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Abstract of the Thesis

To FUSE or not to FUSE? Analysis and Performance
Characterization of the FUSE User-Space File System Framework

by

Bharath Kumar Reddy Vangoor

Master of Science

in

Computer Science

Stony Brook University

December 2016

Traditionally, file systems were implemented as part of operating systems kernels, which provide
a limited set of tools and facilities to a programmer. As complexity of file systems grew, many new
file systems began being developed in user space. Low performance is considered the main disadvan-
tage of user-space file systems but the extent of this problem has never been explored systematically.
As a result, the topic of user-space file systems remains rather controversial: while some consider
user-space file systems a “toy” not to be used in production, others develop full-fledged production
file systems in user space. In this thesis we analyze the design and implementation of the most widely
known user-space file system framework, FUSE, for Linux; we characterize its performance for a
wide range of workloads. We present FUSE performance with various mount and configuration op-
tions, using 45 different workloads that were generated using Filebench on two different hardware
configurations. We instrumented FUSE to extract useful statistics and traces, which helped us analyze
its performance bottlenecks and present our analysis results. Our experiments indicate that depending
on the workload and hardware used, performance degradation caused by FUSE can be non-existent or
as high as minus 83%, even when optimized. Our thesis is that user-space file systems can indeed be
used in production (non “toy”) settings, but their applicability depends on the expected workloads.
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Chapter 1

Introduction

The file system is one of the oldest and perhaps most common interfaces for applications to access
their data. Although in the years of micro-kernel-based Operating Systems (OS), some file systems
were implemented in user space [1,28], the status quo was always to implement file systems as part of
the monolithic OS kernels [12,36,49]. Kernel-space implementations avoid potentially high overheads
of passing requests between the kernel and user-space daemons—communications that are inherent to
the user-space and micro-kernel implementations [14, 26].

However, slowly although perhaps not overly noticeable, user-space file systems have crawled
back into today’s storage systems. In recent years, user-space file systems rose in popularity and
following are some of the proofs (indicators/signs) to support the discussion:

1. A number of user-space stackable file systems that add specialized functionalities on top of
basic file systems gained popularity (e.g., deduplication and compression file systems [31,46]).

2. In academic research and advanced development, user-space file system frameworks like FUSE
became a de facto standard for experimenting with new approaches to file system design [8,16,
27, 56].

3. Several existing kernel-level file systems were ported to user space (e.g., ZFS [60], NTFS [40]).
Some tried to bring parts of file system to user-space as specialized solutions [47, 58] or port to
Windows [2].

4. Perhaps most important, an increasing number of companies rely on user-space implementa-
tions for their storage products: IBM’S GPFS [45] and LTFS [41], Nimble Storage’s CASL [39],
Apache’s HDFS [4], Google File System [25], RedHat’s GlusterFS [44], Data Domain’s dedu-
plication file system [61], and more. Some implement file systems in user space to store data
online in clouds using services like Google Drive, Amazon S3 [43], and DropBox [37].

Although user-space file systems did not displace kernel-level file systems entirely, and it would be
incorrect and premature to assume this, user-space file systems undoubtedly occupy a growing niche.

Customers constantly demand new features in storage solutions (snapshotting, deduplication, en-
cryption, automatic tiering, replication, etc.). Vendors reply to this demand by releasing new products
with a vastly increased complexity. For example, when expressed as the Lines of Code (LoC), recent
Btrfs versions contain over 85,000 LoC—at least 5× more than the already classic Ext3 file system
(about 15,000 LoC, including journaling code). For modern distributed file systems, especially ones
supporting multiple platforms, the LoC count reaches several millions (e.g., IBM’s GPFS [45]). With
the continuous advent of Software Defined Storage (SDS) [13] paradigms, the amount of code and
storage-software complexity is only expected to grow.
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Increased file systems complexity is a major factor in user-space file systems’ growing popularity.
The user space is a much friendlier environment to develop, port, and maintain the code. NetBSD’s
rump kernel is the first implementation of the “anykernel” concept where drivers can be run in user
space on top of a light-weight rump kernel; these drivers included file systems as well [21]. A number
of frameworks for writing user-space file systems appeared [3, 5, 6, 10, 20, 34, 35]. We now discuss
some of the reasons for the rise in the popularity of user-space file systems in recent times:

1. Developement ease. Developers’ toolboxes now include numerous user-space tools for tracing,
debugging, and profiling user programs. Accidental user-level bugs do not crash the whole
system and do not require a lengthy reboot but rather generate a useful core-memory dump
while the program can be easily restarted for further investigation. A myriad of useful libraries
are readily available in user-space. Developers are not limited to only few system-oriented
programming languages (e.g., C) but can easily use several higher-level languages, each best
suited to its goal.

2. Portability. For file systems that need to run on multiple platforms, it is much easier to develop
portable code in user space than in the kernel. This can be recognized in case of distributed file
systems, whose clients often run on multiple OSes [58]. E.g., if file systems were developed in
user space initially, then UNIX file systems could have been readily accessed under windows.

3. Libraries. An abundance of libraries are available in user space where it is easier to try new and
more efficient algorithms for implementing a file system, to improve performance. For example,
predictive prefetching can use AI algorithms to adapt to a specific user’s workload; and cache
management can use classification libraries to implement better eviction policies.

Simply put, there are many more developers readily available to code in user space than in the kernel
and the entry bar is much lower for newcomers.

Of course, everything that can be done in user space can be achieved in the kernel. But to keep
the development scalable with the complexity of file systems, many companies resort to user-space
implementations. The more visible this comeback of user-space file systems becomes, the more heated
are the debates between proponents and opponents of user-space file systems [32, 55, 57]. While
some consider user-space file systems just a toy, others develop real production systems with them.
The article in the official Red Hat Storage blog titled “Linus Torvalds doesn’t understand user-space
filesystems” is indicative of these debates [32].

The debates center around two trade-off factors: (1) how large is the performance overhead caused
by a user-space implementations and (2) how much easier is it to develop in user space. Ease of de-
velopment is highly subjective, hard to formalize and therefore evaluate; but performance has several
well defined metrics and can be systematically evaluated. Oddly, little has been published on the
performance of user-space file system frameworks.

In this thesis, we use the most common user-space file system framework, FUSE, on Linux, and
characterize the performance degradation it causes and its resource utilization. We start with a detailed
explanation of FUSE’s design and implementation for four reasons:

1. FUSE’s architecture is somewhat complex;

2. Little information on FUSE’s internals is available publicly;

3. FUSE’s source code can be overwhelming to analyze, with complex asynchrony between user-
level and kernel-level components;

2



4. As user-space file systems and FUSE grow in popularity, a detailed analysis of their implemen-
tation becomes of high value to at least two groups: (a) engineers in industry, as they design and
build new systems; and (b) researchers, because they use FUSE for prototyping new solutions.

and finally

5. Understanding FUSE design is crucial for the analysis presented in this thesis.

We developed a simple pass-through stackable file system using FUSE, called StackFS, which we
layer on top of Ext4. We evaluated its performance compared to the native Ext4 using a wide variety of
micro- and macro-workloads running on different hardware. In addition, we measured the increase in
CPU utilization caused by FUSE. Our findings indicate that depending on the workload and hardware
used, FUSE can perform as good as native Ext4 file system; but in the worst cases, FUSE can perform
3× slower than the underlying Ext4 file system. In terms of raw CPU cycles, FUSE’s CPU utilization
increases by up to 13×, but relative utilization increases by 31%.

Next, we designed and implemented a rich instrumentation system for FUSE that allows us to
conduct in-depth performance analysis. The statistics extracted are applicable to any FUSE-based
systems. We released our code publicly and can be found at following locations, all accessible from
http://www.filesystems.org/ fuse:

1. Fuse Kernel Instrumentation:

• Repo: https://github.com/sbu-fsl/fuse-kernel-instrumentation.git

• Branch: master

2. Fuse Library Instrumentation:

• Repo: https://github.com/sbu-fsl/fuse-library-instrumentation.git

• Branch: master

3. Workloads, Results, and Stackable File system implementation:

• Repo: https://github.com/sbu-fsl/fuse-stackfs.git

• Branch: master

Additional information about code can be found at the aforementioned link, http://filesystems.org/fuse/.
We then used this instrumentation to identify bottlenecks in FUSE and explain why it performs well
for some workloads while struggles for others. For example, we demonstrate that currently FUSE
cannot prefetch or compound small random reads and therefore performs poorly for workloads with
many such small operations.

The rest of this thesis is organized as follows. Chapter 2 discusses the FUSE architecture and
implementation details. Chapter 3 describes our stackable file system’s implementation and useful in-
strumentation that we added to FUSE’s kernel and user library. Chapter 4 introduces our experimental
methodology. The bulk of our evaluation and analysis is in Chapter 5. Then we discuss the related
work in the Chapter 6. We conclude and describe future work in Chapter 7.

3



Chapter 2

FUSE Design

FUSE—Filesystem in Userspace—is the most widely used user-space file system framework [50].
Initial implementation was originally developed for Linux-based OSes but over time it was ported
to many other OSes [33, 60]. According to the most modest estimates, at least 100 FUSE-based file
systems are readily available on the Web [51]. Although other, specialized implementations of user-
space file systems exist [45, 47, 58], we selected FUSE for this study because of its high popularity.
We believe that our findings here will not only impact a large family of already existing FUSE file
systems, but can also be applied to other user-space file system frameworks.

Although many file systems were implemented using FUSE—thanks mainly to the simple API it
provides—little work was done on understanding its internal architecture, implementation, and per-
formance [42]. For our evaluation it was essential to understand not only FUSE’s high-level design
but also some intricate details of its implementation. In this section we first describe FUSE’s basics
and then we explain certain important implementation details. FUSE is available for several OSes:
we selected Linux due to its wide-spread use. We analyzed the code of and ran experiments on the
latest stable version of the Linux kernel available at the beginning of the project—v4.1.13. We also
used FUSE library commit #386b1b; on top of FUSE v2.9.4, this commit contains several important
patches (65 files changed, 2,680 insertions, 3,693 deletions) which we did not want exclude from our
evaluation. We manually examined all new commits up to the time of this writing and confirmed that
no new major features or improvements were added to FUSE since the release of the selected versions.

Next, we detail FUSE’s design, starting with a high level architecture in Section 2.1. We describe
how FUSE user space daemon and kernel driver communicate in Section 2.2. Different API levels
available in FUSE user library are discussed in Section 2.3. Different types of queues which are
part of FUSE kernel driver are described in Section 2.4. Section 2.5 describes the FUSE capability
of zero-copy using splice and special buffers that are maintained internally. Section 2.6 discusses
FUSE’s notification subsystem. Section 2.7 describes how FUSE’s library supports multi-threading
and processes requests in parallel. In Section 2.8 we discuss important parameters associated with
FUSE’s write-back in-kernel cache ,and how these values affect FUSE. Finally, in Section 2.9 we
discuss various command-line options that FUSE currently supports.

2.1 High-Level Architecture

FUSE consists of a kernel part and a user-level daemon. The kernel part is implemented as a Linux
kernel module fuse.ko which, when loaded, registers three file system types with the Virtual File
System (VFS) (all visible in /proc/filesystems): 1) fuse, 2) fuseblk, and 3) fusectl. Both fuse
and fuseblk are proxy types for various specific FUSE file systems that are implemented by different
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Figure 2.1: FUSE high-level architecture.

user-level daemons. File systems of fuse type do not require underlying block devices and are usually
stackable, in-memory, or network file systems. The fuseblk type, on the other hand, is for user-space
file systems that are deployed on top of block devices, much like traditional local file systems. The
Fuse and fuseblk types are similar in implementation; for a single-device file systems, however, the
fuseblk provides following features:

1. Locking the block device on mount and unlocking on release;

2. Sharing the file system for multiple mounts;

3. Allowing swap files to bypass the file system in accessing the underlying device;

In addition to these features, fuseblk also provides the ability to synchronously unmount the file sys-
tem: i.e, when the file system is last to be unmounted (no lazy unmounts or bind mounts remain), then
the unmount call will wait until the file system acknowledges this (e.g., flushes buffers). We discuss
this behaviour later in Section 2.2. We refer to both fuse and fuseblk as FUSE from here on. Finally,
the fusectl file system provides users with the means to control and monitor any FUSE file system
behavior (e.g., for setting thresholds and counting the number of pending requests).

The fuse and fuseblk file system types are different from traditional file systems (e.g., ext4 or XFS)
in that they present whole families of file systems. To differentiate between different mounted FUSE
file systems, the /proc/mounts file represents every specific FUSE file system as [fuse|fuseblk].<NAME>
(instead of just [fuse|fuseblk]). The <NAME> is a string identifier specified by the FUSE file-
system developer (e.g.,“dedup” if a file system deduplicates data).

In addition to registering three file systems, FUSE’s kernel module also registers a /dev/fuse
block device. This device serves as an interface between user-space FUSE daemons and the kernel. In
general, the daemon reads FUSE requests from /dev/fuse, processes them, and then writes replies
back to /dev/fuse.

Figure 2.1 shows FUSE’s high-level architecture. When a user application performs some oper-
ation on a mounted FUSE file system, the VFS routes the operation to FUSE’s kernel (file system)
driver. The driver allocates a FUSE request structure and puts it in a FUSE queue. At this point, the
process that submitted the operation is usually put in a wait state. FUSE’s user-level daemon then
picks the request from the kernel queue by reading from /dev/fuse and processes the request. Pro-
cessing the request might require re-entering the kernel again: for example, in case of a stackable

5



FUSE file system, the daemon submits operations to the underlying file system (e.g., Ext4); or in case
of a block-based FUSE file system, the daemon reads or writes from the block device; and in case of a
network or in-memory file system, the FUSE daemon might still need to re-enter the kernel to obtain
certain system services (e.g., create a socket or get the time of day). When done with processing the
request, the FUSE daemon writes the response back to /dev/fuse; FUSE’s kernel driver then marks
the request as completed, and wakes up the original user process which submitted the request.

Some file system operations invoked by an application can complete without communicating with
the user-level FUSE daemon. For example, reads from a previously read file, whose pages are cached
in the kernel page cache, do not need to be forwarded to the FUSE driver. Caching is not limited to
data: meta-data information (e.g., for stat(2)) about cached inodes or dentries (cached in Linux’s
dcache) can be fully processed in kernel space without involving a FUSE daemon (depending on the
mount options).

We chose a stackable user-space file system instead of a block, network, or in-memory one for our
study because the majority of existing FUSE-based file systems are stackable (i.e., deployed on top of
other, often in-kernel file systems). Moreover, we wanted to add as little overhead as possible so as to
isolate the overhead of FUSE’s kernel and library.

Group (#) Request Types
Special (3) INIT, DESTROY, INTERRUPT
Metadata (14) LOOKUP, FORGET, BATCH FORGET, CREATE, UNLINK, LINK, RENAME, RENAME2,

OPEN, RELEASE, STATFS, FSYNC, FLUSH, ACCESS

Data (2) READ, WRITE

Attributes (2) GETATTR, SETATTR

Extended SETXATTR, GETXATTR,
Attributes (4) LISTXATTR, REMOVEXATTR

Symlinks (2) SYMLINK, READLINK

Directory (7) MKDIR, RMDIR, OPENDIR, RELEASEDIR, READDIR, READDIRPLUS, FSYNCDIR

Locking (3) GETLK, SETLK, SETLKW

Misc (6) BMAP, FALLOCATE, MKNOD, IOCTL, POLL, NOTIFY REPLY

Table 2.1: FUSE request types grouped by semantics. The number in parenthesis is the size of the
corresponding group. Request types that we discuss in the text are typeset in bold.

2.2 User-Kernel Protocol

When FUSE’s kernel driver communicates to the user-space daemon, it forms a FUSE request struc-
ture. The header files include/uapi/linux/fuse.h (for use in kernel code) and include/fuse kernel.h
(for use in FUSE’s user-level library) are identical; they define the requests headers which are com-
mon to the user library and the kernel, thereby providing kernel-user interoperability. In particular,
struct fuse in header and fuse out header define common headers for all input requests
(to the daemon) and output replies (from the daemon). Similarly, they define operation-specific head-
ers: struct fuse read in/fuse read out (for read operations), struct fuse fsync in/out
(for fsync operations), etc. Requests have different types (stored in the opcode field of the fuse in header)
depending on the operation they convey.

FUSE’s user-kernel protocol also provides a mechanism to store some information per opened
file/directory. The ability to store or not store information makes the protocol statefull and state-
less, respectively. For each operation (in the low-level API) dealing with files/directories, there is a
struct fuse file info passed as an argument. This structure is maintained by the FUSE li-
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brary to track the information about files in the FUSE file system (user space). This structure contains
an unsigned 64-bit integer field fh (file handle) which can be used to store information about opened
files (stateful). For example, while replying to requests like OPEN and CREATE, FUSE’s daemon can
store a file descriptor in this field. The advantage of this is that the fh is then passed by the kernel
to the user daemon for all the operations associated with the opened file. If this is not set in the first
place, then FUSE’s daemon has to open and close the file for every file operation (statelessness). This
holds true even for requests like OPENDIR and MKDIR where a directory pointer associated with an
opened directory can be type-casted and stored in the fh.

Table 2.1 lists all 43 FUSE request types, grouped by their semantics. As seen, most requests have
a direct mapping to traditional VFS operations: we omit discussion of obvious requests (e.g., READ,
CREATE) and instead focus next on those less intuitive request types (marked in bold in Table 2.1).

The INIT request is produced by the kernel when a file system is mounted. At this point the user
space and kernel negotiate the following three items:

1. The protocol version they will operate on (v7.23 at the time of this writing);

2. The set of mutually supported capabilities (e.g., READDIRPLUS or FLOCK support), where
FUSE CAP * contains all possible capabilities of user/kernel; and

3. Various parameter settings (e.g., FUSE read-ahead size, time granularity for attributes) which
are passed as mount options.

Conversely, the DESTROY request is sent by the kernel during the file system’s unmounting process.
When getting a DESTROY request, the daemon is expected to perform all necessary cleanups. No more
requests will come from the kernel for this session and subsequent reads from /dev/fusewill return
0, causing the daemon to exit gracefully. Currently, a DESTROY request is sent synchronously only in
case of fuseblk but not in case of fuse file systems types (as mentioned in Section 2.1). The reason for
this behavior is because fuseblk is mounted with a privileged user credentials (access to block device);
and in this case, unmount needs to handle flushing all the buffers during unmount. Unmounting in the
case of a fuse file system, however, need not wait on the unprivileged FUSE daemon [23].

The INTERRUPT request is emitted by the kernel if any requests that were previously passed to the
daemon are no longer needed (e.g., when a user process blocked on a READ request is terminated).
INTERRUPT requests take precedence over other requests, so the user-space file system will receive
queued INTERRUPT requests before any other requests. The user-space file system may ignore the
INTERRUPT requests entirely, or may honor them by sending a reply to the original request, with
the error set to EINTR. Each request has a unique sequence# which INTERRUPT uses to identify
victim requests. Sequence numbers are assigned by the kernel and are also used to locate completed
requests when the user space replies back to the kernel. Every request also contains a node ID—an
unsigned 64-bit integer identifying the inode both in kernel and user spaces (sometimes referred to as
an inode ID). The path-to-inode translation is performed by the LOOKUP request. FUSE’s root inode
number is always 1. Every time an existing inode is looked up (or a new one is created), the kernel
keeps the inode in the inode and directory entry cache (dcache). Several requests exist to facilitate
management of caches in the FUSE daemon, to mirror their respective dcache states in the kernel.
When removing an inode from the dcache, the kernel passes the FORGET request to the user-space
daemon. FUSE’s inode reference count (in user space file system) grows with every reply to LOOKUP,
CREATE, etc. requests. FORGET request passes an nlookups parameter which informs the user-
space file system (daemon) about how many lookups to forget. At this point the user space file system
(daemon) might decide to deallocate any corresponding data structures (once their reference count
goes to 0). BATCH FORGET sends batched requests to forget multiple inodes.
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An OPEN request is generated, not surprisingly, when a user application opens a file. When reply-
ing to this request (as already discussed in this section), a FUSE daemon has a chance to optionally
assign a 64-bit file handle to the opened file. This file handle is then passed by the kernel to the daemon
along with every request associated with the opened file. The user-space daemon can use the handle to
store per-opened-file information. For example, a stackable FUSE file system can store the descriptor
of the file opened in the underlying file system as part of FUSE’s file handle. It is not necessary to
set a file handle; if not set, the protocol will be stateless. FLUSH is generated every time an opened
file is closed; and RELEASE is sent when there are no more references to a previously opened file.
One RELEASE request is generated for every OPEN request (when closed), and there might be multiple
FLUSHs per OPEN because of forks, dups, etc.

OPENDIR and RELEASEDIR requests have the same semantics as OPEN and RELEASE, respectively,
but for directories. The READDIRPLUS request returns one or more directory entries, like READDIR,
but it also includes meta-data information for each entry. This allows the kernel to pre-fill its inode
cache, similar to NFSv3’s READDIRPLUS procedure [9].

When the kernel evaluates if a user process has permissions to access a file, it generates an AC-
CESS request. By handling this request, the FUSE daemon can implement custom permission logic.
However, typically users mount FUSE with the default permissions option that allows the kernel to
grant or deny access to a file based on its standard Unix attributes (ownership and permission bits). In
this case (default permissions) no ACCESS requests are generated.

RENAME2 just adds a flags field compared to RENAME; flags that are currently supported are as
follows:

1. RENAME NOREPLACE: this flag indicates that if the target of the rename exists, then rename
should fail with EEXIST instead of replacing the target (as expected by POSIX).

2. RENAME EXCHANGE: this flag indicates that both source and target must exist but may be of
different types (e.g., one could be a non-empty directory and the other a symbolic link). If either
of them doesn’t exists, then rename should fail with ENOENT instead of replacing the target. If
no flags are passed, then the kernel falls back to using a RENAME request.

Both FSYNC and FSYNCDIR are used to synchronize data and meta-data on files and directories, re-
spectively. These requests also carry a additional flag with them, datasync, which allows developers
to differentiate when to sync data and meta-data. That is, when the datasync parameter is non-zero,
then only user data is flushed, not the meta-data.

FUSE supports file locking using following request types:

1. GETLK checks to see if there is already a lock on the file, but doesn’t set one.

2. SETLKW obtains the requested lock. If the lock cannot be obtained (e.g., someone else has it
locked already), then wait (block) until the lock has cleared and then grab the lock for yourself.

3. SETLK is almost identical to SETLKW. The only difference is that it will not wait if it cannot
obtain a lock. Instead, it returns immediately with an error.

2.3 Library and API Levels

Conceptually, the FUSE library consists of two levels, as seen in Figure 2.2. The lower level takes
care of the following:

1. Receiving and parsing requests from the kernel,
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fuse_lib_write()

fuse_lib_open()

fuse_lib_read()

fuse_lowelevel_ops { }

fuse_operations { }

Low Level

High Level

My File System

FUSE Request USER

KERNEL

myfs_read()

/dev/fuse driver

myfs_open()

myfs_write()

Figure 2.2: Interaction of FUSE library levels. “My File System” is an illustrative user-space file
system implemented with the high-level API.

2. Sending properly formatted replies,

3. Facilitating file system configuration and mounting, and

4. Hiding potential version differences between kernel and user spaces.

This part of the library exposes to developers the so-called low-level FUSE API.
The High-level FUSE API builds on top of the low-level API and allows file system develop-

ers to skip the implementation of the path-to-inode mapping. Therefore, the high-level API omits
the complex concept of lookup operations; inodes do not exist at this high-level API, simplifying code
development for many FUSE file-system developers. Instead of using inodes, all high-level API meth-
ods operate directly on file paths. As a result, FORGET inode methods are not needed in the high-level
API. The high-level API also handles request interrupts and provides other convenient features: e.g.,
developers can use the more common chown(), chmod(), and truncate() methods, instead of
the lower-level setattr(). The high-level API never communicates with the kernel directly, only
through the low-level API. The low-level API implemented within the library has function names
like fuse lib *() (e.g., fuse lib read, etc.). These functions internally call high-level API
functions, depending upon the functionality.

File system developers must decide which API to use, by balancing flexibility vs. development
ease. For simpler file systems that do not need to handle lookups, a high-level API is a good fit. In this
case, developers need to implement 42 methods in the fuse operations structure. These methods
roughly correspond to traditional POSIX file system operations, e.g., open, read, write, mkdir; and
almost all of them take a file name as one of the arguments. If a developer decides to use the low-level
API, then 42 methods in the fuse lowlevel ops need to be implemented. Many methods in both
structures are optional.

The methods in both APIs are similar and we highlight important differences of low-level API
compared to the high-level API below. First, for higher flexibility, low-level methods always take
a FUSE request as an argument. Second, method definitions have even closer match to Linux VFS
methods because they often operate on inodes (or rather inode numbers). For example, the lookup
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method is present in low-level API and takes (in addition to complete FUSE request) the parent inode
number and the name of the file to be looked up. Third, paired with a lookup method is an additional
forget method that is called when a kernel removes an inode from the inode/dentry cache.

Figure 2.2 schematically describes the interaction of FUSE’s library levels. When the low level
API receives a request from the kernel, it parses the request and calls an appropriate method in
fuse lowlevel ops. The methods in this structure are either implemented by the user file system
itself (if the low-level API was selected to develop the user file system) or directly by the high level
of FUSE’s library. In the latter case, the high-level part of the library calls an appropriate method in
fuse operations structure, which is implemented by the file system that is developed with FUSE’s
high-level API.

2.4 Queues
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Figure 2.3: The organization of FUSE queues marked with their Head and Tail. The processing queue
does not have a tail because the daemon replies in an arbitrary order.

In Section 2.1 we briefly mentioned that FUSE’s kernel part maintains a request queue for pro-
cessing by the user space. More specifically, FUSE maintains five queues as seen in Figure 2.3:
(1) interrupts (2) forgets (3) pending, (4) processing, and (5) background. At any point in time a
request belongs to only one queue. FUSE puts INTERRUPT requests in the interrupts queue, FORGET

requests in the forgets queue, and synchronous requests (e.g., metadata) in the pending queue. FUSE
uses a separate queue for INTERRUPT requests for assigning priority (to interrupt requests); and simi-
larly, FUSE uses a separate queue for FORGET requests to differentiate them from non-forget requests.
FORGET requests are sent when the inode is evicted, and these requests are would queue up together
with regular file system requests, if a separate forgets queue did not exist. If many FORGET requests
are processed, then no other file system operation can proceed. This behavior was seen when a FUSE
file system with 32 million inodes on a machine with lots of memory can become unresponsive for
up to 30 minutes when all those inodes are evicted from the icache [24]. Therefore, FUSE maintains
a separate queue for FORGET requests and a fair policy is implemented to process them, as explained
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below.
When a file-system (user space) daemon reads from /dev/fuse, then the requests are transferred

to the user daemon as follows:

1. First priority is given to the requests (if any) in the interrupts queue; i.e., the oldest INTERRUPT

request is transferred to the user space before any other requests.

2. FORGET and non-FORGET requests are selected fairly: for each 8 non-FORGET requests, 16
FORGET requests are transferred. This ensures that FORGET requests do not pile up, yet other
file systems requests are also allowed to proceed while the queued forgets are processed.

The oldest request in the pending queue is transferred to the user space and simultaneously moved
to the processing queue. INTERRUPT and FORGET requests do not have a reply (from user daemon);
therefore, as soon as user daemon reads these requests, they are terminated. Thus, requests in the
processing queue are the ones that are currently processed by the daemon. If the pending queue is
empty then the FUSE daemon is blocked on a read call. When the daemon replies to the request (by
writing the reply to /dev/fuse), the corresponding request is removed from the processing queue,
which concludes the life of the request. At the same time, blocked user processes (e.g., the ones
waiting for READ to complete) are notified that they can proceed.

The background queue is for staging asynchronous requests. In a default setup (no arguments
to FUSE on mount), only read requests go to the background queue because by default reads are
asynchronous as they read more than the process requested due to read ahead; writes go to the back-
ground queue but only if the writeback cache is enabled. In addition, FUSE puts INIT requests and
RELEASE requests into the background queue. When the writeback cache is enabled, writes from the
user process are first accumulated in the page cache and later bdflush threads wake up to flush dirty
pages [15]. While flushing the pages, FUSE forms asynchronous write requests and puts them in the
background queue.

Requests from the background queue gradually trickle to the pending queue. FUSE limits the
number of asynchronous requests simultaneously residing in the pending queue to the configurable
max background parameter (12 by default). When fewer than 12 asynchronous requests are in the
pending queue, requests from the background queue are moved to the pending queue. The intention
is to limit the delay caused to important synchronous requests by bursts of background requests and
also to limit the number of user daemon threads invoked in case of multi-threaded option (which is
discussed in Section 2.7).

The queues’ lengths are not explicitly limited: when the number of asynchronous requests in the
pending and processing queues reaches the value of the tunable congestion threshold param-
eter (75% of max background, 9 by default), FUSE informs the Linux VFS that it is congested;
the VFS then throttles the user processes that submit requests to this file system.

2.5 Splicing and FUSE Buffers

In its basic setup, the FUSE daemon has to read() requests from and write() replies to /dev/fuse.
Every such call requires a memory copy between the kernel and user space. It is especially harmful for
WRITE requests and READ replies because they often process a lot of data. To alleviate this problem,
FUSE can use splicing functionality provided by the Linux kernel [54]. Splicing (represented by the
splice() system call family) allows the user space to transfer data between two in-kernel memory
buffers without copying the data to user space. This is useful for stackable file systems that pass data
directly to the underlying file system.

To seamlessly support splicing, FUSE represents its buffers in one of two forms:
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1. The regular memory region identified by a pointer in the user daemon’s address space, or

2. The kernel-space memory pointed by a file descriptor of a pipe where the data resides.

If a user-space file system implements the write buf() method (in the low-level API), then FUSE
first splices the data from /dev/fuse to a Linux pipe and then passes the data directly to this method
as a buffer containing a file descriptor of the pipe. FUSE splices only WRITE requests and only the
ones that contain more than a single page of data. Similar logic applies to the replies to READ requests
if the read buf() method is implemented. However, the read buf method is only present in the
high-level API; for the low-level API, the file-system developer has to differentiate between splice and
non-splice flows inside the read method itself.

If the library is compiled with splice support, the kernel supports it, and appropriate command-
line parameters are set, then splice() is always called for every request (including the request’s
header). However, the header of every single request needs to be examined, for example to identify
the request’s type and size. This examination is not possible if the FUSE buffer has only the file
descriptor of a pipe where the data resides. So, for every request the header is then read from the
pipe using regular read() calls (i.e., small, at most 80 bytes, memory copying is always perfomed).
FUSE then splices the requested data if its size is larger than a single page (excluding the header):
therefore only big writes are spliced. For reads, replies larger than two pages are spliced.

2.6 Notifications

Notification Types Description
POLL Notifies that an event happened on an opened file for which an application

has polled on.
INVAL INODE Invalidates cache for a specific inode.
INVAL ENTRY Invalidates parent directory attributes and the dentry matching

〈parent-directory, file-name〉 pair.
STORE Store data in the page cache. The STORE and RETRIEVE notification types

can be used by FUSE file systems to synchronize their caches with the ker-
nel’s.

RETRIEVE Retrieve data from the page cache. The STORE and RETRIEVE notification
types can be used by FUSE file systems to synchronize their caches with the
kernel’s.

DELETE Notify to invalidate parent attributes and delete the dentry matching parent/-
name if the dentry’s inode number matches the child (otherwise it will inval-
idate the matching dentry).

Table 2.2: FUSE notification types, in the order of their opcodes.

So far we did not discuss any mechanisms for the FUSE library to communicate to its kernel
counterpart, except by replying to a kernel request. But in certain situations, the daemon needs to pass
some information to the kernel without receiving any previous requests from the kernel. For example,
if a user application polls events on an opened file using the poll() system call, the FUSE daemon
needs to notify the kernel when an event happens that wakes up the waiting process. For this and
similar situations, FUSE introduces the concept of notifications. As with replies, to pass a notification
to the kernel, the daemon writes the notification to /dev/fuse.
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Table 2.2 describes the six notification types that the FUSE daemon can send to the kernel driver.
Usually, FUSE’s kernel driver does not send any replies to notifications. The only exception is the
RETRIEVE request, for which the kernel replies using a special NOTIFY REPLY request.

2.7 Multithreading

Initial FUSE implementations supported only a single-threaded daemon but as parallelism got more
dominant, both in user applications and hardware, the necessity of multithreading became evident.
When executed in multithreaded mode, FUSE at first starts only one thread. However, if there are
two or more requests available in the pending queue, FUSE automatically spawns additional threads.
Every thread processes one request at a time. After processing the request, each thread checks is there
are more than 10 threads; if so, that thread exits. There is no explicit upper limit on the number of
threads created by the FUSE library. The implicit limit arises due to two factors. First, by default,
only 12 asynchronous requests (max background parameter) can be in the pending queue at one
time. Second, the number of synchronous requests in the pending queue is constrained by the number
of user processes that submit requests. In addition, for every INTERRUPT and FORGET requests,
a new thread is invoked. Therefore, the total number of FUSE daemon threads is at most (12 +
number of processes with outstanding I/O + number of interrupts + no of forgets). But
in a typical system where there is no interrupts support and not many forgets are generated, the total
number of FUSE daemon threads are at most (12+ number of processes with outstanding I/O).

2.8 Linux Write-back Cache and FUSE

Section 2.8.1 describes Linux’s Page Cache internals and Section 2.8.2 describes its parameters. Sec-
tion 2.8.3 describes FUSE’s write-back cache code flow. Section 2.8.4 describes FUSE’s write-back
mode.

2.8.1 Linux Page Cache

The Linux kernel implements a cache called page cache [53]. The main advantage of this cache is
to minimize disk I/O by storing data in physical memory (RAM) that would otherwise require a disk
access. The page cache consists of physical pages in RAM. These pages originate from reads and
writes of file system files, block device files, and memory-mapped files. Therefore, the page cache
contains recently accessed file data. During an I/O operation such as a read, the kernel first checks
whether the data is present in the page cache. If so, the kernel then quickly returns the requested page
from memory rather than read the data from the slower disk. If the data is read from disk, then the
kernel populates the page cache with the data so that any subsequent reads can access that data from
cache. In case of write operations, there are three strategies:

1. no-write: a write operation against a page in cache would written directly to disk, invalidating
the cached data.

2. write-through: a write operation will update both in-memory cache and on-disk file.

3. write-back: write operation happens directly into the page cache and the corresponding changes
are not immediately written to disk. The written-to pages in the page cache are marked as dirty
(hence dirty pages) and are added to a dirty list. Periodically, pages in the dirty list are written
back to disk in a process called writeback.
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We are more interested in the write-back strategy because this approach is used by FUSE (kernel
driver). Dirty pages in the page cache needs to be written to disk. Dirty page write-back occurs in
three situations:

1. When th amount of free memory in the system drops below a threshold value.

2. When dirty data grows older than a specified threshold, making sure dirty data does not remain
dirty indefinitely.

3. When a user process invokes the sync() or fsync() system calls.

All of the above three tasks are performed by the group of flusher threads. First, flusher threads
flush dirty data to disk when the amount of free memory in the system drops below a threshold value.
This is done by a flusher thread calling a function bdi writeback all, which continues to write
data to disk until following two conditions are true:

1. The specified number of pages has been written out; and

2. The amount of free memory is above the threshold.

Second, the flusher thread periodically wakes up and writes out old dirty data, thereby making
sure no dirty pages remain in the page cache indefinitely.

Prior to Linux 2.6, the kernel had two threads: bdflush and kupdated which did exactly what
the current flusher threads do. The bdflush thread was responsible for the background writeback of
dirty pages (when free memory was low), while kupdated was responsible for periodic writeback
of dirty pages. In the 2.6 kernel, a pdflush thread was introduced which performed similarly to the
current flusher threads. The main difference was that the number of pdflush threads was dynamic
between two and eight, depending on the I/O load. The pdflush threads were not associated with any
specific disk, but instead they were global to all disks. The downside of pdflush was that it can easily
bottleneck on congested disks, starving other devices from getting service. Therefore, a per-spindle
flushing method was introduced to improve performace. The flusher threads replaced the pdflush
threads in the 2.6.32 kernel [7]. The major disadvantage in bdflush was that it consisted of one thread.
This led to congestion during heavy page writeback where the single bdflush thread blocked on a
single slow device. The 2.6.32 kernel solved this problem by enabling multiple flusher threads to
exists where each thread individually flushes dirty pages to a disk, allowing different threads to flush
data at different rates to different disks. This also introduced the concept of per-backing device info
(BDI) structure which maintains the per-device (disk) information like dirty list, read ahead size, flags,
and B.D.Mn.R and B.D.Mx.R which are discussed in the next section.

2.8.2 Page Cache Parameters

Global Background Ratio (G.B.R): The percentage of Total Available Memory filled with dirty
pages at which the background kernel flusher threads wake up and start writing the dirty pages out.
The processes that generate dirty pages are not throttled at this point. G.B.R can be changed by the
user at /proc/sys/vm/dirty background ratio. By default this value is set to 10%.

Global Dirty Ratio (G.D.R): The percentage of Total Available Memory that can be filled with
dirty pages before the system starts to throttle incoming writes. When the system gets to this point, all
new I/O’s get blocked and the dirty data is written to disk until the amount of dirty pages in the system
falls below this G.D.R. This value can be changed by the user at /proc/sys/vm/dirty ratio.
By default this value is set to 20%.
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Parameter Name Short Name Type Default Value
Global Background Ratio G.B.R Percentage 10%

Global Dirty Ratio G.D.R Percentage 20%
BDI Min Ratio B.Mn.R Percentage 0%
BDI Max Ratio B.Mx.R Percentage 100%

Global Dirty Threshold G.D.T Absolute Value -
Global Background Threshold G.B.T Absolute Value -

BDI Dirty Threshold B.D.T Absolute Value -
BDI Background Threshold B.B.T Absolute Value -

Table 2.3: Parameter names, default values (if applicable), and their shortcut names used throughout
this thesis.

Global Background Threshold (G.B.T): The absolute number of pages in the system that, when
crossed, the background kernel flusher thread will start writing out the dirty data. This is obtained
from the following formula:

G.B.T = TotalAvailableMemory ×G.B.R

Global Dirty Threshold (G.D.T): The absolute number of pages that can be filled with dirty pages
before the system starts to throttle incoming writes. This is obtained from the following formula:

G.D.T = TotalAvailableMemory ×G.D.R

BDI Min Ratio (B.Mn.R): Generally, each device is given a part of the page cache that relates to
its current average write-out speed in relation to the other devices. This parameter gives the minimum
percentage of the G.D.T (page cache) that is available to the file system. This value can be changed by
the user at /sys/class/bdi/〈bdi〉/min ratio after the mount, where 〈bdi〉 is either a device
number for block devices, or the value of st dev on non-block-based file systems which set their own
BDI information (e.g., a fuse file system). By default this value is set to 0%.

BDI Max Ratio (B.Mx.R): The maximum percentage of the G.D.T that can be given to the file sys-
tem (100% by default). This limits the particular file system to use no more than the given percentage
of the G.D.T. It is useful in situations where we want to prevent one file system from consuming all or
most of the page cache. This value can be changed by the user at /sys/class/bdi/〈bdi〉/min ratio
after a mount.

BDI Dirty Threshold (B.D.T): The absolute number of pages that belong to write-back cache that
can be allotted to a particular device. This is similar to the G.D.T but for a particular BDI device. As
a system runs, B.D.T fluctuates between the lower limit (G.D.T × B.Mn.R) and the upper limit
(G.D.T ×B.Mx.R). Specifically, B.D.T is computed using the following formula:

B.D.Tmin = G.D.T ×B.Mn.R

B.D.Tmax = G.D.T ×B.Mx.R

B.D.Tdesired = G.D.T × (100−
∑
bdi

B.Mn.Rbdi)×WriteOutRatio

B.D.T = min(B.D.Tmin +B.D.Tdesired, B.D.Tmax)
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where WriteOutRatio is the fraction of write-outs completed by the particular BDI device to that of
the Global write-outs in the system, which is updated after every page is written to the device. The
sum (

∑
) in the formula is the minimum amount of page cache space guaranteed to every BDI. Only

the remaining part (100−
∑

) is proportionally shared between BDIs.

BDI Background Threshold (B.B.T): When the absolute number of pages which are a percentage
of G.D.T is crossed, then the background kernel flusher thread starts writing out the data. This is
similar to the G.B.T but for a particular file system using BDI. This is obtained from the following
formula:

B.B.T = B.D.T × G.B.T

G.D.T

NR FILE DIRTY: The total number of pages in the system that are dirty. This parameter is incre-
mented/decremented by the VFS (page cache).

NR WRITEBACK: The total number of pages in the system that are currently under write-back.
This parameter is incremented/decremented by the VFS (page cache).

BDI RECLAIMABLE: The total number of pages belonging to all the BDI devices that are dirty.
A file system that supports BDI is responsible for incrementing/decrementing the values of this pa-
rameter.

BDI WRITEBACK: The total number of pages belonging to all the BDI devices that are currently
under write-back. A file system that supports BDI is responsible for incrementing/decrementing the
values for this parameter.

2.8.3 Write Back Cache Code Flow

Next, we explain the flow of write-back cache code within FUSE, when a process calls the write()
system call. For every page within the I/O that is submitted, the following three events are performed
in order:

(1). The page is marked as dirty and global parameters NR FILE DIRTY, BDI RECLAIMABLE,
NR WRITEBACK, BDI WRITEBACK are incremented accordingly.

(2). The balance dirty pages ratelimited() function is called; it checks whether the
task that is generating dirty pages needs to be throttled (paused) or not. Every task has a rate limit
assigned to it, which is initially set to 32 pages (by default). This function ensures that a task that
is dirtying the pages never crosses the rate limit threshold. As soon as task crosses that limit
balance dirty pages is called. The reason to not call balance dirty pages directly (for
every page) is that this operation is costly and calling that function for every page adds a lot of com-
putational overhead.

(3). The balance dirty pages() function is the heart of the write-back cache, as it is the place
where write-back and throttling is done. The following are the main steps being executed as part of
this function:
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• G.D.T, G.B.T, B.D.T, and B.B.T are calculated as described above. Since we are only interested
in per-BDI file systems (as FUSE supports BDIs), BDI dirty pages are calculated as following:

bdi dirty = BDI RECLAIMABLE +BDI WRITEBACK

• If file systems initialize the BDI (during mount) with the BDI STRICT LIMITS flag, then the
total number of bdi dirty pages should be under the bdi setpoint which is calculated
as follows:

bdi setpoint =
(B.D.T +B.B.T )

2
bdi dirty ≤ bdi setpoint

If the above condition is true, then the task is not paused. The rate limit parameter gives the
number of pages this task can dirty before checking this condition again. Thus, it is calculated
as follows:

nr dirtied paused =
√
B.D.T − bdi dirty

• If the above condition fails, then the flusher thread is woken up (if not already in progress) and
dirty data is flushed.

• The task may be paused at this point depending on the task rate limit and pages dirtied
as follows:

pause =
pages dirtied

task rate limit
where pages dirtied is the number of pages the task has dirtied from the last pause time to the
current time. And, task rate limit is the dirty throttle rate which depends on the write
bandwidth of the device. There is a minimum pause and a maximum pause time that a task can
pause itself.

• Before exiting this function, a final condition is checked: whether the global dirty pages in the
system have crossed the G.B.T. If so, the flusher thread is woken up (if not already in progress).

2.8.4 FUSE write-back and max write

The default write behavior of FUSE is synchronous and only 4KB of data is sent to the user daemon
for writing (without big writes). This results in performance problems on certain workloads; when
copying a large file into a FUSE file system, /bin/cp indirectly causes every 4KB of data to be sent
to userspace synchronously. This becomes a problem when the userspace uses some slower device as
a storage back-end. The solution FUSE implemented was to make FUSE’s page cache support a write-
back policy and then make writes asynchronous. The default B.Mx.R in FUSE is set (hardcoded) to
1% (hardcoded). On a system with RAM size equal to 4GB, B.Mx.R is set to 1%, G.D.R is set to 20%,
and G.B.R is set to 10%. Then, G.D.T will be 200,000 pages, G.B.T will be 100,000 pages; B.D.T and
B.B.T will be 2,000 and 1,000 pages, respectively. Finally, bdi setpointwill be 1,500 4KB pages,
and thus equal to 6MB. This explains the low page cache size used in FUSE file systems. The reason
that FUSE sets a low B.Mx.R limit (1%) is in case a FUSE file system running in user-space stalls for
any reason; in that case, the dirty pages belonging to this FUSE file system would be stuck with in the
page cache [22]. But B.Mn.R value can be safely increased if the daemon is trusted and running in a
trusted environment (e.g., nobody can accidentally suspend it with SIG STOP). With the write-back
cache option, file data can be pushed to the user daemon in larger chunks using max write, whose
current limit is 32 pages. This many pages can be filled in each FUSE write request that is sent to the
user daemon.
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Table 2.4: Library Options
Option Explanation Default Value
-h, –help Prints help for this group of options 0 (Don’t Print)
-d, debug Debug - log all the operations 0 (Not Enabled)
hard remove Remove the file on unlink instead of creating a hidden file 0 (Not Enabled)
use ino Honor the st ino field in kernel functions getattr and fill dir 0 (Not Enabled)
readdir ino If use ino option is not given, still try to fill in the d ino field

in readdir
0 (Not Enabled)

direct io Enable Direct I/O (bypassing page cache) 0 (Not Enabled)
kernel cache Disables flushing the cache of the file contents on every open 0 (False)
auto cache Enable automatic flushing of data cache on open 0 (False)
umask Override the permission bits in st mode set by the file sys-

tem, given in octal
0 (False)

uid Override the st uid field set by the file system with ar-
gumenet passed

0 (False)

gid Override the st gid field set by the file system with argument
passed

0 (False)

entry timeout The length of time in seconds that name lookups will be
cached

1.0 secs

attr timeout The length of time in seconds that file/directory attributes
are cached

1.0 secs

ac attr timeout The length of time that file attributes are cached, when
checking if auto cache should flush data on open

0.0 secs

negative timeout The length of time in seconds that a negative lookup will be
cached

0.0 secs

noforget Never forget cached inodes 0 (means False)
remember Remember cached inodes for that many seconds 0 secs
intr Allow requests to be interrupted 0 (Disabled)
intr signal Which signal number to send to the file system when a re-

quest is interrupted
SIGUSR1

modules Names of modules to push onto the file system stack NULL

2.9 Miscellaneous Options

This section shows the various mount options (arguments) present in FUSE library that can be uti-
lized (passed as arguments) by the file system owners during mount. Table 2.4 shows the various
options/optimizations, their meaning, and their default values provided by the high-level API. These
optimizations are implemented in the high-level API layer and they are not communicated to kernel
driver. Only file systems implemented using the high-level API can utilize these options; others (us-
ing low-level) need to implement these options explicitly by themselves. Table 2.5 shows the various
optimizations/options, their meaning, and their default values provided by the low-level API. These
optimizations are implemented in the low-level API layer and are communicated with kernel driver
during the INIT request processing. These options are available to file systems implemented by high-
level and low-level FUSE API’s.
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Table 2.5: Low-Level Options
Option Explanation Default Value
-h, –help Prints help for this group of options 0 (Don’t print)
-d, debug Debug 0 (Disabled)
-V, –version Print FUSE version number 0 (Not printed)
allow root File access is limited to the user mounting the file system

and root
0 (Disabled)

max write Maximum size of write requests in bytes 131072 bytes
max readahead Maximum readahead 131072 bytes
max background Number of maximum background requests 12 requests
congestion threshold Kernel’s congestion threshold for background requests 9 requests
async read Perform reads asynchronously 1 (Enabled)
sync read Perform reads synchronously 0 (Disabled)
atomic o trunc Enable atomic open and truncate support 0 (False)
no remote lock Disable remote file locking 0 (False)
no remote flock Disable remote file locking (BSD) 0 (False)
no remote posix lock Disable remove file locking (POSIX) 0 (False)
big writes Enable larger than 4KB writes 0 (False)
splice write Use splice to write to the FUSE device 0 (False)
splice move Move data while splicing to the FUSE device 0 (False)
splice read Use splice to read from the FUSE device 0 (False)
auto inval data Use automatic kernel cache invalidation logic 0 (False)
readdirplus Control readdirplus use (yes|no|auto) auto
async dio Asynchronous direct I/O 0 (False)
writeback cache Enable asynchronous, buffered writes 0 (False)
time gran Time granularity in nano-seconds 0 secs
clone fd Separate /dev/fuse device file descriptor for each pro-

cessing thread
0 (False)
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Chapter 3

Implementations

To study FUSE’s resource utilization, performance, and overall behavior, we developed a simple stack-
able pass-through file system, called Stackfs, and instrumented FUSE’s kernel module and user-space
library to collect useful statistics and traces. We believe that the instrumentation presented here is
useful for anyone who plans to develop an efficient FUSE-based file system. We first describe the
implementation of Stackfs in Section 3.1. Then, in Section 3.2, we describe the performance statis-
tics that we extracted from the FUSE kernel and user library using the newly added instrumentation.
And finally, in Section 3.3 we show code changes of various components that were developed and
implemented as part of this research project.

3.1 Stackfs

Stackfs is a Stackable user-space file system implemented using the FUSE framework; Stackfs layers
on top of an Ext4 file system in our experiments (but it can stack on top of any other file system).
Stackfs passes FUSE requests unmodified directly to the underlying file system (Ext4). The reason
we developed Stackfs was twofold:

1. The majority of existing FUSE-based file systems are stackable (i.e., deployed on top of other,
often in-kernel file systems). Therefore, evaluation results obtained via Stackfs are applicable
to the largest class of user-space file systems.

2. We wanted to add as little overhead as possible, so as to isolate the overhead of FUSE’s kernel
and library.

Complex production file systems often need a high degree of flexibility, and thus use FUSE’s
low-level API. As complex file systems are our primary focus, we implemented Stackfs using FUSE’s
low-level API. This also avoided the overheads added by the high-level API. Next we describe several
important data structures and procedures that Stackfs uses.

Inode. Stackfs stores per-file metadata in an inode. Stackfs’s inode is not persistent and exists in
memory only while the file system is mounted. Apart from required bookkeeping information, our
inode stores the path to the underlying file, its inode number, and a reference counter. The path is used
to open the underlying file when an OPEN request for a Stackfs file arrives. We maintain reference
counts to avoid creating a new inode if we need to lookup a path that has already been looked up; for
that, we maintain all inodes that have been looked up so far in a hash table indexed by the underlying
file system inode number. Below we have the structure for Stackfs’ inode. This structure is very
similar to the struct node implemented by the FUSE library to support the high level API.
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s t r u c t s t a c k F S i n o d e {
c h a r ∗ p a t h ;
i n o t i n o ; /∗ u n d e r l y i n g f i l e sys tem i n o d e number ∗ /
u i n t 6 4 t n lookup ;
. . .

} ;

Lookup. During lookup, Stackfs uses stat(2) to check if the underlying file exists. Every time a
file is found, Stackfs allocates a new inode and returns the required information to the kernel. Stackfs
assigns its inode the number equal to the address of the inode structure in memory (by type-casting),
which is guaranteed to be unique. This makes the inode number space sparse but allows Stackfs to
quickly find the inode structure for any operations following the lookup (e.g., open or stat). The same
inode can be looked up several times (e.g., due to hard-links) and therefore Stackfs stores inodes in a
hash table indexed by the underlying inode number. When handling LOOKUP, Stackfs checks the hash
table to see whether the inode was previously allocated and, if found, increases its reference counter
by one. When a FORGET request arrives for an inode, Stackfs decreases inode’s reference count and
deallocates the inode when the count drops to zero.

Unlike our implementation, FUSE high-level library maintains two hash tables: one for mapping
FUSE inode numbers to FUSE inodes and another for mapping FUSE inodes to file paths. In our
implementation, however, we maintain only one hash table which maps StackFS inodes to their un-
derlying file system file paths. Our implementation uses the StackFS inode structure memory address
as the inode number; this simplifies the mapping of StackFS inode numbers to StackFS inodes.

Session information. The low-level API allows user-space file systems to store private information
for each FUSE session/connection. This important data is then made available to any request that a
user space file system serves. We are storing a reference to the hash table and the root node in this
structure. The hash table is referenced every time a new inode is created or looked up. The root node
contains the path (mount point) of the underlying file system which is passed during the mount, so this
path is prepended to all path conversions and used by Stackfs.

Directories. In Stackfs we use directory handles for accessing the directories similar to the file
handles for files. A directory handle stores the directory stream pointer for the (opened) directory,
the current offset within the directory (useful for readdir), and information about files within the
directory. This handle is useful in all directory operations; importantantly, this handle can be stored
as part of the struct fuse file info which stored information about open files/directories.
Below we describe the structure for Stackfs’s directory handle. This structure is similar to the struct
fuse dh which is implemented by the Fuse library to support the high Level API.

s t r u c t s t a c k F S d i r p t r {
DIR ∗dp ;
s t r u c t d i r e n t ∗ e n t r y ;
o f f t o f f s e t ;

} ;

File create and open. During file creation, Stackfs adds a new inode to the hash table after the
corresponding file was successfully created in the underlying file system. While processing OPEN

requests, Stackfs saves the file descriptor of the underlying file in the file handle. The file descriptor
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is then used during read and write operations; it is also useful for any additional functionality (e.g.,
encryption, compression). The file descriptor is deallocated when the file is closed.

We made our code publicly available at:

• Repo: https://github.com/sbu-fsl/fuse-stackfs.git

• Branch: master

• Path (within above repo): 〈GitLocation〉/StackFS LowLevel/

3.2 Performance Statistics and Traces

After starting this project, we quickly realized that the existing FUSE instrumentation was insufficient
for in-depth FUSE performance analysis. We therefore instrumented FUSE to export important run-
time statistics. Specifically, we were interested in recording the duration of time that FUSE spends in
various stages of request processing, both in kernel and user space.

We introduced a two-dimensional array where a row index (0–42) represents the request type and
the column index (0–31) represents the time. Every cell in the array stores the number of requests of a
corresponding type that were processed within the 2N+1–2N+2 nanoseconds where N is the column
index. The time dimension therefore covers the interval of up to 8 seconds which is sufficient to
capture the worst latencies in typical FUSE setups. (This technique efficiently records a log2 latency
histogram was introduced first in OSprof [30].)

We then added four such arrays to FUSE: the first three arrays are in kernel (in fuse conn struc-
ture) and are assigned to each of FUSE’s three main queues (background, pending, and processing);
the fourth array is in user space (in fuse session structure) and tracks the time the daemon needs
to process a request. The total memory size of all four arrays is only 48KiB; and only a few CPU
instructions are necessary to update values in the array. We added functions to FUSE’s library and
kernel, to capture the timings of requests and also to update the four arrays. These can be used by
user-space file-system developers to track the latencies at different parts of the code flow.

FUSE includes a special fusectl file system to allow users to control several aspects of FUSE’s
behavior. This file system is usually mounted at /sys/fs/fuse/connections/ and creates a di-
rectory for every mounted FUSE instance. Every directory contains control files to abort a connection,
check the total number of requests being processed, and adjust the upper limit and the threshold on the
number of background requests (see Section 2). We added three new files to these fusectl directo-
ries directories to export statistics from the in-kernel arrays: background queue requests timings,
pending queue requests timings, and processing queue requests timings. To
export the user-level array we added a SIGUSR1 signal handler to the daemon. When triggered, the
handler prints the array to a log file specified during the daemon’s start. This method allows us to
retrieve the statistics we want at any desired frequency. The statistics captured have no measurable
overhead on FUSE’s performance and are the primary source of information we used to study FUSE’s
performance.

3.2.1 Tracing

To understand FUSE’s behavior in more detail, we sometimes needed more information and had to
resort to tracing. FUSE’s library already performs tracing when the daemon runs in debug mode
but there is no tracing support for FUSE’s kernel module. We used Linux’s static tracepoint mech-
anism [17] to add over 30 tracepoints to FUSE’s kernel module. These new tracepoints are mainly
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Figure 3.1: Locations of tracepoints throughout the flow of FUSE requests.

to monitor the creation of requests during the complex writeback logic, track the amount of data be-
ing read/written per request, and track metadata operations (to know how often they get generated).
Figure 3.1 shows different trace points that we tracked during a normal FUSE request flow. Tracing
helped us learn how fast do the queues grow and shrink during our experiments, how much data is
put into a single request, and why. Both FUSE’s statistics and tracing can be used by any existing
and future FUSE-based file systems. The instrumentation is completely transparent and requires no
changes to file-system-specific code. We made our code publicly available at:

1. Fuse Kernel Instrumentation:

• Repo: https://github.com/sbu-fsl/fuse-kernel-instrumentation.git

• Branch: master

2. Fuse Library Instrumentation:

• Repo: https://github.com/sbu-fsl/fuse-library-instrumentation.git

• Branch: master

3.3 Development Effort

Table 3.1 shows code changes of components that were developed and implemented as part of this
research project.

23



Module Language Files Insertions Deletions
Linux Kernel C 11 2181 934
Traces and CMake 2 23 3
Performance Stats C Header 5 1094 66

Subtotal: 18 3298 1003
FUSE Library C 4 219 31
Performance Version Script 1 6 1
Stats C Header 2 41 2

Subtotal: 7 266 34
StackFS, C 1 1483 319
Workloads, C++ 15 3249 398
Automated Scripts and Shell 20 2566 241
Plotting Scripts WML 271 22851 2132

Octave 38 6141 514
CMake 2 66 23
Subtotal: 347 36356 3627

TOTAL: 372 39920 4664

Table 3.1: Development effort in project. WML is Filebench’s Workload Model Language.
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Chapter 4

Methodology

FUSE has evolved significantly over the years and added several useful optimizations: a writeback
cache, zero-copy via splicing, and multi-threading. In our experience, some in the storage community
tend to pre-judge FUSE’s performance—assuming it is poor—mainly due to not having enough infor-
mation about the improvements FUSE has made over the years. We therefore designed our method-
ology to evaluate and demonstrate how FUSE’s performance advanced from its basic configurations
to ones that include all of the latest optimizations. In this chapter we detail our methodology, start-
ing from the description of FUSE configurations in Section 4.1, proceed to the list of workloads in
Section 4.2, and finish by presenting our testbed in Section 4.3.

4.1 Configurations

To demonstrate the evolution of FUSE’s performance, we picked two configurations on opposite sides
of the spectrum:

1. The basic configuration (called StackfsBase) with no major FUSE optimizations,

2. The optimized configuration (called StackfsOpt) that enables all FUSE improvements available
as of this writing.

Compared to StackfsBase, the StackfsOpt configuration adds the following features:

1. the writeback cache is turned on;

2. the maximum size of a single FUSE request was increased from 4KiB to 128KiB (max write
parameter), to allow larger data transfers;

3. the user daemon runs in the multi-threaded mode; and

4. splicing is activated for all operations (using the splice read, splice write, and splice move
parameters).

We left all other parameters at their default values in both configurations: for example, readahead
defaults to 32 pages and async read is on.
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Workload Name Description
rnd-rd-Nth-1f N threads (1, 32) randomly read from a single preallocated 60GB file.
rnd-wr-Nth-1f N threads (1, 32) randomly write to a single preallocated 60GB file.
seq-rd-Nth-1f N threads (1, 32) sequentially read from a single preallocated 60GB file.
seq-wr-1th-1f Single thread creates and sequentially writes a new 60GB file.
seq-rd-32th-32f 32 threads sequentially read 32 preallocated 2GB files. Each thread reads

its own file.
seq-wr-32th-32f 32 threads sequentially write 32 new 2GB files. Each thread writes its

own file.
files-cr-Nth N threads (1, 32) create 4 million 4KB files over many directories.
files-rd-Nth N threads (1, 32) read from 1 million preallocated 4KB files over many

directories.
files-del-Nth N threads (1, 32) delete 4 million of preallocated 4KB files over many

directories.
web-server Web-server workload emulated by Filebench. Scaled up to 1.25 million

files.
mail-server Mail-server workload emulated by Filebench. Scaled up to 1.5 million

files.
file-server File-server workload emulated by Filebench. Scaled up to 200,000 files.

Table 4.1: Description of workloads. For data-intensive workloads, we experimented with 4KB,
32KB, 128KB, and 1MB I/O sizes. We picked data-set sizes so that both cached and non-cached
data are exercised.

4.2 Workloads

To stress different modes of FUSE operation and conduct a thorough performance characterization,
we selected a broad set of workloads: micro and macro, metadata- and data-intensive, and also exper-
imented with a wide range of I/O sizes and parallelism levels. Table 4.1 describes all workloads that
we employed in the evaluation. To simplify the identification of workloads in the text, we use the fol-
lowing short mnemonics: rnd stands for random, seq for sequential, rd for reads, wr for writes, cr
for creates, and del for deletes. The presence of Nth and Mf substrings in a workload name means
that the workload contains N threads and M files, respectively. Single-threaded workloads represent
the most basic workloads while 32-threads is enough to load all cores of the CPU in our system. In
this thesis we fixed the amount of work (e.g., the number of reads in rd workloads) rather than the
amount of time in every experiment. We find it easier to analyze performance in experiments with
a fixed amount of work. We picked a sufficient amount of work so that the performance stabilized.
The resulting runtimes varied between 8 and 20 minutes across all experiments. Note that because
for some workloads, SSDs are orders of magnitude faster than HDDs, we selected a larger amount
of work for our SSD experiments than HDD-based ones. We used Filebench [19, 52] to generate all
workloads. To encourage reuse and reproducibility, we released the Filebench personality files along
with raw experimental results:

• Repo: https://github.com/sbu-fsl/fuse-stackfs.git

• Branch: master
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4.3 Experimental Setup

FUSE’s performance impact depends heavily on the speed of the underlying storage: faster devices
highlight FUSE’s own overheads. We therefore experimented with two common storage devices of
different speeds: an HDD (Seagate Savvio 15K.2, 15KRPM, 146GB) and an SSD (Intel X25-M SSD,
200GB). Both devices were installed in three identical Dell PowerEdge R710 machines with a 4-core
Intel Xeon E5530 2.40GHz CPU each. The amount of RAM available to the OS was set to 4GB to
accelerate cache warmup in our experiments. The machines ran the CentOS 7 distribution with the
Linux kernel upgraded to v4.1.13 and FUSE library commit #386b1b (contains latest features as of
this writing).

We used Ext4 [18] as the underlying file system because it is common, stable, and has a well doc-
umented design which facilitates performance analysis. Before every experiment, we reformatted the
storage devices with Ext4 and remounted the file systems. To lower the variability in our experiments
we disabled Ext4’s lazy inode initialization [11]: we initialized all inodes during the formatting rather
than asynchronously immediately after mounting the file system for the first time. We did see a high
standard deviation in our experiments with the default lazy inode initialization mode; selecting this
option has reduced the standard deviation. In either case, the measured standard deviations in our ex-
periments were less than 2% for all workloads except for three workloads: seq-rd-1th-1f (6%),
files-rd-32th (7%), and mail-server (7%).
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Chapter 5

Evaluation

We believe that for many researchers and practitioners, the main benefit of this thesis is the charac-
terization of FUSE’s performance for different workloads, configurations, and hardware. For many,
FUSE’s framework is just a practical tool to build a real product or a prototype, not a research focus.
Therefore, to present our results more effectively, we organized our evaluation in two parts. Section 5.1
overviews our extensive evaluation results. Detailed performance analysis follows in Section 5.2.

5.1 Performance Overview

To evaluate FUSE’s performance degradation, we first measured the throughput (in ops/sec) achieved
by native Ext4 and then measured the same for Stackfs deployed over Ext4. We also measured the
CPU utilization during the experiments. As detailed in Chapter 4 we used two configurations of
Stackfs: a basic (StackfsBase) and optimized (StackfsOpt) one. From here on, we use Stackfs to
refer to both of these configurations. We then calculated the relative performance degradation (or
improvement) of Stackfs vs. Ext4 for each workload. Table 5.1 shows absolute throughputs for Ext4
and relative performance for two Stackfs configurations for both HDD and SSD. We also calculated
the relative CPU utilization of Stackfs vs. Ext4 for each workload. Table 5.1 shows the results for the
CPU utilization in seconds separately for User and Kernel times, for two Stackfs configurations, and
for both the HDD and SSD.

For better clarity we categorized the results (from Table 5.1) by Stackfs’s performance difference
into five classes:

1. The Blue class (marked with @) indicates that the performance actually improved;

2. The Green class (marked with +) indicates that the performance degraded by less than 5%;

3. The Yellow class (*) includes results with the performance degradation in the 5–25% range;

4. The Orange class (#) indicates that the performance degradation is between 25–50%;

5. And finally, the Red class (!) is for when performance decreased by more than 50%.

Similarly, we categorized the results (from Table 5.1) by Stackfs’s CPU utilization (compared to
Ext4) into three classes:

1. The Green class indicates that CPU utilization is less than 2×;

2. The Orange class indicates that CPU utilization is in the 2–50× range;
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Table 5.1: List of workloads and corresponding performance results. Stackfs1 refers to StackfsBase
and Stackf2 refers to StackfsOpt.

HDD Results SSD Results# Workload I/O Size
(KB) EXT4

(ops/s)
Stackfs1
(%Diff)

Stackfs2
(%Diff)

EXT4
(ops/s)

Stackfs1
(%Diff)

Stackfs2
(%Diff)

1 4 38382 - 2.45+ + 1.7 @ 30694 - 0.5+ - 0.9+

2 32 4805 - 0.2+ - 2.2+ 3811 + 0.8@ + 0.3@

3 128 1199 - 0.86+ - 2.1+ 950 + 0.4@ + 1.7@

4

seq-rd-
1th-1f

1024 150 - 0.9+ - 2.2+ 119 + 0.2@ - 0.3+

5 4 11141 - 36.9# - 26.9# 32855 - 0.1+ - 0.16+

6 32 1491 - 41.5# - 30.3# 4202 - 0.07+ - 1.8+

7 128 371 - 41.3# - 29.8# 1051 - 0.1+ - 0.2+

8

seq-rd-
32th-32f

1024 46 - 41.0# - 28.3# 131 - 0.03+ - 2.1+

9 4 1228400 - 2.4+ - 3.0+ 973450 + 0.02@ + 2.1@

10 32 153480 - 2.4+ - 4.1+ 121410 + 0.7@ + 2.2@

11 128 38443 - 2.6+ - 4.4+ 30338 + 1.5@ + 1.97@

12

seq-rd-
32th-1f

1024 4805 - 2.5+ - 4.0+ 3814.50 - 0.1+ - 0.4+

13 4 243 - 9.96* - 9.95* 4712 - 32.1# - 39.8#

14 32 232 - 7.4* - 7.5* 2032 - 18.8* - 25.2#

15 128 191 - 7.4* - 5.5* 852 - 14.7* - 12.4*

16

rnd-rd-
1th-1f

1024 88 - 9.0* -3.1+ 114 - 15.3* -1.5+

17 4 572 - 60.4! -23.2* 24998 - 82.5! -27.6#

18 32 504 - 56.2! -17.2* 4273 - 55.7! -1.9+

19 128 278 - 34.4# -11.4* 1123 - 29.1# -2.6+

20

rnd-rd-
32th-1f

1024 41 - 37.0# -15.0* 126 - 12.2* -1.9+

21 4 36919 -26.2# - 0.1+ 32959 - 9.0* + 0.1@

22 32 4615 - 17.8* - 0.16+ 4119 - 2.5+ + 0.12@

23 128 1153 - 16.6* - 0.15+ 1030 - 2.1+ + 0.1@

24

seq-wr-
1th-1f

1024 144 - 17.7* -0.31+ 129 - 2.3+ - 0.08+

25 4 34370 - 2.5+ + 0.1@ 32921 + 0.05@ + 0.2@

26 32 4296 - 2.7+ + 0.0@ 4115 + 0.1@ + 0.1@

27 128 1075 - 2.6+ - 0.02+ 1029 - 0.04+ + 0.2@

28

seq-wr-
32th-32f

1024 134 - 2.4+ - 0.18+ 129 - 0.07+ + 0.2@

29 4 1074 - 0.7+ - 1.3+ 16066 + 0.9@ - 27.0#

30 32 708 - 0.1+ - 1.3+ 4102 - 2.2+ - 13.0*

31 128 359 - 0.1+ - 1.3+ 1045 - 1.7+ - 0.7+

32

rnd-wr-
1th-1f

1024 79 - 0.01+ - 0.8+ 129 - 0.02+ - 0.3+

33 4 1073 - 0.9+ - 1.8+ 16213 - 0.7+ - 26.6#

34 32 705 + 0.1@ - 0.7+ 4103 - 2.2+ - 13.0*

35 128 358 + 0.3@ - 1.1+ 1031 - 0.1+ + 0.03@

36

rnd-wr-
32th-1f

1024 79 + 0.1@ - 0.3+ 128 + 0.9@ - 0.3+

37 files-cr-1th 4 30211 - 57! - 81.0! 35361 - 62.2! - 83.3!

38 files-cr-32th 4 36590 - 50.2! - 54.9! 46688 - 57.6! - 62.6!

39 files-rd-1th 4 645 + 0.0@ - 10.6* 8055 - 25.0* - 60.3!

40 files-rd-32th 4 1263 - 50.5! -4.5+ 25341 - 74.1! -33.0#

41 files-del-1th - 1105 - 4.0+ - 10.2* 7391 - 31.6# - 60.7!

42 files-del-32th - 1109 - 2.8+ - 6.9* 8563 - 42.9# - 52.6!

43 file-server - 1705 - 26.3# -1.4+ 5201 - 41.2# -1.5+

44 mail-server - 1547 - 45.0# -4.6+ 11806 - 70.5! -32.5#

45 web-server - 1704 - 51.8! +6.2@ 19437 - 72.9! -17.3*
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Table 5.2: List of workloads and corresponding CPU utilization in secs. FUSE1 refers to StackfsBase
and FUSE2 refers to StackfsOpt.

HDD Results (secs) SSD Results (secs)
EXT4(secs) FUSE1(×) FUSE2(×) EXT4(secs) FUSE1(×) FUSE2(×)S.No Workloads

I/O
Size
(KB) usr sys usr sys usr sys usr sys usr sys usr sys

1 4 8.5 47 1.4 2.3 1.8 2.6 8.5 48 1.4 2.3 1.8 2.7
2 32 2.9 43 2.2 2.5 3.2 2.8 3 44 2 2.4 3.1 2.9
3 128 1.9 42.6 2.5 2.4 4.2 2.8 2 43 2.4 2.3 4.0 2.8
4

sq-rd-
1th-1f

1024 0.6 42 5.8 2.4 10.3 2.7 0.7 43 5 2.3 9.0 2.8
5 4 9 48 1.7 2.6 1.9 2.6 8 46 1.6 2.6 1.9 2.5
6 32 3.4 44 2.4 2.6 3.2 2.6 2.5 42 2.4 2.7 3.6 2.6
7 128 2.8 45 2.5 2.6 3.4 2.6 1.9 42 2.7 2.8 4.2 2.6
8

sq-rd-
32th-32f

1024 1.7 44 3.1 2.6 5.1 2.7 0.8 42 3.9 2.8 7.5 2.7
9 4 476 1045 1.0 1.1 1.0 1.1 483 1054 1.0 1.1 1.0 1.1
10 32 80 691 1.1 1.1 1.2 1.2 81 703 1.1 1.1 1.2 1.2
11 128 41 722 1.1 1.1 1.4 1.2 41 715 1.2 1.1 1.5 1.2
12

sq-rd-
32th-1f

1024 11 1190 1.5 1.1 3.6 1.1 11 1200 1.5 1.0 3.6 1.1
13 4 1.7 8.7 2.6 2.2 3.5 4.0 28 194 5.4 3.5 8.8 7.4
14 32 1.9 12.6 2.4 2.3 3.1 3.4 6.8 71 3.6 2.6 4.4 3.7
15 128 1.5 17 2.3 2.7 2.8 2.9 2 44 2.9 2.4 3.7 2.6
16

rnd-rd-
1th-1f

1024 0.9 44 4.6 2.6 8.1 2.8 0.8 43 5.2 2.5 9.2 2.8
17 4 0.8 4.5 4.5 3.9 5.6 5.9 34 272 2.7 1.9 8.1 5.2
18 32 1 8 4 3.4 4.5 4.4 4.9 60 3.6 2.8 4.8 3.5
19 128 1.2 17 2.8 2.6 3.2 2.7 1.9 43 3.2 2.6 3.7 2.4
20

rnd-rd-
32th-1f

1024 1.7 45 3.1 2.6 4.4 2.5 0.8 44 4.2 2.7 7.2 2.5
21 4 10 108 6.6 3.8 1.7 4.4 9 104 6.6 3.8 1.7 4.6
22 32 1.5 81 30.4 4.6 4.8 5.4 1.6 83 29.4 4.5 4.3 5.2
23 128 0.8 80 57.9 4.6 8.1 5.4 0.9 83 49 4.5 7.1 5.2
24

sq-wr-
1th-1f

1024 0.5 81 90.3 4.6 12.9 5.4 0.5 83 85.4 4.4 12.0 5.2
25 4 1.3 31 51.6 12.3 6.9 12.0 1.6 32.4 43.8 11.8 5.9 11.6
26 32 0.6 28 69.4 12.4 13.1 12.7 0.7 28 61.7 12.5 12.3 13.0
27 128 0.5 29.0 69.4 12.2 14.4 12.4 0.6 29 61.9 12.2 13.5 12.7
28

sq-wr-
32th-32f

1024 0.5 29 74.4 12.4 22.2 12.5 0.5 29 64.1 12.1 20.4 12.2
29 4 1.4 10 4.2 3.3 8.4 15.8 1.9 86 31.4 4.8 66.3 14.8
30 32 1.3 16 15.1 9.2 3.8 6.9 1.7 70 25.8 4.9 11.2 7.2
31 128 1.4 30 28.4 10.1 5.3 10.3 0.7 53 57.6 6.2 9.7 6.9
32

rd-wr-
1th-1f

1024 0.7 33 55.8 9.8 9.6 10.6 0.5 51 78 6.3 13.1 7.2
33 4 1.6 17 4.2 2.5 11.0 14.0 15 409 4.6 1.2 8.9 4.0
34 32 1.4 16 15.2 9.5 5.2 9.0 1.9 103 23.9 3.5 10.3 5.2
35 128 1.5 28 26.2 11.1 5.6 12.2 0.9 77 46.3 4.5 7.9 5.1
36

rd-wr-
32th-1f

1024 0.8 33 50.2 10 8.9 11.3 0.5 52 75.9 6.4 12.9 7.4
37 files-cr-1th 4 27 298 4.8 2.6 10.4 4.9 25.7 294.6 5.1 2.7 10.8 4.9
38 files-cr-32th 4 37 902 3.5 0.9 7.9 1.5 38 897 3.3 0.9 8.0 1.5
39 files-rd-1th 4 4.5 27 2.7 2.1 5.5 4.1 9 60 3.9 2.9 8.7 5.5
40 files-rd-32th 4 3 20 5 3.8 6.5 4.7 11 96 4.1 2.2 11.7 4.1
41 files-del-1th - 8.6 85 4.0 2.3 7.6 3.4 15 167 4.3 2.3 8.3 3.5
42 files-del-32th - 11 168 3.5 1.2 5.2 1.6 22 392 4.0 1.1 5.3 1.4
43 file-server - 5.5 50.4 3.8 3.0 6.3 3.3 14 147 4.3 2.9 9.6 3.5
44 mail-server - 4.1 41 3.9 2.4 5.3 2.9 31 357 3.2 1.8 8.5 2.9
45 web-server - 17 26 2.6 3.5 2.4 4.2 46 193 3.3 2.9 9.2 5.5
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3. And finally, the Red class indicates that CPU utilization is more than 50×.

Although the ranges for acceptable performance degradation depend on the specific deployment
and the value of other benefits provided by FUSE, our classification gives a broad overview of FUSE’s
performance. Below we list our main observations that characterize the results. We start from the
general trends and move to more specific results towards the end of the list.

Observation 1 The relative performance difference varied across workloads, devices, and FUSE
configurations from –83.1% for files-cr-1th [row #37] to +6.2% = for web-server [row
#45].

Observation 2 For many workloads, FUSE’s optimizations improve performance significantly. E.g.,
for the web-server workload, StackfsOpt improves performance by 6.2% while StackfsBase de-
grades it by more than 50% [row #45].

Observation 3 Although optimizations increase the performance of some workloads, they can de-
grade the performance of others. E.g., StackfsOpt decreases performance by 35% more than Stackfs-
Base for the files-rd-1th workload on SSD [row #39].

Observation 4 In the best performing configuration of Stackfs (among StackfsOpt and StackfsBase)
only two file-create workloads (out of a total 45 workloads) fell into the red class: files-cr-1th
and files-cr-32th.

Observation 5 The results indicate that Stackfs’s performance depends significantly on the un-
derlying device. E.g., for sequential read workloads [rows #1–12], Stackfs shows no performance
degradation for SSD and a 26–42% degradation for HDD. The situation is reversed, e.g., when a
mail-server [row #44] workload is used.

Observation 6 At least in one Stackfs configuration, the all write-intensive workloads (sequential
and random) [rows #21–36] are within the Green and Blue classes for both HDD and SSD.

Observation 7 The performance of sequential read [rows #1–12] are well within the Green, Blue
class for both HDD and SSD; however, for the seq-rd-32th-32f workload [rows #5–8] on HDD,
they are in Orange class. Random read workload results [rows #13–20] span all four classes. Further-
more, the performance grows as I/O sizes increase; this behaviour is seen in both HDD and SSD.

Observation 8 In general, Stackfs performs visibly worse for metadata-intensive and macro work-
loads [rows #37–45] than for data-intensive workloads [rows #1–36]. The performance is especially
low for SSDs.

Similarly, below we list our main observations drawn from the CPU utilization results using Ta-
ble 5.1.

Observation 1 The relative increase in the CPU utilization varied across workloads, devices, and
FUSE configurations from 1.0× for sq-re-32th-1f [row #21] to 90.3× sq-wr-1th-1f [row
#4].
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Observation 2 For many workloads, FUSE’s optimizations reduce CPU utilization significantly for
user times while kernel times remained the same. One exception is [row #9] rd-wr-1th-1f, where
CPU utilization increased with FUSE’s optimizations.

Observation 3 With an increase in the I/O size among individual workloads, there is an increase in
the CPU utilization. This behaviour is seen especially with user times rather than kernel times [rows
#1–36].

Observation 4 There is not much difference between the CPU utilization results for most of the
workloads among HDD’s and SSD’s setup. For example, the user and kernel CPU utilization results
are almost indentical for sq-re-32th-1f [rows #21–24] on HDD and SSD.

Observation 5 Among all the workloads, only user CPU utilization belongs to the Red class for both
StackfsBase and StackfsOpt[rows #3–8], [row #9], [rows #11–12], [row #16]. That is, none of the
kernel CPU utilization falls below the Red class.

5.2 Analysis

We analyzed FUSE behavior in details using our instrumentation and present main findings here. We
follow the order of workloads in Table 5.1.

Read Workloads

 0

16

256

4096

65536

1,048,576

IN
IT

LO
O

K
U

P

O
PEN

R
EA

D

FLU
SH

R
ELEA

SE

G
ETA

TTR

N
u

m
b

er
 o

f 
F

U
S

E
 

R
eq

u
es

ts
 (

lo
g

2
)

Types of FUSE Requests

1

34 32

451K

32 32

1

background queue
pending queue

processing queue
user daemon

Figure 5.1: Different types and number of requests generated by StackfsBase on SSD during the
seq-rd-32th-32f workload, from left to right, in their order of generation.

Figure 5.1 demonstrates the types of requests that were generated with the seq-rd-32th-32f
workload. We use seq-rd-32th-32f as a reference for the figure because this workload has more
requests per operation type compared to other workloads. Bars are ordered from left to right by the
appearance of requests in the experiment. The same request types, but in different quantities, were
generated by the other read-intensive workloads [rows #1–20]. For the single threaded read workloads,
only one request per LOOKUP, OPEN, FLUSH, and RELEASE type was generated. The number of READ
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requests depended on the I/O size and the amount of data read; INIT request is produced at mount time
so its count remained the same across all workloads; and finally GETATTR is invoked before unmount
for the root directory and was the same for all the workloads.

Figure 5.1 also shows the breakdown of requests across queues. By default, READ, RELEASE,
and INIT are asynchronous requests. Therefore, they are added to background queue first, whereas all
other requests are synchronous and are added to pending queue directly. In read-intensive workloads,
only READ requests are generated in large quantities compared to other request types. Therefore we
consider only READ requests when we discuss each workload in detail.

For all the read-intensive workloads [rows #1–20], the CPU utilization of StackfsBase and Stack-
fsOpt fall under Green and Orange class. Moreover, the CPU user time is more (when compared to
system time) because the file system daemon runs in user space.
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Figure 5.2: Total number of READ requests that were generated by StackfsBase on HDD and SSD for
the seq-rd-1th-1f workload.

Sequential Read using 1 thread on 1 file Figure 5.2 shows the total number of READ requests
that StackfsBase generated during the whole experiment for different I/O sizes for HDD and SSD.
Surprisingly, the number of requests remained approximately the same across the I/O sizes. Our
analysis revealed that this happens because of FUSE’s default 128KB-size readahead which effectively
levels FUSE request sizes no matter what is the user application I/O size. Thanks to readahead,
sequential read performance of StackfsBase and StackfsOpt was as good as Ext4 for both HDD and
SSD.

Sequential Read using 32 threads on 32 files Due to readahead, the total number of READ re-
quests generated in this experiment was also approximately same across different I/O sizes. At any
given time, 32 threads are requesting data and continuously add requests to queues. StackfsBase and
StackfsOpt show significantly larger performance degradation on HDD compared to SSD. The user
daemon is single threaded and the device is slower, so requests do not move quickly through the
queues. On the faster SSD, however, even though the user daemon is single threaded, requests move
faster in the queues. Hence performance of StackfsBase is as close to that of Ext4. With StackfsOpt,
the user daemon is multi-threaded and can fill the HDD’s queue faster so performance improved for
HDD compared to SSD. However, the results were still 26–30% farther from Ext4 performance. When
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HDD Results# Workload I/O Size
(KB) EXT4

(ops/s)
Stackfs1
(%Diff)

Stackfs2
(%Diff)

Stackfs3
(%Diff)

5 4 11141 - 36.9# - 26.9# + 0.18@

6 32 1491 - 41.5# - 30.3# - 1.0+

7 128 371 - 41.3# - 29.8# - 2.7+

8

seq-rd-
32th-32f

1024 46 - 41.0# - 28.3# - 2.0+

Table 5.3: List of workloads and corresponding performance results. Stackfs1 refers to StackfsBase,
Stackfs2 refers to StackfsOpt, and Stackfs3 referes to StackfsBase with increased background queue
limit.

we investigated further, we found that in case of HDD and StackfsOpt, FUSE daemon was bound by
the max background value (default is 12); at any given time, only 12 user deamons (threads) were
invoked. So we increased that limit to 100 and reran the experiments. Table 5.3 shows the results,
which demonstrates that StackfsOpt was now within 2% of Ext4’s performance.

Sequential Read using 32 threads on 1 file This workload exhibits similar performance trends to
seq-rd-1th-1f. However, because all 32 user threads read from the same file, they benefit from
the shared page cache. As a result, instead of 32× more FUSE requests, we saw only up to a 37%
increase in number of request. This modest increase is because, in the beginning of the experiment,
every thread tries to read the data separately; but after a certain point in time, only a single thread’s
requests are propagated to the user daemon while all other threads’ requests are available in the page
cache. Also, having 32 user threads running left less CPU time available for FUSE’s threads to exe-
cute, thus causing a slight (up to 4.4%) decrease in performance compared to Ext4.

Random Read using 1 thread on 1 file Unlike the case of small sequential reads, small random
reads did not benefit from FUSE’s readahead. Thus, every application read call was forwarded to the
user daemon which resulted in an overhead of up to 10% for HDD and 40% for SSD. The absolute
Ext4 throughput is about 20× higher for SSD than for HDD which explains the higher penalty on
FUSE’s relative performance on SSD.

The smaller the I/O size is, the more READ requests are generated and the higher FUSE’s overhead
tended to be. This is seen for StackfsOpt where performance for HDD gradually grows from –10.0%
for 4KB to –3% for 1MB I/O sizes. A similar situation is seen for SSD. Thanks to splice, StackfsOpt
performs better than StackfsBase for large I/O sizes. For 1MB I/O size, the improvement is 6% on
HDD and 14% on SSD. Interestingly, 4KB I/O sizes have the highest overhead because FUSE splices
requests only if they are larger than 4KB.

Random Read using 32 threads on 1 file Similar to the previous experiment (single thread random
read), readahead does not help smaller I/O sizes here: every user read call is sent to the user daemon
and causes high performance degradation: up to –83% for StackfsBase and –28% for StackfsOpt.
The overhead caused by StackfsBase is high in these experiments (up to –60% for HDD and –83%
for SSD), for both HDD and SSD, and especially for smaller I/O sizes. This is because when 32
user threads submit a READ request, 31 of those threads need to wait while the single-threaded user
daemon processes one request at a time. StackfsOpt reduced performance degradation compared to
StackfsBase, but not as much for 4KB I/Os because splice is not used for request that are smaller or
equal to 4KB.
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Write Workloads
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Figure 5.3: Different types of requests that were generated by StackfsBase on SSD for the
seq-wr-32th-32f workload, from left to right in their order of generation.

We now discuss the behavior of StackfsBase and StackfsOpt in all write workloads listed in Ta-
ble 5.1 [rows #21–36]. Figure 5.3 shows the different types of requests that got generated during all
write workloads, from left to right in their order of generation (seq-wr-32th-32f is used as a
reference). In case of rnd-wr workloads, CREATE requests are replaced by OPEN requests, as ran-
dom writes operate on pre-allocated files. For all the seq-wr workloads, due to the creation of files,
a GETATTR request was generated to check permissions of the single directory where the files were
created. Linux VFS caches attributes and therefore there were fewer than 32 GETATTRs. For single-
threaded workloads, five operations generated only one request: LOOKUP, OPEN, CREATE, FLUSH,
and RELEASE; however, the number of WRITE requests was orders of magnitude higher and depended
on the amount of data written. Therefore, we consider only WRITE requests when we discuss each
workload in detail.

Usually the Linux VFS generates GETXATTR before every write operation. But in our case Stack-
fsBase and StackfsOpt did not support extended attributes and the kernel cached this knowledge after
FUSE returned ENOSUPPORT for the first GETXATTR. For all write-intensive workloads [rows #21–
36], the CPU utilization of StackfsBase and StackfsOpt falls under Red and Orange classes. Moreover,
for most of the cases, CPU user time is under Red (when compared to system time) for StackfsBase,
because the file system daemon running in user space.

Sequential Write using 1 thread on 1 file The total number of WRITE requests that StackfsBase
generated during this experiment was 15.7M for all I/O sizes. This is because in StackfsBase each
user write call is split into several 4KB-size FUSE requests which are sent to the user daemon. As
a result StackfsBase degraded performance ranged from –26% to –9%. Compared to StackfsBase,
StackfsOpt generated significantly fewer FUSE requests: between 500K and 563K depending on the
I/O size. The reason is the writeback cache that allows FUSE’s kernel part to pack several dirty pages
(up to 128KB in total) into a single WRITE request. Approximately 1

32 of requests were generated in
StackfsOpt compared to StackfsBase. This suggests indeed that each WRITE request transferred about
128KB of data (or 32× more than 4KB).
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Sequential Write using 32 threads on 32 files Performance trends are similar to seq-wr-1th-1f
but even the unoptimized StackfsBase performed significantly better (up to –2.7% and –0.07% degra-
dation for HDD and SSD, respectively). This is explained by the fact that without the writeback cache,
32 user threads put more requests into FUSE’s queues (compared to 1 thread) and therefore kept the
user daemon constantly busy.

Random Write using 1 thread on 1 file The performance degradation caused by StackfsBase and
StackfsOpt was low on HDD for all I/O sizes (not more than –1.3%) because the random write perfor-
mance of Ext4 on HDD is low—between 79 and 1074 Filebench ops/sec, depending on the I/O size
(compare to over 16,000 ops/sec for SSD). The performance bottleneck, therefore, was in the HDD
I/O time and FUSE overhead was not visible.

Interestingly, on SSD, StackfsOpt performance degradation was high (–27% for 4KB I/O) and
more than the StackfsBase for 4KB and 32KB I/O sizes. The reason for this is that currently FUSE’s
writeback cache batches only sequential writes into a single WRITE. Therefore, in the case of random
writes there is no reduction in the number of WRITE requests compared to StackfsBase. These nu-
merous requests are processed asynchronously (i.e., added to the background queue). And because of
FUSE’s congestion threshold on the background queue the application that is writing the data becomes
throttled.

For I/O size of 32KB, StackfsOpt can pack the entire 32KB into a single WRITE request. Com-
pared to StackfsBase, this reduces the number of WRITE requests by 8× and results in 15% better
performance.

Random Write using 32 threads on 1 file This workload performs similarly to rnd-wr-1th-1f
so the same analysis applies.

Metadata Workloads

We now discuss the behavior of StackfsBase and StackfsOpt in all metadata-intensive micro-workloads
as listed in Table 5.1 [rows #37–42].
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Figure 5.4: Different types of requests that were generated by StackfsBase on SSD for the
files-cr-1th workload, from left to right in their order of generation.
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File creates Figure 5.4 shows different types of requests that got generated during the files-cr-Nth
runs. Many GETATTR requests were generated due to Filebench calling a fstat on the file to check
whether it exists or not before creating it. Files-cr-Nth workloads demonstrated the worst per-
formance among all workloads for both StackfsBase and StackfsOpt and for both HDD and SSD.
The reason is twofold. First, for every single file create, five operations happened serially: GETATTR,
LOOKUP, CREATE, WRITE, and FLUSH; and as there were many files accessed, they all could not be
cached, so we saw many FORGET requests to remove cached items—which added further overhead.
Second, file creates are fairly fast in Ext4 (30–46 thousand creates/sec) because small newly created
inodes can be effectively cached in RAM. As a result, the overhead caused by the FUSE requests
user-kernel communication explains the performance degradation.
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Figure 5.5: Different types of requests that were generated by StackfsBase on SSD for the
files-rd-1th workload, from left to right in their order of generation.

File Reads Figure 5.5 shows different types of requests that got generated during the files-rd-1th
workload. We classify this workload as metadata-intensive because it contains many small files (one
million 4KB files) that are repeatedly opened and closed. Figure 5.5 shows that half of the READ

requests went to the background queue and the other half directly to the pending queue. The reason
that when reading a whole file, and the application requests reads beyond the EOF, FUSE generates
a synchronous READ request which goes to the pending queue (instead of the background queue).
Reads past the EOF also generate a GETATTR request to confirm the file’s size.

The performance degradation for files-rd-1th in StackfsBase on HDD is negligible and close
to Ext4; on SSD, however, the relative degradation is high (–25%) because SSD is 12.5× faster than
HDD (see Ext4 absolute throughput in Table 5.1). Interestingly, StackfsOpt’s performance degradation
is more than that of StackfsBase (by 10% and 35% for HDD and SSD, respectively). The reason is
that in StackfsOpt, different FUSE threads process requests for the same file, which requires additional
synchronization and context switches per request. Conversely, but as expected, for files-rd-32th
workload, StackfsOpt performed 40–45% better than StackfsBase because multiple threads are needed
to effectively process parallel READ requests.

File Deletes Figure 5.6 shows different types of operations that got generated during the files-del-1th
workloads. Every UNLINK request is followed by FORGET. Therefore, for every incoming delete re-
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Figure 5.6: Different types of requests that were generated by StackfsBase on SSD for the
files-del-1th workload, from left to right in their order of generation.

quest that the application (Filebench) submits, StackfsBase and StackfsOpt generates three requests
(LOOKUP, UNLINK, and FORGET) in series, which depend on each other.

Deletes translate to small random writes at the block layer and therefore Ext4 benefited from
using an SSD (7–8× higher throughput than the HDD). This negatively impacted Stackfs in terms
of relative numbers: its performance degradation was 25–50% higher on SSD than on HDD. In all
cases StackfsOpt’s performance degradation is more than StackfsBase’s because neither splice nor the
writeback cache helped files-del-Nthworkloads and only add additional overhead for managing
extra threads.

Macro Server Workloads

We now discuss the behavior of Stackfs for macro-workloads [rows #43–45].

File Server Figure 5.7 shows different types of operations that got generated during the file-server
workload. Macro workloads are expected to have a more diverse request profile than micro workloads,
and file-server confirms this: many requests got generated, with WRITEs being the majority.

The performance improved by 25–40% (depending on storage device) with StackfsOpt compared
to StackfsBase, and got close to Ext4’s native performance for three reasons: (1) with a writeback
cache and 128KB max write, the number of WRITE requests decreased by a factor of 17× for both
HDD and SSD, (2) with splice, READ and WRITE requests took advantage of zero copy, and (3) the
user daemon is multi-threaded, as the workload is.

Mail Server Figure 5.8 shows different types of operations that got generated during the mail-server
workload. As with the file-serverworkload, many different requests got generated, with WRITEs
being the majority. Performance trends are also similar between these two workloads. However, in the
SSD setup, even the optimized StackfsOpt still did not perform close to Ext4 in this mail-server
workload, compared to file-server. The reason is twofold. First, compared to file server, mail
server has almost double the metadata operations, which increases FUSE overhead. Second, I/O sizes
are smaller in mail-server which improves the underlying Ext4 SSD performance and therefore shifts
the bottleneck to FUSE.
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Figure 5.7: Different types of requests that were generated by StackfsBase on SSD for the
file-server workload.
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Figure 5.9: Different types of requests that were generated by StackfsBase on SSD for the
web-server workload.

Web Server Figure 5.9 shows different types of requests generated during the web-server work-
load. This workload is highly read-intensive as expected from a Web-server that services static Web-
pages. The performance degradation caused by StackfsBase falls into the Red class in both HDD and
SSD. The major bottleneck was due to the FUSE daemon being single-threaded, while the workload
itself contained 100 user threads. Performance improved with StackfsOpt significantly on both HDD
and SSD, mainly thanks to using multiple threads. In fact, StackfsOpt performance on HDD is even
6% higher than of native Ext4. We believe this minor improvement is caused by the Linux VFS treat-
ing Stackfs and Ext4 as two independent file systems and allowing them together to cache more data
compared to when Ext4 is used alone, without Stackfs. This does not help SSD setup as much for the
same reasons as for mail-server (high speed of SSD).
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Chapter 6

Related Work

Many researchers used FUSE to implement file systems [8, 16, 27, 56] but little attention was given to
understanding FUSE’s underlying design and performance. To the best of our knowledge, only two
others studied some aspects of FUSE. First, Rajgarhia and Gehani evaluated FUSE performance with
Java bindings [42]. Compared to this work, they focused on evaluating Java library wrappers, used
only three workloads, and ran experiments with FUSE v2.8.0-pre1 (released in 2008). The version
they used did not support zero-copying via splice, writeback caching, and other important features.
The authors also presented only limited information about FUSE design at the time.

Second, in a position paper, Tarasov et al. characterized FUSE performance for a variety of work-
loads but did not analyze the results [51]. Furthermore, they evaluated only default FUSE configu-
ration and discussed only FUSE’s high-level architecture. In this thesis we evaluated and analyzed
several FUSE configurations in detail, and described FUSE’s low-level architecture.

Several researchers designed and implemented useful extensions to FUSE. Re-FUSE automat-
ically restarts FUSE file systems that crash [48]. To improve FUSE performance, Narayan et al.
proposed to marry in-kernel stackable file systems [59] with FUSE [38]. Shun et al. modified FUSE’s
kernel module to allow applications to access storage devices directly [29]. These improvements were
in research prototypes and were never included in the mainline.
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Chapter 7

Conclusions

User-space file systems are popular for prototyping new ideas and developing complex production
file systems that are difficult to maintain in kernel. Although many researchers and companies rely
on user-space file systems, little attention was given to understanding the performance implications
of moving file systems to user space. In this paper we first presented the detailed design of FUSE,
the most popular user-space file system framework. We then conducted a broad performance char-
acterization of FUSE and we present an in-depth analysis of FUSE performance patterns. We found
that for many workloads, an optimized FUSE can perform within 5% of native Ext4. However, some
workloads are unfriendly to FUSE and even if optimized, FUSE degrades their performance by up to
83%. Finally, in terms of CPU utilization, the relative increase was 31%.

Future work There is a large room for improvement in FUSE performance. We plan to add support
for compound FUSE requests and investigate the possibility of shared memory between kernel and
user spaces for faster communications.
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