security
boundaries that users commonly have. Users can also define additional zones.
When files are downloaded from the Internet, applications can fill in the zone
information by calling some system APIs. Windows stores zone information
along with files using as Alternate Data Stream on NTFS, similar to ex-
tended attributes on EXT file systems. The zone information is not used by
the OS, and the OS enforces no policy based on it. Processes running exe-
cutables from the Internet do not have special labels. It is up to applications
to decide how to use the zone information when consuming the files. For
instance, Windows Explorer will prompt users when attempting to execute
files from the zone URLZONE INTERNET or URLZONE UNTRUSTED.
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Microsoft Office will run in Protected View [Microsoft, 2015b], a mode that
makes Microsoft Office harder to be exploited at the cost of reduced func-
tionality, when consuming files with these labels too. This limits damages
that a compromising Microsoft Office can inflict.

OS X does not provide fine granularity classification of file origins as in
Windows Security Zone. Gatekeeper [Apple Inc., 2015a] in OS X functions
similarly to Windows Security Zone, and it will prompt users for confirma-
tion when running Internet executables unless the integrity of the executables
can be verified (Section 11.1.3). Gatekeeper stores the origin information as
extension attribute [Lin, 2013] along with the file. Note that both Security
Zone and Gatekeeper rely on applications that perform downloading to label
files properly by invoking some APIs. These APIs will then fill in the cor-
responding information. In OS X, a flag is set to label Internet files. Files
that do not have such information will be treated as regular user files and
will not trigger any prompting.

11.1.3 Code-signing

Apple (OS X and iOS) relies heavily on code signing to identify and verify
the origin of the code. The technique itself does not protect against malicious
code, but simply a way to provide a secure end-to-end channel to distribute
code from code producers to code consumers.

Code signing imposes no real restriction on malware writers. Malware
writers can still get a key to distribute signed malware [F-Secure Labs, 2013]
or invoking private APIs [Wang et al., 2013]. The only restriction that code
signing imposes is via the code review process. For apps distributed through
App Store, Apple relies on manual code review to identify malicious appli-
cations. Each app is reviewed to ensure that every permission the app needs
has legitimate reasons. This is a lengthy and subjective process. Apps that
violated Apple’s policy or failed to demonstrate the need for the requested
permissions will need to be modified. Apps that refuse to comply will be
banned from the App Store, which is the sole mean of distribution for iOS
devices. For OS X apps that are distributed outside App Store, Apple relies
on verifying the identities of the developers. By default, GateKeeper only
allows downloads from Mac App Store and identified developers. Apple has
the ability to revoke a certificate when malicious activity is detected [Kim,
2011].

Apples model is built on trust rather than technical foundations. Man-
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ual code review is unreliable, and attacks can happen once the developers
turned malicious. There have been incidents where malicious apps got pub-
lished [Wang et al., 2013, Xing et al., 2015] because the app review process
failed to identify malicious behaviors, or malware bypassed the Gatekeeper
because an identified developer key was used maliciously.

Conclusion Since detection-based techniques have to block malware before
they run, they are obstructive to functionality. As there is no way to be
confident if a flagged item is actually a malware, users are often prompted
to make the ultimate decisions as to whether to proceed with the execution.
In the recent XcodeGhost [Gregg Keizer, 2015] incident, some of the Chinese
iOS developers ignored warnings from Gatekeeper and used compromised
versions of XCode to create backdoored iOS apps. These iOS apps were
distributed via Apple App Store to users. This signifies the weaknesses of
detection-based techniques.

11.2 Policy-based confinement

Recognizing the fact that it is impossible to fully characterize what a malware
is, proactive approaches assume malware can run and aim at restraining what
malware can do.

A natural (and perhaps the best studied) proactive defense is to sand-
box potentially malicious code using policies based on the principle of least
privilege. This approach can be applied to software from untrusted sources
[Goldberg et al., 1996], which may be malicious to begin with; or to software
from trusted sources [Loscocco and Smalley, 2001a, Ubuntu, 2015, Provos,
2003] that is benign to start with, but may turn malicious due to an exploit.
In policy-based confinement, a reference monitor will check every operation
that the code performs. The reference-monitor then decides whether to allow
or block the operation when it is deemed as malicious.

The goal of policy-based confinement is to guard against improper use
of resources. The most common form of resource to guard is the invoca-
tion of system-calls. Earlier OSes did not support policy enforcement at
the system-call level, and research works had been focusing on developing
supporting architectures (e.g., inside kernel space using kernel modules or in
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user-land such as ptrace [Padala, 2002] or delegation architecture [Garfinkel
et al., 2004]). Linux introduced seccomp [Linux Kernel Organization, 2015]
in 2005, a rule-based system-call filtering mechanism. seccomp itself is very
limited because it does not allow policies beyond limiting a process to re-
sources already granted. Other mechanisms such as LSM [Wright et al.,
2002], TrustedBSD [Watson et al., 2003], Windows Integrity Mechanism [Mi-
crosoft, 2015c], and System Integrity Protection [Apple Inc., 2015b] (on OS
X) focus primarily on security-sensitive operations. Both LSM and Trust-
edBSD implement hooks on security-sensitive operations to enforce policies
on kernel objects (e.g., inodes and process structs). Windows Integrity Mech-
anism (WIM) attaches integrity labels to subjects and objects and enforces a
policy that does not allow subjects with lower integrity labels to modify ob-
jects with higher integrity labels. System Integrity Protection protects Apple
signed files and processes from being tempered by any non-signed process,
including root processes. Apart from enforcing policies at the OS level, poli-
cies can also be enforced at the binary-level (e.g., SFI [Wahbe et al., 1993])
or below the OS level (e.g., Library OS [Porter et al., 2011, Tsai et al., 2014]
or hypervisor [Butt et al., 2012].

11.2.1 Drawbacks for policy-based confinement

While the goal of policy-based confinement against malicious code is simple,
there are several challenges for applying policy-based confinement to defend
against malicious code:

Difficulty of policy development: Experiences with SELinux [Loscocco
and Smalley, 2001a] and other projects [Acharya et al., 2000, Sekar et al.,
2003, Ubuntu, 2015] show that policy development requires a great deal of
expertise and effort. Policies depend highly on the usage environment and
usage behavior. A slightly different configuration or an unanticipated us-
age behavior could result in policy violations. For example, Ubuntu has
developed an AppArmor profile for Firefox; however, it is not enabled by
default [Dziel, 2014, Mozai, 2013] due to false positives. The use of SELinux
often deter system administrators from securing their own systems (e.g., by
placing configuration files at a location other than the default location) be-
cause of the difficulties in reconfiguring SELinux policies.

Policies that provide even the modest protection from untrusted code can
break benign applications. On the other hand, developing secure policies to

176



protect against malicious code is also difficult. Malicious code can mimic
benign code [Parampalli et al., 2008]. A vulnerability on OS X suggested
the difficulty in developing policy especially when apps can interact— ap-
plications can store and share user credentials (e.g., browser logins) using
KeyChain. Although applications can define their own access control lists to
restrict what applications can access their KeyChain entries, OS X does not
prevent other applications from deleting and recreating the entries to grant
themselves access. This vulnerability has allowed attackers to gain access to
user credentials since most applications do not check ACL permissions [Xing
et al., 2015].

Subversion attacks on benign software: Even highly restrictive poli-
cies can be inadequate, as malware can co-opt benign applications to carry
out prohibited operations: malware may trick a user to run a benign appli-
cation in insecure ways or exploit vulnerabilities in benign applications to
perform arbitrary actions, e.g., use a copy utility to overwrite a system li-
brary with malware. Alternatively, malware may exploit vulnerabilities in a
benign application, e.g., create a malicious file on the desktop with an entic-
ing name. When clicked on by the user, it compromises a benign application
that opens the file, as in the Acrobat sandbox escaping vulnerability [Fisher,
2014]. Since this benign application is not confined by a sandbox, it can now
perform arbitrary actions.

Difficulty of secure policy enforcement: Uncircumventable policies are
usually enforced in OS kernels. The drawbacks of kernel-based approaches
have been eloquently argued [Jain and Sekar, 2000, Garfinkel et al., 2004]:
kernel programming is more difficult, leads to less portable code, and creates
deployment challenges. Experience with various commercial containment
mechanisms such as sandboxie [Sandboxie Holdings, LLC., 2015], Buffer-
zone [BufferZone Security Ltd., 2015], and Dell Protected Workspace [Dell,
2015] have demonstrated the challenges of building effective new contain-
ment mechanisms for malicious code [Rahul Kashyap, 2013]. Approaches
such as ptrace [Padala, 2002] avoid these drawbacks by enabling policy en-
forcement to be performed in a user-level monitoring process; however, it
poses performance problems due to the frequent context switches between
the monitored and monitoring processes. Moreover, the monitoring process
needs to protect itself against attacks launched from the confined processes.
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More importantly, TOCTTOU attacks are difficult to prevent [Garfinkel,
2003]. Ostia [Garfinkel et al., 2004] avoided most of these drawbacks by
developing a delegating architecture for system-call interposition. It used a
small kernel module that permits a subset of “safe” system calls (such as
read and write) for monitored processes, and forwards the remaining calls
to a user-level process. Applications such as Chrome, Adobe Reader and
Internet Explorer adopted similar model (See Section 11.2.2).

Some works such as SELinux [Loscocco and Smalley, 2001b], Systrace
[Provos, 2003] and AppArmor [Ubuntu, 2015] focus on protecting benign
code, and they typically rely on training to create a policy. Such a training-
based approach is inappropriate for untrusted code. So Mapbox [Acharya
et al., 2000] develops policies based on expected functionality by dividing
applications into various classes. Model-carrying code [Sekar et al., 2003]
proposes a framework in which code producers and code consumers can ef-
fectively collaborate to come up with policies that give applications sufficient
privileges to function. While it represents a significant advance over purely
manual development of policies, it still does not scale to large numbers of
applications. Rather than confining arbitrary operations, WIM and System
Integrity Protection aim to protect the system itself by preventing untrusted
processes from modifying the system. However, WIM and System Integrity
Protection do not impose any limitations on system processes. They can still
get compromised when consuming untrusted data.

Instead of developing policies to protect against arbitrary untrusted code
proactively, policy-based confinement is more commonly used as a mecha-
nism to deter attackers from exploiting applications in the first place. OSes
such as iOS, Android, and app models in Windows and OS X predefine a
set of permissions. Application developers declare what permissions their
applications need. OSes grant only the requested permissions to the app
regardless of whether the app is compromised or not. It becomes less attrac-
tive for malware writers to compromise apps as they cannot gain as many
privileges as compromising an unconfined application. Clearly, this approach
cannot protect malware that was distributed as apps because malware writers
can simply declare whatever permissions they need and abuse them; further-
more, the permission systems in the OSes are getting more complicated over
time— Android API level 3 has 103 permissions, and has increased to 165
permissions in API level 15 [Wei et al., 2012]. iOS and OS X also added more
entitlements over time. It is not surprising that some of the Apple applica-
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tions in OS X are sandboxed, yet they are granted with special entitlements
that allow them to circumvent some of the restrictions [letiemble, 2011].

11.2.2 Privilege separation

Privilege separation techniques extend policy-based confinement approaches
to support applications that require significant access to realize their func-
tionality. The application is decomposed into a small, trustworthy compo-
nent that retains significant access and a second larger (and less-trusted)
component whose access is limited to that of communicating with the first
component in order to request security-sensitive operations. While policy-
based confinement can confine malicious as well as frequently targeted benign
applications (e.g., browsers), privilege separation is applied only to the latter
class. Chromium browser [Reis and Gribble, 2009], Acrobat Reader and In-
ternet Explorer are some of the prominent applications that employ privilege
separation, more popularly known as the broker architecture. These applica-
tions isolate their renderers, which are complex and are exposed to untrusted
content. Workers were given just enough privileges to work. As a result, vul-
nerabilities in a renderer (or more generally, a worker) process won’t allow
an attacker to obtain all privileges of the user running the application.

Privilege separation shifts the policy development responsibility to devel-
opers. Instead of having OS distributors or system administrators to config-
ure policies, software developers already encode in policies what legitimate
accesses the workers need. Since developers know exactly what accesses their
programs need, they can develop good policies without compromising usabil-
ity and functionality.

However, given the large effort needed to (a) develop policies and (b)
modify applications to preserve compatibility, it is no wonder that in prac-
tice, confinement techniques are narrowly targeted at a small set of highly
exposed applications. This naturally leads attackers to target sandbox es-
cape attacks: if the attacker can deposit a file containing malicious code
somewhere on the system and trick the user into running this file, then this
code is likely to execute without confinement (because confinement is being
applied to a small, predefined set of applications). Alternatively, the attacker
may deposit a malicious data file, and lure the user to open it with a benign
application that isn’t sandboxed. In either case, the attacker is in control of
an unconfined process that is free to carry out its malicious acts.

As a result of these factors, policy-based confinement can only shut out
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the obvious avenues, while leaving the door open for attacks based on evasion
(e.g., Stuxnet [Falliere et al., 2011]), policy/enforcement vulnerabilities (e.g.,
sandbox escape attacks on Adobe Reader [Fisher, 2014], IE [Li, 2015] and
Chrome [Constantin, 2013]), or social engineering. Stuxnet [Falliere et al.,
2011] is a prime example here: one of its attacks lures users to plug in a
malicious USB drive into their computers. The drive then exploits a link
vulnerability in Windows Explorer, which causes it to resolve a crafted lnk
file to load and execute attacker-controlled code in a DLL.

11.3 Isolation-based approach

An alternative to policy-based confinement is isolated-execution of untrusted
code. The main advantage of isolation-based approach is its simple policy—
isolation simply virtualizes all resources, and hence it does not have to decide
whether an operation is allowed or denied. The underlying implementation
can depend on policy-based approaches to deny access to shared resources.
There are two types of isolation: One-way isolation and two-way isolation.

One-way isolation [Liang et al., 2003, Sun et al., 2005] permits untrusted
software to read shared resources, but its outputs are held in isolation. This
is usually used to isolate a less trustworthy security domain from a trust-
worthy security domain. One-way isolation is typically implemented with
copy-on-write file systems. Commercial product Sandboxie [Sandboxie Hold-
ings, LLC., 2015] realizes one-way isolation on Windows so that applications
running inside the sandbox can modify any file without affecting the actual
system. Bromium [Bromium] leverages virtualization technologies to create
“micro-VMs” whenever users run an application. Two-way isolation protects
integrity and confidentiality by limiting both reads and writes, holding the
inputs as well as outputs of untrusted applications in an isolated environ-
ment. A classical example is to use air gap to physically separate different
security-level networks. In cloud computing, virtual machines are widely
used to provide isolation while allowing consolidating different security do-
mains applications to run on the same physical machine. The app model
on Android, iOS, OS X, and Windows 8 are based on this two-way isolation
model. Apps cannot interact with each other by default.

Isolation approaches provide a stronger protection against malware since
they block all interactions between untrusted and benign software, thereby
preventing subversion attacks. Isolation approaches also provide much better

180



usability because they permit sufficient access for most applications to work.

11.3.1 Drawbacks when applying on desktop environ-
ment

While the only policy that isolation-based approach enforces is to isolate re-
sources, they too have several significant drawbacks, especially when applied
in the desktop environment:

Fragmentation of user-data: Unlike policy-based confinement, which
continues to support the model of a single namespace for all user-data and
resources, isolation causes fragmentation: user-data and resources are par-
titioned into multiple containers, each representing a disjoint namespace.
In app model, each app has its own home directory. App-created files are
considered as app-data rather than user-data. In desktop environment such
as Linux Container [Canonical Ltd., 2012], applications from one isolation
context cannot be used in another context. Users therefore have to install
and manage the same application across multiple contexts. Apiary [Potter
and Nieh, 2010] proposed using unioning file system to simplify applications
management.

Inability to compose applications: The hallmark of today’s desktop
OSes is the ability to compose applications. UNIX pipelines represented one
of the early examples of application composition. Other common forms of
composition can happen through files or scripts, e.g., saving a spreadsheet
into a PDF file and then emailing this PDF file. Unfortunately, strict iso-
lation prevents one application from interacting with any data (or code) of
other applications, thus precluding composition.

No protection when isolation is breached: Strict isolation may be
breached either due to a policy relaxation or through manual copying of files
across isolation-contexts. Any malware present in such files can subsequently
damage the system as these files do not carry any identifiers.
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11.3.2 Desktop application

Isolation has been made popular by the app models. Despite of applying
isolation on a completely new ecosystem, app models need to address the
challenges above. The app models on iOS, Android, and Windows address
the first two drawbacks by introducing new mechanisms for apps to interact.
For instance, Android supports intent as an interaction mechanism– each app
declares in its intent filter what resource type and actions the app is capable
of handling. When an app needs to interact with another app, it creates an
intent, which is an IPC mechanism provided by Android. Android will resolve
the intent by picking an app which is capable of handling the intent request.
Upon resolution, Android will transfer the control to the selected app. Intents
can request data in multiple forms. For example, an app invoking a camera
app for taking a picture can get the raw bitmap of an image directly, save the
image to the app’s selected private location, or ask the camera app to save
the image to a public location and return the location. This model is much
safer than the desktop model because all interactions are made explicit: apps
only access data that they can handle, and they only share data that they
are willing to share. By default, apps accept no intent. On the other hand, if
an app does not support sharing, users have no way to access the data from
other apps. Since apps need to use the new sharing mechanisms, desktop
applications cannot simply run as apps; in addition, isolation environment
has imposed a lot of restrictions on accessing system resources. As such, most
of the desktop applications (e.g., Microsoft Office, Adobe Reader, Photoshop)
do not support all functionalities when running as apps.

Instead of defining a completely new sharing mechanism, app model in
OS X aims at reassembling the user-familiar unified file system view while en-
forcing file system isolation. OS X has applied App Sandbox on most system
processes. It also mandates all apps distributed via App Store to run inside
a sandbox. OS X developers spent tremendous efforts in preserving the nor-
mal desktop experience for isolated apps. OS X introduced PowerBox [Apple
Inc., 2014] to grant apps access to user-files based on user interactions. This
solves the fragmentation problem. When users need to open files, the apps
will make IPC requests to a trusted daemon process running outside of the
sandbox. The daemon process will then draw a file selection dialog box on
behalf of the isolated app. Once users selected the file, the daemon will gen-
erate a token for the sandboxed app. The sandboxed app can then present
the token to the kernel. The kernel will then permit the app to access the file.
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While the mechanism is simple, OS X developers have spent a lot of efforts
in ensuring the looks-and-feels of the dialog box matches with application
styles. To make the technology usable in different scenarios, OS X extended
PowerBox with security-scoped bookmarks. For example, users can configure
web browser to download files to a user-specified folder. It is inconvenient
if users have to select the same location via the file dialog box every time
to grant the web browser permission to create files there. App-scoped book-
mark allows apps to gain persistent accesses to a previously selected location.
Apps are free to store the tokens generated by the trusted daemon for later
use. OS X also introduced document-scoped bookmarks to solve another us-
ability problem. Document-scoped bookmarks are tied to files— when users
grant an app to access a file, the app can automatically access another file.
This is useful in scenarios where multiple related files need to be accessed
simultaneously. For example, a movie file can have a bookmark to a subti-
tle file. A html file can have bookmarks to all the embedded objects. This
would allow a movie player or web browser to display the content properly.
PowerBox does not solve the problem of composing applications. Indeed, OS
X does not sandbox shell scripts invoked by sandboxed processes as long as
the scripts were placed at a specific location outside of the sandbox. Some of
the popular apps such as Adobe Acrobat and Photoshop do not run within
App Sandbox. Developing a usable isolation environment for desktop OSes
remains to be a hard problem [Reddit Discussion, 2014].

Microsoft Office introduced Protected View [Microsoft, 2015b] to confine
itself when consuming untrusted data. The idea is to run the application in
an one-way isolation environment if the application could be compromised
by consuming the untrusted data. This effectively isolate the effect of pos-
sible exploitation. Protected view leverages WIM and application-awareness
to achieve isolation. When consuming untrusted files, Microsoft Office will
run itself as a low-integrity process. By default, system files and registry
entries are of high-integrity, and user files and registry entries are of medium
integrity. WIM prevent lower-integrity processes from writing into higher-
integrity objects. The office process can therefore read but not write into
system or user files. Since the office process itself needs to modify some files
(e.g., temporary files), the process will write into some OS-designated low-
integrity areas instead of the regular medium-integrity locations. Protected
View still requires applications to be aware of being isolated so that they
won’t modify files that are of higher integrity.

Using userid as an isolation mechanism has been demonstrated in systems
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like Android and Plash [Seaborn, 2015] for isolating applications. One of our
contributions is to develop a more general design that not only enforces strict
isolation between applications, but also permits controlled interactions. Al-
though Android also allows applications to interact, such interactions can
compromise security, becoming a mechanism for a malicious application to
compromise another high-integrity application. In contrast, Spif ensures
that malicious applications cannot compromise high-integrity processes. Fur-
thermore, Spif requires no modifications to applications, whereas Android
requires applications to be rewritten so that applications do not violate the
strict isolation policy.

Both Spif and Plash [Seaborn, 2015] confine untrusted programs by ex-
ecuting them with a user id that has limited accesses in the system. Both
Spif and Plash use a helper process to grant additional accesses to confined
processes. However, Spif’s focus is on preserving compatibility with a wide
range of software, while giving concrete assurances about integrity and avail-
ability. Spif achieves this goal by sandboxing all code, whereas Plash focuses
on sandboxing only untrusted code with least privilege policies.

Another difference between our system and Android is that the Android
model introduces a new user for each application, whereas we introduce a
new (untrusted) user for each existing user.

11.4 Information flow control

Isolation separates resources into different isolation contexts based on se-
curity domains. While isolation is effective in protecting one domain from
another, it also limits the ability to compose applications. To allow sharing
and app composition, various isolation-based approaches introduced their
own sharing mechanisms to circumvent isolation. Once sharing happens
across an isolation boundary, isolation can no longer provide any protection
as isolation does not provide finer-granularity tracking within a domain.

A natural extension to isolation is to attach labels to every subject and
object and enforce policies to confine their interactions. Bell-LaPadula is
one of the earliest multi-level security models concerning confidentiality. Its
labels, ranked from highest confidential to least confidential, are top secret,
secret, confidential, and unclassified. Subjects with clearance C can read
information of label C or below (no-read-up); similarly, any output from the
subjects can contain information derived from C, and hence is labeled as
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C (no-write-down). Biba [Biba, 1977] focuses on integrity with labels from
highest integrity to lowest integrity. It enforces no-read-down and no-write-
up policies.

11.4.1 Usability problems with IFC policies

There are two classical integrity policies: Biba and low-water-mark [Biba,
1977]. They have been proposed for more than 40 years. A policy is nothing
but defining what subjects can and cannot do. Operations that are not
allowed by the policy will be denied. Naturally, if a policy does not deny
any action that would have been succeeded on an unprotected system, user
experiences would be preserved. This could lead to better usability. Since
different policies allow different set of operations, therefore different policies
have different usability.

Biba model enforces a strict separation between high and low-integrity
objects and subjects, which impacts its usability. Consider a utility appli-
cation such as a word-processor that needs to operate on both high and low
integrity files. It would be necessary to have two versions of every such appli-
cation, one for operating on high-integrity files and another for low-integrity
files. It is cumbersome to install and maintain two versions of every appli-
cation. Worse, a user needs to be careful in selecting the correct version of
an application for each task — choosing a high-integrity version of an appli-
cation for processing low-integrity files (or vice-versa) will lead to security
failures and/or application crashes.

The low-water-mark policy avoids these drawbacks of the strict policy
by permitting subject integrity to be downgraded at runtime. In particular,
low-water-mark allows applications to be invoked with high integrity, and the
integrity level can be downgraded if the application subsequently reads a low
integrity object. Any operations allowed in Biba would also be allowed by
the low-water-mark policy. Intuitively, low-water-mark has better usability.
Fraser [Fraser, 2000] argues eloquently why low- water-mark policy has signif-
icantly better compatibility with existing software as compared to the strict
model. However, prior to his LOMAC project, the low-water-mark policy
was not very popular because of the self-revocation problem [Fraser, 2000].
Specifically, consider a subject that has already opened a high integrity file
for writing. If this subject subsequently opens a low integrity file for reading,
it is downgraded. At this point, the subject cannot be permitted to write
into the high integrity file any more. Applications usually handle security
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failures when opening files, but once opened, they assume that subsequent
read and write operations will not fail. When this assumption is invalidated,
applications may malfunction or crash.

On one hand, the low-water-mark policy seems more usable because it
allows more actions that would have be succeeded on an unprotected system.
On the other hand, it suffers from self-revocation, which breaks usability.

11.4.2 Modern application of IFC

Usability remains one of the major concern in applying information flow
tracking. The most notable widely deployed system is WIM. While WIM
is more commonly used as an isolation mechanism, WIM is an instance of
information flow tracking. Microsoft introduced WIM in Windows Vista
to protect system objects against malicious modification. Most Windows
users themselves are system administrators and login to Windows with their
administrator accounts. As users run both regular applications and admin-
istrative applications with the same user identifiers, Windows XP has no
way to differentiate if an administrative operation is initiated by users or
malicious applications. Windows uses WIM to encode the “trustworthiness”
of the processes. When administrative users login, Windows Explorer will
have two security tokens, one as normal user and one as administrative user.
These security tokens are for authorizing user actions. Whenever users run
system applications or installers, Windows Explorer will prompt users for
confirmation. Only then the programs will run with administrative tokens
(high integrity-level) and be able to write into high-integrity system objects;
otherwise, programs will run with normal user tokens, i.e., medium integrity-
level and can only modify user files. WIM ensures that medium integrity-
level processes spawn only medium integrity-level processes. While WIM
enforces information flow policy, this policy is not sufficient to protect sys-
tem integrity. WIM enforces only no-write-up to protect system objects, but
it does not enforce no-read-down. This is because enforcing no-read-down
would break system applications and result in self-revocation. As a result,
attacks have been successfully carried out— an attack vector of Stuxnet mod-
ifies a user-writable task XML file maliciously so that an attacker-specified
program will run with the system privilege [jduck, 2014].

Most of the recent information flow tracking techniques remain in the
research areas. LOMAC focuses on addressing self-revocation. It extends
low-water-mark to address some of the common self-revocation scenarios in
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pipes using heuristics. It does not consider the direction of the pipes and
hence could stop a safe execution that does not have self-revocation. Fur-
thermore, LOMAC does not address problems for processes connected via
other means such as shared memory or sockets.

PPI [Sun et al., 2008b], UMIP [Li et al., 2007] and IFEDAC [Mao et al.,
2011] focus on applying information flow tracking on commodity OSes, but
they all require significant changes to the OS kernel and only work for open
source OSes. UMIP [Li et al., 2007] focuses on protecting system integrity
against network attackers. UMIP uses the sticky bit to label low-integrity
data. The kernel tracks process integrity levels and enforce policies on low
integrity processes. High integrity processes remain high integrity as long
as they do not consume any low-integrity files or interact with low-integrity
processes. Low integrity processes can only read from non-user files and
write into world-writable files. This is true for network applications but not
desktop applications. UMIP is designed to protect servers. Compromising
user files and processes is an important avenue for malware propagation, but
UMIP does not attempt to protect the integrity of user files. Downgrading
a user process allows no interactions with the user files, making the system
not usable for desktops.

IFEDAC [Mao et al., 2011] extends UMIP to protect against untrusted
users as well by tracking not only network provenance information, but also
local user. This is the same as our system. Instead of labeling files using
sticky bit as in UMIP, IFEDAC uses kernel to track object labels as well.
This allows IFEDAC to have arbitrary number of labels.

PPI [Sun et al., 2008b] is designed to preserve integrity by design and
focuses on automating policies. PPI relies on exhaustive training to deter-
mine policies for subjects and objects. It starts by manually defining a set
of integrity-critical objects. The set of subjects and objects that need to re-
main at high integrity is then expanded recursively based on the observations
from training. The absence of training can lead to failures of high-integrity
processes. Specifically, incomplete training can lead to a situation where a
critical high-integrity process is unable to execute because some of its inputs
have become low-integrity, leading to availability problem.

Spif and the majority of the Flume [Krohn et al., 2007] implementation
locates in the user-space. Flume, like Ostia, requires a kernel module to
confine processes by blocking some system calls. Flume prevents confined
processes from performing fork because of the complexity in maintaining la-
bels for all opened resources. As a result, Flume allows only spawn (fork
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+ exec) but not fork. Furthermore, child processes cannot inherit any file
descriptors except pipes from parent processes. This constrains the applica-
tions that Flume can run. Spif relies on existing userid mechanism for both
labeling and confining processes. Spif does not constraint the set of system
calls that processes can make – they can fork and inherit file descriptors as
usual.

While both Spif and UMIP rely permission bits to encode integrity labels,
Spif also uses the mechanism to enforce policy. Furthermore, UMIP can only
encode one bit information. Spif relies on userid, hence can encode richer
provenance information.

PPI [Sun et al., 2008b] is designed to preserve integrity by design and
focuses on automating policies. But there are several important advances we
make in Spif over PPI. First, Spif uses a portable implementation that has
no kernel component, whereas the bulk of PPI resides in the kernel. Second,
PPI approach for policy inference requires exhaustive training, the absence
of which can lead to failures of high-integrity processes. Specifically, incom-
plete training can lead to a situation where a critical high-integrity process
is unable to execute because some of its inputs have become low-integrity.
The approach presented in this work avoids this problem by preventing any
high-integrity file from being overwritten with low-integrity content. On the
other hand, PPI has some features that we don’t: the ability to run low-
integrity applications with root privilege and dynamic context switch from
high to low integrity. Spif does not have these features because these features
significantly complicate the system design and implementation.

On the other hand, PPI has some features that Spif does not have:
the ability to run low-integrity applications with root privilege and dynamic
context switch from high to low integrity. Spif does not have these fea-
tures because these features significantly complicate the system design and
implementation. Moreover, Spif avoids this problem by preventing any high-
integrity file from being overwritten with low-integrity content, and hence can
preserve the availability of high integrity processes.

11.4.3 Decentralized information flow control

Traditional IFC systems have labels predefined by system administrators.
They focus on protecting system integrity or preventing confidential data
leakage. Labels in IFC systems have system-wide meanings. In contrast,
DIFC [Myers and Liskov, 1997] relaxes the notion of labels. Applications can
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create their own labels and these labels are only meaningful to the application
creators, and do not necessarily have meanings to the system and other
applications. The DIFC system will propagate and enforce system-predefined
policies based on the labels. This allows composition of different applications
while satisfying the security requirements for the applications and data.

DIFC approaches can be classified into language-based and OS-based.
Language-based solutions (e.g, Jif [Myers et al., 2001]) push information-
flow control inside applications. Developers have to write their programs
with new language primitives and design the program logic to comply with
information-flow policy; otherwise, programs will not be protected or simply
do not run due to violations. An advantage of language-based approach
is that labels can be assigned and enforced at a fine-grained level such as
variables.

OS-based solutions such as Flume [Krohn et al., 2007], HiStar [Zeldovich
et al., 2006] and Asbestos [Efstathopoulos et al., 2005] enforce policies at
the OS subjects and objects. They usually require OS changes to track
information flow. The advantage of OS-based solutions is that they usually
require less changes to applications. For example, HiStar redesigned the OS
with new abstractions to allow more precise labeling at memory-page level.
While the majority of the code in Flume resides in user-space, Flume still
relies on kernel modules to confine processes. This makes Flume hard to
support different Linux distributions and other Unix systems.

Laminar [Porter et al., 2014] is both a language- and OS-based solution.
It requires minimal changes to existing application code. Instead of rewriting
the entire application to comply with information-flow policies, application
developers only need to indicate which parts of the code need access to sen-
sitive data, and what capability a thread will have when executing the code.
The JVM in Laminar will then perform the runtime checking and policy en-
forcement. Laminar can also use labels from OS objects such as files, making
it a combination of both OS and language based solution.
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Chapter 12

Conclusions and Future Work

Todays OSes adopt users as the basic unit of trust. Every file and pro-
cess owned by the same user has the same userid as the user. This design
stems from the very first multi-user OS created, a time when computers
were self-contained, and file contents were under the control of users. Today,
users frequently download data and code from the Internet, without fully un-
derstanding their content or consequences. However, existing desktop OSes
reuse the same old trust model and treat downloaded files as if users are fully
responsible for them. This trust is exploited by today’s malware.

In this dissertation, we started with the hypothesis that incorporating re-
mote origins information of the Internet-downloaded files can enhance system
security for todays OSes. We tested the hypothesis by answering questions
from three perspectives: (1) How to support provenance-tracking enforce-
ment mechanisms on todays OSes? (2) How to develop usable provenance-
based policies? (3) How useful and practical are provenance-tracking tech-
niques when applied on todays OSes?

Like most existing approaches, we started with a kernel-based enforce-
ment mechanism for labeling provenances and enforcing policies. We devel-
oped a mechanism based on LSM on Ubuntu Linux. This approach, how-
ever, highly dependent on the kernel and is error-prompt. We then started
exploring the possibility of implementing enforcement mechanisms at the
user-level. As OSes already track every resource and enforce policies us-
ing userid, we naturally explored the use of DAC permission. We proposed a
novel dual-sandboxing architecture to provide system-wide provenance track-
ing and policy enforcement mechanism. By splitting the confinement of be-
nign and untrusted processes, we can overload the existing DAC permission
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transparently for provenance-tracking. This has allowed us to develop the
system on Ubuntu and PC-BSD, and we later ported the system to Windows
as well.

Policies are as important as the enforcement mechanisms. We first fo-
cused on integrity-preservation policies. Information flow tracking-based in-
tegrity policies have been proposed for more than 40 years, yet there has
been only a very limited adoption. This is because these policies change
application behaviors and can severely affect the system usability. We pro-
posed a model to formalize the usability versus functionality trade-off made
by various integrity-preservation policies. We showed that existing policies
do not provide an optimal trade-off. Towards this end, we proposed a couple
of new policies. We formally prove that our proposed policies preserve the
integrity and availability. We then generalized the integrity policy to a policy
language that principals can express their security requirements. Instead of
preserving integrity, the goal is to provide a general security policy frame-
work that can model different policies. Our policy language can model and
improve security of policies such as Bubbles, Android, and Web.

With enforcement mechanisms and policies in place, we built systems
to understand how useful and practical these provenance-tracking systems
can be. We first built an integrity-preserving system to defend against mal-
ware. The system incurs low performance overhead and is agnostic to both
OSes and applications. It has been implemented on Linux, BSD, and Win-
dows, supporting large, unmodified applications like Firefox, Microsoft Of-
fice, Adobe Reader and Photoshop. It can also protect systems against high-
profile malware such as Stuxnet and Sandworm. The second system we built
addresses a long-standing problem in information flow tracking, called self-
revocation. We implemented the policy that has optimal trade-off between
usability versus functionality on Ubuntu Linux. During the development of
the policy, we realized that there exists another class of policy which can
achieve both usability and functionality using rollback. We showed that
there are situations where rollback is necessary to achieve functionality and
usability. We illustrated this using a secure software installation system. We
demonstrated the need for rollback and commit capabilities.

Throughout this dissertation, we have shown that tracking provenance
information is both useful and practical on todays OSes. Indeed, by capturing
provenance information, we can have a more generalized policy framework
that can not only model popular security systems, but also improve their
securities.
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As part of the future work, we plan to further explore the relationship be-
tween rollback and existing security policies such as security automaton. We
are interested in understanding if the policy expressiveness power of rollback
mechanisms is strictly more powerful than security automaton. We are also
interested in implementing the generalized policy on other existing platforms
such as Android and web browsers.
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